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10. Space-Division Multiplexing

Roland Ryf , Cristian Antonelli

Fiber-based optical communication networks are
reaching a point where the capacity required on
a single link can significantly exceed the capac-
ity of a single-mode fiber, and at the same time
conventional network architectures can no longer
be scaled cost-effectively. Space-division multi-
plexing (SDM) addresses the capacity bottleneck
imposed by the use of single-mode fibers within
a completely new approach that relies on new fiber
types, optical amplifiers, and optical switches ca-
pable of supporting multiple spatial channels.

The aim of this chapter is, on one hand, to
provide an overview of the components that are
necessary for the implementation of SDM trans-
mission and, on the other hand, to review the
modeling of the main propagation effects that oc-
cur in multimode and multicore fibers. The chapter
also includes a description of the techniques that
are used in SDM transmission experiments and
an update on transmission records reported from
around the globe. The chapter ends with the de-
scription of potential architectures supporting SDM
networks.
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Optical communications over fiber networks are the
backbone of our current communication infrastructure,
and the essential network components and subsys-
tems have been described in detail in Part A of this
Springer Handbook. Fiber-optic networks have scaled
in capacity over the years by first adding multiple wave-
length channels, and most recently by increasing the
spectral efficiency of the transmitted signals through
advanced modulation techniques enabled by the in-

troduction of digital coherent transceivers [10.1]. This
allowed to use pulse shaping in combination with mul-
tilevel complex formats to optimize the use of the
optical spectrum, as well as transmitting independent
signals on two orthogonal polarizations of the electric
field propagating in a single-mode fiber (SMF) (See
Chaps. 4–7 for a detailed description). In this way,
a single SMF is able to provide around 50Tb=s for
distances up to 10 000 km. This high capacity, which
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was once considered much higher than required for
telecommunications, is now becoming the bottleneck of
the cloud-centric information-technology communica-
tion networks. It is therefore of paramount importance
to identify and develop new technologies to increase
the capacity of fiber-optic communication systems by
2�3 orders of magnitude, while simultaneously re-
ducing the cost per bit of the transmitted data. As
current state-of-the-art fiber-optic systems operate close
to the theoretical capacity limit [10.1], this can only be
achieved by increasing the number of parallel spatial
channels, which is the aim of research in space-division
multiplexing (SDM) [10.2–4].

The simplest approach to overcome the capacity
limit of SMFs is using traditional single-mode systems
operated in parallel. However, this approach results in
costly and inflexible optical networks.

Significant cost reductions can be expected by bet-
ter integrating components at various levels, in particu-
lar by sharing components whenever possible or placing
multiple devices in a single planar waveguide circuit or
in a common free-space subsystem.

Integration offers great opportunities for cost reduc-
tion, most remarkably for transponders, which represent
a significant expense in a transmission system and re-
quire large numbers of wavelength and spatial channels
(presently an independent line card is used for each
wavelength channel).

Optical amplifiers supporting multiple spatial chan-
nels also offer a great potential for integration: starting
from simple parallel erbium-doped amplifiers sharing

some components and control boards, to advanced
pump-sharing schemes like for example cladding
pumped amplifiers, where a common pump is guided
in the fiber cladding and the signals to be amplified are
guided in the fiber cores.

Optical switches, which are the basic building
blocks of optical networks, can also be modified
to support systems with multiple spatial channels.
In particular, the concept of joint switching means
a beam-steering-based switching element (for exam-
ple microelectro-mechanical system (MEMS) mirror
arrays, or liquid crystal on silicon (LCOS) pixel arrays)
can be used to switch multiple spatial channels simulta-
neously.

At the physical transmission level, consisting of the
optical fiber, it is also possible to utilize waveguide
structures that support multiple spatial modes, either
by using single cores that support multiple modes, or
by adding multiple cores in the common cladding of
an optical fiber. While the single-mode fiber trans-
mission channel is very well known in terms of both
the linear (chromatic dispersion, polarization-mode dis-
persion, and Rayleigh scattering) and nonlinear (Kerr
effect, stimulated Raman scattering, and stimulated
Brillouin scattering) effects, the characterization of the
same propagation effects can become fairly complex if
multiple modes are involved, as all possible intermodal
interactions have to be accounted for. Modeling prop-
agation effects in fibers supporting multiple modes is
an imperative step towards the assessment of the trans-
mission capacity in SDM systems.

10.1 Basic Concepts in Space-Division Multiplexed Optical Networks

Adding spatial channels to traditional wavelength-
division multiplexed (WDM) networks can signifi-
cantly affect the overall network complexity, as both
the wavelength and space dimensions can be used for
the routing of optical signals. Current network archi-
tectures are also often constrained by reliability re-
quirements: for example, networks are designed such
that a single failure at any component level can al-
ways be overcome by either a protection scheme (where
a second independent physical path is available) or
a restoration scheme (where a second independent path
is configured when needed). Using multiple indepen-
dent spatial paths provides more flexibility to overcome
failure by appropriately designing and operating the
network.

Finally, at a physical point-to-point link level, fibers
supportingmultiple light paths, likemultimode andmul-
ticore fibers, can be utilized to reduce the component
count by integrating functionalities in the spatial domain.

Routing in optical networks, network reliability, and
point-to-point link engineering are not independent of
each other, and the three domains have to be optimized
jointly, which makes SDM networking a formidable
challenge with no obvious winning network architec-
ture, but rather with multiple possible solutions that
depend on the specific network requirements.

In this chapter, we focus on SDM point-to-point
links (Sect. 10.2) and routing in SDM networks
(Sect. 10.8), as these two topics are key for understand-
ing SDM networks.
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10.2 SDM Point-to-Point Links

An SDM point-to-point link is schematically described
in Fig. 10.1. It includes the followingmain components:
A bank of transmitters Txn;m, a multiplexing device that
encodes N spatial channels and M wavelength chan-
nels into the physical spatial and wavelength channels,
an SDM fiber possibly followed by K sections, each
consisting of an optical amplifier and an SDM fiber
span. At the end of the transmission fiber, a demulti-
plexing device splits all transmitted channels by spatial
and wavelength channels, and the individual channels
are received by a bank of single-mode receivers Rxn;m.
The subscripts n� N and m�M in Fig. 10.1 are the
indices of the spatial and wavelength channels, respec-
tively.

Note that spatial and wavelength channels are not
equivalent: Wavelength channels are formed by arbi-
trarily allocating portions of the continuous optical
spectrum, whereas spatial channels are in a one-to-one
correspondence with a discrete set of modes or cores of
the transmission fiber. This has important implications
for optical switching as we will see in Sect. 10.8. Addi-
tionally, there is also a fundamental difference between
spatial and wavelength channels concerning crosstalk:
Optical fibers do not introduce linear crosstalk between
different wavelength channels (nonlinear effects can
potentially do so, but we will neglect nonlinear ef-
fects in this stage), whereas linear crosstalk can be
present between spatial channels, particularly if the
spatial channels are arranged very closely, like in multi-
core fibers, where light can couple between neighboring
cores, or in multimode fibers, where the modes spa-
tially overlap and coupling can be produced by fiber
imperfections. In practice, the presence of crosstalk
between spatial channels, is not detrimental for opti-
cal transmission. In fact, the crosstalk between spatial
channels can be undone using digital signal processing
(DSP) techniques, which are similar to multiple-input-
multiple-output (MIMO) algorithms used in wireless
networks. A major advantage of optical fibers, as com-
pared to the wireless channel, is that they have very
low loss, and often also very low difference in loss be-
tween modes, which results in an almost unitary MIMO

SDM fiber
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channel, which according to information theory, pro-
vides N times the capacity of a single channel, where
N is the number of spatial channels. MIMO transmis-
sion is particularly effective if the received signals are
detected using polarization-diverse coherent receivers
(PD-Rxs), which are able to measure amplitude and
phase for both polarizations of the received spatial
channels. In fact, in the case where all modes guided
by the fiber under test are detected using PD-Rxs, the
optical field impinging upon the receiver is fully known
and propagation-induced impairments (most effectively
unitary linear effects) can be compensated for in the
digital domain. The MIMO DSP that is necessary to
undo linear impairments, is a generalization of the 2�2
MIMO implemented in commercially available digital
coherent transceivers (Chap. 6), where 2N�2N MIMO
is required for N coupled spatial modes, and addition-
ally a larger number of equalizer memory (taps) is
needed owing to the fact that, as discussed in the next
section, the group velocity difference between modes
in multimode optical fibers is several orders of magni-
tude larger than the group velocity difference between
the two polarizations of a single-mode fiber. The design
of SDM fibers is therefore often optimized to make the
magnitude of the group velocities of all the fiber modes
as close as possible. Note that in the case of multimode
fiber, this optimization is very similar to that performed
on commercial OM3 and OM4 multimode fibers used
for short-reach interconnects, where the difference in
group velocities between modes can limit transmission
reach and bandwidth [10.5–7].

Coherent MIMO transmission over SDM fiber can
maximize the transmission capacity of the fiber close
to the theoretical limit imposed by information theory
under any crosstalk condition. The crosstalk in the n-th
mode Xt.n/ is defined as

Xt.n/D
P

m¤n Pm;n

Pn;n
; (10.1)

where Pm;n is the power transfer matrix between an ex-
cited mode m and a mode n received after transmission

http://dx.doi.org/10.1007/978-3-030-16250-4_6
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Table 10.1 Maximum acceptable crosstalk level for an ad-
ditive system penalty obtained at a BER of 10�3 for
quadrature phase-shift keying (QPSK) modulation and
various quadrature-amplitude modulation (QAM) formats
(after [10.8])

Acceptable
system penalty

Max crosstalk (dB)
QPSK 16QAM 64QAM 256QAM

1 dB �17 �23 �29 �35
3 dB �12 �18:5 �25 �31

Acceptable
system penalty

Max crosstalk (dB)
QPSK 16QAM 64QAM 256QAM

1 dB �17 �23 �29 �35
3 dB �12 �18:5 �25 �31

through the fiber. The added complexity of the MIMO
DSP, even if within the realm of modern ASIC tech-
nology, is often undesirable, and alternatively SDM
fibers can be designed so that the crosstalk between
spatial channels is reduced to levels where electronic
crosstalk mitigation is no longer required. In Table 10.1
we report the maximum acceptable crosstalk level for
an added system penalty (degradation of the quality
factor Q of the transmitted signal) of 1 and 3 dB, re-
spectively, at a bit-error ratio (BER) of 10�3 [10.8],
which using state-of-the-art hard-decision forward error
correction (FEC) is sufficient to obtain error-free per-
formance (post-FEC BER < 10�12).

This is of particular interest in the case of a sys-
tem based on the use of multicore fibers where distances
over 10 000 km have been achieved withoutMIMO pro-
cessing. We will refer to this technique as transmission
in the low-crosstalk regime. Note that the low-crosstalk
regime is challenging not only for the fiber, but also
for all the in-line optical components, connectors and
splices, which also have to meet the low-crosstalk re-
quirement. This is sometimes a limiting factor for the
level of integration that can be achieved.

Alternatively, it is also possible to combine MIMO-
based transmission with the low-crosstalk regime as not
all modes will show the same amount of coupling be-
tween each other and the total number of spatial channels
can then be separated into groups, where strong cou-
pling is present within the groups and little crosstalk
is observed between the groups. This technique is used
in multimode fibers for distances smaller than 100 km
and also in multicore fibers with few-mode cores (few-
mode multicore fibers (FM-MFCs)), where MIMO is
performed across the core modes of each core but not
across the core modes of different cores, and distances
up to 1000km have been demonstrated [10.9, 10].

In the following sections, we discuss in more detail
the components of a point-to-point SDM link.

10.2.1 SDM Fibers

The single-mode fiber has been the work horse of high-
capacity long-distance communications for over three

decades. It is also the most common and lowest-cost
glass fiber (Chap. 2), mostly because of its favorable op-
tical properties, like low loss and large bandwidth (tens
of THz). A common way to increase the capacity of
optical links is therefore the use of single-mode fiber
ribbons. Fiber ribbons can be spliced with commer-
cial ribbon splicer and containerized, therefore offering
advantages in high fiber-count cables, and cables with
over 3000 fibers are commercially available. Recently,
it has been proposed to increase the capacity of the
fiber-optic channel using the following fiber types:

� Multicore fibers: fibers with multiple cores� Multimode fibers: fibers with cores supporting mul-
tiple modes.

Both fiber types are well known and have been pro-
posed for various applications, like sensing, endoscopy,
and short-reach interconnects, but a significant effort
was recently devoted to optimizing the fiber design to
support long-distance transmission.

Multicore Fibers
Since low-crosstalk multicore fibers (MCFs) have been
successfully engineered, various techniques to further
reduce the crosstalk between cores have been investi-
gated. These include, for example, the use of trenches
and holes around the cores and the use of heteroge-
neous cores, where neighboring cores are designed with
different propagation constants. Additionally, bidirec-
tional transmission can be used, where neighboring
cores carry signals propagating in opposite directions.
Nevertheless, the maximum number of cores in mul-
ticore fibers is limited by the cladding diameter. In-
creasing the cladding diameter substantially above the
standard diameter of 125�m results in more fragile
fibers with reduced reliability, and practical cladding di-
ameters for long-distance communication are limited to
around 250�mmaximum cladding diameter. Addition-
ally, larger core density can be achieved in multicore
fibers by reducing the effective area of the cores, which
however reduces the transmission performance of the
fiber. Multicore fibers with more than 30 cores [10.11]
have been demonstrated for a distance up to 1645km
ultrahigh-capacity transmission, and longer distances
can be achieved by reducing the core count to 12
cores, where distances up to 8800 km have been demon-
strated [10.12]. Multicore fibers can be spliced using
splicers designed to support polarization-maintaining
fibers, but the nonstandard cladding diameters require
customized fiber holders. Also, the core alignment is
typically less accurate than in the case of single-mode
fiber splices, particularly for cores located far from the
fiber center, which are susceptible to fiber rotation er-

http://dx.doi.org/10.1007/978-3-030-16250-4_2
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rors, resulting in slightly larger splicing losses (up to
1 dB). Multicore fibers can be connectorized and proto-
type connectors have been demonstrated [10.13].

Alternative multicore fibers can be operated in the
so-called coupled-core regime, where the distance be-
tween cores is made small, such that the cores become
coupled. The coupled-core multicore fiber (CC-MCF)
will therefore behave more like a microstructured fiber
supporting multiple modes. It is important to point out
that coupled-core fibers show an optimum core spacing,
where the properties of the modes are such that the fiber
perturbations cause strong random coupling between
the modes, while the modal group-velocity difference
is still moderately small. This effect is described in de-
tail in Sect. 10.3.3.

Multimode Fibers
Multimode fibers (MMFs) consist of fibers with a sin-
gle core that is either larger in diameter or has a larger
refractive index compared to an SMF, such that the fiber
can support more than one mode. The modes can then
be potentially used as independent transmission chan-
nels, and fibers with 100 or more modes can be easily
produced. Various refractive index designs of the core
have been proposed to support SDM, like step-index
and multistep index profiles, graded-index profiles, and
ring-core fibers.

Two design strategies have been pursued for multi-
mode fibers. The first strategy is to minimize the group
delay difference between the supported fiber modes.
For few modes this is possible by using multistep in-
dex fibers, like for example a depressed-cladding de-
sign in the case of three spatial modes [10.14]. For
larger numbers ofmodes, cores with a graded-index pro-
file provide an optimum solution, and fibers with up
to 45 modes at 1550nm wavelength have been demon-
strated using 50�m core diameters [10.5–7]. The fibers
are very similar in design and manufacturing to com-
mercially available graded-index fiber optimized for
850 nm wavelength and referred to as OM3 and OM4
fibers in commercial products, which are amply used for
short-reach interconnects, for example in datacenters.
Graded-index multimode fibers have a typical residual
group delay difference of around 100 ps=km [10.15, 16],
which for long-distance communication that can reach
up to 10 000 km would result in up to 1�s of maxi-
mum delay between modes. Fortunately, the crosstalk
between modes strongly reduces the effect as explained
in Sect. 10.5.1, such that impulse response widths in
the order of tens of nanoseconds are experimentally ob-
served. Using low group delay multimode fibers, trans-
mission distances up to 4500kmhavebeendemonstrated
using 3 spatialmodes [10.17],whereas experimentswith
up to 45 spatialmodes [10.18, 19] have been reported for

shorter fiber lengths. The second design strategy aims to
reduce the coupling between modes and use the modes
as independent transmission channels. The main goal in
this case is to increase thedifference in phasevelocity be-
tween modes by optimizing the index profile. The phase
velocity of a mode describes the speed at which the op-
tical phase front travels in the fiber (a formal definition
is given in Sect. 10.3). This approach can yield a sig-
nificant crosstalk reduction, particularly between nearly
degenerate modes, however fiber manufacturing im-
perfections, geometrical deformations like bending and
twisting, and Rayleigh scattering limit the achievable
crosstalk reduction, with the smallest reported crosstalk
levels being of the order of �30 to �40 dB=km, and the
longest transmission distance demonstrated being about
50 km. Low-crosstalk fibers are of interest for short-
distance applications (< 100 km).

We note that alternative fiber designs aiming to
avoid degeneracy between modes have been proposed,
for example by using elliptical cores [10.20–22], or
high-contrast ring-core fiber designs [10.23], which al-
lows accessing and using all fiber modes without any
MIMO digital signal processing.

10.2.2 Mode Multiplexers
and Fiber Couplers

Mode multiplexers (MMUXs) are devices that couple
multiple single-mode fibers into the modes of a multi-
mode fiber. There are two types of MMUXs: The so-
called mode-selective device directly couples a given
single-modefiberwith a specificfibermode,whereas the
nonmode-selective device, associates different single-
modefiberwith different orthogonal linear combinations
ofmodes. For coherentMIMO transmission a nonmode-
selective MMUX can be utilized with no disadvantage,
whereas in some specific cases, like for example trans-
mission with low-crosstalk between mode groups, or
formodal delay compensation,mode-selectiveMMUXs
with high modal selectivity are required.

Since fiber modes are orthogonal to each other
(the definition of mode orthogonality is provided in
Sect. 10.3), it is theoretically possible to separate modes
in a lossless way, similarly to the way in which a po-
larizing beam splitter can separate two polarization
components, or a diffraction grating can separate dif-
ferent wavelengths. Numerous techniques have been
proposed and demonstrated for realizing mode multi-
plexers [10.25–33]. In what follows, we describe two
of the most promising techniques.

The Photonic Lantern
Photonic lanterns (PLs) provide an adiabatic transi-
tion between N single-mode fibers and a step-index
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(b) Photonic lantern
implemented using
laser-inscribed
waveguides.
(c) Core arrange-
ment matching
linearly polarized
(LP) modes of mul-
timode fibers with 3,
6, 10, and 15 spatial
modes [10.24]

multimode fiber [10.24, 31, 32, 34–36]. This device is
manufactured by using a glass processor starting from
N single-mode fibers inserted in a low refractive in-
dex capillary. The composite structure is then contin-
uously reduced in size (tapered) in the glass processor
so that the cores of the single-mode fibers vanish
and the claddings form the new core, whereas the
low-refractive-index capillary forms the new cladding
(Fig. 10.2a).

The end section of the PL can then be directly spliced
to a multimode fiber with a matching core geometry. In
order to map the correct modes between the single-mode
and the multimode end, the SMFs have to be arranged
into specific spatial patterns (Fig. 10.2c). Arranging the
fibers according to these patterns is easily achieved for
MMUXs up to six spatial modes, where the single-mode
fibers self-arrange in the capillary. Photonic lanterns
supporting a larger number ofmodes are fabricatedmore
easily by using a drilled low-refractive-index preform in-
stead of the capillary,where the fiber is held in the correct
location by the drilled holes. This wayMMUXs up to 15
spatial modes have been demonstrated [10.37]. Mode-
selective PLs can be achieved by starting from noniden-
tical single-mode fibers, either by slightly changing the
core diameter or the refractive index difference between
the core and cladding of the single-mode fibers [10.31,
32, 38]. In this way, for example, the single-mode fibers

with the lowest effective refractive index can bematched
with the fiber mode that also has the lowest effective re-
fractive index and a mapping between modes and the
input SMF can be achieved. Photonic lanterns are of in-
terest because devices with low insertion loss and low
mode-dependent loss (MDL) can be achieved. For exam-
ple, an MMUX supporting three spatial modes can have
an insertion loss of less than 0:5 dB and less than 3 dB
MDL (in short MDL is defined as the power ratio in dB
between the least and most attenuated linear combina-
tions of modes—see Sect. 10.5.2 for a more extended
description). The corresponding values for six and ten
modes are slightly larger, but PL technology is still the
best performing in terms of loss.

Photonic lanterns can also be realized by using
femto-second laser-inscribed three-dimensional wave-
guides (Fig. 10.2b), where waveguides are written into
a glass substrate and brought close to each other ar-
ranged as shown in Fig. 10.2c, so that the waveguides
almost merge [10.39]. In particular, there is an alter-
native design for the laser-inscribed PL, referred to
as taper velocity couplers [10.40], where the inscribed
waveguides are tapered within the coupling section.
MMUXs fabricated this way are commercially avail-
able, and offer the advantage of being compatible with
planar waveguide technology, as the input waveguide
can be arranged in any desired geometry.
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The Multiplane Light Conversion
Mode Multiplexer

Multiplane light conversion has been proposed as a uni-
versal mode-converting device capable of transforming
any input mode set into any output mode set [10.33].
This functionality is achieved by having the light travers-
ing multiple phase-only transmission masks, each fol-
lowed by a free-space transmission section. The num-
ber of required masks depends on the desired transfor-
mation, but fortuitously, one of the transformations of
biggest interest in mode-divisionmultiplexing, which is
the transformation from spatially separated spots into
Laguerre–Gaussian beams (which are in close approxi-
mation to the modes of a graded-index multimode fiber,
aswill be seen in the following sections), can be achieved
with less than ten phase masks. Also, in practice, mul-
tiplane devices are implemented using a reflective ge-
ometry, where light is reflected multiple times between
two planes: one plane consists of a substrate contain-
ing multiple phase masks, and the second is a high-
reflectivitymirror. A schematic arrangement for amode-
multiplexer is shown in Fig. 10.3.

Using this technology, MMUXs with large mode
selectivity have been realized with up to 45 spatial
modes [10.41, 42], and proof-of-principle devices with
up to 210 spatial modes using only 7 phase masks have
been demonstrated [10.43]. Multiplane-based MMUXs
offer great flexibility but up-to-date products and proto-
types could not yet match the low-loss level of photonic
lanterns. However, since theoretically they are lossless
elements, lower loss devices can be expected by using
a coating with higher reflectivity and improved mask
fabrication and designs.

10.2.3 SDM Amplifiers

Optical amplifiers that support multiple spatial paths
can be designed in several ways. A simple colloca-
tion of multiple erbium-doped fibers in a single module
can already provide significant cost savings by shar-
ing components and control electronics. Additionally,
it is possible to share pump lasers and use arrays of

14 phase masks

SMFs with
collimators

MMF
collimator

Dielectric mirror

Fig. 10.3 Multiplane light converter
configured as a mode multiplexer:
Each single mode fiber (SMF) on
the left-hand side will couple to
a particular mode of the multimode
fiber (MMF) on the right-hand
side [10.41]

integrated optics components like taps and detectors
for power level monitoring. A higher level of integra-
tion is possible when using multimode or multicore
erbium-doped fibers. It is then possible to extend the
functionality of free-space optics-based components
like for example optical isolators or gain-equalizing fil-
ters to support multiple modes or cores without the need
for mode multiplexers or fan-in/fan-out devices in the
case of multimode- and multicore fibers, respectively.

Multimode erbium-doped fibers, typically require
a precisely controlled doping profile and/or specific
modal excitation of the pump laser in order to achieve
a similar gain for each mode of interest [10.44–47].
The situation is more advantageous in multicore doped
fibers, where pump lasers are coupled into the indi-
vidual doped core of the multicore fiber. The gain and
noise figure of the core-pumped multicore amplifiers is
expected to be comparable to traditional single-mode
erbium-doped amplifiers, but the pump couplers will
require at least one set of fan-in devices to couple the
pump laser.

A particularly promising alternative approach to
building optical amplifiers with multiple spatial chan-
nels is based on cladding pumping. In cladding pump-
ing, a multimode high-power pump laser at 980 nm
wavelength is coupled to the cladding of the amplify-
ing fiber, which results in a homogeneous illumination
of the entire fiber cross-section. The cores, which are
erbium-doped, absorb the pump light and amplify the
guided signals (Fig. 10.4).

The multimode pump can be coupled to the
cladding by using the so-called side-pumping configu-
ration, which consists of bringing a tapered multimode
fiber carrying the pump light into contact with the
external cladding of the amplifying fiber. Coupling
efficiency of > 80% can be achieved without using tra-
ditional dichroic combiners.

Cladding pumping can be applied to both multi-
core and multimode fibers. In multicore fibers, all cores
are illuminated by the pump light, which can produce
homogeneous gain. This is advantageous compared to
core pumping, where for each core the pump light has
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Pump illumination

Tapered MMF

Multimode
pump
diode

Side pump combiner

Erbium-doped core

Low-index outer cladding (coating)

a)

b)

Fig. 10.4a,b Cladding pump amplifier scheme: (a) Side-pumping arrangement where a multimode pump is coupled into
the cladding of a multicore fiber to homogeneously illuminate the cladding; (b) cross-section of multicore fiber showing
the different fiber regions and the low-index coating used to confine the pump light

to be independently combined and coupled [10.48]. In
order to minimize the gain variation between cores in
cladding-pumped amplifiers, the core properties have
to be precisely matched. Alternatively, variable gain at-
tenuators (VOAs) acting on each core separately can
be used in combination with a dynamic gain equaliz-
ing filter (DGEF), for example using an LCOS-based
device [10.49]. Furthermore, cladding-pumped ampli-
fiers, are typically operated in a nonsaturated output
power regime, and therefore can naturally provide con-
stant gain independently of the input power, which is
desirable in optical networks to reduce the effect of
transients caused by partial network failures. A draw-
back of operating the amplifier in a nonsaturated regime
is however a reduced power efficiency of the cladding
pump amplifier, which can in principle be overcome by
means of pump-recycling schemes [10.50] able to re-
use the pump light that is not absorbed by the cores at
the end of the amplifying fiber (which otherwise is just
dumped into free-space and absorbed).

Cladding pumping is advantageous also for multi-
mode amplifiers: A homogeneous gain for all modes
can be achieved by using a cladding pumping and in
combination with a simple doping profile with con-
stant erbium concentration across the whole core re-
gion [10.51, 52].

10.2.4 SDM Transceivers

Transceivers for SDM differentiate themselves
from state-of-the-art single-mode digital coherent
transceivers in two ways.

The first main difference is that additional DSP
capabilities are required to support multiple modes,
and a longer memory is necessary to accommodate
larger group-delay differences in the MIMO DSP. Also,
in order to simultaneously process multiple MIMO
channels, a higher integration density of high-speed
analog-digital converters (ADCs) is required. Note that
the complexity of a conventional SMF digital coherent
transceiver is dominated by the chromatic dispersion
compensation (approximately 30%) and forward-error
correction sections (approximately 25%), whereas the
2� 2 MIMO section implies relatively little complexity
(approximately 10%). Therefore, if the added complex-
ity of the MIMO DSP grows hypothetically by one
order of magnitude, the overall DSP complexity only
increased by a factor of 2 per mode (see [10.53] for
a detailed analysis).

The second main difference is that transceivers in
a conventional WDM system require a tunable laser
for each transceiver in order to cover the full wave-
length channel map. Once the spatial dimension is
added, it is in principle possible to share a single tunable
laser among multiple spatial channels [10.54]. This is
of particular interest in MIMO-based channels, where
all spatial channels are treated as a single end-to-end
MIMO transmission channel [10.55].

Additionally, the large count of basic components
required in an SDM transceiver, like high-speed ADCs
and digital-to-analog converters (DACs), modulators
and optical coherent receivers, offers a great cost-
saving potential through the integration of large pools
of transceivers.



Space-Division Multiplexing 10.3 Fiber Modes 361
Part

A
|10.3

10.3 Fiber Modes

The modes of an optical fiber are the solutions of
Maxwell’s equations for electro-magnetic waves trav-
eling along the propagation axis z of a dielectric
waveguide characterized by some transversal refractive
index profile. These solutions are invariant in the z-
direction up to a phase term exp.jˇnz/, where n is the
mode number and ˇn is corresponding propagation con-
stant. A single-mode electromagnetic field generated by
a monochromatic source at the angular frequency !0

can be expressed as

En.x; y; z; t/D Re
	
Fn.x; y; !0/e

j.ˇnz�!0t/
 ;

Hn.x; y; z; t/D Re
	
Gn.x; y; !0/ej.ˇnz�!0t/



; (10.2)

where En and Hn are real-valued three-dimensional
vectors that represent the electric and magnetic field,
respectively. The complex-valued vectors Fn and Gn

are the corresponding lateral modal field distributions,
and they are solutions of the Helmholtz equation in the
form [10.56, 57]


TFn C !2
0

c2
n2.x; y/Fn D ˇ2

nFn ; (10.3)


TGn C !2
0

c2
n2.x; y/Gn D ˇ2

nGn ; (10.4)

where n.x; y/ is the transversal refractive index pro-
file, c is the speed of light in a vacuum, and 
T D
@2=@x2 C @2=@y2 is the transversal Laplace operator.
Note that the first of the two equations is only exact if
r �ED 0, whereas in general r �ED�2r Œlog.n/	 �E,
as follows from r �DD 0 (D is the electric displace-
ment vector). The conditionr�ED 0 is fulfilled exactly
for step-wise constant refractive index profiles, and only
approximately for slowly varying refractive index pro-
files.

In most cases that are of practical relevance, the
fiber modes have to be calculated with numerical meth-
ods, and they fulfill the orthogonality condition [10.56]

“
dxdy

�
Fn �G	

m

� � OzD 2N 2
n ın;m ; (10.5)

where Oz is a unit vector pointing in the propagation
direction, ın;m is the Kronecker delta, and Nn is a nor-
malization factor that is discussed later in the chapter.
The orthogonality condition is used to decompose any
electric and magnetic field at the fiber input charac-
terized by the lateral profiles Ffs.x; y/ and Gfs.x; y/,
respectively, as a linear combination of the fiber modes

by using the following relations

Ffb.x; y/D
NX

nD1

anFn.x; y/ ;

Gfb.x; y/D
NX

nD1

anGn.x; y/ ;

an D
“

dxdy
Ffs �G	

n

2N 2
n

� Oz

D
“

dxdy
F	
n �Gfs

2N 2
n

� Oz ; (10.6)

where the subscripts fs and fb refer to the input field in
free space and to the guided field in the fiber, respec-
tively.

Different modes have different propagation con-
stants, unless they are degenerate. It is customary to
represent each propagation constant as a Taylor expan-
sion around the central frequency !0

ˇn D ˇn;0Cˇn;1.!�!0/C 1

2
ˇn;2.!�!0/

2

C 1

6
ˇn;3.!�!0/

3C : : : (10.7)

The different terms have the following physical inter-
pretation. The first term is related to the phase velocity

ph;n,


ph;n D !0

ˇn;0
; (10.8)

which describes the speed of the phase front of the prop-
agating field. When two modes travel at the same phase
velocity, energy can be exchanged and the coupled light
is kept in phase over a long propagation distance. For
pairs of modes with different phase velocities it is pos-
sible to define a beat length,

Ln:m D 2 

jˇn;0�ˇm;0j ; (10.9)

so that the accumulated phase difference between the
two modes is 
� D 2 z=Ln;m, and the two modes are
periodically in phase with the period being equal to the
beat length. The second term of (10.7) yields the group
velocity


gr;n D 1

ˇn;1
; (10.10)

which describes the speed of a light pulse traveling in
mode n. The arrival time difference for two pulses trav-
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eling in modes n andm, respectively, of a fiber of length
` is known as the differential group delay (DGD)

DGDn;m D `jˇn;1�ˇm;1j : (10.11)

The third term of (10.7) is related to the chro-
matic dispersion coefficient CDn D .2 c=�20/ˇn;2, �0 D
2 c=!0. Chromatic dispersion is responsible for the in-
tramodal frequency dependence of the group velocity,
which causes temporal pulse broadening even in the
case when only a single mode is transmitted.

10.3.1 Modes of a Step-Index Fiber

The simplest optical fibers are based on a step-index
profile, where the refractive index in polar coordinates
is given by

n.r/D
(
nc; if 0< r � a ;

n0; if r > a ;
(10.12)

where a is the fiber core radius, and rDp
x2 C y2. For

step-index fibers the solution of (10.3) and (10.4) is
known to be given by the Bessel function Jn.r/ in the
core region, and by the modified Bessel function of the

TM01

TE01

HE21a HE21b

HE11x HE11y
Fundamental mode:
Degenerate in polarization

Degenerate mode

Nearly 
degenerate
modes

HE31a HE31b

EH11a EH11b Degenerate mode

Degenerate mode

Nearly
degenerate
modes

HE12x HE12y Degenerate in polarization Fig. 10.5 First four mode groups of
a step-index multimode fiber

second kindKn.r/ in the cladding region. Even if the so-
lutions are known within each refractive index region,
numerical methods have to be used to solve the bound-
ary condition problem between core and cladding. The
solutions for the first four mode groups of a step-index
fiber are shown in Fig. 10.5.

The fundamental mode HE11 is degenerate in po-
larization, meaning that two modes with orthogonal
polarizations, but with the same lateral profile and prop-
agation constants are supported by the fiber. The next
modes TM01 and TE01 are nondegenerate, and their po-
larization is position-dependent. The following HE21

mode is two-fold degenerate and can be represented as
a linear combination of polarizations, by using circu-
larly polarized light resulting in a ring-looking intensity
profile (similar to TM01 and TE01), but with a phase
term of the form exp.˙j'/, where ' is the angle in polar
coordinates. We note that fiber modes are often referred
to as optical angular momentum (OAM) modes [10.23].
However, not all fiber modes can be represented as
OAM modes, in particular TM0n and TE0n are not com-
patible with OAM modes [10.58], and also the concept
of OAM modes breaks down when the effective index
contrast is such as to break the degeneracy of the HEnm

modes [10.59, 60].
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LP12a LP12b LP41a LP41b LP22a LP22b LP03 LP51a

LP51b LP32a LP32b LP61a LP61b LP13a LP13b LP42a

LP42b LP71a LP71b LP23a LP23b LP04 LP81a LP81b

Fig. 10.6 First 32 modes of a step-index multimode fiber

Table 10.2 Cut-off frequencies of the modes of a step-index fiber

Mode LP11 LP21 LP02 LP31 LP12 LP41 LP03 LP32 LP42
V 2.4 3.8 3.9 5.1 5.5 6.4 7.1 8.4 9.8
Mode LP11 LP21 LP02 LP31 LP12 LP41 LP03 LP32 LP42
V 2.4 3.8 3.9 5.1 5.5 6.4 7.1 8.4 9.8

In the relevant regime of weak guidance [10.61],
where the index contrast is smaller or much smaller than
1%, the modes of a step-index fiber can be grouped in
nearly degenerate mode groups (TM01, TE01, and the
two-fold degenerate HE21 mode form a group). Modes
belonging to the same group couple almost immedi-
ately due to fiber imperfections, and therefore do not
propagate as individual modes in real fibers. Moreover,
in the regime of weak guidance all modes are approxi-
mately linearly polarized (LP) [10.61]. Each LP mode
is identified by two integers n and m and is denoted as
LPnm, where n characterizes the azimuthal dependence
exp.˙jn'/ and sets the number of 2  phase changes for
a rotation around the fiber axis, whereasm characterizes
the radial dependence of the mode amplitude and sets
the number of zero-crossings increased by one in the ra-
dial direction. Note that LP modes can equivalently be
expressed either in terms of the functions exp.˙jn'/,
or in terms of the functions cos.n'/ and sin.n'/. Fig-
ure 10.6 shows the first 32 modes of a weakly guiding
step-index fiber in the cos.n'/= sin.n'/ representation.
The main advantage of this representation is that the
mode lateral profile functions are real-valued and can

be plotted using a simple color map. In the figure red
and blue indicate positive and amplitude values, respec-
tively.

Modes with n¤ 0 are four-fold degenerate, as they
are degenerate with respect to polarization and with
respect to their azimuthal characteristics. Modes with
nD 0 are two-fold degenerate, as they are only degen-
erate with respect to polarization. The number of LP
modes that are guided by a step-index fiber depends on
the normalized frequency V, which is defined as

V D 2 a

�0

q
n2c � n20 : (10.13)

Fibers with the same V number guide the same number
of modes and the mode profiles are characterized by the
same dependence on the normalized radial coordinate
r=a. Step-index fibers are single-mode if V < 2:4. The
cut-off frequencies of high-order modes are enumerated
in Table 10.2.

According to (10.13), the number of modes of
a step-index fiber can be increased either by increas-
ing the core radius or by increasing the difference in
refractive index nc� n0.



Part
A
|10.3

364 Part A Optical Subsystems for Transmission and Switching

10.3.2 Modes of a Graded-Index Fiber

Graded-index fibers have a nearly parabolic refrac-
tive index profile that is truncated at the core/cladding
boundary. In order to reduce coupling between the
last guided mode-group and the cladding modes,
an additional low refractive index trench around the
nearly parabolic core is added [10.5, 6]. The modes of

LP01

Group 1

LP11a

Group 2

LP11b

LP21a

Group 3

LP21b LP02

LP31a

Group 4

LP31b LP12a LP12b

LP41a

Group 5

LP41b LP22a LP22b LP03

LP51a

Group 6

LP51b LP32a LP32b LP13a LP13b

LP61a

Group 7

LP61b LP42a LP42b LP23a LP23b LP04

LP71a

Group 8

LP71b LP52a LP52b LP33a LP33b LP14a LP14b

Fig. 10.7 The first 36 modes of a graded-index multimode fiber

a graded-index fiber with an ideally parabolic profile
are Laguerre–Gaussian modes, where the radial term
of the modal profile is a combination of a Gaussian
function and a Laguerre polynomial, whereas the az-
imuthal term is still of the form exp.jn'/. As shown
in Fig. 10.7, the modes of a graded-index fiber are di-
vided into groups: all the modes of a given group are
degenerate and each added group shows one additional
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degenerate mode. Although the modes of a graded-
index fiber look similar to those of a step-index fiber,
they have a different sequential order when sorted by
the magnitude of their propagation constants. Also, the
radial field extension, that in step-index fibers is mostly
confined within the core for all modes, in graded-index
fibers is proportional to the mode order, so that higher
order modes have a significantly larger modal diam-
eter. The propagation constants of the mode groups
of an ideal graded-index fiber are equally spaced, and
all modes have nearly the same group velocity, which
makes the graded-index fiber the multimode fiber with
the smallest theoretical DGD between pulses propa-
gating in different modes. In practice, the DGD of
a graded-index fiber is determined by the accuracy of
the refractive index profile and by the dispersion proper-
ties of the core and cladding materials. Additionally, the
modes of a graded-index fiber have the property of be-
ing invariant under spatial Fourier transformation. The
spatial Fourier transform configuration can be achieved,
for example, by placing the end face of the fiber in the
back focal plain of a lens, so that the Fourier trans-
form appears in the front focal plane of the same lens.
For a graded-index fiber, this configuration reproduces
a scaled version of the modes, which is not generally
the case for other sets of guided modes like for example
the modes of a step-index fiber.

TE01 TM01

HE11 HE21

TE01 TM01

HE11 HE21

a) b)

Fig. 10.8a,b Modes of a three-core multicore fiber supporting six vector modes. (a) The intensity profile, (b) direction
of the electrical field indicated by arrows. Arrows arranged in circle indicates circular polarization and the position of
the arrow relative to the circle indicates the overall relative phase

10.3.3 Modes of Multicore Fibers:
The Concept of Supermodes

Multicore fibers consist of multiple cores that are placed
close to each other in a common cladding. The modes
of a multicore fiber can be calculated by analyzing the
modes of the ensemble of cores. The resulting modal
field distributions spread across all cores and are re-
ferred to as supermodes. An example of supermodes for
a three-core fiber is shown in Fig. 10.8.

When the coupling between cores is weak, the
modes of a multicore fiber can be calculated using
coupled-mode theory [10.62], where the supermodes
are approximated by linear combinations of the modes
of the individual cores (core modes), and the cou-
pling coefficients depend on the overlap between the
core modes [10.62, 63]. This approximation is useful
to qualitatively study the systematic coupling between
the cores. Note that both modal representations, su-
permodes and core modes, can be used to understand
the coupling behavior of multicore fibers, however the
supermodes representation has the advantage that it
provides exact solutions for any core configuration in-
cluding the case of strong core-mode overlap.

In practice, the modal properties of the multicore
fibers depend strongly on the distance between the
cores, and three distinct regimes can be identified:
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The first is the weak coupling regime, where the re-
fractive index variations between the cores of the fiber
structure produce an equivalent propagation-constant
difference between the cores, that is bigger than the
difference between the propagation constants of the su-
permodes. In this case, the cores behave as independent
waveguides, showing a random-like coupling between
neighbor cores, and the coupling between the cores is
then described by the coupled power theory [10.64,
65]. The weak coupling regime is typically observed in
multicore fibers where the core spacing is significantly
larger than the core-mode field diameter.

The second regime is the supermode regime, where
the difference in propagation constant between the su-
permodes is much bigger than the propagation constant
variations introduced by the refractive index variations
between the cores or external fiber perturbations like
twists and bends. In this case, the supermodes are
stable and can propagate unperturbed, and the fiber
behaves similarly to a conventional multimode fiber,
which shows a weak random-like coupling between the

supermodes. The supermode regime is typically ob-
served in multicore fibers where the core spacing is
comparable or smaller than the core-mode field diam-
eter.

The third regime can be observed when the dif-
ference in the propagation constant between the su-
permodes is comparable to the propagation constant
variation induced by refractive index variation and the
external fiber perturbations. In this case, the super-
modes couple strongly and mix continuously. We refer
to this regime as the strong coupling regime, and to the
fibers operated in this regime as coupled-core multi-
core fibers. These fibers offer the advantage of showing
very narrow impulse responses for all coupled cores,
typically one order of magnitude (or more) narrower
than impulse responses achievable in graded-indexmul-
timode fibers with an equivalent number of modes
(Sect. 10.5.1). The strong coupling regime is typically
observed in multicore fibers where the core spacing is
comparable or slightly larger than the core-mode field
diameter.

10.4 Representation of Modes in Fibers

We start by considering the case of a single-mode fiber,
which for simplicity we assume to be a step-index
fiber, where the fundamental mode is HE11. We express
the three-dimensional real-valued electric field vector
E.x; y; z; t/ introduced in the previous section as

E.x; y; z; t/D Re

��
FHE11x.x; y; !0/

NHE11.!0/
Ex.z; t/

CFHE11y.x; y; !0/

NHE11.!0/
Ey.z; t/

�
e�j!0 t

�
;

(10.14)

where FHE11x and FHE11y are the lateral profile func-
tions of the fundamental mode aligned with the x- and
y-directions, respectively. Note that the specific choice
of the x- and y- directions is immaterial to this discus-
sion, as any other pair of orthogonal directions would
be equally suitable. The terms Ex and Ey are the corre-
sponding complex envelopes of the field and the nor-
malization coefficientNHE11 is introduced to ensure that
the power in Watts that is carried by the x-oriented (y-
oriented) mode is jExj2 (jEyj2). We note that the mode
lateral profile functions are evaluated at !0 owing to the
fact that in all cases of practical relevance the bandwidth
of the individual complex envelopes is sufficiently small
to ignore the dependence of Fn on frequency. The form
of (10.14) shows that the complex envelopes Ex and Ey

are not exactly the x and y polarization components of

the electric field, as follows from the fact that the HE11

lateral profile function possesses a nonzero component
in the z-direction. The situation simplifies in the rele-
vant case of weakly guiding fibers [10.61], where the
fundamental mode LP01 is linearly polarized and its lon-
gitudinal component is negligible. In this case,Ex andEy

characterize fully and independently the x and y polar-
ization components of the electric field (which is indeed
a two-dimensional vector in the x–y plane) and the field
vector can be expressed as

E.x; y; z; t/D Re
��

FLP01x.x; y; !0/

NLP01.!0/
Ex.z; t/

C FLP01y.x; y; !0/

NLP01.!0/
Ey.z; t/

�
e�j!0t

�
;

D FLP01.x; y; !0/

NLP01.!0/
Re

˚
ŒEx.z; t/Ox

CEy.z; t/Oz	e�j!0 t
�
; (10.15)

where the second equality relies on the fact that the lat-
eral profile of the fundamental mode is real-valued, and
FLP01x D FLP01 Ox, FLP01y D FLP01 Oy, where Ox and Oy are unit
vectors pointing in the x- and y-directions, respectively.
It is convenient to introduce the bi-dimensional vector
E.z; t/ defined as

E.z; t/D
�
Ex.z; t/
Ey.z; t/

�
: (10.16)
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This vector is related to the Jones vector introduced in
Sect. 10.4.1. It provides a full characterization of the
optical field not only in the weakly guiding approxi-
mation, where its components are in a one-to-one cor-
respondence with the x and y polarization components
of the field, but also in the most general case where
the longitudinal component is non-negligible. Note that
the same vector notation is used, yet with no risk of
confusion, to denote both the three-dimensional vectors
E.x; y; z; t/ and F.x; y; !0/, and the two-dimensional
vector E.z; t/. The extension of this representation to
the case of higher order modes is straightforward, but
requires some clarifications. Let us consider the group
of the nearly degenerate modes HE21a and HE21b, and
the transverse modes TE01 and TM01, whose excitation
yields the field

E.x; y; z; t/D Re
��

FHE21a.x; y; !0/

NHE21.!0/
EHE21a.z; t/

CFHE21b.x; y; !0/

NHE21.!0/
EHE21b.z; t/

CFTE01.x; y; !0/

NTE01.!0/
ETE01.z; t/

CFTM01.x; y; !0/

NTM01.!0/
ETM01.z; t/

�
e�j!0 t

�
:

(10.17)

In the weakly guiding approximation, the lateral profile
functions of the HE, TE, and TM modes can be used to
express those of the LP11 group as follows

FLP11ax

NLP11
D 1p

2

�
FHE21a

NHE21

C FTM01

NTM01

�
; (10.18)

FLP11ay

NLP11
D 1p

2

�
FHE21b

NHE21

� FTE01

NTE01

�
; (10.19)

FLP11bx

NLP11

D 1p
2

�
FHE21b

NHE21

C FTE01

NTE01

�
; (10.20)

FLP11by

NLP11

D 1p
2

�
FHE21a

NHE21

� FTM01

NTM01

�
; (10.21)

(where we dropped the dependence on x, y, and !0 for
ease of notation) with the result

E.x; y; z; t/D Re
��

FLP11ax

NLP11

ELP11ax.z; t/

C FLP11ay

NLP11
ELP11ay.z; t/

C FLP11bx

NLP11

ELP11bx.z; t/

C FLP11ay

NLP11
ELP11by.z; t/

�
e�j!0 t

�

D Re

��
FLP11a

NLP11
ŒELP11ax.z; t/Ox

C ELP11ay.z; t/Oy	
C FLP11b

NLP11
ŒELP11bx.z; t/Ox

C ELP11by.z; t/Oy	
�
e�j!0 t

�
;

(10.22)

where the complex envelopes of the linearly polarized
modes are obtained from those of the true fiber modes
through

2

6
6
4

ELP11ax.z; t/
ELP11ay.z; t/
ELP11bx.z; t/
ELP11by.z; t/

3

7
7
5D 1p
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2
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1 0 1 0
0 1 0 �1
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7
7
5

�

2

6
6
4

EHE21a.z; t/
EHE21b.z; t/
ETM01.z; t/
ETE01.z; t/

3

7
7
5 (10.23)

as follows from using (10.18)–(10.21) into (10.22).
The second equality in (10.22) shows that each of the
complex envelopes in the LP representation provides
a complete characterization of a space and polariza-
tion mode. All together, the four complex envelopes
give a complete description of the field, and they are re-
lated to the generalized Jones representation presented
in Sect. 10.4.3.

We can now move to the most general case of 2N
modes, where the factor of two accounts either for the
degeneracy of a spatial mode (as is the case for HE11

or HE21), or for the fact that in all cases of practi-
cal relevance a fiber cannot guide only one out of two
quasi-degenerate modes (as is the case for TE01 and
TM01). In the weakly guiding approximation, the fac-
tor of two accounts simply for polarization degeneracy.
By suitably sorting the guided modes, we can express
the electric field as

E.x; y; z; t/D Re

"
2NX

nD1

Fn.x; y; !0/

Nn.!0/
En.z; t/e

�j!0 t
#

;

(10.24)

where the term En.z; t/ is the complex envelope of the
field in the n-th mode and the vector Fn.x; y; !0/ is
the corresponding mode lateral profile. As specified
already in the examples illustrated above, the normal-
ization coefficients Nn.!0/ are introduced to ensure
that the power in Watts that is carried by the n-th mode
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is given by jEn.z; t/j2 [10.66]. Note that a different nor-
malization could be assumed (for instance, in [10.67]
the power in Watts is given by jEn.z; t/j2=.2Z0/, where
Z0 D

p
�0=�0 is the impedance of vacuum). Their ex-

pression follows from the mode orthogonality condition
(10.5), which we recall here for convenience,

Z
dxdy

�
Fn �G	

m

� � OzD 2N 2
n ın;m : (10.25)

The orthogonality condition implies the following
equation, which is often found in the literature [10.66–
68],

Z
dxdy

�
Fn �G	

m CF	
m �Gn

� � OzD 4N 2
n ın;m ;

(10.26)

and in the weakly guiding approximation simplifies to

neff
2Z0

Re
�Z

dxdyFn �F	
m

�
D ın;mN 2

n ; (10.27)

where neff is the effective refractive index of the fun-
damental mode. With the field expression introduced
in (10.24), in the ideal case of a perfectly circular
fiber, in the absence of loss, mode coupling and nonlin-
ear propagation effects, the complex envelopes evolve
according to the simple evolution equation in the fre-
quency domain

@ QEn.z; !/

@z
D jˇn.!/ QEn.z; !/ ; (10.28)

where by the tilde we denote a (frequency) Fourier
transform according to the definition

QEn.z; !/D
Z

En.z; t/ exp.j!t/dt : (10.29)

An important feature of (10.24) is that the effect of
perturbations is captured through the dependence of
the complex envelopes on the longitudinal coordinate,
while the modes used in the expansion are those of the
unperturbed fiber. An alternative approach, that is not
further discussed in this chapter, relies on using per-
turbed local modes [10.69].

It is worth pointing out that the true fiber modes
form a complete orthogonal basis for representing lo-
cally the lateral profile of the field propagating in the
fiber, and therefore any other orthogonal basis obtained
from a unitary transformation of the true fiber modes
lateral profile functions works as well [10.70]. How-
ever, since the resulting lateral profile functions are

not in general fiber modes, the evolution of the corre-
sponding complex envelopes is described by coupled
equations even in the ideal case of an unperturbed fiber.
Equations (10.18)–(10.21) and (10.23) can be inter-
preted as an example of this change of basis. Indeed, it
is well known that LP modes are only true modes within
the weakly guiding approximation, whereas in reality
they couple during propagation, not only in fibers with
high-index-contrast, but also in weakly guiding fibers
where the accumulated effects of the small modal bire-
fringence cannot be ignored [10.71].

In the remainder of this section we review the Jones
and Stokes formalisms [10.72–74], which are widely
used for the study of polarization-related phenomena in
single-mode fibers, and discuss their generalization to
the multimode case.

10.4.1 Jones and Stokes Formalism
for Single-Mode Fibers

Jones calculus was originally proposed to describe
polarized light by means of two-dimensional vec-
tors [10.72]. Indeed, as discussed in the previous sec-
tion, the vector E.z; t/ defined in (10.16) provides
a complete description of the electric field propagating
in a single-mode fiber, and the physical interpretation
of its two components is slightly different whether the
fiber is weakly guiding or not. The corresponding Jones
vector is defined as the Fourier transform of E.z; t/ nor-
malized to have unit modulus, namely

je.z; !/i D
QE.z; !/
j QE.z; !/j D

�
ex.z; !/

ey.z; !/

�
; (10.30)

where we use the bra–ket notation to denote a Jones
vector jei. By the bra he.z; !/j we denote the Hermi-
tian adjoint of the field Jones vector (i.e., the complex
conjugate row vector), so that the unit-modulus condi-
tion can be expressed as hejei D jexj2 Cjeyj2 D 1, and
the scalar product between two Jones vectors is given
by hujei D u	x ex C u	x ey.

We now move to introducing the Stokes representa-
tion of the electric field. This is an alternative descrip-
tion based on the use of real-valued three-dimensional
vectors and it is isomorphic to the Jones represen-
tation [10.71]. If we denote by e the Stokes vector
corresponding to the Jones vector jei, its three compo-
nents are defined as

e1 D jexj2� jeyj2 ;
e2 D 2Re

�
e	x ey

�
;

e3 D 2Im
�
e	x ey

�
: (10.31)
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The length of the Stokes vector can be evaluated to

be jej D
q
e21 C e22 C e23 D hejei D 1, where the second

equality follows from the normalization of jei (in some
cases the Jones vector is not normalized to have unit
modulus, with the result that the length of the Stokes
vector equals the optical power). The ensemble of all
possible polarization states spans the surface of a sphere
of unit radius in Stokes space, which is famously known
as the Poincaré sphere. An alternative expression of the
Stokes vector, which turns out to be highly convenient
for the generalization of the Stokes formalism to the
multimode fiber case is the one based on the use of Pauli
spin matrices, which we recall here for convenience

�1 D
�
1 0
0 �1

�
; �2 D

�
0 1
1 0

�
;

�3 D
�
0 �j
j 0

�
: (10.32)

Note that the original definition of the Pauli matrices in
quantummechanics differs from the above by a circular
permutation of the matrix subscripts.With the use of the
Pauli matrices, (10.31) can be re-expressed as

en D hej�njei ; n 2 f1; 2; 3g ; (10.33)

and by formally collecting the Pauli matrices into a col-
umn vector which we denote by � , the Stokes vector
can be expressed in the following compact form

eD hej� jei : (10.34)

Another relevant relation between the Jones and Stokes
representations has to do with the projection operator.
This is a 2�2 matrix returning the projection on a given
Jones vector jei of the Jones vector to which is applied,

jeihej D 1

2
.IC e � � / : (10.35)

Here, by I we denote the 2� 2 identity matrix (in what
follows we will use the same symbol to denote the
M�M identity matrix as well, where M is an arbi-
trary integer), and where the scalar product between
a Stokes vector and the Pauli matrix vector stands for
the linear combination e � � D e1�1 C e2�2 C e3�3. The
equivalence between (10.33) and (10.35) follows from
the equality

hej�njei D tr .�njeihej/ ; (10.36)

and from the trace-orthogonality of the Pauli matrices,
that is

tr .�n�m/D 2ın;m ; (10.37)

where ın;m is the Kronecker delta. A useful consequence
of (10.35) is

jhujvij2 D 1

2
.1C u � v/ ; (10.38)

which shows that orthogonal states of polarization,
for which hujvi D 0, are antiparallel in Stokes space,
namely u � v D�1.

10.4.2 Polarization Coupling and Unitary
Propagation in Single-Mode Fibers

Manufacturing imperfections and mechanical stress
that are always present in real fibers are responsible for
the fact that orthogonal polarization modes couple dur-
ing propagation in single-mode fibers. In the absence of
polarization-dependent loss (PDL), polarization-mode
coupling can be conveniently described in Jones space
by means of a unitary matrix U defined through the fol-
lowing input-output relation,

jQe.z; !/i D e�
˛
2 zU.z; !/jQe.0; !/i ; (10.39)

where the term exp.�˛z=2/ describes polarization-
averaged loss. This term is immaterial to the present
analysis and will be dropped in what follows. The uni-
tary propertyU.z; !/U�.z; !/D I implies the following
form for the evolution equation of U.z; !/,

dU.z; !/
dz

D jB.z; !/U.z; !/ ; (10.40)

where B.z; !/ is a Hermitian matrix. Indeed, by dif-
ferentiating both sides of the equality UU� D I, one
obtains .dU=dz/U� D�Œ.dU=dz/U�	�, which implies
that .dU=dz/U� is anti-Hermitian, and hence can be ex-
pressed as jB, where B is Hermitian. Since the Pauli
matrices form a basis for traceless Hermitian matrices,
the above can be conveniently re-expressed as

dU.z; !/
dz

D j
�
ˇ0.z; !/IC 1

2
ˇ.z; !/ � �

�
U.z; !/ ;

(10.41)

where by ˇ0 we denote the propagation constant of
the fundamental mode, whose third-order Taylor ex-
pansion defined in (10.7) yields the terms describing
polarization-averaged phase delay, group delay, and
chromatic dispersion. The traceless matrix ˇ.z; !/ � �
accounts for the local (z-dependent) polarization-mode
coupling that occurs during propagation (including its
frequency dependence), where ˇ is a three-dimensional
real-valued vector, which we refer to as the birefrin-
gence vector [10.73, 75] (this definition relaxes the use
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of the term birefringence vector, which normally is re-
stricted to the frequency derivative of ˇ). The simple
relation between ˇ and B is ˇn D tr.�nB/.

A closed-form solution for (10.41) in the general
case does not exist, however the evolution of U over
a short fiber section of length
z is given by the follow-
ing expression

U.zC
z; !/' exp Œjˇ0.z; !/
z	

� exp

�
j

2
ˇ.z; !/ �� 
z

�
U.z; !/ ;

(10.42)

which is customarily employed in numerical simula-
tions, where a fiber is modeled as a concatenation of
multiple short sections (waveplates). If the birefrin-
gence vector is z-independent, namely ˇ.z; !/D ˇ.!/,
the above expression can be readily modified to evalu-
ate the fiber transfer matrix U, with the result

U.z; !/D exp

2

4j

zZ

0

ˇ0.�; !/d�

3

5

� exp

�
j

2
ˇ.!/ � � z

�
; (10.43)

which ensures the initial condition U.0; !/D I. This
case is of no practical relevance (in reality the fiber bire-
fringence is rapidly varying along the propagation axis),
however the form of (10.43) is interesting since also in
the most general case U can be expressed in the same
form,

U.z; !/D exp Œj�0.z; !/	 exp

�
j

2
r.z; !/ � �

�
;

(10.44)

where �0 accounts for the accumulated phase and r for
the accumulated effect of the fiber birefringence from
the input to the generic position z. Indeed, a unitary
matrix can in general be expressed as UD exp.jH=2/,
where U is a traceless Hermitian matrix that in turn can
be expanded in terms of the Pauli matrices asHD r �� .
A useful alternative expression for U follows from the
eigenvector analysis of the matrix exponential appear-
ing in (10.44), which yields

UD ej�0
�
e�jr=2jrihrjC ejr=2jr?ihr?j

�
; (10.45)

where rD jrj, and by jri and jr?i, we denote the two
orthogonal Jones vectors corresponding to the (unit-
length) Stokes vectors ˙r=r. Equation (10.45) shows
that jri and jr?i are the two eigenstates of U and their

eigenvalues are equal to exp.�jr=2/ and exp.jr=2/, re-
spectively. Equation (10.45) is consistent with a general
property of unitary matrices of any dimension of having
orthogonal eigenvectors with unit-modulus eigenval-
ues. A detailed derivation of (10.45) can be found
in [10.73]. The derivation relies essentially on two prop-
erties of the Pauli matrices, �2n D I and �n�m D��m�n,
which yield .r � � /2k D jrj2kI. Use of the latter equality
in the power expansion of the matrix exponential yields
exp.j r ��=2/D cos.jrj/IC j sin.jrj/.r �� /=jrj. Equation
(10.45) is finally obtained by considering (10.35) and
the subsequent discussion.

The evolution of the field polarization state can be
conveniently described also in Stokes space, where the
overall effect of unitary fiber propagation is rotation of
the field Stokes vector, as follows from the invariance
of the Stokes vector length (this invariance is not triv-
ially the consequence of the normalization involved in
the definition of the Jones vectors but rather the result
of power conservation during unitary propagation). If
we denote by R the 3� 3 rotation matrix isomorphic
to the unitary Jones matrix U, the input-output relation
eout D Rein D heinjU��Ujeini yields the following sim-
ple relation [10.73]

R� DU��U ; (10.46)

which connects U and R. The matrix R is also referred
to as the Müller matrix. The known evolution equation
for the field Stokes vector is obtained by differentiating
the expression eD tr .� jeihej/, which yields

@e
@z

D tr

�
� j
.ˇ �� /.e � � /� .e � � /.ˇ � � /

2

�
D ˇ � e ;

(10.47)

where the first equality follows from using (10.41) and
the second requires using some of the Pauli matrices
algebra. Equation (10.47) provides an intuitive inter-
pretation of the local birefringence vector ˇ. Indeed, it
shows ˇ to be the local rotation axis that characterizes
the trajectory drawn by the tip of the field Stokes vec-
tor on the Poincaré sphere, as the field propagates along
the fiber, as illustrated in Fig. 10.9. In the case of uni-
form birefringence the trajectory simplifies to a circle
and the motion on this circle is described by the matrix
R.z/D exp.zˇ�/, where by ˇ� we denote the matrix
operator that, if applied to the vector s, performs the
vector product ˇ � s, namely

ˇ�D
0

@
0 �ˇ3 ˇ2
ˇ3 0 �ˇ1
�ˇ2 ˇ1 0

1

A : (10.48)
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Fig. 10.9a,b Trajectory of the field Stokes vector on the Poincaré sphere. (a) If the birefringence vector ˇ is constant
along the fiber, the Stokes vector rotates around ˇ, namely the trajectory is a circle, the rotation axis is Ǒ D ˇ=jˇj, and the
angular velocity is jˇj. (b) In the general case of varying birefringence, the Stokes vector trajectory can be approximated
by means of infinitesimal rotations around the local birefringence vector ˇ.z/

The expression of R.z/ shows that the rotation angle is
jˇjz and the rotation axis is Ǒ D ˇ=jˇj, thereby imply-
ing that the two orthogonal states whose Stokes vectors
are parallel and antiparallel to ˇ are propagation eigen-
states. This argument is useful to clarify the isomorphic
relation existing between the general unitary Jones ma-
trix UD exp.j�0/ exp.jr � �=2/ and the Müller matrix
RD exp.r�/ (note that the phase shift �0 is immaterial
in the Stokes representation, consistent with the defini-
tion of the Stokes vector itself).

10.4.3 Generalized Jones
and Stokes Formalism

The example of the four-mode field discussed in
Sect. 10.4 suggests that the complex envelopes En.z; t/
provide a complete description of the field, although
their physical interpretation is slightly different whether
the fiber is weakly guiding or not. The generalized
Jones vector je.z; !/i, often referred to as the field hy-
perpolarization vector, is hence constructed by stacking
the Fourier transform of the individual complex en-
velopes on top of each other, and by normalizing the
resulting 2N-dimensional column vector to have unit
modulus, formally identically to the definition used in
(10.30) for the single-mode case [10.76–78],

E.z; t/D

0

B
BB
@

E1.z; t/
E2.z; t/
:::

E2N

1

C
CC
A
; je.z; !/i D

QE.z; !/
j QE.z; !/j :

(10.49)

The symbol E, which was previously used to denote
a two-dimensional column vector, here denotes a 2N-
dimensional column vector.

The generalization of the Stokes representation is
less straightforward and entails a generalization of the
Pauli matrix formalism. A convenient starting point is
(10.35), which shows that the Stokes representation of
a single-mode field is related to the expansion of the
projection operator jeihej in terms of the Pauli matrices.
Since jeihej is a 2N�2N Hermitian matrix for N > 1 as
well as for N D 1, (10.35) can be generalized into

jeihej D 1

2N
.IC s �	/ ; (10.50)

where s is the generalized Stokes vector and 	 is a vec-
tor collecting the generalized Pauli matrices  n, which
must be traceless Hermitian matrices fulfilling the fol-
lowing trace-orthogonality condition,

trf m ng D 2Nın;m : (10.51)

Matrices of this type form a basis for all 2N � 2N
traceless Hermitian matrices (a recursive algorithm to
construct the matrices  n for any number of modes is
illustrated in the appendix of [10.78]). These have DD
4N2� 1 degrees of freedom, as follows from the fact
that the elements on the main diagonal are real-valued
and the off-diagonal elements are complex-conjugate in
pairs. The subtraction of one accounts for the zero-trace
constraint. These considerations imply that the general-
ized Stokes vectors are D-dimensional and real-valued,
where D is hence the dimensionality of the generalized
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Stokes space. Note, however, that the region spanned by
the Stokes vectors is only .4N�2/-dimensional, like the
hyperpolarization space (the 2N complex-valued entries
of jeiminus the unit-magnitude constraint and the com-
mon phase of the hyperpolarization vector).

Equations (10.50) and (10.51) imply the following
generalized properties

en D hej njei; n 2 f1; : : : ;Dg ; (10.52)

eD hej	jei ; (10.53)

jhujvij2 D 1

2N
.1Cu � v/ : (10.54)

Note that the length of the generalized Stokes vectors
is given by jej D p

2N � 1, as follows from (10.54)
for uD v . Another important consequence of the same
equation is that Stokes vectors corresponding to orthog-
onal Jones vectors (for which hujvi D 0) are charac-
terized by the relation u � v D�1, which in the mul-
tidimensional case does not imply that u and v are
antiparallel. In fact, since their magnitude is not 1, one
can define the angle ˛ formed by two Stokes vectors
corresponding to orthogonal Jones vectors through the
equality u �v D .2N�1/ cos.˛/D�1.We note that this
result does not change by normalizing the generalized
Stokes vectors to have unit length, as is done in [10.79].

10.5 Mode Coupling and Unitary Propagation in SDM Fibers

In the absence of MDL, mode coupling in a fiber that
supports 2N modes is described by a unitary 2N � 2N
matrix U.z; !/, whose evolution obeys the equation,

dU.z; !/
dz

D jB.z; !/U.z; !/ ; (10.55)

which is identical to (10.40), provided that the symbol
B denotes a 2N � 2N Hermitian matrix. The individ-
ual terms of B account for the coupling between pairs
of modes, whereas blocks of B describe the coupling
within and between groups of degenerate modes. An il-
lustration is presented in Fig. 10.10.

The matrix B can be expanded in terms of the gen-
eralized Pauli matrices, thereby rendering (10.50) into

dU.z; !/
dz

D j

�
ˇ0.z; !/IC 1

2N
ˇ.z; !/ �	

�
U.z; !/ ;

(10.56)

|e
�� B��

LP01 B01 K

K† B11LP11

Ẽ1

Ẽ2

Ẽ3

Ẽ4

Ẽ5

Ẽ6

Fig. 10.10 The matrix B describing linear coupling in
a fiber that supports propagation of LP01 and LP11 mode
groups. The 2� 2 block B01 accounts for polarization cou-
pling within the fundamental mode, while the 4� 4 block
B11 accounts for mode coupling within the LP11 group.
The 2� 4 block K and its Hermitian adjoint K� describe
intergroup mode coupling

where ˇ0.z; !/ has the meaning of the mode-averaged
propagation constant, whereas the D-dimensional vec-
tor ˇ.z; !/ accounts for the mismatch between the
various propagation constants, as well as for the lo-
cal mode coupling [10.80, 81]. An alternative form of
(10.55), which is often encountered in the literature, is
obtained by accounting separately for the propagation
constants of the individual modes,

dU.z; !/
dz

D j
�
B0 C 1

2N
b.z; !/ �	

�
U.z; !/ ;

(10.57)

where B0 denotes a diagonal matrix whose nonzero
elements are the propagation constants of the individ-
ual modes, and where the vector b.z; !/ only accounts
for the mode coupling caused by the fiber perturba-
tions. Clearly, this description is only appropriate in
the case where the spatial modes used as a basis for
the field lateral profile are also true fiber modes. In this
case, in the absence of coupling (bD 0) (10.57) yields
UD exp.jB0z/. If the spatial modes assumed for the
field lateral profile expansion are not true fiber modes
(as is rigorously the case in the LP representation), then
B0 is nondiagonal [10.71, 80, 82] and it accounts for the
deterministic and periodic coupling that occurs between
the spatial modes of the basis.

Similarly to the single-mode case, there is no
closed-form solution for (10.57), except when the gen-
eralized birefringence vector is independent of z. In this
situation (10.42)–(10.44) apply also to the case of mul-
tiple modes, provided that the quantity �=2 be replaced
with 	=2N. A major difference between the single-
mode and the multimode case stems from the fact that
while the matrix r � � admits two orthogonal eigenvec-
tors, the matrix r �	 admits 2N orthogonal eigenvectors,
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and hence the matrix U can be expanded as

UD ej�0
2NX

nD1

ej�n jpnihpnj (10.58)

where jpni and �n are the n-th eigenstate of r �	 and
the corresponding eigenvalue, respectively, and whereP

n �n D 0.
The Stokes-space representation of unitary evolu-

tion in the case of multiple-mode propagation is for-
mally identical to the one discussed for single-mode
fibers, and the main differences have to do with the in-
creased dimensionality of the generalized Stokes space.
Indeed, a unitary 4N � 4N Jones matrix U corresponds
to a norm-preserving transformation R in the D�D
Stokes space, which can be still interpreted as a rota-
tion, yet on a hypersphere, thereby failing to provide
an intuitive description of the Stokes vector evolution.
The relation connecting U and R is obtained from
(10.46), by replacing the Pauli matrices with their gen-
eralized version, while the evolution equation for the
generalized Stokes vector becomes

@e
@z

D tr

�
	 j
.ˇ �	/.e �	/� .e �	/.ˇ �	/

2N

�

D ˇ � e ; (10.59)

where the first equality follows from (10.56) and the
second relies on the generalization of the vector product
to the multidimensional case [10.78]. The k-th compo-
nent of the generalized vector product between vectors
A and B is defined as

.A�B/k D
X

i;j

fi;j;kAiBj ; (10.60)

where by fi;j;k we denote the structure constants

fi;j;k D j

.2N/2
tr Œ k. i j � j i/	 : (10.61)

Equation (10.59) is formally identical to the dynamic
equation (10.47) obtained for single-mode propagation,
and in principle it can be used for numerical simula-
tions, just like in the single-mode case. Also, similarly
to the case of a single-mode fiber, the Jones matrix UD
exp.jr �	=2N/ is isomorphic to RD exp.r�/, where by
r� we denote the D�D matrix operator that returns
the vector product r� s, when applied to the vector s.
The expression of r� follows from (10.60). It is inter-
esting to note that the propagation matrix R cannot pull
a legitimate Stokes vector out of the manifold of the le-
gitimate Stokes vectors, and it can be shown that only
Stokes vectors corresponding to the eigenstates of r �	
are eigenstates of R.

10.5.1 Modal Dispersion

The term modal dispersion is used to address two dis-
tinct phenomena. One is the modal dependence of the
field group velocity, and the other is the frequency de-
pendence of the random coupling process.

In the case of single-mode fibers, where the two
polarizations of the fundamental mode are perfectly
degenerate, modal dispersion is referred to as polar-
ization-mode dispersion (PMD) and is a manifestation
of the frequency dependence of the fiber random bire-
fringence. In the case of multimode fiber structures,
modal dispersion arises primarily from the group veloc-
ity mismatch existing between the fiber modes, but its
properties are profoundly influenced by the regime of
coupling that characterizes the multimode propagation.
In all cases modal dispersion introduces a delayed chan-
nel response which needs to be equalized at the receiver
end by means of MIMO techniques, thereby obviously
increasing the complexity of the MIMO-DSP receiver.
In what follows, we review the formalism developed for
the study of PMD in single-mode fibers and discuss its
generalization to the case of SDM fibers.

Polarization-Mode Dispersion
in Single-Mode Fibers

The unitary condition U.z; !/U�.z; !/D I implies that
the equation describing the frequency dependence of U
is of the same form as (10.41) (which describes its z-
dependence), namely

@U.z; !/
@!

D j
�
�0.z; !/IC 1

2
�.z; !/ ��

�
U.z; !/ :

(10.62)

The meaning of �0 and � is easily understood when they
do not depend on frequency and hence (10.62) has the
following simple solution

U.z; !/D exp.j�0!/ exp

�
j

2
� � � !

�
U.z; 0/

(10.63)

D ej�0!.ej�!=2j�ih� j C e�j�!=2j�?i
� h�?j/U.z;0/ ; (10.64)

where the second equality follows from the discussion
related to (10.45). Here by j�i and j�?i, we denote
the Jones vectors that correspond to the Stokes vec-
tors˙O� D˙�=� , with � D j�j. This form indicates that
a polarized input signal characterized by a state vector
jpi such that U.z; 0/jpi D j�i or by an orthogonal state
jp?i such that U.z; 0/jp?i D j�?i is simply delayed by
�0 C �=2 or �0 � �=2, respectively, at propagation dis-



Part
A
|10.5

374 Part A Optical Subsystems for Transmission and Switching

tance z, namely

f .t/jpi! f
�
t� �0 � �2



j�i ; (10.65)

f .t/jp?i! f
�
t� �0 C �

2



j�?i: (10.66)

The polarization states jpi and jp?i are known as prin-
cipal states of polarization (PSP) and the relative delay
� that they accumulate during propagation is known as
the differential group delay (DGD) (it is customary to
refer to j�i and j�?i as the slow and the fast PSPs, re-
spectively, consistent with the fact that j�i is delayed
with respect to j�?i). The vector �, which as discussed
provides a complete characterization of the PSPs, is fa-
mously known as the PMD vector.

The effect of PMD on arbitrarily polarized input
states can be more conveniently described by introduc-
ing the distinction between input and output PSPs (this
distinction is often erroneously ignored in the literature,
however it becomes unnecessary if one assumes that no
coupling occurs at ! D 0 (U.z; 0/D I), or equivalently
if the Jones vectors are expressed in a rotating refer-
ence frame where this is the case). Indeed, jpi and jp?i
should be more correctly referred to as the input PSPs,
whereas j�i and j�?i should be referred to as the output
PSPs. Using the simple relation existing between them,
(10.64) can be re-expressed in the following form

U.z; !/D ej�0!
�
ej�!=2j�ihpjC e�j�!=2j�?ihp?j

�
;

(10.67)

which can be used to see that an input signal charac-
terized by the state vector jui, during propagation splits
into two replicas that are separated in time by the DGD,

f .t/jui! hpjuif
�
t� �0 � �2



j�i

C hp?juif
�
t� �0 C �

2



j�i : (10.68)

The two replicas are polarized along the output PSPs,
whereas their amplitudes are equal to the projections of
the input signal state vector onto the input PSPs. Equa-
tion (10.68) reduces to (10.65) or (10.66) if jui D jpi or
jui D jp?i, respectively.

We recall that (10.67) and (10.68) were derived
under the assumption that the PMD vector does not de-
pend on frequency. The resulting description of PMD is
hence an approximation usually referred to as a first-
order PMD picture. Assessing the accuracy of this
approximation requires studying the statistical proper-
ties of the PMD vector, which are briefly reviewed in
what follows.

The PMD vector evolution equation is obtained
in two steps. We first equate the two expressions for

@2U=@z@! obtained from (10.41) and (10.62), with the
result

@�0

@z
D @̌ 0

@!
; (10.69)

@�

@z
� � D @ˇ

@!
� � C j

.ˇ � � /.� � � /� .� � � /.ˇ � � /
2

:

(10.70)

The first equation describes the accumulation of the
polarization-averaged delay. The second can be further
simplified by tracing out the Pauli matrices, with the
same procedure illustrated in (10.47). The result is the
famous PMD dynamic equation

@�

@z
D @ˇ

@!
Cˇ �� : (10.71)

The dependence of the birefringence vector on propa-
gation distance renders the evolution of the PMD vector
nontrivial. Most importantly, since ˇ is random in na-
ture (it describes random mode coupling), the PMD
vector � is also random. The statistical properties of the
birefringence vector of single-mode fibers have been
accurately characterized in the past decade, and a well-
established result is that its typical correlation length
ranges from a few meters to a few hundreds of me-
ters [10.75], implying that thousands of independent
contributions accumulate over typical fiber lengths in
metro and long-haul systems. This simple argument,
in conjunction with the central-limit theorem, legiti-
mates the description of the PMD vector evolution in
terms of a three-dimensional Brownian motion [10.83].
That is, the three components of the PMD vector are
independent and identically distributed Gaussian vari-
ables, and its length—the DGD—is characterized by
a Maxwellian probability density function (plotted in
Fig. 10.11a). The mean PMD vector length (or, equiva-
lently, the mean DGD) is proportional to the square-root
of the propagation distance

h�.z/i D �PMD
p
z ; (10.72)

where by angled brackets we denote ensemble aver-
aging, and where the proportionality coefficient �PMD

is the familiar PMD coefficient (note that the mean
value of the DGD is frequency-independent, as it fol-
lows from the stationarity of the PMD process with
respect to frequency). The PMD coefficient is custom-
arily specified in units of ps=

p
km and typical values

range from 0:01 ps=
p
km in modern low-PMD fibers to

0:5 ps=
p
km in installed vintage systems [10.84]. We

stress that the square-root growth of the mean DGD
results from the random nature of the birefringence vec-
tor ˇ, while the details of the birefringence statistics
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Fig. 10.11 (a) The probability density function of the DGD normalized to its root-mean-square value. (b) Normalized
autocorrelation function of the PMD vector

are not relevant, as long as the fiber length exceeds by
some orders of magnitude the birefringence correlation
length. Just to mention one relevant example, it is worth
pointing out that all the work carried out by Galtarossa’s
group [10.75, 82, 84, 85] relies on the assumption that
circular birefringence is absent everywhere along the
fiber, thereby implying that the third component of ˇ

vanishes. In this case, the second term at the right-
hand side of (10.71) is the one responsible for lifting
the PMD vector out of the equatorial plane in Stokes
space, thereby making the assumption of vanishing cir-
cular birefringence immaterial, with the result that all
of the described properties of the PMD vector are not
affected by this detail of the model. Equation (10.72)
can be expressed in the following equivalent form,

h�2.z/i D �2z ; (10.73)

where � D �PMD

p
3 =8.

The random nature of PMD manifests itself also
through the frequency dependence of the PMD vector,
which is key to assessing the accuracy of the first-order
approximation. This dependence is conveniently char-
acterized by means of the two-frequency correlation
function of the PMD vector [10.86–88], whose expres-
sion is

h�.z; !/ � �.z; !C˝/i D 3
1� e�

˝2h�2.z/i
3

˝2
(10.74)

The derivation of (10.74) is straightforward if one uses
the tools of stochastic calculus [10.88]. The same re-
sult can also be obtained by approximating the fiber

with a finite number N of constant-birefringence plates
and then by taking the limit N !1, which is the
approach used in the work where (10.74) was first pre-
sented [10.86]. Note that the derivation of the autocor-
relation function is performed by assuming a first-order
expansion of the birefringence vector ˇ.z; !C˝/'
ˇ.z; !/C˝.@ˇ=@!/.z; !/. A similar assumption un-
derpins the derivation of the generalized PMD vector
autocorrelation function (ACF) in the multimode case.
Inspecting the plot of (10.74) in Fig. 10.11 shows
that the PMD vector ACF reduces to one half of its
peak value at the angular frequency difference ˝3dB '
2:18=

ph�2i, which suggests that for smaller differ-
ences two PMD vectors are highly correlated with each
other and hence the frequency dependence of the PMD
vector is negligible. The corresponding frequency dif-
ference BD˝3dB=2 ' 0:347=

ph�2i is often used as
a definition of the PMD bandwidth, with the idea that
the first-order PMD approximation only applies to the
transmission of signals whose bandwidth does not ex-
ceed the PMD bandwidth. It is worth pointing out that
in the case of single-mode fiber systems, this is almost
always the case, for single-channel bandwidths of the
order of a few tens of GHz. As an example consider
a 1000 km link: for a legacy fiber with a PMD co-
efficient �PMD D 0:1 ps=

p
km, the PMD bandwidth is

B' 100GHz, and it increases to B' 1 THz in the case
of a low-PMD fiber with �PMD D 0:01 ps=

p
km. The

situation is substantially different in the case of mul-
timode fibers, as is discussed in the next section.

To conclude this section, we remind the reader that
PMD is a unitary effect and hence, unlike PDL [10.89],
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does not imply a fundamental system information ca-
pacity loss. For this reason, its effect can in principle
be fully compensated for in the digital domain at the
receiver of a polarization-multiplexed coherent system.
The complexity of the necessary DSP scales with the
magnitude of the system PMD (the differential delay
that needs to be accommodated in time-domain equal-
ization algorithms [10.90]), or equivalently with the
PMD bandwidth (the resolution required in frequency-
domain equalization algorithms [10.91]).

Generalization of the PMD Formalism
The derivation of (10.62) relies solely on the unitary
nature of the Jones matrix U.z; !/. Its extension to the
case of multimode fiber structures is thereby straight-
forward, and the resulting equation can be expressed as

@U.z; !/
@!

D j

�
�0.z; !/IC 1

2N
�.z; !/ �	

�
U.z; !/ ;

(10.75)

where �0 is now the mode-averaged group delay, and �

is a D-dimensional real-valued vector that generalizes
the PMD vector and that is referred to as the mode dis-
persion (MD) vector [10.78]. Its evolution equation is
also derived with the same procedure described in the
single-mode case and the result is identical to (10.71),
provided that the symbol � is used to denote the gener-
alized vector product. A major difference with respect
to the single-mode case is due to the phase and group
velocity mismatch existing between the various fiber
modes. As pointed out in the discussion of (10.56) and
(10.57), this mismatch is captured by the generalized
birefringence vector, which can be conveniently ex-
pressed as the sum of two contributions,

ˇ.z; !/D ˇd.!/Cˇr.z; !/ ; (10.76)

where the term ˇd is the deterministic content of
ˇ accounting for the propagation constants mismatch
(which is constant along the fiber, unless some specific
special fiber design is considered), while the term ˇr
models random coupling between modes. Moreover, if
the spatial modes used for representing the field lateral
profile are not true fiber modes, ˇd must also account

1
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Fig. 10.12 State vector E in a three-
core fiber, where the field is
represented in the basis of the
fundamental modes of the individual
fiber cores, and the matrix B0 de-
scribing the deterministic coupling
between them

for the deterministic coupling between them. With
the formalism of (10.57), ˇd can be extracted using
ˇd;n D tr. nB0/=2N, where nD 1 : : :D. As an exam-
ple, Fig. 10.12 illustrates the case of a coupled-core
three-core fiber where the spatial-modes basis consists
of the fundamental modes of the individual cores (they
are not true fiber modes—the true fiber modes are su-
permodes, as discussed in Sect. 10.3.3). In this case,
one can compute [10.80] ˇd D 2b

p
N.Oe10COe16COe18C

Oe24C Oe26C Oe32/, where Oej, jD 1 : : : 35 is a unit vector in
the j-th direction of the generalized Stokes space.

Using (10.76), the MD vector evolution equation
reads as

@�

@z
D dˇd

d!
C @ˇr

@!
C .ˇd Cˇr/� � : (10.77)

The term @ˇr=@!, which accounts for the frequency
dependence of the perturbations, contributes to the
evolution of the MD vector to a negligible extent as
compared to the dˇd=d!, which accounts for the deter-
ministic walk-off between nondegenerate modes, and
hence can be ignored. The simplified evolution equa-
tion,

@�

@z
D dˇd

d!
C .ˇd Cˇr/� � ; (10.78)

shows that the local contribution to the MD vector
dˇd=d! is constant along the fiber, while the overall
z-dependent birefringence vector ˇd.!/Cˇr.z; !/ ro-
tates the MD vector as it accumulates along the fiber.
This dynamics suggests that in the multimode case the
statistics of the MD vector depend on the effectiveness
with which the MD vector is randomized by the random
birefringence, with different results in the two relevant
regimes of weak and strong mode coupling.

Like in the single-mode fiber case, an intuitive in-
terpretation of the MD vector can be gained from the
first-order picture. In fact, the PSP expansion of the
channel transfer matrix U in (10.67) is generalized to
the multimode case in the following form,

U.z; !/D ejt0!
2NX

nD1

ejtn!j�nihpnj ; (10.79)
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where the output principal states (PSs) j�ni are the 2N
orthogonal eigenstates of the matrix � �	 (they are re-
lated to the input PSPs jpni through j�ni DU.z; 0/jpni),
and the corresponding delays are referred to the mode-
averaged group delay t0, so that

P
n tn D 0. Thus,

an input signal characterized by the state vector jui, as
a result of propagation splits into 2N replicas, each de-
layed by t0 C tn,

f .t/jui!
2NX

nD1

hpnjuif .t� t0 � tn/j�ni : (10.80)

The analytical extraction of the mode delays, which are
the eigenvalues of the matrix .� �	/=2N, in the mul-
timode case is not as straightforward as in the single-
mode case (where t1 D �=2 and t2 D��=2), however
the mode delays are related to the MD vector through
the following simple relation

�2 D 2N
2NX

nD1

t2n : (10.81)

Within the first-order picture, the most relevant quantity
is the largest differential group delay (LDGD), also re-
ferred to as the delay spread [10.92]), which is defined
as the difference between the largest and the smallest of
the 2N delays. The LDGD is the time interval that needs
to be accommodated at the MIMO-DSP receiver, and it
obviously affects the complexity of the MIMO-DSP re-
ceiver [10.93]. In this framework the statistics of the
LDGD is of primary importance, as LDGD fluctuations
might cause system outages if not properly accounted
for in the receiver design. These considerations under-
pinned early studies of MD in SDM fibers, which were
focused primarily on characterizing the probability den-
sity function of the LDGD [10.77, 78]. More recently,
however, it became clear that the first-order picture can
accurately describe MD in fibers with negligible mode
coupling, whereas it is fundamentally inconsistent in
the most relevant case of SDM fibers with strong mode
coupling [10.80, 81, 94]. These two cases are discussed
in what follows.

Modal Dispersion in the Regime
of Weak Mode Coupling

Weak coupling between modes results from a large mis-
match between the modes’ propagation constants. In
this regime modal dispersion manifests itself primarily
in the form of modal walk-off, where distinct groups
of quasi-degenerate modes accumulate a differential
delay that increases proportionally to the propagation
distance. Using the Stokes-space formalism, this result
emerges from (10.78), which by setting ˇr D 0, yields

� D .dˇd=d!/z (this simple result follows from the fact
that ˇd and dˇd=d! are parallel vectors, as discussed
in [10.80]). In this case, the first-order approximation
is legitimate for signals within whose bandwidth the
term dˇd=d! does not vary significantly. In particu-
lar, in the familiar case of two uncoupled groups of
degenerate modes, this expression of the MD vector
can be shown to produce two distinct delays, whose
absolute difference is equal to the differential group de-
lay Ljv�1

g1 � v�1
g;2 j, where vg;1 and vg;2 denote the group

velocities of the two mode groups. Modal dispersion
within the two groups of modes adds to the much
larger intergroup dispersion, implying an almost neg-
ligible effect on the MIMO-DSP complexity, which
depends primarily on the intergroup differential delay.
This regime includes transmission in LP01 and LP11
mode groups of weakly guiding fibers, under the sim-
plifying assumption of perfect degeneracy of the LP11
modes.

Obviously, the regime of weak mode coupling
evolves into a regime of intermediate coupling, and
eventually of strong coupling, as propagation distance
increases. The analysis of this transition and its con-
sequences for the fiber modal dispersion are rather
complex and go beyond the purpose of this review. Re-
cent studies on this subject can be found in [10.80,
94–97].

Modal Dispersion in the Regime
of Strong Mode Coupling

Modes with similar propagation constants get strongly
coupled over relatively short propagation distances, as
a result of the fiber’s perturbations. In this situation, the
effect of the random birefringence vector ˇr is domi-
nant and the most relevant properties of the MD vector
can be derived by neglecting the deterministic birefrin-
gence vector ˇd in (10.78). The simplified equation,

@�

@z
D dˇd

d!
Cˇr � � ; (10.82)

differs from the PMD vector evolution equation in the
forcing term, which is deterministic. Note that because
of the many uncorrelated rotations of the accumulating
MD vector driven by the random birefringence vec-
tor, the orientation of dˇd=d! is immaterial, and the
same argument used in the single-mode case can hence
be used here to conclude that the MD vector evolves
as a Gaussian vector too (indeed, direct measurements
of the generalized birefringence vector statistics are
not available yet, however the observed mode-coupling
dynamics indicate that the modal content of the trans-
mitted field in the regime of strong mode coupling is
randomized over a few meters, suggesting that the cor-
relation length of the generalized birefringence vector
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Fig. 10.13 (a) The probability density function of the MD vector modulus normalized to its root-mean-square value for
various numbers of spatial modes. (b) Normalized autocorrelation function of the MD vector (the single-mode case
corresponds to DD 3)

is of the same order or smaller than in single-mode
fibers). Its modulus follows the chi distribution with D
degrees of freedom (its square modulus follows the chi-
squared distribution), and its mean-square value grows
linearly with propagation distance, namely h�2i D �2z
(however, the dependence of the MD coefficient � on
the fiber design and perturbation statistics is rather com-
plex [10.80]). We remind the reader that a random
variable Y is chi-square-distributed with D degrees of
freedom if it results from the sum of the squares of
D identically distributed and zero-mean independent
Gaussian variables Xn: Y DPD

nD1 X
2
n . The probability

density function of � is plotted for several values of N
in Fig. 10.13a.

Amajor difference between the single-mode and the
multimode case is in the fact that while the PMD vector
length scales with the strength of the perturbations, the
length of the MD vector scales with the modulus of the
deterministic birefringence vector derivative jdˇd=d!j,
which can be greater by orders of magnitude, depending
on the deterministic walk-off between the fiber modes.
An important consequence of this difference is that the
MD bandwidth can be correspondingly smaller than the
PMD bandwidth. Indeed, the MD vector autocorrela-
tion function has the following form,

h�.z; !C˝/ � �.z; !/i D D

˝2

�
1� e�

˝2h�2.z/i
D

�
;

(10.83)

and the MD bandwidth is BMD ' 0:2
p
D=h�2i, as ob-

tained by inspection of Fig. 10.13b (this expression can

also be obtained by multiplying the PMD bandwidth
by

p
D=3). It should be noted at this point that, while

measurements of the PMD vector and its statistics are
routinely performed in traditional single-mode systems,
the experimental characterization of the MD vector in
SDM systems is more involved [10.99] and therefore
the system modal dispersion is typically characterized
by exploiting the concept of the intensity impulse re-
sponse (IIR). This is defined as the mode-averaged
output power that is measured by exciting a single mode
at the fiber input with a spectrally flat signal of band-
width B. In formulae, we define the matrix H.t/ whose
.j; k/ element Hj;k.t/ is the signal received in the j-th
mode when the k-th mode was excited,

H.t/D
B=2Z

�B=2
U.L; !/e�j!t

d!

2 
; (10.84)

so that the IIR can be expressed as

I.t/D 1

2N

2NX

jD1

2NX

kD1

jHj;k.t/j2 : (10.85)

Here the inner sum is the total output power that is
measured when the j-th mode was excited, while the
outer sum performs the mode averaging. If the prob-
ing signal bandwidth is sufficiently larger than the MD
bandwidth (by one or more orders of magnitude), it can
be shown [10.81] that the IIR is deterministic and prac-
tically independent of B. Most importantly, its temporal
profile is Gaussian and the mean-square duration is very
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Fig. 10.14a,b The mean-square width of the intensity impulse response versus propagation distance for the coupled-
core three-core fiber of [10.98]. The inset shows the intensity impulse response for the right-most data point. (a) and
(b) present experimental [10.98] and simulation [10.81] results, respectively. The dashed curve in (b) is a plot of (10.86)
(the relation between the MD coefficient � and the fiber characteristics is discussed in [10.80])

simply related to the mean-square length of the MD
vector (or, equivalently, to the MD bandwidth), namely

I.t/D I0 exp
�
� t2

2T2

�
; (10.86)

T2 D h�2i
4N2

D �2z

4N2
; (10.87)

where I0 is a normalization coefficient immaterial to the
present discussion. The Gaussian shape of the IIR has
been observed in various experiments [10.53, 98, 100]
and can be reproduced in simulations. Figure 10.14
presents a comparison between the measured and sim-
ulated IIR for the coupled-core three-core fiber used
in [10.98]. The measured IIR mean-square duration of
about 0:25 ns2 at a propagation distance of 1000km
corresponds to an MD bandwidth of approximately
400MHz, a value much smaller than typical WDM
channel bandwidths used today in commercial systems.
We remind the reader that, in contrast, typical PMD
bandwidth values for the same link length are of the or-
der of several hundreds of GHz (as seen in Sect. 10.5.1
Polarization-Mode Dispersion in Single-Mode Fibers).

The above argument shows the inadequacy of the
first-order approximation to characterize the MD of
SDM fibers for medium-to-long-reach transmission,
where modes undergo strong coupling, and at the same
time clarifies that a correct approach to designing the

MIMO-DSP receiver must rely on the knowledge of
the IIR duration. Strategies to reduce the receiver com-
plexity include pursuing the reduction of the fiber MD
through fiber design optimization. This approach means
studying the dependence of the MD coefficient � on the
fiber characteristics (core number/geometry and/or re-
fractive index profile), as well as on the statistics of the
fiber perturbations. This is a rather challenging task and
only a limited number of preliminary investigations are
available in the literature [10.80, 85, 94].

10.5.2 Stokes-Space Analysis
of Mode-Dependent Loss
and its Impact
on Information Capacity

Mode-dependent loss is a nonunitary propagation effect
and as such it is responsible for impairing the capacity
of SDM systems [10.55, 101–104]. The Stokes-space
formalism has proven to be a convenient tool for the
modeling of MDL and its impact on system perfor-
mance. If we denote by S the average transmit power
per mode and by Q the coherency matrix of the prop-
agated amplification noise, the channel spectral effi-
ciency in the absence of channel state information can
be expressed as

CD log2
	
det

�
IC SQ�1=2UU�Q�1=2�
 : (10.88)
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The matrix UU� (which, in the absence of MDL, would
equal the identity matrix) is Hermitian and can be ex-
pressed in terms of the generalized Pauli matrices,

UU� D �0 .IC
 �	/ ; (10.89)

where �0 is the mode-averaged gain and the Stokes
vector 
 is the MDL vector that generalizes the famil-
iar PDL vector used in the single-mode fiber case. In
the regime of strong mode coupling and large signal-
to-noise ratio (SNR), the average spectral efficiency
reduction per mode induced by MDL has been shown
to be [10.103, 104]

C0 �hCi
2N

D h� 2i
3 ln.2/

; (10.90)

where C0 is the spectral efficiency of a perfect link,
where the received SNR equals the ratio between the
mode-averaged signal and the noise powers. The accu-
racy of (10.90) is excellent for SNR values larger than
10 dB [10.104]. A simple method for measuring h� 2i
is presented in [10.103].

A quantity which is often used as a figure of merit
in the analysis of MDL is the power ratio between the
least and the most attenuated hyperpolarization states,
which is given by

�dB D 10 log10

�
1C�max

1C�min

�
; (10.91)

where �max and �min denote the largest and smallest
eigenvalues of 
 �	 (note that the corresponding loss/
gain values that are measured in experiments are �0.1C
�max/ and �0.1C�min/, respectively). Interestingly, in
the regime of small-to-moderate MDL the mean-square
length of the MDL vector is related to this quantity by
the following simple relation,

h�2dBi D
102

ln2.10/
f .N/h� 2i (10.92)

with

f .N/D 4
.N � 1/2C 24:7.N � 1/C 16:14

0:2532.N� 1/2C 7:401.N� 1/C 16:14
:

(10.93)

This connects the average MDL-induced spectral ef-
ficiency reduction per mode caused by MDL (10.90)
with the mean-square MDL expressed in logarithmic
units,

C0� hCi
2N

D ln2.10/

300 ln.2/f .N/
h�2dBi : (10.94)

This expression does not depend on the specific way in
which the in-line amplifiers are operated, as discussed
in [10.104].

10.6 SDM Transmission Experiments

Numerous transmission experiments have been per-
formed over multimode fibers with the numbers of
spatial modes ranging from 3 to 45 [10.14, 18, 19,
105–109]. Also, multicore fibers have been studied
experimentally in detail for many possible core arrange-
ments up to 36 cores and spatial multiplicity (number of
cores � number of modes) larger than 100.

Space-division multiplexed transmission experi-
ments are very equipment-intensive: A typical SDM
transmission experiment for six spatial channels is
shown in Fig. 10.15.

The transmitter consists of a traditional WDM sig-
nal, where odd and even wavelength channels are
modulated separately by two double-nested Mach–
Zehnder (DN-MZM) modulators driven with four in-
dependent signals carrying the underlaying transmis-
sion pattern, like for example QPSK, 16-QAM, or
64-QAM, generated by high-speed digital-to-analog
converters (DACs), where pseudo-random patterns are
chosen such that the cross-correlation peaks between
patterns are significantly smaller than the autocorre-
lation peaks. This is required to properly identify the

timing of the received channels, and to evaluate their
performance using digital signal processing [10.121].
Additional copies of the signal are generated and decor-
related using fiber delays such that each mode and
polarization carries a locally independent signal. The
decorrelated signals are then injected into a six-fold
recirculating loop arrangement, which is used to em-
ulate long-distance experiments (often in SDM exper-
iments only limited lengths of prototype fibers are
available).

The loop arrangement is similar to a traditional
SMF loop, except that it consists of six loops which
have to be adjusted to a path-length difference of typ-
ically within 1 cm, corresponding to a time delay of
50 ps. The loop contains amplifiers to overcome the
fiber loss and the loss of the additional loop compo-
nents, loop switches (that are used to open and close the
loop during the loading and recirculation time, respec-
tively), combiners and splitters (to inject and extract
the light from the loop), and finally programmable gain
equalizing filters (denoted as blockers in Fig. 10.15), to
maintain a flat spectrum after each recirculation.
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Fig. 10.15 Space-division multiplexed transmission experiment supporting six spatial channels. Triangles represent erbium-doped
fiber amplifiers (EDFAs), PBS is a polarizing beam splitter, DSO is a digital storage oscilloscope, ECL is an external-cavity
tunable laser, DFB is a distributed feedback laser, DN-MZM is a double-nested Mach–Zehnder modulator, and PD-CRX is
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Table 10.3 Summary of relevant MIMO-based transmission results in SDM fibers

Fiber type Nr spatial
channels

Spectral efficiency
(.bit=s/=Hz)

Distance
(km)

Spectral efficiency distance
(.bit=s/=.Hzkm/)

Capacity
(Tb=s)

Reference

FMF 45 202 27 5454 101 [10.18]
FMF 36 72 2 144 3.6 [10.18]
FMF 15 43.63 22.8 995 17.5 [10.109]
FMF 10 58 87 5046 67.5 [10.110]
FMF 10 29 125 3625 115.2 [10.108]
FMF 6 36.7 90 3303 266 [10.111]
FMF 6 34.9 590 20 355 138 [10.112]
FMF 6 32 176 5632 24.6 [10.113]
CC-MCF 6 18 1705 30 690 18 [10.114]
FMF 6 16 708 11 328 6.1 [10.115]
FMF 6 10 74 740 41.6 [10.116]
CC-MCF 4 23 4400 101 400 11.5 [10.117]
CC-MCF 4 11.52 10 000 115 200 5.8 [10.117]
FMF 3 28.22 30 846 280 [10.118]
FMF 3 18.82 1045 19 663 159 [10.119]
FMF 3 17.3 2400 41 520 0.58 [10.17]
FMF 3 7.6 1000 7600 13.3 [10.44]
CC-MCF 3 4 4200 16 800 1.0 [10.98]
FMF 3 3 900 2700 9.6 [10.120]

Fiber type Nr spatial
channels

Spectral efficiency
(.bit=s/=Hz)

Distance
(km)

Spectral efficiency distance
(.bit=s/=.Hzkm/)

Capacity
(Tb=s)

Reference

FMF 45 202 27 5454 101 [10.18]
FMF 36 72 2 144 3.6 [10.18]
FMF 15 43.63 22.8 995 17.5 [10.109]
FMF 10 58 87 5046 67.5 [10.110]
FMF 10 29 125 3625 115.2 [10.108]
FMF 6 36.7 90 3303 266 [10.111]
FMF 6 34.9 590 20 355 138 [10.112]
FMF 6 32 176 5632 24.6 [10.113]
CC-MCF 6 18 1705 30 690 18 [10.114]
FMF 6 16 708 11 328 6.1 [10.115]
FMF 6 10 74 740 41.6 [10.116]
CC-MCF 4 23 4400 101 400 11.5 [10.117]
CC-MCF 4 11.52 10 000 115 200 5.8 [10.117]
FMF 3 28.22 30 846 280 [10.118]
FMF 3 18.82 1045 19 663 159 [10.119]
FMF 3 17.3 2400 41 520 0.58 [10.17]
FMF 3 7.6 1000 7600 13.3 [10.44]
CC-MCF 3 4 4200 16 800 1.0 [10.98]
FMF 3 3 900 2700 9.6 [10.120]

The signals extracted from the loops are captured
by an array of polarization-diverse coherent receivers
(PD-CRXs), which extract the amplitude and phase of
all modes and polarizations, so that the optical field
after transmission is fully known. Note that it is nec-
essary to measure all modes and polarization for the
same time windows, therefore a digital storage oscillo-
scope (DSO) with 24 real-time channels is required for
a transmission with 6 spatial modes (alternatively, time-
multiplexed receiver schemes, where subsets of modes

are delayed by single-mode fibers, have been proposed
to reduce the number of ports that are necessary in the
DSO [10.109, 122]).

The resulting signals are stored in the DSO, and
subsequently processed by applying MIMO-DSP tech-
niques, similar to the methods presented in Chap. 6.

Some representative results of MIMO-based trans-
mission in multimode and coupled-core fibers are sum-
marized in Table 10.3. By the terms capacity and
spectral efficiency in the table, and more in general

http://dx.doi.org/10.1007/978-3-030-16250-4_6
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Table 10.4 Summary of relevant SDM transmission in uncoupled multicore fibers

Fiber type Nr Spatial
channels

Spectral efficiency
(.bit=s/=Hz)

Distance
(km)

Spectral efficiency distance
(.bit=s/=.Hzkm/)

Capacity
(Tb=s)

Reference

FM-MCF 6� 19 1100 11.3 12 430 10 160 [10.123]
FM-MCF 6� 19 456 9.8 4469 2050 [10.124]
FM-MCF 3� 12 247.9 40 9916 5.1 [10.125]
MCF 22 207 31 6417 2150 [10.126]
MCF 19 30.5 10.1 307 305 [10.127]
MCFa 14 109 3 327 1050 [10.128]
MCF 12 91.4 55 4753 1010 [10.129]
MCFb 12 73.6 1500 110 374 688 [10.130]
MCF 12 58.3 8830 515 000 520 [10.131]
MCF 7 28 7326 205 128 140.7 [10.132]
MCF 7 15 2688 40 320 9 [10.133]
MCF 7 14.4 6160 88 704 28.8 [10.134]
MCF 7 11.2 16.8 188.2 109 [10.135]

Fiber type Nr Spatial
channels

Spectral efficiency
(.bit=s/=Hz)

Distance
(km)

Spectral efficiency distance
(.bit=s/=.Hzkm/)

Capacity
(Tb=s)

Reference

FM-MCF 6� 19 1100 11.3 12 430 10 160 [10.123]
FM-MCF 6� 19 456 9.8 4469 2050 [10.124]
FM-MCF 3� 12 247.9 40 9916 5.1 [10.125]
MCF 22 207 31 6417 2150 [10.126]
MCF 19 30.5 10.1 307 305 [10.127]
MCFa 14 109 3 327 1050 [10.128]
MCF 12 91.4 55 4753 1010 [10.129]
MCFb 12 73.6 1500 110 374 688 [10.130]
MCF 12 58.3 8830 515 000 520 [10.131]
MCF 7 28 7326 205 128 140.7 [10.132]
MCF 7 15 2688 40 320 9 [10.133]
MCF 7 14.4 6160 88 704 28.8 [10.134]
MCF 7 11.2 16.8 188.2 109 [10.135]

MCF: multicore fiber, FM-MCF multicore fiber with few-mode cores; a 12 single-mode cores and 2 few-mode cores with 3 spatial
modes; b Core interleaved bidirectional transmission

in this review of experimental results, we refer to the
largest achieved transmission rate, and to the same
quantity divided by the total transmission bandwidth,
respectively.

The longest transmission distances and high-
est spectral-efficiency-distance products were demon-
strated in CC-MCFs, clearly confirming the advantages
of the strong coupling regime. The maximum exper-
imental capacity demonstrated in MIMO-SDM trans-
mission clearly surpasses the largest reported values
for single-mode fibers. In particular, the largest spec-
tral efficiency demonstrated is as high as 202 .bit=s/Hz
which is well above the nonlinear Shannon limit for
single-mode fibers [10.1, 136] which is 26:5 .bit=s/Hz
for a fiber length of 27 km, indicating that mode-
multiplexed transmission over a few-mode fiber (FMF),

that is, a fiber that supports 10 or fewer modes, has the
technical potential to be considered as a replacement for
single-mode fibers.

Transmission results for some representative multi-
core fiber transmission experiments are summarized in
Table 10.4.

Multicore fibers, especially in combination with
few-mode cores, can achieve spatial multiplicities
larger than 100, providing an impressive transmission
capacity in excess of 10 Pb=s, however only for dis-
tances shorter than 100 km. Longer distances up to
8800 km can be achieved using single-mode cores at
a notable capacity of 520Tb, which is of interest in
particular for submarine transmission, where multiple
parallel paths can achieve superior performance under
a constraint of limited power [10.131].

10.7 Nonlinear Effects in SDM Fibers

In the previous sections we only considered linear ef-
fects in multimode fiber propagation. However, the
transmission capacity of multimode systems, just like
in the single-mode counterpart [10.1], is ultimately lim-
ited by nonlinear effects. The theory of nonlinearities in
multimode fibers is challenging as all possible interac-
tions between all involvedmodes have to be considered.
Nonlinear multimode propagation is described by the
coupled nonlinear Schrödinger equations [10.66, 67,
137]. If, for ease of discussion, we neglect loss and
mode-dependent chromatic dispersion, the equations

can be expressed as follows

@E
@z

D jB0E�B1
@E
@t

� j
ˇ2

2

@2E
@t2

C j�
2NX

h;k;m;nD1

CnhkmE
	
hEkEm Oun ; (10.95)

where B0 D B.z; !0/ and B1 D @B.z; !0/=@! account
for random mode coupling and intermodal walk-off,
respectively, ˇ2 is the mode-averaged chromatic disper-
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sion coefficient, � is the nonlinearity coefficient defined
for single-mode fibers [10.138], and where by Oun we
denote a 2N-dimensional column vector whose n-th
component is equal to one and the others to zero. The
nonlinearity coefficients Cnhkm involve overlap integrals
between the modes, lateral profile functions and their
expressions can be found in [10.66] and references
therein. As can be seen in (10.95), the Kerr nonlin-
earity produces a total of .2N/4 coefficients (.2N/3

coefficients per mode) that have to be considered in
the study of nonlinear effects. This can be a challeng-
ing task, especially when the modal properties vary
strongly between modes, and in general only detailed
numerical simulations will provide representative re-
sults [10.137]. In contrast, when all modal properties
are similar, like in the case of strongly coupled fibers,
theoretical results have indicated a significant advan-
tage for strongly coupled SDM fibers over equivalent
single-mode fibers [10.66, 139]. In the following two
sections we briefly describe nonlinear experimental
work performed in few-mode fibers and coupled-core
multicore fibers.

10.7.1 Impact of Nonlinearities
in the Strong-Coupling Regime

Coupled-core fibers are interesting for the study of
nonlinear effects because all fiber modes have similar
modal properties in terms of effective area and propaga-
tion coefficients, and hence the electric field propagates
in the regime of strong mode coupling described earlier
in this chapter. One important consequence of this situ-
ation is that the nonlinear term that appears in the prop-
agation equation (10.95) can be drastically simplified
by taking into account the fact that the length-scale on
which randommode coupling is effective is by orders of
magnitude smaller than typical nonlinear length-scales.
The simplified propagation equation, which is known
as the multicomponent Manakov equation [10.140], is
in the form

@E
@z

D�ˇ1 @E
@t

� j
ˇ2

2

@2E
@t2

C j��jEj2E ; (10.96)

where ˇ1 is the inverse group velocity common to all
modes, and where the nonlinearity appears through the
total optical power only, consistent with the fact that
the electric field is isotropically distributed in the 2N-
dimensional hyperpolarization space. As can be seen,
the .2N/4 nonlinearity coefficients Cnhkm are replaced
by a single coefficient �, which is given by [10.140]

� D
X

h;n

CnhhnCCnhnh

2N.2NC 1/
: (10.97)

Equations (10.96) and (10.97) describe nonlinear prop-
agation in the most general case of 2N strongly coupled
modes. In the specific case of coupled-core fibers,
which is considered in this section, (10.97) can be fur-
ther simplified, with the result [10.66]

�� D 1

3

8

2NC 1
�0 ; (10.98)

where �0 is the nonlinearity coefficient of a single-mode
fiber with the same radius and refractive-index pro-
file of the individual cores (for N D 1, (10.98) yields
�� D 8

9�0, the nonlinearity coefficient of the famous
Manakov equation describing nonlinear propagation
in single-mode fibers with random polarization cou-
pling [10.141, 142]).

The scaling of � with the number of modes is key
to understanding the improved tolerance of coupled-
core multicore fibers to nonlinear distortions. This can
be easily seen by expressing the nonlinear term as
��jEj2 � 4�0=3

P
n jEnj2=2N, which shows that the

various modes can be considered as sources of non-
linear noise whose power is proportional to 1=.2N/2.
Since they carry independent signals, the total nonlin-
ear noise power results from the sum of the individual
contributions and hence it scales like� 2N�1=.2N/2 D
1=2N, thereby reducing with the number of strongly
coupled modes supported by the fiber [10.66, 139].
A formal characterization of the nonlinear interference
noise can be found in [10.143]. Note that while (10.98)
is an analytical result derived specifically for coupled-
core multicore fibers, the scaling �� � 1=N is a more
general characteristic of fibers operating in the regime
of strong mode mixing. The simple argument under-
pinning this statement is that random mode coupling
distributes the power transmitted in each mode equally
between all modes, with the result that on average the
nonlinearity must be proportional to the mode-averaged
power, which is equal to jEj2=2N.

The superior tolerance of coupled-core multi-
core fibers to nonlinear distortions, as analytically
predicted in [10.66, 139] and seen in early simula-
tion work [10.144], has recently been confirmed in
transmission experiments performed with a four-core
fiber [10.117]. The results of an experimental compar-
ison between a single-mode fiber [10.145] and a four-
core coupled-core fiber [10.146] with nominally iden-
tical cores and the same span length are shown in
Fig. 10.16.

The pure-silica core design realizes an ultralow loss
and larger effective area high-performance fiber typi-
cally utilized in submarine links (see also Chap. 2 for
more detail). Figure 10.16a shows the quality factor
Q as a function of the launch power per wavelength

http://dx.doi.org/10.1007/978-3-030-16250-4_2
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Fig. 10.16a,b Transmission performance comparison between a single-mode fiber and a 4-core coupled-core fiber with
identical length and core design for a WDM signal with 15 channels at a baudrate of 30GBd and a channel spacing of
33:33 GHz. (a) Quality factor Q as a function of the launch power for distances of 2200, 4400, and 6600 km, for a 16
QAM signal. (b) Q factor as a function of distance for QPSK, 16 QAM, and 64 QAM modulated signals

channel in a recirculating-loop system with 110-km-
long spans. As can be clearly seen, the optimum launch
power for the coupled-core fiber is about 2 dB larger,
indicating a better tolerance to nonlinearities, which
results in Q factors that are about 0:8 dB larger. Fig-
ure 10.16b compares the launch-power-optimized Q
factors as functions of the propagation distance in the
same recirculating-loop experiment, and for different
modulation formats. The results clearly show that for
all tested formats and distances up to 10 000 km the
coupled-core fiber outperforms the equivalent single-
mode fiber.

10.7.2 Impact of Nonlinearities
in Few-Mode Fibers

Nonlinear effects in few-mode fibers are different than
in single-mode fibers, as the modal properties allow
for phase-matching conditions that are forbidden in
single-mode fibers (see also Chap. 9 for a description of
Kerr nonlinearities in single-mode fibers). For example,
four-wave mixing is strongly suppressed in nonzero-
dispersion single-mode fibers, because of the impact
of chromatic dispersion on the phase-matching condi-
tion. In few-mode fibers, however, modal dispersion
can compensate for chromatic dispersion, and there-
fore strong four-wave mixing can be observed. The
effect can be better understood considering cross-phase
modulation, where the intensity fluctuations of a signal
traveling in one mode can imprint a phase on a second
signal traveling in another mode. If both signals travel
at the same group velocity, the interaction length for

this effect becomes long, and a strong effect can be ob-
served. As the group velocity depends on wavelength
and mode, in low DGD few-mode fibers (like opti-
mized GI fibers) it is possible to find conditions where
two different modes at two different wavelengths have
a matched group delay. This effect was experimentally
observed in a fiber with three spatial modes [10.147]
and a length of 5 km, confirming that the effect does
not degrade significantly even in the presence of per-
turbations along the fiber. Similar experiments were
also reported for fully nondegenerate four-wave mix-
ing [10.148, 149], also confirming that four-wave mix-
ing effects in few-mode fibers are non-negligible and
can provide significant penalties for mode-multiplexed
MIMO-based transmission.

As for the modeling of nonlinear propagation in
few-mode fibers, we note that a similar simplification
of the coupled NLSEs as in the case of coupled-core
multicore fibers is obtained by taking into account the
fact that modes belonging to the same group of quasi-
degenerate modes mix strongly during propagation.
The result is a set of coupled multicomponentManakov
equations, which in the case of two mode groups de-
noted a and b can be expressed in the following form,
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where Ea and Eb are state vectors of dimensions 2Na

and 2Nb, respectively, which describe the electric field
in the two mode groups. The coupled Manakov equa-
tions, derived in [10.150] for arbitrary values of Na and
Nb, and in [10.137] for Na D Nb D 1, can be used for the
analytical study of intergroup nonlinear effects [10.143]

under the assumption of negligible linear coupling be-
tween mode groups. However, if the propagating groups
couple to a non-negligible extent, (10.99) and (10.100)
must be supplementedwith additional terms that account
for linear intermodal crosstalk, which reduces their ana-
lytical tractability significantly [10.66, 95, 151–153].

10.8 Routing in SDM Networks

The signals transmitted over an SDM link, are typically
associated with a spatial channel sn and a wavelength
channel �m, where the indices n and m identify the
respective spatial and wavelength channel. Note that
spatial channels are defined either as modes of an opti-
cal waveguide, as physically separated light-paths using
multiple waveguides, or as a combination of the two.

In conventional wavelength-multiplexed networks,
wavelength is used to optically route signals when
traversing a network node. For each wavelength of
an ingress fiber it is possible to select an egress fiber,
as long as the wavelength channel of the egress fiber
has not been assigned to another incoming signal at the
same wavelength. This limitation is referred to as wave-
length blocking and makes the initial network configu-
ration and the subsequent channel provisioning (adding
new channel routes in a live network) mathematically
more complex, increases the blocking probability, and
therefore reduces the capacity of the network [10.154].

For spatial channels similar limitations may occur,
for example, when spatial channels are implemented by
using distinct spatial modes. In contrast, if the spatial
modes are carried by spatially separated waveguides, or
separated by a spatial mode multiplexer, the individual
spatial channels are all equivalent and can be switched
between each other with no restriction.

In the general case, optical networks can be built
based on nodes that are capable of switching any
wavelength from any spatial channel coming from any
direction, to any wavelength and to any spatial chan-
nel going to any direction (here we define directions
as geographically separate routes and spatial channels
as parallel-running channels, either in a single fiber
like a multicore fiber, or multiple single-mode fibers
hosted in a single conduit or cable). The complexity
of such a node in terms of physical implementation
and dynamic operation (traffic provisioning) is unde-
sirably larger and is not cost-effective. It is therefore
necessary to limit the complexity by forming logi-
cal units of switching, to reduce the logical channel
number to around 100 channels for each direction.
This can be achieved in various ways [10.155], and
in the next sections the three most promising ap-

proaches to the bundling of wavelength/spatial channels
are reviewed.

10.8.1 Parallel Single-Mode Systems

The first approach consists of duplicating conventional
single-mode WDM systems and operating them in par-
allel. This approach in not cost-effective, but represents
the baseline to be considered for alternative approaches.
The most relevant limitation of this approach is that it
is not possible to share resources between the dupli-
cated systems, which may be responsible for significant
blocking probability and under-utilization of resources.

10.8.2 Spatial Superchannels

In this approach the spatial channels are bundled to-
gether in a fixed number N, and components are used
that can perform the equivalent single-mode operation
on all N channels at the same time. The term spatial su-
perchannelwas coined [10.156] in reference to spectral
superchannels where multiple subsequent wavelength
channels are bundled to form a single spectrally wider
transmission channel. Spatial superchannels look sim-
ilar to a traditional single-mode system in terms of
operation, except that the capacity is increased by a fac-
tor of N. This concept is particularly attractive because
wavelength-selective switches supporting spatial super-
channels, can be implemented using the joint switching
architecture, where a single switching element can be
reused to switch N channels in parallel, therefore effec-
tively increasing the switch capacity of the switching
element. This principle is shown in Fig. 10.17, where
a tilt mirror is used to switch light between one in-
put and two output superchannels, by tilting the mirrors
such that the light is reflected from the input to the de-
sired output.

In Fig. 10.17a a groupwise switching arrange-
ment is shown which requires an N-times larger tilt
angle compared to a traditional single-mode switch,
whereas Fig. 10.17b shows the advantageous inter-
leaved switching arrangement, where the superchannels
can be switched by using tilt angles that are comparable
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Fig. 10.17a,b Switching multiple spatial channels with a single switching element: Groupwise switching versus interleaved
switching geometry

to the single-mode switch. Note that the overall switch
size of a spatial superchannel switch is larger than the
single-mode counterpart, as it needs to accommodate
the larger required optical aperture and a more complex
lens design. However, the switch element, which is of-
ten the main factor limiting the number of channels that
can be switched, can stay the same size. Figure 10.17
shows the principle of a simple switch, but the same
idea can also be used to build wavelength-selective
switches, where light is separated in wavelength in the
out-of-plane direction and the single mirror is replaced
with a mirror array [10.155].

Optical networks based on the concept of spatial su-
perchannels can be implemented with multicore fibers,
where the numberN of parallel channels coincides with
the number of cores. The spatial superchannel architec-
ture is of interest also for multimode fibers, where it is
required to transmit all fiber modes in a common link,
so that MIMO processing can be used to compensate
for propagation-induced mode coupling.

Additionally, a spatial superchannel can also be
used to logically bundle multiple single-mode fibers
and therefore constitutes a very promising architecture
for all possible SDM fiber types.

The main drawback of the spatial superchannel ar-
chitecture is that there is no simple way to increase the
number of parallel spatial channelsN composing the su-
perchannel once the network is deployed and operated.

10.8.3 Space-Routed Networks

An alternative way to build SDM optical networks
is to completely drop the wavelength dimension for
the switching domain and utilize pure spatial switch-
ing based on traditional switches that are wavelength
transparent. This solution offers several advantages: All
channels are equivalent and therefore no wavelength
blocking is observed, which can dramatically simplify
the network reconfiguration. Also, space switches are
much easier to build and typically have lower loss com-
pared to wavelength-selective switches. Furthermore,
the local add/drop ports of the nodes become signifi-
cantly simpler, as they are equivalent to ports carrying
traffic from fibers coming from different directions.

The disadvantage of this solution is that it re-
quires fibers with completely uncoupled spatial chan-
nels, and therefore it is not compatible with MIMO-
based multimode transmission. The solution is there-
fore particularly attractive for single-mode and un-
coupled multicore fibers. Space-routed networks also
require transceivers capable of generating signals that
occupy the whole transmission band. Potentially, such
full-band transceivers are expected to be more eco-
nomical as they offer a larger potential for integration.
However, the network can suffer from granularity is-
sues if the desired link capacity is small compared to
the capacity of the full-band receiver.

10.9 Conclusion

Space-division multiplexing addresses the technolo-
gies needed to scale the link and network capacities
of current optical communication systems. The main
proposed solutions include new fiber types, optical am-
plifiers, and optical switches.

Asanalternative to standard single-modefibers,mul-
timode fibers andmulticore fibers offer effective ways to
increase the spatial multiplicity of optical fibers, at the
expense of more complex linear and nonlinear transmis-
sion effects that we reviewed in detail in the chapter. The
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linear transmission effects in a system supportingN spa-
tial modes can be mitigated by using 2N � 2N MIMO
digital signal processing, which is a generalization of
the 2� 2MIMO processing used in conventional single-
mode digital coherent transmission. Nonlinear impair-
ments are typically moderately increased compared to
the single-mode case,when the spatialmodes areweakly
coupled, whereas a reduction of nonlinear effects can be
observed in the regime of strong mode mixing, like for
example in the case of coupled-core multicore fibers.

Cladding- and core-pumped optical multicore and
multimode amplifiers offer a sizeable potential for cost
reduction by significantly reducing the number of re-
quired optical elements per amplified spatial channel.

Optical switches supporting multiple modes or spa-
tial channels can be effectively implemented by using
joint-switching architectures, which dramatically in-
crease the switching capacity of the switching element
by acting on all spatial channels at the same time.

Space-division multiplexing also enables multiple
new network architectures. Even though no single one-
size-fits-all SDM architecture is currently transpiring,
technologies that are currently being investigated, have
the potential to offer a significant advantage in terms of
costs over parallelizing conventional single-mode fiber-
based systems. The optimum solution will depend on
the targeted application and in particular on the required
link capacity and network granularity.
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