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Abstract. We present a GPU-based hybrid model for crowd simula-
tions. The model uses reinforcement learning to guide groups of pedes-
trians towards a goal while adapting to environmental dynamics, and
a cellular automaton to describe individual pedestrians’ interactions.
In contrast to traditional multi-agent reinforcement learning methods,
our model encodes the learned navigation policy into a navigation map,
which is used by the cellular automaton’s update rule to calculate the
next simulation step. As a result, reinforcement learning is independent
of the number of agents, allowing the simulation of large crowds. Imple-
mentation of this model on the GPU allows interactive simulations of
several hundreds of pedestrians.
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1 Introduction

Understanding the complexity of the metropolis at large scale has been made
possible through simulations. The transportation community makes use of pedes-
trian simulations to plan evacuation routes and efficient commuting, or for city
risk management and mitigation. In particular, microscopic modeling has taken
on an increasingly important role in research and decision-making processes.
Furthermore, close-to-real-time performance and the ability to model dozens of
operational scenarios is important so that decision makers can choose the best
course of action in a timely fashion.

There is a large body of work dedicated to microscopic modeling of crowds:
rule-based [22], physics-based methods [12], and velocity-based [21]. However, we
observe that pedestrians make a sequential decision process, constrained by—
for example—physical traits, whether to reach their destinations in the least
amount of time, by taking the quickest route, or any other goal which they seek
to reach optimally. Specially, Reinforcement Learning (RL) provides a conve-
nient framework for modeling pedestrian decision-making [8,17,18,29]. But the
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problem with Multi-agent RL methods is that they are computationally expen-
sive [16] and a RL problem needs to be solved for each pedestrian, thus reducing
its application to small groups of agents.

We propose a new method to reduce the computational cost of multi-agent
RL by encoding the learned policy into a navigation map, which in turn is used
to guide the crowd. Local Collision Avoidance (LCA) is achieved by coupling our
RL model with a Cellular Automaton (CA) model, using data structures based
on two-dimensional grids to partition the navigable space: after the RL step, its
resultant policy is refined into a local navigation map, which is the input for the
CA update rule, in order to provide individual separation, control and velocities
of agents toward goals. The contributions of this work are:

Embedding the Learned Policy into a Navigation Map. In multi-agent
RL models for crowd simulations, the set of states grows exponentially according
to the number of episodes and goals [29] or with the number of agents and actions
[11]. To reduce the exponential growth of states with the number of agents and
actions, we propose to encode states, and the learned navigation policy, into a
coarse navigation map. The learned navigation policy is then used in a finer,
local navigation map by the cellular automaton’s update rule to displace agents
while avoiding collisions.

On-Line and Interactive RL Training. Paired with our first contribution,
a GPU (graphics processing unit) implementation of our RL model, reduces the
training to only a few milliseconds which allows interactive steering of large
crowds.

A Scatter and Gather Approach as a CA Update Rule. Scatter and
gather data-parallel primitives allow an efficient implementation of our LCA
approach on the GPU and provide individual pedestrian navigation and behavior
control.

The rest of this paper is organized as follows. In Sect. 2 we present prior work,
relevant to the areas of RL and CA in micro-scale crowd models. Later, in Sect. 3,
a review of the RL-Navigation framework is followed by the description of the
CA-LCA model. In Sect. 4, we present numerical measurements of our imple-
mentation in different scenarios. Finally, in Sect. 5 we present our conclusions
and future work for this research.

2 Related Work

The main approaches to microscopic modeling of crowds1 are: (1) Rule-based,
which defines steering collision-free behaviors: cohesion, separation and align-
ment [22]; (2) Physics-based, which model agents, agents’ behaviors and des-
tinations as attractive or repulsive forces [12]; and (3) Velocity-based, which
calculate a set of velocities that lead to a collision with an obstacle; to move

1 A complete survey on crowd simulation can be found in [28].
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on routes without collision, agents choose velocities out of this domain [21].
The main drawback of these techniques, is that all rules, parameters or input
variables, require intensive tuning to model specific pedestrian behaviors [20].
Recently, RL and Markovian models2 have attracted attention in the crowd
simulation community because their formalism makes the specification of such
rules easier, and eliminates the use of finely tuned variables.

2.1 Reinforcement Learning in Crowd Simulation

In general, RL has been applied to control theory, robotics, transportation engi-
neering, logistics and multi-agent systems; a complete survey of multi-agent RL
and its applications can be found in [7]. We summarize its applications to crowd
simulation next.

Torrey [29] describes the challenges of multi-agent RL applied to a simplified
school environment where agents move from one classroom to another, while
staying in corridors to chat with other agents in between. She proposed that the
reward function should be specified by an agent’s internal motivations and found
that the set of states, S, grew exponentially according to the number of episodes
and distance to its goals. S growth was reduced by doing observations at inter-
vals. Martinez-Gil et al. [17,18] proposed a multi-agent RL method to simulate
a group of agents leaving a single-door scenario. They studied the scalability of
their method by transferring the learned value function to larger scenarios with
different numbers of agents. Later, they adopted a distributed memory model by
using the Message Passing Interface [19]. Casadiego and Pelechano [8] proposed
a similar approach, sharing a table of Q-values between different agents. Godoy
et al. [11] proposed an online-RL method to improve the behavior of agents and
reduce the congestion problem in a bottleneck scenario. They also noted that
the state space grew exponentially with the number of agents and actions, which
is computationally and memory demanding; thus, instead of learning a policy
for the complete state-action space, agents learned from the recent history of
action-reward pairs and feedback from the simulation.

Closely related to RL, Banerjee et al. [3] used a Markov Decision Process
(MDP) to achieve adaptable navigation by analyzing navigable spaces. By means
of a pre-calculated layered approach, the authors demonstrated that MDPs are
a viable tool to produce agent paths dynamically. However, the implementa-
tion is limited by the number of dynamically introduced obstacles. Ruiz and
Hernández [24] proposed a single layered MDP to calculate navigation routes
free of collisions and “micro-scenarios” to dynamically adjust these trajectories
in presence of new obstacles or other pedestrians. Later, they proposed two opti-
mization techniques to solve a MDP interactively for crowd navigation (1) reduce
the set of states by using an hexagonal grid and (2) a parallel implementation of
the value iteration algorithm [23] and reported a technique to couple their MDP
solver with an interactive 3D crowd visualization system [25].

2 Deep Reinforcement Learning techniques are out of the scope of this research.
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2.2 Cellular Automata for Pedestrian Behavior Modeling

CA pedestrian models have been researched vastly by the transportation commu-
nity, and similar to RL and Markovian solutions, as stated by Blue and Adler [5]
“...the attractiveness of using CA is that the interactions of the entities are based
on intuitively understandable behavioral rules”. The idea of using CA for crowd
modeling was inspired by its successful application to vehicular traffic models,
by extending moves in one dimension defined by a car lane to a two dimensional
space. General considerations for CA pedestrian models are:

Navigation space is discretized in cells and each cell should be big enough
to fit a person, commonly a size of 0.4 × 0.4 meters is used.

Cells are marked as occupied if an agent’s position matches that cell or free
otherwise. Interacting range among cells defines “how far” an agent can see.

Agents move according to translation rules, which can be applied in parallel or
sequentially. In this context, parallel means that all the cells are inspected first,
then all the agents are displaced to free cells. Sequentially means that a given
cell is inspected, and then its corresponding agents displaced, before proceeding
with the next cell.

Blue and Adler [4] modeled walkways using multiple lanes allowing single
directional pedestrian flow. Their CA rules were defined by a two-stage par-
allel update supporting lane changing and cell hopping, and later introduced
bi-directional walkways [5] by modeling side-stepping, forward-movement and
conflict-mitigation behaviors. The model included flows in directionally sepa-
rated lanes, interspersed flow, and dynamic multi-lane flow. Weifeng et al. [30]
also studied the bi-directional pedestrian flow, particularly the phase transition
of pedestrian counter flow. Klupfel et al. [15] proposed the use of CA to model
on-board passenger ships evacuations. They considered that agents can choose
between different evacuation routes depending on their sight range, also model-
ing swaying and indecision behaviors. Burstedde et al. [6] introduced the idea of
chemotaxis (floor field) to model individual intelligence and traces left by pedes-
trians. Each trace decayed to restrict the agents’ interaction range. Kirchner
et al. [14] extended this concept to support a probability factor in the diffusion
and decay functions to model different behaviors as regular, panic or herding.
Bandini et al. [2] used the floor field concept in the context of situated cellular
agents, to model the action-at-a-distance behavior.

As mentioned before, CA cells should be small enough to fit a person; sev-
eral researchers have studied how different cell sizes affect pedestrian models.
For example, Kirchner et al. [13] studied the effects of reducing the cell size so
pedestrians could occupy more than one cell. This modification allowed to repre-
sent finer and more accurate time scales, geometrical structures and pedestrian
speeds non-multiple of 0.4 m. They also noted that finer discretizations could
make CA comparable to continuous models. Later, Sarmady et al. [27] proposed
a finer discretization at pedestrian level, i.e. each agent was represented by a



A Hybrid RL and CA Model for Crowd Simulation on the GPU 63

set of 0.05 × 0.05 m. cells being moved by a least-effort algorithm. Finally, Feli-
ciani and Nishinari [10] suggested the use of a different method to discretize the
navigable space to add more CA locations within the traditional grid approach;
these locations were added at the edges and at the corners of each cell, allowing
to simulate the enter-crowd, move-in-crowd and leave-crowd behaviors.

3 Problem Modeling

3.1 Reinforcement Learning for Navigation

Starting from the observation that a pedestrian—while moving through a navi-
gable space—makes sequential decisions to find a path from its current position
to a goal, we model this path by constructing a set of additive rewards using
Reinforcement Learning. For a simulated group of pedestrians or crowd, multi-
ple agents need to learn through RL, posing a computational challenge because
the set of states grows exponentially due to the number of episodes, goals [29],
agents and actions [11]. Moreover, close-to-real-time performance3 is required to
support decision-making processes during the simulation.

An approach to reduce the RL complexity in a multi-agent simulation is
sharing the learned Q-values among different agents [8,17,18]. Our contribution
is to build a navigation map: we use a coarse and discrete representation of
the navigable space, where each cell represents a group of agents’ state, i.e. its
current position within the map, then after the RL process, its resultant policy
as directions to follow, is refined into a local navigation map: an input to the
CA in order to grant individual separation and control for agents. As a result,
our approach keeps the number of states low and is independent of the number
of agents, because only one RL solution is computed based on a navigation
map. In other words, RL provides a navigation solution for pedestrian groups,
while the CA provides individual navigation, control and LCA. Finally a GPU
implementation of this algorithm allows simulations to run at interactive rates.

We use the MDP formalism to model pedestrian navigation as a RL problem.
Based on our proposed solution, we define the MDP tuple M =< S,A, T,R >
as follows.

S (finite set of states) composed of every cell resulting from partitioning the
navigable space.

A (finite set of actions) representing an agent’s available movement direc-
tions, e.g. forward, left, right, and so on.

T (transition model) defined by the probabilities of choosing a given action
from set A.

R (reward function) are cells marked as points of interest (high valued
rewards), navigable space (medium valued rewards) and obstacles (low valued
rewards).

3 Thirty to forty five ms per simulation step.
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From the previous setup, we calculate optimal navigation directions, the opti-
mal policy (π∗) that achieves maximum reward from all states, using the Value
Iteration algorithm as follows.

π∗
t (s) = argmaxaQt(s, a)

Qt(s, a) = R(s, a) + γ
∑|A|−1

j=0 T a
sjVt−1(j)

Vt(s) = Qt(s, π∗(s))
V0(s) = 0

(1)

Such that Qt(s, a) is the value of performing action a—in this case moving
towards direction a—from cell s; Vt(s) represents the reward value of cell s at
time t; γ ∈ [0, 1] is a future reward discount factor and, T a

sj is the transition,

Fig. 1. Simple scenario
where navigable space
has a penalty of −3,
obstacles a penalty of
−100 and the exit a
reward of 100. The
orange cell represents an
agent’s position. (Color
figure online)

function defined by the probability of an agent moving
to state j from state s by action a. The defined MDP
is fully observable, since the simulation’s initial config-
uration is known and RL is episodic, i.e. it is solved for
a number of iterations when the environment changes,
allowing a gradual adaptation (learning) of the crowd
flow in response to such changes. Then, the episode
stops when π∗ is achieved by convergence, and pedes-
trians can avoid the new obstacle, or walk towards the
new goal through the optimal path.

We explain our RL-Navigation parallelization strat-
egy by example, considering a discretized 3×4 map that
results in twelve states. Its reward function is −3 for
navigable space, −100 for obstacles and 100 for exits
as shown in Fig. 1. For simplicity, our pedestrians can
choose from three actions (1) moving West, W , (2)
moving North, N , and (3) moving East, E; thus, A = {W,N,E}; a reward
discount factor γ = 1; a probability for T a

sj of p = 0.8 when choosing the current
action a and q = 0.1 otherwise, to ensure that the sum of probabilities is 1.
Using Eq. 1, we compute π∗

t (s) after a RL episode for cell a3. Considering π∗
t (s)

and Qt(s, a) from Eq. 1 and replacing s and a terms by a3 and actions from set
A, we have:

π∗
t (a3) = max{Q(a3, E), Q(a3,W ), Q(a3, N)} (2)

Qt(a3, E) = R(a3, E) + γ[pR(a3, E) + qR(a3,W ) + qR(a3, N)]
Qt(a3,W ) = R(a3,W ) + γ[qR(a3, E) + pR(a3,W ) + qR(a3, N)]
Qt(a3, N) = R(a3, N) + γ[qR(a3, E) + qR(a3,W ) + pR(a3, N)]

(3)

Replacing the corresponding variables with their numerical values, the action
that maximizes the reward is E, moving east to reach the exit. From Eqs. 3, note
that:

– For each cell or state, a similar set of equations is to be solved.
– The set of equations can be solved in parallel, if each cell queries rewards

from neighboring cells.
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– Probability variables p, q and reward values R(s, a) can be stored in arrays
for each cell.

– Expressions in brackets can be solved by parallel reductions. A second parallel
reduction using conditionals will solve Eq. 2.

3.2 Cellular Automata for Local Collision Avoidance

In this section, we present a cellular automaton for LCA formulation, to be
executed in parallel. We propose to solve the crowd flow and direction by intro-
ducing the learned policy—whether optimal or sub-optimal—as a local direc-
tional guide, granting separation and control for individual agents. We begin
by observing a basic reference RL for Navigation example, in which a group of
agents is to be directed towards a unique goal, while avoiding an obstacle, as
shown in Fig. 2(a). Agents are likely to collide by merely following navigation
paths, considering that each agent moves with unique velocity, risking agent-
to-agent collision and, depending on its starting position within the cell, could
even crash against the obstacle. We propose the use of CA to avoid these colli-
sions. First, a sub-partition of the navigable space is computed, i.e. a partition
of the RL states. Although there could be infinite partitions for the states set,
an area equivalent to 0.4× 0.4 m will serve to avoid pedestrian collisions against
obstacles within the environment (Fig. 2(b)) as mentioned in Sect. 2.2. In this
sub-partition, or Local Navigation Map (LNM), cells will be marked either as
OPENSPACE, OBSTACLE, GOAL or a DIR[d] : 0 < d < 9, d ∈ N—one of
eight directions—(Figure 2(c)).

Fig. 2. TOP: LCA principles. (a) Agents will collide when only following the policy.
(b) Partition for LCA. (c) Local Navigation Map from Π∗ where arrows represent
local goals. BOTTOM: Basic Scatter-Gather algorithm. (d) Local goal assignment.
(e) Scatter step. (f) Gather step. (g) Final effect.
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Then the CA for LCA is composed of:

A Set of Connected Sites represented by the LNM sub-partition.

State Variables as one of the following: OPENSPACE, OBSTACLE, GOAL
or DIR[d] will determine the ability of agents to move or wait.

An Update Rule in two steps: a stage in which CA cells scatter the agents
inside of them, and a stage in which CA cells gather nearby incoming agents.

The purpose of using scatter and gather operations as an update rule, is to
translate agents toward the nearest CA cell marked as DIR[d], or the Local Goal
(LG) for an agent, defining its translation between CA cells as follows.

1. A starting relative position within the starting CAs cell: S = CAs(x, z) +
(Δx,Δz).

2. A vector to direct the agent and determine it’s exit location: E = LCAe(x, z)+
(Δx,Δz).

3. A weighted parameter considering the agent’s predefined speed, terrain type
at the current cell, as well as the elapsed time to generate a value 0 ≤ δ ≤ 1,
δ ∈ R that is incremented by an amount λ at each simulation step, assigning
a unique speed to each agent within the simulated crowd.

4. Linear interpolation computes an agent’s position as P = S + δ(E − S).

As an example, consider the bottom part of Fig. 2, where agent A is at CA
cell (0, 1) and agent B is at CA cell (1, 1); agent A is 25% faster than agent
B. The following algorithm performs the Scatter step, then the Gather step, for
each CA cell.

1. Scatter.
– For each agent at this CA cell, if its parameter is δ = 0, then assign a LG

as follows.
• If this CA cell is not a LG, then assign the nearest LG within this

RL cell as shown in Fig. 2(d).
• If this CA cell is a LG, then assign the LG as the neighboring cell

pointed to by Π∗, i.e. DIR[d] in the LNM.
– For each agent at this CA cell, if its parameter is 0 < δ < 1, then incre-

ment its parameter so that δ = δ + λ. Note that in Fig. 2(e), agent A will
reach the end of its path first.

2. Gather. For agents moving towards this cell (i.e. query neighboring cells), if
their parameter is δ ≥ 1, then reset their parameter to δ = 0, and also set
the agent’s current cell to this CA cell as shown in Fig. 2(f).

Iteration of this algorithm, at each simulation frame, generates the cyclic
phenomena shown in Fig. 2(g). Notice that translation between RL cells is guar-
anteed because the LNM preserves information from Π∗ at each CA cell marked
DIR[d].
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3.3 Improved Cellular Automata for Local Collision Avoidance

A problem with the previous Scatter-Gather algorithm is that, as the number
of agents increases, a race condition will arise for agents competing to occupy
the same CA cell causing an unpredictable system behavior. A second problem
is the inability of faster agents to steer when they encounter a slower agent
in their path, forming a single-lane queue even when open space is available
around to pass (queuing problem). Furthermore, this results in the inability of
agents to disperse around a congested area, waiting to occupy their local goal
(waiting problem). We solve these issues by applying general semaphores [9]
and a steering system to the basic Scatter-Gather algorithm, respectively, while
keeping the parallel implementation.

Fig. 3. Race condition, queuing and waiting solutions. (a) Flag implementation.
(b) Distance increment measure step, where λA > λB . (c) AgentB gives way to AgentA.
(d) Similar directions: DIR[4] and DIR[6] are similar to DIR[5] for AgentA.

Race condition solution. In order to avoid the race condition problem, a boolean
flag is implemented in the agent model, signaling the agent to stop moving when
the flag’s value is false. The following additional steps are scheduled in the
cellular automaton, just before the scatter-gather step is performed.

1. For all agents incoming to destination CA cell (i.e. query neighboring cells),
set all flags to false (Fig. 3(a)).

2. If destination CA cell is occupied and 0 < δi < 1, do nothing further.
3. For all agents incoming to destination CA cell, determine the agent with the

greatest parameter increment λ (Fig. 3(b)).
4. Set the flag to true only for the agent with the greatest parameter increment

λ (Fig. 3(c)).

Finally, we modify the Scatter-Gather algorithm to only scatter agents if their
flag is set to true.

Queue and Waiting Solution. An agent may only move along adjacent cells,
so for a given CA cell, only the eight neighboring cells are to be considered as
alternatives when the next cell is occupied. We determine the optimal alternative
with the aid of the following example: we suppose that AgentA is trying to move
to the adjacent cell in direction DIR[5], but that cell is currently occupied, as
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shown in Fig. 3(d). Similar directions to DIR[5]: DIR[4] and DIR[6] are the best
alternatives, as they point to cells adjacent to the original target. In general, for
an N -directional set, DIR[(i + 1)%N ] and DIR[(i + N − 1)%N ] are the best
alternatives to DIR[i]. Of the cells pointed to by these alternative directions,
the closest to the LG will have priority. Now we can modify the Scatter-Gather
algorithm as follows.

– Agent instances will maintain the index of the next CA cell in their path.
– Agent instances will maintain the index of the best CA cell alternatives to

the next CA cell.
– If the next CA cell is occupied and the movement flag is set to false after

the Race condition solution:
• Check if the best alternative CA cell closest to the LG is occupied, set

the next CA cell index to this alternative if it is not occupied.
• If the best alternative CA cell closest to the LG is occupied, then check if

the best alternative CA cell farthest to the LG is occupied, set the next
CA cell index to this alternative if it is not occupied.

• If the next CA cell index has changed:
* If this CA cell is not a LG, then assign the nearest LG within this

RL cell.
* If this CA cell is a LG, then assign the LG as the neighboring cell

pointed to by π∗, i.e. DIR[d].
• If both of the best alternative cells are occupied, do nothing further, and

the agent is forced to wait, as otherwise it would steer away from its goal.

3.4 Coupling Navigation and Local Collision Avoidance

In the proposed model, the RL for Navigation and CA for LCA methods are
linked by the LNM, since it is on this finer partition that the cellular automaton
operates to coordinate the agents’ movement. Once the Navigation policy—
whether π∗ or a sub-optimal policy—is activated, the LNM is computed by a
parallel version of Algorithm 1. The CA for LCA method may be coupled to the
RL for Navigation method because:

– Its set of connected sites is a partition of the RL states set, which in turn is
a partition of the navigable space.

– The LNM preserves policy information and further, uses it as the input
required to direct and control agents.

– The improved CA for LCA algorithm integrates a solution to the Navigation
and Local Collision Avoidance problems.
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input : RL Policy Π POLICY of size mdpWidth × mdpDepth
output: Local Navigation Map LNM of size lcaWidth × lcaDepth

1 if lcaWidth%mdpWidth == 0 then
2 lcaWidthRatio ← lcaWidth / mdpWidth;
3 lcaDepthRatio ← lcaDepth / mdpDepth;
4 lcaRatio ← lcaWidthRatio × lcaDepthRatio;

5 for i ← 0 to lcaWidth × lcaDepth do
6 LNM [i] ← OPENSPACE;
7 end

8 for lx ← 0 to lcaWidth do
9 for lz ← 0 to lcaDepth do

10 mx ← lx / lcaWidthRatio;
11 mz ← lz / lcaDepthRatio;
12 mi ← mz × mdpWidth + mx;
13 if POLICY [mi] == OBSTACLE ||GOAL then
14 li ← lz × lcaWidth + lx;
15 LNM [li] ← POLICY [mi];

16 end

17 end

18 end

19 foreach rlCell C do // Π placement heuristic
20 foreach lcaCell L in perimeter of C do
21 direction ← POLICY [C];
22 if DoesNotPointToObstacle(direction,L) then
23 if EdgeMatchesPolicyDir(direction,L) then
24 LNM [L] ← direction;
25 end

26 end

27 end

28 end

29 end

Algorithm 1. Local Navigation Map from its RL policy.

4 Implementation Details and Results

Our algorithm uses data parallel primitives (reductions, reductions using condi-
tionals, transformations, gather and scatter) exposed in Thrust [1]. To achieve
maximum performance between simulation and visualization, we tightly coupled
the RL for Navigation and the CA for LCA stages with a crowd visualization
engine implemented in C/C++ and OpenGL [26]. At run-time, a value itera-
tion step is interleaved with frame rendering, with the objective of keeping an
interactive simulation, as shown in Fig. 4. At a configurable iteration interval,
the sub-optimal policy is downloaded and updated on the host, simulating the
crowd’s learning process adjustment to a change in the scenario, as new obstacles
and goals are added or removed. Finally, the optimal policy is downloaded and
updated on the host [25].

We designed two experiments to report the performance of our implementa-
tion. The first experiment was run in a 20-core Xeon CPU E5-2687W at 3.10
GHz, and a NVIDIA Pascal Titan X GPU using CUDA 8.0 and Thrust 1.8. It
consisted in measuring the GPU performance of the RL for Navigation algorithm
on different scenario sizes using as a baseline a parallel CPU implementation
using 40 threads4. All scenarios in both experiments were specified similarly to
4 Multi-threading was exposed by Thrust’s TBB backend.
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Fig. 4. Segmented GPU-based Value Iteration, where each process is interleaved with
frame rendering. Configurable parameter K updates the current policy at a preset
interval, integrating the learning process to the simulation.

Fig. 1 in a CSV file. For this experiment we started with a 16×16 cells area with
no obstacles and a goal at the center. Then, we replicated this area to produce
larger scenarios.

Figure 5 shows the performance of our algorithm (left) and GPU speedup
(right). In small scenarios the parallel CPU version performed better; however,
beyond 128×128 cells, the GPU outperformed the CPU due to its bulk processing
capabilities. Also note GPU time for scenarios of 128×128 cells and smaller does
not incur in a significant performance loss.

Fig. 5. Performance results and speed-up. Left parallel CPU vs. GPU performance,
smaller values are better. Right GPU Speed-up.

The second experiment consisted in measuring the GPU performance of our
fully integrated system including the hybrid RL for Navigation - CA for LCA
model and 3D crowd rendering on four typical scenarios in crowd simulation:
bottleneck, route preference, shortest path and bi-directional walkways and, in
a more complex scenario with a large crowd, a campus scenario, modeled after
actual facilities. The tests for these scenarios were run in an Intel Core i7-6700HQ
@ 2.60GHz CPU, CUDA 8.0, Thrust 1.8 on a laptop PC connected to an exter-
nal GPU (eGPU) graphics accelerator, hosting a NVIDIA GeForce GTX 1060
3GB GPU.

Table 1 shows scenario characteristics in three sections. The first one shows
details of the RL for Navigation (Sect. 3.1) such as map size, number of iterations
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to find an optimal policy after adding a new obstacle and total time to find an
optimal policy. The second part shows details of the CA for LCA (Sect. 3.2
and Sect. 3.3), such as local navigation map sizes, and different times to solve
collisions, racing conditions and, scatter and gather operations. The third section
shows the total update time and time per frame of our hybrid model. Reported
timings show that interactive simulation is feasible with our approach because
the update cost for a change in the presented scenarios ranges from 1.89 ms
(Bi-directional) to 7.88 ms (Campus) per frame. Visualization results for these
experiments are available at https://youtu.be/dkx87F10x6k.

Table 1. Model execution results for the test scenarios.

Bottleneck Route preference Shortest path Bi-directional Campus

Agents 256 256 256 256 4,096

RL layers 1 1 1 2 1

RL Width×Depth 20× 20 32× 32 64× 64 16× 16 200× 200

RL iterations 29 61 186 162 207

RL avg. iteration (ms) 1.758 1.88 2.287 0.457 3.511

Total RL (ms) 78 156 562 110 1,218

CA cells per RL Cell 16 8 4 10 2

LNM Width×Depth 320× 320 256× 256 256× 256 160× 160 400× 400

LNM update interval 10 10 10 10 10

CA Racing condition (ms) 0.256 0.236 0.186 0.085 0.353

CA Scatter-Gather (ms) 1.939 2.114 1.865 1.351 4.023

Total CA (ms) 2.195 2.35 2.051 1.436 4.376

Total update time (ms) 80.195 158.35 564.051 111.436 1,222.376

Time per frame (ms) 3.953 4.23 4.338 1.89 7.887

5 Conclusions and Future Work

We presented a model for crowd Navigation and Local Collision Avoidance in
dynamic environments. In contrast to current multi-agent RL for Navigation
algorithms, our approach can handle large crowds because (1) we encode states
and the learned policy into a finer local navigation map that our algorithm uses to
steer pedestrians, and (2) GPU implementation of the algorithms allows on-line
and near-to-real-time calculation of Navigation policies and CA update rules.

Our model supports different behaviors through MDP layers, as shown in the
bi-directional walkway scenario, where different groups moved towards different
objectives. On the other hand, from the CA perspective, our approach could
resemble the floor field approach; in this matter we are offering an alternative
to [2,6,14] by introducing MDPs to model a similar phenomena to that which
diffusion and decay functions produce in the floor field method. In particular,
different reward values could model the diffusion effect and the discount value, γ,
could be used to represent decay functions. Further analysis will help to illustrate
these relationships, in addition to the effect produced by the inclusion of goals
with different priorities.

https://youtu.be/dkx87F10x6k
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In relation to [23], where a fully observable MDP was solved before the resul-
tant policy could be used to steer crowds, in this paper we expose an online
reinforcement learning approach by using partial solutions from the MDP, that
allow the setting of dynamic goals and obstacles to which the crowd adapts while
the simulation is running.

The framework presented in this paper can be extended to further applica-
tions, for example, to Geographic Information Systems, since the spatial anal-
ysis and mapping of evacuations usually requires the computation of shortest
or safest routes, or even preferred routes according to groups of pedestrians. A
similar application can be found in daily commuter activity analysis. However,
practical applications of our model require calibration and validation, that are
left as future work.
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