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Abstract. This article presents parallel implementations of the Mass
Approximation Distance Algorithm for self-gravity calculation on Xeon
Phi. The proposed method is relevant for performing simulations on real-
istic systems modeling small astronomical bodies, which are agglomerates
of thousand/million of particles. Specific strategies and optimizations
are described for execution on the Xeon Phi architecture. The experi-
mental analysis evaluates the computational efficiency of the proposed
implementations on realistic scenarios, reporting the best options for the
implementation. Specific performance improvements of up to 146.4× are
reported for scenarios with more than one million particles.
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1 Introduction

Self-gravity is a long range interaction caused by the mutual influence of par-
ticles that conform an agglomerate. This interaction is important to model the
dynamic of small astronomical objects like asteroids and comets, which are
agglomerates of smaller particles kept together by the gravitational force [1].

Due to the intrinsic complexity of modeling the interactions between par-
ticles, agglomerates are studied using computational simulations. Molecular
Dynamics (MD) is a simulation method to study physical systems, including
granular materials. Trajectories of atoms and molecules in the system are deter-
mined by numerically solving Newton’s equations of motion of interacting par-
ticles over a fixed period of time. Forces between particles and their potential
energies are calculated using potentials or force fields, allowing to get a vision
of the dynamic evolution of the system [2]. While MD is used to model systems
in atomic scale (atoms or molecules), a more general approach for simulation is
the Discrete Element Method (DEM) [3].

DEM is a numerical method used for simulating systems involving a large
number of small particles. DEM is closely related to MD but allows simulating in
larger scale, such as discontinuous materials (powders, rocks, granular), including
rotational degrees-of-freedom and contact forces between particles.
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When applying numerical techniques for simulation, such as DEM, execution
times for self-gravity calculation demand minutes, or even hours. High Perfor-
mance Computing (HPC) techniques are applied to speed up the computation
when simulating real scenarios involving a large number of particles [4].

In this line of work, this article presents a parallel implementation of Mass
Approximation Distance Algorithm (MADA) to compute self-gravity on systems
of particles and evaluates optimizations for execution on the Intel Xeon Phi
architecture. The experimental analysis allows concluding that the proposed
implementations are able to significantly accelerate the execution time of realistic
simulations. Performance results show accelerations of up to 146× are obtained
by the best parallel implementation when compared to a sequential version.

The article is organized as follows. The problem of computing self-gravity on
small astronomical bodies and a review of related work is presented in Sect. 2.
Section 3 describes multithreading libraries for Intel Xeon Phi. The proposed
implementations of MADA are presented in Sect. 4 and the experimental evalua-
tion is reported in Sect. 5. Finally, Sect. 6 presents the conclusions and formulates
the main lines for future work.

2 Self-gravity Computation on Small Astronomical
Bodies

This section introduces the problem of computing self-gravity on small astronom-
ical bodies and the approximation using MADA. In addition, a review of related
works about parallel algorithms for self-gravity and other particle interactions
in agglomerates is presented.

2.1 Self-gravity Calculation on Agglomerates

Asteroids and comets are agglomerates of small particles that are held together
by the action of different forces. One of the most important of these forces is
self-gravity [4].

The problem of computing self-gravity considers an agglomerate composed
by N particles and Mi the mass of the i-th particle, whose center is located
in position ri . The gravitational potential Vi generated in particle i due to
the action of the rest of the particles is determined by Eq. 1, where G is the
gravitational constant and ||rx || is the norm of the vector rx.

Vi =
∑

j �=i

GMj

||ri − rj || (1)

When the number of particles in an agglomerate is in the order of millions,
executing an algorithm that iterates over all particles becomes unpractical since
the execution time grows quadratically (O(N2)) with respect to the size of the
input data. In order to model the dynamics of an astronomical system, a large
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number of simulations are required. Thus, using a straightforward O(N2) algo-
rithm for self-gravity calculation demands a significantly large execution time.
For this reason, approximation algorithms are applied to compute accurate esti-
mations of the gravitational potential in shorter execution times.

2.2 Mass Approximation Algorithm

MADA is an approximation algorithm for calculating the self-gravity of a system
of particles. The main idea of MADA is substituting groups of distant particles
for a single particle located at the center of mass of the group. The considered
groups involve larger sets of particles when they are located far from the particle
in which self-gravity is computed.

Initially, MADA divides the calculation domain in a certain number of par-
titions on each axis. This partitioning forms cubes that are called sectors. For
particles belonging to the same sector, the self-gravity force between them is cal-
culated exactly, applying Eq. 1 without using an approximation. Particles that
do not belong to the sector of the particle where self-gravity is computed (target
particle) are grouped in subsectors of variable size, depending on the distance
to the sector of the target particle. For each of these subsectors, the self-gravity
between the target particle and the center of mass of the sub-sector is computed,
avoiding to perform a large number of calculations.

Fig. 1. Division of a domain into subdomains to process the gray sector. The closest
sectors to the grey sector are divided into larger subdivisions. Within the grey sector,
MADA is not applied, particle to particle calculation is used instead.

Figure 1 shows a two-dimension representation of the domain decomposi-
tion applied by MADA to compute self-gravity on particles of the grey sector
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(target sector). The farthest sectors are processed as a single particle by using the
approximation proposed by MADA. Sectors that are closer to the target (grey)
sector have more levels of division, as its contributions are more significant than
the one from farthest sectors.

MADA allows reducing the calculations need for computing self-gravity by
grouping distant particles and treating them as a single particle. The calcu-
lated center of mass can be stored and reused when computing self-gravity of
other particles, e.g. (potentially millions of times for agglomerates of millions of
particles) since the MADA sectors are fixed for all particles of the agglomerate.

The division into sectors proposed by the MADA algorithm allows to process
subsets of sectors by different threads. Also the center of gravity calculations
can be shared among them. The application of parallelism allows to reduce the
execution times and consequently reduce the execution times of the simulations.

2.3 Related Work: Parallel Algorithms for Self-gravity and Other
Particle Interactions Calculation

Our research group at Universidad de la República has published previous arti-
cles on parallel algorithms for self-gravity calculation in particle systems.

MADA was introduced by Frascarelli et al. [5], including a parallel imple-
mentation for simulating large systems in a cluster. The experimental analysis
studied the relative error when using MADA (less than 0.1% for all problem
instances) and the speedup (up to 15× on AMD Opteron 6172 processors).

Four parallel strategies for domain decomposition and workload assign-
ment for threads for the previous MADA implementation were studied [6]. The
Advanced Isolated Linear strategy obtained the best performance and scaled up
for simulating an astronomical agglomerate of 1218024 particles using 12 execu-
tion threads. The best strategy also allowed to reduce significantly the execution
times: speedup values up to 13.4 (computational efficiency 0.85) were obtained.

Later, Rocchetti et al. [7] studied a MADA implementation included in the
ESyS-Particle library for DEM simulations. A profiling analysis was performed
using Intel VTune Amplifier to detect bottlenecks and the most time-consuming
subroutines were reimplemented to improve execution time. In the improved
version, particle acceleration is computed for a surrounding box for each par-
ticle and empty cells are omitted. The experimental evaluation studied a two-
agglomerates scenario with up to 38538 particles and the performance results
reported that the execution time of self-gravity calculation was reduced up to
50× when compared with a baseline non-optimized implementation.

The MADA algorithm was not ported/adapted for execution on Xeon Phi in
any of the aforementioned previous works.

Regarding parallel implementations on Xeon Phi for simulating other phe-
nomena in granular systems, Rönnbäck [8] studied optimizations for Parallel Pro-
jected Gauss-Seidel method. The study was focused on bottleneck and scalability
analysis for non-trivial parallel programs. However, no specific recommendations
about how to port this kind of applications to Xeon Phi was presented.
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Surmin et al. [9] presented a parallel implementation of the Particle-in-Cell
method for plasma simulation on Intel Xeon Phi. The parallel method improved
the performance of laser acceleration simulations up to 1.6× when compared
with an implementation on Xeon processors. The analysis also showed that vec-
torization significantly contributed to performance improvements.

Pennycook et al. [10] described a bottleneck analysis of accumulation and
dispersion processes in particle dynamics. A Single Instruction Multiple Data
(SIMD) approach was proposed to improve execution time using specific SIMD
operations provided by Intel Xeon/Xeon Phi architectures. The bottleneck anal-
ysis was performed for the miniMD algorithm [11], using different combinations
of 128, 256, and 512 bits SIMD operations on Intel Xeon/Xeon Phi. The best
results were obtained using 512 bits SIMD operations on Xeon Phi and manual
vectorization. This work proved that the use of SIMD operations reduces the
execution times (up to 5× faster) for miniMD algorithm.

The related works showed no previous proposals of Xeon Phi implementations
of self-gravity calculation or similar particle interaction methods.

3 Multithreading Libraries for Intel Xeon Phi

This section describes different multithreading libraries that are compatible with
Intel Xeon Phi. Two of them are applied in this article in the proposed imple-
mentations for self-gravity calculation for agglomerates.

3.1 Pthreads

Pthreads is a standard model to divide programs into subtasks that can run
in parallel. Pthreads defines a set of types, functions, and constants of the C
programming language to create, destroy, and synchronize execution of threads
and provides functions for managing concurrency in shared memory.

The main advantage of using pthreads is the low cost of creation and destruc-
tion of threads, which is 100 to 150 times faster than for processes [12]. The cost
of access to shared memory between threads is lower (threads of a process share
all the memory) and the context switch between threads requires less execu-
tion time since contexts share information between threads of the same process
(but not between processes). Multithreading libraries such as Cilk Plus, Thread
Building Blocks, and OpenMP use pthreads internally for thread management.

3.2 Intel Cilk Plus

Cilk Plus is an extension of C/C++ to support data and task parallelism. It
provides basic functions, array notation, and compiler directives to execute SIMD
instructions. The main advantages of Cilk Plus are: ease of use, maintainability,
and the few changes required to transform a sequential code into a parallel one.

Cilk Plus provides support to automatically execute parallel loops via
cilk for. It dynamically creates execution threads and assigns work to them,
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following a divide-and-conquer pattern. By default, Cilk Plus determines the
optimal level of parallelism by considering the workload and the cost of creat-
ing new threads with cilk spawn function but the programmer can manually
specify a fixed number. This strategy is effective to calculate the self-gravity of
an agglomerate using MADA, because there is no dependency between MADA
sectors.

3.3 Intel Threading Building Blocks

Thread Building Blocks (TBB) is a C++ library for developing multithread
applications. It uses C++ templates that provides automatic thread manage-
ment and scheduling to implement loops that run in parallel, allowing developers
to generate parallel code without need to handle the creation, destruction, and
synchronization of execution threads. Furthermore, TBB handles load balancing
between threads and provides mechanisms for concurrent reading and writing.

TBB is a data level parallelism library. Each thread works on a portion of
input data, so it benefits directly from having a greater number of processing
units. MADA algorithm can take advantage of this type of load division, since
input data is divided into sectors that are processed independently of each other.

3.4 Comparative Analysis

Comparative analysis of the parallel multithreading libraries described in this
section were performed by Ajkunic [13] and Leist and Gilman [14]. Results con-
firmed that all of them are able to improve the execution time of simulations
but there is not much difference regarding performance between them.

Each library has its own advantages and disadvantages. Choosing one or the
other depends on the type of application and the host architecture. Pthreads
provides a low level model for shared-memory parallel programing, without
including a task scheduler. It requires the developer to directly manage the
execution threads, implying a large effort in comparison to developing the same
program using a multithreading library Pthreads also requires the implementa-
tion of a specific task scheduler for the developed application. For these reasons,
pthreads is not considered for developing parallel implementations for self-gravity
in agglomerates in the research reported in this article.

4 Parallel Implementations for Self-gravity Calculation

This section presents the proposed implementations of MADA for Xeon Phi: a
sequential version used as baseline to compare results/efficiency of the proposed
parallel methods, and the parallel implementations using Cilk Plus and TBB.
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4.1 Baseline Method: Sequential Implementation

The sequential implementation of MADA (Algorithm 1) does not use parallelism.
The method in line 1 initializes the data structures used. After that, load input
(line 2) reads input data for the current execution and arranges them in the
data structures. Centers of mass for each sector defined by MADA are computed
before processing. This pre-computation avoids performing concurrency checks
during execution, thus decreasing waiting time between threads.

Algorithm 1. MADA: sequential implementation
1: Initialize sectors and centers of mass
2: Load input
3: Pre-compute centers of mass
4: for each sector s in domain do
5: Process sector(s)
6: end for

Algorithm 2 describes the process sector subroutine. To reduce workload, self-
gravity is computed for points that define sectors with the smallest subdivision.
This data can be interpolated to obtain the self-gravity potential for the system.
For each point pi that defines the greatest subdivision of sector sh the algorithm
has two parts: (i) particle to particle interactions are computed between point pi
and all particles in sector sh; (ii) for each other sector sk, self-gravity is computed
between pi and the centers of mass of its subdivisions. MADA dynamic grid is
used to determine the subdivisions the centers of mass.

Algorithm 2. Process sector(si)
1: for each smallest subdivision in sector sh do
2: Determine particle pi that identifies sector si
3: for each particle pj in sh do
4: Calculate self-gravity between pi and pj
5: end for
6: for each sector sk, sk �= sh do
7: Find distance to sk
8: Determine sector subdivision according to distance
9: for each subdivision dl of sk do

10: Calculate self-gravity between pi and center of mass of dl
11: end for
12: end for
13: end for
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4.2 Parallel Implementation Using Cilk Plus

Two parallel implementations of MADA using Cilk Plus were developed to study
explicit vs. automatic vectorization: (i) using Array of Structures (AoS) and
(ii) using Struct of Arrays (SoA). Preliminary tests showed that AoS outper-
formed SoA, therefore only the AoS approach is presented in this article.

Intel Cilk Plus: AoS Approach. Figure 2 shows a diagram of the domain division
performed by cilk for. The array of sectors is divided in two, and each half is
divided in two again, until there the domain division guarantee load balancing:
each thread processes the same number of sectors. However, sectors usually have
different number of particles, which translates into more work in some threads.
The Cilk Plus scheduler does not know beforehand which sectors of the domain
should be processed, resulting in a large amount of lost time allocating empty
sectors, or in threads with a higher workload. To avoid this problem, only those
sectors that have particles in the data loading process are stored.

Fig. 2. Domain division of the sector array performed by cilk for

Intel Cilk Plus: AoS and Array Notation. Cilk Plus Array Notation is a variant
for explicitly specifying vectorized operations using an own syntax. The data
structures remain unchanged with respect to those used in the AoS implementa-
tion. Specific changes are made to the vectorized loops, as shown in Algorithm3,
where the loops are replaced by operations with array notation.
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Algorithm 3. Particle-to-particle self-gravity calculation using array notation
1: int size = sectors[part sector].size
2: double self grav = 0
3: Part * cPart = sectors[part sector].particles
4: assume aligned(cPart, 64)
5: self grav += sec reduce add((G * cPart[0:size].mass) / sqrt(pow(cPart[0:size].x -

p→ x, 2) + pow(cPart[0:size].y - p→ y, 2) + pow(cPart[0:size].z - p→ z, 2)))
6: return self grav

Algorithm 3 makes use of two extensions of the language introduced by Cilk
Plus. The syntax currentParticles[i:length] indicates the compiler that the
instruction must be performed for each value of the array currentParticles

between the index value i and i+ length. Given an instruction in array notation,
operation sec reduce add sums the result of each part of the array in a numeric
variable. Two examples of equivalent code are shown on Listings 1.1 and 1.2.

for (int i = 0; i < size; i++) {
dx[i] = currentParticles[i].x − p−>x;

}
Listing 1.1. Standard loop

dx[0:size] = currentParticles[0:size] − p−>x;
Listing 1.2. Equivalent loop to Listing 1.1 using array notation

4.3 Parallel Implementation Using Thread Building Blocks

The parallel implementation of MADA using TBB was developed by performing
a set of modifications over the AoS Cilk Plus code, to evaluate the performance
of the TBB scheduler vs. the Cilk Plus scheduler.

Intel TBB provides its own parallel for. The differences with cilk for are
presented in Listings 1.3 and 1.4. Modifications are needed to adapt the Cilk
Plus implementation to use Intel TBB to manage threads and workloads.

cilk for(int i = 0; i < sectors to process length; i++){
process sector(sectors to process[i], cilkrts get worker number());

}
Listing 1.3. Cilk For

parallel for<int>(0, sectors to process length, 1, process sector );
Listing 1.4. TBB Parallel for

Unlike Cilk Plus, TBB does not provide a method to identify the thread
number in execution at a given time. Thus, an index must be manually assigned
to access the reserved memory for the thread and to do so, a concurrent hash map
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from TBB is implemented to allow the execution of concurrent reads. The con-
current hash maps the ID of the thread with the current number of threads in
execution. The number of executing threads is calculated adding to a mutually
excluded counter every time a new thread is created. The new data structures
needed for the TBB implementation of MADA are shown in Listing 1.5.

typedef concurrent hash map<tbb::internal::tbb thread v3::id,int>
WorkerTable;
int thread count = 0;
typedef spin mutex ThreadCountMutexType;
ThreadCountMutexType threadCountMutex;
WorkerTable workerTable;

Listing 1.5. TBB structures

A specific method was created to obtain the thread number and access the
reserved memory of that thread.

5 Experimental Evaluation

This section reports the experimental evaluation of the proposed MADA imple-
mentations to compute self-gravity on particle systems.

5.1 Methodology

The analysis compares the performance of the parallel implementations of
MADA using Cilk Plus and TBB with the baseline sequential implementation.

Efficiency Metrics. Three independent executions were performed using 1, 60,
120, 180, and 240 threads, to minimize variations due to non-determinism in the
execution. Average and standard deviation of the execution times are reported.
Standard metrics to evaluate the performance of parallel algorithms are studied:
speedup, the ratio of the execution time of the sequential and the parallel version.
and computational efficiency, the normalized value of the speedup.

Execution Platform. Experiments were performed on a Xeon Phi 31S1P from
Cluster FING, Universidad de la República, Uruguay [15]. It was used in dedi-
cated mode to prevent external processes from affecting the execution times.

Self-gravity Problem Instances. The experimental analysis was performed over
six problem instances that model small astronomical bodies with different char-
acteristics. The main details of the problem instances are described in Table 1.

All executions used a 0-0-0-1 configuration for MADA: the three closest sec-
tors to the one processed are computed particle by particle, the fourth using
a single subdivision level and from the fifth, the center of mass calculation is
used. Equation 2 is used to determine the number of partitions for a domain, to
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Table 1. Self-gravity problem instances used in the experimental evaluation

#I Size Domain radius (R) Particle radius (r) Partitions (P)

1 21.084 10 0.168–0.672 125

2 17.621 10 0.336 1.331

3 167.495 20 0.168–0.672 1.331

4 148.435 20 0.336 12.167

5 1.304.606 40 0.168–0.672 12.167

6 1.218.024 40 0.336 103.823

assure that the smallest subdivision is at least 2.5 times the maximum radius of
particles [7].

P =
⌊

R

2.5 × r × 2

⌋3

(2)

5.2 Sequential Implementation

Table 2 reports the execution times for the sequential MADA implementation.

Table 2. Execution time results for the sequential MADA implementation

#I #sectors Execution time (s) Std. deviation (s) Std. deviation (%)

1 125 0.678 0.010 1.48

2 1331 4.097 0.027 0.66

3 1331 15.054 0.48 3.19

4 12167 14.487 0.18 1.24

5 12617 413.250 3.184 0.77

6 103823 18957.014 117.702 0.62

Results show that execution times depend on the number of sectors processed
and not on the number of particles. Instance #5 has more particles than instance
#6 but but it demands shorter execution time since the number of MADA sectors
MADA is larger (as it depends on the maximum radius of particles).

5.3 Intel Cilk Plus

Cilk Plus with AoS. Table 3 reports execution times, speedup, and efficiency
(eff ) of the parallel implementation using Cilk Plus, AoS, and optimizations for
automatic vectorization. for different number of threads (#t). The best execution
time of each instance is marked in bold. Figure 3 summarizes the results.
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Table 3. Performance results: MADA Cilk Plus implementation using AoS

#I #t Time (s) Speedup Eff. #I #t Time (s) Speedup Eff.

1 1 0.962 – – 4 1 16.321 – –

60 0.339 ± 0.010 2.84 0.05 60 1.807 ± 0.077 9.03 0.15

120 0.444 ± 0.011 2.17 0.02 120 2.724 ± 0.455 5.99 0.05

180 0.544 ± 0.015 1.77 0.01 180 2.028 ± 0.010 8.05 0.04

240 0.6 ± 0.020 1.60 0.01 240 2.147 ± 0.023 7.60 0.03

2 1 6.298 – – 5 1 580.659 – –

60 0.583 ± 0.021 10.80 0.18 60 21.762 ± 0.058 26.68 0.44

120 0.661 ± 0.003 9.53 0.08 120 17.845 ± 0.195 32.54 0.27

180 0.833 ± 0.025 7.56 0.04 180 16.247 ± 0.016 35.74 0.20

240 0.895 ± 0.019 7.04 0.03 240 15.855 ± 0.486 36.62 0.15

3 1 0.895 – – 6 1 25913.53 – –

60 2.017 ± 0.017 10.81 0.18 60 487.294 ± 2.918 53.18 0.89

120 2.117 ± 0.030 10.30 0.09 120 276.941 ± 1.483 93.57 0.78

180 2.211 ± 0.031 9.86 0.05 180 206.556 ± 0.598 125.46 0.70

240 2.411 ± 0.017 9.04 0.04 240 183.875 ± 0.369 140.93 0.59
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Fig. 3. Performance results: MADA Cilk Plus implementation using AoS

The Cilk Plus implementation significantly reduced the execution time to less
than a hundredth of the sequential version to execute instance #6. To evaluate
the impact of using vectorization, the Cilk Plus implementation was executed
using the number of threads that obtained the best time for each instance and
compared with a non-vectorial execution. Table 4 summarizes the results. The
impact of the vectorization is very high, obtaining accelerations of 7.1 and 5.8
in the largest instances (5 and 6). This imply shorter execution times, e.g., from
1060 s to 183 s for instance 6. This results imply a significantly higher scalability
of self-gravity calculation when vectorized operations are used.
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Table 4. Execution time and acceleration with/without vectorization in Cilk Plus

Instance #threads Time vectorial (s) Time non vectorial (s) Acceleration

1 60 0,339 ± 0,010 1,313 ± 0,025 3,873

2 60 0,583 ± 0,021 2,363 ± 0,670 4,053

3 60 2,017 ± 0,017 14,879 ± 0,477 7,377

4 60 1,807 ± 0,077 5,238 ± 0,095 2,899

5 240 15,855 ± 0,486 116,682 ± 16,334 7,061

6 240 183,875 ± 0,369 1060,763 ± 14,619 5,769

Cilk Plus with Array Notation. Table 5 reports the execution time, speedup, and
efficiency of the implementation using Cilk Plus with array notation, varying the
number of threads. Results are graphically compared in Fig. 4.

Table 5. Performance results: MADA Cilk Plus implementation using AoS and array
notation

#I #t Time (s) Speedup Eff. #I #t Time (s) Speedup Eff.

1 1 0.716 – – 4 1 13.594 – –

60 0.348 ± 0.020 2.06 0.03 60 1.822 ± 0.034 7.46 0.12

120 0.436 ± 0.020 1.64 0.01 120 2.384 ± 0.059 5.70 0.05

180 0.541 ± 0.007 1.32 0.01 180 3.182 ± 0.149 4.27 0.02

240 0.616 ± 0.036 1.16 0.00 240 4.208 ± 0.243 3.23 0.01

2 1 4.714 – – 5 1 492.541 – –

60 0.516 ± 0.007 9.14 0.15 60 19.739 ± 0.040 24.95 0.42

120 0.613 ± 0.022 7.69 0.06 120 16.911 ± 0.025 29.13 0.24

180 0.718 ± 0.008 6.57 0.04 180 17.131 ± 0.165 28.75 0.16

240 0.842 ± 0.013 5.60 0.02 240 18.677 ± 0.264 26.37 0.11

3 1 15.779 – – 6 1 24151.367 – –

60 1.945 ± 0.007 8.11 0.14 60 452.197 ± 1.092 53.41 0.89

120 2.081 ± 0.015 7.58 0.06 120 268.803 ± 1.186 89.85 0.75

180 2.169 ± 0.016 7.27 0.04 180 214.701 ± 1.334 112.49 0.62

240 2.324 ± 0.019 6.79 0.0 240 206.636 ± 0.788 116.88 0.49

The implementation using array notation obtained similar results to the
implementation using automatic vectorization in executions with 60 threads.
However, when using more computing resources, the speedup decreased and the
execution times worsen with respect to the implementations analyzed in the pre-
vious sections. Graphics in Fig. 4 show that the improvements when using 120,
180, and 240 threads are lower than those obtained when using automatic vec-
torization. The speedup obtained for instance #6 with 240 threads was 116.88,
significantly lower than the one obtained with automatic vectorization.
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Fig. 4. Performance results: MADA Cilk Plus implementation using AoS and array
notation.

In any case, implementing vectorization using array notation is simpler for
the programmer. It is done explicitly and data dependency rules do not have to
be checked. Array notation is a viable alternative for non-expert programmers
to obtain performance improvements with little implementation effort.

5.4 Intel Thread Building Blocks

Table 6 reports the execution time, speedup, and efficiency of the implementa-
tion using Intel TBB for thread management and optimizations for automatic
vectorization, varying the number of threads. Figure 5 summarizes the results.

Table 6. Performance results: MADA TBB implementation

#I #t Time (s) Speedup Eff. #I #t Time (s) Speedup Eff.

1 1 0,991 – – 4 1 15,005 – –

60 0,436 ± 0,005 2,27 0,04 60 1,912 ± 0,021 7,85 0,13

120 0,612 ± 0,035 1,62 0,01 120 2,181 ± 0,039 6,88 0,06

180 0,955 ± 0,070 1,04 0,01 180 2,466 ± 0,035 6,08 0,03

240 1,348 ± 0,281 0,74 0,00 240 3,011 ± 0,120 4,98 0,02

2 1 6,221 – – 5

1 583,309 – –

60 0,675 ± 0,029 9,22 0,15 60 21,376 ± 0,239 27,29 0,45

120 0,847 ± 0,017 7,34 0,06 120 17,336 ± 0,214 33,65 0,28

180 1,202 ± 0,036 5,18 0,03 180 16,537 ± 0,034 35,27 0,20

240 1,792 ± 0,119 3,47 0,01 240 16,999 ± 0,140 34,31 0,14

3 1 21,854 – – 6 1 25543,485 – –

60 2,235 ± 0,068 9,78 0,16 60 449,619 ± 0,134 56,81 0,95

120 2,375 ± 0,021 9,20 0,08 120 258,625 ± 0,371 98,77 0,82

180 2,718 ± 0,032 8,04 0,04 180 198,065 ± 0,760 128,97 0,72

240 3,261 ± 0,062 6,70 0,03 240 174,85 ± 0,171 146,09 0,61
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The MADA implementation using TBB obtained the best values of compu-
tational efficiency of all the variants analyzed in this article. This is reflected in
the execution time when the number of thread increase: when using 240 threads
to process instance #6, MADA TBB demanded 174.85 s to execute, the lowest
execution time for all compared algorithms.
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Fig. 5. Performance results: MADA TBB implementation

The TBB implementation improved 5.16% the execution time in the largest
instance, mainly due to the fact that the cost of creating threads in TBB is
higher than in Cilk Plus. Execution times using TBB are better when the size
of the problem is large enough.

5.5 Results Discussion

Experimental results showed that using the Intel Xeon Phi architecture sig-
nificantly reduces the execution times of self-gravity calculation. Performance
results indicated that the using automatic vectorization allowed obtaining bet-
ter results than those obtained by explicit vectorization with array notation
(improvements of up to 12.37% were obtained). On the other hand, using TBB
as a thread manager/scheduler instead of Intel Cilk Plus improved the execu-
tion time up to 5.16% for largest instance using 240 threads and automatic
vectorization. MADA TBB demanded 174.85 s to execute, corresponding to a
computational efficiency of 0.61.

6 Conclusions and Future Work

This article analyzed several parallel implementations of MADA to calculate
self-gravity on astronomical systems composed of millions of particles using the
Intel Xeon Phi architecture. Specific optimizations were studied regarding thread
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management (Cilk Plus and TBB), data structures (SoA, AoS, and array nota-
tion), and vectorization options (automatic, explicit).

The experimental analysis was performed on six problem instances that
model different small astronomical bodies with diverse features: number of parti-
cles (up to 1.2 million), particles radius, and subdivisions for MADA calculation.
Instances with were considered. The execution time of each studied implemen-
tation were evaluated and compared using configurations of 1, 60, 120, 180, and
240 threads for each instance.

Performance results showed that using Xeon Phi significantly reduces the
execution times of self-gravity computation. For the most complex instance, the
best execution time of 174.85 s was obtained using 240 threads, automatic vector-
ization, and TBB as thread manager/scheduler. Using automatic vectorization
yielded better results than those obtained by explicit vectorization with array
notation. Using TBB as thread manager/scheduler improved over the implemen-
tation using Cilk Plus in 5.16% for the most complex instance.

The results obtained in the analysis clearly show the potential of parallel
computing using the Intel Xeon Phi architecture for efficiently solving complex
scientific computing problems, such as simulations of small astronomical bodies.

The main lines for future work are related to study the efficiency of the
proposed implementations on modern Xeon Phi versions, studying bottlenecks
of I/O operations, and analyze the impact of using offload mode for execution.
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