
123

Esteban Meneses
Harold Castro
Carlos Jaime Barrios Hernández
Raul Ramos-Pollan (Eds.)

5th Latin American Conference, CARLA 2018
Bucaramanga, Colombia, September 26–28, 2018
Revised Selected Papers

High Performance
Computing

Communications in Computer and Information Science 979

Communications
in Computer and Information Science 979

Commenced Publication in 2007
Founding and Former Series Editors:
Phoebe Chen, Alfredo Cuzzocrea, Xiaoyong Du, Orhun Kara, Ting Liu,
Krishna M. Sivalingam, Dominik Ślęzak, and Xiaokang Yang

Editorial Board Members

Simone Diniz Junqueira Barbosa
Pontifical Catholic University of Rio de Janeiro (PUC-Rio),
Rio de Janeiro, Brazil

Joaquim Filipe
Polytechnic Institute of Setúbal, Setúbal, Portugal

Ashish Ghosh
Indian Statistical Institute, Kolkata, India

Igor Kotenko
St. Petersburg Institute for Informatics and Automation of the Russian
Academy of Sciences, St. Petersburg, Russia

Takashi Washio
Osaka University, Osaka, Japan

Junsong Yuan
University at Buffalo, The State University of New York, Buffalo, NY, USA

Lizhu Zhou
Tsinghua University, Beijing, China

More information about this series at http://www.springer.com/series/7899

http://www.springer.com/series/7899

Esteban Meneses • Harold Castro •

Carlos Jaime Barrios Hernández •

Raul Ramos-Pollan (Eds.)

High Performance
Computing
5th Latin American Conference, CARLA 2018
Bucaramanga, Colombia, September 26–28, 2018
Revised Selected Papers

123

Editors
Esteban Meneses
Instituto Tecnológico de Costa Rica
Centro Nacional de Alta Tecnología
Pavas, Costa Rica

Harold Castro
Universidad de los Andes
Bogotá, Colombia

Carlos Jaime Barrios Hernández
Universidad Industrial de Santander
Bucaramanga, Colombia

Raul Ramos-Pollan
Universidad de Antioquia
Medellín, Colombia

ISSN 1865-0929 ISSN 1865-0937 (electronic)
Communications in Computer and Information Science
ISBN 978-3-030-16204-7 ISBN 978-3-030-16205-4 (eBook)
https://doi.org/10.1007/978-3-030-16205-4

Library of Congress Control Number: 2019935812

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-4307-6000
https://doi.org/10.1007/978-3-030-16205-4

Preface

The use and development of high-performance computing (HPC) in Latin America is
steadily growing. New challenges come from the capabilities provided by clusters,
grids, and distributed systems for HPC, promoting research and innovation in many
scientific disciplines. Building on the great success of the previous editions, the Latin
American Conference on High-Performance Computing (CARLA 2018) was held in
Bucaramanga, Colombia, during September 26–28. The main goal of CARLA 2018
was to provide a regional forum to foster the growth of the HPC community in Latin
America through the exchange and dissemination of new ideas, techniques, and
research projects. The conference featured invited talks from academy and industry as
well as short- and full-paper sessions presenting both mature work and new ideas in
research and industrial applications.

The list of topics included: parallel algorithms; multicore architectures and
accelerators; parallel programming techniques; cluster, grid, cloud, fog, and edge
computing; federations; HPC education and outreach; HPC infrastructure and data
centers; large-scale distributed systems; scientific and industrial computing; modeling
and evaluation; high-performance applications and tools; data analytics, data man-
agement, and data visualization; AI; machine learning; deep learning; and special
topics in advanced computing.

All submitted papers were carefully examined by at least three reviewers. Out of the
38 submissions received, 24 were accepted to be presented at the conference.

March 2019 Esteban Meneses
Harold Castro

Carlos Jaime Barrios Hernández
Raul Ramos-Pollan

Organization

Steering Committee

Mateo Valero Barcelona Supercomputing Center, Spain
Gonzalo Hernández University of Santiago, Chile
Carla Osthoff National Laboratory for Scientific Computing, Brazil
Philippe Navaux Federal University of Rio Grande do Sul, Brazil
Isidoro Gitler Center for Research and Advanced Studies

of the National Polytechnic Institute, Mexico
Esteban Mocskos University of Buenos Aires, Argentina
Nicolas Wolovick National University of Cordoba, Argentina
Sergio Nesmachnow University of the Republic, Uruguay
Alvaro de la Ossa Osegueda University of Costa Rica, Costa Rica
Esteban Meneses National High Technology Center, Costa Rica
Carlos Jaime Barrios

Hernández
Industrial University of Santander, Colombia

Harold Enrique Castro
Barrera

University of Los Andes, Colombia

Gilberto Javier Diaz Toro Industrial University of Santander, Colombia
Luis Alberto Nunez de

Villavicencio Martinez
Industrial University of Santander, Colombia

Program Committee

Alvaro Coutinho Federal University of Rio de Janeiro, Brazil
Bruno Schulze National Laboratory for Scientific Computing, Brazil
Carla Osthoff National Laboratory for Scientific Computing, Brazil
Daniel Cordeiro University of São Paulo, Brazil
Esteban Clua Federal Fluminense University, Brazil
Lucas Schnorr Federal University of Rio Grande do Sul, Brazil
Marcio Castro Federal University of Santa Catarina, Brazil
Pedro Mario Cruz Silva NVIDIA, Brazil
Roberto Pinto-Souto National Laboratory for Scientific Computing, Brazil
Luiz Angelo Steffenel Université de Reims Champagne-Ardenne, France
Luiz Derose Cray, USA
Ginés Guerrero University of Chile, Chile
Claudia Jiménez-Guarín University of the Andes, Colombia
Fabio Martinez Carrillo National University of Colombia, Colombia
Gilberto Javier Diaz Toro Industrial University of Santander, Colombia
Idalides Vergara-Laurens University of Turabo, Colombia
Julian Ernesto Jaramillo Industrial University of Santander, Colombia
Luis Fernando Castillo University of Caldas, Colombia

Edmanuel Torres Canadian Nuclear Laboratories, Canada
Cristian Camilo Ruiz

Sanabria
Industrial University of Santander, Colombia

Esteban Hernandez
Barragan

csddlabs, Colombia

Esteban Meneses National High Technology Center, Costa Rica
Filip Krikava Czech Technical University, Czech Republic
Guilherme Peretti-Pezzi Swiss National Supercomputing Centre, Switzerland
Leonardo A. Bautista

Gomez
Barcelona Supercomputing Center, Spain

Bruno Raffin Laboratoire Informatique et Distribution, France
Claudia Roncancio Grenoble University, France
Genoveva Vargas-Solar CNRS-LIG-LAFMIA, France
Laercio Lima-Pilla University of Paris-Sud, CNRS, France
Michel Riveill University of Nice, France
Olivier Richard LIG Laboratory Grenoble, France
Oscar Carrillo CPE Lyon, France
Rafael Escovar ASML, France
Thomas Ropars University of Grenoble-Alpes, France
Yves Denneulin University of Grenoble-Alpes, France
Matthieu Dreher Canadian Bank Note, Canada
Xavier Besseron University of Luxembourg, Luxembourg
Benjamin Hernandez Oak Ridge National Laboratory, USA
Isidoro Gitler Center for Research and Advanced Studies

of the National Polytechnic Institute, Mexico
Jaime Klapp National Institute for Nuclear Research, Mexico
José Luis Gordillo National University of Mexico, Mexico
Ulises Cortés Universitat Politècnica de Catalunya, Spain
Nicolás Erdödy Open Parallel Ltd, New Zealand
Eduardo Fernandez University of the Republic, Uruguay
Eduardo Rodrigues IBM, Brazil
Ernesto Bautista DES-DACI, Universidad Autónoma del Carmen,

Uruguay
German Schynder University of the Republic, Uruguay
Gonzalo Tancredi University of the Republic, Uruguay
Horacio Paggi Universidad Politécnica de Madrid, Spain
Luka Stanisic Max Planck Computing and Data Facility, Germany
Martin Pedemonte University of the Republic, Uruguay
Pablo Ezzati University of the Republic, Uruguay
Renzo Massobrio University of the Republic, Uruguay
Sergio Nesmachnow University of the Republic, Uruguay
Ulises Orozco-Rosas Universidad Rey Juan Carlos, Spain
Ignacio Laguna Lawrence Livermore National Laboratory, USA
Nick Nystrom Pittsburgh Supercomputing Center, USA
Pablo Guillen University of Houston, USA

viii Organization

Contents

Artificial Intelligence

Parallel and Distributed Processing for Unsupervised Patient Phenotype
Representation . 3

John Anderson García Heano, Frédéric Precioso, Pascal Staccini,
and Michel Riveill

Evolutionary Algorithms for Convolutional Neural Network Visualisation . . . 18
Nicolas Bernard and Franck Leprévost

Breast Cancer Classification: A Deep Learning Approach for Digital
Pathology. 33

Pablo Guillén-Rondon, Melvin Robinson, and Jerry Ebalunode

Where Do HPC and Cognitive Science Meet in Latin America? 41
Alvaro de la Ossa Osegueda

Accelerators

A Hybrid Reinforcement Learning and Cellular Automata Model for Crowd
Simulation on the GPU . 59

Sergio Ruiz and Benjamín Hernández

In-situ Visualization of the Propagation of the Electric Potential in a Human
Atrial Model Using GPU . 75

John H. Osorio, Andres P. Castano, Oscar Henao, and Juan Hincapie

GPU Acceleration for Directional Variance Based Intra-prediction
in HEVC . 90

Derek Nola, Elena G. Paraschiv, Damián Ruiz-Coll, María Pantoja,
and Gerardo Fernández-Escribano

Fast Marching Method in Seismic Ray Tracing on Parallel GPU Devices. . . . 101
Jorge Monsegny, Jonathan Monsalve, Kareth León, Maria Duarte,
Sandra Becerra, William Agudelo, and Henry Arguello

Improving Performance and Energy Efficiency of Geophysics Applications
on GPU Architectures . 112

Pablo J. Pavan, Matheus S. Serpa, Emmanuell Diaz Carreño,
Víctor Martínez, Edson Luiz Padoin, Philippe O. A. Navaux,
Jairo Panetta, and Jean-François Mehaut

FleCSPHg: A GPU Accelerated Framework for Physics and Astrophysics
Simulations . 123

Julien Loiseau, François Alin, Christophe Jaillet, and Michaël Krajecki

Applications

Comparison of Tree Based Strategies for Parallel Simulation of Self-gravity
in Agglomerates . 141

Nestor Rocchetti, Sergio Nesmachnow, and Gonzalo Tancredi

Parallel Implementations of Self-gravity Calculation for Small
Astronomical Bodies on Xeon Phi. 157

Sebastián Caballero, Andrés Baranzano, and Sergio Nesmachnow

Visualization of a Jet in Turbulent Crossflow . 174
Guillermo Araya, Guillermo Marin, Fernando Cucchietti, Irene Meta,
and Rogeli Grima

Acceleration of Hydrology Simulations Using DHSVM for Multi-thousand
Runs and Uncertainty Assessment . 179

Andrew Adriance, Maria Pantoja, and Chris Lupo

Fine-Tuning an OpenMP-Based TVD–Hopmoc Method Using Intel®

Parallel Studio XE Tools on Intel® Xeon® Architectures 194
Frederico L. Cabral, Carla Osthoff, Roberto P. Souto, Gabriel P. Costa,
Sanderson L. Gonzaga de Oliveira, Diego Brandão,
and Mauricio Kischinhevsky

Performance Evaluation

Performance Evaluation of Stencil Computations Based
on Source-to-Source Transformations. 213

Víctor Martínez, Matheus S. Serpa, Pablo J. Pavan, Edson Luiz Padoin,
and Philippe O. A. Navaux

Benchmarking LAMMPS: Sensitivity to Task Location Under CPU-Based
Weak-Scaling . 224

José A. Moríñigo, Pablo García-Muller, Antonio J. Rubio-Montero,
Antonio Gómez-Iglesias, Norbert Meyer, and Rafael Mayo-García

Analyzing Communication Features and Community Structure of HPC
Applications . 239

Manfred Calvo, Diego Jiménez, and Esteban Meneses

x Contents

Power Efficiency Analysis of a Deep Learning Workload on an IBM
“Minsky” Platform . 255

Mauricio D. Mazuecos Pérez, Nahuel G. Seiler, Carlos Sergio Bederián,
Nicolás Wolovick, and Augusto J. Vega

Platforms and Infrastructures

Orlando Tools: Development, Training, and Use of Scalable Applications
in Heterogeneous Distributed Computing Environments 265

Andrei Tchernykh, Alexander Feoktistov, Sergei Gorsky, Ivan Sidorov,
Roman Kostromin, Igor Bychkov, Olga Basharina, Vassil Alexandrov,
and Raul Rivera-Rodriguez

Methodology for Tailored Linux Distributions Development for HPC
Embedded Systems . 280

Gilberto Díaz, Pablo Rojas, and Carlos Barrios

Cloud Computing

Cost and QoS Optimization of Cloud-Based Content Distribution Networks
Using Evolutionary Algorithms. 293

Santiago Iturriaga, Gerardo Goñi, Sergio Nesmachnow,
Bernabé Dorronsoro, and Andrei Tchernykh

Bi-objective Analysis of an Adaptive Secure Data Storage
in a Multi-cloud . 307

Esteban C. Lopez-Falcon, Vanessa Miranda-López, Andrei Tchernykh,
Mikhail Babenko, and Arutyun Avetisyan

Fault Characterization and Mitigation Strategies in Desktop
Cloud Systems . 322

Carlos E. Gómez, Jaime Chavarriaga, and Harold E. Castro

Author Index . 337

Contents xi

Artificial Intelligence

Parallel and Distributed Processing
for Unsupervised Patient Phenotype

Representation

John Anderson Garćıa Heano1(B), Frédéric Precioso1(B), Pascal Staccini2(B),
and Michel Riveill1(B)

1 Université Côte d’Azur, CNRS, Laboratoire I3S, Sophia Antipolis, France
henao@i3s.unice.fr, {frederic.precioso,michel.riveill}@unice.fr

2 Université Côte d’Azur, CHU Nice, Nice, France
pascal.staccini@unice.fr

Abstract. The value of data-driven healthcare is the possibility to
detect new patterns for inpatient care, treatment, prevention, and com-
prehension of disease or to predict the duration of hospitalization, its
cost or whether death is likely to occur during the hospital stay.

Modeling precise patients phenotype representation from clinical data
is challenging over its high-dimensionality, noisy and missing data to
be processed into a new low-dimensionality space. Likewise, processing
unsupervised learning models into a growing clinical data raises many
issues, in terms of algorithmic complexity, such as time to model conver-
gence and memory capacity.

This paper presents DiagnoseNET framework to automate patient
phenotype extractions and apply them to predict different medical tar-
gets. It provides three high-level features: a full-workflow orchestration
into stage pipelining for mining clinical data and using unsupervised
feature representations to initialize supervised models; a data resource
management for training parallel and distributed deep neural networks.

As a case of study, we have used a clinical dataset from admission and
hospital services to build a general purpose inpatient phenotype repre-
sentation to be used in different medical targets, the first target is to
classify the main purpose of inpatient care.

The research focuses on managing the data according to its dimen-
sions, the model complexity, the workers number selected and the mem-
ory capacity, for training unsupervised staked denoising auto-encoders
over a Mini-Cluster Jetson TX2.

Therefore, mapping tasks that fit over computational resources is a
key factor to minimize the number of epochs necessary to model con-
verge, reducing the execution time and maximizing the energy efficiency.

Keywords: Health care decision-making ·
Unsupervised representation learning ·
Distributed deep neural networks

c© Springer Nature Switzerland AG 2019
E. Meneses et al. (Eds.): CARLA 2018, CCIS 979, pp. 3–17, 2019.
https://doi.org/10.1007/978-3-030-16205-4_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16205-4_1&domain=pdf
https://doi.org/10.1007/978-3-030-16205-4_1

4 J. A. Garćıa Heano et al.

1 Introduction

A critical step of personalized medicine is to develop accurate and fast artificial
intelligence systems with lower rates of energy used for tailoring medical care
(e.g. treatment, therapy and usual doses) to the individual patient and predict
the length and cost of the hospital stay. In this context, inferring common patient
phenotype patterns that could depict disease variations, disease classification
and patient stratification, requires massive clinical datasets and computationally
intensive models [1,2]. Thus, the complex structure, noisy and missing data from
large Electronic Health Records (EHR) data became a core computational task
to automated phenotype extractions [3].

In this paper, we describe the unsupervised learning method for mining her
data and build low-dimensional phenotype representations using a mini-cluster
with 14 Jetson TX2 in order to distribute training and to obtain a patient pheno-
type representation. This representation could be used as an input of supervised
learning algorithms to predict the main purpose of inpatient care.

We present an application-framework called DiagnoseNET that provides
three high-level features: The first allows the construction of a processing work-
flow to select and extract the data to be processed, to construct a binary repre-
sentation, to reduce its dimensions through unsupervised learning and to process
the data through supervised learning; the second is a data resource management
to feeding the clinical dataset into the Jetson TX2 according to their memory
capacity, while multiple replicas of a model are used for minimizing the loss
function and third, an energy-monitoring tool for scalability analyses impact of
using different batch size factor to minimize the number of epochs needed to
converge and projected the energy efficiency measures.

2 Related Work

In the past century, health research models were traditionally designed to identify
patient patterns given a single target disease, where domain experts supervised
definitions of the feature scales for that particular target and usually worked with
small sample size, which was collected for research purpose [4,5]. Nevertheless,
in general, clinical data are noisy, irregular and unlabeled to directly discover
the underlying phenotypes. This is supposed to be a limitation for this approach.
Nowadays, computer science has facilitated the design and the implementation of
emerging frameworks and practical approaches, offering different ways to extract
valuable information as phenotypes [6].

To derive patients’ phenotypes, it is necessary to extract the occurrence of
their medical data (demographics, medical diagnoses, procedures performed, cog-
nitive status, etc.). Although possibly the evolution of this information over
time must be able to be extracted. A used method is vector based representation
in which, for each medical target is constructed a matrix correlation between
patients and medical group features [7], The generation of the different vectors
generally takes an important time. A couple of other possibilities are nonnegative

Parallel and Distributed Processing 5

matrix factorisation and nonnegative tensor factorisation for extracting pheno-
types as a set of matrices, tensor candidates that show patients clusters linked
on specific medical features and their date [8–10]. Other approaches use non-
negative vectors for embedding the clinical codes and use word representations
as (skip-gram or Glove) to generate the corresponding visit representation [11].

Nevertheless, after the success of unsupervised feature learning for training
unlabeled data to dimensionality reduction and learn good general features rep-
resentations and used either as input for a supervised learning algorithm [12], the
application of employ it to produce patient phenotype representations can signif-
icantly improve predictive clinical model for a diverse array of clinical conditions
as it was shown in deep patient approach [13].

Other derivative approaches use a record into a sequence of discrete elements
separated by coded time, in which uses the unsupervised embedding Word2Vec
to pre-detected the continuous vector space, them uses a convolution operation
which detects local co-occurrence and pooled to build a global feature vector,
which is passed into a classifier [14].

Another approach train a recurrent neural network with attention mechanism
to embed patients visit vector to visit the representation, which is then fed to a
neural network model to make the final prediction [15].

However, these approaches to derive patients’ phenotypes algorithms demand
considerable effort in deploying preprocessing pipelines and data transformation,
in which are built without taking into account the response time.

In this perspective, a large number of authors have explored scaling up deep
learning networks, training well-known datasets focused on the impact of syn-
chronization protocol and state gradient updates [16–18]. At the same time,
other groups have been working on high-level frameworks to easily scale out to
multiple machines to extend libraries for parameter management to allow more
agile development, faster and fine tuning hyper-parameter exploration [19,20].
All these developments are not applied to medical care and do not consider
energy consumption.

Our aim is to construct a completed framework for scaling deep learning
techniques in direction of extracting effective patient phenotype representations
on low-power platforms for empowering the hospitals and medical centers their
ability to monitor health, to early disease detection and manage to personalize
treatments to specific patient profiles.

3 Materials and Methods

Figure 1 shows the workflow implemented in DiagnoseNET application. It high-
lights the different steps needed to build the phenotype whose goal is to create
an equivalent but smaller representation for more effective clinical or medico-
administrative prediction. The first stage is to focus mining EHR data to drive
a binary matrix of patient term documents from the clinical document architec-
ture. The second stage unsupervised representation maps the patient’s binary

6 J. A. Garćıa Heano et al.

representation via an unsupervised stacked denoising auto-encoder to obtain a
new latent space and identify the patient’s phenotypic representations. And the
third stage focuses on supervised learning, we use the latent representation of
patients as an input for a random forest classifier, and as an initialiser for deep
neural networks. The different results are compared to the binary representation
of the patient.

Fig. 1. Workflow scheme to automate patient phenotype extractions and apply them
to predict different medical targets.

Mining EHR Data
The growing health-wide research is largely due to the clinical dataset is com-
posed of a secondary usage of patient records collected in admission and hospital
process [21]. Therefore the EHR is not a direct reflection of patient and their
physiology but is a reflection of recording process inherent in healthcare with
noise and feedback loops [22]. A data mining library has been built as a collection
of functions to feature extraction and to build a patient document-term matrix
from a clinical dataset composed of discrete objects as diagnosis in ICD-10 codes,

Parallel and Distributed Processing 7

medical acts in French CCAM codes and other derived objects as admission hos-
pital details represented in codes established by the French agency ATIH and
generated by the PMSI system to standardize the information contained in the
patient’s medical record. The collection functions are:

1. Clinical Document Architecture (CDA): Identifies the syntax for clinical
records exchange between the system PMSI and DiagnoseNET, through the
new versions generate by the agency ATIH. The CDA schema basically con-
sists of a header and body:

– Header: Includes patient information, author, creation date, document
type, provider, etc.

– Body: Includes clinical details, demographic data, diagnosis, procedures,
admission details, etc.

2. Features Composition: Serialize each patient record and get the CDA object
for processing all patient attributes in a record object.

3. Vocabulary Composition: Enables dynamic or custom vocabulary for select-
ing and crafting the right set of corresponding patient attributes by medical
entities.

4. Label Composition: This function gets the medical target selected from the
CDA schema to build a one-hot or vector representation.

5. Binary Record: Mapping the features values from record object with the
corresponding terms in each feature vocabulary, to generate a binary corpus
using Term-document Matrix.

Unsupervised Representation Learning
After the significant success of representation learning to encode audio, images
and text with rich, high-dimensional datasets [23,24,27]. In this work we extend
the deep patient approach [13], in which all the clinical descriptors are grouped in
patient vectors and each patient can be described by a high-dimensional vector
or by a sequence of vectors computed in a predefined temporal window.

The vector collection is used to derive the latent representation of the patient
via an unsupervised encoder network. At each step of the network, the cod-
ing matrix and the associated latent representation of a smaller dimension are
obtained simultaneously as shown in Fig. 2.

This unsupervised encoder network is composed of an Unsupervised Stacked
Denoising Autoencoders: a deterministic mapping from cleaning partially cor-
rupted input x̃ (denoising) to obtain a hidden features representation y = fθ(x̃)
by layer. Therefore, each stacked layer is independently trained to reconstruct
a clean input x from a corrupted version of it z = gθ′(y), this approach was
introduced by [25].

Previously each encoder was pre-trained to get a semantics representation
parameters θ′ by denoising autoencoder which was trained before, to obtain a
robust representation y = fθ(x̃) from a corrupted input x̃. This is represented
by the next steps:

1. Applied dropout to corrupting the initial input x into x̃ the stochastic map-
ping x ∼ qD(x|x).

8 J. A. Garćıa Heano et al.

Fig. 2. Unsupervised encoder network for mapping binary patient representation x to
latent patient phenotype representation z.

2. The corrupted input is mapped as traditional autoencoders to get a hidden
representation y = fθ(x̃) = s(Wx̃ + b).

3. Reconstruct a schematic representation of the procedure z = gθ′(y) =
s(W ′y + b′).

4. Where the parameters θ ∧ θ′ are trained to minimize the average reconstruc-
tion error over training set, to have z as close as possible to the uncorrupted
input x.

5. And this share the new semantic representation parameters θ′ to next layer
as new initial input x2 and corrupting it into x̃2 by stochastic mapping x2 ∼
qD(x2|x2) and repeat steps.

Supervised Learning
It is well known that the general performance of machine learning algorithms -
convergence time but also accuracy - generally depends on data representations.
For this reason, the result of the unsupervised representation obtained in the
previous step can be used as input of a standard supervised machine learning
algorithms [12]. We therefore thought it relevant to compare the performances
obtained by a random forest approach and a perceptron multi-layer approach for
the different tasks allocated using either a latent representation of the phenotype
or the binary representation at its origin.

Parallel and Distributed Processing 9

Parallel and Distributed Processing for Traning DNN
To implement these different algorithms and in particular, the stage of construc-
tion of the latent representation at the heart of this paper, we used the high level
framework provided by the Tensorflow library. It enables learning algorithms to
be deployed in parallel or distributed architectures, enabling the necessary com-
puting resources to be optimized.

It is necessary to adjust the granularity of the tasks according to the memory
capacity of the host machine, the complexity of the model and the size of the
datasets. Figure 3 describes the different hardware architectures and software
stacks used in different experiments.

Fig. 3. DiagnoseNET application-framework for training parallel and distributed neu-
ral networks on different computing platforms as; 1) multi-GPU servers; 2) CPU-GPU
implementations and; 3) Low-power embedding platforms as the Nvidia Jetson TX2.

To exploit the computing resources and SSD memory capacity available on
Jetson TX2, the data to be processed is distributed according to the number of
Jetson cards used. On each Jetson card, the data that has been assigned is also
divided in batch to take into account the available RAM memory space on the
Jetson cards GPU.

Then, once the data is distributed on each Jetson and the mini-batch consti-
tuted on each one, the work is distributed in the form of identical tasks. In this
first approach, all task replicas read the same model’s values to be built from
a host machine, calculate the gradients in parallel with their assigned data and
return the new gradients to the host machine using the synchronous approach
described in [26].

Dataset
The clinical dataset from admission and hospital services have an average of
85.801 inpatients records by year, with records of hospitals activities in South
French Region (PACA Region: from Marseille to Nice). It contains information

10 J. A. Garćıa Heano et al.

on morbidity, medical procedures, admission details and other variables, recorded
retrospectively at the end of each week observed. This information may vary
from one week to the next, depending on the evolution of the patient’s clinical
condition and management. As a case of study the clinical dataset taken 100.000
inpatients records by the year 2008 divided in 85.000 for training, 4.950 for
validation and 10.050 for test with 11.466 features or clinical descriptors.

Medical Target: Classification of Care Inpatient Purpose
The first medical target, used for this paper, is to classify the main purpose of
inpatient care, as Clinical Major Category (CMC), represented as 23 label coded
in ICD-10 codes. The PMSI system can be assigned ICD-10 codes of the Care
Inpatient Purpose as a high-level entry called Clinical Major Category used for
billing procedures. Table 1 presents two examples of hospitalization that should
be classified under the same CMC.

Table 1. Hierarchisation of diagnosis-related group to select the clinical major category
as labels linked with the care inpatient purpose.

Diagnosis-related group ICD-10 codes Definition

Patient 1 Morbidity principal R402 Unspecified coma

Etiology I619 Nontraumatic
intracerebral
hemorrhage,
unspecified

Medical target Care purpose Z515 Encounter for palliative
care

Label used Clinical major category 20 Palliative care

Patient 2 Morbidity principal R530 Neoplastic (malignant)
relate fatigue

Etiology C20 Malignant neoplasm of
rectum

Medical Target Care purpose Z518 Encounter for other
specified aftercare

Label used Clinical major category 60 Other disorders

Of course we are conducting further analysis of this dataset. Among these we
can quote: the prediction of the duration of a hospital stay and the risk of death
of the patient during this stay. The need to perform several analyses on the same
dataset fully justifies the use of a latent representation provided that this allows
the same analytical accuracy to be maintained. This is why, in an exploratory
phase, all analyses are systematically made from the latent representation and
from the binary representation. In the same way, all classifications or regressions
are made using several supervised algorithms including random forest and RNN.

Parallel and Distributed Processing 11

4 Experiments and Results

We have carried out various experiments using different batch sizes to examine
the relationship between the convergence time of a network, its energy consump-
tion and its ability to translate a patient’s phenotype into a smaller latent space.

The last experiment carried out the possible characterization of the workload
during the execution of a DNN network, which runs on a variable number of
Jetson TX2 according to different batch sizes.

To estimate the efficiency (in terms of accuracy and energy consumption) we
measure: the loss, the accuracy, the time and the number of gradient updates by
epochs, as well, is recording the power consumption, GPU SM frequency, GPU
memory frequency and is stipulated the minimum loss value as convergence point
to stop the training process.

According to examine how fast can be trained, the DNN network and the
minimum energy consumption require to arrive at the convergence point, gives
a variable computational resources. We define three factors to evaluate the exe-
cution time and their energy efficiency:

1. The number of gradient updates as a factor to early model convergence.
2. The Model Dimensionality as a factor to generate quality latent representation.
3. The number of workers and task granularity as a factor to early model con-

vergence on synchronous distributed processing.

The number of gradient updates as a factor to early model convergence:
To illustrate the impact of processing more gradient updates as a factor to

fast convergence, consider the traditional fully connected autoencoders (AE),
parametrized with 3-hidden layers of [2000, 1000, 500] neurons per layer, relu is
used as activation function, Adam such as optimizer and sigmoid cross entropy
as loss function. The clinical dataset uses 84.999 records for training and 4.950
records for validation.

The same AE model has been executed using three different data batch
partitions of 20.000, 1.420, 768 records by batch to measure the number of
epochs needed to arrive at the convergence point, characterized by the mini-
mum loss value of 0.6931 as shown in Fig. 4. We can observe that the largest
batch partition of data requires, to reach the convergence point, a greater num-
ber of epochs. The 20.000 batch size partition reach the convergence point in
100 epochs for 36.21 min for each batch, the 1.420 in 20 for 7.9 MN/batch and
the last batch size (768) in 10 epochs for 4.3 MN/batch. Thus, it is possible to
estimate that the consumption required to build the model has an average con-
sumption of [63.35, 86.61, 82.21] watts respectively with an energy consumption
of [137.65, 41.26, 21.87] kilojoules. For the dataset and model considered, a 768
item batch size is the most energy efficient for generating batch gradient updates.

The low power consumption presented in the largest data batch partition
(20.000) is generated by idle status on the GPU with a SM frequency of
847.49 MHz when the large data batch is transferred from the host memory
to the device memory. We do not observe this idle phenomenon for the others

12 J. A. Garćıa Heano et al.

batch size with a GPU SM frequency of 1071.97 and 1015.49 MHz. To illus-
trate the impact of the idle status on the GPU, generated by large data batch
partition, we can observe the same window of 6 min shown in the Fig. 5a. This
window is extracted of the training of the AE model when it is executed using
three different batch partitions.

The Model Dimensionality as a Factor to Generate Quality Latent
Representation
This subsection studies the relationship between model complexity, network con-
verge time and its reliance to generate a low-dimensional space as a latent patient
phenotype representation.

Specifically the experiment comparison using an established-set of hyperpa-
rameters on three model variations for each network to compare the sigmoid
vs. relu as activation function to generate the latent representation, using three
variations of number of neurons per layer as [4086, 2048, 768], [2000, 1000, 500]
and [500, 500, 500].

The evaluation of accuracy is measured comparing the latent representation
generated by each network model and used as input for random forest classifi-
cation of the clinical major category on 23 labels and their energy efficiency.

1. The first network selected was a traditional fully connected autoencoders with
three hidden layers to generate the latent representation.

2. The second is an End to End network using three hidden fully connected
autoencoders to generate the latent representation as input for the next four
hidden multilayer perceptron.

3. Encoder network using three hidden unsupervised stacked denoising autoen-
coders to initialize the next three hidden layers to encode and generate the
latent representation (Figs. 6 and 7).

Fig. 4. Network convergence using batch partitions of [20000, 1420, 768] records to
generate [4, 59, 110] gradient updates by epoch respectively.

Parallel and Distributed Processing 13

63.35 Watts on average
to process 68 gradient up-
dates in 17 epochs.

86.61 Watts on average to
process 885 gradient up-
dates in 15 epochs.

82.21 Watts on average to
process 1540 gradient up-
dates in 14 epochs.

Fig. 5. Impact of GPU idle status generated by large data batch partition, consider
the power consumption in a window of 6 min for the previous experiment.

Fig. 6. Comparison of different model dimensionality using sigmoid as function to
generate the latent representation.

The Number of Workers and Task Granularity as a Factor to Early
Model Convergence
The experiment analyzes the scalability for training a traditional autoencoders
using different numbers of workers using an established-set of hyperparameters
in two variations of the number of neurons per layer as [2000, 1000, 500] and
[2048, 1024, 768]. The different number of Jetson-TX2 Groups are:

1. 1 P. Server and 3 workers − > Batch size: [768, 1024]
2. 1 P. Server and 6 workers − > Batch size: [1024, 1420]
3. 1 P. Server and 8 workers − > Batch size: [1066]

In this case is shown 1 PS and 8 workers processing in data parallelism
and training the unsupervised encoder network for mapping binary patient rep-
resentation x to latent patient phenotype representation z. Where shows the
synchronous cooperation of going to converge points in the Fig. 8 (Table 2).

14 J. A. Garćıa Heano et al.

Fig. 7. Comparison of different model dimensionality using relu as function to generate
the latent representation

1.30 MN in average for processing one
epoch on 1 PS & 3 workers.

1 MN in average for processing one
epoch on 1 PS & 6 workers.

50.6 Sec in average for processing one
epoch on 1 PS & 8 workers.

25.75 Sec in average for processing one
epoch on 1CPU and 1GPU Titan X.

Fig. 8. Early convergence comparison between different groups of workers and task
granularity for distributed training with 10.000 records and 11.466 features.

Parallel and Distributed Processing 15

Table 2. Preliminary results for processing the unsupervised patient phenotype rep-
resentation on the mini-cluster Jetson TX2.

AE

network

1 PS and 3

workers

1 PS and 6

workers

1 PS and 8

workers

1 CPU and 1 GPU

Batch

Fc.

Converge

time

Batch

Fc.

Converge

time

Batch

Fc.

Converge

time

Batch

Fc.

Converge

time

Model 1 768 13.49min 1024 9.95min 1066 10.18min - -

Model 1 1024 11.90min 1420 10.51min - - - -

Model 2 768 14.50min 1024 11.40min 1066 11.76min 768 3.97min

Model 2 1024 12.50min 1420 12.48min - - 1420 5.96min

5 Conclusions

The work carried out so far has allowed us to highlight that the use of a well-
chosen latent representation instead of the initial binary representation could
make it possible to significantly improve processing times (up to 41%) while
maintaining the same precision.

Minimizing the execution time of a perceptron multi-layer on a Jetson TX2
cluster, whether to perform an auto-encoder or to perform a classification,
depends on the application’s ability to efficiently distribute data for analysis
to the various Jetsons based on the available SSD memory space and then cut
that data into a mini-batch based on the available memory space on the GPUs.

Using hundreds of gradient updates by epochs with synchronous data par-
allelism offer an efficient distributed DNN training to early convergence and
minimize the bottleneck of data transfer from host memory to device memory
reducing the GPU idle status.

The current work on the platform aims to reinforce these main elements by
comparing the performance that can be obtained for the other tasks obtained
on various platforms.

The first platform is a standard computer with a GPU, the second platform is
a 24 Jetson TX cluster connected by an Ethernet switch and the third platform
is an array server consisting of 24 Jetson TX all connected via a Gigabit Ethernet
through a specialized managed Ethernet Switch and marketed to Connect Tech.

The performance concerns the precision that can be obtained, the execution
time of the model and the energy consumption necessary to obtain it.

Acknowledgments. This work is partly funded by the French government labelled
PIA program under its IDEX UCAJEDI project (ANR−15−IDEX−0001). The PhD
thesis of John Anderson Garćıa Henao is funded by the French government labelled
PIA program under its LABEX UCN@Sophia project (ANR−11−LABX−0031−01).

16 J. A. Garćıa Heano et al.

References

1. Heinzmann, K., Carter, L., Lewis, J.S., Aboagye, E.O.: Multiplexed imaging for
diagnosis and therapy. Nature Biomed. Eng. 1, 09 (2017)

2. Cheng, Y., Wang, F., Zhang, P., Hu, J.: A Deep Learning Approach, Risk Predic-
tion with Electronic Health Records (2016)

3. Lasko, T.A., Denny, J.C., Levy, M.A.: Computational Phenotype Discovery Using
Unsupervised Feature Learning over Noisy, Sparse, and Irregular Clinical Data
(2013)

4. Matheny, M.E., et al.: Development of inpatient risk stratification models of acute
kidney injury for use in electronic health records. Med. Decis. Making 30(6), 639–
650 (2010)

5. Kennedy, E.H., Wiitala, W.L., Hayward, R.A., Sussman, J.B.: Improved cardiovas-
cular risk prediction using nonparametric regression and electronic health record
data. Med. Care 51(3), 251–258 (2013)

6. Sheng, Y., et al.: Toward high-throughput phenotyping: unbiased automated fea-
ture extraction and selection from knowledge sources. J. Am. Med. Inform. Assoc.
22(5), 993–1000 (2015)

7. Wang, X., Wang, F., Hu, J.: A multi-task learning framework for joint disease risk
prediction and comorbidity discovery. In: Proceedings of the 2014 22nd Interna-
tional Conference on Pattern Recognition, ICPR 2014, pp. 220–225. IEEE Com-
puter Society, Washington, DC (2014)

8. Ho, J.C., et al.: Limestone: high-throughput candidate phenotype generation via
tensor factorization. J. Biomed. Inform. 52, 199–211 (2014)

9. Perros, I., et al.: SPARTan: scalable PARAFAC2 for large & sparse data. In: Pro-
ceedings of the 23rd ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, Halifax, NS, Canada, 13–17 August, 2017, pp. 375–384
(2017)

10. Perros, I., et al.: SUSTain: scalable unsupervised scoring for tensors and its appli-
cation to phenotyping. CoRR, abs/1803.05473 (2018)

11. Choi, E., Bahadori, M.T., Searles, E., Coffey, C., Sun, J.: Multi-layer representation
learning for medical concepts. CoRR, abs/1602.05568 (2016)

12. Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new
perspectives, April 2014

13. Miotto, R., Li, L., Kidd, B.A., Dudley, J.T.: Deep patient: an unsupervised repre-
sentation to predict the future of patients from the electronic health records. Sci.
Rep. 6, 26094 (2016)

14. Nguyen, P., Tran, T., Wickramasinghe, N., Venkatesh, S.: Deepr: a convolutional
net for medical records. IEEE J. Biomed. Health Inform. 21(1), 22–30 (2017)

15. Choi, E., Bahadori, M.T., Song, L., Stewart, W.F., Sun, J.: GRAM: graph-based
attention model for healthcare representation learning. CoRR, abs/1611.07012
(2016)

16. Dean, J., et al.: Large scale distributed deep networks. In: NIPS (2012)
17. Keuper, J., Preundt, F.-J.: Distributed training of deep neural networks: theoretical

and practical limits of parallel scalability. In: Proceedings of the Workshop on
Machine Learning in High Performance Computing Environments, MLHPC 2016,
pp. 19–26, IEEE Press, Piscataway (2016)

18. Zhang, W., Wang, F., Gupta, S.: Model accuracy and runtime tradeoff in dis-
tributed deep learning: a systematic study. In: Proceedings of the Twenty-Sixth
International Joint Conference on Artificial Intelligence, IJCAI 2017, pp. 4854–
4858 (2017)

Parallel and Distributed Processing 17

19. Zhang, L., Ren, Y., Zhang, W., Wang, Y.: Nexus: bringing efficient and scalable
training to deep learning frameworks. In: 25th IEEE International Symposium on
Modeling, Analysis, and Simulation of Computer and Telecommunication Systems,
MASCOTS 2017, Banff, AB, Canada, 20–22 September, 2017 (2017)

20. Dünner, C., Parnell, T.P., Sarigiannis, D., Ioannou, N., Pozidis, H.: Snap Machine
Learning. CoRR, abs/1803.06333 (2018)

21. Jensen Peter, B., Jensen Lars, J., Søren, B.: Mining electronic health records:
towards better research applications and clinical care. Nature Rev. Genet. 13, 395
(2012)

22. Hripcsak, G., Albers, D.J.: Next-generation phenotyping of electronic health
records. JAMIA 20(1), 117–121 (2013)

23. Bengio, Y.: Deep learning of representations for unsupervised and transfer learning.
In: Proceedings of the 2011 International Conference on Unsupervised and Transfer
Learning Workshop - Volume 27, UTLW 2011, pp. 17–37. JMLR.org (2011)

24. Mikolov, T., Sutskever, I., Chen, K., Corrado, G., Dean, J.: Distributed representa-
tions of words and phrases and their compositionality. In: Proceedings of the 26th
International Conference on Neural Information Processing Systems - Volume 2,
NIPS 2013, pp. 3111–3119. Curran Associates Inc., USA (2013)

25. Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.-A.: Stacked denois-
ing autoencoders: learning useful representations in a deep network with a local
denoising criterion (2010)

26. Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous dis-
tributed systems. CoRR, abs/1603.04467 (2016)

27. Srivastava, N., Mansimov, E., Salakhudinov, R.: Unsupervised learning of video
representations using LSTMs. In: Proceedings of the 32nd International Conference
on Machine Learning (2015)

Evolutionary Algorithms
for Convolutional Neural Network

Visualisation

Nicolas Bernard(B) and Franck Leprévost(B)

University of Luxembourg, House of Numbers, 6, avenue de la Fonte,
4364 Esch-sur-Alzette, Luxembourg

{nicolas.bernard,franck.leprevost}@uni.lu

Abstract. Deep Learning is based on deep neural networks trained
over huge sets of examples. It enabled computers to compete with—
or even outperform—humans at many tasks, from playing Go to driving
vehicules.

Still, it remains hard to understand how these networks actually oper-
ate. While an observer sees any individual local behaviour, he gets little
insight about their global decision-making process.

However, there is a class of neural networks widely used for image
processing, convolutional networks, where each layer contains features
working in parallel. By their structure, these features keep some spatial
information across a network’s layers. Visualisation of this spatial infor-
mation at different locations in a network, notably on input data that
maximise the activation of a given feature, can give insights on the way
the model works.

This paper investigates the use of Evolutionary Algorithms to evolve
such input images that maximise feature activation. Compared with some
pre-existing approaches, ours seems currently computationally heavier
but with a wider applicability.

1 Introduction

During the past ten years, neural networks (NN) and particularly deep neural
networks (DNN) have come back to the forefront of artificial intelligence (AI)
and machine learning (ML) research with the “deep learning” (DL) craze.

Among them, convolutional neural networks (CNN or convnets) have a spe-
cial position for at least two reasons. They can be parallelised particularly well on
processors that were originally conceived for graphical processing (graphics pro-
cessing unit – GPU), and variant of those processors designed for deep learning
use are now relatively common. Most of the improvements in image processing
(object recognition and classification, etc.) of the recent years are actually due
to these convnets.

However, even if convnets are more parsimonious than similar-sized fully-
connected networks, an old criticism of the NN resurfaced: Once a network is

c© Springer Nature Switzerland AG 2019
E. Meneses et al. (Eds.): CARLA 2018, CCIS 979, pp. 18–32, 2019.
https://doi.org/10.1007/978-3-030-16205-4_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16205-4_2&domain=pdf
https://doi.org/10.1007/978-3-030-16205-4_2

Evolutionary Algorithms for Convolutional Neural Network Visualisation 19

trained, it may provide a model that makes accurate prediction, but this model is
nonetheless a huge black box. Said otherwise, the computer learned how to per-
form a task, but we humans are no more advanced when it comes to understand
how it performs it, i.e., what is the overall algorithmic process (in a classical,
narrow and deterministic meaning) doing the task. At best, we have created
some kind of oracle.

One of the best known approaches [1] to lift this veil covering the convnet box
is to try to reverse it, from some internal feature of interest to the input (image)
space. Using a large image-set, one selects the few pictures that maximise the
feature’s activation. Then going back from this activated feature (the other ones
being silenced) provides a visualisation of the activated feature and hence an
idea of what made it react.

We see two main limitations in this approach:

– It is limited by the size of the image-set. Even a huge image-set is dwarfed
by the size of the actual entry space. Hence the “maximal activation” seen is
actually the maximal activation possible with this data-set.

– Most current convnets have choke points (pooling layers, etc.) where the size
of the processing space is reduced (dimensionality reduction step), temporar-
ily or not. This necessarily loses information and hinders the reconstruction of
a feature back in the entry space. Approaches have been developed to bypass
this problem (e.g., saving some intermediate space that is then used for the
reconstruction), yet the issue remains.

Our contribution here consists in using another branch of ML, evolutionary
algorithms (EA), to study a CNN’s features without the limitations aforemen-
tioned: An EA can work in the image space directly and evolve images that at
each generation increase a feature’s activation. By working in the image space,
the reconstruction issue is simply non-existent. By using an evolutionary process,
we are not constrained by the size of an image-set (even if using an image-set’s
pictures that maximise the activation for the first generation can give the EA a
head-start).

This paper combines ideas from different fields, notably neural networks and
evolutionary algorithms. In Sect. 2, we present briefly how a convolutional neural
network is organised, the challenge to understand these networks, some existing
approaches and our proposal. This last item leads us to explain what evolutionary
algorithms are and how they work. We also insist in Sect. 3 on how they differ
from neural networks, and what are the strengths and weaknesses of each. Then,
we describe our strategy and implementation in Sect. 4 before discussing some of
the results obtained in Sect. 5. Future working directions are sketched in Sect. 6.

2 Convolutional Neural Networks

Neural networks, are programs made of combinations (interconnections) of “neu-
rons”. Most of the time, these neurons are organised in layers, the group of neu-
rons forming a layer i being usually connected only to neurons in the layers i−1

20 N. Bernard and F. Leprévost

and i + 1. As soon as they contain at least two intermediate layers “hidden”
between the input and the output layers, they are said to be deep (hence the
“deep learning” moniker). The number of layers in modern deep neural networks
has two to three digits.

For our purpose here, it is necessary neither to understand how the individual
neurons work nor the mechanism through which a DNN is trained: It is sufficient
to know that one trains a network by exposing it to a lot of examples, which is
enabled by “big data”.

A convolutional neural network is a peculiar type of neural network, fre-
quently used for image processing tasks.

2.1 What Is a Convolutional Neural Network?

A CNN1 is a kind of NN where the neurons of individual layers are organised in
groups (“features”), in such a way that each group acts as a convolution filter
on the output of the previous layer.

Figure 1 illustrates a traditional way the data representation evolves along a
network’s layers.

For future references, allow us to examine this in more details now. A net-
work consists in both an architecture (i.e. number, type, and size of the layers)
and weights that are the layers’ parameters. The architecture is conceived by the
designer but the weights are learned during the training phase. For a given trained
network (with its architecture and its set of weights), the image entry size is fixed
too, and it is up to the user to scale or crop the images to the right size.

Fig. 1. A traditional image processing convolutional network: Layer features produce
internal representations that are themselves 2D. Traditionally, the size of these rep-
resentations diminishes and their number increases as the layers are farther from the
input. The square brackets and exponents denote that there are usually multiple suc-
cessive layers with the same architecture. Note that the last layers are usually not
convolutional anymore but fully connected (see end of Sect. 2.1) (Color figure online).

Let us assume that the images are square, with P × P pixels2. They are
colour images with three channels: One for red, one for green and one for the
1 Not to be confused with a news channel.
2 The same reasoning could be applied with rectangular images, but it would add

useless complexity to the argument. Moreover, actual NN often use square images.

Evolutionary Algorithms for Convolutional Neural Network Visualisation 21

blue colour. A pixel can take 256 values (8 bits) for each of these colours. Hence,
the size of an entry (an image) is 3P 2 × 8 bits, and the size of the entry space
(the number of possible distinct inputs) is

Si = 23P 2×8 = 1024
ln 2
ln 10P 2 ≈ 107.225P 2

. (1)

Even with P = 4, the size of the input space exceeds 10115 and is too large
for an exhaustive exploration3. This holds a fortiori for P = 224, as is the case
in VGG [2], a typical CNN that we use in Sect. 4 for our tests.

In a traditional CNN (VGG for instance), after the first layer, the work space
is composed of the result of the convolution of the input space and the different
features, leading to a set of “feature activation maps”. These maps will be used
as entry by the next layer. In VGG, the maps produced by the first layers keep
the size of the input channel size, so the size of the internal representation after
the first layer is proportional to4 F1P

2 where F1 is the number of features in the
first layer (64 for VGG).

However comes a point (usually after a few layers) where the dimension of
the internal representation changes: The size of each activation map is reduced
(for instance to P

2 × P
2), as illustrated on Fig. 1. This is usually accomplished

by a pooling layer. For instance, a max pooling layer divides an activation map
(its input) in squares and outputs an array consisting of the maximum of each
square. Similar reductions in the size of the feature maps are usually performed
again deeper in the network (see Fig. 1). Meanwhile, the number of features per
layer may be increased in order to keep constant the size (in number of neurons)
of the different layers.

Usually, the very last layers of a CNN (between the brackets with the expo-
nent n in Fig. 1), producing the actual output, are not convolutional anymore
(or we can see them as 1 × 1 feature maps).

2.2 The Understanding/Visualisation Issue

There are two classical criticisms made to NN:

– They contain many parameters, making them a priori unparsimonious for the
task they are set to do. John von Neumann is reported to have complained
about too complex models, saying “With four parameters I can fit an elephant,
and with five I can make him wiggle his trunk” [3]. A modern NN contains
hundreds of millions parameters.

– The way they work is not readily understandable. While each neuron can
be examined, while all can be observed at what we may call the microscopic
level, the way a trained network performs its task is hard to determine. The

3 For comparison, the number of particles in the visible universe (including photons,
but excluding possible dark matter particles) is today considered to be less than
1090.

4 We write “proportional to” and not “8×” as the network actually works on floating-
point numbers.

22 N. Bernard and F. Leprévost

behaviour is emerging from the interactions between the neurons of the layers.
This effectively makes a trained DNN a black box, with all the drawbacks it
has, for instance in formal reliability analysis or simply the frustration of the
scientific mind. Today, we are able to train a computer to accomplish a task,
without being able to understand how the computer actually performs the
task.

Working on images with convolution filters, CNN tend to keep, as we have
seen earlier, an image-like 2D structure of their internal representation through
the different layers, the feature maps. It is then tempting to try to visualise
these at different depths in the NN, in the hope to get insights on the network
high-level processing.

We first describe existing approaches before explaining ours.

Existing Approaches
Zeiler and Fergus’ deconvolution [1] consists in monitoring a feature’s activation
over the images of a set, and for the maximal activation so produced, to go
back from the feature-space to the original space by reverting the convolution
layer, hence the “deconvolution” name. Basically, it consists in keeping only the
feature of interest (the other ones being set to zero) and then inverting the
convolution product made in each layer back in order to produce an image. This
produces images of what made the feature react. However, it must be noted that
the network is not fully reversible. Information is lost in the dimension reducing
pooling layers as well as in the non-linear activations. Zeiler and Fergus partially
bypass the former by keeping maps of the max pooling layers. Nonetheless the
produced images give only a partial and noisy image of the feature. The farther
the feature is in the network, the noisier is the reconstruction.

It must be noted that this approach is mostly equivalent to gradient ascent
techniques popularised since. See [4] for instance.

Mahendran and Vedaldi’s inversion technique [5]. This approach is more gen-
eral than the previous one and is not actually specific to neural networks. The
important point from the perspective we take here is that, like the previous one,
it takes images through the CNN, and goes back from the feature map. This is
performed using a prior on what a natural image should look like in order to
compensate for lost information through the network.

Google DeepDream, or “Inceptionism” [6,7], uses a natural image prior too.
However, at the difference of the previous methods and more similarly to what
we describe below, it uses a random input and then makes back and forth trips
to the target feature. The backward journeys use gradient ascent and cause a
modification of the input, guided by both the target and the prior until a kind
of stationary state is reached. In this case, the target feature is a neuron of the
output layer. They iterate and produce images that give an idea of what the
target neuron recognises.

Evolutionary Algorithms for Convolutional Neural Network Visualisation 23

Note however that the best known application of this technique addresses a
different goal. Indeed, this technique allows to use a non-random image as an
input. By selecting a specific output-level neuron, it is possible to make patterns
emerge in the input-space image, producing dreamlike pictures.

Yosinski et al. approach [8] is mostly about using gradient methods to visualise
features, with miscellaneous regularisations that increase the interpretability of
the result obtained. Their interesting results raise a map-and-territory issue: Up
to what point is it acceptable to use regularisation methods that may increase
interpretability but bias the output too? Can such regularised outputs still be
considered as representative of the internal workings of the network?

Our Approach. Like in Zeiler and Fergus’s approach, the idea is to measure the
activation of a feature of interest in the network. However, while they use a data-
set, find the image(s) maximising this feature in it, and then go back from the
feature map to the input space, we use an evolutionary algorithm instead. The
goal of this evolutionary algorithm will be to evolve an image that maximises
the feature of interest as much as it can. As a consequence, our approach is
neither dependent on an image-set nor on a prior on the characteristics of the
image. This is one of the differences with the aforementioned existing approaches.
Moreover, as there is no “going back” but for the fitness score of the generated
entries, there is no information loss issue. This however will in turn make this
approach more computationally heavy, as the amount of information gained per
pass through the network will be lower.

We develop further our approach in Sect. 4. In order to keep this article
self-contained we remind a few facts about evolutionary algorithms in the next
section.

3 Evolutionary Algorithms

Like neural networks, Evolutionary algorithms can be seen as part of machine
learning. However, the similarity stops there.

Whereas neural networks are trained on a set of examples, EA mimic evo-
lution. A population reproduces itself throughout generations by crossing its
individual members over while (random) mutations are induced.

The initial population can be random. Actually it is even recommended to
take a random initial population in order to avoid bias. Hence, at the opposite
of NN, evolutionary algorithms do not need examples. They only need a way to
evaluate a given individual.

3.1 An EA Example

Imagine you want to evolve a character string into the ascii-encoded string
“Hello World”. The genome g of an individual could simply be a bit array of
undefined size, and the evaluation function f could be for instance

24 N. Bernard and F. Leprévost

f(g) =
(
�(g) − 11 × 8

)2 +
i<min(�(g),11×8)∑

i=0

∣
∣g[i] − bit(“Hello World”, i)

∣
∣, (2)

where �(x) is a function returning the length in bits of the parameter x, while
bit(string, i) returns the ith bit of string and g[i] denotes the ith bit of the
variable g. The value 11 is the number of bytes in the string “Hello World”
(including the blank character), and we multiply by 8 since we are considering
usual 8-bit bytes.

The sum on the right-hand side of Eq. 2 is actually bounded: It is on at most
11×8 = 88 bits, and each term is either 0 or 1 (this sum is the Hamming distance,
i.e. the L1-norm). As a consequence, the sum is an integer in [0, 88]. The first
member of f(g) is not bounded however, because �(g) is not. In practice, it
means that the first term produces huge values when the length of the genome is
large compared to the target string, while differences on characters will produce
tamer effects.

The EA loop would then be to:

1. create a population of individuals with random genomes (random both in size
and in content);

2. evaluate this population by applying f on each members’ genome g;
3. evolve the population privileging the individuals with lowest evaluation.

Here we use “lowest” because f is a measure of the difference between an
individual’s genome and the target, hence the need to minimise it.

How to evolve the population in step 3? Traditionally, mutations and cross-
overs are used. Neither needs to be complex. Here, we could use for instance
simple bit flips as well as adding or removing a bit to the string for mutations.
For crossovers we could take two “parent” individuals5, select a random position
i, and create a children individual whose genome is a copy of the first parent’s for
the positions lower than i, and of the second parent’s genome for the remainder:

∀j, gchild[j] =
{

gparent1[j] if j < i,
gparent2[j] else. (3)

This example is very artificial as the desired result is known exactly, from the
start. However, it is possible to use a EA as soon as we have a way to evaluate
the members of a population6.

3.2 Differences and Similarities Between EA and NN

Problem-Solver vs. Instance of a Problem. When applied to a problem, an
evolutionary algorithm evolves a population, and the best resulting individual
5 The question of the selection of the parents itself leads to mupliple possibilities:

random drawings weighted by the fitness score, tournaments, etc.
6 Note that it may be by giving to each individual genome a score. However there

may be cases where it is not possible. A way to rank the individuals (i.e. an order
on them) would be sufficient though.

Evolutionary Algorithms for Convolutional Neural Network Visualisation 25

is the result of an instance of the problem. This is very different from a Neural
Network where learning gives a trained network, i.e., a program that can be
applied to instances of the problem. Yet, there is an important exception.

In Genetic Programming (GP [9]), the individuals of the population are
themselves programs and the resulting program of the artificial evolution can be
applied to the instances of a problem. Actually, among EA variants, GP seems
somewhat nearer to NN as the evaluation function during the evolution may
be based on sets of examples7. Like for a trained NN, the resulting program
of GP, having been evolved, can be hard to understand. However, the resulting
program is still based on a syntax tree. The way it works is easier to follow than
the parallel processing that occurs in a NN.

4 Our Approach: Strategy and Implementation

4.1 The Initial Strategy

Our initial plan was to use the artificial evolution platform EASEA [10,11] to
implement quickly the EA part of our approach and to combine it with an
existing NN library that would allow us to import an existing CNN and would
be called as needed by the EA. As EASEA uses the C++ programming language,
we looked for an easy to interface NN library. We choose Caffe [12,13] which uses
C++ too and possesses an important directory of pre-trained NN issued from
the literature, known as the Caffe Zoo [14].

No battle plan survives contact with the enemy, as von Moltke famously did
not actually say8: We encountered obstacles in the form of bit rot, different
incompatible C++ standards and compilers, etc. This led us to reconsider our
strategy. Instead, we choose to stand the Caffe ground and to implement a basic
EA part from scratch.

As an aside, Python is usually presented as the programming language of
choice for at least deep learning, and often even for more general machine learn-
ing. However, while libraries like Keras [16] indeed allow to load or build and
train DNN with great ease, we had not to regret the use of C++ here. It allowed
us to poke probing pointers in the NN where we liked to and work from that. In
our experience, Python/Keras “fool-proofings” make a chore of accessing what
has not been planned by the library designers.

4.2 Our EA

Our program is a simple evolution loop that creates a new population, evaluates
it (i.e. evaluates each individual of it), and then uses this evaluation as a fitness
criterion to create a new generation of the population. Let use describe this more
in depth.
7 By the way, it would be possible to train a NN with EA, however this is extremely

inefficient with regards to now-standard backpropagation algorithm used to this end.
8 Molke’s thought was actually subtler. See for instance [15].

26 N. Bernard and F. Leprévost

– Population initialisation. For each channel (colour, see Sect. 2.1) of each
pixel of each individual, a floating point number following a normal law is
drawn. Centering this law on 128 with a standard deviation of 100 allows
to cover the range of 8-bit integers. The normalisation value (that depends
on the channel’s colour) given by the NN designer(s) is then subtracted to
produce the initial value for this pixel’s channel.

– Evaluation. The population is evaluated in two steps. First, it is passed as
a batch of the neural network that processes it at least up to the level of the
feature of interest (foi). The activation map of the foi, denoted AMfoi, is an
array of real values9 with size Nfoi×Nfoi. It is then extracted and the feature
activation is the sum10:

Aindividual(foi) =
∑

0≤i,j<Nfoi

AMfoi[i][j]. (4)

The square brackets denote here access to scalar elements as is usual in C-like
notation (and not individual bit access as in the preceding EA example of
Sect. 3.1). An individual’s fitness is then

findividual = f(gind) = Aindividual − α
∑

0≤i,j<P

⌊
1 −

∣
∣
∣
∣
gind[i][j]

128

∣
∣
∣
∣

⌋2

. (5)

The sum acts as a penalty (a L2 decay) on values in the individual’s genome
gind that, due to float to uint8 t conversions, cannot correspond to a real
image (but see the penultimate paragraph of the conclusion). The coefficient
α allows to adapt the weight of the sum to the magnitude11 of A, as it will
tend to be very different for different Nfoi.

– Evolution itself encompasses multiple steps:
• Segregation. After evaluation, the population individuals are discrimi-

nated into three classes depending on their score (see Fig. 2):
* the elite is composed of the ten best individuals. The members of

the elite are moved unchanged into the next generation. Of course,
as there is social ascent from the lower classes due to the evolution,
the members of the elite are pretty much guaranteed to fall from it
sooner or later.

* the “didn-t-make-it” is the lower class, composed of the half of the
population with the lowest scores.

* the middle class is made of the remaining intermediary individuals.
In parallel, a “keep” group is created. It is composed of the elite and com-
pleted with random individuals (after the mutation step) until it reaches

9 Technically, of floats.
10 The actual feature activation may need to be adapted depending on where exactly

we are taking it in a Caffe model as they separate the convolution from the activation
stricto sensu and on the kind of activation the network uses. Here we are considering
that AMfoi is the output of a relu activation layer.

11 A better way may be to normalise the A, for instance by dividing them by N2
foi.

Evolutionary Algorithms for Convolutional Neural Network Visualisation 27

Fig. 2. Division of a generation’s population (size gen size) in classes that are then
used as a factor for creating the following generation.

a size of half the generation size (or 32 if the generation size is less than
that). Note that this group is distinct from the middle-class.

• Mutations. Here, we considered only two kinds of mutations: Small scale
mutations, where only one pixel is mutated (sometimes on all the free
channels, sometimes only the value on one channel is changed), and larger
scale mutations where a random rectangle is selected and multiplied by
a value, resulting in a darkening or lightening of this rectangle.

* For pixel mutations, the number of pixels to be mutated is chosen
at random following a power law. Using a power law allows to have
small values often, and they are better for exploitation. This also
implies that we do not exclude the possibility to have larger values,
which are better for exploration, and even very large values (more
or less changing the whole image), which give ergodicity properties.
Then, until this number is reached, a pixel is selected at random and
replaced (one or three channel(s)) by a random value chosen in the
same way as for the population initialisation.

* For rectangle intensifying mutations, the intensifying factor is chosen
with a normal law centred on 1 with a standard deviation decreasing
from 0.6 to 0.1 as the number of generations increases. The edges of
the rectangle are parallels to the borders of the image.

* It must be noted that as of this writing, we have not introduced yet
any mutation allowing to shift a pattern around on an image.

Individuals in the elite are not mutated. Individuals in the “didn-t-make-
it” class are replaced by copies of individuals of the “keep” group that
are then mutated. Individuals of the middle class get the same outcome
with p = 0.5 (each).

• Cross-overs are straightforward as well. We create two children from
two parents simply by swapping a randomly selected rectangular area
between the two individuals. The “parent” individuals cannot be in the
“keep” group, but they may actually be (more or less mutated) copies
of individuals from this group as the crossing-over step occurs after the
mutation step.

4.3 Running the EA

The Gaia HPC cluster at the University of Luxembourg [17] has nodes with
gpgpu accelerators (different generations of Nvidia Tesla accelerators, depending
on the nodes) that can be used by Caffe to evaluate simultaneously a batch of
different inputs. Most of our experiments were made using Tesla K80 gpgpu.

28 N. Bernard and F. Leprévost

We made an equivalence population/batch, meaning we used our population
as a single batch to process it in parallel through the NN. The batch size is
limited by the amount of GPU RAM12, and Caffe currently does not allow to
parallelise a batch on multiple GPU. This constraints the population’s size.

We could have bypassed this issue, for instance by using an island model,
with different threads or processes using different GPU. However, at this stage,
we did not pursue further parallelism and prefered to run multiple instances of
our single-GPU to explore distinct13 layers/features.

It may be noted that the evaluation part of the EA, i.e. processing the indi-
viduals through the neural network, i.e. the part parallelised on the GPU using
Caffe, takes a few seconds and is clearly the bottleneck from a computational
point of view: The GPU remains busy while the CPU core (2.5 GHz Intel Xeon
E5-2680v3) executing the main program is only very lightly loaded.

5 Results and Discussion

The Figs. 3, 4 and 5 show some typical results obtained on VGG [2,18].
The layer numbering scheme used here comes from the Caffe model. Com-

parison with other references must be done carefully. As this scheme separates
into different layers steps that may be merged in a single layer in other imple-
mentations, the numbering of the layers may not correspond. For instance, in
the Caffe model, the actual convolution and the relu activation that follows are
distinct layers.

As already recognised by previous papers, complexity of the patterns acti-
vating the layers increases with the depth in the network.

At the opposite of some of the methods described in Sect. 2.2, our approach
is unbiased as it does not use any prior14. This can be seen as both an advantage
and an inconvenient:

– The later is that, the CNN being trained (and, normally, used) with natural
images, it can be argued that the input should preserve some of a natural
image properties (correlation between adjacent pixels for instance). Actually,
as far as such properties can be characterised, it would be possible to add
related terms in the fitness evaluation.

12 For instance, each GPU of a Nvidia Tesla K80 has 12 GiB of RAM. This allows
to process a batch of about 160 images/individuals in parallel over VGG (with-
out its fully connected layers). The GPU on a workstation’s Nvidia Quadro K1200
(concurrently used by desktop applications) allows only batches of about 50.

13 We also ran multiple experiments on a same feature to see if we obtained different
results.

14 Actually, stricto sensu, the couple {(P)RNG, EA rules} introduces a bias as it deter-
mines the trajectory of the evolution (considered as a dynamical system). However,
as long as the PRNG has good statistical properties and the EA rules are not too
constrained, this should not matter. This is very different from the bias in a specific
direction introduced by a prior on the result for instance.

Evolutionary Algorithms for Convolutional Neural Network Visualisation 29

Fig. 3. The best individuals obtained for a selection of three features (49, 50, and 51)
of layer 3 (this figure is best viewed in electronic form).

Fig. 4. The best individuals obtained for a selection of three features (12, 111, and
321) of layer 14 (this figure is best viewed in electronic form).

– On the other hand not having this constraint potentially allows insights on
what actually “makes the CNN tick”. This can be important for instance for
security/safety purposes (considering for instance attacks where, by changing
one pixel on an image, it may be possible to make it recognise something
entirely different [19]), and to distinguish in the outputs of the other methods
what comes actually from the studied CNN and what comes from the prior.

Our results appear somewhat “grainy”, notably if one compares them to
the gradient-based approaches mentioned in Sect. 2.2. This is notably true when
trying to get a representation from single neurons in the last (fully-connected)
layers, where the noise, as of this writing, dominates. Hence a question rises. Is
this grain intrinsic to the object we are studying, the smoother results of some
of the aforementioned approach being the consequence of these methods’ bias
(for instance, the “natural image prior” of [5] clearly leads to smoother images)?
Or do the mutations of our EA make it hard to converge to something smooth?

There may be multiple answers. First, it must be noted that some of the
authors of the gradient-based approaches state explicitly that bias is needed to

30 N. Bernard and F. Leprévost

Fig. 5. The best individuals obtained for a selection of three features (0, 210, and 211)
of layer 17 (this figure is best viewed in electronic form).

obtain smooth images and that without it there is too much high-frequency noise
that hinders interpretability [8] (see also [20]).

However, it is not clear that the entirety of the noise that hinders the gradient-
based methods when unbiased is inherent to the network. These methods lose
information on their backward traversals so part of the noise they see may come
from it. This part of the noise would be absent from the EA approach presented
here.

6 Conclusion and Future Works

We demonstrated an approach to get insights on the way neural networks, and
particularly convolutional neural networks work. An evolutionary algorithm is
used to reconstruct an image that maximises the activation of a point of interest
in the studied network. Compared to other methods, our approach is less biased
as it uses neither prior nor a necessarily limited image-set. On the other hand,
this absence of bias makes it much more computationally expensive, albeit in a
way that parallelises well.

Incidentally, another difference with the existing approaches is that our pro-
posal does not need a fine control over the studied neural network. Whereas the
other visualisation methods in a way or another run the network backwards, our
approach only requires to be able to monitor the feature of interest, and not to
have access to the implementation of the network. This could be important to
understand a binary-only neural network, or even more for exploring a hardware
neural network. In this latter case, our method still works directly for studying
the last layer; For the other layers, some kind of side-channel attack allowing to
monitor the feature of interest (for instance) would be sufficient.

The absence of bias in our approach leads to the presence of some noise
in our image. A careful comparison of that noise with the noise observed in
gradient-based approaches when used without biasing may be fruitful.

Depending on the result of such a study, it may then be interesting to try to
combine the approach presented here with pre-existing ones in order to benefit
from the advantages of both (i.e. faster and less biased).

Evolutionary Algorithms for Convolutional Neural Network Visualisation 31

Some other directions worth exploring are obvious, for instance optimising
the EA. Would other mutations (smoothing ones?), other crossing-overs (what
about averaging the two parent images?) and/or other parameters give faster or
provably better results? Would a more distributed parallelism (for instance an
“Island” model), either implemented directly or by addressing the issues with
EASEA (or by using a similar system – maybe ParadisEO?) provide some new
insights, in particular for exploring the last (fully-connected) layers of a network
where we would like to study single networks?

Other less obvious aspects may be interesting to consider too. To give an
example, we considered an image as a (or three) 2D-array(s) of 8-bit integers.
However, the entry layer of VGG in Caffe is already using the float type, which
is usually 32-bits long. Hence, only a subspace of the entry layer is used in
this model. But images larger than the array size are reduced to it one way or
another. If the resizing algorithm merges multiple 8-bit integers to form a 32-bit
floating point number, then an EA could work on the larger image space and
produce visualisations with a higher resolution than the size of the entry layer.
We do not exclude to consider some of these issues in future works.

Our approach is actually specific neither to convolutional neural networks nor
to image-like inputs. It could be used to construct maximising (or minimising, or
whatever criterion is required) entries with regards to some accessible value(s)
in any algorithm.

References

1. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks.
CoRR abs/1311.2901 (2013)

2. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. CoRR abs/1409.1556 (2014)

3. Dyson, F.: A meeting with Enrico Fermi. Nature 427, 297 (2004). https://doi.org/
10.1038/427297a

4. Simonyan, K., Vedaldi, A., Zisserman, A.: Deep inside convolutional networks:
visualising image classification models and saliency maps. CoRR abs/1312.6034
(2013)

5. Mahendran, A., Vedaldi, A.: Understanding deep image representations by
inverting them. In: IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), June 2015. https://www.cv-foundation.org/openaccess/content
cvpr 2015/html/Mahendran Understanding Deep Image 2015 CVPR paper.html

6. Mordvintsev, A., Olah, C., Tyka, M.: Inceptionism: going deeper into neu-
ral networks. Google AI Blog, June 2015. https://ai.googleblog.com/2015/06/
inceptionism-going-deeper-into-neural.html

7. Mordvintsev, A., Tyka, M., Olah, C.: DeepDream. GitHub code repository. https://
github.com/google/deepdream

8. Yosinski, J., Clune, J., Nguyen, A.M., Fuchs, T.J., Lipson, H.: Understanding neu-
ral networks through deep visualization. CoRR abs/1506.06579 (2015). http://
yosinski.com/deepvis

9. Koza, J.: Genetic Programming: On the Programming of Computers by Means of
Natural Selection. MIT Press, Cambridge (1992)

https://doi.org/10.1038/427297a
https://doi.org/10.1038/427297a
https://www.cv-foundation.org/openaccess/content_cvpr_2015/html/Mahendran_Understanding_Deep_Image_2015_CVPR_paper.html
https://www.cv-foundation.org/openaccess/content_cvpr_2015/html/Mahendran_Understanding_Deep_Image_2015_CVPR_paper.html
https://ai.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html
https://ai.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html
https://github.com/google/deepdream
https://github.com/google/deepdream
http://yosinski.com/deepvis
http://yosinski.com/deepvis

32 N. Bernard and F. Leprévost

10. Collet, P., Lutton, E., Schoenauer, M., Louchet, J.: Take it EASEA. In: Schoenauer,
M., et al. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 891–901. Springer, Heidelberg
(2000). https://doi.org/10.1007/3-540-45356-3 87

11. Maitre, O., Kruger, F., Pallamidessi, J., et al.: EASEA. Github code repository
(2008–2016). https://github.com/EASEA/easea

12. Jia, Y., et al.: Caffe: convolutional architecture for fast feature embedding. arXiv
preprint arXiv:1408.5093 (2014)

13. Jia, Y., et al.: Caffe: a fast open framework for deep learning. GitHub code repos-
itory (2014–2018). https://github.com/BVLC/caffe/

14. Misc.: Model zoo. GitHub. https://github.com/BVLC/caffe/wiki/Model-Zoo
15. Hughes, D. (ed.): Moltke on the Art of War: Selected Writings. New edn. Presidio

Press (1995). ISBN: 978-0891415756
16. Chollet, F., et al.: Keras. GitHub code repository (2015–2018). https://github.

com/fchollet/keras
17. Varrette, S., Bouvry, P., Cartiaux, H., Georgatos, F.: Management of an academic

HPC cluster: the UL experience. In: Proceedings of the 2014 International Confer-
ence on High Performance Computing & Simulation (HPCS 2014), Bologna, Italy,
pp. 959–967. IEEE, July 2014. https://hpc.uni.lu

18. Simonyan, K., Zisserman, A.: 19-layer model from the arxiv paper: “very deep
convolutional networks for large-scale image recognition”. Caffe Zoo/github gist
(2014). https://gist.github.com/ksimonyan/3785162f95cd2d5fee77

19. Su, J., Vargas, D.V., Sakurai, K.: One pixel attack for fooling deep neural networks.
CoRR abs/1710.08864 (2017)

20. Nguyen, A., Yosinski, J., Clune, J.: Deep neural networks are easily fooled: high
confidence predictions for unrecognizable images. In: Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pp. 427–436 (2015). https://
www.cv-foundation.org/openaccess/content cvpr 2015/app/1A 047.pdf

https://doi.org/10.1007/3-540-45356-3_87
https://github.com/EASEA/easea
http://arxiv.org/abs/1408.5093
https://github.com/BVLC/caffe/
https://github.com/BVLC/caffe/wiki/Model-Zoo
https://github.com/fchollet/keras
https://github.com/fchollet/keras
https://hpc.uni.lu
https://gist.github.com/ksimonyan/3785162f95cd2d5fee77
https://www.cv-foundation.org/openaccess/content_cvpr_2015/app/1A_047.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2015/app/1A_047.pdf

Breast Cancer Classification: A Deep
Learning Approach for Digital Pathology

Pablo Guillén-Rondon1, Melvin Robinson2(B), and Jerry Ebalunode1

1 Center for Advanced Computing and Data Science (CACDS),
University of Houston, Houston, USA

pgrondon@uh.edu
2 Department of Electrical Engineering, University of Texas at Tyler, Tyler, USA

mrobinson@uttyler.edu

Abstract. Breast cancer is the second leading cause of cancer death
among women. Breast cancer is not a single disease, but rather is com-
prised of many different biological entities with distinct pathological fea-
tures and clinical implications. Pathologists face a substantial increase
in workload and complexity of digital pathology in cancer diagnosis due
to the advent of personalized medicine, and diagnostic protocols have to
focus equally on efficiency and accuracy. Computerized image processing
technology has been shown to improve efficiency, accuracy and consis-
tency in histopathology evaluations, and can provide decision support to
ensure diagnostic consistency. We propose using deep learning and con-
volutional neural networks (CNN) to classify a subset of breast cancer
histopathological images of benign and malignant breast tumors, from
the publicly available BreakHis dataset. We design a workflow featuring
patch extraction from whole slide images, CNN training and performance
evaluation to solve this problem.

1 Introduction

According to the American Cancer Society, breast cancer is the second lead-
ing cause of cancer death among women [1]. Computer aided diagnosis (CAD)
of breast cancer utilizing Histopathology image analysis is an effective means
for cancer detection and diagnosis. Modern digital pathology provides a variety
of ways that can be used for both diagnostic and facilitate pathology practice
[2–4]. The whole-slide imaging is now the primary means of pathology image
capture, and there are an increasing number of research and development efforts
in computerized images processing technology. This technology has been shown
to improve efficiency, accuracy and consistency in histopathology evaluation,
and can provide decision support to ensure diagnostic consistency [5]. Auto-
mated histophatological analysis has been proven to be valuable in prognostic
determination of various malignancies, including breast cancer [6]. Most of the
previous approaches involve combining a large number of handcrafted features
to represent the visual content of breast cancer histopathology images [7].

c© Springer Nature Switzerland AG 2019
E. Meneses et al. (Eds.): CARLA 2018, CCIS 979, pp. 33–40, 2019.
https://doi.org/10.1007/978-3-030-16205-4_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16205-4_3&domain=pdf
https://doi.org/10.1007/978-3-030-16205-4_3

34 P. Guillén-Rondon et al.

Due to the long history of hematoxylin and eosin stain (H&E) there is a strong
belief among many pathologists that H&E will continue to be the common prac-
tice over the next 50 years [14]. Since most current pathology diagnosis is based
on the subjective opinion of pathologists, there is clearly a need for quantitative
image-based assessment of digital pathology slides. This quantitative analysis
of digital pathology is important not only from a diagnostic perspective, but
also in order to understand the underlying reasons for a specific diagnosis being
analyzed. Feature selection in histopathological image analysis provides a means
to quantify a disease and its effect on tissues. In some applications, large feature
sets are generated in the hopes that some subsets of these features incorporates
the information used by the human expert for analysis. Many of the generated
features could be redundant or irrelevant. Therefore, a large set of features may
possibly be detrimental to the classification performance.

Deep learning techniques featuring tools such as the convolutional neural
network (CNN) [8] have quickly become the state of the art for digital pathol-
ogy image analysis in breast cancer [9–11]. These techniques typically involve
multiple nonlinear transformations of the data, with the goal of yielding more
abstract and ultimately more useful representation. In particular, convolutional
neural networks learn relevant and useful features directly from images. This is
in contrast to more traditional machine learning techniques, which strongly rely
on manually crafted quantitative features.

In previous works, Spanhol et al. [10] used a CNN architecture inspired by
AlexNet [8] to classify H&E breast tissue biopsy samples in benign and malignant
tumors, using multiple magnifications and two patch extraction methods. The
authors reported an accuracy close to 90% considering an magnification factor
of 40x and a random strategy of image patch sizes of 64 × 64 pixels.

In this study, we design a different CNN architecture and new methodology
to classify a subset of breast cancer histopathological images of tissue biopsy
samples in benign and malignant tumors from the BreakHis database [7]. We
use the Python deep learning library Keras [12] in our experiments and achieve
similar results reported in [10]. The novelty in our approach is that we achieve
similar accuracies by training with only a subset of the images.

This paper is structured as follows. Section 2 introduces the proposed archi-
tecture, describes the preprocessing applied to the images, the patch image gen-
eration strategy and the CNN architecture. Section 3 reports our experiments
and discusses our results. Finally, Sect. 4 concludes our work.

2 Materials and Methods

Our methodology features a small subset from the BreakHis dataset in which
pre-processing, patch image generation strategy, and patch-by-patch classifica-
tion using CNN, report a high precision to classify between breast tissue biopsy
samples in benign and malignant tumors.

A Deep Learning Approach for Digital Pathology 35

2.1 Dataset

The BreakHis database [7] contains microscopic biopsy images of benign and
malignant breast tumors. Samples are generated from breast tissue biopsy slides,
stained with hematoxylin and eosin (H&E). The dataset, generated from 82
patients, contains magnifications of 40X, 100X, 200X and 400X. There are a
total of 7909 images divided into benign and malignant tumors.

Our work utilizes a random subset of images magnification factor of 40X
chosen randomly from the BreakHis dataset. Our subset consists of 1250 images
with 370 of them being benign and 800 being malignant in the same proportion as
in the whole dataset. Figure 1 shows two images from a single slide of breast tissue
containing a benign tumor and malignant tumor (breast cancer), respectively.

(a) (b)

Fig. 1. (a) A slide of breast benign tumor, and (b) a slide of breast malignant tumor.

2.2 Preprocessing

After the random subset is selected, but prior to analysis, image pixel values in
each channel are normalized to the [0:1] range. This removes the effect of any
intensity variations. Following [10], the original 700 × 460 images were reduced
to 350 × 230, resampling using pixel area relation.

2.3 Dataset Creation

We then extract patches to create a dataset from the normalized images. Divid-
ing the images into patches allows us to increase the dataset’s complexity and
dimension. Further, these patches can contain enough information for training a
model, provided that an appropriate set of patches are extracted from each image
[10]. Our image patch size is 32 × 32 pixels and were extracted randomly with
no overlap control between patches. We extract a different numbers of patches
from each slide.

36 P. Guillén-Rondon et al.

2.4 CNN Architecture

CNNs are feed-forward neural networks that are specialized in visual pattern
recognition. Neurons are connected to overlapping local image patches (recep-
tive fields), and arranged in convolutional maps with all the neurons sharing the
same weights. This allows the convolutional maps to act as local image filters,
detecting the same patterns at all the image positions, and to reduce the total
number of parameters to be trained. The network is organized in a hierarchical
layer structure that, at each level, combines the lower level features into higher
level ones, until the image class label is obtained. The proposed network archi-
tecture contains 3 convolutional, ReLU and max-pooling layers followed by a
fully connected layer and ends with a two-class softmax layer. This architecture
is summarized in Table 1. What follows is a description of the types of layers:

– Input layer: The input layer has three channels of 32×32 pixels, corresponding
to the normalized RGB patches extracted from the images.

– Convolutional layers: a convolutional layer convolves the input image with
a set of learnable filters, each producing one feature map in its output. The
receptive fields (kernels) are of size 3× 3, the zero-padding and the stride is
set to 1. The three convolutional layers learn 32 feature maps.

– Max-pooling: The lower level information needs to be spatially integrated for
the image region, as well as simplified when accounting for higher level infor-
mation. Max-pooling layers allow for such a complexity reduction without
increasing the number of parameters in the network. The max pooling layers
use a stride and pooling size equal to 2.

– Fully connected layers (FC): Neurons in a fully connected layer have full
connections to all activations in the previous layer, as seen in regular Neural
Networks.

– Non-saturating nonlinearity: Both the convolutional layers and fully-
connected layers are composed of Rectified Linear Units, with activation func-
tion f(x) = max(0, x).

– Output layer: The output is composed of two neurons, corresponding to each
of the two classes that are normalized with a softmax activation function.

Table 1. CNN architecture

Layer number 1 2 3 4 5

Layer type Conv+Pool Conv+Pool Conv+Pool FC FC

Number of feature maps 32 32 32 64 2

Filter size 3 × 3 3 × 3 3 × 3

Conv. stride 1 × 1 1 × 1 1 × 1

Pooling size 2 × 2 2 × 2 2 × 2

Pooling stride 2 × 2 2 × 2 2 × 2

Padding size 1 × 1 1 × 1 1 × 1

A Deep Learning Approach for Digital Pathology 37

2.5 Methods

Deep learning is an active research field and the application of deep learning
to histopathology is relatively new. Therefore, the application and the use of
efficient scientific computing tools such as Keras and Python provides us of
techniques to improve the efficiency of cancer classification in H&E images.

We trained a convolutional neural network using NVIDIA P100 GPU. We
stopped the training process after stabilization of the validation accuracy with
equal weight for all the classes (130 epochs). The batch size used is 200 samples.
The network weights are initialized randomly, and the Adam adaptive learning
rate gradient-descent backpropagation algorithm is used for weight updates. The
selected loss function is the categorical cross entropy. The Python deep learning
library Keras 2.0.8 with a TensorFlow 1.3 [13] backend, was used in order to
perform the classification through CNN architecture.

3 Results

We train a convolutional neural network with the dataset mentioned in the
previous section. We report not simply on accuracy, but use metrics to glean
more meaning from the classifier. All reported results use k-fold cross-validation
with k = 3.

Precision and recall give more insight into how the classifier performs for
individual images. Precision is the probability that given a classification result
for a sample, the sample actually belongs to that class. Recall is the proba-
bility that a sample will be correctly classified for a given class. The F1 score
combines both to give a single measure of relevancy of the classifier results. Prac-
tically, as shown in the relative statistics for each class, the two classes had high
rates of accuracy. Tables 2, 3, 4 and 5 reports the results with several metrics
of the CNN architecture for 25, 50, 75 and 100 patches extracted from each
slide. Table 6 shows the same metrics using no patches, or the whole slide as
input. As can be seen in Table 7, the execution time increases with problem size,
due to training times of the architecture when considering different numbers of
patches. It is noteworthy that the increase in execution time when considering
different patch image generation methods results in high predictive efficiency
when discriminating between benign and malignant cases.

Table 2. Results from 25 patches

Precision Recall F1-score Support

Benign 0.855313 0.873622 0.864371 9250

Malignant 0.946381 0.937864 0.942103 22000

Avg/Total 0.919425 0.918848 0.919094 31250

38 P. Guillén-Rondon et al.

Table 3. Results from 50 patches

Precision Recall F1-score Support

Benign 0.924782 0.872595 0.897931 18500

Malignant 0.947673 0.970159 0.958784 44000

Avg/Total 0.940898 0.941280 0.940772 62500

Table 4. Results from 75 patches

Precision Recall F1-score Support

Benign 0.927247 0.890559 0.908533 27750

Malignant 0.954738 0.970621 0.962614 66000

Avg/Total 0.946601 0.946923 0.946606 93750

Table 5. Results from 100 patches

Precision Recall F1-score Support

Benign 0.932360 0.906027 0.919005 37000

Malignant 0.960952 0.972364 0.966624 88000

Avg/Total 0.952489 0.952728 0.952529 125000

Table 6. Results from whole slide classification

Precision Recall F1-score Support

Benign 0.773333 0.627027 0.692537 370

Malignant 0.854737 0.922727 0.887432 880

Avg/Total 0.830641 0.835200 0.829743 1250

Table 7. Execution times of the CNN architecture for whole slide and from patches
extracted.

Mode Execution time (s)

Whole slide 465.91

25 patches 10526.76

50 patches 31926.62

75 patches 52480.55

100 patches 68838.00

A Deep Learning Approach for Digital Pathology 39

4 Conclusions

In this study we present a methodology and a deep learning-based system for
the classification of tissue biopsy samples in benign and malignant tumors from
breast cancer. Key aspects of our methodology includes: pre-processing to the
images; patch image generation in order to enrichment the training set; and the
use of a state-of-the-art deep learning model architecture. We have shown that
comparable accuracy can be obtained with a smaller subset of the data.

As can be observed our strategy of increasing the number patches extracted
from each slide showed an improved accuracy for the classification. Deep learn-
ing and experimentation present numerous opportunities to improve accuracy.
Because images tend to be relatively large, a smaller subset of useful and relevant
features can be calculated, reducing the training and validation times. Future
work would involve exploring different CNN architectures in order to improve
the precision and accuracy.

Acknowledgment

References

1. American Cancer Society. Cancer Facts and Figures (2017)
2. Apple, S.K.: Sentinel lymph node in breast cancer: review article from a patholo-

gist’s point of view. J. Pathol. Transl. Med. 50(2), 83 (2016)
3. Bejnordi, B.E., et al.: Stain specific standardization of whole-slide histopathological

images. IEEE Trans. Med. Imaging 35(2), 404–415 (2016)
4. Kaplan, K.J., Rao, L.K.: Digital Pathology: Historical Perspectives, Current Con-

cepts & Future Applications. Springer, Switzerland (2016). https://doi.org/10.
1007/978-3-319-20379-9

5. Hipp, J., et al.: Computer aided diagnostic tools aim to empower rather than
replace pathologists: lessons learned from computational chess. J. Pathol. Inform.
2, 25 (2011)

6. Beck, A.H., et al.: Systematic analysis of breast cancer morphology uncovers stro-
mal features associated with survival. Sci. Transl. Med. 3(108), 108ra113–108ra113
(2011)

7. Spanhol, F.A., Oliveira, L.S., Petitjean, C., Heutte, L.: A dataset for breast cancer
histopathological image classification. IEEE Trans. Biomed. Eng. 63(7), 1455–1462
(2016)

8. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: Advances in Neural Information Processing Sys-
tems, pp. 1097–1105 (2012)

9. Janowczyk, A., Madabhushi, A.: Deep learning for digital pathology image analysis:
a comprehensive tutorial with selected use cases. J. Pathol. Inform. 7, 29 (2016)

10. Spanhol, F.A., Oliveira, L.S., Petitjean, C., Heutte, L.: Breast cancer histopatho-
logical image classification using convolutional neural networks. In: 2016 Interna-
tional Joint Conference on Neural Networks (IJCNN), pp. 2560–2567. IEEE (2016)

11. Araújo, T., et al.: Classification of breast cancer histology images using convolu-
tional neural networks. PloS One 12(6), e0177544 (2017)

12. Chollet, F., et al.: Keras (2015). https://github.com/fchollet/keras

https://doi.org/10.1007/978-3-319-20379-9
https://doi.org/10.1007/978-3-319-20379-9
https://github.com/fchollet/keras

40 P. Guillén-Rondon et al.

13. Abadi, M., et al.: TensorFlow: Large-scale machine learning on heterogeneous sys-
tems (2015). software http://tensorflow.org/

14. Fox, H.: Is H&E morphology coming to an end? J. Clin. Pathol. 53(1), 38–40
(2000)

http://tensorflow.org/

Where Do HPC and Cognitive Science
Meet in Latin America?

Alvaro de la Ossa Osegueda(B)

School of Computer Science and Informatics,
Graduate Program in Cognitive Science, University of Costa Rica,

San Pedro, Costa Rica
alvaro.delaossa@ucr.ac.cr

Abstract. In the last few decades there has been a noticeable shift of
attention of the high-performance computing (HPC) applications devel-
opment community from deterministic to heuristic models of problem
solving, mainly due to observation that models based on human knowl-
edge and expertise have proven to be good approaches to solving com-
plex problems. Also, a shift of artificial intelligence (AI) to HPC has
occurred, as AI researchers now find in HPC the means to build more
complex models of human cognition. This is in general the case, and it is
also true in the Latin America region. On the other hand, in this region
there seems to be an estrangement between the cognitive science (CS)
and the AI communities, perhaps due to the shift of AI to HPC and
the resulting change of attention of AI researchers. However, there is a
noticeable increase in the number of academic programs in the region
focusing on CS. In this article we provide evidence of the previous asser-
tions and propose a list of suggestions or recommendations on how to
bring the HPC and CogSci communities closer in the region, as well as
the potential benefits of such a process.

Keywords: HPC · Cognitive Science · Artificial Intelligence ·
Latin America

1 Introduction

The HPC community has traditionally seen computer science as a good source of
effective and efficient methods for developing solutions to complex problems. In
the last few decades, there has been a shift of attention of the community to AI
methods, as they provide good approximations to solve complex problems, spe-
cially when available information about those problems consists mainly of large
sets of observation or experimental data, and when the availability of human
experts can be exploited to validate AI method’s outcomes.

However, HPC is indeed an enabler for AI, and thus one can also observe
that the shift has been the way around, that is, AI has shifted its attention to
HPC, in search for resources to implement and assess more complex AI models.
The fact is that there is a noticeable coming together of these two fields.
c© Springer Nature Switzerland AG 2019
E. Meneses et al. (Eds.): CARLA 2018, CCIS 979, pp. 41–55, 2019.
https://doi.org/10.1007/978-3-030-16205-4_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16205-4_4&domain=pdf
http://orcid.org/0000-0001-7357-5591
https://doi.org/10.1007/978-3-030-16205-4_4

42 A. de la Ossa Osegueda

Before that period, most foundational models and tools developed within
the AI field were sequential models of human problem solving, in many cases
poor in computational performance. As a consequence, a large part of the effort
recently invested by the HPC and AI communities has consisted of improving the
performance of AI models and tools through parallelization and other techniques.

Exemplary evidence of this coming together is the noticeable increase in the
number of publications related to the use of deep learning [1] and the effects of it
in other fields also traditionally linked to AI, such as natural language processing
[2]. The classes of complex problems that HPC aims at providing solutions for,
is being increasingly approached using AI methods and tools.

In the same direction, within the AI community there has been an important
shift of focus in recent years from symbolic reasoning models to machine learn-
ing and deep learning, evidenced by the trends of attendance to large scientific
conferences within the field of AI [2]. These two specific fields find today a huge
research and development space in academy, industry and the society. However,
this shift has occurred at a cost for the relationship of the AI and CogSci com-
munities [3], which has seen a reduction in the participation of AI specialists in
CogSci research projects.

In the remaining of this article we argue that there is a need to strengthen
the working relationship between the HPC and CogSci communities in Latin
America, and that this rapprochement should lead to a higher impact of CogSci
research in the region. The remaining of the article is organized as follows. In
Sect. 2 we provide a description of the fields of AI and CogSci. Due to space
limitations, the presentation is limited to a historical review of AI and a brief
description of CogSci’s component disciplines and research framework. Section 3
is dedicated to the relationship between HPC and AI, by looking at the current
main topics or research areas. Then, in Sect. 4 we describe the current trends in
CogSci research, both worldwide and in the Latin American region, and provide
a research example of our own, along which we argue about the need to bring the
HPC and CogSci communities to collaborate closer together. In the final section
we propose a list of suggestions to attain that goal and analyze the potential
benefits of such a joint venture.

2 Artificial Intelligence and Cognitive Science

In this section we present a summary of the fields of AI and CogSci. First we
provide a brief historical review of AI and then we present a general description of
CogSci and its research framework, in order to provide a basis for later discussing
the need to strengthen the relationship between this and the HPC community.

2.1 Origins and Fundamental Goals of Artificial Intelligence

The name Artificial Intelligence was coined by Professor John McCarthy in 1955
[4]. The first known appearance of the term is a workshop proposal prepared
by McCarthy along with Marvin Minsky from Harvard University, Nathaniel

Where Do HPC and Cognitive Science Meet in Latin America? 43

Rochester from IBM, and Claude Shannon from Bell Laboratories, to be held
in 1956 at Dartmouth College. A group of almost fifty researchers from distinct
areas such as mathematics, philosophy, psychology, linguistics, neurology and
engineering, attended the workshop to discuss this “new area” of research.

The discussions held during the workshop centered around seven aspects
of intelligence: automatic computers, use of a language by computers, neuron
nets, theory of the size of a calculation, self-improvement, abstractions, and
randomness and creativity. There is a specific mention in the workshop proposal
that reveals much of how intelligence was looked at the time:

“Often in discussing mechanized intelligence, we think of machines per-
forming the most advanced human thought activities –proving theorems,
writing music, or playing chess. I am proposing here to start at the sim-
ple and when the environment is neither hostile (merely indifferent) nor
complex, and to work up through a series of easy stages in the direction
of these advanced activities”.

In the decades after that, the AI community followed two different paths
towards that goal. On one side, the work of Allen Newell and Herbert Simon
[5,6] had and still has a strong influence on those who believe that symbolic
processing is an appropriate metaphor for human cognition, and therefore it
should be possible to model human problem-solving behavior by writing down
condition-action rules that express the observed behaviors.

On the other hand, the work of McCullogh and Pitts [7], Nilsson [8] and many
others followed a parallel, somewhat reverse path: searching for better ways to
model cognition at the neural level, and working towards building machines from
which problem-solving mechanisms can emerge.

It is until the 1980s that those two different approaches to modeling cogni-
tion using computers started to merge in a single proposal. In 1987, David E.
Rumelhart, James L. McClelland published their revolutionary work on parallel,
distributed processing [9,10]. Their work represented, at the time, a novel app-
roach to the study of cognitive processes. Under the PDP model, the underlying
components are no longer sets of production rules, but rather models of neural
organization and activity.

Although the PDP model recognizes the need to model information pro-
cessing at the biological level, the main interest of PDP is not about neural
mechanisms or synaptic weight adjustments, but rather about studying the pro-
cesses that might emerge from that processing, which should describe and help
explain language and thought, problem solving, and memory [11].

The PDP model has had since its proposal a large impact on AI models
of cognition, in particular AI models of machine learning. The development of
theories of cognition based on the PDP model require a close relationship of
neuroscience, psychology, and AI. While neuroscientists provide observations
and inferences about neural organization and functioning, psychologists provide
functional requirements of computational models of information processing by
humans, and in this line, AI researchers are expected to come up with efficient
models of intelligent behavior.

44 A. de la Ossa Osegueda

As Kenneth Forbus argues, currently “most cognitive simulations focus on
one process in isolation” and “they often do not scale to larger phenomena” [3].
PDP and HPC, however, are moving the AI field rapidly to produce “programs
that approach –and possibly reach– human-level artificial intelligence”. Accord-
ing to Forbus, AI development for the following 30 years will produce this kind of
artifacts and, “from a cognitive science perspective, this will happen by creating
larger-scale simulations.”

The former seems to be precisely the methodological approach taken, for
instance, by the Human Brain Project [12], the largest collaborative, long-term
endeavor carried out to date, a collaboration of a number of European research
groups to build “a research infrastructure to help advance neuroscience, medicine
and computing”. The particular attention to neuroscience is geared towards the
understanding and replication of human cognitive capacities.

2.2 Cognitive Science: Goals and Disciplines

The main goal of CogSci is to explain cognition. For that purpose, it brings
together scientists from diverse disciplines, all of which are interested in answer-
ing questions about different aspects of cognition. One of the main issues that
the joint CogSci community has had to face during its recent development, has
been the need to develop a joint research framework, that is, a set of principles,
assumptions and methods that are considered valid by all disciplines involved.
But reality is that the methodological framework from one discipline may not
fit another’s.

The best effort known to this author on building such a framework is that of
von Eckardt [13], as we explain later. Prior to that publication, a basic descrip-
tion of the different fields comprising the CogSci was provided in [14]. Figure 1
below shows two diagrams. The one on the left describes the disciplines stan-
dardly included within CogSci, and the one on the right describes a more current
description of their relationships.

Fig. 1. Disciplines of cognitive science. On the left, diagram taken from the cover page
of the 1978 “Report of the State of the Art Committee to the Advisors of the Alfred
P. Sloan Foundation”. On the right, a diagram of own elaboration.

In the figure on the right-hand side, AI is seen as a research plat-
form for putting cognitive theories and models to test. That is, AI provides

Where Do HPC and Cognitive Science Meet in Latin America? 45

computational experimentation environments for CogSci researchers. This is a
rather novel view of AI, compared to the view depicted in the 1978 report to the
Alfred P. Sloan Foundation, where computer science, and not only AI, is seen as
one more discipline geared towards understanding cognition.

Before moving on the describe the research framework of CogSci as proposed
by Dr. von Eckardt, we provide a brief description of the fields within this science
and their relationships.

2.3 The Standard Fields of Cognitive Science

Many diverse disciplines take part in the CogSci consortium. For space limitation
reasons, we describe only the four that represent the most publications in the
intersection with AI.

The first field of interest is Philosophy of Mind, which focuses on the main
ontological questions of cognition and human knowledge, and on the questions
that arise when modeling human knowledge, that is, when building theories
about human knowledge and reasoning [15]. Two relevant areas of philosophy
are Logic and Epistemology, that occupy themselves with cognition and interact
mostly with cognitive scientists from other fields. The relationship of Philosophy
of Mind and AI can be described as the joint search for answers to two sets of
main questions: those about human reasoning and the diverse forms of logic
involved, and those about the phenomenology of cognition.

A second field of interest is Cognitive Psychology, which is mainly interested
in questions about the nature, architecture, organization and capacities of the
human executive functions, such as working memory, learning and understanding
[16]. The relationship of Cognitive Psychology and AI is mainly characterized by
the development of AI models that try to mimic human problem-solving perfor-
mance and by the parametrization of those models using the standard metrics of
psychometry, that is, the measurement of human performance in mental tasks.

Another field of importance is Neuroscience. Its main goal is to understand
how the brain operates and how that translates into observable rules of behav-
ior. Neuroscience is currently attracting the most attention in its relationship to
AI and computer science. The best example so far is the Human Brain Project
mentioned earlier. It is the topic with the largest number of recent publications
by researchers involved in that project. Current issues relate to the experimen-
tation with and the observation of neural activity using scanning technologies,
e.g. fMRI, the computational simulation of neural activity, and the top-level,
hierarchical organization of signal processing capacities in the brain [17].

A fourth relevant field of study is that of Cognitive Linguists. The main
interest here is in answering questions about the origin and nature of language
in all species, and of human language in particular. This involves modeling the
characteristics of natural language, the principles of linguistic organization, the
interface between syntax and semantics, the pragmatics of the use of language,
and the relationship between language and thought [18]. Cognitive linguists are
interested in understanding the processes by which we produce language and

46 A. de la Ossa Osegueda

those by which we understand it. The relationship of this field to AI is material-
ized in the subfield of Computational Linguistics, in which researchers currently
deal with problems arising from the need to reproduce the processes of language
production, understanding and use, by applying AI methods to large corpora of
text, recordings and other forms of language representations.

The most important aspect to note about the relationships between these
preceding disciplines and AI is that AI serves all of them as a means of devel-
oping models of cognition and of putting those models to test. Thus, the main
purpose of AI within CogSci is the development of computational experimenta-
tion environments.

2.4 The Cognitive Science Research Framework

In her book [13], Professor von Eckardt proposes a set of assumptions and pre-
scriptions on how to study the mind, and identifies a set of properties of human
cognitive capacities (HCC) related to strategies to overcome the fundamental
limitation of mind research: the inaccessibility of the mind. We cannot simply
open a human skull and manipulate to brain to measure its responses, just as
an astronomer cannot travel to a distant star to study its behavior.

In the following, we summarize the relevant aspects of von Eckardt’s pro-
posed framework, and later discuss how that framework can be used to iden-
tify and describe computational requirements for HPC. Professor von Eckardt
proposes four core sets of assumptions on CogSci research: conceptual, domain-
specific assumptions; basic questions; substantive assumptions; and methodolog-
ical assumptions.

Domain-Specific Assumptions and Questions on HCC. There are three
core domain-specific assumptions. The first one is the identification assumption:
the domain of research of CogSci is that of HCC. It does not identify the level at
which HCC are to be selected for research. We could think of HCC as high-level
processes of the mind: perception and interpretation, memory, learning, recall,
attention, inference, working memory, etc.

The second domain assumption has to do with the common properties of
all HCC: they are intentional, pragmatically evaluable, coherent, trustable and
productive. These mean that HCC say something about the state of something,
can be observed and measured for performance, their execution is consistently
successful, when that is the case they can be trusted, and they can be executed
in a practically unlimited number of novel ways.

The third core assumption is a grouping assumption: HCC of a typical, nor-
mal adult conform a system. This is of utmost importance to AI research: if HCC
conform a system of mental capacities, an AI model of HCC should conform a
system of computational capacities.

Four core questions describe in general terms the research in CogSci. First,
we want to know what constitutes a specific HCC, that is, what it does on what
kinds of information. Second, we want to know how the capacity is developed

Where Do HPC and Cognitive Science Meet in Latin America? 47

and exercised. And finally, we need to know how the HCC interacts with other
capacities. For instance, a cognitive model of recall from human memory needs
to be tested in its interaction with other capacities, such as emotions.

Before we move to describe the computational and methodological assump-
tions, it is advisable to clear the concept of a typical, normal adult. For von
Eckardt this is a rather fuzzy concept, that encapsulates most people, except
for those for whom a given HCC is either reduced or in a pathological state.
Cognitive scientists such as Antonio Damasio [19,20] and Oliver Sacks [21,22]
among many others, have noted that we can learn more about cognition from
abnormal cases.

Computational Assumptions on HCC. Two computational assumptions
are at the core of von Eckardt’s proposal. First, we assume the human brain is a
computational device, that is, a computer, and thus HCC consist to a large extent
of a system of computational capacities. More specifically, the human brain is
a general-purpose, stored-program computer, and HCC consist of a system of
information processing capacities. Second, we assume the human brain has a set
of modelable properties, that is, they can be described using some formal lan-
guage. Additionally, a computational device can receive, store, manipulate and
produce information from explicit representations of inputs, storage, manipula-
tion and production of information; those processes are guided by a finite set of
effective rules owned by the device.

Methodological Assumptions on HCC. The methodological aspect of von
Eckardt’s proposal is complex and deserves special attention, as these are the
aspects that we will later consider to propose a list of suggestions for the HPC
application development community in Latin America. First, human cognition
can be studied by focusing exclusively on the cognoscente individual. The social
influence on cognition, on the other side, can be explained by appealing to the
fact that this influence is mediated by perception and individual representations.

Second, HCC can be thought of as sufficiently autonomous capacities, that
can be studied, to a large extent, in isolation of one another. The modularization
of the mind in individual capacities is such, that they can be studied in isolation
from one another. Next, the exercise of a given HCC varies considerable among
individuals, and thus it should be useful to distinguish between normal and
abnormal cognition. Furthermore, in despite of individual variations, similarities
should allow us to infer valid generalizations about cognition in typical, normal
adults.

The strategy of CogSci consists of looking for answers to the basic questions,
by answering the corresponding questions posed on the information-processing
metaphor. To chose one of a set of alternative answers, the scientific method
must be used, that is, answers need to be justified on empirical grounds. Finally,
a complete theory of human cognition should be build with the contribution of
all disciplines within the CogSci realm.

48 A. de la Ossa Osegueda

3 HPC and AI Meet

The coming of HPC has enabled a space in which AI researchers and developers
can improve, extend and refine the fundamental models and methods developed
during the first eight decades of theoretical computer science and AI. From this
perspective, AI has turned its attention to HPC, in the search for more complex
algorithms to model learning and other human cognitive capacities.

For the HPC community, on the other side, this shift has opened a new realm
of methods alternative to the traditional numerical approaches that are still, for
the most part, the basis for HPC applications. The HPC community is moving
towards using methods based on heuristics and other forms of human exper-
tise, rather than looking at deterministic and exhaustive search-based problem-
solving methods. As mentioned in the introduction, deep learning is a good
example of classes of methods than are being exploited, as they have shown
appropriate for the efficient development of very robust classifiers.

According to the 2016 report of the One Hundred Year Study on Artificial
Intelligence by a panel invited by Stanford University, “AI is shifting toward
building intelligent systems that can collaborate effectively with people, includ-
ing creative ways to develop interactive and scalable ways for people to teach
robots” [23]. Just in this citation are four of the main cores of AI research today:
collaborative systems, learning or trainable systems, human-computer interac-
tion, and robotics.

The trend within the HPC applications development community seems there-
fore to be mainly looking at innovative ways to improve performance and quality
of AI methods, in particular those related to empirical learning and heuristic
search-based problem solving, collaboration and interaction with humans.

In the Latin American region, HPC and AI have come close together thanks
to the development of conferences, workshops and other activities organized by
the HPC community, where AI has had a warm welcome. Since 2014, the largest
forum for HPC in the region is the CARLA conference (Conferencia de Com-
putación de Alto Rendimiento de Latino América), which is the result of merging
two previous conferences: the CLCAR (Conferencia Latino Americana de Com-
putación de Alto Rendimiento) and the HPCLatAm (HPC in Latin America).
CLCAR used to be organized by researchers from the northern region of Latin
America (from Mexico to Peru), and HPCLatAm by researchers from the south-
ern region (Brazil, Argentina, Uruguay, Chile).

Although there exist many other spaces for the discussion and exchange of
knowledge in AI topics in the region, CARLA is currently the only conference
focusing on its intersection with HPC.

4 The Need for a Closer HPC–CogSci Relationship

In this section we review the current trends in CogSci and provide a research
example of our own.

Where Do HPC and Cognitive Science Meet in Latin America? 49

4.1 Trends in Cognitive Science

Currently the main trend in CogSci research seems to be investigating relevant
connections between research findings from neuroscience, cognitive psychology
and cognitive linguistics, in some cases supported by AI models based on large
datasets gathered by observation. Two evidential sources of this assertion are,
on one hand, the concentration on issues from those disciplines in Volume 22
(2018) of the monthly digital journal Trends in Cognitive Science [24], and on the
other, the publications by the research teams that participate in the collaborative
Human Brain Project mentioned earlier.

After reviewing the main topics addressed by the articles published by the
above mentioned journal during the last year, we found that over half of them
were related to the connections between cognitive psychology and neuroscience,
and about half of those considered the use of some AI model or method for
representational or processing purposes.

Our main interest in this article is, however, to describe the trends in CogSci
research specifically in the Latin American region. Two decades ago only two
universities in the region had created study programs in the field. Today we note
a considerable increase in the number of academic programs directly related
to this field, and in the number of publications, specially in Latin American
repositories such as LA Referencia (lareferencia.org), a regional, open repository
of academic publications, where a search for “ciencia cognitiva” produces over
8,000 results. A quick review of those results shows that the countries with the
five top countries in the number of publications are Brazil (over 7,000), Peru,
Costa Rica, Argentina and Colombia (these four combined total only under
1,000).

Not many publications can be found, however, that review the current situ-
ation and trends of CogSci in Latin America. A few of the existing ones provide
little but valuable information [25,26]. In the first of these references, the authors
selected a sample of cognitive scientists from five countries: Mexico, Colombia
and Chile from Latin America, and Spain and France from Europe. They were
interviewed about their current research resources and projects. The main con-
clusion of Gonzalez and Ojeda regarding current research in Latin America, is
that there is a growing community, the largest part of which has a strong back-
ground from cognitive psychology; other related disciplines, like neuroscience
and artificial intelligence, are not so widespread in the region.

The increase in presence and publications, however, has not lead the way to
forming collaboration networks in the regional. The CogSci community is not
well organized or integrated. Three factors seem to be preventing this goal. First,
many of the research groups are rather young and in the process of developing
their own lines of research. Second, many Latin American researchers primarily
look at joint research and publications with partners from the United States and
Europe. And third, there is a lack of financial means to fund regional cooperation
initiatives.

A review of the most recent reports of the European Commission on the Latin
American countries with which European academics mostly collaborate includes

http://www.lareferencia.org

50 A. de la Ossa Osegueda

Mexico, Colombia, Brazil, Chile and Argentina. The rest of the region has very
limited access to European programs, and are usually characterized by the iso-
lated participation of researchers from those countries [27]. On the financial
area, a few positive efforts can be noticed, as for instance the Regional Com-
munities program developed by the Latin American Network for Cooperation
of Advanced Networks (CLARA, clara.org), in which over twenty communities
received a small starting fund from 2012 to 2014, and support from experts in
the region for their own development. No community was created in the CogSci
area.

On the other hand, a search for conferences, collaboration networks and other
activities involving CogSci and HPC within the region produces no results at
all. It thus seems there still does not exist in the region any fora for the joint
discussion of CogSci computational needs in the task of developing cognitive
models and theories.

One of the first Latin American programs to be created was the Grad-
uate Program in Cognitive Science at the University of Costa Rica (UCR),
which offers a Masters of Science degree1. It was founded in 1991 and has since
then promoted a large number of scientists from very diverse disciplines, who
now enhance their professional or research activities with methodologies and
approaches from the CogSci research framework. The program has, however,
evolved its research lines in the intersection of cognitive psychology, social psy-
chology, and to a lower extent, neuroscience and philosophy of mind. The pro-
gram offers an introductory course in Artificial Intelligence and several optional
lectures on special topics of AI. The main focus is on knowledge modeling
techniques and machine learning methods. In general, the participation of AI
researchers in the program is low.

By doing a web search for university programs and research centers, and
by looking at the affiliations of researchers from Latin American countries in
several indexed, peer-reviewed journals, we were able to conclude that at present,
over two dozens university programs are dedicated to CogSci in the region. The
countries where most of these programs operate are Mexico, Colombia, Brazil,
Argentina, and Chile. A common aspect of all of them is the low participation
of AI researchers, and the concentration of attention of the community on the
connecting areas of cognitive psychology and neuroscience.

Thus, the situation in Latin American does not seem to be very different
from what we currently find in Europe, the United States or Asia. Also, the
current estrangement between CogSci and AI described by Forbus in [3] for the
case of the Cognitive Science Society, seems to be a generalized situation.

4.2 A Research Example: Modeling Recall in Human Memory

In the early 1990s, Professor Michael M. Richter, chair of the Artificial Intelli-
gence and Knowledge-Based Systems Group at the University of Kaiserslautern

1 The course plan of the M.Sc. program can be looked at (in Spanish) in http://
cienciascognoscitivas.sep.ucr.ac.cr/.

http://www.clara.org
http://cienciascognoscitivas.sep.ucr.ac.cr/
http://cienciascognoscitivas.sep.ucr.ac.cr/

Where Do HPC and Cognitive Science Meet in Latin America? 51

and cofounder of the German Research Center for Artificial Intelligence2,
Germany, and Michael Mehl, a graduate student, proposed a model of memory
recall based on the Case-Based Reasoning paradigm [28]. The work of Richter
and Mehl consisted of formalizing the constructs and procedures to produce a
redundant discrimination network to store, index, and organize sets of experi-
ences represented as cases [29], i.e., 3-tuples consisting of a problem description,
a solution, and an explanation. Richter and Mehl’s model implements a logic
of preferred subtheories, that ensures that the proper attributes of cases are
selected. One of the main research questions of that project was to develop a
memory recall mechanism that would satisfy a set of plausibility criteria3 pro-
vided by a group of collaborating psychologists.

Those plausibility criteria can be summarized as follows. First, memories
need to be reconstructed, which means experiences are not stored as monolithic
registers of information, but rather distributed over the memory structures. Sec-
ond, memories cannot be enumerated, i.e., when asked about all experiences of
a certain kind, humans are not able to answer with a complete list, except when
they are only a few. Third, memory is not a hierarchical structure, as that would
not allow for mental leaps between different contexts. Fourth, recall is a process
of specialization. And fifth and final, similar concepts are stored close to each
other and differing concepts aways from each other in memory.

The model proposed by Richter and Mehl complied with all those criteria,
but had certain shortcomings. First, the case representation was poor, cases
could only be represented using vectors of attribute-value pairs, which strongly
limits the ability to represent temporal knowledge. Second, recall was based on
identical values, rather than on some measure of similarity. And third, of utmost
importance, the model was sequential, only one search thread could be ran at a
time and thus, in a reasonable time, only one possible solution to the original
query could be retrieved.

Two decades later, and motivated by the availability of HPC resources, we
decided to analyze Richter and Mehl’s model to assess whether parallelization
and distribution techniques would allow us to build a better, more realistic mem-
ory recall model. The new model is the result of distributing the case memory in
separate modules, each of which is searched in parallel by one or more process-
ing threads, depending on the availability of processing resources. The resulting
parallel, distributed model of recall ensures all possible answers to a query can
be extracted from memory in about the same processing time as the original,
sequential model [30].

However, several issues remained to be solved, and HPC is required to find
proper solutions for those issues. First, redundant discrimination networks grow
exponentially with the number of cases and the number of attributes per case.
The resulting case base is quite shallow in depth, but can get extremely complex
in the number of nodes and the number of links or associations between nodes

2 DFKI, for its German title: Deutsche Forschungszentrum für Künstliche Intelligenz.
3 Here we define the term plausible to refer to an object or mechanism that complies

with a set of experimental observations interpreted by a human expert.

52 A. de la Ossa Osegueda

in the network. The increased number of links produces an increased number of
possible paths representing experiences, and therefore, each time a new case in
inserted into memory, a potentially large number of paths can be added to the
network structure.

Second, our parallel memory recall model is isolated, and needs to be inte-
grated to or with other HCC models, such as a model of emotion. As mentioned
earlier in relation to the CogSci research framework proposed by von Eckardt,
it is indeed valid to investigate a certain HCC in isolation, but to be able to
talk about building a theory of memory recall, the model must be put to test
considering the influence of other capacities.

This sample project shows three of our main concerns. First, cognitive scien-
tists need to be able to know about HPC. Without basic, instrumental knowledge
of the field, scientists are not able to assess whether HPC could help improve their
cognitive models. Second, cognitive scientists need to share their experiences and
learn from others’ experiences in the same or similar research questions. And
third, the HPC community needs to understand the classes of computational
problemas that cognitive scientists are faced with.

5 How to Bring HPC and Cognitive Science Closer
in Latin America

Based on the previous discussions about the shift of HPC to AI and the estrange-
ment of AI and CogSci, and on those experiences, we propose the following
recommendations for the HPC community in Latin America.

1. Develop Training Programs in HPC for Cognitive Scientists. The HPC com-
munity in Latin America already has a tradition of producing and delivering
training programs directed to scientists with little or no knowledge of comput-
ing in general and of HPC in particular. However, most of those programs have
been designed for scientists coming from the natural sciences, engineering and
health sciences, who occupy the most of the time devoted by those centers to
develop or improve specific applications. On the other hand, the lack of aware-
ness of cognitive scientists about the potential benefits of HPC is also a strong
obstacle. The first step towards a closer relationship with cognitive scientists is
to adapt existing HPC training programs to the needs of social scientists. For
this purpose, we suggest taking a close look at the research framework explained
in Subsect. 2.4 of this article.

2. Integrate the Cognitive Scientists to HPC Conferences and Collaborative
Activities in Latin America. Currently there exist several collaboration net-
works in the Latin American region. Two of them are SCALAC4 and RICAP5.
4 For its Spanish title, Servicios de Computación Avanzada de América Latina y el

Caribe, Advanced Computing Services for Latin America and the Caribbean.
5 For its Spanish title, Red Iberoamericana de Computación de Altas Prestaciones,

Iberoamerican Network for High Performance Computing.

Where Do HPC and Cognitive Science Meet in Latin America? 53

SCALAC is a consortium of over ten HPC centers and academic programs from
Latin American countries. It aims at developing collaboration projects enabled
by sharing the available HPC infrastructures. RICAP, on the other hand, is a
time-limited collaboration in which HPC and research centers from Spain also
participate, and its goal is similar to SCALAC’s. We suggest creating a special-
interest group of CogSci and HPC researchers, that can start discussing their
needs, strengths and shortcomings.

3. Build a List of CogSci Demands in the Region. One of the issues that obstructs
the relationship between HPC and CogSci is the lack of awareness of the HPC
community of the classes of computational problems that are common to CogSci
research. In this article we have pointed out a series of topics and research areas
of high interest for the CogSci community. A closer look at those topics and areas
is required, to assess the classes of complexity problems that cognitive scientists
have to cope with.

4. Monitor the Current and Future Results of the Human Brain Project. This
project, as mentioned earlier, is currently producing a vast amount of knowledge
about the brain. However, almost no Latin American scientist is directly related
to any of the research groups participating in that collaboration. For many cogni-
tive scientists in Latin America, the results of that project can be highly interest-
ing, but they are currently unable to reproduce those results because of the lack
of HPC expertise and resources to their disposal. We suggest complementing the
list of CogSci demands (see recommendation 3 above) with information about
the results of the Human Brain Project project, associating for each result the
cognitive process or capacity modeled, the corresponding computational model,
and the produced experimental data.

6 Conclusions

In this paper we have provided an overall picture of the current relationships
between HPC, AI and CogSci, in order to identify issues that need to be resolved,
if we want to improve the collaboration between those communities. A closer
working relationship is required in Latin America of the HPC applications devel-
opment and the CogSci communities.

This approach has several potential benefits. First, it might help Latin Ameri-
can cognitive scientists improve the quantity and quality of their research results.
Second, an improved research environment can help those scientists become more
independent of the resources in other regions of the world. And third, it can
broaden research opportunities for the HPC applications development commu-
nity in the region, as novel computing problems and solutions might arise from
such a collaboration.

Acknowledgments. The author wishes to thank the Organizing Committee of the
CARLA 2018 conference for the kind invitation to participate as a speaker and as a
contributor to these selected conference proceedings.

54 A. de la Ossa Osegueda

References

1. Vargas, R., Mosavi, A., Ruiz, R.: Deep learning: a review. Preprints 2018,
2018100218. https://doi.org/10.20944/preprints201810.0218.v1

2. Shoham, Y., Perrault, R., Brynjolfsson, E., Clark, J.: Artificial Intelligence Index
2017 Annual Report. https://aiindex.org/2017/

3. Forbus, K.: AI and cognitive science: the past and next 30 years. Top. Cognit. Sci.
2, 345–356 (2010)

4. McCarthy, J., Minsky, M.L., Rochester, N., Shannon, C.E.: A proposal for the Dart-
mouth summer research project on artificial intelligence, 31 August 1955. Queried
on 30 October 2018. https://web.archive.org/web/20080930164306, http://www-
formal.stanford.edu/jmc/history/dartmouth/dartmouth.html

5. Newell, A., Simon, H.: Human Problem Solving. Prentice-Hall, Englewood Cliffs
(1972)

6. Newell, A.: Unified Theories of Cognition. Harvard University Press, Cambridge
(1990)

7. McCullogh, W.S., Pitts, W.H.: A logical calculus of the ideas immanent in nervous
activity. Bull. Math. Biophys. 5, 115–133 (1943)

8. Nilsson, N.: Learning Machines: Foundations of Trainable Pattern-Classifying Sys-
tems. McGraw-Hill, New York (1965). (Reprinted as: Nilsson, N. The Mathematical
Foundations of Learning Machines, Morgan Kaufmann, San Francisco, California,
USA, 1990.)

9. Rumelhart, D.E., McClelland, J.L.: Parallel Distributed Processing: Explorations
in the Microstructure of Cognition–Foundations. The MIT Press, Cambridge
(1987)

10. Rumelhart, D.E., McClelland, J.L.: Parallel Distributed Processing: Explorations
in the Microstructure of Cognition–Psychological and Biological Models, vol. 2.
The MIT Press, Cambridge (1987)

11. Norman, D.A.: Reflections on cognition and parallel distributed processing. In:
Rumelhart, D.E., McClelland, J.L. (eds.) Parallel Distributed Processing, vol. 2,
pp. 531–546. MIT Press, Cambridge (1987)

12. The Human Brain Project, 2013–2023. https://www.humanbrainproject.eu/en/
13. von Eckardt, B.: What is Cognitive Science? The MIT Press, Cambridge (1995).

ISBN 9780262720236
14. Alfred P. Sloan Foundation, Cognitive Science 1978. Report of the State of the

Art Committee to the Advisors of the Alfred P. Sloan Foundation. Alfred P.
Sloan Foundation, October 1978. http://www.cbi.umn.edu/hostedpublications/
pdf/CognitiveScience1978 OCR.pdf

15. Clark, A.: Mindware: An Introduction to the Philosophy of Cognitive Science.
Oxford University Press, New York (2000)

16. Anderson, J.R.: Cognitive Psychology and Its Implications, 2nd edn. W H Free-
man/Times Books/Henry Holt & Co., New York (1985)

17. Furman, M. (ed.): Trends in Neurosciences, vol. 42, no. 1, pp. 1–78. Cell Press,
January 2019

18. Geeraerts, D., Cuyckens, H. (eds.): Introducing Cognitive Linguistics. The Oxford
Handbook of Cognitive Linguistics, Oxford Handbools Online (2010). http://
www.oxfordhandbooks.com/view/10.1093/oxfordhb/9780199738632.001.0001/
oxfordhb-9780199738632-e-1

19. Damasio, A.: The Feeling of What Happens: Body and Emotion in the Making of
Consciousness. Harvest Books, San Diego (2010)

https://doi.org/10.20944/preprints201810.0218.v1
https://aiindex.org/2017/
https://web.archive.org/web/20080930164306
http://www-formal.stanford.edu/jmc/history/dartmouth/dartmouth.html
http://www-formal.stanford.edu/jmc/history/dartmouth/dartmouth.html
https://www.humanbrainproject.eu/en/
http://www.cbi.umn.edu/hostedpublications/pdf/CognitiveScience1978_OCR.pdf
http://www.cbi.umn.edu/hostedpublications/pdf/CognitiveScience1978_OCR.pdf
http://www.oxfordhandbooks.com/view/10.1093/oxfordhb/9780199738632.001.0001/oxfordhb-9780199738632-e-1
http://www.oxfordhandbooks.com/view/10.1093/oxfordhb/9780199738632.001.0001/oxfordhb-9780199738632-e-1
http://www.oxfordhandbooks.com/view/10.1093/oxfordhb/9780199738632.001.0001/oxfordhb-9780199738632-e-1

Where Do HPC and Cognitive Science Meet in Latin America? 55

20. Damasio, A.: Looking for Spinoza: Joy, Sorrow, and the Feeling Brain. Harcourt,
San Diego (2003)

21. Sacks, O.: The Mind’s Eye. Random House, New York (2010)
22. Sacks, O.: The River of Consciousness. Alfred A Knopf, New York (2017)
23. Stone, P., et al.: Artificial Intelligence and Life in 2030. One Hundred Year Study

on Artificial Intelligence: Report of the 2015–2016 Study Panel. Stanford Univer-
sity, Stanford, September 2016. http://ai100.standord.edu/2016-report. Accessed
30 Oct 30 2018

24. Trends in Cognitive Science. ScienceDirect, Elsevier. Queried on 30 October 2018.
https://www.sciencedirect.com/journal/trends-in-cognitive-sciences/issues

25. González, J.C., Ojeda, R.I.: Francisco Varela y el desarrollo de las Ciencias Cog-
nitivas en América Latina. Polis. Revista latinoamericana 15(44), 381–391 (2016)

26. Marmolejo Ramos, F.: A call to arms: time to do cognitive science in Latin America.
Int. J. Psychol. Res. 1(2), 41–52 (2008)

27. European Commission, International Cooperation. https://ec.europa.eu/research/
iscp/index.cfm?pg=latin-americ-carib. Accessed 3 Jan 2019

28. Kolodner, J.: Case-Based Reasoning. Morgan Kaufmann, San Mateo (1993)
29. Mehl, M.: Retrieval in case-based reasoning using preferred subtheories. In:

Brewka, G., Jantke, K.P., Schmitt, P.H. (eds.) NIL 1991. LNCS, vol. 659, pp.
284–297. Springer, Heidelberg (1993). https://doi.org/10.1007/BFb0030399

30. Saboŕıo-Morales, J.C., de la Ossa, A.: Case-based reasoning in parallel environ-
ments. In: Proceedings of the First International Workshop on Soft Comput-
ing Techniques in Cluster and Grid Computing Systems, SCCG 2012, Victoria,
Canada. IEEE Conference Publishing Services (2012)

http://ai100.standord.edu/2016-report
https://www.sciencedirect.com/journal/trends-in-cognitive-sciences/issues
https://ec.europa.eu/research/iscp/index.cfm?pg=latin-americ-carib
https://ec.europa.eu/research/iscp/index.cfm?pg=latin-americ-carib
https://doi.org/10.1007/BFb0030399

Accelerators

A Hybrid Reinforcement Learning
and Cellular Automata Model for Crowd

Simulation on the GPU

Sergio Ruiz1(B) and Benjamı́n Hernández2

1 Tecnológico de Monterrey, Mexico City, Mexico
sergio.ruiz.loza@itesm.mx

2 Oak Ridge National Laboratory, Oak Ridge, TN, USA
hernandezarb@ornl.gov

Abstract. We present a GPU-based hybrid model for crowd simula-
tions. The model uses reinforcement learning to guide groups of pedes-
trians towards a goal while adapting to environmental dynamics, and
a cellular automaton to describe individual pedestrians’ interactions.
In contrast to traditional multi-agent reinforcement learning methods,
our model encodes the learned navigation policy into a navigation map,
which is used by the cellular automaton’s update rule to calculate the
next simulation step. As a result, reinforcement learning is independent
of the number of agents, allowing the simulation of large crowds. Imple-
mentation of this model on the GPU allows interactive simulations of
several hundreds of pedestrians.

Keywords: Reinforcement learning · Crowd simulation ·
Cellular automata · GPU

1 Introduction

Understanding the complexity of the metropolis at large scale has been made
possible through simulations. The transportation community makes use of pedes-
trian simulations to plan evacuation routes and efficient commuting, or for city
risk management and mitigation. In particular, microscopic modeling has taken
on an increasingly important role in research and decision-making processes.
Furthermore, close-to-real-time performance and the ability to model dozens of
operational scenarios is important so that decision makers can choose the best
course of action in a timely fashion.

There is a large body of work dedicated to microscopic modeling of crowds:
rule-based [22], physics-based methods [12], and velocity-based [21]. However, we
observe that pedestrians make a sequential decision process, constrained by—
for example—physical traits, whether to reach their destinations in the least
amount of time, by taking the quickest route, or any other goal which they seek
to reach optimally. Specially, Reinforcement Learning (RL) provides a conve-
nient framework for modeling pedestrian decision-making [8,17,18,29]. But the
c© Springer Nature Switzerland AG 2019
E. Meneses et al. (Eds.): CARLA 2018, CCIS 979, pp. 59–74, 2019.
https://doi.org/10.1007/978-3-030-16205-4_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16205-4_5&domain=pdf
https://doi.org/10.1007/978-3-030-16205-4_5

60 S. Ruiz and B. Hernández

problem with Multi-agent RL methods is that they are computationally expen-
sive [16] and a RL problem needs to be solved for each pedestrian, thus reducing
its application to small groups of agents.

We propose a new method to reduce the computational cost of multi-agent
RL by encoding the learned policy into a navigation map, which in turn is used
to guide the crowd. Local Collision Avoidance (LCA) is achieved by coupling our
RL model with a Cellular Automaton (CA) model, using data structures based
on two-dimensional grids to partition the navigable space: after the RL step, its
resultant policy is refined into a local navigation map, which is the input for the
CA update rule, in order to provide individual separation, control and velocities
of agents toward goals. The contributions of this work are:

Embedding the Learned Policy into a Navigation Map. In multi-agent
RL models for crowd simulations, the set of states grows exponentially according
to the number of episodes and goals [29] or with the number of agents and actions
[11]. To reduce the exponential growth of states with the number of agents and
actions, we propose to encode states, and the learned navigation policy, into a
coarse navigation map. The learned navigation policy is then used in a finer,
local navigation map by the cellular automaton’s update rule to displace agents
while avoiding collisions.

On-Line and Interactive RL Training. Paired with our first contribution,
a GPU (graphics processing unit) implementation of our RL model, reduces the
training to only a few milliseconds which allows interactive steering of large
crowds.

A Scatter and Gather Approach as a CA Update Rule. Scatter and
gather data-parallel primitives allow an efficient implementation of our LCA
approach on the GPU and provide individual pedestrian navigation and behavior
control.

The rest of this paper is organized as follows. In Sect. 2 we present prior work,
relevant to the areas of RL and CA in micro-scale crowd models. Later, in Sect. 3,
a review of the RL-Navigation framework is followed by the description of the
CA-LCA model. In Sect. 4, we present numerical measurements of our imple-
mentation in different scenarios. Finally, in Sect. 5 we present our conclusions
and future work for this research.

2 Related Work

The main approaches to microscopic modeling of crowds1 are: (1) Rule-based,
which defines steering collision-free behaviors: cohesion, separation and align-
ment [22]; (2) Physics-based, which model agents, agents’ behaviors and des-
tinations as attractive or repulsive forces [12]; and (3) Velocity-based, which
calculate a set of velocities that lead to a collision with an obstacle; to move

1 A complete survey on crowd simulation can be found in [28].

A Hybrid RL and CA Model for Crowd Simulation on the GPU 61

on routes without collision, agents choose velocities out of this domain [21].
The main drawback of these techniques, is that all rules, parameters or input
variables, require intensive tuning to model specific pedestrian behaviors [20].
Recently, RL and Markovian models2 have attracted attention in the crowd
simulation community because their formalism makes the specification of such
rules easier, and eliminates the use of finely tuned variables.

2.1 Reinforcement Learning in Crowd Simulation

In general, RL has been applied to control theory, robotics, transportation engi-
neering, logistics and multi-agent systems; a complete survey of multi-agent RL
and its applications can be found in [7]. We summarize its applications to crowd
simulation next.

Torrey [29] describes the challenges of multi-agent RL applied to a simplified
school environment where agents move from one classroom to another, while
staying in corridors to chat with other agents in between. She proposed that the
reward function should be specified by an agent’s internal motivations and found
that the set of states, S, grew exponentially according to the number of episodes
and distance to its goals. S growth was reduced by doing observations at inter-
vals. Martinez-Gil et al. [17,18] proposed a multi-agent RL method to simulate
a group of agents leaving a single-door scenario. They studied the scalability of
their method by transferring the learned value function to larger scenarios with
different numbers of agents. Later, they adopted a distributed memory model by
using the Message Passing Interface [19]. Casadiego and Pelechano [8] proposed
a similar approach, sharing a table of Q-values between different agents. Godoy
et al. [11] proposed an online-RL method to improve the behavior of agents and
reduce the congestion problem in a bottleneck scenario. They also noted that
the state space grew exponentially with the number of agents and actions, which
is computationally and memory demanding; thus, instead of learning a policy
for the complete state-action space, agents learned from the recent history of
action-reward pairs and feedback from the simulation.

Closely related to RL, Banerjee et al. [3] used a Markov Decision Process
(MDP) to achieve adaptable navigation by analyzing navigable spaces. By means
of a pre-calculated layered approach, the authors demonstrated that MDPs are
a viable tool to produce agent paths dynamically. However, the implementa-
tion is limited by the number of dynamically introduced obstacles. Ruiz and
Hernández [24] proposed a single layered MDP to calculate navigation routes
free of collisions and “micro-scenarios” to dynamically adjust these trajectories
in presence of new obstacles or other pedestrians. Later, they proposed two opti-
mization techniques to solve a MDP interactively for crowd navigation (1) reduce
the set of states by using an hexagonal grid and (2) a parallel implementation of
the value iteration algorithm [23] and reported a technique to couple their MDP
solver with an interactive 3D crowd visualization system [25].

2 Deep Reinforcement Learning techniques are out of the scope of this research.

62 S. Ruiz and B. Hernández

2.2 Cellular Automata for Pedestrian Behavior Modeling

CA pedestrian models have been researched vastly by the transportation commu-
nity, and similar to RL and Markovian solutions, as stated by Blue and Adler [5]
“...the attractiveness of using CA is that the interactions of the entities are based
on intuitively understandable behavioral rules”. The idea of using CA for crowd
modeling was inspired by its successful application to vehicular traffic models,
by extending moves in one dimension defined by a car lane to a two dimensional
space. General considerations for CA pedestrian models are:

Navigation space is discretized in cells and each cell should be big enough
to fit a person, commonly a size of 0.4 × 0.4 meters is used.

Cells are marked as occupied if an agent’s position matches that cell or free
otherwise. Interacting range among cells defines “how far” an agent can see.

Agents move according to translation rules, which can be applied in parallel or
sequentially. In this context, parallel means that all the cells are inspected first,
then all the agents are displaced to free cells. Sequentially means that a given
cell is inspected, and then its corresponding agents displaced, before proceeding
with the next cell.

Blue and Adler [4] modeled walkways using multiple lanes allowing single
directional pedestrian flow. Their CA rules were defined by a two-stage par-
allel update supporting lane changing and cell hopping, and later introduced
bi-directional walkways [5] by modeling side-stepping, forward-movement and
conflict-mitigation behaviors. The model included flows in directionally sepa-
rated lanes, interspersed flow, and dynamic multi-lane flow. Weifeng et al. [30]
also studied the bi-directional pedestrian flow, particularly the phase transition
of pedestrian counter flow. Klupfel et al. [15] proposed the use of CA to model
on-board passenger ships evacuations. They considered that agents can choose
between different evacuation routes depending on their sight range, also model-
ing swaying and indecision behaviors. Burstedde et al. [6] introduced the idea of
chemotaxis (floor field) to model individual intelligence and traces left by pedes-
trians. Each trace decayed to restrict the agents’ interaction range. Kirchner
et al. [14] extended this concept to support a probability factor in the diffusion
and decay functions to model different behaviors as regular, panic or herding.
Bandini et al. [2] used the floor field concept in the context of situated cellular
agents, to model the action-at-a-distance behavior.

As mentioned before, CA cells should be small enough to fit a person; sev-
eral researchers have studied how different cell sizes affect pedestrian models.
For example, Kirchner et al. [13] studied the effects of reducing the cell size so
pedestrians could occupy more than one cell. This modification allowed to repre-
sent finer and more accurate time scales, geometrical structures and pedestrian
speeds non-multiple of 0.4 m. They also noted that finer discretizations could
make CA comparable to continuous models. Later, Sarmady et al. [27] proposed
a finer discretization at pedestrian level, i.e. each agent was represented by a

A Hybrid RL and CA Model for Crowd Simulation on the GPU 63

set of 0.05 × 0.05 m. cells being moved by a least-effort algorithm. Finally, Feli-
ciani and Nishinari [10] suggested the use of a different method to discretize the
navigable space to add more CA locations within the traditional grid approach;
these locations were added at the edges and at the corners of each cell, allowing
to simulate the enter-crowd, move-in-crowd and leave-crowd behaviors.

3 Problem Modeling

3.1 Reinforcement Learning for Navigation

Starting from the observation that a pedestrian—while moving through a navi-
gable space—makes sequential decisions to find a path from its current position
to a goal, we model this path by constructing a set of additive rewards using
Reinforcement Learning. For a simulated group of pedestrians or crowd, multi-
ple agents need to learn through RL, posing a computational challenge because
the set of states grows exponentially due to the number of episodes, goals [29],
agents and actions [11]. Moreover, close-to-real-time performance3 is required to
support decision-making processes during the simulation.

An approach to reduce the RL complexity in a multi-agent simulation is
sharing the learned Q-values among different agents [8,17,18]. Our contribution
is to build a navigation map: we use a coarse and discrete representation of
the navigable space, where each cell represents a group of agents’ state, i.e. its
current position within the map, then after the RL process, its resultant policy
as directions to follow, is refined into a local navigation map: an input to the
CA in order to grant individual separation and control for agents. As a result,
our approach keeps the number of states low and is independent of the number
of agents, because only one RL solution is computed based on a navigation
map. In other words, RL provides a navigation solution for pedestrian groups,
while the CA provides individual navigation, control and LCA. Finally a GPU
implementation of this algorithm allows simulations to run at interactive rates.

We use the MDP formalism to model pedestrian navigation as a RL problem.
Based on our proposed solution, we define the MDP tuple M =< S,A, T,R >
as follows.

S (finite set of states) composed of every cell resulting from partitioning the
navigable space.

A (finite set of actions) representing an agent’s available movement direc-
tions, e.g. forward, left, right, and so on.

T (transition model) defined by the probabilities of choosing a given action
from set A.

R (reward function) are cells marked as points of interest (high valued
rewards), navigable space (medium valued rewards) and obstacles (low valued
rewards).

3 Thirty to forty five ms per simulation step.

64 S. Ruiz and B. Hernández

From the previous setup, we calculate optimal navigation directions, the opti-
mal policy (π∗) that achieves maximum reward from all states, using the Value
Iteration algorithm as follows.

π∗
t (s) = argmaxaQt(s, a)

Qt(s, a) = R(s, a) + γ
∑|A|−1

j=0 T a
sjVt−1(j)

Vt(s) = Qt(s, π∗(s))
V0(s) = 0

(1)

Such that Qt(s, a) is the value of performing action a—in this case moving
towards direction a—from cell s; Vt(s) represents the reward value of cell s at
time t; γ ∈ [0, 1] is a future reward discount factor and, T a

sj is the transition,

Fig. 1. Simple scenario
where navigable space
has a penalty of −3,
obstacles a penalty of
−100 and the exit a
reward of 100. The
orange cell represents an
agent’s position. (Color
figure online)

function defined by the probability of an agent moving
to state j from state s by action a. The defined MDP
is fully observable, since the simulation’s initial config-
uration is known and RL is episodic, i.e. it is solved for
a number of iterations when the environment changes,
allowing a gradual adaptation (learning) of the crowd
flow in response to such changes. Then, the episode
stops when π∗ is achieved by convergence, and pedes-
trians can avoid the new obstacle, or walk towards the
new goal through the optimal path.

We explain our RL-Navigation parallelization strat-
egy by example, considering a discretized 3×4 map that
results in twelve states. Its reward function is −3 for
navigable space, −100 for obstacles and 100 for exits
as shown in Fig. 1. For simplicity, our pedestrians can
choose from three actions (1) moving West, W , (2)
moving North, N , and (3) moving East, E; thus, A = {W,N,E}; a reward
discount factor γ = 1; a probability for T a

sj of p = 0.8 when choosing the current
action a and q = 0.1 otherwise, to ensure that the sum of probabilities is 1.
Using Eq. 1, we compute π∗

t (s) after a RL episode for cell a3. Considering π∗
t (s)

and Qt(s, a) from Eq. 1 and replacing s and a terms by a3 and actions from set
A, we have:

π∗
t (a3) = max{Q(a3, E), Q(a3,W), Q(a3, N)} (2)

Qt(a3, E) = R(a3, E) + γ[pR(a3, E) + qR(a3,W) + qR(a3, N)]
Qt(a3,W) = R(a3,W) + γ[qR(a3, E) + pR(a3,W) + qR(a3, N)]
Qt(a3, N) = R(a3, N) + γ[qR(a3, E) + qR(a3,W) + pR(a3, N)]

(3)

Replacing the corresponding variables with their numerical values, the action
that maximizes the reward is E, moving east to reach the exit. From Eqs. 3, note
that:

– For each cell or state, a similar set of equations is to be solved.
– The set of equations can be solved in parallel, if each cell queries rewards

from neighboring cells.

A Hybrid RL and CA Model for Crowd Simulation on the GPU 65

– Probability variables p, q and reward values R(s, a) can be stored in arrays
for each cell.

– Expressions in brackets can be solved by parallel reductions. A second parallel
reduction using conditionals will solve Eq. 2.

3.2 Cellular Automata for Local Collision Avoidance

In this section, we present a cellular automaton for LCA formulation, to be
executed in parallel. We propose to solve the crowd flow and direction by intro-
ducing the learned policy—whether optimal or sub-optimal—as a local direc-
tional guide, granting separation and control for individual agents. We begin
by observing a basic reference RL for Navigation example, in which a group of
agents is to be directed towards a unique goal, while avoiding an obstacle, as
shown in Fig. 2(a). Agents are likely to collide by merely following navigation
paths, considering that each agent moves with unique velocity, risking agent-
to-agent collision and, depending on its starting position within the cell, could
even crash against the obstacle. We propose the use of CA to avoid these colli-
sions. First, a sub-partition of the navigable space is computed, i.e. a partition
of the RL states. Although there could be infinite partitions for the states set,
an area equivalent to 0.4× 0.4 m will serve to avoid pedestrian collisions against
obstacles within the environment (Fig. 2(b)) as mentioned in Sect. 2.2. In this
sub-partition, or Local Navigation Map (LNM), cells will be marked either as
OPENSPACE, OBSTACLE, GOAL or a DIR[d] : 0 < d < 9, d ∈ N—one of
eight directions—(Figure 2(c)).

Fig. 2. TOP: LCA principles. (a) Agents will collide when only following the policy.
(b) Partition for LCA. (c) Local Navigation Map from Π∗ where arrows represent
local goals. BOTTOM: Basic Scatter-Gather algorithm. (d) Local goal assignment.
(e) Scatter step. (f) Gather step. (g) Final effect.

66 S. Ruiz and B. Hernández

Then the CA for LCA is composed of:

A Set of Connected Sites represented by the LNM sub-partition.

State Variables as one of the following: OPENSPACE, OBSTACLE, GOAL
or DIR[d] will determine the ability of agents to move or wait.

An Update Rule in two steps: a stage in which CA cells scatter the agents
inside of them, and a stage in which CA cells gather nearby incoming agents.

The purpose of using scatter and gather operations as an update rule, is to
translate agents toward the nearest CA cell marked as DIR[d], or the Local Goal
(LG) for an agent, defining its translation between CA cells as follows.

1. A starting relative position within the starting CAs cell: S = CAs(x, z) +
(Δx,Δz).

2. A vector to direct the agent and determine it’s exit location: E = LCAe(x, z)+
(Δx,Δz).

3. A weighted parameter considering the agent’s predefined speed, terrain type
at the current cell, as well as the elapsed time to generate a value 0 ≤ δ ≤ 1,
δ ∈ R that is incremented by an amount λ at each simulation step, assigning
a unique speed to each agent within the simulated crowd.

4. Linear interpolation computes an agent’s position as P = S + δ(E − S).

As an example, consider the bottom part of Fig. 2, where agent A is at CA
cell (0, 1) and agent B is at CA cell (1, 1); agent A is 25% faster than agent
B. The following algorithm performs the Scatter step, then the Gather step, for
each CA cell.

1. Scatter.
– For each agent at this CA cell, if its parameter is δ = 0, then assign a LG

as follows.
• If this CA cell is not a LG, then assign the nearest LG within this

RL cell as shown in Fig. 2(d).
• If this CA cell is a LG, then assign the LG as the neighboring cell

pointed to by Π∗, i.e. DIR[d] in the LNM.
– For each agent at this CA cell, if its parameter is 0 < δ < 1, then incre-

ment its parameter so that δ = δ + λ. Note that in Fig. 2(e), agent A will
reach the end of its path first.

2. Gather. For agents moving towards this cell (i.e. query neighboring cells), if
their parameter is δ ≥ 1, then reset their parameter to δ = 0, and also set
the agent’s current cell to this CA cell as shown in Fig. 2(f).

Iteration of this algorithm, at each simulation frame, generates the cyclic
phenomena shown in Fig. 2(g). Notice that translation between RL cells is guar-
anteed because the LNM preserves information from Π∗ at each CA cell marked
DIR[d].

A Hybrid RL and CA Model for Crowd Simulation on the GPU 67

3.3 Improved Cellular Automata for Local Collision Avoidance

A problem with the previous Scatter-Gather algorithm is that, as the number
of agents increases, a race condition will arise for agents competing to occupy
the same CA cell causing an unpredictable system behavior. A second problem
is the inability of faster agents to steer when they encounter a slower agent
in their path, forming a single-lane queue even when open space is available
around to pass (queuing problem). Furthermore, this results in the inability of
agents to disperse around a congested area, waiting to occupy their local goal
(waiting problem). We solve these issues by applying general semaphores [9]
and a steering system to the basic Scatter-Gather algorithm, respectively, while
keeping the parallel implementation.

Fig. 3. Race condition, queuing and waiting solutions. (a) Flag implementation.
(b) Distance increment measure step, where λA > λB . (c) AgentB gives way to AgentA.
(d) Similar directions: DIR[4] and DIR[6] are similar to DIR[5] for AgentA.

Race condition solution. In order to avoid the race condition problem, a boolean
flag is implemented in the agent model, signaling the agent to stop moving when
the flag’s value is false. The following additional steps are scheduled in the
cellular automaton, just before the scatter-gather step is performed.

1. For all agents incoming to destination CA cell (i.e. query neighboring cells),
set all flags to false (Fig. 3(a)).

2. If destination CA cell is occupied and 0 < δi < 1, do nothing further.
3. For all agents incoming to destination CA cell, determine the agent with the

greatest parameter increment λ (Fig. 3(b)).
4. Set the flag to true only for the agent with the greatest parameter increment

λ (Fig. 3(c)).

Finally, we modify the Scatter-Gather algorithm to only scatter agents if their
flag is set to true.

Queue and Waiting Solution. An agent may only move along adjacent cells,
so for a given CA cell, only the eight neighboring cells are to be considered as
alternatives when the next cell is occupied. We determine the optimal alternative
with the aid of the following example: we suppose that AgentA is trying to move
to the adjacent cell in direction DIR[5], but that cell is currently occupied, as

68 S. Ruiz and B. Hernández

shown in Fig. 3(d). Similar directions to DIR[5]: DIR[4] and DIR[6] are the best
alternatives, as they point to cells adjacent to the original target. In general, for
an N -directional set, DIR[(i + 1)%N] and DIR[(i + N − 1)%N] are the best
alternatives to DIR[i]. Of the cells pointed to by these alternative directions,
the closest to the LG will have priority. Now we can modify the Scatter-Gather
algorithm as follows.

– Agent instances will maintain the index of the next CA cell in their path.
– Agent instances will maintain the index of the best CA cell alternatives to

the next CA cell.
– If the next CA cell is occupied and the movement flag is set to false after

the Race condition solution:
• Check if the best alternative CA cell closest to the LG is occupied, set

the next CA cell index to this alternative if it is not occupied.
• If the best alternative CA cell closest to the LG is occupied, then check if

the best alternative CA cell farthest to the LG is occupied, set the next
CA cell index to this alternative if it is not occupied.

• If the next CA cell index has changed:
* If this CA cell is not a LG, then assign the nearest LG within this

RL cell.
* If this CA cell is a LG, then assign the LG as the neighboring cell

pointed to by π∗, i.e. DIR[d].
• If both of the best alternative cells are occupied, do nothing further, and

the agent is forced to wait, as otherwise it would steer away from its goal.

3.4 Coupling Navigation and Local Collision Avoidance

In the proposed model, the RL for Navigation and CA for LCA methods are
linked by the LNM, since it is on this finer partition that the cellular automaton
operates to coordinate the agents’ movement. Once the Navigation policy—
whether π∗ or a sub-optimal policy—is activated, the LNM is computed by a
parallel version of Algorithm 1. The CA for LCA method may be coupled to the
RL for Navigation method because:

– Its set of connected sites is a partition of the RL states set, which in turn is
a partition of the navigable space.

– The LNM preserves policy information and further, uses it as the input
required to direct and control agents.

– The improved CA for LCA algorithm integrates a solution to the Navigation
and Local Collision Avoidance problems.

A Hybrid RL and CA Model for Crowd Simulation on the GPU 69

input : RL Policy Π POLICY of size mdpWidth × mdpDepth
output: Local Navigation Map LNM of size lcaWidth × lcaDepth

1 if lcaWidth%mdpWidth == 0 then
2 lcaWidthRatio ← lcaWidth / mdpWidth;
3 lcaDepthRatio ← lcaDepth / mdpDepth;
4 lcaRatio ← lcaWidthRatio × lcaDepthRatio;

5 for i ← 0 to lcaWidth × lcaDepth do
6 LNM [i] ← OPENSPACE;
7 end

8 for lx ← 0 to lcaWidth do
9 for lz ← 0 to lcaDepth do

10 mx ← lx / lcaWidthRatio;
11 mz ← lz / lcaDepthRatio;
12 mi ← mz × mdpWidth + mx;
13 if POLICY [mi] == OBSTACLE ||GOAL then
14 li ← lz × lcaWidth + lx;
15 LNM [li] ← POLICY [mi];

16 end

17 end

18 end

19 foreach rlCell C do // Π placement heuristic
20 foreach lcaCell L in perimeter of C do
21 direction ← POLICY [C];
22 if DoesNotPointToObstacle(direction,L) then
23 if EdgeMatchesPolicyDir(direction,L) then
24 LNM [L] ← direction;
25 end

26 end

27 end

28 end

29 end

Algorithm 1. Local Navigation Map from its RL policy.

4 Implementation Details and Results

Our algorithm uses data parallel primitives (reductions, reductions using condi-
tionals, transformations, gather and scatter) exposed in Thrust [1]. To achieve
maximum performance between simulation and visualization, we tightly coupled
the RL for Navigation and the CA for LCA stages with a crowd visualization
engine implemented in C/C++ and OpenGL [26]. At run-time, a value itera-
tion step is interleaved with frame rendering, with the objective of keeping an
interactive simulation, as shown in Fig. 4. At a configurable iteration interval,
the sub-optimal policy is downloaded and updated on the host, simulating the
crowd’s learning process adjustment to a change in the scenario, as new obstacles
and goals are added or removed. Finally, the optimal policy is downloaded and
updated on the host [25].

We designed two experiments to report the performance of our implementa-
tion. The first experiment was run in a 20-core Xeon CPU E5-2687W at 3.10
GHz, and a NVIDIA Pascal Titan X GPU using CUDA 8.0 and Thrust 1.8. It
consisted in measuring the GPU performance of the RL for Navigation algorithm
on different scenario sizes using as a baseline a parallel CPU implementation
using 40 threads4. All scenarios in both experiments were specified similarly to
4 Multi-threading was exposed by Thrust’s TBB backend.

70 S. Ruiz and B. Hernández

Fig. 4. Segmented GPU-based Value Iteration, where each process is interleaved with
frame rendering. Configurable parameter K updates the current policy at a preset
interval, integrating the learning process to the simulation.

Fig. 1 in a CSV file. For this experiment we started with a 16×16 cells area with
no obstacles and a goal at the center. Then, we replicated this area to produce
larger scenarios.

Figure 5 shows the performance of our algorithm (left) and GPU speedup
(right). In small scenarios the parallel CPU version performed better; however,
beyond 128×128 cells, the GPU outperformed the CPU due to its bulk processing
capabilities. Also note GPU time for scenarios of 128×128 cells and smaller does
not incur in a significant performance loss.

Fig. 5. Performance results and speed-up. Left parallel CPU vs. GPU performance,
smaller values are better. Right GPU Speed-up.

The second experiment consisted in measuring the GPU performance of our
fully integrated system including the hybrid RL for Navigation - CA for LCA
model and 3D crowd rendering on four typical scenarios in crowd simulation:
bottleneck, route preference, shortest path and bi-directional walkways and, in
a more complex scenario with a large crowd, a campus scenario, modeled after
actual facilities. The tests for these scenarios were run in an Intel Core i7-6700HQ
@ 2.60GHz CPU, CUDA 8.0, Thrust 1.8 on a laptop PC connected to an exter-
nal GPU (eGPU) graphics accelerator, hosting a NVIDIA GeForce GTX 1060
3GB GPU.

Table 1 shows scenario characteristics in three sections. The first one shows
details of the RL for Navigation (Sect. 3.1) such as map size, number of iterations

A Hybrid RL and CA Model for Crowd Simulation on the GPU 71

to find an optimal policy after adding a new obstacle and total time to find an
optimal policy. The second part shows details of the CA for LCA (Sect. 3.2
and Sect. 3.3), such as local navigation map sizes, and different times to solve
collisions, racing conditions and, scatter and gather operations. The third section
shows the total update time and time per frame of our hybrid model. Reported
timings show that interactive simulation is feasible with our approach because
the update cost for a change in the presented scenarios ranges from 1.89 ms
(Bi-directional) to 7.88 ms (Campus) per frame. Visualization results for these
experiments are available at https://youtu.be/dkx87F10x6k.

Table 1. Model execution results for the test scenarios.

Bottleneck Route preference Shortest path Bi-directional Campus

Agents 256 256 256 256 4,096

RL layers 1 1 1 2 1

RL Width×Depth 20× 20 32× 32 64× 64 16× 16 200× 200

RL iterations 29 61 186 162 207

RL avg. iteration (ms) 1.758 1.88 2.287 0.457 3.511

Total RL (ms) 78 156 562 110 1,218

CA cells per RL Cell 16 8 4 10 2

LNM Width×Depth 320× 320 256× 256 256× 256 160× 160 400× 400

LNM update interval 10 10 10 10 10

CA Racing condition (ms) 0.256 0.236 0.186 0.085 0.353

CA Scatter-Gather (ms) 1.939 2.114 1.865 1.351 4.023

Total CA (ms) 2.195 2.35 2.051 1.436 4.376

Total update time (ms) 80.195 158.35 564.051 111.436 1,222.376

Time per frame (ms) 3.953 4.23 4.338 1.89 7.887

5 Conclusions and Future Work

We presented a model for crowd Navigation and Local Collision Avoidance in
dynamic environments. In contrast to current multi-agent RL for Navigation
algorithms, our approach can handle large crowds because (1) we encode states
and the learned policy into a finer local navigation map that our algorithm uses to
steer pedestrians, and (2) GPU implementation of the algorithms allows on-line
and near-to-real-time calculation of Navigation policies and CA update rules.

Our model supports different behaviors through MDP layers, as shown in the
bi-directional walkway scenario, where different groups moved towards different
objectives. On the other hand, from the CA perspective, our approach could
resemble the floor field approach; in this matter we are offering an alternative
to [2,6,14] by introducing MDPs to model a similar phenomena to that which
diffusion and decay functions produce in the floor field method. In particular,
different reward values could model the diffusion effect and the discount value, γ,
could be used to represent decay functions. Further analysis will help to illustrate
these relationships, in addition to the effect produced by the inclusion of goals
with different priorities.

https://youtu.be/dkx87F10x6k

72 S. Ruiz and B. Hernández

In relation to [23], where a fully observable MDP was solved before the resul-
tant policy could be used to steer crowds, in this paper we expose an online
reinforcement learning approach by using partial solutions from the MDP, that
allow the setting of dynamic goals and obstacles to which the crowd adapts while
the simulation is running.

The framework presented in this paper can be extended to further applica-
tions, for example, to Geographic Information Systems, since the spatial anal-
ysis and mapping of evacuations usually requires the computation of shortest
or safest routes, or even preferred routes according to groups of pedestrians. A
similar application can be found in daily commuter activity analysis. However,
practical applications of our model require calibration and validation, that are
left as future work.

Acknowledgements. This research used resources of the Oak Ridge Leadership Com-
puting Facility, which is a DOE Office of Science User Facility supported under Con-
tract DE-AC05-00OR22725. We thank NVIDIA for the donation of the Titan X GPU
used in this research. Sergio Ruiz would like to thank the Tecnologico de Monterrey
Computer Department for its support.

References

1. NVIDIA Thrust. https://thrust.github.io/. Accessed 14 May 2018
2. Bandini, S., Mauri, G., Vizzari, G.: Supporting action-at-a-distance in situated

cellular agents. Fundamenta Informaticae 69(3), 251–271 (2006)
3. Banerjee, B., Abukmail, A., Kraemer, L.: Advancing the layered approach to agent-

based crowd simulation. In: Proceedings of the 22nd ACM/IEEE/SCS Workshop
on the Principles of Advanced and Distributed Simulation (PADS), Rome, Italy,
pp. 185–192 (2008)

4. Blue, V., Adler, J.: Emergent fundamental pedestrian flows from cellular automata
microsimulation. Transp. Res. Rec. J. Transp. Res. Board 1644(4), 29–36 (1998)

5. Blue, V.J., Adler, J.L.: Cellular automata microsimulation for modeling bi-
directional pedestrian walkways. Transp. Res. Part B Methodol. 35(3), 293–312
(2001)

6. Burstedde, C., Klauck, K., Schadschneider, A., Zittartz, J.: Simulation of pedes-
trian dynamics using a two-dimensional cellular automaton. Phys. A Stat. Mech.
Appl. 295(3), 507–525 (2001)

7. Buşoniu, L., Babuška, R., De Schutter, B.: A comprehensive survey of multi-agent
reinforcement learning. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 38(2),
156–172 (2008)

8. Casadiego, L., Pelechano, N.: From one to many: simulating groups of agents with
reinforcement learning controllers. In: Brinkman, W.-P., Broekens, J., Heylen, D.
(eds.) IVA 2015. LNCS (LNAI), vol. 9238, pp. 119–123. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-21996-7 12

9. Dijkstra, E.W.: Cooperating sequential processes. In: Hansen, P.B. (ed.) The Origin
of Concurrent Programming, pp. 65–138. Springer, New York (2002). https://doi.
org/10.1007/978-1-4757-3472-0 2

https://thrust.github.io/
https://doi.org/10.1007/978-3-319-21996-7_12
https://doi.org/10.1007/978-1-4757-3472-0_2
https://doi.org/10.1007/978-1-4757-3472-0_2

A Hybrid RL and CA Model for Crowd Simulation on the GPU 73

10. Feliciani, C., Nishinari, K.: An enhanced cellular automata sub-mesh model to
study high-density pedestrian crowds. In: El Yacoubi, S., W ↪as, J., Bandini, S.
(eds.) ACRI 2016. LNCS, vol. 9863, pp. 227–237. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-44365-2 23

11. Godoy, J., Karamouzas, I., Guy, S.J., Gini, M.: Online learning for multi-agent
local navigation. In: The AAMAS-2013 Workshop on Cognitive Agents for Virtual
Environments, Saint Paul, Minnesota, USA (2013)

12. Helbing, D., Molnár, P.: Social force model for pedestrian dynamics. Phys. Rev. E
51, 4282–4286 (1995)

13. Kirchner, A., Klüpfel, H., Nishinari, K., Schadschneider, A., Schreckenberg, M.:
Discretization effects and the influence of walking speed in cellular automata mod-
els for pedestrian dynamics. J. Stat. Mech. Theor. Exp. 2004(10), P10011 (2004)

14. Kirchner, A., Schadschneider, A.: Simulation of evacuation processes using a
bionics-inspired cellular automaton model for pedestrian dynamics. Phys. A Stat.
Mech. Appl. 312(1), 260–276 (2002)

15. Klüpfel, H., Meyer-König, T., Wahle, J., Schreckenberg, M.: Microscopic simula-
tion of evacuation processes on passenger ships. In: Bandini, S., Worsch, T. (eds.)
Theory and practical issues on cellular automata, pp. 63–71. Springer, London
(2001). https://doi.org/10.1007/978-1-4471-0709-5 8

16. Koenig, S., Simmons, R.G.: Complexity analysis of real-time reinforcement learn-
ing applied to finding shortest paths in deterministic domains. Carnegie Mellon
University, Pittsburgh, PA, USA, Technical report (1992)

17. Martinez-Gil, F., Barber, F., Lozano, M., Grimaldo, F., Fernández, F.: A reinforce-
ment learning approach for multiagent navigation. In: Proceedings of the Inter-
national Conference on Agents and Artificial Intelligence, ICAART 2010, Artifi-
cial Intelligence, vol. 1, pp. 607–610. SciTePress (2010). https://doi.org/10.5220/
0002727906070610. ISBN 978-989-674-021-4

18. Martinez-Gil, F., Lozano, M., Fernández, F.: Multi-agent reinforcement learn-
ing for simulating pedestrian navigation. In: Vrancx, P., Knudson, M., Grześ, M.
(eds.) ALA 2011. LNCS (LNAI), vol. 7113, pp. 54–69. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-28499-1 4

19. Martinez-Gil, F., Lozano, M., Fernández, F.: MARL-Ped: a multi-agent reinforce-
ment learning based framework to simulate pedestrian groups. Simul. Model. Pract.
Theor. 47(Complete), 259–275 (2014)

20. Moussäıd, M., Helbing, D., Theraulaz, G.: How simple rules determine pedestrian
behavior and crowd disasters. Proc. Nat. Acad. Sci. 108(17), 6884–6888 (2011)

21. Paris, S., Pettre, J., Donikian, S.: Pedestrian Reactive Navigation for Crowd Sim-
ulation: a Predictive Approach. Computer Graphics Forum (2007)

22. Reynolds, C.W.: Flocks, herds and schools: a distributed behavioral model. SIG-
GRAPH Comput. Graph. 21(4), 25–34 (1987)

23. Ruiz, S., Hernández, B.: A parallel solver for Markov decision process in crowd
simulations. In: 2015 Fourteenth Mexican International Conference on Artificial
Intelligence (MICAI), pp. 107–116 (2015)

24. Ruiz, S., Hernández, B.: Procesos de decisión de Markov y microescenarios para
navegación y evasión de colisiones para multitudes. Res. Comput. Sci. 74, 103–116
(2014)

25. Ruiz, S., Hernández, B.: Real time markov decision processes for crowd simulation.
In: Engel, W. (ed.) GPU Zen, pp. 323–341. Black Cat Publishing (2017)

26. Ruiz, S., Hernández, B., Alvarado, A., Rudomı́n, I.: Reducing memory require-
ments for diverse animated crowds. In: Proceedings of Motion on Games, MIG
2013, pp. 55:77–55:86. ACM, New York (2013)

https://doi.org/10.1007/978-3-319-44365-2_23
https://doi.org/10.1007/978-3-319-44365-2_23
https://doi.org/10.1007/978-1-4471-0709-5_8
https://doi.org/10.5220/0002727906070610
https://doi.org/10.5220/0002727906070610
https://doi.org/10.1007/978-3-642-28499-1_4

74 S. Ruiz and B. Hernández

27. Sarmady, S., Haron, F., Talib, A.Z.: Simulating crowd movements using fine grid
cellular automata. In: 12th International Conference On Computer Modelling and
Simulation (UKSim 2010), pp. 428–433. IEEE (2010)

28. Thalmann, D., Musse, S.R.: Crowd Simulation. Springer, London (2013). https://
doi.org/10.1007/978-1-84628-825-8

29. Torrey, L.: Crowd simulation via multi-agent reinforcement learning. In: Proceed-
ings of the Sixth AAAI Conference on Artificial Intelligence and Interactive Digital
Entertainment. The AAAI Press (2010)

30. Weifeng, F., Lizhong, Y., Weicheng, F.: Simulation of bi-direction pedestrian move-
ment using a cellular automata model. Phys. A Stat. Mech. Appl. 321(3), 633–640
(2003)

https://doi.org/10.1007/978-1-84628-825-8
https://doi.org/10.1007/978-1-84628-825-8

In-situ Visualization of the Propagation
of the Electric Potential in a Human

Atrial Model Using GPU

John H. Osorio1(B), Andres P. Castano3, Oscar Henao2, and Juan Hincapie1,2

1 Universidad Tecnológica de Pereira, 3-003 Office, Pereira, Risaralda, Colombia
john@sirius.utp.edu.co

2 Universidad Tecnológica de Pereira, Pereira, Risaralda, Colombia
3 Universidad de Caldas, Manizales, Caldas, Colombia

Abstract. Computational heart-tissue models envelope the solution of
non-linear partial and ordinary differential equations. After applying cer-
tain discretization methods (finite difference, finite elements) to them for
its solution, result in a set of operations between matrices in the order of
millions. The outcome of this are programs with high execution times.

The current work simulates a human atrium tissue using the Courte-
manche electrical model [1]. The cell pairing is made using the finite dif-
ference method and its computational implementation was made using
the Armadillo C++ library [2], for the CPU version and the acceleration
was made through the CUDA library [3] on a nVidia Tesla K40 card.

Additionally the visualization process was made using Paraview-
Catalyst [4], two computing nodes permits that the execution process
of the numerical method runs on a node while the other node makes the
visualization simultaneously.

A novel process to make atrium human visualizations was imple-
mented, a 200X acceleration was achieved using CUDA and Arrayfire [5].

Keywords: CUDA · Massively parallel computing · Paraview ·
In-situ visualization · Courtemanche atrial model

1 Introduction

From 2007 to the present days there has been a significative amount of research
in the field of cardiac simulation, with a growing interest in its implementa-
tion using heterogeneous systems. The great impact of computational science
using GPUs, has given life to a field of great interest in terms of acceleration of
algorithms for understanding the behavior of the heart.

The complexity of systems of differential equations involving the solution of
the electric model of the heart has led to the emergence of various efforts to reduce
the computational burden that these problems contain. In 2008, Orovio [6] pre-
sented a ventricular model known as Ventricular Minimal through which it is

c© Springer Nature Switzerland AG 2019
E. Meneses et al. (Eds.): CARLA 2018, CCIS 979, pp. 75–89, 2019.
https://doi.org/10.1007/978-3-030-16205-4_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16205-4_6&domain=pdf
https://doi.org/10.1007/978-3-030-16205-4_6

76 J. H. Osorio et al.

intended to model the ventricular action potential using a total of 12 differen-
tial equations. In the same line there are several numerical methods attempting
to reduce the computational complexity of accelerating simulations. Even as early
as in 1978, Larsen and Rush launched a numerical method for addressing the prob-
lem as shown in [7] and in 2009 Sundnes et al. built an ex-tension of the second
order of the Rush and Larsen method to solve the dynamic equations of the mem-
brane as shown in [8] and also as mentioned by Perego and Veneziani in [9]. These
methods generally work provided that a set of conditions are met regarding the
updating of variables, and dynamic modification of the passage of time and of the
spatial grid made.

The first work that simulates spiral waves using a cardiac model based on tissue
microstructure and a complex model of myocyte was presented in 2012. Running
on graphics processing units (GPU) according [10], this work is executed on a
cluster of eight nodes, each with two GPUs and simulating 1 cm2 of cardiac tissue
for a period of 10 ms. The time taken by the simulation was 1302 s. During the
same year, Nimmagadda et al. established in their article [11] a simulation of a
mesh of 256 × 256 × 256 cells for 350 ms by using the model of Ten Tusscher [12]
on a cluster with a total of four GPU, computing in a time of 664 s.

During 2013, Marcotte et al. [13] posed an implementation of Orovio’s model
[6], in which it is established the simulation of ventricle in 2D using OpenCL.
In 2014, Garcia-Molla et al. [14] built an implementation of the Courtemanche
model with a total of 163 000 cells using an adaptive time step size for which a
300ms simulation takes around 53.6 s to complete.

In 2015, Xia et al. [15] proposed the 3D simulation model of sheep atrium
using Tesla K40 GPU systems. In this case an acceleration 200X was reported.
In the same year, Chunxi [16] implemented a cellular model of atrium with a
total of 500 cells on an nVidia GTX550i GPU and reported a run-time of 20 s.

From the viewpoint of visualization processes, in 2009 Reumann et al. [17]
suggest the realization of a visualization process in supercomputing systems
to show the ability to leverage all nodes in the system to help in the process
of generating images from a model (rendering). They created a tool known as
SPVN (Scalable Parallel Visualization Networking).

In 2010, Mazzeo et al. [18] created an algorithm to make In-situ ray tracing
to make blood flow simulations. They used MPI to make the parallelization, no
GPU was used to make the computation. In the same year, Kanthasamy shows
in his Master’s thesis [19] an offline parallel visualization approach of a dataset
obtained from a cardiac simulation process. In 2011, Rivi et al. [20], show in their
review article two in-situ visualization tools. One was shown through a plugin
using Paraview in the field of astrophysics and the other using the Visit tool for
a brain simulation.

Moreland et al. started a new trend in visualization processes in 2015 and 2016
[21,22], taking advantage of the fact that the simulation processes are performed
in fully Heterogeneous HPC systems and largely using co-processors, thus show-
ing an approach that attempts to make the visualization taking advantage of the
GPUs on which, in some cases, the simulation processing is also performed.

In-situ Visualization of the Propagation of the Electric Potential 77

For this work the Courtemanche human atrial cell model was implemented to
simulate propagation on a 2D-structured mesh representing the atrial tissue. A
165×165 cell mesh was simulated on two compute nodes. The calculation process
is performed in one of them, the visualization process is performed exclusively in
the other through Paraview-Catalyst. Paraview-Catalyst [23] was used because
it fits correctly with the needs of the implementation. Catalyst is an In-situ use
case library, with an adaptable application programming interface (API), that
orchestrates the delicate alliance between simulation and analysis and/or visual-
ization tasks. It brings the renown, scaling capabilities of VTK and Paraview [24]
to bear on the In-situ use case. In this case C++ was used to make the analysis
tasks, and Python scripts to create the final structure of the visualization.

The calculation node uses CUDA to make the implementation process of the
atrial simulation model. A driver in C++ is built to make the connection process
with the visualization node.

There is a clear trend to use heterogeneous computer systems in order to
reduce the runtimes. The simulations have started to become useful in the clinic
field, where they can be used testing new drugs to help the treatment of car-
diopathies or in assisted surgery processes to decrease the number of deaths
attributed to cardiovascular disease, which numbers amount to 17.5 million a
year [25].

2 Methods

The cell membrane is represented using the Hodgkin-Huxley formalism [26] as a
capacitor connected in parallel with variable resistors representing ion channels,
and voltage sources representing the resting potential of each ion. Diffusion in
the membrane potential is modeled in this parallel circuit using the conserva-
tion of charge in the circuit described in the Eq. 1. In the model of human atrial
myocytes published by Courtemanche et al. [1] ion fluxes of sodium are repre-
sented in the upper left, the potassium fluxes in the upper right and all calcium
exchange at the bottom, including ion pumps and exchangers as shown in Fig. 1.

Ion flux and membrane stimulation are intrinsic exchange events between
intra and extracellular media and are described by Eq. 2. A continuity equation
is applied to the potential flow across a group of cells in a fiber or a modeled
tissue. This equation is presented as Eq. 3, where the first term describes the
speed of the potential. The other two terms on the left side of the equation
describe the diffusion potential in all the cells to be modeled. The right side of
the equation describes the internal and external current sources (Iion and Ist)
respectively. A monodomain formulation adequately represents propagation in
tissue and it is indicated by the following equation:

∂Vm

∂t
=

−(
Iion + Ist

)

Cm
(1)

78 J. H. Osorio et al.

Fig. 1. CRN cellular model

where Vm represents the potential in the intracellular space, δt represents the
derivative with respect to time, Cm is the transmembrane capacitance, Ist is the
stimuli current and Iion corresponds to the set of currents describing the ionic
state of the cells in the tissue as a function of time and the ionic concentrations.
An extracellular space with infinite resistance is assumed.

Iion = INa + IK1 + Ito + IKur

+ IKr + IKs + ICa,L + Ip,Ca

+ INa,K + INaCa + Ib,Na + Ib,Ca

(2)

∂V

∂t
− Dx

∂2V

∂x2
− Dy

∂2V

∂y2
= −Jion

C
(3)

Notably the algorithm built into the CPU makes use of parallelism. The
model was executed for different sizes of tissue always simulating a BCL =
600 ms. The process of result visualization was constructed through the Paraview
tool [4,24]. The implemented idea allows the algorithm to run on a computer
system while the rendering process is performed in another, ensuring a shorter
simulation time and that graphics can be displayed in a better quality.

3 Computational Implementation in C

The finite difference method is used to solve the system of differential equations
describing the propagation of action potential in a fiber or tissue Eq. 3.

An algorithm in C++ was built, the Armadillo library [2] was used for calcu-
lations of the solution of the system equations in the AX = B form. This library
was compiled so all cores of the computing system where it is executed were
used. In this case, and as it can be seen in Table 1, the solver of the Armadillo
library runs using eight cores in total. This library is built on other linear algebra
libraries such as OpenBLAS and SuperLU from which it inherits its robustness
and reliability.

The solution by finite differences as mentioned above involves the solution
of a system of equations Ax = b. Equations 4 and 5 show the matrix schemes of

In-situ Visualization of the Propagation of the Electric Potential 79

Table 1. Characteristics of equipment used

Attribute Value

Number of processors 4

Number of cores per processor 2

RAM 32 GB

SSD Disk 250 GB

GPU 1 GTX980

GPU 2 K40c

each component of the equation mentioned. This system of equations is dispersed
and of the order of 700 million elements for cardiac tissue of only 165×165 cells.
Vector B is constituted by known values of action potential in previous time
steps.

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 · · · 0 0 0 0 0 0 0 0 · · · 0 0
0 1 · · · 0 0 0 0 0 0 0 0 · · · 0 0
...

...
0 0 −Sy · · · −Sx (1 + 2Sx + 2Sy) −Sx · · · −Sy 0 0 0 0
0 0 0 −Sy · · · −Sx (1 + 2Sx + 2Sy) −Sx · · · −Sy 0 0 0
...

...
...

...
0 0 · · · 0 0 0 0 0 0 0 0 · · · 1 0
0 0 · · · 0 0 0 0 0 0 0 0 · · · 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(4)

X =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

V n+1
1,1

V n+1
1,2
...

V n+1
i,j

V n+1
i,j+1
...

V n+1
c,b−1

V n+1
c,b

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(5)

4 Implementation Using GPU (Graphic Processing
Units)

The implementation of the Courtemanche Model [1] on GPU uses C++, CUDA
[27] and Arrayfire [28]. The computing power of the GPU to accelerate the
version built on CPU is exploited.

The implementation made in CUDA was built from the version in C++ which
uses Armadillo. Normally, such differential equations system-solving algorithms

80 J. H. Osorio et al.

have a loop on which the model evolves temporarily. That cycle was not paral-
lelized, however, the spatial solution of the problem is highly parallelizable. In
this case the following kernel functions were constructed:

– One kernel function in CUDA which takes advantage of all processors present
in the GPU is implemented. This feature called d update B allows the calcu-
lation of the result vector B at each time step.

– A copy voltage function (d copy voltage) was implemented to update the
values of voltage on each of the cells present in the simulation grid. This
update is performed in parallel.

– Data initialization functions init d prevv and init d B were constructed to
assign initial values to voltages to the solutions of each of the simulated cells.

– A kernel that performs initialization of the matrix was constructed so that
all GPU cores were used in this process.

Object Oriented programming is not common on the GPU context. This con-
cept is currently being used in massively parallel architectures of this type, which
allows to extend the power of languages like C++ to supercomputing environ-
ments. In this way cell-type objects are instantiated on the GPU. All methods
that allow updating the different currents in the Courtemanche model [1] were
built as well. To achieve this, a set of kernel functions were built in a different
header file with their respective source code cell.cu and cell.cuh. This implemen-
tation is an original proposal of the project developed. Whole implementation
can be found in [29].

The size of the matrix A is huge, e.g., for a simulation of 165 × 165 cells
this matrix is of 27225 ∗ 27225. Hence, much of the processing time is consumed
solving this system. It is then proposed for this process to be solved by an
existing solver, which can facilitate the calculation and also take advantage of
the computing capacity present in the GPU. ArrayFire [28] was used for this
project.

Additionally the algorithm makes calls to the solution of the system of equa-
tions at each time step. A LU factorization was made on the matrix A. The
work will be developed with this factorization within the time evolution of the
solution. A decrease in the computational complexity of the solution is guaran-
teed in the ArrayFire solver, since the LU factorization is performed only once
and then continues working with this decomposition in the rest of the execution
of the algorithm, see Fig. 2.

5 In-situ Visualization Architecture

Below can be seen the conceptual design of the architecture used for the visual-
ization process at runtime.

Figure 3 shows the two compute nodes, one of which has a Tesla K40C
card that is used exclusively for the calculation process, and another node hav-
ing a Titan X card which is used in the rendering process and visualization
of data. Both nodes must have Paraview-Catalyst installed, which allows the

In-situ Visualization of the Propagation of the Electric Potential 81

Fig. 2. Flow Chart of the Implementation. As you can see at the beginning the variables
initialization are made, in this case the construction of the A matrix. After this is
necessary to set the id of the GPU, in this case the Tesla K40 identificator. The LU
factorization of A is made to reduce computational complexity. Then inside the loop
each cell is updated and the time of simulation advance for each time step.

82 J. H. Osorio et al.

Fig. 3. Architecture Visualization. The diagram shows computing Node 1 configured to
launch CUDA code to make the calculation. ArrayFire helps in this task, Python creates
the structure of the visualization and Paraview-Catalyst through C++ implements the
driver to process the images. Source: The author

In-situ visualization process. It is worth to highlight the use of Python, since
Paraview-Catalyst allows to invoke a communication script and the creation of
VTK (Visualization ToolKit) objects, which then will be visualized on the node
chosen for this purpose [30].

To make the run time visualization is necessary to create a driver application
in C++ using Paraview-Catalyst. This code is used to take all the data generated
by the CUDA implementation and prepare it to create the VTK objects through
Paraview. Three phases are created:

– Initialize. This step is made to tell Paraview that a process of visualization
is going to start. The assignation of the Python Script to create the render
scene is made in this step too.

– Coprocess. In this case the data that is going to be visualized is packaged in
VTK structures.

– Finalize. The memory used to create the objects is released in this final step.

The connection architecture is client-server. In this case the server node is
where the calculation process is made and the client node is the computer where
the visualization process is done. The connection scheme is simple once the
whole program has been developed. All that should be done on the client is to
run Paraview with Catalyst support and indicate that you are connecting to a
data source that would be the calculation node. Meanwhile the Python script
defines the customer or set of customers that will perform the rendering process
through the Paraview tool. The code can be verified in [29].

6 Results

Below will be presented a set of tests of the model. The aim is to observe the
execution times obtained, the acceleration achieved and, in the end, the behavior
of the implemented model with different types of stimuli.

Table 2 shows the execution time obtained for different tests of the model
using the CPU implementation. Each runtime was obtained from an average of
10 time samples.

The results of the action potential were plotted and reviewed to endorse the
operation of the algorithm.

In-situ Visualization of the Propagation of the Electric Potential 83

Table 2. Algorithm execution time in CPU

Tissue size Time in seconds

10 × 10 22.558

20 × 20 212.7

30 × 30 1274.7

40 × 40 4675

When visualizing a set of five different cells Fig. 4 is revealed. In the specific case
of the mesh model, it can be seen that the implemented model maintains the wave
form and the voltage values in depolarization phase defined by Courtemanche.

Fig. 4. Action potential of five cells of the mesh with BCL = 1200 ms and a stimuli
duration of 2ms

In Fig. 5 a graphic of the acceleration of the implemented model can be
observed. It is important to note that 600 ms of BCL atrial tissue are being
simulated, with a spatial discretization equal to 0.02 cm and a temporary dis-
cretization of 0.025 s.

Fig. 5. Acceleration obtained by the algorithm implemented

84 J. H. Osorio et al.

From the graphics can be obtained that the maximum acceleration of the
algorithm that could be recorded was 240X for a mesh of 50 × 50 cells, which
was theoretically expected, taking into account the number of cores present in
a card with the characteristics of the Tesla K40C and that the solution of the
system of equations AX = B is highly parallelizable.

In Fig. 6 you can see that the performance of the algorithm increase as the
number of cells is higher. As previously mentioned, this is expected, due to the
fact that the time taken to move data to or from GPU is hidden because of
all the calculations that are made inside the device. The current algorithm is
making use of a 16.25% of the peak double precision performance of a K40c card
which is 1.43 TFLOP/s. This is a reasonable performance taken into account
that the algorithm can be improved as you will see in the results section.

Fig. 6. GPU algorithm performance. As you can see the performance increase as the
number of cells is higher

Figure 7 shows the propagation of action potential on a mesh of 165 × 165
cells when the third row of cells of the tissue is energized. A BCL = 1200 ms
is being simulated. Four wavefronts can be observed showing their behavior in
four different time steps. The stimuli was applied to 165 cells with an stimuli
current Ist = 8000 pA. This figure shows the simulation in four different times,
the image of the upper left corner shows the exact time when the stimuli is
generated, the subsequent images show how the potential wave is spread across
the simulated tissue. The tissue is isotropic, that explains why the speed of the
wavefront is the same in both directions. The potential in the simulation is in
the right limits of Courtemanche [1] paper, between 81.2 mV and 20 mV. The
figures show how the algorithm works perfectly with the data that is shown by
the different papers studied during the research. The next figure, shows a case
study where a rectangle of cells were stimulated.

The generation of stimuli is tested as shown in Fig. 8. The stimulation of a
rectangle of 15 × 15 cells in four different time steps was accomplished. As it
can be seen, the upper left corner shows the exact moment when the stimuli is
generated at 52 ms. Once again the potential is correct and the tissue potential
propagation behavior is as expected. The stimulus current is Ist = −8000 pA.

In-situ Visualization of the Propagation of the Electric Potential 85

Fig. 7. Simulation of a mesh of 165× 165, when a row of tissue cells is excited initially

A comparison process was also performed between the runtimes of the par-
allelized algorithm in CUDA and the same algorithm with visualization process
activated. This information can be found in Fig. 9.

Fig. 8. Simulation of a mesh of 165 × 165 cells when a cell square is stimulated

This last graphic permits to establish that the visualization process does not
impact significantly the performance of the algorithm. The impact is given by an
average constant value of 4.2 s that are added to each of the times of the CUDA
version without visualization. The overhead time is caused because Catalyst uses
MPI to communicate between the computing node and the visualization node.

86 J. H. Osorio et al.

Fig. 9. Comparison of time between CUDA version without visualization and with
visualization. Is important to note that a little constant overhead of 4.2 s is seen when
Catalyst is used.

The visualization obtained through Paraview is interactive. It is possible to
filter or change the render images in execution time using the visualization node.
The only thing that needs to be done is to open Paraview and, using the Catalyst
option, configure the right IP to connect to the calculation node.

A GPU memory usage graphic can also be observed, see Fig. 10. It can be
seen that the spatial complexity of the algorithm shows an exponential growth.
This is because the general form of the A matrix increased at this ratio, which
causes that the memory of the K40C card full with a 165 × 165 mesh. Bare in
mind that a K40C GPU has 12 GB of memory.

Fig. 10. Consumption of GPU memory according to mesh size. An exponential growth
in memory is seen.

In Fig. 11 can be seen that the bandwidth of the algorithm and how the
measured performance is better as the mesh is greater.

The algorithm was ran in a 980GTX and K40C cards. In the first case the
acceleration achieved was 270x in contrast with the K40C card in which the
improvement was about 240X. This is because the frequency of the 980GTX

In-situ Visualization of the Propagation of the Electric Potential 87

Fig. 11. Memory bandwidth of the algorithm. As you can see the bandwidth perfor-
mance increase as the number of cells are higher.

card is about 1126 MHz but in K40C it is about 743 MHz. However the memory
size in 980GTX is 3 GB and in K40c is 12 GB. These two are the main differences
between these two GPUs. That is why the K40C permitted the creation of meshes
with more cells.

7 Conclusions and Future Work

This research permitted the construction of a cardiac cell electric model in two
dimensions that with some adjustments and testing could be used as a medical
pathology simulation tool, as mentioned in [31]. A Sinus Node model will be
implemented to assess the impact that the natural pacemaker of the heart has
on atrial tissue.

The CPU algorithm, the Courtemanche model, was made using Armadillo as
parallelization and mathematical library in CPU. This model was compared in
performance with the implementation in GPU built using CUDA and ArrayFire
as solver of the linear equations system, both implementations can be consulted
in the open GitHub repository of the project [29]. The acceleration obtained,
as seen in Fig. 5, shows an excellent performance compared to the parallelized
version on a single CPU using all cores. It is important to note that the future
aim is that the project can run on different computing nodes, each of which
could have massively parallel co-processors.

A visualization scheme was constructed at the runtime of the Courtemanche
model Paraview-Catalyst as In-situ visualization tool. This scheme may be used
for the process of visualization of more complex simulations, taking advantage
of not only 2 nodes but being able to scale to a cluster with a larger number of
processing elements. This scheme is novel and full of possibilities when combined
with the massively parallel processing obtained through the use of GPUs. In the
state of the art this kind of schemes where GPU, CPU and run time visualiza-
tions are used to cardiac tissue simulations were not found. This is the main
contribution of the research, and it is possible to re-create the tests using the
Github repository in [29].

88 J. H. Osorio et al.

Additionally, according to research carried in [21,22], the visualization pro-
cesses will be able to be implemented better using a library that is still in devel-
opment as VTK-M, or drawing directly GPUs to perform the rendering process
while calculation is performed.

The problem of spatial complexity due to the size of the A matrix must to
be taken into account. This problem will be attacked in the future through the
use and construction of algorithms to work with sparse matrices to decrease the
spatial complexity. Inherently, the computation complexity would be improved
too.

The implementation of an atrial and ventricular 3D model is intended to
be developed in future research, as its visualization processes and its respec-
tive acceleration using massively parallel architectures. The algorithm must be
implemented with unstructured meshes and with a different numerical method
as Finite elements (FEM).

Acknowledgements. The authors thank the nVidia company [32] for supporting the
GPU Education Center of the Universidad Tecnologica de Pereira which is managed
by the research group Sirius, part of the Systems Engineering program [2].

References

1. Courtemanche, M.: Ionic mechanisms underlying human atrial action potential
properties: insights from a mathematical model. The American Physiological Soci-
ety (1998)

2. Sanderson, C., Curtin, R.: Armadillo: C++ linear algebra library (2010). https://
www.nvidia.com

3. nvidia
4. kitware. Paraview catalyst, August 2016
5. ArrayFire. https://arrayfire.com/
6. Bueno-Orovio, A., Cherry, E.M., Fenton, F.H.: Minimal model for human ventric-

ular action potentials in tissue. J. Theoret. Biol. 253(3), 544–560 (2008)
7. Rush, S., Larsen, H.: A practical algorithm for solving dynamic membrane equa-

tions. IEEE Trans. Biomed. Eng. BME 25(4), 389–392 (1978)
8. Sundnes, J., Artebrant, R., Skavhaug, O., Tveito, A.: A second-order algorithm

for solving dynamic cell membrane equations. IEEE Trans. Biomed. Eng. 56(10),
2546–2548 (2009)

9. Perego, M., Veneziani, A.: An efficient generalization of the rush-larsen method
for solving electro-physiology membrane equations. Electron. Trans. Numer. Anal.
35, 234–256 (2009)

10. de Barros, B.G., Oliveira, R.S., Meira, W., Lobosco, M., dos Santos, R.W.: Sim-
ulations of complex and microscopic models of cardiac electrophysiology powered
by Multi-GPU platforms. Comput. Math. Methods Med. 2012, 1–13 (2012)

11. Nimmagadda, V.K., Akoglu, A., Hariri, S., Moukabary, T.: Cardiac simulation on
multi-GPU platform. J. Supercomput. 59(3), 1360–1378 (2012)

12. Tusscher, K.H.W.J., Noble, D., Noble, P.J., Panfilov, A.V.: A model for human
ventricular tissue. Am. J. Physiol., 1573–1589 (2004)

13. Marcotte, C.D., Grigoriev, R.O.: Implementation of PDE models of cardiac dynam-
ics on GPUs using OpenCL. J. Comput. Phys. (2013)

https://www.nvidia.com
https://www.nvidia.com
https://arrayfire.com/

In-situ Visualization of the Propagation of the Electric Potential 89

14. Garcia-Molla, V.M., et al.: Adaptive step ODE algorithms for the 3D simulation
of electric heart activity with graphics processing units. Comput. Biol. Med. 44,
15–26 (2014)

15. Xia, Y., Wang, K., Zhang, H.: Parallel optimization of 3D Cardiac Electrophysio-
logical Model using GPU. Comput. Math. Methods Med. 1–10, 2015 (2015)

16. Zhao, C.: Computer simulation implementations and optimization of the right
atrium of the heart based on GPU, vol. 5 (2015)

17. Reumann, M., et al.: Towards run time visualization in cardiac modeling. In:
Dössel, O., Schlegel, W.C. (eds.) Towards Run Time Visualization in Cardiac
Modeling, vol. 25/4, pp. 999–1002. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-03882-2 266

18. Mazzeo, M.D., Manos, S., Coveney, P.V.: In situ ray tracing and computational
steering for interactive blood flow simulation. Comput. Phys. Commun. 181(2),
355–370 (2010)

19. Kalpana, K.: Parallel visualization of a 3D heart model in an heterogeneous com-
puting environment. Ph.D. thesis, Malaya University (2010)

20. Rivi, M., Calori, L., Muscianisi, G., Slavnic, V.: In-situ visualization: state-of-the-
art and some use cases. PRACE White Paper, pp. 1–18 (2012)

21. Moreland, K., Larsen, M., Childs, H.: Visualization for exascale: portable perfor-
mance is critical. Supercomput. Front. Innovations 2(3), 67–75 (2015)

22. Moreland, K., et al.: VTK-m: accelerating the visualization toolkit for massively
threaded architectures. IEEE Comput. Graph. Appl. 36(3), 48–58 (2016)

23. Kitware: Paraview catalyst
24. Kitware: Paraview
25. Organización Mundial de la Salud. Cardiovascular diseases, September (2016)
26. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and

its application to conduction and excitation in nerve. J. Physiol. 117(4), 500 (1952)
27. nVidia: About cuda, November 2015
28. Yalamanchili, P., et al.: ArrayFire - a high performance software library for parallel

computing with an easy-to-use API (2015)
29. Osorio, J.: Implementación modelo eléctrico celular card́ıaco
30. kitware: Visualization toolkit (vtk), June 2016
31. John Roy, M., Saurabh, K.:. Sinus Node and Atrial Arrhythmias. Circulation -

American Heart Association, pp. 10 (2016)
32. nvidia: nvidia corporation

https://doi.org/10.1007/978-3-642-03882-2_266
https://doi.org/10.1007/978-3-642-03882-2_266

GPU Acceleration for Directional
Variance Based Intra-prediction in HEVC

Derek Nola1, Elena G. Paraschiv2, Damián Ruiz-Coll3, Maŕıa Pantoja1(B),
and Gerardo Fernández-Escribano2

1 Cal Poly San Luis Obispo College of Engineering, San Luis Obispo, CA, USA
mpanto01@calpoly.edu

2 Instituto de Investigación en Informática, Universidad de Castilla-La Mancha,
Albacete, Spain

3 Universidad Rey Juan Carlos, Fuenlabrada, Spain

Abstract. HEVC (High Efficiency Video Encoding) greatly improves
the efficiency of intra-prediction in video compression. However, such
gains are achieved with an encoder of significantly increased computa-
tional complexity. In this paper we present a Graphic Processing Unit
(GPU) implementation of our modified intra-prediction algorithm: Mean
Directional Variance in Sliding Window (MDV-SW). MDV-SW detects
the texture orientation of a block of input pixels, and allows easy par-
allelization of intra-prediction; by doubling the detectable number of
texture orientations and eliminating the data dependency generated by
using pixels from the original image as reference samples instead of the
reconstructed pixels. Once this dependency was removed we were able
to calculate all intra-prediction blocks in a frame in parallel by hard-
ware accelerators, specifically the GPU. Results show that the GPU
implementation speeds up the execution by 10x compared to sequential
implementation.

Keywords: HEVC · Intra-prediction · Parallel programming · GPU ·
CUDA

1 Introduction

HEVC [1] video coding standard was recently introduced as a response to the
high activity of multimedia and TV companies and its constant requirements
of high efficiency encoding for high resolutions formats such as the Ultra High
Definition format (UHD), also known as 4K. HEVC was approved by the Joint
Collaborative Team Video Coding (JCT-VC) working group, from ITU (Inter-
national Telecommunication Union) and ISO (International Organization for
Standardization) international organizations, and it is expected to replace the
H.264/AVC soon [2].

HEVC improves several features introduced in the H.264/AVC, the most rele-
vant is the intra-prediction. Intra-prediction exploits spatial redundancy, correla-
tion among pixels within one frame, by calculating prediction values from neigh-
boring pixels. Video encoding also uses inter-frame prediction which exploits
c© Springer Nature Switzerland AG 2019
E. Meneses et al. (Eds.): CARLA 2018, CCIS 979, pp. 90–100, 2019.
https://doi.org/10.1007/978-3-030-16205-4_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16205-4_7&domain=pdf
https://doi.org/10.1007/978-3-030-16205-4_7

GPU Acceleration for Directional Variance Based Intra-prediction in HEVC 91

temporal redundancy. Intra-frames use only intra-prediction, while temporally
coded predicted frames may use intra- as well as inter-frame prediction. In order
to achieve the highest encoding efficiency, the HEVC encoder must select the
optimal combination of coding unit size and intra-prediction mode by applying
brute force algorithms, which demand huge computational workloads. Recently,
the research community has proposed different approaches for speeding-up the
intra-prediction coding in HEVC. Among others, the Mean Directional Variance
in Sliding Window (MDV-SW) algorithm has been proved as one of the most
efficient, achieving a 30% computational complexity reduction compared to the
HEVC reference model, with a negligible bit rate increase of 0.4% [3]. In this
paper we present a GPU implementation of the MDV-SW algorithm and its
extension presented in [4].

1.1 Previous Work in Parallel Intra Prediction

There is extensive work on the literature to accelerate video on the GPU [5–8],
but most of the work done is on accelerating motion estimation (ME). In [5] an
acceleration of ME is presented using zero motion vector to break the dependency
among Coding Tree Units (CTUs) and develops a search pattern that demands
less data than full search; the quality of search results is refined in the CPU. In [6]
they propose a complete HEVC decoding solution for heterogeneous CPU+GPU
systems, in which the entropy decoder is executed on the CPU and the remaining
kernels on the GPU. [7] proposes two new methods on the encoder for relaxing
the data dependencies by dividing the motion estimation process into multiple
steps and using the results of the previous steps, instead of the results of neigh-
boring blocks in the same step. This allows the full use of many processor cores
on GPUs while maintaining compression efficiency. Finally [8] describes a fast
intra Coding Unit (CU) size decision framework based on keypoint detection on
the Graphic Processing Unit (GPU). In this framework, the original frames are
first sent to the GPU and then keypoint detection is conducted with numerous
threads, which is able to avoid bringing in additional computational complexity
even in real-time systems. The main difference between these previous works
and our proposed solution is that we use our own intra-prediction algorithm,
MDV-SW; which was designed from the beginning to be easy to parallelize and
it has shown to reliable reduce the computations by 30% with minimal impact
on the bit rate.

1.2 Structure of Paper

The remainder of this paper is organized as follows. Section 2 briefly introduces
HEVC Intra-prediction. Section 3 presents a summary of the MDV-SW algo-
rithm, while Sect. 4 gives the details about the parallel implementation using
GPU. Finally, Sects. 5 and 6 presents the simulations results and the conclu-
sions, respectively.

92 D. Nola et al.

2 Overview HEVC Intra-prediction

HEVC uses lossy encoding [9], where the picture is partitioned in smaller blocks
named Coding Tree Units (CTU) of size 64 × 64 to 16 × 16 pixels, these blocks
are recursively split into smaller coding units (CU), selecting the CU with the
size that provides optimal spatial complexity for the CTU. From each CU, a
residual block is obtained as a result of applying an intra-prediction or inter-
prediction stage. Residual pixels are transformed to the frequency domain using
the popular discrete cosine transform (DCT). The coefficients are then quantified
and, entropy encoded.

HEVC exploits the spatial correlation between pixels of the current CU(i,j)
and the pixels from the neighboring CUs located on the top-row and left-column,
as is depicted in Fig. 1 for a 4× 4 pixel blocks. Those pixels, denoted as (striped
blocks), are used for the construction of the directional predictors, following
a process that may comprise spatial filtering and interpolation of the referent
samples. Detailed information on intra-picture coding can be found in [10].

Fig. 1. Spatial correlation in HEVC

The improved efficiency of the Intra-prediction in HEVC compared to H.264-
AVC is mainly due to the expansion from 9 Intra-prediction modes of to 35
modes; 33 directional gradients, optimized for local image areas with edge pat-
terns, and two non-angular modes, namely DC and Planar, which achieve the
best performance for very complex textured areas or smoothing areas. The deci-
sion of the optimal prediction mode for each block requires the evaluation of the
whole set of modes.

In order to achieve the highest encoding efficiency, intra-prediction has to
be evaluated for all the CTUs of the picture. The optimal CTU partitioning is
achieved for the whole set of PU sizes, which are ranging in sizes from 64 × 64
to 4 × 4; this implies the need to carry out 341 PU evaluations, with each PU
also evaluated for each of the 35 prediction modes, leading to a total of 11,935
evaluations per CTU.

GPU Acceleration for Directional Variance Based Intra-prediction in HEVC 93

Intra-predictors need to use the decoded neighboring pixels of the left and
top blocks as reference samples, since those pixels are the only ones available at
decoding time. For this reason, the decision of the optimal predictor for each PU
size is computed sequentially from top-to-down and right-to-left, which is the
approach used by the HEVC reference model named as HM [14]. But, the new
MDV-SW approach [3] proves how the dominant directional orientation of a PU
can be obtained without the need of the decoded neighboring pixels, allowing
for implementation of massive parallel algorithms.

3 The MDV-SW Algorithm

This section covers the description of the MDV-SW algorithm, based on the work
presented in [3] and the modifications in [4]. The work done in [3] proved that,
when the HEVC reference model is compared to the MDV-SW algorithm, the
computational complexity is reduced around 30% on average, with a rate penalty
of only 0.4%. This is achieved by detecting the dominant texture orientation of
a block. The texture or gradient orientation of a block is obtained with the
MDV-SW algorithm by computing the mean directional variance along certain
spatial directions and selecting the orientation with the lowest mean directional
variance. These spatial directions are co-lines with a particular rational slopes
r = rx/ry, where rx and ry are integer positions of lattice Λ ∈ Z2, which is free
of any pixel interpolation processing.

Given a block of size N ×N pixels, the MDV-SW algorithm computes the
texture orientation by taking the block of size (N + 1) × (N + 1) as input data;
the plus 1 is necessary to avoid the data dependency. This can be seen in Fig. 2,
in which a block of size (8+1)×(8+1) is depicted. Figure 2 also illustrates three
of the co-lines with rational slope 2/1.

Fig. 2. Example of co-lines with slope 2/1. Block of size 9× 9 pixels

In order to improve the performance of the MDV-SW algorithm, the number
of rational slopes was increased from 12 to 24, which is twice the number of
directions proposed in [3]. The new rational slopes can be seen in Fig. 3, where
they are depicted with dashed green lines. This figure also illustrates the rational

94 D. Nola et al.

Fig. 3. The 33 angular Intra-prediction modes of HEVC (solid orange lines), rational
slopes used in [3] (dashed blue lines), and rational slopes added to the previous rational
slopes (dashed green lines) (Color figure online)

slopes used in [3] (dashed blue lines), as well as the 33 angular intra-prediction
modes defined in HEVC (orange solid lines).

By doubling the number of rational slopes, MDV-SW is able to detect twice
the number of texture orientations that it could detect before. It also allows us
to use the reference pixels from the original image instead of those from the
coded and decoded image.

4 Parallelization of the MDV-SW Algorithm

Video compression is computationally intensive, for example an HD frame has a
total of 14,000 8× 8 blocks, and for each one of these 8× 8 blocks there are 588
directional variances in MDV-SW that needs to be computed. The standard con-
siders not only 8 × 8 blocks but also 4× 4, 16 × 16, 32 × 32 and 64 × 64; therefore
a total of about 80,000 directional variances need to be computed. Since in gen-
eral video is presented at 30 fps, video compression algorithms need to process
around 45 thousand blocks and calculate almost 2.5 million directional variances
per second.

Fast video compression implementations are therefore paramount, with many
companies implementing dedicated chips for encoding and decoding. Intra pre-
dictors need to use as reference samples the decoded neighboring pixels of the left
and top blocks, since those pixels are the only ones available at decoding time.
This is the reason why the decision of the optimal predictor for each PU size,
is computed in a sequential way from top-to-down and right-to-left, and that
is the approach used by the HEVC reference model named as [14]. However,

GPU Acceleration for Directional Variance Based Intra-prediction in HEVC 95

the new MDV-SW approach [3] proves how the dominant directional orientation
of a PU can be obtained without the need of the decoded neighboring pixels.
In this paper we present an acceleration of the software implementation of the
video standard. The sequential implementation of MDV-SW algorithm needed
the block of pixels of size N×N for its texture orientation detection, and the
pixels from the neighboring blocks (reference pixels). To solve this data depen-
dency [4] takes the pixels from the original image, allowing for parallelization
not only at the block level but also at the frame level. In other words, each frame
of the video sequence can be processed at once, since there are no dependencies
between the blocks of pixels that it is divided into. Once the data dependen-
cies are eliminated we want to calculate as many intra-prediction directions as
quickly as possible, for this reason we decided to use the GPU to implement the
accelerated version of our algorithm; we also decided to try different compilers
options available that allow offloading code to accelerators including GPUs. For
this paper, we tried three different ways of off-loading work to the GPU:

1. OpenMP4.5 Target offload features. The first compiler to support
OpenMP [11] offload was the Intel icc compiler that uses this feature to
offload work to the Intel Xeon Phi. OpenMP has been working on support
for different accelerators and in Version 5.0 (to be released on Nov 2018) they
will provide wide support across compilers and libraries allowing code to be
offloaded on the GPU. For this paper we use a beta version of gcc 7.2 [10]
compiler and OpenMP 4.5. The main change added to the code was to the
for loops. For example to parallelize each of the outer loops (for each block
size) iterations, we need to add the pragma:

Listing 1.1. OpenMP Pseudocode

#pragma omp target teams distribute parallel for reduction

(max:error) collapse(2) if (n>100)

for (int k = 0; k < TYPR_BLOCKS; k++) {

for (int i = 0; i < number_of_blocks; i++) {

//Minimum mean directional variance of block i

}

}

Explanation for pragma:
– target allows the code to be offloaded to an accelerator (GPU, FPGA,...),

the clause team and distributed should always be used after target because
to reduce data movement between CPU and GPU.

– collapse() aggressively collapse loops.
– use host fall back to generate host and device code, and avoid the penalty

of running on the GPU if the amount of data is too small.
2. OpenACC [12]. Using PGI compiler OpenACC C++ (pgc++ version 17.01).

OpenACC is a pragma based programming language designed to allow easy
development for a variety of hardware accelerators, including GPUs from
different vendors, multicore architectures and FPGAs. The goal of the Ope-
nACC compiler is to improve the execution time of existing code written in

96 D. Nola et al.

Fortran, C or C++, by adding different pragma directives to the code that
will allow it to run on the available accelerator. However, since the compiler
will take most of the decisions, the performance speed is usually lower than
the one that can be by using from hardware specific programming languages
and compilers. OpenACC support is provided by a number of vendors and is
defined by an open standard. The main change added to the code was to the
for loops. For example to parallelize each of the outer loops (for each block
size) iterations we need to add the pragma:

Listing 1.2. OpenACC Pseudocode

#pragma acc kernels loop copyin(a[0:n],b[0:n]) copyout(r[0:n])

for (int k = 0; k < TYPR_BLOCKS; k++) {

for (int i = 0; i < number_of_blocks; i++) {

//Minimum mean directional variance of block i

}

}

Explanation for pragma:
– Kernel. Defines the region of the program that should be compiled into a

sequence of kernels for execution on the accelerator device.
– copyin. Defines the data that needs to be operated on and therefore moved

to GPU memory
– copyout. Defines the data that needs to be returned to the CPU Both

copyin and copyout reduce the amount of data transfers between the
CPU and GPU memories

3. Compute Unified Device Architecture (CUDA) [13]. Nvidia GPUs are many-
core architecture used in modern computers as a coprocessor to accelerate
graphics (video and image). Programming for these heterogeneous computer
systems has been an area of research for many years to accelerate scientific
computations in general not just image/video. Since the threads used by
these architectures are mostly hardware managed, the creation of the thread
is basically free and their parallelism model is based on the assumption that
you can run hundreds of thousands of threads in parallel. CUDA is consider
low level programming language and requires extensive changes to the original
code; the advantage is that the programmer has much more control of the
execution of the code and can optimize for it. For example, CUDA has a small
cache called shared memory that is very fast and available to the programmers
and we can partition the data so it fits in this cache and make all cache
accesses coalescent which it is well know to improve performance. In this
paper, we loaded each frame of video one at a time into GPU global memory
and further reduce the frame by moving 64× 64 pixel blocks into shared
memory. Since we can run “many” threads in a GPU, we chose to run 102
blocks with 65 threads each. The rationale for these numbers is that for the
54 blocks we calculate 102 co-lines and the blocks of 64 pixels are padded
around the north and west frontier by one pixel, thus CUDA blocks of 65
threads. Pseudocode for the implementation is as follows:

GPU Acceleration for Directional Variance Based Intra-prediction in HEVC 97

Listing 1.3. CUDA Pseudocode

for each Image block:

Kernel:

Input: An array of a MetaInfo[102]

Output: Best Rational Slope of the Image block

for each CL Block:

for each SubBlock:

for each thread

Add Pixel->SumPixels[64] /*GLOBAL->SHARED*/

Add SqPixel->SumSqPixels[64] /*GLOBAL->SHARED*/

REDUCE SumPixels[64]->SumPixels /*SHARED->REG*/

REDUCE SumSqPixels[64]->SumSqPixels /*SHARED->REG*/

Calculate DV->DVs[8] /*REG->SHARED*/

Atomic Add nrCL + 1 /*REG->SHARED*/

REDUCE DVs[8] ->SumDVs /*SHARED->REG*/

Calc SumDVs ->MDVs[24] /*REG->GLOBAL*/

MAX MDVs[24] ->Best_MDV /*GLOBAL->RESULT*/

return Best_MDV

5 Results

In this section, execution times for the MDV-SW algorithm are presented. We
replicate here the results obtained in previous implementation for sequential
code, PThreads version and OpenMP version of MDV-SW from [4]. This will
allow us to compare the different parallelizations of MDV-SW:

1. The sequential implementation, computes the MDV-SW through each co-
line per block size (4 × 4, 8 × 8, 16 × 16, 32 × 32 and 64 × 64) and per frame.
Figure 4 presents pseudocode for this sequential implementation [4].

2. The multicore pthread and OpenMP implementation parallelize at the block
level, by this we mean we run 5 threads, each thread calculating one of the
five different block sizes (4 × 4, 8 × 8, 16 × 16, 32 × 32 and 64 × 64) with each
thread sequentially calculating each one of the blocks in the frame [4].

3. OpenMP 4.5 Target offload. Pseudocode presented in Listing 1.1
4. OpenACC Pseudocode presented in Listing 1.2
5. The CUDA. Pseudocode presented in Listing 1.3

The execution time1, as can be seen in Fig. 5, was improved significantly from
sequential to parallel execution, with the CUDA implementation giving approxi-
mately 10x faster execution. This was expected since, the CUDA low level imple-
mentation provides the best optimizations possible; while the OpenMP offload
pragmas and OpenACC do not significantly improve the execution time over the
PThreads implementation. Both OpenMP and OpenACC took on average less
development time than any of the other implementations and they can always be

1 Machine used: Xeon E5-2695v3 12 cores and GPU GTX960.

98 D. Nola et al.

Fig. 4. Pseudocode for sequential implementation

used as a quick prove of concept first step in parallelizing code. Further improve-
ments in OpenMP, specially the new version that will be released in Nov 2018
will hopefully improve the off target capabilities.

For the CUDA experiments we did run the test 100 times each time encoding
100 frames, and obtained (all data is in seconds) a 95% Confidence Interval:
1.79 ± 0.00606 (1.78 to 1.8) with a margin of error equal to 0.00606.

Fig. 5. Execution times for one video frame. Time is in seconds.

6 Conclusions and Future Work

In this paper we present a fast GPU implementation of the MDV-SW algorithm,
the execution results prove that, by doing this we obtain a considerable execu-
tion time reduction compared to the sequential execution. This reduction comes
mainly from the ability to process the entire frame concurrently. In the future

GPU Acceleration for Directional Variance Based Intra-prediction in HEVC 99

we plan to use CUDA 9.0 new features, Cooperative Groups for flexible thread
programming. Cooperative groups are a new functionality added with CUDA
9.0 to Kepler and later Nvidia GPUs to make synchronization among hard-
ware threads faster and more flexible; by allowing kernels dynamically organize
groups of threads. This enables cooperation and synchronization at finer gran-
ularity. In the GPU’s SIMT (Single Instruction Multiple Thread) architecture,
the GPU streaming multiprocessors (SM) execute thread instructions in groups
of 32 called warps. The threads in a SIMT warp are all of the same type and
begin at the same program address, but they are free to branch and execute
independently. At each instruction issue time, the scheduler selects a warp that
is ready to execute and issues its next instruction to the warp’s active threads.
The instruction unit applies an active mask to the warp to ensure that only
threads that are active issue the instruction. Individual threads in a warp may
be inactive due to independent branching in the program, e.i an if statement
in the code. Thus, when data-dependent conditional branches in the code cause
threads within a warp to diverge, the SM disables threads that don’t take the
branch. The threads that remain active on the path are referred to as coalesced.
Cooperative Groups provides the function coalesced threads() to create a group
comprising all coalesced threads, and thus they can be synchronized by call-
ing active.sync() avoiding the slow down caused by thread diverge. Since in our
code the block calculate different number of co-lines this smaller granularity will
allow for better synchronization among threads and improve the execution time.
We also would like to exploit the possibility of calculating the smaller co-lines
(4 × 4, 8 × 8, 16 × 16, and 32× 32) while we calculate the 64 × 64 so instead of
recalculating everything again we just keep track of when we are crossing border
between blocks sizes and store the values, this way we just run the calculation
once but get all the 5 blocks results.

References

1. Rec. ITU-T H.265 and ISO/IEC 23008-2, High Efficiency Video Coding, techre-
port, E 41298, December 2016

2. Rec. ITU-T H.264 and ISO/IEC 14496-10 (MPEG-4 AVC), Advanced video coding
for generic audiovisual services, techreport, E 41560, April 2017

3. Ruiz, D., Fernández-Escribano, G., Mart́ınez, J.L., Cuenca, P.: Fast intra mode
decision algorithm based on texture orientation detection in HEVC. Signal Process.
Image Commun. 44, 12–28 (2016)

4. Paraschiv, E.G., Ruiz, D., Pantoja, M., Fernández-Escribano, G.: Texture orienta-
tion detection over parallel architectures: a qualitative overview. In: Proceedings of
the 17th International Conference on Computational and Mathematical Methods
in Science and Engineering, CMMSE 2017, vol. VI, pp. 2147–2158, July 2017

5. Kao, H.C., Wang, I.C., Lee, C.R., Lo, C.W., Kang, H.P.: Accelerating HEVC
motion estimation using GPU. In: 2016 IEEE Second International Conference on
Multimedia Big Data (BigMM 2016), pp. 255–258, April 2016. https://doi.org/10.
1109/BigMM.2016.13

https://doi.org/10.1109/BigMM.2016.13
https://doi.org/10.1109/BigMM.2016.13

100 D. Nola et al.

6. Wang, B., et al.: Efficient HEVC decoder for heterogeneous CPU with GPU sys-
tems. In: 2016 IEEE 18th International Workshop on Multimedia Signal Process-
ing (MMSP 2016), pp. 1–6, September 2016. https://doi.org/10.1109/MMSP.2016.
7813353

7. Takano, F., Igarashi, H., Moriyoshi, T.: 4K-UHD real-time HEVC encoder with
GPU accelerated motion estimation. In: 2017 IEEE International Conference on
Image Processing (ICIP 2017), pp. 2731–2735, September 2017

8. Luo, F., Wang, S., Ma, S., Zhang, N., Zhou, Y., Gao, W.: Fast intra coding unit
size decision for HEVC with GPU based keypoint detection. In: 2017 IEEE Inter-
national Symposium on Circuits and Systems (ISCAS 2017), pp. 1–4, May 2017.
https://doi.org/10.1109/ISCAS.2017.8050260

9. Sullivan, G.J., Ohm, J., Han, W.-J., Wiegand, T.: Overview of the high efficiency
video coding (HEVC) standard. IEEE Trans. Circ. Syst. Video Technol. 22(12),
1649–1668 (2012)

10. Lainema, J., Bossen, F., Han, W.-J., Min, J., Ugur, K.: Intra coding of the HEVC
standard. IEEE Trans. Circ. Syst. Video Technol. 22(12), 1792–1801 (2012)

11. OpenMP Specification for Parallel Programming. http://www.OpenMP.org/
12. OpenACC Specification for Parallel Programming. http://www.nvidia.com/

OpenACC/
13. Compute Unified Device Architecture (CUDA). http://www.nvidia.com/CUDA/
14. Joint Collaborative Team on Video Coding Reference Software, ver. HM 16.8.

https://hevc.hhi.fraunhofer.de/

https://doi.org/10.1109/MMSP.2016.7813353
https://doi.org/10.1109/MMSP.2016.7813353
https://doi.org/10.1109/ISCAS.2017.8050260
http://www.OpenMP.org/
http://www.nvidia.com/OpenACC/
http://www.nvidia.com/OpenACC/
http://www.nvidia.com/CUDA/
https://hevc.hhi.fraunhofer.de/

Fast Marching Method in Seismic Ray
Tracing on Parallel GPU Devices

Jorge Monsegny1(B), Jonathan Monsalve1(B), Kareth León1(B),
Maria Duarte2(B), Sandra Becerra2(B), William Agudelo2(B),

and Henry Arguello1(B)

1 Universidad Industrial de Santander, Bucaramanga 680002, Colombia
jorge.monsegnyparra@ucalgary.ca,

{jonathan.monsalve,kareth.leon}@correo.uis.edu.co, henarfu@uis.edu.co
2 Ecopetrol S.A., Bucaramanga 681012, Colombia

{maria.duarte,sandraja.becerra,william.agudelo}@ecopetrol.com.co

Abstract. Sequential fast marching method relies on serial priority
queues, which, in turn, imply high complexity for large volumes of
data. In this paper, an algorithm to compute the shortest path in the
fast marching method for 3D data on graphics processing units devices
(GPUs) is introduced. Numerical simulations show that the proposed
algorithm achieves speedups of 2× and 3× compared to the sequential
algorithm.

Keywords: Fast marching method · GPU · Seismic ray tracing ·
3D data

1 Introduction

Relationship between image ray and ray-tracing theory has been properly devel-
oped in [1], where image rays are estimated from the paraxial ray tracing. Thus,
the shortest path from each surface point to each depth point is computed fol-
lowing the fast marching method, proposed by Sethian [2] and adapted to image
ray by Cameron [1], in both 2D and 3D data. In particular, this Dijkstra-type
method systematically advances to the solution from know to unknown values
in each iteration using a priority queue, and its computational complexity is
O(n log n), where n is the total number of points in the domain. Even though
this method achieves accurate solutions, the computation time and computa-
tional burden grows directly proportional to the amount of data, which is a
disadvantage in seismic given the large volume of data that is handled.

A recent work proposes an algorithm for computing ray-tracing shortest path
on parallel graphics processing units devices, or short GPUs, to gain speediness
and high computational throughput [3]. However, this algorithm disregard the
propagation features of the image ray.

In this paper, an algorithm to compute the fast marching method for 3D
ray tracing on parallel GPUs is presented. Following the algorithm proposed by
c© Springer Nature Switzerland AG 2019
E. Meneses et al. (Eds.): CARLA 2018, CCIS 979, pp. 101–111, 2019.
https://doi.org/10.1007/978-3-030-16205-4_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16205-4_8&domain=pdf
https://doi.org/10.1007/978-3-030-16205-4_8

102 J. Monsegny et al.

[1], which estimate the shortest path of the image rays using the propagation
wave, the proposed algorithm decompose the velocity model in time for process-
ing each node in parallel way. For this, instead of use a priority queue, each
node is simultaneously processed using a main and an auxiliary buffers for con-
sistency. Computational experiments over synthetic time-propagation velocity
models show the improvement of the proposed parallel algorithm in speedups
up to 3× in comparison with the sequential one.

2 Fast Marching Method for Ray Tracing Using Eikonal
Equation

Suppose that a image ray connects a surface point (x0(x, y, z), y0(x, y, z)) and a
subsurface point (x, y, z), then, the traveltime along this ray is t0(x, y, z), where
x, y are spatial coordinates and z indicates the depth [4]. Mathematically, all
traveltimes along image rays follows the Eikonal equation expressed as

|∇t0|2 = s2, (1)

where s = 1/v is the reciprocal of the velocity, or so-called slowness. Further,
since x0 and y0 remains constant along each image ray, then

∇t0 · ∇x0 = 0
∇t0 · ∇y0 = 0 (2)

holds for the gradients of t0, x0 and y0. Equations 1 and 2 form a system of nonlin-
ear PDEs for t0(x, y, z), x0(x, y, z) and y0(x, y, z) [5]. The established boundary
conditions for the system are:

t0(x, y, 0) = 0,
x0(x, y, 0) = x, y0(x, y, 0) = y,

s(x, y, 0) = s(x0 = x, y0 = y, t0 = 0). (3)

Thus, given the propagation velocity v0(x0, y0, t0), the objective of the ray-
tracing-based fast-marching algorithm is to solve the PDEs system with the
boundary conditions in order to find: the slowness s(x, y, z); the one-way travel
time t0(x, y, z), and the surface points (x0(x, y, z), y0(x, y, z)).

From a discrete point of view, each point (x, y, z) can be represented as a
node in a graph. Then, the velocity model v(x0, y0, t0) can be represented as a
weighted graph Gv = (V,L,W), where V is the set of vertices or nodes, L is the
set of edges or lines, and W is the set of edge weights, which is the traveltime
between adjacent nodes [3]. Further, the set of nodes can be represented as
an array v(x0i, y0j , t0k), where i, j index the x0, y0 axes and k index the t0
coordinate. Fast marching allows the computing of the shortest path from one
to the next node using the weights of the neighboring nodes. Cameron established
a sequential algorithm which follows some rules to estimate the shortest path
considering the system of nonlinear PDEs [1].

Fast Marching Method in Seismic Ray Tracing on Parallel GPU Devices 103

For the implementation of the numerical algorithm, proposed in [1], two
additional arrays must be created to update variables: the state array e(x, y, z)
and the derivative array f0(x, y, z). Specifically, the state array e stores the state
of each node as IN, FRONT, or OUT. The IN state represents that the node has
already been processed and accepted, and its estimated values t0, x0, and y0 are
fixed. The FRONT state indicates that the current node is being processed and
has temporary values t0, x0, and y0. Finally, the OUT state indicates that the
nodes has not been processed yet. Figure 1 illustrates each state where the black
nodes indicates the IN state, the gray ones indicates the FRONT state, and the
white ones the OUT state. On the other hand, the derivative array e stores the
values −1, 0 or 1 indicating the direction of each node after the compute the
solution: 1 for the x direction, 0 for the y direction, and 1 for the z direction.

Fig. 1. Illustration of the 3D graph for the Fast Marching method. Black, grey and
white dots represent “Accepted” (IN), “Considered” (FRONT) and “Unknown” (OUT)
nodes, respectively.

The initialization of the arrays to be computed, x0(x, y, z) ∈, y0(x, y, z), and
t0(x, y, z), are as follows: the boundary nodes, i.e. the first row of the array,
are set as x0(xi, yi, 0) = dx, y0(xi, yi, 0) = dy, t0(xi, yi, 0) = 0, e(xi, yi, 0) =
FRONT, and f0(xi, yi, 0) = 0, for xi = 0, ..., nx − 1 and yj = 0, ..., ny − 1,
where dx, dy are the separations between nodes. Notice that each array has
nx × ny × nz nodes. The remainder positions are initialized as x0(xi, yj , zk) =
y0(xi, yj , zk) = t0(xi, yj , zk) = ∞, e(xi, yj , zk) = OUT, and f0(xi, yj , zk) = −1,
with zk = 1, ..., nz − 1. The boundary or superficial nodes are allocated in a
priority queue for further processing.

Thus, given the velocity model v(x0i, y0j , t0k) as input, the algorithm sequen-
tially move on to the solution computing the traveltime of each node based on
its neighbors state.

104 J. Monsegny et al.

The update rules for the cases when the node to be processed has 1, 2, and
3 neighbors nodes are summarized from [1] and following Fig. 1 above as:

1. Update with 1-node: Let E be the node to be processed, D its accepted, or
IN, neighbor, and there are no know, or OUT, neighbors of E lying on the
other grid lines as in Fig. 1. Then, the values at E are computed as:

t0(E) = du · s(x0(D), y0(D), t0(E)) + t0(D), (4)
x0(E) = y0(E) = x0(D), (5)

where du can be either dx, dy, or dz, depending on which grid line the nodes
E and D lie on.

2. Update with 2-nodes: Let P be the node to be processed, and A and B are
its know, or IN, nearest neighbors which lies on the other grid line. Then, the
values at P are computed as:

t0(P) =
b

a
±

√(
b

a

)2

− c

a
,with

b

a
=

d2u · t0(A) + d2v · t0(B)
d2u + d2v

,
c

a
=

d2u · t0(A)2 + d2v · t0(B)2 − s(P)2 · d2u · d2v
d2u + d2v

,

(6)
for t0(P) ≥ max{t0(A), t0(B)}, where du and dv can be any pair of different
variables of dx, dy, or dz, and s(P) = s(x0(P), y0(P), t0(P)). On the other
hand, x0 can obtained from:

x0(P) =
x0(B)(t0(P)−t0(B))

d2
u

+ x0(A)(t0(P)−t0(A))
d2
v

t0(P)−t0(B)
d2
u

+ t0(P)−t0(A)
d2
v

,

[min{x0(A), x0(B)}] ≤ x0(P) ≤ [max{x0(A), x0(B)}],

(7)

and y0(P) can be obtaining replacing x0 by y0 in Eq. 7, with
[min{y0(A), y0(B)}] ≤ y0(P) ≤ [max{y0(A), y0(B)]}.

3. Update with 3-nodes: Let C be the node to be processed, and A, B and F
its know, or IN, nearest neighbors which lies on different grid lines. Then, the
values at C are computed in a similar way as the rule with 2-nodes, however,
the variables a, b and c have different values:

t0(C) =
b

a
±

√(
b

a

)2

− c

a
, with

b

a
=

t0(A)
d2
r

+ t0(F)
d2
v

+ t0(B)
d2
u

1
d2
u

+ 1
d2
v

+ 1
d2
r

,

c

a
=

t0(A)2

d2
r

+ t0(F)2

d2
v

+ t0(B)2

d2
u

− s(C)2

1
d2
u

+ 1
d2
v

+ 1
d2
r

,

(8)

Fast Marching Method in Seismic Ray Tracing on Parallel GPU Devices 105

for t0(C) ≥ max{t0(A), t0(B, t0(F))}, s(C) = s(x0(C), y0(C), t0(C)), where
du, dv, dr can be any permutation of dx, dy, or dz. Also, x0 can obtained
from:

x0(C) =

x0(B)(t0(C)−t0(B))

d2u
+ x0(B)(t0(C)−t0(F))

d2v
+ x0(A)(t0(C)−t0(A))

d2r
t0(C)−t0(B)

d2u
+ t0(C)−t0(F)

d2v
+ t0(C)−t0(A)

d2r

, (9)

and y0(C) can be obtaining replacing x0 by y0 in Eq. 9.

The output of the algorithm are the matrices x0(xi, yj , zk), y0(xi, yj , zk) and
t0(xi, yj , zk), for i = 0, ...,m − 1, j = 0, ..., n − 1, k = 0, ..., p − 1. For further
detail refers to [1]. In practice, and for a proper implementation, the algorithm
updates the nodes using a priority queue, which can be highly time consumed
for huge data volumes.

3 3D-Case Parallel Approach for the Fast Marching
Method

The parallel fast marching method for ray tracing attempts to simultaneously
process a large group of nodes taking into account the huge amount of processing
threads of the current architectures, e.g. the graphics processing units (GPUs).
Thus, instead of use a priority queue, such as the sequential algorithm, each
node is processed by one thread and, after each iteration, all threads are syn-
chronized. Algorithm 1 summarizes the steps of the parallel algorithm, where
the Solve kernel is executed until the variable stop is false. The input of the
Algorithm 1 is the time velocity model v ∈ R

nx×ny×nz in discrete form, where
nx, ny, and nz are the number of nodes in the x0, y0, and t0 dimensions, respec-
tively. Algorithm 1 starts with the initialization of the arrays x0, y0, t0, and

Algorithm 1. Main function
1 Input: v(x0i, y0j , t0p), i = 0, ...nx − 1, j = 0, ...ny − 1, k = 0, ..., nz − 1;
2 Output: x0(xi, yj , zk), y0(xi, yj , zk), and t0(xi, yj , zk);
3 Initialize arrays: x0, y0, t0, f0, auxx0, auxy0, auxt0, and auxf0 ;
4 stop = false ;
5 while stop is false do

/* If at least a node changes the t0 value, stop value will be

false. */

6 stop = true;
/* Execute each node in parallel. */

7 Solve(x0, y0, t0, f0, auxx0, auxy0, auxz0, auxf0, stop) ;
/* Update the buffers */

8 x0 ← auxx0; y0 ← auxy0; t0 ← auxt0; f0 ← auxf0;
9 auxx0 ← x0; auxy0 ← y0; auxt0 ← t0; auxf0 ← f0;

10 end

106 J. Monsegny et al.

f0, where is performed equivalently as previously described in the sequential
algorithm. Then, the boolean variable stop is defined as false.

Broadly, in the Solve kernel, it is launched as many buffers as nodes the model
has. Thus, each copy can independently process a node. The results are stored
on auxiliary buffers, and then, the kernel reads the new node values from the
auxiliary buffers. Figure 2 shows the data flow between main and the auxiliary
buffers for the k-th and (k + 1)-th iterations, top and bottom, respectively.
The main and auxiliary buffers are alternatively used to update and read the
processed nodes for each thread.

Fig. 2. Data flow between kernels and buffers in the k and k + 1 iterations.

Algorithm 2 shows in detail how the Solve kernel works. The algorithm starts
by obtaining the thread coordinates (xi, yj , zk) of the current node. Then, it is
verified if the current node is within of the model. Next, the node values are
getting from the buffers, and then, it is computed the traveltime x0, y0, and
t0 depending on the state of its neighbors, and following the update rules for
1, 2, and 3-nodes mentioned in the previous section. The current node values
are compared with previous one and, if there was a change the node values are
updated and the stop value is set as false. Notice that the arrays in Algorithm 2
are passing by reference, which means that the changes are always performed
over the same array. This is done just to save memory.

Fast Marching Method in Seismic Ray Tracing on Parallel GPU Devices 107

Algorithm 2. Solve(x0, y0, t0, f0, auxx0, auxy0, auxz0, auxf0, stop)
/* Get the coordinates of the thread in execution */

1 xi ← thread.x; yj ← thread.y; zk ← thread.z ;
/* Verify if the current node is within the model */

2 if xi < 0 or yj < 0 or zk < 0 or xi ≥ nx or yj ≥ ny or zk ≥ nz then
3 return;
4 end

/* Get the current values of the current buffers */

5 currx0 ← x0(xi, yj , zk); curry0 ← y0(xi, yj , zk);
6 currt0 ← t0(xi, yj , zk); currf0 ← f0(xi, yj , zk) ;

/* Solve one case with three points */

7 currt0, currx0, curry0, currf0 ← compute t0, x0, y0, f0 using Eq. 8 - 9 ;
/* Solve three cases with two points */

8 currt0, currx0, curry0, currf0 ← compute t0, x0, y0, f0 using Eq. 6 - 7;
/* Solve three cases with one point */

9 currt0, currx0, curry0, currf0 ← compute t0, x0, y0, f0 using Eq. 4 - 5;
/* Copy the possible new values in the auxiliary buffers */

10 auxx0(xi, yj , zk) ← currx0;
11 auxy0(xi, yj , zk) ← curry0;
12 auxt0(xi, yj , zk) ← currt0;
13 auxf0(xi, yj , zk) ← currf0;

/* Update the values if the t0 value is smaller than the previous t0
value */

14 if currt0(xi, yj , zk) < t0(xi, yj , zk) then
/* Set stop value in false */

15 stop = false

16 end

4 Simulations and Results

In order to evaluate the performance of the proposed algorithm, several simula-
tions over synthetic and real velocity models were performed. Synthetic models
were five 3D velocity models, with n × n × n nodes, which were created using
the Madagascar software, version 1.8, for n = 32, 64, 128, 256, 512, following the
form: v(x, y, z) = 1 + exp(−(x2 + y2 + z2))C , where C is a constant that, in
the simulations, was tunned as 200. For the real model, the 2D velocity model
from the North Sea [6] was extended to a 2.5 model, where the 2D model was
repeated in the y dimension. The 2.5 model size was of 8000×1000×100 nodes.
All the simulations were conducted on an Intel(R) Xeon(R) CPU E5-1603 v3 @
2.80 GHz processor with 120 GB RAM memory. The parallel experiments were

108 J. Monsegny et al.

performed on an NVIDIA Quadro K5200 GPU with the next more relevant
specifications:

Global memory 8192MB
Memory bus width 256-bit
Bandwidth 192GBps
CUDA Cores 2304

Figure 3 illustrates the synthetic velocity model for n = 64, and the obtained
results (a) x0, (b) t0 from the sequential and (c) x0, (d) t0 from the parallel
algorithms. Mean squared errors measured from x0, y0 and t0 obtained from the
parallel algorithm respect to the sequential one achieves values close to zero, on
the order of exp(−10). For comparison purposes, the running time was computed
for each result and for each algorithm.

Fig. 3. Illustration of the synthetic velocity model for n = 64 and the results (a) x0,
(b) t0 from the sequential algorithm, and the results (c) x0, (d) t0 from the parallel
algorithm

Figure 4 shows the obtained running time results for the different sizes of the
synthetic model, where the horizontal axis depicts the n value of each model.
Observe that the proposed algorithm converges to the response in less time
than the sequential algorithm, which leads accurate and faster results. Table 1
summarizes the results and shows the obtained speedups for each different size of
the synthetic data. It can be noticed that the convergence running time obtained
from the proposed algorithm is accelerated up to 3 times respect to the sequential
algorithm. On the other hand, for the velocity model 2.5, the obtained running
time for the sequential algorithm was 251, 65 s and for the proposed algorithm

Fast Marching Method in Seismic Ray Tracing on Parallel GPU Devices 109

Fig. 4. Running time comparison between sequential (CPU) and parallel (GPU) algo-
rithms using the 3D synthetic velocity models with size n × n × n.

was 153,4 s. Figure 5 presents the velocity model 2.5 and the obtained x0 and
t0 from both algorithms.

In general, it can be noticed that the proposed algorithm outperforms the
sequential one in terms of processing time, it provides 3.9× faster reconstruc-
tions. Even though GPU can accelerate computation times up to 100×, it is
important to take into account that, in this case, the estimation of the travel
time of a node is a complex task because it is necessary to know the information
of its neighborhood. Moreover, unlike the sequential algorithm, which uses pri-
ority queues, the proposed parallel algorithm attempts to update the nodes at
each iteration using buffers. This enables to reduce processing times for the big
size models of the oil industry. Thus, the obtained improvement in speedup is
valuable in this field. Nevertheless, as future work, other approaches to update
the nodes can be considered to achieve greater speedup performance.

Table 1. Summary of the running time results and the achieved speedup over the
synthetic velocity model.

Data size Time (s) Speedup

Serial algorithm Parallel algorithm

32 × 32 × 32 0.0267 0.009 3.00

64 × 64 × 64 0.310 0.080 3.88

128 × 128 × 128 3.8933 0.996 3.91

256 × 256 × 256 52.0367 15.127 3.44

512 × 512 × 512 652.9900 248.749 2.62

110 J. Monsegny et al.

Fig. 5. Velocity model 2.5 from the North Sea and the obtained results (a) x0, (b) t0
from the sequential algorithm, and (c) x0, (d) t0 from the parallel algorithm.

5 Conclusions

In this paper, a parallel algorithm for the fast-marching ray-tracing method was
introduced. The proposed algorithm exploits the high computational through-
put of graphics processing units to process in parallel a large number of nodes of
a 3D velocity model. Numerical simulations show that the proposed algorithm
outperforms the sequential algorithm with up to 3.9× speedup, which is a valu-
able speedup improvement in this specific field. However, as future work, other
approaches to update the nodes can be considered to achieve greater speedup
performance. Moreover, even though the GPU was suitable for testing the pro-
posed algorithm, the algorithm can be implemented over other architectures.

Acknowledgments. This work was carried on the “Acuerdo de Cooperación No. 14”
named “Tecnoloǵıas en geoloǵıa y geof́ısica para disminuir la incertidumbre explorato-
ria”, from the Convenio Marco No. 5222395 subscribed between Ecopetrol and the
Universidad Industrial de Santander.

References

1. Cameron, M.K., Fomel, S.B., Sethian, J.A.: Seismic velocity estimation from time
migration. Inverse Prob. 23(4), 1329 (2007)

2. Sethian, J.A.: Fast marching methods. SIAM Rev. 41(2), 199–235 (1999)
3. Monsegny, J., Agudelo, W., et al.: Shortest path ray tracing on parallel GPU devices.

In: 2013 SEG Annual Meeting. Society of Exploration Geophysicists (2013)

Fast Marching Method in Seismic Ray Tracing on Parallel GPU Devices 111

4. Cameron, M., Fomel, S., Sethian, J.: Time-to-depth conversion and seismic velocity
estimation using time-migration velocity. Geophysics 73(5), VE205–VE210 (2008)

5. Li, S., Fomel, S.: A robust approach to time-to-depth conversion and interval veloc-
ity estimation from time migration in the presence of lateral velocity variations.
Geophys. Prospect. 63(2), 315–337 (2015)

6. Fomel, S.: Time-migration velocity analysis by velocity continuation. Geophysics
68(5), 1662–1672 (2003)

Improving Performance and Energy
Efficiency of Geophysics Applications

on GPU Architectures

Pablo J. Pavan1(B), Matheus S. Serpa1, Emmanuell Diaz Carreño2,
Vı́ctor Mart́ınez1, Edson Luiz Padoin1,3, Philippe O. A. Navaux1,

Jairo Panetta4, and Jean-François Mehaut5

1 Informatics Institute, Federal University of Rio Grande do Sul – UFRGS,
Porto Alegre, Brazil

{pjpavan,msserpa,victor.martinez,navaux}@inf.ufrgs.br
2 Department of Informatics, Federal University of Paraná – UFPR,

Curitiba, Paraná, Brazil
edcarreno@inf.ufpr.br

3 Department of Exact Sciences and Engineering,
Regional University of the Northwest of the State of Rio Grande do Sul – UNIJUI,

Ijúı, Brazil
padoin@unijui.edu.br

4 Computer Science Division, Technological Institute of Aeronautics – ITA,
São José dos Campos, Brazil
jairo.panetta@gmail.com

5 Laboratoire d’Informatique de Grenoble, University of Grenoble – UGA,
Grenoble, France

jean-francois.mehaut@imag.fr

Abstract. Energy and performance of parallel systems are an increas-
ing concern for new large-scale systems. Research has been developed in
response to this challenge aiming the manufacture of more energy effi-
cient systems. In this context, this paper proposes optimization methods
to accelerate performance and increase energy efficiency of geophysics
applications used in conjunction to algorithm and GPU memory charac-
teristics. The optimizations we developed applied to Graphics Processing
Units (GPU) algorithms for stencil applications achieve a performance
improvement of up to 44.65% compared with the read-only version. The
computational results have shown that the combination of use read-only
memory, the Z-axis internalization and reuse of specific architecture reg-
isters allow increase the energy efficiency of up to 54.11% when shared
memory was used and increase of up to 44.53% when read-only was used.

Keywords: Geophysics applications · Manycore systems ·
Energy efficiency · GPU

c© Springer Nature Switzerland AG 2019
E. Meneses et al. (Eds.): CARLA 2018, CCIS 979, pp. 112–122, 2019.
https://doi.org/10.1007/978-3-030-16205-4_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16205-4_9&domain=pdf
https://doi.org/10.1007/978-3-030-16205-4_9

Improving Performance of Geophysics Applications on GPU Architectures 113

1 Introduction

Several applications in areas, such as physics simulation, weather forecast, oil
exploration, climate modeling and atomic simulation require high processing
power and efficient models. Some of these scientific applications make use of
stencil computations that include both implicit and explicit Partial Differen-
tial Equations (PDE) solvers [3]. Besides the scientific importance of stencils,
they are interesting as an architectural evaluation benchmark because they have
abundant parallelism and low computational intensity, offering opportunities for
on-chip parallelism and challenges for associated memory systems [3]. Today,
PetaFlops systems allow reaching increasingly accurate results these scientific
applications. To respond to the high processing demand of stencil applications,
High Performance Computing (HPC) systems gather the processing power of
several computational resources to solve these problems.

Scientific simulations may consume weeks of supercomputer time and most
of this time is spent in stencil computations [2]. Continuous changes in the
fabrication process of the microprocessors industry have increased the perfor-
mance of its products and influenced state-of-the-art HPC systems. However,
this exponential increase in computational performance also leads to an expo-
nential growth in power demand [4,8,13]. Reductions in the total execution time
of applications are also relevant for energy consumption, energy is saved when
hardware resources are used for a shorter time.

However, it is possible to achieve even greater energy savings if the appli-
cation is able to exploit the different memory levels available. Today, the com-
bined use of Graphics Processing Units (GPUs) and CPUs in HPC systems has
become a popular choice among the top ranked and yet to come platforms.
Stencil computing is typically memory-bound, memory performance is particu-
larly important for most stencil kernels. GPUs have several processing elements
inside a single die and different memory levels. For this reason, one of the most
important strategies for optimizing the performance of stencil computing is the
optimization of memory access. Besides, stencil computing can be ported to
GPUs with significantly improved performance when compared to implementa-
tions performed on CPUs [9].

The performance of a stencil for a given architecture can be estimated
through the roofline model [16]. This model relates the maximum performance
of code to its computational intensity, considering the speed of memory access
and the processing capacity of the machine [11]. In this paper, we improved
the performance and achieved increase energy efficiency of stencil applications
by improving methods and optimizations of GPU code. Those are used in con-
junction with specific GPU memory characteristics. We focus on analyzing the
impact of the stencil size and usage of different memory hierarchies and registers
of the GPU to improve performance, power demand, energy consumption and
energy efficiency.

The remaining sections of this paper are organized as follows. Section 2 dis-
cusses some of the related works on energy consumption In Sect. 3, we present
the stencils application and details of our versions and optimization developed.

114 P. J. Pavan et al.

In Sect. 4, we present the evaluation methodology used in the conducted experi-
ments and the stencils and their implementation details. In addition, in Sect. 5,
we address the results obtained from the experiments. Finally, the Sect. 6 empha-
sizes the scientific contribution of the work and notes several challenges that we
can address in the future.

2 Related Work

Several studies have evaluated performance of stencils to improve their energy
efficiency in CPUs and GPUs systems. Despite that, the processors and accelera-
tors remain as the component with the highest power demand of the systems [6].
GPUs are made aiming at massively parallel processing, to achieve this they use
hundreds of processing units working together. These characteristics lead to its
superior energy efficiency if compared with CPUs systems [14].

Micikevicius et al. [10] compared the performance of a stencil ported from
CPU to GPU. Their version of the stencil running in a GPU achieved an order
of magnitude higher than running in a contemporary CPU. They conclude that
it is possible to improve their results by the usage of shared memory to reduce
communication overhead.

Bauer et al. [1] showed that the main bottleneck in GPU applications are
related to the memory system. To reduce its impact, they used DMA warps to
improve memory transfer between on-chip and off-chip memories. They achieved
a speedup up to 3.2 times on several kernels form scientific applications.

Schäfer and Fey [15] evaluate a set of algorithms on Fermi GPUs. They
evaluate micro benchmarks using shared memory and found that using only L1
cache creates a problem for its limited throughput. Also, the L2 cache is not a
good option because of cache blocking. They conclude that a new alternative to
use shared memory was needed to overcome communication bottleneck.

Falch and Elster [5] proposed the usage of a manually managed cache to
combine the memory from multiple threads. Using their technique, they achieved
a speedup of up to 2.04 in a synthetic stencil. They concluded that manual
caching is an effective approach to improve memory access and that applications
with regular access patterns are suitable to implement their technique.

Zhou et al. [18] points that the use of GPUs enables considerable gains in
performance compared to using CPU. They have applied GPUs successfully in
many computations and memory intensive realms due to its superior perfor-
mances in float-pointing calculation, memory bandwidth, and power consump-
tion. The results obtained show a speedup of up to 50 times using GPU algorithm
rather than CPU algorithm. In similar works, Zhou et al. [19] obtained a speedup
between 10 and 15 times using a GPU rather than CPU.

Xue et al. [17] also make comparisons between GPU and CPU implementa-
tion. They obtained a speedup up to 18 times in the GPU-based implementation
of a time-reversal imaging micro-seismic event location.

Also, Nikitin et al. [12] obtained average speedup up to 46 times using GPU
for compared to CPU for processing a synthetic seismic data set (data compres-
sion, de-noising, and interpolation).

Improving Performance of Geophysics Applications on GPU Architectures 115

Maruyama and Aoky [9] presents a method for stencil computations on the
NVIDIA Kepler architecture that uses shared memory for better data local-
ity combined with warp specialization for higher instruction throughput, their
method achieves approximately 80% of the value from roof line model estimation.

Hamilton et al. [7] investigate the computational performance of GPU-based
stencil operations using stencils of varying shape and size (ranging from seven
to more than 450 points in size). They found that using an NVIDIA K20 GPU,
data movement, rather than computing, was the bottleneck, and as such, the
performance obtained can be attributed to the effects of the L2 and texture
caches on the card.

Compact stencils are more efficient using the texture cache and require fewer
reads from global memory. The leggy stencils schemes required a significant
portion of global memory bandwidth in order to achieve similar performance as
compact stencils of similar size in points.

Nasciutti and Panetta [11] did a performance analysis of 3D stencils on GPUs
focusing on the proper use of the memory hierarchy. They conclude that the
preferred code is the combination of read only cache reuse, inserting the Z loop
into the kernel and register reuse.

Different to other approaches that allocate workload on CPU and GPU archi-
tectures, or works that use GPUs to achieve considerable performance gains
when compared to traditional CPU architecture, our goal aims to increase the
performance and energy efficiency of stencil application applying methods and
optimization to use different memory levels of the GPUs.

3 Geophysical Model Optmizations

The model simulates the collection of data in a seismic wave propagation. At
intervals of, equipment coupled to the ship emits waves that reflect and refract
on changes of the medium in the subsoil. Eventually, these waves return to the
surface of the sea, being collected by specific microphones (geophones) coupled
to cables towed by the ship. The set of signals received by each geophone over
time constitutes a seismic trace. For each wave emission, the seismic traces of
all cable geophones are recorded. The ship continues to sailing and emits signals
over time.

Acoustic wave propagation approximation is the current backbone for seismic
imaging tools. It has been extensively applied to imaging potential oil and gas
reservoirs beneath salt domes. We consider the model formulated by the isotropic
acoustic wave propagation under Dirichlet boundary conditions over a finite 3D
rectangular domain, prescribing to all boundaries, and the isotropic acoustic
wave propagation. Propagation speed depends on variable density, the acoustic
pressure, and the media density. These applications are modeling and solved
using stencil computations.

In this context, the computational performance of GPU-based stencils have
a great scientific importance as it is used in many areas of scientific computing.
Regarding the capabilities of current GPU architectures, the NVIDIA Kepler

116 P. J. Pavan et al.

SP SP SP

SP SP SP

L1 TexShared

SMX

SP SP SP

SP SP SP

L1 TexShared

SMX

L2 Cache

Global Memory

Fig. 1. Sample of the memory subsystem on a NVIDIA Kepler architecture

provide memories with different characteristics compared with CPUs. One of the
main differences between GPUs and CPUs is the way their memory subsystem
work. In a CPU, access to memory is done by obtaining their data from caches.
Usually looking on L1, L2, L3, and DRAM in that order. On the other hand,
in a GPU the L1 memory cache, is used specifically for accesses to the stack
and register spill, i.e., when too many local variables do not fit in the register
file, and thus some of it has to be cached. L2 memory is used for global accesses
requested by stream processors.

The current GPU have also registers files, a shared memory. They are a
texture memory and a global memory with different characteristics such as size,
speed, read-only memory and in the way that is possible to use them. These
registers were not available in Nvidia GPUs before Kepler architecture. In Fig. 1
is shown an overview of the Kepler GPU architecture, which have different SP
(Stream Processor) in each SMX (Streaming Multiprocessors).

To exploit the use of different memory levels available on current GPU, we
develop three versions of a stencil kernel using each one of the GPU memories.
Each stencil version, give us a different insight of the performance and capabili-
ties of the GPU memory subsystem.

– The first version called naive take no advantage of any of the GPU high-speed
memories and access data only from global memory.

– The second version called shared stores one part of the stencil data in the
shared memory scratchpad. Uses the GPU resources that the naive version
uses, the main difference is that this version also uses the shared-memory
available on each SMX (Streaming Multiprocessors). Each one of the SMX
have one internal shared-memory to store data as shown in Fig. 1. In this
version, data is manually allocated by the programmer through the use of
the shared directive, indicating such data will be shared among all the GPU
threads. The compiler automatically configures the space division between
the L1 cache memory and the shared cache memory, choosing one of three
options: 16 KB for the L1 cache and 48 KB for the shared cache, 32 KB for
each, or 48 KB for the L1 cache and 16 KB for the shared cache.

– The third version called read-only stores most read data in a read-only tex-
ture memory which is faster than shared memory but works with read-only

Improving Performance of Geophysics Applications on GPU Architectures 117

data. This version takes advantage of the read-only cache, this cache is the
SMX memory bank that stores only read data, it is also called texture mem-
ory. Originally it was used only for textures, but starting with the Kepler
architecture any data can be stored in this cache by using the C-99 directive
const restrict. The programmer may also explicitly use this cache through
the intrinsic lgd().

We developed two optimizations for each of the versions to evaluate improve-
ments in performance and energy efficiency by reusing the Z direction data.
Reusing Z direction data is named internalization.

– The int.z version takes advantage of data locality by storing stencil data
for direction Z. This optimization consists of the internalization of the Z-axis
into the threads. Doing the internalization ensures that neighbouring Z-blocks
execute sequentially, increasing the reuse of L2 cache data. Direction Z data
is used to calculate subsequents points in the X-Y direction.

– The int.z.reg version consists of combining the int.z with the usage of registers
to store the Z direction points. For example, to calculate the point Z3 in a
13 points stencil, the neighbouring points in X and Y, as well as points Z1,
Z2, Z3, Z4 and Z5 are required. In order to calculate the points in Z4, points
Z2, Z3, Z4 and Z5 would be availed, and it is necessary to request the global
memory only points Z6, as well as the neighbours in X and Y.

4 Experimental Methodology

Our experiments were developed in a NVIDIA K20m GPU card. The K20m is a
Kepler architecture GPU with 2496 CUDA cores. Each Streaming Multiproces-
sor has a configurable on-chip memory that can be configured as 48/32/16 KB
shared memory with 16/32/48 KB of L1 cache. They also have a faster 48 KB
read-only cache and a 1280 KB shared L2 cache. Table 1 describes in detail the
environment we used.

We used NVIDIA Management Library (NVML) to measure the power usage.
Regarding the energy efficiency measurement, we used the metric of performance
achieved divided by average power. Each experiment was executed 30 times, we
show average values, as well a 95% confidence interval calculated with Student’s
t-distribution.

5 Results

This section shows the optimizations techniques we used to improve the perfor-
mance and energy efficiency of a stencil application. The stencil we used sim-
ulates the propagation of a single wavelet over time. To create the simulation,
it solves the isotropic acoustic wave propagation with constant density under
Dirichlet boundary conditions over a 3D domain. The stencil is a 13-arm with
the following input sizes: (1024×256×256), (2048×256×256), (4096×256×256),
and (7168 × 256 × 256).

118 P. J. Pavan et al.

Table 1. Configuration of GPU system.

Parameter Value

Device Tesla K20m

CUDA Cores 2496 (13 SMXs × 192 SPs/SMX)

Registers 13 × 256 KByte

Cache L1 13 × 64 KByte

Cache L2 shared, 1280 KByte

Texture (read-only) 13 × 48 KByte

Global memory 5 GByte GDDR5

In the following subsections, we describe each optimization and analyze how
they address the performance and energy efficiency improvements. We also show
the results obtained by using the three different memories and the results of the
optimizations applied in each of them, on a NVIDIA Kepler architecture.

5.1 Performance and Energy Efficiency Improvements over Naive
Version

This subsection shows the improvements obtained by using two optimization
techniques over the naive version of the stencil computation. Figure 2 shows the
performance and energy efficiency of the naive version and the optimizations.
The first optimization technique used was the int.z which stores data from direc-
tion Z in local variables aiming to take advantage of the data locality by reusing
these data in the subsequent iterations. The performance and energy efficient
were improved by up to 4.65% and up to 4.55% using the int.z technique over
a naive version. This improvement occurs due to the reuse of L2 cache data
made by this optimization. The number of access in global memory is reduced
by increasing L2 cache hits.

We propose a second optimization called int.z.reg which consists of the int.z
optimization along with the use of the register file to store the Z points. In int.z
Z points were stored only in local variables. Using this optimization performance
overtakes the previous versions with an improvement of up to 34.31% compared
with the naive version. The energy efficiency was also improved by up to 34.30%.
The results show that the usage of registers, which are faster than local variables,
allow us to obtain more performance with a better energy efficiency.

5.2 Performance and Energy Efficiency Improvements over Shared
Memory

In the previous subsection, we showed the optimizations applied in the naive
version. Although the performance and energy efficiency was improved by both
optimizations techniques, the naive version does not take advantage of fast GPU

Improving Performance of Geophysics Applications on GPU Architectures 119

naive int.z int.z.reg

1024 2048 4096 7168
100

150

200

Stencil X-axis size

G
F
L
O

P
S

(a) Performance gain.

1024 2048 4096 7168

2

2.5

3

Stencil X-axis size

G
F
L
O

P
S

/
W

(b) Energy Efficiency gain.

Fig. 2. Improvements over Naive Version which uses Global Memory.

memories as shared memory. Thus, we improved the naive version by using the
shared memory scratch pad to store a slice of data that is reused by the threads
of the same block. The data was manually allocated using the shared directive,
indicating a piece of data shared among all threads. We also applied the int.z
and int.z.reg optimizations aiming to improve the performance of the memory
operations.

The performance and energy efficiency results are showed in Fig. 3. Using this
optimization, performance was improved by up to 2.25% and 54.46% in the int.z
and int.z.reg optimizations compared with the shared memory version. It occurs
due to the data stored in scratch pad is reused by the threads in the following
iterations. The energy efficiency was improved by up to 2.02% and 54.11% using
these optimizations.

5.3 Performance and Energy Efficiency Improvements over
Read-Only Memory

In this subsection, we are showing the improvements obtained when we use both
optimizations and the read-only memory. Since the data we store in the shared
memory was not update we may take advantage of the read-only memory. The
read-only memory is faster than shared memory but exclusively used for read-
only operations. We can explicitly define that global memory reads be stored in
the read-only memory using the lgd() intrinsic.

The int.z optimization over the read.only version achieve a performance
improvement of up to 34.30%. Implementing the int.z.reg that also uses the
register file the performance was improved by up to 44.65%. The energy effi-
ciency was also improved by these optimizations. The int.z version improved
the energy efficiency by up to 34.20% while the int.z.reg improved the efficiency
by up to 44.53% (Fig. 4).

120 P. J. Pavan et al.

shared shared.int.z shared.int.z.reg

1024 2048 4096 7168
100

150

200

Stencil X-axis size

G
F
L
O

P
S

(a) Performance gain.

1024 2048 4096 7168

2

2.5

3

Stencil X-axis size

G
F
L
O

P
S

/
W

(b) Energy Efficiency gain.

Fig. 3. Improvements over Shared Memory.

read.only read.only.int.z read.only.int.z.reg

1024 2048 4096 7168
100

150

200

Stencil X-axis size

G
F
L
O

P
S

(a) Performance gain.

1024 2048 4096 7168

2

2.5

3

Stencil X-axis size

G
F
L
O

P
S

/
W

(b) Energy Efficiency gain.

Fig. 4. Improvements over Read-only Memory.

6 Conclusion

Several scientific applications make use of stencil computations to their model
simulations. Stencils have both implicit and explicit PDE being so also interest-
ing as an architectural evaluation benchmark. The computing present in these
applications are low intensity, once that they are typically memory-bound. In
this form, memory optimizations are important for to use the fastest memories
available in GPUs and increase their the energy efficiency.

In this paper, aim to achieve energy savings, we introduce methods and opti-
mization to stencil application that exploit the different memory levels available.
Our developed methods, which are used in conjunction with specific GPU mem-
ory characteristics, allow to use the read-only cache and also the shared memory.
Also, our developed optimization allows to combine the Z-axis internalization of
stencil application with the reuse of registers of GPU architecture.

The main contribution of this paper is performance and energy efficiency
increases when applied GPU-algorithms and optimization over stencil application.

Improving Performance of Geophysics Applications on GPU Architectures 121

Our developed GPU-optimized algorithms for stencil applications achieve perfor-
mance improvement of up to 54.11% and 44.53% when were used shared memory
and read-only cache respectively over the naive version. This increase in computa-
tional performance also improves the energy efficiency in an equivalent value, once
that our methods and optimization do not increase the power demand.

Changes in the GPU architecture, as in the case of the introduction of the
read-only cache in the Kepler architecture, can generate changes in the results
presented in this work. In the future, we plan to investigate methods and opti-
mization to achieve gains in stencil applications over new NVIDIA architecture
and Intel Xeon Phi.

Acknowledgments. This research has received funding from the EU H2020 Pro-
gramme and from MCTI/RNP-Brazil under the HPC4E Project, grant agreement
n.o 689772. It was also supported by Intel under the Modern Code project, and the
PETROBRAS oil company under Ref. 2016/00133-9. We also thank to RICAP, par-
tially funded by the Ibero-American Program of Science and Technology for Develop-
ment (CYTED), Ref. 517RT0529.

References

1. Bauer, M., Cook, H., Khailany, B.: Cudadma: optimizing GPU memory bandwidth
via warp specialization. In: Proceedings of 2011 International Conference for High
Performance Computing, Networking, Storage and Analysis, SC 2011, pp. 12:1–
12:11. ACM, New York (2011). https://doi.org/10.1145/2063384.2063400. http://
doi.acm.org/10.1145/2063384.2063400

2. de la Cruz, R., Araya-Polo, M.: Towards a multi-level cache performance model
for 3D stencil computation. Procedia Comput. Sci. 4, 2146–2155 (2011)

3. Datta, K., et al.: Stencil computation optimization and auto-tuning on state-of-the-
art multicore architectures. In: Proceedings of the 2008 ACM/IEEE Conference on
Supercomputing, p. 4. IEEE Press (2008)

4. Dong, Y., Chen, J., Tang, T.: Power measurements and analyses of massive object
storage system. In: Proceedings of the International Conference on Computer and
Information Technology (CIT), pp. 1317–1322. IEEE Computer Society (2010).
https://doi.org/10.1109/CIT.2010.237

5. Falch, T.L., Elster, A.C.: Register caching for stencil computations on GPUs. In:
2014 16th International Symposium on Symbolic and Numeric Algorithms for Sci-
entific Computing, pp. 479–486. IEEE, September 2014. https://doi.org/10.1109/
SYNASC.2014.70

6. Feng, X., Ge, R., Cameron, K.W.: Power and energy profiling of scientific applica-
tions on distributed systems. In: International Parallel and Distributed Processing
Symposium (IPDPS), International Conference on Performance Engineering, p. 34.
IEEE (2005). https://doi.org/10.1109/IPDPS.2005.346

7. Hamilton, B., Webb, C.J., Gray, A., Bilbao, S.: Large stencil operations for GPU-
based 3-d acoustics simulations. In: Proceedings of the Digital Audio Effects
(DAFx), Trondheim, Norway (2015)

8. Laros, J., et al.: Topics on measuring real power usage on high performance com-
puting platforms. In: Proceedings of the International Conference on Cluster Com-
puting and Workshops (ICCC), pp. 1–8 (2009). https://doi.org/10.1109/CLUSTR.
2009.5289179

https://doi.org/10.1145/2063384.2063400
http://doi.acm.org/10.1145/2063384.2063400
http://doi.acm.org/10.1145/2063384.2063400
https://doi.org/10.1109/CIT.2010.237
https://doi.org/10.1109/SYNASC.2014.70
https://doi.org/10.1109/SYNASC.2014.70
https://doi.org/10.1109/IPDPS.2005.346
https://doi.org/10.1109/CLUSTR.2009.5289179
https://doi.org/10.1109/CLUSTR.2009.5289179

122 P. J. Pavan et al.

9. Maruyama, N., Aoki, T.: Optimizing stencil computations for NVIDIA Kepler
GPUs. In: Proceedings of the 1st International Workshop on High-Performance
Stencil Computations, Vienna, pp. 89–95 (2014)

10. Micikevicius, P.: 3D finite difference computation on GPUs using CUDA. In: Pro-
ceedings of 2nd Workshop on General Purpose Processing on Graphics Processing
Units, GPGPU-2, pp. 79–84. ACM, New York (2009). https://doi.org/10.1145/
1513895.1513905. http://doi.acm.org/10.1145/1513895.1513905

11. Nasciutti, T.C., Panetta, J.: Impacto da arquitetura de memória de GPGPUs
na velocidade de computaçãpoundso de estênceis. In: XVII Simpósio de Sistemas
Computacionais (WSCAD-SSC), Aracaju, SE, pp. 1–8 (2016)

12. Nikitin, V.V., Duchkov, A.A., Andersson, F.: Parallel algorithm of 3D wave-packet
decomposition of seismic data: implementation and optimization for GPU. J. Com-
put. Sci. 3(6), 469–473 (2012)

13. Padoin, E.L., de Oliveira, D.A.G., Velho, P., Navaux, P.O.A., Mehaut, J.F.: ARM-
based cluster: performance, scalability and energy efficiency. In: 4th Workshop
on Applications for Multi-Core Architectures (WAMCA SBAC-PAD), Porto de
Galinhas, PB, Brasil, pp. 1–6 (2013)

14. Padoin, E.L., Pilla, L.L., Boito, F.Z., Kassick, R.V., Velho, P., Navaux, P.O.: Eval-
uating application performance and energy consumption on hybrid CPU+GPU
architecture. Cluster Comput. 16(3), 511–525 (2013)

15. Schafer, A., Fey, D.: High performance stencil code algorithms for GPGPUs. Pro-
cedia Comput. Sci. 4, 2027–2036 (2011). https://doi.org/10.1016/j.procs.2011.04.
221. http://www.sciencedirect.com/science/article/pii/S1877050911002791. Pro-
ceedings of the International Conference on Computational Science, ICCS 2011

16. Williams, S., Waterman, A., Patterson, D.: Roofline: an insightful visual
performance model for multicore architectures. Commun. ACM 52(4), 65–
76 (2009). https://doi.org/10.1145/1498765.1498785. http://doi.acm.org/10.1145/
1498765.1498785

17. Xue, Q., Wang, Y., Zhan, Y., Chang, X.: An efficient GPU implementation for
locating micro-seismic sources using 3D elastic wave time-reversal imaging. Com-
put. Geosci. 82, 89–97 (2015)

18. Zhou, G., et al.: A novel GPU-accelerated strategy for contingency screening of
static security analysis. Int. J. Electr. Power Energy Syst. 83, 33–39 (2016)

19. Zhou, J., Unat, D., Choi, D.J., Guest, C.C., Cui, Y.: Hands-on performance tun-
ing of 3D finite difference earthquake simulation on GPU fermi chipset. Procedia
Comput. Sci. 9, 976–985 (2012)

https://doi.org/10.1145/1513895.1513905
https://doi.org/10.1145/1513895.1513905
http://doi.acm.org/10.1145/1513895.1513905
https://doi.org/10.1016/j.procs.2011.04.221
https://doi.org/10.1016/j.procs.2011.04.221
http://www.sciencedirect.com/science/article/pii/S1877050911002791
https://doi.org/10.1145/1498765.1498785
http://doi.acm.org/10.1145/1498765.1498785
http://doi.acm.org/10.1145/1498765.1498785

FleCSPHg: A GPU Accelerated
Framework for Physics and Astrophysics

Simulations

Julien Loiseau, François Alin, Christophe Jaillet, and Michaël Krajecki(B)

CReSTIC Laboratory EA3804, University of Reims Champagne-Ardenne,
Reims, France

{julien.loiseau,francois.alin,christophe.jaillet,
michael.krajecki}@univ-reims.fr

Abstract. This paper presents FleCSPHg, a GPU accelerated frame-
work dedicated to Smoothed Particle Hydrodynamics (SPH) and gravi-
tation (FMM) computation. Astrophysical simulations, with the case of
binary neutron stars coalescence, are used as test cases. In this context
we show the efficiency of the tree data structure in two conditions. The
first for near-neighbors search with SPH and the second with N-body
algorithm for the gravitation computation.

FleCSPHg is based on FleCI and FleCSPH developed at the Los
Alamos National Laboratory. This work is a first step to provide a multi-
physics framework for tree-based methods.

This paper details either SPH, FMM methods and the simulation we
propose. It describes FleCSI and FleCSPH and our strategy to divide
the work load between CPU and GPU. The CPU is associate with the
tree traversal and generates tasks at a specific depth for the GPU. These
tasks are offloaded to the GPU and gathered on the CPU at the end of
the traversal.

The computation time is up to 3.5 times faster on the GPU version
than classical CPU. We also give details on the simulation itself for the
binary neutron star coalescence.

Keywords: HPC · Hybrid architectures ·
Smoothed Particle Hydrodynamics · Simulation

1 Introduction

The Laser Interferometer Gravitational-Wave Observatory (LIGO) recently
made another detection of a major astrophysical event. A binary neutron stars
(BNS) coalescence and the inherent gravitational waves have been observed in
August 17 2017 [1]. In order to extend their models with these observations,
domain scientists such as physicists or astrophysicists need more scalable and
reliable tools to simulate these complex events. The Smoothed Particle Hydrody-
namics (SPH) method fits perfectly for these simulations and is very reliable for
c© Springer Nature Switzerland AG 2019
E. Meneses et al. (Eds.): CARLA 2018, CCIS 979, pp. 123–137, 2019.
https://doi.org/10.1007/978-3-030-16205-4_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16205-4_10&domain=pdf
https://doi.org/10.1007/978-3-030-16205-4_10

124 J. Loiseau et al.

hydrodynamics behaviors. It can also be use in addition to classical gravitation
computation required in these cases.

In this context we decided to provide a framework dedicated to the tree topol-
ogy for hybrid architectures. This framework is called FleCSPHg and is part of
the FleCSI project from Los Alamos National Laboratory. This work will be
included in the near future to the FleCSI project to provide a multi-physics
framework providing several topologies such as meshes, graphs and trees. The
final intent is to take care of load balancing, domain decomposition and even
hybrid architectures for the domain scientists at very large scale up to the Exas-
cale. We consider astrophysical simulations as a perfect candidate for our devel-
opment because it gathers both hydrodynamics and gravitation computation,
one using neighbor search and the other N-body computation.

There are many related works concerning SPH and the gravitation imple-
mentations. We can cite 2HOT [18] that introduced the Hashed Octtree data
structure used in FleCSPH, GADGET-2 [16] and GIZMO [9]. The most recent
publication is GASOLINE [17] which is based on PKDGRAV, a specific tree
plus gravity implementation. Several codes already implement accelerators such
as GPU with tree construction and traversal, one can cite GOTHIC [13], pre-
senting gravitational tree code accelerated using the latest Fermi, Kepler and
Maxwell architectures. These implementations focus on SPH problems and does
not provide a general purpose and multi-physics framework like FleCSI, FleC-
SPH and our contribution with FleCSPHg.

The paper consists of three parts. In the first one, we detail the Smoothed
Particle Hydrodynamics and Fast Multipole Methods from a physics point of
view. We present the computer science problems inherent to the implementation
in the same time. The second part develops the FleCSI and FleCSPH implemen-
tation and chooses for domain decomposition, load balancing and the tree data
structure. The third part details our hybrid version of FleCSPH, FleCSPHg,
using GPUs as accelerators. We develop the choices for the tasks distribution
between the CPU and GPU. The last part summarizes the results from both
classical and hybrid versions and shows the simulations produced.

2 Simulation, Binary Neutron Stars

This part develops the Smoothed Particle Hydrodynamics method and the grav-
itation computation using Fast Multipole Method. This gives hints on the com-
plexity and the tools involved in the multi-GPU implementation.

2.1 Smoothed Particle Hydrodynamics

Smoothed Particle Hydrodynamics (SPH) is an explicit numerical mesh-free
Lagrangian method. It is used to solve hydrodynamical partial differential equa-
tions (PDEs) by discretized them into a set of fluid elements called particles. This
computational method was invented for the purpose of astrophysics simulations

FleCSPHg: A GPU Framework for Astrophysics 125

Fig. 1. SPH kernel W and smoothing length h representation

by Monaghan, Gingold and Lucy in 1977 [8,12]. This first SPH work only con-
served mass and they later proposed a method which also conserves linear and
angular momenta [7]. The method was extended for general fluid simulations and
many more fields from ballistics to oceanography. The development of new reli-
able, parallel and distributed tools for this method is a challenge for future HPC
architectures with the upcoming exascale systems. The method, as illustrated
in Fig. 1, computes the evolution of a group of particles representing physical
quantities. These physical quantities are either invariant or computed for every
particle at each step regarding its neighbors in the radius of its smoothing length
h. The particles in this radius are then valued according to their distance using
a smoothing function W , also called a kernel. The fundamental SPH formula-
tion computes the physical value of any quantity Q of a particle a regarding its
neighbors’ particles b by:

Q(r)a �
∑

b

mb

ρb
Q(r b)W (|r − r b|, h) (1)

The particle structure of SPH easily combines with tree methods for solving
Newtonian gravity through N-body simulations. As a mesh-free method, it avoids
the need of grid to calculate the spatial derivatives.

In this work, we are solving Lagrangian conservation equations (Euler equa-
tions) for density, energy and momentum of an ideal fluid [11] such that:

dρ

dt
= −ρ(∇ · v),

du

dt
= −P

ρ
(∇ · v),

dv

dt
= −1

ρ
(∇P) (2)

with ρ the density, P the pressure, u the internal energy and v the velocity, ∇
the nabla operator and where d/dt = ∂/∂t +v ·∇ which is convective derivative.

We can formulate the Newtonian SHP scheme [15] by using the volume ele-
ment Vb = mb/ρb. For example, the density is given by:

ρa =
∑

b

mbWab(ha) (3)

where Wab = W (|ra − r b|, h) is the smoothing kernel.

126 J. Loiseau et al.

In addition to the density computation we introduce the Equation Of State
(EOS) for our binary neutron star simulation, used to compute the pressure:

P = Aργ (4)

With A, the adiabatic factor and γ = 2 the heat ratio.
The equations we would like to solve allow for emergence of discontinuities

from smooth initial data. At discontinuities, the entropy increases in shocks.
That dissipation occurs inside the shock-front. The SPH formulation here is
inviscid so we need to handle this dissipation near shocks. There are numer-
ous ways to handle this problem, but the most widespread approach is to add
artificial viscosity (or artificial dissipation) terms in SPH formulation. There-
fore, we express the equations for internal energy and acceleration with artificial
viscosity:

dua

dt
=

∑

b

mb

(
Pa

ρ2a
+

Πab

2

)
vab · ∇aWab (5)

dva

dt
= −

∑

b

mb

(
Pa

ρ2a
+

Pb

ρ2b
+ Πab

)
∇aWab (6)

Πab is the artificial viscosity tensor. As long as Πab is symmetric, the conser-
vation of energy, linear and angular momentum is assured by the form of the
equation and antisymmetric gradient of kernel with respect to the exchange of
indices a and b. Πab may be define in different ways and here we use [14] such
as:

Πab =

{−αc̄abμab+βμ2
ab

ρ̄ab
for rab · vab < 0

0 otherwise
,with μab =

h̄abrab · vab

r2ab + εh̄2
ab

(7)

We used cs =
√

∂p
∂ρ . The values of ε, α, and β have to be set regarding the

problem targeted. In our case we defined: ε = 0.01h2, α = 1.0, and β = 2.0.
There are many possibilities for the smoothing function, called the kernel.

For the BNS simulation we used the Monaghan’s cubic spline kernel given by:

W (rij , h) =
σ

hD

⎧
⎪⎨

⎪⎩

1 − 3
2q2 + 3

4q3 if 0 ≤ q ≤ 1
1
4 (2 − q)3 if 1 ≤ q ≤ 2
0 otherwise

, with σ =

⎧
⎪⎨

⎪⎩

2
3 for 1D
10
7π for 2D
1
π for 3D

(8)

where q = r/h, r the distance between the two particles, D is the number of
dimensions and σ is a normalization constant.

In the computation of forces, we also need to apply the gradient of the
smoothing kernel.

The main downside in the implementation of this method is the requirement
for local computation on every particle. The particles have to be grouped locally
to perform the computation of (3), (5) and (6). A communication step is needed
before and after (3) to get the local physical data to be able to compute (5) and
(6). The tree data structure allows us to perform O(Nlog(N)) neighbors search
but also add a domain decomposition and distribution layer.

FleCSPHg: A GPU Framework for Astrophysics 127

Fig. 2. Fast Multipole Method schematics. Particles to Multipole (P2M), Multipole to
Multipole (M2M), Multipole to Particles (M2P), Multipole to Local (M2L), Local to
Local (L2L) and Particles to Particles (P2P). Schematic inspired from [19]

2.2 Fast Multipole Methods for Gravitation

In order to consider astrophysics problems, we need to introduce self-gravitation
and gravitation. Each particle implies an action on the others based on its dis-
tance and mass. The equation of gravitation for a particle i with j other particles
is:

fai =
∑

j

−G
mimj

|rij |3
rij (9)

This computation involve an O(N2) complexity and is thus not applicable
directly. We used the method called Fast Multipole Method, FMM and discussed
in [5]. This method is perfectly adapted to a tree representation of the domain
and particles.

This method aims to compute the gravitation up to an approximation deter-
mined by the user. Details are given in Fig. 2, from left bottom to right bottom for
a group of particles. We identify three main actors in this method. The Particles
themselves on which we need to compute gravitation regarding the others. The
Multipoles and the Locals which are called the center of masses, representing
a sub-group of particles. They are used from bottom-up and top-down point of
view for the data and computation, respectively.

In order to compute the gravitation for a group of particles in the domain the
algorithm is split in sub-routines. Particles to Particles (P2P): for the particles
that are close we use the direct O(N2) algorithm. This is the part growing if
the user desires more accurate results. Particles to Multipoles (P2M): gather the
data of all the sub-particles to the centers of mass, the multipoles. This is the
first layer of the tree, the leaves. Multipoles to Multipole (M2M): gather the data
of multipoles on higher level of the tree from the leaves to the root. Multipoles
to Local (M2L): compute the gravitation part of all the distant multipole to the
local. Local to Local (L2L): go down in the tree and spread the component to
sub-locals. Local to Particles (L2P): when a leaf of the tree is reached, compute

128 J. Loiseau et al.

the application of the local for all sub-particles. The last step is the summation,
for both P2P and L2P the two interactions are summed up to compute the
gravitation applied to the particles.

This scheme has to be repeated for every group of particles. The P2M-M2M
steps are done just once before the FMM method for all the groups of particles.
For the choice between either P2P or M2L we use a criterion call MAC, Multipole
Acceptance Criterion. FleCSPH is based on an angle between the local center
of mass and the edge of distant multipole. If the angle fits the criterion we use
the current multipole, otherwise it goes lower in the tree to consider smaller
multipole. If the criterion never matches, it is too close and consider P2P.

The classical computation presented in Eq. 9 is used for the P2P step. We
use a Taylor series for the case of distant multipoles. The gravitation from Eq. 9
can be approximate on a particle at position r by the gravitation computed at
the multipole at position rm :

f (r) = f (rm) + ||∂f
∂r

|| · (r − rm) +
1
2
(r − rm)ᵀ · || ∂f

∂r∂r
|| · (r − rm) (10)

The equations of Jacobi and Hessian terms are used during the M2L step.
In order to go down in the tree and apply the gravitation to locals and then
particles in L2L and L2P we use Eq. 10.

This method imposes a lot of communications and exchanges between the
processes. The particles are separated for each process in the current distributed
version of FleCSPH. The multipole M2L computation imposes to share data as
each of them will hold part of the particles. The P2P computation will face issues
on the edge of each sub-domain, a halo of particle will have to be shared.

3 FleCSI and FleCSPH

In this section we present FleCSI and the strategies defined in FleCSPH to target
SPH and FMM methods efficiently.

3.1 FleCSI

FleCSI1 [6] is a compile-time configurable framework designed to support multi-
physics application development. It is developed at the Los Alamos National
Laboratory as part of the Los Alamos Ristra project. FleCSI provides a very gen-
eral set of infrastructure design patterns that can be specialized and extended
to suit the needs of a broad variety of solver and data requirements. FleCSI
currently supports multi-dimensional mesh topology, geometry, and adjacency
information, as well as n-dimensional hashed-tree data structures, graph parti-
tioning interfaces, and dependency closures.

1 http://github.com/laristra/flecsi.

http://github.com/laristra/flecsi

FleCSPHg: A GPU Framework for Astrophysics 129

FleCSI introduces a functional programming model with control, execution,
and data abstractions that are consistent with both MPI and with state-of-the-
art, task-based runtimes such as Legion [4] and Charm++ [10]. The abstraction
layer insulates developers from the underlying runtime, while allowing support
for multiple runtime systems including conventional models like asynchronous
MPI.

The intent is to provide developers with a concrete set of user-friendly pro-
gramming tools that can be used now, while allowing flexibility in choosing
runtime implementations and optimization that can be applied to future archi-
tectures and runtimes.

FleCSI currently provides a parallel but not distributed implementation of
Binary, Quad and Oct-tree topology. This implementation is based on space fill-
ing curves domain decomposition, the Morton order. The current version allows
the user to specify the code main loop and the data distribution requested. The
data distribution feature is not available for the tree data structure needed in
the SPH code and it is provided in FleCSPH’s implementation. The next step
will be to incorporate it directly from FleCSPH to FleCSI as it reaches a decent
level of performance. As FleCSI is an on-development code the structure may
change in the future and FleCSPH keeps track of its updates.

Based on FleCSI the intent is to provide a binary, Quadtree and Octree data
structure and the methods to create, search and share information for it. In FleC-
SPH this will be dedicated, applied and tested on the SPH method. FleCSPHg
is a GPU accelerated version of FleCSPH and thus we need to present FleCSPH
briefly. In the next part we first present the domain decomposition, based on
space filling curves, and the tree data structure. We describe the distributed
algorithm for the data structure over the MPI processes.

3.2 FleCSPH

FleCSPH2 is a framework initially created as a part of FleCSI. The purpose of
FleCSPH is to provide a data distribution and communications patterns to use
the tree topology provided in FleCSI applied to SPH. The last step will be to
integrate it in FleCSI for all kind of tree-based computation. As presented in the
previous sections, SPH and FMM are very good candidates to benchmark the
binary, quad and oct tree topology. Figure 3 presents how FleCSI and FleCSPH
are integrated. FleCSPH is based on the tree topology of FleCSI and follows the
same structure defined in FleCSI. The default runtime in FleCSI is Legion but
this in-development code does not allow us to do more than static data distribu-
tion. This is why we decided to work with the MPI runtime in FleCSPH. These
MPI functions can then be integrated to FleCSI to generate group of particles
and labeled them. This behavior which associate color to particles regarding
their locality and usage is called coloring in FleCSI.

2 http://github.com/laristra/flecsph.

http://github.com/laristra/flecsph

130 J. Loiseau et al.

Fig. 3. FleCSI and FleCSPH frameworks

1

10 11

1120 1122

12 13

130 131112 123

1230 1233

Fig. 4. Quadtree, space and data representation

Domain Decomposition: The domain decomposition in FleCSPH is done using
Morton ordering. This is used for both particles distribution and tree construc-
tion. Every particle is associated to key built on its position in space by interlac-
ing bits. The keys are generated at every iteration for the particles to keep track
of the evolution of their positions. We use up to 64 bits keys in this version.
That give us up to 63, 31 and 21 levels in the tree for respectively 1, 2 and 3
dimensions. As presented on Fig. 4 the first bit is use to represent the root of
the tree, 1. This allows us to have up to 263 different keys and unique particles.

Hierarchical Trees. The method we use for the tree data structure creation
and research comes from Barnes-Hut trees presented in [2,3]. This allows us to
target very large simulations by reducing the search complexity from O(N2) for
direct summation to O(Nlog(N)). It is used in the gravitation computation,
each branch of the tree considered as a multipole.

We consider binary trees, for 1 dimension, quad-trees, for 2 dimensions, and
oct-trees, for 3 dimensions. The construction of those trees is directly based on
the domain decomposition using keys from Morton ordering.

Tree Search: After the construction of the tree, the data regarding the tree
nodes are computed with a bottom-up approach. The Center Of Mass (COM)

FleCSPHg: A GPU Framework for Astrophysics 131

are generated by summing up the mass, position and the boundary box of all
sub-particles of this tree node.

For the search algorithm the basic idea would be to do a tree traversal for
all the particles and once we reach a particle or a node that interacts with the
particle smoothing length, add it for computation or in a neighbor list. Beside of
being easy to implement and to use in parallel this algorithm requires a full tree
traversal for every particle and will not take advantage of the particles’ locality.

Fig. 5. Neighbors search using a tree traversal per particle vs a group of particle and
computing an interaction list

The search algorithm in FleCSPH is a two-step algorithm like in Barnes
trees: First create the interaction lists and then using them on the sub-tree
particles. In the first step it looks down for nodes with a target sub-mass of
particles tmass. It computes an interaction list for these branches and continues
the recursive tree search. It computes the physics when a particle is reached,
using the interaction list as the neighbors. This way it will not need a full tree
traversal for each particle but a full tree traversal for every group of particles.
On Fig. 5 we present the classical and the two steps algorithm. We see that the
first method, on left, force to do one walk per particle, compute the interaction
list and then apply to particles. On the left, the two-step method, only performs
one tree traversal for the whole block of particles, computes the interaction list
and then processes to the local computation. The last step implies a N-body
computation with the O(N2) algorithm but regarding a very small amount of
particles.

Distribution Strategies: FleCSPH is based on a Bulk Synchronous Parallelism
(BSP) model. The particles and neighbors are computed and can be exchanged
as much as needed during the current iteration. FleCSPHg does not focus on
the distribution since we target the local particles interactions. This part stays
the same as in the FleCSPH implementation.

132 J. Loiseau et al.

Fig. 6. Task resolution using GPUs

4 FleCSPHg

The FleCSPH framework provides all the tools and distribution strategies for
multi-CPU and distributed computation. In order to target hybrid architectures
several approaches were possible.

The first one is to implement the whole tree traversal and data representation
on GPU. This strategy imposes several downsides especially for asynchronous
communication. The data structure of FleCSI and FleCSPH does not allows
the full transformation of the data structure into CUDA code and, furthermore,
this would transform the framework into a problem dependent API. Even if the
performances would be slightly better, the aim of this framework is to target
multi-physics problems and thus general.

The second strategy is to add the accelerator on the hot-spots of FleCSPH,
the lower levels of the tree traversal and the physics computation. The smoothing
length computation is a tree traversal that lead to a group of particles and their
neighbors. We decided to offload the N-body O(N2) physics computation on
accelerators.

Figure 6 presents the distribution of tasks with the accelerator. The tree
traversal itself stays on the host processor and lower part of the tree are offloaded
to the accelerators. The traversal is done in parallel on the host and, when a
group of particles and its neighbors list is reached, the data are transferred to
the GPU for computation. The GPU is fully used for regularized computation
and the CPU handles the data structure, with this method. At the end of the
tree traversal, the CPU waits for last GPU tasks to complete and gather the
result or start another traversal leaving data on GPUs.

Figure 7 shows the work balancing that face two side cases. On one hand,
the CPU and GPU keep exchange data for very small amount of computation
if the distribution is done on low branches. On the opposite, the O(N2) part is
too important if the CPU depth is too high in the tree. We choose the value to
be configured by the user and defaulted at 211.

The number of local particles reduces the number of processes grows. On
Fig. 8 the percent of tasks regarding the total number of particles is detailed

FleCSPHg: A GPU Framework for Astrophysics 133

Fig. 7. CPU-GPU tasks work balancing Fig. 8. CPU-GPU tasks work balancing

respectively to the number of GPUs used. It reaches 100% when the number of
local particles is low (here around 80k) and the best way to use the GPU is then
to do the direct O(N2) algorithm on all the particles. This is determined empir-
ically in the current version of FleCSPHg, based on the time of one iteration.
As further work, we need to find ways to determine these factors dynamically
during the computation.

4.1 Physics on Accelerators

The computation of physics is slightly different on accelerators. Indeed, the CPU
send to the GPU indexes with the particles and their possible neighbors. The
GPU performs a brute force computation with the O(N2) algorithm. It keeps
checking if the particles received are inside the smoothing length radius. The
target particle is loaded in local memory and its neighbors are stored in the
local memory for a WARP based computation. The threads then iterate on the
local particles and output together in global memory.

In FleCSPHg the user provides CUDA functions using the same signature.
The function can then be applied using the tree traversal in collaboration with
the CPU or targeting the local particles only for specific operations. This allows
to target the main computations needed in smoothed particles hydrodynamics.
The data transfers, kernel size and launch are handle by our framework.

The data transfers are triggered automatically when the particles are dis-
tributed or manually when a part is computed on the host instead of the device.
As the number of particles evolve at every iteration, the memory of the GPU is
allocated at each new steps.

5 Results

In this part we compare the results of the multi-GPU version and the multi-CPU
version of FleCSPH. We detail the results for the binary neutron star coalescence
simulation.

134 J. Loiseau et al.

Fig. 9. CPU vs GPU computation time
per iteration

Fig. 10. CPU vs GPU computation time
per tree traversal

Table 1. Time for one iteration CPU
vs GPU on one million particles

#CPU/GPU CPU GPU

1 723 203

2 265 64

4 48 24

8 12 9

16 9 4

Table 2. Time for one tree traversal CPU
vs GPU on one million particles

#CPU/GPU CPU GPU

1 230 54

2 83 20

4 14 4

8 2 1

16 2 .5

5.1 Performances

The tests were made on the computation time of an iteration and the tree
traversal itself of FleCSPHg. All the tests below were made on the ROMEO
supercomputer of the University of Reims Champagne-Ardenne. This hybrid
machine is equipped with 140 nodes. Each node provides two E5-2650v2 8c
2.6 GHz Intel CPUs, 32 GB of RAM and two NVIDIA Tesla K20Xm Kepler
GPUs. The K20Xm provides 2688 CUDA cores and 6 GB of RAM memory. The
interconnect of the supercomputer is a Fat Tree on Infiniband FDR providing
up to 10 Gbs of bandwith.

On Fig. 9 and Table 1 we see the strong scaling and times tests for CPU and
GPU version using the empiric best depth of repartition. The time comparison
with strong scaling shows us that the GPU version go faster than the CPU one
with a peak of 3.5 times faster and up to two times faster with 16 CPUs/GPUs.
The time for one iteration with one million particles reaches 4 s using 16 GPUs
in FleCSPH.

The detail of the traversal computation time is given on Fig. 10 and Table 2.
In the BNS computation each iteration contains at least three tree-traversal and
two communications steps. The hyper-scalability we observe can be explain by
the traversal time decreasing, impacting three times the iteration computation.

FleCSPHg: A GPU Framework for Astrophysics 135

Fig. 11. Binary Neutron Stars coalescence with 40.000 particles.

5.2 Simulations

The results and tests were done on several physical and astrophysical simulations
in order to check the code behavior and reliability. We present here the astro-
physical test that use both SPH and FMM computation with a high number of
particles.

The initial data were generated using python 3.5 to compute the position,
mass and smoothing length of every particles. It is based on the Lane-Emden
equation to compute the density regarding the star radius and the smoothing
length based on a grid lattice. A first step is done for the relaxation, the particles
are set to a stable position and number of neighbors. After that, the relaxed
system will then evolve following the equations proposed in Sect. 2.

Figure 11 presents the binary neutron star coalescence for 40.000 particles.
The computation took 2 h on four nodes of the supercomputer ROMEO. This
simulation is done with a total of 750 outputted steps with more than 100,000
iterations. We are currently running simulations with millions of particles on
more nodes of the supercomputer. The scalability allows us to even run on the
whole ROMEO supercomputer for simulation involving billions of particules.

Figure 12 details the linear momentum for the previous simulation. We see
that the momentum is conserved with variations up to 1.4e−3. This shows the
reliability of the SPH and FMM method in this case. The irregularities are due
to approximation made in the FMM computation itself.

136 J. Loiseau et al.

Fig. 12. Momentum evolution for the BNS simulation regarding the outputted
iterations

6 Conclusion

This paper presents FleCSPHg, a GPU accelerated framework. It is based on
both FleCSI and FleCSPH frameworks targeting multi-physics and tree topology
implementation, respectively. FleCSPH and FleCSPHg are a first step on the way
for a full multi-physics tool including multiple data topologies such as meshes,
graphs, trees, etc.

The approach developed in this document is to offload the sub-part of the
tree, the physics computation, from the host to the device. The number of tasks
generated but also their weight in term of work is determined by the depth in
the tree. We defined this factor, in addition to the number of threads per block
and blocks per grid, empirically. These refinements gave a speedup up about
3.5 times faster using GPUs compared to the classical FleCSPH code with only
CPUs.

The next step of this work will be to include our tree strategies from FleCSPH
and then FleCSPHg in the FleCSI framework to complete it. The current code
is based on MPI and we will need to be compliant with other frameworks like
Legion and Charm++.

Acknowledgement. We would like to thanks the ROMEO supercomputer center on
which all the tests below were performed. This work is part of the FleCSI and FleCSPH
development. We would like to thanks the Los Alamos National Laboratory and the
CCS-7 for the contributions on this work.

References

1. Abbott, B.P., et al.: GW170817: observation of gravitational waves from a binary
neutron star inspiral. Phys. Rev. Lett. 119(16), 161101 (2017)

2. Barnes, J., Hut, P.: A hierarchical O(N log N) force-calculation algorithm. Nature
324(6096), 446–449 (1986)

3. Barnes, J.E.: A modified tree code: don’t laugh; it runs. J. Comput. Phys. 87(1),
161–170 (1990)

FleCSPHg: A GPU Framework for Astrophysics 137

4. Bauer, M., Treichler, S., Slaughter, E., Aiken, A.: Legion: expressing locality and
independence with logical regions. In: Proceedings of the International Conference
on High Performance Computing, Networking, Storage and Analysis, p. 66. IEEE
Computer Society Press (2012)

5. Beatson, R., Greengard, L.: A short course on fast multipole methods. Wavelets
Multilevel Methods Elliptic PDEs 1, 1–37 (1997)

6. Bergen, B., Moss, N., Charest, M.R.J.: Flexible computational science infrastruc-
ture. Technical report, Los Alamos National Laboratory (LANL), Los Alamos,
NM, United States (2016)

7. Gingold, R., Monaghan, J.: Kernel estimates as a basis for general particle methods
in hydrodynamics. J. Comput. Phys. 46(3), 429–453 (1982)

8. Gingold, R.A., Monaghan, J.J.: Smoothed particle hydrodynamics: theory and
application to non-spherical stars. Mon. Not. R. Astron. Soc. 181(3), 375–389
(1977)

9. Hopkins, P.F.: Gizmo: multi-method magneto-hydrodynamics+ gravity code.
Astrophysics Source Code Library (2014)

10. Kale, L.V., Krishnan, S.: CHARM++: a portable concurrent object oriented sys-
tem based on C++. ACM SIGPLAN Not. 28, 91–108 (1993)

11. Landau, L.D., Lifshitz, E.M.: Fluid mechanics (1959)
12. Lucy, L.B.: A numerical approach to the testing of the fission hypothesis. Astron.

J. 82, 1013–1024 (1977)
13. Miki, Y., Umemura, M.: Gothic: Gravitational Oct-Tree code accelerated by hier-

archical time step controlling. New Astron. 52, 65–81 (2017)
14. Monaghan, J., Gingold, R.: Shock simulation by the particle method SPH. J. Com-

put. Phys. 52(2), 374–389 (1983). https://doi.org/10.1016/0021-9991(83)90036-0.
http://www.sciencedirect.com/science/article/pii/0021999183900360

15. Rosswog, S.: Astrophysical smooth particle hydrodynamics. New Astron. Rev.
53(4), 78–104 (2009). https://doi.org/10.1016/j.newar.2009.08.007. http://www.
sciencedirect.com/science/article/pii/S1387647309000487

16. Springel, V.: The cosmological simulation code GADGET-2. Mon. Not. R. Astron.
Soc. 364(4), 1105–1134 (2005)

17. Wadsley, J.W., Keller, B.W., Quinn, T.R.: Gasoline2: a modern smoothed particle
hydrodynamics code. Mon. Not. R. Astron. Soc. 471(2), 2357–2369 (2017)

18. Warren, M.S.: 2HOT: an improved parallel hashed Oct-Tree N-body algorithm for
cosmological simulation. In: Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis, p. 72. ACM (2013)

19. Yokota, R., Barba, L.A.: Treecode and fast multipole method for N-body sim-
ulation with CUDA. In: GPU Computing Gems Emerald Edition, pp. 113–132.
Elsevier (2011)

https://doi.org/10.1016/0021-9991(83)90036-0
http://www.sciencedirect.com/science/article/pii/0021999183900360
https://doi.org/10.1016/j.newar.2009.08.007
http://www.sciencedirect.com/science/article/pii/S1387647309000487
http://www.sciencedirect.com/science/article/pii/S1387647309000487

Applications

Comparison of Tree Based Strategies
for Parallel Simulation of Self-gravity

in Agglomerates

Nestor Rocchetti1(B), Sergio Nesmachnow1, and Gonzalo Tancredi2

1 Facultad de Ingenieŕıa, Universidad de la República, Montevideo, Uruguay
{nrocchetti,sergion}@fing.edu.uy

2 Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
gonzalo@fisica.edu.uy

Abstract. This article presents an algorithm conceived to improve the
computational efficiency of simulations in ESyS-Particle that involve a
large number of particles. ESyS-Particle applies the Discrete Element
Method to simulate the interaction of agglomerates of particles. The
proposed algorithm is based on the Barnes & Hut method, in which
a domain is divided and organized in an octal tree. The algorithm is
compared to a variation of the octal tree version that uses a binary
tree instead. Experimental evaluation is performed over two scenarios: a
collapsing cube scenario and two agglomerates orbiting each other. The
experimental evaluation comprises the performance analysis of the two
scenarios using the two algorithms, including a comparison of the results
obtained and the analysis of the numerical accuracy. Results indicate
that the octal tree version performs faster and is more accurate than the
binary tree version.

Keywords: Multithreading · Self-gravity · DEM

1 Introduction

N-Body simulations are powerful tools for research on astrophysical objects,
especially for asteroids and comets composed of agglomerates of particles. In
these simulations, particles are affected by short range and long range inter-
actions. Self-gravity [1,2] is a type of long range interaction that can cause
attraction and deformation (tidal disruption) of agglomerates of particles [3–5].
A straightforward approach in the process of calculating the acceleration of one
particle due to long range interactions in numerical simulations, is to perform
the calculation of N − 1 forces, one for each of the other particles that compose
the system. However, this approach does not scale, as the computational cost of
calculating the acceleration for all particles in the system grows quadratically
with the number of particles (the algorithm is O(N2)).

High Performance Computing (HPC) is a paradigm that proposes the use of
multiple computing resources simultaneously. This way, complex problems that
c© Springer Nature Switzerland AG 2019
E. Meneses et al. (Eds.): CARLA 2018, CCIS 979, pp. 141–156, 2019.
https://doi.org/10.1007/978-3-030-16205-4_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16205-4_11&domain=pdf
https://doi.org/10.1007/978-3-030-16205-4_11

142 N. Rocchetti et al.

demand large computer power can be solved in reasonable execution times. Also,
HPC allows to scale problems to larger domains.

Discrete Element Method (DEM) is a numerical method that comprises con-
tact detection and contact interaction of bodies [6]. The use of DEM allows
performing simulations of millions of particles that can break, fracture, or frag-
ment. The method consists of maintaining a list of near-neighbors for each par-
ticle, which is updated periodically. In order to reduce the execution time, know-
ing which particles are in contact with a given particle consists of checking the
neighbor list instead of the complete list of particles. Nonetheless, DEM has a
heavy computational cost when performing simulations that comprise millions
of particles, when compared to other numerical methods.

The DEM method is implemented in ESyS-Particle [7], an open source soft-
ware for simulation of particle systems that is implemented using parallel pro-
gramming techniques and is adapted to run in parallel and distributed computing
environments. ESyS-Particle does not have a model to simulate long range forces.
Our previous works proposed a self gravity implementation module in which
HPC techniques were applied to allow simulations comprising thousands of par-
ticles [8]. Then [9], strategies were presented for an efficient parallel algorithm
for self gravity computation. In addition, the module was integrated in ESyS-
Particle and specific performance improvements were implemented, including a
method that updates only the occupied cells of a mesh [10]. Later [10], strategies
based on the Barnes & Hut octal tree method were implemented and compared
to the previously presented occupied cells method.

In this line of work, this article presents a performance comparison of two
tree-based methods: a Barnes & Hut octal tree method [10], and a Barnes &
Hut binary tree method. The experimental evaluation comprises the performance
analysis of the proposed methods using a standard benchmark scenario for astro-
nomical simulation that consists of two agglomerates orbiting each other. The
analysis includes a comparison of the performance results obtained using differ-
ent number of computing resources (threads) and also the study of the numeri-
cal accuracy. The scenario was evaluated using different number of particles and
scaling the computational resources. The main scientific contributions included
in this article are: (i) a Barnes & Hut binary tree method, (ii) an experimen-
tal evaluation of the two orbiting agglomerates scenario, and (iii) a performance
comparison of the Barnes & Hut octal tree method and the Barnes & Hut binary
tree method.

The article is organized as follows. Section 2 reviews the related work on
domain decomposition for particle simulations and the previous work by our
research group. Section 3 explains the Barnes & Hut octal tree implementation
evaluated. Section 4 explains the characteristics of the binary tree implementa-
tion and how it was developed using the octal tree as a baseline implementation.
Section 5 describes the test scenario, the instances created from it, and the com-
putational infrastructure used in the performance comparison. Section 6 reports
the main results of the performance evaluation and a discussion on the results
obtained. Finally, Sect. 7 presents the conclusions and formulates the main lines
for future work.

Comparison of Tree Based Strategies for Self-gravity in Agglomerates 143

2 Related Work: Static and Dynamic Spatial Domain
Decomposition

This section describes the work related to spatial domain decomposition tech-
niques used to speed up the calculation of the long range interactions.

Spatial domain decomposition techniques are classified in static and dynamic.
The main difference between those two approaches is that the structures created
using a static domain decomposition remain invariant during a simulation, while
in dynamic strategies they do not. Hockney and Eastwood [11] classified static
techniques in three models: Particle-Particle (PP) methods, Particle-Mesh (PM)
methods, and Particle-Particle Particle-Mesh (P3M) methods. PP is a straight-
forward method in which the acceleration is calculated considering the individual
effect of every particle in the system. Thus, the execution time of PP is O(n2).
PM methods [12–15] use a mesh of point particles that lies over the spatial
domain. The acceleration is computed for point particles and then is propagated
to individual particles using interpolation. PM methods are faster that PP meth-
ods, but are less accurate. Finally, P3M [16–19] methods combine PP methods
(to compute short range forces) and PM methods (to compute long range forces).
P3M has proven to be fast and accurate methods to calculate particle forces.

Structures in spatial dynamic domain decomposition techniques are updated
or reconstructed from scratch during a simulation. The process that updates
or reconstructs the structures is triggered by the movement of the particles.
Barnes and Hut [20] proposed a technique that uses an octal tree to represent
the spatial domain of a simulation. Results showed that the calculation time of
the long range interactions is of O(NlogN), being N the number of particles in
the system. Greengard and Rokhlin [21] presented the Fast Multipole Method
(FMM), another dynamic domain decomposition method. FMM implements a
multipole expansions on the system that are organized as a hierarchy of meshes.
Results presented by Greengard and Rokhlin indicate that the performance of
FMM is 300× faster than the PP method.

Techniques that combine static and dynamic domain decomposition tech-
niques are present in the literature. Xu [22] presented the Tree Particle Mesh
(TPM) method. In TPM, short range interactions are calculated using tree meth-
ods, while long range interactions are calculated using the PM method. Reported
results indicated that TPM is 12× faster than using only a tree method. Bode
et al. [23] presented a TPM implementation in which the trees are updated indi-
vidually. According to the authors, their TPM implementation speeds up the
simulations “by a factor of three or four” compared to the P3M method. Bagla
[24] presented the TreePM method, in which the short range forces are calculated
using the Barnes and Hut tree code, while the long range forces are calculated
using the PM code. Results presented by Bagla show that the TreePM method
is 4.5× faster than a tree code. Then, Khandai and Bagla [25] presented a modi-
fication of the TreePM where the particles are associated to groups. Particles are
grouped based on the particle count per unit of volume. According to Khandai
and Bagle, the proposed modified TreePM is 12.72× faster than the TreePM
without modifications.

144 N. Rocchetti et al.

Previous work performed by our group includes the proposal of a hierarchical
grouping approximation method called Mass Approximation Distance Algorithm
(MADA) by Frascarelli et al. [8]. MADA is a specialization of the P3M method
that allowed improving the performance of calculating the acceleration of par-
ticles by considering groups of distant particles as a single point particle. After
that, Nesmachnow et al. [9] presented, analyzed and compared data-assignment
patterns for self-gravity calculation using MADA. Results showed that the best
of the proposed patterns was the Advanced Isolated Linear strategy. In this strat-
egy, workload is assigned equally to all the threads available. Then, whenever a
thread finishes working, unprocessed workload is reassigned to it. The speedup
was close to linear in tests performed for systems with up to 2×105 particles.
Rocchetti et al. [10] implemented the algorithm for calculating self-gravity in
ESyS-Particle. A performance analysis and an improved implementation of the
algorithm in which the acceleration is recalculated only for the occupied cells of
the system was introduced. Results showed a speedup of 50× of the improved
version compared to the baseline (non optimized) version.

3 Implementation of the Barnes and Hut Tree

This section explains the characteristics of the Barnes & Hut tree implemented
for the self-gravity calculation in ESyS-Particle. Then, the process of creation of
the tree and self-gravity calculation is shown.

3.1 Octal Tree Structure

The Barnes & Hut tree is implemented as an octal tree in which the root repre-
sents the complete space used for the simulation. Leaf nodes of the tree are the
boxes of the self-gravity grid. Every non-leaf node has eight sons that have the
same size. So, the space represented by the tree is of cubical shape. Each node
also has the following information: the position of the center of mass, the total
mass, the spatial coordinates, the coordinates in the self-gravity grid, the level
number, the number of particles in it, and an integer that identifies the node in
the level it belongs. All nodes of a level are numbered from 0 to n−1 being n the
number of nodes of the level. The identifiers are assigned to the nodes so that the
id of the father of a node satisfies that idf = ids/(108 × (levels/levelf), where
idx is the identifier of the node, and levelx is the level of the node. The under-
score ‘8’ denotes that the number is in octal base. This way, to know if a node is
son of another is an constant time operation performed in O(1). Dividing by 108
the identifier of a node is equivalent to performing a shift operation of three bits
to the right. Figure 1 shows a sample two-dimensional tree partition created for
an agglomerates of particles. The resolution of the partition is not increased on
the nodes that have no particles by stating that the tree node created is empty
after its creation.

Comparison of Tree Based Strategies for Self-gravity in Agglomerates 145

Fig. 1. Example of tree partition created for an agglomerate of particles. The example
is represented as a two dimensions projection

3.2 Creating the Tree

The tree is created by level, from the root node to the leaf nodes. In this step,
the identifier of the nodes is assigned. The root node, that represents the whole
(cubic) space, is divided into cubes of equal size. This operation is performed
recursively for each level of the tree that is spawned. The creation of new levels
ends when the size of the nodes matches the size of the grid boxes. After the
creation of the tree, the centers of mass of the nodes are calculated. The process
of calculation of the centers of mass is bottom up, from the leaves up to the
root node. The centers of mass for the leaf nodes are calculated directly from
the particles, whereas for the nodes of the upper levels the centers of mass are
calculated from their respective son nodes. The center of mass is calculated only
for the nodes that have particles. Figure 2 shows a sample octal tree created using
the algorithm described for a cube composed of 64 boxes. As an example, the
center of mass for the node in the upper left of the figure will not be calculated
because it has no particles.

3.3 Updating Self-gravity

Once the tree is created and the centers of mass are calculated, the list of tree nodes
is built for each of the occupied boxes of the self-gravity grid (called objective nodes)
by using the tree as input data. A part of the list is composed of the neighbor nodes
of the objective node. The neighborhood is defined as those boxes that are located
less than a certain distance, measured in number of boxes, from the objective node.
The threshold distance is set as a parameter of the algorithm. The rest of the list
is composed of the highest level nodes contain particles and that are not father of
any member of the neighborhood. For example, defining a neighborhood of size
0 and assuming that all the cells are occupied, the list of nodes for node 778 for
the tree of Fig. 2 is composed of nodes 08 to 68 of level 1 and 708 to 768 of level 2.

146 N. Rocchetti et al.

08

08

08 · · · 78

· · · 78

708 · · · 778 → level 2

→ level 1

→ level 0

· · ·

Fig. 2. Example of numeration for a three level octal tree for a self-gravity grid com-
posed of 64 boxes.

The root node is never a part of the list of nodes because it is the father of all nodes,
since as it represents the complete space of a scenario.

After creating the list of nodes for all the nodes in the occupied boxes list,
the potential of each node is calculated in parallel using threads. Afterwards,
the results are communicated to the particle module, the tree is destroyed, and
its memory freed.

4 Implementation of the Binary Tree

This section presents the binary tree. The changes introduced in the octal tree
algorithm to implement it the binary tree and the main differences between both
implementations are described.

4.1 Structure and Process of Creation of the Binary Tree

Figure 3 shows a sample binary tree for a self-gravity grid composed of 64 boxes.
The generated tree has seven levels, including the root level. Each node has a
unique number that identifies it in the corresponding level, which is an integer in
binary code. A node is the father of another node of the binary tree if it satisfies
that idf = ids/(102 × (levels/levelf), where idx is the identifier of the node and
levelx is the level of the node. The underscore 2 denotes that the number is in
binary base. This way, to know if a node is son of another is an operation of
O(1). This condition is the same used to the octal tree but modified to check the
condition in binary base. Instead of dividing by 108, the division is performed
by 102 which comprises a shift operation to the right.

To build the tree, the space represented by a node is divided in two by its
largest edge. So, the partitions are not necessarily cubic. This way, the binary
tree has the advantage that the space represented does not need to be cubic.
Performing the partitions over the largest edge guarantees that the leaf nodes
are of the same size and position of the self-gravity grid boxes.

Comparison of Tree Based Strategies for Self-gravity in Agglomerates 147

02

02

02

02

· · ·

02 12

12

12

12

108 118

1102 1112

· · ·

1111102 1111112 → level 6

· · ·

→ level 3

→ level 2

→ level 1

→ level 0

· · ·

· · ·

· · ·

Fig. 3. Example of enumeration for a binary tree with seven levels for a self-gravity
grid composed of 64 boxes.

4.2 Comparison of the Binary Tree and the Octal Tree

The node used for the octal tree example in Fig. 2 is 778, which corresponds to
1111112 in the binary tree. Assuming that all the boxes are occupied and the
neighborhood size is zero, in the binary tree in Fig. 3 the list of tree nodes is
comprised of node 02 (level 1), node 102 (level 2), node 1102 (level 3), node 11102
(level 4), and node 111102 (level 5). In this example, the list of tree nodes has
five elements. On the other hand, the list of tree nodes of the octal tree has 13
elements. Despite having more levels, the list of tree nodes for the binary tree
has fewer elements then the octal tree and the resolution of the partition for the
binary tree grows slower when moving closer to the objective node.

Except for the aforementioned differences, the structure is the same as the
octal tree. The algorithm to update self-gravity in the binary tree is the same
as the octal tree. After creating the lists of nodes for the occupied nodes, the
gravitational potential is calculated and handled to the ESyS-particle module.

5 Experimental Evaluation Setup

This section describes the test scenario and the different instances used to
perform the experimental evaluation of the proposed tree-based methods for
self-gravity calculation. In addition, characteristics inherent to the simulation
and the infrastructure used to perform the simulations are described.

148 N. Rocchetti et al.

5.1 Test Scenarios

The scenario used for the performance test is the two agglomerate scenario pre-
viously used in Rocchetti et al. [10]. The scenario consists of two agglomerates
of particles that are symmetrical with respect to the origin of the coordinates
system (point (0,0,0)). This way, the center of mass is located in the point (0,0,0)
as well, and it is halfway the center of mass of each agglomerate. Figure 4 shows
a two dimensional projection of the two agglomerate scenario. The agglomerates
have a diameter of one kilometer and are separated from one another by five
kilometers. The extension of the scenario goes from −4096 m to 4096 m over the
three dimensions. This way, the resulting scenario is a cube with edges of 8192 m.
The scenario was created using Gengeo, a package included in ESyS-Particle. In
particular, Gengeo was used to create one of the agglomerates and pack it with
particles of diverse diameters within a predefined range of sizes.

Three instances of the two agglomerate scenario were created with different
number of particles by varying the minimum and maximum diameter of the
particles when using Gengeo. The scenarios were named small, medium, and
large, according to the number of particles they have. The small scenario is
composed of 3,866 particles with a radius in the range of 50 m to 100m. The
medium scenario has 11,100 particles with a radius that varies from 35 m to
70 m. Finally, the large scenario has 38,358 particles which radius varies from
20 m to 60m. In all cases, the initial speed of the scenario was configured to be
5 m/s in a direction that is tangential to the z axis and perpendicular to the
line that passes through the center of mass of each agglomerate. In addition, the
total mass of the instances oscillates from 1.2 × 1012 kg to 1.7 × 1012 kg. Also,
the density of the particles is 3000 g/cm3, a density similar to rocks.

5.2 Simulation Details

The size of the grid box in ESyS-Particle must satisfy boxl ≥ 2 × rmax, where
boxl is the box length and rmax is the maximum radius of a particle. Using a
bigger box implies lower accuracy of the calculations. So, the value of boxl has to
be as close as possible to 2×rmax and also be a power of two. This way, the box
size for the small instance is 256 m, and for both medium and large instances
is 128 m. The total number of boxes for the small instance is 32,768, while for
medium and large instances the number of boxes is 262,144.

For the small instance, the octal tree has six levels and 37,449 nodes. On
the other hand, the binary tree for the small instance has 16 levels and 65,535
nodes. For the medium and large instances the octal tree has seven levels and
299,593 nodes, while the binary has 19 levels and 524,287 nodes. So, for all
instances executed in this work, the memory used by the binary tree is roughly
twice the memory used by the octal tree. This feature shows that the octal tree
can scale to a larger number of boxes compared to the binary tree. Simulations
were executed for 10,000 time steps of 0.01 s each (a total time of 100 s). The
neighborhood was configured to be of length five. This way, when creating the
list of nodes that correspond to an objective node, the defined neighborhood is
a cube of 11 boxes long centered in the objective node.

Comparison of Tree Based Strategies for Self-gravity in Agglomerates 149

Fig. 4. Two dimensional projection of the large instance of the two agglomerate sce-
nario used for the experimental evaluation.

5.3 Experimental Platform

The experimental evaluation was performed on an AMD Opteron Magny Cours
Processor 6272@2.09 GHz, with 64 cores and 48 GB of RAM from Cluster FING
[26], the High Performance Computing facility at Universidad de la República,
Uruguay.

6 Performance Results

This section reports the results of executions performed over the test scenario
using the octal tree and the binary tree algorithm. Also, a comparison and
discussion of the results obtained is presented. The results include the numerical
accuracy of the performance of compared methods.

The performance of the binary tree was studied by means of a comparison
against the octal tree algorithm. Results are reported for the executions of the
three instances defined using different configurations of processes and threads.
The processes are related to the workload distribution of the contact forces
calculation, while the threads are related to the self-gravity update process. All
results correspond to the average of five executions for each configuration.

150 N. Rocchetti et al.

Table 1. Performance results for the two agglomerate scenario with 3,866 particles
(small instance).

#particle
processes

#gravity
threads

Octal tree Binary tree

Execution
time(s)

Avg. self-
gravity
time(s)

Execution
time(s)

Avg. self-
gravity
time(s)

1 (1,1,1) 1 9.15 × 102 10.11 1.30 × 103 14.55

1 (1,1,1) 2 6.64 × 102 6.99 1.03 × 103 11.65

2 (1,1,2) 1 9.59 × 102 10.58 1.76 × 103 18.78

2 (1,1,2) 2 7.08 × 102 7.40 1.47 × 103 15.18

Table 2. Performance results for the two agglomerate scenario with 11,100 particles
(medium instance).

#particle
processes

#gravity
threads

Octal tree Binary tree

Execution
time(s)

Avg. self-
gravity
time(s)

Execution
time(s)

Avg. self-
gravity
time(s)

1 (1,1,1) 1 6.87 × 103 51.37 8.02 × 103 59.55

1 (1,1,1) 2 4.75 × 103 31.22 6.32 × 103 46.41

1 (1,1,1) 4 4.30 × 103 31.09 5.27 × 103 38.19

2 (1,1,2) 1 7.14 × 103 54.23 9.76 × 103 72.70

2 (1,1,2) 2 4.57 × 103 33.85 7.31 × 103 53.70

2 (1,1,2) 4 4.10 × 103 30.35 5.70 × 103 41.26

Table 1 reports the total execution time and the average time of a self-gravity
update when using the octal tree and the binary tree algorithms for the small
instance of the two agglomerates scenario.

For the small instance, experiments were ran for up to two processes and two
threads, taking into account the rule-of-thumb that recommends assigning at
least 5, 000 particles to each process on the distributed mode of ESyS-Particle.
When using either tree algorithm, self-gravity was updated 82 times. For self-
gravity update, results show that the octal tree algorithm is up to 2× faster
than the binary tree algorithm. Results confirm the rule-of-thumb, the lowest
execution time was obtained using one process and one thread. When increasing
the number of gravity threads from 1 to 2 the small instance ran approximately
in 30% less time for the octal tree, whereas in the case of the binary tree the
instance finished the execution in approximately 25% less time. Thus, the small
instance ran faster using the octal tree algorithm than using the binary tree.

Comparison of Tree Based Strategies for Self-gravity in Agglomerates 151

Table 3. Performance results for the two agglomerate scenario with 38,358 particles
(large instance).

#particle
processes

#gravity
threads

Octal tree Binary tree

Execution
time(s)

Avg. self-
gravity
time(s)

Execution
time(s)

Avg. self-
gravity
time(s)

1 (1,1,1) 1 1.49 × 104 49.79 1.89 × 104 64.40

1 (1,1,1) 2 1.04 × 104 32.86 1.34 × 104 42.94

1 (1,1,1) 4 9.21 × 103 28.08 1.10 × 104 35.38

1 (1,1,1) 8 9.59 × 103 29.60 1.10 × 104 35.37

1 (1,1,1) 16 1.09 × 104 34.81 1.16 × 104 36.75

2 (1,1,2) 1 1.43 × 104 49.58 1.90 × 104 65.97

2 (1,1,2) 2 1.07 × 104 35.54 1.27 × 104 42.79

2 (1,1,2) 4 1.01 × 104 32.62 1.10 × 104 35.81

2 (1,1,2) 8 1.09 × 104 35.79 1.02 × 104 33.92

2 (1,1,2) 16 1.06 × 104 34.95 1.12 × 104 36.32

4 (1,2,2) 1 1.62 × 104 57.63 1.88 × 104 65.91

4 (1,2,2) 2 1.07 × 104 36.56 1.49 × 104 52.46

4 (1,2,2) 4 9.56 × 103 32.27 9.72 × 103 32.64

4 (1,2,2) 8 1.04 × 104 35.07 9.82 × 103 33.09

4 (1,2,2) 16 1.07 × 104 36.20 1.09 × 104 37.28

8 (2,2,2) 1 1.65 × 104 60.27 1.74 × 104 62.80

8 (2,2,2) 2 1.12 × 104 39.78 1.11 × 104 39.23

8 (2,2,2) 4 1.03 × 104 36.72 8.83 × 103 30.94

8 (2,2,2) 8 9.69 × 103 34.29 9.58 × 103 33.86

8 (2,2,2) 16 1.02 × 104 36.38 1.06 × 104 37.10

For the medium instance, the evaluation was performed for six configurations
of gravity processes and gravity threads. When using either tree algorithm, the
self-gravity was updated for a total of 127 times. Table 2 reports the results
obtained for the execution of the medium instance of the two agglomerate sce-
nario when using the octal tree and the binary tree algorithm. The lowest exe-
cution time was achieved using the octal tree algorithm with a configuration
of two processes and four threads, which supports the rule of thumb. For the
medium instance, the best binary tree execution time was approximately 20%
slower than the best octal tree time.

The large instance was studied by performing experiments with 20 different
configurations of processes and threads. In the tests performed for the large
instance, the gravity was updated 264 times for both algorithms. Table 3 reports
the results obtained for each of the studied configurations. For the large instance,

152 N. Rocchetti et al.

the best execution time was obtained using the binary tree with the configuration
of eight processes and four threads. This result supports the rule of thumb. Also,
for configurations with the same number of processes, the configurations using
eight or 16 threads performed slower than the configuration using four threads.
Results obtained suggest that the binary tree algorithm performs faster than the
octal tree for large instances. This is a relevant result from the research reported
in this work, as using a binary tree has not been previously proposed and is a
direct contribution of this article.

Due to the symmetrical characteristics of the scenario, the center of mass of
the system is in the center of the space as the agglomerates move. The simulation
calculates the interactions of the particles in discrete steps, which introduces
error in the calculations. So, a study of the numerical accuracy was performed
by analyzing the position of the center of mass for the three instances considered
in the experimental analysis. Figure 5 shows the position of the center of mass
(x, y, z components and its module) and its variation over time for the small
instance for (a) calculations using the octal tree, and (b) calculations using
the binary tree. Results confirm that the numerical accuracy using the binary or
octal trees are of the same order of magnitude. However, the octal tree presented
a slightly lower change in the position of the center of mass compared to the
binary tree algorithm. The study of the numerical accuracy for the medium and
large instances are reported in Figs. 6 and 7 respectively. Results support the
commented trends the small instance. In addition to the differences in accuracy,
differences in the position of the components of the center of mass were spotted
when using the different tree structures. An example is shown in Fig. 5, the
position of the center of mass when using the octal tree moved away from the

0 0.10.20.30.40.50.60.70.80.9 1
×104

0

2

4

×10−3

0 0.10.20.30.40.50.60.70.80.9 1
×104

0

2

4

×10−3

Fig. 5. Position of the center of mass over time for the small instance of the two
agglomerates scenario using the Barnes & Hut method with octal and binary tree.

Comparison of Tree Based Strategies for Self-gravity in Agglomerates 153

0 0.10.20.30.40.50.60.70.80.9 1
×104

0

0.1

0.2

0.3

0 0.10.20.30.40.50.60.70.80.9 1
×104

0

0.1

0.2

0.3

Fig. 6. Position of the center of mass over time for the medium instance of the two
agglomerates scenario using the Barnes & Hut method with octal and binary tree.

0 0.10.20.30.40.50.60.70.80.9 1
×104

0

0.1

0.2

0.3

0 0.10.20.30.40.50.60.70.80.9 1
×104

0

0.2

0.4

Fig. 7. Position of the center of mass over time for the large instance of the two
agglomerates scenario using the Barnes & Hut method with octal and binary tree.

origin up to the step 6, 000 in the direction of the x component, but then went
back to the origin, while this movement did not occur when using the binary
tree structure. Either way, the modulus of the center of mass behaves the same
for the binary and octal trees. From the reported results, the method based on
the binary tree seems a robust alternative to the standard octal tree proposed
by Barnes & Hut.

154 N. Rocchetti et al.

7 Conclusions and Future Works

This article presented a comparison of tree-based algorithms for self-gravity com-
putation in ESyS-Particle. Two methods are proposed and studied: based on
octal tree and based on binary tree.

The octal tree method consists of performing partitions of a cubical space in
eight equal cubical parts recursively until a determined size of cube is achieved.
After applying this method, the space is mapped to an octal tree. The binary
tree method is analog to the octal tree method, with the difference that the space
is partitioned in half the size, but not necessary in cubic parts. A comparison of
the memory needed to spawn both trees was performed, taking into account the
number of nodes of each tree. Results showed that the binary tree has approxi-
mately twice the number of nodes of the octal tree, which can be extrapolated
into about 2× more memory needed.

A number of tests were executed to evaluate the performance of the proposed
methods. Experiments were performed on a scenario in which two symmetrical
agglomerates orbit with respect to the center of mass of the system defined by
both of them. Three instances of the two agglomerate scenario were studied,
varying the number of particles: a small instance of 3,866 particles, a medium
instance of 11,100 particles, and a large instance of 38,358 particles. All instances
were evaluated with different configurations of numbers of processes and threads
according to the particle number. Results showed that the octal tree performed
faster than the binary tree for the small and medium instance. On the other
hand, the binary tree performed faster for the large instance.

A study of the position of the center of mass was performed to evaluate the
numerical accuracy of both methods. Even though the error using both trees is
of the same order of magnitude, results indicated that using the octal tree the
error is smaller than when using the binary tree for the three instances studied.

The binary tree showed a better performance compared to the octal tree,
whereas the numerical accuracy was higher for the octal rather than for the
binary tree. So, there is a trade-off between efficiency and numerical accuracy
in the large instance: the binary tree is recommended when results are required
fast, while the octal tree is better suited when accuracy is an important issue.
In terms of scalability, in spite of being faster for the large instance, the binary
tree requires double the memory spawn its structure compared to the octal
tree. So, the octal tree is recommended in a limited memory environment when
performing simulations with a large particle number.

The commented results indicate that the suitability of the use of the binary
tree or the octal tree is bounded to the infrastructure used to perform the sim-
ulations, and also to the accuracy of the results needed.

The main lines for future work include evaluating the performance and
numerical accuracy of the proposed tree-based methods on larger instances,
in order to model even larger astronomical objects. In addition, strategies to
increase the numerical accuracy are going to be implemented and its perfor-
mance tested and compared to the algorithm presented in this work.

Comparison of Tree Based Strategies for Self-gravity in Agglomerates 155

References

1. Harris, A., Fahnestock, E., Pravec, P.: On the shapes and spins of “rubble pile”
asteroids. Icarus 199(2), 310–318 (2009)

2. Fujiwara, A., et al.: The rubble-pile asteroid itokawa as observed by hayabusa.
Science 312(5778), 1330–1334 (2006)

3. Walsh, K., Richardson, D., Michel, P.: Spin-up of rubble-pile asteroids: disruption,
satellite formation, and equilibrium shapes. Icarus 220(2), 514–529 (2012)

4. Goldreich, P., Sari, R.: Tidal evolution of rubble piles. Astrophys. J. 691(1), 54
(2009)

5. Rozitis, B., MacLennan, E., Emery, J.: Cohesive forces prevent the rotational
breakup of rubble-pile asteroid (29075) 1950 DA. Nature 512(7513), 174–176
(2014)

6. Cundall, P., Strack, O.: A discrete numerical model for granular assemblies.
Geotechnique 29(1), 47–65 (1979)

7. Abe, S., et al.: ESyS-Particle: HPC Discrete Element Modeling Software. Open
Software License version, 3 (2009)

8. Frascarelli, D., Nesmachnow, S., Tancredi, G.: High-performance computing of
self-gravity for small solar system bodies. Computer 47(9), 34–39 (2014)

9. Nesmachnow, S., Frascarelli, D., Tancredi, G.: A parallel multithreading algorithm
for self-gravity calculation on agglomerates. In: Gitler, I., Klapp, J. (eds.) ISUM
2015. CCIS, vol. 595, pp. 311–325. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-32243-8 22

10. Rocchetti, N., Frascarelli, D., Nesmachnow, S., Tancredi, G.: Performance improve-
ments of a parallel multithreading self-gravity algorithm. In: Mocskos, E., Nes-
machnow, S. (eds.) CARLA 2017. CCIS, vol. 796, pp. 291–306. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-73353-1 21

11. Hockney, R., Eastwood, J.: Computer Simulation Using Particles. CRC Press, Lon-
don (1988)

12. Darden, T., York, D., Pedersen, L.: Particle mesh ewald: an n· log (n) method for
ewald sums in large systems. J. Chem. Phys. 98(12), 10089–10092 (1993)

13. Essmann, U., Perera, L., Berkowitz, M.L., Darden, T., Lee, H., Pedersen, L.G.: A
smooth particle mesh ewald method. J. Chem. Phys. 103(19), 8577–8593 (1995)

14. Sánchez, P., Scheeres, D.: Dem simulation of rotation-induced reshaping and dis-
ruption of rubble-pile asteroids. Icarus 218(2), 876–894 (2012)

15. Kravtsov, A., Klypin, A., Khokhlov, A.: Adaptive refinement tree: a new high-
resolution N-body code for cosmological simulations. Astrophys. J. Suppl. Ser.
111(1), 73 (1997)

16. Couchman, H.: Mesh-refined P3M-A fast adaptive N-body algorithm. Astrophys.
J. 368, L23–L26 (1991)

17. MacFarland, T., Couchman, H., Pearce, F., Pichlmeier, J.: A new parallel P3M
code for very large-scale cosmological simulations. New Astron. 3(8), 687–705
(1998)

18. Harnois-Déraps, J., Pen, U., Iliev, I., Merz, H., Emberson, J., Desjacques, V.: High-
performance P3M N-body code: CUBEP3M. Mon. Not. R. Astron. Soc. 436(1),
540–559 (2013)

19. Brieu, P., Summers, F., Ostriker, J.: Cosmological simulations using special pur-
pose computers: implementing P3M on GRAPE. Astrophys. J. Suppl. 453, 566–575
(1995)

https://doi.org/10.1007/978-3-319-32243-8_22
https://doi.org/10.1007/978-3-319-32243-8_22
https://doi.org/10.1007/978-3-319-73353-1_21

156 N. Rocchetti et al.

20. Barnes, J., Hut, P.: A hierarchical O(N log N) force-calculation algorithm. Nature
324(6096), 446–449 (1986)

21. Greengard, L., Rokhlin, V.: A fast algorithm for particle simulations. J. Comput.
Phys. 73(2), 325–348 (1987)

22. Xu, G.: A new parallel N-body gravity solver: TPM. Astrophys. J. Suppl. 98,
355–376 (1994)

23. Bode, P., Ostriker, J., Xu, G.: The tree particle-mesh n-body gravity solver. Astro-
phys. J. Suppl. Ser. 128(2), 561 (2000)

24. Bagla, J.: Treepm: a code for cosmological n-body simulations. J. Astrophys.
Astron. 23(3), 185–196 (2002)

25. Khandai, N., Bagla, J.: A modified TreePM code. Res. Astron. Astrophys. 9(8),
861 (2009)

26. Nesmachnow, S.: Computación cient́ıfica de alto desempeño en la Facultad de
Ingenieŕıa, Universidad de la República. Revista de la Asociación de Ingenieros del
Uruguay 61(1), 12–15 (2010)

Parallel Implementations of Self-gravity
Calculation for Small Astronomical

Bodies on Xeon Phi

Sebastián Caballero, Andrés Baranzano, and Sergio Nesmachnow(B)

Facultad de Ingenieŕıa, Universidad de la República,
Herrera y Reissig 565, Montevideo, Uruguay

{sebastian.caballero,andres.baranzano,sergion}@fing.edu.uy

Abstract. This article presents parallel implementations of the Mass
Approximation Distance Algorithm for self-gravity calculation on Xeon
Phi. The proposed method is relevant for performing simulations on real-
istic systems modeling small astronomical bodies, which are agglomerates
of thousand/million of particles. Specific strategies and optimizations
are described for execution on the Xeon Phi architecture. The experi-
mental analysis evaluates the computational efficiency of the proposed
implementations on realistic scenarios, reporting the best options for the
implementation. Specific performance improvements of up to 146.4× are
reported for scenarios with more than one million particles.

Keywords: Multithreading · Self-gravity · Xeon Phi

1 Introduction

Self-gravity is a long range interaction caused by the mutual influence of par-
ticles that conform an agglomerate. This interaction is important to model the
dynamic of small astronomical objects like asteroids and comets, which are
agglomerates of smaller particles kept together by the gravitational force [1].

Due to the intrinsic complexity of modeling the interactions between par-
ticles, agglomerates are studied using computational simulations. Molecular
Dynamics (MD) is a simulation method to study physical systems, including
granular materials. Trajectories of atoms and molecules in the system are deter-
mined by numerically solving Newton’s equations of motion of interacting par-
ticles over a fixed period of time. Forces between particles and their potential
energies are calculated using potentials or force fields, allowing to get a vision
of the dynamic evolution of the system [2]. While MD is used to model systems
in atomic scale (atoms or molecules), a more general approach for simulation is
the Discrete Element Method (DEM) [3].

DEM is a numerical method used for simulating systems involving a large
number of small particles. DEM is closely related to MD but allows simulating in
larger scale, such as discontinuous materials (powders, rocks, granular), including
rotational degrees-of-freedom and contact forces between particles.
c© Springer Nature Switzerland AG 2019
E. Meneses et al. (Eds.): CARLA 2018, CCIS 979, pp. 157–173, 2019.
https://doi.org/10.1007/978-3-030-16205-4_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16205-4_12&domain=pdf
https://doi.org/10.1007/978-3-030-16205-4_12

158 S. Caballero et al.

When applying numerical techniques for simulation, such as DEM, execution
times for self-gravity calculation demand minutes, or even hours. High Perfor-
mance Computing (HPC) techniques are applied to speed up the computation
when simulating real scenarios involving a large number of particles [4].

In this line of work, this article presents a parallel implementation of Mass
Approximation Distance Algorithm (MADA) to compute self-gravity on systems
of particles and evaluates optimizations for execution on the Intel Xeon Phi
architecture. The experimental analysis allows concluding that the proposed
implementations are able to significantly accelerate the execution time of realistic
simulations. Performance results show accelerations of up to 146× are obtained
by the best parallel implementation when compared to a sequential version.

The article is organized as follows. The problem of computing self-gravity on
small astronomical bodies and a review of related work is presented in Sect. 2.
Section 3 describes multithreading libraries for Intel Xeon Phi. The proposed
implementations of MADA are presented in Sect. 4 and the experimental evalua-
tion is reported in Sect. 5. Finally, Sect. 6 presents the conclusions and formulates
the main lines for future work.

2 Self-gravity Computation on Small Astronomical
Bodies

This section introduces the problem of computing self-gravity on small astronom-
ical bodies and the approximation using MADA. In addition, a review of related
works about parallel algorithms for self-gravity and other particle interactions
in agglomerates is presented.

2.1 Self-gravity Calculation on Agglomerates

Asteroids and comets are agglomerates of small particles that are held together
by the action of different forces. One of the most important of these forces is
self-gravity [4].

The problem of computing self-gravity considers an agglomerate composed
by N particles and Mi the mass of the i-th particle, whose center is located
in position ri . The gravitational potential Vi generated in particle i due to
the action of the rest of the particles is determined by Eq. 1, where G is the
gravitational constant and ||rx || is the norm of the vector rx.

Vi =
∑

j �=i

GMj

||ri − rj || (1)

When the number of particles in an agglomerate is in the order of millions,
executing an algorithm that iterates over all particles becomes unpractical since
the execution time grows quadratically (O(N2)) with respect to the size of the
input data. In order to model the dynamics of an astronomical system, a large

Parallel Self-gravity for Small Astronomical Bodies on Xeon Phi 159

number of simulations are required. Thus, using a straightforward O(N2) algo-
rithm for self-gravity calculation demands a significantly large execution time.
For this reason, approximation algorithms are applied to compute accurate esti-
mations of the gravitational potential in shorter execution times.

2.2 Mass Approximation Algorithm

MADA is an approximation algorithm for calculating the self-gravity of a system
of particles. The main idea of MADA is substituting groups of distant particles
for a single particle located at the center of mass of the group. The considered
groups involve larger sets of particles when they are located far from the particle
in which self-gravity is computed.

Initially, MADA divides the calculation domain in a certain number of par-
titions on each axis. This partitioning forms cubes that are called sectors. For
particles belonging to the same sector, the self-gravity force between them is cal-
culated exactly, applying Eq. 1 without using an approximation. Particles that
do not belong to the sector of the particle where self-gravity is computed (target
particle) are grouped in subsectors of variable size, depending on the distance
to the sector of the target particle. For each of these subsectors, the self-gravity
between the target particle and the center of mass of the sub-sector is computed,
avoiding to perform a large number of calculations.

Fig. 1. Division of a domain into subdomains to process the gray sector. The closest
sectors to the grey sector are divided into larger subdivisions. Within the grey sector,
MADA is not applied, particle to particle calculation is used instead.

Figure 1 shows a two-dimension representation of the domain decomposi-
tion applied by MADA to compute self-gravity on particles of the grey sector

160 S. Caballero et al.

(target sector). The farthest sectors are processed as a single particle by using the
approximation proposed by MADA. Sectors that are closer to the target (grey)
sector have more levels of division, as its contributions are more significant than
the one from farthest sectors.

MADA allows reducing the calculations need for computing self-gravity by
grouping distant particles and treating them as a single particle. The calcu-
lated center of mass can be stored and reused when computing self-gravity of
other particles, e.g. (potentially millions of times for agglomerates of millions of
particles) since the MADA sectors are fixed for all particles of the agglomerate.

The division into sectors proposed by the MADA algorithm allows to process
subsets of sectors by different threads. Also the center of gravity calculations
can be shared among them. The application of parallelism allows to reduce the
execution times and consequently reduce the execution times of the simulations.

2.3 Related Work: Parallel Algorithms for Self-gravity and Other
Particle Interactions Calculation

Our research group at Universidad de la República has published previous arti-
cles on parallel algorithms for self-gravity calculation in particle systems.

MADA was introduced by Frascarelli et al. [5], including a parallel imple-
mentation for simulating large systems in a cluster. The experimental analysis
studied the relative error when using MADA (less than 0.1% for all problem
instances) and the speedup (up to 15× on AMD Opteron 6172 processors).

Four parallel strategies for domain decomposition and workload assign-
ment for threads for the previous MADA implementation were studied [6]. The
Advanced Isolated Linear strategy obtained the best performance and scaled up
for simulating an astronomical agglomerate of 1218024 particles using 12 execu-
tion threads. The best strategy also allowed to reduce significantly the execution
times: speedup values up to 13.4 (computational efficiency 0.85) were obtained.

Later, Rocchetti et al. [7] studied a MADA implementation included in the
ESyS-Particle library for DEM simulations. A profiling analysis was performed
using Intel VTune Amplifier to detect bottlenecks and the most time-consuming
subroutines were reimplemented to improve execution time. In the improved
version, particle acceleration is computed for a surrounding box for each par-
ticle and empty cells are omitted. The experimental evaluation studied a two-
agglomerates scenario with up to 38538 particles and the performance results
reported that the execution time of self-gravity calculation was reduced up to
50× when compared with a baseline non-optimized implementation.

The MADA algorithm was not ported/adapted for execution on Xeon Phi in
any of the aforementioned previous works.

Regarding parallel implementations on Xeon Phi for simulating other phe-
nomena in granular systems, Rönnbäck [8] studied optimizations for Parallel Pro-
jected Gauss-Seidel method. The study was focused on bottleneck and scalability
analysis for non-trivial parallel programs. However, no specific recommendations
about how to port this kind of applications to Xeon Phi was presented.

Parallel Self-gravity for Small Astronomical Bodies on Xeon Phi 161

Surmin et al. [9] presented a parallel implementation of the Particle-in-Cell
method for plasma simulation on Intel Xeon Phi. The parallel method improved
the performance of laser acceleration simulations up to 1.6× when compared
with an implementation on Xeon processors. The analysis also showed that vec-
torization significantly contributed to performance improvements.

Pennycook et al. [10] described a bottleneck analysis of accumulation and
dispersion processes in particle dynamics. A Single Instruction Multiple Data
(SIMD) approach was proposed to improve execution time using specific SIMD
operations provided by Intel Xeon/Xeon Phi architectures. The bottleneck anal-
ysis was performed for the miniMD algorithm [11], using different combinations
of 128, 256, and 512 bits SIMD operations on Intel Xeon/Xeon Phi. The best
results were obtained using 512 bits SIMD operations on Xeon Phi and manual
vectorization. This work proved that the use of SIMD operations reduces the
execution times (up to 5× faster) for miniMD algorithm.

The related works showed no previous proposals of Xeon Phi implementations
of self-gravity calculation or similar particle interaction methods.

3 Multithreading Libraries for Intel Xeon Phi

This section describes different multithreading libraries that are compatible with
Intel Xeon Phi. Two of them are applied in this article in the proposed imple-
mentations for self-gravity calculation for agglomerates.

3.1 Pthreads

Pthreads is a standard model to divide programs into subtasks that can run
in parallel. Pthreads defines a set of types, functions, and constants of the C
programming language to create, destroy, and synchronize execution of threads
and provides functions for managing concurrency in shared memory.

The main advantage of using pthreads is the low cost of creation and destruc-
tion of threads, which is 100 to 150 times faster than for processes [12]. The cost
of access to shared memory between threads is lower (threads of a process share
all the memory) and the context switch between threads requires less execu-
tion time since contexts share information between threads of the same process
(but not between processes). Multithreading libraries such as Cilk Plus, Thread
Building Blocks, and OpenMP use pthreads internally for thread management.

3.2 Intel Cilk Plus

Cilk Plus is an extension of C/C++ to support data and task parallelism. It
provides basic functions, array notation, and compiler directives to execute SIMD
instructions. The main advantages of Cilk Plus are: ease of use, maintainability,
and the few changes required to transform a sequential code into a parallel one.

Cilk Plus provides support to automatically execute parallel loops via
cilk for. It dynamically creates execution threads and assigns work to them,

162 S. Caballero et al.

following a divide-and-conquer pattern. By default, Cilk Plus determines the
optimal level of parallelism by considering the workload and the cost of creat-
ing new threads with cilk spawn function but the programmer can manually
specify a fixed number. This strategy is effective to calculate the self-gravity of
an agglomerate using MADA, because there is no dependency between MADA
sectors.

3.3 Intel Threading Building Blocks

Thread Building Blocks (TBB) is a C++ library for developing multithread
applications. It uses C++ templates that provides automatic thread manage-
ment and scheduling to implement loops that run in parallel, allowing developers
to generate parallel code without need to handle the creation, destruction, and
synchronization of execution threads. Furthermore, TBB handles load balancing
between threads and provides mechanisms for concurrent reading and writing.

TBB is a data level parallelism library. Each thread works on a portion of
input data, so it benefits directly from having a greater number of processing
units. MADA algorithm can take advantage of this type of load division, since
input data is divided into sectors that are processed independently of each other.

3.4 Comparative Analysis

Comparative analysis of the parallel multithreading libraries described in this
section were performed by Ajkunic [13] and Leist and Gilman [14]. Results con-
firmed that all of them are able to improve the execution time of simulations
but there is not much difference regarding performance between them.

Each library has its own advantages and disadvantages. Choosing one or the
other depends on the type of application and the host architecture. Pthreads
provides a low level model for shared-memory parallel programing, without
including a task scheduler. It requires the developer to directly manage the
execution threads, implying a large effort in comparison to developing the same
program using a multithreading library Pthreads also requires the implementa-
tion of a specific task scheduler for the developed application. For these reasons,
pthreads is not considered for developing parallel implementations for self-gravity
in agglomerates in the research reported in this article.

4 Parallel Implementations for Self-gravity Calculation

This section presents the proposed implementations of MADA for Xeon Phi: a
sequential version used as baseline to compare results/efficiency of the proposed
parallel methods, and the parallel implementations using Cilk Plus and TBB.

Parallel Self-gravity for Small Astronomical Bodies on Xeon Phi 163

4.1 Baseline Method: Sequential Implementation

The sequential implementation of MADA (Algorithm 1) does not use parallelism.
The method in line 1 initializes the data structures used. After that, load input
(line 2) reads input data for the current execution and arranges them in the
data structures. Centers of mass for each sector defined by MADA are computed
before processing. This pre-computation avoids performing concurrency checks
during execution, thus decreasing waiting time between threads.

Algorithm 1. MADA: sequential implementation
1: Initialize sectors and centers of mass
2: Load input
3: Pre-compute centers of mass
4: for each sector s in domain do
5: Process sector(s)
6: end for

Algorithm 2 describes the process sector subroutine. To reduce workload, self-
gravity is computed for points that define sectors with the smallest subdivision.
This data can be interpolated to obtain the self-gravity potential for the system.
For each point pi that defines the greatest subdivision of sector sh the algorithm
has two parts: (i) particle to particle interactions are computed between point pi
and all particles in sector sh; (ii) for each other sector sk, self-gravity is computed
between pi and the centers of mass of its subdivisions. MADA dynamic grid is
used to determine the subdivisions the centers of mass.

Algorithm 2. Process sector(si)
1: for each smallest subdivision in sector sh do
2: Determine particle pi that identifies sector si
3: for each particle pj in sh do
4: Calculate self-gravity between pi and pj
5: end for
6: for each sector sk, sk �= sh do
7: Find distance to sk
8: Determine sector subdivision according to distance
9: for each subdivision dl of sk do

10: Calculate self-gravity between pi and center of mass of dl
11: end for
12: end for
13: end for

164 S. Caballero et al.

4.2 Parallel Implementation Using Cilk Plus

Two parallel implementations of MADA using Cilk Plus were developed to study
explicit vs. automatic vectorization: (i) using Array of Structures (AoS) and
(ii) using Struct of Arrays (SoA). Preliminary tests showed that AoS outper-
formed SoA, therefore only the AoS approach is presented in this article.

Intel Cilk Plus: AoS Approach. Figure 2 shows a diagram of the domain division
performed by cilk for. The array of sectors is divided in two, and each half is
divided in two again, until there the domain division guarantee load balancing:
each thread processes the same number of sectors. However, sectors usually have
different number of particles, which translates into more work in some threads.
The Cilk Plus scheduler does not know beforehand which sectors of the domain
should be processed, resulting in a large amount of lost time allocating empty
sectors, or in threads with a higher workload. To avoid this problem, only those
sectors that have particles in the data loading process are stored.

Fig. 2. Domain division of the sector array performed by cilk for

Intel Cilk Plus: AoS and Array Notation. Cilk Plus Array Notation is a variant
for explicitly specifying vectorized operations using an own syntax. The data
structures remain unchanged with respect to those used in the AoS implementa-
tion. Specific changes are made to the vectorized loops, as shown in Algorithm3,
where the loops are replaced by operations with array notation.

Parallel Self-gravity for Small Astronomical Bodies on Xeon Phi 165

Algorithm 3. Particle-to-particle self-gravity calculation using array notation
1: int size = sectors[part sector].size
2: double self grav = 0
3: Part * cPart = sectors[part sector].particles
4: assume aligned(cPart, 64)
5: self grav += sec reduce add((G * cPart[0:size].mass) / sqrt(pow(cPart[0:size].x -

p→ x, 2) + pow(cPart[0:size].y - p→ y, 2) + pow(cPart[0:size].z - p→ z, 2)))
6: return self grav

Algorithm 3 makes use of two extensions of the language introduced by Cilk
Plus. The syntax currentParticles[i:length] indicates the compiler that the
instruction must be performed for each value of the array currentParticles

between the index value i and i+ length. Given an instruction in array notation,
operation sec reduce add sums the result of each part of the array in a numeric
variable. Two examples of equivalent code are shown on Listings 1.1 and 1.2.

for (int i = 0; i < size; i++) {
dx[i] = currentParticles[i].x − p−>x;

}
Listing 1.1. Standard loop

dx[0:size] = currentParticles[0:size] − p−>x;
Listing 1.2. Equivalent loop to Listing 1.1 using array notation

4.3 Parallel Implementation Using Thread Building Blocks

The parallel implementation of MADA using TBB was developed by performing
a set of modifications over the AoS Cilk Plus code, to evaluate the performance
of the TBB scheduler vs. the Cilk Plus scheduler.

Intel TBB provides its own parallel for. The differences with cilk for are
presented in Listings 1.3 and 1.4. Modifications are needed to adapt the Cilk
Plus implementation to use Intel TBB to manage threads and workloads.

cilk for(int i = 0; i < sectors to process length; i++){
process sector(sectors to process[i], cilkrts get worker number());

}
Listing 1.3. Cilk For

parallel for<int>(0, sectors to process length, 1, process sector);
Listing 1.4. TBB Parallel for

Unlike Cilk Plus, TBB does not provide a method to identify the thread
number in execution at a given time. Thus, an index must be manually assigned
to access the reserved memory for the thread and to do so, a concurrent hash map

166 S. Caballero et al.

from TBB is implemented to allow the execution of concurrent reads. The con-
current hash maps the ID of the thread with the current number of threads in
execution. The number of executing threads is calculated adding to a mutually
excluded counter every time a new thread is created. The new data structures
needed for the TBB implementation of MADA are shown in Listing 1.5.

typedef concurrent hash map<tbb::internal::tbb thread v3::id,int>
WorkerTable;
int thread count = 0;
typedef spin mutex ThreadCountMutexType;
ThreadCountMutexType threadCountMutex;
WorkerTable workerTable;

Listing 1.5. TBB structures

A specific method was created to obtain the thread number and access the
reserved memory of that thread.

5 Experimental Evaluation

This section reports the experimental evaluation of the proposed MADA imple-
mentations to compute self-gravity on particle systems.

5.1 Methodology

The analysis compares the performance of the parallel implementations of
MADA using Cilk Plus and TBB with the baseline sequential implementation.

Efficiency Metrics. Three independent executions were performed using 1, 60,
120, 180, and 240 threads, to minimize variations due to non-determinism in the
execution. Average and standard deviation of the execution times are reported.
Standard metrics to evaluate the performance of parallel algorithms are studied:
speedup, the ratio of the execution time of the sequential and the parallel version.
and computational efficiency, the normalized value of the speedup.

Execution Platform. Experiments were performed on a Xeon Phi 31S1P from
Cluster FING, Universidad de la República, Uruguay [15]. It was used in dedi-
cated mode to prevent external processes from affecting the execution times.

Self-gravity Problem Instances. The experimental analysis was performed over
six problem instances that model small astronomical bodies with different char-
acteristics. The main details of the problem instances are described in Table 1.

All executions used a 0-0-0-1 configuration for MADA: the three closest sec-
tors to the one processed are computed particle by particle, the fourth using
a single subdivision level and from the fifth, the center of mass calculation is
used. Equation 2 is used to determine the number of partitions for a domain, to

Parallel Self-gravity for Small Astronomical Bodies on Xeon Phi 167

Table 1. Self-gravity problem instances used in the experimental evaluation

#I Size Domain radius (R) Particle radius (r) Partitions (P)

1 21.084 10 0.168–0.672 125

2 17.621 10 0.336 1.331

3 167.495 20 0.168–0.672 1.331

4 148.435 20 0.336 12.167

5 1.304.606 40 0.168–0.672 12.167

6 1.218.024 40 0.336 103.823

assure that the smallest subdivision is at least 2.5 times the maximum radius of
particles [7].

P =
⌊

R

2.5 × r × 2

⌋3

(2)

5.2 Sequential Implementation

Table 2 reports the execution times for the sequential MADA implementation.

Table 2. Execution time results for the sequential MADA implementation

#I #sectors Execution time (s) Std. deviation (s) Std. deviation (%)

1 125 0.678 0.010 1.48

2 1331 4.097 0.027 0.66

3 1331 15.054 0.48 3.19

4 12167 14.487 0.18 1.24

5 12617 413.250 3.184 0.77

6 103823 18957.014 117.702 0.62

Results show that execution times depend on the number of sectors processed
and not on the number of particles. Instance #5 has more particles than instance
#6 but but it demands shorter execution time since the number of MADA sectors
MADA is larger (as it depends on the maximum radius of particles).

5.3 Intel Cilk Plus

Cilk Plus with AoS. Table 3 reports execution times, speedup, and efficiency
(eff) of the parallel implementation using Cilk Plus, AoS, and optimizations for
automatic vectorization. for different number of threads (#t). The best execution
time of each instance is marked in bold. Figure 3 summarizes the results.

168 S. Caballero et al.

Table 3. Performance results: MADA Cilk Plus implementation using AoS

#I #t Time (s) Speedup Eff. #I #t Time (s) Speedup Eff.

1 1 0.962 – – 4 1 16.321 – –

60 0.339 ± 0.010 2.84 0.05 60 1.807 ± 0.077 9.03 0.15

120 0.444 ± 0.011 2.17 0.02 120 2.724 ± 0.455 5.99 0.05

180 0.544 ± 0.015 1.77 0.01 180 2.028 ± 0.010 8.05 0.04

240 0.6 ± 0.020 1.60 0.01 240 2.147 ± 0.023 7.60 0.03

2 1 6.298 – – 5 1 580.659 – –

60 0.583 ± 0.021 10.80 0.18 60 21.762 ± 0.058 26.68 0.44

120 0.661 ± 0.003 9.53 0.08 120 17.845 ± 0.195 32.54 0.27

180 0.833 ± 0.025 7.56 0.04 180 16.247 ± 0.016 35.74 0.20

240 0.895 ± 0.019 7.04 0.03 240 15.855 ± 0.486 36.62 0.15

3 1 0.895 – – 6 1 25913.53 – –

60 2.017 ± 0.017 10.81 0.18 60 487.294 ± 2.918 53.18 0.89

120 2.117 ± 0.030 10.30 0.09 120 276.941 ± 1.483 93.57 0.78

180 2.211 ± 0.031 9.86 0.05 180 206.556 ± 0.598 125.46 0.70

240 2.411 ± 0.017 9.04 0.04 240 183.875 ± 0.369 140.93 0.59

60 120 180 240
0

100

200

300

400

500

600

0.34 0.44 0.54 0.60.58 0.66 0.83 0.92.02 2.12 2.21 2.411.81 2.72 2.03 2.15
21.76 17.85 16.25 15.86

487.29

276.94

206.56
183.88

threads

particles
21,084
17,621
167,495
148,435
1,304,606
1,218,024

Execution time

60 120 180 240
0

25

50

75

100

125

150

2.84 2.17 1.77 1.6
10.8 9.53 7.56 7.0410.81 10.3 9.86 9.049.03 5.99 8.05 7.6

26.68
32.54 35.74 36.62

53.18

93.57

125.46

140.93

threads

Speedup

Fig. 3. Performance results: MADA Cilk Plus implementation using AoS

The Cilk Plus implementation significantly reduced the execution time to less
than a hundredth of the sequential version to execute instance #6. To evaluate
the impact of using vectorization, the Cilk Plus implementation was executed
using the number of threads that obtained the best time for each instance and
compared with a non-vectorial execution. Table 4 summarizes the results. The
impact of the vectorization is very high, obtaining accelerations of 7.1 and 5.8
in the largest instances (5 and 6). This imply shorter execution times, e.g., from
1060 s to 183 s for instance 6. This results imply a significantly higher scalability
of self-gravity calculation when vectorized operations are used.

Parallel Self-gravity for Small Astronomical Bodies on Xeon Phi 169

Table 4. Execution time and acceleration with/without vectorization in Cilk Plus

Instance #threads Time vectorial (s) Time non vectorial (s) Acceleration

1 60 0,339 ± 0,010 1,313 ± 0,025 3,873

2 60 0,583 ± 0,021 2,363 ± 0,670 4,053

3 60 2,017 ± 0,017 14,879 ± 0,477 7,377

4 60 1,807 ± 0,077 5,238 ± 0,095 2,899

5 240 15,855 ± 0,486 116,682 ± 16,334 7,061

6 240 183,875 ± 0,369 1060,763 ± 14,619 5,769

Cilk Plus with Array Notation. Table 5 reports the execution time, speedup, and
efficiency of the implementation using Cilk Plus with array notation, varying the
number of threads. Results are graphically compared in Fig. 4.

Table 5. Performance results: MADA Cilk Plus implementation using AoS and array
notation

#I #t Time (s) Speedup Eff. #I #t Time (s) Speedup Eff.

1 1 0.716 – – 4 1 13.594 – –

60 0.348 ± 0.020 2.06 0.03 60 1.822 ± 0.034 7.46 0.12

120 0.436 ± 0.020 1.64 0.01 120 2.384 ± 0.059 5.70 0.05

180 0.541 ± 0.007 1.32 0.01 180 3.182 ± 0.149 4.27 0.02

240 0.616 ± 0.036 1.16 0.00 240 4.208 ± 0.243 3.23 0.01

2 1 4.714 – – 5 1 492.541 – –

60 0.516 ± 0.007 9.14 0.15 60 19.739 ± 0.040 24.95 0.42

120 0.613 ± 0.022 7.69 0.06 120 16.911 ± 0.025 29.13 0.24

180 0.718 ± 0.008 6.57 0.04 180 17.131 ± 0.165 28.75 0.16

240 0.842 ± 0.013 5.60 0.02 240 18.677 ± 0.264 26.37 0.11

3 1 15.779 – – 6 1 24151.367 – –

60 1.945 ± 0.007 8.11 0.14 60 452.197 ± 1.092 53.41 0.89

120 2.081 ± 0.015 7.58 0.06 120 268.803 ± 1.186 89.85 0.75

180 2.169 ± 0.016 7.27 0.04 180 214.701 ± 1.334 112.49 0.62

240 2.324 ± 0.019 6.79 0.0 240 206.636 ± 0.788 116.88 0.49

The implementation using array notation obtained similar results to the
implementation using automatic vectorization in executions with 60 threads.
However, when using more computing resources, the speedup decreased and the
execution times worsen with respect to the implementations analyzed in the pre-
vious sections. Graphics in Fig. 4 show that the improvements when using 120,
180, and 240 threads are lower than those obtained when using automatic vec-
torization. The speedup obtained for instance #6 with 240 threads was 116.88,
significantly lower than the one obtained with automatic vectorization.

170 S. Caballero et al.

60 120 180 240
0

100

200

300

400

500

600

0.35 0.44 0.54 0.620.52 0.61 0.72 0.841.95 2.08 2.17 2.321.82 2.38 3.18 4.2119.74 16.91 17.13 18.68

452.2

268.8

214.7 206.64

threads

particles
21,084
17,621
167,495
148,435
1,304,606
1,218,024

Execution time

60 120 180 240
0

25

50

75

100

125

150

2.06 1.64 1.32 1.16
9.14 7.69 6.57 5.68.11 7.58 7.27 6.797.46 5.7 4.27 3.23

24.95
29.13 28.75 26.37

53.41

89.85

112.49
116.88

threads

Speedup

Fig. 4. Performance results: MADA Cilk Plus implementation using AoS and array
notation.

In any case, implementing vectorization using array notation is simpler for
the programmer. It is done explicitly and data dependency rules do not have to
be checked. Array notation is a viable alternative for non-expert programmers
to obtain performance improvements with little implementation effort.

5.4 Intel Thread Building Blocks

Table 6 reports the execution time, speedup, and efficiency of the implementa-
tion using Intel TBB for thread management and optimizations for automatic
vectorization, varying the number of threads. Figure 5 summarizes the results.

Table 6. Performance results: MADA TBB implementation

#I #t Time (s) Speedup Eff. #I #t Time (s) Speedup Eff.

1 1 0,991 – – 4 1 15,005 – –

60 0,436 ± 0,005 2,27 0,04 60 1,912 ± 0,021 7,85 0,13

120 0,612 ± 0,035 1,62 0,01 120 2,181 ± 0,039 6,88 0,06

180 0,955 ± 0,070 1,04 0,01 180 2,466 ± 0,035 6,08 0,03

240 1,348 ± 0,281 0,74 0,00 240 3,011 ± 0,120 4,98 0,02

2 1 6,221 – – 5

1 583,309 – –

60 0,675 ± 0,029 9,22 0,15 60 21,376 ± 0,239 27,29 0,45

120 0,847 ± 0,017 7,34 0,06 120 17,336 ± 0,214 33,65 0,28

180 1,202 ± 0,036 5,18 0,03 180 16,537 ± 0,034 35,27 0,20

240 1,792 ± 0,119 3,47 0,01 240 16,999 ± 0,140 34,31 0,14

3 1 21,854 – – 6 1 25543,485 – –

60 2,235 ± 0,068 9,78 0,16 60 449,619 ± 0,134 56,81 0,95

120 2,375 ± 0,021 9,20 0,08 120 258,625 ± 0,371 98,77 0,82

180 2,718 ± 0,032 8,04 0,04 180 198,065 ± 0,760 128,97 0,72

240 3,261 ± 0,062 6,70 0,03 240 174,85 ± 0,171 146,09 0,61

Parallel Self-gravity for Small Astronomical Bodies on Xeon Phi 171

The MADA implementation using TBB obtained the best values of compu-
tational efficiency of all the variants analyzed in this article. This is reflected in
the execution time when the number of thread increase: when using 240 threads
to process instance #6, MADA TBB demanded 174.85 s to execute, the lowest
execution time for all compared algorithms.

60 120 180 240
0

100

200

300

400

500

600

0.44 0.61 0.96 1.350.68 0.85 1.2 1.792.24 2.38 2.72 3.261.91 2.18 2.47 3.01
21.38 17.34 16.54 17

449.62

258.63

198.07
174.85

threads

particles
21.084
17.621
167.495
148.435
1.304.606
1.218.024

Execution time

60 120 180 240
0

25

50

75

100

125

150

2.27 1.62 1.04 0.74
9.22 7.34 5.18 3.47
9.78 9.2 8.04 6.77.85 6.88 6.08 4.98

27.29
33.65 35.27 34.31

56.81

98.77

128.97

146.09

threads

Speedup

Fig. 5. Performance results: MADA TBB implementation

The TBB implementation improved 5.16% the execution time in the largest
instance, mainly due to the fact that the cost of creating threads in TBB is
higher than in Cilk Plus. Execution times using TBB are better when the size
of the problem is large enough.

5.5 Results Discussion

Experimental results showed that using the Intel Xeon Phi architecture sig-
nificantly reduces the execution times of self-gravity calculation. Performance
results indicated that the using automatic vectorization allowed obtaining bet-
ter results than those obtained by explicit vectorization with array notation
(improvements of up to 12.37% were obtained). On the other hand, using TBB
as a thread manager/scheduler instead of Intel Cilk Plus improved the execu-
tion time up to 5.16% for largest instance using 240 threads and automatic
vectorization. MADA TBB demanded 174.85 s to execute, corresponding to a
computational efficiency of 0.61.

6 Conclusions and Future Work

This article analyzed several parallel implementations of MADA to calculate
self-gravity on astronomical systems composed of millions of particles using the
Intel Xeon Phi architecture. Specific optimizations were studied regarding thread

172 S. Caballero et al.

management (Cilk Plus and TBB), data structures (SoA, AoS, and array nota-
tion), and vectorization options (automatic, explicit).

The experimental analysis was performed on six problem instances that
model different small astronomical bodies with diverse features: number of parti-
cles (up to 1.2 million), particles radius, and subdivisions for MADA calculation.
Instances with were considered. The execution time of each studied implemen-
tation were evaluated and compared using configurations of 1, 60, 120, 180, and
240 threads for each instance.

Performance results showed that using Xeon Phi significantly reduces the
execution times of self-gravity computation. For the most complex instance, the
best execution time of 174.85 s was obtained using 240 threads, automatic vector-
ization, and TBB as thread manager/scheduler. Using automatic vectorization
yielded better results than those obtained by explicit vectorization with array
notation. Using TBB as thread manager/scheduler improved over the implemen-
tation using Cilk Plus in 5.16% for the most complex instance.

The results obtained in the analysis clearly show the potential of parallel
computing using the Intel Xeon Phi architecture for efficiently solving complex
scientific computing problems, such as simulations of small astronomical bodies.

The main lines for future work are related to study the efficiency of the
proposed implementations on modern Xeon Phi versions, studying bottlenecks
of I/O operations, and analyze the impact of using offload mode for execution.

References

1. Harris, A., Fahnestock, E., Pravec, P.: On the shapes and spins of “rubble pile”
asteroids. Icarus 199(2), 310–318 (2009)

2. Haile, J.: Molecular Dynamics Simulation: Elementary Methods. John Wiley &
Sons Inc., New York (1992)

3. Cundall, P., Strack, O.: A discrete numerical model for granular assemblies.
Géotechnique 29(1), 47–65 (1979)

4. Hager, G., Wellein, G.: Introduction to High Performance Computing for Scientists
and Engineers. CRC Press, Boca Raton (2010)

5. Frascarelli, D., Nesmachnow, S., Tancredi, G.: High-performance computing of
self-gravity for small solar system bodies. Computer 47(9), 34–39 (2014)

6. Nesmachnow, S., Frascarelli, D., Tancredi, G.: A parallel multithreading algorithm
for self-gravity calculation on agglomerates. In: Gitler, I., Klapp, J. (eds.) ISUM
2015. CCIS, vol. 595, pp. 311–325. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-32243-8 22

7. Rocchetti, N., Frascarelli, D., Nesmachnow, S., Tancredi, G.: Performance
improvements of a parallel multithreading self-gravity algorithm. In: Mocskos, E.,
Nesmachnow, S. (eds.) CARLA 2017. CCIS, vol. 796, pp. 291–306. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-73353-1 21

8. Rönnbäck, E.: Parallel implementation of the projected Gauss-Seidel method on
the Intel Xeon Phi processor-application to granular matter simulation. Master
Thesis ID: diva2:747201. Ume̊a University, Sweden (2014)

9. Surmin, I., Bastrakov, S., Gonoskov, A., Efimenko, E.S., Meyerov, I.: Particle-in-
cell plasma simulation using Intel Xeon Phi coprocessors. Vychislitel’nye Metody
i Programmirovanie 15(3), 530–536 (2014)

https://doi.org/10.1007/978-3-319-32243-8_22
https://doi.org/10.1007/978-3-319-32243-8_22
https://doi.org/10.1007/978-3-319-73353-1_21

Parallel Self-gravity for Small Astronomical Bodies on Xeon Phi 173

10. Pennycook, S., Hughes, C., Smelyanskiy, M., Jarvis, S.: Exploring SIMD for molec-
ular dynamics, using Intel R© Xeon R© processors and Intel R© Xeon Phi coprocessors.
In: 27th International Symposium on Parallel & Distributed Processing, pp. 1085–
1097 (2013)

11. Sandia National Laboratories. Mantevo Project (2017). https://mantevo.org/.
Accessed March 2018

12. Kothari, B., Claypool, M.: Pthreads performance. Technical Report WPI-CS-TR-
99-11. Worcester Polytechnic (1999)

13. Ajkunic, E., Fatkic, H., Omerovic, E., Talic, K., Nosovic, N.: A comparison of
five parallel programming models for C++. In: 35th International Convention on
Information and Communication Technology, Electronics and Microelectronics, pp.
1780–1784 (2012)

14. Leist, A., Gilman, A.: A comparative analysis of parallel programming models for
C++. In: 9th International Multi-conference on Computing in the Global Infor-
mation Technology, pp. 121–127 (2014)

15. Nesmachnow, S.: Computación cient́ıfica de alto desempeño en la Facultad de
Ingenieŕıa, Universidad de la República. Revista de la Asociación de Ingenieros del
Uruguay 61(1), 12–15 (2010)

https://mantevo.org/

Visualization of a Jet in Turbulent
Crossflow

Guillermo Araya1(B), Guillermo Marin2, Fernando Cucchietti2, Irene Meta2,
and Rogeli Grima2

1 Department of Mechanical Engineering,
University of Puerto Rico at Mayagüez, Mayagüez, PR 00681, USA

araya@mailaps.org
2 Barcelona Supercomputing Center (BSC), 08034 Barcelona, Spain

Abstract. Direct Numerical Simulation (DNS) with high spatial and
temporal resolution of a jet transversely issuing into a turbulent bound-
ary layer subject to very strong favorable pressure gradient (FPG) has
been performed. The analysis is done by prescribing accurate turbulent
information (instantaneous velocity and temperature) at the inlet of a
computational domain for simulations of spatially-developing turbulent
boundary layers based on the Dynamic Multiscale Approach (JFM, 670,
pp. 581–605, 2011). Scientific visualization of flow parameters is carried
out with the main purpose of gaining a better insight into the complex
set of vortical structures that emerge from the jet-crossflow interaction.
An interface has been created to convert the original binary output files
by the parallel flow solver PHASTA into readable input documents for
Autodesk Maya software. Specifically, a set of scripts that create cus-
tomized Maya nCache files from structured datasets. Inside Maya, stan-
dard tools and techniques, commonly utilized in feature film production,
are used to produce high-end renderings of the converted files. The major
effect of strong FPG on crossflow jets has been identified as a damping
process of the counter-rotating vortex pair system (CVP).

Keywords: Fluid dynamics · DNS · HPC · Data visualization

1 Introduction

Incompressible jets transversely issuing into a spatially-developing turbulent
boundary layer is one of the most challenging types of three dimensional flows
due to its thermal-fluid complexity and technological applications; for instance,
film cooling of turbine blades, chimney plumes, fuel injection, etc. The capability
to control a flow field in such a way to enhance thermal efficiency is of crucial
relevance in aerospace and other engineering applications. A classical example
of active flow control by three-dimensional local blowing perturbations is the jet

Supported by GECAT-NCSA.

c© Springer Nature Switzerland AG 2019
E. Meneses et al. (Eds.): CARLA 2018, CCIS 979, pp. 174–178, 2019.
https://doi.org/10.1007/978-3-030-16205-4_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16205-4_13&domain=pdf
https://doi.org/10.1007/978-3-030-16205-4_13

Visualization of a Jet in Turbulent Crossflow 175

in crossflow. A complicated set of flow structures and vortex systems is gener-
ated by the interaction of the jet with the crossflow: the shear-layer vortices, the
counter-rotating vortex pair (CVP), the wake vortices and the horseshoe vortex.
These coherent structures have been the motivation of several studies by many
researchers. A recent comprehensive review was performed by Karagozian [1].
Coherent structures in such a complex environment and their interactions (tur-
bulent events) are better identified and visualized by DNS. At the beginning,
flow visualization by smoke and dye injection was the only technique available to
describe these coherent structures, which can be considered the building-blocks
of turbulent flows, [2]. Generally speaking and based on the premise “seeing
is believing”, visualization techniques have substantially evolved in the last few
decades spanning all disciplines. According to Friendly [3], scientific visualization
“is primarily concerned with the visualization of 3D+ phenomena (architectural,
meteorological, medical, biological, etc.), where the emphasis is on realistic ren-
derings of volumes, surfaces, illumination sources, and so forth, perhaps with a
dynamic (time) component.” In this regard, it is important to stress the relevance
of identifying the target audience: the constituent parts, or formal attributes, of
a visual product will change in relation to its purpose and intended audience.
For example, a visualization for a scientific publication may incorporate very
technical annotations. On the contrary, a visualization intended as a dissemina-
tion product for stakeholders or general public will not need as many technical
details, or the color schemes would be chosen based on aesthetics rather than
field conventions. In this short article, we intend to create visual displays of
crossflow jet simulations oriented to the scientific community.

2 Approach and Outcome Discussion

The numerical tools to be employed in the present study are briefly discussed
below.

Turbulent Inflow Generation: Computationally speaking, it is very challenging to
capture the physics of unsteady spatially-developing turbulent boundary layers
(SDTBL), for the following reasons: (i) the high resolution required to resolve
both large and small scales (Kolmogorov/Batchelor scales), (ii) the computa-
tional box must be large enough to appropriately capture the influence of the
large scale motions, and (iii) realistic time-dependent inflow turbulent conditions
must be prescribed. Therefore, we propose to use the inflow generation method
devised by Araya et al. [4], which is an improvement to the original rescaling-
recycling method by Lund et al. [5]. The seminal idea of the rescaling-recycling
method is to extract the flow solution (mean and fluctuating components of
the velocity and thermal fields) from a downstream plane (called “recycle”) and
after performing a transformation by means of scaling functions, the transformed
profiles are re-injected at the inlet plane, as seen in Fig. 1.

176 G. Araya et al.

Fig. 1. Schematic of the computational
domain.

The Flow Solver: To successfully per-
form the proposed DNS, a highly
accurate, very efficient, and highly
scalable flow solver is required.
PHASTA is an open-source, parallel,
hierarchic (2nd to 5th order accurate),
adaptive, stabilized (finite-element)
transient analysis tool for the solu-
tion of compressible or incompressible
flows (Jansen [6]). It has been exten-
sively validated in a suite of DNS
(velocity and thermal boundary lay-
ers) [4,7]. PHASTA has been carefully
constructed for parallel performance and scaling to 786,432 cores in Mira super-
computer.

Boundary Conditions: At the wall, the classical no-slip condition is imposed for
velocities. An isothermal condition is prescribed for the temperature field at the
wall, which is assumed a passive scalar. The lateral boundary conditions are
handled via periodicity. The pressure is weakly prescribed at the outlet plane.
At the top inclined surface, the normal component of the velocity is prescribed
a zero value (streamline) and freestream value for temperature. The jet is at
a lower temperature than the wall and is modeled by imposing a wall-normal
parabolic laminar profile velocity at the surface, in a circle with a radius R. In
the present investigation, the radius is approximately half of the inlet boundary
layer thickness, i.e. R ≈ δinl/2. Therefore, the wall-normal velocity profile, V (r),
within the jet is as follows; V (r) = Vmax[1−(r/R)2], where r is the local distance
to the jet center and Vmax is the vertical velocity at the jet center. The velocity
ratio (VR) is defined as the ratio between Vmax and the incoming freestream
velocity, U∞. We are considering a low velocity ratio of 0.5. The Reynolds number
based on the pipe diameter (2R) and Vmax is 1520, which demonstrates that
the pipe flow is laminar and the parabolic velocity profile is therefore quite
appropriate. The temperature of the jet (coolant) is prescribed as 60% of the
freestream temperature, T∞. The number of grid points is roughly 4M. The case
was run in 192 processors, consuming about 24,000 CPU hours.

Scientific Visualization: We are using Autodesk Maya and Paraview as the main
computer graphics programs for 3D animations. The Paraview toolkit is utilized
in principal domain cut and data interpolation in order to visualize a particular
zone of interest, for instance, the vertical jet region. Figure 2 shows a lateral
view of the computational domain and the blue volume contains the jet, whose
flow parameters (velocity and temperature) have been dynamically extracted.
In our pipeline, the data is first converted to a structured grid inside Paraview.
The outcome is then parsed by a proprietary Maya plug-in developed at the BSC
that reads structured-grid based simulation datasets, and converts them to Maya
nCache binary files, the standard simulation cache files of Autodesk Maya. This
tool provides an easy and consistent way to load three dimensional simulation

Visualization of a Jet in Turbulent Crossflow 177

data in Maya, where one can apply advanced animation, shading, and rendering
techniques to create high-end visualizations. The color scales are variations of
standards in the field, which are also perceptually correct: a divergent ice-fire
scale, and the magma color scale. The high-end renderings obtained in Maya were
composited, edited, and color-corrected in post-production using the software
Adobe After Effects. For example, the titles, color scales, and annotations were
added in this final stage.

Fig. 2. Domain cut and variable interpolation in Paraview. (Color figure online)

Fig. 3. Start-up of a crossflow jet. (Color figure online)

Major Outcomes: A snapshot of the video can be seen in Fig. 3, which is avail-
able at https://vimeo.com/268976317. During the start-up process of the jet-
crossflow problem, it can be observed a weak penetration and low thermal mixing
of the vertical jet into the boundary layer due to the low velocity ratio prescribed.
Furthermore, visualization of instantaneous velocity (colored by instantaneous
temperature) reveals that the jet-crossflow interaction generates a pulsating wake
(the counter-rotating vortex pair system or CVP) downstream of the hole. This
evident coherent structure exhibits a quick attenuation due to the strong flow
acceleration.

Conclusions: Flow animation of a cold jet interacting with a turbulent crossflow
is carried out. The data is first transformed to a structured grid inside Paraview,
and later converted to Maya nCache binary files via a Maya plug-in developed at
the BSC. The jet wake is weakened downstream, which is attributed to the strong
favorable pressure gradient imposed. Future work involves flow visualization of
crossflow jet simulations in large scale systems at much larger Reynolds numbers.

https://vimeo.com/268976317

178 G. Araya et al.

Acknowledgment. This project is supported by subaward #074984-16663 (GECAT -
University of Illinois). GA acknowledges XSEDE (Project Number: CTS170006) and
NSF-CBET grant #1512393.

References

1. Karagozian, A.: The jet in crossflow. Phys. Fluids 26(101303), 1–17 (2014)
2. Dennis, D.J.: Coherent structures in wall-bounded turbulence. Anais da Academia

Brasileira de Ciencias 87, 1161–1193 (2015)
3. Friendly, M.: Milestones in the history of thematic cartography, statistical graphics,

and data visualization. York University, Department of Mathematics and Statistics
(2009)

4. Araya, G., Castillo, L., Meneveau, C., Jansen, K.: A dynamic multi-scale approach
for turbulent inflow boundary conditions in spatially evolving flows. J. Fluid Mech.
670, 518–605 (2011)

5. Lund, T., Wu, X., Squires, K.: Generation of turbulent inflow data for spatially-
developing boundary layer simulations. J. Comput. Phys. 140(2), 233–258 (1998)

6. Jansen, K.E.: A stabilized finite element method for computing turbulence. Comput.
Meth. Appl. Mech. Eng. 174, 299–317 (1999)

7. Araya, G., Castillo, C., Hussain, F.: The log behaviour of the Reynolds shear stress
in accelerating turbulent boundary layers. J. Fluid Mech. 775, 189–200 (2015)

Acceleration of Hydrology Simulations
Using DHSVM for Multi-thousand Runs

and Uncertainty Assessment

Andrew Adriance, Maria Pantoja(B), and Chris Lupo

California Polytechnic State University, San Luis Obispo, CA 95116, USA
{mpanto01,clupo}@calpoly.edu

Abstract. Hydrology is the study of water resources. Hydrology tracks
various attributes of water such as its quality and movement. As a tool
Hydrology allows researchers to investigate topics such as the impacts
of wildfires, logging, and commercial development. Due to cost and dif-
ficulty of collecting complete sets of data, researchers rely on simula-
tions. The Distributed Hydrology Soil Vegetation Model (DHSVM) is a
software package that uses mathematical models to numerically repre-
sent watersheds. In this paper we present an acceleration of DHSVM.
As hydrology research produces large amounts of data and the accurate
simulation of realistic hydrology events can take prohibitive amounts of
time accelerating these simulations becomes a crucial task. The paper
implements and analyzes various high-performance computing (HPC)
advancements to the original code base at different levels; at compiler,
multicore level, and distributed computing level. Results show that com-
piler optimization provides improvements of 220% on a single computer
and multicore features improve execution times by about 440% compared
by a sequential implementation.

Keywords: OpenMP · OpenMPI · Hydrology simulations · HPC ·
Cluster

1 Introduction

Hydrology research is a useful tool for examining our planets most import natu-
ral resource, water. The Distributed Hydrology Soil Vegetation Model (DHSVM)
gives researchers a helpful look at hydrologic processes in water sheds by numer-
ically representing various features of the area such as weather patterns [1]. On
modern commodity desktop computers, the sample data set that comes with
the code takes about fifteen minutes to run. While that is not an unreasonable
amount of time for a single data set, if researchers wish to optimize input param-
eters and perform uncertainty analysis this program execution time presents a
significant bottle neck for researchers. Optimization of the simulation requires an
iterative process of tuning parameters and re-running DHSVM’s simulation, and
an uncertainty analysis requires an even larger body of results. In this paper, we
c© Springer Nature Switzerland AG 2019
E. Meneses et al. (Eds.): CARLA 2018, CCIS 979, pp. 179–193, 2019.
https://doi.org/10.1007/978-3-030-16205-4_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16205-4_14&domain=pdf
https://doi.org/10.1007/978-3-030-16205-4_14

180 A. Adriance et al.

focus on DHSVM’s ability to produce many data sets for uncertainty analysis,
and in addition the proposed changes to the code base can be utilized for other
applications that require parallelism such as parameter optimization.

This project is a collaboration between the authors and the Agriculture
Science department to study the Caspar Creek watershed, simulating different
changes to the California Forest Practice Rules on forest roads, silviculture, and
water lake protection zones. By creating these simulations researchers will be
able to investigate potential hydrologic impacts of changing these rules. Before
building up the simulation model they must gather data about solar radiation,
relative humidity, wind speed, air temperature, land elevation, roads, and vege-
tation in the area. All this data will be used to run DHSVM using uncertainty
analysis. Instead of creating a single optimal parameter set, uncertainty anal-
ysis uses a range of parameters and many runs of a simulation. This requires
DHSVM to run many times with slightly varying inputs to build statistically
strengthened results.

In its current state DHSVM is sequential code that cannot adequately take
advantage of modern multicore hardware to produce results faster, and to scale
on a distributed cluster. As the number of runs scales up to one thousand, even
a small data set can take almost a week and a half to run, assuming contin-
uous runs of the calculation without interruption or downtime. To achieve the
desired speed, this paper analyzes and applies several different parallelization
techniques. First, serial code optimization is applied, as any time saved in an
individual run, even if just ten seconds, will scale to as almost three hours for
every thousand runs. Second, parallel computing paradigms are added to the
program. At its core, DHSVM is a program that takes a large spatial data struc-
ture and loops over it many times to perform calculations. By distributing the
work of looping over these spatial data structures to multiple execution threads,
performance improves significantly. As the computer industry shifts away from
clock speed increases in processors and towards adding more cores to computers
this becomes increasingly important. Programs will no longer speed up as new
processors are released unless they make adequate use of the increasing number
of cores. This paper uses OpenMP [3] as its tool of choice for implementing these
parallel optimizations at the multicore level. Finally, distributed computing opti-
mizations using OpenMPI [8] are also added to DHSVM. These changes will give
DHSVM the ability to run multiple instances of the simulation in a cluster com-
puting system. As the goal of this paper is to increase multi-thousand sets of
runs of DHSVM, using MPI to cooperatively run many instances of the program
provided a better overall speed increase compared to using MPI to speed up a
single instance of the program.

1.1 Previous Work

To the best knowledge of the authors, this paper presents the first attempt at
studying the original code base and applying modern high-performance comput-
ing techniques to it. There have been a number of studies done on the model
itself from validation, to parameter optimization [2–5]. Yao et al. did work on

Acceleration of DHSVM 181

genetic algorithms to optimize DHSVM’s input parameters. Their genetic algo-
rithm approach serves as an alternative to the uncertainty analysis method this
paper seeks to bolster. Du et al. did work to investigate DHSVM’s effectiveness
in a forested mountain watershed. None of these have focused on making run-
ning the model faster. These papers simply seek to analyze and improve upon
the results from the model itself.

While DHSVM has not been specifically analyzed there are many ongo-
ing efforts to speed up existing scientific simulations. One such example is the
Regional Oceanic Modeling System (ROMS) [5]. While the subject matter of
ROMS is different, the computational backbone is similar. ROMS works to
traverse 2D and 3D data structure that represent oceanic regions, similar to
DHSVM’s computation over 2D structures that represent land. This paper will
borrow from these similar works for improving DHSVM.

1.2 Paper Structure

The rest of the paper proceeds as follows: First is the background section where
we will cover various libraries and concepts utilized in the rest of this paper.
Next, we describe the Implementation section. Here the exact changes to the
program will be discussed. Following is the validation section. In validation, the
paper will discuss how program correctness was maintained, and the various
results from testing speedups. Next the related works section and the future
work section is introduced. Finally, the paper will end with a conclusion section
to fully summarize the findings.

2 Background

2.1 Distributed Hydrology-Vegetation Model - DHSVM

DHSVM is an open source implementation of Wigmosta et al. Distributed
Hydrology-Vegetation Model [7]. DHSVM provides an accurate model for vege-
tation changes, water quality, and run off production for complex terrain. The
model takes information about an area of land as input and iteratively calculates
the changes to its various characteristics at each time step. DHSVM is specifically
used for investigating watersheds, and the water resources they hold. DHSVM
takes as input a model of the land constructed by researchers. The model repre-
sents land as a grid. Each cell of the model grid contains information about the
weather conditions, soil type, topography, and vegetation of the area. DHSVM
takes this model constructed by the researchers and iterates through it over a
configurable period of time. At the end of this process DHSVM will produce a
series of output files that contain information such as total water in the soil and
canopy, how much water evaporated over time, and the amount of water gained
through precipitation.

The source code of DHSVM is implemented in approximately 23,000 lines
of C code. While the program originated in the early 1990s, it has been main-
tained as a collaboration between the Pacific Northwest National Laboratory

182 A. Adriance et al.

and the University of Washington [1]. Despite this maintenance the code base
still performs all of its operations serially.

2.2 Uncertainty Analysis

While DHSVM is a useful model, there is a level of uncertainty to its outputs. The
parameters DHSVM needs to run can be hard to collect, collection methods may
be prone to error, and measured values can vary by as much by 150% depending
on how and when data are collected [5]. Uncertainty analysis helps combat these
levels of variability. It offers an alternative to defining one optimal set of input
parameters. Uncertainty analysis recognizes that there is no one optimal set of
input parameters, and there may be many valid models that produce equally
possible outputs. The Generalized Likelihood Uncertainty Estimation (GLUE)
procedure is one such analysis.

Uncertainty analysis can be understood by the general steps researchers take
when utilizing a model. First, a reasonable range of input parameters must be
defined. Then many instances of the model must be run with varying combi-
nations of reasonable input parameters. As outputs are produced, statistical
analysis determines if that particular set of random parameters and outputs is
reasonable. The exact statistical analysis applied will vary depending on use
case. The results can be used to construct a graph that contains a region of
reasonable values.

3 Implementation

3.1 Software Feature Additions

New software features were added to the base software. The first added feature
allows users to specify the desired number of DHSVM runs. DHSVM will con-
tinue to execute new instances of the simulation until the input goal is achieved.
Each simulation runs output is prefixed with the number of the run for future
analysis. The run number is taken as a new run time argument to the program
from the command line.

Fig. 1. An example section of a DHSVM input file with a random range.

Acceleration of DHSVM 183

In addition to specifying a number of instances, the ability to randomize
inputs is added. To specify a number from 0.1 to 0.5 for example a user would
list ‘< 0.1 − 0.5 >’ as an input parameter. Figure 1 shows an example input file
with a random range.

3.2 Serial Optimization

Compiler Optimization. Modern compilers offer a wide variety of automatic opti-
mization schemes. The general goal of these schemes is to reduce the number of
instructions and improve cache coherency. Reducing instruction counts results
in fewer CPU clock cycles being required to complete a chunk of code. Improv-
ing cache coherency encourages a program to use data that already exists in a
CPU’s cache and thus reduces the time spent fetching data.

This paper specifically utilizes the GNU C Compiler (gcc) and the Intel C
Compiler (icc). For gcc enabling optimization level 3 and removing all debugging
and profiling flags was sufficient for optimization purposes.

gcc -O3 -o execname filename.c

The icc compiler offers the ‘ipo’ optimization which allows the compiler to
inline functions that exist in different files. The icc ‘no-prec-div’ option enables
faster floating-point divisions. This flag can degrade the accuracy of the floating-
point values however. In DHSVM this flag did not significantly impact the results
files. Finally, in icc the ‘xCORE-AVX2’ option allows for icc to do processor
specific optimizations based on the available instruction set.

icpc -03 -prof-use -no-prec-div -CORE-AVX2 -ipo -o execname filename.c

System Call Optimization. System calls can be particularly costly. They
require a context switch from the requesting process to the kernel, and then for
the kernel to execute the code to handle it. Therefore, it is desirable to reduce the
usage and impact of system calls where possible to avoid the expensive context
switches. The first optimization work is to remove unneeded print statements.
By default, DHSVM continuously prints out progress markers for the current
step of the simulation. The next set of optimizations focus on the memory-based
system calls such as malloc and free. These calls incur extra overhead as the
kernel manages virtual memory. Two different methods are implemented for
optimizing these calls. The first optimization uses gperftools as an alternative
to the compilers default malloc libraries. While gperftools provides a variety of
helpful profiling options, it most importantly contains TCMalloc. It offers up to
4 times the performance over other malloc implementations, and specifically
favors threaded environments [TCMalloc]. TCMalloc gives each thread a cache
of memory on top of a central memory cache used for storing larger object. When
objects are freed from TCMalloc they enter a list of available memory that can
be used by future memory requests. These features of TCMalloc all serve to
reduce the reliance on context switches into kernel space to handle memory.

184 A. Adriance et al.

Each iteration of the simulation mallocs and frees the same data structures.
To reduce these system calls malloc and free will only be called for these common
data structures once. At the start of the program all these common structures
will be initialized with malloc. At the end of the program all these common data
structures will be released using free. Each iteration of the simulation where
malloc is normally called is replaced with calls to memset for zeroing out the
memory of the data structures. The free at the end of each simulation step are
no longer needed and are removed all together.

Parallel Optimization. DHSVM spends a large portion of time traversing
the two-dimensional land data structure. It has to traverse it to calculate and
aggregate new values each iteration of the program. Additionally, there is cer-
tain setup and cleanup work required at each simulation time step that requires
traversal of the whole structure. These frequent traversals are the primary target
of this paper’s parallel optimizations. OpenMP is used for all of these parallel
optimizations. We did choose OpenMP since it requires in principle little rewrit-
ing of the original code and it can be used to get a general idea of which loops
can and should be parallelized.

Fig. 2. Example of the potential issues of dividing work only by row or column. In this
case two threads end up with no work.

The traversals appear in the code using nested for loops. One traverses the
rows, one traverses the columns. The traversal is parallelized by distributing
with fine granularity. Each cell in the two-dimensional grid is available to sched-
ule on any thread. This is accomplished by using openMP’s collapse feature
to turn each iteration of the nested loop into an individual piece of work. The
collapse directive effectively rewrites the nested loop at compile time to be a
single loop and makes each iteration available to run on any thread. Without
the collapse directive a coarser granularity can be used to distribute individual
rows or columns of the traversal to threads. This coarse granularity is not as
scalable, and as shown in Fig. 2, can lead to some threads not getting any work
at all. Distributing either rows or columns into threads results in N or M work
units. By distributing individual cells, you obtain N*M work units. By increas-
ing the number of work units DHSVM will be able to better take advantage of
computers which in the future will have many more cores.

Acceleration of DHSVM 185

Fig. 3. Example of code optimized with OpenMP.

In addition to these traversals various administrative work for the simula-
tion was distributed to various threads. Each simulation iteration has many
malloc and free calls to set up and tear down data structures. All of this work
was spread between the available cores. In general, any loop with a significant
number of iterations (approximately 100 iterations per core) or did non-trivial
work (free, malloc, large simulation calculations) were spread to additional cores.
Trivial loops (low number of iterations, or simple calculations like a single add)
were left serial due to the administrative costs incurred by distributing work to
threads. Figure 3 show sample code optimization, the fact that the change to the
code are small should not be confused by the reader as trivial since part of the
parallelization of the code is to make sure that there is no data dependencies in
the loop body. Most of the loops in DHSVM were not trivial and took careful
analysis to guarantee correctness as described in next sections.

Distributed Optimization. Distributed computing can be used to speed up
the individual run times of a program. This paper seeks to produce many
DHSVM results in a short amount of time. As such the optimal strategy is
to have each distributed node run a different instance of DHSVM. By having
worker nodes run individual instances the amount of communication between
nodes is kept to a minimum, allowing for additional results to be produced
with reduced overhead. OpenMPI is utilized to handle distributing the various
DHSVM instances. Since DHSVM’s input file was changed to allow randomized
parameters, each DHSVM instance on the cluster can use the same input file
with a different set of randomized parameters. Each worker node in the cluster
runs its own instance of DHSVM. When the simulation finished the results are
sent back to the master node and written to disk for future analysis. A visual
representation of this setup is shown in Fig. 4. While it is necessary to aggregate
the results to a single location it creates a bottle neck. DHSVM’s runtimes are
not highly variable, thus worker nodes may request the master node to write

186 A. Adriance et al.

results to disk at the same time. This bottle neck becomes a bigger problem
as the size of the cluster increases. To help mitigate this problem the initial
DHSVM jobs are slightly offset from one another. The initial variation in start
times reduces the chance that two worker nodes will try to have their results
written to disk at the same time.

Fig. 4. Each distributed worker node computes new simulation results. All results are
sent to a master node and written to disk.

4 Results

4.1 Validation

Validation of DHSVM was handled as two separate tasks. To ensure correctness
every change to DHSVM’s code base checked against the output of the original
code base. This ensured that program output was not being mangled by opti-
mizations. To ensure the effectiveness of every change to DHSVM’s code base
time results were gathered each run. To complete these tasks a simple Python
test suite was created. This tool automated the process of program correctness
checks and provided timing outputs for gathering results.

Tests where ran using various hardware throughout the paper. Three
machines were used in particular, their CPU specifications are listed in Table 1.

Table 1. CPU used for experiments.

Type Model Cores Clock speed

Consumer Intel Core i7-7700HQ 4 2.80 GHz

Server Intel Xeon E5-2695 v3 12 2.30 GHz

Research Intel Xeon Phi 7210 64 1.30 GHz

Acceleration of DHSVM 187

4.2 Guaranteeing Correctness

The Python test suite used the output of the original, known working DHSVM
code as an oracle. Each iterative update to the program was then run through
the suite, which would compare all new program outputs to the old ones. If any
differences occurred the tool would inform the user which outputs differed and
to what degree.

Race conditions and general non-deterministic program behaviors were the
biggest concern guarded against. A single vote of correctness from the test suite
didn’t fully prove the absence of these abnormalities. A program modification
would be run at least once in ideal conditions, and once with other tasks on
the computer demanding resources to move threads in and out of the CPU. By
introducing contention, it gave threads a higher chance to swap in and out of
the CPU and execute in a not friendly order for potentially revealing subtle
threading errors.

Correctness was not always a binary yes or no when compared to the oracle
programs outputs. When compiler options, or whole compilers, were switched
during the project floating point numbers would not always maintain the same
precision. To verify changes to floating point outputs, first a sanity check of the
output was completed. This sanity check consisted of ensuring the two outputs
still agreed on the most significant decimal places, and that the number itself
differed by an insignificant amount (less than 0.01%). After verifying the relative
accuracy of the output, the program was run again, but this time compared to its
own output. As long as the second programs run matched the first the floating-
point error was considered insignificant. If they did not match the code was
analyzed under the assumption a race condition was introduced.

4.3 Timing Comparisons

Timing comparisons are gathered as an average of runs in ideal conditions.
DHSVM is executed five times, and the average of those runs is used for the
final result. Time measurements represent the total wall clock time required for
DHSVM to complete from the time the user issues the command to the final
output being written.

The original code base of DVSHM took approximately 13 min for a single
run to complete when running in ideal conditions. After applying all optimiza-
tions this paper investigated, a single instance completed in about 3 min. This
is an overall speed increase for a single run of 440%. Figure 5(a) shows the dif-
ference between the original DHSVM code base, and the code base with every
optimization enabled.

Serial optimizations accounted for approximately half of DHSVM’s speed
increases. With serial speed increases the program ran in a little under 6 min.
That’s 220% faster than the original code. Figure 5(b) shows the difference
between the original program and the best serially optimized version of the pro-
gram. The biggest speed increases for serial optimization were gained through
compiler optimization and system call optimizations.

188 A. Adriance et al.

Fig. 5. (a) Execution time comparison between the original program and the optimized.
(b) Execution time comparison between the original program and the best serially
optimized version

This paper investigated the various effects of using Intel’s specific compiler
for Intel CPUs (icc), versus the GNU C compiler (gcc), icc gains a constant 20 s
speed increase over gcc. These 20 s constant speed persist when the program is
run with multiple cores. This speed increase is not significant for single runs of
DHSVM but can net large gains over large numbers of runs.

Just using gcc with its basic -O3 flag shows a significant improvement over
the original code base, shaving off almost 300 s of run time, for an overall 50%
increase in speed. For many uses of DHSVM the additional 20 s saved with icc
will be unnecessary. However, for the many results set required for uncertainty
analysis 20 s is a very helpful increase in speed. Enabling optimizations isn’t
totally free of development time, as it will reveal subtle bugs that may not affect
optimized code (such as uninitialized memory). However, these subtle issues
will also often cause problems with parallel code and should be worked through
before any serious optimization work can take place.

Printf Optimizations. Printf was the first system call to be optimized. Remov-
ing unnecessary progress update printfs successfully shaved about 10 s off the
program. Figure 6(a) present a summary of this execution times.

Memory Optimization. Optimizing system calls for memory provided the sec-
ond best returns for serial optimizations. Figure 7(b) shows the difference in run
times between using the original code base with the default malloc library, reduc-
ing the number of calls to calloc by holding onto memory, and using TCMalloc
to replace the default malloc library. Significant development time was required
to analyze existing code to determine what callocs could be turned into memset
calls of existing memory. TCMalloc reduced run times by a minute and a half,
a 25% improvement. Using a third party implementation to improve all uses of
the malloc library provided good results to the whole program without having
to manually analyze and modify the programs memory usage.

Acceleration of DHSVM 189

Fig. 6. (a) Comparison of times between the optimized serial program compiled with
and without printfs being removed. (b) Malloc, TCMalloc

Parallel Optimizations. DHSVM’s parallel optimizations reduced runtimes
by almost three minutes on commodity hardware. These optimizations took
run times from 350 s down to 180. Figure 7(a) shows how DHSVM scaled on a
commodity Intel CPU i7 with 4 physical cores and Hyper Threading. Figure 7(b)
shows DHSVM’s performance on intel Xeon cpu with 12 physical cores available.
The two graphs show that virtual cores provided through Hyper Threading on
Intel CPUs do not greatly benefit DHSVM. After reaching the physical core limit
performance hovers around the same range. The graphs also show that DHSVM
stops getting significant performance improvements after about 75% of the cores
are in use. In Fig. 7(a) performance improvements become very minimal after
3 cores are in use, and in Fig. 7(b) performance improvements start to level
off around 9 cores. Additionally, by switching to server cpus DHSVM reduces
runtimes by almost a whole minute; proving that our changes to the original are
scalable. This means with even faster server hardware DHSVM could continue
to improve without any father change to the code.

Fig. 7. Optimized version of DHSVM’s performance relative to number of cores (a)
For 4 core (b) 12 cores (c) 64 Cores.

190 A. Adriance et al.

To test the potential edge of DHSVM’s scalability we used a machine with the
latest 64 cores cpu. The results in Fig. 7(c) show that DHSVM continues to scale
in a similar fashion. The curves on all three graphs show that in general DHSVM
can now scale in a 1/x fashion relative to the number of cores on the CPU. The
actual times on the research hardware are noticeably worse than the consumer
hardware. This is due to the research CPU clock speeds being significantly lower.
Currently DHSVM needs the higher clock speeds for the complex floating-point
operations it performs. Additionally, DHSVM’s code base is not tooled to utilize
the vector operations of the CPUs.

The data show that DHSVM should be able to continue to scale up despite
these issues, the net gain per core will simply continue to drop. Exactly how
many cores DHSVM can utilize will depend on the size of the land area being
simulated.

Multi-core VS. Multi-instance. As this papers modification to DHSVM
allow for both multiple cores, and multiple instances of DHSVM to be ran it
is desirable to understand how to balance computer resources. While allotting
more cores per DHSVM instance will return individual result sets faster, the
scaling provides diminishing returns. To investigate this a single server computer
was used in three different configurations. The first configuration ran DHSVM
serially, allowing for up to 12 simultaneous instances. The second allotted 2 cores
to each DHSVM instance, allowing for up to 6 simultaneous instances. The final
configuration had 6 cores per instance, allowing for 2 running concurrently. Each
set up was asked to produce 1, 6, 12, and 24 sets of DHSVM results. Figure 8(a)
shows the raw time recordings from each of these experiments and Fig. 8(b)
graphs total time divided by the number of result sets produced. The results of
this experiment provide three interesting insights.

1. Running extra instances of DHSVM scales linearly. The is particularly evident
in the data for the instance with 6 cores where additional runs were needed
for every instance.

2. For uncertainty analysis will scale well to arbitrarily sized compute clusters.
There is very little over head to run additional instances of DHSVM. This is
best exemplified by the data points of 1, 6, and 12 result sets being produced
by DHSVM in serial.

3. For large sets of results, it makes little sense to use the threaded version of
DHSVM. The almost perfect scaling of running multiple instances quickly out
performs the benefits of using multiple cores to accelerate DHSVM. However,
the threaded version is still helpful for researchers who are using work flows
other than uncertainty analysis and initial configuration and testing of model
inputs.dr

4. The Colleagues in the environmental sciences department using our improved
version of DHSVM reported to us that they were able to run 80 models in
the same time it use to take them to run just one model.

Acceleration of DHSVM 191

Fig. 8. (a) total time required to execute a certain number of DHSVM instances. (b)
time per instance produced. Both Graphs ran on server hardware

M
as
sE
ne
rg
yB

al
an
ce

Ev
ap
oT

ra
ns
pi
ra
tio

n

A
gg
re
ga
te

C
an
op
yR

es
ist
an
ce

R
ou
te
Su
bS
ur
fa
ce

20

40

60

80

T
im

e
(s
)

Original Optimized

Fig. 9. Profiling the bottle neck functions in the original program, and time comparison
of execution speed before and after optimization.

4.4 Profile Analysis

A profiling analysis of run times before and after optimization gives a clear
picture of where speedups were gained. Figure 9 shows the top five functions
DHSVM spends time executing in the original code, and how much time they
took after optimizations. The slowest function, MassEnergyBalance had some
speed-ups from optimizations, but was hindered from further speedups by data

192 A. Adriance et al.

dependencies. Each of the remaining four function operated a significant amount
to individual cells of the lands model grid. These operations could easily be split
between cores and allowed for noticeable speedups.

5 Conclusion and Future Work

This paper successfully updated DHSVM to allow for single instances of DHSVM
to better utilize modern hardware and to run multiple instances for producing
large sets or results. Applying serial optimizations through both the compilers
flags and optimized versions of malloc allowed for DHSVM to half run times
serially. Using OpenMP allowed DHSVM to better utilize modern multicore
hardware and half run times once again. Using OpenMPI allowed us for DHSVM
to run multiple instances of a simulation to produce many result sets. Analysis on
run times required to produce multiple result sets show that multiple instances of
DHSVM can run on a single machine with minimal overhead. This gives DHSVM
almost perfect scalability for producing multiple results sets. Researchers using
DHSVM can utilize this to run many serial instances of DHSVM on computer
cluster to produce many sets of results for uncertainty analysis in a short amount
of time. Overall DSVHM is over 4 times faster than the original code base, with
the potential to continue improving with newer hardware in the future. More
importantly, the code base is now equipped to allow future researchers to more
effectively perform uncertainty analysis.

For future we will investigate OpenMP new offloading features to acceler-
ators. The first compiler to take advantage of this was the Intel icc compiler
that uses this feature to offload work to the Intel Xeon Phi. OpenMP has been
working on support for different accelerators and in Version 5.0 (to be released
on Nov 2018) they will provide wide support across compilers and libraries to
allow code to be offloaded on the GPU. We did perform some preliminary test
with beta versions of the gcc 7.2 [9] compilers and OpenMP 4.5 and the speed
up are significant, but unfortunately there is still no support for some of the
math functions used in DVHS, which produced some accuracy errors. Because
of these errors we cannot implement the Offload target clause for this paper but
in the future we see the possibility of accelerating the code on a GPU with very
few changes to our exiting code. The only modifications we foresee is to change
pragmas used to accelerate for loops: #pragma parallel into:

#pragma omp target teams distributed parallel for collapse(x).

References

1. Pacific Northwest National Laboratory. Distributed hydrology soil vegetation
model. http://dhsvm.pnnl.gov/. Accessed 11 Oct 2017

2. Beven, K., Binley, A.: The future of distributed models: model calibration and
uncertainty prediction. Hydrol. Process. 6(3), 279–298 (1992)

3. Yao, C., Yang, Z.: Parameters optimization on DHSVM model based on a Genetic
Algorithm. Front. Earth Sci. China 3(3), 374–380 (2009)

http://dhsvm.pnnl.gov/

Acceleration of DHSVM 193

4. Du, E., Link, T.E., Gravelle, J.A., Hubbart, J.A.: Validation and sensitivity test of
the distributed hydrology soil-vegetation model (DHSVM) in a forested mountain
watershed. Hydrol. Process. 28(26), 6196–6210 (2014)

5. Surfleet, C.G., Skaugset, A.E., McDonnell, J.J.: Uncertainty assessment of forest
road modeling with the Distributed Hydrology Soil Vegetation Model (DHSVM).
Can. J. For. Res. 40(7), 1397–1409 (2010)

6. Lupo, P., Pantoja, M., Choboter, P.: Enhancing regional ocean modeling simulation
performance with the Xeon Phi architecture. IEEE (2017)

7. Wigmosta, M.S., Vail, L.W., Lettenmaier, D.P.: A distributed hydrology-
vegetation model for complex terrain. Water Resour. Res. 30(6), 1665–1679 (1994)

8. Gropp, W., Lusk, E., Doss, N., Skjellum, A.: A high-performance, portable imple-
mentation of the MPI message passing interface standard. Parallel Comput. 22(6),
789–828 (1996)

9. Chapman, B., Eachempati, D., Li, K.: OpenMP 4.0 features (2017). http://
extremecomputingtraining.anl.gov/files/2014/01/OpenMP-40-features-ATPESC-
final-v2.pdf. Accessed 30-27-2017

10. Walfridsson, K.: Building GCC with support for NVIDIA PTX offloading (2017).
https://kristerw.blogspot.co.at/2017/04/building-gcc-with-support-for-nvidia.
html. Accessed 30-02-2018

http://extremecomputingtraining.anl.gov/files/2014/01/OpenMP-40-features-ATPESC-final-v2.pdf
http://extremecomputingtraining.anl.gov/files/2014/01/OpenMP-40-features-ATPESC-final-v2.pdf
http://extremecomputingtraining.anl.gov/files/2014/01/OpenMP-40-features-ATPESC-final-v2.pdf
https://kristerw.blogspot.co.at/2017/04/building-gcc-with-support-for-nvidia.html
https://kristerw.blogspot.co.at/2017/04/building-gcc-with-support-for-nvidia.html

Fine-Tuning an OpenMP-Based
TVD–Hopmoc Method Using Intel R©

Parallel Studio XE Tools on Intel R©

Xeon R© Architectures

Frederico L. Cabral1, Carla Osthoff1(B), Roberto P. Souto1, Gabriel P. Costa1,
Sanderson L. Gonzaga de Oliveira2, Diego Brandão3,

and Mauricio Kischinhevsky4

1 Laboratório Nacional de Computação Cient́ıfica - LNCC, Petrópolis-RJ, Brazil
{fcabral,osthoff,rpsouto,gcosta}@lncc.br

2 Universidade Federal de Lavras - UFLA, Lavras-MG, Brazil
sanderson@ufla.br

3 Centro Federal de Educação Tecnológica Celso Suckow da Fonseca - CEFET-RJ,
Rio de Janeiro, Brazil

diego.brandao@eic.cefet-rj.br
4 Universidade Federal Fluminense - UFF, Niterói-RJ, Brazil

kisch@ic.uff.br

Abstract. This paper is concerned with parallelizing the TVD–Hopmoc
method for numerical time integration of evolutionary differential equa-
tions. Using IntelR© Parallel Studio XE tools, we studied three OpenMP
implementations of the TVD–Hopmoc method (naive, CoP and EWS-
Sync), with executions performed on IntelR© XeonR© Many Integrated
Core Architecture and Scalable processor. Our implementation, named
EWS-Sync, defines an array that represents threads and the scheme
consists of synchronizing only adjacent threads. Moreover, this app-
roach reduces the OpenMP scheduling time by employing an explicit
work-sharing strategy. Instead of permitting the OpenMP API to per-
form thread scheduling implicitly, this implementation of the 1-D TVD-
Hopmoc method partitions among threads the array that represents
the computational mesh of the numerical method. Thereby, this scheme
diminishes the OpenMP spin time by avoiding barriers using an explicit
synchronization mechanism where a thread only waits for its two adjacent
threads. Numerical simulations show that this approach achieves promis-
ing performance gains in shared memory for multi-core and many-core
environments.

Keywords: OpenMP · Xeon Phi · High performance computing ·
Parallel processing · Advection–diffusion equation ·
Thread synchronization

c© Springer Nature Switzerland AG 2019
E. Meneses et al. (Eds.): CARLA 2018, CCIS 979, pp. 194–209, 2019.
https://doi.org/10.1007/978-3-030-16205-4_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16205-4_15&domain=pdf
https://doi.org/10.1007/978-3-030-16205-4_15

Fine-Tuning an OpenMP-Based TVD–Hopmoc Method 195

1 Introduction

Investigations in transport phenomena are crucial in several scientific and engi-
neering problems. For example, in environment or reactive fluid flow problems,
a fluid transports and dissolves contaminant or chemical species. Specifically,
the numerical solution of the advection–diffusion transport equation arises from
various important applications in engineering, chemistry, and physics. Relevant
examples of its use are found in geophysical flows, such as meteorology and
oceanography, as well as in the transport of contaminants in air, groundwater,
rivers, and lagoons, oil reservoir flow, aerodynamics, astrophysics, biomedical
applications, in the modeling of semiconductors, and so forth. Consequently,
modeling the transport equation is an expressive subject in numerical mathe-
matics because it has connections with a wide range of scientific and engineering
fields [1].

The Hopmoc method (see [2] and references therein) is a spatially decoupled
alternating direction procedure for solving advection–diffusion equations. It was
designed to be executed in parallel architectures (see [3] and references therein).
Specifically, this method decouples the set of unknowns into two subsets. These
two subsets are calculated alternately by explicit and implicit approaches. In
particular, the use of two explicit and implicit semi-steps avoids the use of a
linear system solver. Moreover, this method employs a strategy based on tracking
values along characteristic lines during time stepping. The two semi-steps are
performed along characteristic lines by a Semi-Lagrangian scheme. This method
combines the time derivative and the advection term as a directional derivative.
Thus, it performs time steps in the flow direction along characteristics of the
velocity field of the fluid. We consider here the advection–diffusion equation in
the form

ut + vux = duxx, (1)

with appropriate initial and boundary conditions, where v and d are con-
stant positive velocity and diffusivity, respectively, 0 ≤ x ≤ 1 and
0 ≤ t ≤ T , for T time steps. Applying the Hopmoc method to Eq. (1)

yields u
t+ 1

2
i = u

t
i + δt

[
θtiLh

(
u
t
i

)
+ θt+1

i Lh

(
u
t+ 1

2
i

)]
and ut+1

i = u
t+ 1

2
i +

δt
[
θtiLh

(
u
t+ 1

2
i

)
+ θt+1

i Lh

(
ut+1
i

)]
, where θti is 1 (0) if t + i is even (odd),

Lh (ut
i) = d

ut
i−1−2ut

i+ut
i+1

Δx2 is a finite-difference operator, u
t+ 1

2
i and ut+1

i are con-
secutive time semi-steps, and the value of the concentration in u

t
i is obtained by

a linear interpolation technique [2].
Discretization of the advective term in transport equations is frequently

afflicted with severe complications. To avoid spurious numerical oscillations,
Harten [4] introduced the concepts of Total Variation Diminishing (TVD) tech-
niques and flux limiter, which provide monotonicity-preserving properties and
stable higher-order accurate solutions of advection-diffusion equations. The orig-
inal Hopmoc method employs an interpolation technique to determine the value
in the foot of the characteristic line. This inherently introduces numerical errors
to the solution. A recent work [5] integrated the Hopmoc method with a TVD

196 F. L. Cabral et al.

scheme with the objective to deal with this restriction. We referred this new
approach as TVD–Hopmoc method [5].

We evaluated a naive OpenMP implementation of the TVD–Hopmoc method
under the Intel R© Parallel Studio XE software for Intel’s Haswell/Broadwell archi-
tectures. This product showed us that the main problems in the performance of
a naive OpenMP TVD–Hopmoc method was the use of the implicit OpenMP
scheduling and synchronization mechanisms. Hence, a previous publication [3]
employed alternative strategies to these naive OpenMP scheduling and synchro-
nization strategies. Our earlier approach reduced the number of loops in relation
to the original algorithm from four to two loops, improving the performance
of the algorithm in approximately 50%. It used a strategy where a single loop
combines the explicit operators, and another loop joins the implicit operators
employed in the TVD–Hopmoc method. We named it as Cluster of Points (CoP).
However, further investigations revealed that this chunking strategy still presents
an unreasonable spin time due to the OpenMP implicit barrier constructs.

The TVD–Hopmoc method computes the solution of an advection–diffusion
equation in such a way that a particular thread needs information only from
its adjacent threads so that an implicit barrier is unnecessary. Consequently,
we replaced the OpenMP implicit barrier by an explicit lock mechanism, in
which a synchronization point occurs between adjacent threads, i.e., each thread
waits only for two adjacent threads to reach the same synchronization point.
The strategy employed is a simple lock mechanism. Using an array of booleans,
a thread sets (releases) an entry location in this array and, hence, informs its
adjacent threads that the data cannot (can) be used by them. We referred this
strategy as explicit work sharing with explicit synchronization (EWS-Sync) [6].

This paper evaluates the EWS-Sync implementation of the 1-D TVD–
Hopmoc method when executed on Intel R© Xeon PhiTM Knights-Corner and
Knights Landing accelerators. Additionally, this paper shows simulations per-
formed on an Intel R© Xeon R© Scalable Processor. We compare this implementa-
tion with the CoP approach [3]. We evaluate both approaches along with three
thread binding policies: balanced, compact, and scatter policies.

Section 2 discusses state-of-the-art approaches in load balancing when using
the OpenMP standard. Section 3 discusses a naive OpenMP implementation of
the TVD–Hopmoc method. Section 4 shows results of the CoP OpenMP-based
implementation of the TVD–Hopmoc method [3]. Section 5 presents the EWS-
Sync strategy. Section 6 shows the experimental results that compare the new
approach with a naive and CoP OpenMP–based TVD–Hopmoc methods. Finally,
Sect. 7 addresses the conclusions and discusses the next steps in this investigation.

2 Related Work

Practitioners have been using two scheduling paradigms to address the problem
of scheduling multi-threaded computations: work sharing and work stealing. In
the work-stealing strategy, underutilized processors attempt to “steal” threads
from other processors. The work-stealing idea dates back at least as far as a

Fine-Tuning an OpenMP-Based TVD–Hopmoc Method 197

work proposed by Burton and Sleep [7]. These authors presented a model for
concurrently executing process trees, which provided a basis for matching the
generation of new tasks to the available resources [7]. They also presented an
interpretation of a topology for the support of virtual process trees on a phys-
ical network. These authors point out that the benefits of the work-stealing
paradigm to reduce space and communication in a parallel context. Afterward,
many researchers have implemented variants on this strategy. Blumofe and Leis-
erson [8] analyzed a work-stealing algorithm for scheduling “fully strict” (well-
structured) multi-threaded computations.

In the work sharing paradigm, whenever a processor generates new threads,
the scheduler attempts to migrate some of them to other processors with the
purpose of distributing the work to underutilized processors. Intuitively, the
migration of threads occurs less frequently when employing a work-stealing app-
roach than using a work-sharing strategy. When many processors have tasks to
be done, a work-stealing scheduler does not migrate threads among processors,
but a work-sharing scheduler always migrates threads among processors.

Penna et al. [9] proposed a workload-aware loop scheduling strategy for irreg-
ular parallel loops in which iterations are independent. These authors applied
their scheme in a large-scale NUMA machine using a synthetic kernel.

Various researchers have been proposing strategies to improve performance
on Intel R© Xeon PhiTM accelerators. These problem-solving techniques have been
trying to handle the challenge presented in this architecture to achieve linear
speedups, principally in OpenMP implementations. For example, Ma et al. [10]
proposed strategies to optimize the OpenMP implicit barrier constructs. These
authors revealed how to remove the OpenMP implicit barrier constructs when
there is no data dependence. Their second strategy uses a busy-waiting synchro-
nization. Their optimized OpenMP implementation obtained better results than
the basic OpenMP strategies.

Caballero et al. [11] introduced a tree-based barrier that uses cache local-
ity along with SIMD instructions. Their approach achieved a speedup of up to
2.84x over the basic OpenMP barrier in the EPCC barrier micro-benchmark.
Cabral et al. [12] evaluated the original Hopmoc method in different parallel
programming paradigms; however this appraisal was not performed on Intel R©

Xeon PhiTM accelerators.
A previous publication [3] showed that a simple OpenMP implementation

of the TVD–Hopmoc method suffers from high load imbalance caused by the
fine-grained parallelism used inherently by the OpenMP standard. This imple-
mentation employed a parallel chunk loop strategy with the objective of avoiding
the fine-grained parallelism, which improved the performance of the implemen-
tation in approximately 50%. Another previous work [6] used an explicit work-
sharing strategy in conjunction with a new synchronization approach based on
a lock array and reached promising results both in multi-core and many-core
environments.

198 F. L. Cabral et al.

3 A Naive OpenMP Implementation of the
TVD–Hopmoc Method

This section describes a naive OpenMP implementation of the TVD–Hopmoc
method. This naive OpenMP implementation consists of the main time loop
that carries out two steps: (i) compute the MMOC step, which runs the TVD
scheme; (ii) compute the first and second (explicit and implicit) semi-steps.

We analyzed a naive OpenMP method (i.e., using the OpenMP parallel for
directive) under the Intel R© Advisor shared memory threading assistance tool.
Algorithm 1 shows a fragment of a pseudo-code that is used to obtain the suit-
ability analysis carried out by this shared memory threading assistance tool.
This fragment of pseudo-code shows an OpenMP parallel region comprised of
a time loop of the TVD–Hopmoc method. This while loop is identified as a
parallel region to be examined by the Intel R© Advisor shared memory threading
assistance tool.

1 begin
2 #pragma omp parallel;
3 {;
4 while (t < T) do
5 [...];
6 end
7 };

8 end

Algorithm 1. A fragment of pseudo-code outlining how to obtain the suit-
ability analysis performed by the Intel R© Advisor shared memory threading
assistance tool.

Algorithm 2 shows a fragment of pseudo-code that performs a time step of
the Hopmoc method in this naive implementation. This fragment of pseudo-code
shows four for loops that calculate the two-time semi-steps of the algorithm using
alternately explicit and implicit approaches.

A naive approach to parallelize the TVD–Hopmoc method inserts OpenMP
directives in each loop that solves: (1) the total diminishing variation scheme;
(2) explicit operators; (3) implicit operators. We conducted experiments using
the OpenMP static, dynamic, and guided scheduling directives. However, we
observed poor performance for static scheduling and that dynamic and guided
scheduling directives decrease even more the performance of the algorithm. The
Intel R© Thread Advisor revealed that even with most of the code vectorized,
the estimated gain when using the OpenMP API is limited. The reason for this
is because the calculations in the method use very fine granularity to take full
advantage of parallelism techniques and HPC capabilities.

We conducted experiments with a naive OpenMP implementation of the
TVD–Hopmoc method performed on a machine containing an Intel R© Xeon R©

Fine-Tuning an OpenMP-Based TVD–Hopmoc Method 199

1 begin
2 #pragma omp for;
3 for (i ← 1; i ≤ n − 1; i ← i + 1) do

// compute the MMOC step

4 end

5 #pragma omp for;
6 for (i ← 1; i ≤ n − 1; i ← i + 2) do

// compute the first explicit time semi-step

7 end

8 #pragma omp for;
9 for (i ← 1; i ≤ n − 1; i ← i + 2) do

// compute the first implicit time semi-step

10 end

11 #pragma omp for;
12 for (i ← 1; i ≤ n − 1; i ← i + 2) do

// compute the second explicit time semi-step

13 end

14 #pragma omp for;
15 for (i ← 1; i ≤ n − 1; i ← i + 2) do

// compute the second implicit time semi-step

16 end

17 end

Algorithm 2. A time step comprised of four for loops that iterate the first
and second time semi-steps of a naive OpenMP–based TVD–Hopmoc method
using alternately explicit and implicit approaches.

CPU E5-2698 v3 @ 2.30 GHz composed of 32 physical cores. This naive OpenMP
implementation of the TVD–Hopmoc method obtained an inefficient perfor-
mance in a multi-core environment for Δx = 10−5 (i.e., a mesh composed of
105 stencil points). The left side of Fig. 1 shows the results of an experiment
performed with the support of the Intel R© Advisor Advanced Hotspot Analy-
sis shared memory threading assistance tool. It shows the high spin (imbalance
or serial spin) and overhead (scheduling) times caused by the implicit OpenMP
scheduling mechanism. The left side of Fig. 1 shows a high clock ticks per Instruc-
tions Retired (CPI) rate obtained by the naive OpenMP implementation of the
TVD–Hopmoc method. In general, the CPI rate is the first metric to observe
when verifying the performance of an application during tuning effort. Specifi-
cally, CPI event ratio is one of the first performance metrics analyzed to study
a hardware event-based sampling collection [13]. This ratio is determined by
dividing the number of continued processor cycles (clock ticks) by the number
of instructions retired. The CPI value of an application is an indication of how
much latency influenced its execution. A high CPI value means more latency,
on average, during runtime, i.e., the application took more clock ticks for an

200 F. L. Cabral et al.

instruction to retire [13]. Generally, the code, the processor, and the system con-
figuration determine the CPI rate of a workload, and 0.75 (4) is a reasonable
(high) value for this ratio [13].

Fig. 1. Executions times obtained by a naive OpenMP-based method on left and the
CoP implementation of the TVD–Hopmoc method [3] on right when studied with the
support of the IntelR© Advisor shared memory threading assistance tool. Spin and
overhead times add to the idle CPU usage value.

The left side of Fig. 2 shows a CPU usage histogram extracted from the Intel R©

Advisor shared memory threading assistance tool. This figure reveals that the
naive OpenMP implementation of the TVD–Hopmoc method computes a small
number of threads simultaneously. In particular, this implementation used on
average 12 cores simultaneously (in a machine composed of 32 cores).

Fig. 2. CPU usage histograms generated in an execution of the naive method on left
and in an execution of the CoP implementation of the TVD–Hopmoc method [3] on
right. These histograms display a percentage of the wall time, i.e., the specific number
of cores that were used simultaneously.

Fine-Tuning an OpenMP-Based TVD–Hopmoc Method 201

Fig. 3. Speedups of the naive, CoP, and EWS-Sync implementations of the TVD–
Hopmoc method applied to the advection–diffusion equation (1) for a Gaussian pulse
with amplitude 1.0 and Δx set as 10−5 (i.e., a mesh composed of 105 stencil points),
and T = 106.

Figure 3 shows the speedup obtained by the naive OpenMP implementation
of the TVD–Hopmoc method. This figure shows that the maximum speedup (10)
obtained with this implementation is reached when using 15 cores (in a machine
with 32 cores).

4 The CoP OpenMP-Based Implementation
of the TVD–Hopmoc Method

As mentioned, we performed an analysis with the support of the Intel R© Thread
Advisor. It revealed that even with the code mostly vectorized, the OpenMP API
strongly limits the gains because of the fine-grained parallelism used inherently
by the OpenMP standard in each loop. This analysis led us to a version in which
a single loop joins the explicit operators and a single loop combines the implicit
operators in the TVD–Hopmoc method [3]. We named this strategy as Cluster
of Points (CoP). This strategy reduced the number of loops used in the original
algorithm from four to two loops. It improved the performance of the method in
approximately 50%.

A further investigation revealed that this chunking strategy still presented
unreasonable spin time due to the OpenMP implicit barrier constructs. The right
side of Fig. 1 shows the clock ticks per Instructions Retired (CPI) rate obtained
by the CoP OpenMP-based implementation of the TVD–Hopmoc method. The
right side of Fig. 2 shows a CPU usage histogram extracted from the Intel R© Advi-
sor shared memory threading assistance tool. This figure reveals that the CoP
OpenMP-based implementation of the TVD–Hopmoc method uses 17 threads
simultaneously (in a machine with 32 cores).

Figure 3 shows the speedup obtained by the CoP OpenMP implementation of
the TVD–Hopmoc method. This figure shows that the maximum speedup (12)
obtained with this implementation is reached when using 24 cores (in a machine
with 32 cores).

202 F. L. Cabral et al.

5 An Improved Explicit Work-Sharing Approach Along
with an Explicit Synchronization (EWS-Sync) Strategy

Our implementation determines a static array of booleans that denotes the
unknowns. Additionally, our implementation handles thread imbalance by sub-
dividing permanent and explicitly this array into the team of threads. Conse-
quently, this implementation carries out thread scheduling only at the beginning
of the execution. Thereby, our implementation of the TVD–Hopmoc method does
not use the OpenMP parallel for directive because each thread has its data. A
thread sets (releases) its associated entry in this array to notify its two adjacent
threads that the data cannot (can) be used [6].

The EWS-Sync OpenMP-based implementation of the 1-D TVD–Hopmoc
method slightly improves our previous implementation [6]. We removed the
#pragma omp atomic directive from the code that updates the lock array. This
modification improved the results of the EWS-Sync OpenMP-based implemen-
tation in more than 40%.

Algorithm 3 shows a fragment of pseudo-code that outlines how we synchro-
nize adjacent threads. Line 10 in this fragment of code shows how we define this
array of locks when executing it in a machine with up to 240 threads. Since the
first (last) thread have no neighbor to its left (right) side, the first (last) entry of
this lock array is unset. In particular, this implementation is a thread-safe code.

Algorithm 3 also describes the explicit synchronization mechanism employed
in the TVD–Hopmoc method and how we synchronize adjacent threads. It shows
how we replace OpenMP barriers, defining a range from localStart to localEnd
variables for each thread in the team.

A few spin time may be desirable instead of increasing thread context
switches. High spin time, however, can diminish productive work. The OpenMP
barrier directive recognizes a synchronization point at which threads in a paral-
lel code fragment will not run after the OpenMP barrier until all other threads
in the team terminate all their tasks in the parallel code fragment. Then, one
can use the no-wait clause and include an OpenMP barrier directive outside the
loop; but even with these directives, all threads in the team synchronize at the
same point.

Figure 3 shows the speedup obtained by the EWS-Sync OpenMP imple-
mentation of the TVD–Hopmoc method. This figure shows that the maximum
speedup (31) obtained with this implementation is reached when using 32 cores
(in a machine composed of 32 cores).

We also performed the experiments with the TVD–Hopmoc method using
the EWS-Sync strategies on a machine containing an Intel R© Xeon R© CPU E5-
2698 v3 @ 2.30 GHz with 32 physical cores. Figure 4 shows the results of an
experiment performed with this implementation and the support of the Intel R©

Advisor Advanced Hotspot Analysis shared memory threading assistance tool.
Figure 4 shows that the EWS-Sync implementation obtained lower execution
time (458 s) than both the naive OpenMP (1754 s) and CoP implementations
(1192 s; see Fig. 1) of the TVD–Hopmoc method. Moreover, Fig. 4 exhibits that
our EWS-Sync implementation obtained lower wall time (16 s) than both the

Fine-Tuning an OpenMP-Based TVD–Hopmoc Method 203

1 begin
2 tid ← omp get thread num();
3 nt ← omp get num threads();
4 size ← n−2

nt
;

5 remainder ← (n − 2)%nt;
6 localStart ← tid · size + 1;
7 localEnd ← localStart · size − 1;
8 if (tid = nt − 1) then localEnd ← localEnd + remainder;

9 nid ← tid + 1;
10 boolean lock[242];
11 lock[nid] ← false;
12 #pragma omp master;
13 {
14 lock[0] ← false;
15 lock[nt+1] ← false;
16 }
17 #pragma omp flush (lock) // update lock array

18 [...]

// lock mechanism: inform the adjacent threads that

// this thread is performing a task in the shared memory

19 lock[nid] ← true;

20 for (i ← localStart; i ≤ localEnd; i ← i + 2) do
// some work

21 end

// release the shared memory to the adjacent threads

22 lock[nid] ← false;

// verify if the shared memory is

// locked awaits until it is released

23 while (lock[nid + 1] ∨ lock[nid − 1]) do ;

24 [...]

25 end

Algorithm 3. A fragment of pseudo-code that shows the explicit synchroniza-
tion mechanism employed in the EWS-Sync TVD–Hopmoc method.

naive OpenMP (55 s) and CoP (37 s) implementations of this method. The Fig. 4
also shows a CPI rate smaller than 0.7 when executing the EWS-Sync imple-
mentation, against a CPI rate higher than 1 obtained by both naive and CoP
implementations of the TVD–Hopmoc method (see Fig. 1).

Figure 5 shows a CPU usage histogram extracted from the Intel R© Advisor
shared memory threading assistance tool. This figure shows that the EWS-Sync

204 F. L. Cabral et al.

Fig. 4. Execution time obtained by an explicit work-sharing OpenMP–based TVD–
Hopmoc method when studied with the support of the IntelR© Advisor shared memory
threading assistance tool. Spin and overhead times add to the idle CPU usage value.

implementation of the TVD–Hopmoc method used approximately 32 threads
simultaneously when performed on the machine afore cited. Figure 3 shows that
the EWS-Sync implementation obtained a speedup of approximately 31 when
set to run with 32 threads in the machine afforested.

Fig. 5. CPU usage histogram generated in an execution of the EWS-Sync implemen-
tation of the TVD–Hopmoc method [6]. Again, this histogram displays a percentage of
the wall time, i.e., this implementation simultaneously uses a specific number of cores
during its execution.

6 Results and Analysis

This section presents the results of the CoP and EWS-Sync approaches in execu-
tions performed on Intel R© Xeon R© architectures. In particular, we evaluate both
implementations along with three thread binding policies: balanced, compact,
and scatter policies.

Fine-Tuning an OpenMP-Based TVD–Hopmoc Method 205

This section shows experiments that apply both OpenMP-based implemen-
tations of the 1-D TVD–Hopmoc method to the advection–diffusion equation
(1) for a Gaussian pulse with amplitude 1.0, whose initial center location is 0.2,
with velocity v = 1 and diffusion coefficient d = 2

Re = 10−3 (where Re stands
for Reynolds number), Δt = 10−5, Δx = 10−5 (i.e., 105 stencil points), and T is
established as 106. Specifically, Sects. 6.1 and 6.2 present the results of the CoP
and EWS-Sync approaches in runs carried out on Intel R© Many Integrated Core
architectures and a Scalable Processor, respectively.

6.1 Executions Performed on Intel R© Many Integrated Core
Architectures

Figure 6 shows the results of the EWS-Sync and CoP approaches in execu-
tions performed on a machine containing an Intel R© Xeon PhiTM Knights-
Corner (KNC) accelerator 5110P 1.053 GHz, with 8 GB DDR5 of main mem-
ory, composed of 60 cores, with 4 threads per core. This figure exhibits that
the EWS-Sync implementation yielded a speedup of approximately 150x (using
239 threads) in this simulation alongside the balanced thread binding policy.
Therefore, Fig. 6 shows that EWS-Sync implementation dominated the CoP
implementation of the TVD-Hopmoc method, which obtained a speedup of
approximately 52x.

Fig. 6. Speedups obtained by two OpenMP implementations of the 1-D TVD–Hopmoc
method in executions performed on an IntelR© Xeon PhiTM Knights-Corner accelerator.

Figure 7 shows the results of both EWS-Sync and CoP OpenMP-based imple-
mentations in runs carried out on a machine containing an Intel R© Xeon R© PhiTM

Knights Landing (KNL) accelerator CPU 7250 @ 1.40 GHz, composed of 68
cores, with 4 threads per core. This figure exhibits that the EWS-Sync approach
used in conjunction with the balanced (bal.) thread binding policy delivered a
speedup of 132x (using 271 threads) in this simulation. In particular, the EWS-
Sync implementation improves our previous version of the CoP method, which
obtained a speedup of up to 25x in executions carried out on this Intel R© Xeon
PhiTM accelerator.

206 F. L. Cabral et al.

Fig. 7. Speedups of two OpenMP-based implementations of the 1-D TVD–Hopmoc
method in runs performed on an IntelR© Xeon PhiTM Knights Landing accelerator.

Figures 6 and 7 shows four discontinuities when using both scatter and bal-
anced thread binding policies because of the increased communication among
cores when using a larger number of threads. The compact binding policy allo-
cates software threads on the same core, generating some overload on it. On
the other hand, it reduces traffic along the interconnection bus. This charac-
teristic does not appear when executing the CoP strategy because, based on
implicit OpenMP barriers, the high spin time overcomes the time spent in the
interconnection among cores and sockets (see Figs. 6, 7 and 8).

6.2 Executions Performed on an Intel R© Scalable Processor

Figure 8 shows the results of both OpenMP-based implementations in runs per-
formed on a machine containing two nodes of an Intel R© Xeon R© Platinum 8160
CPU @ 2.10 GHz, where each node is composed of 24 cores, with 2 threads
per core. This figure reveals that the EWS-Sync approach of the TVD–Hopmoc
method alongside the balanced thread binding policy obtained a speedup of
approximately 55x (using 95 threads) in this experiment, against a speedup of
11x reached by the CoP implementation of the TVD–Hopmoc method.

Fig. 8. Speedups of two OpenMP-based implementations of the 1-D TVD–Hopmoc
method in runs performed on an IntelR© XeonR© Scalable Processor.

Fine-Tuning an OpenMP-Based TVD–Hopmoc Method 207

In simulations performed on the Skylake and KNC architectures, the use of
the EWS-Sync approach along with both compact and balanced binding policies
obtain better speedups than the scatter binding policy. In simulations performed
on the Skylake architecture, this is due to the inter-socket communication.

Since the Skylake architecture contains two sockets connected by a bus, the
scatter binding policy is the worst way to distribute threads because of the
increased traffic alongside the bus. The compact binding policy distributes soft-
ware threats to hardware threads in such a way that every two threads occupy a
single physical core. This thread binding policy overloads some cores even when
others threads are available. For this reason, the speedup is small when using a
small number of threads.

The balanced binding policy distributes the threads inside a single socket
before assigning them to the second socket with the difference that it assigns
software threads to physical cores as long as they are available in any socket.
The balanced thread binding policy reached the best results among the bind-
ing policies evaluated here. Figure 8 shows a discontinuity when the number of
threads goes from 48 to 49. The reason for this is because the communication
between the sockets appears and therefore some overhead is introduced.

7 Conclusion

This paper shows an OpenMP–based 1-D TVD-Hopmoc method that improves
our previous implementations [3,6]. Our implementation employs an explicit
work-sharing approach alongside a specific synchronization mechanism. The
strategies used here to implement our OpenMP–based TVD–Hopmoc method
achieved reasonable speedups in both multi-core and manycore architectures.

This OpenMP implementation defines an array that represents stencil points
where each thread will operate. Thus, this implementation uses an explicit work-
sharing strategy by previously defining this array with the objective of reducing
the scheduling time. Using a lock array where each entry represents a thread,
an approach that synchronizes adjacent threads replaces a synchronization time
in barriers. These strategies permit the threads to attain a reasonable load bal-
ancing.

Our EWS-Sync TVD–Hopmoc method reached a speedup of approximately
150x (132x) when applied to a mesh composed of 105 stencil points in a sim-
ulation performed on an Intel R© Xeon PhiTM Knights-Corner (Knights Land-
ing) accelerator composed of 240 (272) threads. Moreover, this implementation
attained a speedup of approximately 55x when applied to the same mesh in a
simulation carried out on an Intel R© Xeon R© Scalable Processor.

We plan to provide further investigations with the objective of providing a
better speedup in executions on this Intel R© Xeon R© Scalable Processor. Another
step in this investigation is to implement an OpenMP–based 2–D TVD–Hopmoc
method. Even in the 2–D case, we plan to use an array (or a matrix) to represent
the stencil points so that the approach employed in the 1–D case of the TVD–
Hopmoc method is still valid.

208 F. L. Cabral et al.

Acknowledgments. CNPq, CAPES, and FAPERJ supported this work. We would
like to thank the Núcleo de Computação Cient́ıfica at Universidade Estadual Paulista
(NCC/UNESP) for letting us execute our simulations on its heterogeneous multi-core
cluster. These resources were partially funded by IntelR© through the projects entitled
Intel Parallel Computing Center, Modern Code Partner, and Intel/Unesp Center of
Excellence in Machine Learning.

References

1. Holstad, A.: The Koren upwind scheme for variable gridsize. Appl. Numer. Math.
37, 459–487 (2001)

2. Oliveira, S.R.F., Gonzaga de Oliveira, S.L., Kischinhevsky, M.: Convergence anal-
ysis of the Hopmoc method. Int. J. Comput. Math. 86, 1375–1393 (2009)

3. Cabral, F.L., Osthoff, C., Costa, G., Gonzaga de Oliveira, S.L., Brandão, D.N.,
Kischinhevsky, M.: Tuning up TVD HOPMOC method on Intel MIC Xeon Phi
architectures with Intel Parallel Studio Tools. In: Proceedings of the 8th Workshop
on Applications for Multi-Core Architectures (2017)

4. Harten, A.: High resolution schemes for hyperbolic conservation laws. J. Comput.
Phys. 49, 357–393 (1983)

5. Brandão, D.N., Gonzaga de Oliveira, S.L., Kischinhevsky, M., Osthoff, C., Cabral,
F.: A total variation diminishing Hopmoc scheme for numerical time integration of
evolutionary differential equations. In: Gervasi, O., et al. (eds.) ICCSA 2018, Part
I. LNCS, vol. 10960, pp. 53–66. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-95162-1 4

6. Cabral, F.L., Osthoff, C., Costa, G.P., Gonzaga de Oliveira, S.L., Brandão, D.,
Kischinhevsky, M.: An OpenMP implementation of the TVD–hopmoc method
based on a synchronization mechanism using locks between adjacent threads on
Xeon Phi (TM) accelerators. In: Shi, Y., et al. (eds.) ICCS 2018. LNCS, vol.
10862, pp. 701–707. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
93713-7 67

7. Burton, F.W., Sleep, M.R.: Executing functional programs on a virtual tree of
processors. In: Proceedings of the 1981 Conference on Functional Programming
Languages and Computer Architecture, Portsmouth, N.H., pp. 187–194. ACM,
New York, October 1981

8. Blumofe, R.D., Leiserson, C.E.: Scheduling multithreaded computations by work
stealing. J. ACM (JACM) 46(5), 720–748 (1999)

9. Penna, P.H., Castro, M., Plentz, P., Freitas, H.C., Broquedis, F., Mehaut, J.F.:
BinLPT: a novel worload-aware loop scheduler for irregular parallel loops. Braz.
Simp. High Perfom. Comput. 11, 527–536 (2017)

10. Ma, H., Zhao, R., Gao, X., Zhang, Y.: Barrier optimization for OpenMP program.
In: Proceedings of 10th ACIS International Conference on Software Engineering,
Artificial Intelligences, Networking, Parallel and Distributed Computing, pp. 495–
500 (2009)

11. Caballero, D., Duran, A., Martorell, X.: An OpenMP* barrier using SIMD
instructions for IntelR© Xeon PhiTM coprocessor. In: Rendell, A.P., Chapman,
B.M., Müller, M.S. (eds.) IWOMP 2013. LNCS, vol. 8122, pp. 99–113. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-40698-0 8

https://doi.org/10.1007/978-3-319-95162-1_4
https://doi.org/10.1007/978-3-319-95162-1_4
https://doi.org/10.1007/978-3-319-93713-7_67
https://doi.org/10.1007/978-3-319-93713-7_67
https://doi.org/10.1007/978-3-642-40698-0_8

Fine-Tuning an OpenMP-Based TVD–Hopmoc Method 209

12. Cabral, F.L., Osthoff, C., Kischinhevsky, M., Brandão, D.: Hybrid MPI/OpenM-
P/OpenACC implementations for the solution of convection diffusion equations
with Hopmoc method. In: Proceedings of 14th International Conference on Com-
putational Science and Its Applications (ICCSA), pp. 196–199 (2014)

13. Intel. Clockticks per Instructions Retired (CPI). https://software.intel.com/en-us/
vtune-amplifier-help-clockticks-per-instructions-retired-cpi. Accessed 30 Nov 2017

https://software.intel.com/en-us/vtune-amplifier-help-clockticks-per-instructions-retired-cpi
https://software.intel.com/en-us/vtune-amplifier-help-clockticks-per-instructions-retired-cpi

Performance Evaluation

Performance Evaluation of Stencil
Computations Based on Source-to-Source

Transformations

Vı́ctor Mart́ınez1(B), Matheus S. Serpa1, Pablo J. Pavan1, Edson Luiz Padoin2,
and Philippe O. A. Navaux1

1 Informatics Institute, UFRGS, Porto Alegre, Brazil
{victor.martinez,msserpa,pablo.pavan,navaux}@inf.ufrgs.br

2 Department of Exact Sciences and Engineering, UNIJUI, Ijúı, Brazil
padoin@unijui.edu.br

Abstract. Stencil computations are commons in High Performance
Computing (HPC) applications, they consist in a pattern that replicates
the same calculation in a data domain. The Finite-Difference Method is
an example of stencil computations and it is used to solve real problems
in diverse areas related to Partial Differential Equations (electromagnet-
ics, fluid dynamics, geophysics, etc.). Although a large body of literature
on optimization of this class of applications is available, the performance
evaluation and its optimization on different HPC architectures remain
a challenge. In this work, we implemented the 7-point Jacobian stencil
in a Source-to-Source Transformation Framework (BOAST) to evaluate
the performance of different HPC architectures. Achieved results present
that the same source code can be executed on current architectures with
a performance improvement, and it helps the programmer to develop the
applications without dependence on hardware features.

Keywords: Stencil applications · Heterogeneous architectures ·
Source-to-source transformation · Performance evaluation ·
Performance improvement

1 Introduction

The trend of High Performance Computing (HPC) applications is to exploit all
the processing power of multicore and heterogeneous architectures. Currently,
there are several architectural features and programming models to be consid-
ered when applications are developed. This produces a complex situation of many
interdependent factors, at software and hardware levels, that may severely influ-
ence the application performance (non-uniform memory access, vectorization,
compiler optimizations, memory policies, communications, etc.) [2,16,22].

Stencil-based computations are an example of HPC applications, they are
defined by a pattern that replicates the same calculation in all the data domain.

c© Springer Nature Switzerland AG 2019
E. Meneses et al. (Eds.): CARLA 2018, CCIS 979, pp. 213–223, 2019.
https://doi.org/10.1007/978-3-030-16205-4_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16205-4_16&domain=pdf
https://doi.org/10.1007/978-3-030-16205-4_16

214 V. Mart́ınez et al.

For instance, the Finite-Difference Method (FDM) to discretize the Partial Dif-
ferential Equations (PDE) consists in using the neighboring points in the north-
south, east-west and forward-backward directions to evaluate the current grid
point in the case of a 3D Cartesian grid. The algorithm then moves to the next
point applying the same computation to complete the entire spatial grid. The
number of points in each direction depends on the order of the approximation.
From the numerical analysis point of view, the FDM is the basis of a significant
fraction of numerical solvers in many fields (i.e., electromagnetics, fluid dynamics
or geophysics) [1,5,8,17].

A large body of literature on stencil optimization is available, but the perfor-
mance evaluation remains a challenge on current architectures [3,7,15,23]. Most
of this methods are limited by architectural issues. In this work, we describe
the procedure to evaluate the performance and to optimize the stencil compu-
tations on HPC architectures by using a framework for Source-to-source (S2S)
transformations. We used a 7-point Jacobi stencil implemented on BOAST [4].
The main advantage of this framework is that applications can be executed in
different HPC architectures without changing the source code.

This paper is organized as follows: Sect. 2 provides the fundamentals of the
stencil under study; Sect. 3 explains the framework used to develop the applica-
tion; Sect. 4 describes the methodology, the experiments, the testbed, and the
achieved results; Sect. 5 describes the related work; and finally, Sect. 6 concludes
this paper.

2 Stencil Model

In this section, we present the numerical model. The 7-point Jacobi stencil is
a reference example of a numerical kernel used in various context in order to
evaluate the impact of advanced reformulation or the impact of the underlying
architecture. Known to be severely memory-bound, this kernel can be described
as a proxy of complex stencils like those corresponding to geophysical applica-
tions. The numerical review can be found in [6].

This stencil model also corresponds to the standard discretization of the
elliptic 3D Heat equation (1) [18]. Due to its simplicity, the Finite-Differences
Method (FDM) is widely used to solve this numerical model, when discretizing
Partial Differential Equations (PDE). From the numerical analysis point of view,
the FDM computational procedure consists in using the neighboring points in
horizontal, vertical or diagonal directions to calculate the current point.

Bi,j,k =αAi,j,k

+β(Ai−1,j,k + Ai,j−1,k + Ai,j,k−1 + Ai+1,j,k + Ai,j+1,k + Ai,j,k+1)
(1)

Calculation of this numerical equation needs seven values, one from current
point plus six from neighbor points (one previous and one next on each 3D axes).
Representation of stencil size is presented in Fig. 1.

Performance Evaluation of Stencils Based on S2S Transformations 215

xy

z

Fig. 1. Size of 7-point Jacobi stencil.

A standard metric available to characterize a stencil kernel is the Arithmetic
Intensity (AI) that can be defined as the ratio between the floating point oper-
ations and the memory transfers. In the case of the 7-point Jacobi kernel, the
lower-bound of the arithmetic intensity is 0.18 [14]. The synthetic pseudo-code
of this kernel could be found in Algorithm1.

Algorithm 1. Pseudo-code for the 7-point Jacobi stencil.
for i = 1 to Nx do

for j = 1 to Ny do
for k = 1 to Nz do

Xn+1(i, j, k) = Xn(i, j, k) + Xn(i, j, k + 1) + Xn(i, j, k − 1)
+ Xn(i, j + 1, k) + Xn(i, j − 1, k)
+ Xn(i + 1, j, k) + Xn(i − 1, j, k)

end for
end for

end for

3 S2S Frameworks

In this section, we present the S2S transformation framework. This transforma-
tion procedure has been used to improve the performance of HPC applications.
Some considerations of S2S transformations are:

(i) It is not applied in random order,
(ii) it could not cause an improvement on the program,
(iii) sometimes this transformation depends on the target machine.

The procedure to transform the source code is applied by finding some pat-
tern in the program, then perform a set of replacements defined by a set of
rules. Some conventional rules are simplifications of constant computation, loop
unrolling or loop elimination [13].

Automatic parallelization methods have been successfully applied to
improve the performance. This auto-parallelization method can integrate data-
dependence profiling, task parallelism extraction and source-to-source transfor-
mation. Based on program analysis tools, some parallelization approaches auto-
matically generate parallel code without requiring programmers to indicate par-
allel code sections, by extracting coarse-grained task parallelism, to transform

216 V. Mart́ınez et al.

sequential source code to parallel code, which exploits both loop parallelism and
task parallelism without special compiler support [26].

On heterogeneous architectures, application development requires a lot of
effort and investment from the programmer. This problem will become more
prominent when HPC architectures are frequently updated to keep with market
trends. In these scenarios, automatic parallelization tools will definitely have an
important role to play, they would be the ability to perform pertinent domain
decomposition of the serial code to maximize utilization of the available compu-
tational elements [11].

In this work, we used an S2S framework called BOAST [4]. It provides pro-
grammers with a tool to develop computing kernels. The workflow of BOAST
is defined by the following steps: (1) the developer starts from an application
kernel, and writes it in a dedicated language (Ruby); (2) the S2S parameters
define the output source code that will be generated (Sequential C, OpenMP,
Fortran, OpenCL, CUDA); (3) The resulting code source is then built according
to the specified compiler; (4) based on the results, other optimizations can be
selected; (5) the resulting kernel is then added to the program [24].

4 Experimental Methodology

In this section, we present the experiments and the results of our approach. We
used as data domain a three-dimensional Cartesian grid of size 512× 512× 512,
and 190-time iterations, to execute the Jacobi stencil (the benchmark for our
experiments).

4.1 Kernel Definition

In order to define the kernel, we use the available language description: the
keywords decl and pr defined. The decl method is used to declare variables or
procedures and functions. The pr method calls the public pr method of objects
it is called on. Each BOAST object is responsible for printing itself correctly
depending on the BOAST configuration at the time the print public method is
called.

BOAST defines several classes that are used to represent the structure of
the code, these classes can be algebraic related and control flow related (i.e,
OpenMP). On the other hand, the classical control structures were also imple-
mented, If, For are abstractions in BOAST matching the behavior of correspond-
ing control structures in other languages. The last control structure is Procedure.
It describes procedures (Fortran), functions (sequential C or OpenMP), and ker-
nels (CUDA). The kernel definition and the usage of keywords, classes and con-
trol structures can be found in the Fig. 2. We used this kernel definition to be
executed into two heterogeneous machines. The advantage of this approach is
we don’t change the source code. BOAST makes de S2S transformation and uses
available compilers (icc, gcc, and nvcc) to execute the kernel.

Performance Evaluation of Stencils Based on S2S Transformations 217

de f S t enc i l P robe (omp = f a l s e , cuda = f a l s e)

p S t enc i l P robe = Procedure (” S t enc i l P robe ” ,
[nx , ny , nz , tx , ty , tz , t imesteps ,
v prev , v next , v ve l , v c o e f f , $SIZE STENCIL]){
dec l i = Int (” i ”)
dec l j = Int (” j ”)
de c l k = Int (”k”)
dec l t = Int (” t ”)
dec l wst = Int (” wst ”)
dec l va lue = Real (” va lue ”)

f = For (t , 0 , t imes teps − 1){
i t e r k e r n e l = For (i , $SIZE STENCIL ,

nx − $SIZE STENCIL − 1){
pr For (j , $SIZE STENCIL , ny − $SIZE STENCIL − 1){

pr For (k , $SIZE STENCIL , nz − $SIZE STENCIL − 1){
i t p r e v = compute prev (v prev , v next , v ve l ,

v c o e f f)
i t n e x t = compute next (v prev , v next , v ve l ,

v c o e f f)
}

}
}
i f omp

pr OpenMP : : Pa ra l l e lFo r (: s chedu le => ” runtime”) {
pr i t p r e v

}
pr OpenMP : : Pa ra l l e lFo r (: s chedu le => ” runtime”) {

pr i t n e x t
}

e l s e
pr i t e r k e r n e l

end
}

pr f
}
ke rne l = CKernel : : new
ke rne l . procedure = p Stenc i l P robe
pr p S t enc i l P robe
re turn ke rne l

end

Fig. 2. Kernel definition in BOAST

4.2 Tesbed

We performed our experiments into two accelerator architectures, some details
are presented in Table 1:

218 V. Mart́ınez et al.

– The KNL machine provides an Intel Xeon Phi architecture (Knights Land-
ing). The Knights Landing is the code name for the second-generation Intel
Xeon Phi family. It is a Many Integrated Core (MIC) architecture that deliv-
ers massive thread parallelism, data parallelism, and memory bandwidth in a
CPU form factor for high throughput workloads. It is a standard, standalone
processor that can boot an off-the-shelf operating system [21].

– Tha Blaise machine provides a classical heterogeneous architecture. It is com-
posed of two multicore processors (Intel Xeon) and four GPUs (NVIDIA Tesla
P100). It uses the GPU devices as accelerators of kernel computing.

Table 1. HPC architectures testbed

KNL Blaise

Standalone CPU Intel Xeon Phi 7250 Intel Xeon E5-2699 (2x)

Co-processor Intel Xeon Phi 7250 NVIDIA Tesla P100 (4x)

Total number of CPU threads 272 88

CPU compiler icc 18.0.1 gcc 5.4.0

The two machines have their particular features, and classical application
developing of these architectures requires different programming models (shared
memory, or stream multiprocessing). In this sense, the S2S transformation can
help to implement the stencil computations in an easy way.

4.3 Results

Since we developed the Jacobi stencil in the S2S framework, we used the BOAST
runtime to execute our experiments. Experiments were executed 30 times, and
we measured the average of executing time. A Shapiro-Wilk test for time mea-
surement was performed to confirm normality.

For KNL machine, we called the S2S transformation to execute the kernel
by sequential C and by OpenMP. As we can see in Fig. 3, the BOAST runtime
optimize the parallel execution and we obtain a performance improvement when
we compare the parallel and sequential executions. In the same way, we executed
sequential C, OpenMP, and CUDA for Blaise machine; as we present in Fig. 3,
the BOAST runtime optimizes the performance when multicore and accelerators
are used.

When we analyze the performance of stencil executions we found an improve-
ment by minimizing the execution time; although the experiments seem don’t
reach a peak of best performance. As we noted by the speedup measure in Fig. 4.
In this context, if we want a better-optimized implementation we think that we
need to improve the source code according to architectural features for each
machine.

Performance Evaluation of Stencils Based on S2S Transformations 219

0

5000

10000

15000

20000

25000

KNL Blaise

Ti
m

e
(S

ec
)

Execution Sequential OpenMP CUDA

Fig. 3. Average time of stencil executions.

0

2

4

6

Sequential OpenMP CUDA

Sp
ee

du
p

Machine KNL Blaise

Fig. 4. Speedup of stencil executions.

5 Related Work

In this section, we present some related work. Our research is oriented to S2S
transformations applied to Jacobian stencil, the main idea is to evaluate this
application to transformations on several architectures and several programming
languages. S2S transformations can be done in several ways, we focused on two of
them: transformations on the same programming language, or transformations
using a meta-language to generate code in different languages.

220 V. Mart́ınez et al.

The Inject/J software transformation language is an example of the first
group, as a dynamically typed scripting language for S2S transformations of Java
programs [10]. In [20], the authors implement a framework to transform sequen-
tial code into OpenMP parallel code; they present the Checkpoint Aided Parallel
Execution (CAPE) methodology to modify the sequential parts to be executed
in parallel, and the Turing eXtended Language (TXL) is composed by a descrip-
tion of the structures to transform the programs and a set of transformation
rules. In [25], the authors introduce an end-to-end framework for automatically
transforming stencil-based CUDA programs to exploit inter-kernel data locality;
this work formulated the GPU kernel fission/fusion problem and demonstrated
effectiveness, the programmer can compile the new code using the CUDA com-
pilers. In addition, another optimization is tuning of thread block size for kernels
generated to achieve high occupancy. In [9], the authors presented the S2S trans-
formation to Jacobian calculation of functions defined by Fortran code; they used
a framework called EliAD and implemented in Java, it uses Automatic Differ-
entiation (AD) to create new code that calculates the numerical values of the
variable and its derivatives with respect to the independent variables, it is a bi-
directional data flow analysis to determine active variables from user-specified
independent and dependent variables.

The second group of S2S transformation focuses on changes in the program-
ming language. In [19], the authors propose a source-to-source compiler able
to transform an OpenMP C code into a CUDA code, the generated code is
fully NVIDIA CUDA compliant and can be compiled using the nvcc compiler.
The entire transformation process includes starting from the pragma split-up
and the kernel generation, passing through the data visibility clauses manage-
ment and ending with the device memory management and the kernel launch
system. In [12], the authors described a compiler framework for translating stan-
dard OpenMP shared-memory programs into CUDA-based GPU programs; they
include a kernel region identifying algorithm, by applying OpenMP as a front-
end programming model, the proposed translator could convert the loop-level
parallelism of the OpenMP programming model into the data parallelism of the
CUDA programming model in a natural way; they have also identified several
key transformation techniques to enable efficient GPU global memory access:
parallel loop-swap and matrix transpose techniques for regular applications, as
the Jacobi stencil, and loop collapsing for irregular ones.

6 Conclusion and Future Work

In this research, we presented an implementation of 7-point Jacobi stencil based
on S2S transformations and analyzed its performance on current HPC architec-
tures. We used the BOAST framework to demonstrate that this approach can
improve the application performance on different HPC machines. The S2S trans-
formation provides the programmer an easy way to develop the HPC applications
without concerning the hardware configuration. In contrast, we also confirmed
that performance is dependent on the architecture hardware; as we presented,

Performance Evaluation of Stencils Based on S2S Transformations 221

if we want to reach the best performance peak, we need to improve the source
code according to the architectural features.

Our future work is focused on two perspectives: first, optimization of more
complex stencils (i.e, geophysics stencils) by using the S2S transformations; sec-
ond, we also believe that performance of S2S transformations can be improved
by auto-tuning techniques based on Machine Learning algorithms.

Acknowledgments. This work has been granted by the Coordenação de Aper-
feiçoamento de Pessoal de Nı́vel Superior (CAPES), the Conselho Nacional de Desen-
volvimento Cient́ıfico e Tecnológico (CNPq), the Fundação de Amparo à Pesquisa do
Estado do Rio Grande do Sul (FAPERGS). Research has received funding from the
EU H2020 Programme and from MCTI/RNP-Brazil under the HPC4E Project, grant
agreement n.o 689772. It was also supported by Intel under the Modern Code project,
and the PETROBRAS oil company under Ref. 2016/00133-9. We also thank to RICAP,
partially funded by the Ibero-American Program of Science and Technology for Devel-
opment (CYTED), Ref. 517RT0529.

References

1. Breuer, A., Heinecke, A., Bader, M.: Petascale local time stepping for the ADER-
DG finite element method. In: 2016 IEEE International Parallel and Distributed
Processing Symposium, IPDPS 2016, Chicago, IL, USA, 23–27 May 2016, pp. 854–
863 (2016)

2. Buchty, R., Heuveline, V., Karl, W., Weiss, J.P.: A survey on hardware-aware and
heterogeneous computing on multicore processors and accelerators. Concurrency
Comput. Pract. Exp. 24(7), 663–675 (2012). https://doi.org/10.1002/cpe.1904

3. Christen, M., Schenk, O., Burkhart, H.: Automatic code generation and tuning
for stencil kernels on modern shared memory architectures. Comput. Sci. 26(3–4),
205–210 (2011)

4. Cronsioe, J., Videau, B., Marangozova-Martin, V.: Boast: bringing optimization
through automatic source-to-source transformations. In: 2013 IEEE 7th Interna-
tional Symposium on Embedded Multicore SoCs, pp. 129–134, September 2013.
https://doi.org/10.1109/MCSoC.2013.12

5. Datta, K., Kamil, S., Williams, S., Oliker, L., Shalf, J., Yelick, K.: Optimization
and performance modeling of stencil computations on modern microprocessors.
SIAM Rev. 51(1), 129–159 (2009). https://doi.org/10.1137/070693199

6. Datta, K., et al.: Auto-Tuning Stencil Computations on Multicore and Accelera-
tors. CRC Press, Taylor & Francis Group (2010)

7. Dupros, F., Boulahya, F., Aochi, H., Thierry, P.: Communication-avoiding seis-
mic numerical kernels on multicore processors. In: 2015 IEEE 17th International
Conference on High Performance Computing and Communications (HPCC), 2015
IEEE 7th International Symposium on Cyberspace Safety and Security (CSS), 2015
IEEE 12th International Conferen on Embedded Software and Systems (ICESS),
pp. 330–335, August 2015. https://doi.org/10.1109/HPCC-CSS-ICESS.2015.230

8. Dupros, F., Do, H., Aochi, H.: On scalability issues of the elastodynamics equations
on multicore platforms. In: Proceedings of the International Conference on Com-
putational Science, ICCS 2013, Barcelona, Spain, 5–7 June 2013, pp. 1226–1234
(2013)

https://doi.org/10.1002/cpe.1904
https://doi.org/10.1109/MCSoC.2013.12
https://doi.org/10.1137/070693199
https://doi.org/10.1109/HPCC-CSS-ICESS.2015.230

222 V. Mart́ınez et al.

9. Forth, S.A., Tadjouddine, M., Pryce, J.D., Reid, J.K.: Jacobian code generated
by source transformation and vertex elimination can be as efficient ash and-
coding. ACM Trans. Math. Softw. 30(3), 266–299 (2004). https://doi.org/10.1145/
1024074.1024076. http://doi.acm.org/10.1145/1024074.1024076

10. Genssler, T., Kuttruff, V.: Source-to-source transformation in the large. In:
Böszörményi, L., Schojer, P. (eds.) JMLC 2003. LNCS, vol. 2789, pp. 254–265.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45213-3 31

11. Khan, M., Priyanka, N., Ahmed, W., Radhika, N., Pavithra, M., Parimala, K.:
Understanding source-to-source transformations for frequent porting of applica-
tions on changing cloud architectures. In: 2014 International Conference on Par-
allel, Distributed and Grid Computing, pp. 350–354, December 2014. https://doi.
org/10.1109/PDGC.2014.7030769

12. Lee, S., Min, S.J., Eigenmann, R.: OpenMP to GPGPU: a compiler frame-
work for automatic translation and optimization. SIGPLAN Not. 44(4),
101–110 (2009). https://doi.org/10.1145/1594835.1504194. http://doi.acm.org/10.
1145/1594835.1504194

13. Loveman, D.B.: Program improvement by source-to-source transformation. J.
ACM 24(1), 121–145 (1977). https://doi.org/10.1145/321992.322000. http://doi.
acm.org/10.1145/321992.322000

14. Mart́ınez, V., Dupros, F., Castro, M., Navaux, P.: Performance improvement of
stencil computations for multi-core architectures based on machine learning. Pro-
cedia Comput. Sci. 108, 305–314 (2017). https://doi.org/10.1016/j.procs.2017.05.
164. http://www.sciencedirect.com/science/article/pii/S1877050917307408. inter-
national Conference on Computational Science, ICCS 2017, 12–14 June 2017,
Zurich, Switzerland

15. Mijakovic, R., Firbach, M., Gerndt, M.: An architecture for flexible auto-tuning:
the periscope tuning framework 2.0. In: International Conference on Green High
Performance Computing (ICGHPC), pp. 1–9, February 2016. https://doi.org/10.
1109/ICGHPC.2016.7508066

16. Mittal, S., Vetter, J.S.: A survey of CPU-GPU heterogeneous computing tech-
niques. ACM Comput. Surv. 47(4), 69:1–69:35 (2015). https://doi.org/10.1145/
2788396

17. Moczo, P., Robertsson, J., Eisner, L.: The finite-difference time-domain method for
modeling of seismic wave propagation. In: Advances in Wave Propagation in Het-
erogeneous Media, Advances in Geophysics, vol. 48, chap. 8, pp. 421–516. Elsevier
- Academic Press (2007)

18. Nguyen, A., Satish, N., Chhugani, J., Kim, C., Dubey, P.: 3.5-D blocking optimiza-
tion for stencil computations on modern CPUs and GPUs. In: 2010 ACM/IEEE
International Conference for High Performance Computing, Networking, Storage
and Analysis, pp. 1–13, November 2010. https://doi.org/10.1109/SC.2010.2

19. Noaje, G., Jaillet, C., Krajecki, M.: Source-to-source code translator: OpenMP C
to CUDA. In: 2011 IEEE International Conference on High Performance Comput-
ing and Communications, pp. 512–519, September 2011. https://doi.org/10.1109/
HPCC.2011.73

20. Renault, E., Ancelin, C., Jimenez, W., Botero, O.: Using source-to-source trans-
formation tools to provide distributed parallel applications from openMP source
code. In: 2008 International Symposium on Parallel and Distributed Computing,
pp. 197–204, July 2008. https://doi.org/10.1109/ISPDC.2008.65

21. Sodani, A., et al.: Knights landing: second-generation intelxeon phi product. IEEE
Micro 36(2), 34–46 (2016). https://doi.org/10.1109/MM.2016.25

https://doi.org/10.1145/1024074.1024076
https://doi.org/10.1145/1024074.1024076
http://doi.acm.org/10.1145/1024074.1024076
https://doi.org/10.1007/978-3-540-45213-3_31
https://doi.org/10.1109/PDGC.2014.7030769
https://doi.org/10.1109/PDGC.2014.7030769
https://doi.org/10.1145/1594835.1504194
http://doi.acm.org/10.1145/1594835.1504194
http://doi.acm.org/10.1145/1594835.1504194
https://doi.org/10.1145/321992.322000
http://doi.acm.org/10.1145/321992.322000
http://doi.acm.org/10.1145/321992.322000
https://doi.org/10.1016/j.procs.2017.05.164
https://doi.org/10.1016/j.procs.2017.05.164
http://www.sciencedirect.com/science/article/pii/S1877050917307408
https://doi.org/10.1109/ICGHPC.2016.7508066
https://doi.org/10.1109/ICGHPC.2016.7508066
https://doi.org/10.1145/2788396
https://doi.org/10.1145/2788396
https://doi.org/10.1109/SC.2010.2
https://doi.org/10.1109/HPCC.2011.73
https://doi.org/10.1109/HPCC.2011.73
https://doi.org/10.1109/ISPDC.2008.65
https://doi.org/10.1109/MM.2016.25

Performance Evaluation of Stencils Based on S2S Transformations 223

22. Stojanovic, S., Bojic, D., Bojovic, M., Valero, M., Milutinovic, V.: An overview
of selected hybrid and reconfigurable architectures. In: 2012 IEEE International
Conference on Industrial Technology (ICIT), pp. 444–449, March 2012. https://
doi.org/10.1109/ICIT.2012.6209978

23. Tang, Y., Chowdhury, R.A., Kuszmaul, B.C., Luk, C.K., Leiserson, C.E.: The
pochoir stencil compiler. In: ACM Symposium on Parallelism in Algorithms and
Architectures, SPAA 2011, pp. 117–128. ACM, New York (2011). https://doi.org/
10.1145/1989493.1989508. http://doi.acm.org/10.1145/1989493.1989508

24. Videau, B., et al.: Boast: a meta programming framework to produce portable and
efficient computing kernels for HPC applications. Int. J. High Perform. Comput.
Appl. 32(1), 28–44 (2018). https://doi.org/10.1177/1094342017718068

25. Wahib, M., Maruyama, N.: Automated GPU kernel transformations in large-scale
production stencil applications. In: Proceedings of the 24th International Sym-
posium on High-Performance Parallel and Distributed Computing, HPDC 2015,
pp. 259–270. ACM, New York (2015). https://doi.org/10.1145/2749246.2749255.
http://doi.acm.org/10.1145/2749246.2749255

26. Zhao, B., Li, Z., Jannesari, A., Wolf, F., Wu, W.: Dependence-based code trans-
formation for coarse-grained parallelism. In: Proceedings of the 2015 International
Workshop on Code Optimisation for Multi and Many Cores, COSMIC 2015,
pp. 1:1–1:10. ACM, New York (2015). https://doi.org/10.1145/2723772.2723777.
http://doi.acm.org/10.1145/2723772.2723777

https://doi.org/10.1109/ICIT.2012.6209978
https://doi.org/10.1109/ICIT.2012.6209978
https://doi.org/10.1145/1989493.1989508
https://doi.org/10.1145/1989493.1989508
http://doi.acm.org/10.1145/1989493.1989508
https://doi.org/10.1177/1094342017718068
https://doi.org/10.1145/2749246.2749255
http://doi.acm.org/10.1145/2749246.2749255
https://doi.org/10.1145/2723772.2723777
http://doi.acm.org/10.1145/2723772.2723777

Benchmarking LAMMPS: Sensitivity
to Task Location Under CPU-Based

Weak-Scaling

José A. Moŕıñigo1(B), Pablo Garćıa-Muller1, Antonio J. Rubio-Montero1,
Antonio Gómez-Iglesias2, Norbert Meyer3, and Rafael Mayo-Garćıa1

1 Centro de Investigaciones Energéticas,
Medioambientales y Tecnológicas CIEMAT, Madrid, Spain

josea.morinigo@ciemat.es
2 Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37830, USA

3 Poznań Supercomputing and Networking Center,
Jana Pawla II 10, 61-139 Poznań, Poland

http://rdgroups.ciemat.es/web/sci-track

Abstract. This investigation summarizes a set of executions completed
on the supercomputers Stampede at TACC (USA), Helios at IFERC
(Japan), and Eagle at PSNC (Poland), with the molecular dynamics solver
LAMMPS, compiled for CPUs. A communication-intensive benchmark
based on long-distance interactions tackled by the Fast Fourier Transform
operator has been selected to test its sensitivity to rather different pat-
terns of tasks location, hence to identify the best way to accomplish fur-
ther simulations for this family of problems. Weak-scaling tests show that
the attained execution time of LAMMPS is closely linked to the cluster
topology and this is revealed by the varying time-execution observed in
scale up to thousands of MPI tasks involved in the tests. It is noticeable
that two clusters exhibit time saving (up to 61% within the parallelization
range) when the MPI-task mapping follows a concentration pattern over
as few nodes as possible. Besides this result is useful from the user’s stand-
point, it may also help to improve the clusters throughput by, for instance,
adding live-migration decisions in the scheduling policies in those cases
of communication-intensive behaviour detected in characterization tests.
Also, it opens a similar output for a more efficient usage of the cluster from
the energy consumption point of view.

Keywords: Cluster throughput · LAMMPS benchmarking ·
MPI application performance · Weak scaling

1 Introduction

In the last decade, computer science has evolved to a paradigm in which High
Performance Computing (HPC) systems span thousand of nodes. Current archi-
tectures are basically following two major trends: clusters based on nodes with
c© Springer Nature Switzerland AG 2019
E. Meneses et al. (Eds.): CARLA 2018, CCIS 979, pp. 224–238, 2019.
https://doi.org/10.1007/978-3-030-16205-4_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16205-4_17&domain=pdf
https://doi.org/10.1007/978-3-030-16205-4_17

Benchmarking LAMMPS: A Task Location 225

processors (CPUs) plus accelerators and multi-level memory; and clusters based
on nodes with groups of equal low-power cores with a single-level memory. The
first architecture usually has fewer nodes compared to the second one (conse-
quently more parallel tasks may be allocated within a node), but both scenarios
exhibit a huge amount of cores. This fact can be easily checked in the TOP500
list [1] of the most powerful supercomputers, with number of cores growing
exponentially since 1993. The CPUs evolution over the last years has driven an
increasing degree of parallelism in the codes executed by the final users.

Aiming at an optimized combination of performance, cost and power, the con-
sequence is that hardware and software stacks must be now built bearing also in
mind the applications that fully exploit the computing infrastructure, leading to
the so-called codesign [2] in which the different elements involved in supercomput-
ing are tightly integrated. An efficient, optimum exploitation of this formidable
computing power by highly parallel applications has required to the moment of
message passing libraries and shared-memory application programming interfaces
(MPI and OpenMP, respectively, to cite some), which have resulted to be corner-
stone in order to implement highly scalable applications suitable for these environ-
ments. These ideas are being promoted by various exascale initiatives in the USA
(Exascale Computing Project) [3], Europe (EuroHPC [4] and PRACE [5]), China
(Tianjin Supercomputer Center) [6], and Japan (Post K) [7].

Nevertheless, relying on a perfectly implemented message passing strategy is
not enough. Closely related to it is the computing platform topology, in partic-
ular the way the interconnections of the cluster have been designed, and lately
may contribute to traffic bottlenecks and network contention. This is a deli-
cate issue for massive parallel applications, as far as inter-node communication
asymmetries may develop, thus contributing to a performance collapse (even
supercomputers counting on either InfiniBand or OmniPath can exhibit a worse
behavior as the number of used nodes and cores increases). Therefore, it is of
value to analyze the performance sensitivity to the MPI-tasks mapping for a
given application executed on the cluster, in order to assess the effect of task
spreading over the nodes.

It is well known that applications speedup is constrained by several fac-
tors, mainly CPU-intensive, memory-bandwidth (or communication-intensive)
and/or I/O-intensive behaviour. Other issues to be taken into account can be
the available execution time and accessible computational resources, as well as
the requested degree of parallelism. This context leads to many questions and
specific scheduling decisions in HPC systems, being the first to come to mind,
how to deal with partially-filled multi-core processors, i.e. what to do when a
given job is only using some of the CPUs of a node, or just a subset of the cores
of a CPU. As can be easily inferred, an adequate decision should lead to an
improved computing and/or energy efficiency. One example could be the case
in which resources are shared by two different jobs (namely I/O and memory
at different levels), so it may lead to a competition and, consequently, to slow
down the whole execution (that is, a negative impact). Unlike, executing some
other job at the same time on the same node/CPU could imply a more intensive

226 J. A. Moŕıñigo et al.

usage of the cluster. To clarify this complex disjunctive (where more coupled
issues and extra dimensions could affect), the present investigation based on
the solver LAMMPS following a weak-scaling perspective is intended to shed
some light. The article is structured as follows. The related work is documented
in the next section, whereas the description of the HPC clusters is briefly pre-
sented in Sect. 3. After that, the benchmark used with LAMMPS and its relevant
information to understand the algorithmic issues is provided in Sect. 4. Section 5
summarizes the results and discussion. Finally some conclusions are given.

2 Related Work

Impact of MPI task locality has been investigated in [8] with scientific mini-
kernels and application codes. They show that an execution time saving of up to
25% is possible with grouping tasks. Their investigation is limited to a small
number of CPUs and the authors plan to extend the experiments to large-
scale machines since it seems necessary to be conclusive about what happens
with many processors. In [9], the results of mapping MPI tasks onto sockets are
summarized taking into account the machine topology. Results show that it is
beneficial to map tasks onto as many sockets per node as possible (the bigger
savings in execution time, up to 30%, are obtained precisely for those cases).
Similar experiments are done in [10], reporting an improvement of about 15%.
In particular, research dealing with multicore architectures has been focused in
the last years and [11] presents the gain in computational efficiency of a MPI-
based production application that exhibits a performance peak improvement of
about 9%, attributed to a better use of cache-sharing at the same node and to
the high intranode to internode communication ratio of the cluster. Although it
seems a modest speedup, it is noticed that it is obtained with minor source code
modifications.

In [12] several scientific kernels and production applications are analyzed.
Albeit the scope of their study is the system noise in scale, some comparisons
for mini-kernels are provided under weak-scaling. It is observed that an execu-
tion time degradation greater than 120% occurs when the same number of MPI
tasks are distributed massively. The work in [13] points to the same direction by
evaluating the impact of multi-core architectures in a set of benchmarks. Their
characterization of the inter- to intranode communications ratio throws a figure
of 4 to 5 in the worst case.

This kind of node mappings is an area where little to moderate efforts are
required for significant gains in application performance. The impact of intern-
ode and intranode latency is analyzed in [14] using a parallel scientific applica-
tion with MPI tasks mapped onto the CPUs of an infiniband-based cluster of 14
nodes. With the objective of improving the computational efficiency, [15] analyzes
how many cores per node should be used for applications execution. They identify
that task mapping is an important factor on performance degradation, being the
memory bandwidth per core the primary source of performance drop when increas-
ing the number of cores per node that participate in the computation. Something

Benchmarking LAMMPS: A Task Location 227

similar concludes [16], showing a high sensitivity of the attained scientific kernels
performance to the multi-core machines. In [17] it is detected that the tested mini-
kernels exhibit high sensitivity to the cluster architecture. Also, MPI tasks map-
ping reveals that distributing them over the nodes is better from a computational
standpoint in most cases. According to their experiments, an up to 1.2X speedup is
attained for most of the experiments. They explain this behaviour because by dis-
tributing the tasks they do not have to compete for node local resources, a scenario
that seems to occur when running tasks are sharing a slot or are located in slot of
the same node. The influence of the resource sharing by different jobs is focused in
[18] using a set of scientific mini-kernels. The results show significant dependence
to the cluster setup (further details on the clusters setups used in those tests are
given in [19]). The study conducted in [20] on mapping MPI tasks to cores using a
set of benchmarks and scientific mini-kernels, shows that it may affect significantly
the performance of intranode communication, which is closely related to the inter-
to intranode communication ratio.

These previous investigations point out to the large sensitivity of the execu-
tion time to the task mapping. The impact of distributing the MPI tasks over
the nodes is high as it is seen that execution time varies significantly.

The sensitivity of LAMMPS to the cluster architecture is analyzed in [21]
under strong-scaling tests. The author shows the drop of the performance of two
benchmarks (one is the rhodopsin protein, focused in the present investigation)
with a range of parallelization up to 1024 cores in three clusters. The strong-
scaling performance of same benchmark is also analyzed in [22] and comparisons
provided in three clusters but for a small number of cores. In this study, the
authors explore the sensitivity of the results to re-configuring the topology of
one of the clusters, which exhibits execution differences of up to 9%.

Since having enough computing time and/or range of parallelization in super-
computers seems to be often critical for systematic performance assessments of
scientific kernels, an alternative, promising via is the use of clusters emulators
(which take into account their network topology in detail), as it is described
in [23] with a modeled Stampede platform and running the High Performance
LINPACK to evaluate the attainable performance.

The present work tries to fill this gap and explores the behaviour of the molec-
ular dynamics solver LAMMPS compiled for CPUs in three modern computing
infrastructures: Stampede at TACC (USA), Helios at IFERC (Japan), and Eagle
at PSNC (Poland). Focusing on weak-scaling tests and using a communication-
intensive benchmark, this study analyzes the sensitivity of the speedup to vary-
ing the MPI-tasks location over the nodes by the assignment (that is, mapping)
of those tasks to computational resources and how this is related to the super-
computer network topology and resource sharing. These results pave the way
for further and deeper studies regarding not only cluster throughput, but also
energy consumption.

228 J. A. Moŕıñigo et al.

Furthermore, this information can then be useful to build usage criteria to
proceed in a systematic manner with the execution of an application in a specific
cluster. Also it aims at feeding better scheduling strategies to support scientific
groups.

Fig. 1. The fat-tree network topology [23] of Stampede at TACC.

3 Supercomputers Architecture

Next, a brief description of the supercomputers involved in the executions of
LAMMPS is provided. To mention that Helios supercomputer is already decom-
missioned and Stampede has evolved towards the Stampede-2 architecture.

3.1 Stampede at TACC (USA)

Stampede supercomputer [24] was ranked 6th in the TOP500 list (June 2013) by
achieving 5,168.1 TFlop s−1 and was still ranked 20th in June 2017. In 2017, this
machine got upgraded and a portion available during its deployment. At present
it is in full operation, renamed Stampede-2. The Stampede platform consisted of
6,400 Sandy Bridge nodes, each with two 8-core Xeon E5-2680 and one Intel Xeon
Phi KNC MIC co-processor. The nodes were interconnected through a 56 Gbit s−1

FDR InfiniBand 2-level Clos fat-tree topology built on Mellanox switches. Its
fat-tree network topology is sketched in Fig. 1. The 6,400 nodes are divided into
groups of 20, with each group being connected to one of the 320 36-port switches
(4 Tbit s−1 capacity), which are themselves connected to 8 648-port “core
switches” (each with a capacity of 73 Tbit s−1). The peak performance of the
2 Xeon CPUs per node was approximately 346 GFlop s−1. The theoretical peak
performance of the platform was therefore 8,614 TFlop s−1.

Benchmarking LAMMPS: A Task Location 229

3.2 Helios at IFERC (Japan)

Helios supercomputer [25] was owned by the Computational Simulation Centre
(CSC) and ranked 38th in the TOP500 list when it was in fully operation status
in November 2014 as it provided a performance peak value of 1,524.1 TFlop s−1.
After several upgrades, it finally counted on 4,500 nodes (∼72,000 CPU cores),
which were complemented with 180 MIC nodes (∼21,600 co-processors cores). The
tests presented in this work were carried out on the major Helios general purpose
configuration, i.e. without Xeon Phi included. The processor forming Helios was
Sandy-Bridge EP (16-core nodes), which were connected by QDR InfiniBand. This
connection grouped the computing nodes in sets of 18 which were connected to
storage to either 109 Gbit s−1 (direct storage) or 24 Gbit s−1 (medium storage).
The InfiniBand network also comprised the 8 login nodes and their bandwidth
characteristics were 3.2 Gbit s−1 throughput and 30 million message/s rate. The
whole cluster connected to auxiliary servers such as backup, NFS, etc. via an Eth-
ernet backbone provided of 10 Gbit s−1 links (ranging from 8x to 4x). The whole
network scheme is depicted in Fig. 2.

Fig. 2. Architecture of supercomputer Helios at IFERC.

3.3 Eagle at PSNC (Poland)

Eagle cluster [26] was commissioned in late 2015 at new PSNC DataCenter
facility. Initially, the machine consisted of 1032 nodes, each with two 14-core
Xeon E5-2697 (Haswell) CPUs and 56 Gbit s−1 FDR InfiniBand interface. It
was ranked at the 79th position on TOP500 in November 2015. Inter-cluster
InfiniBand network is built on fat-tree topology with a variable blocking factor.
All worker nodes are divided into 6 groups which are connected with off-the-shelf
1U 36-port FDR InfiniBand switches, which give 1:4 and 1:2 blocking factors.
It depends on tree depth (see Fig. 3). After the upgrade, which took place in
December 2016 and consisted of additional 55 nodes with two Xeon E5-2682
(Broadwell) CPU, peak performance of the Eagle cluster is 1.4 PFlop s−1. Due
to extensive use of DLC (Direct Liquid Cooling) modules and free cooling capa-
bility, PUE (Power Usage Effectiveness) parameter achieves value 1.05.

230 J. A. Moŕıñigo et al.

4 LAMMPS Benchmark Description

LAMMPS (acronym for Large-scale Atomic/Molecular Massively Parallel Sim-
ulator) is a well-established molecular dynamics research code that models an
ensemble of particles in a liquid, solid, or gaseous state. Its capabilities span
atomic, polymeric, biological, metallic, granular, and coarse-grained systems
using a variety of force fields and boundary conditions. It is available as open
source code written in C++ and supports the MPI message-passing library. Both
CPUs and GPUs versions can be compiled (see [27] for further reference).

Fig. 3. Architecture of cluster Eagle at PSNC.

4.1 Effect of Atomistic Interactions

Regarding the various LAMMPS benchmarks available as part as the code dis-
tributions and other supplied by the research community, some of them corre-
spond to the so-called short-range interaction at the atomistic level. That is,
for instance, the case of the LJ-benchmark (which models the three-dimensional
rapid melting of an atomic fluid, in which atomistic forces follow a Lennard-
Jones (LJ) potential description), in which the atoms interaction caused by the
short-range potential (implemented as a 2.5 sigma cutoff distance) involves only
55 neighbors per atom for accurate results. This local physics can be related
to the existence of a moderate algorithmic coupling in terms of network traffic
among the MPI tasks, which manage the portions (set as cubic bins of atoms)
of the whole computational domain, which is partitioned across processors using
spatial decomposition. Even in those situations of many bins (that is, tasks)
with a rather small number of atoms inside, the information exchange caused
by the short-range interactions of those atoms near the bins boundaries does
not impact to a great extend the network traffic during the time-integration, so
reasonable good weak-scaling properties remains in scale [21]. Table 1 shows the
different execution contributions (time spent in the major sections of the code)

Benchmarking LAMMPS: A Task Location 231

for the LJ-benchmark with 4,000 atoms in the entire computational domain,
executed in Helios. It is seen that communications dominate the whole figure.
This is explained by the fact that force interactions are computed very quickly in
relative time (a small contribution to the total execution time) and the network
traffic cost linked to a bin is mainly caused by the operations performed with
its immediate neighboring bins.

Table 1. LAMMPS algorithmic sections timing breakdown for the LJ-benchmark with
256 MPI tasks in Helios (Pair : pairwise atoms interactions. Neigh: to compute new
neighbours list for each atom. Comm: communications time. Output : time to output
the restart and atom position, velocity and atom forces files).

Algorithmic sections, %

Pair Neigh Comm Output Modify Other

8.77 2.70 87.32 0.12 0.40 0.69

4.2 Benchmark RHODO

This system consists of a rhodopsin protein simulated in solvated lipid bilayer
with the chemistry molecular simulation module CHARMM [28] for the force
field, besides the long-range solver Particle-Particle Particle-Mesh (PPPM) [29]
of LAMMPS to include the Coulombics interaction for accurate results. The
32,000 atom system is made up from counter-ions and a reduced amount of water.
The Lennard-Jones cut-off distance is 10 Angstrom and each atom has 440 neigh-
bors. Both force field and long-range solvers differs from the LJ-benchmark case
and the model of atomistic interactions has important implications, as long-range
interactions lead to many more particle neighbors to be taken into account at
each time-step of the integration, which means a more communication-intensive
problem to compute.

4.3 Setup and Execution Issues

The installed LAMMPS version corresponds to the November 2016 distribu-
tion. The MPI library is the MVAPICH2 distribution already available in Stam-
pede and Helios; and MPIch v.3.1.2 in the case of Eagle. The portable FFTW
v3.3.6 library [30] has been installed and linked to the code instead of the native
FFT [31], to accomplish the executions. The inclusion of Coulombic interactions
requires to build LAMMPS with the KSpace package as it provides the PPPM
solver, which in turn executes the FFT operator.

Weak-scaling tests imply the periodic replication of the rhodopsin database
(atoms system), then each core manages 32,000 atoms at the start of the sim-
ulation. This is done by scripting a replication pattern for the three spatial

232 J. A. Moŕıñigo et al.

dimensions in the input file. To balance the load, the bins pattern has been
shaped as a cubic computational domain for the tested parallelizations. System
replications range from 23 to 133 (2197 MPI tasks).

Fig. 4. Benchmark RHODO of LAMMPS executed in Stampede. MPI range is: 8, 27,
64, 125, 216, 512, 1000 and 2197. And MPI processes have been allocated over the
nodes with three different grouping patterns (see legend).

Fig. 5. Benchmark RHODO of LAMMPS executed in Stampede, this time using the
local binary of the code (February 2015 release). MPI range is: 64, 125, 216, 512, 1000
and 2197. And MPI processes have been allocated over the nodes with three different
grouping patterns (see legend).

Benchmarking LAMMPS: A Task Location 233

Fig. 6. Benchmark RHODO of LAMMPS executed in Helios. MPI range is: 4, 8, 27,
64, 125, 216, 512, 1000 and 2197. And MPI processes have been allocated over the
nodes with three different grouping patterns (see legend).

Executions for each range of parallelization encompasses three different
grouping patterns regarding how the MPI tasks of a prescribed execution dis-
tribute over the available nodes: strongly concentrated (all the MPI tasks are
allocated within as few nodes as possible, with no more than one task per core);
strongly distributed (when possible, the number of nodes involved matches the
number of MPI tasks); and something in between, the so-called “intermediate”
in the figures legend. Executions have been accomplished using nodes in exclu-
sivity, so allocated tasks are not perturbed by other jobs running within them.
The participating nodes and task-to-core mapping are chosen automatically by
the resource manager (Slurm in the three supercomputers), hence the cores and
nodes of an experiment are set according to the resource manager setup param-
eters, not requesting neither excluding specific node locations. The maximum
participating number of nodes in the experiments has been 256 in Stampede
and 512 in Helios and Eagle supercomputers.

5 Results

Non-dimensional execution time obtained in Stampede is compared in Fig. 4 for
the three grouping patterns. Besides the progressive deterioration of the weak-
scaling property with the parallelization range, it is visible that the pattern
of distributing MPI tasks over as many nodes as possible provides a shorter
execution time (improvement of about 12–18%) compared to the pattern of task
concentration for ranges greater than 512 MPI tasks.

For comparison purposes and to check the sensitivity of the results to the
particularities of the LAMMPS version and compilation options, similar tests
have been carried out with the version of LAMMPS available in Stampede for

234 J. A. Moŕıñigo et al.

Fig. 7. Benchmark RHODO of LAMMPS executed in Eagle. MPI range is: 8, 27, 64,
125, 216, 512, 1000 and 2197. And MPI processes have been allocated over the nodes
with three different grouping patterns (see legend).

Fig. 8. Benchmark RHODO executed in Stampede. Relative contributions of the major
algorithmic sections (Pair, Neigh, KSpace and Comm), executed in Stampede.

the users community. These results are plotted in Fig. 5 for the range of interest.
It shows the same trend as observed in Fig. 4, but now the benchmark weak-
scaling is worse (especially for concentration) and besides, differences between
the distributed and concentrated patterns result to be even greater. Analogous
plots for non-dimensional execution time have been obtained with Helios (see
Fig. 6) and Eagle supercomputers (Fig. 7) and the three grouping patterns. Inter-
estingly, both figures show the opposite behaviour in scale compared to Stam-
pede: now, for a large enough parallelization range (1000 and 2197 MPI tasks),

Benchmarking LAMMPS: A Task Location 235

the strong-concentration pattern is the one that provides the shorter execution
time (with a saving of up to 31% in Helios, and 61% in Eagle), which points out
to the interest of applying this computing strategy.

Figures 8, 9 and 10 show the major contributions of the algorithmic sections of
the solver LAMMPS to the total computing time for the executions. It is noticed
that the FFT operations are performed within the KSpace section, which quickly
occupies a large portion of the computing time when the parallelization range is
beyond 512 MPI tasks for the strong-distributed pattern.

Fig. 9. Benchmark RHODO executed in Helios. Relative contributions of the major
algorithmic sections (Pair, Neigh, KSpace and Comm), executed in Helios.

Fig. 10. Benchmark RHODO executed in Eagle. Relative contributions of the major
algorithmic sections (Pair, Neigh, KSpace and Comm), executed in Eagle.

236 J. A. Moŕıñigo et al.

It is noticed that the KSpace-section involves also data communications in
addition to the communications accounted for by the Comm-section in the plots.
The impact of the net communications on the execution time observed in Helios
and Eagle seems to be driven by the KSpace-section as it peaks, which occurs at
about 512 and 216 MPI tasks (respectively) for the strongly distributed pattern:
the KSpace-section becomes very computing intensive from that amount of MPI
tasks on, so grouping task in as few nodes as possible improves the execution time
compared to Stampede (which exhibits a much more smooth KSpace-section
behaviour in scale, as seen in Fig. 8).

6 Conclusions

The weak-scaling tests of LAMMPS presented in this work stress the weight of
the communications on the solver behavior as a function of the grouping pat-
tern of MPI tasks over the nodes. The experiments have been accomplished
on three supercomputers: Stampede at TACC (USA), Helios at IFERC (Japan),
and Eagle at PSNC (Poland). For this, the physics linked to long-distance molec-
ular interactions has been chosen, which in terms of modeling requires the fre-
quent solution of parallelized FFTs. Algorithmically, it implies a strong cou-
pling among MPI tasks. Besides, counting on an available prefixed number of
nodes and/or cores in a given cluster, a decision on the problem size (i.e. the
setup of the amount of atoms per core) influences whether the simulation will
be communication-intensive. This fact, jointly with the knowledge of the super-
computer network topology, indicates if it will worth concentrate or not tasks
on as few nodes as possible. The conducted study paves the way for a better
usage of the whole cluster. In this sense, it may also help to improve the clusters
throughput by, for instance, adding live-migration decisions in the scheduling
policies in those cases of communication-intensive behavior. Also, it opens a
similar output from the energy consumption point of view, profiting from the
same live migration decisions. As a consequence, future work can be designed to
including other codes which mimics similar communication-intensive behavior
(FFTs, implicit algorithms, etc), such that would provide additional outcomes
and a more precise evaluation of the impact of this family of codes.

Acknowledgment. This work was partially funded by the Spanish Ministry of Econ-
omy, Industry and Competitiveness project CODEC2 (TIN2015-63562-R) with Euro-
pean Regional Development Fund (ERDF) as well as carried out on computing facilities
provided by the CYTED Network RICAP (517RT0529) and Poznań Supercomputing
and Networking Center. The support of Marcin Pospieszny, system administrator at
PSNC, is gratefully acknowledged.

Benchmarking LAMMPS: A Task Location 237

References

1. TOP500 Supercomputers homepage. http://www.top500.org
2. Shalf, J., Quinlan, D., Janssen, C.: Rethinking hardware-software codesign for

exascale systems. Computer 44(11), 22–30 (2011). https://doi.org/10.1109/MC.
2011.300

3. Exascale Computing Project (ECP) homepage. https://www.exascaleproject.org
4. http://eurohpc.eu
5. Partnership Research for Advance Computing in Europe. http://www.prace-ri.eu
6. National Supercomputing Center in Tianjin homepage. http://www.nscc-tj.gov.cn
7. Post-Ksupercomputer.www.fujitsu.com/global/Images/post-k-supercomputer.pdf
8. Jeannot, E., Mercier, G., Tessier, F.: Process placement in multicore clusters: algo-

rithmic issues and practical techniques. IEEE Trans. Parallel Distrib. Syst. 25(4),
993–1002 (2014). https://doi.org/10.1109/TPDS.2013.104

9. Chavarŕıa-Miranda, D., Nieplocha, J., Tipparaju, V.: Topology-aware tile map-
ping for clusters of SMPs. In: Proceedings of the Third Conference on Computing
Frontiers, Ischia, Italy (2006). https://doi.org/10.1145/1128022.1128073

10. Smith, B.E., Bode, B.: Performance effects of node mappings on the IBM Blue-
Gene/L machine. In: Cunha, J.C., Medeiros, P.D. (eds.) Euro-Par 2005. LNCS,
vol. 3648, pp. 1005–1013. Springer, Heidelberg (2005). https://doi.org/10.1007/
11549468 110

11. Rodrigues E.R., Madruga F.L., Navaux P.O.A., Panetta J.: Multi-core Aware Pro-
cess Mapping and its Impact on Communication Overhead of Parallel Applica-
tions. In: Proceedings of the IEEE Symposium Computers and Communication,
Sousse, Tunisia, pp. 811–817 (2009). https://doi.org/10.1109/ISCC.2009.5202271

12. León, E.A., Karlin, I., Moody, A.T.: System noise revisited: enabling application
scalability and reproducibility with SMT. In: IEEE International Parallel and Dis-
tributed Processing Symposium, pp. 596–607. IEEE, Chicago (2016). https://doi.
org/10.1109/IPDPS.2016.48

13. Chai, L., Gao, Q., Panda, D.K.: Understanding the impact of multi-core architec-
ture in cluster computing: a case study with intel dual-core system. In: Proceed-
ings of the 7th IEEE International Symposium Cluster Computing and the Grid
(CCGrid), Rio De Janeiro, Brazil, pp. 471–478 (2007). https://doi.org/10.1109/
CCGRID.2007.119

14. Shainer, G., Lui, P., Liu, T., Wilde, T., Layton, J.: The impact of inter-node latency
versus intra-node latency on HPC applications. In: Proceedings of the IASTED
International Conference Parallel and Distributed Computing and Systems, pp.
455–460 (2011). https://doi.org/10.2316/P.2011.757-005

15. Xingfu, W., Taylor, V.: Using processor partitioning to evaluate the performance of
MPI, OpenMP and hybrid parallel applications on dual- and quad-core cray XT4
systems. In: Cray UG Proceedings (CUG 2009), Atlanta, USA, pp. 4–7 (2009)

16. Ribeiro, C.P., et al.: Evaluating CPU and memory affinity for numerical scientific
multithreaded benchmarks on multi-cores. Int. J. Comput. Sci. Inform. Syst. 7(1),
79–93 (2012)

17. Xingfu, W., Taylor, V.: Processor partitioning: an experimental performance anal-
ysis of parallel applications on SMP clusters systems. In: 19th International Con-
ference Parallel Distributed Computing and Systems (PDCS-07), Massachusetts,
USA, Cambridge, pp. 13–18 (2007)

http://www.top500.org
https://doi.org/10.1109/MC.2011.300
https://doi.org/10.1109/MC.2011.300
https://www.exascaleproject.org
http://eurohpc.eu
http://www.prace-ri.eu
http://www.nscc-tj.gov.cn
www.fujitsu.com/global/Images/post-k-supercomputer.pdf
https://doi.org/10.1109/TPDS.2013.104
https://doi.org/10.1145/1128022.1128073
https://doi.org/10.1007/11549468_110
https://doi.org/10.1007/11549468_110
https://doi.org/10.1109/ISCC.2009.5202271
https://doi.org/10.1109/IPDPS.2016.48
https://doi.org/10.1109/IPDPS.2016.48
https://doi.org/10.1109/CCGRID.2007.119
https://doi.org/10.1109/CCGRID.2007.119
https://doi.org/10.2316/P.2011.757-005

238 J. A. Moŕıñigo et al.

18. Rodŕıguez-Pascual, M., Moŕıñigo, J.A., Mayo-Garćıa, R.: Benchmarking per-
formance: influence of task location on cluster throughput. In: Mocskos, E.,
Nesmachnow, S. (eds.) CARLA 2017. CCIS, vol. 796, pp. 125–138. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-73353-1 9

19. Moŕıñigo, J.A., Rodŕıguez-Pascual, M., Mayo-Garćıa, R.: Slurm Configuration
Impact on Benchmarking. In: Slurm User Group Meeting, Athens, Greece (2016).
https://slurm.schedmd.com/publications.html

20. Zhang, C., Yuan, X., Srinivasan, A.: Processor affinity and MPI performance on
SMP-CMP clusters. In: IEEE International Symposium Parallel and Distributed
Processing, Workshops and PhD Forum, Atlanta, USA, pp. 1–8 (2010). https://
doi.org/10.1109/IPDPSW.2010.5470774

21. McKenna, G.: Performance Analysis and Optimisation of LAMMPS on XCmaster,
HPCx and BlueGene. MSc, University of Edinburgh, EPCC (2007)

22. Liu, J.: LAMMPS on Advanced SGI Architectures. White Paper SGI (2010)
23. Cornebize, T., Heinrich, F., Legrand, A., Vienne, J.: Emulating High Performance

Linpack on a Commodity Server at the Scale of a Supercomputer, HAL-id: hal-
01654804 (2017)

24. Stampede supercomputer. https://www.tacc.utexas.edu/systems/stampede
25. Helios supercomputer. http://www.iferc.org/CSC Scope.html#Systems
26. Eagle supercomputer. https://wiki.man.poznan.pl/hpc/index.php?title=Strona

glowna
27. LAMMPS homepage. http://lammps.sandia.gov
28. CHARMM homepage. https://www.charmm.org
29. Plimpton, S., Pollock, R., Stevens, M.: Particle-Mesh Ewald and rRESPA for par-

allel molecular dynamics simulations. In: Eighth SIAM Conference on Parallel Pro-
cessing for Scientific Computing (1997)

30. Fast Fourier Transform of the West homepage. http://www.fftw.org
31. Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Com-

put. Phys. 117(1), 1–19 (1995). https://doi.org/10.1006/jcph.1995.1039

https://doi.org/10.1007/978-3-319-73353-1_9
https://slurm.schedmd.com/publications.html
https://doi.org/10.1109/IPDPSW.2010.5470774
https://doi.org/10.1109/IPDPSW.2010.5470774
https://www.tacc.utexas.edu/systems/stampede
http://www.iferc.org/CSC_Scope.html#Systems
https://wiki.man.poznan.pl/hpc/index.php?title=Strona_glowna
https://wiki.man.poznan.pl/hpc/index.php?title=Strona_glowna
http://lammps.sandia.gov
https://www.charmm.org
http://www.fftw.org
https://doi.org/10.1006/jcph.1995.1039

Analyzing Communication Features
and Community Structure of HPC

Applications

Manfred Calvo1, Diego Jiménez2(B), and Esteban Meneses1,2

1 School of Computing, Costa Rica Institute of Technology, Cartago, Costa Rica
calvomanfred@gmail.com

2 Advanced Computing Laboratory, Costa Rica National High Technology Center,
San José, Costa Rica

{djimenez,emeneses}@cenat.ac.cr

Abstract. A few exascale machines are scheduled to become opera-
tional in the next couple of years. Reaching such achievement required
the HPC community to overcome obstacles in programmability, power
management, memory hierarchy, and reliability. Similar challenges are to
be faced in the pursuit of greater performance gains. In particular, design
of interconnects stands out as a major hurdle. Computer networks for
extreme-scale system will need a deeper understanding of the commu-
nication characteristics of applications that will run on those systems.
We analyzed a set of nine representative HPC applications and created a
catalog of well-defined communication patterns that constitute building
blocks for modern scientific codes. Furthermore, we found little differ-
ence between popular community-detection algorithms, which tend to
form few but relatively big communities.

Keywords: Communication patterns · High performance computing ·
Graph partitioning · Community structure detection ·
Application characterization · Message Passing Interface (MPI)

1 Introduction

The HPC community is on the verge of reaching exascale computing, a major
accomplishment that will allow addressing deeper questions in multiple scientific
and engineering domains. In realizing an exascale system, multiple challenges
had to be faced [8,13]: power management, programming models for massive
concurrency, memory hierarchy, and resilience. The road ahead to extreme-scale
systems brings similar challenges, particularly in the design of interconnects [5]:
network programming interfaces, network interface controller hardware, and net-
work topologies. To fully address all these issues, understanding the communi-
cation characteristics of HPC applications is fundamental.

This paper deals with analyzing the communication profile of message-
passing HPC applications and finding communities of tightly-coupled processes.
c© Springer Nature Switzerland AG 2019
E. Meneses et al. (Eds.): CARLA 2018, CCIS 979, pp. 239–254, 2019.
https://doi.org/10.1007/978-3-030-16205-4_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16205-4_18&domain=pdf
https://doi.org/10.1007/978-3-030-16205-4_18

240 M. Calvo et al.

We explore a range of HPC programs from different domains. Several cluster-
ing algorithms are studied, along with various clustering metrics. Finding the
community structure of an HPC application has several uses, such as topology
mapping [11], scalable debugging with a record-replay system [28], and optimiz-
ing fault-tolerance protocols [22].

These are the highlights of this paper:

– A characterization of communication in a representative set of benchmark
applications (Sect. 2). We explore several graph analysis metrics to describe
the communication matrix of each application.

– A comparison of clustering quality metrics and algorithms to find meaningful
communities in HPC codes using the communication matrix as input (Sect. 3).

– A tool to automatically generate the communication profile of an application
and detect its community structure (Sect. 2).

2 Communication Characteristics of HPC Applications

The ability to characterize and understand how processes within HPC applica-
tions communicate and relate is key in the design of next-generation architec-
tures and software. Our work is based on known benchmark suites and existing
Message Passing Interface (MPI) performance and graph analysis tools.

2.1 A Tool for Obtaining Communication Matrices

A first step towards gaining insight on how processes behave in a parallel appli-
cation, is being able to collect and report on the different communication oper-
ations present in modern scientific codes. A modified version of the mpiP [27]
lightweight profiling tool was developed to extract statistics and traces of MPI
operations. This mechanism is used to construct the communication matrices of
a group of proxy applications.

The mpiP tool is a link-time library with functions that build upon the PMPI
profiling interface of an MPI library. Elapsed times, call sites and stack traces
for every MPI operation are recorded by the tool by default. Furthermore, data
transaction measurements at each call site are also extracted by mpiP.

The mpiP’s wrapper functions were adapted to also collect information on
source and destination ranks for each MPI call site, the amount of messages
between them, and the amount of bytes transferred in total. The modified tool
supports most of the MPI operations present in the original mpiP. Flags to
control whether or not all-to-all operations are taken into consideration were
also included. All this information is reported back in the mpiP output file as
communication matrices for each MPI rank. A communication matrix of an MPI
code contains how much data is transferred between any pair of MPI ranks.
Each communication matrix has an alternate graph representing the interaction
between MPI ranks. Network analysis and metrics are used to characterize an
application’s communication matrix based on their topological structure.

Communication Features and Community Structure 241

2.2 Benchmark Applications

As part of the co-design effort to achieve exascale computing, approximations
to real-world HPC applications are being developed. Mini-apps or proxy appli-
cations are stripped down versions of said programs, consisting of considerably
fewer lines of code whilst still modeling the key features of traditional high perfor-
mance workloads [3]. Analyzing and understanding how communications affect
these next-generation simulations is essential to the development of software-
aware architectures.

Table 1. Proxy applications overview

Program Description Structure

AMG2013 Parallel algebraic multigrid solver for linear
systems

Unstructured grids

MiniMD Spatial decomposition molecular dynamics Particles (N-body)

Lulesh Hydrodynamics stencil calculation Unstructured grids

MiniAMR 3D stencil calculation with adaptive mesh
refinement

Structured grids

Cloverleaf Compressible Euler equations, cartesian grid
solver

Structured grids

MiniFE Finite element generation, assembly and
solution

Unstructured grids

NPB-CG Matrix conjugate gradient calculation Sparse linear algebra

NPB-MG Simplified multigrid calculation Structured grids

NPB-BT Block tridiagonal matrix solver Dense linear algebra

We have created a catalog of communication profiles for various proxy apps,
focusing on MPI codes. Table 1 provides an overview of the proxy applications.
Applications from different benchmark suites [7,10,15] covering on multiple sci-
entific domains have been targeted. Each proxy application was linked to the
modified mpiP library during build time in order to obtain communication matri-
ces for each execution. Different problem sizes and configurations where tested
for each proxy application, choosing those that represented significant test cases.
Two MPI settings were used to explore the communication matrices for each
application. The first scenario, using 64 MPI ranks, allowed us to observe com-
munication patterns at small scale. A second scenario, in which we scaled the
number of MPI ranks over a thousand processes (the specific number depends
on each application), reveals a bigger picture of the behavior in communications
for the different scientific workloads.

2.3 Results

As a first step in characterizing communication features and understanding how
parallel processes interact, the adjacency matrices obtained with the modified

242 M. Calvo et al.

(a) AMG2013 (b) miniMD (c) miniFE

(d) miniAMR (e) Lulesh (f) CloverLeaf

(g) NPB-CG (h) NPB-MG (i) NPB-BT

Fig. 1. Communication volume heatmaps for proxy applications

mpiP were used to construct undirected graphs representing the communication
connectivity of each application. As a result, all communication matrices are
symmetric about the diagonal. Figure 1 presents a visual description of basic
communication properties for each scientific code in the form of heatmaps. Each
subfigure in Fig. 1 shows the communication volume between every pair of sender
(x-axis) and receiver (y-axis) MPI ranks. The lighter the color, the higher com-
munication volume exchanged between the pair of MPI ranks. A common charac-
teristic, as previously stated, is the axial symmetry exhibited in all applications
and the fact that most of them displayed a high concentration of communica-
tion along the diagonals. These features indicate a balanced exchange of data
between neighboring ranks, in the majority of tested applications, that might be
associated to stencil-like programming patterns [24]. Some key observations can
be derived from these visual representations:

– The communication heatmap for AMG2013 (Fig. 1a) stands out when com-
pared to the rest of applications because there was a more uniform distribu-
tion of data among ranks (gray shaded area). However, near-neighbor com-
munications were also prominent during execution as can be seen in the white
area along the diagonal.

Communication Features and Community Structure 243

– Communication topologies are the product of well-known coding practices
and, as a result, well established communication patterns are formed and
combined in applications from different scientific backgrounds.
• A three-piece chain pattern can be observed both in Fig. 1b as well

as Fig. 1h. This pattern is a reflection of a three-dimensional nearest-
neighbor data exchange. Some minor differences between those two figures
exist due to smaller non-neighbor data transfers.

• Fig. 1e is the result of a combination of patterns: 3D nearest neighbor
(like in miniMD and NPB-CG) and a 3D sweep pattern [23].

• Figs. 1f and i also share what seems to be a road pattern associated to a
point-to-point exchange of information in a 2D nearest neighbor fashion.
Again, some extra communication can be seen between ranks that are not
necessarily neighbors in NPB-BT, but this is not a dominant feature.

• Another interesting pattern is clearly shown in Figs. 1d and g. The round-
goggles arrangement along the diagonal corresponds to a nearest neighbor
communication pattern. However, this one was derived from a virtual MPI
topology that structures parallel tasks into a hypercube [24]. This same
pattern can be found in the diagonals of AMG2013 and miniFE (Figs. 1a
and c) marked as having the greatest volume of communication.

On another front, several key metrics that enable the characterization of
communication topologies using graph theory were identified. Table 2 summa-
rizes those metrics into four categories. First, some relevant observations of the
connectivity metrics are considered:

– Just like with the visual description, AMG2013 strikes out as different than
the rest of proxy applications. Its average degree is higher and this actually
is a clear reflection of what is shown in Fig. 1a where each rank is connected
to a high percentage of parallel tasks.

– The cumulative distribution function (CDF) for AMG2013 responds to a
normal distribution showing a wide variety of vertex degrees in the graph.
All other CDFs point to very well defined graph structures with each vertex
having a limited range of neighbors.

– The two stated features for AMG2013 (high interconnection and a wide range
of degrees) sum up into a low degree correlation due to the fact that each
vertex is bound to relate to other vertices with very different degrees than its
own.

– Another application that stands out is MiniMD. Its connectivity metrics
reflect a very regular structure where each vertex has a very well defined
number of neighbors (stencil pattern).

Second, some of the distance statistics key points are reviewed:

– Most of the applications have very similar results for distance statistics, this
uniformity and similarity in path lengths, diameters and eccentricities is the
result of collective communications (in this case one-to-many or many-to-one
operations). Thanks to these operations, every vertex is very close to all other
vertices in the network.

244 M. Calvo et al.

– MiniMD, unlike the rest of applications, has higher distance measurements
because there is no effect of collective communications as can also be stated
in Fig. 1b.

Third, some centrality measurements also reflect on the previously stated
topological characteristics:

– AMG2013 again differs from the rest of applications by having high values
of degree centrality and betweenness centrality. This indicates that its graph
is highly interconnected and that each of its vertices can communicate with
any other relatively easy, even if there is no direct link between them.

– As expected in a highly dense graph like the one for AMG2013, there is a wide
range of possible routes for data to be exchanged between two given nodes.
This property is reflected in a low value of betweenness centrality because
each vertex possesses lower control over information passing between other
nodes.

Finally, some basic clustering metrics are examined:

– The value of average triangles for AMG2013 is just another indicator of the
high interconnection density of this application’s graph.

– An interesting behavior can be seen in all applications except AMG2013 and
MiniMD: when the transitivity metric tends to zero, the average cluster-
ing coefficient tends to increase. This might seem counter-intuitive since both
metrics depend on the relative frequency of triangles. However, in these appli-
cations, the number of triples in the network increases dramatically as a side
effect of collective communications, this causes the transitivity to fall and the
clustering coefficient to rise.

3 Community Structure of HPC Applications

The aim of community detection algorithms is to find groups of nodes that are
densely connected. Members of each group have a stronger interaction between
them than with the rest of the graph. The algorithms presented in this section
have been successfully applied to other fields to find communities, particularly
in social, biological, and transportation networks [14]. In the context of HPC
message-passing applications, to our knowledge, there is no formal study to
evaluate these algorithms in finding communities of MPI ranks, based on the
communication matrix of the application. Quality metrics used to compare the
performance of each algorithm are introduced first.

3.1 Quality Metrics

A graph or a network G is usually defined as a pair (V,E), with V being a set of
nodes or vertices, and E being a set of edges or links. The number of nodes in a
graph is represented as N = ||V ||. Function δ(u, v) takes values 1 or 0, depending

Communication Features and Community Structure 245

T
a
b
le

2
.
P

ro
x
y

a
p
p
li
ca

ti
o
n
s

to
p
o
lo

g
y

m
et

ri
cs

C
la

ss
M

et
ri

c
A

M
G

2
0
1
3

(1
0
0
0

ra
n
k
s)

M
in

iM
D

(1
0
2
4

ra
n
k
s)

L
u
le

sh
(1

0
0
0

ra
n
k
s)

M
in

iA
M

R
(1

0
0
0

ra
n
k
s)

C
lo

v
er

L
ea

f
(1

1
5
2

ra
n
k
s)

M
in

iF
E

(1
0
2
4

ra
n
k
s)

N
P

B
-C

G
(1

0
2
4

ra
n
k
s)

N
P

B
-M

G
(1

0
2
4

ra
n
k
s)

N
P

B
-B

T
(1

0
2
4

ra
n
k
s)

C
o
n
n
ec

ti
v
it
y

A
v
g
.
D

eg
re

e
4
5
1
.0

3
6

6
.0

0
0

2
2
.9

3
6

7
.3

9
2

5
.8

7
7

2
2
.7

2
7

7
.9

5
7

1
1
.5

1
0

7
.9

8
6

D
eg

re
e

C
o
rr

el
a
ti

o
n

-0
.0

5
8

1
.0

0
0

-0
.0

4
8

-0
.1

5
6

-0
.2

0
5

-0
.0

4
9

-0
.1

4
4

-0
.0

9
6

-0
.1

4
3

D
eg

re
e

C
D

F

D
is

ta
n
ce

A
v
g
.
P
a
th

L
en

g
th

1
.5

4
9

8
.0

0
8

1
.9

7
7

1
.9

9
3

1
.9

9
5

1
.9

7
8

1
.9

9
2

1
.9

8
9

1
.9

9
2

D
ia

m
et

er
2

1
6

2
2

2
2

2
2

2
A

v
g
.
E

cc
en

tr
ic

it
y

1
.9

9
8

1
6
.0

0
0

1
.9

9
9

1
.9

9
9

1
.9

9
9

1
.9

9
9

1
.9

9
9

1
.9

9
9

1
.9

9
9

C
en

tr
a
li
ty

D
eg

re
e

C
en

tr
a
li
ty

0
.4

5
2

0
.0

0
6

0
.0

2
3

0
.0

0
7

0
.0

0
5

0
.0

2
2

0
.0

0
8

0
.0

1
1

0
.0

0
8

C
lo

se
n
es

s
C

en
tr

a
li
ty

0
.6

4
9

0
.1

2
5

0
.5

0
6

0
.5

0
2

0
.5

0
6

0
.5

0
6

0
.5

0
2

0
.5

0
3

0
.5

0
2

B
et

w
ee

n
n
es

s
C

en
tr

a
li
ty

0
.0

0
0
5

0
.0

0
6
9

0
.0

0
1
0

0
.0

0
1
0

0
.0

0
0
9

0
.0

0
1
0

0
.0

0
1
0

0
.0

0
0
9

0
.0

0
1
0

C
lu

st
er

in
g

T
ri

a
n
g
le

s
6
0
2
6
9
.6

0
1

0
.0

0
0

1
3
0
.4

8
8

8
.0

9
1

5
.8

1
8

1
2
8
.8

1
3

8
.9

3
8

1
9
.5

7
9

1
4
.9

6
5

T
ra

n
si

ti
v
it
y

0
.5

6
1

0
.0

0
0

0
.1

7
6

0
.0

1
6

0
.0

1
0

0
.1

7
2

0
.0

1
7

0
.0

3
5

0
.0

2
8

A
v
g
.
C

lu
st

er
in

g
C

o
effi

ci
en

t
0
.5

8
0

0
.0

0
0

0
.5

3
4

0
.3

1
7

0
.4

1
2

0
.5

3
7

0
.2

8
7

0
.3

0
7

0
.5

7
1

246 M. Calvo et al.

T
a
b
le

3
.
P

ro
x
y

a
p
p
li
ca

ti
o
n
s

co
m

m
u
n
it
y

d
et

ec
ti

o
n

m
et

ri
cs

A
lg

o
ri

th
m

M
et

ri
c

A
M

G
2
0
1
3

(1
0
0
0

ra
n
k
s)

M
in

iM
D

(1
0
2
4

ra
n
k
s)

L
u
le

sh
(1

0
0
0

ra
n
k
s)

M
in

iA
M

R
(1

0
0
0

ra
n
k
s)

C
lo

v
er

L
ea

f
(1

1
5
2

ra
n
k
s)

M
in

iF
E

(1
0
2
4

ra
n
k
s)

N
P

B
-C

G
(1

0
2
4

ra
n
k
s)

N
P

B
-M

G
(1

0
2
4

ra
n
k
s)

N
P

B
-B

T
(1

0
2
4

ra
n
k
s)

F
a
st

G
re

ed
y

M
o
d
u
la

ri
ty

0
.8

4
2

0
.7

3
0

0
.7

4
8

0
.7

1
3

0
.8

1
9

0
.7

4
3

0
.8

0
7

0
.6

7
5

0
.7

1
1

C
o v

er
a
g
e

0
.9

3
9

0
.8

3
9

0
.8

6
6

0
.8

6
6

0
.9

0
8

0
.8

5
6

0
.8

3
8

0
.7

5
7

0
.8

8
0

C
o
n
d
u
ct

a
n
ce

0
.1

2
1

0
.2

8
9

0
.2

4
0

0
.2

4
2

0
.1

8
4

0
.2

6
6

0
.2

7
9

0
.3

9
9

0
.2

5
8

R
ec

o v
er

y
0
.0

7
2

0
.1

3
0

0
.1

2
3

0
.1

3
8

0
.0

8
5

0
.1

2
2

0
.0

9
7

0
.1

6
0

0
.1

3
1

N
u
m

b
er

O
f
C

o
m

m
u
n
it

ie
s

1
2

1
0

9
7

1
3

1
0

3
2

1
3

7
C

o
m

m
u
n
it

ie
s

S
iz

e
(A

v
g
)

8
3
.3

3
1
0
2
.4

0
1
1
1
.1

1
1
4
2
.8

5
8
8
.6

1
1
0
2
.4

0
3
2
.0

0
7
8
.7

6
1
4
6
.2

8
C

o
m

m
u
n
it

ie
s

S
iz

e
(S

td
)

4
9
.7

4
3
2
.7

9
2
7
.0

9
4
2
.6

2
3
6
.3

6
3
9
.1

3
0
.0

0
2
1
.6

8
6
8
.0

2

M
u
lt

i
L
ev

el

M
o
d
u
la

ri
ty

0
.8

4
1

0
.7

3
5

0
.7

4
1

0
.7

3
3

0
.8

4
4

0
.7

4
8

0
.8

0
7

0
.6

9
6

0
.7

1
3

C
o v

er
a
g
e

0
.9

3
6

0
.8

1
8

0
.8

3
3

0
.8

2
2

0
.9

0
9

0
.8

3
0

0
.8

3
8

0
.7

5
9

0
.8

5
0

C
o
n
d
u
ct

a
n
ce

0
.1

2
2

0
.3

1
7

0
.2

9
5

0
.3

1
4

0
.1

6
6

0
.2

9
9

0
.2

7
9

0
.3

8
9

0
.2

6
7

R
ec

o v
er

y
0
.0

7
4

0
.1

2
9

0
.1

2
5

0
.1

3
1

0
.0

7
7

0
.1

2
4

0
.0

9
7

0
.1

5
2

0
.1

3
8

N
u
m

b
er

O
f
C

o
m

m
u
n
it

ie
s

1
2

1
3

1
2

1
2

1
6

1
3

3
2

1
6

8
C

o
m

m
u
n
it

ie
s

S
iz

e
(A

v
g
)

8
3
.3

3
7
8
.7

6
8
3
.3

3
8
3
.3

3
7
2
.0

0
7
8
.7

6
3
2
.0

0
6
4
.0

0
1
2
8
.0

0
C

o
m

m
u
n
it

ie
s

S
iz

e
(S

td
)

4
7
.9

2
2
3
.8

5
2
5
.9

6
2
3
.6

3
1
4
.3

1
2
1
.1

2
0
.0

0
0
.0

0
4
2
.4

5

L
ea

d
in

g
E

ig
en

v
ec

to
r

M
o
d
u
la

ri
ty

0
.8

4
2

0
.7

2
0

0
.7

1
0

0
.7

0
4

0
.8

2
9

0
.7

1
5

0
.6

3
2

0
.6

9
0

0
.7

6
8

C
ov

er
a
g
e

0
.9

1
9

0
.8

4
5

0
.8

0
0

0
.8

0
2

0
.9

0
2

0
.8

4
3

0
.6

9
6

0
.7

5
2

0
.8

4
2

C
o
n
d
u
ct

a
n
ce

0
.1

4
8

0
.2

6
8

0
.3

3
8

0
.3

4
0

0
.1

8
1

0
.2

8
6

0
.4

7
2

0
.3

9
7

0
.2

7
6

R
ec

ov
er

y
0
.0

7
6

0
.1

4
0

0
.1

4
2

0
.1

4
5

0
.0

8
5

0
.1

3
4

0
.1

8
0

0
.1

5
5

0
.1

1
5

N
u
m

b
er

O
f
C

o
m

m
u
n
it

ie
s

1
4

8
1
2

1
1

1
4

9
1
8

1
6

1
4

C
o
m

m
u
n
it

ie
s

S
iz

e
(A

v
g
)

7
1
.4

2
1
2
8
.0

0
8
3
.3

3
9
0
.9

0
8
2
.2

8
1
1
3
.7

7
5
6
.8

8
6
4
.0

0
7
3
.1

4
C

o
m

m
u
n
it

ie
s

S
iz

e
(S

td
)

3
4
.1

5
0
.0

0
2
3
.7

8
2
6
.7

8
1
4
.3

6
4
6
.9

5
2
3
.1

8
0
.0

0
1
4
.5

4

Communication Features and Community Structure 247

on whether vertices u and v are connected or not, respectively. There may be
a weight associated to each edge w(u, v) that connects nodes u and v. In this
paper, a graph that represents the communication matrix of an MPI application
was constructed using the MPI ranks as nodes, and the communication volume
(in bytes) as the weight of an edge connecting two MPI ranks that interact via
message passing. A clustering C of a graph G is a partition of V into disjoint sets
{C1, C2, ..., Ck}, where k is the number of clusters or communities. The weight
of all internal edges in cluster Ci is given by w(Ci), a shortcut for

∑
e∈E(Ci)

w(e).

Modularity. It is one of the most popular metrics for measuring quality of
clusters. Modularity compares the connectivity structure of each cluster to that
of a random graph with similar characteristics [18]. Higher modularity values are
given to clusters with a number of internal edges greater than the same number
expected in a random graph. Also, modularity increases when the number of
inter-cluster edges is less than their expected counterpart in a random graph.
Given a graph G and a clustering C of G with k clusters, let us define H as a
k× k symmetric matrix with Hi,j representing the fraction of all edges in graph
G that connect clusters i and j. The trace of H (the sum of all elements in the
main diagonal) is denoted by Tr(H). Modularity values usually range from 0
to 1, with 1 being a clustering with strong community structure. Modularity is
defined as:

modularity(C) = Tr(H) − ||H2|| (1)

Coverage. It computes the fraction of the weights of all intra-cluster edges
compared to the weight of all edges in the graph. Values of coverage range from
0 to 1, with 1 being a clustering where all edges fall within clusters. Given a
graph G and a clustering C with k clusters, let w(C) =

∑k
i=1 w(Ci). Coverage

is defined as:

coverage(C) =
w(C)
w(G)

(2)

Conductance. It is based on the cut induced by each cluster of a clustering
C. Given a cluster Ci, there is a cut ki that bisects the graph into two sets,
Ci and V \ Ci. The size of the cut (the total weight of edges in the cut) is
compared to the weight of edges on the two subgraphs induced by that cut.
Let a(Ci) =

∑
u∈Ci

∑
v∈V w(u, v), the conductance of a cluster Ci, denoted by

φ(Ci), is computed as φ(Ci) =
∑

u∈Ci

∑
v/∈Ci

w(u,v)

min(a(Ci),a(C̄i))
. The conductance for the

whole clustering is computed as the average of the conductance of the first k−1
cuts induced by the first k − 1 clusters:

conductance(C) =
∑k−1

i=1 φ(Ci)
k − 1

(3)

Recovery. It computes the cost associated to recovery in fault tolerance algo-
rithms for HPC systems [22]. For a given clustering C, recovery is defined as:

recovery(C) = αM + βS (4)

248 M. Calvo et al.

where α and β are parameters to control the weight of each of the terms M and S.
The fraction of all communication that crosses cluster boundaries is represented
by M and is formally defined as M =

∑
u,v∈V w(u,v)δ(u,v)
∑

u,v∈V w(u,v) . On the other hand, S

stands for the fraction of the system that is required to restart if one member
of a cluster fails. It is represented by the average cluster size and is defined as
S =

∑k
i=1 |Ci|

k . For this paper, α = β = 0.5 were used.
In general, a good community detection algorithm should maximize modu-

larity and coverage, while minimizing conductance and recovery.

3.2 Algorithms

Having established a way to compare community detection methods, three dif-
ferent algorithms were chosen based on their low computational complexity and
detection strategy to evaluate whether or not they are appropriate when study-
ing MPI applications.

Fast Greedy Algorithm. This algorithm hierarchically agglomerates nodes in
a graph by optimizing the modularity score of the network in a greedy fashion [6].
Organizing each vertex as the sole member of a community at first, the algorithm
iteratively finds the changes in modularity that would result from merging each
pair of communities, performing the union with the largest resulting modularity
value.

Let Q represent the modularity value of a clustering. Two main data struc-
tures are used to efficiently find the biggest ΔQ and the pair of communities that
produce it: (i) A sparse matrix that contains the value of ΔQij for each pair
i, j of communities that are connected by at least one edge. (ii) A max-heap H
that contains the largest element of each row of the matrix ΔQij and the labels
of their corresponding i, j communities.

The algorithm basically calculates the values of ΔQij for every possible com-
munity merger and fills out the max-heap with the biggest element of each row
of the matrix ΔQ. Then, the largest ΔQij value is selected from H and the cor-
responding communities are joined. The process continues by updating both the
ΔQ matrix and the H heap until only one community remains. This algorithm
has a O(Nlog2(N)) computational complexity [29].

Community Multilevel Algorithm. In contrast to the Fast Greedy Algo-
rithm, which tends to create super-communities that contain a large fraction of
the nodes as a result of its modularity optimization approach [4], a modular-
ity optimization based heuristic method [4] detects community structure in a
network in another way. This algorithm is divided into two iterative phases.

Execution is started by assigning each node of the network to a different com-
munity, resulting in as many communities as there are nodes in the graph. Then
during the first phase, for each node i, the gain in modularity that would be
obtained by removing i from its community and placing it into a neighboring j
community is evaluated. After this process, i is placed in the community for which
the gain in modularity is maximum. This procedure is repeated for all nodes in the
network until no improvement can be achieved and the first phase concludes.

Communication Features and Community Structure 249

The second phase of the algorithm builds a new network where each node
corresponds to each community formed during the first phase. In weighted net-
works, the weight of the edges between the new nodes is the sum of the links
between nodes in the former communities. Links between vertices of the same
community are modeled as self-loops. Once this transformation is finished, the
first phase can be reapplied to the resulting network. The procedure is applied
until there are no more changes in the network and a maximum modularity score
is attained. The computational complexity for this algorithm is O(NlogN) [29].

Community Leading Eigenvector Algorithm. An alternative modularity
optimization technique [17] redefines the modularity optimization function in
terms of matrices. This approach allows us to treat the community detection
task as an spectral problem in linear algebra.

Starting with an n-vertex network and dividing it into two disjoint groups, a
vector s of size n can be defined where each element si = 1 if vertex i belongs to
group 1 and si = −1 if i is part of group 2. Taking into account the adjacency
matrix A for the network, where each quantity Aij is an element of said matrix,
and defining the expected number of edges between vertices i and j as kikj/2m,
where ki and kj are the degrees of the vertices and m = (1/2)

∑
ki is the total

number of edges in the network. Modularity can be rewritten as

Q =
1

4m

∑

ij

(Aij − kikj

2m
)sisj =

1
4m

sT Bs (5)

In Eq. 5 the new modularity matrix B has been defined. This algorithm then
calculates the leading eigenvector of the modularity matrix and uses it to split
the network into two parts in a way that maximizes modularity. Afterwards,
modularity contribution values are calculated at each network subdivision step.
The algorithm stops once the contribution is no longer positive. This algorithm
has a O(N(E + N)) computational complexity for each graph bipartition [29].

3.3 Results

The algorithms presented in the previous subsection are part of the igraph library
[1]. We used said implementations and evaluated their results using the discussed
quality metrics. Table 3 summarizes the obtained results for the different appli-
cations, algorithms and metrics.

Regarding Table 3, some general observations can be made:

– All three chosen algorithms are focused on maximizing modularity. As a
result, the majority of tested applications were biased towards high mod-
ularity scores. Also, due to this common characteristic, low variability across
algorithms and their results can be observed.

– Modularity and coverage are similar metrics in terms of how they evaluate
clustering quality. That explains why their values were similar throughout all
of the applications.

250 M. Calvo et al.

(a) AMG2013 (b) miniMD (c) miniFE

(d) miniAMR (e) Lulesh (f) CloverLeaf

(g) NPB-CG (h) NPB-MG (i) NPB-BT

Fig. 2. Communities detected by fast greedy algorithm

– For all of the applications, the different clustering methods resulted in few
communities, with each community having a big size on average. Modularity,
coverage and conductance tend to give better results for smaller numbers of
clusters [2], as is the case in this analysis.

– Both conductance and recovery had consistently low values across all of the
applications and algorithms. This behavior was the result of having big com-
munities and few inter-cluster edges, the latter being a desirable feature in
clustering.

Furthermore, looking into Table 3 with more detail, certain key observations
can be noted:

– Unlike the rest of applications, the modularity score for NPB-CG had a low
value on the Community Leading Eigenvector algorithm. This seems to be
the result of non-nearest neighbors being taken into account in the clustering,
as can be observed in Fig. 3c.

– NPB-MG had consistently low values of modularity for all of the tested algo-
rithms. At first this seemed counter intuitive as its communication matrix
was almost equivalent to that of miniMD (see Figs. 1b and h). However, as

Communication Features and Community Structure 251

shown in Fig. 2h, this behavior might be a consequence of highly intertwined
clusters in contrast to well delimited communities like those in Fig. 2b.

– Both NPB-MG and NPB-CG (this last one on the Leading Eigenvector algo-
rithm) had a more vague community structures which resulted in higher con-
ductance values when compared to the rest of applications.

– In relation to the previous observation, NPB-CG also had a high recovery
value for the Community Leading Eigenvector algorithm. Again, this is the
result of more inter-cluster edges and the cost it would have to recover from
an execution problem.

– Finally, we use the term perfect clustering to describe a situation with per-
fectly defined communities with no standard deviation for the cluster size.
This kind of communities are present in well structured communication matri-
ces like those resulting from stencil-like patterns. This perfect clustering was
observed in the following cases:
• Fast Greedy Algorithm: NPB-CG
• Multi Level Algorithm: NPB-CG and NPB-MG
• Community Leading Eigenvector Algorithm: MiniMD and NPB-MG

Also, perfect clustering can be seen in Figs. 2g and 3b, where non-overlapping,
contiguous, and well defined communities appear.

It appears that even though the applications we have studied come from
different domains, there are several similarities when analyzing how parallel pro-
cesses relate. There seems to be no definite best algorithm or metric in all of the
scenarios but rather various techniques should be applied in order to find a best
community structure. Figure 3 reflects on how similar the resulting clusters are
for NPB-CG, with Community Leading Eigenvector algorithm deviating from
the solution found by the other two algorithms.

(a) Fast Greedy (b) Multi-level (c) Leading Eigenvector

Fig. 3. Communities detected on NPB-CG by each algorithm

4 Related Work

The need to understand how the communication component of an application
affects its performance has been an ongoing field of research in HPC for some
time. More specifically, revealing and describing how parallel MPI ranks relate

252 M. Calvo et al.

is fundamental to the achievement of exascale computing. A variety of efforts
[20,21,24–26] have been put into the characterization of communications of HPC
workloads for distinct goals.

However, as proxy applications evolve and become more relevant, revisiting
this kind of ideas and studies is important. More recently, Roth et al. [23] offered
a first step towards automatically determining patterns in communication matri-
ces of scientific applications. This kind of analysis is useful to discern how certain
phases of an application have an impact on performance. Nevertheless, no further
network topological properties can be revealed from just considering patterns in
communication matrices. Our study strengthens these descriptions of communi-
cation patterns by taking advantage of well known graph theory measurements
and using them as a way to expose similarities and disparities between modern
scientific workloads in terms of their communication behavior.

Advancing in the study of how processes relate in parallel applications, the
construction of communities is a natural next step. Graph clustering is a wide
field of research relevant in domains ranging from social to biological networks
[9]. Multiple community detection algorithms have been created and tested
[6,16,18,19]. Pertaining to HPC, Ropars et al. [22] used clustering strategies to
detect communities in message passing applications to better the partial message
logging in fault tolerant systems. Determining the best community structure for
an specific application could proof useful in the development of better topology
mapping strategies [12].

As a result, an important question arises when determining groups of pro-
cesses in parallel application: how does one determine what is the best clustering
approach for a certain application? Almeida et al. [2] presented a set of cluster-
ing metrics and how they might be interpreted in a very abstract manner. Our
work builds upon some of these metrics and applies them in the context of mes-
sage passing codes. In doing so, our results help ascertain whether or not the
clustering strategy deeply affects established communities in a given scenario.

5 Final Remarks

Understanding the communication characteristics of HPC applications is funda-
mental in designing appropriate interconnect technology for extreme-scale sys-
tems. This study explored the community structure of a representative set of
HPC codes. Three major clustering algorithms along with four clustering met-
rics were compared. To the best of our knowledge, this is the first study on the
subject applied to HPC codes.

In terms of the communication matrices for the different applications, very
limited and well defined communication patterns seem to be dominant. Specifi-
cally, n-dimensional stencil-like patterns appear to be the major contributors to
the total volume of communication present in modern scientific HPC applica-
tions. Having realized this, it becomes even more so important to apply parallel
process clustering and topology mapping to guarantee the best possible spatial
locality and therefore, obtain evermore higher performance. Future work in this

Communication Features and Community Structure 253

line of study should focus on how these patterns change during the different
phases of execution, amounting to a temporal analysis of communications.

Even though well established communities were successfully identified in the
majority of applications, our analysis seems to point out that there is no clear
“best” algorithm for community detection in MPI applications. Each method
tends to maximize an specific quality metric making the selection of a community
detection algorithm application-dependent.

Performing this kind of studies periodically is important to determine
whether modern HPC workloads are well suited for present hardware architec-
tures. This analysis enables both software and hardware designers to overcome
obstacles through co-design principles. This joint effort is the only road towards
extreme scale high performance computing.

Acknowledgments. This research was partially supported by a machine allocation
on Kabré supercomputer at the Costa Rica National High Technology Center.

References

1. igraph: The network analysis package (2015). http://igraph.org/
2. Almeida, H., Guedes, D., Meira, W., Zaki, M.J.: Is there a best quality metric for

graph clusters? In: Gunopulos, D., Hofmann, T., Malerba, D., Vazirgiannis, M.
(eds.) ECML PKDD 2011. LNCS (LNAI), vol. 6911, pp. 44–59. Springer, Heidel-
berg (2011). https://doi.org/10.1007/978-3-642-23780-5 13

3. Barrett, R., et al.: On the role of co-design in high performance computing, vol.
24, pp. 141–155 (2013)

4. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of
communities in large networks. J. Stat. Mech. Theory Exp. 2008(10), P10008
(2008)

5. Brightwell, R., Barrett, B.W., Hemmert, K.S., Underwood, K.D.: Challenges for
high-performance networking for exascale computing. In: 2010 Proceedings of 19th
International Conference on Computer Communications and Networks, pp. 1–6,
August 2010

6. Clauset, A., Newman, M.E.J., Moore, C.: Finding community structure in very
large networks. Phys. Rev. E 70, 066111 (2004)

7. CORAL: Collaboration of Oak Ridge, Argonne and Livermore benchmark codes.
https://asc.llnl.gov/CORAL-benchmarks

8. Dongarra, J., et al.: The international exascale software project roadmap (2011)
9. Girvan, M., Newman, M.E.: Community structure in social and biological networks.

Proc. Natl. Acad. Sci. 99(12), 7821–7826 (2002)
10. Heroux, M.A., et al.: Improving performance via mini-applications. Technical

report SAND2009-5574, Sandia National Laboratories (2009)
11. Hoefler, T., Snir, M.: Generic topology mapping strategies for large-scale paral-

lel architectures. In: Proceedings of the 2011 ACM International Conference on
Supercomputing (ICS 2011), pp. 75–85. ACM, June 2011

12. Hoefler, T., Jeannot, E., Mercier, G.: An overview of process mapping techniques
and algorithms in high-performance computing (2014)

13. Kogge, P., et al.: Exascale computing study: technology challenges in achieving
exascale systems (2008)

http://igraph.org/
https://doi.org/10.1007/978-3-642-23780-5_13
https://asc.llnl.gov/CORAL-benchmarks

254 M. Calvo et al.

14. Leskovec, J., Lang, K.J., Mahoney, M.: Empirical comparison of algorithms for
network community detection. In: Proceedings of the 19th International Conference
on World Wide Web, pp. 631–640 (2010)

15. NAS Parallel Benchmarks. https://www.nas.nasa.gov/publications/npb.html
16. Newman, M.E.J.: Fast algorithm for detecting community structure in networks.

Phys. Rev. E 69, 066133 (2004)
17. Newman, M.E.J.: Finding community structure in networks using the eigenvectors

of matrices. Phys. Rev. E 74, 036104 (2006)
18. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in net-

works. Phys. Rev. E 69, 026113 (2004)
19. Radicchi, F., Castellano, C., Cecconi, F., Loreto, V., Parisi, D.: Defining and iden-

tifying communities in networks. Proc. Natl. Acad. Sci. U.S.A. 101(9), 2658–2663
(2004)

20. Raponi, P.G., Petrini, F., Walkup, R., Checconi, F.: Characterization of the com-
munication patterns of scientific applications on blue gene/p. In: 2011 IEEE Inter-
national Symposium on Parallel and Distributed Processing Workshops and Phd
Forum (IPDPSW), pp. 1017–1024 (2011)

21. Riesen, R.: Communication patterns [message-passing patterns]. In: 20th Interna-
tional Parallel and Distributed Processing Symposium, IPDPS 2006, 8 pp. IEEE
(2006)

22. Ropars, T., Guermouche, A., Uçar, B., Meneses, E., Kalé, L.V., Cappello, F.: On
the use of cluster-based partial message logging to improve fault tolerance for MPI
HPC applications. In: Jeannot, E., Namyst, R., Roman, J. (eds.) Euro-Par 2011.
LNCS, vol. 6852, pp. 567–578. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-23400-2 53

23. Roth, P.C., Meredith, J.S., Vetter, J.S.: Automated characterization of parallel
application communication patterns. In: Proceedings of the 24th International
Symposium on High-Performance Parallel and Distributed Computing, pp. 73–84.
ACM (2015)

24. Vetter, J.S., et al.: Quantifying architectural requirements of contemporary
extreme-scale scientific applications. In: Jarvis, S.A., Wright, S.A., Hammond, S.D.
(eds.) PMBS 2013. LNCS, vol. 8551, pp. 3–24. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-10214-6 1

25. Vetter, J.S., Mueller, F.: Communication characteristics of large-scale scientific
applications for contemporary cluster architectures. J. Parallel Distrib. Comput.
63(9), 853–865 (2003)

26. Vetter, J.S., Yoo, A.: An empirical performance evaluation of scalable scientific
applications. In: ACM/IEEE 2002 Conference on Supercomputing, p. 16. IEEE
(2002)

27. Vetter, J., Chambreau, C.: mpIP: Lightweight, scalable MPI profling (2014).
http://mpip.sourceforge.net/

28. Xue, R., et al.: MPIWiz: subgroup reproducible replay of MPI applications. In:
Proceedings of the 14th ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, PPoPP 2009, pp. 251–260. ACM, New York (2009)

29. Yang, Z., Algesheimer, R., Tessone, C.J.: A comparative analysis of community
detection algorithms on artificial networks. Sci. Rep. 6, 30750 (2016)

https://www.nas.nasa.gov/publications/npb.html
https://doi.org/10.1007/978-3-642-23400-2_53
https://doi.org/10.1007/978-3-642-23400-2_53
https://doi.org/10.1007/978-3-319-10214-6_1
https://doi.org/10.1007/978-3-319-10214-6_1
http://mpip.sourceforge.net/

Power Efficiency Analysis of a Deep
Learning Workload on an IBM “Minsky”

Platform

Mauricio D. Mazuecos Pérez1, Nahuel G. Seiler1, Carlos Sergio Bederián1,2,
Nicolás Wolovick1(B), and Augusto J. Vega3

1 FaMAF, Universidad Nacional de Córdoba, Córdoba, Argentina
nicolasw@famaf.unc.edu.ar

2 CONICET, Buenos Aires, Argentina
3 IBM T. J. Watson Research Center, Yorktown Heights, USA

Abstract. The rise of Deep Learning techniques has attracted special
attention to GPUs usage for better performance of model computation.
Most frameworks for Cognitive Computing include support to offload
model training and inferencing to graphics hardware, and this is so com-
mon that GPU designers are reserving die area for special function units
tailored to accelerating Deep Learning computation. Measuring the capa-
bility of a hardware platform to run these workloads is a major concern
for vendors and consumers of this exponentially growing market. In a
previous work [9] we analyzed the execution times of the Fathom AI
workloads [2] in CPUs and CPUs+GPUs. In this work we measure the
Fathom workloads in the POWER8-based “Minsky” [15] platform, pro-
filing power consumption and energy efficiency in GPUs. We explore
alternative forms of execution via GPU power and frequency capping
with the aim of reducing Energy-to-Solution (ETS) and Energy-Delay-
Product (EDP). We show important ETS savings of up to 27% with half
of the workloads decreasing the EDP. We also expose the advantages of
frequency capping with respect to power capping in NVIDIA GPUs.

Keywords: Fathom · GPU · Power capping · Frequency capping ·
Energy-to-Solution · Energy-Delay-Product

1 Introduction

Machine learning and in particular neural networks was a well established sub-
ject back in 1992, but from 2012 onwards its attractiveness has grown expo-
nentially both in academia and industry in the form of deep neural networks.
The main reasons are advances in algorithms, datasets, benchmarks, and hard-
ware [6]. ImageNet [8] and MNIST Database [18] are examples of benchmarks
that drove the field of Computer Vision using Deep Learning (DL) techniques.
The computational demand is so large that vendors are currently offering bet-
ter than Moore’s law improvements for specific Machine Learning workloads
c© Springer Nature Switzerland AG 2019
E. Meneses et al. (Eds.): CARLA 2018, CCIS 979, pp. 255–262, 2019.
https://doi.org/10.1007/978-3-030-16205-4_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16205-4_19&domain=pdf
https://doi.org/10.1007/978-3-030-16205-4_19

256 M. D. Mazuecos Pérez et al.

through the use of special function units like NVIDIA’s Tensor Cores, Google’s
Tensor Processing Units (TPU) and Intel Nervana Neural Network Processors
(NNP). The trend in showing the prowess of hardware platform in very specific
tests [5] makes choosing the best platform for general DL difficult. Fathom [2,3]
is an attempt to cope with this need, providing eight different workloads in
different areas of DL using the TensorFlow [1] framework: AlexNet [17], Vari-
ational Autoencoder [13,16], Deep Reinforcement Learning [20], End-to-End
Memory Networks [24,27], Residual Networks [12], Sequence-to-Sequence Trans-
lation [25], Deep Speech [10] and VGG-19 [23].

The IBM Power System S822LC [15] or “Minsky” is a power-horse for DL
workloads. Equipped with two IBM POWER8 processors and four NVIDIA
Tesla P100 GPUs, the whole set exhibits an aggregated performance exceed-
ing 40 TFLOPS in single precision and 80 TFLOPS in half-precision peak per-
formance [4]. Besides those impressive computation numbers, communication
bandwidth is also remarkable as shown in Fig. 1. The technology behind this
system corresponds to one generation before Summit, the fastest supercomputer
on earth at the time of writing [26].

Fig. 1. Minsky platform data flow diagram

The energy consumed by Cognitive Computing workloads is not negligible.
For example, servers like the IBM S822LC can draw up to 2.5 kW at full load [4],
and a complex Deep Neural Network takes days to train [5]. This issue also
affects computers on the other end of the spectrum, namely wearable devices
and embedded computers powered by batteries, which have to operate under
stringent power budgets.

The basic law guiding the power drawn by processors is P ∝ V 2f , where V is
the voltage and f is the processor frequency. There are two common measures for
the energy consumed. One is Energy-to-Solution (ETS), the area under the curve
of power consumption ETS =

∫ T

0
P (t)dt, where T is the execution time and P (t)

is the instantaneous power drawn. One possible way to dynamically reduce P is
to adjust f conveniently with the so-called frequency scalers. Current processors
embed frequency scaler algorithms in silicon. Notice that in a näıve processor
model, ETS should not decrease if f decreases, as halving frequency implies
doubling computation time. However ETS gains are notable using frequency

Power Efficiency Analysis of a Deep Learning Workload on an IBM 257

scaling and this is due to the processors spending most of their time waiting for
the memory and communication subsystems. The other measure to try minimize
is Energy-delay-Product EDP = ETS×T , that puts together two quantities that
appear to be inverse of each other, since decreasing ETS implies lower frequency
and therefore increasing computation time. The relation is not linear and the
EDP(f) has a global minimum in the interval of available frequencies. Voltage
scaling is also a current research topic, both for hardware designers and software
designers since the potential savings can be large [7].

In previous work [9], we showed how GPUs improve performance or Time-
to-Solution (TTS) on the IBM “Minsky” Platform for the Fathom workloads.
The contribution of this paper is the analysis of energy efficiency in the Fathom
workloads executing on the same platform using power profiles, ETS and EDP.
The ETS was improved 27% over standard execution via power and frequency
capping in the GPU. We have also obtained improvements in EDP in half of the
workloads.

The rest of the paper is organized as follows. Section 2 shows the direct and
derived power measurements using power capping. Section 3 presents the energy
consumption improvements using frequency capping. Finally, Sect. 4 summarizes
findings and discusses future research.

2 Power Analysis

In this work we decided to upgrade TensorFlow 1.0 used in our previous work [9]
to TensorFlow 1.1. Some modifications in Fathom were needed in order to run
Seq2Seq in TensorFlow 1.1, and this patch has been accepted upstream [21]. The
rest of the system software in the IBM Poughkeepsie WW Client Center [14] is
Ubuntu Server 16.04 ppc64le, NVIDIA Driver 384.66 and GCC 5.4. In Fig. 2
we assess the execution time with respect to our former work. The execution
time are the average of twenty samples. In five workloads (AlexNet, DeepQ,
Residual, Seq2Seq, VGG) the results are within a 25% difference. The rest of
the workloads (AutoEnc, MemNet) which are the shortest, taking around 16 s,
suffer from increased setup time in the newer TensorFlow.

We run all the Fathom workloads using all 20 physical cores available in
POWER8 chips and one P100 GPU. The measurements are the mean of 2 sam-
ples and the workloads have been tuned from the original Fathom to increase the
number of steps from 10 to 100 in order to increase their duration. The power
measurements were sampled with a 1-sec granularity using nvidia-smi dmon.

Using the power capping features of the NVIDIA Driver (nvidia-smi -pl
<power_limit>) we tested unlimited (300 W), 250 W, 200 W and the mini-
mum available (150 W) power caps. The power traces for each workload1 are
shown in Fig. 3. There are three groups with respect to workload duration: short
(AutoEnc, MemNet), medium (AlexNet, Residual, VGG) and long (Seq2Seq).
The P100 GPU idle power is around 27 W, making the base of all these curves.

1 DeepQ measurements are missing due to system errors.

258 M. D. Mazuecos Pérez et al.

Fig. 2. Fathom using TensorFlow 1.0 vs. TensorFlow 1.1

Power consumptions are partitioned in two: low consumption (AutoEnc, Mem-
Net, Seq2Seq) and high consumption (AlexNet, Residual, VGG). AlexNet and
Residual includes high frequency oscillations in power consumption. In general
the four power capping levels do not seem to produce significant differences in
power nor in computation time. The best power profile in terms of ETS seems
to be VGG: lower curves for 150 W power capping, while not increasing the
computation time. Figure 4 presents the normalized ETS and EDP metrics for
different power capping values. The marginal gains show that the power capping
feature present in the NVIDIA driver does not adapt well to the workloads being
tested, while other workloads like password cracking and cryptocurrency mining
improve their energy efficiency [11,22]. Since the area and execution time have
slight variation, ETS and EDP figures are similar but not equal.

Fig. 3. Power traces using GPU power capping

Power Efficiency Analysis of a Deep Learning Workload on an IBM 259

Fig. 4. ETS and EDP using GPU power capping

3 Improvements

The expression governing power dissipation in processors P ∝ V 2f shows an
alternative way of power capping: controlling the processor frequency directly.
We try frequency capping using nvidia-smi -ac 5004,<freq>, avoiding the
power capping mechanism used by the NVIDIA driver that controls the fre-
quency to achieve the desired power. The power profile curves in Fig. 5 include
two GPU frequencies: maximum 1488 MHz and minimum 544 MHz. The figures
show a more interesting behavior. Capping frequency at 544 MHz, AlexNet shows
lower power consumption with little change in execution time. AutoEnc, Seq2Seq
and MemNet are also similar, and we expect lower ETS and EDP. For Residual
and VGG we have lower power curves, but execution time has increased.

Fig. 5. Power profile of workloads using GPU frequency capping

260 M. D. Mazuecos Pérez et al.

Fig. 6. ETS and EDP using GPU frequency capping

ETS and EDP for frequency capping in Fig. 6 show clear gains. All workloads
improve energy efficiency, with AlexNet achieving 27% of ETS savings. For EDP
the first three workloads analyzed improve the metric, while Residual, Seq2Seq
and VGG increase EDP. For Seq2Seq there are energy gains with increased
execution time, but the idle power drawn is comparatively high with respect to
the load imposed by this test. Residual and VGG show worse EDP measurements
due to much longer execution times that offset the power savings.

4 Conclusion

We obtained a working version of Fathom using a more recent version of Ten-
sorFlow. The comparison with the previous version exhibits performance degra-
dation for the shortest workloads (AutoEnc, MemNet) probably due to higher
setting up and tearing down costs in TensorFlow 1.1 with respect to TensorFlow
1.0. For the rest of the workloads there are clear gains in upgrading the library.

GPU power profiles for an uncapped NVIDIA P100 card show variable power
consumption and performance profiles. AlexNet, Residual and VGG put stress
on the GPU while the rest mildly activate the transistors inside the P100 chip.

We first tried to improve energy efficiency via the GPU driver power capping
feature, but it was not successful enough. Power profiles did not exhibit good
gains, and execution times did not change significantly. We also tried the GPU
driver frequency capping feature and this significantly improved energy efficiency
for all workloads. The reason for power capping not working seems to be the
interplay between the high frequency power profile and the control loop of the
driver. The software piece controlling the frequency to achieve the power capping
is not prepared for these loads. Going back to the roots and doing frequency
capping is the correct way of improving ETS and EDP for these deep learning
workloads. For AlexNet we achieved 27% in energy savings with a slight increase
in execution time, that is an overall 28% gain in Energy-Delay-Product.

It is worth remarking that among the cryptocurrency mining and password
cracking community it is common knowledge to use power and frequency capping

Power Efficiency Analysis of a Deep Learning Workload on an IBM 261

to improve energy efficiency in GPUs and memory. In the case of HashCat there
are reports of 54% [11], and 27% [22] energy efficiency improvements in Ethereum
Mining (measured in MHashes/s/W).

Future work includes frequency capping not only in the GPU, but also in the
memory subsystem of the GPU. We also plan to conduct similar benchmarking
and analysis in the state-of-the-art machine learning benchmark MLBench [19].

Acknowledgments. This work was partially funded by SeCyT-UNC 2016 grant
30720150101248CB “Heterogeneous HPC” and 2016 IBM Faculty Award “Resilient
Scale-Out for Deep Learning on Power Systems”.

References

1. Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous sys-
tems (2015). software available: https://www.tensorflow.org/

2. Adolf, R., Rama, S., Reagen, B., Wei, G.Y., Brooks, D.M.: Fathom: reference work-
loads for modern deep learning methods. CoRR abs/1608.06581 (2016). http://
arxiv.org/abs/1608.06581

3. Adolf, B.: Fathom, reference workloads for modern deep learning. https://fathom.
readthedocs.io

4. Caldeira, A.B., Haug, V., Vetter, S.: IBM Power System S822LC for High Perfor-
mance Computing Introduction and Technical Overview, 1st edn. IBM Redbooks,
October 2016

5. Cho, M., Finkler, U., Kumar, S., Kung, D.S., Saxena, V., Sreedhar, D.: PowerAI
DDL. CoRR abs/1708.02188 (2017)

6. Chollet, F.: Deep Learning with Python. Manning, Shelter Island (2018)
7. Deng, B., et al.: Extending Moore’s law via computationally error-tolerant com-

puting. ACM Trans. Archit. Code Optim. 15(1), 8:1–8:27 (2018). https://doi.org/
10.1145/3177837

8. Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-fei, L.: Imagenet: a large-scale
hierarchical image database. In: CVPR (2009)

9. Guignard, M., Schild, M., Bederián, C.S., Wolovick, N., Vega, A.J.: Performance
characterization of state-of-the-art deep learning workloads on a “Minsky” plat-
form. In: HICSS 2018 (2018)

10. Hannun, A.Y., et al.: Deep speech: scaling up end-to-end speech recognition. CoRR
abs/1412.5567 (2014). http://arxiv.org/abs/1412.5567

11. @hashcat: GPU power efficiency (Hash/Watt) explained simple (2017). https://
twitter.com/hashcat/status/893047795921416193

12. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
CoRR abs/1512.03385 (2015). http://arxiv.org/abs/1512.03385

13. Hinton, G., Salakhutdinov, R.: Reducing the dimensionality of data with neural
networks. Science 313(5786), 504–507 (2006)

14. IBM: IBM Systems Client Centers (2018). https://www.ibm.com/it-infrastructure
/services/client-centers

15. IBM Corporation: IBM POWER8 specification. https://www.ibm.com/us-en/
marketplace/high-performance-computing

16. Kingma, D.P., Welling, M.: Stochastic gradient VB and the variational auto-
encoder. In: Proceedings of the 2nd International Conference on Learning Rep-
resentations, ICLR 2014 (2014)

https://www.tensorflow.org/
http://arxiv.org/abs/1608.06581
http://arxiv.org/abs/1608.06581
https://fathom.readthedocs.io
https://fathom.readthedocs.io
https://doi.org/10.1145/3177837
https://doi.org/10.1145/3177837
http://arxiv.org/abs/1412.5567
https://twitter.com/hashcat/status/893047795921416193
https://twitter.com/hashcat/status/893047795921416193
http://arxiv.org/abs/1512.03385
https://www.ibm.com/it-infrastructure/services/client-centers
https://www.ibm.com/it-infrastructure/services/client-centers
https://www.ibm.com/us-en/marketplace/high-performance-computing
https://www.ibm.com/us-en/marketplace/high-performance-computing

262 M. D. Mazuecos Pérez et al.

17. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks, vol. 25, January 2012

18. LeCun, Y., Cortes, C., Burges, C.J.: The MNIST Dataset of Handwritten Digits
(1999). http://yann.lecun.com/exdb/mnist/

19. MLPerf: A broad ML benchmark suite for measuring performance of ML software
frameworks, ML hardware accelerators, and ml cloud platforms. https://mlperf.
org/

20. Mnih, V., et al.: Playing Atari with deep reinforcement learning. CoRR
abs/1312.5602 (2013). http://arxiv.org/abs/1312.5602

21. Seiler, N.G.: Changes to make seq2seq compatible with tensorflow versions later
than 1.x (2017). https://github.com/rdadolf/fathom/pull/35

22. Mott, S.: Ethereum Mining with NVIDIA on Linux (2017). https://www.
simonmott.co.uk/2017/07/ethereum-mining-nvidia-linux/

23. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. CoRR abs/1409.1556 (2014). http://arxiv.org/abs/1409.1556

24. Sukhbaatar, S., Szlam, A., Weston, J., Fergus, R.: Weakly supervised memory
networks. CoRR abs/1503.08895 (2015). http://arxiv.org/abs/1503.08895

25. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural net-
works. In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N.D., Weinberger,
K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 27, pp. 3104–
3112. Curran Associates, Inc. (2014). http://papers.nips.cc/paper/5346-sequence-
to-sequence-learning-with-neural-networks.pdf

26. TOP500: June 2018 List (2018). https://www.top500.org/lists/2018/06/
27. Weston, J., Chopra, S., Bordes, A.: Memory networks. CoRR abs/1410.3916

(2014). http://arxiv.org/abs/1410.3916

http://yann.lecun.com/exdb/mnist/
https://mlperf.org/
https://mlperf.org/
http://arxiv.org/abs/1312.5602
https://github.com/rdadolf/fathom/pull/35
https://www.simonmott.co.uk/2017/07/ethereum-mining-nvidia-linux/
https://www.simonmott.co.uk/2017/07/ethereum-mining-nvidia-linux/
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1503.08895
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
https://www.top500.org/lists/2018/06/
http://arxiv.org/abs/1410.3916

Platforms and Infrastructures

Orlando Tools: Development,
Training, and Use of Scalable

Applications in Heterogeneous Distributed
Computing Environments

Andrei Tchernykh1,4(&), Alexander Feoktistov2, Sergei Gorsky2,
Ivan Sidorov2, Roman Kostromin2, Igor Bychkov2, Olga Basharina3,

Vassil Alexandrov5, and Raul Rivera-Rodriguez1

1 CICESE Research Center, Ensenada, Mexico
{chernykh,rrivera}@cicese.mx

2 Matrosov Institute for System Dynamics and Control Theory of SB RAS,
Irkutsk, Russia

{agf,gorsky,ivan.sidorov,kostromin,bychkov}@icc.ru
3 Irkutsk State University, Irkutsk, Russia

basharinaolga@mail.ru
4 South Ural State University, Chelyabinsk, Russia

5 ICREA-BSC, Barcelona, Spain
vassil.alexandrov@bsc.es

Abstract. We address concepts and principles of the development, training,
and use of applications in heterogeneous environments that integrate different
computational infrastructures including HPC-clusters, grids, and clouds. Exist-
ing differences in the Grid and cloud computing models significantly complicate
problem-solving processes in such environments for end-users. In this regards,
we propose the toolkit named Orlando Tools for creating scalable applications
for solving large-scale scientific and applied problems. It provides mechanisms
for the subject domain specification, problem formulation, problem-solving time
prediction, problem-solving scheme execution, monitoring, etc. The toolkit
supports hands-on training skills for end-users. To demonstrate the practicability
and benefits of Orlando Tools, we present an example of the development and
use of the scalable application for solving practical problems of warehouse
logistics.

Keywords: Scalable application � Distributed computing � HPC-cluster �
Grid � Cloud � Toolkit � Training

1 Introduction

Nowadays, the special attention of specialists in the field of high-performance com-
puting (HPC) is on the development of new methods and tools for distributed archi-
tectures to solve large-scale scientific problems for various subject domains [1, 2]. One
of the directions is to use subject-oriented computing technologies to design scalable
applications for an environment with different computational characteristics and
administration policies [3].

© Springer Nature Switzerland AG 2019
E. Meneses et al. (Eds.): CARLA 2018, CCIS 979, pp. 265–279, 2019.
https://doi.org/10.1007/978-3-030-16205-4_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16205-4_20&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16205-4_20&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16205-4_20&domain=pdf
https://doi.org/10.1007/978-3-030-16205-4_20

There are many factors that affect computing heterogeneity: the CPU speed, system
clock, number of cores, memory, interconnect, reliability, job priority, and job queue
management. Limitations of simultaneously running jobs of a single user are the major
parameters of the administrative policies among the many other settings.

Usually, the subject-oriented computing technology is based on the following
features. These features form the basis of the conceptual programming [5, 6].

• Using a subject-oriented language for describing a subject domain for a certain class
of problems. Such a description uses concepts (terms) of the subject domain and
includes its objects (parameters), their properties and relationships, abstract oper-
ations above a parameter field, and program implementations (modules) of opera-
tions. The description represents a computational model of the subject domain. The
model can be represented by a semantic network, graph, Petri net, etc.

• Providing tools that facilitate the problem formulation and problem-solving scheme
creation on the computational model in terms of the subject domain in the well
understandable to end-users way. Often, a problem-solving scheme is associated
with a workflow concept that is used for a representation of interrelated works in a
process of data processing [4].

• Implementing algorithms that use the subject domain description as a model for the
computation planning, program synthesis, resource allocation, etc.

An important scalability aspect is a problem-solving time that decreases with the
increase in the number of cores used by an application with retaining the resource use
efficiency within the acceptable limits. Thus, a scalable problem has an ability to be
decomposed to sub-problems, which can be solved as independently as possible.

The traditional tools for the Grid computing management include the known local
resource managers (LRMs) such as Grid Engine [7], PBS Torque [8], HTCondor [9],
SLURM [10], and meta-schedulers that manage computational jobs within various
middleware, for example, GridWay [11] and Condor-G [12].

The jobs specify the problem-solving processes. They include the information
about required resources, executable programs, input/output data, and other items.
These specifications are formed by users or generated by their applications automati-
cally. Then, the jobs are submitted to LRMs or meta-schedulers.

Usually, the purpose of LRM is the distribution of computational jobs in nodes of a
cluster. Its major functions are receiving, queuing, allocating, running, and monitoring
the jobs. A meta-scheduler distributes the jobs between different clusters. When the
cluster has been selected, the meta-scheduler interacts with its local resource manager
for job processing.

Thus, the listed systems do not support on-demand application scalability, strong
performance guarantees, and needed fault-tolerance [13].

Cloud providers quickly ensure the dynamic need computing, storage, or network
bandwidth with a high quality of the demand satisfaction.

However, in many cases, cloud computing provides only a system infrastructure on
top of which end-users needs to deploy and manage their applications and job flows
[14]. Moreover, cloud computing is often more expensive in comparison to the own-
ership or using of Grid resources.

266 A. Tchernykh et al.

The integration of models of Grid and cloud computing can mitigate their short-
comings and provides benefits by sharing a new hybrid model for the application
adaptability increase to heterogeneous distributed computing environments.

During the use of scalable applications, an applied programmer (who is specialist in
the subject domain) has to deal with a wide range of technical features and principles of
heterogeneous distributed environments at the lowest level. Often, he makes decisions
based primarily on scientific results, rather than on the application performance [15]. It,
therefore, prevents extracting the best performance for solving a wide range of sci-
entific and applied problems. A problem solution may be more effective if the models,
algorithms, software, and hardware are chosen based on the practical experience of
end-users [16].

A significant difficulty for end-users consists in the selection of a high number of
parameters for the problem-solving process (algorithms, values of their control
parameters, input data, problem-solving schemes, etc.), and the concrete computational
resources for process execution to optimize the distributed computing [17].

The integrated problem-oriented software provides a higher level of an abstraction
of computational processes and allows the reduction in end-user efforts [15].

In the paper, we propose new high-level tools for the development, training, and
use of scalable applications in heterogeneous distributed computing environments. We
present a toolkit named Orlando Tools that includes tools for the conceptual pro-
gramming, environment meta-monitoring, distributed computing management, and
end-user hands-on training.

We provide an example of the development and use of the scalable application for
solving problems of warehouse logistics in practice. Experimental results demonstrate
the practicability and benefits of Orlando Tools.

Pathways through the practical training provide an assimilation of important
aspects of parallel and distributed computing. The incorporation of such practice can
help end-users to gain an appreciation of the challenges of real scalable applications.
The toolkit use encourages users to experiment. An important challenge for the training
is to integrate both computing skills and subject domain knowledge within the
framework of the proposed toolkit.

The rest of this paper is organized as follows. In the next Section, we give a brief
overview of the workflow-based approaches to the scientific application development.
Section 3 provides architecture and functioning principles of Orlando Tools. An
application for solving problems of warehouse logistics and experimental results are
represented in Sect. 4. The last section concludes the paper.

2 Related Work

In this section, we give a brief overview of the workflow-based approaches to the
problem-oriented software development.

With the development of virtualization technologies, scientists and engineers are
creating more and more complex problem-oriented applications, to manage interrelated
programs and process large data sets to execute scientific experiments on distributed

Orlando Tools: Development, Training, and Use of Scalable Applications 267

resources [4]. We consider the applications that generate jobs in the form of a workflow
[24, 25]. Often, they are represented by a Directed Acyclic Graph (DAG) according to
logical and information relations.

A workflow is defined as a process consisting of a series of steps that simplifies the
complexity of execution and management of applications [18]. At each step, the
application execution process may require large-scale computing. The use of tools for
the definition, creation, and execution of the workflows is one of the widespread
approaches to deal with problem-oriented systems.

A Workflow Management System (WMS) is a software package for specifying,
managing and executing workflow processes on computational resources [19]. A wide
range of such systems has been developed. A few of them are Askalon, Condor
DAGMan, Grid Flow, Karajan, Kepler, Pegasus, Taverna, Triana, UNICORE, etc.

Workflow systems are successfully used for solving various scientific problems
[19–23]. Several topics are still intensively studied to support them, such as high-level
languages and tools for workflow specification, adaptive management, a reliability of
workflow execution, etc. [24].

The main attention of resource providers is on efficiency indicators of the resources
usage, such as resource utilization, load balancing, fault tolerance, energy consumption
[26], etc. In such an environment, there are various types and sources of uncertainty
[27]. Uncertainty is considered as a lack of precise knowledge about the system and
lack of complete vision of the possible outcomes [27, 28].

3 Orlando Tools

Orlando Tools is a framework for the development and use of scientific applications in
heterogeneous distributed computing environments. It includes the following
subsystems:

• Web-interface,
• Conceptual model designer,
• Executive subsystem,
• Grid and Web service API,
• Meta-monitoring subsystem,
• Knowledge and computation bases.

Web-interface supports user access to the Orlando Tools subsystems and ensures
configuring a heterogeneous distributed computing environment.

The conceptual model is applied to specify knowledge about an application subject
domain. It functions in the text or graphical modes. In the text mode, an application
developer implements knowledge specification (conceptual model) in XML. He
describes the conceptual model and stores it in the knowledge base. Then, the devel-
oper formulates problems of the application subject domain that will be solved in the
environment by end-users.

268 A. Tchernykh et al.

The conceptual model includes information about the application modular structure
(sets of applied and system modules), schemes of a subject domain study (parameters,
operations and productions of a subject domain, and their relations), hardware and
software infrastructure (characteristics of the nodes, communication channels, network
devices, network topology, failures of software and hardware, etc.) [29].

Generally, the conceptual model of applications that are developed with Orlando
Tools can be described by the following structure:

Z;F;M;Pr;N;Rin;Rout;Rfm;Rmn; S
� �

; ð1Þ

where its components are used as follows:

• Z and F are sets of parameters and operations of a subject domain,
• M is a set of program modules that implement operations,
• Pr is a set of productions that define an operation usage,
• N is a set of nodes for a module execution,
• Rin and Rout are relations that define the input and output parameters of operations,
• Rfm is a relation between operations and modules,
• Rmn is a relation between modules and nodes,
• S is a set of problem-solving schemes (workflows).

Operations from the set F determine the computability relations on the set Z of
parameters. There are two subsets Zin

i , Z
out
i � Z of parameters for each operation fi. The

subset Zin
i determines input parameters of the operation fi whose values are to be set to

calculate values of its output parameters from the subset Zout
i .

Let us define the concepts of the procedural and non-procedural problem formula-
tions, decision-making tools, and static and dynamic problem decomposition. Full
problem formulation is defined in the following form: “calculate Y knowing X, exe-
cutingH and satisfying cmini � ci � cmaxi ”, where X � Z, Y � Z,H � F, ci � Z is the i-th
optimization criterion for a problem-solving scheme (workflow), cmini and cmaxi are the
limits for ci, i 2 1; n. This formulation coincides with the full problem-solving scheme.

A problem can have several solutions. The set C includes constraints, which allow
a scheduler to select a single solution. The conceptual model enables users to formulate
less strict (shortcut) problems with elements of uncertainty. Shortcut problem formu-
lation is defined in the following form: “calculate Y? knowing X?, executing F? and
satisfying Q?”, where Q � C. The symbol ‘?’ means uncertainty in the corresponding
element of the problem formulation or lack of this element.

The procedural and non-procedural problem formulations are formed in the forms
“execute F satisfying cmini � ci � cmaxi ” and “calculate Y knowing X and satisfying
cmini � ci � cmaxi ”, respectively.

Executive subsystem provides the computations planning, resource allocation,
generating and executing jobs. It includes a set of problem-solving scheme schedulers
and interpreters that manage jobs at the application level using the conceptual model.
Meta-monitoring system ensures the reliability of end-users experiments. Computation
database stores data for the problem-solving process. Grid and Web service API is
applied to access to remote resources (information or computational).

Orlando Tools: Development, Training, and Use of Scalable Applications 269

The integration of computational infrastructures is carry outed through Orlando
Server (Fig. 1). It provides the Web-Interface and Daemons that implement functions
of the executive subsystem in the automatic mode.

Orlando Server is placed in the dedicated or non-dedicated nodes. It ensures
including the following computational infrastructures into the integrated environment:

• HPC-clusters that is based on using the local resource manager PBS Torque,
• Linux nodes that can be used to include non-portable (located in specialized nodes)

software into an application,
• Virtual clusters that created using non-cloud resources with the special virtual

machines of Orlando Tools in the images of which is placed PBS Torque,
• Cloud clusters that are created using cloud resources with the virtual machines of

Orlando Tools,
• Remote resources (PCs, servers, clusters, data storage systems, etc.).

When applications are used, they generate job flows that are transferred to the
selected computational infrastructures.

4 Application for Solving Warehouse Logistics Problems

We as application developers created the parameter sweep application for simulation
modeling of logistics warehouses. It has been used in practice for solving optimization
problems for the real refrigerated warehouse of the Co Ltd “Irkutsk Khladokombinat”.
This warehouse is the second in Russia in terms of the one-time storage volume from
the Urals to the Far East.

Fig. 1. Integration scheme of computational infrastructures into the heterogeneous distributed
computing environment with Orlando Tools.

270 A. Tchernykh et al.

4.1 Conceptual Model Design

We completed a structural analysis of subject domain of the application and describes
the conceptual model with the help of the structure (1). Logical and information
relations between the major parameters and operations of the model for the developed
application reflect the schematic knowledge about the considered subject domain.

The fragment of these relations that has been created in Orlando Tools designer is
represented in Fig. 2. Parameters and operations are represented by ovals and rectan-
gles with rounded corners correspondingly. Arrows reflect the relationship between
parameters and operations. Figure 2 describes the following three problems:

(1) Improving loading and unloading processes of goods,
(2) Restructuring the customer service levels,
(3) Re-equipping warehouse objects.

In Fig. 2, the parameters z43 и z46 are compound parameters. The parameter z43
includes the following warehouse parameters:

• Number of elevators (z3), storekeepers (z4), loaders (z5), electric loaders (z6), loader
teams (z7), logistic operations (z8), customers (z9), customer characteristics (z10),
stock keeping units (z11), good characteristics (z12), storage modes (z13), product
packaging types (z14), service schedule parameters (z15), planned requests (z16) and
random requests (z17),

Fig. 2. Schematic knowledge: parameters and operations.

Orlando Tools: Development, Training, and Use of Scalable Applications 271

• Lists of customers (z20), customer characteristics (z21), stock keeping units (z22) and
product packaging types (z23),

• Schedule of planned requests (z24), average time interval between an arrival of
random requests (z25), half-range of a time interval for the uniform distribution
(z26), schedule of loader team (z31), and schedule of electric loader service (z32),

• Cost of logistic operations (z28) and product storage (z29).

The parameter z46 includes the parameters z1�z33. It represents the optimal values
of these parameters.

We include the parameters (criteria) z47 and z48 into the conceptual model. These
parameters determine correspondingly the constraints of time and reliability of
problem-solving schemes for the above-listed problem formulations.

The operation f3�f5 represent different scenarios of loading and unloading goods.
In this regards, we define the following set of productions that determine the fulfillment
condition of the operations f3�f5:

• pr1 : if z44 z45 then f3;
• pr2 : if z44z45 ¼ 0 then f4;
• pr3 : if z44z45 ¼ 0 then f5:

The operations f3�f10 are implemented by the modules m1�m7 correspondingly.
These modules represent GPSS-models. A data transfer between the modules is carried
out through the files. The application provides a parallel executing of copies module
m1�m5 with various input data generated by sweeping values of its input parameters in
defined ranges.

4.2 Problem Formulation

Applying the considered conceptual model, the end-user can formulate the following
shortcut problem formulations:

• Calculate z46 knowing z43; z44; z45 and satisfying z47; z48,
• Calculate z46 knowing z19; z33; z43 and satisfying z47; z48,
• Calculate z46 knowing z1; z2; z18; z27; z30; z43 and satisfying z47; z48,

where z47 and z48 are system parameters of the conceptual model that determine
correspondingly the constraints of time and reliability of problem-solving schemes for
the above-listed problem formulations.

In accordance with the formulated problems, the executive subsystem scheduler
plans the following problem-solving schemes:

s1: f1 ! f3jf4jf5 ! f8 ! f2;

s2: f1 ! f6 ! f9 ! f2;

s3: f1 ! f7 ! f10 ! f2;

where the symbols ‘!’ and ‘|’ determines the sequence of operations, and alternative
computing respectively. The formal operations f1 and f2 model the problem formula-
tions. They define correspondingly the known parameters (Zout

1) and parameters that to

272 A. Tchernykh et al.

be calculated (Zin
2), Z

in
1 ; Z

out
2 ¼ ;. The schemes s1�s3 are performed in the interpreta-

tion mode. When the interpreter performs s1, one of the operations f3�f5 is executed in
accordance with the productions pr1 � pr3.

4.3 Problem-Solving Scheme Execution

The end-user select a problem-solving scheme from the problem list and set its input
parameters and solution quality criteria. For swept parameters, he determines their
permissible values and selects the experiment type (full or partial) that affects the
number of variants for initial data.

When all initial data are determined, the executive subsystem automatically gen-
erates value variants of input parameters (a single variant for each copy of the scheme).
The end-user chooses the multicriteria selection method (lexicographical, majority or
Pareto selection) that will be applied to obtain the optimal warehouse parameters. Next,
the end-user selects the needed computational infrastructure for executing the scheme
and begins distributed computing. One copy of the scheme is executed on one core.

The executive subsystem decomposes all scheme copies between infrastructures
taking into account the performance of their nodes and predicted scheme-executing
time. The Orlando Tools interpreter that is placed in the main nodes of each infras-
tructure distributes computational load between infrastructure nodes. It interacts with
LRMs in the nodes to run scheme modules. The data is transferred between the
modules in accordance with their relations in the conceptual model. The faulty modules
are restarted.

4.4 End-User Training

Orlando Tools supports the end-user training in evaluating the effectiveness of the
problem-solving scheme execution in different computational infrastructures. It pro-
vides end-users learning by examples through accumulating his practice experience.

We apply a dynamic analysis of programs for predicting problem-solving time.
Modules of a problem-solving scheme are tested using Intel VTune Amplifier [30] on
the reference node of the environment. We obtain statistical data (number of integer
and float operations, cash instructions, cash misses, read and write transfers, etc.) on the
operation of modules using the different components (processor, cash, RAM, hard disk,
etc.) of the reference node. Then we compare characteristics of the reference and target
nodes and calculate the coefficient of speedup when transferring the execution of the
module from the reference node to the target node. This coefficient is calculated taking
into account the share of using each component of the reference node in the total
module execution time. Additional time estimates of the data transfer, waiting in the
queue, starting the VM, and other overheads are added to the module execution time.

The end-user can carry out a comprehensive node diagnosis using the meta-
monitoring system to ensure the reliability of the experiments. Such diagnosis allows
detection of current or possible node faults and to exclude faulty nodes from a reliable
node pool that will be used for the experiments. There are the following kinds of faults:
CPU overload, CPU overheat, disk space overflow, and memory failure.

Orlando Tools: Development, Training, and Use of Scalable Applications 273

Thus, the end-user can form, test, and reconfigure pools of used nodes for the
experiments. He learns the practical environment management and evaluates results of
his actions using an expert subsystem of the meta-monitoring system [31]. This sub-
system is implemented in the CLIPS environment [32]. The subsystem applies a
production system based on the knowledge from the conceptual model of the hetero-
geneous distributed computing environment.

Figure 3 demonstrates the visualized data of the meta-monitoring system for
observing the state of the environment nodes. We can see the node lists with CPU
overload, CPU overheat, disk space overflow and memory failure. The end-user can
exclude these nodes from a configuration of the used computational infrastructure.

The meta-monitoring system stores data on the operation of nodes for a long period.
It can evaluate their reliability based on this information [33].

In summary, the end-user training ensures the logistics manager to rationally plan
the real experiment, determine a set of actual parameters and ranges of their values, and
select the reliable computational infrastructure configuration.

4.5 Computational Experiments

The warehouse logistics manager has been solved three aforementioned optimization
problems with the developed application. He planned experiments based on problem
formulations, where z47 � 1 and z48 � 0:99. The value z47 is measured in hours.

Due to the existence of various goods turnover and customer service demands in
different quarters of the year, the warehouse simulation period was one year. The unit
of simulation time is one minute. Different sweep parameters had the ranges from 2 to
20 values. The full experiments included 245760, 327680 и 1140480 variants of
parameter values in the problems 1–3 correspondingly. To enter operating mode, a
model is executed from 80 to 160 times for the different problems. In this case, the
statistical error of observed variables is not more than 0.05.

The model execution time on the reference node with one data variant is 14, 17, and
19 s in the problems 1–3 correspondingly. Using Orlando Tools, the logistics manager
predicts the time and reliability of problem-solving schemes for the following com-
putational systems:

• PC 1 (Intel Core i3-4160, 2 core with hyper-threading, 3.6 GHz, 4 GB RAM) and
PC 2 (Intel Core i7-4770, 4 core with hyper-threading, 3.4 GHz, 4 GB RAM) of the
warehouse,

Fig. 3. Visualized data of the meta-monitoring system.

274 A. Tchernykh et al.

• PC-cluster (16 nodes with 1 processor Intel Core i3-4000M, 2 core with hyper-
threading, 2.4 GHz, 2 GB RAM) of the Irkutsk State University,

• HPC-cluster segment of the Irkutsk Supercomputer Center (32 nodes with 2 pro-
cessors AMD Opteron 6276, 16 core, 2.3 GHz, 64 GB of RAM).

Nodes of the listed systems differ their computational characteristics.
Table 1 shows the predicted time t1, t2, t3, and t4 in hours for PC 1, PC 2, PC-cluster,

and HPC-cluster segment correspondingly. The time values that satisfy specified
problem-solving time were highlighted in gray. The most preferred experiment types
among the possible ones were emphasized in green.

In the problem 1, the predicted problem-solving scheme reliabilities are equal to
0.9534, 0.9616, 0.9103, and 0.9999 using correspondingly PC 1, PC 2, PC-cluster, and
HPC-cluster segment. The predicted problem-solving scheme reliabilities in the
problems 2 and 3 are equivalent to the predicted reliabilities in the problem 1. We can
see that only HPC-cluster segment satisfy the specified reliability. Thus, the logistics
manager selects the full, half, and eighth types of experiments in the problems 1–3
correspondingly.

Figure 4 shows the job execution time intervals for the solved problems 1–3. The
error of the problem-solving time prediction did not exceed 6% in all problems in
practice. All constraints were satisfied.

Problem solutions that obtained within the real experiments ensured to improve the
nine warehouse effectiveness parameters. Figure 5 shows the parameter improvements
that vary from 8% to 34%.

A profitability of logistics operations significantly affects the warehouse income.
Figure 6 demonstrate the profitability improvement of the main logistics operations. It
is achieved due to the comprehensive analysis of warehouse parameters with the
purpose of their optimization through simulation modeling of the operations.

Table 1. Problem-solving time prediction

Problem Experiment
type

Number of
variants

1

Full 245760 265.48 149.33 37.33 0.93
Half 122880 132.74 74.67 18.67 0.47
Quarter 61440 66.37 18.67 9.33 0.23
Eighth 30720 33.19 18.67 4.67 0.12

2

Full 327680 429.83 241.78 60.44 1.51
Half 163840 214.91 120.89 30.22 0.76
Quarter 81920 107.46 60.44 15.11 0.38
Eighth 40960 53.73 30.22 7.56 0.19

3

Full 1140480 1672.00 940.50 235.13 5.88
Half 570240 836.00 470.25 117.56 2.94
Quarter 285120 418.00 235.13 58.78 1.47
Eighth 142560 209.00 117.56 29.39 0.73

Orlando Tools: Development, Training, and Use of Scalable Applications 275

We evaluate the effectiveness of the real experiment for solving the problem 1–3
that carried out by the logistics manager after his training in comparison to first
problem-solving actions performed by him. Figure 7 shows the improvement of
experiment effectiveness. We can see the substantial progress in practical experience
and skills of the logistics manager. In addition, the decision-making time in the typical
problems of the warehouse parameter optimization, customer level determination and
object re-equipment has been decreased in many times.

0

10

20

30

Storekeeper
efficiency

Loader
efficiency

Electric
loader

efficiency

Loader
team

efficiency

Elevator
efficiency

Average
time of the
operation
fulfilment

Logistic
operation
income

Warehouse
filling

Warehouse
object
incomeIm

pr
ov

em
en

t i
n

pe
rc

en
ta

ge
s

Warehouse effectiveness parameters

Fig. 5. Improvement of warehouse effectiveness parameters.

)c()b()a(

0

50000

100000

150000

200000

250000

0–10 10–20 20–30 30–40

N
um

be
r o

f c
or

es

Job execution time interval

0

50000

100000

150000

200000

250000

0–10 10–2020–3030–40

N
um

be
r o

f c
or

es
Job execution time interval

0

50000

100000

150000

200000

250000

0–10 10–20 20–30 30–40

N
um

be
r o

f c
or

es

Job execution time interval

Fig. 4. Job execution time intervals in the problem 1 (a), problem 2 (b), and problem 3 (c).

0

10

20

Loading Unloading Packaging Packaging
collection

Cargo
processing

Order picking Warehousing

Im
pr

ov
em

en
t i

n
pe

rc
en

ta
ge

s

Logistics operations

Fig. 6. Improvement of logistics operation profitability.

276 A. Tchernykh et al.

Figure 8(a) and (b) demonstrate the speedup and efficiency that have been achieved
in the problem-solving processes versus the number of cores in comparison to the linear
speedup and efficiency equal to 1 correspondingly. These results confirm the good
scalability of the developed application.

5 Conclusions

High-performance computing allows solving large-scale scientific and applied prob-
lems efficiently. However, knowledge and high-level skills in a large spectrum of
parallel and distributed computing issues are needed.

We propose the concepts, principles, and framework for the development, training
and executing scalable applications in heterogeneous distributed computing environ-
ments tailored to end-users with different skill levels and needs. This framework
promotes a practice for specialists in subject domains that have no high-level pro-
gramming skills for the efficient development of scalable applications. They can use
different utilities such as monitoring systems, control-measuring, prediction tools, etc.
We strongly believe that end-users successfully absorb and retain knowledge about the
specificity of distributed computing in different infrastructures. The fundamental ele-
ment of our approach is the integrated use of conceptual programming, program-
solving time prediction and environment monitoring. The practicability and benefits are
demonstrated by the example of the scalable application for solving optimization
problems of warehouse logistics.

0
10
20
30
40
50
60
70
80
90

100

Computing time Computing
reliability

Resource use
efficiency

Im
pr

ov
em

en
t i

n
pe

rc
en

ta
ge

s

Experiment effectiveness

Problem 1

Problem 2

Problem 3

Fig. 7. Improvement of warehouse effectiveness parameters.

)b()a(

0

200

400

600

800

1000

1 128 256 384 512 640 768 896 1024

Sp
ee

du
p

Number of cores

Problem 1 Problem 2
Problem 3 Linear speedup

0.6

0.7

0.8

0.9

1

1 128 256 384 512 640 768 896 1024

Ef
fic

ie
nc

e

Number of cores

Problem 1 Problem 2
Problem 3 Efficience equal to 1

Fig. 8. Speedup (a) and efficiency (b) distributed computing.

Orlando Tools: Development, Training, and Use of Scalable Applications 277

Our future work will focus on a continuous integration process during the devel-
opment and modification of application modules. This challenge is due to the rapid
expansion of application software.

Acknowledgment. The study was partially supported by RFBR, projects no. 16-07-00931-a
and no. 18-07-01224-a. Part of the work was supported by the Program of basic scientific
research of the RAS, project no. IV.38.1.1.

References

1. Zhao, Y., Fei, Z., Raicu, I., Lu, S.: Opportunities and challenges in running scientific
workflows on the cloud. In: Kumar, A., Xie, B., Lu, D. (eds.) Proceedings of the
International Conference on Cyber-Enabled Distributed Computing and Knowledge
Discovery, pp. 455–462. IEEE, Piscataway (2011)

2. Zhan, Z.H., Liu, X.F., Gong, Y.J., Zhang, J., Chung, H.S.H., Li, Y.: Cloud computing
resource scheduling and a survey of its evolutionary approaches. ACM Comput. Surv. 47(4),
1–33 (2015)

3. Sokolinsky, L.B., Shamakina, A.V.: Methods of resource management in problem-oriented
computing environment. Program. Comput. Softw. 42(1), 17–26 (2016)

4. Hollinsworth, D.: The workflow reference model. In: Zur Muehlen, M., Allen, R. (eds.)
Workflow Management Coalition, Document no. TC00-1003 (1995)

5. Sowa, J.: Conceptual Structures – Information Processing in Mind and Machine. Addison-
Wesley, Boston (1984)

6. Tyugu, E.: Knowledge-Based Programming. Turing Institute Press, Glasgow (1988)
7. Oracle Grid Engine. http://www.oracle.com/technetwork/oem/grid-engine-166852.html.

Accessed 31 Jan 2018
8. Torque Resource Manager. http://www.adaptivecomputing.com/products/open-source/

torque. Accessed 31 Jan 2018
9. HTCondor. http://research.cs.wisc.edu/htcondor. Accessed 31 Jan 2018
10. Slurm Workload Manager. http://slurm.net. Accessed 31 Jan 2018
11. GridWay Metascheduler. http://www.gridway. Accessed 31 Jan 2018
12. Frey, J., Tannenbaum, T., Livny, M.: Condor-G: a computation management agent for multi-

institutional grids. Cluster Comput. 5(3), 237–246 (2002)
13. Tao, J., Kolodziej, J., Ranjan, R., Jayaraman, P., Buyya, R.: A note on new trends in data-

aware scheduling and resource provisioning in modern HPC systems. Future Gener.
Commun. Syst. 51(C), 45–46 (2015)

14. Rings, T., et al.: Grid and cloud computing: opportunities for integration with the next
generation network. J. Grid Comput. 7(3), Article no. 375 (2009)

15. Basili, V.R., et al.: Understanding the high-performance-computing community: a software
engineer’s perspective. IEEE Softw. 25(4), 29–36 (2008)

16. Joppa, L.N., et al.: Troubling trends in scientific software use. Science 340(6134), 814–815
(2013)

17. Nunez, A., Merayo, M.G.: A formal framework to analyze cost and performance in map-
reduce based applications. J. Comput. Sci. 5(2), 106–118 (2014)

18. Pandey, S., Wu, L., Guru, S.M., Buyya, R.: A particle swarm optimization-based heuristic
for scheduling workflow applications in cloud computing environments. In: 24th IEEE
International Conference on Advanced Information Networking and Applications, pp. 400–
407. IEEE (2010)

278 A. Tchernykh et al.

http://www.oracle.com/technetwork/oem/grid-engine-166852.html
http://www.adaptivecomputing.com/products/open-source/torque
http://www.adaptivecomputing.com/products/open-source/torque
http://research.cs.wisc.edu/htcondor
http://slurm.net
http://www.gridway

19. Yu, J., Buyya, R.: A taxonomy of workflow management systems for grid computing.
J. Grid Comput. 3(3–4), 171–200 (2005)

20. Barker, A., van Hemert, J.: Scientific workflow: a survey and research directions. In:
Wyrzykowski, R., Dongarra, J., Karczewski, K., Wasniewski, J. (eds.) PPAM 2007. LNCS,
vol. 4967, pp. 746–753. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-
68111-3_78

21. Murugan, S., Kumar, S.: A survey of workflow management tools for grid platform. Adv.
Inform. Technol. Manage. 1(1), 1–3 (2012)

22. Smirnov, P.A., Kovalchuk, S.V., Boukhanovsky, A.V.: Knowledge-based support for
complex systems exploration in distributed problem solving environments. Commun.
Comput. Inf. Sci. 394, 147–161 (2013)

23. Kliazovich, D., Pecero, J.E., Tchernykh, A., Bouvry, P., Khan, S.U., Zomaya, A.Y.:
CA-DAG: modeling communication-aware applications for scheduling in cloud computing.
J. Grid Comput. 14(1), 22–39 (2016)

24. Talia, D.: Workflow systems for science: concepts and tools. ISRN Softw. Eng. 2013, 15
(2013). Article ID 404525

25. Rodriguez, A., Tchernykh, A., Ecker, K.: Algorithms for dynamic scheduling of unit
execution time tasks. Eur. J. Oper. Res. 146(2), 403–416 (2003)

26. Nesmachnow, S., Iturriaga, S., Dorronsoro, B., Tchernykh, A.: Multiobjective energy-aware
workflow scheduling in distributed datacenters. Commun. Comput. Inf. Sci. 595, 79–93
(2016)

27. Cristobal, A., Tchernykh, A., Gaudiot, J.-L., Lin, W.-Y.: Non-strict execution in parallel and
distributed computing. Int. J. Parallel Prog. 31(2), 77–105 (2003)

28. Tchernykh, A., Schwiegelsohn, U., Alexandrov, V., Talbi, E.G.: Towards understanding
uncertainty in cloud computing resource provisioning. Procedia Comput. Sci. 51, 1772–1781
(2015)

29. Bychkov, I., Oparin, G., Tchernykh, A., Feoktistov, A., Bogdanova, V., Gorsky, S.:
Conceptual model of problem-oriented heterogeneous distributed computing environment
with multi-agent management. Procedia Comput. Sci. 103, 162–167 (2017)

30. Intel® VTune™ Amplifier. https://software.intel.com/en-us/intel-vtune-amplifier-xe. Acces-
sed 20 Apr 2018

31. Bychkov, I.V., Oparin, G.A., Feoktistov, A.G., Sidorov, I.A., Bogdanova, V.G., Gorsky,
S.A.: Multiagent control of computational systems on the basis of meta-monitoring and
imitational simulation. Optoelectron. Instrum. Data Process. 52(2), 107–112 (2016)

32. Giarratano, J.C., Riley, G.D.: Expert Systems: Principles and Programming. Thomson,
Boston (2005)

33. Feoktistov, A.G., Sidorov, I.A.: Logical-probabilistic analysis of distributed computing
reliability. 39th International Convention on Information and Communication Technology,
Electronics and Microelectronics, pp. 247–252. IEEE, Riejka (2016)

Orlando Tools: Development, Training, and Use of Scalable Applications 279

http://dx.doi.org/10.1007/978-3-540-68111-3_78
http://dx.doi.org/10.1007/978-3-540-68111-3_78
https://software.intel.com/en-us/intel-vtune-amplifier-xe

Methodology for Tailored Linux
Distributions Development for HPC

Embedded Systems

Gilberto Dı́az(B) , Pablo Rojas(B) , and Carlos Barrios(B)

Universidad Industrial de Santander, Bucaramanga, Colombia
{gilberto.diaz,cbarrios}@uis.edu.co, pablo.rojas1@correo.uis.edu.co

http://www.sc3.uis.edu.co

Abstract. Hardware for embedded devices has increasing capabilities,
popular Linux distributions incorporate large sets of applications and
services that require intensive use of resources, limiting the hardware that
can run these distributions. This work is concerned with developing a
methodology to build a light operating system, oriented to both scientific
applications, mainly considering its behavior in terms of the type of
resource most used.

Keywords: Embedded systems · HPC · Operating system ·
Linux distribution

1 Introduction

Embedded systems performance capacities have increased in last years. There-
fore, they are more and more suitable for medium level computing-intensive
and data-intensive applications. Today, these devices are present from IoT to
machine learning research areas.

There are several Linux distributions for embedded systems, however many of
these are designed for desktop environments that make them large and resource
intensive. In addition, not all platforms support a complete operating system,
therefore, it is necessary to use a lightweight customized version. On the other
hand, some 64 bits devices are now available [10], but there are very few distri-
butions for these new platforms.

This work pretends to develop a methodology to create tailored lightweight
operating systems for small environments to obtain a good performance running
specific scientific applications. In this sense, first we need study every component
of a Linux distribution to establish what aspects must be tuned to fit into those
embedded systems in order to get the best performance [8,9,14].

Super Computing and Scientific Computing Lab. of Industrial University of Santander.

c© Springer Nature Switzerland AG 2019
E. Meneses et al. (Eds.): CARLA 2018, CCIS 979, pp. 280–290, 2019.
https://doi.org/10.1007/978-3-030-16205-4_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16205-4_21&domain=pdf
http://orcid.org/0000-0001-8188-5784
http://orcid.org/0000-0003-1823-7922
http://orcid.org/0000-0002-3227-8651
https://doi.org/10.1007/978-3-030-16205-4_21

Methodology for Lightweight Distros Building 281

1.1 Linux Operating System Components

From a general point of view, there are several fundamental elements needed to
form a functional Linux operating system [2].

Linux Kernel. Is an open source UNIX like operating system. Is a monolithic
program in charge of resource management. This is deployed on traditional per-
sonal computers, servers, embedded and mobile devices [1,4].

Bootloader. Is the first piece of software executed by the BIOS or UEFI when
the system is started. It is responsible for loading the kernel into the memory
and running it.

Main File System. Is the way to organize the storage and keep all programs
and files. We can divide all files in three groups:

– The System Libraries: consists of a set of files that contain the functions
through which applications can interrelate through the kernel.

– The System Utilities: are the programs that execute individual, particular
and specialized managing tasks.

– The User Utilities: are all programs that allow the users interact with the
operating system in high level way.

1.2 Building an Operating System

To build an operating system from scratch1 it is necessary to count with basic
elements:

Cross Compilation Tool Chain. A compilation toolchain is the set of tools
that allows you to compile code for your system. It consists of:

– A compiler, GNU gcc for example.
– Binary utilities like assembler and linker. The most used set is binutils.
– C standard library, for example GNU Libc or uClibc-ng.

Kernel Sources. The source code tree of the Linux Operating System has more
than 20 millions lines. This contains the core functionality (scheduler, memory
management, system call interface, networking, etc) and code to manage external
devices, file systems, etc.

1 http://www.linuxfromscratch.org/.

http://www.linuxfromscratch.org/

282 G. Dı́az et al.

General Procedure. First of all, we need to select the device architecture.
Prepare a cross compiler to build all binaries. Compile the system libraries,
system utilities and any other application required. Then, create a file system and
compile the kernel. Finally, generate the file system with all previous elements,
and add the bootloader.

1.3 Development Tools

There are different tools to create a complete functional operating system for
embedded devices. As previous work, we evaluated the two most popular: Yocto
[13] and BuildRoot [12]. After the evaluation we have selected the last one
because it has a shorter learning curve and it provides a very user friendly
interface.

2 Methodology

The method to create a tailored lightweight operating system for a specific
embedded device is described in this section. We use a modified version of water-
fall life cycle model to structure our methodology where the user can come back
from any phase to the previous one to solve any unexpected problem. Any x86 64
with any Linux distribution can be used as base system to develop the operating
system.

Fig. 1. Modified waterfall model

Methodology for Lightweight Distros Building 283

2.1 Requirement Gathering

The main purpose of the operating system need to be defined in this phase.
Specifically, it is necessary to determine what applications are going to be exe-
cuted and their behavior in terms of the type of resource that they consume.
That is to say, the applications are: CPU intensive, RAM intensive, etc.

If there is the possibility to choose the platform, then we need to establish
what hardware will be the most suitable to run the applications, for example, if
the software is GPU capable, it is better count with graphics accelerators.

Once the hardware has been chosen and the application has been determined,
all modules, libraries and dependencies that are necessary for the optimum per-
formance of the application on the chosen hardware should be listed, as if it were
a list of provisions for the preparation of a dish.

2.2 Design

Popular Linux distributions are constructed using general architectures in order
to cover a wide set of hardware. However, our aim is to generate an operating
system with the best features for a specific platform. In this sense, we define in
this phase, the set of parameter’s values that will fit better for every compo-
nent of the system in order to increase its performance taking advantage of the
architecture features.

It should not be forgotten that, in the previous phase, we preliminarily listed
the elements necessary for the design of the system, however, this choice is not
fixed and may undergo changes in favor of improving the system’s capabilities
for compliance with the chosen application.

Target Architecture Selection. It is very important to select the right archi-
tecture option because it will produce the best version of the binaries instead of
a generic version. This parameter is set in the kernel configuration.

Target Architecture Variant Selection. Defining the specific variant of the
architecture allow the kernel a proper management of every component of the
processor. Doing this correctly, will impact significatively in the applications
performance. This parameter is also set in the kernel configuration.

Compilation Flags. The selection of the proper compiler flags is a fundamental
step to generate faster binaries. Reading the manual of the compiler will help
to choose the right values for compiler options. Depending of the compiler used,
the syntax and names of the flags may vary, therefore, it is necessary to verify
this before continuing. As an example, for GNU gcc among the important flags
to establish are:

– -march Specify the name of the target architecture and, optionally, one or
more feature modifiers.

284 G. Dı́az et al.

– -O, -O2 and -O3 -O enable the optimizations, -O2 optimize even more and
-O3 optimize yet more. Using this flags, the compiler tries to reduce code
size and execution time. One of the most common optimization techniques
are the aggressive loop optimization. This option tells the loop optimizer to
use language constraints to derive bounds for the number of iterations of a
loop. The bounds for the number of iterations of a loop are used to guide
loop unrolling and peeling and loop exit test optimizations.

– -pipe Use pipes rather than temporary files for communication between the
various stages of compilation.

– -mfpu Enables specific floating-point hardware extension for ARCv2 core.
– -mfloat-abi Specifies which floating-point ABI to use.
– -fomit-frame-pointer Don’t keep the frame pointer in a register for func-

tions that don’t need one. This avoids the instructions to save, set up and
restore frame pointers; it also makes an extra register available in many func-
tions.

It is possible to find proper values for compiler flags for a specific architecture
in [6,11]. On the other hand, avoiding any debugging option will accelerate the
whole system.

File System. A proper file system type selection will improve the storage per-
formance. Outcome in [5] show that XFS and EXT4 are the better choices.

Configuration Tool. Parameters setting could be a long task, however, using
buildroot’s graphical interface facilitate this activity. On the buildroot directory
just execute make menuconfig. The Fig. 2 depicts the initial menu where all
described options can be set.

Fig. 2. Buildroot configuration interface

Methodology for Lightweight Distros Building 285

2.3 Implementation

This stage comprises the following steps:

– Kernel Compilation
– System Libraries and System Utilities Compilation
– File System creation
– Set the Bootloader
– Image generation
– Image flashing

All these actions can be achieved using buildroot. Just execute the command
make on the main directory and after a while, all components will be available
in a single image file (output/images/sdcard.img). To flash it, we can use the
traditional Linux dd command.

For this example, a Linux host is used. Access the Buildroot folder from
the terminal, you must be in super user mode, you can use the latest version
of Buildroot or the stable version recommended by the website. Look in the
folders of configs for a Raspberry Pi, Raspberrypi2 defconfig can serve as a base
in case there is not one for Raspberry Pi 3, use the version of defconfig that
most resembles the card you will use, if not found in the configs folder, you must
create a configuration from scratch [12].

You must copy the defconfig name of the SBC to be used in the terminal,
then use the make command:

make SBC defconfig, for the example: make raspberrypi3 64 defconfig
Once the command is executed, a default configuration is created in build-

root, finally type the command:
make
This configuration creates a basic distro, which recognizes the keyboard,

Ethernet, HDMI and has a few basic commands for navigating the card and its
system.

To pass the distro to an SD use:
dd if = / ... / ... / ... / buildroot-xxxx.xx.x / output / image /sdcard.img of

= / dev / sdX bs = 1M
Once the basic compilation for the card has been tested, it is advisable to

extend some basic resources for the system. To improve the features of the built-
in distro, execute the command:

make menuconfig
If you want to polish the configuration further you can use the command:
make linux-menuconfig
For this configuration you need a very broad knowledge in the administra-

tion of operating systems, hardware, libraries, etc. You must follow the advice
presented by the methodology for the construction of distributions, this is the
option to be used in case you do not find a defconfig of the SBC.

286 G. Dı́az et al.

2.4 Verification

To verify the performance of the operating system we must use a benchmark tool
that matches the behavior of the scientific application. For example, to measure:

– Processor and Memory: sysbench, stress-ng, stress, etc.
– Storage devices: iozone, iometer, vdbech, etc.

Of course, we can measure the performance of the scientific application itself
for which the operating system is intended.

2.5 Maintenance

In the case that an additional requirement is needed, the whole image has to be
rebuilt and flash it again. We can add a package manager to install easily new
applications or libraries, however, this goes against the purpose of the method-
ology because will add extra weight to the operating system. As an alternative
technique, we can build a cross compilation version of the compiler to generate
any new necessary binary file. In fact, buildroot creates this compiler which is
available after the image building.

3 Results

Applying the proposed methodology could involve a lot of work if the objective
is to optimize all the components of the operating system, therefore, we will
focus this work on the results of intensive use of the processor.

3.1 Test Environment

We have selected a specific hardware and software to carry out the test.

Platform. Raspberry PI 3, Quad Core, ARM Cortex-A53 1.2 GHz, Broadcom
video core 4 300 MHz, 1 GB LPDDR2 RAM, Wi-Fi 802.11n, Bluetooth 4.1, BLE,
10/100 Ethernet.

Linux Distributions Control Group. There are several well known Linux
Distributions available for Raspberry PI 3: Raspbian, OpenSuse and Ubuntu
Mate among the most popular.

Methodology for Lightweight Distros Building 287

Benchmark stress-ng. [7] will stress test a computer system in various
selectable ways. It was designed to exercise several physical subsystems of a
computer as well as the various operating system kernel interfaces. stress-ng
also has a wide range of CPU specific stress tests that exercise floating point,
integer, bit manipulation and control flow. We have selected the following tests:

– cfloat 1000 iterations of a mix of floating point complex operations
– clongdouble 1000 iterations of a mix of long double floating point complex

operations
– phi compute the Golden Ratio φ using series
– primes find all the primes in the range 1..1000000 using a slightly optimized

brute force Näıve trial division search.

Experiments Details. In the design phase we worked on three operating sys-
tems constructed using different optimization flags and architecture types:

– V1: Architecture: arm, architecture variant: armv7l, Optimization flags:
Defaults.

– V2: Architecture: arm, architecture variant: armv7l, Optimization flags:
EABIhf -march=armv7-a -mfpu=neon-vfpv4 -mfloat-abi=hard -O2 -pipe.

– V3: Architecture: arm, architecture variant: armv7l, Optimization flags:
VFPv3-D16 -mfloat-abi=hard -fomit-frame-pointer -O2 -pipe.

3.2 Outcomes

This part shows the results for stress-ng execution for the scenarios planned
before. In both charts of the Fig. 3 we observe a poor performance for the third
version of the operating systems. Versions one and two have similar values.

Fig. 3. Floating point complex operations and long double floating point complex
operations

288 G. Dı́az et al.

Fig. 4. Golden ration (φ) and prime calculation

Fig. 5. Floating point complex operations and long double floating point complex
operations

Fig. 6. Golden ration (φ) and prime calculation

Methodology for Lightweight Distros Building 289

In the first chart of the Fig. 4 we notice a good performance for the second
version. In the second chart the version one and two have similar performance.
From this, we can say that parameters combination for version three is not
suitable for this kind of work.

The graphs in Figs. 5 and 6 show the comparison between version two with
popular distributions. In the graphs of Fig. 5 we observe poor performance for
the designed operating system against well known distros. However, in charts of
the Fig. 6 we notice a superior performance of new operating system for Golden
ratio and primes calculation.

4 Conclusions

After analyze the outcomes it is clear that the design phase is a fundamental
step because selecting right values for the kernel and the compilation flags allow
us to leverage the resources provided by the hardware. Besides, characterize the
target application is very important to correctly choose all the necessary values.
On the other hand, the use of a development framework like Yocto or Buildroot
reduce the operating system building time.

The performance opted for by the distro generated is a good basis for the
development of projects that seek to improve the use of the resource that most
uses the chosen application.

The methodology collects, analyzes, designs and implements recursively and
evolutionarily the construction of distributions, because, as the requirements of
the OS are collected and analyzed, we learn about the operation of the compo-
nents of the OS that we wish to build and its implications, in the design and
implementation we can perform an iterative learning of the construction and
development tools necessary to achieve the hardware operation and the appli-
cation, in turn, conclusions and recommendations for the documentation and
bases of reference for future projects are generated.

References

1. Andris, P., Dobrovodský, K.: Developing an embedded system based on a real-
time version of Linux. In: 2014 23rd International Conference on Robotics in
Alpe-Adria-Danube Region (RAAD), Smolenice, pp. 1–7 (2014). https://doi.org/
10.1109/RAAD.2014.7002248

2. Yaghmour, K., Masters, J., Ben-Yossef, G., Gerum, P.: Building Embedded Linux
Systems, 3rd edn. O’Reilly, Sebastopol (2008)

3. Bovet, D.P., Cesati, M.: Understanding the Linux Kernel, 3rd edn. O’Reilly,
Sebastopol (2006)

4. Love, R.: Linux Kernel Development, 3rd edn. Addison Wesley, Upper Saddle River
(2010)

5. Moreno, B., Stefano, C., Gilberto, D., Antonio, M.: Parallel file systems assessment.
In: Latin American Conference on High Performance Computing Proceedings, 2011
proceedings, Colima, Mexico (2011). ISBN: 978-607-7912-17-0

https://doi.org/10.1109/RAAD.2014.7002248
https://doi.org/10.1109/RAAD.2014.7002248

290 G. Dı́az et al.

6. Gentoo Linux Save CFLAGS. https://wiki.gentoo.org/wiki/Safe CFLAGS.
Accessed 9 May 2018

7. King, C.: stress-ng(1) Linux User’s Manual, 2013–2016 Canonical Ltd.
8. Brinkschulte, U.: Technical Report: Artificial DNA - A Concept For Self-Building

Embedded Systems, 10 April 2018
9. Berger, A.S.: Embedded Systems Design: An Introduction To Processes, Tools, &

Techniques, 1st edn. CRC Press, Boca Raton (2001)
10. Dubey, A., Karsai, G., Gokhale, A., Emfinger, W., Kumar, P.: DREMS-OS: An

Operating System for Managed Distributed Real-Time Embedded Systems. ISIS,
Department of EECS, Vanderbilt University, Nashville (2017)

11. Blackmore, C., Ray, O., Eder, K.: Automatically tuning the GCC Compiler to
Optimize the Performance of Applications Running on Embedded Systems. Uni-
versity of Bristol, Bristol (2017)

12. The Buildroot user manual. https://buildroot.org/downloads/manual/manual.
html. Accessed 1 May 2018

13. The Yocto Project Docs. https://www.yoctoproject.org/docs/. Accessed 1 May
2018

14. Zurawski, R.H.: Embedded Systems Handbook, vol. 16, 1st edn. CRC Press, Boca
Raton (2005)

https://wiki.gentoo.org/wiki/Safe_CFLAGS
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://www.yoctoproject.org/docs/

Cloud Computing

Cost and QoS Optimization
of Cloud-Based Content Distribution

Networks Using Evolutionary Algorithms

Santiago Iturriaga1(B), Gerardo Goñi1, Sergio Nesmachnow1,
Bernabé Dorronsoro2, and Andrei Tchernykh3

1 Universidad de la República, Montevideo, Uruguay
{siturria,gerardo.goni,sergion}@fing.edu.uy

2 Universidad de Cádiz, Cádiz, Spain
bernabe.dorronsoro@uca.es

3 Centro de Investigación Cient́ıfica y de Educación Superior de Ensenada,
Ensenada, Mexico

chernykh@cicese.mx

Abstract. This work addresses the multi-objective resource provision-
ing problem for building cloud-based CDNs. The optimization objectives
are the minimization of VM, network and storage cost, and the maxi-
mization of the QoS for the end-user. A brokering model is proposed
such that a single cloud-based CDN is able to host multiple content
providers applying a resource sharing strategy. Following this model,
an offline multiobjective evolutionary approach is applied to optimize
resource provisioning while a greedy heuristic is proposed for addressing
online routing of content. Experimental results indicate the proposed
approach may reduce total costs by up to 10.6% while maintaining high
QoS values.

Keywords: Cloud · CDN · Optimization

1 Introduction

Content Distribution Networks (CDN) are key infrastructures for effectively pro-
viding worldwide scalable Internet services. The main goal of a CDN is to dis-
tribute content to end-users with high availability and high performance. To
achieve this goal, a CDN must be comprised of a large number of servers dis-
tributed in datacenters around the globe. Hence, owning such infrastructure is
economically infeasible for small content providers. The traditional solution to
this problem for small content providers is to rent CDN services from large CDN
providers such as Akamai. However, recently there is a growing trend to take
advantage of the global distribution and elasticity of most clouds services in order
to build cloud-based CDN [6–8,12]. This trend introduced a problem. When deal-
ing with a cloud-based CDN we face the problem of resource provisioning in the

c© Springer Nature Switzerland AG 2019
E. Meneses et al. (Eds.): CARLA 2018, CCIS 979, pp. 293–306, 2019.
https://doi.org/10.1007/978-3-030-16205-4_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16205-4_22&domain=pdf
https://doi.org/10.1007/978-3-030-16205-4_22

294 S. Iturriaga et al.

cloud. The resource provisioning in the cloud is notoriously difficult to address
and is an endemic problem among most cloud-based software solutions [13].

In this work, we effectively address the resource provisioning problem for a
cloud-based CDN provider. We propose a multiobjective problem formulation
for optimizing total infrastructure cost and Quality of Service (QoS) to the end-
user. Total infrastructure cost considers on-demand and reserved VM renting
cost, storage cost and network bandwidth cost. QoS takes into consideration the
geographic location of the end-user and datacenters. Furthermore, we propose
to consider a broker entity to act as a multi-tenant entity for managing several
content providers simultaneously. This multi-tenant model allows the broker to
take advantage of bulk discounts and resource sharing strategies.

To address this problem, we propose and evaluate three MultiObjective Evo-
lutionary Algorithms (MOEA) for provisioning cloud resources and a greedy
heuristic for routing content requests. We created a set of problem instances fol-
lowing the methodology proposed by [2] and compared the computed results with
a business as usual scenario without considering the brokering model. Results
show the proposed algorithms are able to reduce cloud costs by up to 10% while
maintaining a high relative QoS of over 0.95.

This article is organized as follows. Next section presents the related work.
Section 3 introduces the system model and problem formulation. Section 4
presents the design of the proposed offline resource provisioning algorithms and
Sect. 5 the design of the online routing heuristic. Section 6 details the construction
of the problem instances. Section 7 presents the study performed to calibrate the
main parameters of proposed algorithms. Section 8 discusses the main experimen-
tal results. Finally, Sect. 9 summarizes the main conclusions and future work.

2 Related Work

An effective resource provisioning policy may be the turning point into making a
business profitable, a study feasible, or a service usable. Hence, effective resource
provisioning algorithms have been widely studied and are key for cloud-based
software solutions [13]. However, there is no consensus on which optimization
criteria or characteristics to consider when modeling the problem.

Gao et al. [6] propose the optimization of computing and storage cost for
online transcoding of offline video. The authors propose an online algorithm
based on the Lyapunov optimization approach. Results show the proposed algo-
rithm is able to reduce overall cost by up to 30% when compared to traditional
online algorithms. In this work, the authors take into consideration on demand
VMs but do not consider reserved VM instances nor QoS to the end-user. A
similar approach is considered by Jokhio et al. [8]. The authors propose a simple
score-based online algorithm for optimizing computing and storage cost. But
again, neither QoS nor reserved VM instances are taken into account.

Xiao et al. [12] propose to minimize VM rental cost while satisfying a given
QoS for the end-users. The authors propose an online algorithm based on the
Lyapunov approach. Geolocation and bulk VM rental discounts are considered

Cost and QoS Optimization of Cloud-Based CDN 295

in this work, but no reserved instances nor storage or network cost is taken into
consideration.

Hu et al. [7] propose a different approach considering the optimization of net-
work bandwidth and storage cost while asserting a QoS threshold for end-users.
Hu et al. propose a two-fold greedy approach with an algorithm for short-term
caching and a second algorithm for long-term resource provisioning. Even though
the authors consider geographic location and QoS, they do it as a constraint on
a per-request basis and not as an optimization objective.

In this work, we propose to extend previous works by the simultaneously
considering the optimization of VM rental, storage and network bandwidth cost
and the QoS to the end-user. In our model we take into consideration geographic
location, bulk discounts and reserved instances. Furthermore, we propose the
creation of a broker entity with a multi-tenant approach for further reducing
costs by taking advantage of bulk discounts and resource sharing.

3 Problem Description

The problem proposes building a multi-tenant cloud-based CDN to enable a set
of Internet content providers to satisfy their users’ requests. For accomplishing
multitenancy, we consider a third actor known as the broker. The role of the
broker is to rent a computing infrastructure in the cloud to host the infrastruc-
ture of the content providers. The broker will be responsible for managing and
allocating resources to each content provider according to its users’ demands.

A multi-tenant model is usually cheaper than a single-tenant model, because
of two reasons. The first is cloud providers usually award bulk discounts on
resources such as storage and network transmission, hence aggregating multiple
content providers in the same infrastructure could award larger discounts. The
second reason is a multi-tenant model may take advantage of a large number
of reserved VMs instances. Reserved VM instances are cheaper than standard
on-demand VM instances, but are paid upfront for a large period of time (in this
work we consider a 1-year renting time). This is usually cheaper when using a
multi-tenant model, because–once booked–a reserved VM may be used by one
content provider or another depending on their users’ demands.

In this work we show that a broker–with an effective allocation policy–will be
able to offer very competitive pricing and at the same time to generate revenue.

3.1 System Model

In this model we consider the static allocation of cloud resources and the dynamic
routing of users’ requests for a scheduling horizon, T . Once planned, cloud
resources are fixed for the whole scheduling horizon. On the other hand, arriv-
ing network requests are routed dynamically routed each time step t ∈ T . The
proposed system model is defined as follows.

296 S. Iturriaga et al.

Lets consider the following elements:

– A number of content providers P = {p1, ..., po}.
– A number of contents K = {k1, ..., kn} the content providers share with their

users. Let the binary variable kpij indicate content ki is shared by provider
pj ∈ P . Each content with size KS.

– A number of regions R = {r1, ..., rs}. Each region characterizes a major ISP
grouping a number of users. Let rktli be the number of requests for content
ki that are demanded by the users in region rl ∈ R at time t.

– A number of data centers C = {c1, ..., cm}. Each data center ce ∈ C defines a
Data Transfer Cost (DTC), Data Storage Cost (DSC), and Compute Renting
Cost (CRC) functions. The DTCe(d) function defines the economic cost of
transferring d data units from data center ce to the Internet. The DSCe(d)
function defines the economic cost of storing d data units in data center ce.
Let V De define the economic cost of renting an on-demand VM instance in
data center ce for every time step. The V Re function defines the economic
cost of renting a reserved VM instance in data center ce for the whole planning
horizon. Each VM has networking and computing capabilities for processing
up to CR content requests simultaneously.

– Finally, let Qle evaluate the QoS data center ce provides to users in region rl,
where Qle = 0 indicates a perfect QoS with instant response. This value may
be affected by the physical distance between data center e and region l, the
networking technology, and other network related qualities.

We consider the following variables in our model:

– A set of binary variables for allocating data contents, given by xie, where
xie = 1 when content ki is stored in data center ce.

– A set of integer variables for renting VMs, given by a set of integer variables
ŷe which indicate the number of reserved VMs in data center ce. Furthermore,
we define yte which indicates the number of on-demand VMs rented in data
center ce at time step t.

– A network transfer integer variables ztlie = b, which define that clients from
region rl are downloading a number of b contents ki from data center ce at
time step t.

We address the optimization of the proposed system by applying a two-level
scheduling strategy. On the one hand, since cloud resources (i.e., xie and ŷe)
remain fixed for the whole duration of the scheduling horizon, we propose to
address its optimization with an offline strategy. On the other hand, we propose
an online strategy for routing the arriving network requests (i.e., ztlie and yte)
since these requests must be routed without delay to minimize the impact of the
scheduling on the QoS. Next we introduce the mathematical formulation for the
problem.

Cost and QoS Optimization of Cloud-Based CDN 297

3.2 Problem Formulation

The optimization problem related to build the minimum-cost CDN subject to
QoS constraints is defined as follows.

min fcost =
∑

ce∈C

fvm(ce) +
∑

ce∈C

fstore(ce) +
∑

ce∈C

fnet(ce) (1)

fqos =
∑

rl∈R

∑

ce∈C

(
Qle ×

∑

t∈T

∑

ki∈K

ztlie

)
(2)

The goal of this problem is to simultaneously minimize the total infrastruc-
ture cost given by fcost (Eq. 1) and the total QoS provided by the system given
by fqos (Eq. 2). The total infrastructure cost is defined as the sum of all VM
renting (fvm), data storage (fstore), and data transfer costs (fnet).

The VM renting cost for data center ce is the cost of purchasing the ŷe
reserved VMs in that data center, plus the cost of renting the on-demand VMs
needed every time step (Eq. 3).

fvm(ce) = ŷe × V Re +
∑

t∈T

V De × max{0, yte − ŷe} (3)

The data storage cost for data center ce is defined as the cost of storing an
amount of data equal to average size of the sum of all contents stored in ce for
all time steps (Eq. 4).

fstore(ce) = DSCe

(∑
t∈T

∑
ki∈K xt

ie × KS

T

)
(4)

Finally, the data transfer cost for data center ce is defined as the cost of
transferring an amount of data equal to the sum of the size of all the contents
transferred from ce to any region (Eq. 5).

fnet(ce) = DTCe

(
∑

t∈T

∑

ki∈K

∑

rl∈R

ztlie × KS

)
(5)

On the other hand, the total QoS provided by the system is defined as the
total contents transferred between each pair of region rl and data center ce,
times the QoS provided by the data center ce to the region rl (Eq. 2).
Regarding the problem constraints:

– C1: on-demand VMs must be rented by the hour. Regardless the VM is being
used or not, once rented, a on-demand VM will be charged on an hourly basis.

– C2: VM instances must not be simultaneously shared by different content
providers. That is, a single VM instance cannot process user’s requests of
different providers simultaneously.

– C3: users demand must be met. The content demands of the users in all
regions must be satisfied.

– C4: VM content processing cap. Each VM may simultaneously process at most
CR requests.

298 S. Iturriaga et al.

4 Offline Algorithms for Cloud Resources Allocation

This section presents the MOEA designed to optimize the allocation of cloud
resources.

4.1 Evolutionary Optimization Approach

We propose three efficient MultiObjective Evolutionary Algorithms (MOEA) for
dealing with the allocation of cloud resources. The first MOEA is based on the
Non-dominated Sorting Genetic Algorithm, version II (NSGA-II) [4]. NSGA-
II is a well-known MOEA that showed accuracy when solving a wide range of
optimization problems. NSGA-II applies a non-dominated ranking ordering for
elitism pressure and a crowding technique for diversity preservation. The sec-
ond scheduler is based on the MultiObjective Cross generational elitist selection
Heterogeneous recombination Cataclysmic mutation algorithm (MOCHC) [9].
MOCHC extends the well-known CHC [5] by applying the ranking ordering
and crowding technique used in NSGA-II. Finally, the third scheduler is based
on the S Metric Selection Evolutionary Multiobjective Optimisation Algorithms
(SMS-EMOA) [1]. The S metric, also known as the hypervolume metric, is a
well-known metric that measures both diversity and convergence to the Pareto
front, providing an accurate Pareto-compliant measure. SMS-EMOA is similar
to NSGA-II and MOCHC in the sense that it applies a non-dominated ranking
ordering, however, its different since it applies the hypervolume metric for pre-
serving diversity. That is, each generation the solution that contributes the least
to the hypervolume of the worst front is removed. Both NSGA-II and MOCHC
use a generational evolutionary approach, that is, each generation a whole new
population of offspring solutions is created. These solutions compete with their
parents for surviving to the next generation. On the contrary, SMS-EMOA uses
a steady-state approach where just one offspring solution is created each gen-
eration, and this newly created solution competes for survival with the worst
solution of the parents population.

Next, this section presents the solution encoding for all three evolutionary
algorithms. After that, it presents each evolutionary algorithm in detail.

4.2 Solution Encoding

Each solution is encoded using two vectors: an integer vector (sm) representing
the number of reserved VMs in each data center (i.e., ŷe), and a binary vector
(sd) representing whether each content is allocated (or not) in each data centers
(i.e., xie). Vector sm is straightforward: with a fixed length of m, integer at index
e represents the number of reserved machines for data center ce. This represen-
tation is adequate because a real-world scenario comprising tens of data centers
does not impact significantly the search space of the evolutionary algorithm.

However, encoding information in vector sd is not as straightforward as in
sm. This is because the number of contents stored in the distribution network
is expected to be several orders of magnitude larger than the total number of

Cost and QoS Optimization of Cloud-Based CDN 299

data centers (i.e., n � m). Furthermore, each content may be stored in more
than one data center, thus sd must be m×n in length to represent each content
stored in each data center. Depending on the scenario such search space may be
unmanageable for the evolutionary algorithm. To address this issue, the concept
of bucket of contents is introduced. That is, contents are grouped in buckets
with the buckets being allocated to data centers, effectively reducing the search
space. This work considers all buckets to have the same size, bsize. Hence, when
bsize = 1 contents are allocated individually, and when bsize = 5 contents are
allocated five at a time.

4.3 Population Initialization

The population is initialized randomly following a uniform distribution.

4.4 Evolutionary Operators

Two mutation operators are defined, one for vector sd and the other for vector
sm. These operators are applied in all MOEA and work as follows. Vector sd is
mutated using a bit-flip mutation operator, that is, an index of sd is flipped from
one to zero (and vice versa) with probability pm. Vector sm is mutated using an
uniform mutation operator, that is, with probability pm the value of an index of
sm is replaced with a random value in [0, smax

m].
NSGA-II and MOCHC propose the usage of a single-point crossover mecha-

nism. Hence, this mechanism was adapted to the proposed encoding by simply
applying it separately for vector sd and vector sm. The same approach is applied
for the half-uniform crossover mechanism proposed by SMS-EMOA.

4.5 Parameter Configuration

All the MOEA were configured with a population size of 100. A crossover prob-
ability of 0.9 for NSGA-II and SMS-EMOA, and 1.0 for MOCHC. A mutation
probability of 1/m × b for NSGA-II and SMS-EMOA (with m the number of data
centers and b the number of buckets) and a mutation probability of 0.35 for
MOCHC.

5 Online Algorithm for Routing Network Requests

The applied algorithm for routing network requests follows a simple and efficient
QoS optimization strategy. That is, when a network request arrives it is imme-
diately routed to the data center with the requested content and the lowest QoS
for the region where the request is originated.

The rationale for this is that the resource allocation algorithm is the one
controlling the actual cost of the infrastructure by renting VMs and allocating
contents. Hence, the routing algorithm aims to optimize the QoS for a given
infrastructure with a fixed cost. This way the Pareto front is accurately sampled.

300 S. Iturriaga et al.

6 Problem Instances

We consider a scenario where three video providers require the distribution of a
large number of high-resolution video contents. Each video has a resolution of
1080p (i.e. 1920 pixels in width and 1080 pixels in height) and is about 10 min in
length. This scenario depicts the need of many Internet video providers such as
providers of Massive Online Open Courses (MOOC) such as Coursera, Udacity,
edX, Khan Academy, and Udemy, among others.

A time horizon of 24 h and a time step of 1 s are considered for the problem.
The 24-h time horizon is adequate for a repetitive daily planning while the 1-s
time step is adequate to accurately schedule short-lived network requests.

Network requests for the problem instances were generated following the
methodology proposed by Busari et al. [2]. Three different instances were cre-
ated considering the network load: small, medium and large. All instances are
comprised of 1000 videos, totaling around 1 TB of storage data. The small-sized
instance considers an average network traffic of about 150 video requests per
hour, totaling around 0.9 TB of transferred data. The medium-sized instance
considers an average network traffic of 300 requests per our with around 1.9 TB
of transferred data. And finally, the large-sized instance considers 600 requests
per hour with 3.8 TB of transferred data.

Without loss of generality, we consider Amazon Elastic Compute Cloud as
cloud service provider and video contents being served using VM instances of type
c4.large, each with up to 300 Mbps of network bandwidth. Since an average 1080p
video requires a bitrate of 3.68 Mbps for adequate online streaming (around 460
KB/s), then each c4.large VM instance may process up to 81 video requests (i.e.
CR = 81). For simplicity, we consider videos to be stored as fixed-sized contents
with size KS = 460 KB. Hence, each content stores exactly 1 s of video.

The methodology proposed by Busari et al. [2] for modeling network requests
does not consider geolocation. To cope with this shortcoming, a realistic network
traffic function was constructed using data provided by Akamai Technologies,
Inc for geolocating all generated network requests. Akamai owns the largest CDN
in the world, with more than 216,000 servers which operate over 120 countries
and is involved in a large part of all the Internet traffic around the world. The
considered traffic function was empirically created by sampling traffic informa-
tion from Akamai logs for every time of the day with a precision of 15 min. These
samples were studied for each major continent by applying a piecewise regression
analysis. The relative traffic load follows the functions shown in Fig. 1.

Finally, for the QoS function we consider the geodesic distance between end-
user and datacenter, similar to [3,10]. This is a simple QoS function which captures
the number of network hops and routing delays in a straightforward manner.

7 Calibration Study

This section presents the calibration study performed for fine tuning the stopping
condition and the bucket size of the proposed MOEAs. The experiments for this
study were performed using the small-sized problem instance.

Cost and QoS Optimization of Cloud-Based CDN 301

7.1 Stopping Condition Calibration

A total of 10 independent executions were performed for each MOEA for as much
as 120,000 evaluations. Every 1,000 evaluations, the hypervolume was computed
for the current population for each MOEA and each independent execution.
Figure 2 shows the evolution of the hypervolume of the approximated Pareto
front computed by each the MOEA.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1:00 3:30 6:00 8:30 11:00 13:30 16:00 18:30 21:00 23:30

Re
la

ve
 In

te
rn

et
 tr

affi
c

Time of the day (GMT)

N. America Europe Asia S. America Australia Africa

Fig. 1. Relative network traffic function for each of the major continents

0.00

0.20

0.40

0.60

0.80

1.00

0 20 40 60 80 100 120

N
or

m
al

iz
ed

 h
yp

er
vo

lu
m

e

Number of evalua ons (thousands)

SMS-EMOA NSGA-II MOCHC

Fig. 2. Relative hypervolume evolution of the approximated Pareto front for each
MOEA

302 S. Iturriaga et al.

Results show SMS-EMOA and NSGA-II clearly outperform MOCHC. Also,
the relative hypervolume evolution of SMS-EMOA and NSGA-II stagnates after
60,000 evaluations. Hence, the stopping condition for this study is configured
to 60,000 evaluations considering a trade-off between efficacy and efficiency. At
60,000 evaluations, SMS-EMOA is able to compute a relative hypervolume of
0.99, NSGA-II a relative hypervolume of 0.94 and MOCHC a relative hypervol-
ume of 0.81. Figure 3 shows the approximated Pareto front computed by each
MOEA after 120,000.

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

0.00 0.20 0.40 0.60 0.80 1.00

Re
la

ve
 Q

oS

Rela ve cost

SMS-EMOA NSGA-II MOCHC

Fig. 3. Approximate Pareto front computed by each MOEA after 120,000 evaluations

7.2 Bucket Size Calibration

A second calibration study is performed in order to calibrate the bucket size
(bsize) parameter. A smaller bsize value allows the MOEA to represent a greater
number of solutions, at the cost of increasing the search space of the problem.

Four bsize values were evaluated: 5, 20, 40, and 100. A total of 10 independent
executions with a stopping criterion of 60,000 were performed for each bsize
for each MOEA. Figure 4 shows the approximate Pareto front computed by all
MOEA for each bsize value.

Results show that with bsize values of 20 and 40 contents, the proposed
MOEA are able to compute the most accurate Pareto front. Hence, a bsize value
of 40 is selected for this study because it produces a smaller search space than
a value of 20.

Cost and QoS Optimization of Cloud-Based CDN 303

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

0.00 0.20 0.40 0.60 0.80 1.00

Re
la

ve
 Q

oS

Rela ve cost

100 contents 40 contents 20 contents 5 contents

Fig. 4. Approximate Pareto front computed by all MOEA for different bucket size
(bsize) after 60,000 evaluations

8 Experimental Results

This section presents the experimental results. First it presents a study com-
paring the proposed MOEA and after that it discusses the results by showing
the benefits of the proposed brokering approach when compared to a business
as usual approach with no broker.

8.1 MOEA Comparison

A total of 30 independent executions were computed for each MOEA and each
problem instance. The average and standard deviation of the relative hyper-
volume computed by the MOEA in these executions is compared and statisti-
cal differences are reported by applying the Mann-Whitney-Wilcoxon test [11].
Table 1 shows the experimental results computed by each MOEA for each prob-
lem instance with cells colored in gray indicating a significant difference (i.e.
p-value ≤ 0.05). Furthermore, boxplots presented in Fig. 5 show results in detail
for each MOEA and each problem instance.

Table 1. Mean and standard deviation (µσ) for the relative hypervolume computed
by each MOEA

Instance size SMS-EMOA NSGA-II MOCHC
Small 0.7460.006 0.7380.005 0.6910.011
Medium 0.7290.006 0.7230.005 0.6760.015
Large 0.7180.005 0.7100.005 0.6690.011

304 S. Iturriaga et al.

●●●
●
●

●

SMS-EMOA NSGA-II MOCHC

0.
68

0.
70

0.
72

0.
74

(a) Small-sized instance

●

●●
●
●
●
●

●

●

●

SMS-EMOA NSGA-II MOCHC

0.
64

0.
68

0.
72

(b) Medium-sized instance

●
●●●

●

●

SMS-EMOA NSGA-II MOCHC

0.
64

0.
66

0.
68

0.
70

0.
72

(c) Large-sized instance

Fig. 5. Relative hypervolume computed by each MOEA for each problem instance

Results show SMS-EMOA is the most accurate of the proposed MOEA. SMS-
EMOA outperforms NSGA-II and MOCHC on all problem instances with sig-
nificant difference. Hence, SMS-EMOA is selected for addressing the presented
problem. The discussion presented in the next section is based on the results
computed by SMS-EMOA.

8.2 Results Discussion

In a Business As Usual (BAU) scenario without a broker entity, every content
provider must deploy its own individual cloud-based CDN. This section presents

6.50%

7.00%

7.50%

8.00%

8.50%

9.00%

9.50%

10.00%

10.50%

11.00%

0.00 0.20 0.40 0.60 0.80 1.00

Br
ok

er
 C

os
t S

av
in

gs

Rela ve QoS

(a) Small-sized instance

6.00%

6.20%

6.40%

6.60%

6.80%

7.00%

7.20%

7.40%

7.60%

7.80%

8.00%

0.00 0.20 0.40 0.60 0.80 1.00

Br
ok

er
 C

os
t S

av
in

gs

Rela ve QoS

(b) Medium-sized instance

4.50%

5.00%

5.50%

6.00%

6.50%

7.00%

7.50%

0.00 0.20 0.40 0.60 0.80 1.00

Br
ok

er
 C

os
t S

av
in

gs

Rela ve QoS

(c) Large-sized instance

Fig. 6. Cost savings and QoS achieved by the computed solutions when compared with
a business as usual scenario

Cost and QoS Optimization of Cloud-Based CDN 305

a comparison of the cost savings achieved by the proposed brokering scenario
when compared to a BAU scenario. For this comparison we are most interested
in high QoS solutions. Hence, only solutions with relative QoS of 0.95 or above
are considered.

Figure 6 presents the relative cost savings over BAU and the relative QoS of
the solutions computed for each problem instance by SMS-EMOA. Results show
cost savings between 5.6% and 10.6% over the BAU scenario with high relative
QoS values of over 0.95.

SMS-EMOA is most effective when dealing with the small-sized instance,
computing solutions with a cost saving of 10.3% and relative QoS of 0.99. How-
ever, even when addressing the largest and most difficult instance, SMS-EMOA
is able to compute a cost saving of 5.6% and a relative QoS of 0.95.

9 Conclusions

This work addresses the multi-objective resource provisioning problem in the
cloud for building cloud-based CDNs. The optimization objectives are the mini-
mization of VM, network and storage cost, and the maximization of the QoS for
the end-user. A multi-tenant brokering model is considered where a single cloud-
based CDN may host multiple content providers. An accurate system model and
mathematical problem formulation are proposed, and a set of problem instances
is constructed following a realistic methodology.

The proposed problem is divided into two subproblems: the provisioning
of cloud resources and the routing of content requests. Three MOEAs—SMS-
EMOA, NSGA-II, MOCHC—are proposed for addressing the offline provisioning
of cloud resources, while a greedy heuristic is proposed for addressing the online
routing of content requests. Experimental results indicate SMS-EMOA is the
most accurate of the proposed MOEA for all problem instances. When comparing
the proposed brokering model with a BAU scenario, results indicate SMS-EMOA
is able to reduce cloud resource cost by 5.6–10.6% while maintaining high QoS
values. These results indicate our proposed approach is adequate for deploying
cloud-based CDNs at a reduced cost.

The main lines of future work include the construction of a larger set of prob-
lem instances and a more accurate QoS function. On the one hand, a larger set
of problem instances would provide a deeper insight regarding the effectiveness
of the proposed model. On the other hand, a more accurate QoS function, such
as actual network measurements, would help to provide more realistic solutions.

References

1. Beume, N., Naujoks, B., Emmerich, M.: SMS-EMOA: multiobjective selection
based on dominated hypervolume. Eur. J. Oper. Res. 181(3), 1653–1669 (2007)

2. Busari, M., Williamson, C.: ProWGen: a synthetic workload generation tool for
simulation evaluation of web proxy caches. Comput. Networks 38(6), 779–794
(2002)

306 S. Iturriaga et al.

3. Chen, F., Guo, K., Lin, J., Porta, T.L.: Intra-cloud lightning: building CDNs in
the cloud. In: Proceedings of IEEE INFOCOM, pp. 433–441 (2012)

4. Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. John
Wiley & Sons Inc., New York (2001)

5. Eshelman, L.: The CHC adaptive search algorithm: how to have safe search when
engaging in nontraditional genetic recombination. In: Foundations of Genetics
Algorithms, pp. 265–283. Morgan Kaufmann, San Mateo (1991)

6. Gao, G., Zhang, W., Wen, Y., Wang, Z., Zhu, W.: Towards cost-efficient video
transcoding in media cloud: insights learned from user viewing patterns. IEEE
Trans. Multimed. 17(8), 1286–1296 (2015)

7. Hu, M., Luo, J., Wang, Y., Veeravalli, B.: Practical resource provisioning and
caching with dynamic resilience for cloud-based content distribution networks.
IEEE Trans. Parallel Distrib. Syst. 25(8), 2169–2179 (2014)

8. Jokhio, F., Ashraf, A., Lafond, S., Lilius, J.: A computation and storage trade-off
strategy for cost-efficient video transcoding in the cloud. In: Proceedings of the 39th
Euromicro Conference Series on Software Engineering and Advanced Applications,
pp. 365–372 (2013)

9. Nebro, A., Alba, E., Molina, G., Chicano, F., Luna, F., Durillo, J.: Optimal antenna
placement using a new multi-objective CHC algorithm. In: Proceedings of the 9th
Annual Conference on Genetic and Evolutionary Computation, New York, USA,
pp. 876–883 (2007)

10. Papagianni, C., Leivadeas, A., Papavassiliou, S.: A cloud-oriented content deliv-
ery network paradigm: modeling and assessment. IEEE Trans. Dependable Secure
Comput. 10(5), 287–300 (2013)

11. Weaver, K.F., Morales, V., Dunn, S.L., Godde, K., Weaver, P.F.: Mann-whitney u
and wilcoxon signed-rank. In: An Introduction to Statistical Analysis in Research:
With Applications in the Biological and Life Sciences, chap. 7, pp. 297–352. Wiley
Online Library (2017)

12. Xiao, W., Bao, W., Zhu, X., Wang, C., Chen, L., Yang, L.T.: Dynamic request
redirection and resource provisioning for cloud-based video services under hetero-
geneous environment. IEEE Trans. Parallel Distrib. Syst. 27(7), 1954–1967 (2016)

13. Zhang, J., Huang, H., Wang, X.: Resource provision algorithms in cloud computing:
a survey. J. Network Comput. Appl. 64, 23–42 (2016)

Bi-objective Analysis of an Adaptive Secure
Data Storage in a Multi-cloud

Esteban C. Lopez-Falcon1 , Vanessa Miranda-López1 ,
Andrei Tchernykh1,3,4(&) , Mikhail Babenko2 ,

and Arutyun Avetisyan3

1 CICESE Research Center, Ensenada, BC, Mexico
{esteban,vmiranda,chernykh}@cicese.edu.mx

2 North-Caucasus Federal University, Stavropol, Russia
mgbabenko@ncfu.ru

3 Ivannikov Institute for System Programming of the RAS, Moscow, Russia
{chernykh,arut}@ispras.ru

4 South Ural State University, Chelyabinsk, Russia
chernykhan@susu.ru

Abstract. Security issues related to cloud computing as well as all solutions
proposed in the literature are one of the high topics for research. However, there
are many unsolved problems regarded to cloud storage. In this paper, we
focused on an adaptive model of data storage based on Secret Sharing Schemes
(SSS) and Residue Number System (RNS). We proposed five strategies to
minimize information loss and time to data upload and download into the cloud.
We evaluate these strategies on seven Cloud Storage Providers (CSPs). We
study a correlation of system settings with the probability of information loss,
data redundancy, speed of access to CSPs, and encoding/decoding speeds We
demonstrate that strategies that consider CSPs with the best upload access
speeds and then, after storing, migrate to the CSPs with the least probability of
information loss or best download speeds show better performance behavior.

Keywords: Data loss � Storage � Residue number system � Security

1 Introduction

One of the most important issue of cloud storage is to assure security, privacy, and
availability of the data. Security mechanisms should take into account the complete
data lifecycle, which comprises its creation, storage, process/usage, distribution, and
erasure [1]. The main concern is that users send their data into the cloud, where a third
party could have the control over their information.

Confidentiality, integrity, and availability are known as triad of information system
security [2]. Confidentiality refers to the protection of some user data from disclosure to
unauthorized users. Integrity refers to assure that user data has not been modified by
anybody who is not authorized for such an activity. Availability is the ability of the
CSPs to assure the operational mode for users. In many cases, a minimum downtime
can result in a large monetary cost. CSPs should guarantee that the services will be
available at least 99.999% of the time.

© Springer Nature Switzerland AG 2019
E. Meneses et al. (Eds.): CARLA 2018, CCIS 979, pp. 307–321, 2019.
https://doi.org/10.1007/978-3-030-16205-4_23

http://orcid.org/0000-0003-0349-5144
http://orcid.org/0000-0002-1128-6660
http://orcid.org/0000-0001-5029-5212
http://orcid.org/0000-0001-7066-0061
http://orcid.org/0000-0002-0470-9944
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16205-4_23&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16205-4_23&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16205-4_23&domain=pdf
https://doi.org/10.1007/978-3-030-16205-4_23

The main problems of clouds functionality are depicted by cloud providers that
release information about outages, issues that occurred in their infrastructure and may
affect to the user [3–6].

Many mechanisms are proposed in the literature to minimize the probability of data
loss and/or corruption, like, erasures codes, regenerating codes, data replication, Secret
Sharing Schemes (SSS), Redundant Residue Number System (RRNS), etc. [7, 8].

A simple solution to confidentiality and integrity is to encrypt the data before
sending it onto the Cloud. This solution ensures that the data will not be understandable
for other people. However, data processing is unable on its encrypted form.

One solution to design a secure, reliable storage system is to rely on several CSPs
(as a distributed storage) instead of a single one. Multi-cloud storage is a model, where
data is stored in logical pools, but the physical storage is typically owned and managed
by multiple service providers [9].

In this approach, data is divided into several shares and each share is stored in
different clouds. However, even a simple failure or denial of access may cause dis-
crepancy among copies of the data [10, 11].

Several distributed storage mechanisms based on SSS and Error Correcting Codes
(ECC) are proposed to improve security and reliability: DepSky [12], RACS [13], and
AR-RRNS [14]. However, sending encoded shares, instead of the original data, reduces
the transmission load compared to the classical replication mechanisms.

In this paper, we address the problem of data storage in a heterogeneous distributed
cloud environment. We focus on its adaptive security and reliability. Our system
utilizes the methods of SSS and ECC based on RRNS. We study the full data storage
circle: coding, uploading, storing, downloading, and decoding. We consider a set of
real cloud providers whose upload, download speed, and probability of data unavail-
ability are different and vary in time. To optimize total performance, we use data
transfer mechanism between cloud providers. We provide the comprehensive experi-
mental evaluation of our scheme with seven real data storage providers.

The paper is structured as follows. Section 2 briefly reviews related works. Sec-
tion 3 presents main characteristics of CSPs. Section 4 describes our model and pro-
posed strategies. In Sect. 5, we describe our experimental setup and characteristics of
the CSPs used in the experiments. Section 6 presents results and their analysis. Finally,
Sect. 7 highlights the conclusions of the paper and future work.

2 Related Work

In this section, we briefly discuss solutions proposed to design data storage systems. In
the cloud, data is controlled by the provider. One of the major issues is the security and
privacy of the data stored on the CSPs.

To address the confidentiality and privacy issues in cloud storage, encryption
techniques are widely used.

In [15], the authors focused their research from the CSP point of view. They
proposed the implementation of the Extensible Authentication Protocol (EAP) through
three-way handshaking with RSA. The use of the RSA cryptosystem in EAP for data
encryption allows a high-security level of data transfer.

308 E. C. Lopez-Falcon et al.

The Dynamic Secure Storage System (DSSS) proposed in [16] uses an adaptive
Huffman technique and RSA double encryption algorithm to detect threats and provide
secure process by a dynamic remote data integrity checking. EAP and DSSS do not
provide data storage security, since they do not solve the problem of cloud collusion.

In [17], an approach to address data security and privacy protection issues is
proposed. It provides confidentiality by applying a 128 bit AES to encrypt the data
before send to the cloud, but does not provide integrity and availability of data.

In [18, 19], data storage schemes in a multi-cloud environment based on RRNS are
proposed. Using of distributed storage systems based on SSS and several clouds
instead of a single cloud can solve issues such as loss of information, denial of access
for a long time, and information leakage.

DESPKY [12] improves the availability and confidentiality of data stored in the
cloud. DESPKY combines encryption, replication and coding. The system is focused
on a multi-cloud environment. The system distributes the secret keys and replicates the
encrypted data among the CSPs. Encryption techniques are not sufficient to protect
data, since they do not allow to process data in its encrypted form.

In [20], a new alternative approach, named Homomorphic Encryption (HE), which
allows to process encrypted data without the necessity to decrypt it is proposed.

In [21], the first fully HE scheme is proposed. This method enables performing
addition, subtraction and multiplication operations over encrypted data, but with a high
data redundancy.

In order to overcome the drawbacks of traditional encryption methods, researchers
begin to exploit the cryptographic primitives based on RRNS.

A data storage proposed in [22] assures data security by using the moduli set as the
secret key. Nevertheless, it leads to high redundancy and resource intensive decoding.

Another approach is proposed in [23]. It combines a 256 bit AES with RRNS
properties. A storage file is compressed and divided into several shares using RRNS.
The file is recovered by Chinese remainder theorem and decoded with AES.

In [14], a system similar to [23] is presented. The main difference lies in a strategy
called Approximation of the Range of RNS that reduces the complexity of decoding
from O (L log L log log L) to O (1), where L is the file size.

Problems of confidentially, integrity, cloud collusion and uncertainty applying RNS
are addressed in [24]. Cloud collusion risks are studied in [25, 27].

In [27], the authors proposed the scheme AC-RRNS. It assures that if an adversary
coalition knows the secret shares send to each CSP, but does not know the secret key,
the probability to recover the secret is less than 1=ð2l� k�1ð Þð2l�k � 1ÞÞ.

To design a reliable and available storage system, it is necessary to address the
problem of downtime/outage. Many studies collect the information from press releases
of cloud providers [3–6]. These works evaluate how many times a cloud provider has a
downtime problem. In [3], the availability of 38 cloud providers based on their outage
times for five years period is provided.

However, security schemes able to adapt their parameters to meet environment
changes have not been properly addressed.

Bi-objective Analysis of an Adaptive Secure Data 309

In this work, we proposed an adaptive secure data storage system based on RRNS.
We study a correlation of system settings with the probability of information loss, data
redundancy, speed of access to CSPs, and encoding/decoding speeds.

3 Cloud Storage Providers

CSPs offer a set of storage plans with different features like storage capacity, price and
performance to the users. In this section, we briefly describe the CSPs used in this
work. We do not consider CSPs such as IBM Cloud, Windows Azure and Amazon
Web Services, because they do not offer free storage without requesting for financial
information.

Egnyte [28] is founded in 2007. It offers a two-step login verification and 256-bit
AES encryption for all data transmission. For availability, it uses data replication with
redundant independent RAID storage. Servers are hosted at SAS 70 Type II compliant
collocation facilities.

Dropbox [29] is founded in 2007. Cloud storage, file synchronization are some of
the services offered in Dropbox plans. To assure security it includes two-step
authentication, and files are encrypted by AES 256-bit encryption. A major drawback is
an observable side channel which a single bit of data can be observed.

OneDrive [30] is created by Microsoft in 2007 as Windows Live Folders and later
as Windows Live SkyDrive. It is a file hosting service and synchronization of files. It
offers 5 GB of free storage. Like other CSPs, data are encrypted using SSL. OneDrive
for Business also offers per-file encryption, which gives each file its encryption key.
OneDrive automatically synchronizes Outlook attachments to the Cloud.

Google Drive [31] is a file storage and synchronization service created by Google
in 2012. It offers 15 GB of free storage space. However, this space is shared between
files, message, attachments in Gmail, pictures and videos in Google Photos. File
encryption is realized with AES 256-bit key. To authenticate and verify uncorrupted
and genuine messages, Google Drive uses Keyed-hash message authentication code
(SHA1-HMAC). Random data is added to the message to increase security against
cypher-text attacks.

Box [32] is founded in 2005, as an online file sharing for businesses. Box offers a
free space of 10 GB. It uses expiration dates for shared files, which prevents users to
access a file that passed a certain date.

ShareFile [33] is launched in November 2005. It is a secure content collaboration,
file sharing and sync solution that supports all the document-centric tasks and workflow
needs of small and large businesses. ShareFile uses remote wipe, encryption, passcode
lock and poison pill features. In addition, companies are able to restrict third-party
editing tools that employees might try to install on their devices, and audit content
accessed from a device that has been lost or stolen.

SalesForce [34] is founded in 1999. It is a cloud computing company that offers
storage among others services with capacity up to 1 TB. It works under a share file
architecture to provide security and resilience.

310 E. C. Lopez-Falcon et al.

4 Model

We consider the scenario with a set of n CSPs characterized by the speed of uploading,
speed of downloading, and probability of failure. Based on RRNS properties, data are
divided into a set of smaller encrypted shares. We send one unique share to each
CSP. We reconstruct the data using a subset of the shares or all of them. We make the
decision to choose CSP based on their data access speeds and probability of failure.

4.1 Residue Number System

The classic RNS is characterized by a set moduli set, which is comprise of k pairwise
prime positive integers m1;m2; . . .;mkf g, i.e., gcd mi;mj

� � ¼ 1; i 6¼ j. The interval

½0;MÞ, where M ¼ Qk
i¼1 mi is called dynamic range.

Each positive integer X can be represented as a sequence of its residues by modulo
mi. Adding redundant moduli, RNS is extended to RRNS. RRNS represents the resi-
dues by ðkþ rÞ-tuple within the dynamic range, where r is a number of the redundant
moduli and n ¼ kþ r.

4.2 Model Description

Let C ¼ fc1; c2; . . .; cng be the set of n Cloud Storage Providers (CSPs). Each cloud is
characterized by the tuple cj ¼ fuj; dj; errjg, where uj is the speed of uploading, dj is the
speed of downloading, and errj is the probability of failure. We divided the data into n
shares to be stored in the CSPs. Each share i ¼ fsig has a size si.

We use the following notation:
D Original data size
DE Size of the encrypted data
si Size of the i-th chunk
sEi Size of the encrypted i-th chunk
uj Upload speed of the j-th cloud
dj Download speed of the j-th cloud
Tup Encrypted data upload time
Tdow Encrypted data download time
Vs Upload velocity
Vex Download velocity
errj Probability of failure of the j-th cloud
Prðk; nÞ Probability of information loss

Upload velocity ðVsÞ is calculated as a ratio of the original data size D on the upload
time Tup:

Vs ¼ D
Tup

; Tup ¼
Xn

i¼1

sEi
ui

ð1Þ

Bi-objective Analysis of an Adaptive Secure Data 311

Download velocity (Vex) is calculated by dividing the original data size D over the
download time:

Vex ¼ D
Tdow

; Tdow ¼
Xn

i¼n�kþ 1

sEi
di

ð2Þ

We assume that the shares are downloaded sequentially.
Probability of information loss (Pr k; nð Þ) is calculated as:

Pr k; nð Þ ¼
Xn

A2Fn�kþ 1

Y

j2A
errj

Y

jc2Ac

1� errjc
� � ð3Þ

where Fn�kþ 1 is the set of all possible n� kþ 1 subsets of C, and Ac is the com-
plement of the subset A and C. Information can be lost only if n� kþ 1 shares have
errors or missing.

4.3 Strategies

We proposed five strategies based on access speeds and probabilities of failure
(Table 1).

5 Experimental Setup

In this section, we present the experimental setup, access speeds and, probabilities of
failure of each CSP.

We develop the system on Java programming language. Experiments are performed
on the server Express x3650 M4, with two Xeon IvyBridge processors E5-2650v2
95W, default clock speed of 2.6 GHz and, 300 Mbps symmetric internet connection.
Each processor has eight cores and two threads per core (16 with hyperthreading),
32 kB of level 1 memory, 256 kB of level 2, and 20 MB of level 3. Two NUMA

Table 1. Allocation strategies

Strategies Description

Random Selects n available clouds arbitrary
BestUpload Selects the first n available clouds with fastest upload speed. Download

speed is not taken into account
BestDownload Selects the first n available clouds with fastest download speed. Upload

speed is not taken into account
AdaptiveSpeed Selects the first n available clouds with best uploading speed. After

storing, data are moved to n clouds with the best downloading speed
BestSecurity Selects the first n available clouds with the least probability of failure
AdaptiveSecurity Selects the first n available clouds with best uploading speed. After

storing, data are moved to n clouds with the least probability of failure

312 E. C. Lopez-Falcon et al.

domains of 32 GB each, with a total memory of 64 GB. The server operating system is
a CentOS Linux release 7.1.1503.

5.1 Upload and Download Speeds

We performed a statistical analysis of the upload/download speeds of each CSP. To
obtain the access speeds of the CSPs, we developed a small script in Java programming
language.

We uploaded/downloaded a 200 MB media file every hour to each CSP for three
days. To access to the public REST API of the CSPs, we used a Java wrapper for
Google Drive [35], Dropbox [36], Box [37] and Sharefile [38]. For OneDrive [39],
Egnyte [40] and Salesforce [41], we used the Apache HttpClient library [42].

Table 2 shows low, high, and average access speeds of seven CSPs.

5.2 Probability of Failure

We assume the failure of a cloud provider as the inability to access a file. The prob-
ability of failure is directly proportional to the size of the file. The bigger files, the
greater likelihood that the file is located at a malfunctioning section of the hard drives.

In our scenario of the probability of failure is based on the downtime analysis
presented by CloudHarmony in 2015 [43]. CSPs were monitored over a year by
spinning up workload instances and constantly pinging them. It does not provide a
complete analysis of the downtime due to the incapacity of monitoring all services
offered by cloud providers, all availability zones across multiple regions, among other.
However, it is an important information for reliability analysis.

This analysis shows that the best cloud provider has only 34 min of downtime, with
an availability of 99.99, per year. While, the worst monitored provider has 31 h and
29 min of downtime with availability of 99.64. We use these results as the maximum
probability of failure of each CSP. We assume that the minimum probabilities of failure
is twice less. Results are presented in Table 3.

Table 2. Access speeds of seven CSPs

Provider Upload speed (MB/s) Download speed (MB/s)
Low
speed

High
speed

Average
speed

Low
speed

High
speed

Average
speed

1 GoogleDrive 1.79 3.24 2.98 2.15 3.26 3.06
2 OneDrive 0.91 1.70 1.46 1.21 2.41 2.18
3 Dropbox 2.59 3.05 2.93 3.07 3.32 3.25
4 Box 1.91 3.26 2.55 2.01 3.20 2.62
5 Egnyte 1.24 1.93 1.70 2.17 2.36 2.30
6 Sharefile 0.11 0.65 0.51 0.72 0.76 0.75
7 Salesforce 0.52 0.73 0.64 0.68 0.72 0.71

Bi-objective Analysis of an Adaptive Secure Data 313

Since, the probability of failure depends on the size of the input file. We calculate
the probabilities for each CSP using the maximum values of probability and a range of
sizes of the input file from 10 MB to 200 MB in steps of 10 MB.

Figure 1 depicts the probabilities of failures of each CSP versus the size of the input
file.

6 Experimental Analysis

In this section, we present the experimental results of the proposed allocation strategies
considering seven CSPs. We performed two different experiments. In the first one, we
use the average value of each criterion for every strategy and different values of ðk; nÞ
settings. In the second experiment, we randomly select a value between the minimum
and maximum of each criterion for every strategy and different values of ðk; nÞ settings.
For statistical evaluation, we performed 60 times the second experiment.

We normalize the results of each criterion on a range of [0,1], with feature scaling
normalization (MinMax). The best results are near zero and the worst ones are near

one. MinMax is defined as: x�minðxÞ
maxðxÞ�minðxÞ, where x is the current result value of each

strategy and ðk; nÞ setting under a criterion.

Table 3. Probability of failures

Provider Probability of failure
Min Max Average

1 GoogleDrive 0.000285388 0.0002854 0.00005708
2 OneDrive 0.000123478 0.0012348 0.00024696
3 Dropbox 0.000132040 0.0013204 0.00026408
4 Box 0.000145358 0.0014536 0.00029072
5 Egnyte 0.000146499 0.0014650 0.00029300
6 Sharefile 0.000194064 0.0019406 0.00038813
7 Salesforce 0.000359399 0.0035940 0.00071880

0
0.0005

0.001
0.0015

0.002
0.0025

0.003
0.0035

0.004

10 20 30 40 50 60 70 80 90 100

110

120

130

140

150

160

170

180

190

200

Pr
ob

ab
ili

ty

File size (MB)

Box DropBox Egnyte Google Drive
Salesforce Sharefile OneDrive

Fig. 1. Probability of failure vs. file size

314 E. C. Lopez-Falcon et al.

The following figures illustrate the results of each strategy.
In Fig. 2, we observe that when k ¼ n, the probability of information loss is

increased for all strategies. It is due to all CSPs with the highest probability of failure are
chosen. The strategies BestSecurity and AdaptiveSecurity reach a value of 0.99 for setting
(7,7), since they take into account the probability of failure, while selecting the CSPs.

In Figs. 3 and 4, the relation of ðk; nÞ settings versus upload time and download
time, respectively, is depicted. In Fig. 3, we observe that the strategy BestSecurity has
the lowest upload times. It chooses the first n CSPs with the least probability of failure
reaching values near to one for settings (2,5), and (2,6). For n ¼ 7, all the strategies
have the same performance, due to all the CSPs are chosen.

For the download time, the strategy AdaptiveSecurity reaches a value of one for
settings (2,2), (2,3), (2,4), (2,5), (2,6), and (2,7). It selects the CSPs without taking into
account the download access speeds (Fig. 4).

0

0.2

0.4

0.6

0.8

1

(2
,2

)

(2
,3

)

(3
,3

)

(2
,4

)

(3
,4

)

(4
,4

)

(2
,5

)

(3
,5

)

(4
,5

)

(5
,5

)

(2
,6

)

(3
,6

)

(4
,6

)

(5
,6

)

(6
,6

)

(2
,7

)

(3
,7

)

(4
,7

)

(5
,7

)

(6
,7

)

(7
,7

)N
or

m
al

iz
ed

 p
ro

ba
bi

lit
y

of
 fa

ilu
re

(k,n)

BestUpload BestDownload AdaptiveSpeed

BestSecurity AdaptiveSecurity

Fig. 2. Normalized probability of information loss vs ðk; nÞ setting

0

0.2

0.4

0.6

0.8

1

(2
,2

)

(2
,3

)

(3
,3

)

(2
,4

)

(3
,4

)

(4
,4

)

(2
,5

)

(3
,5

)

(4
,5

)

(5
,5

)

(2
,6

)

(3
,6

)

(4
,6

)

(5
,6

)

(6
,6

)

(2
,7

)

(3
,7

)

(4
,7

)

(5
,7

)

(6
,7

)

(7
,7

)

N
or

m
al

iz
ed

 u
pl

oa
d

tim
e

(k,n)

BestUpload BestDownload AdaptiveSpeed

BestSecurity AdaptiveSecurity

Fig. 3. Normalized upload time vs ðk; nÞ setting

Bi-objective Analysis of an Adaptive Secure Data 315

In Table 4, we see that the maximum superiority of AdaptiveSecurity over
BestUpload in probability of information loss is when k ¼ n. For upload time, the
maximum difference of AdaptiveSecurity over BestSecurity is when k 6¼ n.

0

0.2

0.4

0.6

0.8

1

(2
,2

)

(2
,3

)

(3
,3

)

(2
,4

)

(3
,4

)

(4
,4

)

(2
,5

)

(3
,5

)

(4
,5

)

(5
,5

)

(2
,6

)

(3
,6

)

(4
,6

)

(5
,6

)

(6
,6

)

(2
,7

)

(3
,7

)

(4
,7

)

(5
,7

)

(6
,7

)

(7
,7

)

N
or

m
al

iz
ed

 d
ow

nl
oa

d
tim

e

(k,n)

BestUpload BestDownload AdaptiveSpeed

BestSecurity AdaptiveSecurity

Fig. 4. Normalized download time with vs ðk; nÞ setting

Table 4. Reduction of probability of information loss, upload and download time by
AdaptiveSecurity strategy (%)

ðk; nÞ AdaptiveSecurity
BestUpload probability BestSecurity upload time BestDownload download time

(2,2) 22.86281 52.99145 −100
(2,3) 0.02201 52.53054 −100
(3,3) 18.90773 37.52345 −67.54177
(2,4) 9.56E–06 45.64873 −100
(3,4) 0.022836 33.56643 −67.54177
(4,4) 16.00884 26.63594 −46.51163
(2,5) 3.35E–09 39.82869 −100
(3,5) 9.96E–06 30.04049 −67.54177
(4,5) 0.022816 24.17678 −46.51163
(5,5) 13.2764 20.19928 −36.07306
(2,6) 9.77E–13 18.91419 −100
(3,6) 3.1E–09 14.89951 −67.54177
(4,6) 9.35E–06 12.36641 −46.51163
(5,6) 0.018882 10.57771 −36.07306
(6,6) 8.976775 9.12191 −13.62726
(2,7) 0 0 −100
(3,7) 0 0 −67.54177
(4,7) 0 0 −46.51163
(5,7) 0 0 −36.07306
(6,7) 0 0 −13.62726
(7,7) 0 0 0

316 E. C. Lopez-Falcon et al.

We see that AdaptiveSecurity is the best strategy for upload time and security.
However, it almost twice increases download time compared with BestDownload
strategy (see Table 5).

6.1 Solution Space and Pareto Front

We compute a set of solutions approximating the Pareto front for five strategies:
BestUpload, BestDownload, AdaptiveSpeed, BestSecurity, and AdaptiveSecurity. We
analyze 21 ðk; nÞ settings parameters over 60 experiments. Hence, we obtain 6300
solutions. We address the problem of minimizing the probability of information loss
and minimizing the data access time.

Figures 5 and 6 show the solution sets and Pareto fronts for the system setting
(3,5). Both figures present the solution space for 60 solutions for each strategy. Each
solution is represented by normalized values for the probability of information loss and
upload/download times.

In Fig. 5, we observe the approximation of Pareto front generated by the studied
strategies.

The strategy that forms the Pareto front is AdaptiveSecurity. It covers a range from
0 to 0.139 for probability of information loss and from 0.0045 to 0.038 for upload time
(see Table 5).

Table 5. Pareto approximation members for the (3,5) configuration for probability of
information loss vs upload time

Strategy Upload time Probability of information loss

AdaptiveSecurity 0.004587 0.139608
AdaptiveSecurity 0.003058 0.073982
AdaptiveSecurity 0.004587 0.000166
AdaptiveSecurity 0.038226 0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Pr
ob

ab
ili

ty
 o

f i
nr

of
m

at
io

n
lo

ss

Upload time

strategies approximate frontier

Fig. 5. Pareto approximation for the (3,5) configuration

Bi-objective Analysis of an Adaptive Secure Data 317

Figure 6 presents the approximation of Pareto front for probability of information
loss and download time. There is no one dominant strategy.

BestUpload, AdpativeSpeed, and BestDownload are the best strategies for down-
load time, but they are the worst for the probability of information loss. The strategies
presented in the Pareto front cover a range from 0 to 0.799 for probability of infor-
mation loss and from 0 to 0.465, for download time.

7 Conclusion

To minimize the probability of information loss and data access time, we propose an
adaptive model of data storage based on secret sharing schemes and residue number
system in a heterogeneous distributed cloud environment.

We proposed five data allocation strategies to select the best CSPs based on their
access speeds and probability of failure. We evaluate the performance behavior of the
strategies on seven well known CSPs and different system parameters.

We demonstrate that the adaptive strategy improves the performance of the system.
AdaptiveSpeed yields best results for download speed, although at expense of the
probability of information loss. Meanwhile, AdaptiveSecurity improves upload speed
and the probability of information loss. The solutions of each strategy are not spread
across the whole solution space that approximate Pareto fronts. It could indicate that
changes the speed parameters do not affect significantly the performance of the
strategies.

Further study is required to assess their performance and effectiveness in three-
dimensional domain. We want to confirm that an adaptive approach will show a good
compromise over the three criteria. There are a number of open research challenges.
We want to evaluate allocation strategies with dynamic variations of the cloud char-
acteristic, and study how adaptive strategies mitigate their uncertainty. It is important to
study other secret sharing schemes and multiple failure detection/recovery mechanisms.
This will be a subject of future work.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Pr
ob

ab
ili

ty
 o

f i
nr

of
m

at
io

n
lo

ss

Download time

strategies aproximate frontier

Fig. 6. Pareto approximation for the (3,5) configuration

318 E. C. Lopez-Falcon et al.

Acknowledgments. The work is partially supported by Russian Foundation for Basic Research
(RFBR) 18-07-01224 and State task No. 2.6035.2017.

References

1. Chen, D., Zhao, H.: Data security and privacy protection issues in cloud computing. In: 2012
International Conference on Computer Science and Electronics Engineering (ICCSEE), vol.
1, pp. 647–651. IEEE (2012). https://doi.org/10.1109/ICCSEE.2012.193

2. Krutz, R.L., Vines, R.D.: Cloud Security: A Comprehensive Guide to Secure Cloud
Computing, 1st edn. Wiley, Hoboken (2010)

3. Gagnaire, M., et al.: Downtime statistics of current cloud solutions. International Working
Group on Cloud Computing Resiliency, Technical report (2012)

4. IWGCR International Working Group on Cloud Computing Resiliency Homepage. http://
iwgcr.org/. Accessed 1 Sept 2018

5. SecureList Homepage. https://securelist.com/all/?tag=53. Accessed 3 Nov 2018
6. CloudHarmony Homepage. https://cloudharmony.com/status-of-storage. Accessed 3 Nov

2018
7. Dimakis, A.G., Godfrey, P.B., Wu, Y., Wainwright, M.J., Ramchandran, K.: Network

coding for distributed storage systems. IEEE Trans. Inf. Theory 56(9), 4539–4551 (2010).
https://doi.org/10.1109/TIT.2010.2054295

8. Ateniese, G., Fu, K., Green, M., Hohenberger, S.: Improved proxy re-encryption schemes
with applications to secure distributed storage. ACM Trans. Inf. Syst. Secur. 9(1), 1–30
(2006). https://doi.org/10.1145/1127345.1127346

9. Buyya, R., Yeo, C.S., Venugopal, S., Broberg, J., Brandic, I.: Cloud computing and
emerging IT platforms: vision, hype, and reality for delivering computing as the 5th utility.
Future Gener. Comput. Syst. 25(6), 599–616 (2009). https://doi.org/10.1016/j.future.2008.
12.001

10. Ghemawat, S., Gobioff, H., Leung, S.-T.: The Google file system. In: Proceedings of the
Nineteenth ACM Symposium on Operating Systems Principles, pp. 29–43. ACM, New
York (2003). https://doi.org/10.1145/1165389.945450

11. Ganesan, A., Alagappan, R., Arpaci-Dusseau, A.C., Arpaci-Dusseau, R.H.: Redundancy
does not imply fault tolerance: analysis of distributed storage reactions to single errors and
corruptions. In: Proceedings of the 15th Usenix Conference on File and Storage
Technologies, pp. 149–165. USENIX Association, Berkeley (2017)

12. Bessani, A., Correia, M., Quaresma, B., André, F., Sousa, P.: DepSky: dependable and
secure storage in a cloud-of-clouds. ACM Trans. Storage 9(4), 12 (2013). https://doi.org/10.
1145/2535929

13. Abu-Libdeh, H., Princehouse, L., Weatherspoon, H.: RACS: a case for cloud storage
diversity. In: Proceedings of the 1st ACM Symposium on Cloud computing, pp. 229–240.
ACM (2010). https://doi.org/10.1145/1807128.1807165

14. Chervyakov, N., Babenko, M., Tchernykh, A., Kucherov, N., Miranda-López, V., Cortés-
Mendoza, J.M.: AR-RRNS: configurable, scalable and reliable systems for Internet of
Things to ensure security. Future Gener. Comput. Syst. 92, 1080–1092 (2019). https://doi.
org/10.1016/j.future.2017.09.061

15. Marium, S., Nazir, Q., Shaikh, A.A., Ahthasham, S., Mehmood, M.A.: Implementation of
EAP with RSA for enhancing the security of cloud computing. Int. J. Basic Appl. Sci. 1(3),
177–183 (2012)

Bi-objective Analysis of an Adaptive Secure Data 319

http://dx.doi.org/10.1109/ICCSEE.2012.193
http://iwgcr.org/
http://iwgcr.org/
https://securelist.com/all/?tag=53
https://cloudharmony.com/status-of-storage
http://dx.doi.org/10.1109/TIT.2010.2054295
http://dx.doi.org/10.1145/1127345.1127346
http://dx.doi.org/10.1016/j.future.2008.12.001
http://dx.doi.org/10.1016/j.future.2008.12.001
http://dx.doi.org/10.1145/1165389.945450
http://dx.doi.org/10.1145/2535929
http://dx.doi.org/10.1145/2535929
http://dx.doi.org/10.1145/1807128.1807165
http://dx.doi.org/10.1016/j.future.2017.09.061
http://dx.doi.org/10.1016/j.future.2017.09.061

16. Rathanam, G.J., Sumalatha, M.R.: Dynamic secure storage system in cloud services. In:
2014 International Conference on Recent Trends in Information Technology (ICRTIT),
pp. 1–5. IEEE (2014). https://doi.org/10.1109/ICRTIT.2014.6996175

17. Babitha, M.P., Babu, K.R.R.: Secure cloud storage using AES encryption. In: International
Conference on Automatic Control and Dynamic Optimization Techniques (ICACDOT),
Pune, pp. 859–864 (2016)

18. Tchernykh, A., et al.: Performance evaluation of secret sharing schemes with data recovery
in secured and reliable heterogeneous multi-cloud storage. Cluster Comput., 1–13 (2019).
https://doi.org/10.1007/s10586-018-02896-9

19. Miranda-López, V., et al.: Experimental analysis of secret sharing schemes for cloud storage
based on RNS. In: Mocskos, E., Nesmachnow, S. (eds.) CARLA 2017. CCIS, vol. 796,
pp. 370–383. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73353-1_26

20. Rivest, R., Adleman, L., Dertouzos, M.: On data banks and privacy homomorphisms. In:
Foundations of Secure Computation, pp. 169–177. Academic Press (1978)

21. Gentry, C.: A fully homomorphic encryption scheme (2009)
22. Tchernykh, A., et al.: AC-RRNS: anti-collusion secured data sharing scheme for cloud

storage. Int. J. Approx. Reason. 102, 60–73 (2018). https://doi.org/10.1016/j.ijar.2018.07.010
23. Celesti, A., Fazio, M., Villari, M., Puliafito, A.: Adding long-term availability, obfuscation,

and encryption to multi-cloud storage systems. J. Netw. Comput. Appl. 59, 208–218 (2016).
https://doi.org/10.1016/j.jnca.2014.09.021

24. Chang, C.H., Molahosseini, A.S., Zarandi, A.A.E., Tay, T.F.: Residue number systems: a
new paradigm to datapath optimization for low-power and high-performance digital signal
processing applications. IEEE Circ. Syst. Mag. 15, 26–44 (2015). https://doi.org/10.1109/
MCAS.2015.2484118

25. Tchernykh, A., Schwiegelsohn, U., Talbi, E., Babenko, M.: Towards understanding
uncertainty in cloud computing with risks of confidentiality, integrity, and availability.
J. Comput. Sci. (2016). https://doi.org/10.1016/j.jocs.2016.11.011

26. Tchernykh, A., Schwiegelsohn, U., Alexandrov, V., Talbi, E.: Towards understanding
uncertainty in cloud computing resource provisioning. Procedia Comput. Sci. 51, 1772–1781
(2015). https://doi.org/10.1016/j.procs.2015.05.387

27. Tchernykh, A., et al.: Towards mitigating uncertainty of data security breaches and collusion
in cloud computing. In: Proceedings of UCC 2017, Lyon, France, pp. 137–141. IEEE Press
(2017). https://doi.org/10.1109/DEXA.2017.44

28. Egnyte. https://www.egnyte.com/file-access/desktop-access.html. Accessed 15 Feb 2018
29. Drago, I., Mellia, M., Munafo, M.M., Sperotto, A., Sadre, R., Pras, A.: Inside dropbox:

understanding personal cloud storage services. In: Proceedings of the 2012 Internet
Measurement Conference, pp. 481–494. ACM (2012). https://doi.org/10.1145/2398776.
2398827

30. OneDrive. https://onedrive.live.com/about/en-us/. Accessed 15 Feb 2018
31. GoogleDrive. https://www.google.com/intl/en_us/drive/. Accessed 15 Feb 2018
32. Box. https://www.box.com/home. Accessed 10 Jan 2018
33. ShareFile. https://www.citrix.com/products/sharefile/. Accessed 10 Jan 2018
34. SalesForce. https://www.salesforce.com/eu/products/what-is-salesforce/. Accessed 15 Feb

2018
35. Google Drive API. https://developers.google.com/api-client-library/java/apis/drive/v2
36. Dropbox API. https://www.dropbox.com/developers/documentation/java
37. Box API. http://opensource.box.com/box-java-sdk/
38. Sharefile API. https://api.sharefile.com/rest/

320 E. C. Lopez-Falcon et al.

http://dx.doi.org/10.1109/ICRTIT.2014.6996175
http://dx.doi.org/10.1007/s10586-018-02896-9
http://dx.doi.org/10.1007/978-3-319-73353-1_26
http://dx.doi.org/10.1016/j.ijar.2018.07.010
http://dx.doi.org/10.1016/j.jnca.2014.09.021
http://dx.doi.org/10.1109/MCAS.2015.2484118
http://dx.doi.org/10.1109/MCAS.2015.2484118
http://dx.doi.org/10.1016/j.jocs.2016.11.011
http://dx.doi.org/10.1016/j.procs.2015.05.387
http://dx.doi.org/10.1109/DEXA.2017.44
https://www.egnyte.com/file-access/desktop-access.html
http://dx.doi.org/10.1145/2398776.2398827
http://dx.doi.org/10.1145/2398776.2398827
https://onedrive.live.com/about/en-us/
https://www.google.com/intl/en_us/drive/
https://www.box.com/home
https://www.citrix.com/products/sharefile/
https://www.salesforce.com/eu/products/what-is-salesforce/
https://developers.google.com/api-client-library/java/apis/drive/v2
https://www.dropbox.com/developers/documentation/java
http://opensource.box.com/box-java-sdk/
https://api.sharefile.com/rest/

39. OneDrive API. https://docs.microsoft.com/en-us/onedrive/developer/rest-api/
40. Egnyte API. https://developers.egnyte.com/docs/read/Home
41. Salesforce API. https://developer.salesforce.com/page/REST_API
42. Apache HttpClient. https://hc.apache.org
43. CloudHarmony. https://www.networkworld.com/article/3020235/cloud-computing/and-the-

cloud-provider-with-the-best-uptime-in-2015-is.html

Bi-objective Analysis of an Adaptive Secure Data 321

https://docs.microsoft.com/en-us/onedrive/developer/rest-api/
https://developers.egnyte.com/docs/read/Home
https://developer.salesforce.com/page/REST_API
https://hc.apache.org
https://www.networkworld.com/article/3020235/cloud-computing/and-the-cloud-provider-with-the-best-uptime-in-2015-is.html
https://www.networkworld.com/article/3020235/cloud-computing/and-the-cloud-provider-with-the-best-uptime-in-2015-is.html

Fault Characterization and Mitigation
Strategies in Desktop Cloud Systems

Carlos E. Gómez1,2(B) , Jaime Chavarriaga1 , and Harold E. Castro1

1 Systems and Computing Engineering Department,
Universidad de los Andes, Bogotá, Colombia

{ce.gomez10,ja.chavarriaga908,hcastro}@uniandes.edu.co
2 Universidad del Quind́ıo, Armenia, Colombia

Abstract. Desktop cloud platforms, such as UnaCloud and CernVM,
run clusters of virtual machines taking advantage of idle resources on
desktop computers. These platforms execute virtual machines along with
the applications started by the users in those desktops. Unfortunately,
although the use of computer resources is better, desktop user actions,
such as turning off the computer or running certain applications may
conflict with the virtual machines. Desktop clouds commonly run appli-
cations based on technologies such as Tensorflow or Hadoop that rely on
master-worker architectures and are sensitive to failures in specific nodes.
To support these new types of applications, it is important to understand
which failures may interrupt the execution of these clusters, what faults
may cause some errors and which strategies can be used to mitigate or
tolerate them. Using the UnaCloud platform as a case study, this paper
presents an analysis of (1) the failures that may occur in desktop clouds
and (2) the mitigation strategies available to improve dependability.

Keywords: Desktop clouds · Dependability · Reliability ·
Fault analysis · Fault tolerance

1 Introduction

Volunteer computing platforms [12], desktop grid systems [8], and desktop clouds
(DC) [1] demonstrate a lack of dependability and fault tolerance [1,4]. Differ-
ent from other platform types using dedicated infrastructures, these platforms
offer opportunistic services, taking advantage of unused computational capacities
in desktop computers. Such platforms use software agents that detect inactive
or idle desktop resources, and then execute several tasks and applications on
those [8,12]. Unfortunately, due to the concurrent presence of users on the same
desktop computers, these applications could stop or be affected if users execute

This work has been partially carried out with resources provided by the CYTED
cofunded Thematic Network RICAP (517RT0529).

c© Springer Nature Switzerland AG 2019
E. Meneses et al. (Eds.): CARLA 2018, CCIS 979, pp. 322–335, 2019.
https://doi.org/10.1007/978-3-030-16205-4_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16205-4_24&domain=pdf
http://orcid.org/0000-0002-5202-1167
http://orcid.org/0000-0002-8372-667X
http://orcid.org/0000-0002-7586-9419
https://doi.org/10.1007/978-3-030-16205-4_24

Fault Characterization and Mitigation Strategies in Desktop Cloud Systems 323

other applications, or worse, if they turn off the equipment. Consequently, oppor-
tunistic computing platforms are subject to failures that do not exist in other
platforms.

Volunteer computing and desktop grid systems have successfully been used in
executing Bag-of-Tasks (BoT) applications, a design pattern where processing
is organized in such a way to divide the problem into smaller tasks that can
be executed in parallel [3]. In such applications, any task can be reallocated to
another desktop computer in case of a failure in the platform nodes, thereby
balancing out dependability limitations.

More recently, DC platforms such as UnaCloud1 [11] and CernVM2 [13] have
allowed scientists and researchers to create clusters of virtual machines (VMs)
taking advantage of idle resources in desktops spread throughout a campus. Such
virtual clusters are able to execute certain applications with architectures dif-
ferent from BoT. Clusters running applications such as Tensorflow3 or Hadoop4

use master-worker schemes, where only a few master nodes have control of the
functions of many workers. Although such schemes do tolerate certain faults in
slave nodes, they have little tolerance for faults in masters. For such scenarios,
if a dependable service is to be offered, failures must be detected, their causes
determined, and mitigation procedures must be established.

Like in any cloud computing service provider, offering dependable service in
DC platforms has become more important and appealing [7]. Currently, plat-
forms such as UnaCloud offer VMs in a best effort service. Although UnaCloud
is able to detect and notify a user about failures that occur during VM deploy-
ment and execution, users or applications are in charge of making decisions about
those failures. For instance, although the UnaCloud platform is able to report
that one or more cluster nodes have a fault, the user actually makes the choice to
continue with the cluster execution with the failures or to restart the execution
in a different desktop group. UnaCloud does not offer automatic services that
increase dependability levels.

This paper presents a characterization of the faults that could occur in DC
platforms, based on our analysis of the UnaCloud platform. Here, we analyze
failures that could occur during normal operation, the detected failure states,
and their possible causes. Finally, we present strategies that allow mitigation
and tolerance of these faults.

This paper is structured as follows: Sect. 2 defines terms related to depend-
ability. Section 3 describes UnaCloud and its architecture and VM deployment.
Section 4 presents an analysis of failure states in UnaCloud and possible causes
and some mitigation strategies for identified failure states. Section 5 concludes
this paper and points toward future research.

1 https://sistemasproyectos.uniandes.edu.co/iniciativas/unacloud/.
2 https://cernvm.cern.ch/portal/publications.
3 https://www.tensorflow.org/.
4 https://hadoop.apache.org/.

https://sistemasproyectos.uniandes.edu.co/iniciativas/unacloud/
https://cernvm.cern.ch/portal/publications
https://www.tensorflow.org/
https://hadoop.apache.org/

324 C. E. Gómez et al.

2 Background

In this section, basic concepts related to dependability are presented. We discuss
threats and the means to achieve dependability in computing systems design.

Definition. The concept of dependability arose in the 1950s when computers
were made with components that tended to fail. Researchers wanted to determine
if systems could depend on those components [10].

In one of the first definitions, Laprie [9] defined dependability as “the trust-
worthiness of a computer system such that reliance can justifiably be placed on
the service it delivers”. Considering that justification types vary according to user
approaches, Prasad et al. [10] observed the difficulty in measuring dependability
from a pre-established attribute set. They posited that dependability arises from
knowing the faults that could occur in a system and establishing mechanisms
for measurement, assessment, forecast and control. As a result of many IEEE
initiatives, Avizienis et al. [2], defined dependability as: (1) the ability of a sys-
tem to deliver a service that can be trusted and (2) the ability of that system
to avoid failures that would be more frequent and severe than acceptable.

Fig. 1. Dependability concepts

Figure 1 summarizes dependability related concepts as proposed by Avizienis
et al. [2]: (1) attributes used to analyze dependability, (2) threats that could
impede dependability, and (3) means to achieve it.

Dependability Attributes. In order to study the dependability of a computing
system, it is necessary to define the attributes to be analyzed. Since authors have
proposed varied attributes [5,6,9,10], IEEE has suggested that dependability has
five attributes [2]:

Fault Characterization and Mitigation Strategies in Desktop Cloud Systems 325

Availability: Capacity of a computing system to provide correct services when
requests occur. It is the probability of a system’s readiness to deliver a service.

Reliability: Probability of a system offering the correct services within a partic-
ular timeframe.

Safety: Absence of catastrophic consequences for users of a computing system,
their data, and their surroundings whenever the computing service is offered.

Integrity: Ability of a system to prevent inappropriate alterations on itself.
Maintainability: Ability to make modifications and repairs to a system.

Threats Against Dependability. Avizienis et al. [2] refer to faults, errors, and
failures as threats against dependability. They state that those three elements
lead the computing system to deliver the wrong services or to be unable to
deliver a service.

Fault: Defect in a computing system leading to an error.
Error: Manifestation of a fault in the system that could lead to a failure.
Failure: Event in the system that occurs when the service delivered is not correct,

i.e. when the service does not comply with specifications or produces not-
specified outputs.

Dependability threats define a sequence of events: Faults in a system and/or
the components of a system could cause functioning errors, and these errors
could lead to a failure to render services.

Means to Achieve Dependability. Many authors has proposed several ways
to achieve dependability. For instance, Aviziens et al. [2] identifies four types of
techniques: fault prevention, fault removal, fault tolerance, and fault prediction.

Fault prevention: Techniques applied during system design and development
to prevent fault occurrence. These techniques include thorough specification
inspection, system simulations, and use of verification tools.

Fault removal: Techniques aimed at deleting or reducing the number of faults
that appear during system operation. These techniques involve diagnostic
activities, system modifications, and tests on changes that have been made.

Fault tolerance: Techniques to assure that the computing system continues to
function correctly despite the presence of faults. Usually, this can be done by
using some type of redundancy. When a fault arises, the system can: (1) detect
it, (2) locate the component where the fault is present, and (3) isolate this
component. Once the faulty component is identified, a recovery is executed in
one of two ways: the system may be re-configured, disabling the component, or
perform a graceful degradation, rendering system services but with decreased
capabilities.

Fault prediction: Techniques that aim to estimate faults as they arise during
system operation and predict their possible occurrences and consequences.
Normally, these techniques are used to assess the system or possible damages
to it. Assessments are qualitative or quantitative.

326 C. E. Gómez et al.

3 UnaCloud

3.1 Overview

UnaCloud is a DC [11] that uses idle resources from desktops in an educa-
tional institution’s computer room in order to provide Infrastructure as a Ser-
vice (IaaS), which is one of the main services of cloud computing. UnaCloud is
currently used at Universidad de los Andes5 to support research projects and
PhD theses in areas such as Civil and Chemical Engineering, Image Processing,
Bio-informatics, and Data Mining.

The UnaCloud platform aims for the lowest possible impact on tasks devel-
oped by desktop users. Therefore, this platform executes VMs with low priority
and in the background on par with the users’ applications. UnaCloud is nor-
mally used to execute BoT-type applications. However, UnaCloud has recently
been used to run distributed apps for Bio-informatics and Data Mining that work
under other schemes. These applications could require clusters where nodes coor-
dinate assignments among themselves and require constant inter-communication.

In UnaCloud, we identify three main user types:

1. Cloud User: A person that uses the computing capacities offered by Una-
Cloud. A user is able to create and deploy VM clusters. Generally, cloud users
are researchers without much knowledge in virtualization and distributed
computing; as such, they require assistance.

2. UnaCloud Administrator: The person that manages UnaCloud. This person
tracks laboratory information, hosts, repositories and deployments. The per-
son manages users and performs configuration and monitoring tasks on the
system.

3. Desktop Users: People, typically students, that are using a desktop that is
part of UnaCloud. Although they are not platform users, their applications
have a higher priority than VMs. Actions in their own desktop computers
could affect the functioning of UnaCloud.

UnaCloud operation is built on three fundamental concepts:

1. Virtual image: A set of files that form a previously configured VM for exe-
cution by a hypervisor. It corresponds to the configuration files of a VM and
to the files with disk images. For example, if Oracle VirtualBox hypervisor
is used, the virtual image corresponds to .vbox and .vdi files. A completely
functional VM can be created from a virtual image, provided that the cloud
user complies with UnaCloud’s required conditions for execution.

2. Cluster: A set of virtual images that a cloud user establishes to be used in one
deployment on UnaCloud. For example, if a system formed by one master and
ten workers is to be executed, the cluster is created with two virtual images:
(1), the master and (2), the worker. These images are used as templates to
create VMs and must be carefully prepared for them to be executed correctly
on UnaCloud.

5 http://www.uniandes.edu.co.

http://www.uniandes.edu.co

Fault Characterization and Mitigation Strategies in Desktop Cloud Systems 327

3. Deployment: A request made by a cloud user to execute a cluster on Una-
Cloud. In this case, the user must specify how many instances of each virtual
image are to be executed and define VM specifications in terms of processing
cores and memory. A deployment is then materialized in the execution VMs
on physical machines as allocated or appointed.

UnaCloud is managed through a web application through which users,
according to their profile, make the requests. On the server side are the compo-
nents that manage the business rules to make decisions about resource allocation
(VMs to desktops), and the virtual images. On the client side, the entire opera-
tion is carried out through an Internet browser. On the desktop side, an agent is
required in every desktop where UnaCloud executes the VMs. The agent receives
commands from the UnaCloud server and translate them into commands that
are understood by the hypervisor to create, configure, turn on, and turn off VMs,
among others. Finally, the monitor is in charge of retrieving information on the
resource consumption in a computer.

3.2 Virtual Machines Deployment

A deployment of a VM in UnaCloud starts with a request from the cloud user.
When the UnaCloud server processes the request, the execution of each VM is
controlled through a state machine.

After requesting deployment, the tasks performed for each VM can be clas-
sified into two categories or phases: Preparation and Execution.

Preparation. In the Preparation phase (§ Fig. 2), a VM goes through the fol-
lowing states: Requested, Transmitting, Configuring and Deploying.
Under normal operating conditions, at the end of the Preparation phase, the
VM enters into the Deployed state and then enters into the Execution phase.

Fig. 2. States of a deployment in UnaCloud – preparation phase

In each of the possible states a VM can be in during the deployment, a set
of tasks must be performed within a given time. If the tasks are not carried out
within that time, a timeout is triggered and as a consequence, the VM enters a
Failed state. The VM then goes to a Finished state and is turned off.

328 C. E. Gómez et al.

As can be seen in Fig. 2, the time allocated before moving to Failed state
depends on the activity to be performed. For instance, while the timeout for the
Transmitting states is 20 min, the timeout for Deploying is only 8 min.

In the Preparation phase, a deployment can fall into Failed state for different
reasons. For example, an image may be poorly configured, which is why it does
not start execution; the network may have operating problems, so the virtual
image cannot be copied to the computer where the VM will be deployed; the
UnaCloud server cannot communicate with the agent on one or more computers;
or the desktop user turns off the computer, restarts it, or executes demanding
processes, so the VM is unable to execute as expected due to lack of resources.

Execution. On the other hand, in the Execution phase of a VM the following
states can be found: Deployed, Reconnecting, Finishing, and Finished
(See Fig. 3).

Fig. 3. States of a deployment in UnaCloud – execution phase

In the Execution phase, a temporary fault may occur. These are generally
associated with the loss of communication between the UnaCloud server and the
agent running on a computer. If the communication breakdown persists for four
minutes, it goes into the Reconnecting state. It can stay like this for up to
10 min, at which point the VM goes to Failed, then to the Finished state and
is turned off.

4 Analysis of Failure States and Their Possible Causes

Like any computer system, UnaCloud can experience failures at any time. The
cause of the failure cannot always be determined since different errors can cause
the same failure in the service, and several faults can lead to the same error.

For example, a failure in the service can occur when the UnaCloud agent on
the computer is inaccessible. This can be caused because: (1) the desktop user
turned off the computer; (2) the desktop user restarted the computer; (3) the
network cable of the computer was disconnected; (4) a maintenance policy in
the computer room was applied and, as a result, the computer was restarted; or

Fault Characterization and Mitigation Strategies in Desktop Cloud Systems 329

(5) there was a change in the configuration of the network. As these examples
show, the same failure in the service can be due to faults caused by different
actors including the user of the desktop or the administrator of the computer
room.

It is important to note that a failure in the service can have different conse-
quences depending on the state of deployment the VM is in. For example, if the
UnaCloud agent on the computer is not accessible and the deployment is in the
Initial state, the deployment cannot be requested; however, if the VM is in the
Requested state, the files that make up the virtual image cannot be requested.

This section presents our analysis of failures in the UnaCloud service for
which following set of assumptions were taken into account:

1. The cloud user knows the UnaCloud platform and can use it correctly through
the web interface.

2. The UnaCloud software has no development flaws.
3. UnaCloud services on the server side are not affected in their execution due

to failures in the service of its infrastructure.
4. The software that the cloud user executes on the MVs has no defects nor it

is time sensitive.
5. The hypervisors are installed correctly on the physical machines that are part

of UnaCloud.
6. The UnaCloud administrator does its work without affecting its normal oper-

ation, despite its privileges.
7. Hardware defects and natural disasters are less frequent and will not be con-

sidered.

Below we present our analysis of four failures in the service when: (1) The
UnaCloud agent on the computer is not accessible. (2) The UnaCloud agent on
the computer is accessible, but the virtual machine is not. (3) The hypervisor
cannot execute the boot configuration task of the virtual machine. (4) The virtual
image cannot be copied to the desktop.

For each failure, we consider the causes (errors and faults) and the failure
consequences, as well as the possible mitigation strategies, as shown in Fig. 4.

Fig. 4. Faults propagation chain

330 C. E. Gómez et al.

4.1 F1: The UnaCloud Agent on the Computer Is Not Accessible

During UnaCloud execution, the agent located on each desktop may no longer
be accessible. When this occurs, the system is unable to communicate with
the agent, obtain information about processes running on the desktop, or send
instructions to the hypervisor to control the VM.

This failure in the service occurs when there is a connection error with the
agent. Table 1 shows the user that can cause a fault as well as mitigation strategies.

Table 1. Causes and mitigation strategies of the failure in the service F1

Error: e1 – Error connecting to the agent

User Faults Mitigation strategy

u1: Desktop User f1: Shut down the machine m1: Save the execution
context

f2: Restarted the machine

f3: Disconnected the network
cable from the machine

m2: Wait. It is temporary

u2: Computer Lab
Administrator

f4: Restarted the machine for
scheduled maintenance

m1: Save the execution
Context

f5: Changed the network
configuration

If it is temporary, m2: Wait.
Otherwise, m3: Migrate to
other host

The consequences of this failure depend on the execution state of the deploy-
ment. For example, when the VM is in the Initial state and has been assigned
to the computer where the agent is not accessible, then the system cannot start
deployment. Table 2 summarizes the consequences identified for this failure in
the service.

Table 2. States in which failure in the service F1 occurs and its consequences.

State Consequence

Initial c1: Deployment task failure

Requested c2: Files from the VM image cannot be requested

Transmitting c3: Transmission can not be completed

Deployed c4: The UnaCloud server can not receive the VM status report

Reconnecting

Fault Characterization and Mitigation Strategies in Desktop Cloud Systems 331

4.2 F2: The UnaCloud Agent on the Computer Is Accessible, but
the Virtual Machine Is Not

During execution, it is possible that UnaCloud could not determine the execution
state of some VMs despite it is able to communicate with the agent located in
the corresponding desktops.

This failure in the service is due to a connection error with the VM. Table 3
shows possible faults, the user who generates them, and their corresponding
mitigation strategies.

Table 3. Causes and mitigation strategies of the failure in the service F2

Error: e2 – Error connecting to the hypervisor or the virtual machine

User Faults Mitigation strategy

u2: Computer Lab
Administrator

f4: Restarted the machine for
scheduled maintenance

m1: Save Execution Context

f5: Changed the network
configuration

If it is temporary, m2: Wait.
Otherwise, m3: Migrate to
other host

u3: Hypervisor f6: Error in the hypervisor.
The hypervisor is blocked

If it is temporary, m2: Wait.
Otherwise, m1: Save
execution context

f7: Error in the application
to communicate with the
hypervisor

m3: Migrate to other host

The consequences of this failure in the service depend completely on the
specific application that the cloud user is executing on the DC (§ Table 4).

Table 4. States in which failure in the service F2 occurs and its consequences.

State Consequence

Deployed c5: Not determined. It depends on the cloud user’s application

4.3 F3: The Hypervisor Cannot Execute the Boot Configuration
Task of the Virtual Machine

When a cloud user wants to run a cluster deployment in UnaCloud, the virtual
images required must have been supplied. In this part of the process, the user
intervention is key for the execution of deployment of the VM to succeed. When it

332 C. E. Gómez et al.

Table 5. Causes and mitigation strategies of the failure in the service F3

Error: e3 – Unable to login to execute the configuration script

User Faults Mitigation strategy

u3: Hypervisor f8: The image of the VM does not
have the required complements for
the configuration

m4: Facilitate the cloud user
(u4) the creation of their
virtual images

u4: Cloud user f9: The VM image does not have
software installed for the
configuration procedure (E.g.,
remote access)

f10: The operating system installed
in the VM is not compatible with
the configuration procedure

f11: The VM has a configuration
that is incompatible with the
configuration procedure (E.g., the
type of network)

Error: e4 – The configuration of the VM is incompatible

User Faults Mitigation strategy

u4: Cloud user f12: The password provided when
uploading the image is not correct

m5: Educate the cloud user
(u4) the creation of their
virtual images

f13: The image of the VM does not
have a root user with a valid
password to execute the
configuration procedure

is not possible to execute the configuration that allows the VM to start, possible
causes for this have been identified. These are summarized in Table 5 along with
the mitigation strategies.

Naturally, if the configuration task cannot be carried out, the VM cannot be
configured and its execution will not start (§ Table 6).

Table 6. States in which failure in the service F3 occurs and its consequences.

State Consequence

Configuring c6: The VM cannot be configured

4.4 F4: The Image Cannot Be Copied to the Desktop

When requesting a deployment by the cloud user, it is possible that the files
composing the virtual image required cannot be copied to the assigned desktop.
When this occurs, the system is unable to create the VM.

Fault Characterization and Mitigation Strategies in Desktop Cloud Systems 333

This failure in the service F4 can occur either due to insufficient space in
the computer assigned to receive the files, or due to the network’s inability to
complete the transmission. Table 7 shows the user that can generate the fault
and its mitigation strategy.

Table 7. Causes and mitigation strategies of the failure in the service F4

Error: e5 – The hard drive is full

User Faults Mitigation strategy

u5: UnaCloud
development team

f14: The resource allocation
algorithm assigned a machine
without sufficient disk space

m6: Design new resource
allocation algorithms based
on disk space monitoring
information

Error: e6 – Error during the transmission of a file

User Faults Mitigation strategy

u6: Data network f15: Congestion in the
network and transmission
fails

If it is temporary, m2: Wait

As a consequence of this failure, the transmission cannot be completed and
the VM cannot be created. See Table 8.

Table 8. States in which failure in the service F4 occurs and its consequences.

State Consequence

Transmitting c3: Transmission can not be completed

4.5 Summary

Figure 5(a) shows the DC fault propagation including the user who causes the
fault, the error, the failure in the service and its consequences. We note that
the desktop user (user u1) and computer lab administrator (user u2) have much
influence on faults despite not being cloud users. In addition, several faults pro-
duces the same error. For example, faults f1, f2, f3, f4 and f5 produces the error
e1, and more than one error can cause the same failure. In Fig. 5(a), errors e3
and e4 cause the failure F3. Likewise, a failure can have several consequences.
Failure F1 has four consequences, depending on the state of the VM deployment.

The analyzed failures can be mitigated using different strategies, e.g. saving
the state of the execution of the system; migrating the compromised virtual
machines to other desktops; facilitating the user of the cloud the creation of
their virtual images, e.g. providing a catalog of images of VM to facilitate access
to DC services; and educating the cloud user in the preparation of the VM
so that they can be executed in UnaCloud, or waiting if the fault is temporary.
Figure 5(b) includes the six mitigation strategies that we propose for the 15 faults

334 C. E. Gómez et al.

Fig. 5. Desktop cloud fault propagation and mitigation strategies

identified. The most relevant mitigation strategies are m1 (save the execution
context) and m4 (facilitate the creation of the virtual images). It is important
to highlight this analysis allows us to direct our efforts towards a solution that
allows to save the state of an execution, along with to offer a easier way to use
the platform for the cloud users, to improve the dependability.

5 Conclusions and Future Work

This article presents a characterization of the main failures in the service pre-
sented in desktop cloud systems using UnaCloud as a case study. This character-
ization describes the possible causes (faults and errors) and mitigation strategies
to improve the dependability of the services offered to the cloud user. The failures
identified are: the lack of access to computers and virtual machines; the inability
to configure virtual machines; and the inability to complete the transfer of files
with virtual images. Although failures in the service in the Preparation phase
can be more frequent due to the cloud user and the desktop user intervention,
the failures in service during Execution are of greater concern because completed
work can be lost. The analysis carried out in this work can be applied to other
cloud platforms in order to help improve dependability in the service. As future
work, we plan to make new analyses, reducing the set of assumptions mentioned
in Sect. 4. In addition, the possibility of integrating a solution of global snapshot

Fault Characterization and Mitigation Strategies in Desktop Cloud Systems 335

to save the state of the system and implement new functions in the existing mon-
itoring system have been considered, thus using this information in the allocation
of virtual machines to computers.

References

1. Alwabel, A., Walters, R., Wills, G.: A view at desktop clouds. In: International
Workshop on Emerging Software as a Service and Analytics (ESaaSA 2014), pp.
55–61 (2014)

2. Avizienis, A., Laprie, J.C., Randell, B., Landwehr, C.: Basic concepts and taxon-
omy of dependable and secure computing. IEEE Trans. Dependable Secure Com-
put. 1(1), 11–33 (2004)

3. Bakken, D.E., Schlichting, R.D.: Tolerating failures in the bag-of-tasks program-
ming paradigm. In: 21st International Symposium on Fault-Tolerant Computing,
FTCS-21, pp. 248–255. IEEE (1991)

4. Cunsolo, V., Distefano, S., Puliafito, A., Scarpa, M.: Volunteer computing and
desktop cloud: the Cloud@Home paradigm. In: 8th IEEE International Symposium
on Network Computing and Applications, NCA 2009, pp. 134–139 (2009)

5. Jonsson, E.: An integrated framework for security and dependability. In: The 1998
Workshop on New Security Paradigms, NSPW 1998, pp. 22–29 (1998)

6. Jonsson, E.: Towards an integrated conceptual model of security and dependability.
In: The First International Conference on Availability, Reliability and Security,
ARES 2006, 8 pp. IEEE (2006)

7. Kangarlou-Haghighi, A.: Improving the reliability and performance of virtual cloud
infrastructures. Ph.D. thesis, Purdue University (2011)

8. Kondo, D.: Scheduling task parallel applications for rapid turnaround on desktop
grids. Ph.D. thesis, University of California, San Diego (2005)

9. Laprie, J.C.: Dependability: basic concepts and terminology. In: Laprie, J.C.
(ed.) Dependability Basic Concepts and Terminology. Dependable Computing and
Fault-Tolerant Systems, vol. 5. Springer, Vienna (1992). https://doi.org/10.1007/
978-3-7091-9170-5 1

10. Prasad, D., McDermid, J., Wand, I.: Dependability terminology: similarities and
differences. In: 10th Annual Conference on Computer Assurance, COMPASS 1995,
pp. 213–221. IEEE (1995)

11. Rosales, E., Castro, H., Villamizar, M.: UnaCloud: opportunistic cloud computing
infrastructure as a service. In: Cloud Computing, pp. 187–194 (2011)

12. Sarmenta, L.F.G.: Volunteer computing. Ph.D. thesis, Massachusetts Institute of
Technology (2001)

13. Segal, B., et al.: LHC cloud computing with CernVM. PoS, p. 004 (2010)

https://doi.org/10.1007/978-3-7091-9170-5_1
https://doi.org/10.1007/978-3-7091-9170-5_1

Author Index

Adriance, Andrew 179
Agudelo, William 101
Alexandrov, Vassil 265
Alin, François 123
Araya, Guillermo 174
Arguello, Henry 101
Avetisyan, Arutyun 307

Babenko, Mikhail 307
Baranzano, Andrés 157
Barrios, Carlos 280
Basharina, Olga 265
Becerra, Sandra 101
Bederián, Carlos Sergio 255
Bernard, Nicolas 18
Brandão, Diego 194
Bychkov, Igor 265

Caballero, Sebastián 157
Cabral, Frederico L. 194
Calvo, Manfred 239
Carreño, Emmanuell Diaz 112
Castano, Andres P. 75
Castro, Harold E. 322
Chavarriaga, Jaime 322
Costa, Gabriel P. 194
Cucchietti, Fernando 174

de la Ossa Osegueda, Alvaro 41
Díaz, Gilberto 280
Dorronsoro, Bernabé 293
Duarte, Maria 101

Ebalunode, Jerry 33

Feoktistov, Alexander 265
Fernández-Escribano, Gerardo 90

García Heano, John Anderson 3
García-Muller, Pablo 224
Gómez, Carlos E. 322

Gómez-Iglesias, Antonio 224
Goñi, Gerardo 293
Gonzaga de Oliveira, Sanderson L. 194
Gorsky, Sergei 265
Grima, Rogeli 174
Guillén-Rondon, Pablo 33

Henao, Oscar 75
Hernández, Benjamín 59
Hincapie, Juan 75

Iturriaga, Santiago 293

Jaillet, Christophe 123
Jiménez, Diego 239

Kischinhevsky, Mauricio 194
Kostromin, Roman 265
Krajecki, Michaël 123

León, Kareth 101
Leprévost, Franck 18
Loiseau, Julien 123
Lopez-Falcon, Esteban C. 307
Lupo, Chris 179

Marin, Guillermo 174
Martínez, Víctor 112, 213
Mayo-García, Rafael 224
Mazuecos Pérez, Mauricio D. 255
Mehaut, Jean-François 112
Meneses, Esteban 239
Meta, Irene 174
Meyer, Norbert 224
Miranda-López, Vanessa 307
Monsalve, Jonathan 101
Monsegny, Jorge 101
Moríñigo, José A. 224

Navaux, Philippe O. A. 112, 213
Nesmachnow, Sergio 141, 157, 293
Nola, Derek 90

Osorio, John H. 75
Osthoff, Carla 194

Padoin, Edson Luiz 112, 213
Panetta, Jairo 112
Pantoja, María 90, 179
Paraschiv, Elena G. 90
Pavan, Pablo J. 112, 213
Precioso, Frédéric 3

Riveill, Michel 3
Rivera-Rodriguez, Raul 265
Robinson, Melvin 33
Rocchetti, Nestor 141
Rojas, Pablo 280
Rubio-Montero, Antonio J. 224

Ruiz, Sergio 59
Ruiz-Coll, Damián 90

Seiler, Nahuel G. 255
Serpa, Matheus S. 112, 213
Sidorov, Ivan 265
Souto, Roberto P. 194
Staccini, Pascal 3

Tancredi, Gonzalo 141
Tchernykh, Andrei 265, 293, 307

Vega, Augusto J. 255

Wolovick, Nicolás 255

338 Author Index

	Preface
	Organization
	Contents
	Artificial Intelligence
	Parallel and Distributed Processing for Unsupervised Patient Phenotype Representation
	1 Introduction
	2 Related Work
	3 Materials and Methods
	4 Experiments and Results
	5 Conclusions
	References

	Evolutionary Algorithms for Convolutional Neural Network Visualisation
	1 Introduction
	2 Convolutional Neural Networks
	2.1 What Is a Convolutional Neural Network?
	2.2 The Understanding/Visualisation Issue

	3 Evolutionary Algorithms
	3.1 An EA Example
	3.2 Differences and Similarities Between EA and NN

	4 Our Approach: Strategy and Implementation
	4.1 The Initial Strategy
	4.2 Our EA
	4.3 Running the EA

	5 Results and Discussion
	6 Conclusion and Future Works
	References

	Breast Cancer Classification: A Deep Learning Approach for Digital Pathology
	1 Introduction
	2 Materials and Methods
	2.1 Dataset
	2.2 Preprocessing
	2.3 Dataset Creation
	2.4 CNN Architecture
	2.5 Methods

	3 Results
	4 Conclusions
	References

	Where Do HPC and Cognitive Science Meet in Latin America?
	1 Introduction
	2 Artificial Intelligence and Cognitive Science
	2.1 Origins and Fundamental Goals of Artificial Intelligence
	2.2 Cognitive Science: Goals and Disciplines
	2.3 The Standard Fields of Cognitive Science
	2.4 The Cognitive Science Research Framework

	3 HPC and AI Meet
	4 The Need for a Closer HPC–CogSci Relationship
	4.1 Trends in Cognitive Science
	4.2 A Research Example: Modeling Recall in Human Memory

	5 How to Bring HPC and Cognitive Science Closer in Latin America
	6 Conclusions
	References

	Accelerators
	A Hybrid Reinforcement Learning and Cellular Automata Model for Crowd Simulation on the GPU
	1 Introduction
	2 Related Work
	2.1 Reinforcement Learning in Crowd Simulation
	2.2 Cellular Automata for Pedestrian Behavior Modeling

	3 Problem Modeling
	3.1 Reinforcement Learning for Navigation
	3.2 Cellular Automata for Local Collision Avoidance
	3.3 Improved Cellular Automata for Local Collision Avoidance
	3.4 Coupling Navigation and Local Collision Avoidance

	4 Implementation Details and Results
	5 Conclusions and Future Work
	References

	In-situ Visualization of the Propagation of the Electric Potential in a Human Atrial Model Using GPU
	1 Introduction
	2 Methods
	3 Computational Implementation in C
	4 Implementation Using GPU (Graphic Processing Units)
	5 In-situ Visualization Architecture
	6 Results
	7 Conclusions and Future Work
	References

	GPU Acceleration for Directional Variance Based Intra-prediction in HEVC
	1 Introduction
	1.1 Previous Work in Parallel Intra Prediction
	1.2 Structure of Paper

	2 Overview HEVC Intra-prediction
	3 The MDV-SW Algorithm
	4 Parallelization of the MDV-SW Algorithm
	5 Results
	6 Conclusions and Future Work
	References

	Fast Marching Method in Seismic Ray Tracing on Parallel GPU Devices
	1 Introduction
	2 Fast Marching Method for Ray Tracing Using Eikonal Equation
	3 3D-Case Parallel Approach for the Fast Marching Method
	4 Simulations and Results
	5 Conclusions
	References

	Improving Performance and Energy Efficiency of Geophysics Applications on GPU Architectures
	1 Introduction
	2 Related Work
	3 Geophysical Model Optmizations
	4 Experimental Methodology
	5 Results
	5.1 Performance and Energy Efficiency Improvements over Naive Version
	5.2 Performance and Energy Efficiency Improvements over Shared Memory
	5.3 Performance and Energy Efficiency Improvements over Read-Only Memory

	6 Conclusion
	References

	FleCSPHg: A GPU Accelerated Framework for Physics and Astrophysics Simulations
	1 Introduction
	2 Simulation, Binary Neutron Stars
	2.1 Smoothed Particle Hydrodynamics
	2.2 Fast Multipole Methods for Gravitation

	3 FleCSI and FleCSPH
	3.1 FleCSI
	3.2 FleCSPH

	4 FleCSPHg
	4.1 Physics on Accelerators

	5 Results
	5.1 Performances
	5.2 Simulations

	6 Conclusion
	References

	Applications
	Comparison of Tree Based Strategies for Parallel Simulation of Self-gravity in Agglomerates
	1 Introduction
	2 Related Work: Static and Dynamic Spatial Domain Decomposition
	3 Implementation of the Barnes and Hut Tree
	3.1 Octal Tree Structure
	3.2 Creating the Tree
	3.3 Updating Self-gravity

	4 Implementation of the Binary Tree
	4.1 Structure and Process of Creation of the Binary Tree
	4.2 Comparison of the Binary Tree and the Octal Tree

	5 Experimental Evaluation Setup
	5.1 Test Scenarios
	5.2 Simulation Details
	5.3 Experimental Platform

	6 Performance Results
	7 Conclusions and Future Works
	References

	Parallel Implementations of Self-gravity Calculation for Small Astronomical Bodies on Xeon Phi
	1 Introduction
	2 Self-gravity Computation on Small Astronomical Bodies
	2.1 Self-gravity Calculation on Agglomerates
	2.2 Mass Approximation Algorithm
	2.3 Related Work: Parallel Algorithms for Self-gravity and Other Particle Interactions Calculation

	3 Multithreading Libraries for Intel Xeon Phi
	3.1 Pthreads
	3.2 Intel Cilk Plus
	3.3 Intel Threading Building Blocks
	3.4 Comparative Analysis

	4 Parallel Implementations for Self-gravity Calculation
	4.1 Baseline Method: Sequential Implementation
	4.2 Parallel Implementation Using Cilk Plus
	4.3 Parallel Implementation Using Thread Building Blocks

	5 Experimental Evaluation
	5.1 Methodology
	5.2 Sequential Implementation
	5.3 Intel Cilk Plus
	5.4 Intel Thread Building Blocks
	5.5 Results Discussion

	6 Conclusions and Future Work
	References

	Visualization of a Jet in Turbulent Crossflow
	1 Introduction
	2 Approach and Outcome Discussion
	References

	Acceleration of Hydrology Simulations Using DHSVM for Multi-thousand Runs and Uncertainty Assessment
	1 Introduction
	1.1 Previous Work
	1.2 Paper Structure

	2 Background
	2.1 Distributed Hydrology-Vegetation Model - DHSVM
	2.2 Uncertainty Analysis

	3 Implementation
	3.1 Software Feature Additions
	3.2 Serial Optimization

	4 Results
	4.1 Validation
	4.2 Guaranteeing Correctness
	4.3 Timing Comparisons
	4.4 Profile Analysis

	5 Conclusion and Future Work
	References

	Fine-Tuning an OpenMP-Based TVD–Hopmoc Method Using Intel® Parallel Studio XE Tools on Intel® Xeon® Architectures
	1 Introduction
	2 Related Work
	3 A Naive OpenMP Implementation of the TVD–Hopmoc Method
	4 The CoP OpenMP-Based Implementation of the TVD–Hopmoc Method
	5 An Improved Explicit Work-Sharing Approach Along with an Explicit Synchronization (EWS-Sync) Strategy
	6 Results and Analysis
	6.1 Executions Performed on Intel® Many Integrated Core Architectures
	6.2 Executions Performed on an Intel® Scalable Processor

	7 Conclusion
	References

	Performance Evaluation
	Performance Evaluation of Stencil Computations Based on Source-to-Source Transformations
	1 Introduction
	2 Stencil Model
	3 S2S Frameworks
	4 Experimental Methodology
	4.1 Kernel Definition
	4.2 Tesbed
	4.3 Results

	5 Related Work
	6 Conclusion and Future Work
	References

	Benchmarking LAMMPS: Sensitivity to Task Location Under CPU-Based Weak-Scaling
	1 Introduction
	2 Related Work
	3 Supercomputers Architecture
	3.1 Stampede at TACC (USA)
	3.2 Helios at IFERC (Japan)
	3.3 Eagle at PSNC (Poland)

	4 LAMMPS Benchmark Description
	4.1 Effect of Atomistic Interactions
	4.2 Benchmark RHODO
	4.3 Setup and Execution Issues

	5 Results
	6 Conclusions
	References

	Analyzing Communication Features and Community Structure of HPC Applications
	1 Introduction
	2 Communication Characteristics of HPC Applications
	2.1 A Tool for Obtaining Communication Matrices
	2.2 Benchmark Applications
	2.3 Results

	3 Community Structure of HPC Applications
	3.1 Quality Metrics
	3.2 Algorithms
	3.3 Results

	4 Related Work
	5 Final Remarks
	References

	Power Efficiency Analysis of a Deep Learning Workload on an IBM ``Minsky'' Platform
	1 Introduction
	2 Power Analysis
	3 Improvements
	4 Conclusion
	References

	Platforms and Infrastructures
	Orlando Tools: Development, Training, and Use of Scalable Applications in Heterogeneous Distributed Computing Environments
	Abstract
	1 Introduction
	2 Related Work
	3 Orlando Tools
	4 Application for Solving Warehouse Logistics Problems
	4.1 Conceptual Model Design
	4.2 Problem Formulation
	4.3 Problem-Solving Scheme Execution
	4.4 End-User Training
	4.5 Computational Experiments

	5 Conclusions
	Acknowledgment
	References

	Methodology for Tailored Linux Distributions Development for HPC Embedded Systems
	1 Introduction
	1.1 Linux Operating System Components
	1.2 Building an Operating System
	1.3 Development Tools

	2 Methodology
	2.1 Requirement Gathering
	2.2 Design
	2.3 Implementation
	2.4 Verification
	2.5 Maintenance

	3 Results
	3.1 Test Environment
	3.2 Outcomes

	4 Conclusions
	References

	Cloud Computing
	Cost and QoS Optimization of Cloud-Based Content Distribution Networks Using Evolutionary Algorithms
	1 Introduction
	2 Related Work
	3 Problem Description
	3.1 System Model
	3.2 Problem Formulation

	4 Offline Algorithms for Cloud Resources Allocation
	4.1 Evolutionary Optimization Approach
	4.2 Solution Encoding
	4.3 Population Initialization
	4.4 Evolutionary Operators
	4.5 Parameter Configuration

	5 Online Algorithm for Routing Network Requests
	6 Problem Instances
	7 Calibration Study
	7.1 Stopping Condition Calibration
	7.2 Bucket Size Calibration

	8 Experimental Results
	8.1 MOEA Comparison
	8.2 Results Discussion

	9 Conclusions
	References

	Bi-objective Analysis of an Adaptive Secure Data Storage in a Multi-cloud
	Abstract
	1 Introduction
	2 Related Work
	3 Cloud Storage Providers
	4 Model
	4.1 Residue Number System
	4.2 Model Description
	4.3 Strategies

	5 Experimental Setup
	5.1 Upload and Download Speeds
	5.2 Probability of Failure

	6 Experimental Analysis
	6.1 Solution Space and Pareto Front

	7 Conclusion
	Acknowledgments
	References

	Fault Characterization and Mitigation Strategies in Desktop Cloud Systems
	1 Introduction
	2 Background
	3 UnaCloud
	3.1 Overview
	3.2 Virtual Machines Deployment

	4 Analysis of Failure States and Their Possible Causes
	4.1 F1: The UnaCloud Agent on the Computer Is Not Accessible
	4.2 F2: The UnaCloud Agent on the Computer Is Accessible, but the Virtual Machine Is Not
	4.3 F3: The Hypervisor Cannot Execute the Boot Configuration Task of the Virtual Machine
	4.4 F4: The Image Cannot Be Copied to the Desktop
	4.5 Summary

	5 Conclusions and Future Work
	References

	Author Index

