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Abstract We survey some recent progress on the design and the analysis of online
algorithms for optimization problems with non-linear, usually convex, objectives.
We focus on an extension of the online primal dual technique, and highlight its
application in a number of applications, including an online matching problem
with concave returns, an online scheduling problem with speed-scalable machines
subjective to convex power functions, and a family of online covering and packing
problems with convex objectives.

1 Introduction

Online combinatorial optimization problems are ubiquitous. In these problems,
partial decisions must be made irrevocably based on the information revealed so
far. For example, in the online bipartite matching problem, only one side of the
vertices is given at the beginning. Then, the vertices on other side arrive one by one.
On the arrival of an online vertex, its incident edges are revealed and the algorithm
must irrevocably decide how to match it without any knowledge of the vertices
that will arrive later. Due to the uncertainty of future, it is impossible in general to
guarantee a maximum cardinality matching in the online setting. The performance
of the algorithm is measured by the ratio of the size of the obtained matching to that
of the maximum matching in hindsight. The competitive ratio of the algorithm is
defined to be the above ratio in the worst case.

The online bipartite matching problem and its many variants are extensively
studied in the literature. So are other classic online combinatorial optimization
problems, including online covering and packing problems, online caching and
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paging, and online scheduling. Most of the previous work have focused on problems
with linear objectives in the sense that the objective function can be written as a
linear function of the decision variables. For example, the standard formulation of
online bipartite matching uses an indicator variable xe ∈ {0, 1} to denote whether an
edge e is chosen in the matching. The objective, i.e., the cardinality of the matching,
is simply the sum of all such indicator variables. It remains linear even if we consider
the generalization which allows edge weights and seeks to maximize the total weight
instead of the cardinality of the matching.

However, there are also a wide range of problems whose natural formulations
involve non-linear (often convex or concave) objectives. For instance, a variant of
the online bipartite matching problem originated from the Adwords problem allows
an offline vertex to match multiple online vertices, but imposes a cap (e.g., an adver-
tiser’s budget in the Adwords problem) on the total gain of an offline vertex. In other
words, the contribution of an offline vertex to the objective function is the smaller of
its cap and the sum of weights of matched edges incident to it. The objective is then
the sum of such cap-additive functions of the decision variables, which are concave
instead of linear. Other examples of online combinatorial optimization problems
with non-linear objectives include online scheduling problems with speed-scalable
machines in which the energy consumption of a machine is a convex function of its
speed, and a generalized online resource allocation problems in which each resource
has a “soft capacity constraint” specified by a convex production cost function.

In this chapter, we will survey some recent progress in the design and analysis
of online algorithms for online combinatorial optimization problems with non-
linear objectives. We will talk about a line of research on generalizing the online
primal dual technique by Buchbinder and Naor [6], which was originally designed
for linear objectives, to handle convex and concave objectives. The generalization
allows us to solve the above-mentioned problems that do not admit natural linear
program relaxations.

In particular, we will focus on convex programs and Fenchel’s duality in the non-
stochastic setting. Readers are also referred to other interesting work along this line,
including using the online primal dual technique (or dual fitting) with Lagrangian
duality by Anand et al. [2], Gupta et al. [12], Nguyen [17], and online stochastic
convex optimization by Agrawal and Devanur [1].

1.1 Organization

We will first recap the online primal dual technique (Section 2), and explain how to
extend it to handle convex programs via Fenchel’s duality (Section 3). Then, we will
talk about three applications of the extension: online matching with concave returns
[11] (Section 4), online scheduling with speed scaling [10] (Section 5), and online
covering and packing problems with convex objectives [3] (Section 6).
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2 Online Primal Dual for Linear Objectives

We first give a brief introduction to the original online primal dual technique for
problems with linear objectives by demonstrating its application in the ski-rental
problem (e.g., Buchbinder and Naor [6]). Readers who are familiar with the original
online primal dual technique may skip this section.

In the ski-rental problem, a skier arrives at a ski resort but does not know when
the ski season will end. Every day, if the skier has not bought skis yet, she needs to
decide whether to rent skis at a cost of $1 or to buy skis at a cost of $B. We will
assume for simplicity of our discussion that B is a positive integer. The goal is to
minimize the total cost.

We follow the standard framework of competitive analysis of online algorithms.
That is, we use the optimal cost in hindsight, which equals $T if T ≤ B and $B

otherwise, as the benchmark. The performance of an algorithm for the ski-rental
problem and, in general, for any cost minimization problem, is measured by the ratio
of the expected cost of the algorithm to the optimal cost. We say that an algorithm
is F -competitive or it has competitive ratio F if the aforementioned ratio is at most
F for any instance of the problem. Obviously, the competitive ratio of an algorithm
is always greater than or equal to 1, and the smaller the better.

Consider a natural linear program formulation of the ski-rental problem and the
corresponding dual program below.

minimize B · x + ∑T
t=1 yt

subject to x + yt ≥ 1 t = 1, . . . , T

x, yt ≥ 0 t = 1, . . . , T

maximize
∑T

t=1 αt

subject to
∑T

t=1 αt ≤ B

0 ≤ αt ≤ 1 t = 1, . . . , T

Here, x is the indicator of whether the algorithm buys skis, and yt is the indicator
of whether the algorithm rents skis on day t . For simplicity, we will only discuss
solving the linear programs online to minimize the expected primal objective value.
Readers are referred to the survey by Buchbinder and Naor [6, Section 3] for
an online rounding algorithm which convert the online fractional solution into a
randomized integral algorithm for the ski-rental problem with the same competitive
ratio. Roughly speaking, the fractional value of x denotes the probability that the
algorithm buys skis and the fractional value of yt denotes the probability that the
algorithm rents skis on day t .
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2.1 High-Level Plan

As the input information being revealed over time piece by piece, more variables
and constraints of the primal and dual programs are presented to the algorithm. On
each day t , a new primal variable yt ≥ 0, a new primal constraint x + yt ≥ 1, and
a new dual variable 1 ≥ αt ≥ 0 arrive. Online primal dual algorithms maintain at
all time a feasible primal assignment and a feasible dual assignment simultaneously.
Let ΔtP and ΔtD be the changes of the primal and dual objectives, respectively, on
day t . The goal is to update the primal and dual variables to satisfy:

ΔtP ≤ F · ΔtD (1)

for some fixed parameter F ≥ 1. If Equation (1) holds and the initial values of
the primal and dual objectives are zero, the algorithm is F -competitive because the
final primal objective P is at most F times the final dual objective D, which by
weak duality is less than or equal to the optimal primal objective.1

2.2 Relaxed Complementary Slackness

In order to understand how an online primal dual algorithms can be derived
from the structure of the linear programs, we need to look into their optimality
conditions. It is known that the offline optimal primal and dual solutions satisfy the
complementary slackness conditions, which state that a primal (resp., dual) variable
must be zero unless the corresponding dual (resp., primal) constraint is tight (e.g.,
[9]). Specifically, for the ski-rental problem, we have the followings:

(a) x must be zero unless
∑T

t=1 αt = B;
(b) yt must be zero unless αt = 1;
(c) αt must be zero unless x + yt = 1.

However, it is generally impossible to satisfy all complementary slackness
conditions exactly in an online problem. In particular, it is not possible to guarantee
satisfying conditions (a) and (c) exactly in the ski-rental problem. The best we
could hope for is to satisfy the complementary slackness conditions approximately.
Online primal dual algorithms are therefore driven by satisfying these conditions
approximately, where the value of a primal (resp., dual) variable depends on the
tightness of the corresponding dual (resp., primal) constraint. Concretely, consider

1Some applications of the online primal dual technique maintain an alternative set of invariants,
e.g., one may consider keeping primal and dual objectives equal and guaranteeing primal
feasibility, while showing approximate dual feasibility. However, such variants can be easily
rewritten to fit into the framework in this chapter.
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the following relaxed conditions for the ski-rental problem. Note that condition (b)
will remain the same as it can be satisfied exactly even in the online setting.

(a′) x depends on the tightness of the corresponding dual constraint
∑T

t=1 αt ≤ B,
i.e., it is an increasing function of

∑T
t=1 αt ;

(c′) αt must be zero unless x + yt = 1, at the end of day t (the constraint may have
slack in the future because the algorithm may increase x).

2.3 Online Primal Dual Algorithms

Fix any day 1 ≤ i ≤ T , first consider the new dual variable αi . To maximize the
dual objective, letting αi = min{1, B − ∑i−1

t=1 αt } is the most natural choice in light
of the dual constraints. Recall that B is an integer, this is equivalent to letting αi = 1
if i ≤ B and αi = 0 otherwise. As a result,

∑
t αt increases by 1 on each day i ≤ B

and the algorithm increases x according to condition (a′). Let xi denote the value
of x after day i for i = 1, . . . , B, and x0 = 0. After day B,

∑
t αt and, thus, the

value of x must remain constant because of condition (a′). Further, let yi = 1−xi to
satisfy condition (c′). Note that this is also the most natural choice to minimize the
primal objective. Finally, since we let αi = 0 for i > B, we must have yi = 0 and
x = 1 on any day i > B according to condition (b) and, thus, xB = 1 most hold.

In sum, for every monotone sequence xt , t = 0, 1, . . . , B, such that x0 = 0 and
xB = 1, there is an online primal dual algorithm as follows:

1. On day i = 1, . . . , B, let αi = 1, x = xi , and yi = 1 − xi .
2. On day i > B, let αi = 0, x remains the same (i.e., equals 1), and yi = 0.

2.4 Online Primal Dual Analysis

It remains to find the best monotone sequence {xt }t=1,...,B such that Equation (1)
holds with the smallest possible F ≥ 1. Note that both the primal and dual objectives
remain the same after day B, so it suffices to analyze Equation (1) on the first B

days. On each day t = 1, . . . , B, x changes from xt−1 to xt , and yt = 1 − xt . So the
change of primal objective is equal to:

ΔtP = B · (xt − xt−1) + (1 − xt ) = (B − 1) · xt − B · xt−1 + 1

On the other hand, the algorithm sets αt = 1. So the change of dual objective is

ΔtD = 1
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So Equation (1) becomes (B − 1) · xt − B · xt−1 ≤ F − 1. Reorganizing terms,
it is equivalent to the followings:

xt + F − 1 ≤ B
B−1 (xt−1 + F − 1) ,

Using the above inequality for 1, 2, . . . , t , we get that:

xt ≤ (
B

B−1

)t
(x0 + F − 1) − (F − 1) = ((

B
B−1

)t − 1
)
(F − 1) (2)

Let e(B) = (
B

B−1

)B . We have e(B) ≥ e and limB→+∞ e(B) = e ≈ 2.718. By

xB = 1 and the above inequality, we have F ≥ e(B)
e(B)−1 . Let F = e(B)

e(B)−1 and let xt

be such that Equation (2) holds with equality. Then, we have an online primal dual
algorithm with competitive ratio e(B)

e(B)−1 ≤ e
e−1 ≈ 1.582. This competitive ratio is

in fact the best possible (e.g., Buchbinder and Naor [6]).
As a concluding remark of the section, we highlight that the derivation of the

online primal dual algorithm for the ski-rental problem and its analysis follow
mechanically from the primal and dual linear programs and the corresponding
relaxed complementary slackness conditions. No cleverness is needed to derive the
optimal competitive ratio. This is, in my opinion, the main strength of the online
primal dual framework. In more complicated problems, it is non-trivial to obtain
a good enough understanding of the mathematical programs and to find the right
relaxation of their optimality conditions. Once we figure them out, however, the
design of the algorithm and the analysis will again become mechanical.

3 Online Primal Dual for Convex and Concave Objectives

Let us first introduce some necessary background on the conjugates of convex and
concave functions and a duality theory for convex programs.

3.1 Conjugates

Let f : Rn+ 	→ R+ be a convex function. Its convex conjugate is defined as:

f ∗(x∗) = max
x≥0

{〈x, x∗〉 − f (x)
}

.

Here, x∗ is also an n-dimensional vector. 〈x, x∗〉 denotes the inner product of vectors
x and x∗. For example, suppose f (x) = 1

α
xα is a polynomial. Then, f ∗(x∗) =

(1 − 1
α
)x∗ α

α−1 is also a polynomial. Here, we add the coefficient 1
α

to f so that
the coefficient of the conjugate f ∗ is simple, without changing the nature of the
functions. We will have similar treatments throughout the chapter.
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For simplicity, we will further assume that f is non-negative, non-decreasing,
strictly convex, differentiable, and normalized such that f (0) = 0 in this chapter. In
this case, the conjugate satisfies the following properties:

• f ∗ is non-negative, non-decreasing, strictly convex, differentiable, and normal-
ized such that f ∗(0) = 0;

• f ∗∗ = f ;
• ∇f and ∇f ∗ are inverse of each other, and we say that x and x∗ form a

complementary pair if x = ∇f ∗(x∗) and x∗ = ∇f (x).

Next, consider a concave function g : Rn+ 	→ R. Its concave conjugate is defined
similarly as follows:

g∗(x∗) = min
x≥0

{〈x, x∗〉 − g(x)
}

.

Similar to the convex case, we will further assume g to be non-negative, non-
decreasing, strictly concave, differentiable, and normalized such that g(0) = 0 in
this chapter. In this case, the concave conjugate satisfies the following properties:

• g∗ is non-positive, non-decreasing, strictly concave, and differentiable;
• g∗∗ = g;
• ∇g and ∇g∗ are inverse of each other, and we say that x and x∗ form a

complementary pair if x = ∇g∗(x∗) and x∗ = ∇g(x).

Assuming some mild conditions which hold for all problems in this chapter and,
hence, are omitted, the following strong duality holds. It is known as Fenchel’s
duality theorem.

minimize
x≥0

{
f (x) − g(x)

} = maximize
x∗≥0

{
g∗(x∗) − f ∗(x∗)

}
. (3)

3.2 An Example: Online Auction of an Item with Production
Cost

In the rest of the chapter, we will restrict our attentions to convex programs with
linear constraints. In this section, we will consider an online auction of one item
with production cost as a simple running example to demonstrate the application of
Fenchel’s duality as well as how the online primal dual technique works.

Let there be a seller with one item for sale. Let there be n buyers who arrive
online. Each buyer i has a value vi ∈ R+ that specifies the maximum price i is
willing to pay for a copy of the item. The technique can actually handle much more
general settings with multiple heterogeneous items and combinatorial valuations of
agents. We consider this simple case an illustrative example in this section, and
refer readers to Huang and Kim [13] for further discussions on the general case.
For simplicity, let us omit the strategic behaviors of buyers and assume that the
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valuation of each buyer is revealed to the seller at the buyer’s arrival. On the arrival
of a buyer i, the seller decides whether to allocate a copy of the item to buyer i or
not. The seller may produce an arbitrary number of copies of the item subject to a
production cost function f , i.e., producing y copies of the item leads to a production
cost of f (y). The goal is to maximize the social welfare, i.e., the sum of values of
the buyers for the allocated bundle of items less the production cost.

Below is a natural convex program relaxation of the online combinatorial auction
with production costs. Here, we assume for simplicity that f is defined for all
non-negative real numbers. Readers may think of it as, e.g., f (y) = 1

2y2, for
concreteness.

maximize
∑n

i=1 vixi − f (y)

subject to
∑n

i=1 xi = y

0 ≤ xi ≤ 1 i ∈ [n]
y ≥ 0

Here, xi is the indicator of whether buyer i gets a copy of the item, and y is the total
number of allocated copies.

The Fenchel’s dual convex program can be derived from the Lagrangian dual and
the definition of convex conjugates. Taking the Lagrangian dual, we have

minimize
u≥0,p

maximize
x,y≥0

∑n
i=1 vixi − f (y) + ∑n

i=1 ui

(
1 − xi

) + p
(
y − ∑n

i=1 xi

)

First, consider the maximization problem w.r.t. xi , namely

maximize
xi≥0

(vi − ui − p) · xi =
{

0 if ui + p ≥ vi,

+ ∞ otherwise.

Thus, it imposes a linear constraint ui + p ≥ vi in the dual problem.
Next, consider the maximization problem w.r.t. y, namely

maximize
y≥0

py − f (y)

By the definition of convex conjugates, the optimal value of the above maximiza-
tion problem is f ∗(p).

In sum, the Lagrangian dual can be simplified as follows:

minimize
∑n

i=1 ui + f ∗(p) (4)

subject to ui + p ≥ vi i ∈ [n]
ui ≥ 0 i ∈ [n]
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We leave it to interested readers to verify the above program is equivalent to
the Fenchel’s dual as defined in Equation (3) of the online auction of an item with
production cost. In this dual program, we can interpret p as the price for a copy of
the item and ui as the utility of buyer i, i.e., his value for the allocated bundle less
the total price.

3.3 Optimality Conditions

Similar to their counterparts for linear programs, the online primal dual algorithms
for convex programs are also driven by the optimality conditions of the programs
and their dual programs. There are different ways to formulate such conditions. We
will use the most familiar one known as the Karush–Kuhn–Tucker (KKT) conditions
[14, 15]. We refer readers to Boyd and Vandenberghe [5] for an extensive discussion
on the optimality conditions of convex programs. In this chapter, we will explain the
conditions only on a problem-by-problem basis. For the running example of online
auction of an item with production cost, the conditions are

(a) xi must be zero unless ui + p = vi ;
(b) ui must be zero unless xi = 1;
(c) y and p form a complementary pair.

Here, the first two conditions concern primal/dual linear constraints and the
corresponding dual/primal variables. They are complementary slackness conditions
just like in the case of linear programs. The third condition is about variables
involved in the non-linear parts of the primal and dual objectives. It states that they
must form complementary pairs in the sense that we defined at the beginning of
the section. Next, we will show how one can derive an online algorithm from the
principle of satisfying these conditions approximately.

3.4 High-Level Plan

A meta online primal dual algorithm, much like their counterparts for linear
programs, proceeds as follows. It maintains a feasible dual at all time. At the
beginning, it is just the value of p since none of the ui’s has arrived yet. On the
arrival of a buyer i, it decides whether to allocate a copy of the item to i, i.e., the
value of xi , based on the current dual, sets values to the new dual variable ui , and
updates dual variable p. The high-level principle guiding these decisions is to satisfy
the aforementioned optimality conditions as much as possible. We shall elaborate
how shortly. Finally, the competitive ratio follows by comparing the increments in
the primal and dual objectives in each step.
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3.5 (Approximate) Complementary Slackness

Recall that the KKT conditions for linear constraints are the same as complementary
slackness. An online primal dual algorithm handles these conditions the same way
as in the original approach for linear programs.

In particular, let us consider conditions (a) and (b) in our running example. On
buyer i’s arrival, a new dual variable ui shows up and it is subject to two constraints
ui + p ≥ vi and ui ≥ 0. Therefore, if p > vi , the first constraint cannot hold
with equality and xi must be 0, i.e., we must not allocate a copy of the item to i,
according to condition (a). On the other hand, if p < vi , the value of ui must be
positive, and xi must be 1, i.e., we must allocate a copy of the item to i, according
to condition (b). The decision in the tie-breaking case when vi = p does not matter;
we will assume that the algorithm does allocate a copy in the tie-breaking case. To
this end, the algorithm shall interpret the current value of the dual variable p as a
take-it-or-leave-it price for a copy of the item. It allocates a copy to buyer i if and
only if its value vi is at least the price p. Further, it shall let ui = max{vi − p, 0}.
Doing so will satisfy the complementary slackness conditions (a) and (b) at the end
of i’s arrival. However, the algorithm may increase p in the future at which point
condition (a) will be violated. Condition (b), on the other hand, will be satisfied
exactly since xi and ui will not change in the future.

3.6 (Approximate) Complementary Pairs

So far, we have pinned down how to decide the allocation, i.e., the value of xi , at
each buyer i’s arrival based on the current dual, in particular the current price p. We
have also explained how to set ui accordingly. There is still a missing piece, namely
how to update the price p, after i’s arrival.

This last piece of the algorithm is driving by the last condition. Recall it says
that in the offline primal and dual solutions, y and p form a complementary pair,
i.e., p = f ′(y). This coincides with the economic intuition, namely the unit price
of a copy of the item shall equal to its marginal production cost. In the online
problem, however, the algorithm knows only the current demand y of the item,
but not its final value at the end of the day. As a result, the algorithm needs to in
some sense predict the final demand according to the current demand, and set the
price according to the predicted final demand. For example, we may simply predict
the final demand to be twice the current demand. It turns out this simple heuristic
already gives reasonably good competitive ratio for nice production cost functions
such as polynomials. For simplicity of exposition, we will use a slight variant of this
simple heuristic and assume a specific production function f (y) = 1

2y2 to explain
the primal dual analysis in the rest of the section.
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3.7 Online Primal Dual Algorithms

Putting together, consider the following online primal dual algorithm:

1. Initially, y = 0, p = f ′(2(y + 1)) = 2.
2. On the arrival of each buyer i:

2a. Let xi = 1 if vi ≥ p, and let xi = 0 otherwise.
2b. Let ui = max{vi − p, 0}.
2c. Update y = y + xi and, subsequently, p = f ′(2(y + 1)) = 2(y + 1).

We remark that a more principled approach is to leave the prediction mapping
as an unknown function g, i.e., let g(y) be the predicted final demand if the current
demand is y and set p = f ′(g(y)), and to derive the optimal prediction mapping
from the analysis. Interested readers are referred to Huang and Kim [13] for the
details.

3.8 Primal Dual Analysis

Recall that f (y) = 1
2y2. Hence, we have f ∗(p) = 1

2p2. Clearly, the algorithm
maintains feasible primal and dual at all time by design. It remains to compare the
increments of the objectives due to the arrival of each buyer i.

If i does not get a copy of the item, both the primal and the dual objectives remain
the same. So the increments are both zero and, thus, equal.

If i does get a copy of the item, the primal objective changes by vi , the gain
from allocating a copy to i, less f (y + 1) − f (y) = y + 1

2 , the marginal cost
of producing an extra copy of the item, where y denotes the demand for the item
before i’s arrival. The changes in the dual, on the other hand, equals the utility of
i, ui = vi − p = vi − 2(y + 1), plus the change due to the update of price p,
f ∗(2(y + 2)) − f ∗(2(y + 1)) = 4y + 6. We claim that the increment in the dual
objective is at most 4 times that in the primal objective. That is,

4
(
vi − (y + 1

2 )
) ≥ vi − 2(y + 1) + (4y + 6)

By the coefficient of vi and that vi ≥ p = 2(y + 1) (otherwise, i would not have
gotten a copy of the item), it suffices to show the inequality for vi = 2(y + 1). In
that case, the inequality becomes

4y + 6 ≥ 4y + 6

and holds with equality.
Note that the initial value of the primal objective is 0 while that of the dual

objective is 2 because the initial value of p = 2. We have that:

4 · Primal ≥ Dual − 2

So the online primal dual algorithm is 4-competitive.
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4 Application: Online Matching with Concave Returns

In this section, we will talk about the problem of online matching with concave
returns. The problem and its analysis were originally from Devanur and Jain [11].
To be consistent with the other parts of the chapter, our exposition of the results and
techniques will be somewhat different from the original version. Nonetheless, the
core maths and the underlying ideas are the same.

4.1 Problem Definition

Let there be m agents (left-hand side offline vertices) that are known upfront. Let
there be n items (right-hand side online vertices) that arrive online. On the arrival
of an item, the online algorithm must immediately decide which agent shall get
the item. Let vij denote agent j ’s value for item i. Let there be a concave, non-
decreasing function g : R+ 	→ R+ such that an agent j ’s value for getting a bundle
S of items is g(

∑
i∈S vij ). We shall interpret g as a discount function of an agent’s

value for bundles of items. Further, we do not discount the value if no items have
been allocated to the agent so far, i.e., g′(0) = 1. This is without loss of generality
up to scaling of the g function. The goal is to allocate the items to the agents to
maximize the sum of values of all agents.

We remark that the online primal dual technique can in fact handle a more general
version where different agents have different discount functions. We will omit the
general version in this chapter for simplicity of discussion. Interested readers are
referred to Devanur and Jain [11].

Next, recall that the concave conjugate of g is denoted as g∗. We give a convex
program relaxation of the problem and its dual program below:

maximize
∑m

j=1 g(yj )

subject to
∑n

i=1 xij = 1 i ∈ [n]
yj = ∑n

i=1 vij xij j ∈ [m]
xij , yj ≥ 0 i ∈ [n], j ∈ [m]

minimize
∑n

i=1 αi − ∑m
j=1 g∗(βj )

subject to αi ≥ vijβj i ∈ [n], j ∈ [m]

Here, xij is the indicator of whether item i is allocated to agent j . yj denote
the sum of values of the items allocated to agent j . We will focus on solving the
fractional problem. That is, xij ’s may take fractional values between 0 and 1.
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4.2 Relaxed KKT Conditions

The online primal dual algorithms are driven by the optimality conditions of the
primal and dual programs. We list below the relaxed conditions.

(a) xij must be zero unless αi = vijβj when item i comes;
(b) βj = β(yj ) is a function of the current total value yj .

Before moving on to the design of online algorithms based on these conditions,
let us briefly discuss how they differ from the exact versions and why relaxations
are necessary in the online setting. The exact version of (a) requires the condition to
hold at the end of the algorithm. In the online problem, however, the constraint may
gain slack in the future because the algorithm may decrease βj ’s in the future. The
exact version of (b) requires that yj and βj form a complementary pair. Similar to
the previous example of online auction with production cost, instead of setting βj

based on the current value of yj , a smarter algorithm shall anticipate yj to further
increase in the future and predict its final value. Hence, we set βj = β(yj ) to be a
function of yj where the function will be chosen based on the analysis.

4.3 Online Primal Dual Algorithms

The algorithm maintains a pair of feasible primal and dual at all time. Initially, the
primal has only the yj ’s which will be set to 0. The dual has only the βj ’s which
will be set to β(0) according to condition (b).

Then, on the arrival of an item i, the relaxed optimality conditions (a) and (b)
determine the allocation of the item. Concretely, conditions (a) and (b), together
with the need of maintaining a feasible dual, indicate that i shall be allocated to
the agent j such that vijβj is maximized. Here, βj serves as a discount factor of the
value of allocating an item to agent j . Therefore, it makes sense to have the discount
function start from β(0) = g′(0) = 1 and be non-increasing in the agent’s total
value. Once the item is allocated to an agent, the algorithm updates yj accordingly.
Finally, we need to update the dual variables βj as a result of the change in yj .

The actual algorithm is slightly different from the above in that it allocates each
item fractionally to multiple agents since we consider the fractional problem. We
present the algorithm below.

1. Initially, let yj = 0 and βj = β(yj ) = 1 for j = 1, . . . , m.
2. Maintain βj = β(yj ) and yj = ∑n

i=1 vij xij throughout.
3. On the arrival of each item i, initialize all xij ’s to be zero, and continuously

increase xij ’s as follows until
∑m

j=1 xij = 1:

3a. Let j∗ = arg maxj∈[m] vijβj , breaking ties arbitrarily.
3b. Increase xij∗ by dx and αi by vij∗βj∗ · dx.
3c. Update yj ’s and, thus, βj ’s accordingly.
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4.4 Online Primal Dual Analysis

Again, since the algorithm mains a pair of feasible primal and dual assignments
at all time, it remains to compare the changes in the primal and dual objectives
due to the arrival of each item. In particular, we would like to show that as the
algorithm continuously increases xij ’s in step 3 of the algorithm, it always holds
that F · dP ≥ dD for some fixed parameter F ≥ 1, where dP and dD are the
changes of the primal and dual objectives, respectively.

When the algorithm increases xij∗ by some infinitesimal amount dx in step
3b (recall that j∗ is the agent with the largest discounted value vijβj ), by simple
calculus, the primal objective increases by:

dP = g′(yj∗
)
dyj∗

The dual objective, on the other hand, increases by:

dD = vij∗βj∗dx
︸ ︷︷ ︸

due to αi

− g′∗(βj∗)dβj∗
︸ ︷︷ ︸

due to βj∗

= βj∗dyj∗ − g′∗(βj∗)dβj∗

Therefore, to ensure F · dP ≥ dD, it boils down to choosing a non-increasing
function β such that the following differential equation is feasible for the smallest
possible F ≥ 1:

∀y ≥ 0 : F · g′(y) · dy ≥ β(y) · dy − g′∗(β(y)) · dβ(y) (5)

subject to the boundary conditions that β(0) = g′(0) = 1 and β(y) ≥ 0 for all
y ≥ 0.

Then, we have recovered the main algorithmic result in Devanur and Jain [11].

Theorem 1 Suppose there is a non-increasing function β that satisfies the differ-
ential equation (5) for some F ≥ 1. Then, there is an F -competitive online primal
dual algorithm for the online matching problem with concave return function g.

4.5 An Example: Additive Agents with Budgets

Differential equation (5) may look mysterious to the readers. For concreteness,
we next present the optimal solution to the differential equation for a concrete
example, namely g(y) = min{y, B} or some B > 0. This corresponds to the
Adwords problem, where the agents are the advertisers and the items are ad slots. An
advertiser has a budget B that caps its contribution to the seller’s revenue. Again, one
may consider a more general case when different advertisers have different budgets,
which can be solved under the same framework. We will assume equal budget for
the simplicity of our discussions.
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In this case, the conjugate function g∗ is

g∗(y∗) =
{

B(y∗ − 1) if y∗ ≤ 1

0 if y∗ > 1

Therefore, in the special case, the differential equation becomes the following
(recall that β(0) = 1 and therefore β(y) ≤ 1 for all y):

∀0 ≤ y ≤ B : F · dy ≥ β(y) · dy − B · dβ(y)

and

∀y > B : 0 ≥ β(y) · dy − B · dβ(y)

with boundary conditions that β(0) = 1 and β(y) ≥ 0 for all y ≥ 0.
Note that β is non-increasing. It implies that the second part concerning y > B

is feasible only when β(y) = 0 for all y = B.
Next, we solve for the best β to satisfy the first part for 0 ≤ y ≤ B for the

smallest possible F , subject to the boundary condition that β(0) = 1 and β(B) = 0.
It is easy to check that it suffices to consider the differential equation with equality.
Rearrange terms, it becomes

∀0 ≤ y ≤ B : (
F − β(y)

) · dy = B · d
(
F − β(y)

)

Together with β(0) = 1, we get that:

F − β(y) = (F − 1) · ey/B

Plugging in β(B) = 0, we get that

F = F − β(B) = (F − 1) · e

which implies F = e
e−1 . This is the best possible competitive ratio as it matches

known hardness results from previous work (e.g., [8, 16]).
The corresponding discount function β that achieves this optimal ratio is

β(y) = 1
e−1

(
e − ey/B

)

As a concluding remark, the primal dual technique gives optimal competitive
ratio not only for the above example of additive agents with budgets, but in fact
for arbitrary concave functions g. The cool thing about it is that Devanur and Jain
[11] established the optimality of the algorithm without explicitly giving the optimal
competitive ratio, other than the characterization using the differential equation (5).
Instead, they constructed a family of hard instances that are parameterized by a
function and showed that solving for the worst function is equivalent to solving the
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differential equation (5). This chapter focuses on positive results and will not get
into further details of the hardness. Readers are referred to Devanur and Jain [11].

5 Application: Online Scheduling with Speed Scaling

This section considers another application of the online primal dual framework in
online optimization problems with non-linear objectives. We will consider an online
scheduling problem with speed-scalable machines, where the energy consumption is
naturally a convex function of the speed. The results were originally from Devanur
and Huang [10], which built on an earlier dual fitting approach by Anand et al. [2].

5.1 Problem Definition

Let there be m machines that are known upfront. Let there be n jobs that arrive
online. Each machine j can run at different speeds subject to different energy
consumptions. Let f be the power function such that running a machine at speed
y consumes f (y) energy per unit of time. For concreteness, readers may think
of f (y) = 1

3y3 as a typical cubic energy function. Each job i is defined by its
arrival time ri , and its volumes vij when allocated to each machine j . That is,
we consider the unrelated machine setting in which different machines may take
different amount of computational resources to complete the same job. A feasible
schedule allocates each job to a machine and more specifically a subset of time slots
on the machine, and specifies how fast the machine runs in each time slot, such that
the total computational resources assigned to the job, i.e., the sum of speeds of the
allocated time slots, are equal to its volume on the machine.

Again, the primal dual framework can in fact handle a more general setting where
(1) jobs have weights and (2) machines may have different energy functions. We will
omit such generalizations and refer interested readers to Devanur and Huang [10].

There are two natural objectives for this problem. The first one is to minimize
total energy consumption, and the second is to minimize the total delay experienced
by the jobs. Here, there are different ways to define delay. We will consider a
popular one known as flow time. The flow time of a job is the difference between
its completion time and arrival time. The flow time of a feasible schedule is the sum
of the flow time of all jobs. Minimizing either objective without considering the
other is trivial. One could get arbitrarily small flow time by running the machines
at extremely high speed, but paying an arbitrarily high energy consumption. One
could also have arbitrarily small energy consumption by running the machines at
extremely low speed, but suffering an arbitrarily large flow time. We will use the
standard combination of minimizing the sum of flow time and energy.

This problem is more complicated than the previous examples in the sense that
the online algorithm needs to make multiple types of online decisions. At each time



Online Combinatorial Optimization Problems with Non-linear Objectives 195

slot, the online algorithm must decide which job shall be run on each machine
(job selection) and at what speed (speed scaling). Further, on the arrival of a job,
the online algorithm must immediately dispatch the job to one of the machines
(job assignment). We consider the preemptive model in which the algorithm may
preempt the current job processing on a machine with the new job and resume after
the new job is finished.

The convex program relaxation and its dual are given below.

minimize
∑n

i=1
∑m

j=1

∫ +∞
ri

(t − ri)(xij t /vij )dt

+ ∑m
j=1

∫ +∞
0 f (yjt )dt

+ ∑n
i=1

∑m
j=1

∫ +∞
ri

(f ∗)−1(1)xij t dt

subject to
∑m

j=1

∫ +∞
ri

(xij t /vij )dt = 1 i ∈ [n]
yjt = ∑n

i=1 xij t j ∈ [m], t ≥ 0

xij t , yjt ≥ 0 i ∈ [n], j ∈ [m], t ≥ 0

maximize
∑n

i=1 αi − ∑m
j=1

∫ +∞
0 f ∗(βjt )dt

subject to αi ≤ vijβjt + t − ri + vij (f
∗)−1(1) i ∈ [n], j ∈ [m], t ≥ ri

Here, xij t is the speed of machine j at time t that is devoted to processing job i.
yjt is the total speed of machine j at time t . The first primal constraint is a relaxation
of the feasibility constraint. Recall the original constraint says that each job must be
completed on a machine j such that the sum of speed devoted to the job is equal
to vij , i.e.,

∫ +∞
ri

xij t dt = vij . The relaxed constraint, on the other hand, allows
the job to be fractionally processed on different machines so long as the overall
effort processes the entire job. The second primal constraint says that the speed of a
machine at any time must be high enough to execute the schedule given by xij t ’s.

The first term in the primal objective is a relaxation of flow time in the sense that
the fraction of a job i that is completed at time t experiences a flow time defined
by the current time, i.e., t − ri , instead of the flow time given by the completion of
the job. This is usually known as the fractional flow time of the schedule, which is
widely used as an intermediate objective in the study of flow time minimization.

The second term is exactly the energy consumption.
It turns out that these two terms on their own suffer from a large integrability

gap. Consider the case of having only one job arriving at time 0 with volume v

on every machine. An integral schedule must process the job on the same machine
and hence pays a non-zero flow time plus energy. Interested readers may verify that
the minimum cost equals v · (f ∗)−1(1). A feasible schedule of the relaxed linear
program, however, can split the workload and process a 1/m fraction of the job on
each machine. Such a fractional schedule effectively pays 0 in the objective when
m goes to infinity. Introducing the third term fixes this problem. Since the minimum
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cost of assigning a job of volume v is v · (f ∗)−1(1), the extra unit cost of (f ∗)−1(1)

for the xij t volume of a job i that is processed on a machine j at time t sums to
at most the actual flow time plus energy for any feasible integral schedule. Hence,
adding the third term increases the optimal by at most a factor of 2.

5.2 A Simple Online Primal Dual Algorithm

As usual, we start with a set of relaxed optimality conditions that drive the design
of the online primal dual algorithms.

(a) If a job i is dispatched to a machine j and is tentatively scheduled at time t

when it comes, it must be that αi = vijβjt + t − ri + vij (f
∗)−1(1) (there may

be some slack in the future because the algorithm may increase βjt ’s);
(b) βjt = β(yjt ) is a function of the current total speed yt .

Condition (a) is a relaxation in the sense that the actual complementary slackness
condition holds for the optimal primal and dual assignments at the end of the
instance, while here it holds only at the moment when i comes. Again, this is
unavoidable and shall look standard to the readers after seeing similar conditions
in the previous two examples. Condition (b) is a relaxation of the complementary
pair condition saying that yjt and βjt will form a complementary pair. Intuitively,
the online algorithm will predict the final value of yjt , i.e., the speed of machine
j at time t , based on its current value, and set the dual variable βjt to form a
complementary pair with the predicted final value.

We present below the meta online primal dual algorithm driven by the above
relaxed optimality conditions, given any function β : R+ 	→ R+.

1. Initially, let yjt = 0 and βjt = β(0) for j = 1, . . . , m, t ≥ 0.
2. Maintain βjt = β(yjt ) and yjt = ∑n

i=1 xij t throughout.
3. On the arrival of each job i:

3a. Let j∗ and t∗ be such that vij∗βj∗t∗ + t∗ − ri is minimized. Dispatch the job
i to machine j∗ and tentatively schedule it at time t∗.

3b. Update yj∗t ’s and, thus, βj∗t ’s accordingly.

5.3 A Simple Greedy Algorithm

In this chapter, we will consider a particularly simple greedy algorithm and analyze
it using the online primal dual framework.

The greedy algorithm processes the current jobs using the optimal schedule
assuming that no other jobs will arrive in the future. In particular, given how the
current jobs are assigned to the machines, the greedy algorithm processes the jobs
on each machine from the shortest to the longest. The shortest job first principle is
the best strategy assuming no future jobs will arrive. To see the intuition behind its
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optimality, note that the processing time of the first job will contribute to the flow
time of all remaining jobs, that of the second job will contribute to the flow time of
all but one remaining jobs, and so on. Hence, it makes sense to prioritize on shorter
jobs.

In terms of the choice of speed, it will run the machine at a speed that depends
on the number of remaining jobs on the machines. Concretely, suppose there are
k remaining jobs. Then, the speed y is set such that f ∗(f ′(y)) = k. To see why
this is the right choice, suppose we process a job, say, with volume v, at speed y.
Then, the amount of time needed to process the job is v/y. All k jobs will suffer
from this delay in their flow time and, thus, the total contribution to the objective in
terms of flow time is (v/y)·k. On the other hand, the energy consumption during this
period of time is (v/y)·f (y). Therefore, the optimal speed is the one that minimizes
(v/y) · (k + f (y)). Then, it is easy to verify that our choice of speed minimizes this
quantity, which equals v · (f ∗)−1(k).

Finally, we will use a simple β mapping such that βjt = f ′(yjt ) forms a
complementary pair with yjt . When a new job arrives, the algorithm dispatches
the job according to step 3a in the meta algorithm. By our choice of speed, for
any machine j and any time t , we have βjt = (f ∗)−1(k) where k is the number
of remaining jobs on machine j at time t . Hence, the right-hand side of the dual
constraint becomes

vijβjt + t − ri + vij (f
∗)−1(1) = t − ri + vij

(
(f ∗)−1(k) + (f ∗)−1(1)

)

≥ t − ri + vij (f
∗)−1(k + 1)

Here, the inequality follows by the concavity of (f ∗)−1, which is due to the
convexity of f ∗. Having a closer look at the right-hand side of the above inequality,
the t − ri term corresponds to the flow time for having job i wait until time t

before we process it. The last term, on the other hand, is the energy consumption
of processing job i on machine j plus the delay it causes to the flow time of the
existing k jobs and itself, provided that we run the machine with the aforementioned
greedy speed. Hence, we shall interpret the right-hand side as the total increase in
the objective if we decide to dispatch the job to machine j and tentatively schedule
it at time t . Therefore, our job dispatch rule (step 3a) simply greedily minimizes this
increment.

5.4 Online Primal Dual Analysis

Following the above discussion, we shall let αi be the increment in the objective due
to the arrival of job i. Recall that the dual is equal to

∑n
i=1 αi − ∑m

j=1

∫ +∞
0 f ∗(βjt )dt

The first term, by definition, sums to the objective of flow time plus energy
consumption since each αi accounts for the increment in the objective due to the
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corresponding job i. The second term, on the other hand, is equal to the flow time
because f ∗(βjt ) = f ∗(f ′(yjt )) equals the number of remaining jobs on machine j

at time t by our choice of yjt and βjt . Hence, the dual objective is in fact extremely
simple for the greedy algorithm: It equals the energy consumption.

So far, we did not use any special property of the power function f . For arbitrary
power functions, no competitive algorithms exist for this problem. Next, we focus
on polynomial power functions f (y) = 1

α
yα , where α is between 2 and 3 for typical

power functions in practice. In this case, we have f ∗(β) = (1 − 1
α
)βα/(α−1) and,

thus, our choice of speed implies that k = f ∗(f ′(y)) = (1 − 1
α
)yα . Therefore, at

any time, assuming there are k jobs remaining, the contribution (per unit of time)
to flow time, i.e., k = (1 − 1

α
)yα is exactly α − 1 times the contribution to energy

consumption, i.e., f (y) = 1
α
yα . Therefore, the fact that the dual objective equals

the energy consumption means that it is exactly a 1/α fraction of the flow time plus
energy of the algorithm. This implies the following theorem.

Theorem 2 The greedy algorithm is O(α)-competitive for minimizing flow time
plus energy when the power function is f (y) = 1

α
yα .

5.5 Better Online Primal Dual Algorithms

The main drawback of the simple algorithm lies in that it fails to anticipate future
jobs and is conservative in its choice of speed. We can improve the greedy algorithm
with a speed-up. In particular, the greedy algorithm achieves the optimal flow time
plus energy if there are indeed no future jobs, but is far from optimal when there are
a lot of future jobs. A smarter algorithm shall run faster than the optimal schedule
of the remaining instance to hedge between the two cases: If there are no future
jobs, this approach pays more in energy comparing to the simple greedy algorithm;
if there are a lot of future jobs, however, it is better than the simple greedy algorithm
because it has predicted the arrival of future jobs and has run faster in the past.

Specifically, Devanur and Huang [10] considered a family of such algorithms
parameterized by a parameter C ≥ 1 such that the algorithm runs C times faster
than the optimal schedule of the remaining instance. Such an algorithm is called the
C-aggressive greedy algorithm, as given below.

Speed Scaling:

– Choose speed s.t. f ∗(f ′( yjt

C
)) equals the number of remaining jobs.

– Let βjt = 1
C

f ′( yjt

C
) s.t. f ∗(Cβjt ) equals the number of remaining jobs.

Job Selection:

– Schedule jobs from the shortest to the longest.

Job Assignment:

– Dispatch the job to a machine that minimizes the increment in the objective.
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Moreover, Devanur and Huang [10] showed an online primal dual analysis of the
C-aggressive greedy algorithms for all C ≥ 1 and chose C to balance the case with
no future jobs and the case with a lot of future jobs. By doing so, they showed the
following result. We refer readers to Devanur and Huang [10] for the proofs.

Theorem 3 For polynomial power function f (y) = 1
α
yα , the C-aggressive greedy

online primal dual algorithm is O
(

α
log α

)
-competitive for minimizing flow time plus

energy on unrelated machines with C ≈ 1 + log α
α

.

If there are at least two machines, then Devanur and Huang [10] further showed
that the above competitive ratio is asymptotically tight.

Theorem 4 For polynomial power function f (y) = 1
α
yα , there are no o

(
α

log α

)
-

competitive online algorithm for minimizing fractional flow time plus energy with at
least two machines.

Recall that in the previous example of online matching, the upper and lower
bounds match exactly as they both reduce to the same differential equation. In
this example of online scheduling for minimizing flow time plus energy, however,
there is a constant gap between the upper and lower bounds. One of the reasons
is that the algorithms in this example assign jobs to machines integrally, i.e., a job
cannot be processed on multiple machines in parallel as in a fractional solution to
the convex program relaxation. We do not know whether we can derive the same
form of tight upper and lower bounds as in the previous two examples if we allow
parallel processing and truly focus on solving the primal convex program online.

Further, if there is only one machine, Bansal et al. [4] gave a 2-competitive online
algorithm for minimizing fractional flow time plus energy with arbitrary power
functions using a potential function argument. It is an interesting open question
whether there is a 2-competitive online primal dual algorithm for single machine.

Finally, essentially the same algorithm and analysis can be further used to derive
better competitive ratios in the resource augmentation setting, where the online
algorithm can run the machines 1 + ε times faster than the offline benchmark using
the same amount of energy.

Theorem 5 There is a (1 + ε)-speed and O
( 1

ε

)
-competitive online primal dual

algorithm for minimizing flow time plus energy with arbitrary power functions.

6 Application: Online Covering and Packing Problems
with Convex Objectives

As the last example of the chapter, we present a result by Azar et al. [3] that gave
online algorithms for a large family of covering and packing problems with convex
objectives. It generalizes the original online covering and packing problems that
considers linear objectives (e.g., Buchbinder and Naor [7]).
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6.1 Problem Definition

We study the following online covering and packing problems with convex objec-
tives. The (offline) covering problem is modeled by the following convex program:

min
x∈Rn+

f (x) s.t. Ax ≥ 1

where f : Rn+ 	→ R+ is a monotone and convex cost function, and A is an m × n

matrix with non-negative entries. Each row of the constraint matrix A corresponds
to a covering constraint. In the online problem, the rows of A come online and the
algorithm must maintain a feasible assignment x that is non-decreasing over time.

The (offline) packing problem, on the other hand, is modeled by the following
convex program:

max
y∈Rm+

∑m
j=1 yj − f ∗(AT y)

where f ∗ : Rn+ 	→ R+ is the convex conjugate of f . It is the Fenchel’s dual program
of covering problem. In the online problem, each variable yj arrives online and the
algorithm must decide the value of yj on its arrival.

When f is a linear function in the covering problem, e.g., f (x) = 〈c, x〉 for some
positive vector c, f ∗ becomes a 0-∞ step function that imposes supply constraints
AT y ≤ c in the packing problem. Then, the problems become the original online
covering and packing problems with linear objectives.

In the rest of the section, we will focus on the packing problem, and refer readers
to Azar et al. [3] for the algorithms and the corresponding analysis for the covering
problem. In other words, we will take the packing program as the primal program
and the covering one as the dual.

6.2 Relaxed Optimality Conditions

As usual, we will start with a set of relaxed optimality conditions for the (primal)
packing program and the (dual) covering program. Let Aj = (aj1, aj2, . . . , ajn)

denote the j -th row of matrix A.

(a) yj must be zero unless Ajx = 1 at the end of the round when covering
constraint j and, thus, packing variable j , arrive.

(b) x = ∇g(AT y) for some convex function g.

Condition (a) is a relaxation of the actual complementary condition, which holds
for the final value of x and y. Condition (b) is a relaxation of the condition that x and
AT y form a complementary pair with respect to f and f ∗, i.e., x = ∇f ∗(AT y). Just
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like in the previous examples, a smart algorithm shall anticipate that the variables y

and, thus, AT y will further increase in the future and set x accordingly.

6.3 Online Primal Dual Packing Algorithm

Driven by the above relaxed optimality conditions, we can define the following meta
algorithm that depends on the choice of a convex function g.

1. Initialize x = z = 0.
2. Maintain x = ∇g(z) and z = AT y throughout.
3. When yk and Ak = (ak1, . . . , akn) arrive in round k, do the followings:

2a. Initialize yk := 0;
2b. While

∑n
i=1 akixi < 1, continuously increase yk and do the followings:

(2b.1) Simultaneously for each i ∈ [n], increase zi at rate dz
dyk

= aki .
(2b.2) Increase x according to x = ∇g(z).

Here, the vector x plays an auxiliary role and is initialized to 0. We can interpret
x as a price vector such that xi is the unit price of the i-th resource in the packing
problem. Then, we keep including more of the k-th item into the packing solution as
long as its unit gain of 1 can pay for the total price of the resources that it demands.

We will consider a particularly simple mapping function in this chapter:

g(z) = 1
ρ
f ∗(ρz) = 1

ρ
f ∗(ρAT y)

and, thus, x = ∇g(z) = ∇f ∗(ρz), for some parameter ρ > 1 to be determined in
the analysis. Intuitively, this means that the algorithm anticipates AT y will further
increase by a factor of ρ in the future, and pick x accordingly.

In round k ∈ [m], the vector ak = (ak1, ak2, . . . , akn) is revealed. The variable
yk is initialized to 0, and is continuously increased while

∑
i∈[n] akixi < 1, i.e., the

total price for the amount of resources needed to produce a unit of resource k is less
than 1. To maintain z = AT y, for each i ∈ [n], zi is increased at rate dz

dyk
= aki .

As the coordinates of z are increased, the vector x is increased according to the
invariant x = ∇f ∗(ρz). We shall assume that ∇f ∗ is monotone. Hence, both x and
z increase monotonically as yk increases.

6.4 Online Primal Dual Analysis

For simplicity of our discussion, we will make an assumption that f ∗ is a
homogeneous polynomial with non-negative coefficients (so that the gradient is
monotone) and degree λ > 1. The competitive ratio will depend on λ.
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We first show that the algorithm will not keep increasing yk forever in any round
k and it maintains a feasible primal solution throughout. Concretely, the following
lemma indicates that unless the offline packing problem is unbounded, eventually∑

i∈[n] akixi will reach 1. At this moment, yk will stop increasing and we complete
round k. Recall that the coordinates of x increase monotonically as the algorithm
proceeds. It implies that the covering constraints

∑
i∈[n] ajixi ≥ 1 are satisfied for

all j ∈ [m] at the end of the algorithm since each constraint is satisfied at the end
of the corresponding round. Hence, the vector x is feasible for the dual covering
problem.

Lemma 1 Suppose that the offline optimal packing objective is bounded. Then,
in each round k ∈ [m], eventually we have

∑
i∈[n] akixi ≥ 1, and yk will stop

increasing.

Proof We have

∂P (y)
∂yk

= 1 − 〈ak,∇f ∗(z)〉
= 1 − 1

ρλ−1 · 〈ak,∇f ∗(ρz)〉
= 1 − 1

ρλ−1 · 〈ak, x〉
≥ 1 − 1

ρλ−1

Here, the first equality is due to z = AT y, which indicates that when the algorithm
increases yk , it also increases each zi at rate dzi

dyk
= aki . The second equality follows

by that f ∗ is a homogeneous polynomial of degree λ. The third equality is because
of our choice of x. Finally, the last inequality follows because 〈ak, x〉 < 1 when yk

is increased by the definition of the algorithm.
Suppose for contrary that 〈ak, x〉 never reaches 1. Then, the objective function

P(y) increases at least at some positive rate 1− 1
ρλ−1 (recalling ρ > 1 and λ > 1) as

yk increases, which means the offline packing problem is unbounded, contradicting
our assumption.

To complete the competitive analysis, it remains to compare the primal and dual
objectives. In the rest of the section, for k ∈ [m], we let z(k) denote the vector z at
the end of round k, where z(0) := 0. Let P(y) denote the packing objective for any
vector y and the induced vector z = AT y. Similarly, let C(x) denote the covering
objective for any feasible covering solution x.

First, let us look into the contribution to the packing objective from y.

Lemma 2 At the end of round k when yk stops increasing (by Lemma 1)

yk ≥ 1
ρ

· (
f ∗(ρz(k)) − f ∗(ρz(k−1))

)
.
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In particular, since f ∗(0) = 0, this implies that at the end of the algorithm,

∑

k∈[m]
yk ≥ 1

ρ
· f ∗(ρz(m)) .

Proof Recall again that yk increases only when 〈ak, x〉 < 1, we have

1 ≥
∑

i∈[n]
akixi =

∑

i∈[n]
xi · dzi

dyk

.

Hence, integrating this with respect to yk throughout round k, and observing that
x = ∇f ∗(ρz), we have

yk ≥
∫ z(k)

z=z(k−1)

〈∇f ∗(ρz), dz〉 = 1

ρ
· (f ∗(ρz(k)) − f ∗(ρz(k−1))) ,

where the last equality comes from the fundamental theorem of calculus for path
integrals of vector fields.

Therefore, the dual objective is lower bounded by:

1
ρ
f ∗(ρz(m)) − f ∗(z(m)) = (ρλ−1 − 1)f ∗(z(m))

Next, we consider the dual (covering) objective. Suppose z(m) = AT y is the
vector at the end of the algorithm, and x(m) = ∇f ∗(ρz(m)). We have the following.

Lemma 3 The covering objective satisfies that:

C(x(m)) = (λ − 1)ρλf (z(m))

Proof By how our algorithm maintains the covering solution, we have

C(x(m)) = f (∇f ∗(ρz(m)))

= maxz≥0
{〈z,∇f ∗(ρz(m))〉 − f ∗(z)

}

= ρz(m)∇f ∗(ρz(m)) − f ∗(ρz(m))

= (λ − 1)f ∗(ρz(m))

= (λ − 1)ρλf ∗(z(m)) ,

where the second equality follows by the definition of convex conjugate functions,
the third equality is because the maximum is achieved at z = ρz(m) by first order
condition, the last two equalities are due to our assumption that f ∗ is a homogeneous
polynomial of degree λ.
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Putting together our bounds on the packing and covering objectives, we conclude
that they are with the following bounded factor from each other:

C(x)

P (y)
≤ (λ − 1)ρλ

ρλ−1 − 1
, (6)

Choosing ρ := λ
1

λ−1 , the above ratio becomes

λ
λ

λ−1 = O(λ)

Hence, we conclude that:

Theorem 6 Suppose f ∗ is a convex, homogeneous polynomial with non-negative
coefficients and degree λ. Then, there is an O(λ)-competitive online algorithm for
the online packing problem with a convex objective defined with f ∗.
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