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Abstract In supply chain management and other operations management applica-
tions, various discrete convexities are important tools in modeling complementary
or supplementary behaviors. Furthermore, the discrete nature of many decision
scenarios also requires optimization tools from discrete convex theory.

In this chapter, we aim at introducing the classical discrete convex theory
from the perspective of supply chain applications. We illustrate some direct
applications and connections in supply chain applications. Certain proofs are
modified/shortened, to fit into the scope of this chapter.

1 Introduction

Many practical problems are of discrete nature. For example, in inventory man-
agement retailers need to place orders in discrete quantity or even large batches.
In scheduling, transportation planning, and production planning one needs to use
discrete assignment variables xij = 1 or 0 to model whether a job or a truck
should be assigned to a machine or a route. In combinatorial optimization theory,
there are many brilliant problem-based algorithms developed. However, it remains
an important question that whether there exists a framework for a general class
of problems, like convex optimization theory in continuous optimization. For
this purpose, one needs to extend the Separation Lemma, which implies strong
duality and global optimality. Luckily, Separation Lemma holds for submodular
set functions, and the so-called L� functions [23].

In economic theory and operations management applications, an important
question arises from practice: whether two decisions have conflict against each
other. This question belongs to the area of comparative statics, and is often related
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to the sign of second order partial derivatives with respect to different dimensions
of decision variable. Also, in revenue and inventory management, we are often
interested in whether the decisions of two different products would influence each
other. For example, different brands of smartphones are called “substitutable goods,”
since one can replace the function of the other. On the other hand, extra consumption
of smartphones would boost sales number of the accessories, which we often
define as “complementary goods.” These properties can often be characterized by
submodularity and supermodularity of customer utility function.

The objective of this chapter is to introduce some basic concepts, algorithms,
and applications of discrete convex optimization. Discrete convex analysis is a deep
research direction, and we aim at providing a quick survey of the classical results
related to optimization problems applicable in operations management. Moreover,
we emphasize on the motivations and intuitions behind the concepts and proofs, and
we omit certain details of proofs due to page limit. Readers may refer to Topkis’s
book [29] for more detailed examples, discussions, and classical applications in
supply chain management, as well as game theory related topics. Mutora [23]
and his long list of research works provide a thorough survey of the theoretical
foundation of discrete convex analysis, including the duality theory in discrete
domain. And Vondrak’s Ph.D. thesis [30] provides a survey of many crucial ideas in
designing combinatorial algorithms by utilizing submodularity.

Section 2 introduces the basic concepts, e.g., lattices, submodular function,
and comparative statics. Fundamental properties of submodular functions and
lattice sets are introduced. Examples arisen from applications are given to illustrate
how to model problems with submodularity and other discrete convex properties.

Section 3 focuses on classical results of submodular set function optimization.
Separation Lemma and convex extensions are introduced, and the minimization
algorithm over submodular functions is established based on convex extensions.
Moreover, greedy approaches and multi-linear extension based smooth-greedy
algorithms are introduced for the maximization problems.

Section 4 discusses online and dynamic algorithms utilizing submodularity.
L�-convexity plays a key role for dynamic inventory control problems, while
the diminishing return property guarantees 1 − 1

e
approximation ratio of greedy

algorithm in online bipartite matching.

2 Basic Definitions and Properties

This section introduces the basics of submodularity and lattice structure. Section 2.1
illustrates the intuition of developing such concepts. Section 2.2 defines the basic
concepts and establishes the basic properties. Section 2.3 discusses a special
application where only submodularity only holds locally near the optimum solution
path.
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2.1 Motivation

To begin with, we start with the following observations:

1. When a competitor lowers the price of its product, one often needs to also lower
his/her own price.

2. When the inventory level of a product is low, retailers often raise the price.
3. In public spaces, one would naturally lower his/her voice, if the others are

doing so.

To explain these observations and to further study the related problems, one needs
to provide reasonable mathematical models:

Example 1 Suppose the sales quantity Qi of retailer i is a function Qi(pi, pj ) of
the price pi of retailer i, and its major competitor’s price pj , and the corresponding
profit is Ri(pi, pj ) = (pi − ci)Qi(pi, pj ).

The simplest assumption is Qi(pi, pj ) = (ai + biipi + bijpj )+ with bii <

0, bij > 0. The optimum price p∗
i = ai+bij pj −biici

−2bii
for max{Ri(pi, pj ) | pi ≥ 0} is

indeed increasing with respect to pj . Note that bij = ∂2

∂pi∂pj
Ri(pi, pj ) > 0 is the

crucial assumption, and can be generalized for other types of demand functions.

Naturally, one would like to extend the question to the following general
comparative statistics question:

Problem 1 Given function f (x, y) : �2 → �, where x is the decision variable,
and y is the input parameter (maybe the decision of another player). We consider
the minimization problem min{f (x, y) : (x, y) ∈ S} within domain S. When
would the optimum decision x(y) be monotonically increasing with respect to input
parameter y?

We analyze quadratic functions first:

Theorem 1 If

f (x, y) = 1

2

(
x y

)
A

(
x

y

)
+ bT

(
x

y

)
+ c

is a strongly convex function(A � 0). The optimum solution of min{f (x, y) | x ∈ �}
is defined as x∗(y). Then x∗(y) is monotonically increasing with respect to y when
A12 < 0.

Proof Due to strong convexity, A11 > 0. By first order condition A11x
∗(y)+A12y+

b1 = 0, the optimum solution is

x∗(y) = −A12

A11
y − b1

A11
.

Therefore, x∗(y) is monotonically increasing with respect to y when A12 < 0.
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Fig. 1 Idea of proof for
general problem

Next, we establish a more general result by dropping the quadratic assumption,
by a proof with potential to be generalized in discrete domain:

Theorem 2 If f (x, y) : �2 → � is a strongly convex C2 function. The optimum
solution of min{f (x, y) | x ∈ �} is defined as x∗(y). Then x∗(y) is increasing with

respect to y if ∂2

∂x∂y
f (x, y) ≤ 0 for all (x, y) ∈ �2.

Proof Firstly, we note that for any x ≤ x′, y ≤ y′,

f (x, y) + f (x′, y′) − f (x, y′) − f (x′, y) =
∫ x′

s=x

∫ y′

t=y

∂2

∂s∂t
f (s, t)dsdt ≤ 0.

This condition is illustrated as in Figure 1.
Secondly, we prove the theorem by contradiction. Due to strong convexity, x∗(y)

is uniquely defined for each y ∈ �. If for y < y′ we have x∗(y) > x∗(y′), let’s
denote x = x∗(y′) and x′ = x∗(y) > x. Then f (x, y′) = min{f (s, y′) | s ∈ �} ≤
f (x′, y′) and f (x′, y) = min{f (s, y) | s ∈ �} ≤ f (x, y). Therefore,

0 ≥
∫ x′

s=x

∫ y′

t=y

∂2

∂s∂t
f (s, t)dsdt = [f (x, y)−f (x′, y)]+[f (x′, y′)−f (x, y′)] ≥ 0.

Consequently, f (x, y′) = f (x′, y′) and f (x′, y) = f (x, y), which contradicts with
the uniqueness of x∗(y) and x∗(y′).

There are two crucial conditions in the above proof:

1. For any (x, y′) and (x′, y) in the domain S, if x ≤ x′, y ≤ y′, then
(x, y), (x′, y′) ∈ S.

2. For any x ≤ x′, y ≤ y′, f (x, y) + f (x′, y′) − f (x, y′) − f (x′, y) ≤ 0.

In the following subsection, we generalize the first condition to the so-called Lattice
structure, and the second condition to submodular property of functions.



Discrete Convex Optimization and Applications in Supply Chain Management 85

2.2 Definition

In high dimensional discrete domain, the first condition in the above subsection is
generalized as:

Definition 1 (Lattice)

1. Partial Order: x ≤ y if and only if xi ≤ yi for all indices i.
2. Maximization (or) Operation: x ∨ y defined as (x ∨ y)i = max{xi, yi}.
3. Minimization (and) Operation: x ∧ y defined as (x ∧ y)i = min{xi, yi}.
4. Lattice: L ⊆ �n is a lattice if and only if x ∨ y, x ∧ y ∈ L for any x, y ∈ L.
5. Sublattice: If L′ is a subset of lattice L and x ∨ y, x ∧ y ∈ L′ for any x, y ∈ L′,

we call L′ a sublattice of L.
6. For a set of points {xj ∈ �n : j ∈ S}, we can define ∨j∈Sxj as

(∨j∈Sxj
)
i

=
sup{xj

i | j ∈ S} and
(∧j∈Sxj

)
i
= inf{xj

i | j ∈ S}. These are well defined when
S is a finite set, or when {xj : j ∈ S} is within a bounded region.

Some important classes of lattices are listed as follows:

1. Any totally ordered set (e.g., single dimensional set) is a lattice!
2. Finite Cartesian product L = ∏

j∈S Lj of lattices Lj : j ∈ S is still a lattice
when |S| is finite.

3. Intersection L = ⋂
j∈S Lj of lattices Lj : j ∈ S is still a lattice, regardless of

the size of S.
4. Orthogonal projections and orthogonal slices of lattices are still lattices.
5. Linearly constrained set {(x, y) : ax − by ≥ c} with a, b ≥ 0.

Theorem 3 Suppose L ⊆ �N is a compact sublattice. Then there is a minimum
element x and a maximum element x in L.

Proof Because L is compact, its projection Li = {y | ∃x ∈ L, xi = y} on i-th
dimension is also compact. Define xi = inf{xi | x ∈ L}, which is well defined
because Li is compact, and will be reached by a certain point, which we denote as
yi , i.e., yi

i = xi and yi ∈ L. Now we consider the point ∧N
i=1y

i ∈ L. It follows
from definition that x ≤ ∧N

i=1y
i . Furthermore,

(∧N
i=1y

i
)
i

≤ yi
i = xi , therefore

∧N
i=1y

i ≤ x. Consequently x = ∧N
i=1y

i ∈ L. Similarly, we have x ∈ L.

The second condition in the above subsection is extended to the concept of
submodularity:

Definition 2 (Submodular Function)

1. A function f (x) : L → � defined on lattice L is called a submodular function
iff (x) + f (y) ≥ f (x ∨ y) + f (x ∧ y) for any x, y ∈ L.

2. Equivalent Definition (Decreasing Incremental):
If d, u ≥ 0 and dT u = 0, then f (x + d) − f (x) ≥ f (x + u + d) − f (x + u).
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3. Equivalent Definition (Local Condition):
If f is defined on Zn, and f (x + 1i ) − f (x) ≥ f (x + 1i + 1j )) − f (x + 1j )

for all indices i �= j .
4. Supermodular Function: A function f is supermodular if and only if −f is

submodular.

Example 2 (Examples of Submodular Functions)

1. Quadratic Functions 1
2xT Ax + bT x + c with Aij ≤ 0 for all i �= j .

2. A C2 function f (x) : �n → � with ∂2

∂xi∂xj
f (x) ≤ 0 for all i �= j .

3. g(x − y) with convex function g(z) : � → �.
4. g(

∑n
i=1 xi) with concave function g(z) : � → �.

5. Cobb–Douglas function f (x) = ∏
i x

αi

i defined on �n+, with α ∈ �n+.
6. ‖x − y‖2

2 = ∑
i (xi − yi)

2 and ‖x − y‖1 = ∑
i |xi − yi |.

7. Nonnegative linear combinations, expectations, and limitations of submodular
functions are still submodular.

8. g(f (x)) is submodular, if f : �n → � is submodular, g : � → � is concave
and monotonically increasing.

A set function f (S) : 2N → � is defined on the set 2N of all subsets of N .

Definition 3 (Submodular Set Function)

1. A set function is called submodular set function, if f (A) + f (B) ≥ f (A ∪ B) +
f (A ∩ B) for any A,B ⊆ N .

2. Equivalent Definition (Local Condition): For any set A ⊆ N , and two elements
i, j ∈ N , f (A ∪ {i}) + f (A ∪ {j}) ≥ f (A) + f (A ∪ {i, j}).

3. Connection with Submodular Function: Define F : {0, 1}N → � as F(1S) =
f (S), then f is a submodular set function if and only if F is a submodular
function.

There is a special class of submodular function generalizing the concept of rank
in linear algebra:

Definition 4 (Rank Function) A set function F : 2N → � which satisfies F(∅) =
0 (normalized), F(A) ≤ F(B) for all A ⊆ B (monotonicity) and submodularity, is
called a rank function.

One example of rank function R(S) defined on set of vectors S = {vi ∈ �m : i ∈ K}
is the rank of the spanning space of S.

Now we extend the monotonicity result in Theorem 2 to discrete scenario:

Theorem 4 (Theorem 2.7.1 in Topkis [29]) If f (x) : L → � is a submodular
function defined on lattice domain L, then the optimum solution set argminx∈Xf (x)

is a sublattice.

Proof We prove this by definition. Suppose both u, v ∈ argminx∈Xf (x), then
f (u) = f (v) = minx∈X f (x). Therefore f (u ∨ v) ≥ minx∈X f (x) = f (u) and
f (u∧v) ≥ minx∈X f (x) = f (v). It follows that f (u∨v)+f (u∧v) ≥ f (u)+f (v).
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But by submodularity, f (u∨v)+f (u∧v) ≤ f (u)+f (v). Combine the two above
inequalities, f (u ∨ v) = f (u ∧ v) = f (u) = f (v) = minx∈X f (x), and both
u ∨ v, u ∧ v ∈ argminx∈Xf (x).

Next, we establish the monotonicity of the optimum decision set, with respect
to input parameters. For this purpose, we need to first define the set monotonicity,
which basically is the monotonicity of both the largest and smallest elements of the
sets, if they do exist.

Definition 5 (Set Monotonicity) Set St is called monotonically increasing with
respect to t , if for any t < s, x ∈ St , and y ∈ Ss , there exist a u ∈ Ss and v ∈ St

such that u ≥ x and v ≤ y. This implies that the x(t) = ∨x∈St x and x(t) = ∧x∈St x

are both increasing in t .

An important fact is slices of lattice remains to be a lattice, which is illustrated in
the following theorem. The proof of this theorem follows directly from the definition
and is omitted here.

Theorem 5 (Monotonicity of Lattice Slices) If S ⊆ X×T is a sublattice of X×T

for lattices X and T , then St = {x | (x, t) ∈ S} is increasing on t , when it’s
nonempty.

Theorem 6 (Topkis, Theorem 2.8.2) Suppose f (x, t) : S → � is a submodular
function defined on sublattice S ⊆ X × T , where both X and T are lattices. Then
X∗(t) = argmin{f (x, t) : (x, t) ∈ S} is increasing with respect to t when it is
nonempty, and the set {(u, t) | u ∈ X∗(t)} is a sublattice.

Proof We first prove that the set L = {(u, t) | u ∈ X∗(t)} is a sublattice
by definition. For any (u, t), (v, s) ∈ L, without losing generality we assume
t ≤ s. By definition, we have min{f (x, s) : (x, s) ∈ S} = f (v, s) and
min{f (x, t) : (x, t) ∈ S} = f (u, t). And it follows from lattice structure that both
(u ∨ v, s) = (u, t) ∨ (v, s) and (u ∧ v, t) = (u, t) ∧ (v, s) are in set S. Therefore,
f (u ∨ v, s) ≥ min{f (x, s) : (x, s) ∈ S} = f (v, s) and f (u ∧ v, t) ≥ min{f (x, t) :
(x, t) ∈ S} = f (u, t). However, by submodularity of f we have

f (u∨v, s)+f (u∧v, t) = f ((u, t)∨(v, s))+f ((u, t)∧(v, s)) ≤ f (u, t)+f (v, s).

It could only hold when f (u∨v, s) = f (v, s) and f (u∧v, t) = f (u, t). Therefore,
u ∨ v ∈ X∗(s) and u ∧ v ∈ X∗(t), and by definition we have (u, t) ∨ (v, s) =
(u ∨ v, s) ∈ L and (u, t) ∧ (v, s) = (u ∧ v, t) ∈ L.

By Theorem 5, set X∗(t) = {x | (x, t) ∈ L} increases with respect to t .

Corollary 1 (Topkis, Corollary 2.8.1) If f (x) is a submodular function defined
on lattice domain X ⊆ �n, thenf (x)− yT x is submodular on domain X ×�n, and
argminx∈Xf (x) − yT x increases with respect to y.

Proof Function −yT x is submodular, so is f (x)−yT x on domain X×�n, applying
Theorem 6 we obtain the monotonicity.
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For submodular functions, another important characteristic which mimics the
convexity in continuous domain is the classical preservation under minimization
property:

Theorem 7 (Preservation of Submodularity) Suppose both S and T are lattices
and X ⊆ S×T is a sublattice. Function f : X → � is a submodular function. Then
the function g(y) = min{f (x, y) | (x, y) ∈ X} is a submodular function defined on
sublattice domain Y = {y | ∃(x, y) ∈ X}.
Proof We first prove the lattice structure of Y by definition. For any y, y′ ∈ Y ,
there exists x, x′ ∈ S such that (x, y) ∈ X and (x′, y′) ∈ X. Since X is a lattice,
(x ∨ x′, y ∨ y′) = (x, y)∨ (x′, y′) ∈ X and (x ∧ x′, y ∧ y′) = (x, y)∧ (x′, y′) ∈ X.
Therefore, y ∨ y′ and y ∧ y′ are both in Y .

Secondly, we establish the submodularity of g by constructive proof, which is
very useful in establishing properties of discrete convexity. For y, y′ ∈ Y , there
exists z, z′ ∈ S such that both (z, y), (z′, y′) ∈ X, f (z, y) = g(y), and f (z′, y′) =
g(y′). Therefore,

g(y ∨ y′) + g(y ∧ y′) ≤ f (z ∨ z′, y ∨ y′) + f (z ∧ z′, y ∧ y′)
= f [(z, y) ∨ (z′, y′)] + f [(z, y) ∧ (z′, y′)]

f [(z, y) ∨ (z′, y′)] + f [(z, y) ∧ (z′, y′)] ≤ f (z, y) + f (z′, y′) = g(y) + g(y′),

where the first inequality is due to definition of g, the second inequality is due to
submodularity of f , and the last equality is due to definition of z and z′.

2.3 Local Submodularity

In practice, it is often difficult to guarantee the submodularity of a function over the
whole domain. However, for the monotonicity of optimum solution we only need
the submodularity in a small region, i.e., a neighborhood of the optimum solution
set path. In the following example, we use local supermodularity to explain why one
retailer’s price should decrease, if its competitors’ prices are dropping.

Example 3 (Discrete Choice Model) A popular model that captures customer
choice between substitutable goods is the so-called random utility (discrete choice)
model. In this model, customers have random utility ξi(pi) for goods i with price pi ,
where ui(pi) = Eξi(pi) is the expected utility. A random customer would choose
the goods which give him/her the best (realized) utility. When the random noises
ξi(pi) − ui(pi) follow independent Gumbel distributions, the probability that a
customer would choose goods i from a set S of goods is Pi = ui(pi )

1+∑
j∈S uj (pj )

, while

the probability of not choosing anything is P0 = 1
1+∑

j∈S uj (pj )
. One thing to note

that is, a popular choice in practice is to use the logistic model: ui(pi) = eαipi+βi .
Retailer i’s expected profit from a random customer is therefore, Ri = (pi − ci)Pi
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if the cost per unit is ci . We adopt the classical notation that all prices other than pi

are denoted as p−i , and optimum solution is p∗
i (p−i ) = argmax{Ri(pi, p−i ) | pi ∈

�+). We assume u′
j (pj ) < 0 for each retailer j , which is intuitive as customer’s

utility would decrease with respect to the price of goods.

Lemma 1 If each ui is a C2 function, then in an open neighborhood of optimum

solution path {(p∗
i (p−i ), p−i ) | p−i ) ∈ �n−1+ }, we have ∂2

∂xi∂xj
Ri(p) > 0.

Proof The profit is negative when pi = 0, and tends to 0 when pi → ∞, by
continuity of Ri the optimum solution exists. Since the function Ri is also a C2

function, we only need to verify the condition ∂2

∂xi∂xj
Ri(p) > 0 for pi = p∗

i (p−i ).

By optimality condition at pi = p∗
i (p−i ),

0 = ∂

∂xi

Ri (p) = 1

(1 + ∑
j∈S uj (pj ))2

⎡

⎣ui(pi )(1 +
∑

j∈S

uj (pj )) + (pi − ci )u
′
i (pi )(1 +

∑

j∈S

uj (pj ) − ui(pi ))

⎤

⎦ ,

and ui(pi)(1 + ∑
j∈S uj (pj )) + (pi − ci)u

′
i (pi)(1 + ∑

j∈S uj (pj ) − ui(pi)) = 0.

∂2

∂xi ∂xj
Ri(p)

= −u′
j (pj )

(1+∑
j∈S uj (pj ))3

[
ui(pi)(1 + ∑

j∈S uj (pj )) + (pi − ci)u
′
i (pi)(1 + ∑

j∈S uj (pj ) − 2ui(pi))
]

= −u′
j (pj )

(1+∑
j∈S uj (pj ))3 (pi − ci)u

′
i (pi)(−2ui(pi)) > 0.

Theorem 8 When ui(pi) = eαipi+βi , p∗
i (p−i ) is continuous, and it is monotoni-

cally increasing with respect to p−i .

Proof We first prove the strongly concavity of ln Ri(pi, p−i ) in pi . Notice that

∂

∂pi

ln Ri = 1

pi − ci

+ u′
i (pi)(1 + ∑

j∈S\{i} uj )

ui(pi)(1 + ∑
j∈S uj )

= 1

pi − ci

+ αi

1 + ∑
j∈S\{i} uj

1 + ∑
j∈S uj

.

Notice that αi < 0 and ui(pi) is decreasing with respect to pi , ∂
∂pi

ln Ri is a
decreasing function with respect to pi , and ln Ri is a strongly concave function with
respect to pi . Since Ri is C2, and strongly concave in pi , p∗

i (p−i ) is continuous.
By the local supermodularity, there exists a small neighborhood Nε = {p ∈ �n+ |

‖p − (p∗
i (p−i ), p−i )‖∞ ≤ ε} of any point (p∗

i (p−i ), p−i ) on optimum solution

path, inside which ∂2

∂xi∂xj
Ri(p) > 0. Therefore, by applying Theorem 6 in the box,

for any q−i ∈ [p−i , p−i + εe] we have

x = argmax{Ri(pi, q−i ) | pi ∈ [p∗
i (p−i ) − ε, p∗

i (p−i ) + ε]} ≥ p∗
i (p−i ).
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By log-concavity of function Ri , local optimum x within region [p∗
i (p−i ) −

ε, p∗
i (p−i )+ε] is on the same side of the point p∗

i (p−i ) ∈ [p∗
i (p−i )−ε, p∗

i (p−i )+
ε] with the global optimum point p∗

i (q−i ), therefore

p∗
i (q−i ) = argmax{Ri(pi, q−i ) | pi ∈ �} ≥ p∗

i (p−i ).

3 Optimization with Submodular Set Functions

In this section, we introduce the classical results for optimization over submodular
set functions. Section 3.1 introduces the Lovasz extension for submodular set
function. Section 3.2 discusses the polymatroid optimization. In Section 3.3, Lovasz
extension is utilized for minimization of submodular set functions, with a fast
gradient projection based algorithm. In Section 3.4, we analyze greedy and double
greedy approaches for monotone and nonmonotone submodular set functions
maximization problem. In Section 3.5, the smooth-greedy approaches based on
multi-linear extension are analyzed for submodular set functions maximization
problem with matroid constraint.

3.1 Extensions of Submodular Set Function

We first recall two important definitions in convex optimization theory. The convex
hull of a set X is defined as Conv(X) = Cl{∑i sixi : ∑

i si = 1, si ≥ 0, xi ∈
X}, where Cl defines the closure of a set. Epigraph of a function f is defined as
epigraph(f ) = {(x, t) : f (x) ≤ t}. A classical fact in convex optimization theory
is that: A function is convex if and only if its epigraph is a convex set.

For each given set function f : 2N → �, we can define f̃ : {0, 1}N → � as
f̃ (1S) = f (s), where 1S is the characteristic vector defined as x ∈ �N with x = 1
if i ∈ S and xi = 0 if i /∈ S. We treat extreme points {0, 1}N of a box as the set of
subsets 2N , where 1S is equivalent to set S.

Definition 6 (Convex Extension and Lovasz Extension)

1. Given function f : X → �, we define its convex hull f − : Conv(X) → � as

f −(x) = inf{
∑

i

s
j
i
f (x

j
i
) : lim

j→∞ xj = x,
∑

i

s
j
i
x
j
i

= xj ,
∑

i

s
j
i

= 1, s
j
i

≥ 0, x
j
i

∈ X},

which is the largest convex function below f .
2. Given a set function f : 2N → �, the Lovasz extension f L(x) : [0, 1]N → � is

defined as f L(x) = ∑m
j=1 sjf (Sj ), where {Sj } is the unique decreasing series

of sets N = S1 ⊃ S2 ⊃ S3 ⊃ · · · ⊃ Sm = ∅ such that x = ∑
j sj 1Sj

for∑
j sj = 1, sj ≥ 0.
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3. Equivalent Definition of Lovasz Extension: Take uniform distribution ξ ∈ [0, 1],
then f L(x) = Eξf ({i : xi ≥ ξ}).

4. For any S ⊆ N , f L(1S) = f −(1S) = f (S). So both are extensions for set
functions.

Theorem 9 Convex hull f − of any function f is convex, and it is the largest convex
function below f .

Proof We analyze the epigraph of f −:

epigraph(f −) = Cl{(x, t) : ∃∑
i si = 1, si ≥ 0, xi ∈ X,

∑
i sixi = x,

∑
i sif (xi) ≤ t}

= Cl{(x, t) : ∃∑
i si = 1, si ≥ 0, xi ∈ X,

∑
i sixi = x,

∑
i si ti = t, f (xi) ≤ ti}

= Conv(
⋃

i{(xi , ti ) : f (xi) ≤ ti}),

which is a convex set. Therefore, by convex optimization theory f −(x) is convex.
Because f − is an extension of f , it is below f . Next we prove that any convex

function g below f is also below f −. For any s ∈ �n+ and xi ∈ X, i = 1, 2, · · · , N

with
∑

i si = 1, si ≥ 0,
∑

i sixi = x, by convexity we have

g(x) ≤
∑

i

sig(xi) ≤
∑

i

sif (xi).

Therefore, it follows from definition that

f −(x) = inf{
∑

i

s
j
i f (x

j
i ) : lim

j→∞ xj = x,
∑

i

s
j
i x

j
i = xj ,

∑

i

s
j
i = 1, s

j
i ≥ 0, x

j
i ∈ X} ≥ inf{g(xj )} ≥ g(x).

Theorem 10 If f is a submodular set function, then f −(x) = f L(x) and f L is
convex. Reversely, if the Lovasz extension f L of a set function f is convex, f has to
be submodular.

Proof We can formulate the convex extension as a linear programming problem:

f −(x) = min
∑

S⊆N λSf (S)

s.t.
∑

S:i∈S λS = xi ∀i ∈ N∑
S λS = 1

λ ≥ 0,

whose dual is

f −(x) = max t + ∑
i∈N yixi

s.t.
∑

i∈S yi ≤ f (S) − t ∀S ⊆ N.

For any given x ∈ [0, 1]N , there exists order π of indices such that xπ1 ≤ xπ2 ≤
· · · ≤ xπN

. Define Sj = {πj , · · · , πN } for j = 1, 2, · · · , N and SN+1 = ∅. Define
λSj

= xπj
−xπj−1 with xπ0 = 0 and xπN+1 = 1, and λS = 0 if else. Then λ ≥ 0 and

∑N+1
j=1 λj = 1. Furthermore,
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∑

S:i∈S

λS =
∑

j :j≤π−1(i)

λSj
=

∑

j :j≤π−1(i)

xπj
− xπj−1 = xi.

Therefore, λ is a primal feasible solution with the given x.
For the dual problem, define t = f (∅) and yi = f (Sπ−1(i)) − f (S1+π−1(i)) =

f (Sπ−1(i)) − f (Sπ−1(i)\{i}). For any set S = {πj1 , πj2 , · · · , πjm} with j1 < j2 <

· · · < jm, denote Sk = {πj1, πj2 , · · · , πjk
}. Then

∑

i∈S

yi =
∑

i∈S

f (Sπ−1(i))−f (Sπ−1(i)\{i}) ≤
m∑

k=1

f (Sk)−f (Sk+1) = f (S)−f (∅) = f (S)− t.

Therefore, (t, y) is a dual feasible solution.
Next we establish the strong duality, that is,

∑

S⊆N

λSf (S) =
N+1∑

j=1

(xπj
−xπj−1 )f (Sj ) =

N∑

j=1

xπj
[f (Sj )−f (Sj+1)]+xπN+1 f (SN+1)−xπ0 f (S1) =

∑

i∈N

xiyi + t.

Take all j such that λSj
> 0, these (λSj

, Sj ) define the Lovasz extension f L(x).
Therefore f −(x) = ∑

j :λSj
>0 λSj

f (Sj ) = f L(x). Because f − is always convex,

so is f L.
If f L is convex, then for any S, T ⊆ N , consider point x = 1S+1T

2 = 1S∩T +1S∪T

2 .

By definition, f L(x) = f (S∩T )+f (S∪T )
2 . By convexity, f −(x) ≤ f (S)+f (T )

2 .
Therefore

f (S) + f (T ) ≥ 2f −(x) = 2f L(x) = f (S ∩ T ) + f (S ∪ T ).

In convex optimization theory, the Separation Lemma guarantees the existence
of “dual certificate” of an optimum primal solution for a convex optimization
problem, which is a big step towards strong duality. For submodular set functions,
we have the following:

Theorem 11 (Frank’s Discrete Separation Theorem) If f (S), g(S) are sub-
modular and supermodular set functions defined on sublattice domain D ⊆ 2N ,
respectively, and f (S) ≥ g(S) for all S ⊆ N , then there exists a modular (linear)
function L(S) = c + ∑

i∈S li such that f (S) ≥ L(S) ≥ g(S) for all S ⊆ N .

Proof We prove for D = 2N first. Since both f and −g are submodular set
functions, their Lovasz extensions f L and (−g)L are convex. Note that f (S) +
(−g)(S) ≥ 0 for all S ⊆ N , it follows from definition that f L(x) + (−g)L(x) =
(f + (−g))L(x) ≥ 0 for all x ∈ [0, 1]N . Due to Separation Lemma in convex
optimization theory, there exists a linear function L−(x) : [0, 1]N → � such that
f L(x) ≥ L−(x) ≥ −(−g)L(x) for all x ∈ [0, 1]N . Constraint this L− function in
{0, 1}N we obtain the modular function
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L(S) = L−(1S) = L−(0) +
∑

i∈S

[L−(ei) − L−(0],

which satisfies f (x) ≥ L(x) ≥ g(x).
For D �= 2N , we can extend the function f to domain 2N by defining f (S) =

+∞ for all S /∈ D. Similarly, we extend g by defining g(S) = −∞ for all S /∈ D.
The extended functions are still submodular and supermodular, and we can apply
the proof for the full domain 2N directly.

Optimum solution of a convex function can be verified by a tangent hyperplane
which touches the epigraph of the convex function. Similarly, we have the following
existence result for the certificate of optimum solution of submodular set function
minimization problem:

Corollary 2 If f (S) is a submodular set functions defined on domain 2N , and L ⊆
2N is a sublattice. Then S∗ is the optimum solution for min{f (S) | S ∈ L} if and
only if there exists a modular set function L : 2N → � such that f (S∗) = l(S∗),
f (S) ≥ l(S) for all S ⊆ N and L ⊆ {S : l(S) ≥ l(S∗)}.
This is a direct application of Theorem 11, and the fact that f (S) ≥ f (S∗) ≥
2f (S∗) − f (S) for all S ∈ L.

3.2 Polymatroid Optimization

In the proof of Theorem 10, the dual formulation of f − has been discussed:

f −(x) = max t + ∑
i∈N yixi

s.t.
∑

i∈S yi ≤ f (S) − t ∀S ⊆ N.

The optimum solution for the dual problem is yi = f (Sπ−1(i)) − f (S1+π−1(i)) =
f (Sπ−1(i)) − f (Sπ−1(i)\{i}), where the order π corresponds to the increasing order
of xi : xπ1 ≤ xπ2 ≤ · · · ≤ xπN

. For sets Sk = {πj1, πj2 , · · · , πjk
},

∑

i∈Sk

yi =
∑

i∈Sk

f (Sπ−1(i)) − f (Sπ−1(i)\{i}) =
m∑

k=1

f (Sk) − f (Sk+1) = f (Sk) − t.

Therefore, Sk corresponds to the tight dual constraints, and the optimum solution
can be obtained by the greedy process: rank the coefficients in the objective from
highest (πN ) to lowest (π1), find the maximum possible value yj one by one.
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We conclude this observation into the so-called polymatroid optimization frame-
work:

Definition 7 (Polymatroid Optimization) Given a nonnegative set function r :
2N → �+, it induces a polytope (with exponentially many linear constraints)

P(r,N) = {x ∈ �N+ |
∑

j∈S

xj ≤ r(S) ∀S ⊆ N}.

This polytope is called a polymatroid if r is a rank function.

Problem 2 How to maximize a linear objective function with a polymatroid
constraint

max

⎧
⎨

⎩

∑

j∈N

cjxi | x ∈ P(r,N)

⎫
⎬

⎭
.

Algorithm 1: Greedy optimum

1 S0 = ∅ Find the decreasing order of coefficients: cπ1 ≥ cπ2 ≥ · · · ≥ cπN
;

2 Find the maximum possible value for xπt one by one, in increasing order of
t : for each t = 1, 2, . . . , N do

3 St = {π1, π2, · · · , πt }, xπt = r(St ) − r(St−1);
4 end

Theorem 12 The greedy Algorithm 1 is optimum for Problem 2.

This theorem has been established in [8]. We can prove the theorem by constructing
primal–dual solution with no duality gap, where the primal solution x is already
constructed by the greedy algorithm, and the dual is exactly the same as the primal
solution in Theorem 10.

Furthermore, in [15], He et al. established the following structural result of
polymatroid optimization:

Theorem 13 (Preservation of Submodularity) If r : 2N → � is a rank function,
the function

F(c) = max

⎧
⎨

⎩

∑

j∈N

cjxi | x ∈ P(r,N)

⎫
⎬

⎭

is a submodular function, and the function

F̂ (S) = max

⎧
⎨

⎩

∑

j∈S

cj xi | x ∈ P(r, S)

⎫
⎬

⎭
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is a rank function for given c ∈ �N+ . Furthermore,

F̂ (S) = max

⎧
⎨

⎩

∑

j∈S

fj (xj ) | x ∈ P(r, S)

⎫
⎬

⎭

is a rank function if the objective function is separable concave and fj (0) = 0.

Proof Due to space limitation, we provide an abstract proof with the main ideas
here. Firstly, because the objective function is continuous, and the domain is
compact, the optimum value F(c) is also continuous. Secondly, negative coefficient
ci would yield xi = 0, so we only need to focus in the nonnegative domain c ∈ �N+ .
Lastly, we only need to prove that for any given C ∈ �N+ and two different indices
i, j ∈ N , if ui and vj are nonnegative vectors with only positive values in index i

and j , respectively, then F(C + ui) + F(C + vj ) ≥ F(C) + F(C + ui + vj ).
Now we can fix all but two dimensions i, j . We then segment the two dimensional

space (ci, cj ) ∈ �2+ into small grids by the values of other Ck, k �= i, j . We
only need to prove inside each grid since local submodularity implies global
submodularity. Inside each small grid, the line ci = cj cuts the grid into two pieces,
and by Theorem 12 there is a uniform optimum solution in each piece, as illustrated
in Figure 2. We note the optimum solution in the left piece (ci ≤ cj ) as xL, then
F(c) = xT

L (c − C) + F(C); also the optimum solution in the right piece (ci ≥ cj )
is noted as xR , so F(c) = xT

R (c − C) + F(C) when ci ≥ cj , inside this small grid.
Without losing generality, we set F(C) = 0, and assume Cj ≥ Ci . Note b = C+

ui and a = C+vj , then C = a∧b and C+ui+vj = a∨b. If Ci+|vj | ≤ Cj ,then a, b

are not separate by the line, and F(c) is the same linear function for a, b, a∨b, a∧b,
so the submodularity directly follows. If Ci + |vj | > Cj , then a, b are in different
piece, with F(b) = xT

R (b −C) ≥ xT
L (b −C) and F(a) = xT

L (a −C) ≥ xT
R (a −C).

The line ci = cj intersects line from C = a ∧ b to b at z = (Cj , Cj ) as in Figure 2.
Note that a ∧ b = a ∧ z, so we have

F(a)+F(z) = xT
L (a−C)+xT

L (z−C) = xT
L (a∧z−C+a∨z−C) = F(a∧b)+F(a∨z).

Because z = (a ∨ z) ∧ b and a ∨ b = (a ∨ z) ∨ b, we have

F(a∨z)+F(b) ≥ xT
R (a∨z−C)+xT

R (b−C) = xT
R [(a ∨ z) ∧ b + a ∨ b − 2C] = F(a∧b)+F((a∨z)∨b) = F(z)+F(a∨b).

Adding these two inequalities up, we obtain

F(a) + F(b) ≥ F(a ∧ b) + F(a ∨ b).

Therefore F(a) is submodular in �N .
For set function F̂ (S), note that F̂ (S) = F(c | S), where (c | S)i = ci if i ∈ S

and 0 if else. The submodularity of F̂ then directly follows from submodularity of
F . For the proof of separable objective functions, please refer to Theorem 3 in [15].
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Fig. 2 Idea of proof for preservation of submodularity

3.3 Minimization of Submodular Set Function

In this subsection, we discuss how to solve submodular set function minimization
problems. It relies on the fact that minimizer of the Lovasz extension can be reached
at the extreme points of the polytope, which is a counter-intuitive result since this
property holds mostly for concave functions instead of convex functions.

Theorem 14 (Minimization of Submodular Set Function) If f : 2N → � is
a submodular set function, then the minimizer of its Lovasz extension in domain
[0, 1]N can be obtained at vertex points: minx∈[0,1]N f L(x) = minS⊆N f (S).

Proof By submodularity and Theorem 10, f L = f −.

minx∈[0,1]N f L(x) = minx∈[0,1]N min
∑

S⊆N λSf (S) = min
∑

S⊆N λSf (S)

s.t.
∑

S:i∈S λS = xi,∀i s.t. 0 ≤ ∑
S:i∈S λS ≤ 1,∀i

∑
S λS = 1

∑
S λS = 1

λS ≥ 0 ∀S λS ≥ 0 ∀S.

Notice that 0 ≤ ∑
S:i∈S λS ≤ 1 follows from the fact that

∑
S λS = 1 and λS ≥ 0,

min
x∈[0,1]N

f L(x) = min{
∑

S⊆N

λSf (S) |
∑

S

λS = 1, λ ≥ 0} = min
S⊆N

f (S).

By Theorem 14, if we can find an optimum solution for min{f L(x) | x ∈
[0, 1]N }, it corresponds to the optimum solution of the discrete problem min{f (S) |
S ⊆ N}. For convex optimization problem min{f L(x) | x ∈ [0, 1]N }, we can
evaluate the value and subgradient of f L(x) at x by the linear programming for-
mulation and its dual in proof of Theorem 14. The exact algorithms for submodular
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function minimization are quite extensive, interested readers can refer to Section
10.2 of [23], or the research papers [5, 14, 17, 18, 25]. In particular, Schrijver’s
algorithm [25] achieves O(n5) iterations, with O(n7) function evaluation and
O(n8) arithmetic operations (see Yvgen [31]), and the improved Iwata–Fleischeer–
Fugishige’s algorithm [17] can solve the problem within O(n7 ln n) function
evaluation and arithmetic operations.

In practice, speed of the algorithm is often an important factor, while the
precision can be sacrificed for speed. Next, we introduce a fast algorithm based
on subgradient method to optimize f L(x) within high precision. After obtaining a
high quality solution x ∈ [0, 1]N for f L(x), by the definition of Lovasz extension,
we can identify at most N + 1 set Sj such that f L(x) is the convex combination of
f (Sj ). Therefore, minj f (Sj ) ≤ f (x). We introduce the classical result of gradient
projection method in the following theorem:

Theorem 15 (Gradient Projection Method) Suppose g : X → � is a convex
function defined on closed convex set X with diameter R. If we apply the gradient
projection method: xt+1 = (xt −αtdt ) |X, where dt is a subgradient of g at xt whose
length is uniformly upper bounded by G, αt ≥ 0 is the step length, and y |X is the
projection of y in convex set X defined as y |X= argmin{‖z − y‖ | z ∈ X}. Then

min
t≤T

[g(xt ) − g(x∗)] ≤ G2(
∑T

t=1 α2
t ) + R2

2
∑T

t=1 αt

.

In this error bound estimation, taking αt = R
G

1√
T

for fixed horizon T would yield

upper bound RG√
T

, and taking horizon independent step length αt = R
G

1√
t

would

yield upper bound RG(1+ln T )

2
√

T
.

Proof Suppose x∗ ∈ X is the optimum solution, then

‖xt+1 − x∗‖2

≤ ‖xt − αtdt − x∗‖2 ←− (xt − αtdt − xt+1)
T (y − xt+1) ≤ 0∀y ∈ X

≤ ‖xt − x∗‖2 − 2αtd
T
t (xt − x∗) + α2

t G2 ←− ‖dt‖ ≤ G

≤ ‖xt − x∗‖2 − 2αt [g(xt ) − g(x∗)] + α2
t G2 ←− by convexity g(x∗) ≥ g(xt ) + dT

t (x∗ − xt ).

Therefore,

2αt [g(xt ) − g(x∗)] ≤ α2
t G

2 + ‖xt − x∗‖2 − ‖xt+1 − x∗‖2.

Sum these inequalities up, we have

(

2
T∑

t=1

αt

)

min
t≤T

[g(xt ) − g(x∗)] ≤
T∑

t=1

2αt [g(xt ) − g(x∗)] ≤ G2

(
T∑

t=1

α2
t

)

+ R2.
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More general cases have been studied by Haucbaum et al. [16].

Problem 3

min f (S)

s.t. aij xi + bij xj ≥ cij for all (i, j) ∈ A

S ⊆ N,

where x = 1S is the characteristic vector of S, A is a set of pairs (allowing multiple
copies of the same pair), and f : 2N → � is a submodular set function.

The following result has been established by Haucbaum et al. [16]:

Theorem 16 If f is submodular and constraints are monotone (feasible set
is a lattice), then it’s (strongly) polynomial-time solvable. If f is nonnegative
submodular, and the constraints satisfy round up property or f is monotone, then
it’s 2-approximable in polynomial time.

Proof Firstly, we preprocess all the constraints. Note that all variables are {0, 1}
variables. We first remove all redundant constraints. If a constraint aij xi + bij xj ≥
cij implies xi or xj equals to a certain value, then we can replace this constraint by
two single dimensional constraints, which are either redundant or can be removed
by fixing the variable. Repeatedly simplifying all such constraints, the left over
constraints with two variables would all be of the form xi ≥ xj , xi + xj ≤ 1,
or xi + xj ≥ 1. Furthermore, constraints of type aij xi − bij xj ≥ cij , where
aij , bij ≥ 0, would be reduced to simple single dimensional constraints, or the
constraints of type xi ≥ xj (or xi ≤ xj ), constraints of type aij xi − bij xj ≥ cij ,
where aij ≥ 0, bij ≤ 0, would be reduced to simple single dimensional constraints,
or the constraints of type xi + xj ≤ 1, or xi + xj ≥ 1. If there is a group of cyclic
constraints xi1 ≥ xi2 ≥ · · · xin ≥ xi1 , we further simplify it by replacing all xij with
a single variable.

When all the constraints are monotone, the constraints after simplification would
all be the form xi ≥ xj for directed pairs (i, j) ∈ E. The problem now reduces to
submodular minimization over a ring, which is solvable in (strong) polynomial time
in the size of the underlying graph. A simple explanation is that, we can reform the
problem into minimization of another submodular set function over set 2E . For this
purpose, for constraint xi ≥ xj we define variable yij = 1 if xi = 1 and xj = 0,
and yij = 0 if else. And define base set B of indices as those indices never appear
in the left side of ≥ constraints, and we define yi = xi for all i ∈ B. Now, each
xi can be defined by ∨k∈Sk

yk for certain set Si ⊆ E ∪ B (basically, in the ordered
graph, Si is the set children edges of i, as well as the leaves grow from node i). It
can be easily proved that for a monotone set function F , and set T ⊆ E ∪ B, define
set S(T ) = {i | Si ∩ T �= ∅}, then function G(T ) = F(S(T )) is also submodular
for submodular function f . And the constraint for original variables is embedded in
the transformation S(T ), so the constraint for function G becomes T ⊆ E ∪ B.
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For general cases, suppose the problem after simplification is of form:

min f (x)

s.t. xi ≥ xj ,∀(i, j) ∈ E,

xi + xj ≥ 1,∀(i, j) ∈ U,

xi + xj ≤ 1,∀(i, j) ∈ V.

We introduce two copies of original variables x+ = x ∈ {0, 1}n, x− = −x ∈
{0,−1}n. Then the original problem can be reformulated by

min f (x+)+f (−x−)
2

s.t. x+
i ≥ x+

j , x−
i ≤ x−

j ∀(i, j) ∈ E,

x+
i − x−

j ≥ 1,−x−
i + x+

j ≥ 1,∀(i, j) ∈ U,

x+
i − x−

j ≤ 1,−x−
i + x+

j ≤ 1,∀(i, j) ∈ V,

x+
i + x−

i = 0,∀i

x+
i ∈ {0, 1}, x−

i ∈ {0,−1},∀i.

Dropping the only nonmonotone constraints x+
i + x−

i = 0, we obtain a relaxed
problem with only monotone constraints, which can be solved exactly. Suppose
optimum solution is (x+, x−) with objective value V ∗ ≤ OPT . However, notice
that y = � x+−x−

2 � and z = � x+−x−
2 � are both feasible for the original problem.

However, y = x+ ∨(−x−) and z = x+ ∧(−x−). By submodularity, f (y)+f (z) ≤
f (x+) + f (−x−). Because f is nonnegative, f (y) ≤ f (x+) + f (−x−) = 2V ∗ ≤
2OPT .

3.4 Maximization of Submodular Set Function

There are many scenarios where one needs to maximize a submodular set function.
For example, consider a social network where people’s decision is influenced by
their friends. When a company needs to place a number of individual advertise-
ments, e.g., via phone calls, a crucial problem is which group of people should
they reach to maximize the total effect, within given budget constraint. A simplified
model is the so-called Max-k-Cover problem:

Problem 4 (Max-k-Cover) Given a set of sets {Sj ⊆ N | j ∈ A}, find k sets
which covers the most number of elements.
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We can also assume that each element (customer) covered has a different value:

Problem 5 (The Maximum Coverage Problem) Given a set of S1, S2, · · · , Sm ⊆
N . For each element i ∈ N , it has a value vi ≥ 0, and for each set S ⊆ N the value
function is defined as V (S) = ∑

i∈S vj . We need to select K sets {Si | j ∈ A}, and
to maximize the maximum value V (

⋃
j∈A Sj ).

One of the most important characteristic of these problem is the submodularity
of objective function, with respect to the selected set of sets. The proof is
straightforward and is omitted here.

Proposition 1 We define U(A) = V (
⋃

j∈A Sj ), then U is a submodular set
function:

V (∪i∈ASj )+V (|∪i∈B Sj |) ≥ V (|∪i∈A∩B Sj |)+V (|∪i∈A∪B Sj |) for any A,B ⊆ {1, 2, · · · ,m}.

A related problem arises from application is assort optimization, where one
needs to place advertisements of goods on the front-page of its website for maximum
sales effect.

Problem 6 (Assortment Optimization) There are K advertisement slots of a
webpage, which we need to select from a set N of goods from a certain category.
The goods are substitutable to each other, that is, increasing sales from one product
would hurt (or has no effect to) sales of the other product, so the more the goods
placed on the webpage, the lesser the contribution from the advertisement of the next
goods added. In some classical literatures, e.g., [6], the total sales revenue V (S)

from displacement of set S of goods on the webpage is assumed to be increasing
and submodular. And we aim to solve the cardinality constrained maximization
problem:

max{V (S) : |S| ≤ K, S ⊆ N}.

Because Max-Cut problem is well-known to be NP-hard, and the cut weight
V (S) = ∑

i∈S,j /∈S wij is submodular in S, submodular set function maximization
with cardinality constraint is also NP-Hard. The hardness to approximate result has
been established by Feige [11]:

Theorem 17 (Max-Hardness) Consider cardinality constrained submodular max-
imization problem max{f (S), |S| ≤ K, S ⊆ N} for rank function (submodular,
normalized, and increasing) f : 2N → �. Unless P = NP , there is no polynomial-
time algorithm which achieves approximation ratio strictly better than 1 − 1

e
in

general (for general setting of K).
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There is a simple greedy algorithm which can achieve the best possible approx-
imation ratio 1 − 1

e
for cardinality constrained maximization problem of rank

functions.

Algorithm 2: Greedy algorithm: rank function maximization

1 Initialization t = 0, St = ∅;
2 foreach t = 1, 2, . . . , K do
3 Find the element i /∈ St with maximum improvement for function value:

it = argmax{f(St−1 ∪ {i})};
4 Define St = St−1 ∪ {i};
5 end
6 Return SK

Theorem 18 (Greedy for Rank Function) The greedy algorithm above achieves
approximation ratio 1 − (1 − 1

K
)K ≥ 1 − 1

e
for max{f (S), |S| ≤ K, S ⊆ N}, if the

function f is a rank function.

Proof Define the optimum solution as S∗, and optimum value OPT = f (S∗).
For any set S ⊆ N , note that elements in S∗\S as {j1, j2, · · · , jm}, and Sk =
S ∪ {j1, j2, · · · , jk}. Then

∑

i∈S∗
[f (S +{i}−f (S)] =

m∑

k=1

[f (S +{jk}−f (S)] ≥
m∑

k=1

[f (Sk)}−f (Sk−1)] = f (S ∪S∗)−f (S).

Due to monotonicity of f , we have f (S ∪ S∗) ≥ f (S∗) = OPT . Consequently,

max{f (S + {i}) − f (S) : i ∈ S∗} ≥ 1

K
(OPT − f (S)).

Therefore, for any t and set St , the greedy algorithm outputs set St+1:

OPT −f (St+1) ≤ OPT −f (St )−[f (St+1) − f (St )] ≤ OPT −f (St )− 1

K
[OPT − f (S)] ≤

(
1 − 1

K

)
[OPT − f (St )] .

This implies that

OPT − f (SK) ≤
(

1 − 1

K

)K

[OPT − f (S0)] ≤
(

1 − 1

K

)K

OPT ,

and

f (SK) ≥
[

1 −
(

1 − 1

K

)K
]

OPT ≥
(

1 − 1

e

)
OPT .
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The 1 − 1
e
-approximation is tight for rank function due to Theorems 17 and 18.

In the remainder of this subsection, we discuss a more general case by relaxing the
monotonicity assumption of objective function.

Problem 7 (Nonmonotone Submodular Function Maximization) Given a non-
negative submodular set function f : 2N → �+, suppose we can evaluate f (S) for
any S ⊆ N . How should we solve the problem:

max{f (S) : S ⊆ N}.

The hardness to approximate result is established in [12]:

Theorem 19 (Hardness for Nonmonotone Submodular Function Maximiza-
tion) Suppose f : 2N → �+ is a submodular set function, which we can evaluate
the function value on each S ⊆ N . Then for any ε > 0, an algorithm which can
approximate the general maximization problem of approximation ratio 1

2 + ε needs
to call the valuation oracle exponentially many times. This is also true even if f is
known to be symmetric, i.e., f (S) = f (N\S).

Buchbinder et al. [3] recently established the tight approximation algorithm,
based on the idea of forward–backward greedy search:

Algorithm 3: 1/2-Randomized approximation algorithm

1 Initialization t = 0, A0 = ∅, B0 = N ;
2 Given random order u1, u2, · · · , uN of 1, 2, · · · , N ;
3 foreach t = 1, 2, . . . , N do
4 Define

at = [f (At−1 ∪ {ut })−f (At−1)]+,bt = [f (Bt−1 \ {ut })−f (Bt−1)]+;
5 With probability pt = at

at+bt
, we add ut to At−1: At = At−1 ∪ {ut },

Bt = Bt−1;

6 Else (with probability 1 − pt = bt

at+bt
), remove ut from Bt−1:

At = At−1, Bt = Bt−1 \ {ut };
7 end
8 Return AN = BN . Note Define pt = 0 if both at = bt = 0.

This algorithm maintains increasing random series of sets {At } and decreasing
series of sets {Bt }, by gradually deciding whether an element should be added to
At , or removed from Bt , based on whether its potential is improving the function
value. It stops at AN = BN . Next, we define a series of sets St to assist our analysis
of the algorithm. Suppose the optimum solution of max{f (S) : S ⊆ N} is S∗,
with the optimum value noted as OPT = f (S∗). We define the random set St =
(S∗ ∪ At) ∩ Bt and value Vt = E[f (St )]. Then we have for all t , At ⊆ St ⊆ Bt ,
S0 = S∗, f (S0) = OPT , and SN = AN = BN .
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To prove the approximation result, we quantify the potential loss of function
value from St−1 to St by the following technical lemma from [30]:

Lemma 2 For any t , the algorithm outputs

E[f (St−1) − f (St )] ≤ 1

2
[f (At ) − f (At−1) + f (Bt ) − f (Bt−1)] .

Proof By definition we have Bt−At = {ut+1, ut+2, · · · , uN }, and ut ∈ Bt−1\At−1.
If at = bt = 0, then by definition f (At−1 ∪ {ut })− f (At−1) ≤ 0, f (Bt−1 \ {ut })−
f (Bt−1) ≤ 0. Note that At−1 ⊆ Bt−1 \ {ut }, it follows from submodularity we have

0 ≥ f (At−1 ∪ {ut }) − f (At−1) ≥ f (Bt−1) − f (Bt−1 \ {ut }) ≥ 0.

Notice the algorithm outputs At = At−1 ∪ {ut }, Bt = Bt−1, so f (At )− f (At−1) =
f (Bt−1) − f (Bt ) = 0. If ut ∈ St−1, we have St = St−1 and f (St−1) − f (St ) = 0.
If ut /∈ St−1, then the algorithm outputs St = St−1 ∪ {ut }, consequently At−1 ⊆
St−1 ⊆ Bt−1 \ {ut }. By submodularity we have

0 ≥ f (At−1∪{ut })−f (At−1) ≥ f (St−1∪{ut })−f (St−1) ≥ f (Bt−1)−f (Bt−1\{ut }) ≥ 0,

which implies that f (St−1) − f (St ) = f (At ) − f (At−1) = f (Bt−1) − f (Bt ) = 0.
Now we consider the case at + bt > 0. If ut ∈ S∗, then ut ∈ St−1, St = St−1

with probability pt = at

at+bt
, and St = St−1\{ut } with probability 1 − pt . Note that

At−1 ⊆ St−1\{ut }, by submodularity f (St−1) − f (St−1\{ut }) ≤ f (At−1 ∪ {ut }) −
f (At−1) = at . Therefore

E[f (St−1) − f (St )] ≤ (1 − pt )at = atbt

at + bt

.

If ut /∈ S∗, then ut /∈ St−1, St = St−1 ∪ {ut } with probability pt = at

at+bt
, and

St = St−1 with probability 1 − pt . Because St−1 ⊆ Bt−1\{ut }, it follows from
submodularity that f (St−1) − f (St−1 ∪ {ut }) ≤ f (Bt−1\{ut }) − f (Bt−1) = bt .
Therefore we also have

E[f (St−1) − f (St )] ≤ ptbt = atbt

at + bt

.

Note that pt = 0 if at = 0, bt > 0, pt = 1 if at > 0, bt = 0, so whenever
at + bt > 0,

f (At ) − f (At−1) + f (Bt ) − f (Bt−1)

= pt [f (At−1 ∪ {ut }) − f (At−1)] + (1 − pt ) [f (Bt−1 \ {ut }) − f (Bt−1)]
= pt [f (At−1 ∪ {ut }) − f (At−1)]+ + (1 − pt ) [f (Bt−1 \ {ut }) − f (Bt−1)]+
= ptat + (1 − pt )bt .
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Therefore,

atbt

at + bt

≤ a2
t + b2

t

2(at + bt )
= ptat + (1 − pt)bt

2

= 1

2
[f (At ) − f (At−1) + f (Bt ) − f (Bt−1)] .

Theorem 20 ( 1
2 -Approximation) If the function f : 2N → �+ is a nonnegative

submodular set function, then Algorithm 3 achieves 1
2 -approximation ratio, i.e.,

E[f (AN)] ≥ 1

2
OPT .

Proof Adding the inequalities in Lemma 2 for all t = 1, 2, · · · , N , we obtain

E[f (S0)] − E[f (SN)] =
N∑

t=1

E[f (St−1) − f (St )]

≤ 1

2
[f (AN) − f (A0) + f (BN) − f (B0)] .

It then follows from SN = AN = BN , and f (A0), f (B0) ≥ 0 that

E[f (S0)] − E[f (SN)] ≤ 1

2
[f (AN) + f (BN)] = f (SN).

Because S0 = S∗, f (AN) = f (SN) ≥ 1
2f (S0) = 1

2OPT .

3.5 Multi-Linear Relaxation and Submodular Function
Maximization

In this section, we introduce another line of approach to deal with submodular func-
tion maximization problems, which utilize the so-called multi-linear relaxation.

Definition 8 (Multi-Linear Relaxation) Given a set function f : 2N → �, we
define its multi-linear relaxation by rounding a continuous point x ∈ [0, 1]N to
{0, 1}N : F(x) = E[f (ξ(x))], where ξ(x) ∈ �N takes value ξ(x)i = 1 with
probability xi , and ξ(x)i = 0 with probability 1 − xi independently.
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Because the multi-linear relaxation is defined via expectation, it is straightfor-
ward to see:

Theorem 21

max{F(x) | x ∈ [0, 1]N } = max{f (x) | x ∈ {0, 1}N }.

In the remainder of the section, we introduce variations of submodular maxi-
mization problem, and how to utilize the multi-linear relaxation for solving these
problems. We start with the general matroid constrained problem:

Definition 9 (Matroid) A matroid M = (X, I) consists of the ground set X and the
independent set I ⊆ 2X which is a set of subsets of X, if it satisfies the following:

1. For any A ⊆ B and B ∈ I, it has to be A ∈ I.
2. For any A,B ∈ I and |A| < |B|, there exists x ∈ B \ A such that A ∪ {x} ∈ I.

Matroids are discrete sets, whose convex hull are actually polymatroids. In the
following, we first illustrate how matroid induces a rank function, and how this rank
function defines a polymatroid which is the convex hull of the matroid.

Theorem 22 (Matroid Rank) Define r(S) = max{|X| | X ⊆ S,X ∈ I}, if M is a
matroid, then r(S) is a rank function.

Proof It follows from definition that r(S) is monotonically increasing and r(∅) = 0,
so we only need to verify the submodularity. For any i, j /∈ S, if r(S ∪ {i, j}) =
r(S ∪ {i}) or r(S ∪ {i, j}) = r(S ∪ {j}), it follows from monotonicity that r(S) +
r(S ∪ {i, j}) ≤ r(S ∪ {i}) + r(S ∪ {j}). If else, then r(S ∪ {i, j}) > r(S ∪ {i}) and
r(S ∪ {i, j}) > r(S ∪ {j}). Define A

.= argmax{|X| | X ⊆ S ∪ {i, j}, X ∈ I}. Note
that r(S ∪ {i, j}) = |A| and A \ j ⊆ S ∪ {i}, by the definition of independent set
A\j ∈ I, so r(S∪{i}) ≥ |A|−1 = r(S∪{i, j})−1. Because r(S∪{i}) < r(S∪{i, j}),
we have r(S ∪ {i}) = r(S ∪ {i, j}) − 1. Similarly, r(S ∪ {j}) = r(S ∪ {i, j}) − 1.

Define B
.= argmax{|X| | X ⊆ S,X ∈ I}. Because |B| = r(S) ≤ r(S ∪ {i}) <

r(S ∪ {i, j}) = |A|, it follows from definition of independent set that there exists
x ∈ A \ B with B ∪ {x} ∈ I. By the definition of B, x /∈ S because otherwise
B ∪{x} ⊆ S is a larger independent set in S. Therefore, x ∈ (S ∪{i, j})\S = {i, j},
so x = i or x = j . If x = i, then r(S ∪ {i}) ≥ |B + i| = |B| + 1 = r(S) + 1.
Similarly, if x = j , we also have r(S ∪ {j}) ≥ r(S) + 1 if x = j . Therefore, we
always have

r(S ∪ {i}) + r(S ∪ {j}) ≥ r(S) + 1 + r(S ∪ {i, j}) − 1 = r(S) + r(S ∪ {i, j}).

In linear algebra, the set of linearly independent vectors forms an independent set
for ground set of all vectors in �N . The rank function induced by this independent
set is exactly the rank of the spanning space of a set of vectors.
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Theorem 23 (Matroid to Polymatroid) For a matroid M with induced rank
function r , define polytope P(M) = Conv{1S | S ∈ I}, then

P(M) = P(r,X) =
⎧
⎨

⎩
x ∈ �X+ |

∑

j∈S

xj ≤ r(S) ∀S ⊆ X

⎫
⎬

⎭

and it is a polymatroid.

Proof For any independent set A ∈ I and S ⊆ X, it follows from A ∩ S ∈ I that
r(S) ≥ |A ∩ S| = ∑

i∈S(1A)i . Therefore M ⊆ P(M).
Reversely, in the proof of Theorem 23 we showed that r(S ∪ {i}) − r(S) = 0

or 1. By the optimum solution structure in Theorem 12, all the vertices of polytope
P(M) are 0/1 vector. Suppose one vertex is v = 1A, which corresponds to set
A. If A is not an independent set, then by definition r(A) ≤ |A| − 1. However,∑

i∈A vi = ∑
i∈A 1 = |A| > r(A), which contradicts the constraint in the definition

of P(M). Therefore, any vertices of the polytope are an element in M.

For the matroid constrained rank function maximization problem:

max{f (S) : S ∈ I},

where f : 2N → �+ is a rank function and M = (N, I) is a matroid, we
introduce the algorithm in [30]. Firstly, they use the smooth-greedy algorithm to

obtain solution x such that F(x) ≥
(

1 − 1
e

− o(1)
)

OPT , then they apply pipage
rounding to gradually round each indices to 0 or 1. Since the multi-linear extension
is defined by expectation form, rounding (or even greedy) would naturally yield
integer solution with better quality. To start with, we consider the smooth process:

Algorithm 4: Smooth differential equation

1 Initialization: set δ = 1
m2 , t = 0, yij (t) = 0 ;

2 For any y ∈ [0, 1]N , define I (y) = max{∑j∈S
∂

∂yj
F (y) | S ∈ I};

3 Define y(t) by differential equation y(0) = 0, d
dt

y(t) = 1I (y);
4 Output y(1);

The step 2 of solving I (y) is doable because it is equivalent to polymatroid
optimization problem as in Section 3.2, which can be solved by simple greedy
process.

Theorem 24 (Smooth Process) For the problem max{f (S) : S ∈ I} with rank
function r and polymatroid M = (N, I), the smooth process outputs

F(y(1)) ≥
(

1 − 1

e

)
OPT .
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Proof Firstly, because 0 ≤ ∂
∂t

yj (t)) ≤ 1 for any index j ∈ N , y(t) is always
feasible for t ∈ [0, 1]. Define the optimum solution as S∗ = argmax{f (S) : S ∈ I},
then f (S∗) = OPT . For any y ∈ [0, 1]N , define random set Ry by independently
randomly selecting index i ∈ N with probability yi , and not selecting i with
probability 1 − yi .

For any two sets S, T ⊆ N , we define fS(T ) = f (S + T ) − f (S), and fS(j) =
fS({j}). By submodularity, for any set S ⊆ N we have:

OPT = f (S∗) ≤ f (S ∪ S∗) ≤ f (S) +
∑

j∈S∗
fS(j).

Define fRy (j) = ES∼Ry fS(j) and notice that F(y) = ES∼Ry f (S), then

OPT ≤ ES∼Ry

⎡

⎣f (S) +
∑

j∈S∗
fS(j)

⎤

⎦

= F(y) +
∑

j∈S∗
fRy (j) ≤ F(y) + max

S∈I

∑

j∈S

fRy (j),

where the last inequality follows from the fact that S∗ ∈ I. Note that

F(y) =
∑

S⊆N

f (S)
∏

i∈S

yi

∏

i /∈S

(1 − yi),

which implies that

∂

∂yj

F (y) = F(y | yj = 1) − F(y | yj = 0)

= E
[
f (Ry ∪ {j}) − f (Ry \ {j})] ≥ fRy (j).

Therefore, the differential equation process satisfies

d

dt
F (y(t)) =

∑

j∈I (y)

∂

∂yj

F (y(t))

= max
S∈I

∑

j∈S

∂

∂yj

F (y(t)) ≥ max
S∈I

∑

j∈S

fRy (j) ≥ OPT − F(y(t)).

Combine with the fact that F(y(0)) ≥ 0 = (
1 − e−0

)
OPT , we have for any t ∈

[0, 1],

F(y(t)) ≥ (
1 − e−t

)
OPT .
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Since the smooth solution can’t be obtained exactly, one can apply the following
algorithm for 1 − 1

e
− o(1) approximation ratio:

Algorithm 5: Smooth greedy

1 Set δ = 1
M

, M ≥ N2, t = 0, y(0) = 0;
2 foreach t = 0, 1, 2, . . . ,M − 1 do
3 Define ωj (t) ∼ fRy(tδ)(j), which can be obtained within any required

error by sampling algorithm;
4 Define I (t) = argmax{sumj∈Sωj(t) | S ∈ I};
5 Take y((t + 1)δ) = y(tδ) + δ1I (t)

6 end
7 Output y(1).

Many well-known combinatorial problems can be reformulated into matroid
constrained rank function maximization:

Problem 8 (The Submodular Social Welfare Problem) There are a set P (m
many) of players and a set N of resources. Player i’s utility function is wi(Si) if
receiving set Si of resources, which is assumed to be a rank function. How should
we distribute resources among a group of people, to maximize the social utility∑m

i=1 wi(Si)? Without losing generality, we assume that each resource is of single
unbreakable unit, and this assumption can be relaxed to multi-units without altering
the following process as well as its analysis.

By making m copies (i, j) of each item j , and an allocation {S1, S2, · · · , Sm}
uniquely corresponds to set S = ⋃m

i=1{(i, j) | j ∈ Si}. We obtain a matroid M is
defined by the ground set X = P × N , the independent set

I = {S ⊆ X | |S ∩ {P × {j}}| ≤ 1 for all j ∈ N}.

Then the problem is reduced to classical matroid constraints rank function maxi-
mization.

When each player also faces the bin packing problem, the problem becomes the
general assignment problem.

Problem 9 (General Assignment Problem) There is a set P of players, and a set
N of items. Each player i has only 1 unit of capacity which can’t be exceeded.
Receiving the item j would yield utility vij , but also consumes capacity cij of the
player i.

Note that each player has a feasible set Fi ⊆ 2N of possible choices for each
player i, we can construct the matroid X = (X, I) by ground set X = {(i, Si) | Si ∈
Fi , i ∈ P }, and

I = {S ⊆ X | At most one set Si assigned to each player i}.
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To avoid assigning one item to multiple players, the objective function is changed to

f (S) =
∑

j∈N

max{vij : j ∈ Si, (i, Si) ∈ S}.

The GAP can also be solved via the so-called configuration LP approach as in
[13], which plays significant role in combinatorial optimization.

Algorithm 6: Configuration LP+greedy rounding

1 Define Vi(S) = ∑
j∈S vij ;

2 Solve the configuration LP problem

max
∑

i∈P

∑
S∈Fi

yi,SVi(S)

s.t.
∑

S∈Fi
yi,S ≤ 1 ∀i ∈ P

∑
(i,S):j∈S,S∈Fi

yi,S ≤ 1 ∀j ∈ N

yi,S ≥ 0 ∀i ∈ P, S ∈ Fi

to obtain the fractional optimum solution {yi,S};
3 For each player i, independently select one Si = S with probability yi,S ,

which is doable because
∑

S∈Fi
yi,S ≤ 1;

4 For each item j , allocate it to the player with the best value vij .

Note that for general assignment problem, step 2 of the above algorithm can
be solved by reformulating with a linear programming problem by assignment
variables xij for (continuous) amount of item j assigned to player i. Fleischer et
al. [13] showed that this greedy rounding algorithm yields 1 − 1

e
approximation

ratio:

Theorem 25 The configuration LP can be solved exactly, and the greedy rounding
yields 1 − 1

e
approximation ratio with respect to the fractional solution.

Problem 10 (Budget Constrained Maximization) Given a monotone submodular
function f : 2N → �+, suppose we can evaluate f (S) for any S ⊆ N . And for
each item i ∈ N it consumes nonnegative budget of ci . How should we solve budget
constrained problem:

max

{

f (S) :
∑

i∈S

ci ≤ B, S ⊆ N

}

.

The first 1 − 1
e

− o(1) approximation algorithm for the budget constrained
maximization problem was achieved by Sviridenko [28], later improved by Badani-
diyuru and Vondrák [2] and Ene and Nguyen [9]. The detailed algorithms are quite
involved and lengthy, readers may refer to the listed research papers for reference.
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All algorithms split the items into two groups, those with large value and those
with small value. The large valued ones are of small number, which can be guessed,
or decided with the help of multi-linear extension form. For the small valued ones,
missing one small valued items due to capacity would lose at most ε ratio. Therefore
one can simply apply cost-efficiency greedy approach to fill the capacity.

4 Discrete Convexity in Dynamic Programming

Submodularity and other discrete convex properties are also very useful in dynamic
and online decision problems. In Section 4.1, we present the concept of L�-
convexity. Applications in dynamic inventory control problems are discussed in
Section 4.2. In Section 4.3, online matching problems are introduced.

4.1 L�-Convexity

All the discussions of submodular function optimization in Section 3 are focused on
set functions. In most practical problems, one needs to deal with decision variables
in broader domain. Since the submodular function minimization relies heavily on
Lovasz extension, a natural question is, when would the Lovasz extension of a
function coincide with its convex hull in common discrete domain?

Definition 10 (L�-Convex Set) A set D ⊆ ZN is called L�-convex, if {(x, t) |
x − te ∈ D, t ∈ Z+} is a sublattice, i.e.,

(x + te) ∧ y ∈ D and x ∨ (y − te) ∈ D for all x, y ∈ D, t ∈ Z+,

where e ∈ �N is the all one vector.

Definition 11 (L�-Convex Function) For L�-convex domain D, we call a function
f : L → � a L�-convex if the function g(x, t) = f (x−te) is a submodular function
on sublattice domain {(x, t) | x − te ∈ D, t ∈ Z+}.
Theorem 26 The condition of L�-convexity is equivalent to: (Condition A) f (x) +
f (y) ≥ f ((x+ te)∧y)+f (x∨(y− te)) for any x, y ∈ D, t ∈ Z+. When D = ZN ,
the next two conditions are also equivalent conditions for L�-convexity:

1. (Condition B) f (x) + f (y) ≥ f (� x+y
2 �) + f (� x+y

2 �) for any x, y ∈ D.
2. (Condition C) If we define the Lovasz extension f L(x) within each integer grid,

and merge them together, it is well defined and coincides with the convex hull:
f L = f −.
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Note: when the function f : �N → � is a C2 function defined on continuous
domain, the condition is equivalent to the Hessian of M = ∇2f (x) that is always a
diagonal dominated M-matrix for any x, i.e., Mij ≤ 0 for all i �= j .

Proof Firstly, for any x, y ∈ D, t ∈ Z+, we denote z = x+te. Then (z, t)∨(y, 0) =
(z ∨ y, t), (z, t) ∧ (y, 0) = (z ∧ y, 0), z ∨ y − te = x ∨ (y − te). Notice that

f (x) + f (y) − f ((x + te) ∧ y) − f (x ∨ (y − te))

= g(z, t) + g(y, 0) − g((z, t) ∧ (y, 0)) − g((z, t) ∨ (y, 0)).

So the condition (A) is equivalent to the submodularity of g.
Secondly, we show that condition (B) implies submodularity of g when the

domain D = ZN , and vice versa. Note that we only need to verify the submodularity
locally, i.e.:

1. g(x, t) + g(x + ei + ej , t) ≤ g(x + ei, t) + g(x + ej , t) for all i �= j , where ei

is unit length vector which only takes value of 1 at index i,
2. g(x, t) + g(x + ei, t + 1) ≤ g(x + ei, t) + g(x, t + 1) for all x ∈ D, i ∈ N , and

t ∈ Z+.

The first inequality follows from

f (x+ei−te)+f (x + ej − te) ≥ f (x − te + �ei + ej

2
�) + f (x − te + �ei + ej

2
�)

= f (x − te) + f (x − te + ei + ej ).

The second inequality follows from

f (x+ei−te)+f (x − (t + 1)e) ≥ f (x − te + �ei − e

2
�) + f (x − te + �ei − e

2
�)

= f (x + ei − (t + 1)e) + f (x − te).

Reversely, when g is submodular, we start with the case |xi − yi | ≤ 1 for all
i ∈ N , � x+y

2 � = x ∧ y, and � x+y
2 � = x ∨ y. Therefore

f

(
�x + y

2
�
)

+ f

(
�x + y

2
�
)

= g(x ∧ y, 0) + g(x ∨ y, 0)

≤ g(x, 0) + g(y, 0) = f (x) + f (y).

Now we prove that condition (A) woud imply condition (B). If condition (B) is
violated by some pair of (x, y), we define (x∗, y∗) as the minimal pair which
violates the condition (B), i.e., solution for

min{‖x − y‖1 | f (x) + f (y) < f

(
�x + y

2
�
)

+ f

(
�x + y

2
�
)

, x, y ∈ D′},
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where we can constraint D is a finite box neighborhood D′ of a violation pair. For
the inequality to hold, there exists at least one index k such that |x∗

k − y∗
k | ≥ 2.

Without losing generality, we assume x∗
k ≤ y∗

k − 2. Note that for any xi, yi ∈ Z,
if xi ≤ yi − 1, then min{xi + 1, yi} = xi + 1 and min{xi, yi − 1} = yi − 1,
if xi ≥ yi − 1, then min{xi + 1, yi} = yi and min{xi, yi − 1} = xi . Therefore
(x∗ +e)∧y∗ +x∗ ∨ (y∗ −e) = x∗ +y∗, and |((x∗ +e)∧y∗)i − (x∗ ∨ (y∗ −e))i | ≤
|x∗

i − y∗
i | for all index i. Furthermore,

|((x∗ + e) ∧ y∗)k − (x∗ ∨ (y∗ − e))k| ≤ |y∗
i − x∗

i − 2| = y∗
k − x∗

k − 2 < y∗
k − x∗

k ,

which implies that ‖(x∗ +e)∧y∗ −x∗ ∨(y∗ −e)‖1 < ‖x∗ −y∗‖1. Because (x∗, y∗)
is the minimal pair which violates the condition, and the fact that (x∗ + e) ∧ y∗ +
x∗ ∨ (y∗ − e) = x∗ + y∗, we have

f ((x∗ + e) ∧ y∗)) + f (x∗ ∨ (y∗ − e)) ≥ f (�x∗ + y∗

2
�) + f (�x∗ + y∗

2
�).

However, it follows from condition (A) that

f (x∗) + f (y∗) ≥ f ((x∗ + e) ∧ y∗)) + f (x∗ ∨ (y∗ − e)).

These two inequalities contradict the definition of (x∗, y∗), so we proved that there
is no pair x, y ∈ ZN which can violate condition (B).

Thirdly, we establish the equivalence of L�-convexity with the convexity of
Lovasz extension. When f is L�-convex, it has been established that f is submod-
ular in each small grid; therefore, we can define f L in each grid. Next we prove
this definition coincides with the convex extension, by showing that for convex
combinations of x = ∑

z∈D αzz, the minimum combination of function values can
be achieved in the smallest grid near x, for any x with no integer value. For those
x with integer value, i.e., within intersection of multiple small grids, we can apply
continuity argument.

For each given finite convex combination x = ∑
z∈D λzz with value V =∑

z∈D αzf (z), the support {z | αz > 0} is a finite set and can be assumed to be
contained in a finite box B = [−M,M]N . Consider all convex combinations of x in
B with better value, i.e., Λ = {λ | ∑z∈B λzf (z) ≤ V,

∑
z∈B λz = 1, λ ≥ 0} which

is nonempty because α ∈ Λ. Define the potential function P(λ) = ∑
z∈B λz‖z‖2

2
for convex combination λ defined on B. And define β as the solution for min{P(λ) |
λ ∈ Λ}, with support Suppβ = {z | βz > 0}. If it is not contained in the smallest
box, then there exists u, v ∈ Suppβ and index i such that vi − ui ≥ 2. It follows
from the condition (A) that we can find w = (u+e)∧v, y = u∨(v−e) ∈ D, which
satisfies f (u) + f (v) ≥ f (w) + f (y), u + v = w + y, and w, y ∈ B. Furthermore,
for each index j , note that if uj ≥ vj − 1, then wj = vj and yj = uj , and if
uj ≤ vj − 2, then wj = uj + 1 and yj = vj − 1, therefore u2

j + v2
j ≥ w2

j + y2
j for
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all j ∈ N , and u2
i + v2

i − 2 ≥ w2
i + y2

i . Therefore, denoting δ = min{βu, βv} > 0,
the convex combination β̂ defined as

β̂z =
⎧
⎨

⎩

βz, if z ∈ B\{u, v,w, y}
βz − δ, if z ∈ {u, v}
βz + δ, if z ∈ {w, y}

satisfies

∑
z∈B β̂zz = ∑

z∈B βzz + δ(w + y − u − v) = ∑
z∈B βzz = x∑

z∈D β̂zf (z) = ∑
z∈D βzf (z) + δ(f (w) + f (y) − f (u) − f (v)) ≤ ∑

z∈D

βzf (z)=V P (β̂)=∑
z∈D β̂z‖z‖2=∑

z∈D βz‖z‖2+δ(‖w‖2+‖y‖2 − ‖u‖2 − ‖v‖2)

≤ ∑
z∈D βz‖z‖2 − 2δ ≤ P(β) − 2δ,

which contradicts with the minimum of potential function in the definition of β.
Therefore, we showed that for the minimum convex combination β in the definition
of f −(x), zj = �xj �, or �xj � for any z ∈ Suppβ and index j ∈ N . Therefore f L

coincides with the f −, which is well defined and convex.
Reversely, if f L = f −, for any x, y ∈ D we have

f (x) + f (y) ≥ 2f −(
x + y

2
) = 2f L(

x + y

2
) = f (�x + y

2
�) + f (�x + y

2
�).

For C2 function f defined on continuous domain, note that for any x ∈ �N and
t ∈ �+,

f (x + tei) + f (x − te) − f (x + tei − te) + f (x)

=
∫ t

s=0

∫ t

r=0

N∑

j=1

∂2

∂xi∂xj

f (x + sei + re − te)dsdr,

the submodularity of g across xi and t is equivalent to diagonal dominance of
∇2f (x) on index i. Also, for any i �= j ∈ N ,

f (x + tei) + f (x + tej ) − f (x) − f (x + tei + tej )

=
∫ t

s=0

∫ t

r=0

N∑

j=1

∂2

∂xi∂xj

f (x + sei + rej )dsdr,

so the submodularity of g across xi and xj is equivalent to the off-diagonal (i, j)-th
element of symmetric matrix ∇2f (x) that is non-positive.

Theorem 27 For a L�-convex function f : D → � defined on L�-convex domain
D = ZN , any local minimum solution x, i.e., f (x) ≤ f (y) for all y ∈ D such that
‖y − x‖∞ ≤ 1, is also a global minimum solution.
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Proof This result directly follows from the fact that x is local minimum for convex
function f L. Alternatively, we can establish the result via combinatorial approach:

Define set S = {y | f (z) < f (x), z ∈ D}. If S is nonempty, there exists y ∈ S

(may be not unique) which is closest to x in L1 distance. Because x is local optimum
and f (x) > f (y), ‖y − x‖∞ ≥ 2. It follows 2f (x) > f (x) + f (y) ≥ f (� x+y

2 �) +
f (� x+y

2 �) that min{f (� x+y
2 �), f (� x+y

2 �)} < f (x). But when ‖y − x‖∞ ≥ 2, both
� x+y

2 � and � x+y
2 � are strictly closer to x than y. Therefore both � x+y

2 � and � x+y
2 � are

not in S, which contradicts with the fact that min{f (� x+y
2 �), f (� x+y

2 �)} < f (x).

Because local minimum is global minimum, minimization of L�-convex function
can be achieved by local search of improving directions, readers may refer to [26]
for details. When precision can be traded for speed, the gradient projection approach
in Theorem 15 should be applied, if the effective domain is compact.

4.2 L�-Convexity in Dynamic Inventory System

In this subsection, we introduce some important applications of submodular func-
tion optimization. In particular, many inventory related problems arise in supply
chain management, where one needs to handle complex inventory system dynam-
ically. Because inventory of different goods may substitute for each other, and
inventory for perishable goods (e.g., fresh fruit, fresh milk, etc.) with different
expiration dates is also substitutable for each other, we often model the problem by
submodularity or other related properties, and utilize these properties for obtaining
better inventory strategy.

There are many applications of L�-convex function in dynamic inventory
management. We start with a simple example. Suppose there is a retailer who has n

classes of goods, while class i − 1 goods can be updated to class i (i = 2, 3, · · · , n)
with upgrading cost ci per unit overnight. The retailer can also purchase from
supplier for class 1 goods with cost c1 per unit overnight. There are random demand
Dt

i of type i goods at day t , and unsatisfied demand will be backlogged (booked
for future sales) with penalty cost bi per unit day. Unsold class i goods will incur
holding cost hi per unit day. The retailer needs to decide the amount qt

1 of class
1 goods to purchase from supplier, as well as the amount qt

i upgraded for class i

goods from class i − 1, i = 2, · · · , n. Denote the inventory of class i goods at the
beginning of day t as I t

i , then I t+1
i = I t

i + qt
i − Dt

i − qt
i+1. Therefore the decision

corresponds to dynamic programming:

Vt (I
t ) = EDt min

{
n∑

i=1

ciq
t
i +

n∑

i=1

fi(I
t
i − Dt

i ) + Vt+1(I
t+1) : 0 ≤ qt

i

}

,

where fi(x) = −bix if x ≤ 0 and fi(x) = hix if x ≥ 0, VT +1 ≡ 0, and the
overnight decision qt depends on the realized demand Dt during the day. It we take
the transformation of St

i = ∑
j≥i I t

i , then St+1
i = St

i + qt
i − ∑

i≥s Dt
i , and I t

i =
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St
i − St

i+1. We define Ct(S
t ) = Vt (I

t ), which satisfies the dynamic programming:

Ct(S
t ) = EDt min

⎧
⎨

⎩

n∑

i=1

ci

⎛

⎝St+1
i − St

i −
∑

i≥s

Dt
i

⎞

⎠ +
n∑

i=1

fi(S
t+1
i − St+1

i+1)

+Vt+1(I
t+1) : St+1

i ≥ St
i +

∑

j≥i

Dt
i

⎫
⎬

⎭
.

Next, we show that the function C is always L�-convex, and the function V

is a so-called multimodular function. For this purpose, we need to establish that
L�-convexity can be preserved under minimization, similar to the preservation of
submodular property in Theorem 7. We refer to a theorem in [33]:

Theorem 28 (Preservation of L�-Convexity) Suppose S ⊆ X × Y is a L�-
convex set, and f : S → � is a L�-convex function. Then the function g(y) =
min{f (x, y) | (x, y) ∈ S} is a L�-convex function defined on L�-convex set
T = {y | ∃(x, y) ∈ S}
Proof We first prove the L�-convexity of T by definition. For any given y − te, y′ −
t ′e ∈ T with t, t ′ ∈ Z+, by definition there exists x, x′ ∈ X such that (x, y −
te), (x′, y′ − t ′e) ∈ S. Define z = x + te and z′ = x′ + te, then (z, y) − te =
(x, y − te) and (z,′ , y′) − t ′e = (x′, y′ − t ′e). By L�-convexity of S,

(z ∨ z′ − (t ∨ t ′)e, y ∨ y′ − (t ∨ t ′)e) = (z, y) ∨ (z′, y′) − (t ∨ t ′)e ∈ S

and

(z ∧ z′ − (t ∧ t ′)e, y ∧ y′ − (t ∧ t ′)e) = (z, y) ∧ (z′, y′) − (t ∧ t ′)e ∈ S.

It follows that y ∨ y′ − (t ∨ t ′)e ∈ T and y ∧ y′ − (t ∧ t ′)e ∈ T .
Next, we establish the L�-convexity of function g by constructive approach.

Define h(x, y, t) = f ((x, y) − te) and ĥ(y, t) = g(y − te). For any given
y − te, y′ − t ′e ∈ T with t, t ′ ∈ Z+, by definition there exists x, x′ ∈ X

such that f (x, y − te) = g(y − te) and f (x′, y′ − t ′e) = g(y′ − t ′e). Define
z = x + te and z′ = x′ + te, then g(y − te) = f ((z, y) − te) = h(z, y, t) and
g(y′ − t ′e) = f ((z′, y′) − t ′e) = h(z′, y′, t ′). By definition of L�-convexity, the
function h is submodular, therefore

h(z, y, t) + h(z′, y′, t ′) ≥ h(z ∨ z′, y ∨ y′, t ∨ t ′) + h(z ∧ z′, y ∧ y′, t ∧ t ′).

It follows from (z, y) − te = (x, y − te) ∈ S and (z′, y′) − t ′e = (x′, y′ − t ′e) ∈ S

that
(
z ∨ z′ − (t ∨ t ′)e, y ∨ y′ − (t ∨ t ′)e

) ∈ S, therefore

h(z∨z′, y∨y′, t ∨ t ′) = f (z∨z′−(t ∨ t ′)e, y∨y′−(t ∨ t ′)e) ≥ g(y∨y′−(t ∨ t ′)e).
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Similarly,

h(z∧z′, y∧y′, t ∧ t ′) = f (z∧z′−(t ∧ t ′)e, y∧y′−(t ∧ t ′)e) ≥ g(y∧y′−(t ∧ t ′)e).

Combine these inequalities together, we obtain

g(y − te) + g(y′ − t ′e) ≥ g(y ∨ y′ − (t ∨ t ′)e) + g(y ∧ y′ − (t ∧ t ′)e),

which implies the L�-convexity of function g.

Furthermore, for the dynamic inventory control problem we notice the following
two facts:

1. The set (x, y) ∈ �2 | x − y ≤ c} is L�-convex.
2. For convex function f : � → �, f (x − y) is always L�-convex.

Therefore, if Ct+1 is L�-convex, for each given Dt , so is the function FDt (St ) =
min

{∑n
i=1 ci(S

t+1
i − St

i − ∑
i≥s Dt

i ) +∑n
i=1 fi(S

t+1
i − St+1

i+1) + Vt+1(I
t+1) : St+1

i

≥ St
i + ∑

j≥i Dt
i

}
. By linearity in definition of L�-convexity, we know that

Ct+1(S
t ) = EDt FDt (St ) is also L�-convex. So we can inductively establish the

L�-convex property for Ct :

Theorem 29 The function Ct is L�-convex, and the original function Vt is multi-
modular.

Definition 12 (Multimodular Function) A function f : X → � is defined on
S ⊆ �N , which is X = {x : aT

j x ≤ b, j = 1, 2, · · · ,m}, where each aj is of form
∑L

i=K ei , i.e., vector with value 1 on consecutive indices, and 0 if else, or
∑L

i=K ei ,
for different 1 ≤ K ≤ L ≤ N . If Φ(x) = f (x1 − y, x2 − x1, · · · , xN − xN−1) is
submodular on S = {(x, y) ∈ �N+1 | (x1 − y, x2 − x1, · · · , xN − xN−1) ∈ X} is a
submodular function, we say f is a multimodular function.

Multimodular function is essentially L�-convex function under a linear transfor-
mation, which was established in [24]:

Theorem 30 Suppose we define set Z = {z ∈ �N | (z1, z1 − z2, z2 − z3, · · · , zn −
zn−1) ∈ X} = {z | (z, 0) ∈ S} and function g(z) = f (z1, z1 −z2, z2 −z3, · · · , zn −
zn−1). Then f : X → � is a multimodular function, is equivalent to g : Z → �,
and is a L�-convex function.

Multimodularity, or equivalently under transformation, L�-convexity are used
to characterize the dynamic decision systems and the corresponding optimum
solutions for inventory management of perishable goods [4] and [21], as well as
the queueing system [1].

For optimizing the L�-convex functions in the dynamic system, one could not
simply apply the greedy local search algorithm, because the state space is expo-
nentially large which makes it impossible to recursively solve for function values
at all states as the classical dynamic programming approach does. Therefore, one
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can only hope to solve the problem approximately in dynamic system by adaptive
approximation approach, which uses classes of simple functions to approximate
each Vt , and recursively find the best approximation for each state function Vt . In
particular, [22] uses linear functions for inventory problem of perishable goods.
In Sun et al. [27], a class of quadratic functions has been used, according to the
following Lemma they established based on Murota’s characterization of quadratic
L� functions:

Lemma 3 A quadratic function f : �N → � is multimodular if and only it can be
expressed as f (x) = ∑N

i=1
∑i

j=1 Qij (
∑i

l=j xl), where Qij (x) = aij x
2 + bij + cij

with aij ≥ 0.

Recently, Chen et al. [4] develop the basis function approach which approximates
the original function by a linear combination F̂ (x) = ∑N

i=1
∑i

j=1 Bij (
∑j

l=i xl)

of basis functions Bij , which can be recursively constructed by solving single
dimensional optimization problems. This approach is much more flexible by
allowing a much broader class of functions to be used to approximate the original
function, and does achieve significant improvement in practice.

4.3 Online/Dynamic Matching

Submodularity also has important applications in dynamic matching. To begin with,
we analyze the static matching. Consider the bipartite matching problem with two
sets (A and B) of nodes, and edges (i, j) ∈ E ⊆ A × B. Each edge (i, j) ∈ E is
associated with a weight wij . The objective is to match the nodes to maximize the
total matching weight, constraint to that each node can be matched to at most one
node. This problem can be modeled by:

W(A,B) = max
∑

i∈A,j∈B wij xij

s.t.
∑

j∈B xij ≤ 1∀i ∈ A
∑

i∈A xij ≤ 1∀j ∈ B

xij = 0 or 1∀i ∈ A, j ∈ B.

Since the constraint matrix is unimodal, there is no integrality gap, we can replace
the integer constraints by xij ≥ 0.

We can even consider a more general formulation:

U(a, b) = max
∑

i∈A,j∈B wij xij

s.t.
∑

j∈B xij ≤ ai∀i ∈ A
∑

i∈A xij ≤ bj∀j ∈ B

xij ≥ 0,

which satisfies W(A,B) = U(1A, 1B).
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Intuitively, we can view a and b as resources, and resources in a (or b) are
substitutes to each other, so adding more and more resources in a (or b) has
diminishing return. However, resources in a are complementary to those in b, so
adding resource in a would boost the values of resources in b, and vice versa. Next,
we show the function U(a, b) is submodular within a, b, but supermodular across
them:

Theorem 31 The function U(a,−b) is submodular! By setting a = 1A and b =
−1B), we know that W(A,B) is submodular in A for fixed B.

Proof Taking the dual, we have

U(a,−b)

= min

⎧
⎨

⎩

∑

i∈A

aiyi −
∑

j∈B

bj zj | y ∈ �A+, z ∈ �B+, yi + zj ≥ wij ,∀i ∈ A, j ∈ B

⎫
⎬

⎭
.

By defining variable v = −y, it becomes

U(a,−b)

= min

⎧
⎨

⎩
−

∑

i∈A

aivi−
∑

j∈B

bj zj | v ∈ �A−, z ∈ �B+,−vi+zj ≥ wij ,∀i ∈ A, j ∈ B

⎫
⎬

⎭
.

Note that the objective function −aT v − bT z is submodular in (a, b, v, z), and the
feasible domain is a lattice, by Theorem 7 the function U(a,−b) is submodular.

For online matching problems, submodularity or equivalently the diminishing
return property plays a crucial role. We present a more general online matching
case in [19].

Problem 11 There is a fixed group A of players, and a group of items arrive
stochastically. The items are of different types j ∈ T , at each time t the type jt

of the item arrives following an i.i.d distribution. At the end (time N ), player i

receives Si of items, with submodular utility Vi(Si). We need to match each item at
the time it arrives, and aim at maximizing the total matching score at the end. One
thing to note that is, by setting Vi(Si) = maxj∈Si

wij , we can reduce this problem
to an online bipartite matching problem.
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Consider the following greedy allocation rule:

Algorithm 7: Greedy online matching

1 Initialize with S0
i = ∅ for all i ∈ A. foreach t = 1, 2, . . . , N do

2 Match the item arrives (of type jt ) to player it with maximum matching
weight (or equivalently, maximum improvement) ;

3

it = argmax{Vi(S
t−1
i ∪ {jt}) − Vi(S

t−1
i ) | i ∈ St−1}

St
it

= St−1
it

∪ {it }, St
i = St−1

i for all i �= it ;
4 end

Theorem 32 The greedy algorithm achieves 1 − 1
e

approximation ratio.

Proof By submodularity of Vi and two sets X and Y of items, we have Vi(X∪Y )−
Vi(X) ≤ ∑

j∈Y cj (Y )[Vi(X∪{j})−Vi(X)]. Denote pj as the arrival probability of
type j items, and cj (S) as the type j items used in set S, then the optimum offline
matching value with expected number of arrival is bounded by:

OPT ≤ max
∑

i∈A,S Vi(S)xi,S

s.t.
∑

i∈A

∑
S:j∈S xi,Scj (S) ≤ pjN,∀j ∈ T

∑
S xi,S ≤ 1,∀i ∈ A

xi,S ≥ 0,∀i ∈ A and set S.

Denote yij = ∑
S:j∈S xi,Scj (S) and zij = yij

pj N
, then

∑
i∈A zij ≤ 1 and z ≥ 0.

When item of type j arrives at time t , consider the random allocation which assigns
this item to player i with probability zij . Then the expected gain is

∑

i,j

pj zij [Vi(S
t−1
i ∪ {j}) − Vi(S

t−1
i )] = 1

N

∑

i,j

yij [Vi(S
t−1
i ∪ {j}) − Vi(S

t−1
i )].

The greedy has at least the expected gain, denote actual matching value at stage t as
V t . Therefore,

E[V t ] − V t−1 ≥ 1

N

∑

i,S

xi,S

⎡

⎣
∑

j∈S

cj (S)[Vi(S
t−1
i ∪ {j}) − Vi(S

t−1
i )]

⎤

⎦

≥ 1

N

∑

i,S

xi,S[Vi(S
t−1
i ∪ S) − Vi(S

t−1
i )].
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Therefore

E[V t ] − V t−1 ≥ 1

N
OPT − 1

N

∑

i,S

xi,SVi

(
St−1

i

)

≥ 1

N

[

OPT −
∑

i

Vi(S
t−1
i )

]

= 1

N

[
OPT − V t−1

]
.

This approximation ratio is tight in online stochastic matching scenario, and
similar algorithms and analyses have been established for other online matching
and online allocation problems [10, 20, 32], etc.

The diminishing return effect from submodularity can be applied to quantify
the matching efficiency, when we combine matching stages with other type of
operations, in algorithm design. In a recent work, He et al. [7] studied the matching
problem in kidney exchange, which matches donated kidneys from non-directed
donors, as well as kidneys from relatives of patients who does not match with
own targeted relative, to other patients. The matching process has been divided
into two stages, in the first stage random walk mechanism has been applied to
achieve efficient chains in difficult patients, and in the second stage bipartite
matching algorithms are applied to further reduce number of unmatched patients.
Submodularity of second stage matching score, with respect to the available
(unmatched) difficult patients for matching at beginning of stage two, is utilized
to transfer the analysis in stage one, to an analysis of the full mechanism. By
this approach, the first non-asymptotic bound on matching efficiency has been
established for medium size random graphs.
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