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Preface

With the recent developments of computer technology, more and more optimization
problems appear to have discrete structure with nonlinear objective function and/or
nonlinear constraints. They form a new research area, nonlinear combinatorial
optimization. Let us mention a few examples.

In wireless sensor networks, the energy efficiency is an important issue and,
usually, the energy is a nonlinear function with respect to communication radius.
The energy-efficient topological control problem is to minimize the total energy
consumption over all spanning tree in homogeneous sensor systems, or over all
strongly connected subnetworks in heterogeneous sensor systems, and hence it is a
nonlinear combinatorial optimization problem.

In cloud computing, the processing time of a job depends on the energy assigned
to the job and is actually a nonlinear function with respect to the energy. Therefore,
the job scheduling problem with the total energy constraint is also a nonlinear
combinatorial optimization problem with nonlinear constraint.

In social networks, the expectation of influence, i.e., the expectation of the
number of infected nodes, is a nonlinear function with respect to the seed set and
hence its maximization is a nonlinear optimization problem.

In machine learning, a lot of problems can be formulated into submodular
optimizations, which gives a big motivation to study submodular optimization with
machine learning approaches.

There are various types of nonlinear combinatorial optimization problems, such
as submodular cover and submodular knapsack problems, submodular optimization
and nonsubmodular optimization, offline and online nonlinear combinatorial opti-
mization, set function optimization and integer lattice optimization, and the discrete
DC (i.e., the difference of two convex functions) programming. There also are many
new approaches produced when two areas, nonlinear continuous optimization and
discrete optimization, meet in this interdisciplinary domain.

While the nonlinearity is merged into combinatorial optimization, the nonlinear
optimization method is getting involved into those problems. For example, discrete
Newton method has been successfully used for solving the inverse problem of com-
binatorial optimization, convex relaxation and algorithms for continuous convex

v



vi Preface

program play important roles in dealing with submodular optimization, and discrete
convex analysis plays an important role in solving the DC programming. On the
other hand, some methodologies are extended from linear to nonlinear, such as the
Graver basis, which is an important tool to study the linear integer programming,
and now is involved in solving the nonlinear integer programming.

This book is a collection of extraordinary chapters written by invited leading
experts in the area of nonlinear combinatorial optimization. The subjects cover
theoretical developments, such as discrete Newton methods, the Graver basis,
submodular optimization, and set function optimization, and various applications,
such as topological control in wireless networks, influence maximization, friending,
rumor blocking in social networks, and multi-document extractive summarization in
machine learning. All chapters in this book provide a clear and authoritative picture
of what nonlinear combinatorial optimization is and the direction in which research
is going on. Thus, we hope that the book would serve as a useful reference for
university students, professors, and researchers with interest in this area, possibly
from applied mathematics, computer science, industrial and system engineering,
and management science.

Richardson, TX, USA Ding-Zhu Du
Gainesville, FL, USA Panos M. Pardalos
Jinhua, China Zhao Zhang
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A Role of Minimum Spanning Tree

Zhao Zhang and Xiaohui Huang

Abstract In a wireless sensor network, a topology control problem aims to adjust
power of sensors so that the topology supported by the power has some desirable
property and the total power is as small as possible. In this chapter, we shall
present studies on the topology control problem with the properties of containing
a spanning tree, a strongly connected spanning digraph, and a broadcast tree.
Minimum spanning tree plays an important role in all these studies, serving as a
linearization method for these nonlinear problems.

1 A Property of Minimum Spanning Tree

For a connected graph G = (V ,E) with edge lengths {w(e)}e∈E , a minimum-
length spanning tree of G (MST) is a spanning tree T of G whose length w(T ) =∑

e∈E(T ) w(e) is minimum. In this section, the following property of minimum
spanning tree is proved.

Lemma 1 Let T and T ∗ be an arbitrary spanning tree and a minimum-length
spanning tree of G, respectively. Then there is a one-to-one onto mapping σ :
E(T )→ E(T ∗) such that for every e ∈ E(T ), w(e) ≥ w(σ(e)).

Proof It is known that an MST can be found by the following greedy algorithm.
Let T̃ be the MST found by Algorithm 1. Suppose |E(T̃ )| = t , E(T̃ ) =

{e∗1, . . . , e∗t }, and w(e∗1) ≤ . . . w(e∗t ). Order edges in an arbitrary spanning tree
T as e1, . . . , et such that w(e1) ≤ . . . ≤ w(et ). We claim that w(e∗i ) ≤ w(ei) for
i = 1, . . . , t . Suppose this is not true, let k be the first index with w(e∗k ) > w(ek).
Denote I = {e∗1, . . . , e∗k−1} and J = {e1, . . . , ek}. If for every ej ∈ J \ I , I ∪ {ej }
has a cycle, then I is a spanning forest of graph G[I ∪ J ] (the subgraph of G

induced by edge set I ∪ J ), and thus any spanning forest of G[I ∪ J ] has k − 1

Z. Zhang (�) · X. Huang
Zhejiang Normal University, Jinhua, Zhejiang, China
e-mail: hxhzz@sina.com
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2 Z. Zhang and X. Huang

Algorithm 1 Greedy Algorithm for MST
Input: A connected graph G = (V ,E) and a non-negative length function w on E.
Output: A minimum-length spanning tree T of G.
1: T ← ∅.
2: Sort edges as {e1, . . . , en} such that w(e1) ≤ . . . ≤ w(en).
3: for i = 1 to n, do
4: If T ∪ {ei} is acyclic, then T = T ∪ {ei}.
5: end for
6: Output T .

edges. However, J is an acyclic subgraph of G[I ∪ J ] which contains k edges, a
contradiction. So, there exists an edge ej ∈ J \ I such that I ∪ {ej } is acyclic.
But then, the greedy algorithm should choose ej instead of ek in the k-th iteration,
because w(ej ) ≤ w(ek) < w(e∗k ), again a contradiction.

For any MST T ∗ with E(T ∗) = {f ∗1 , . . . , f ∗t } and w(f ∗1 ) ≤ . . . ≤ w(f ∗t ).
By the above argument, w(e∗i ) ≤ w(f ∗i ) for i = 1, . . . , t . Since

∑t
i=1 w(f

∗
i ) =∑t

i=1 w(e
∗
i ), we must have w(f ∗i ) = w(e∗i ) for i = 1, . . . , t . Hence the mapping σ

determined by σ(ei) = f ∗i (i = 1, . . . , t) satisfies the requirement of the lemma.

This lemma indicates that a spanning tree is minimum for edge weight {w(e)}e∈E
if and only if it is minimum for edge weight {w(e)α}e∈E for any constant α > 0.
This property allows us to transfer a nonlinear problem to a linear problem through
minimum spanning tree. In the next several sections, we give some examples. An
interesting common aspect in those examples is that the minimum spanning tree
plays an important role in designing good approximation algorithms for them.

2 Symmetric Topological Control

The energy of wireless devices is often supplied with batteries, which means that
the energy supply is usually limited. Due to this fact, the energy efficiency becomes
an important issue in the study of wireless networks.

The communication range of a wireless station (node) is closely related with its
energy consumption and antenna type. For an omnidirectional antenna at a station
s, the signal power received at a location t is decreasing as the distance d(s, t) is
increasing. Suppose at s, the signal power is p(s). Then at location t , it is p(s)

d(s,t)α
,

where α is a constant usually between 2 and 5 [33]. Suppose c is the quality
threshold for the signal power, that is, in order to receive the signal correctly, the
signal power has to be at least c. This means that for location t to receive the signal
correctly, it must have p(s)

d(s,t)α
≥ c, i.e.,

p(s) ≥ c · d(s, t)α.
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Thus, the communication range at each station is a disk with radius r where r is
determined by the power p through formula

p = crα.

Often, the transmission quality threshold c is normalized to 1.
When the power p at each node is adjustable, one often studies the problem

of minimizing the total energy consumption under certain network connection
constraints in order to meet the requirement for certain duty. There exist many
combinatorial optimization problems of this type in the literature. The following
is a general mathematical formulation.

Given a set of nodes V and a distance table {d(u, v)}(u,v)∈V×V , denote w(u, v) =
d(u, v)α . If d(u, v) = d(v, u) holds for every pair of nodes u and v, the problem is
said to have symmetric power requirement. Otherwise, the problem has asymmetric
power requirement. In an asymmetric topological control problem, the power for
the presence of arc (u, v) is that the power assigned to node u satisfies p(u) ≥
w(u, v). In a symmetric topological control problem, the power for the presence
of edge (u, v) is that p(u) ≥ w(u, v) and p(v) ≥ w(v, u). The problem is
to find a power assignment p : V → R+ such that the graph with vertex
set V and arc set {(u, v) | p(u) ≥ w(u, v)} (in the asymmetric topological
control problem) or edge set {(u, v) | p(u) ≥ w(u, v), p(v) ≥ w(v, u)} (in the
symmetric topological control problem) satisfies certain properties and the total
power

∑
u∈V p(v) is minimized. There is an equivalent statement of this problem.

For a directed graph G = (V ,E) with arc weight w, the minimum power for the
existence of G is

P(G) =
∑

u∈V
pG(u), (1)

where

pG(u) = max{w(u, v) : (u, v) ∈ E} (2)

is the minimum power that can be assigned to u in order to guarantee the presence
of all those arcs {(u, v) : (u, v) ∈ E(G)}. When G is clear under the context,
subscript G is omitted. An undirected graph can be viewed as a directed graph
with each edge replaced by two opposite arcs. The problem is to find a directed
graph (or an undirected graph) G satisfying certain properties such that P(G) is
minimized.

In order that nodes in a wireless network can communicate with each other, the
network is required to contain a spanning tree (in symmetric topological control
problem) or a strongly connected spanning subgraph (in asymmetric topological
control problem). Considering fault-tolerance, one may require that the network
has higher connectivity. Considering transmission delay, one may require that the
network has bounded diameter.
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Fig. 1 An in-arborescence

This section considers symmetric topological control problem under symmetric
power requirement, which can be stated as follows:

MIN-POWER SYMMETRIC CONNECTIVITY: Given a wireless network with power-
adjustable nodes and symmetric power requirement, find a power assignment to minimize
the total power and to keep the network connected symmetrically.

As the above argument shows, this problem is equivalent to finding a minimum
power spanning tree, that is, a spanning tree T with P(T ) being minimized.

The NP-hardness of this problem was showed by Blough et al. [3]. To study
its approximation solutions, consider an in-arborescence A. An in-arborescence is a
directed rooted-spanning tree in which every node except for the root has out-degree
exactly one (see Figure 1). Let T be the spanning tree obtained from A by ignoring
the directions on all arcs. Notice that the weight of each arc is added exactly once
in P(A), and the weight of its corresponding edge is added exactly once in w(T ).
Hence we obtain the following lemma.

Lemma 2 (In-Arborescence Lemma) For any in-arborescence A, let T be the
spanning tree obtained from A by removing the directions of all arcs. Then

P(A) = w(T ).

Corollary 3 For any spanning tree T , P(T ) ≥ w(T ).

Proof Choose an arbitrary node as the root of T , and orient every edge towards
the root. Then one obtains an in-arborescence A. This corollary follows from the
In-Arborescence Lemma by observing that pT (u) ≥ pA(u) for every node u ∈ V .

On the other hand,

P(T ) =
∑

u∈V (T )

max
(u,v)∈E(T )

w(u, v) ≤
∑

u∈V (T )

∑

v:(u,v)∈E(T )
w(u, v) = 2 ·w(T ). (3)

Suppose Tmst is a minimum-weight spanning tree with edge weight w(·) and T opt

is an optimal spanning tree for MIN-POWER SYMMETRIC CONNECTIVITY (called
minimum power spanning tree). Then by (3) and Lemma 1,

P(Tmst ) ≤ 2 · w(Tmst ) ≤ 2 · w(T opt ) ≤ 2 · P(T opt ).
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Fig. 2 A tight example for Theorem 1 with 2n points on a line

This means that Tmst is a 2-approximation for MIN-POWER SYMMETRIC CONNEC-
TIVITY. Since we have seen in the last section that a minimum-length spanning tree
is also a minimum-weight spanning tree, we have the following.

Theorem 1 The minimum-length spanning tree is a polynomial-time 2-
approximation for MIN-POWER SYMMETRIC CONNECTIVITY.

The significance of using a minimum-length spanning tree instead of a minimum-
weight spanning tree is that a minimum-length spanning tree in Euclidean plane can
be computed in O(n log n) time, while computing a minimum-weight spanning tree
directly may need O(m logm) time, where m = O(n2) is the number of edges.

The following example given in [8] shows that using a minimum-length spanning
tree as an approximation for MIN-POWER SYMMETRIC CONNECTIVITY, perfor-
mance ratio 2 is tight.

Let v1, v2, . . . , v2n be 2n points lying along a line in Figure 2 with the distance
as follows:

d(v1, v2) = d(v3, v4) = · · · = d(v2n−1, v2n) = 1,

d(v2, v3) = d(v4, v5) = · · · = d(v2n−2, v2n−1) = ε,

where ε is a sufficiently small positive number. The minimum power for keeping
symmetric connectivity is

nc(1+ ε)α + (n− 1)cεα + c→ (n+ 1)c as ε→ 0

which is achieved when v1, v3, . . . , v2n−1 are assigned with power c(1 + ε)α ,
v2, v4, . . . , v2n−2 are assigned with power cεα , and v2n is assigned with power c1α .
The minimum-length spanning tree is the path (v1, v2, . . . , v2n) with power-cost

2nc1α = 2nc.

Therefore, the performance ratio is

2nc

nc(1+ ε)α + (n− 1)cεα + c
→ 2

as ε→ 0 and n→∞.
Is there a polynomial-time approximation with performance ratio less than 2

for MIN-POWER SYMMETRIC CONNECTIVITY? The answer is yes. To see it, we
introduce a type of decomposition of a tree.
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A k-restricted decomposition of a tree T is a partition of T into a set of edge-
disjoint subtrees each with at most k nodes. Consider a k-restricted decomposition
of T , which is denoted as Q = {T1, T2, .., Tq}. The power-cost of Q is defined by

P(Q) =
q∑

i=1

P(Ti).

Clearly, the power-cost of Q differs from the power-cost of T at the joints of
subtrees. That is, extra power will be created at a node which belongs to more than
one subtree. It can be expected that when k is sufficiently large, the power-cost of
Q will approach the power-cost of T . The following result due to Calinescu et al.
confirms this intuition.

Define

ρk = sup
T

min
Q

P(Q)

P (T )
,

where T is over all trees and Q is over all k-restricted decompositions of T .

Theorem 2 (Calinescu et al. [10]) For any k ≥ 3, ρk ≤ 1+ 1/�log2 k�.
Proof First, transform the edge-weighted tree T into a node-weighted rooted binary
tree B in the following way (see Figure 3). Let e0 = u0v0 be an edge of T with the
maximum weight. Then T − e0 has two subtrees rooted at u0 and v0, respectively.
The parent-, children-, and sibling-relations among edges are comprehended in the
natural way with respect to these two rooted subtrees. For example, in Figure 3a,
e2 is the parent-edge of e4 and e5, and e1, e2, and e3 are the sibling-edges of each
other. Edge e0 is viewed as the parent-edge of those edges which are incident with
u0 and v0. For each edge e = e0, if e has the maximum weight among its siblings,
then define next (e) to be the parent-edge of e. Otherwise, define next (e) to be its
next heavier sibling-edge, where “next” is with respect to the sorting of siblings
in increasing weights. For example, in Figure 3a, next (e1) = e2, next (e2) = e3,
next (e3) = e0, etc. Let B be the tree with node set V (B) = E(T ) and edge set
E(B) = {(e, next (e)) : e ∈ E(T )} (see Figure 3b). The weight on each node of
B is defined to be the weight on its corresponding edge in T (we still use w to
denote the node-weight function on B). So, the node weight of B is the same as the
edge weight of T . Observe that B is a binary tree rooted at e0. In fact, every node
e ∈ V (B) has at most two children in B, one corresponds to its heaviest child-edge
in T and the other corresponds to its previous sibling in T , where “previous” is also
with respect to the sorting of siblings in increasing weights.

The decomposition of T is constructed as follows. For simplicity of statement,
denote K = �log2 k�. For i = 0, . . . , K − 1, let Li = {e ∈ V (B) : distB(e, e0) ≡ i

mod K}, where distB(e, e0) is the number of edges on the (e, e0)-path along B. By
the pigeonhole principle, there exists an index i0 with
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u0 v0(e0,3)

(e1,1)
(e2,2)

(e3,3)
(e6,2)

(e7,1)

(e4,1)
(e5,3)

(e8,1)
(e9,3)

(a)

e0

e3 e6

e2 e7 e9

e1 e5 e8

e4

L0

L1

L0

L1

L0
(b)

e0

e3 e6

e2 e7 e9

e1 e5 e8

e4

(c)

e0

e1 e2 e3 e6 e7

e4 e5 e8 e9

u0u1

u2 u3

(d)

Fig. 3 (a) Tree T . The numbers in the brackets indicate the weights of corresponding edges. (b)
Tree B for K = 2. The right labels indicate layers L0, . . . , LK−1. (c) Node-disjoint decomposition
{B0, . . . , Bq } of B for i0 = 0. (d) Edge-disjoint decomposition Q = {T0, . . . , Tq } of T . Each
blackened edge corresponds to a root of some Bi , and this edge has the maximum weight among
those edges incident with the root of Ti according to our construction rule

w(Li0) ≤
w(B)

K
= w(T )

�log2 k�
. (4)

Removing parent-edges of those nodes in Li0 , B is divided into a set of node-disjoint
subtrees {B0, . . . , Bq}, where B0 is rooted at e0 (see Figure 3c). Observe that each
Bi corresponds to a tree Ti of T with |V (Ti)| = |V (Bi)| + 1 (see Figure 3d). Let
Q = {T0, . . . , Tq}.

Since each Bi is a binary tree with depth at most K − 1, we have |V (Bi)| ≤
2K − 1 ≤ k − 1. Hence |V (Ti)| ≤ k. For i = 1, . . . , q, let fi be the root of Bi .
Observe that

P(Q) = P(T )+
q∑

i=1

min{w(fi), w(next (fi))} ≤ P(T )+
q∑

i=1

w(fi). (5)
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To see the above equality, consider Figure 3a, d. For one example, node u1 is split
away from u0. In T , node u0 has power w(e0). After the splitting, node u0 has power
w(e0) and node u1 has power w(e2). Power w(e2) is a surplus in P(Q) − P(T ).
Notice that e2 is the root of a subtree of B. For another example, consider u2 and
u3. In T , they are the same node which has power w(e9). After splitting, node u2
has power w(e6) and node u3 has power w(e9). Power w(e6) is a surplus in P(Q)−
P(T ). Notice that e6 = next (e9) and e9 is the root of a subtree of B. In general, if
we denote by gi the root of Ti for i = 1, . . . , q, then surpluses in P(Q)−P(T ) occur
at {gi}qi=1. According to our construction rule, the edge of Ti which corresponds to
fi has the maximum weight among those edges incident with the root of Ti . Hence
the node of T from which gi is split away has power max{w(fi), w(next (fi))}, and
thus the surplus at gi is min{w(fi), w(next (fi))}. Then, relation (5) follows.

Combining (5) with the observation {fi}qi=1 ⊆ Li0 , we have

P(Q) ≤ P(T )+ w(Li0) ≤ P(T )+ w(T )

�log2 k�
≤
(

1+ 1

�log2 k�
)

P(T ),

where the last inequality follows from Corollary 3.
Hence Q is a k-restricted decomposition of T whose power-cost approximates

P(T ) within a factor of 1+ 1/�log2 k�. The theorem is proved.

Li et al. [27] determined the exact value of ρk , which equals to the inverse of the
k-Steiner tree ratio determined in [4].

Theorem 3 (Li et al. [27]) For any k ≥ 3,

ρk = (r + 1)2r + s

r2r + s
,

where k = 2r + s, 0 ≤ s < 2r .

The proof for the above theorem starts from the same transformation of T into
B, and makes use of a more complicated labeling procedure which is similar to the
proof for the k-Steiner tree ratio in [4]. In particular, ρ3 = 5/3, which was also
proved by Althaus et al. in [1].

Calinescu et al. [10] indicated that the k-restricted decomposition plays a same
role in the study of MIN-POWER SYMMETRIC CONNECTIVITY as the k-restricted
Steiner tree in the NETWORK STEINER MINIMUM TREE problem [21, 32, 34, 39].
In fact, by Theorem 2, a minimum power spanning tree can be approximated by a k-
restricted minimum power spanning tree, that is, a set of edge-disjoint subtrees Q =
{T1, . . . , Tq}with minimum power-cost P(Q), the union of which is a spanning tree
and each subtree has at most k nodes.

Some of the algorithms for k-RESTRICTED STEINER MINIMUM TREE can
be adapted to find a k-restricted minimum power spanning tree. For example,
Zelikovsky [38] presented a relative greedy algorithm for k-RESTRICTED STEINER

MINIMUM TREE, achieving performance ratio 1 + ln 2 ≈ 1.69. Prömel and
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Steger [32] gave a random algorithm for 3-RESTRICTED STEINER MINIMUM

TREE, which has performance ratio 1 + ε with probability at least 1/2. This was
achieved by transforming the 3-RESTRICTED STEINER MINIMUM TREE problem to
a MINIMUM SPANNING TREE IN 3-UNIFORM HYPERGRAPHS problem (the latter
has a randomized fully polynomial-time scheme [32]). In these two algorithms,
considering power has no big difference from considering cost, and thus they can
be adapted to produce (1 + ln 2 + ε)-approximation (when k is sufficiently large)
and (5/3+ ε)-approximation (recall that ρ3 = 5/3) for MIN-POWER SYMMETRIC

CONNECTIVITY, respectively.
Although some new techniques [23, 26] have been introduced to study MIN-

POWER SYMMETRIC CONNECTIVITY, (5/3 + ε) is still currently the best known
performance ratio for this problem. Not every technique for NETWORK STEINER

MINIMUM TREE can be easily applied to MIN-POWER SYMMETRIC CONNECTIV-
ITY. In fact, polynomial-time approximation for NETWORK STEINER MINIMUM

TREE has been improved by Byrka et al. [5] to (ln 4+ε), which is smaller than 1.39
for sufficiently small ε. However, it is an open problem whether the new technique
used in [5] can be applied to MIN-POWER SYMMETRIC CONNECTIVITY.

Problem 1 Find an approximation algorithm for MIN-POWER SYMMETRIC CON-
NECTIVITY with a performance ratio better than 5/3+ ε.

3 Asymmetric Topological Control

It is interesting to notice that the minimum spanning tree is also a polynomial-time
2-approximation for the asymmetric topological control problem under symmetric
power requirement, which can be stated as follows.

MIN-POWER STRONG CONNECTIVITY: Given a wireless network with power-adjustable
nodes and symmetric power requirement, find a power assignment to minimize the total
power and to keep the network strongly connected.

This problem was initially studied by Chen and Huang [16]. They showed that the
minimum-length spanning tree gives a 2-approximation. Kirousis et al. [24] showed
the NP-hardness of the problem in 3-dimensional Euclidean space with α = 2.
Clementi et al. [17, 19] showed that the NP-hardness remains in 2-dimensional
Euclidean plane.

Recall that in an asymmetric topological control problem, an arc (u, v) exists if
and only if the communication range of node u covers node v, i.e., p(u) ≥ w(u, v).
Also recall that the minimum power for the existence of a directed graph H =
(V ,E) is P(H) = ∑u∈V (H) pH (u), where pH (u) = max(u,v)∈E(H) w(u, v). If H
is strongly connected, then H contains an in-arborescence A. In fact, such A can be

obtained by a breadth-first search from an arbitrarily chosen root in
←−
H , where

←−
H

is the directed graph obtained from H by reversing every arc of H . Since P(H) ≥
P(A), by In-Arborescence Lemma, we obtain the following.
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Lemma 4 For any strongly connected directed graph H and any node r of H , there
is an in-arborescence A with root r such that A is contained in H and

P(H) ≥ w(A),

where w(A) =∑(u,v)∈E(A) w(u, v) is the total weight of in-arborescence A.

Notice that every spanning tree T can be viewed as a strongly connected directed
graph, which implies that it is a solution to MIN-POWER STRONG CONNECTIVITY,
and thus

P(T ) ≥ optmpsc, (6)

where optmpsc is the optimal value for MIN-POWER STRONG CONNECTIVITY.
Now, suppose Tmst is a minimum-length spanning tree of the (undirected complete)
graph G with edge weight w(u, v) = d(u, v)α . By inequality (3), (6), Lemmas 1
and 4, we have

P(Tmst ) ≤ 2
∑

(u,v)∈E(Tmst )
w(u, v) ≤ 2

∑

(u,v)∈E(A)
w(u, v) = 2w(A) ≤ 2P(H).

(7)

This means that the minimum-length spanning tree is a polynomial-time 2-
approximation for MIN-POWER STRONG CONNECTIVITY.

Theorem 4 (Chen and Huang [16]) The minimum-length spanning tree is a
polynomial-time 2-approximation for MIN-POWER STRONG CONNECTIVITY.

Calinescu [8] indicated that 2 is a tight upper bound in the above theorem.
Actually, the example for MIN-POWER SYMMETRIC CONNECTIVITY (Figure 2)
also works here. In fact, this example implies that there exists a spanning tree
(namely the minimum power spanning tree) T with

P(Tmst )

P (T )
→ 2, as ε→ 0 and n→∞.

By P(T ) ≥ optmpsc and P(Tmst ) ≤ 2 · optmpsc, we have

2 ≥ P(Tmst )

optmpsc
≥ P(Tmst )

P (T )
→ 2, as ε→ 0, n→∞,
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and thus

P(Tmst )

optmpsc
→ 2, as ε→ 0, n→∞.

Although many efforts have been made to improve the performance of approx-
imation algorithms [15, 24, 35] and the performance ratio less than 2 has been
established in several special cases, it was a long-standing open problem whether
there is a polynomial-time approximation algorithm with performance ratio less than
2 for MIN-POWER STRONG CONNECTIVITY in a general case. In 2010, this open
problem was solved by Calinescu [8] who presented a greedy 1.992-approximation
algorithm, the performance ratio of which was later improved to 1.85 in its journal
version [9].

This algorithm is a greedy approximation with a monotone increasing submodu-
lar potential function. For an element set U , a function f : 2U �→ R

+ is monotone
increasing if A ⊆ B ⊆ U ⇒ f (A) ≤ f (B). It is submodular if for any
A,B ⊆ U ,

f (A)+ f (B) ≥ f (A ∩ B)+ f (A ∪ B).

There are a lot of equivalent conditions for f to be submodular and monotone
increasing, one of which is the following (see Lemma 2.25 in [22]):

∀A ⊆ B ⊆ U,∀x ∈ U ⇒ Δxf (A) ≥ Δx(B), (8)

where Δx(A) = f (A ∪ x)− f (A).
The submodular potential function used in [8, 9] is defined as follows: Let T

be a minimum-length spanning tree of the given graph G = (V ,E). For any two
nodes u, v ∈ V , denote by Tuv the unique path on T connecting u and v. For any
vertex u ∈ V and a real number p ∈ {w(u, v) | (u, v) ∈ E} (recall that w(u, v) =
d(u, v)α), denote by S(u, p) the directed star with center u and all those arcs (u, v)
with w(u, v) ≤ p. Let Q(u, p) = ⋃x,y∈V (S(u,p)) E(Txy). For a collection A of
directed stars, define Q(A ) =⋃S(u,p)∈A Q(u, p) and f (A ) =∑e∈Q(A ) w(e).

Lemma 5 The above function f is submodular and monotone increasing.

Proof For any two collections A and B of directed stars with A ⊆ B and any
directed star S,

ΔSf (A ) =
∑

e∈Q(A ∪{S})
w(e)−

∑

e∈Q(A )

w(e)

=
∑

e∈Q({S})\Q(A )

w(e)
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≥
∑

e∈Q({S})\Q(B)

w(e)

= ΔSf (B).

The lemma follows from (8).

Denote by
−→
T the directed graph obtained from T by replacing each edge with

two opposite arcs.
−→
T is called the bidirectional version of T and T is called the

unidirectional version of
−→
T . For arc (u, v) ∈ S(u, p), let

−→
P uv be the directed path

from u to v on
−→
T . Set

−→
Q(u, p) = ⋃v∈V (S(u,p)) E(

−→
P uv). Clearly, the undirected

version of
−→
Q(u, p) is Q(u, p). Denote by IA (S(u, p)) the set of arcs in

−→
Q(u, p)

whose unidirectional version is not in Q(A ). Calinescu’s algorithm is presented in
Algorithm 2.

Algorithm 2 Calinescu’s Greedy Algorithm
Input: A connected graph G = (V ,E) with edge weight function w.
Output: An arc set Ẽ which induces a strongly connected subgraph of G.
1: Let T be a minimum spanning tree of G.
2: A ← ∅.
3: M ←−→T .
4: while f (A ) < w(T ) do
5: (u, p)← argmax(u′,p′)ΔS(u′,p′)f (A )/p′.
6: M ← M \ IA (S(u, p)).
7: A ← A ∪ {S(u, p)}.
8: end while
9: Output Ẽ = (⋃S∈A E(S)

) ∪M .

Figure 4 illustrates the rough idea of Algorithm 2. Figure 4a is the bidirectional
version of a minimum-length spanning tree. Adding a directed star −−→u1u4, arc
(u1, u4) can play the role of the directed path u1u2u3u4 in connection (see
Figure 4b), so arcs on this directed path can be removed. The situation is different
if we further add a directed star −−→u4u2 (see Figure 4c), the removal of any arc on
the directed path u4u3u2 will break the strong connectivity. This is why the set of
deleted arcs IA (S(u, p)) (see Line 6 of the algorithm) does not include those arcs
whose unidirectional versions are in Q(A ).

The following lemma refines the above idea to show the correctness of Algo-
rithm 2. A digon is a pair of anti-directional arcs between a same pair of nodes.

Denote by
−→
D(M) the set of digons in M , and by D(M) the set of edges which

correspond to digons in
−→
D(M).

Lemma 6 In each iteration of Algorithm 2, the directed graph H which is induced
by the edge set

(⋃
S∈A E(S)

) ∪M is a strongly connected spanning subgraph.



A Role of Minimum Spanning Tree 13

u1

u2 u3

u4 u1

u2 u3

u4 u1

u2 u3

u4

Fig. 4 An illustration for the idea of Algorithm 2. Blackened arcs indicate an added directed star.
Dashed arcs can be deleted, while strong connectivity is still kept

Proof Removing D(M) from T , T is broken into several subtrees. Call the subgraph
of H induced by the node set of such a subtree as a reduced component of H . We
shall show that every reduced component is a strongly connected subgraph of H .

Then, adding back
−→
D(M), the lemma follows immediately.

Initially, M = −→T . Thus, every edge of T corresponds to a digon in M . This

means that each reduced component of
−→
T is a singleton, which is clearly strongly

connected.
Now, suppose at some stage of the algorithm, every reduced component of

H is strongly connected. Let H̃ be the directed graph obtained from H after
adding S(u, p) to A and deleting arcs in IA (S(u, p)) from M . For each v ∈
V (S(u, p)) − {u}, suppose on the unique path of T from u to v, there are h edges
(x1, y1), (x2, y2), . . . , (xh, yh) in D(M). Since u and x1 are in a same subtree of
T − D(M), by induction hypothesis, there is a strongly connected component H1
of H containing both x1 and u. Similarly, there are strongly connected components
H2, . . . , Hh,Hh+1 of H such that H2 contains both x2 and y1, . . . , Hh contains
both xh and yh−1, and Hh+1 contains both v and xh. When arc (u, v) is added,
arcs (x1, y1), . . . , (xh, yh) are deleted, and thus V (H1), . . . , V (Hh+1) are merged
into the node set of a subtree of T with respect to the new M . Notice that
the presence of arcs {(u, v), (yh, xh), . . . , (y1, x2)} connects H1, . . . , Hh+1 into a
strongly connected subgraph of H̃ .

Recursively using the above argument for every arc in S(u, p) would complete
the proof.

The following properties hold for Algorithm 2.

Lemma 7 In each iteration of Algorithm 2, the directed star S(u, p) chosen in
Line 5 satisfies

ΔS(u,p)f (A )

p
≥ 1. (9)

Algorithm 2 terminates when f (A ) = w(T ) and M contains exactly one arc from

each digon of
−→
T .
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Proof Suppose there is a digon {(x, y), (y, x)} in M . For the directed star
S(x, px) with px = w(x, y), arc (x, y) ∈ Q(S(x, px)) \ Q(A ), and thus
ΔS(x,px)f (A )/px ≥ w(x, y)/px = 1. Inequality (9) follows from the greedy
choice of S(u, p) in Line 5.

Since Q(A ) ⊆ E(T ), we have f (A ) ≤ w(T ). As a consequence of the
argument in the above paragraph, as long as there is a digon in M , the value of
f (A ) can always be increased, and thus f (A ) < w(T ), the algorithm continues.
On the other hand, by the deletion rule in Line 6 and the definition of IA (S(u, p)),
if an arc in a digon is deleted, then its opposite arc remains to be in M throughout
the algorithm. Hence, when the algorithm terminates, M contains exactly one arc

from each digon of
−→
T , and f (A ) = w(T ).

To analyze the performance of Algorithm 2, we first consider a closely related
problem. For a monotone increasing, submodular function f : 2U �→ R

+, denote
Ω(f ) = {A ⊆ U | f (A) = f (U)}. Let c be a non-negative cost function on U .
The following problem is known as SUBMODULAR-COVER:

min c(A) =
∑

x∈A
c(x)

s.t. A ∈ Ω(f ).

Algorithm 3 employs a greedy strategy to compute an approximation for
this problem, and the following is a general theorem for its performance (see
Theorem 3.7 of [22]).

Algorithm 3 Greedy Algorithm for SUBMODULAR-COVER

1: A← ∅.
2: while f (A) < f (U) do
3: Choose x ∈ U to maximize Δxf (A)/c(x).
4: A← A ∪ {x}.
5: end while
6: Output A.

Theorem 5 Suppose in every iteration of Algorithm 3, the selected x always
satisfies

Δxf (A)

c(x)
≥ 1. (10)

Then Algorithm 3 produces an approximation solution to SUBMODULAR-COVER

with performance ratio at most

1+ ln
f (U)− f (∅)

opt
,

where opt is the optimal value of SUBMODULAR-COVER.
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For any directed star S(u, p), denote p(S) = max{w(u, v) : (u, v) ∈
E(S(u, p))}. Consider the following problem called MIN-STARS:

min
∑

S∈A
p(S)

s.t. f (A ) = w(T ),

where T is a minimum spanning tree and f (A ) is defined as in Calinescu’s
algorithm. MIN-STARS is a special SUBMODULAR-COVER problem in which the
ground set U consists of all possible directed stars and each directed star S ∈ U has
cost p(S).

Corollary 8 Suppose optmin-stars ≤ α · optmpsc for some α ≤ 1, where
optmin-stars and optmpsc are the optimal values for MIN-STARS and MIN-
POWER STRONG CONNECTIVITY, respectively. Then Algorithm 2 approximates
MIN-POWER STRONG CONNECTIVITY within performance ratio

1+ α(1− lnα).

Proof Observe that ignoring M , Algorithm 2 is exactly Algorithm 3 for MIN-
STARS. Furthermore, condition (10) in Theorem 5 is guaranteed by Lemma 7. Hence
for the final set A of directed stars computed by Algorithm 2,

∑

S∈A
p(S) ≤ optmin-stars

(

1+ ln
w(T )

optmin-stars

)

. (11)

Let H be the directed graph induced by the edge set
(⋃

S∈A E(S)
) ∪M which

is the output of Algorithm 2. Notice that each node u ∈ V has power pH (u) ≤∑
(u,v)∈M w(u, v)+∑S(u,p)∈A p. Summing over all nodes in V , we have

p(H) ≤ w(M)+
∑

S∈A
p(S) = w(T )+

∑

S∈A
p(S),

where the equality follows from the observation that M contains exactly one arc

from each digon of
−→
T (see Lemma 7). By Lemma 4, w(T ) ≤ optmpsc. Hence

p(H) ≤ optmpsc + optmin-stars

(

1+ ln
w(T )

optmin-stars

)

≤ optmpsc

(

1+ optmin-stars
optmpsc

(

1+ ln
optmpsc

optmin-stars

))
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≤ optmpsc

(

1+ α

(

1+ ln
1

α

))

= optmpsc (1+ α(1− lnα)) ,

where the third inequality holds because function x(1 + ln(1/x)) is monotone
increasing for 0 < x ≤ 1. The corollary is proved.

Calinescu proved the following in [8].

Lemma 9 optmin-stars ≤ 7
8optmpsc.

Performance ratio 1.992 for Algorithm 2 follows from Corollary 8 and Lemma 9.

Theorem 6 (Calinescu [8]) There exists a polynomial-time approximation for
MIN-POWER STRONG CONNECTIVITY with performance ratio at most 1 + 7

8 (1 −
ln 7

8 ) < 1.992.

The proof of Lemma 9 employs T -joins in certain 2-edge-connected hyper-
graphs. It is interesting that by a simpler analysis, factor 1.992 can be improved to
1.85 [9]. For this purpose, we first adapt the proof of Theorem 5 to yield a general
lemma, and then use it to obtain a theorem with a similar taste as Theorem 5.
This lemma will also be used in the next section, when considering MIN-POWER

BROADCAST.

Lemma 10 For two positive numbers K and k, suppose (a0, a1, . . . , ag) and
(c1, . . . , cg) are two sequences of real numbers satisfying the following condi-
tions:

(i) a0 ≥ a1 ≥ . . . ag;
(ii) a0 ≥ kK and ag < kK;

(iii) For each i = 1, . . . , g,
ai−1 − ai

ci
≥ ai−1

K
;

(iv) For each i = 1, . . . , g,
ai−1 − ai

ci
≥ k.

Then the following inequality holds:

g∑

i=1

ci ≤ K
(

ln
(a0

K

)
− ln k + 1

)
− ag

k
.

Proof By condition (iii),

ai ≤ ai−1

(
1− ci

K

)
for i = 1, . . . , g. (12)

By condition (i) and (ii), there exists an index r with 0 ≤ r < g such that
ar+1 < kK ≤ ar . Let a′ = kK−ar+1 and a′′ = ar−kK. Then a′+a′′ = ar−ar+1.
Let cr+1 = c′ + c′′ such that
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a′

c′
= a′′

c′′
= ar − ar+1

cr+1
. (13)

Combining this with condition (iii),

a′′ ≥ c′′ · ar
K
,

and thus

kK = ar − a′′ ≤ ar

(

1− c′′

K

)

.

Then by recursively using inequality (12),

kK ≤ a0

(

1− c′′

K

)

·
(

r∏

i=1

(
1− ci

K

)
)

≤ a0 · e−(c′′+
∑r

i=1 ci)/K, (14)

where the second inequality uses 1+ x ≤ ex . It follows that

c′′ +
r∑

i=1

ci ≤ K · ln
( a0

kK

)
. (15)

By condition (iv),

g∑

i=r+2

ci ≤ 1

k

g∑

i=r+2

(ai−1 − ai) = 1

k
(ar+1 − ag).

Notice that a′/c′ ≥ ar/K ≥ k (by condition (iii), inequality (13), and the choice of
ar ). Hence

c′ +
g∑

i=r+2

c(xi) ≤ 1

k
(a′ + ar+1 − ag) = 1

k
(kK − ag). (16)

The lemma follows by summing up inequalities (15) and (16).

Theorem 7 Suppose there exists some K with 0 < K ≤ f (U) − f (∅) such that
for any A ⊆ 2U , there exists a set of non-negative coefficients {zy}y∈U with

(i)
∑

y∈U
zy ·Δyf (A) ≥ f (U)− f (A), and

(ii) 0 <
∑

y∈U
zy · c(y) ≤ K .
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Also suppose in every iteration of Algorithm 3, the selected x always satisfies
inequality (10). Then Algorithm 3 produces a solution to SUBMODULAR-COVER

with cost at most

K

(

1+ ln
f (U)− f (∅)

K

)

.

Proof Suppose the output of Algorithm 3 is A = {x1, . . . , xg}. Elements are ordered
according to the time they are selected into A. Denote by Ai = {x1, . . . , xi} for
i = 1, . . . , g and A0 = ∅. By the greedy criterion and the assumptions on {zy}y∈U ,

Δxif (Ai−1)

c(xi)
≥ max

y∈U
Δyf (Ai−1)

c(y)
≥
∑

y∈U zy ·Δyf (Ai−1)
∑

y∈U zy · c(y) ≥ f (U)− f (Ai−1)

K
.

Let ai = f (U)− f (Ai). By noticing that

Δxif (Ai−1) = ai−1 − ai, (17)

we have

ai−1 − ai

c(xi)
≥ ai−1

K
.

Hence condition (iii) of Lemma 10 is satisfied. By the monotonicity of f , sequence
(a0, a1, . . . , ag) is monotone decreasing, satisfying condition (i). Taking k = 1 in
Lemma 10, condition (ii) is satisfied by observing

a0 = f (U)− f (∅) ≥ K and ag = f (U)− f (A) = 0 < K. (18)

Moreover, condition (iv) is guaranteed by inequality (10) and observation (17).
Then, the theorem follows from Lemma 10 and (18).

Now, let us come back to Algorithm 2. In [9], Calinescu proved the following
lemma.

Lemma 11 (Calinescu [9]) Let U be the collection of all possible directed stars.
For any sub-collection A ⊆ U , there exists a set of non-negative coefficients
{zS}S∈U with

(i)
∑

S∈U
zS ·ΔSf (A ) ≥ w(T )− f (A ), and

(ii) 0 <
∑

S∈U
zS · p(S) ≤ optmpsc/2.

Proof Let OPT be an optimal solution to MIN-POWER STRONG CONNECTIVITY.
Let zS = 1/2 if S ∈ OPT and zS = 0 otherwise. Hence

∑

S∈U
zS ·p(S) = optmpsc/2.
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Since f is monotone increasing, we have
∑

S∈U
zS ·ΔSf (A ) ≥ 0. Hence to prove

(i), we may assume that f (A ) < w(T ). In this case, there is an edge e ∈ E(T ) \
Q(A ). Denote by T1 and T2 the two subtrees of T − e. Since OPT is strongly
connected, there is a star S1 ∈ OPT with center in V (T1) and another node in
V (T2). By the definition of Q(S), we have e ∈ Q(S1). Similarly, there is a star
S2 ∈ OPT with center in V (T2) and another node in V (T1), and thus e ∈ Q(S2).
Since S1 and S2 are two different stars in OPT , we have zS1 = zS2 = 1/2 and

∑

S∈U,e∈Q(S)

zS ≥ zS1 + zS2 = 1.

This inequality holds for any edge e ∈ E(T ) \Q(A ). Hence

∑

S∈U
zS ·ΔSf (A ) =

∑

S∈U
zS

∑

e∈Q(S)\Q(A )

w(e) =
∑

e∈E(T )\Q(A )

w(e)
∑

S∈U,e∈Q(S)

zS

≥
∑

e∈E(T )\Q(A )

w(e) = w(T )− f (A ).

The lemma is proved.

Combining this lemma with Theorem 7 yields the 1.85-approximation.

Theorem 8 There exists a polynomial-time approximation for MIN-POWER

STRONG CONNECTIVITY with performance ratio at most 1+ 1
2 (1− ln 1

2 ) < 1.85.

Proof Take K = optmpsc/2 in Theorem 7. Since
−→
T is a feasible solution to MIN-

POWER STRONG CONNECTIVITY, whose power-cost p(
−→
T ) ≤ 2w(T ), we have

optmpsc ≤ 2w(T ). Hence K ≤ w(T ). Combining this with Lemmas 7 and 11, all
conditions in Theorem 7 are satisfied. Hence the set A of directed stars computed
by Algorithm 2 satisfies

∑

S∈A
p(S) ≤ optmpsc

2

(

1+ ln
2w(T )

optmpsc

)

.

Replacing inequality (11) by the above one in the proof of Corollary 8, the desired
performance ratio follows.

4 Broadcast

A broadcasting routing is for transmitting data from a source node s to all other
nodes. Mathematically, it is an out-arborescence T rooted at s, namely every node
except the root has exactly one in-neighbor. The unique in-neighbor of u is called
the parent of u, and the out-neighbors of u are called children of u. The power-cost
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of u in the routing equals pT (u) = max{w(u, v) : v is a child of u}. The power-cost
of broadcasting routing T is the sum of power-costs over all nodes in T .

MIN-POWER BROADCAST: Given a network G = (V ,E), a source node s, and an edge
weight function w, find a broadcasting routing T from s with the minimize power-cost.

In particular, if the network is induced by a set of points in d-dimensional space,
in which the edge weight function w(u, v) = ‖uv‖α and ‖uv‖ is the Euclidean
distance between u and v, then the problem is called EUCLIDEAN MIN-POWER

BROADCAST.
In general networks, it is unlikely to have a polynomial-time (1 − ε) ln n-

approximation (∀ε > 0) for MIN-POWER BROADCAST [6, 18]. Approximation
algorithms with performance ratio O(ln n) exist. The first one was given by Cara-
giannis et al. [12] by transforming the problem into MINIMUM NODE-WEIGHTED

DOMINATING SET, achieving performance ratio 10.8 ln n. Calinescu et al. [11]
presented an algorithm with performance ratio 2 + 2 ln(n − 1), using an idea of
“spider decomposition” which was used in the analysis of greedy algorithm for
MINIMUM NODE-WEIGHTED STEINER TREE.

In geometric setting, the situation is different. For EUCLIDEAN MIN-POWER

BROADCAST in d-dimensional space, the problem is polynomial-time solvable for
d = 1 [12] or for α = 1 [18]. When d ≥ 2 and α > 1, it is NP-hard [18].

It is interesting that the minimum Euclidean spanning tree T is also a constant-
approximation for EUCLIDEAN MIN-POWER BROADCAST on the plane. This is
because of the existence of the following lemma, which plays an important role for
EUCLIDEAN MIN-POWER BROADCAST, similar to the role of Lemma 2 for MIN-
POWER SYMMETRIC CONNECTIVITY and the role of Lemma 4 for MIN-POWER

STRONG CONNECTIVITY.

Lemma 12 (Out-Arborescence Lemma) For any out-arborescence T rooted at s
and any minimum Euclidean spanning tree Tmst ,

∑

e∈E(Tmst )
‖e‖α ≤ 6P(T ).

The proof of Lemma 12 relies on the following fact.

Lemma 13 (Ambühl [2]) Let C be a disk with center x and radius R, P be a set
of points lying in C, and T̃ be a minimum Euclidean spanning tree on P . Assume
x ∈ P and α ≥ 2. Then,

∑

e∈E(T̃ )
‖e‖α ≤ 6Rα.

With the aid of Lemma 13, the proof of Lemma 12 is as follows. For each node u
of T , draw a smallest disk D(u) centered at u which covers all children of u. Denote
by C(u) the set of children of u. Let T̃ (u) be a minimum Euclidean spanning tree
on C(u) ∪ {u}. By Lemma 13,
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∑

e∈E(T̃ (u))
‖e‖α ≤ 6R(u)α,

where R(u) is the radius of D(u). Notice that
⋃

u∈V T̃ (u) contains a spanning tree
on the given node set V . Hence by Lemma 1,

∑

e∈E(Tmst )
‖e‖α ≤

∑

u∈V

∑

e∈E(T̃ (u))
‖e‖α ≤

∑

u∈V
6R(u)α = 6P(T ).

This completes the proof of Lemma 12.
Actually, this result was obtained through a sequence of efforts [2, 7, 25, 28, 30,

36], which was initiated by Wan et al. [36] and finally accomplished by Ambühl
[2]. Wan et al. [36] also pointed out that the constant 6 is the best possible for
MST heuristic. An example which asymptotically reaches this bound is shown in
Figure 5. The minimum spanning tree is the path sp1p2 . . . p6, whose cost is 6.
But the optimal solution is the directed spanning star centered at node s, whose
power-cost is (1+ ε)α . Thus performance ratio in this example approaches 6 when
ε→ 0.

The approach for establishing the upper bound for this performance ratio is quite
interesting. The proof of Lemma 13 given by Ambühl [2] is quite complicated. Here,
a proof of a weaker bound is included to show the main idea.

Lemma 14 ([30]) Let C be a disk with center x and radius R, P be a set of points
lying in C, and T̃ be a minimum Euclidean spanning tree on P . Assume x ∈ P and
α ≥ 2. Then,

∑

e∈E(T̃ )
‖e‖α ≤ 8Rα.

Proof The assumption x ∈ P implies that every edge in T̃ has length at most R.
For 0 ≤ r ≤ R, denote by T̃ (r) the forest with node set P and edge set {e ∈
E(T̃ ) : ‖e‖ ≤ r}. Let n(T̃ (r)) be the number of connected components of T̃ (r).
Define

Fig. 5 Ratio 6 is best
possible for MST heuristic
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χr
e =

{
1, r < ‖e‖,
0, r ≥ ‖e‖.

Notice that
∑

e∈E(T̃ ) χr
e = |E(T̃ )| − |E(T̃ (r))| = n(T̃ (r))− 1. Hence,

∑

e∈E(T̃ )
‖e‖α =

∑

e∈E(T̃ )

∫ ‖e‖

0
drα =

∑

e∈E(T̃ )

∫ R

0
χr
e dr

α = α

∫ R

0
(n(T̃ (r))−1)rα−1dr.

(19)
For each node u ∈ P , draw a disk D

r/2
u with center u and radius r/2. For

each connected component H of T̃ (r), the union
⋃

u∈V (H) D
r/2
u forms a connected

region, which will be denoted as A(H). Furthermore, for different connected
components H1 and H2 of T̃ (r), regions A(H1) and A(H2) are disjoint. Since
each connected region contains at least one disk with radius r/2, its area is at least
π(r/2)2. Let a(P, r) be the total area of

⋃
u∈P D

r/2
u . Then,

a(P, r) ≥ n(T̃ (r))π(r/2)2.

We claim that

a(P,R) ≥ π

2

∫ R

0
n(T̃ (r))rdr. (20)

In fact,

a(P,R) =
∫ R

0
d(a(P, r)) ≥

∫ R

0

(
π(r/2)2dn(T̃ (r))+ πr

2
n(T̃ (r))dr

)
.

Suppose there are q distinct lengths between pairs of points of P , say b1 < b2 <

. . . < bq . Let b0 = 0. Notice that when r ∈ (bi−1, bi), n(T̃ (r)) is a constant, and
thus dn(T̃ (r)) = 0 in this interval. Since {b0, b1, . . . , bq} is a discrete set of values
whose measure is zero, we have

∫ R

0
dn(T̃ (r)) =

q∑

i=1

∫ bi

bi−1

dn(T̃ (r)) = 0.

Inequality (20) follows.
Combining (20) and (19) with α = 2,

a(P,R) ≥ π

2

∫ R

0
(n(T̃ (r))− 1)rdr + πR2

4
= π

4

∑

e∈E(T̃ )
‖e‖2 + πR2

4
.
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Notice that a(P,R) is contained in a disk with center x and radius 1.5R. Thus,

π(1.5R)2 ≥ π

4

∑

e∈E(T̃ )
‖e‖2 + πR2

4
.

Hence,

∑

e∈E(T̃ )
‖e‖2 ≤ 8R2.

Since for every e ∈ E(T̃ ), ‖e‖ ≤ R, one has

∑

e∈E(T̃ )
(‖e‖/R)α ≤

∑

e∈T
(‖e‖/R)2 ≤ 8.

The lemma is proved.

By Lemma 12, it is easy to see the following.

Theorem 9 The minimum spanning tree induces a 6-approximation for
EUCLIDEAN MIN-POWER BROADCAST on the plane.

The above results are for networks on the plane. For networks with all nodes
lying in a d-dimensional space with d ≥ 2, the example in Figure 5 can be extended
to show that a lower bound for MST heuristic is the d-dimensional kissing number
nd , which is the maximum number of non-overlapping unit balls touching a unit
ball. It is known that n2 = 6, n3 = 12, and in general, nd = 2cd(1+o(1)), where
0.2075 ≤ c ≤ 0.401 [20]. Determining the exact value of nd for large d is quite
hard [40]. Generalizing the method in the proof of Lemma 14 to higher dimensional
space, Flammini et al. [30] proved that MST heuristic is a (3d − 1)-approximation
for EUCLIDEAN MIN-POWER BROADCAST with α ≥ d. In particular, this yields
a 26-approximation for the 3-dimensional case, which was improved to 18.8 by
Navarra [29]. For d ≥ 2 and α < d, Clementi et al. [18] indicated that the ratio
of MST heuristic cannot be bounded by any function of α and d. Thus to solve the
problem with α < d requires new techniques other than MST.

Problem 2 For α < d, find an approximation algorithm for MIN-POWER BROAD-
CAST.

Problem 3 Improve performance analysis of the MST heuristic for MIN-POWER

BROADCAST in d-dimensional space with d ≥ 3.

Is it possible to have an approximation with performance better than that of
the minimum-length spanning tree for MIN-POWER BROADCAST? The answer is
confirmative.

One possible candidate is the BIP (broadcasting incremental power) algorithm
[31]. The algorithm starts from the source node. In each iteration, a new node is
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reached with the smallest increasing power. Such an increasing may have two ways.
One way is to assign power to an unassigned node, and the other way is to increase
the power of a node which has received a power assignment in previous iterations.
Wan et al. [36] showed that for d = 2, the performance ratio of BIP is between
13/3 ≈ 4.33 and 12, while the MST heuristic has performance ratio between 6 and
12 (in both cases, upper bound 12 has been improved to 6 after Ambühl [2] proved
Lemma 13). Because of the smaller lower bound of BIP, people believe that BIP is
better than MST heuristic. Currently the best known lower bound for BIP is 4.598
[37]. However, it is still an open problem of whether one can obtain an upper bound
better than 6 for BIP.

Problem 4 Improve analysis for the performance ratio of BIP.

A breakthrough was made by Caragiannis et al. [13, 14], who gave a greedy
approximation which can be applied to any network (not just a network in an
Euclidean space), saying that if the minimum-length spanning tree induces a ρ-
approximation for MIN-POWER BROADCAST, then their greedy approximation can
achieve performance ratio 2 ln ρ − 2 ln 2+ 2. It is 4.2 for d = 2 (which is definitely
better than both BIP and MST heuristic), 6.49 for d = 3 (improving previously best
known ratio 18.8), and 2.2d + 0.61 for d ≥ 4 (reducing previous ratio (3d − 1)
exponentially).

This greedy approximation is quite interesting, which is designed using the
following property of spanning trees. For a spanning tree T of graph G = (V ,E),
and an edge subset F ⊆ E, a swap set for (T , F ) is an edge subset A ⊆ E(T ) such
that T + F − A is still a spanning tree of G. Suppose T is rooted at source node s.
For any non-leaf node u in T , denote by Su the set of all edges between u and its
children in T .

Lemma 15 Let T1 and T2 be two spanning trees over the same set of nodes V ,
and T1 is rooted at s. There exists a one-to-one mapping σ : E(T1) �→ E(T2)

such that for any non-leaf node u of T1, σ(Su) is a swap set for (T2, Su), where
σ(Su) = {σ(e) : e ∈ Su}.
Proof The mapping is constructed by the following procedure. Order nodes of the
rooted tree T1 such that every node precedes its parent and the children of a same
node are ordered consecutively. Such an ordering can be obtained by viewing T1 as
a breadth-first search tree in which nodes are divided into layers according to their
distances from root s, and ordering nodes layer by layer in a “bottom-up” manner,
with nodes in farther layers ordered first. Initially, all edges of T2 are marked as
unused and all nodes in V are marked as alive. Denote by parent (u) the parent of
node u in T1. Establish the mapping σ for edges {(u, parent (u))}u∈V,u=s one by
one in the above order. When it is the turn to consider node u, let σ(u, parent (u))
be the last unused edge on the unique path of T2 from parent (u) to u. Then, mark
edge σ(u, parent (u)) as used, mark node u as dead, and iterate. An illustration is
given in Figure 6.
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v1 v2 v3

v4

v5

Fig. 6 An illustration for the construction of mapping σ . Solid edges are in T1. Dashed edges are
in T2. Arrows indicate the mapping. The path on T2 from v4 = parent (v1) to v1 is v4v3v5v1,
thus σ(v1, v4) = (v5, v1). Similarly, σ(v2, v4) = (v1, v2) and σ(v3v4) = (v3, v4) are established
sequentially. Next, consider edge (v4, v5). The path on T2 from v5 = parent (v4) to v4 is v5v3v4.
Since (v3, v4) is already used, we have σ(v4, v5) = (v3, v5)

To show that σ is as desired, we prove a stronger claim.

Claim For i = 1, . . . , n− 1, in the i-th iteration:

(a) there always exists an unused edge on the path of T2 from parent (u) to u;
(b) every connected component of F i contains exactly one alive node, where F i is

the spanning forest consisting of those used edges after the i-th iteration.

The claim can be proved by induction on i.
For i = 1, since no edge of T2 is used, (a) is clearly true. By the rule of

the mapping, v1 is an end of σ(v1, parent (v1)). Suppose σ(v1, parent (v1)) =
(v1, v

′
1) ∈ E(T2). Then F 1 consists of n − 2 trivial connected components (each

containing exactly one node and this node is alive) and one connected component
with node set {v1, v

′
1} in which v′1 is the only alive node.

Suppose the claim is true after the i-th iteration. In the (i+1)-th iteration, suppose
it is the turn to consider node u. By the ordering method and the mapping rule, both
u and parent (u) are alive, and thus by induction hypothesis, they belong to two
different connected components of F i . Since T2 is connected, the path of T2 from
parent (u) to u contains some edges crossing components of F i , which are unused
by the definition of F i (thus (a) follows). The last one of such edges serves as
σ(u, parent (u)). Adding σ(u, parent (u)) merges two connected components of
F i , one of which contains u. Suppose these two connected components are C1 and
C2 with u ∈ C1. By induction hypothesis, after the i-th iteration, u is the unique
alive node of C1, and C2 contains a unique alive node u′. After the (i + 1)-th
iteration, node u is marked as dead, and thus the merged component contains exactly
one alive node, namely u′. All other components remain the same. Thus (b) follows.
This finishes the proof of the claim.

As a consequence of (a), σ is a one-to-one mapping from E(T1) to E(T2).
For a non-leaf node u of T1, suppose u has 
 children u1, . . . , u
, and the mapping

procedure has come to the moment just before the children of u are considered.
Denote by Fu the spanning forest consisting of those used edges of T2. Since at
this moment, u, u1, . . . , u
 are all alive, by (b), they belong to different connected
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components of Fu, say C,C1, . . . , C
. For i = 1, . . . , 
, let Pi be the path of T2
from node u to component Ci , and let ei be the edge of Pi entering Ci . Notice
that after nodes u1, . . . , ui−1 are considered, edge ei is still the last unused edge
on the path of T2 from u to ui . Hence σ(u, ui) = ei for i = 1, . . . , 
. Deleting
σ(Su) = {e1, . . . , e
} breaks T2 into exactly 
 + 1 connected components, each
component containing exactly one node of {u, u1, . . . , u
}. Adding Su connects
these components, and thus T2 + Su − σ(Su) is a spanning tree. This finishes the
proof that σ(Su) is a swap set for (T , Su).

The algorithm is presented in Algorithm 4. Let S(u, p) = {(u, v) ∈ E(G) |
w(u, v) ≤ p} be the directed star centered at u which contains all those arcs whose
existence is supported by power p at node u. Use AT (u, p) to denote a swap set for
(T , S(u, p)). In each iteration, the algorithm greedily selects a directed star S(u, p)
which maximizes the ratio w(AT (u, p))/p. As long as this ratio is greater than 2,
construct a new tree by adding S(u, p) and deleting AT (u, p). Reset the weight of
every edge in S(u, p) to be zero. Suppose the while loop is executed K times. Let
{S(ui, pi)}Ki=1 be the directed stars obtained in Line 4 and let {Ti}Ki=1 be the trees
obtained in Line 7 of Algorithm 4. Turn TK into an out-arborescence T̂ . The power
assignment is induced by T̂ .

Algorithm 4 CFM Algorithm
Input: A connected graph G = (V ,E) with edge weight function w, and a source node s.
Output: A power assignment p on V which induces a broadcasting routing from s.
1: T ← a minimum spanning tree of G.
2: f lag← 1, E ← ∅.
3: while f lag = 1 do
4: S(u, p)← argmaxS(u′,p′)w(AT (u

′, p′))/p′.
5: if w(AT (u, p))/p > 2 then
6: E ← E ∪ {S(u, p)}.
7: T ← T + S(u, p)− AT (u, p).
8: w(e)← 0 for every e ∈ E(S(u, p)).
9: else

10: f lag← 0.
11: end if
12: end while
13: Orient edges of T away from s. Denote the resulting out-arborescence as T̂ .
14: For each node u ∈ V , set p(u) = max(u,v)∈E(T̂ ) w(u, v).
15: Output {p(u)}u∈V .

The algorithm can be executed in polynomial time. In fact, the most time-
consuming step is in Line 4. Notice that there are O(n) choices for node u and
for each node u, it suffices to try every p in {w(u, v) : v = u}. So there are O(n2)

choices for S(u, p). For a fixed S(u, p), the maximum ratio of w(AT (u, p))/p is
achieved by a maximum weight swap set of S(u, p), which can be obtained by
finding a minimum spanning tree of T/S(u, p), and the maximum weight swap set
is exactly set of edges not in this minimum spanning tree. Since the number of edges



A Role of Minimum Spanning Tree 27

e1 e2

e3 e4 e5

v1

v2 v3

v4 v5 v6

Fig. 7 An illustration for Algorithm 4

in the spanning tree with zero weights is strictly increasing (see Line 8), the number
of iterations is at most n− 1.

An illustration for this algorithm is given in Figure 7. In figure (a), solid lines are
in the minimum spanning tree T , and the directed star S(u, p) is indicated by the
dashed arrows. Suppose the swap set for (T , S(u, p)) is AT (u, p) = {e1, e3, e4}.
Graph T + S(u, p)−AT (u, p) is depicted in (b). The out-arborescence induced by
this spanning tree is depicted in (c).

Lemma 16 The power-cost determined by Algorithm 4 is upper bounded by

2
∑

S(u,p)∈E
p + w(TK), (21)

where K is the number of iterations of the while loop and TK is the tree T obtained
when the algorithm jumps out of the while loop.

To obtain an intuition for the upper bound, consider Figure 7c. Node v2 has power
at most p, where p is the power of directed star S(v2, p) ∈ E . For node v1, since
it is not incident with any directed star, its power is determined by the weight
on the edges of TK which connect v1 to its children of T̂ . Node v3 has power
max{w(v3, v6), w(v3, v2)}. Since arc (v2, v3) ∈ S(u2, p), by the definition of
S(u, p) and the symmetric assumption on weights, we have w(v3, v2) ≤ p. Hence
p(v3) ≤ p +w(v3, v6). The first term p corresponds to an increase of power in the
first term of inequality (21), and the second term w(v3, v6) is included in w(Tk).

For a directed star S(u, p), call those nodes of degree one in S(u, p) as feet
of S(u, p). From the above example, it can be observed that an increase of power
occurs at a node v such that v is a foot of some directed star S(u, p) and v is the
parent of u in T̂ . Call such an arc (u, v) ∈ S(u, p) as a back arc. In the above
example, (v2, v3) is a back arc. A key observation is that

every directed star has at most one back arc, (22)

since otherwise TK will contain a cycle. The proof of the lemma is given below.
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Proof (Proof of Lemma 16) For each node u, denote by CTK(u) the set of edges in
TK which connect u to its children in T̂ . Define

pTK (u) = max
(u,v)∈CTK(u)

w(u, v).

Suppose u is incident with directed stars S(ui1 , pi1), . . . , S(uiq , piq ), . . . ,

S(ui
 , pi
), where uij = u for j = 1, . . . , q (that is, u is the center for the
first q directed stars), and u is a foot of S(uij , pij ) for j = q + 1, . . . , 
. Define

pcenter (u) = max
j=1,...,q

pij ,

pf oot (u) = max
j=q+1,...,


pij .

It can be seen that the power assigned to node u is upper bounded by

max{pTK (u), pcenter (u), pf oot (u)} ≤ pTK (u)+ pcenter (u)+ pfoot (u).

So,

p(T̂ ) ≤
∑

u∈V
pTK (u)+

∑

u∈V
pcenter (u)+

∑

u∈V
pf oot (u). (23)

Notice that CTK(u) ∩ CTK(v) = ∅ for u = v, since they belong to different
child-edge-set. Hence the first term of (23) is upper bounded by w(TK). The second
term of (23) is clearly upper bounded by

∑
S(u,p)∈E p. By observation (22), the

power of each directed star is summed at most once in the third term of (23); hence,
the third term is also upper bounded by

∑
S(u,p)∈E p. Then the lemma follows.

The performance of CFM Algorithm is given in the following theorem.

Theorem 10 Suppose ρ ≥ 2 is the performance ratio of the minimum spanning
tree as an approximation for MIN-POWER BROADCAST. Then the performance
ratio of the approximation solution obtained from CFM Algorithm is at most
2 ln ρ − 2 ln 2+ 2.

Proof As before, suppose the while loop is iterated K times, and in the i-th iteration,
S(ui, pi) is the directed star chosen in Line 4, ATi−1(ui, pi) is the corresponding
swap set for (Ti−1, S(ui, pi)), and Ti = Ti−1 + S(ui, pi) − ATi−1(ui, pi). Let T0
denote the minimum spanning tree at the initial step. Since edges in E(S(u, p))

have zero weights, so for i = 1, . . . , K ,

w(ATi−1(ui, pi)) = w(Ti−1)− w(Ti). (24)
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Denote by opt the optimal value of MIN-POWER BROADCAST. If w(T0) ≤ 2opt ,
then T0 already has the desired performance ratio. Hence in the following, we
assume w(T0) > 2opt .

We shall prove that the problem satisfies all four conditions in Lemma 10 with
ai = w(Ti), ci = pi , K = opt , and k = 2.

Suppose T ∗ is an optimal broadcast tree. For each node u, denote by Su the
directed star consisting of all arcs of T ∗ from u to its children. By Lemma 15, there
exists a one-to-one onto mapping σ : E(T ∗)→ E(Ti−1) such that σ(Su) is a swap
set for (Ti−1, Su). As a consequence, {σ(Su)} form a partition of E(Ti−1), and thus

w(Ti−1) =
∑

u∈V
w(σ(Su)).

By

∑
u∈V w(σ(Su))
∑

u∈V pT ∗(u)
= w(Ti−1)

opt

and the pigeonhole principle, there exists a node u such that

w(σ(Su))

pT ∗(u)
≥ w(Ti−1)

opt
.

Since Su ⊆ S(u, pT ∗(u)) and thus σ(Su) ⊆ ATi−1(u, pT ∗(u)), it follows from the
greedy choice of S(ui, pi) that

w(ATi−1(ui, pi))

pi
≥ w(ATi−1(u, pT ∗(u)))

pT ∗(u)
≥ w(σ(Su))

pT ∗(u)
≥ w(Ti−1)

opt
. (25)

Substituting (24) into (25), we have

w(Ti−1)− w(Ti)

pi
≥ w(Ti−1)

opt
,

condition (iii) of Lemma 10 is proved.
By (25), we must have w(TK) ≤ 2opt , since otherwise there exists a directed star

S(u, p) with w(ATK (u, p))/p ≥ w(TK)/opt > 2, and thus the algorithm will not
jump out of the while loop at the K-th iteration. Combining this with our assumption
that w(T0) > 2opt , condition (ii) follows. Condition (i) is obvious since Ti is
obtained from Ti−1 by adding some edges of zero weights and removing some
edges. By Line 5 of the algorithm, (w(Ti−1)−w(Ti))/pi = w(ATi−1(ui, pi))/pi >

2 for i = 1, . . . , K , which is condition (iv).
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Then by Lemma 10, the output of Algorithm 4 satisfies

K∑

i=1

pi ≤ opt

(

ln
w(T0)

opt
− ln 2+ 1

)

− w(TK)

2
.

By Lemma 16, the power of T̂ is upper bounded by

2
K∑

i=1

pi + w(Tk) ≤ 2opt

(

ln
w(T0)

opt
− ln 2+ 1

)

≤ 2opt (ln ρ − ln 2+ 1) ,

since minimum spanning tree is a ρ-approximation. The performance ratio follows.

5 Asymmetric Power Requirement

Recall that with an asymmetric power requirement, the power to support an arc
(u, v) might be different from the power to support arc (v, u), namely one may have
w(u, v) = w(v, u).

Althaus et al. [1] studied the following problem:

MIN-POWER SYMMETRIC CONNECTIVITY WITH ASYMMETRIC POWER REQUIREMENT:
Given a complete graph G = (V ,E) and asymmetric power requirement w : V ×V → R

+,
find a minimum power-cost spanning tree T in which an undirected edge (u, v) exists if and
if pT (u) ≥ w(u, v) and pT (v) ≥ w(v, u).

Althaus et al. [1] showed that the minimum spanning tree with respect to edge
weight c(u, v) = w(u, v)+w(v, u) is a 2-approximation. However, their proof has
a flaw. In fact, their proof uses a claim that for any tree T , c(T ) ≤ 2p(T ). But
this is not true. Consider a complete graph on node set {u, u1, . . . , un−1}, in which
w(u, ui) = M and w(ui, u) = 1 for i = 1, . . . , n−1, and w(ui, uj ) = ∞ for i = j .
The spanning star S centered at u has cost c(S) = (n−1)(1+M), while the power-
cost of S is p(S) = (n− 1)+M . For sufficiently large M , ratio c(S)/p(S) is Θ(n).
The reason why a cost-over-power ratio cannot be bounded lies in the difficulty to
bound the power of an out-arborescence from below in terms of its cost. This can be
observed by considering a directed star with unit weight on every edge, for which
the cost is n−1 and the power-cost is 1. This is a sharp contrast to an in-arborescence
whose power-cost is always lower bounded by its cost.

Problem 5 Does MIN-POWER SYMMETRIC CONNECTIVITY WITH ASYMMET-
RIC POWER REQUIREMENT admits a polynomial-time constant approximation?

Calinescu et al. [11] gave a positive answer to this problem when the asymmetric
power requirement is generated by the following special way. Let r : V �→ R

+
be a node function which reflects transmission efficiency at nodes. The power
requirement to support arc (u, v) is
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w(x, y) = d(x, y)α/r(x), (26)

where d(x, y) is the distance between x and y in a metric space.

Theorem 11 The minimum spanning tree with respect to edge weight c(u, v) =
w(u, v)+ w(v, u) induces an approximation solution within a factor of

min
q>1

{

2α + (q + 1)α + qα

qα − 1

}

for MIN-POWER SYMMETRIC CONNECTIVITY WITH ASYMMETRIC POWER

REQUIREMENT.

This theorem follows from the following lemma.

Lemma 17 (Rooted-Spanning Tree Lemma) For any rooted-spanning tree T and
any number q > 1, there exists a rooted-spanning tree Tq such that

c(Tq) ≤
(

2α + (q + 1)α + qα

qα − 1

)

P(T ),

where c(Tq) =∑(u,v)∈E(Tq)(w(u, v)+ w(v, u)).

Proof For each node u, let Cu be the set of children of u, and let T u be the subtree
of T induced by {u} ∪ Cu. For each T u, construct a tree T u

q by modifying T u in the
following way:

• Sort all children in Cu as x1, x2, . . . , xk such that d(u, x1) ≥ d(u, x2) ≥ · · · ≥
d(u, xk).

• For each i = 1, . . . , k−1, if d(u, xi) ≤ q ·d(u, xi+1), then replace edge (u, xi+1)

by edge (xi, xi+1).

Notice that for each edge (xi, xi+1) in T u
q ,

d(xi, xi+1) ≤ d(u, xi)+ d(u, xi+1) ≤ (1+ q)d(u, xi+1)

and

d(xi, xi+1) ≤ d(u, xi)+ d(u, xi+1) ≤ 2d(u, xi).

By the definition of w in (26),

w(xi+1, xi) ≤ (1+ q)αw(xi+1, u),

and

w(xi, xi+1) ≤ 2αw(xi, u).
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Therefore,

c(xi, xi+1) ≤ (1+ q)αw(xi+1, u)+ 2αw(xi, u). (27)

Let (u, xi1), (u, xi2), . . . , (u, xih) be those edges of T u which remain in T u
q ,

where i1 < i2 < . . . ih. Since (u, xij ) is not replaced by (xij , xij+1), we have
d(u, xij ) > q · d(u, xij+1) ≥ q · d(u, xij+1). Hence

d(u, xi1) ≥ qd(u, xi2) ≥ q2d(u, xi3) ≥ · · · ≥ qh−1d(u, xih),

and thus

w(u, xi1) ≥ qαw(u, xi2) ≥ q2αw(u, xi3) ≥ · · · ≥ q(h−1)αw(u, xih).

Therefore,

∑

(u,x)∈E(T u
q )

w(u, x) =
h∑

j=1

w(u, xij ) ≤ w(u, xi1)

h−1∑

j=0

q−jα ≤ w(u, x1)
qα

qα − 1
.

(28)

Combining (27) and (28), we obtain

c(T u
q ) =

∑

(u,xi )∈E(T u
q )

c(u, xi)+
∑

(xi ,xi+1)∈E(T u
q )

c(xi, xi+1) (29)

≤ w(u, x1)
qα

qα − 1
+

∑

(u,xi )∈E(T u
q )

w(xi, u)

+
∑

(xi ,xi+1)∈E(T u
q )

(
(1+ q)αw(xi+1, u)+ 2αw(xi, u)

)
.

For each (xi, xi+1) ∈ E(T u
q ), if (u, xi) ∈ E(T u

q ), then w(xi, u) is added 1+2α times
in (29); if (u, xi) ∈ E(T u

q ), then (xi−1, xi) is also in E(T u
q ), in which case w(xi, u)

is added (1 + q)α + 2α times in (29). The weight w(xi+1, u) is added (1 + q)α

times if xi+1 is a leaf of T u
q . Otherwise, (xi+1, xi+2) is also in E(T u

q ), and thus
w(xi+1, u) is added 2α+(1+q)α times in (29). In any case, the repetition of weight
w(x, u) for any x ∈ Cu is at most (1+ q)α + 2α . Furthermore, w(u, x1) ≤ pT (u).
Hence

c(T u
q ) ≤ pT (u)

qα

qα − 1
+ (2α + (1+ q)α)

∑

x∈Cu

w(x, u).
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Now, let Tq =⋃u∈V T u
q . Then

c(Tq) ≤ qα

qα − 1

∑

u∈V
pT (u)+ (2α + (1+ q)α)

∑

u∈V

∑

x∈Cu

w(x, u). (30)

Orient edges in T towards its root to obtain an in-arborescence Tin. Notice that
Cu∩Cv = ∅ for u = v. Furthermore, w(x, u) ≤ pT (x) since the existence of (x, u)
is supported by pT (x). Hence,

∑

u∈V

∑

x∈Cu

w(x, u) =
∑

(x,u)∈E(Tin)
w(x, u) ≤

∑

x∈V
pT (x).

Substituting this into (30), the lemma is proved.

Proof (Proof of Theorem 11) Let Tmst be a minimum spanning tree with respect to
weight c(u, v) = w(u, v)+w(v, u). To avoid ambiguity, we use (u, v) to denote an

edge and
−−−→
(u, v) to denote an arc. Let

−−→
Tmst be the directed graph obtained from Tmst

by replacing every edge by two opposite arcs. Then

P(Tmst ) ≤
∑

u∈V

∑

v : −−→(u,v)∈−−→Tmst
w(u, v) =

∑

(u,v)∈E(Tmst )

(
w(u, v)+ w(v, u)

) = c(Tmst ).

Then the theorem follows from Lemma 17 and the arbitrariness of q > 1.
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Discrete Newton Method

Zhao Zhang and Xiaohui Huang

Abstract Newton method is a classic and powerful method in continuous nonlinear
optimization. However in this chapter, we introduce its counterpart in combinatorial
optimization: discrete Newton method, and show that there exists a strong polyno-
mial time algorithm for finding the root of a piecewise linear decreasing function,
where the number of pieces is exponential. Then we show how to apply it in
solving linear fractional combinatorial optimization problem, inverse combinatorial
problem, and bottleneck expansion problem.

1 Discrete Newton Method

Let U be a finite set, F be a family of subsets of U (called feasible domain), and k

be a constant. Suppose f, b are two functions on F which are linear in the following
sense: there exist two real vectors α, β such that f (F ) = αT xF and b(F ) = βT x̂F ,
where xF and x̂F are 0–1 vectors of length nf and length nb, respectively, which
are associated with F . Also assume that

f (F ) > k for some F ∈ F and b(F ) > 0 for all F ∈ F . (1)

Notice that for any fixed F ∈ F , f (F )− λb(F )− k is a linear decreasing function
on λ. Hence,

h(λ) = max
F∈F
{f (F )− λb(F )− k} (2)

is a piecewise linear decreasing function with a unique root λ∗ (see Figure 1). The
problem is how to find this root.

Z. Zhang (�) · X. Huang
Zhejiang Normal University, Jinhua, Zhejiang, China
e-mail: hxhzz@sina.com

© Springer Nature Switzerland AG 2019
D.-Z. Du et al. (eds.), Nonlinear Combinatorial Optimization,
Springer Optimization and Its Applications 147,
https://doi.org/10.1007/978-3-030-16194-1_2

37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16194-1_2&domain=pdf
mailto:hxhzz@sina.com
https://doi.org/10.1007/978-3-030-16194-1_2


38 Z. Zhang and X. Huang

h(λ )

fi−λbi
fi+1 −λbi+1 h(λi)

h(λi+1)

λi λi+1 λ ∗

Fig. 1 An illustration for discrete Newton method. The thick lines indicate function h(λ)

ROOT OF PIECEWISE LINEAR DECREASING FUNCTION (RPLDF): Find the unique root
of the above piecewise linear decreasing function h(λ).

One difficulty in solving this problem is that the number of pieces might be
exponential. If all input numbers are integral, then the binary search method solves
the problem with O(nK) iterations, where n = max{nf , nb} and K is the maximum
value of input numbers. So, if for any λ, h(λ) can be determined in polynomial time,
then binary search gives a pseudo-polynomial time algorithm.

In 1993, Radzik [7] proposed a discrete Newton method for the linear fractional
combinatorial optimization problem, the core of which is to solve a RPLDF in such
a way that the number of iterations is polynomial in the input size but independent
of the input numbers, and thus might possibly provide a strong polynomial time
algorithm.

Discrete Newton method requires a solver for the parameterized combinatorial
optimization problem (2). To be more concrete, there is an algorithm A such that
for any fixed parameter λ, algorithm A returns a pair (hλ, Fλ), where Fλ ∈ F
reaches the maximum value of (2) and hλ is the maximum value. With the aid of
algorithm A , discrete Newton method solves RPLDF as in Algorithm 1. Notice
that λi+1 is the root of the linear function f (Fi)− λb(Fi)− k. This operation has a
similar taste as the classic Newton method in finding the root of a derivable function
g, which iteratively uses the root of a tangent line to approximate the root of g. For
an illustration of this algorithm, see Figure 1.

To estimate the time efficiency of Algorithm 1, the following lemma is needed.

Lemma 1 (Michel Goemans [7]) Let δ = (δ1, . . . , δn)
T be a vector in R

n

with nonnegative coordinates, and let y1, . . . , yq be a sequence of vectors in
{−1, 0, 1}n. If

0 < yTi+1δ ≤
1

2
yTi δ

holds for any i = 1, . . . , q − 1, then q = O(n log n).
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Proof The condition of this lemma implies that the following linear program is
feasible:

⎧
⎪⎪⎨

⎪⎪⎩

(yTi − 2yTi+1)z ≥ 0,

yTq z = 1,

z ≥ 0.

(3)

Algorithm 1 Discrete Newton method
Input: (U,F , f, b, k).
Output: The unique root of h(λ).
1: i = 1, λi = 0, f lag← 1.
2: while f lag = 1 do
3: (hi , Fi) = A (λi).
4: if hi = 0 then
5: f lag← 0.
6: else
7: λi+1 = (f (Fi)− k)/ b(Fi).
8: i ← i + 1.
9: end if

10: end while
11: Output λi .

In fact, (3) has at least one feasible solution δ/yTq δ. Let z∗ be an extreme vertex
of the above polytope. By the theory of linear programming, there is an invertible
matrix A and a vertex b such that Az∗ = b. By Crammer’s rule, every component
of z∗ has the form z∗j = det(Aj )/ det(A), where Aj is the matrix obtained from
A by replacing the j -th column with vector b. By the assumption on y-vectors,
every component in A and b is an integer from [−3, 3]. Thus, it follows from the
definition of determinant that det(Aj ) ≤ n!3n. Since A is an integral matrix which
is invertible, we have det(A) ≥ 1. So |z∗j | ≤ n!3n for j = 1, . . . , n, and thus

1 = yTq z
∗ ≤ 1

2q−1 y
T
1 z
∗ ≤ n · n!3n

2q−1 .

By Stirling’s formula which says that n! ∼ √2πn
(
n
e

)n, we have q = O(n log n).

The following lemma lists some properties for the algorithm. It should be noted
that for the last iteration, strict inequalities of some properties might degenerate into
equalities. However, such degenerations are not essential to the analysis and can be
dealt with by paying a little more attention. To avoid deviating from the main idea,
we choose to state the properties in a less stringent manner, ignoring the details for
the last iteration.
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Lemma 2 For the i-th iteration, denote by fi = f (Fi)− k and bi = b(Fi).

(i) hi = fi − λibi = max
F∈F
{f (F )− λib(F )− k}.

(ii) λi+1 = fi

bi
.

(iii) λi+1 − λi = hi

bi
.

(iv)
hi+1

hi
+ bi+1

bi
≤ 1.

(v) hi > 0 and bi > 0 during the whole iterations except for the last iteration
which has hi = 0.

(vi) Both {hi} and {bi} are strictly decreasing sequences before the last iteration.
(vii) Sequence {λi} is strictly increasing.

Proof The first two equalities are by line 3 and line 7 of Algorithm 1, respectively.
Equality (iii) follows easily from (i) and (ii).
By (i) and (iii),

hi ≥ f (Fi+1)−λib(Fi+1)−k = fi+1−λi+1bi+1+(λi+1−λi)bi+1 = hi+1+hi
bi
·bi+1.

Dividing both sides by hi , inequality (iv) follows.
By assumption (1), bi > 0 for all i and h0 > 0. Suppose i is the first iteration

with hi ≤ 0. Then, hi = maxF∈F {f (F ) − λib(F ) − k} ≤ 0. Since f (Fi−1) −
λib(Fi−1) − k = fi−1 − λibi−1 = 0 (by (ii)), we have hi = 0. At this point, the
algorithm terminates. Property (v) is proved.

Combining (iv) and (v), before the last iteration,

hi+1

hi
< 1 and

bi+1

bi
< 1.

So, {hi} and {bi} are both strictly decreasing sequences.
Combining (iii) and (v), λi+1 − λi > 0, (vi) follows.

Theorem 1 The number of iterations in Algorithm 1 is O((nf nb) log(nf nb)).

Proof By the linearity assumption of f and b, we may assume that

fi = αT xFi − k and bi = βT x̂Fi , (4)

where α = (α1, . . . , αnf )
T , β = (β1, . . . , βnb )

T are real vectors, and xFi =
(xFi ,1, . . . , xFi ,nf )

T , x̂Fi = (x̂Fi ,1, . . . , x̂Fi ,nb )
T are 0–1 vectors.

By property (iv) in Lemma 2, for each iteration, either hi+1/ hi ≤ 1/2 or
bi+1/ bi ≤ 1/2.

Claim 1 There are O(nb log nb) iterations satisfying bi+1/ bi ≤ 1/2.

Suppose the iterations satisfying bi+1/ bi ≤ 1/2 are indexed by i1 < . . . < iq .
Since {bi} is a positive decreasing sequence, we have
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0 < bij+1 ≤ bij+1 ≤
bij

2
.

Notice that bi = βT x̂Fi =
∑nb

j=1 βj x̂Fi ,j can be written as bi = yTi δ, where

δ = (|β1|, . . . , |βnb |)T , and yi = (sign(β1)x̂Fi ,1, . . . , sign(βnb )x̂Fi ,nb )
T . Since xFi

is a 0–1 vector, each component of yi takes a value from {−1, 0, 1}. So, δ and
yi1 , . . . , yiq satisfy the conditions in Lemma 1, and thus q = O(nb log nb).

Claim 2 There are O((nf nb) log(nf nb)) iterations satisfying hi+1/ hi ≤ 1/2.

Suppose the iterations satisfying hi+1/ hi ≤ 1/2 are indexed by i1 < . . . < iq .
Similarly to the above, since {hi} is a positive decreasing sequence, we have

0 < hij+1 ≤ hij+1 ≤
hij

2
.

Notice that

hi = fi − λibi = fi − fi−1

bi−1
· bi = fibi−1 − fi−1bi

bi−1
. (5)

Denote gi = fibi−1 − fi−1bi . Then

gij+1

bij+1−1
≤ gij

2bij−1
.

By the monotonicity of {bi}, we have 0 < bij+1−1 < bij−1. Hence

gij+1 ≤
gij

2
.

Furthermore, by (5) and property (v) of Lemma 2, gi = hibi−1 > 0. Substituting (4)
into the definition of gi , we have

gi = (αT xFi − k)βT x̂Fi−1 − (αT xFi−1 − k)βT x̂Fi

=
⎛

⎝
nf∑

j=1

αjxFi,j

⎞

⎠

(
nb∑

l=1

βlx̂Fi−1,l

)

−
( nf∑

s=1

αsxFi−1,s

)(
nb∑

t=1

βt x̂Fi ,t

)

+ kβT (x̂Fi − x̂Fi−1)

=
nf∑

j=1

nb∑

l=1

αjβlxFi ,j x̂Fi−1,l −
nf∑

s=1

nb∑

t=1

αsβtxFi−1,s x̂Fi ,t

+ k

nb∑

m=1

βm(x̂Fi ,m − x̂Fi−1,m).
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The above gi can be written as an inner product

gi = yTi δ,

where yi and δ are vectors of length 2nf nb + nb defined as follows: δ =
(δ

(1)
1,1, . . . , δ

(1)
1,nb

, δ
(1)
2,1, . . . , δ

(1)
2,nb

, . . . , δ
(1)
nf ,1

, . . . , δ
(1)
nf ,nb , δ

(2)
1,1, . . . , δ

(2)
1,nb

, δ
(2)
2,1, . . . ,

δ
(2)
2,nb

, . . . , δ
(2)
nf ,1

, . . . , δ
(2)
nf ,nb , δ1, . . . , δnb )

T with

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

δ
(1)
j,l = |αjβl | for j = 1, . . . , nf ; l = 1, . . . , nb;
δ
(2)
s,t = |αsβt | for s = 1, . . . , nf ; t = 1, . . . , nb;
δm = k|βm| for m = 1, . . . , nb.

yi = (y
(1)
i,1,1, . . . , y

(1)
i,1,nb

, y
(1)
i,2,1, . . . , y

(1)
i,2,nb

, . . . , y
(1)
i,nf ,1

, . . . , y
(1)
i,nf ,nb

, y
(2)
i,1,1, . . . ,

y
(2)
i,1,nb

, y
(2)
i,2,1, . . . , y

(2)
i,2,nb

, . . . , y
(2)
i,nf ,1

, . . . , y
(2)
i,nf ,nb

, yi,1, . . . , yi,nb )
T with

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

y
(1)
i,j,l = sign(αjβl)xFi,j x̂Fi−1,l for j = 1, . . . , nf ; l = 1, . . . , nb;
y
(2)
i,s,t = −sign(αsβt )xFi−1,s x̂Fi ,t for s = 1, . . . , nf ; t = 1, . . . , nb;
yi,m = sign(βm)(x̂Fi ,m − x̂Fi−1,m) for m = 1, . . . , nb.

Because {xFi } and {x̂Fi } are 0-1 vectors, it can be seen that every yi ∈
{−1, 0, 1}2nf nb+nb . Then, δ and yi1 , . . . , yiq satisfy the conditions of Lemma 1,
and thus q = O((2nf nb + nb) log(2nf nb + nb)) = O((nf nb) log(nf nb)).

Combining Claim 1 and Claim 2, the theorem follows.

Suppose algorithm A has time complexity T . Then the time complexity of
Algorithm 1 is O((nf nb) log(nf nb) · T ). Hence we have the following corollary.

Corollary 1 If for any fixed parameter λ, there exists a (strong) polynomial time
algorithm to solve the optimization problem (2), then ROOT OF PIECEWISE LINEAR

DECREASING FUNCTION can be solved in (strong) polynomial time.

If β = (1, . . . , 1)T , the problem is said to be uniform, which has a better time
complexity.

Theorem 2 For uniform RPLDF, the number of iterations of Algorithm 1 is at most
nb.

Proof Notice that for uniform RPLDF, bi is a positive integer and bi ≤ nb. Then
the theorem follows from the property that {bi} is strictly decreasing.

Whether (2) can be solved in (strong) polynomial time depends on the structure
of X. In the following section, we consider some problems which can be trans-
formed to ROOT OF PIECEWISE LINEAR DECREASING FUNCTION.
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2 Applications

2.1 Linear Fractional Combinatorial Optimization

In a LINEAR FRACTIONAL COMBINATORIAL OPTIMIZATION problem (LFCO),
one is to

max
x∈X

{
αT x − k

βT x

}

,

where α, β are vectors in R
n, x is a vector in X ⊆ {0, 1}n, and

αT x > k for some x ∈ X and βT x > 0 for all x ∈ X.

This problem is equivalent to

min
λ≥0

λ

s.t. αT x − λβT x − k ≤ 0, ∀x ∈ X.
(6)

Define

h(λ) = max
x∈X {α

T x − λβT x − k}. (7)

Then h(λ) is a piecewise linear decreasing function and the problem (6) is equivalent
to finding the unique root of h(λ). Hence, LFCO is a special RPLDF with f (x) =
αT x, b(x) = βT x. Then by Section 1, we have the following result for LFCO.

Theorem 3 Discrete Newton method solves LFCO in time O(n2 log n · T ), where
T is the time complexity to solve (7) for any fixed parameter λ.

A lot of combinatorial optimization problems can be modeled as an LFCO
problem. We introduce the MAXIMUM MEAN-WEIGHT-SURPLUS CUT problem
(MMWSC) considered in [7] as an example.

Let G = (V ,E) be a directed graph, c : E �→ R
+ be a capacity function on

E, and d : V �→ R
+ be a demand function on V such that

∑
v∈V d(v) = 0. A

vertex v with d(v) > 0 is called a sink and a vertex v with d(v) < 0 is called
a source. A sink demands some supply, and a source provides some supply. For a
vertex set S ⊆ V , the demand of S is d(S) = ∑v∈S d(v). For a nonempty proper
vertex subset S of V , the set of arcs with tails in S and heads in S is called a cut
of G, denoted by (S, S), where S is the complement of S in V . For a cut (S, S), its
capacity is c(S, S) = ∑e∈(S,S) c(e), and its surplus is s(S, S) = d(S) − c(S, S).

Furthermore, let w : E �→ R
+ be a weight function on E. The weight of cut (S, S)

is w(S, S) =∑e∈(S,S) w(e).
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MAXIMUM MEAN-WEIGHT-SURPLUS CUT: Given (G, c, d,w) such that there exists a
positive surplus cut in G, find a cut (S, S) of G with a maximum mean-weight-surplus

mws(S, S) = s(S, S)

w(S, S)
.

This problem is a special LFCO. In fact, suppose V = {v1, . . . , vn} and
E = {e1, . . . , em}. Let xTS = (yTS , z

T
S ), where yS is the characteristic vector

of S and zS is the characteristic vector of (S, S) (that is, yS is a vector of
length n such that yS,j = 1 if vj ∈ S and yS,j = 0 otherwise, zS is
a vector of length m such that zS,l = 1 if el ∈ (S, S) and zS,l = 0
otherwise). Let α = (d(v1), . . . , d(vn),−c(e1), . . . ,−c(em))T and β =
(0, . . . , 0, w(e1), . . . , w(em))

T . Then s(S, S) = αT xS and w(S, S) = βT xS . Hence
discrete Newton method solves MMWSC in time O((m+n)2 log(m+n)·T ), where
T is the time to solve

max
(S,S)

{s(S, S)− λw(S, S)} (8)

for any fixed λ.
Next, we consider how to solve (8) for any fixed λ. Denote by Gc the directed

graph with capacity c, and let sc(S, S) be the surplus of cut (S, S) in Gc. Notice that

sc(S, S)− λw(S, S) = d(S)− (c + λw)(S, S) = sc+λw(S, S). (9)

Hence solving (8) is equivalent to finding a cut with the maximum surplus in Gc+λw.
In the following, we focus on how to find a maximum surplus cut.

For directed graph G = (V ,E) with capacity c, denote by SRG and SNG the set
of sources and the set of sinks, respectively. Construct an auxiliary directed graph
G′ = (V ′, E′) with V ′ = V ∪ {s, t} and E′ = E ∪ {(s, v)}v∈SRG

∪ {(v, t)}v∈SNG
.

The capacity c′ on E′ is defined to be

c′(e) =
⎧
⎨

⎩

c(e), e ∈ E,
d(v), e = (v, t), v ∈ SNG

−d(v), e = (s, v), v ∈ SRG.

Let f is a maximum s-t flow in G′. For each vertex v ∈ V , let ef (v) =∑
(u,v)∈E f (u, v) −∑(v,u)∈E f (v, u) be the net flow into v, called the excess at

vertex v. Notice that arcs of the form (s, v) and (v, t) are not counted in the
definition of excess, they are merely virtual arcs which paly an auxiliary role in
finding flow f . It is not difficult to see that for any vertex subset S,

ef (S) =
∑

v∈S
ef (v) = f (S, S)− f (S, S). (10)
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Define a residual directed graph Gf on vertex set V and arc set E, with residual
capacity function cf = c − f and residual demand function df = d − ef .

For any cut (S, S), by (10),

ef (S) = f (S, S)− f (S, S) ≤ f (S, S) ≤ c(S, S).

Hence if the demand of every vertex is satisfied, that is, if ef (v) = d(v) for any
v ∈ V , then d(S) = ef (S) ≤ c(S, S), and thus there is no positive surplus cut in G.
So, under the assumption that G has some positive surplus cut, not all demands
are satisfied. It follows that SRGf = ∅ and SNGf = ∅. Let S0 be the vertex

subset of V such that S0 = {v : v is reachable from some source vertex of Gf by an
f -augmenting path} (a path P is f -augmenting if every forward arc e on P has
f (e) < c(e) and every backward arc e on P has f (e) > 0). Call (S0, S0) a blocking
cut of G.

Lemma 3 The blocking cut (S0, S0) has the following properties:

(i) SRGf ⊆ S0 and SNGf ⊆ S0.

(ii) cf (S0, S0) = 0.
(iii) f (S0, S0) = 0.
(iv) sf (S0, S0) = df (S0).

Denote the surplus of cut (S, S) in G and Gf by s(S, S) and sf (S, S),
respectively.

(v) For any cut (S, S), sf (S, S) ≥ s(S, S).
(vi) sf (S0, S0) = s(S0, S0).
(vii) (S0, S0) is a maximum surplus cut, both in G and Gf .

Proof It is clear by the definition of S0 that SRGf ⊆ S0. If SNGf ∩ S0 = ∅, then
there is an f -augmenting path from some source vertex of Gf to some sink vertex
of Gf , and thus the flow can be augmented through this path, contradicting that f
is a maximum flow. So, property (i) is true.

Also by the definition of S0, every arc e ∈ (S0, S0) has f (e) = c(e) and every
arc e ∈ (S0, S0) has f (e) = 0. Properties (ii) and (iii) follow.

Property (iv) is a consequence of property (ii) and the definition of surplus.
By (10), we have

sf (S, S) = df (S)− cf (S, S) = (d(S)− c(S, S)
)+ (f (S, S)− ef (S)

)

= s(S, S)+ f (S, S) ≥ s(S, S).

Property (v) is proved.
It can be seen from the above inequality that sf (S, S) = s(S, S) if and only if

f (S, S) = 0. Hence by property (iii), property (vi) is true.
Since SNGf ⊆ S0, we have df (S0) = maxS⊆V df (S). Then by property (iv),

for any cut (S, S),
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sf (S0, S0) = df (S0) ≥ df (S) ≥ df (S)− cf (S, S) = sf (S, S).

Hence (S0, S0) is a maximum surplus cut in Gf . Combining this with properties
(v) and (vi), it is also a maximum surplus cut in G. Property (vii) is proved.

By property (vii) of Lemma 3, for any fixed parameter λ, a maximum surplus cut
in Gc+λw can be found by implementing a maximum-flow algorithm once. Hence
the parameterized combinatorial problem (8), and thus MMWSC, can be solved in
strong polynomial time.

In fact, by considering special structures of MMWSC, Radzik [7] showed that
the number of iterations can be further reduced to O(m), where m is the number of
edges. To illustrate the idea, we include in this section a simpler analysis, showing
that the number of iterations for MMWSC can be reduced to O(m logm). For
the more complicated analysis of O(m) iterations, the interested readers may refer
to [7].

Theorem 4 Discrete Newton method solves MMWSC in time O(m logm·T ), where
T is the time complexity for the maximum-flow problem.

Proof We first interpret the variables in the analysis of discrete Newton method in
terms of the MMWSC problem. In the i-th iteration, a maximum surplus cut (Si, Si)
of Gc+λiw is found by a maximum-flow algorithm. Clearly,

bi = w(Si, Si) (11)

is the weight of this cut. By (9) and property (vi), property (iv) of Lemma 3

hi = sc+λiw(Si, Si) = s
fi
c+λiw(Si, Si) = dfi (Si) (12)

is the maximum surplus of Gc+λiw, as well as the demand of Si in the residual graph

G
fi
c+λiw, where fi is a maximum flow in Gc+λiw. By (ii) of Lemma 2, λi+1 =

s(Si, Si)/w(Si, Si). So,

(c + λi+1w)(Si, Si) = c(Si, Si)+ s(Si, Si) = d(Si).

By (10) and property (iii) of Lemma 3,

dfi (Si) = d(Si)− efi (Si) = d(Si)− fi(Si, Si)+ fi(Si, Si) = d(Si)− fi(Si, Si).

Then by (12), the residual capacity of (Si, Si) in Gc+λi+1w satisfies

(c + λi+1w)
fi (Si, Si) = d(Si)− fi(Si, Si) = dfi (Si) = hi. (13)

An arc e is called unessential at iteration i if

either w(e) > bi or (c + λi+1w)
fi (e) > hi.



Discrete Newton Method 47

The idea behind this definition is as follows. By (11) and (13), an unessential arc
at iteration i cannot belong to cut (Si, Si). So, if it can be proved that after every
O(logm) iterations, an essential arc turns into an unessential arc and remains to be
unessential in the latter iterations, then after K = O(m logm) iterations, all arcs are
unessential, and thus Gc+λKw no longer has a positive surplus cut, at which point,
the iteration terminates.

To realize the above idea, we first claim that

(c + λi+lw)fi+l−1(Si, Si) ≥ hi+1 for any l ≥ 2. (14)

In fact, since {λi} is monotone increasing, we have λi+l ≥ λi+2. Notice that
fi+l−1(Si, Si) − fi(Si, Si) is the increase of the flow across cut (Si, Si), which
is upper bounded by the residual demand dfi (Si). Hence by (13), (12), the
monotonicity of {bi}, and (iii) of Lemma 2,

(c + λi+lw)fi+l−1(Si, Si)

= (c + λi+1w)
fi (Si, Si)+ (λi+l − λi+1)w(Si, Si)− (fi+l−1(Si, Si)− fi(Si, Si))

≥ hi + (λi+l − λi+1)bi − dfi (Si)

= (λi+l − λi+1)bi

> (λi+2 − λi+1)bi+1

= hi+1.

By Lemma 2 (iv),

hi+1

hi
· bi+1

bi
≤
( hi+1

hi
+ bi+1

bi

2

)2

≤ 1

4
.

For any t ≥ �logm� + 1, we have

hi+t bi+t ≤
(

1

4

)t−1

hi+1bi+1 ≤ hi+1bi+1

m2
. (15)

In the case that bi+t ≤ bi+1/m, since {bi} is strictly decreasing, we have

m · bi+t ≤ bi+1 < bi = w(Si, Si) ≤ m max
e∈(Si ,Si ))

w(e).

In the case that bi+t > bi+1/m, we have hi+t < hi+1/m by (15). Taking l = t + 1
in (14),

mhi+t < hi+1 ≤ m max
e∈(Si ,Si )

(c + λi+t+1w)
fi+t (e).
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In any case, the arc in (Si, Si) with the maximum weight is unessential at iteration
i + t . Notice that any arc in (Si, Si) is essential, hence after every �logm� + 1
iterations, a new unessential arc emerges. As we have explained before, this implies
that the number of iterations is O(m logm). The time complexity follows.

2.2 Inverse Combinatorial Problems

Suppose U = {e1, . . . , en}, F is a family of subsets of U , and c : U �→ R
+ is a

cost function on U . For any F ⊆ U , its cost is c(F ) = ∑
e∈F c(e). Consider a

combinatorial optimization problem

(P ) min
F∈F

c(F ). (16)

Its inverse problem can be formulated as follows.

INVERSE COMBINATORIAL PROBLEM: Given a feasible solution F 0 ∈ F which is not
optimal, modify c to a new cost function c̃ such that F 0 is an optimal solution with respect
to c̃ and the modification from c to c̃ is as small as possible, i.e.,

(IP ) min
c̃
‖c̃ − c‖

s.t. c̃(F 0) ≤ c̃(F ) for all F ∈ F ,

(17)

where ‖ · ‖ is a norm measuring the difference between c and c̃.

Inverse combinatorial problem was first proposed by Burton and Toint and is
extensively studied in the literature. A summary of the works before 2004 can be
found in [5]. For some new trends in this field as well as some studies on NP-hard
inverse problems, the readers may refer to [2].

We show in this section that if ‖ · ‖ is the weighted l∞ norm, then (17) can be
transformed to a ROOT OF PIECEWISE LINEAR DECREASING FUNCTION problem.
Under l∞ norm, (17) can be written as

min
c̃

max
e∈U pe|c̃(e)− c(e)|

s.t.
∑

e∈F 0

c̃(e) ≤
∑

e∈F
c̃(e) for all F ∈ F ,

(18)

where pe > 0 is the price of changing one unit of cost on edge e.
Since the goal is to make c̃(F 0) being minimum, a natural idea is to decrease

c(e) for e ∈ F 0 and increase c(e) for e ∈ U \ F 0. This intuition can be certified by
the following lemma.

Lemma 4 There exists an optimal solution c̃ to (18) such that c̃(e) ≤ c(e) for any
e ∈ F0 and c̃(e) ≥ c(e) for any e ∈ U \ F0.
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Proof Suppose c̃ is an optimal solution to (18) such that |{e : c̃(e) = c(e)}| is as
large as possible. If there exists an element e0 ∈ F0 such that c̃(e0) > c(e0), or an
element e0 ∈ U \ F0 such that c̃(e0) < c(e0), let

c(e) =
{
c̃(e), e = e0,

c(e), e = e0.

It can be verified that c also satisfies the constraint in (18). Furthermore,

max
e∈U pe|c(e)− c(e)| ≤ max

e∈U pe|c̃(e)− c(e)|.

Hence c is also an optimal solution to (18). However, |{e : c(e) = c(e)}| >

|{e : c̃(e) = c(e)}|, contradicting the choice of c̃. The lemma is proved.

Motivated by the above lemma, we may suppose

c̃(e) =
{
c(e)− θe, for e ∈ F 0,

c(e)+ θe, for e ∈ U \ F 0,

where {θe} are nonnegative real numbers. Then, (18) can be written as

min{θe}e∈U
max
e∈U peθe

s.t.
∑

e∈F 0\F
c(e)−

∑

e∈F\F 0

c(e)−
∑

e∈FΔF 0

θe ≤ 0 for all F ∈ F ,

θe ≥ 0, for all e ∈ U,

(19)

where FΔF 0 = (F \ F 0) ∪ (F 0 \ F) is the symmetric difference of F and F 0.
The objective function of (19) can be linearized as follows:

min
λ≥0

λ

s.t.
∑

e∈F 0\F
c(e)−

∑

e∈F\F 0

c(e)− λ
∑

e∈FΔF 0

1

pe
≤ 0 for all F ∈ F .

(20)

In fact, for any feasible solution {θe}e∈U of (19), λ = maxe∈U peθe is a feasible
solution of (20). Conversely, any feasible solution λ of (20) determines a feasible
solution of (19) by setting θe = λ/pe (e ∈ U). Furthermore, the objective value is
the same.

For F ∈ F , define f (F ) = ∑
e∈F 0\F c(e) − ∑e∈F\F 0 c(e) and b(F ) =

∑
e∈FΔF 0

1
pe

. Then (20) is equivalent to finding the unique root of the piecewise
linear decreasing function
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h(λ) = max
F∈F
{f (F )− λb(F )}. (21)

Notice that f (F ) and b(F ) can be written as f (F ) = αT xF and b(F ) = βT xF
where βj = 1/pej for j = 1, . . . , n,

αj =
{
c(ej ), if ej ∈ F 0,

−c(ej ), if ej ∈ U \ F 0,
(22)

and

xF,j =
{

1, if ej ∈ FΔF 0,

0, otherwise.
(23)

Since F 0 is not an optimal solution with respect to c, there exists another feasible
solution F 1 ∈ F such that c(F 0) > c(F 1), which implies that f (F 1) =
c(F 0 \ F 1) − c(F 1 \ F 0) > 0. Hence the first part of assumption (1) is satisfied
with k = 0. Since pe > 0 for any e ∈ U , b(F ) > 0 for any F ∈ F with F = F 0.
Although the second part of assumption (1) is not completely satisfied because of
b(F0) = 0, discrete Newton method can still be applied here. In fact, what is needed
in the argument of Section 1 is bi > 0 before the termination of the algorithm. When
F 0 becomes an optimal solution, the algorithm terminates, and thus b(F 0) is never
used. By Theorem 1, discrete Newton method solves the inverse problem (18) in
time O(n2 log n ·T ), where T is the time complexity of solving (21) for any fixed λ.

Notice that for any fixed λ,

h(λ) = max
F∈F
{cλ(F 0)− cλ(F )} = cλ(F

0)− min
F∈F

cλ(F ), (24)

where

cλ(e) =
{
c(e)− λ

pe
, e ∈ F 0,

c(e)+ λ
pe
, e ∈ U \ F 0.

Hence solving (21) for fixed λ is equivalent to finding an F ∈ F with a minimum
value of cλ(F ). For example, if one is considering the inverse minimum spanning
tree problem, then F is the set of all spanning trees, and (24) is to find a minimum
spanning tree with respect to weight function cλ. It is well known that a simple
greedy algorithm finds a minimum spanning tree in time O(|E| log |E|), where |E|
is the number of edges; hence, the inverse minimum spanning tree problem can be
solved in time O

(|E|3(log |E|)2
)
.

It should be noted that similar deduction applies to the inverse combinatorial
optimization problems in which the objective is maximization. In this case, the costs
of elements in F 0 are increased and the costs of the other elements are decreased.
To unify the statement, we use opt to stand for either min or max.
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Theorem 5 If the optimization problem optF∈F c(F ) can be solved in (strong)
polynomial time for any cost function c, then so is its corresponding inverse problem
under l∞ norm.

As a consequence of Theorem 5, a lot of inverse combinatorial optimization
problems under l∞ norm can be solved in strong polynomial time, including
inverse minimum basis of a matroid (which includes the inverse minimum spanning
tree problem), inverse maximum intersection of two matroids (which includes the
inverse maximum matching problem), inverse minimum cost flow (which includes
the inverse shortest path problem), etc.

Some variations of (18) can also be solved in strong polynomial time. For
example, Guan et al. [4] considered the inverse max+sum spanning tree problem.

INVERSE MAX+SUM SPANNING TREE: In an Max+Sum Spanning Tree problem, every
edge e is assigned a weight w(e) and a cost c(e), the goal is to find a spanning tree T with
the minimum pw,c(T ) = maxe∈T w(e)+∑e∈T c(e). For its corresponding inverse problem
in which only costs are modified, given a spanning tree T 0, the goal is to modify c to c̃ as
small as possible such that pw,c̃(T 0) is minimum among all spanning trees.

The deduction is almost the same, except that (21) becomes

h(λ) = max
F∈F
{f (F )− λb(F )− k}

with k = −maxe∈F 0 w(e) and

f (F ) =
∑

e∈F 0\F
c(e)−

∑

e∈F\F 0

c(e)−max
e∈F w(e).

In this case, f (F ) can be written as f (F ) = α̃T x̃F , where α̃ and x̃F are vectors
of length 2|E| defined as follows: α̃T = (αT , ᾱT ), α ∈ R

|E| is defined in (22)
and ᾱ ∈ R

|E| is defined by ᾱj = −w(ej ) for j = 1, . . . , |E|; x̃F = (xF , x̄F ),
xF ∈ {0, 1}|E| is defined in (23) and x̄F ∈ {0, 1}|E| has a unique nonzero element 1
at position j with ej = arg maxe∈F {w(e)}.

Notice that the model in Section 1 involves a parameter k and the functions
f (F ), b(F ) are assumed to be inner products of possibly different lengths. Hence,
using the theory in Section 1 and the fact that max-sum spanning tree problem can
be solved in time O(|E| log |V |) [6], INVERSE MAX-SUM SPANNING TREE can be
solved in time O(|E|3 log |E| log |V |).

Our model with parameter k also enables us to deal with the requirement that
c̃(F 0) ≤ c̃(F )+ k for any F ∈ F , which occurs if one only needs F 0 to be a near
optimal solution.

For the general inverse problem with cost function c(F ) = cT xF , it was indicated
by Ahuja and Orlin [1] that under some regularity conditions, if (16) can be solved
in polynomial time, then its inverse problem (17) under L1 norm and L∞ norm can
also be solved in polynomial time. This result uses the ellipsoid algorithm. Roughly
speaking, given a polyhedron X ⊆ R

n which is defined by rational inequalities
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with rationals of size at most φ, and a rational vector c ∈ Q
n, the optimization

problem max{cT x : x ∈ X} has a corresponding feasibility problem: given a vector
x, does x belong to X? A separating oracle answers the feasibility problem by either
claiming that x ∈ X or finding out a violated constraint. The ellipsoid algorithm
solves the optimization problem by iteratively solving the feasibility problem, and
the time complexity is polynomially bounded by n, φ, c, and the running time of the
separating oracle [3]. To apply the ellipsoid algorithm on inverse problems, consider
the inverse problem (17) under l∞ norm, which can be written as

min λ

s.t. c̃T x0
F ≤ c̃T xF , for all F ∈ F , (25)

c̃i − ci ≤ λ, for all i = 1, . . . , n, (26)

ci − c̃i ≤ λ, for all i = 1, . . . , n, (27)

whose variables are c̃ and λ. For a proposed solution (c̃, λ), it is easy to check
whether (26) and (27) are satisfied. To check constraint (25), it suffices to solve
minF∈F c̃T xF to obtain an optimal solution F ∗ and then compare c̃T xF 0 and
c̃T xF ∗ . If c̃T xF 0 ≤ c̃T xF ∗ , then (c̃, λ) is an optimal solution to the inverse problem.
Otherwise, we have found a violated constraint c̃T xF 0 > c̃T xF ∗ . So, an algorithm
to (16) provides a separating oracle, and thus as long as (16) can be solved in
polynomial time, so can its inverse problem. However, the time complexity of using
ellipsoid algorithm depends on input numbers, which is not strongly polynomial,
while discrete Newton method drastically reduces the time complexity.

2.3 Bottleneck Expansion

Suppose U is a finite set and F is a family of subsets of U . For a positive cost
function c defined on U , the capacity of a subset F ⊆ U is defined to be capc(F ) =
mine∈U c(e). Element e ∈ F with c(e) = capc(F ) is called a bottleneck of F . The
capacity of F is capc(F ) = maxF∈F capc(F ). Let w be a positive weight function
on U , indicating the price of altering one unit of cost on an element. A bottleneck
expansion problem is to raise capacities of elements under a given budget B such
that the capacity of the family is as large as possible.

BOTTLENECK EXPANSION: Given a budget B, find a new cost function c̃ satisfying

max
c̃

capc̃(F )

s.t.
∑

e∈U
w(e)(c̃(e)− c(e)) ≤ B,

c̃(e) ≥ c(e), for any e ∈ U.

(28)
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First, we derive a characterization for the optimal value of (28). The following
special cost function plays an important role: for a real number λ and a subset F ⊆
U , define

cλ,F (e) =
{

max{λ, c(e)}, e ∈ F,
c(e), e ∈ U \ F. (29)

Clearly, cλ,F (e) ≥ c(e) for any e ∈ U and cλ,F (e) ≥ λ for any e ∈ F . As
a consequence, cλ,F satisfies the second constraint of (28) and capcλ,F (F ) ≥
capcλ,F (F ) = mine∈F cλ,F (e) ≥ λ.

Lemma 5 If λ̃ is the optimal value, then g(λ̃) = B, where

g(λ) = min
F∈F

∑

e∈F
w(e) ·max{λ− c(e), 0}. (30)

Proof Let c̃ be an optimal solution to (28) and let F̃ be a subset ofU with capc̃(F̃ ) =
λ̃. We first show that c

λ̃,F̃
is also an optimal solution to (28).

Since λ̃ = min
e∈F̃ c̃(e) ≤ c̃(e) for any e ∈ F̃ and c̃(e) ≥ c(e) for any e ∈ U , we

have

∑

e∈U
w(e)(c

λ̃,F̃
(e)− c(e))

=
∑

e∈F̃
w(e)(max{λ̃, c(e)} − c(e)) ≤

∑

e∈F̃
w(e)(c̃(e)− c(e)) ≤ B.

Hence c
λ̃,F̃

is a feasible solution of (28). By

λ̃ = max
ĉ

capĉ(F ) ≥ capc
λ̃,F̃

(F ) ≥ capc
λ̃,F̃

(F̃ ) ≥ λ̃,

we have capc
λ̃,F̃

(F ) = λ̃, and thus c
λ̃,F̃

is also optimal.

Next, we show that g(λ̃) = B. By the definition of g(λ) and the feasibility of
c
λ̃,F̃

,

g(λ̃) ≤
∑

e∈F̃
w(e) ·max{λ̃− c(e), 0}

=
∑

e∈F̃
w(e)(max{λ̃, c(e)} − c(e)) =

∑

e∈F̃
w(e)(c

λ̃,F̃
(e)− c(e)) ≤ B.

If g(λ̃) < B, then for a sufficiently small real number ε > 0, g(λ̃+ ε) ≤ B. Hence
cost function c

λ̃+ε,F̃ is also a feasible solution to (28). But capc
λ̃+ε,F̃ (F ) ≥ λ̃ + ε,

contradicting that λ̃ is the optimal value. Hence g(λ̃) = B.



54 Z. Zhang and X. Huang

Lemma 6 If λ̃ satisfies g(λ̃) = B, then λ̃ is the optimal value of (28). Furthermore,
for the subset F̃ ⊆ U reaching the minimum value of g(λ̃) in the definition of (30),
the cost function c

λ̃,F̃
is an optimal solution to (28).

Proof Suppose λ̃ is not optimal. Let λ∗ be the optimal value of (28). Then λ∗ > λ̃.
By Lemma 5, g(λ∗) = B. Suppose g(λ∗) is reached by subset F ∗ ⊆ U . We have

B = g(λ∗) =
∑

e∈F ∗
w(e) ·max{λ∗ − c(e), 0}

>
∑

e∈F ∗
w(e) ·max{λ̃− c(e), 0}

≥ min
F∈F

∑

e∈F
w(e) ·max{λ̃− c(e), 0}

= g(λ̃) = B,

a contradiction. Hence λ̃ is the optimal value. By noticing that

∑

e∈F̃
w(e)(c

λ̃,F̃
(e)− c(e)) = g(λ̃) = B,

c
λ̃,F̃

is a feasible solution to (28). By capc
λ̃,F̃

(F ) ≥ λ̃ and the optimality of λ̃, we
see that c

λ̃,F̃
is an optimal solution to (28).

By Lemma 6, to solve BOTTLENECK EXPANSION, it suffices to find a root of
g(λ) = B. Then an optimal solution can be obtained by (29). In the following, we
focus on how to find the root of g(λ) = B. Notice that g(λ) is monotone increasing,
but it is not a piecewise linear function. So, discrete Newton method cannot be
applied to it directly.

By a binary search method, Zhang et al. [9] proved that the root can be found in
O(logK) iterations, where K is the maximum value of the input numbers and the
input size. Hence a pseudo-polynomial time algorithm exists if (30) can be solved in
polynomial time. Later, Zhang and Liu [8] improved the time complexity by making
use of discrete Newton method. The algorithm is divided into two phases. In the first
phase, binary search is used to narrow the location of λ̃ to an interval. This interval
is such that g(λ) on this interval can be written as a piecewise linear function and
thus discrete Newton method can be applied to it in the second phase.

To be more concrete, it is not difficult to see that the optimal value λ̃ for (28) is
bounded by

min
e∈U c(e) ≤ λ̃ ≤ max

e∈U c(e)+ B

minF∈F |F | ·mine∈U w(e)
.
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Order the elements of U as e1, . . . , en such that c(e1) ≤ c(e2) ≤ . . . ≤ c(en).
Denote ci = c(ei) for i = 1, . . . , n, and denote the upper bound for λ̃ in the
above inequality as cn+1. Using binary search on the subscripts of c1, . . . , cn+1
(see Algorithm 2), one can either find an index m such that g(cm) = B, implying
that the optimal value λ̃ = cm, or find an index l with g(cl) < B and g(cl+1) > B,
implying that λ̃ ∈ (cl, cl+1). In the first case, λ̃ is found in O(log n) iterations. In
the second case, g(λ) on interval (cl, cl+1) can be rewritten as

g(λ) = min
F∈F

∑

e∈F,c(e)<λ
w(e)(λ− c(e)) = min

F∈F
{−αT xF + λ · βT xF },

where xF is the characteristic vector of F and

αj =
{
w(ej )c(ej ), 1 ≤ j ≤ l,

0, l + 1 ≤ j ≤ n.

βj =
{
w(ej ), 1 ≤ j ≤ l,

0, l + 1 ≤ j ≤ n.

Applying discrete Newton method on the piecewise linear decreasing function

h(λ) = −g(λ)+ B = max
F∈F
{αT xF − λ · βT xF + B},

another O(n2 log n) iterations are sufficient to find the optimal value λ̃.

Algorithm 2 Narrow the location of λ̃
1: l = 1, u = n+ 1.
2: while u− l > 1 do
3: m = �(l + u)/2�.
4: if g(cm) = B then
5: output λ̃ = cm.
6: else
7: if g(cm) < B then
8: l = m.
9: else

10: u = m.
11: end if
12: end if
13: end while
14: Output λ̃ ∈ (cl, cl+1).

Theorem 6 If the optimization problem (30) can be solved in (strong) polynomial
time for any fixed λ, then BOTTLENECK EXPANSION can also be solved in (strong)
polynomial time.
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An Overview of Submodular
Optimization: Single-
and Multi-Objectives

Donglei Du, Qiaoming Han, and Chenchen Wu

Abstract We offer an overview on submodular optimization for both single- and
multiple-objectives, with the moderate goal to highlight the different angles in
interpreting submodularity and associated concepts.

1 Submodular Function

Submodularity is a phenomenon that is ubiquitous in almost all disciplines of the
natural and social science, engineering, business and economics, computer sciences,
etc. The importance of submodularity comes from its wide applications and its rich
theory. Submodularity captures the idea of economies of scales (a.k.a., decreasing
marginal return) and is a simple yet powerful condition that holds on numerous
occasions.

We look at submodular function from two point of views: the set function view
(Section 1.1) and the pseudo-Boolean function view (Section 1.2), offering two
angles to comprehend the concept of submodularity. It turns out that one of these
two different point of views (set vs pseudo-Boolean) can be more convenient than
the other depending on particular applications. For example, the pseudo-Boolean
definition can be used to define more general submodular functions over lattices,
which has wide application in economics, in particular in comparative statics in
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both optimization and game settings (e.g., [12]). On the other hand, the set function
interpretation has been widely adopted in combinatorial optimization (e.g., [7, 9]).

1.1 Submodular Set Function

Given a ground set E = {1, . . . , n}, a set function f : 2E �→ R is submodular if
one of the following equivalent conditions holds:

1. The zero-order definition:

f (S)+ f (T ) ≥ f (S ∩ T )+ f (S ∪ T ), ∀S, T ⊆ E. (1)

2. The first-order definition:

f (S ∪ {i})− f (S) ≥ f (T ∪ {i})− f (T ), ∀S ⊂ T , i /∈ T . (2)

3. The second-order definition:

f (S ∪ {i, j})+ f (S) ≤ f (S ∪ {i})+ f (S ∪ {j}), ∀S ⊂ E, i, j /∈ S. (3)

A set function f : 2E �→ R is supermodular if −f is submodular; and it is
modular if it is both submodular and supermodular.

1.2 Submodular Pseudo-Boolean Function

1.2.1 Pseudo-Boolean function

A pseudo-Boolean function f is a real-valued function over the n-dimensional
Boolean lattice, denoted B

n = {0, 1}n

f : Bn→ R.

The elements of Bn are in a one-to-one correspondence with the subsets of the
ground set E = {1, 2, . . . , n}, every pseudo-Boolean function can also be viewed
as a real-valued set function defined on 2N , the power set of N . By considering
functions defined on B

n rather than on 2N , the pseudo-Boolean approach provides
an algebraic viewpoint, which sometimes carries clear advantages over the set-
theoretic description. Any set A ∈ 2E can be identified by its characteristic/indicator
vector 1A ∈ B

n = {0, 1}n:

1A(s) =
{

1, if s ∈ A
0, if s /∈ A.
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Geometrically, the characteristic vectors are the 2n vertices of the hypercube {0, 1}n.

Example 1 For n = 2 assume the ground set is given by E = {1, 2}.
Then we have the following:

1∅ =
(

0
0

)

; 1{1} =
(

1
0

)

; 1{2} =
(

0
1

)

; 1{1,2} =
(

1
1

)

.

There is a correspondence between set operations and Boolean operations. Define
the following Boolean operations for any x, y ∈ B

n:

meet/conjunction : x ∧ y = (min{x1, y1}, . . . ,min{xn, yn})
join/disjunction : x ∨ y = (max{x1, y1}, . . . ,max{xn, yn})

complementation : x̄ = (x̄1, . . . , x̄n) = (1− x1, . . . , 1− xn).

Then it is easy to see that we have the following correspondence and the set
operations carry over to the Boolean operations:

∧ ⇐⇒ ∩; ∨ ⇐⇒ ∪

A ∩ B ⇐⇒ 1A ∧ 1B;A ∪ B ⇐⇒ 1A ∨ 1B

Ā⇐⇒ 1− 1A;A ⊆ B ⇐⇒ 1A ≤ 1B;A− B ⇐⇒ 1A ∧ (1− 1B).

Therefore any set function f : 2E �→ R can be equivalently viewed as a pseudo-
Boolean function f : Bn �→ R such that f (A) = f (1A).

1.2.2 Partial Derivative for Pseudo-Boolean Function

For any pseudo-Boolean function f : Bn �→ R, we define its ith partial derivative
at x ∈ B

n along the element i ∈ E, for some ground set E = {1, . . . , n}:

Δi(x) = fi(x) = ∂f (x)

∂xi
= f (x ∨ ei)− f (x ∧ ēi ).

We further define its second-order partial derivative at x ∈ B
n along the elements

i, j ∈ E,

Δij (x) = fi(x) = ∂2f (x)

∂xi∂xi
= f (x ∨ ei ∨ ej )− f (x ∨ ei ∧ ēj )− f (x ∧ ēi ∨ ej )+ f (x ∧ ēi ∧ ēj ).

These first and second-order difference operators are analogous to the differenti-
ations in the standard calculus (the real space R

n).
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1.2.3 Submodular Pseudo-Boolean Function

With the pseudo-Boolean function language, (1)–(3) are equivalent to

1. The zero-order definition:

f (x)+ f (y) ≥ f (x ∧ y)+ f (x ∨ y), ∀x, y ∈ B
n. (4)

2. The first-order definition: Nonincreasing partial derivative

fi(x) ≥ fi(y),∀x ≤ y,∀i ∈ E. (5)

3. The second-order definition: Non-positive second-order partial derivative

fij (x) = ∂2f

∂xi∂xj
≤ 0, ∀x ∈ B

n, ∀i, j ∈ E. (6)

(5)–(6) remind us concavity in the continuous domain.

2 Extensions

We discuss one of the most important mechanism in submodular optimization,
namely how to convert discrete problems to continuous ones via the extension or
relaxation technique. Historically, extensions are so-called in the set function world
and the same concepts are more naturally called as the relaxation technique in the
field of approximation algorithm.

In the following discussion of various extensions, we will take an unusual (not
more natural) route via the pseudo-Boolean language instead of the oft-opted set
language. One immediate benefit from this pseudo-Boolean point of view is the
intuitive geometric interpretation of the extension/relaxation technique: pseudo-
Boolean functions are only defined on the corner of the hypercube B

n = {0, 1}n,
while an extension/relaxation will be defined on the entire hypercube [0, 1]n.

2.1 Convex Envelope/Closure

We consider the convex underestimators of set function f : {0, 1}n → R. One
motivation is that, whenever an optimization problem involves minimizing f (x)

or contains an inequality f (x) ≤ r , replacing f (x) by a convex underestimator
yields a convex relaxation of the problem. The convex envelope is the largest convex
underestimator.
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The convex closure f (x) : [0, 1]n → R of any pseudo-Boolean function f :
B
n→ R is defined as: ∀x ∈ [0, 1]n,

f (x) = max⎛

⎝
y0

y

⎞

⎠∈Rn+1

{
y0 + xT y : y0 + aT y ≤ f (a),∀a ∈ B

n
}

(7)

= min
z∈R2n+

⎧
⎪⎨

⎪⎩

∑

a∈Bn

f (a)za :
∑

a∈Bn:eTi a=1

za = xi, i ∈ {1, . . . , n},
∑

a∈Bn

za = 1

⎫
⎪⎬

⎪⎭
. (8)

Example 2 (Convex Closure for n = 2) Assume the pseudo-Boolean function f :
B

2 → R is defined as follows:

f (0, 0) = 0, f (1, 0) = f (0, 1) = f (1, 1) = 1.

The primal program (7) becomes

f (x1, x2) = max y0 + x1y1 + x2y2

s.t. y0 ≤ f (0, 0) = 0

y0 + y1 ≤ f (1, 0) = 1

y0 + y2 ≤ f (0, 1) = 1

y0 + y1 + y2 ≤ f (1, 1) = 1,

along with its dual program (8)

f (x1, x2) = min f (0, 0)z(0,0) + f (1, 0)z(1,0) + f (0, 1)z(0,1) + f (1, 1)z(1,1)

s.t. z(1,0) + z(1,1) = x1

z(0,1) + z(1,1) = x2

z(0,0) + z(1,0) + z(0,1) + z(1,1) = 1

z ≥ 0.

The optimal solutions of the primal and dual are given as follows:

(i) For 1 ≥ x1 ≥ x2 ≥ 0: Primal solution y1 = 1, y0 = y2 = 0 with objective value
x1. Dual solution z(0,0) = 1 − x1, z(1,0) = x1 − x2, z(0,1) = 0 and z(1,1) = x2
with objective value x1. Therefore both are optimal.

(ii) Symmetrically, when 1 ≥ x2 ≥ x1 ≥ 0, the optimal value is x2.

The convex closure for any x = (x1, x2) ∈ [0, 1]2 is therefore

f (x1, x2) = max{x1, x2}.
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Table 1 Dual variable z as
joint distribution and x as
marginals

(X1, X2) 0 1

0 z(0,0) z(0,1) 1− x1

1 z(1,0) z(1,1) x1

1− x2 x2

2.1.1 Interpretation of Convex Closure from Primal Point of View

From (7), f is the (point-wise) largest convex function below f .

2.1.2 Interpretation of Convex Closure from Dual Point of View

Let z(x1,...,xn) ∈ {0, 1}E be a feasible solution of (8). For each index xi ∈ {0, 1}
(i = 1, . . . , n), define a Bernoulli random variable Xi such that P(Xi = 1) = xi
(Table 1). So z = zX1,X2 is a joint probability distribution with Xi as marginal
distributions.

The convex closure is to find such a joint distribution z such that the expectation
of f is minimized:

f (x) = min
z

Ez[f (X1, X2)].

Extending the dual interpretation, we have ∀x ∈ [0, 1]n, the convex closure can
be formulated as an optimization problem which preserves marginals:

f (x) = min
Z(X1,...,Xn)

E [f (X1, . . . , Xn) : P(Xi = 1) = xi, i = 1, . . . , n] .

2.2 Lovász Extension

Lovász extension is well-defined for any set function, not just submodular function
and it has many facets, which are equivalent for submodular functions, such
as convex closure/envelope (value of parametric optimization problem), Choquet
expectation, Möbius transform, and interpolation via Kuhn’s triangulation [1]

f : {0, 1}n→ R "⇒ f L : [0, 1]n→ R.

We define Lovász extension for any set function in Section 2.2.1. We show its
geometric view in terms of Kuhn’s triangulation in Section 2.2.2. We interpret
Lovász extension as a Choquet expectation in Section 2.2.3. We present an
alternative definition of Lovász extension via the multilinear representation of
pseudo-Boolean function in Section 2.2.5. We show that Lovász extension is exactly
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the convex closure for any submodular function in Section 2.2.7. We look at the
properties of Lovász extension in Section 2.3.

Throughout this chapter, we emphasize different representations of Lovász
extension, offering perspectives on this important concept from various angles.
Some representations are more convenient and handy to use than others in particular
applications.

2.2.1 Definition

The Lovász extension [4, 9] f L(x) : [0, 1]n → R of any pseudo-Boolean function
f : {0, 1}n → R is defined as follows. Let x ∈ [0, 1]n be sorted such that 1 = x0 ≥
x1 ≥ . . . ≥ xn ≥ xn+1 = 0:

f L(x) :=
n∑

i=0

f (∨ik=1ek)(xi − xi+1) (9)

=
n∑

i=0

xi

[
f (∨ik=1ek)− f (∨i−1

k=1ek)
]
, (10)

where e0 ∈ R
n is the all-zero vector and f (e−1) = 0. The last equality follows by

integration by parts, or Abel summation formula.

Example 3 (Lovász Extension for n = 2) Assume the pseudo-Boolean function
f : B2 → R is defined as follows:

f (0, 0) = 0, f (1, 0) = f (0, 1) = f (1, 1) = 1.

For x1 ≥ x2, from (9) to (10), we have

f L(x1, x2) = f (e0)(1− x1)+ f (e1)(x1 − x2)+ f (e1 ∨ e2)x2

= f (e0)+ (f (e1)− f (e0))x1 + (f (e1 ∨ e2)− f (e1))x2

= f (0, 0)+ (f (1, 0)− f (0, 0))x1 + (f (1, 1)− f (1, 0))x2

= x1.

Due to symmetry, the Lovász extension is

f L(x1, x2) = max{x1, x2}.

For this example, the convex closure and Lovász extension are one of the same! This
equivalence is not coincidental as f in this example is submodular (please verify f

is indeed submodular!).
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Example 4 (Lovász Extension for n = 2 and the Cut Function of an Edge) Assume
the pseudo-Boolean function f : B2 → R is defined as follows:

f (0, 0) = f (1, 1) = 0, f (1, 0) = f (0, 1) = 1.

For x1 ≥ x2, from (9) to (10), we have

f L(x1, x2) = f (e0)(1− x1)+ f (e1)(x1 − x2)+ f (e1 ∨ e2)x2

= f (e0)+ (f (e1)− f (e0))x1 + (f (e1 ∨ e2)− f (e1))x2

= x1 − x2.

Due to symmetry, the Lovász extension is

f L(x1, x2) = |x1 − x2|.

For this example, the convex closure and Lovász extension coincide again because
cut functions are submodular.

2.2.2 Kuhn’s Triangulation: Geometric View of (9)–(10)

A triangulation K = {Δ, . . . , Δn!} is said to be the Kuhn’s triangulation of the
hypercube, [0, 1]n, if the simplices of K are in a one-to-one correspondence with
the permutations of {1, . . . , n} as follows: given a permutation, π of {1, . . . , n}, the
n+ 1 vertices of the corresponding simplex Δπ are

⎧
⎪⎨

⎪⎩

⎛

⎜
⎝

0
...

0

⎞

⎟
⎠+

k∑

j=1

eπj

⎫
⎪⎬

⎪⎭
k=0,1,...,n

. (11)

Example 5 n = 2 (see Figure 1 for the case of n = 2)

Δ1 = {(x : x1 ≥ x2}
Δ2 = {(x : x2 ≥ x1}.

For Δ1 = {(x : x1 ≥ x2}, then (11) becomes

(
0
0

)

,

(
1
0

)

,

(
1
1

)

.
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Fig. 1 Illustration of Kuhn’s
triangulation when n = 2

x = (1 − x1)

(
0
0

)

+ (x1 −

x2)

(
1
0

)

+ (x2−0)

(
1
1

)

∈ Δ1

(0,1) (1,1)

(0,0)

(0,1)

(0,0) (1,0)(0,0)

(1,1)

(1,0)

(1,1)

D1 = {(x : x1 ≥ x2}

D2 = {(x : x2 ≥ x1}

Therefore any x ∈ Δ1 can be written as the interpolation of the function on the
simplices in the Kuhn triangulation:

x = (1− x1)

(
0
0

)

+ (x1 − x2)

(
1
0

)

+ (x2 − 0)

(
1
1

)

.

Therefore, Lovász extension is an affine interpolation of the function on the
simplices in the Kuhn triangulation.

2.2.3 Lovász Extension as Choquet Expectation

f L(x) = Eλ∼U [0,1][f (i : xi ≥ λ)] (12)

Proof Assume that 1 = x0 ≥ x1 ≥ . . . ≥ xn ≥ xn+1 = 0. Then

f L(x) =
n∑

k=0

f
(
∨ik=1ek

)
(xk − xk+1)

=
n∑

k=0

∫ xk

xk+1

f (∨ik=1ek)dλ

=
n∑

k=0

∫ xk

xk+1

f (i : xi ≥ λ)dλ
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=
∫ 1

0
f (i : xi ≥ λ)dλ

= Eλ∼U [0,1][f (i : xi ≥ λ)].

This expression has a nice probabilistic interpretation: correlated rounding of
elements with respect to uniform choice of λ ∼ U [0, 1].

2.2.4 Application

We now show one application of this Choquet expectation expression by design-
ing and analyzing a 2-approximation algorithm for the submodular vertex cover
problem.

For any nonnegative submodular function f , the submodular vertex cover
problem can be formulated as the following submodular program:

min
[
f (x) : xi + xj ≥ 1,∀(i, j) ∈ E, x ∈ {0, 1}] . (13)

We apply Lovász extension to obtain a convex relaxation of (13). After solving
this convex relaxation, we round the resulting fractional solution to an integer
solution. Finally we use the expectation representation of the Lovász extension in
the performance analysis.

Algorithm
Step 1. Solve the following convex relaxation of (13) to obtain an optimal

fractional solution x∗:

min
[
f L(x) : xi + xj ≥ 1,∀(i, j) ∈ E, x ≥ 0

]
.

Step 2. Choose λ ∈ [0, 0.5] uniformly random and let

Sλ =
{
i : x∗i ≥ λ

}
.

Analysis: (1) feasibility: Evidently Sλ is a feasible vertex cover because

x∗1 + x∗2 ≥ 1⇒ max{x∗1 , x∗2 } ≥ 0.5,

and hence for each edge (i, j), either i or j is selected to be included into S.
(2) Approximation ratio: the expected value of this random vertex cover is

Eλ[f (Sλ)] = 2
∫ 0.5

0
f (Sλ)dλ

≤ 2
∫ 0.5

0
f (Sλ)dλ+ 2

∫ 1

0.5
f (Sλ)dλ

= 2
∫ 1

0
f (i : x∗i ≥ λ)dλ = 2f L(x∗).
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2.2.5 Lovász Extension of Pseudo-Boolean Function Represented
in Multilinear Form

Any pseudo-Boolean function f : {0, 1}n �→ R can be represented as the following
multilinear form (e.g., [5]):

f (x1, . . . , xn) =
∑

A⊆E
f̂ (A)

∏

i∈A
xi, (14)

where the Möbius transform is given by

f̂ (A) =
∑

S⊆A
(−1)|A|−|S|f (1S). (15)

Then the Lovász extension is given by

f L(x1, . . . , xn) =
∑

A⊆E
f̂ (A)min

i∈A xi. (16)

Example 6 (Pseudo-Boolean Function for n = 2) Assume the pseudo-Boolean/set
function f : B2 → R is defined as follows:

f (0, 0) = f (∅) = 0, f (1, 0) = f ({1}) = 1, f (0, 1) = f ({2}) = 1, f (1, 1) = f ({1, 2}) = 1.

Then (15) implies that

f̂ (∅) = (−1)0−0f (∅) = 0

f̂ ({1}) = (−1)1−0f (∅)+ (−1)1−f ({1}) = 1

f̂ ({2}) = (−1)1−0f (∅)+ (−1)1−f ({2}) = 1

f̂ ({1, 2}) = (−1)2−0f (∅)+ (−1)2−1f ({1})+ (−1)2−1f ({2})+ (−1)0f ({1, 2}) = −1.

So ∀x1, x2 ∈ B
2, (16) implies that

f L(x1, x2) =
∑

A⊆{1,2}
f̂ (A)min

i∈A xi

= f̂ (∅)+ f̂ ({1})x1 + f̂ ({2})x2 + f̂ ({1, 2})min{x1, x2}
= x1 + x2 −min{x1, x2}.

We obtain the same result as before via (9)–(10).
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2.2.6 Various Representations of Lovász Extension: n = 2

We can summarize the various equivalent representations of Lovász extension for
the two-dimensional case n = 2, derived from different angles.

• Definitions (9)–(10):

f L(x1, x2) =
{
f (∅)(1− x1)+ f (1)(x1 − x2)+ f (1, 2)x2, If x1 ≥ x2

f (∅)(1− x2)+ f (1)(x2 − x1)+ f (1, 2)x1, If x2 ≥ x1

Or

f L(x1, x2) =
{
f (∅)+ (f (1)− f (∅))x1 + (f (1, 2)− f (1))x2, If x1 ≥ x2

f (∅)+ (f (2)− f (∅))x2 + (f (1, 2)− f (1))x1, If x2 ≥ x1

• Pseudo-Boolean (16):

f L(x1, x2) = f̂ (∅)+ f̂ ({1})x1 + f̂ ({2})x2 + f̂ ({1, 2})min{x1, x2}
= x1 + x2 −min{x1, x2}

2.2.7 Lovász Extension of Submodular Function

Theorem 1 If f is submodular, then Lovász extension is the same as the convex
closure; namely

f L(x) = f (x), x ∈ [0, 1]E. (17)

Proof (Greedy Algorithm + LP Duality) Recall the convex closure definition
(7)–(8):

f (x) = min
{
EyA [f (A)] : y ∈ R

2n+ ,EyA [1A] = x,EyA [1] = 1
}

= min

⎧
⎨

⎩

∑

A⊆N
f (A)yA : y ∈ R

2n+ ,
∑

A⊆N :i∈A
yA = xi, i = 1, . . . , n,

∑

A⊆N
yA = 1

⎫
⎬

⎭
(Dual)

= max{y0 + xT y : y0 + y(A) ≤ f (A),∀A ⊆ N} (Primal).

The optimal primal and dual solutions are given as follows by the greedy algorithm:
sort elements in N in decreasing order such that 1 = x0 ≥ x1 ≥ . . . ≥ xn ≥ xn+1 =
0. Define [i] = {1, . . . , i}, i = 0, . . . , n, where [−1] = [0] = ∅

{
yi = f ([i])− f ([i − 1]), i = 0, . . . , n;
z[i] = xi − xi+1, i = 0, . . . , n.
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Before we show (y, z) is an optimal primal–dual pair, note the greedy nature. In
the primal LP: order the elements such that 1 = x0 ≥ x1 ≥ . . . ≥ xn ≥ xn+1 = 0.

1. Make y1 as large as possible:

y∗1 = max{y1 : y0 + y(A) ≤ f (A),∀A ⊆ N}
= f ([1])− f ([0]).

2. Make y2 as large as possible:

y∗2 = max{y2 : y1 = y∗1 , y0 + y(A) ≤ f (A),∀A ⊆ N}
= f ([2])− f ([1]).

3. · · ·
4. Make yn as large as possible:

y∗j = max{yj : yi = y∗i , i = 1, . . . , j − 1, y0 + y(A) ≤ f (A),∀A ⊆ N}
= f ([j ])− f ([j − 1]).

5. · · ·
We first show that (y, z) are feasible solutions to the primal and dual and then we

show they have the same objective values.
First, y is primal-feasible iff y(A) ≤ f (A) for each A ⊆ N . By induction on

|A|, y([0]) = 0 ≤ f ([0]) due to the non-negativeness of f , implying the base case.
Consider A = [0], and let i ∈ A with largest index according to the sorted order
{1, . . . , n}; that is, i is the index with smallest weight wi in A. Then by induction,
we have

y(A− i) = y(A)− yi ≤ f (A− i).

Moving yi to the RHS:

y(A) ≤ f (A− i)+ yi = f (A− i)+ f ([i])− f ([i − 1])
submodularity
︷︸︸︷≤ f (A),

where the second inequality follows from submodularity (since A ⊆ [i]).
Second, z is dual-feasible since z ≥ 0,

∑n
i=0 zi = 1 and for each i:

∑

A#i
zA =

∑

j≥i
z[j ] = xi.
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Finally, the value

y0 + xT y =
n∑

i=0

xiyi =
n∑

i=0

xi (f ([i])− f ([i − 1]))

=
n∑

i=0

f ([i])(xi − xi+1) =
n∑

i=0

f ([i])z[i]

=
∑

A⊆N
f (A)zA. (18)

The third equality follows from the Abel transformation (or summation by parts,
integral by parts for continuous function):

∫
f dg = fg − ∫ g df .

We can characterize the submodular function via its extension.

Theorem 2 ([9]) A set function f is submodular iff its Lovász extension f L convex.

2.3 Properties of Lovász Extension

• The Lovász extension f L attains its maximum at a vertex of the hypercube
[0, 1]n:

max
x∈Bn

f (x) = max
x∈[0,1] f

L(x).

Proof First, LHS ≤ RHS is evident. For the other direction, note that

f L(x) = Eλ∼U [0,1][f (i : xi ≥ λ)],

implying that

f L(x) ≤ max
x∈Bn

f (x).

• If f is submodular, then f L(x) is piece-wise linear convex.
• (af + bg)L(x) = af L(x)+ bgL(x), ∀a, b ≥ 0.
• f L(x) is positively homogeneous:

f L(λx) = λf L(x), ∀λ ∈ R
+.

• f L(x) coincides with f at all 0–1 points:

f (S) = f L(1S),∀S ⊆ E.
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• f L(x) can be evaluated in P-time via the greedy algorithm (even strongly P-time
O(E4) [8, 10]).

• f L(x) has its minimum over the unit cube [0, 1]E attained at a vertex and hence
can be minimized over the unit cube in P-time (by the ellipsoid method [8]
weakly or [10] strongly).

• f is submodular"⇒ f L(x) is submodular on lattice w ∈ [0, 1]n (proof: Choquet
expectation representation (12)).

2.4 Concave Closure

We consider the concave overestimators of set function f : {0, 1}n → R. One
motivation is that, whenever an optimization problem involves maximizing f (x) or
contains an inequality f (x) ≥ r , replacing f (x) by a concave overestimator yields
a convex relaxation of the problem. The concave envelope is the lowest concave
overestimator.

The concave closure f (x) : [0, 1]E → R of any pseudo-Boolean function f :
{0, 1}n→ R is defined as follows: ∀x ∈ [0, 1]:

f (x) = min⎛

⎝
y0

y

⎞

⎠∈Rn+1

{
y0 + xT y : y0 + aT y ≥ f (a),∀a ∈ B

n
}

(19)

= max
z∈R2n+

⎧
⎪⎨

⎪⎩

∑

a∈Bn

f (a)za :
∑

a∈Bn:eTi a=1

za = xi, i ∈ {1, . . . , n},
∑

a∈Bn

za = 1

⎫
⎪⎬

⎪⎭
. (20)

Similar to the convex closure, the concave closure can be formulated as an
optimization problem which preserves marginals:

f (x) = max
Z(X1,...,Xn)

E [f (X1, . . . , Xn) : P(Xi = 1) = xi, i = 1, . . . , n] .

However, this optimization problem has no compact representation, even for
submodular functions.

Example 7 (Concave Closure for n = 2) Assume the pseudo-Boolean function f :
B

2 → R is defined as follows:

f (0, 0) = 0, f (1, 0) = f (0, 1) = f (1, 1) = 1.
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The program (19) becomes

f (x1, x2) = min y0 + x1y1 + x2y2

s.t. y0 ≥ f (0, 0) = 0

y0 + y1 ≥ f (1, 0) = 1

y0 + y2 ≥ f (0, 1) = 1

y0 + y1 + y2 ≥ f (1, 1) = 1

along with its dual program (20)

f (x1, x2) = max f (0, 0)z(0,0) + f (1, 0)z(1,0) + f (0, 1)z(0,1) + f (1, 1)z(1,1)

s.t. z(1,0) + z(1,1) = x1

z(0,1) + z(1,1) = x2

z(0,0) + z(1,0) + z(0,1) + z(1,1) = 1.

z ≥ 0

The optimal solutions of the primal and dual are given as follows:

(i) x1 + x2 ≥ 1, 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1: Primal solution y0 = 1, y1 = y2 = 0
with objective value 1. Dual solution z00 = 0, z(1,0) = 1− x2, z(0,1) = 1− x1,
and z(1,1) = x1 + x2 − 1 with objective value 1. Therefore both are optimal.

(ii) For x1+x2 ≤ 1, 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1: Primal solution y0 = 0, y1 = y2 = 1
with objective value x1 + x2. Dual solution z(0,0) = 1 − x1 − x2, z(1,0) = x1,
z(0,1) = x2, and z(1,1) = 0 with objective value x1 + x2. Therefore both are
optimal.

The concave closure for any x = (x1, x2) ∈ [0, 1]2 is therefore

f (x1, x2) = min{1, x1 + x2}.

2.5 Multilinear Extension

Multilinear extension of submodular functions has many applications, including the
Shapley value (e.g, [11]), and approximation algorithms (e.g., [2, 3, 13]). Similar
to the treatment of Lovász extension, we emphasize different representations of
multilinear extension.
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2.5.1 Definition

The multilinear extension fM : [0, 1]n → R of any pseudo-Boolean function f :
{0, 1}n→ R over a ground set E = {1, . . . , n} is defined as:

fM(x) =
∑

S⊆E
f (S)

∏

i∈S
xi
∏

i /∈S
(1− xi) = E[f (R(x))], (21)

where R(x) is a random set independently containing each element i with probabil-
ity xi . Therefore, it has a simple probabilistic interpretation: independent rounding
of elements to {0, 1}. In general, fM is neither convex nor concave.

Example 8 (Multilinear Extension for n = 2) Assume the pseudo-Boolean function
f : B2 → R is defined as follows:

f (0, 0) = 0, f (1, 0) = f (0, 1) = f (1, 1) = 1.

The multilinear extension for any x = (x1, x2) ∈ [0, 1]2 is therefore

fM(x1, x2) = f (0, 0)(1− x1)(1− x2)+ f (1, 0)x1(1− x2)+ f (0, 1)(1− x1)x2 + f (1, 1)x1x2

= x1(1− x2)+ (1− x1)x2 + x1x2 = x1 + x2 − x1x2.

2.5.2 Properties of the Multilinear Extension

1. The multilinear extension fM attains its maximum at a vertex of the hypercube
[0, 1]n:

max
x∈Bn

f (x) = max
x∈[0,1]n f

M(x).

Proof First, LHS ≤ RHS is evident. For the other direction, note that

fM(x) = E[f (R(x))],

implying that

fM(x) = E[f (R(x))] ≤ max
x∈Bn

f (x).

2. Linear combination

(αf + βg)M(x) = αfM(x)+ βgM(x).
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3. Composition: Given two set functions f : 2L �→ R and g : 2N �→ R where
L ∩N = ∅, define the composition (f ⊕ g) : 2L∪N �→ R of f and g as

(f ⊕ g)M(S) = fM(L ∩ S)+ gM(N ∩ S),∀S ⊆ L ∪N.

Then

(f ⊕ g)M(x, y) = fM(x)+ gM(y),∀x ∈ [0, 1]m; ∀y ∈ [0, 1]n.

4. Derivative: The ith partial derivative of fM :

fM
i (x) = E[f (R ∪ {i})− f (R)]

= fM(x1, . . . , xi−1, 1, xi+1, . . . , xn)− fM(x1, . . . , xi−1, 0, xi+1, . . . , xn)

=
∑

S:i /∈S⊆E

∏

j∈S
xj

∏

j :i =j /∈S
(1− xj )(f (S ∪ {i})− f (S)),

where R ⊆ E − i is a random set whose elements are chosen independently
with probability

P(j ∈ R) = xj ,∀j ∈ E − i.

5. Shapley value: Given a set function f : 2N �→ R, its Shapley value is given as

ϕi[f ] =
∫ 1

0
fM
i (t, . . . , t), i = 1, . . . , n.

Proof Consider the ith partial derivative of fM :

fM
i (x) =

∑

S:i /∈S⊆E

∏

j∈S
xj

∏

j :i =j /∈S
(1− xj )(f (S ∪ {i})− f (S)).

Let x = (t, . . . , t), then

fM
i (t, . . . , t) =

∑

S:i /∈S⊆E
t |S|(1− t)n−|S|−1(f (S ∪ {i})− f (S)).
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Integrating on both side

∫ 1

0
fM
i (t, . . . , t)dt =

∑

S:i /∈S⊆E

(∫ 1

0
t |S|(1− t)n−|S|−1dt

)

(f (S ∪ {i})− f (S))

=
∑

S:i /∈S⊆E

|S|(n− |S| − 1)

n! (f (S ∪ {i})− f (S)) = ϕi[f ].

Example 9 (Multilinear Extension for n = 2) Assume the pseudo-Boolean
function f : B2 → R is defined as follows:

f (0, 0) = 0, f (1, 0) = f (0, 1) = f (1, 1) = 1.

The multilinear extension for any x = (x1, x2) ∈ [0, 1]2 is therefore

fM(x1, x2) = f (0, 0)(1− x1)(1− x2)+ f (1, 0)x1(1− x2)+ f (0, 1)(1− x1)x2 + f (1, 1)x1x2

= x1(1− x2)+ (1− x1)x2 + x1x2 = x1 + x2 − x1x2.

So

fM
1 (x1, x2) = (1− x2)− x2 + x2 = 1− x2

fM
2 (x1, x2) = −x1 + (1− x1)+ x1 = 1− x1

and the Shapley value

ϕ1[f ] =
∫ 1

0
F1(t, t) =

∫ 1

0
(1− t)dt = 1

2

ϕ2[f ] =
∫ 1

0
F2(t, t) =

∫ 1

0
(1− t)dt = 1

2
.

6. Monotonicity preserving

f monotone ⇐⇒ fM monotone

Proof

∂fM(x)

∂xi
= E[f (R ∪ {i})− f (R\{i})] ≥ 0

7. Submodularity preserving

f submodular ⇐⇒ fM submodular
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Proof

∂2fM

∂xi∂xj
= E[f (R ∪ {i, j})− f (R ∪ {i}\{j})

−f (R\{i} ∪ {j})+ f (R\{i, j})] ≤ 0

8. Up-monotonic: f increasing "⇒ ϕ(t) := fM(x + tu) increasing of t if u ≥ 0

ϕ′(t)
∣
∣
∣
∣
x+tu
=
∑

i∈E
ui
∂fM(x)

∂xi
≥ 0.

9. Up-concave: f submodular "⇒ ϕ(t) := fM(x + tu) concave of t if u ≥ 0

ϕ′′(t)
∣
∣
∣
∣
x+tu
=
∑

i∈E
uiuj

∂2fM(x)

∂xi∂xj
≤ 0.

10. Cross-convex: f submodular "⇒ ψ(t) : fM(x + t (ei − ej )) convex of t for
any i = j

ψ ′′(t)
∣
∣
∣
∣
x+t (ei−ej )

= ∂2fM(x)

∂x2
i

+ ∂2fM(x)

∂x2
j

− 2
∂2fM(x)

∂xi∂xj

= −2
∂2fM(x)

∂xi∂xj
≥ 0.

2.6 Relationship Among Extensions

Any extension can be described as E[f (R)] where R is a n-dimensional joint
random vector with x1, . . . , xn as marginals.

• Concave closure maximizes expectation but is hard to compute.
• Convex closure minimizes expectation and leads to Lovász extension.
• Multilinear extension is somewhere in the “middle.”

One benefit of this expectation representation is that limit theorems of probabilis-
tic theory can be applied, such as the central limit theorem and simulation.

Let us recall the example where the ground set is E = {1, 2} and a submodular
function f : 2E �→ R with

f (∅) = 0, f ({1}) = f ({2}) = f ({1, 2}) = 1.
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Earlier calculations showed that

f (x1, x2) = min{1, x1 + x2}
fM(x1, x2) = x1 + x2 − x1x2

f (x1, x2) = max{x1, x2}
f L(x1, x2) = max{x1, x2}.

Note that

min{1, x1 + x2} ≥ x1 + x2 − x1x2 ≥ max{x1, x2}

.
Therefore we have

f (x) ≥ fM ≥ f (x) = f L(x).

This order on the concave, multilinear, convex, and Lovász extensions holds for any
submodular function.

Theorem 3 If f : 2E → R is a submodular function, then

f (x)
︸︷︷︸

concave closure

≥ fM

︸︷︷︸
multilinear ext.

≥ f (x)
︸︷︷︸

convex closure

= f L(x)
︸ ︷︷ ︸

Lovasz ext.

Please see Lemma A.4 in [14, p. 32] for a proof of the second inequality above.

3 Simultaneous Approximation of Multi-Criteria
Submodular Function Maximization [6]

Let fj : 2X → R
+ (j = 1, . . . , k) be k nonnegative symmetric submodular

functions. The main focus of this section is on maximizing multiple nonnegative
symmetric submodular functions, namely solving the following k-criteria submod-
ular function maximization problem:

(P ) : max
S⊆X{f1(S), . . . , fk(S)}.

Sometimes we also need to refer to the j th (j ∈ {1, . . . , k}) mono-criterion problem:

(Pj ) : max
S⊆X fj (S).
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Let S∗j (j = 1, . . . , k) be the optimal solution for the j th mono-criterion problem
(Pj ).

Definition 1 For any α ∈ [0, 1],
(i) A subset S ⊆ X is an α-deterministic solution for the problem (P) if

fj (S) ≥ αfj (S
∗
j ), ∀j = 1, . . . , k.

(ii) A random subset T ⊆ X is an α-randomized solution for the problem (P) if

E[fj (T )] ≥ αfj (S
∗
j ), ∀j = 1, . . . , k.

Du et al. [6] obtain the following tight result for symmetric submodular functions.

Theorem 4 Assume the submodular functions are nonnegative, symmetric, and
submodular in problem (P). Then

(i) there exists an α-randomized solution such that

α = 2k−1

2k − 1
,

and this quantity approaches to 0.5 when k→∞;
(ii) For the k-criteria MAX-CUT problem, there exists an instance such that no β-

randomized solution exists such that β > α.
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Discrete Convex Optimization
and Applications in Supply Chain
Management

Shengyu Cao and Simai He

Abstract In supply chain management and other operations management applica-
tions, various discrete convexities are important tools in modeling complementary
or supplementary behaviors. Furthermore, the discrete nature of many decision
scenarios also requires optimization tools from discrete convex theory.

In this chapter, we aim at introducing the classical discrete convex theory
from the perspective of supply chain applications. We illustrate some direct
applications and connections in supply chain applications. Certain proofs are
modified/shortened, to fit into the scope of this chapter.

1 Introduction

Many practical problems are of discrete nature. For example, in inventory man-
agement retailers need to place orders in discrete quantity or even large batches.
In scheduling, transportation planning, and production planning one needs to use
discrete assignment variables xij = 1 or 0 to model whether a job or a truck
should be assigned to a machine or a route. In combinatorial optimization theory,
there are many brilliant problem-based algorithms developed. However, it remains
an important question that whether there exists a framework for a general class
of problems, like convex optimization theory in continuous optimization. For
this purpose, one needs to extend the Separation Lemma, which implies strong
duality and global optimality. Luckily, Separation Lemma holds for submodular
set functions, and the so-called L� functions [23].

In economic theory and operations management applications, an important
question arises from practice: whether two decisions have conflict against each
other. This question belongs to the area of comparative statics, and is often related
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to the sign of second order partial derivatives with respect to different dimensions
of decision variable. Also, in revenue and inventory management, we are often
interested in whether the decisions of two different products would influence each
other. For example, different brands of smartphones are called “substitutable goods,”
since one can replace the function of the other. On the other hand, extra consumption
of smartphones would boost sales number of the accessories, which we often
define as “complementary goods.” These properties can often be characterized by
submodularity and supermodularity of customer utility function.

The objective of this chapter is to introduce some basic concepts, algorithms,
and applications of discrete convex optimization. Discrete convex analysis is a deep
research direction, and we aim at providing a quick survey of the classical results
related to optimization problems applicable in operations management. Moreover,
we emphasize on the motivations and intuitions behind the concepts and proofs, and
we omit certain details of proofs due to page limit. Readers may refer to Topkis’s
book [29] for more detailed examples, discussions, and classical applications in
supply chain management, as well as game theory related topics. Mutora [23]
and his long list of research works provide a thorough survey of the theoretical
foundation of discrete convex analysis, including the duality theory in discrete
domain. And Vondrak’s Ph.D. thesis [30] provides a survey of many crucial ideas in
designing combinatorial algorithms by utilizing submodularity.

Section 2 introduces the basic concepts, e.g., lattices, submodular function,
and comparative statics. Fundamental properties of submodular functions and
lattice sets are introduced. Examples arisen from applications are given to illustrate
how to model problems with submodularity and other discrete convex properties.

Section 3 focuses on classical results of submodular set function optimization.
Separation Lemma and convex extensions are introduced, and the minimization
algorithm over submodular functions is established based on convex extensions.
Moreover, greedy approaches and multi-linear extension based smooth-greedy
algorithms are introduced for the maximization problems.

Section 4 discusses online and dynamic algorithms utilizing submodularity.
L�-convexity plays a key role for dynamic inventory control problems, while
the diminishing return property guarantees 1 − 1

e
approximation ratio of greedy

algorithm in online bipartite matching.

2 Basic Definitions and Properties

This section introduces the basics of submodularity and lattice structure. Section 2.1
illustrates the intuition of developing such concepts. Section 2.2 defines the basic
concepts and establishes the basic properties. Section 2.3 discusses a special
application where only submodularity only holds locally near the optimum solution
path.
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2.1 Motivation

To begin with, we start with the following observations:

1. When a competitor lowers the price of its product, one often needs to also lower
his/her own price.

2. When the inventory level of a product is low, retailers often raise the price.
3. In public spaces, one would naturally lower his/her voice, if the others are

doing so.

To explain these observations and to further study the related problems, one needs
to provide reasonable mathematical models:

Example 1 Suppose the sales quantity Qi of retailer i is a function Qi(pi, pj ) of
the price pi of retailer i, and its major competitor’s price pj , and the corresponding
profit is Ri(pi, pj ) = (pi − ci)Qi(pi, pj ).

The simplest assumption is Qi(pi, pj ) = (ai + biipi + bijpj )+ with bii <

0, bij > 0. The optimum price p∗i = ai+bij pj−biici
−2bii

for max{Ri(pi, pj ) | pi ≥ 0} is

indeed increasing with respect to pj . Note that bij = ∂2

∂pi∂pj
Ri(pi, pj ) > 0 is the

crucial assumption, and can be generalized for other types of demand functions.

Naturally, one would like to extend the question to the following general
comparative statistics question:

Problem 1 Given function f (x, y) : %2 → %, where x is the decision variable,
and y is the input parameter (maybe the decision of another player). We consider
the minimization problem min{f (x, y) : (x, y) ∈ S} within domain S. When
would the optimum decision x(y) be monotonically increasing with respect to input
parameter y?

We analyze quadratic functions first:

Theorem 1 If

f (x, y) = 1

2

(
x y
)
A

(
x

y

)

+ bT
(
x

y

)

+ c

is a strongly convex function(A & 0). The optimum solution of min{f (x, y) | x ∈ %}
is defined as x∗(y). Then x∗(y) is monotonically increasing with respect to y when
A12 < 0.

Proof Due to strong convexity, A11 > 0. By first order condition A11x
∗(y)+A12y+

b1 = 0, the optimum solution is

x∗(y) = −A12

A11
y − b1

A11
.

Therefore, x∗(y) is monotonically increasing with respect to y when A12 < 0.
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Fig. 1 Idea of proof for
general problem

Next, we establish a more general result by dropping the quadratic assumption,
by a proof with potential to be generalized in discrete domain:

Theorem 2 If f (x, y) : %2 → % is a strongly convex C2 function. The optimum
solution of min{f (x, y) | x ∈ %} is defined as x∗(y). Then x∗(y) is increasing with

respect to y if ∂2

∂x∂y
f (x, y) ≤ 0 for all (x, y) ∈ %2.

Proof Firstly, we note that for any x ≤ x′, y ≤ y′,

f (x, y)+ f (x′, y′)− f (x, y′)− f (x′, y) =
∫ x′

s=x

∫ y′

t=y
∂2

∂s∂t
f (s, t)dsdt ≤ 0.

This condition is illustrated as in Figure 1.
Secondly, we prove the theorem by contradiction. Due to strong convexity, x∗(y)

is uniquely defined for each y ∈ %. If for y < y′ we have x∗(y) > x∗(y′), let’s
denote x = x∗(y′) and x′ = x∗(y) > x. Then f (x, y′) = min{f (s, y′) | s ∈ %} ≤
f (x′, y′) and f (x′, y) = min{f (s, y) | s ∈ %} ≤ f (x, y). Therefore,

0 ≥
∫ x′

s=x

∫ y′

t=y
∂2

∂s∂t
f (s, t)dsdt = [f (x, y)−f (x′, y)]+[f (x′, y′)−f (x, y′)] ≥ 0.

Consequently, f (x, y′) = f (x′, y′) and f (x′, y) = f (x, y), which contradicts with
the uniqueness of x∗(y) and x∗(y′).

There are two crucial conditions in the above proof:

1. For any (x, y′) and (x′, y) in the domain S, if x ≤ x′, y ≤ y′, then
(x, y), (x′, y′) ∈ S.

2. For any x ≤ x′, y ≤ y′, f (x, y)+ f (x′, y′)− f (x, y′)− f (x′, y) ≤ 0.

In the following subsection, we generalize the first condition to the so-called Lattice
structure, and the second condition to submodular property of functions.
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2.2 Definition

In high dimensional discrete domain, the first condition in the above subsection is
generalized as:

Definition 1 (Lattice)

1. Partial Order: x ≤ y if and only if xi ≤ yi for all indices i.
2. Maximization (or) Operation: x ∨ y defined as (x ∨ y)i = max{xi, yi}.
3. Minimization (and) Operation: x ∧ y defined as (x ∧ y)i = min{xi, yi}.
4. Lattice: L ⊆ %n is a lattice if and only if x ∨ y, x ∧ y ∈ L for any x, y ∈ L.
5. Sublattice: If L′ is a subset of lattice L and x ∨ y, x ∧ y ∈ L′ for any x, y ∈ L′,

we call L′ a sublattice of L.
6. For a set of points {xj ∈ %n : j ∈ S}, we can define ∨j∈Sxj as

(∨j∈Sxj
)
i
=

sup{xji | j ∈ S} and
(∧j∈Sxj

)
i
= inf{xji | j ∈ S}. These are well defined when

S is a finite set, or when {xj : j ∈ S} is within a bounded region.

Some important classes of lattices are listed as follows:

1. Any totally ordered set (e.g., single dimensional set) is a lattice!
2. Finite Cartesian product L = ∏j∈S Lj of lattices Lj : j ∈ S is still a lattice

when |S| is finite.
3. Intersection L = ⋂j∈S Lj of lattices Lj : j ∈ S is still a lattice, regardless of

the size of S.
4. Orthogonal projections and orthogonal slices of lattices are still lattices.
5. Linearly constrained set {(x, y) : ax − by ≥ c} with a, b ≥ 0.

Theorem 3 Suppose L ⊆ %N is a compact sublattice. Then there is a minimum
element x and a maximum element x in L.

Proof Because L is compact, its projection Li = {y | ∃x ∈ L, xi = y} on i-th
dimension is also compact. Define xi = inf{xi | x ∈ L}, which is well defined
because Li is compact, and will be reached by a certain point, which we denote as
yi , i.e., yii = xi and yi ∈ L. Now we consider the point ∧Ni=1y

i ∈ L. It follows
from definition that x ≤ ∧Ni=1y

i . Furthermore,
(∧Ni=1y

i
)
i
≤ yii = xi , therefore

∧Ni=1y
i ≤ x. Consequently x = ∧Ni=1y

i ∈ L. Similarly, we have x ∈ L.

The second condition in the above subsection is extended to the concept of
submodularity:

Definition 2 (Submodular Function)

1. A function f (x) : L → % defined on lattice L is called a submodular function
iff (x)+ f (y) ≥ f (x ∨ y)+ f (x ∧ y) for any x, y ∈ L.

2. Equivalent Definition (Decreasing Incremental):
If d, u ≥ 0 and dT u = 0, then f (x+ d)− f (x) ≥ f (x+ u+ d)− f (x+ u).
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3. Equivalent Definition (Local Condition):
If f is defined on Zn, and f (x + 1i )− f (x) ≥ f (x + 1i + 1j ))− f (x + 1j )

for all indices i = j .
4. Supermodular Function: A function f is supermodular if and only if −f is

submodular.

Example 2 (Examples of Submodular Functions)

1. Quadratic Functions 1
2x

T Ax + bT x + c with Aij ≤ 0 for all i = j .

2. A C2 function f (x) : %n→ % with ∂2

∂xi∂xj
f (x) ≤ 0 for all i = j .

3. g(x − y) with convex function g(z) : % → %.
4. g(

∑n
i=1 xi) with concave function g(z) : % → %.

5. Cobb–Douglas function f (x) =∏i x
αi
i defined on %n+, with α ∈ %n+.

6. ‖x − y‖22 =
∑

i (xi − yi)
2 and ‖x − y‖1 =∑i |xi − yi |.

7. Nonnegative linear combinations, expectations, and limitations of submodular
functions are still submodular.

8. g(f (x)) is submodular, if f : %n → % is submodular, g : % → % is concave
and monotonically increasing.

A set function f (S) : 2N → % is defined on the set 2N of all subsets of N .

Definition 3 (Submodular Set Function)

1. A set function is called submodular set function, if f (A)+ f (B) ≥ f (A∪B)+
f (A ∩ B) for any A,B ⊆ N .

2. Equivalent Definition (Local Condition): For any set A ⊆ N , and two elements
i, j ∈ N , f (A ∪ {i})+ f (A ∪ {j}) ≥ f (A)+ f (A ∪ {i, j}).

3. Connection with Submodular Function: Define F : {0, 1}N → % as F(1S) =
f (S), then f is a submodular set function if and only if F is a submodular
function.

There is a special class of submodular function generalizing the concept of rank
in linear algebra:

Definition 4 (Rank Function) A set function F : 2N → %which satisfies F(∅) =
0 (normalized), F(A) ≤ F(B) for all A ⊆ B (monotonicity) and submodularity, is
called a rank function.

One example of rank function R(S) defined on set of vectors S = {vi ∈ %m : i ∈ K}
is the rank of the spanning space of S.

Now we extend the monotonicity result in Theorem 2 to discrete scenario:

Theorem 4 (Theorem 2.7.1 in Topkis [29]) If f (x) : L → % is a submodular
function defined on lattice domain L, then the optimum solution set argminx∈Xf (x)
is a sublattice.

Proof We prove this by definition. Suppose both u, v ∈ argminx∈Xf (x), then
f (u) = f (v) = minx∈X f (x). Therefore f (u ∨ v) ≥ minx∈X f (x) = f (u) and
f (u∧v) ≥ minx∈X f (x) = f (v). It follows that f (u∨v)+f (u∧v) ≥ f (u)+f (v).
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But by submodularity, f (u∨v)+f (u∧v) ≤ f (u)+f (v). Combine the two above
inequalities, f (u ∨ v) = f (u ∧ v) = f (u) = f (v) = minx∈X f (x), and both
u ∨ v, u ∧ v ∈ argminx∈Xf (x).

Next, we establish the monotonicity of the optimum decision set, with respect
to input parameters. For this purpose, we need to first define the set monotonicity,
which basically is the monotonicity of both the largest and smallest elements of the
sets, if they do exist.

Definition 5 (Set Monotonicity) Set St is called monotonically increasing with
respect to t , if for any t < s, x ∈ St , and y ∈ Ss , there exist a u ∈ Ss and v ∈ St
such that u ≥ x and v ≤ y. This implies that the x(t) = ∨x∈St x and x(t) = ∧x∈St x
are both increasing in t .

An important fact is slices of lattice remains to be a lattice, which is illustrated in
the following theorem. The proof of this theorem follows directly from the definition
and is omitted here.

Theorem 5 (Monotonicity of Lattice Slices) If S ⊆ X×T is a sublattice of X×T
for lattices X and T , then St = {x | (x, t) ∈ S} is increasing on t , when it’s
nonempty.

Theorem 6 (Topkis, Theorem 2.8.2) Suppose f (x, t) : S → % is a submodular
function defined on sublattice S ⊆ X × T , where both X and T are lattices. Then
X∗(t) = argmin{f (x, t) : (x, t) ∈ S} is increasing with respect to t when it is
nonempty, and the set {(u, t) | u ∈ X∗(t)} is a sublattice.

Proof We first prove that the set L = {(u, t) | u ∈ X∗(t)} is a sublattice
by definition. For any (u, t), (v, s) ∈ L, without losing generality we assume
t ≤ s. By definition, we have min{f (x, s) : (x, s) ∈ S} = f (v, s) and
min{f (x, t) : (x, t) ∈ S} = f (u, t). And it follows from lattice structure that both
(u ∨ v, s) = (u, t) ∨ (v, s) and (u ∧ v, t) = (u, t) ∧ (v, s) are in set S. Therefore,
f (u∨ v, s) ≥ min{f (x, s) : (x, s) ∈ S} = f (v, s) and f (u∧ v, t) ≥ min{f (x, t) :
(x, t) ∈ S} = f (u, t). However, by submodularity of f we have

f (u∨v, s)+f (u∧v, t) = f ((u, t)∨(v, s))+f ((u, t)∧(v, s)) ≤ f (u, t)+f (v, s).

It could only hold when f (u∨v, s) = f (v, s) and f (u∧v, t) = f (u, t). Therefore,
u ∨ v ∈ X∗(s) and u ∧ v ∈ X∗(t), and by definition we have (u, t) ∨ (v, s) =
(u ∨ v, s) ∈ L and (u, t) ∧ (v, s) = (u ∧ v, t) ∈ L.

By Theorem 5, set X∗(t) = {x | (x, t) ∈ L} increases with respect to t .

Corollary 1 (Topkis, Corollary 2.8.1) If f (x) is a submodular function defined
on lattice domain X ⊆ %n, thenf (x)− yT x is submodular on domain X×%n, and
argminx∈Xf (x)− yT x increases with respect to y.

Proof Function−yT x is submodular, so is f (x)−yT x on domain X×%n, applying
Theorem 6 we obtain the monotonicity.
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For submodular functions, another important characteristic which mimics the
convexity in continuous domain is the classical preservation under minimization
property:

Theorem 7 (Preservation of Submodularity) Suppose both S and T are lattices
and X ⊆ S×T is a sublattice. Function f : X→ % is a submodular function. Then
the function g(y) = min{f (x, y) | (x, y) ∈ X} is a submodular function defined on
sublattice domain Y = {y | ∃(x, y) ∈ X}.
Proof We first prove the lattice structure of Y by definition. For any y, y′ ∈ Y ,
there exists x, x′ ∈ S such that (x, y) ∈ X and (x′, y′) ∈ X. Since X is a lattice,
(x ∨ x′, y ∨ y′) = (x, y)∨ (x′, y′) ∈ X and (x ∧ x′, y ∧ y′) = (x, y)∧ (x′, y′) ∈ X.
Therefore, y ∨ y′ and y ∧ y′ are both in Y .

Secondly, we establish the submodularity of g by constructive proof, which is
very useful in establishing properties of discrete convexity. For y, y′ ∈ Y , there
exists z, z′ ∈ S such that both (z, y), (z′, y′) ∈ X, f (z, y) = g(y), and f (z′, y′) =
g(y′). Therefore,

g(y ∨ y′)+ g(y ∧ y′) ≤ f (z ∨ z′, y ∨ y′)+ f (z ∧ z′, y ∧ y′)
= f [(z, y) ∨ (z′, y′)] + f [(z, y) ∧ (z′, y′)]

f [(z, y) ∨ (z′, y′)] + f [(z, y) ∧ (z′, y′)] ≤ f (z, y)+ f (z′, y′) = g(y)+ g(y′),

where the first inequality is due to definition of g, the second inequality is due to
submodularity of f , and the last equality is due to definition of z and z′.

2.3 Local Submodularity

In practice, it is often difficult to guarantee the submodularity of a function over the
whole domain. However, for the monotonicity of optimum solution we only need
the submodularity in a small region, i.e., a neighborhood of the optimum solution
set path. In the following example, we use local supermodularity to explain why one
retailer’s price should decrease, if its competitors’ prices are dropping.

Example 3 (Discrete Choice Model) A popular model that captures customer
choice between substitutable goods is the so-called random utility (discrete choice)
model. In this model, customers have random utility ξi(pi) for goods i with price pi ,
where ui(pi) = Eξi(pi) is the expected utility. A random customer would choose
the goods which give him/her the best (realized) utility. When the random noises
ξi(pi) − ui(pi) follow independent Gumbel distributions, the probability that a
customer would choose goods i from a set S of goods is Pi = ui(pi )

1+∑j∈S uj (pj )
, while

the probability of not choosing anything is P0 = 1
1+∑j∈S uj (pj )

. One thing to note

that is, a popular choice in practice is to use the logistic model: ui(pi) = eαipi+βi .
Retailer i’s expected profit from a random customer is therefore, Ri = (pi − ci)Pi
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if the cost per unit is ci . We adopt the classical notation that all prices other than pi
are denoted as p−i , and optimum solution is p∗i (p−i ) = argmax{Ri(pi, p−i ) | pi ∈
%+). We assume u′j (pj ) < 0 for each retailer j , which is intuitive as customer’s
utility would decrease with respect to the price of goods.

Lemma 1 If each ui is a C2 function, then in an open neighborhood of optimum

solution path {(p∗i (p−i ), p−i ) | p−i ) ∈ %n−1+ }, we have ∂2

∂xi∂xj
Ri(p) > 0.

Proof The profit is negative when pi = 0, and tends to 0 when pi → ∞, by
continuity of Ri the optimum solution exists. Since the function Ri is also a C2

function, we only need to verify the condition ∂2

∂xi∂xj
Ri(p) > 0 for pi = p∗i (p−i ).

By optimality condition at pi = p∗i (p−i ),

0 = ∂

∂xi
Ri (p) = 1

(1+∑j∈S uj (pj ))2

⎡

⎣ui(pi )(1+
∑

j∈S
uj (pj ))+ (pi − ci )u

′
i (pi )(1+

∑

j∈S
uj (pj )− ui(pi ))

⎤

⎦ ,

and ui(pi)(1+∑j∈S uj (pj ))+ (pi − ci)u
′
i (pi)(1+

∑
j∈S uj (pj )− ui(pi)) = 0.

∂2

∂xi ∂xj
Ri(p)

= −u′j (pj )
(1+∑j∈S uj (pj ))3

[
ui(pi)(1+∑j∈S uj (pj ))+ (pi − ci)u

′
i (pi)(1+

∑
j∈S uj (pj )− 2ui(pi))

]

= −u′j (pj )
(1+∑j∈S uj (pj ))3

(pi − ci)u
′
i (pi)(−2ui(pi)) > 0.

Theorem 8 When ui(pi) = eαipi+βi , p∗i (p−i ) is continuous, and it is monotoni-
cally increasing with respect to p−i .

Proof We first prove the strongly concavity of lnRi(pi, p−i ) in pi . Notice that

∂

∂pi
lnRi = 1

pi − ci
+ u′i (pi)(1+

∑
j∈S\{i} uj )

ui(pi)(1+∑j∈S uj )
= 1

pi − ci
+ αi

1+∑j∈S\{i} uj
1+∑j∈S uj

.

Notice that αi < 0 and ui(pi) is decreasing with respect to pi , ∂
∂pi

lnRi is a
decreasing function with respect to pi , and lnRi is a strongly concave function with
respect to pi . Since Ri is C2, and strongly concave in pi , p∗i (p−i ) is continuous.

By the local supermodularity, there exists a small neighborhood Nε = {p ∈ %n+ |
‖p − (p∗i (p−i ), p−i )‖∞ ≤ ε} of any point (p∗i (p−i ), p−i ) on optimum solution

path, inside which ∂2

∂xi∂xj
Ri(p) > 0. Therefore, by applying Theorem 6 in the box,

for any q−i ∈ [p−i , p−i + εe] we have

x = argmax{Ri(pi, q−i ) | pi ∈ [p∗i (p−i )− ε, p∗i (p−i )+ ε]} ≥ p∗i (p−i ).
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By log-concavity of function Ri , local optimum x within region [p∗i (p−i ) −
ε, p∗i (p−i )+ε] is on the same side of the point p∗i (p−i ) ∈ [p∗i (p−i )−ε, p∗i (p−i )+
ε] with the global optimum point p∗i (q−i ), therefore

p∗i (q−i ) = argmax{Ri(pi, q−i ) | pi ∈ %} ≥ p∗i (p−i ).

3 Optimization with Submodular Set Functions

In this section, we introduce the classical results for optimization over submodular
set functions. Section 3.1 introduces the Lovasz extension for submodular set
function. Section 3.2 discusses the polymatroid optimization. In Section 3.3, Lovasz
extension is utilized for minimization of submodular set functions, with a fast
gradient projection based algorithm. In Section 3.4, we analyze greedy and double
greedy approaches for monotone and nonmonotone submodular set functions
maximization problem. In Section 3.5, the smooth-greedy approaches based on
multi-linear extension are analyzed for submodular set functions maximization
problem with matroid constraint.

3.1 Extensions of Submodular Set Function

We first recall two important definitions in convex optimization theory. The convex
hull of a set X is defined as Conv(X) = Cl{∑i sixi :

∑
i si = 1, si ≥ 0, xi ∈

X}, where Cl defines the closure of a set. Epigraph of a function f is defined as
epigraph(f ) = {(x, t) : f (x) ≤ t}. A classical fact in convex optimization theory
is that: A function is convex if and only if its epigraph is a convex set.

For each given set function f : 2N → %, we can define f̃ : {0, 1}N → % as
f̃ (1S) = f (s), where 1S is the characteristic vector defined as x ∈ %N with x = 1
if i ∈ S and xi = 0 if i /∈ S. We treat extreme points {0, 1}N of a box as the set of
subsets 2N , where 1S is equivalent to set S.

Definition 6 (Convex Extension and Lovasz Extension)

1. Given function f : X→ %, we define its convex hull f− : Conv(X)→ % as

f−(x) = inf{
∑

i

s
j
i
f (x

j
i
) : lim

j→∞ xj = x,
∑

i

s
j
i
x
j
i
= xj ,

∑

i

s
j
i
= 1, sj

i
≥ 0, xj

i
∈ X},

which is the largest convex function below f .
2. Given a set function f : 2N → %, the Lovasz extension f L(x) : [0, 1]N → % is

defined as f L(x) = ∑m
j=1 sjf (Sj ), where {Sj } is the unique decreasing series

of sets N = S1 ⊃ S2 ⊃ S3 ⊃ · · · ⊃ Sm = ∅ such that x = ∑
j sj1Sj for∑

j sj = 1, sj ≥ 0.
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3. Equivalent Definition of Lovasz Extension: Take uniform distribution ξ ∈ [0, 1],
then f L(x) = Eξf ({i : xi ≥ ξ}).

4. For any S ⊆ N , f L(1S) = f−(1S) = f (S). So both are extensions for set
functions.

Theorem 9 Convex hull f− of any function f is convex, and it is the largest convex
function below f .

Proof We analyze the epigraph of f−:

epigraph(f−) = Cl{(x, t) : ∃∑i si = 1, si ≥ 0, xi ∈ X,∑i sixi = x,
∑

i sif (xi) ≤ t}
= Cl{(x, t) : ∃∑i si = 1, si ≥ 0, xi ∈ X,∑i sixi = x,

∑
i si ti = t, f (xi) ≤ ti}

= Conv(
⋃

i{(xi , ti ) : f (xi) ≤ ti}),

which is a convex set. Therefore, by convex optimization theory f−(x) is convex.
Because f− is an extension of f , it is below f . Next we prove that any convex

function g below f is also below f−. For any s ∈ %n+ and xi ∈ X, i = 1, 2, · · · , N
with

∑
i si = 1, si ≥ 0,

∑
i sixi = x, by convexity we have

g(x) ≤
∑

i

sig(xi) ≤
∑

i

sif (xi).

Therefore, it follows from definition that

f−(x) = inf{
∑

i

s
j
i f (x

j
i ) : lim

j→∞ xj = x,
∑

i

s
j
i x

j
i = xj ,

∑

i

s
j
i = 1, sji ≥ 0, xji ∈ X} ≥ inf{g(xj )} ≥ g(x).

Theorem 10 If f is a submodular set function, then f−(x) = f L(x) and f L is
convex. Reversely, if the Lovasz extension f L of a set function f is convex, f has to
be submodular.

Proof We can formulate the convex extension as a linear programming problem:

f−(x) = min
∑

S⊆N λSf (S)

s.t.
∑

S:i∈S λS = xi ∀i ∈ N∑
S λS = 1

λ ≥ 0,

whose dual is

f−(x) = max t +∑i∈N yixi

s.t.
∑

i∈S yi ≤ f (S)− t ∀S ⊆ N.

For any given x ∈ [0, 1]N , there exists order π of indices such that xπ1 ≤ xπ2 ≤
· · · ≤ xπN . Define Sj = {πj , · · · , πN } for j = 1, 2, · · · , N and SN+1 = ∅. Define
λSj = xπj −xπj−1 with xπ0 = 0 and xπN+1 = 1, and λS = 0 if else. Then λ ≥ 0 and
∑N+1

j=1 λj = 1. Furthermore,
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∑

S:i∈S
λS =

∑

j :j≤π−1(i)

λSj =
∑

j :j≤π−1(i)

xπj − xπj−1 = xi.

Therefore, λ is a primal feasible solution with the given x.
For the dual problem, define t = f (∅) and yi = f (Sπ−1(i)) − f (S1+π−1(i)) =

f (Sπ−1(i)) − f (Sπ−1(i)\{i}). For any set S = {πj1 , πj2 , · · · , πjm} with j1 < j2 <

· · · < jm, denote Sk = {πj1, πj2 , · · · , πjk }. Then

∑

i∈S
yi =

∑

i∈S
f (Sπ−1(i))−f (Sπ−1(i)\{i}) ≤

m∑

k=1

f (Sk)−f (Sk+1) = f (S)−f (∅) = f (S)− t.

Therefore, (t, y) is a dual feasible solution.
Next we establish the strong duality, that is,

∑

S⊆N
λSf (S) =

N+1∑

j=1

(xπj −xπj−1 )f (Sj ) =
N∑

j=1

xπj [f (Sj )−f (Sj+1)]+xπN+1f (SN+1)−xπ0f (S1) =
∑

i∈N
xiyi+ t.

Take all j such that λSj > 0, these (λSj , Sj ) define the Lovasz extension f L(x).
Therefore f−(x) = ∑j :λSj >0 λSj f (Sj ) = f L(x). Because f− is always convex,

so is f L.
If f L is convex, then for any S, T ⊆ N , consider point x = 1S+1T

2 = 1S∩T+1S∪T
2 .

By definition, f L(x) = f (S∩T )+f (S∪T )
2 . By convexity, f−(x) ≤ f (S)+f (T )

2 .
Therefore

f (S)+ f (T ) ≥ 2f−(x) = 2f L(x) = f (S ∩ T )+ f (S ∪ T ).

In convex optimization theory, the Separation Lemma guarantees the existence
of “dual certificate” of an optimum primal solution for a convex optimization
problem, which is a big step towards strong duality. For submodular set functions,
we have the following:

Theorem 11 (Frank’s Discrete Separation Theorem) If f (S), g(S) are sub-
modular and supermodular set functions defined on sublattice domain D ⊆ 2N ,
respectively, and f (S) ≥ g(S) for all S ⊆ N , then there exists a modular (linear)
function L(S) = c +∑i∈S li such that f (S) ≥ L(S) ≥ g(S) for all S ⊆ N .

Proof We prove for D = 2N first. Since both f and −g are submodular set
functions, their Lovasz extensions f L and (−g)L are convex. Note that f (S) +
(−g)(S) ≥ 0 for all S ⊆ N , it follows from definition that f L(x) + (−g)L(x) =
(f + (−g))L(x) ≥ 0 for all x ∈ [0, 1]N . Due to Separation Lemma in convex
optimization theory, there exists a linear function L−(x) : [0, 1]N → % such that
f L(x) ≥ L−(x) ≥ −(−g)L(x) for all x ∈ [0, 1]N . Constraint this L− function in
{0, 1}N we obtain the modular function
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L(S) = L−(1S) = L−(0)+
∑

i∈S
[L−(ei)− L−(0],

which satisfies f (x) ≥ L(x) ≥ g(x).
For D = 2N , we can extend the function f to domain 2N by defining f (S) =

+∞ for all S /∈ D. Similarly, we extend g by defining g(S) = −∞ for all S /∈ D.
The extended functions are still submodular and supermodular, and we can apply
the proof for the full domain 2N directly.

Optimum solution of a convex function can be verified by a tangent hyperplane
which touches the epigraph of the convex function. Similarly, we have the following
existence result for the certificate of optimum solution of submodular set function
minimization problem:

Corollary 2 If f (S) is a submodular set functions defined on domain 2N , and L ⊆
2N is a sublattice. Then S∗ is the optimum solution for min{f (S) | S ∈ L} if and
only if there exists a modular set function L : 2N → % such that f (S∗) = l(S∗),
f (S) ≥ l(S) for all S ⊆ N and L ⊆ {S : l(S) ≥ l(S∗)}.
This is a direct application of Theorem 11, and the fact that f (S) ≥ f (S∗) ≥
2f (S∗)− f (S) for all S ∈ L.

3.2 Polymatroid Optimization

In the proof of Theorem 10, the dual formulation of f− has been discussed:

f−(x) = max t +∑i∈N yixi

s.t.
∑

i∈S yi ≤ f (S)− t ∀S ⊆ N.

The optimum solution for the dual problem is yi = f (Sπ−1(i)) − f (S1+π−1(i)) =
f (Sπ−1(i))− f (Sπ−1(i)\{i}), where the order π corresponds to the increasing order
of xi : xπ1 ≤ xπ2 ≤ · · · ≤ xπN . For sets Sk = {πj1, πj2 , · · · , πjk },

∑

i∈Sk
yi =

∑

i∈Sk
f (Sπ−1(i))− f (Sπ−1(i)\{i}) =

m∑

k=1

f (Sk)− f (Sk+1) = f (Sk)− t.

Therefore, Sk corresponds to the tight dual constraints, and the optimum solution
can be obtained by the greedy process: rank the coefficients in the objective from
highest (πN ) to lowest (π1), find the maximum possible value yj one by one.
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We conclude this observation into the so-called polymatroid optimization frame-
work:

Definition 7 (Polymatroid Optimization) Given a nonnegative set function r :
2N → %+, it induces a polytope (with exponentially many linear constraints)

P(r,N) = {x ∈ %N+ |
∑

j∈S
xj ≤ r(S) ∀S ⊆ N}.

This polytope is called a polymatroid if r is a rank function.

Problem 2 How to maximize a linear objective function with a polymatroid
constraint

max

⎧
⎨

⎩

∑

j∈N
cjxi | x ∈ P(r,N)

⎫
⎬

⎭
.

Algorithm 1: Greedy optimum

1 S0 = ∅ Find the decreasing order of coefficients: cπ1 ≥ cπ2 ≥ · · · ≥ cπN ;
2 Find the maximum possible value for xπt one by one, in increasing order of

t : for each t = 1, 2, . . . , N do
3 St = {π1, π2, · · · , πt }, xπt = r(St )− r(St−1);
4 end

Theorem 12 The greedy Algorithm 1 is optimum for Problem 2.

This theorem has been established in [8]. We can prove the theorem by constructing
primal–dual solution with no duality gap, where the primal solution x is already
constructed by the greedy algorithm, and the dual is exactly the same as the primal
solution in Theorem 10.

Furthermore, in [15], He et al. established the following structural result of
polymatroid optimization:

Theorem 13 (Preservation of Submodularity) If r : 2N → % is a rank function,
the function

F(c) = max

⎧
⎨

⎩

∑

j∈N
cjxi | x ∈ P(r,N)

⎫
⎬

⎭

is a submodular function, and the function

F̂ (S) = max

⎧
⎨

⎩

∑

j∈S
cj xi | x ∈ P(r, S)

⎫
⎬

⎭
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is a rank function for given c ∈ %N+ . Furthermore,

F̂ (S) = max

⎧
⎨

⎩

∑

j∈S
fj (xj ) | x ∈ P(r, S)

⎫
⎬

⎭

is a rank function if the objective function is separable concave and fj (0) = 0.

Proof Due to space limitation, we provide an abstract proof with the main ideas
here. Firstly, because the objective function is continuous, and the domain is
compact, the optimum value F(c) is also continuous. Secondly, negative coefficient
ci would yield xi = 0, so we only need to focus in the nonnegative domain c ∈ %N+ .
Lastly, we only need to prove that for any given C ∈ %N+ and two different indices
i, j ∈ N , if ui and vj are nonnegative vectors with only positive values in index i

and j , respectively, then F(C + ui)+ F(C + vj ) ≥ F(C)+ F(C + ui + vj ).
Now we can fix all but two dimensions i, j . We then segment the two dimensional

space (ci, cj ) ∈ %2+ into small grids by the values of other Ck, k = i, j . We
only need to prove inside each grid since local submodularity implies global
submodularity. Inside each small grid, the line ci = cj cuts the grid into two pieces,
and by Theorem 12 there is a uniform optimum solution in each piece, as illustrated
in Figure 2. We note the optimum solution in the left piece (ci ≤ cj ) as xL, then
F(c) = xTL (c − C) + F(C); also the optimum solution in the right piece (ci ≥ cj )
is noted as xR , so F(c) = xTR (c − C)+ F(C) when ci ≥ cj , inside this small grid.

Without losing generality, we set F(C) = 0, and assume Cj ≥ Ci . Note b = C+
ui and a = C+vj , thenC = a∧b and C+ui+vj = a∨b. IfCi+|vj | ≤ Cj ,then a, b
are not separate by the line, and F(c) is the same linear function for a, b, a∨b, a∧b,
so the submodularity directly follows. If Ci + |vj | > Cj , then a, b are in different
piece, with F(b) = xTR (b−C) ≥ xTL (b−C) and F(a) = xTL (a−C) ≥ xTR (a−C).
The line ci = cj intersects line from C = a ∧ b to b at z = (Cj , Cj ) as in Figure 2.
Note that a ∧ b = a ∧ z, so we have

F(a)+F(z) = xTL (a−C)+xTL (z−C) = xTL (a∧z−C+a∨z−C) = F(a∧b)+F(a∨z).

Because z = (a ∨ z) ∧ b and a ∨ b = (a ∨ z) ∨ b, we have

F(a∨z)+F(b) ≥ xTR (a∨z−C)+xTR (b−C) = xTR [(a ∨ z) ∧ b + a ∨ b − 2C] = F(a∧b)+F((a∨z)∨b) = F(z)+F(a∨b).

Adding these two inequalities up, we obtain

F(a)+ F(b) ≥ F(a ∧ b)+ F(a ∨ b).

Therefore F(a) is submodular in %N .
For set function F̂ (S), note that F̂ (S) = F(c | S), where (c | S)i = ci if i ∈ S

and 0 if else. The submodularity of F̂ then directly follows from submodularity of
F . For the proof of separable objective functions, please refer to Theorem 3 in [15].
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Fig. 2 Idea of proof for preservation of submodularity

3.3 Minimization of Submodular Set Function

In this subsection, we discuss how to solve submodular set function minimization
problems. It relies on the fact that minimizer of the Lovasz extension can be reached
at the extreme points of the polytope, which is a counter-intuitive result since this
property holds mostly for concave functions instead of convex functions.

Theorem 14 (Minimization of Submodular Set Function) If f : 2N → % is
a submodular set function, then the minimizer of its Lovasz extension in domain
[0, 1]N can be obtained at vertex points: minx∈[0,1]N f L(x) = minS⊆N f (S).

Proof By submodularity and Theorem 10, f L = f−.

minx∈[0,1]N f L(x) = minx∈[0,1]N min
∑

S⊆N λSf (S) = min
∑

S⊆N λSf (S)

s.t.
∑

S:i∈S λS = xi,∀i s.t. 0 ≤∑S:i∈S λS ≤ 1,∀i
∑

S λS = 1
∑

S λS = 1

λS ≥ 0 ∀S λS ≥ 0 ∀S.

Notice that 0 ≤∑S:i∈S λS ≤ 1 follows from the fact that
∑

S λS = 1 and λS ≥ 0,

min
x∈[0,1]N

f L(x) = min{
∑

S⊆N
λSf (S) |

∑

S

λS = 1, λ ≥ 0} = min
S⊆N f (S).

By Theorem 14, if we can find an optimum solution for min{f L(x) | x ∈
[0, 1]N }, it corresponds to the optimum solution of the discrete problem min{f (S) |
S ⊆ N}. For convex optimization problem min{f L(x) | x ∈ [0, 1]N }, we can
evaluate the value and subgradient of f L(x) at x by the linear programming for-
mulation and its dual in proof of Theorem 14. The exact algorithms for submodular
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function minimization are quite extensive, interested readers can refer to Section
10.2 of [23], or the research papers [5, 14, 17, 18, 25]. In particular, Schrijver’s
algorithm [25] achieves O(n5) iterations, with O(n7) function evaluation and
O(n8) arithmetic operations (see Yvgen [31]), and the improved Iwata–Fleischeer–
Fugishige’s algorithm [17] can solve the problem within O(n7 ln n) function
evaluation and arithmetic operations.

In practice, speed of the algorithm is often an important factor, while the
precision can be sacrificed for speed. Next, we introduce a fast algorithm based
on subgradient method to optimize f L(x) within high precision. After obtaining a
high quality solution x ∈ [0, 1]N for f L(x), by the definition of Lovasz extension,
we can identify at most N + 1 set Sj such that f L(x) is the convex combination of
f (Sj ). Therefore, minj f (Sj ) ≤ f (x). We introduce the classical result of gradient
projection method in the following theorem:

Theorem 15 (Gradient Projection Method) Suppose g : X → % is a convex
function defined on closed convex set X with diameter R. If we apply the gradient
projection method: xt+1 = (xt−αtdt ) |X, where dt is a subgradient of g at xt whose
length is uniformly upper bounded by G, αt ≥ 0 is the step length, and y |X is the
projection of y in convex set X defined as y |X= argmin{‖z− y‖ | z ∈ X}. Then

min
t≤T [g(xt )− g(x∗)] ≤ G2(

∑T
t=1 α

2
t )+ R2

2
∑T

t=1 αt
.

In this error bound estimation, taking αt = R
G

1√
T

for fixed horizon T would yield

upper bound RG√
T

, and taking horizon independent step length αt = R
G

1√
t

would

yield upper bound RG(1+ln T )
2
√
T

.

Proof Suppose x∗ ∈ X is the optimum solution, then

‖xt+1 − x∗‖2

≤ ‖xt − αtdt − x∗‖2 ←− (xt − αtdt − xt+1)
T (y − xt+1) ≤ 0∀y ∈ X

≤ ‖xt − x∗‖2 − 2αtdTt (xt − x∗)+ α2
t G

2 ←− ‖dt‖ ≤ G

≤ ‖xt − x∗‖2 − 2αt [g(xt )− g(x∗)] + α2
t G

2 ←− by convexity g(x∗) ≥ g(xt )+ dTt (x
∗ − xt ).

Therefore,

2αt [g(xt )− g(x∗)] ≤ α2
t G

2 + ‖xt − x∗‖2 − ‖xt+1 − x∗‖2.

Sum these inequalities up, we have

(

2
T∑

t=1

αt

)

min
t≤T [g(xt )− g(x∗)] ≤

T∑

t=1

2αt [g(xt )− g(x∗)] ≤ G2

(
T∑

t=1

α2
t

)

+ R2.
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More general cases have been studied by Haucbaum et al. [16].

Problem 3

min f (S)

s.t. aij xi + bij xj ≥ cij for all (i, j) ∈ A
S ⊆ N,

where x = 1S is the characteristic vector of S, A is a set of pairs (allowing multiple
copies of the same pair), and f : 2N → % is a submodular set function.

The following result has been established by Haucbaum et al. [16]:

Theorem 16 If f is submodular and constraints are monotone (feasible set
is a lattice), then it’s (strongly) polynomial-time solvable. If f is nonnegative
submodular, and the constraints satisfy round up property or f is monotone, then
it’s 2-approximable in polynomial time.

Proof Firstly, we preprocess all the constraints. Note that all variables are {0, 1}
variables. We first remove all redundant constraints. If a constraint aij xi + bij xj ≥
cij implies xi or xj equals to a certain value, then we can replace this constraint by
two single dimensional constraints, which are either redundant or can be removed
by fixing the variable. Repeatedly simplifying all such constraints, the left over
constraints with two variables would all be of the form xi ≥ xj , xi + xj ≤ 1,
or xi + xj ≥ 1. Furthermore, constraints of type aij xi − bij xj ≥ cij , where
aij , bij ≥ 0, would be reduced to simple single dimensional constraints, or the
constraints of type xi ≥ xj (or xi ≤ xj ), constraints of type aij xi − bij xj ≥ cij ,
where aij ≥ 0, bij ≤ 0, would be reduced to simple single dimensional constraints,
or the constraints of type xi + xj ≤ 1, or xi + xj ≥ 1. If there is a group of cyclic
constraints xi1 ≥ xi2 ≥ · · · xin ≥ xi1 , we further simplify it by replacing all xij with
a single variable.

When all the constraints are monotone, the constraints after simplification would
all be the form xi ≥ xj for directed pairs (i, j) ∈ E. The problem now reduces to
submodular minimization over a ring, which is solvable in (strong) polynomial time
in the size of the underlying graph. A simple explanation is that, we can reform the
problem into minimization of another submodular set function over set 2E . For this
purpose, for constraint xi ≥ xj we define variable yij = 1 if xi = 1 and xj = 0,
and yij = 0 if else. And define base set B of indices as those indices never appear
in the left side of ≥ constraints, and we define yi = xi for all i ∈ B. Now, each
xi can be defined by ∨k∈Skyk for certain set Si ⊆ E ∪ B (basically, in the ordered
graph, Si is the set children edges of i, as well as the leaves grow from node i). It
can be easily proved that for a monotone set function F , and set T ⊆ E ∪B, define
set S(T ) = {i | Si ∩ T = ∅}, then function G(T ) = F(S(T )) is also submodular
for submodular function f . And the constraint for original variables is embedded in
the transformation S(T ), so the constraint for function G becomes T ⊆ E ∪ B.
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For general cases, suppose the problem after simplification is of form:

min f (x)

s.t. xi ≥ xj ,∀(i, j) ∈ E,
xi + xj ≥ 1,∀(i, j) ∈ U,
xi + xj ≤ 1,∀(i, j) ∈ V.

We introduce two copies of original variables x+ = x ∈ {0, 1}n, x− = −x ∈
{0,−1}n. Then the original problem can be reformulated by

min f (x+)+f (−x−)
2

s.t. x+i ≥ x+j , x
−
i ≤ x−j ∀(i, j) ∈ E,

x+i − x−j ≥ 1,−x−i + x+j ≥ 1,∀(i, j) ∈ U,
x+i − x−j ≤ 1,−x−i + x+j ≤ 1,∀(i, j) ∈ V,
x+i + x−i = 0,∀i
x+i ∈ {0, 1}, x−i ∈ {0,−1},∀i.

Dropping the only nonmonotone constraints x+i + x−i = 0, we obtain a relaxed
problem with only monotone constraints, which can be solved exactly. Suppose
optimum solution is (x+, x−) with objective value V ∗ ≤ OPT . However, notice
that y = � x+−x−2 � and z = � x+−x−2 � are both feasible for the original problem.
However, y = x+∨(−x−) and z = x+∧(−x−). By submodularity, f (y)+f (z) ≤
f (x+)+ f (−x−). Because f is nonnegative, f (y) ≤ f (x+)+ f (−x−) = 2V ∗ ≤
2OPT .

3.4 Maximization of Submodular Set Function

There are many scenarios where one needs to maximize a submodular set function.
For example, consider a social network where people’s decision is influenced by
their friends. When a company needs to place a number of individual advertise-
ments, e.g., via phone calls, a crucial problem is which group of people should
they reach to maximize the total effect, within given budget constraint. A simplified
model is the so-called Max-k-Cover problem:

Problem 4 (Max-k-Cover) Given a set of sets {Sj ⊆ N | j ∈ A}, find k sets
which covers the most number of elements.
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We can also assume that each element (customer) covered has a different value:

Problem 5 (The Maximum Coverage Problem) Given a set of S1, S2, · · · , Sm ⊆
N . For each element i ∈ N , it has a value vi ≥ 0, and for each set S ⊆ N the value
function is defined as V (S) =∑i∈S vj . We need to select K sets {Si | j ∈ A}, and
to maximize the maximum value V (

⋃
j∈A Sj ).

One of the most important characteristic of these problem is the submodularity
of objective function, with respect to the selected set of sets. The proof is
straightforward and is omitted here.

Proposition 1 We define U(A) = V (
⋃

j∈A Sj ), then U is a submodular set
function:

V (∪i∈ASj )+V (|∪i∈B Sj |) ≥ V (|∪i∈A∩B Sj |)+V (|∪i∈A∪B Sj |) for any A,B ⊆ {1, 2, · · · ,m}.

A related problem arises from application is assort optimization, where one
needs to place advertisements of goods on the front-page of its website for maximum
sales effect.

Problem 6 (Assortment Optimization) There are K advertisement slots of a
webpage, which we need to select from a set N of goods from a certain category.
The goods are substitutable to each other, that is, increasing sales from one product
would hurt (or has no effect to) sales of the other product, so the more the goods
placed on the webpage, the lesser the contribution from the advertisement of the next
goods added. In some classical literatures, e.g., [6], the total sales revenue V (S)

from displacement of set S of goods on the webpage is assumed to be increasing
and submodular. And we aim to solve the cardinality constrained maximization
problem:

max{V (S) : |S| ≤ K, S ⊆ N}.

Because Max-Cut problem is well-known to be NP-hard, and the cut weight
V (S) = ∑i∈S,j /∈S wij is submodular in S, submodular set function maximization
with cardinality constraint is also NP-Hard. The hardness to approximate result has
been established by Feige [11]:

Theorem 17 (Max-Hardness) Consider cardinality constrained submodular max-
imization problem max{f (S), |S| ≤ K, S ⊆ N} for rank function (submodular,
normalized, and increasing) f : 2N → %. Unless P = NP , there is no polynomial-
time algorithm which achieves approximation ratio strictly better than 1 − 1

e
in

general (for general setting of K).
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There is a simple greedy algorithm which can achieve the best possible approx-
imation ratio 1 − 1

e
for cardinality constrained maximization problem of rank

functions.

Algorithm 2: Greedy algorithm: rank function maximization

1 Initialization t = 0, St = ∅;
2 foreach t = 1, 2, . . . , K do
3 Find the element i /∈ St with maximum improvement for function value:

it = argmax{f(St−1 ∪ {i})};
4 Define St = St−1 ∪ {i};
5 end
6 Return SK

Theorem 18 (Greedy for Rank Function) The greedy algorithm above achieves
approximation ratio 1− (1− 1

K
)K ≥ 1− 1

e
for max{f (S), |S| ≤ K, S ⊆ N}, if the

function f is a rank function.

Proof Define the optimum solution as S∗, and optimum value OPT = f (S∗).
For any set S ⊆ N , note that elements in S∗\S as {j1, j2, · · · , jm}, and Sk =
S ∪ {j1, j2, · · · , jk}. Then

∑

i∈S∗
[f (S+{i}−f (S)] =

m∑

k=1

[f (S+{jk}−f (S)] ≥
m∑

k=1

[f (Sk)}−f (Sk−1)] = f (S∪S∗)−f (S).

Due to monotonicity of f , we have f (S ∪ S∗) ≥ f (S∗) = OPT . Consequently,

max{f (S + {i})− f (S) : i ∈ S∗} ≥ 1

K
(OPT − f (S)).

Therefore, for any t and set St , the greedy algorithm outputs set St+1:

OPT −f (St+1) ≤OPT −f (St )−[f (St+1)− f (St )] ≤OPT −f (St )− 1

K
[OPT − f (S)] ≤

(

1− 1

K

)

[OPT − f (St )] .

This implies that

OPT − f (SK) ≤
(

1− 1

K

)K
[OPT − f (S0)] ≤

(

1− 1

K

)K
OPT ,

and

f (SK) ≥
[

1−
(

1− 1

K

)K
]

OPT ≥
(

1− 1

e

)

OPT .
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The 1 − 1
e
-approximation is tight for rank function due to Theorems 17 and 18.

In the remainder of this subsection, we discuss a more general case by relaxing the
monotonicity assumption of objective function.

Problem 7 (Nonmonotone Submodular Function Maximization) Given a non-
negative submodular set function f : 2N → %+, suppose we can evaluate f (S) for
any S ⊆ N . How should we solve the problem:

max{f (S) : S ⊆ N}.

The hardness to approximate result is established in [12]:

Theorem 19 (Hardness for Nonmonotone Submodular Function Maximiza-
tion) Suppose f : 2N → %+ is a submodular set function, which we can evaluate
the function value on each S ⊆ N . Then for any ε > 0, an algorithm which can
approximate the general maximization problem of approximation ratio 1

2 + ε needs
to call the valuation oracle exponentially many times. This is also true even if f is
known to be symmetric, i.e., f (S) = f (N\S).

Buchbinder et al. [3] recently established the tight approximation algorithm,
based on the idea of forward–backward greedy search:

Algorithm 3: 1/2-Randomized approximation algorithm

1 Initialization t = 0, A0 = ∅, B0 = N ;
2 Given random order u1, u2, · · · , uN of 1, 2, · · · , N ;
3 foreach t = 1, 2, . . . , N do
4 Define

at = [f (At−1 ∪ {ut })−f (At−1)]+,bt = [f (Bt−1 \ {ut })−f (Bt−1)]+;
5 With probability pt = at

at+bt , we add ut to At−1: At = At−1 ∪ {ut },
Bt = Bt−1;

6 Else (with probability 1− pt = bt
at+bt ), remove ut from Bt−1:

At = At−1, Bt = Bt−1 \ {ut };
7 end
8 Return AN = BN . Note Define pt = 0 if both at = bt = 0.

This algorithm maintains increasing random series of sets {At } and decreasing
series of sets {Bt }, by gradually deciding whether an element should be added to
At , or removed from Bt , based on whether its potential is improving the function
value. It stops at AN = BN . Next, we define a series of sets St to assist our analysis
of the algorithm. Suppose the optimum solution of max{f (S) : S ⊆ N} is S∗,
with the optimum value noted as OPT = f (S∗). We define the random set St =
(S∗ ∪ At) ∩ Bt and value Vt = E[f (St )]. Then we have for all t , At ⊆ St ⊆ Bt ,
S0 = S∗, f (S0) = OPT , and SN = AN = BN .
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To prove the approximation result, we quantify the potential loss of function
value from St−1 to St by the following technical lemma from [30]:

Lemma 2 For any t , the algorithm outputs

E[f (St−1)− f (St )] ≤ 1

2
[f (At )− f (At−1)+ f (Bt )− f (Bt−1)] .

Proof By definition we haveBt−At = {ut+1, ut+2, · · · , uN }, and ut ∈ Bt−1\At−1.
If at = bt = 0, then by definition f (At−1 ∪ {ut })− f (At−1) ≤ 0, f (Bt−1 \ {ut })−
f (Bt−1) ≤ 0. Note that At−1 ⊆ Bt−1 \ {ut }, it follows from submodularity we have

0 ≥ f (At−1 ∪ {ut })− f (At−1) ≥ f (Bt−1)− f (Bt−1 \ {ut }) ≥ 0.

Notice the algorithm outputs At = At−1 ∪ {ut }, Bt = Bt−1, so f (At )− f (At−1) =
f (Bt−1)− f (Bt ) = 0. If ut ∈ St−1, we have St = St−1 and f (St−1)− f (St ) = 0.
If ut /∈ St−1, then the algorithm outputs St = St−1 ∪ {ut }, consequently At−1 ⊆
St−1 ⊆ Bt−1 \ {ut }. By submodularity we have

0 ≥ f (At−1∪{ut })−f (At−1) ≥ f (St−1∪{ut })−f (St−1) ≥ f (Bt−1)−f (Bt−1\{ut }) ≥ 0,

which implies that f (St−1)− f (St ) = f (At )− f (At−1) = f (Bt−1)− f (Bt ) = 0.
Now we consider the case at + bt > 0. If ut ∈ S∗, then ut ∈ St−1, St = St−1

with probability pt = at
at+bt , and St = St−1\{ut } with probability 1− pt . Note that

At−1 ⊆ St−1\{ut }, by submodularity f (St−1)− f (St−1\{ut }) ≤ f (At−1 ∪ {ut })−
f (At−1) = at . Therefore

E[f (St−1)− f (St )] ≤ (1− pt )at = atbt

at + bt
.

If ut /∈ S∗, then ut /∈ St−1, St = St−1 ∪ {ut } with probability pt = at
at+bt , and

St = St−1 with probability 1 − pt . Because St−1 ⊆ Bt−1\{ut }, it follows from
submodularity that f (St−1) − f (St−1 ∪ {ut }) ≤ f (Bt−1\{ut }) − f (Bt−1) = bt .
Therefore we also have

E[f (St−1)− f (St )] ≤ ptbt = atbt

at + bt
.

Note that pt = 0 if at = 0, bt > 0, pt = 1 if at > 0, bt = 0, so whenever
at + bt > 0,

f (At )− f (At−1)+ f (Bt )− f (Bt−1)

= pt [f (At−1 ∪ {ut })− f (At−1)]+ (1− pt ) [f (Bt−1 \ {ut })− f (Bt−1)]
= pt [f (At−1 ∪ {ut })− f (At−1)]+ + (1− pt ) [f (Bt−1 \ {ut })− f (Bt−1)]+
= ptat + (1− pt )bt .
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Therefore,

atbt

at + bt
≤ a2

t + b2
t

2(at + bt )
= ptat + (1− pt)bt

2

= 1

2
[f (At )− f (At−1)+ f (Bt )− f (Bt−1)] .

Theorem 20 ( 1
2 -Approximation) If the function f : 2N → %+ is a nonnegative

submodular set function, then Algorithm 3 achieves 1
2 -approximation ratio, i.e.,

E[f (AN)] ≥ 1

2
OPT .

Proof Adding the inequalities in Lemma 2 for all t = 1, 2, · · · , N , we obtain

E[f (S0)] − E[f (SN)] =
N∑

t=1

E[f (St−1)− f (St )]

≤ 1

2
[f (AN)− f (A0)+ f (BN)− f (B0)] .

It then follows from SN = AN = BN , and f (A0), f (B0) ≥ 0 that

E[f (S0)] − E[f (SN)] ≤ 1

2
[f (AN)+ f (BN)] = f (SN).

Because S0 = S∗, f (AN) = f (SN) ≥ 1
2f (S0) = 1

2OPT .

3.5 Multi-Linear Relaxation and Submodular Function
Maximization

In this section, we introduce another line of approach to deal with submodular func-
tion maximization problems, which utilize the so-called multi-linear relaxation.

Definition 8 (Multi-Linear Relaxation) Given a set function f : 2N → %, we
define its multi-linear relaxation by rounding a continuous point x ∈ [0, 1]N to
{0, 1}N : F(x) = E[f (ξ(x))], where ξ(x) ∈ %N takes value ξ(x)i = 1 with
probability xi , and ξ(x)i = 0 with probability 1− xi independently.
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Because the multi-linear relaxation is defined via expectation, it is straightfor-
ward to see:

Theorem 21

max{F(x) | x ∈ [0, 1]N } = max{f (x) | x ∈ {0, 1}N }.

In the remainder of the section, we introduce variations of submodular maxi-
mization problem, and how to utilize the multi-linear relaxation for solving these
problems. We start with the general matroid constrained problem:

Definition 9 (Matroid) A matroid M = (X, I) consists of the ground set X and the
independent set I ⊆ 2X which is a set of subsets of X, if it satisfies the following:

1. For any A ⊆ B and B ∈ I, it has to be A ∈ I.
2. For any A,B ∈ I and |A| < |B|, there exists x ∈ B \ A such that A ∪ {x} ∈ I.

Matroids are discrete sets, whose convex hull are actually polymatroids. In the
following, we first illustrate how matroid induces a rank function, and how this rank
function defines a polymatroid which is the convex hull of the matroid.

Theorem 22 (Matroid Rank) Define r(S) = max{|X| | X ⊆ S,X ∈ I}, if M is a
matroid, then r(S) is a rank function.

Proof It follows from definition that r(S) is monotonically increasing and r(∅) = 0,
so we only need to verify the submodularity. For any i, j /∈ S, if r(S ∪ {i, j}) =
r(S ∪ {i}) or r(S ∪ {i, j}) = r(S ∪ {j}), it follows from monotonicity that r(S) +
r(S ∪ {i, j}) ≤ r(S ∪ {i})+ r(S ∪ {j}). If else, then r(S ∪ {i, j}) > r(S ∪ {i}) and
r(S ∪ {i, j}) > r(S ∪ {j}). Define A

.= argmax{|X| | X ⊆ S ∪ {i, j}, X ∈ I}. Note
that r(S ∪ {i, j}) = |A| and A \ j ⊆ S ∪ {i}, by the definition of independent set
A\j ∈ I, so r(S∪{i}) ≥ |A|−1 = r(S∪{i, j})−1. Because r(S∪{i}) < r(S∪{i, j}),
we have r(S ∪ {i}) = r(S ∪ {i, j})− 1. Similarly, r(S ∪ {j}) = r(S ∪ {i, j})− 1.

Define B
.= argmax{|X| | X ⊆ S,X ∈ I}. Because |B| = r(S) ≤ r(S ∪ {i}) <

r(S ∪ {i, j}) = |A|, it follows from definition of independent set that there exists
x ∈ A \ B with B ∪ {x} ∈ I. By the definition of B, x /∈ S because otherwise
B∪{x} ⊆ S is a larger independent set in S. Therefore, x ∈ (S∪{i, j})\S = {i, j},
so x = i or x = j . If x = i, then r(S ∪ {i}) ≥ |B + i| = |B| + 1 = r(S) + 1.
Similarly, if x = j , we also have r(S ∪ {j}) ≥ r(S) + 1 if x = j . Therefore, we
always have

r(S ∪ {i})+ r(S ∪ {j}) ≥ r(S)+ 1+ r(S ∪ {i, j})− 1 = r(S)+ r(S ∪ {i, j}).

In linear algebra, the set of linearly independent vectors forms an independent set
for ground set of all vectors in %N . The rank function induced by this independent
set is exactly the rank of the spanning space of a set of vectors.
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Theorem 23 (Matroid to Polymatroid) For a matroid M with induced rank
function r , define polytope P(M) = Conv{1S | S ∈ I}, then

P(M) = P(r,X) =
⎧
⎨

⎩
x ∈ %X+ |

∑

j∈S
xj ≤ r(S) ∀S ⊆ X

⎫
⎬

⎭

and it is a polymatroid.

Proof For any independent set A ∈ I and S ⊆ X, it follows from A ∩ S ∈ I that
r(S) ≥ |A ∩ S| =∑i∈S(1A)i . Therefore M ⊆ P(M).

Reversely, in the proof of Theorem 23 we showed that r(S ∪ {i}) − r(S) = 0
or 1. By the optimum solution structure in Theorem 12, all the vertices of polytope
P(M) are 0/1 vector. Suppose one vertex is v = 1A, which corresponds to set
A. If A is not an independent set, then by definition r(A) ≤ |A| − 1. However,∑

i∈A vi =∑i∈A 1 = |A| > r(A), which contradicts the constraint in the definition
of P(M). Therefore, any vertices of the polytope are an element in M.

For the matroid constrained rank function maximization problem:

max{f (S) : S ∈ I},

where f : 2N → %+ is a rank function and M = (N, I) is a matroid, we
introduce the algorithm in [30]. Firstly, they use the smooth-greedy algorithm to

obtain solution x such that F(x) ≥
(

1− 1
e
− o(1)

)
OPT , then they apply pipage

rounding to gradually round each indices to 0 or 1. Since the multi-linear extension
is defined by expectation form, rounding (or even greedy) would naturally yield
integer solution with better quality. To start with, we consider the smooth process:

Algorithm 4: Smooth differential equation

1 Initialization: set δ = 1
m2 , t = 0, yij (t) = 0 ;

2 For any y ∈ [0, 1]N , define I (y) = max{∑j∈S ∂
∂yj

F (y) | S ∈ I};
3 Define y(t) by differential equation y(0) = 0, d

dt
y(t) = 1I (y);

4 Output y(1);

The step 2 of solving I (y) is doable because it is equivalent to polymatroid
optimization problem as in Section 3.2, which can be solved by simple greedy
process.

Theorem 24 (Smooth Process) For the problem max{f (S) : S ∈ I} with rank
function r and polymatroid M = (N, I), the smooth process outputs

F(y(1)) ≥
(

1− 1

e

)

OPT .
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Proof Firstly, because 0 ≤ ∂
∂t
yj (t)) ≤ 1 for any index j ∈ N , y(t) is always

feasible for t ∈ [0, 1]. Define the optimum solution as S∗ = argmax{f (S) : S ∈ I},
then f (S∗) = OPT . For any y ∈ [0, 1]N , define random set Ry by independently
randomly selecting index i ∈ N with probability yi , and not selecting i with
probability 1− yi .

For any two sets S, T ⊆ N , we define fS(T ) = f (S + T )− f (S), and fS(j) =
fS({j}). By submodularity, for any set S ⊆ N we have:

OPT = f (S∗) ≤ f (S ∪ S∗) ≤ f (S)+
∑

j∈S∗
fS(j).

Define fRy (j) = ES∼RyfS(j) and notice that F(y) = ES∼Ryf (S), then

OPT ≤ ES∼Ry

⎡

⎣f (S)+
∑

j∈S∗
fS(j)

⎤

⎦

= F(y)+
∑

j∈S∗
fRy (j) ≤ F(y)+max

S∈I

∑

j∈S
fRy (j),

where the last inequality follows from the fact that S∗ ∈ I. Note that

F(y) =
∑

S⊆N
f (S)

∏

i∈S
yi
∏

i /∈S
(1− yi),

which implies that

∂

∂yj
F (y) = F(y | yj = 1)− F(y | yj = 0)

= E
[
f (Ry ∪ {j})− f (Ry \ {j})

] ≥ fRy (j).

Therefore, the differential equation process satisfies

d

dt
F (y(t)) =

∑

j∈I (y)

∂

∂yj
F (y(t))

= max
S∈I

∑

j∈S

∂

∂yj
F (y(t)) ≥ max

S∈I

∑

j∈S
fRy (j) ≥ OPT − F(y(t)).

Combine with the fact that F(y(0)) ≥ 0 = (1− e−0
)
OPT , we have for any t ∈

[0, 1],

F(y(t)) ≥ (1− e−t
)
OPT .
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Since the smooth solution can’t be obtained exactly, one can apply the following
algorithm for 1− 1

e
− o(1) approximation ratio:

Algorithm 5: Smooth greedy

1 Set δ = 1
M

, M ≥ N2, t = 0, y(0) = 0;
2 foreach t = 0, 1, 2, . . . ,M − 1 do
3 Define ωj (t) ∼ fRy(tδ)(j), which can be obtained within any required

error by sampling algorithm;
4 Define I (t) = argmax{sumj∈Sωj(t) | S ∈ I};
5 Take y((t + 1)δ) = y(tδ)+ δ1I (t)
6 end
7 Output y(1).

Many well-known combinatorial problems can be reformulated into matroid
constrained rank function maximization:

Problem 8 (The Submodular Social Welfare Problem) There are a set P (m
many) of players and a set N of resources. Player i’s utility function is wi(Si) if
receiving set Si of resources, which is assumed to be a rank function. How should
we distribute resources among a group of people, to maximize the social utility∑m

i=1 wi(Si)? Without losing generality, we assume that each resource is of single
unbreakable unit, and this assumption can be relaxed to multi-units without altering
the following process as well as its analysis.

By making m copies (i, j) of each item j , and an allocation {S1, S2, · · · , Sm}
uniquely corresponds to set S = ⋃m

i=1{(i, j) | j ∈ Si}. We obtain a matroid M is
defined by the ground set X = P ×N , the independent set

I = {S ⊆ X | |S ∩ {P × {j}}| ≤ 1 for all j ∈ N}.

Then the problem is reduced to classical matroid constraints rank function maxi-
mization.

When each player also faces the bin packing problem, the problem becomes the
general assignment problem.

Problem 9 (General Assignment Problem) There is a set P of players, and a set
N of items. Each player i has only 1 unit of capacity which can’t be exceeded.
Receiving the item j would yield utility vij , but also consumes capacity cij of the
player i.

Note that each player has a feasible set Fi ⊆ 2N of possible choices for each
player i, we can construct the matroid X = (X, I) by ground set X = {(i, Si) | Si ∈
Fi , i ∈ P }, and

I = {S ⊆ X | At most one set Si assigned to each player i}.
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To avoid assigning one item to multiple players, the objective function is changed to

f (S) =
∑

j∈N
max{vij : j ∈ Si, (i, Si) ∈ S}.

The GAP can also be solved via the so-called configuration LP approach as in
[13], which plays significant role in combinatorial optimization.

Algorithm 6: Configuration LP+greedy rounding

1 Define Vi(S) =∑j∈S vij ;
2 Solve the configuration LP problem

max
∑

i∈P
∑

S∈Fi
yi,SVi(S)

s.t.
∑

S∈Fi
yi,S ≤ 1 ∀i ∈ P

∑
(i,S):j∈S,S∈Fi

yi,S ≤ 1 ∀j ∈ N
yi,S ≥ 0 ∀i ∈ P, S ∈ Fi

to obtain the fractional optimum solution {yi,S};
3 For each player i, independently select one Si = S with probability yi,S ,

which is doable because
∑

S∈Fi
yi,S ≤ 1;

4 For each item j , allocate it to the player with the best value vij .

Note that for general assignment problem, step 2 of the above algorithm can
be solved by reformulating with a linear programming problem by assignment
variables xij for (continuous) amount of item j assigned to player i. Fleischer et
al. [13] showed that this greedy rounding algorithm yields 1 − 1

e
approximation

ratio:

Theorem 25 The configuration LP can be solved exactly, and the greedy rounding
yields 1− 1

e
approximation ratio with respect to the fractional solution.

Problem 10 (Budget Constrained Maximization) Given a monotone submodular
function f : 2N → %+, suppose we can evaluate f (S) for any S ⊆ N . And for
each item i ∈ N it consumes nonnegative budget of ci . How should we solve budget
constrained problem:

max

{

f (S) :
∑

i∈S
ci ≤ B, S ⊆ N

}

.

The first 1 − 1
e
− o(1) approximation algorithm for the budget constrained

maximization problem was achieved by Sviridenko [28], later improved by Badani-
diyuru and Vondrák [2] and Ene and Nguyen [9]. The detailed algorithms are quite
involved and lengthy, readers may refer to the listed research papers for reference.
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All algorithms split the items into two groups, those with large value and those
with small value. The large valued ones are of small number, which can be guessed,
or decided with the help of multi-linear extension form. For the small valued ones,
missing one small valued items due to capacity would lose at most ε ratio. Therefore
one can simply apply cost-efficiency greedy approach to fill the capacity.

4 Discrete Convexity in Dynamic Programming

Submodularity and other discrete convex properties are also very useful in dynamic
and online decision problems. In Section 4.1, we present the concept of L�-
convexity. Applications in dynamic inventory control problems are discussed in
Section 4.2. In Section 4.3, online matching problems are introduced.

4.1 L�-Convexity

All the discussions of submodular function optimization in Section 3 are focused on
set functions. In most practical problems, one needs to deal with decision variables
in broader domain. Since the submodular function minimization relies heavily on
Lovasz extension, a natural question is, when would the Lovasz extension of a
function coincide with its convex hull in common discrete domain?

Definition 10 (L�-Convex Set) A set D ⊆ ZN is called L�-convex, if {(x, t) |
x − te ∈ D, t ∈ Z+} is a sublattice, i.e.,

(x + te) ∧ y ∈ D and x ∨ (y − te) ∈ D for all x, y ∈ D, t ∈ Z+,

where e ∈ %N is the all one vector.

Definition 11 (L�-Convex Function) For L�-convex domain D, we call a function
f : L→ % a L�-convex if the function g(x, t) = f (x−te) is a submodular function
on sublattice domain {(x, t) | x − te ∈ D, t ∈ Z+}.
Theorem 26 The condition of L�-convexity is equivalent to: (Condition A) f (x)+
f (y) ≥ f ((x+ te)∧y)+f (x∨(y− te)) for any x, y ∈ D, t ∈ Z+. When D = ZN ,
the next two conditions are also equivalent conditions for L�-convexity:

1. (Condition B) f (x)+ f (y) ≥ f (� x+y2 �)+ f (� x+y2 �) for any x, y ∈ D.
2. (Condition C) If we define the Lovasz extension f L(x) within each integer grid,

and merge them together, it is well defined and coincides with the convex hull:
f L = f−.
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Note: when the function f : %N → % is a C2 function defined on continuous
domain, the condition is equivalent to the Hessian of M = ∇2f (x) that is always a
diagonal dominated M-matrix for any x, i.e., Mij ≤ 0 for all i = j .

Proof Firstly, for any x, y ∈ D, t ∈ Z+, we denote z = x+te. Then (z, t)∨(y, 0) =
(z ∨ y, t), (z, t) ∧ (y, 0) = (z ∧ y, 0), z ∨ y − te = x ∨ (y − te). Notice that

f (x)+ f (y)− f ((x + te) ∧ y)− f (x ∨ (y − te))

= g(z, t)+ g(y, 0)− g((z, t) ∧ (y, 0))− g((z, t) ∨ (y, 0)).

So the condition (A) is equivalent to the submodularity of g.
Secondly, we show that condition (B) implies submodularity of g when the

domain D = ZN , and vice versa. Note that we only need to verify the submodularity
locally, i.e.:

1. g(x, t)+ g(x + ei + ej , t) ≤ g(x + ei, t)+ g(x + ej , t) for all i = j , where ei
is unit length vector which only takes value of 1 at index i,

2. g(x, t)+ g(x + ei, t + 1) ≤ g(x + ei, t)+ g(x, t + 1) for all x ∈ D, i ∈ N , and
t ∈ Z+.

The first inequality follows from

f (x+ei−te)+f (x + ej − te) ≥ f (x − te + �ei + ej

2
�)+ f (x − te + �ei + ej

2
�)

= f (x − te)+ f (x − te + ei + ej ).

The second inequality follows from

f (x+ei−te)+f (x − (t + 1)e) ≥ f (x − te + �ei − e

2
�)+ f (x − te + �ei − e

2
�)

= f (x + ei − (t + 1)e)+ f (x − te).

Reversely, when g is submodular, we start with the case |xi − yi | ≤ 1 for all
i ∈ N , � x+y2 � = x ∧ y, and � x+y2 � = x ∨ y. Therefore

f

(

�x + y

2
�
)

+ f

(

�x + y

2
�
)

= g(x ∧ y, 0)+ g(x ∨ y, 0)

≤ g(x, 0)+ g(y, 0) = f (x)+ f (y).

Now we prove that condition (A) woud imply condition (B). If condition (B) is
violated by some pair of (x, y), we define (x∗, y∗) as the minimal pair which
violates the condition (B), i.e., solution for

min{‖x − y‖1 | f (x)+ f (y) < f

(

�x + y

2
�
)

+ f

(

�x + y

2
�
)

, x, y ∈ D′},
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where we can constraint D is a finite box neighborhood D′ of a violation pair. For
the inequality to hold, there exists at least one index k such that |x∗k − y∗k | ≥ 2.
Without losing generality, we assume x∗k ≤ y∗k − 2. Note that for any xi, yi ∈ Z,
if xi ≤ yi − 1, then min{xi + 1, yi} = xi + 1 and min{xi, yi − 1} = yi − 1,
if xi ≥ yi − 1, then min{xi + 1, yi} = yi and min{xi, yi − 1} = xi . Therefore
(x∗ +e)∧y∗ +x∗ ∨ (y∗ −e) = x∗ +y∗, and |((x∗ +e)∧y∗)i− (x∗ ∨ (y∗ −e))i | ≤
|x∗i − y∗i | for all index i. Furthermore,

|((x∗ + e) ∧ y∗)k − (x∗ ∨ (y∗ − e))k| ≤ |y∗i − x∗i − 2| = y∗k − x∗k − 2 < y∗k − x∗k ,

which implies that ‖(x∗+e)∧y∗−x∗∨(y∗−e)‖1 < ‖x∗−y∗‖1. Because (x∗, y∗)
is the minimal pair which violates the condition, and the fact that (x∗ + e) ∧ y∗ +
x∗ ∨ (y∗ − e) = x∗ + y∗, we have

f ((x∗ + e) ∧ y∗))+ f (x∗ ∨ (y∗ − e)) ≥ f (�x
∗ + y∗

2
�)+ f (�x

∗ + y∗

2
�).

However, it follows from condition (A) that

f (x∗)+ f (y∗) ≥ f ((x∗ + e) ∧ y∗))+ f (x∗ ∨ (y∗ − e)).

These two inequalities contradict the definition of (x∗, y∗), so we proved that there
is no pair x, y ∈ ZN which can violate condition (B).

Thirdly, we establish the equivalence of L�-convexity with the convexity of
Lovasz extension. When f is L�-convex, it has been established that f is submod-
ular in each small grid; therefore, we can define f L in each grid. Next we prove
this definition coincides with the convex extension, by showing that for convex
combinations of x = ∑z∈D αzz, the minimum combination of function values can
be achieved in the smallest grid near x, for any x with no integer value. For those
x with integer value, i.e., within intersection of multiple small grids, we can apply
continuity argument.

For each given finite convex combination x = ∑
z∈D λzz with value V =∑

z∈D αzf (z), the support {z | αz > 0} is a finite set and can be assumed to be
contained in a finite box B = [−M,M]N . Consider all convex combinations of x in
B with better value, i.e., Λ = {λ |∑z∈B λzf (z) ≤ V,

∑
z∈B λz = 1, λ ≥ 0} which

is nonempty because α ∈ Λ. Define the potential function P(λ) = ∑z∈B λz‖z‖22
for convex combination λ defined on B. And define β as the solution for min{P(λ) |
λ ∈ Λ}, with support Suppβ = {z | βz > 0}. If it is not contained in the smallest
box, then there exists u, v ∈ Suppβ and index i such that vi − ui ≥ 2. It follows
from the condition (A) that we can find w = (u+e)∧v, y = u∨(v−e) ∈ D, which
satisfies f (u)+ f (v) ≥ f (w)+ f (y), u+ v = w+ y, and w, y ∈ B. Furthermore,
for each index j , note that if uj ≥ vj − 1, then wj = vj and yj = uj , and if
uj ≤ vj − 2, then wj = uj + 1 and yj = vj − 1, therefore u2

j + v2
j ≥ w2

j + y2
j for
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all j ∈ N , and u2
i + v2

i − 2 ≥ w2
i + y2

i . Therefore, denoting δ = min{βu, βv} > 0,
the convex combination β̂ defined as

β̂z =
⎧
⎨

⎩

βz, if z ∈ B\{u, v,w, y}
βz − δ, if z ∈ {u, v}
βz + δ, if z ∈ {w, y}

satisfies

∑
z∈B β̂zz =∑z∈B βzz+ δ(w + y − u− v) =∑z∈B βzz = x

∑
z∈D β̂zf (z) =∑z∈D βzf (z)+ δ(f (w)+ f (y)− f (u)− f (v)) ≤∑z∈D

βzf (z)=VP (β̂)=∑z∈D β̂z‖z‖2=∑z∈D βz‖z‖2+δ(‖w‖2+‖y‖2 − ‖u‖2 − ‖v‖2)
≤∑z∈D βz‖z‖2 − 2δ ≤ P(β)− 2δ,

which contradicts with the minimum of potential function in the definition of β.
Therefore, we showed that for the minimum convex combination β in the definition
of f−(x), zj = �xj �, or �xj � for any z ∈ Suppβ and index j ∈ N . Therefore f L

coincides with the f−, which is well defined and convex.
Reversely, if f L = f−, for any x, y ∈ D we have

f (x)+ f (y) ≥ 2f−(x + y

2
) = 2f L(

x + y

2
) = f (�x + y

2
�)+ f (�x + y

2
�).

For C2 function f defined on continuous domain, note that for any x ∈ %N and
t ∈ %+,

f (x + tei)+ f (x − te)− f (x + tei − te)+ f (x)

=
∫ t

s=0

∫ t

r=0

N∑

j=1

∂2

∂xi∂xj
f (x + sei + re − te)dsdr,

the submodularity of g across xi and t is equivalent to diagonal dominance of
∇2f (x) on index i. Also, for any i = j ∈ N ,

f (x + tei)+ f (x + tej )− f (x)− f (x + tei + tej )

=
∫ t

s=0

∫ t

r=0

N∑

j=1

∂2

∂xi∂xj
f (x + sei + rej )dsdr,

so the submodularity of g across xi and xj is equivalent to the off-diagonal (i, j)-th
element of symmetric matrix ∇2f (x) that is non-positive.

Theorem 27 For a L�-convex function f : D → % defined on L�-convex domain
D = ZN , any local minimum solution x, i.e., f (x) ≤ f (y) for all y ∈ D such that
‖y − x‖∞ ≤ 1, is also a global minimum solution.
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Proof This result directly follows from the fact that x is local minimum for convex
function f L. Alternatively, we can establish the result via combinatorial approach:

Define set S = {y | f (z) < f (x), z ∈ D}. If S is nonempty, there exists y ∈ S

(may be not unique) which is closest to x in L1 distance. Because x is local optimum
and f (x) > f (y), ‖y − x‖∞ ≥ 2. It follows 2f (x) > f (x)+ f (y) ≥ f (� x+y2 �)+
f (� x+y2 �) that min{f (� x+y2 �), f (� x+y2 �)} < f (x). But when ‖y − x‖∞ ≥ 2, both
� x+y2 � and � x+y2 � are strictly closer to x than y. Therefore both � x+y2 � and � x+y2 � are
not in S, which contradicts with the fact that min{f (� x+y2 �), f (� x+y2 �)} < f (x).

Because local minimum is global minimum, minimization of L�-convex function
can be achieved by local search of improving directions, readers may refer to [26]
for details. When precision can be traded for speed, the gradient projection approach
in Theorem 15 should be applied, if the effective domain is compact.

4.2 L�-Convexity in Dynamic Inventory System

In this subsection, we introduce some important applications of submodular func-
tion optimization. In particular, many inventory related problems arise in supply
chain management, where one needs to handle complex inventory system dynam-
ically. Because inventory of different goods may substitute for each other, and
inventory for perishable goods (e.g., fresh fruit, fresh milk, etc.) with different
expiration dates is also substitutable for each other, we often model the problem by
submodularity or other related properties, and utilize these properties for obtaining
better inventory strategy.

There are many applications of L�-convex function in dynamic inventory
management. We start with a simple example. Suppose there is a retailer who has n
classes of goods, while class i− 1 goods can be updated to class i (i = 2, 3, · · · , n)
with upgrading cost ci per unit overnight. The retailer can also purchase from
supplier for class 1 goods with cost c1 per unit overnight. There are random demand
Dt

i of type i goods at day t , and unsatisfied demand will be backlogged (booked
for future sales) with penalty cost bi per unit day. Unsold class i goods will incur
holding cost hi per unit day. The retailer needs to decide the amount qt1 of class
1 goods to purchase from supplier, as well as the amount qti upgraded for class i

goods from class i − 1, i = 2, · · · , n. Denote the inventory of class i goods at the
beginning of day t as I ti , then I t+1

i = I ti + qti −Dt
i − qti+1. Therefore the decision

corresponds to dynamic programming:

Vt (I
t ) = EDt min

{
n∑

i=1

ciq
t
i +

n∑

i=1

fi(I
t
i −Dt

i )+ Vt+1(I
t+1) : 0 ≤ qti

}

,

where fi(x) = −bix if x ≤ 0 and fi(x) = hix if x ≥ 0, VT+1 ≡ 0, and the
overnight decision qt depends on the realized demand Dt during the day. It we take
the transformation of Sti =

∑
j≥i I ti , then St+1

i = Sti + qti −
∑

i≥s Dt
i , and I ti =
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Sti − Sti+1. We define Ct(S
t ) = Vt (I

t ), which satisfies the dynamic programming:

Ct(S
t ) = EDt min

⎧
⎨

⎩

n∑

i=1

ci

⎛

⎝St+1
i − Sti −

∑

i≥s
Dt

i

⎞

⎠+
n∑

i=1

fi(S
t+1
i − St+1

i+1)

+Vt+1(I
t+1) : St+1

i ≥ Sti +
∑

j≥i
Dt

i

⎫
⎬

⎭
.

Next, we show that the function C is always L�-convex, and the function V

is a so-called multimodular function. For this purpose, we need to establish that
L�-convexity can be preserved under minimization, similar to the preservation of
submodular property in Theorem 7. We refer to a theorem in [33]:

Theorem 28 (Preservation of L�-Convexity) Suppose S ⊆ X × Y is a L�-
convex set, and f : S → % is a L�-convex function. Then the function g(y) =
min{f (x, y) | (x, y) ∈ S} is a L�-convex function defined on L�-convex set
T = {y | ∃(x, y) ∈ S}
Proof We first prove the L�-convexity of T by definition. For any given y− te, y′ −
t ′e ∈ T with t, t ′ ∈ Z+, by definition there exists x, x′ ∈ X such that (x, y −
te), (x′, y′ − t ′e) ∈ S. Define z = x + te and z′ = x′ + te, then (z, y) − te =
(x, y − te) and (z,′ , y′)− t ′e = (x′, y′ − t ′e). By L�-convexity of S,

(z ∨ z′ − (t ∨ t ′)e, y ∨ y′ − (t ∨ t ′)e) = (z, y) ∨ (z′, y′)− (t ∨ t ′)e ∈ S

and

(z ∧ z′ − (t ∧ t ′)e, y ∧ y′ − (t ∧ t ′)e) = (z, y) ∧ (z′, y′)− (t ∧ t ′)e ∈ S.

It follows that y ∨ y′ − (t ∨ t ′)e ∈ T and y ∧ y′ − (t ∧ t ′)e ∈ T .
Next, we establish the L�-convexity of function g by constructive approach.

Define h(x, y, t) = f ((x, y) − te) and ĥ(y, t) = g(y − te). For any given
y − te, y′ − t ′e ∈ T with t, t ′ ∈ Z+, by definition there exists x, x′ ∈ X

such that f (x, y − te) = g(y − te) and f (x′, y′ − t ′e) = g(y′ − t ′e). Define
z = x + te and z′ = x′ + te, then g(y − te) = f ((z, y) − te) = h(z, y, t) and
g(y′ − t ′e) = f ((z′, y′) − t ′e) = h(z′, y′, t ′). By definition of L�-convexity, the
function h is submodular, therefore

h(z, y, t)+ h(z′, y′, t ′) ≥ h(z ∨ z′, y ∨ y′, t ∨ t ′)+ h(z ∧ z′, y ∧ y′, t ∧ t ′).

It follows from (z, y)− te = (x, y − te) ∈ S and (z′, y′)− t ′e = (x′, y′ − t ′e) ∈ S
that

(
z ∨ z′ − (t ∨ t ′)e, y ∨ y′ − (t ∨ t ′)e

) ∈ S, therefore

h(z∨z′, y∨y′, t∨ t ′) = f (z∨z′−(t∨ t ′)e, y∨y′−(t∨ t ′)e) ≥ g(y∨y′−(t∨ t ′)e).



116 S. Cao and S. He

Similarly,

h(z∧z′, y∧y′, t∧ t ′) = f (z∧z′−(t∧ t ′)e, y∧y′−(t∧ t ′)e) ≥ g(y∧y′−(t∧ t ′)e).

Combine these inequalities together, we obtain

g(y − te)+ g(y′ − t ′e) ≥ g(y ∨ y′ − (t ∨ t ′)e)+ g(y ∧ y′ − (t ∧ t ′)e),

which implies the L�-convexity of function g.

Furthermore, for the dynamic inventory control problem we notice the following
two facts:

1. The set (x, y) ∈ %2 | x − y ≤ c} is L�-convex.
2. For convex function f : % → %, f (x − y) is always L�-convex.

Therefore, if Ct+1 is L�-convex, for each given Dt , so is the function FDt (St ) =

≥ Sti +
∑

j≥i Dt
i

}
. By linearity in definition of L�-convexity, we know that

Ct+1(S
t ) = EDtFDt (St ) is also L�-convex. So we can inductively establish the

L�-convex property for Ct :

Theorem 29 The function Ct is L�-convex, and the original function Vt is multi-
modular.

Definition 12 (Multimodular Function) A function f : X → % is defined on
S ⊆ %N , which is X = {x : aTj x ≤ b, j = 1, 2, · · · ,m}, where each aj is of form
∑L

i=K ei , i.e., vector with value 1 on consecutive indices, and 0 if else, or
∑L

i=K ei ,
for different 1 ≤ K ≤ L ≤ N . If Φ(x) = f (x1 − y, x2 − x1, · · · , xN − xN−1) is
submodular on S = {(x, y) ∈ %N+1 | (x1 − y, x2 − x1, · · · , xN − xN−1) ∈ X} is a
submodular function, we say f is a multimodular function.

Multimodular function is essentially L�-convex function under a linear transfor-
mation, which was established in [24]:

Theorem 30 Suppose we define set Z = {z ∈ %N | (z1, z1− z2, z2− z3, · · · , zn−
zn−1) ∈ X} = {z | (z, 0) ∈ S} and function g(z) = f (z1, z1−z2, z2−z3, · · · , zn−
zn−1). Then f : X → % is a multimodular function, is equivalent to g : Z → %,
and is a L�-convex function.

Multimodularity, or equivalently under transformation, L�-convexity are used
to characterize the dynamic decision systems and the corresponding optimum
solutions for inventory management of perishable goods [4] and [21], as well as
the queueing system [1].

For optimizing the L�-convex functions in the dynamic system, one could not
simply apply the greedy local search algorithm, because the state space is expo-
nentially large which makes it impossible to recursively solve for function values
at all states as the classical dynamic programming approach does. Therefore, one

min
{∑n

i=1 ci(S
t+1
i − St

i − ∑
i≥s Dt

i ) + ∑n
i=1 fi(S

t+1
i − St+1

i+1) + Vt+1(I
t+1) : St+1

i
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can only hope to solve the problem approximately in dynamic system by adaptive
approximation approach, which uses classes of simple functions to approximate
each Vt , and recursively find the best approximation for each state function Vt . In
particular, [22] uses linear functions for inventory problem of perishable goods.
In Sun et al. [27], a class of quadratic functions has been used, according to the
following Lemma they established based on Murota’s characterization of quadratic
L� functions:

Lemma 3 A quadratic function f : %N → % is multimodular if and only it can be
expressed as f (x) =∑N

i=1
∑i

j=1 Q
ij (
∑i

l=j xl), where Qij (x) = aij x
2+ bij + cij

with aij ≥ 0.

Recently, Chen et al. [4] develop the basis function approach which approximates
the original function by a linear combination F̂ (x) = ∑N

i=1
∑i

j=1 B
ij (
∑j

l=i xl)
of basis functions Bij , which can be recursively constructed by solving single
dimensional optimization problems. This approach is much more flexible by
allowing a much broader class of functions to be used to approximate the original
function, and does achieve significant improvement in practice.

4.3 Online/Dynamic Matching

Submodularity also has important applications in dynamic matching. To begin with,
we analyze the static matching. Consider the bipartite matching problem with two
sets (A and B) of nodes, and edges (i, j) ∈ E ⊆ A × B. Each edge (i, j) ∈ E is
associated with a weight wij . The objective is to match the nodes to maximize the
total matching weight, constraint to that each node can be matched to at most one
node. This problem can be modeled by:

W(A,B) = max
∑

i∈A,j∈B wij xij

s.t.
∑

j∈B xij ≤ 1∀i ∈ A
∑

i∈A xij ≤ 1∀j ∈ B
xij = 0 or 1∀i ∈ A, j ∈ B.

Since the constraint matrix is unimodal, there is no integrality gap, we can replace
the integer constraints by xij ≥ 0.

We can even consider a more general formulation:

U(a, b) = max
∑

i∈A,j∈B wij xij

s.t.
∑

j∈B xij ≤ ai∀i ∈ A∑
i∈A xij ≤ bj∀j ∈ B

xij ≥ 0,

which satisfies W(A,B) = U(1A, 1B).
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Intuitively, we can view a and b as resources, and resources in a (or b) are
substitutes to each other, so adding more and more resources in a (or b) has
diminishing return. However, resources in a are complementary to those in b, so
adding resource in a would boost the values of resources in b, and vice versa. Next,
we show the function U(a, b) is submodular within a, b, but supermodular across
them:

Theorem 31 The function U(a,−b) is submodular! By setting a = 1A and b =
−1B), we know that W(A,B) is submodular in A for fixed B.

Proof Taking the dual, we have

U(a,−b)

= min

⎧
⎨

⎩

∑

i∈A
aiyi −

∑

j∈B
bj zj | y ∈ %A+, z ∈ %B+, yi + zj ≥ wij ,∀i ∈ A, j ∈ B

⎫
⎬

⎭
.

By defining variable v = −y, it becomes

U(a,−b)

= min

⎧
⎨

⎩
−
∑

i∈A
aivi−

∑

j∈B
bj zj | v ∈ %A−, z ∈ %B+,−vi+zj ≥ wij ,∀i ∈ A, j ∈ B

⎫
⎬

⎭
.

Note that the objective function −aT v − bT z is submodular in (a, b, v, z), and the
feasible domain is a lattice, by Theorem 7 the function U(a,−b) is submodular.

For online matching problems, submodularity or equivalently the diminishing
return property plays a crucial role. We present a more general online matching
case in [19].

Problem 11 There is a fixed group A of players, and a group of items arrive
stochastically. The items are of different types j ∈ T , at each time t the type jt
of the item arrives following an i.i.d distribution. At the end (time N ), player i

receives Si of items, with submodular utility Vi(Si). We need to match each item at
the time it arrives, and aim at maximizing the total matching score at the end. One
thing to note that is, by setting Vi(Si) = maxj∈Si wij , we can reduce this problem
to an online bipartite matching problem.
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Consider the following greedy allocation rule:

Algorithm 7: Greedy online matching

1 Initialize with S0
i = ∅ for all i ∈ A. foreach t = 1, 2, . . . , N do

2 Match the item arrives (of type jt ) to player it with maximum matching
weight (or equivalently, maximum improvement) ;

3

it = argmax{Vi(S
t−1
i ∪ {jt})− Vi(S

t−1
i ) | i ∈ St−1}

Stit = St−1
it
∪ {it }, Sti = St−1

i for all i = it ;
4 end

Theorem 32 The greedy algorithm achieves 1− 1
e

approximation ratio.

Proof By submodularity of Vi and two sets X and Y of items, we have Vi(X∪Y )−
Vi(X) ≤∑j∈Y cj (Y )[Vi(X∪{j})−Vi(X)]. Denote pj as the arrival probability of
type j items, and cj (S) as the type j items used in set S, then the optimum offline
matching value with expected number of arrival is bounded by:

OPT ≤ max
∑

i∈A,S Vi(S)xi,S
s.t.

∑
i∈A
∑

S:j∈S xi,Scj (S) ≤ pjN,∀j ∈ T
∑

S xi,S ≤ 1,∀i ∈ A
xi,S ≥ 0,∀i ∈ A and set S.

Denote yij = ∑S:j∈S xi,Scj (S) and zij = yij
pjN

, then
∑

i∈A zij ≤ 1 and z ≥ 0.
When item of type j arrives at time t , consider the random allocation which assigns
this item to player i with probability zij . Then the expected gain is

∑

i,j

pj zij [Vi(St−1
i ∪ {j})− Vi(S

t−1
i )] = 1

N

∑

i,j

yij [Vi(St−1
i ∪ {j})− Vi(S

t−1
i )].

The greedy has at least the expected gain, denote actual matching value at stage t as
V t . Therefore,

E[V t ] − V t−1 ≥ 1

N

∑

i,S

xi,S

⎡

⎣
∑

j∈S
cj (S)[Vi(St−1

i ∪ {j})− Vi(S
t−1
i )]

⎤

⎦

≥ 1

N

∑

i,S

xi,S[Vi(St−1
i ∪ S)− Vi(S

t−1
i )].
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Therefore

E[V t ] − V t−1 ≥ 1

N
OPT − 1

N

∑

i,S

xi,SVi

(
St−1
i

)

≥ 1

N

[

OPT −
∑

i

Vi(S
t−1
i )

]

= 1

N

[
OPT − V t−1

]
.

This approximation ratio is tight in online stochastic matching scenario, and
similar algorithms and analyses have been established for other online matching
and online allocation problems [10, 20, 32], etc.

The diminishing return effect from submodularity can be applied to quantify
the matching efficiency, when we combine matching stages with other type of
operations, in algorithm design. In a recent work, He et al. [7] studied the matching
problem in kidney exchange, which matches donated kidneys from non-directed
donors, as well as kidneys from relatives of patients who does not match with
own targeted relative, to other patients. The matching process has been divided
into two stages, in the first stage random walk mechanism has been applied to
achieve efficient chains in difficult patients, and in the second stage bipartite
matching algorithms are applied to further reduce number of unmatched patients.
Submodularity of second stage matching score, with respect to the available
(unmatched) difficult patients for matching at beginning of stage two, is utilized
to transfer the analysis in stage one, to an analysis of the full mechanism. By
this approach, the first non-asymptotic bound on matching efficiency has been
established for medium size random graphs.
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Thresholding Methods for Streaming
Submodular Maximization
with a Cardinality Constraint
and Its Variants

Ruiqi Yang, Dachuan Xu, Min Li, and Yicheng Xu

Abstract Constrained submodular maximization (CSM) is widely used in numer-
ous data mining and machine learning applications such as data summarization,
network monitoring, exemplar-clustering, and nonparametric learning. The CSM
can be described as: Given a ground set, a specified constraint, and a submodular
set function defined on the power set of the ground set, the goal is to select a subset
that satisfies the constraint such that the function value is maximized. Generally,
the CSM is NP-hard, and cardinality constrained submodular maximization is
well researched. The greedy algorithm and its variants have good performance
guarantees for constrained submodular maximization. When dealing with large
input scenario, it is usually formulated as streaming constrained submodular
maximization (SCSM), and the classical greedy algorithm is usually inapplicable.
The streaming model uses a limited memory to extract a small fraction of items
at any given point of time such that the specified constraint is satisfied, and good
performance guarantees are also maintained. In this chapter, we list the up-to-date
popular algorithms for streaming submodular maximization with cardinality con-
straint and its variants, and summarize some problems in streaming submodular
maximization that are still open.

R. Yang · D. Xu
Department of Operations Research and Scientific Computing, Beijing University of Technology,
Beijing, People’s Republic of China
e-mail: yangruiqi@emails.bjut.edu.cn; xudc@bjut.edu.cn

M. Li (�)
School of Mathematics and Statistics, Shandong Normal University, Jinan, People’s Republic
of China
e-mail: liminemily@sdnu.edu.cn

Y. Xu
Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen,
People’s Republic of China
e-mail: yc.xu@siat.ac.cn

© Springer Nature Switzerland AG 2019
D.-Z. Du et al. (eds.), Nonlinear Combinatorial Optimization,
Springer Optimization and Its Applications 147,
https://doi.org/10.1007/978-3-030-16194-1_5

123

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16194-1_5&domain=pdf
mailto:yangruiqi@emails.bjut.edu.cn
mailto:xudc@bjut.edu.cn
mailto:liminemily@sdnu.edu.cn
mailto:yc.xu@siat.ac.cn
https://doi.org/10.1007/978-3-030-16194-1_5


124 R. Yang et al.

1 Introduction

Submodular maximization (SM) is widely used in machine learning, such as
data summarization [2], budget allocation [1, 23], recommender systems [8, 19],
and nonparametric learning [13]. Submodular maximization with constraints like
cardinality, knapsack, and matroid gives rise to a lot of interest [11, 17, 21, 22]. In
constrained submodular maximization (CSM), we are given a ground set V of size
n, a specified constraint ξ , and a submodular set function f : 2V → R+. The goal
is to choose a set S ∈ ξ such that f (S) is maximized, i.e.,

max
S⊆V,S∈ξ f (S).

Let ξ be a cardinality constraint, that is, to say, choose a subset S ⊆ V with
|S| ≤ k such that f (S) is maximized, where k is an given integer. The submodular
maximization with a cardinality constraint is generally NP-hard proofed by Feige
[11]. Under the assumption of monotonicity and non-negativity, Nemhauser et
al. [21] give a simple and effective greedy algorithm by choosing a marginal
gain maximum item with respect to current solution in each iteration. The greedy
algorithm obtains a (1−e−1)-approximation, and the performance guarantee is tight
in several classes of monotone submodular functions which is showed by Feige [11]
and Nemhauser and Wolsey [20]. The marginal gain can be defined as follows. In
streaming submodular maximization with cardinality constraint (SSMCC), either
the items arrive in a stream fashion or the ground set cannot fit in the main memory,
which leads to great loss of efficacy. Badanidiyuru et al. [2] first measure the
performance of streaming algorithms by four parameters as follows:

• the #passes, the number of the algorithm called over the stream;
• the memory, bounded by maxt |Mt |, where Mt is the main memory at time t ;
• the running time, defined as the number of oracle queries make;
• the approximation ratio, the ratio of the final solution set value over the optimum.

The rest of this chapter is organized as follows.
In Section 2, we introduce the sieve-streaming algorithms presented by Badani-

diyuru et al. [2], who give the first effective streaming algorithm by carefully
choosing threshold value for SSMCC.

In Section 3, we investigate the variants of SSMCC. In particular, we review the
algorithms introduced by Epasto et al. [10], who consider a more generalized model
that defined as submodular maximization with a cardinality constraint over sliding
windows (SMCCSW) in Section 3.1. In Section 3.2, following from the work of
Mitrović et al. [19], who consider a streaming robust submodular maximization
(SRSM), we recommend the partitioned threshold approach. In Section 3.3, we
present the streaming algorithms for dynamic deletion-robust submodular maxi-
mization (DDRSM), which was defined by Mirzasoleiman et al. [18]. Motivated
by the “right to be forgotten,” in their scenario, the item set generates at a fast pace
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and in real time, at any time point, there is an arrived subset and a deletion subset.
The goal is to decide a series of solution sets over time.

In Section 4, we firstly introduce the elegant guarantees on the performance of
greedy for maximizing nonsubmodular function which are measured by submodular
ratio and generalized curvature combined by Bian et al. [3]. Secondly, We restate
a streaming algorithm for maximizing weakly submodular introduced by Elenberg
et al. [9].

In Section 5, we restate some other applications of thresholding methods for
streaming constrained submodular maximization including streaming submodular
maximization with a knapsack [14], d-knapsack [25], and p-matchoid constraint
[4, 12], just to name a few.

2 Thresholding Methods for Streaming Submodular
Maximization with Cardinality Constraint

SSMCC can be formally defined as follows. A ground streaming set V =
{e1, . . . , en} is ordered in an arbitrary manner, nonnegative monotone submodular
function f : 2V → R+, at each iteration t , any algorithm may derive a candidate
set Mt ⊆ V , and be ready to output a solution set St ⊆ Mt with |St | ≤ k. For any
S ⊆ V, e ∈ V , define Δf (e|S) = f (S ∪ e) − f (S) as the marginal gain of item
e to set S. Badanidiyuru et al. [2] present their sieve-streaming algorithms by three
parts which depend on if we know any information of the optimal solution.

2.1 Sieve-Streaming in Case the Optimum is Known

Let opt be the optimum, and assume we know opt in advance. Set v is an α-
approximation of optimum with v ∈ [αopt, opt], where α ∈ [0, 1] is a constant.
Let T = βv−f (St−1)

k−|St−1| be the threshold value, where β(> 0) is a parameter and St−1

is the solution set just before encountering et in the stream. Then the streaming
algorithm can be restated as Algorithm 1.

Algorithm 1 Sieve-streaming-know-opt
Input: v ∈ [αopt, opt], β ∈ (0, 1)
1: S0 ← ∅, t = 1
2: if Δf (et |St−1) ≥ T and |St | ≤ k then
3: St ← St−1 + et
4: t ← t + 1
5: end if
6: return Sn
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Lemma 1 ([2]) For any iteration t of Algorithm 1, we have

f (St ) ≥ βv|St |
k

.

Proof We show the proof by induction.

• Base case, the lemma obviously holds for t = 0, i.e., St = ∅.
• Inductions step. Assume the lemma holds for St−1, i.e.,

f (St−1) ≥ βv|St−1|
k

.

At time t , item et arrives, and is added to St−1, we have

f (St−1 ∪ et )− f (St−1) ≥ βv − f (St−1)

k − |St−1| ,

where the inequality follows from Algorithm 1. Then

f (St ) = f (St−1 ∪ et ) ≥ (1− 1

k − |St−1| )f (St−1)+ βv

k − |St−1|
≥ (1− 1

k − |St−1| )
βv|St−1|

k
+ βv

k − |St−1|
= βv(|St−1 + 1|)

k

= βv(|St |)
k

,

where the second inequality is obtained by the assumption in induction step.

Theorem 1 ([2]) At the end of Algorithm 1, we have

f (Sn) ≥ max{αβ, 1− β}opt.

Proof

• Case 1. If Sn = k, we have

f (Sn) ≥ αβopt,

which follows from Lemma 1.
• Case 2. If Sn < k, we assume OPT \Sn = {o1, . . . , ol}, let OPTi = {o1, . . . , oi}

for any i ∈ [l], and set Si be the current solution set just encountering oi for any
i ∈ [l]. By Algorithm 1,

Δf (oi |Si) < βv − f (Si)

k − |Si | ≤
βv

k
.
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Then

opt − f (Sn) ≤ f (Sn ∪OPT )− f (Sn)

=
l∑

i=1

(f (Sn ∪OPTi)− f (Sn ∪OPTi−1))

≤
l∑

i=1

(f (Si ∪ oi)− f (Si)

≤ lβv

k

≤ βopt,

where the first inequality follows from the monotonicity. Thus,

f (Sn) ≥ (1− β)opt.

Corollary 1 ([2]) For any ε > 0, α = 1 − ε, and β = 0.5, Algorithm 1 makes
one pass over the stream, and keeps (0.5 − ε)-approximation, while the memory is
bounded by O(k) and the running time is O(n), for SSMCC.

2.2 Sieve-Streaming in Case We Know the Maximum

If we know m = maxe∈V f (e), we can guess the opt by geometric series in
candidate set O = {(1 + ε)i |i ∈ Z, (1 + ε)i ∈ [m, km]}, while guessed value

just sacrifices a small factor. For any candidate v, let T = βv−f (Svt−1)

k−|Svt−1| , where Svt−1

be the solution set just before encountering et according to v. The algorithm can be
redescribed as follows (see Algorithm 2).

Algorithm 2 Sieve-streaming-know-maximum
Input: m = maxe∈V f (e);
1: O ← {(1+ ε)i |i ∈ Z, (1+ ε)i ∈ [m, km]};
2: Sv0 ← ∅, t ← 0;
3: for each v ∈ O do
4: if Δf (et |Svt−1) ≥

βv−f (Svt−1)

k−|Svt−1| and |Svt | ≤ k then

5: Svt ← Svt−1 + et ;
6: t ← t + 1;
7: end if
8: end for
9: return arg maxv∈O f (Svt ).
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Theorem 2 ([2]) If the maximum singleton value is known in advance, Algorithm 2
keeps the same approximation ratio, while the memory increases to O(ε−1k log kε),
and the running time increases to O(ε−1n log k).

2.3 Sieve-Streaming in Case Nothing Is Known

In fact, there is a simple two passes presented by Algorithm 2, because one can
obtain the maximum singleton value m by making one pass over the data set. But,
they give an estimate of the maximum singleton value m on the fly, within one pass
over the data set. The algorithm can be restated as Algorithm 3.

Theorem 3 ([2]) Algorithm 3 makes one pass over the stream, and keeps (0.5−ε)-
approximation, while the memory is bounded by O(ε−1k log k), and the running
time is at most O(ε−1n log k).

Algorithm 3 Sieve-streaming

Input: O ← {(1+ ε)i |i ∈ Z};
1: for each v ∈ O do
2: Sv0 ← ∅, t ← 0,m← 0;
3: end for
4: m = max{m, f (et )};
5: Ot ← {(1+ ε)i |(1+ ε)i | ∈ [m, 2km]};
6: Delete all Svt such that v /∈ Ot ;
7: for each v ∈ Ot do

8: if Δf (et |Svt−1) ≥
βv−f (Svt−1)

k−|Svt−1| and |Svt | ≤ k then

9: Svt ← Svt−1 + et ;
10: t ← t + 1;
11: end if
12: end for
13: return arg maxv∈On f (S

v
t ).

3 Thresholding Algorithms for Variants of Streaming
Submodular Maximization with Cardinality Constraint

3.1 An (0.333 − ε) Approximation Algorithm for Submodular
Maximization over Sliding Windows

Epasto et al. [10] consider a submodular maximization with cardinality constraint
over the last W items in the stream which is formally defined as the submodular
maximization with cardinality constraint over sliding window (SMCCSW). In this
model, let W ∈ Z be the size of the sliding window. For any time t , define active
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window At , which contains the last W items in the stream. The goal is to choose a
subset St ⊆ At that satisfy constraint ξ such that f (St ) is as possible as close to
f (OPT (At , ξ)), where OPT (At , ξ) is an optimal solution over active window At .
They firstly introduce a streaming algorithm (SA) for sub-stream by enumerating
thresholds. Secondly they give a submodular smooth histograms algorithm (SSHA)
to deal with the sliding setting. They present the first non-trivial submodular smooth
histograms algorithm which keeps a constant approximation of the optimum, while
the memory is bounded by sublinear in the size of the window for SMCCSW. First,
we restate their streaming algorithm as follows.

3.1.1 Stream Algorithm for Streaming Submodular Maximization
with Cardinality Constraint

Algorithm 4 SA(ε, η)

Input: ε ∈ (0, 1), η = � log1+ε 2km
f (e1)

�;
1: O ← { f (e1)

2k ,
(1+ε)f (e1)

2k , . . . ,
(1+ε)ηf (e1)

2k };
2: ST0 ← ∅, t ← 0;
3: for each T ∈ O do
4: if Δf (et |STt−1) ≥ T and |STt | ≤ k then
5: STt ← STt−1 + et ;
6: t ← t + 1;
7: end if
8: end for
9: return arg maxT ∈O f (STn ).

Theorem 4 ([10]) For any k′ ∈ [k], we have

f (ALG(V, k)) ≥ (1− ε)k

k + k′
f (OPT (V, k′)),

where ALG(V, k) is the returned set by SA on stream V .

Proof By submodularity, we have

f (OPT (V, k′)) ∈ [m, k′m].

Then

f (OPT (V, k′))
k + k′

∈
[
f (e1)

2k
,
m

2

]

.
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Thus, we have a threshold value T0 such that

T0 ∈
[
(1− ε)f (OPT (V, k′))

k + k′
,
f (OPT (V, k′))

k + k′

]

. (1)

• Case 1. If |ST0
n | = k, then

f (ALG(V, k)) ≥ f (ST0
n ) ≥ kT0 ≥ (1− ε)k

k + k′
f (OPT (V, k′)).

• Case 2. If |ST0
n | < k, consider an item et that was not chosen in S

T0
n . Then

Δf (et |ST0
t−1) < T0,

where ST0
t−1 is the solution set of ST0 just before encountering et . Then

f (OPT (V, k′))− f (ST0
n ) ≤

∑

e∈OPT (V,k′)\ST0
n

Δf (e|ST0
n )

≤
∑

e∈OPT (V,k′)\ST0
n

Δf (e|ST0
t−1)

< |OPT (V, k′) \ ST0
t−1|T0

≤ k′

k + k′
f (OPT (V, k′)),

where the first two inequalities follow from submodularity, and the last inequality
is obtained by inequality (1).

Then

f (ALG(V, k)) ≥ f (ST0
n ) ≥ k

k + k′
f (OPT (V, k′)).

3.1.2 A Submodular Smooth Histograms Algorithm for Streaming
Submodular Maximization over Sliding Windows

Following from Algorithm 5, they have one important observation as following
lemma.

Lemma 2 ([10, 25]) For any time t and i ∈ [s], one of the following two properties
always holds:
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1. xi+1 = xi + 1;
2. there exists some t ′ ≤ t , such that

f (ALG([xi+2, t
′], k) ≥ (1− θ)f (ALG([xi, t ′], k).

The main result is introduced as the following theorem.

Theorem 5 ([10]) For any ε > 0 and θ = O(ε), Algorithm 5 keeps (0.333 − ε)-
approximation which uses O(ε−2klog2(kΦ)) memory and has O(ε−2log2(kΦ))

update time per element, for SMCCSW, where Φ is the ratio of maximum to
minimum singleton values.

Algorithm 5 Submodular smooth histograms algorithm for SMSW
Input: k ∈ Z+, parameter β ∈ (0, 1), window size W ;
1: Initialize s ← 0;
2: for t=1,. . . do
3: s ← s + 1;
4: xs ← t ;
5: if x2 < t −W + 1 then
6: Delete index x1, and shift other indexes accordingly;
7: s ← s − 1;
8: end if
9: for i = 1, . . . , s − 1 do

10: Process from xi to xs by Algorithm 4;
11: end for
12: while there exist i ∈ [s − 1], f (ALG([xi+2, xs ], k) ≥ (1− θ)f (ALG([xi , xs ], k) do
13: Delete xi+1, and shift the remaining indexes accordingly;
14: s ← s − 1;
15: end while
16: if x1 = max{1, t −W + 1} then
17: S1 = ALG([x1, xs ], k);
18: else
19: S2 = ALG([x2, xs ], k).
20: end if
21: end for

3.2 A Partitioned Thresholding Approach for Streaming
Robust Submodular Maximization (SRSW)

Mitrović et al. [19] consider a robust-streaming submodular maximization subject
to a cardinality constraint (RSSMCC). In their scenario, the items arrive in a stream
fashion, and τ items may be deleted from the algorithm’s memory after the stream
finished. The goal is to choose a robust subset form the stream. We redefined the
robust set as follows.
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Definition 1 ([19]) A set S ⊆ V , D ⊆ V with |D| ≤ τ , S is robust for a parameter
τ if there exists a subset Z ⊆ S \D of size at most k such that

f (Z) ≥ cf (OPT (V \D, k)),

where OPT (V \ D, k) is an optimal solution of size k of V \ D and c > 0 is a
constant.

They propose a two-stage procedure for RSSMCC. They call the first stage as
(STAR-T), restated as Algorithm 6. Let ρ is an π -approximation of f (OPT (V \
D, k)). In the second stage (STAR-T-GREEDY), they run the greedy algorithm
presented by Nemhauser et al. [21] (see Algorithm 7). To simplify analysis, we
say bucket Bi,j is full if |Bi,j | = min{k, 2i} for any partition part i. There are three
important observations formally restated by the following lemmas.

Lemma 3 ([19]) If there is a partition part i ∈ S such that at least half of its
buckets are full, i.e., |{Bi,j ||Bi,j | = min{k, 2i}}| ≥ wk

2i+1 , then

Algorithm 6 STAR-T for RSSM
Input: Stream V = {e1, e2 . . . , }, k, ω, ρ;
1: Initialize Bi,j ← ∅, ∀i ∈ [0, �logk�], j ∈ [1, ω� k2i �], t ← 1;
2: for i = 0, . . . , �logk� do
3: for j = 1, . . . , ω� k

2i
� do

4: if |Bi,j | < min{2i , k} ∩Δf (et |Bi,j ) ≥ ρ

min{2i ,k} then
5: Bi,j ← Bi,j ∪ {et };
6: break: t ← t + 1;
7: end if
8: end for
9: end for

10: return S ← ∪i,jBi,j .

Algorithm 7 STAR-T-GREEDY
Input: SetS, any query set D ⊆ S with |D| ≤ τ

1: ZV
D ← GREEDY(k, S \ E)

2: return ZV
D

f (ZV
D) ≥ (1− e−1)(1− 4τ

wk
)ρ.

Let Bi = arg minBi,j :|Bi,j |<min{k,2i } |Bi,j ∩D|. We have the following lemma.

Lemma 4 ([19]) If all partition parts in S no more than half of its buckets are full,
then
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f (ZV
D) ≥ (1− e−1/3)(f (B�logk�)− 4τ

wk
ρ).

There is another observation for the second case presented by the following lemma.

Lemma 5 ([19]) If all partition parts in S no more than half of its buckets are full,
then

f (ZV
D) ≥ (1− e−1)(f (OPT (V \D, k))− f (B�logk�)− ρ),

where B�logk� is any not full bucket in the last partition part.

Theorem 6 ([19]) Let w ≥ �4τ�log k�k−1�, π = 1−e−1/3

2(1−e−1/3)+(1−e−1)(1−�logk�−1)
,

STAR-T makes one pass over the stream and gets a set S of size at most O((k +
τ log k) log k) items. Furthermore, for any given set D with |D| ≤ τ , STAR-T-
GREEDY returns a set ZV

D ∈ S \D with |ZV
D| ≤ k such that

f (ZV
D) ≥ 0.149(1− �logk�−1)f (OPT (V \D, k)).

Proof Obviously, the size of S is bounded by O((k+τ logk)logk). Combining with
Lemmas 4 and 5, we have

f (ZV
D) ≥

(1− e−1/3)(1− e−1)

2− e−1/3 − e−1 (f (OPT (V \D, k))− (1+ 4τ

wk
)ρ),

where equality holds for f (B�logk�) = (1−e−1)f (OPT (V \D,k))−((1−e−1)−(1−e−1/3) 4τ
wk

)ρ

2−e−1/3−e−1 .
Following Lemma 3 and the last inequality, we have

f (ZV
D) ≥

1
2

(1−e−1)(1− 4τ
wk

)
+ 1

1−e−1/3

f (OPT (V \D, k)).

For w ≥ �4τ�logk�k−1�, we have

f (ZV
D) ≥

(1− e−1/3)(1− e−1)(1− �logk�−1)

2(1− e−1/3)+ (1− e−1)

≥ 0.149(1− �logk�−1)f (OPT (V \D, k)).

3.3 A Robust-Streaming Algorithm for Deletion-Robust
Submodular Maximization

Mirzasoleiman et al. [18] introduce the dynamic deletion-robust submodular max-
imization problem (DDRSW), in which item set V is generated at a fast pace and
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real time. At any given time t , a subset Vt ⊆ V is arrived, and a subset Dt is deleted.
The model can be restated as follows:

OPTt = max
At∈It

f (At )

s.t.It = {A : A ⊆ Vt \Dt ∩ |A| ≤ k}.

We are given a collection of subsets S = {S1, . . . , Sn}, where Si ⊆ V =
{1, . . . , n}, and utility function f (A) = | ∪i∈A Si |, A ⊆ V . Assume the stream
arrives in order S1 = {1, . . . , n}, and then Si = {i} for i ∈ [2, n]. Streaming
algorithms based on choosing items by marginal gains will suffer arbitrary badly
performance. In the above example, any streaming algorithm may select the item
S1 firstly. Then the other items cannot be chosen since that the corresponding
marginal gains are equal to zero. Once the first item is in the deletion set, the
stream algorithms fail. To deal with the bad examples, they derive a series of non-
overlapping solution sets such that if we suffer a deletion, there is only one solution
set gets affected by constructing a cascading chain. They first give two operation
sub-procedures as Algorithms 8 and 9. The main robust-streaming algorithm is
restated as Algorithm 10.

Theorem 7 The robust-streaming algorithm can keep the same approximation
ratio, while the memory are bounded by O(rM), and the average update time
is at most O(rT ), where M(T ) is the memory (update time) bound of streaming
algorithm A and r is the length of chain.

Algorithm 8 Add(i, R) procedure
Input: Set i ∈ [r], R = {e1, . . . , e|R|}, Streaming algorithm A ;
1: Initialize l← 1;
2: [Ri

t ,M
i
t , S

i
t ] ← A (el);

3: if Ri
t = ∅ and i < r then

4: Add(i + 1, Ri
t );

5: end if
6: l← l + 1.

Algorithm 9 Delete(e) procedure
1: Initialize i ← 1;
2: if e ∈ Mi

t then
3: Ri

t ← Mi
t \ e;

4: Mi
t ← null;

5: Add(i + 1, Ri
t );

6: end if
7: i ← i + 1.
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Algorithm 10 The robust-streaming for DDRSW
Input: Stream Vt , deletion set Dt , r ≤ m+ 1;
1: Initialize t ← 1,Mi

t ← 0, Sit ← ∅,∀i ∈ [r];
2: while |(Vt \ Vt−1) ∪ (Dt \Dt−1)| = 0 do
3: if |Dt \Dt−1| = 0 then
4: e← Dt \Dt−1;
5: Delete(e);
6: else
7: et ← Vt \ Vt−1;
8: Add(1, et );
9: end if

10: t ← t + 1;
11: St ← {Sit |i = min{j ∈ [r],Mj

t = null}}.
12: end while

4 Thresholding Algorithms for Nonsubmodular
Maximization

There is another important class of nonsubmodular optimization problems including
subset selection [7], sparse approximation [6, 16], sparse m-estimation [15], just to
name a few. Das and Kemple [7] first introduce submodularity ratio to characterize
how close a set function is to being submodular. We redefined as follows.

Definition 2 ([7]) For any nonnegative set function f , the submodularity ratio is
the largest scalar γ such that

γ ≤ min∀S,T⊆V

∑
e∈T \S Δf (e|S)
Δf (T |S) .

There is also a definition of curvature, which quantifies how close a set submodular
function is to being modular.

Definition 3 ([3, 5, 24]) For any nonnegative set function f , the curvature is the
smallest scalar λ such that

λ = 1− min∀S,T⊆V,e∈S\T
Δf (e|S \ {e} ∪ T )
Δf (e|S \ {e}) .

Bian et al. [3] show the performance of the classical greedy algorithm by combining
with the curvature and the submodularity ratio. By their technical analysis, there
are strong theoretical guarantees on the performance of greedy algorithm for
nonsubmodular maximization. The main results can be restated as follows.



136 R. Yang et al.

Theorem 8 ([3]) For any nonnegative nondecreasing set function f , its submodu-
larity ratio is γ ∈ [0, 1] and curvature is λ ∈ [0, 1]. Then the classical greedy is a
λ−1(1− eλγ )-approximation.

Elenberg et al. [9] introduce a threshold-greedy algorithm for streaming weakly
submodular maximization (SWSM). We first redefine the weakly submodular
function.

Definition 4 ([9]) Any given monotone set function f is γ ′-weakly submodular for
an integer ν if

γ ′ ≤ min
S,T⊆V :|S|≤ν,|T \S|≤ν

∑
e∈T \S Δf (e|S)
Δf (T |S) .

Let ρ′ ∈ [0, γ ′(
√

2−e−γ ′/2−1)
2 f (OPT (V, k))], where f (OPT (V, k)) is assumed

known in advance. The threshold-greedy algorithm for streaming γ ′-weakly sub-
modular maximization (γ ′-SWSM) is restated as follows (see Algorithm 11).

Theorem 9 ([9]) The streak algorithm gives at least ((1 − ε)
γ ′
2 (3 − eγ

′/2 −
2
√

2− e−γ ′/2))-approximation, while the memory is bounded by O(ε−1klogk).

Algorithm 11 Threshold-greedy (ρ′) for γ ′-SWSM

Input: Stream V ← {e1, . . . , en}, an integer k, ρ′;
1: Initialize t ← 1, S0 ← ∅;
2: if Δf (et |St−1) ≥ ρ′

k
and |St−1| < k then

3: St ← St−1 + et ;
4: t ← t + 1;
5: end if
6: return St .

Following from that the OPT (V, k) is not known in advance, they present a
streak algorithm which does not depend on ρ′. The main results can be restated as
the following theorem.

Algorithm 12 Streak for γ ′-SWSM

Input: Stream V ← {e1, . . . , en}, an integer k, ε > 0;
1: Initialize t ← 1, S0 ← ∅, m← 0;
2: m← max{m, f (et )};
3: Ot ← {(1− ε)i |i ∈ Z, (1− ε)i ∈ [m(1−ε)

9k2 ,mk]};
4: for each ρ′ ∈ Ot do
5: process Threshold-greedy (ρ′);
6: end for
7: t ← t + 1;
8: return St .
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5 Summarizations of Thresholding Methods for Other
Submodular Maximization Applications

Huang et al. [14] consider the streaming submodular maximization with a knapsack
constraint (SMKC). In their model, item arrives in streaming type, and each item e

has size c(e), and the goal is to choose a subset S ⊆ V with
∑

e∈S c(e) ≤ B, where
B is a budget given in advance. Huang et al. give a simple marginal ratio threshold
(0.333−ε)-approximation. In the end, they improve the ratio to 0.363 by the techni-
cal analysis. Simultaneously, the memory is bounded by O(Kpoly(ε−1)polylogk).
Wang et al. [25] consider a more general streaming submodular maximization with
d-knapsack constraint (SSMd-KC), and they present a knapsack-stream algorithm,
which is a ((1+ d)−1 − ε)-approximation, for SSMd-KC.

Theorem 10 ([12]) The sample-streaming is a (4p)−1-approximation, while the
memory is bounded by O(k), and values and independence oracle queries are at
most O(p−1nkq), in expectation, where k is the maximum independence set size.

Feldman et al. [12] consider streaming submodular maximization with a p-
matchoid (SSMp-M). They first apply the subsampling technique to SSMp-M. We
firstly formally redefined the p-matchoid as follows.

Definition 5 ([4, 12]) A set system (V , I ) is p-matchoid for an integer p, if there
exist q matroids (V1, I1), . . . , (Vq, Iq) with V = ∪li=1Vi , I = {S ⊆ 2V |S ∩ Vi ∈
Ii,∀i ∈ [l]} such that each item of V appears at most p out of the above matroids.

Considering the ahead thresholding methods, most of their works assume the
streams are in an arbitrary fixed order. Whether one item is added to solution set
only relies on its marginal gain. However, the solution sets are obviously dependent
on the streaming order. Feldman et al. [12] introduce marginal contribution of item
et to the part set S. Formally we redefine the marginal contribution as follows.

Definition 6 ([12]) Let e1, . . . , et be the items of V that are ordered by their arrival.
For any set S ⊆ V , we define f (et : S) = Δf (et |S ∩ {e1, . . . , et−1}) as marginal
contribution of item et to part set of S.

For any T ⊆ V , let f (T : S) = ∑
e∈T f (e : S). The main algorithm has

an exchange-candidate as sub-procedure introduced as Algorithm 14. The main
sample-streaming algorithm is restated as follows (see Algorithm 15). The main
results can be restated by the following theorem.
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Algorithm 13 Knapsack-stream algorithm for streaming submodular maximization
with d-knapsack
Input: Stream V ← {e1, . . . , en}, an integer W , ε > 0;
1: Initialize t ← 1,m← ∅, M ← 0;
2: m← max{m, f (et )};
3: if M <

f(et )
minj∈[d] cj (e) then

4: M ← f (et )
minj∈[d] cj (e) , L← f (et );

5: end if
6: Ot ← {(1+ ε)i |i ∈ Z, (1+ ε)i ∈ [L,M(1+ d)]};
7: for each ρ′′ ∈ Ot do

8: if
Δf (et |Sρ′′ )

cj (et )
≥ ρ′′

1+d and c(Sρ′′ )+ c(et ) ≤ W then
9: Sρ′′ ← Sρ′′ + et ;

10: end if
11: end for
12: S ← arg maxρ′′∈Ot f (Sρ′′ );
13: if f (S) ≥ f (em) then
14: St ← S;
15: t ← t + 1;
16: else
17: St ← {em};
18: t ← t + 1.
19: end if

Algorithm 14 Exchange-candidate
Input: St−1, et ;
1: for l=1:q do
2: if St−1 ∩ Vl /∈ Il then
3: Cl ← {e ∈ St−1|(St−1 − e + et ) ∩ Vl ∈ Il};
4: cl ← arg mine∈Cl

f (e : St−1);
5: Ut ← Ut−1 + cl ;
6: end if
7: end for
8: return Ut .

Algorithm 15 Sample-streaming for SSMMp

1: S0 ← ∅, t ← 1;
2: with probability 1

2p+1 ;
3: Ut ← Exchange-Candidate (St−1, et );
4: if Δf (et |St−1) ≥ 2f (Ut : St−1) then
5: St ← St−1 \ Ut + et ;
6: end if
7: t ← t + 1;
8: return Sn.
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Nonsubmodular Optimization

Weili Wu, Zhao Zhang, and Ding-Zhu Du

Abstract The nonsubmodular optimization is a hot research topic in the study of
nonlinear combinatorial optimizations. We discuss several approaches to deal with
such optimization problems, including supermodular degree, curvature, algorithms
based on DS decomposition, and sandwich method.

1 Introduction

For any set function f : 2X → R, f is submodular if

f (A)+ f (B) ≥ f (A ∪ B)+ f (A ∩ B).

f is monotone nondecreasing if

A ⊂ B implies f (A) ≤ f (B).

In the literature, there are many beautiful results on monotone nondecreasing
submodular optimizations [3, 18, 24, 28, 29, 31, 34, 40] and nonmonotone submod-
ular optimizations [14, 17, 23, 35]. However, in recent development of computer
technology, many nonsubmodular optimization problems appear, such as sentiment
analysis [2], cloud computing [12], machine learning [42], and social networks
(such as viral marketing for complementary products [20], composed influence
[45], and misinformation blocking [36]). Therefore, the study of nonsubmodular
optimization becomes a hot research subject.
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There are two classes of approaches to deal with nonsubmodular optimization
problems. The first class consists of the traditional ones. Since the nonsubmodular
optimization is, in nature, hard to deal with, we cannot find an efficient algorithm
with satisfied guaranteed performance. In this class, the algorithm is often analyzed
with some artificial parameter, such as the supermodular degree [13, 15, 16] or
curvature [1, 8, 22, 38], with which some beautiful results on the approximation
performance ratio may be established. However, those parameters are usually hard
to be estimated and in many specific problems, they do not have a significant value.

Due to the above, one may give up the approximation performance ratio and
establish other standards to evaluate the performance of algorithms. The second
class of algorithms is designed based on this point. We may name two groups here.

The first group consists of local optimal algorithms. They are usually asked to
terminate at a solution satisfying certain necessary optimality condition, such as
local optimality conditions. We may find two local optimality conditions in the
literature, which give two subgroups of algorithms for DS function optimizations
[21, 27] and discrete DC function optimization [26, 43], respectively.

The second group consists of data-dependent approximation algorithms, which
are evaluated by a new type of performance ratio. Those algorithms are also called
sandwich methods [4, 25, 39, 45].

In this article, we briefly introduce the above-mentioned methods.

2 Supermodular Degree

Consider a set function f : 2X → R. The supermodular degree of an element u ∈ X
by a function f is defined to be |D+(u)| where

D+f (u) = {v ∈ X | ∃A ⊆ X : Δuf (A ∪ {v}) > Δuf (A)}.

The supermodular degree of function f is defined by

D+f = max
u∈X |D

+(u)|.

When only function f is studied on supermodular degree, we may simply write
D+ = D+f .

With the supermodular degree, several theoretical results have been obtained [13,
15] in the literature.

The first one is for the monotone nonsubmodular maximization with matroid
constraints as follows:

max f (A)

subject to A ∈ Ci for i = 1, 2, . . . , k,
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where f is nonnegative and monotone nondecreasing and (X,Ci ) is a matroid for
i = 1, 2, . . . , k. Consider the following greedy algorithm:

Greedy Algorithm 2.1
input:A monotone nondecreasing nonnegative set function f : 2X → R

and k matroids (X,Ci );
S0 ← ∅;
i ← 0;
while Si is not a base do

i ← i + 1;
choose ui ∈ X \ Si−1 and Di−1 ∈ D+(ui) to maximize
f (Di ∪ {ui} ∪ Si−1)− f (Si−1) subject to Di ∪ {ui} ∪ Si−1 ∈ ∩ki=1Ci ;
set Si ← Di ∪ {ui} ∪ Si−1;

output Si .

For this algorithm, there is the following theorem.

Theorem 1 (Feldman and Izsak [15]) Greedy Algorithm 2.1 produces a
1

k(D++1)+1 -approximation solution for maximization of monotone nondecreasing
nonnegative set function with k matroid constraints.

Let C = {A | |A| ≤ k}. Then (X,C ) is a matroid. This means that the
size constraint is a specific matroid constraint. With this constraint, the monotone
nonsubmodular maximization has a better approximation solution.

Consider a maximization problem and a greedy algorithm as follows:

max f (A)

subject to |A| ≤ k,

where f : 2X → R is nonnegative and monotone nondecreasing.

Greedy Algorithm 2.2
input a monotone nondecreasing nonnegative function f : 2X → R;
S ← ∅;
for d = 1 to D+, v ∈ X and C with |C| = k mod (d + 1) do

S0 ← C;
i ← 0;
while Si is not a base do

i ← i + 1;
choose ui ∈ X \ Si−1 and Di ⊆ D+(ui) to maximize
f (Di ∪ {ui} ∪ Si−1)− f (Si−1) subject to |DI ∪ {ui} ∪ Si−1| ≤ k

and |Di | ≤ d;
set Si ← Di ∪ {ui} ∪ Si−1;

Sargmax(f (S), f (Si));
output S.

This algorithm produces a better approximation.
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Theorem 2 (Feldman and Izsak [15]) Greedy Algorithm 2.2 produces a (1 −
e−1/(D++1))-approximation solution for maximization of monotone nondecreasing
nonnegative set function with a size constraint.

The supermodular degree has been successfully applied to a few optimization
problems, such as [16].

3 Curvature

There are several different definitions for curvature in the literature for study of
different optimization problems, such as submodular minimization with submodular
cover constraints [8, 38], submodular maximization with submodular knapsack
constraint [22], and BP functions optimization [1]. In this section, we focus on one
of them, the submodular minimization with submodular cover constraint.

Actually, this problem is closely related to the nonsubmodular minimization
problem. By DS decomposition theorem (see Theorem 4), every set function f

can be represented as f = g − h, where g and h are monotone nondecreasing
submodular functions. From this representation, it is easy to know that min f can
be solved through solving a sequence of problems min{g − c | h ≥ c} for every
discrete constant c.

Specifically, consider the following problem:

min g(A)

subject to h(A) ≥ b,

where g and h are monotone nondecreasing submodular functions on 2X with
g(∅) = h(∅) = 0, called polymatroid functions, and b is a constant. Define

Δxg(A) = g(A ∪ {x})− g(A) and Δxh(A) = h(A ∪ {x})− h(A).

Consider the following greedy algorithm.

Greedy Algorithm 3.1
input polymatroid functions g and h on 2X, and a constant b.
S ← ∅;
while h(S) < h do

choose x to maximize Δxh(S)
Δxg(S)

and set S ← S ∪ {x};
output S.
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Define the curvature of g by

χ(g) = min
A⊆X

∑
x∈A g({x})
g(A)

.

Then the following holds.

Theorem 3 (Wan et al. [38]) Greedy Algorithm 3.1 produces an approximation
solution with performance ratio at most χ(g)H(γ ), where

γ = max
x∈X h({x})

and H(γ ) =∑γ

i=1 1/i.

An interesting application of this result was given in [8]. Consider a wireless
sensor network. Each sensor has a communication disk and a sensing disk with
itself as common center. If sensor s1 lies in the communication disk of s2, then s1
can receive message from s2. When all sensors have the same size of communication
disks and the same size of sensing disks, they are said to be homogeneous. In a
homogeneous wireless sensor system, the communication network is a undirected
graph, in which a virtual backbone is a connected dominating set, that is, it is a
node subset such that every node is either in the subset or adjacent to the subset.
Construction of the virtual backbone is an important issue in the study of wireless
sensor networks [5, 19, 30, 32, 33, 37, 41]. Motivated from reducing routing cost and
improving load balancing, routing-cost constraint was introduced in the construction
[6]. Thus, many efforts have been made on routing-cost constrained construction
problems [7, 9–11].

Let G = (V ,E) be a homogeneous wireless sensor network and D a subset
of nodes. For each pair of nodes u and v, let d(u, v) denote the shortest distance
between u and v in G, i.e., the minimum number of edges on a path between u and
v, and dD(u, v) the shortest distance between u and v in the subgraph induced by
D ∪ {u, v}. Let us study the following problem.

Routing-cost Constrained CDS: Given a homogeneous wireless sensor network G =
(V ,E), find a minimum connected dominating set D such that

dD(u, v) ≤ αd(u, v),∀u, v ∈ V, (1)

where α is a constant.

First, we would like to indicate that this problem can be formulated into a
generalized hitting set problem as follows.

Generalized Hitting Set: Given m nonempty collections C1,C2, . . . ,Cm of subsets of a
finite set X, find the minimum subset A of X such that every Ci has a member S ⊆ A.

Ding et al. [6] proved that to satisfy constraint (1), it is sufficient to satisfy

dD(u, v) ≤ α + 1,∀u, v ∈ X with d(u, v) = 2. (2)
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For every pair of nodes u and v, let Cuv denote the collections of node subsets
each of which is the set of intermediate nodes on a path between u and v with
distance at most α+ 1. Let D be a node set hitting every Cuv . Then D would satisfy
constraint (2) and hence (1). This would imply that D is a connected dominating
set. Thus, the routing-cost constrained CDS problem is equivalent to the generalized
hitting set problem with input collections Cuv .

We next reduce the generalized hitting set problem to a problem of submodular
minimization with submodular cover constraint. To do so, let C = ∪u,v:d(u,v)=2C.
For every subcollection A ⊆ C , define

g(A ) = | ∪A∈A A|

and

h(A ) = |{Cuv | A ∩ Cu,v = ∅}|.

It is not hard to prove that g and h are monotone nondecreasing submodular
functions with g(∅) = h(∅) = 0. Moreover, the generalized hitting set problem
is equivalent to following

min g(A)

subject to h(A) ≥ f (C ),

A ⊆ C .

This equivalence means that A is a minimum solution of this problem if and only
if ∪A∈A A is the minimum solution of the generalized hitting set problem. It can be
proved as follows.

Suppose A is the minimum solution of the above problem of submodular
minimization with submodular cover constraint. For contradiction, suppose ∪A∈A A

is not a minimum generalized hitting set. Consider a minimum generalized hitting
set D. Then |D| < | ∪A∈A A|. For each Cuv , let Cuv be a subset of D, contained in
Cuv . Denote

CD = {Cuv | u, v ∈ V with d(u, v) = 2}.

Then h(CD) = h(C ) and g(CD) ≤ |D| < g(A ), a contradiction.
Conversely, suppose ∪A∈A A is a minimum generalized hitting set. For contra-

diction, suppose A is not a minimum solution for the above problem of submodular
minimization with submodular cover constraint. Consider a minimum solution B
for it. Then g(B) < g(A ). By the above argument, ∪B∈BB is a generalized hitting
set such that

| ∪B∈B B| = g(B) < g(A ) = | ∪A∈A A|,

a contradiction.
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Du et al. [8] proved that in this example, χ(g) and γ are constants and
hence Greedy Algorithm 3.1 gives a constant-approximation for the routing-cost
constrained CDS problem.

4 Local Optimality

There are two necessary conditions for minimality:

1. Let f be a set function on 2X. Suppose A is a minimum solution of f in 2X.
Then f (A) ≤ f (A \ {x}) and f (A) ≤ f (A ∪ {x}) for any x ∈ X.

2. Let f = g−h be a set function and g and h submodular functions on the subsets
of X. If set A is a minimum solution for minY⊆X f (Y ), then ∂h(A) ⊆ ∂g(A).

Condition 1 is obvious. Condition 2 needs a little explanation. First, let us explain
what is the notation ∂h(A). ∂h(A) is the subgradient of function h at set A, defined
as

∂h(A) = {c ∈ RX | h(Y ) ≥ h(A)+ < c, Y − A >}.

Actually, for a submodular set function h : 2X → R, the subgradient at set A
consists of all linear functions c : X → R satisfying h(Y ) ≥ h(A)+ c(Y )− c(A),
where c(Y ) = ∑y∈Y c(y). Each linear function c can also be seen as a vector in

RX, i.e., a vector c with components labeled by elements in X. The characteristic
vector of each subset Y of X is a vector in {0, 1}X such that the component with
label x ∈ X is equal to 1 if and only if x ∈ Y . Here, for simplicity of notation, we
use the same notation Y to represent the set Y and its characteristic vector.

To see condition 2, note that since A is a minimum solution for minY⊆X f (Y ),
we have f (A) ≤ f (Y ) and hence g(Y ) − g(A) ≥ h(Y ) − h(A) for any Y ⊆ X.
Therefore, for any c ∈ ∂h(A), g(Y ) − g(A) ≥ h(Y ) − h(A) ≥ c(Y ) − c(A). This
means that ∂h(A) ⊆ ∂g(A).

Condition 2 requires that the set function f can be represented as a difference of
two submodular functions. Actually, such a representation is available for any set
function.

Theorem 4 (DS Decomposition [21, 27]) Every set function f : 2X → R can be
expressed as the difference of two monotone nondecreasing submodular functions g
snd h, i.e., f = g − h, where X is a finite set.

The proof of this theorem is constructive [21], however not in polynomial-time.
It is still an open problem whether there exists or not a polynomial-time algorithm
to find a pair of submodular functions h and g for any given set function f such that
f = h− g.

An important result follows from Theorem 4 is the following.
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Theorem 5 (Sandwich Theorem [44]) For any set function f : 2X → R and any
set Y ⊆ X, there are two modular functions mu : 2X → R and ml : 2X → R such
that mu ≥ f ≥ ml and mu(Y ) = f (Y ) = ml(Y ).

There exist several algorithms in the literature, based on DS decomposition, such
as the submodular–supermodular algorithm [27], the modular–modular algorithm
[21], and the iterated sandwich algorithm [44]. Following is an example.
Submodular–Supermodular Algorithm for min f (A):

• Input a set function f : 2X → R.
• Initially, compute a DS decomposition f = g − h and choose an arbitrary set

A ⊆ X.
• At each iteration, carry out following

– Compute a modular lower bound mhl for h such that h(A) = mhl(A).
– Compute a minimum solution A+ for g −mhl .
– If f (A+) = f (A), then stop iteration and go to output; else set A← A+ and

start a new iteration.

• Output A.

In the above algorithm, how to compute modular lower bound mhl for h?
Following is the answer.

Lemma 1 (Iyer and Bilmes [27]) For any submodular function f : 2X → R and
any set Y ⊆ X, there exists a modular function ml : 2X → R such that f ≥ ml and
f (Y ) = ml(Y ).

Proof Put all elements of X into an ordering X = {x1, x2, . . . , xn} such that Y =
{x1, x2, . . . , x|Y |}. Denote Si = {x1, x2, . . . , xi}. Define ml(∅) = f (∅) and for ∅ =
A ⊆ X, define

ml(A) = f (∅)+
∑

xi∈A
(f (Si)− f (Si−1)).

Clearly ml is modular and

ml(Y ) = f (∅)+
∑

xi∈Y
(f (Si)− f (Si−1)) = f (Y ).

Moreover, for any set A ⊆ X with A = ∅, suppose A = {xi1 , xi2 , . . . , xik } and then
we have

ml(A) = f (∅)+ (f (Si1)− f (Si1−1))+ (f (Si2)− f (Si2−1))

+ · · · + (f (Sik )− f (Sik−1))

≤ f (∅)+ (f ({xi1})− f (∅))+ (f ({xi1, xi2})− f ({x1}))
+ · · · + (f (A)− f ({xi1 , . . . xik−1}))

= f (A).
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From the above construction of modular lower bound, we have found the
following theorem.

Theorem 6 (Iyer and Bilmes [27]) In the submodular–supermodular algorithm,
compute mhl by using the permutation of elements of X. At each iteration, try at
most n permutations σ1, . . . , σk such that A = {σ1(|A| − 1), . . . , σk(|A| − 1)}
and X \ A = {σ1(|A| + 1), . . . , σk(|A|+)}. Then the submodular–supermodular
algorithm would stop at a local minimum satisfying condition 1.

5 Data-Dependent Approximation

A typical data-dependent approximation algorithm is the sandwich method, which
has been used frequently for solving nonsubmodular optimization problems [4, 25,
36, 39, 45]. It runs as follows for the minimization problem.
Sandwich Method:

• Input a set function f : 2X → R and a collection Ω of subsets of X. The goal
is to solve minA∈Ω f (A).

• Initially, find two submodular functions u and l such that u(A) ≥ f (A) ≥ l(A)

for A ∈ Ω . Then carry out the following:

– Compute a α-approximation solution Su for minA∈Omega u(A) and a β-
approximation solution Sl for minA∈Ω l(A).

– Compute a greedy solution So for minA∈Ω f (A).
– Set S = argmin(f (Su), f (So), f (Sl)).

• Output S.

This method has the following guaranteed performance.

Theorem 7 (Lu et al. [25]) The solution S produced by the sandwich method
satisfies the following:

f (S) ≤ min

{
f (S1

l(Sl)
· β, optu

optf
· α
}

· optf ,

where optf (optu) is the objective function value of the minimum solution for
minA∈Ω f (A) (minA∈Ω u(A)).

Proof Since Sl is a β-approximation solution for minA∈Ω l(A), we have

f (Sl) = f (Sl)

l(Sl)
· l(Sl) ≤ f (Sl)

l(Sl)
·β · optl ≤ f (Sl)

l(Sl)
·β · l(OPTf ) ≤ f (Sl)

l(Sl)
·β · optf ,
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where OPTf is an optimal solution for minA∈Ω f (A). Since Su is an α-
approximation solution for minA∈Ω u(A), we have

f (Su) ≤ u(Su) ≤ α · optu = α · optu
optf

· optf .

Therefore, the theorem holds.

From theoretical point of view, the sandwich method is always applicable for the
set function optimization since we have the following.

Theorem 8 For any set function f on 2X, there exist two monotone nondecreasing
submodular functions u and l such that u(A) ≥ f (A) ≥ l(A) for every A ∈ 2X.

Proof By the DS decomposition theorem, there exist two monotone nondecreasing
submodular functions g and h such that f = g − h. Note that for every A ∈ 2X,
h(∅) ≤ h(A) ≤ h(X). Set u(A) = g(A) − h(∅) and l(A) = g(A) − h(X) for any
A ∈ 2X. Then u and l meet our requirement.

However, in the real world, it is often not easy to find easily computable upper
bound u and lower bound l, especially in case that the DS decomposition is not
found. Therefore, many efforts on specific design of sandwich methods are still
significant.
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On Block-Structured Integer
Programming and Its Applications

Lin Chen

Abstract Integer programming in a variable dimension is a crucial research
topic that has received a considerable attention in recent years. A series of fixed
parameter tractable (FPT) algorithms have been developed for a variety of integer
programming that has a special block structure, and such results were later applied
successfully in many classical combinatorial optimization problems to derive FPT
or approximation algorithms. From a theoretical point of view, it is important to
understand the overall landscape, and distinguish the structures of integer program-
ming that are tractable vs. intractable or unknown so far. From the application point
of view, it is important to understand how the structure of such integer programming
is related to the structure of concrete combinatorial optimization problems. The goal
of this survey is to summarize recent progress in theory and application of integer
programming that has a block structure and point to important open problems in this
research direction.

1 Introduction

The NP-hardness of integer programming (IP), in general, is well-known decades
ago [19]. Consequently, much effort has been devoted to the search for tractable
special cases. Famous polynomially solvable cases are IPs with few rows and
small coefficients as shown by Papadimitriou in 1981 [26], and IPs with few
variables as shown by Lenstra in 1983 [23]. In recent years, many researches target
at identifying tractable special cases of IP in variable dimensions, and arguably
the most significant development towards this direction is the introduction of
iterative augmentation methods which has led to the development of fast algorithms
for wide classes of IPs whose constraint matrix has a special block structure,
and to subsequent breakthrough applications in parameterized and approximation
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algorithms for various combinatorial optimization problems (see, e.g., [3, 18, 21]),
which will be discussed in detail in this survey.

On a very high level, it has been shown, in a series of fundamental researches,
that an IP can be solved in a polynomial oracle time given an oracle, which,
roughly speaking, augments an existing solution by an amount no less than that
of any augmentation in the direction of the so-called Graver basis, which is one
basis of the integer kernel of the IP (see, e.g., the book [25], we will also provide
details in the later part of this survey). Unfortunately, finding out the augmentation
required by the oracle can be difficult, particularly as there can be an exponential
number of different Graver basis elements, and each Graver basis element may be
exponentially large. Recent researches (see, e.g., [3, 13–15, 21]) showed that, if the
given IP has a special structure, particularly if it has some specific block structure,
then it may admit a “nice” Graver basis in the sense that the Graver basis element
may have a small 
1- or 
∞-norm. By utilizing such a fact, it may be possible to find
out the augmentation required by the oracle in polynomial time, and consequently
solve the given IP in polynomial time. In fact, essentially all the current known
polynomial time algorithms along this research line are based on such a high-level
idea. It is thus a fundamental question how far we can carry over such an idea. In
this survey, we will review recent progress in this research direction, and point out
several open problems where such an idea encounters difficulty.

This survey will also cover a wide range of applications of these block-structured
IPs in concrete combinatorial optimization problems. In particular, we will review
recent progress in applying block-structured IP in the research area of scheduling,
computational social choice, string matching, etc. These applications, on the one
hand, give a good motivation for us to further investigate into block-structured IP,
and highlight the importance of those fundamental results. On the other hand, the
research in these specific combinatorial optimization problems may also give us
inspirations on further generalizations of block-structured IP.

The paper is organized as follows: In Section 2, we will provide preliminaries.
In Sections 3 and 4, we review the algorithmic results for block-structured IPs with
linear and non-linear objective functions, respectively. We also remark on relevant
open problems at the end of each corresponding subsection. In Section 5, we review
the applications of block-structured IP in combinatorial optimization problems. We
conclude the survey with open problems in Section 6.

2 Preliminaries

2.1 Block-Structured Integer Programs

We consider the following general form of an integer program (IP):

(IP)n,b,l,u,w : min(or max) {φ(x) : Hx = b, l ≤ x ≤ u, x ∈ Z
N }. (1)
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Here the objective φ is some computable function. We will distinguish into linear
functions and non-linear functions, and review relevant research works separately.

Throughout this paper, all the matrices and vectors in the IP, including H,b, l,u,
are integral. For two vectors y, z of the same dimension, we write y ·z, or sometimes
yz for their inner product, if it is clear from the context.

In this survey, we mainly focus on block-structured IP, where the constraint
matrix H has a special structure as we elaborate below. In the following A, B,
C, D, or Ai that form the constraint matrix H are small submatrices and 0 is a zero
matrix.

4-Block n-Fold Matrix

H =
(
C D

B A

)(n)

:=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

C D D · · · D
B A 0 0
B 0 A 0
...

. . .

B 0 0 A

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

that is, H consists of one copy of c and n copies of A,B,D where all B’s are on
the first column, all D’s are on the first row, and all A’s are on the main diagonal. In
particular, if C is a zero matrix, then H is a 3-block n-fold matrix.

n-Fold Matrix An n-fold matrix is a special case of 4-block n-fold matrix in which
B = · and C = ·, i.e.,

H =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

D D D · · · D
A 0 0 0
0 A 0 0
0 0 A 0
...

. . .

0 0 0 A

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Two-Stage Stochastic Matrix A two-stage stochastic matrix is a special case of 4-
block n-fold matrix in which C = · and D = ·, i.e.,

H =

⎛

⎜
⎜
⎜
⎝

B A 0 0
B 0 A 0
...

. . .

B 0 0 A

⎞

⎟
⎟
⎟
⎠

.

Tree-Fold Matrix A tree-fold matrix is a generalization of n-fold matrix. The
structure of an n-fold matrix could be viewed as a star with the root repre-
senting the row of (D,D, · · · ,D) and each leaf representing one of the rows
(0, · · · , 0, A, 0, · · · , 0). More precisely, we can view each row i as a vertex i such
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that vertex i is a parent of vertex j if row i dominates row j , where by saying row
i dominates row j , we mean row j is more “sparse” than row i as a vector, i.e., if
the k-th coordinate of row j is non-zero, then the k-th coordinate of row i is also
non-zero. Using this interpretation, we can generalize an n-fold matrix to a tree-fold
matrix. The following is an example:

H =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1

A2 A2 A2 A2 A2 A2 A2 A2 0 0 0 0
0 0 0 0 0 0 0 0 A2 A2 A2 A2

A3 A3 A3 0 0 0 0 0 0 0 0 0
0 0 0 A3 A3 0 0 0 0 0 0 0
0 0 0 0 0 A3 A3 A3 0 0 0 0
0 0 0 0 0 0 0 0 A3 A3 A3 A3

A4 0 0 0 0 0 0 0 0 0 0 0
0 A4 0 0 0 0 0 0 0 0 0 0
0 0 A4 0 0 0 0 0 0 0 0 0
0 0 0 A4 0 0 0 0 0 0 0 0
0 0 0 0 A4 0 0 0 0 0 0 0
0 0 0 0 0 A4 0 0 0 0 0 0
0 0 0 0 0 0 A4 0 0 0 0 0
0 0 0 0 0 0 0 A4 0 0 0 0
0 0 0 0 0 0 0 0 A4 0 0 0
0 0 0 0 0 0 0 0 0 A4 0 0
0 0 0 0 0 0 0 0 0 0 A4 0
0 0 0 0 0 0 0 0 0 0 0 A4

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

A tree-representation of the matrix above is:

In general, a tree-fold matrix H consists of n copies of small matrices A1, A2,
· · · , Aτ with Ai being a si × t-matrix. Every row consists of 0’s and some Ai’s in
the form of (0, · · · , 0, Ai, Ai, · · · , Ai, 0, · · · , 0) (i.e., Ai appears consecutively).
Every column consists of 0’s and exactly one copy of each Ai . Furthermore, if we
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call a row containing Ai as an Ai-row, then any Ai-row is dominated by some Ai−1-
row, that is, if at a certain row Ai appears consecutively from column 
 to column
k, then there exists some Ai−1-row such that Ai−1 appears consecutively from 
′
to k′ such that 
′ ≤ 
 < k ≤ k′. Representing the matrix as a tree, every row is
represented as a vertex and the vertex corresponding to each Ai−1-row will be the
parent of the vertex corresponding to Ai-row it dominates.

Multistage Stochastic Matrix If the transpose HT is a tree-fold matrix, then H is a
multistage stochastic matrix. A multistage stochastic matrix is a generalization of a
two-stage stochastic matrix.

An IP where the constraint matrix H belongs to one of the above types is named
accordingly after the name of the matrix, e.g., an IP with H being a 4-block n-fold
matrix is called a 4-block n-fold IP.

2.2 Graver Basis

Consider the general integer linear programming in the standard form (1). Let * be
the conformal order in R

m defined such that x * y if x and y lie in the same orthant,
i.e., xi · yi ≥ 0 for each i = 1, . . . , m, and |xi | ≤ |yi | for each i = 1, . . . , m. Given
any subset X ⊆ R

n, we say x is an*-minimal element of X if x ∈ X and there does
not exist y ∈ X, y = x such that y * x. It is known that every subset of Zm has
finitely many *-minimal elements.

Given an n×m integer matrix E, we denote by kerZ(E) = {x ∈ Z
m | Ex = 0}

the integer kernel of H . We study the Graver basis:

Definition 1 (Graver Basis [12]) The Graver basis of an integer matrix E is the
finite set G(E) ⊆ kerZ(E) of all *-minimal elements of kerZ(E) \ {0}.
We use the fact that any x ∈ kerZ(E), x = 0 can be written as x =∑i αigi , where
αi ∈ Z+, gi ∈ G(E), and gi * x [25, Lemma 3.4].

2.3 An Iterative Augmentation Framework

As we mentioned before, the tractability of a broad class of IP in variable dimension
is built on an iterative augmentation framework. Briefly speaking, an algorithm that
follows the iterative augmentation framework starts with an initial feasible solution
x and iteratively finds augmenting steps, where a solution x for (1) is called feasible
if Hx = b and l ≤ x ≤ u, and an augmenting step g ∈ Z

N is a vector such
that x + g is feasible and φ(x + g) < φ(wx). A major question is where to
obtain “good” augmenting steps. The Graver basis of H , G(H), has emerged as an
excellent choice, with good guarantees on convergence to optimal solutions while
still being algorithmically “tame.” Specifically, at the heart of iterative augmentation
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techniques are bounds on the 
1- and 
∞-norm of elements of the Graver basis,
which enable dynamic programming to enumerate Graver elements in an efficient
way.

The general framework for solving (1) by utilizing Graver basis was developed
in a series of papers, see, e.g., [3, 13, 14, 18, 21]. A very recent paper by Koutecký
et al. [22] gives a nice summary and formalizes this framework for (1) where the
objective function φ is linear. For non-linear objective functions, things are more
complicated. We will discuss linear and non-linear objectives separately in the
following sections.

2.4 Fixed Parameter Tractability

We give a very brief introduction to fixed parameter tractability here and the reader
is referred to [8] for details.

A parameterized problem is a language L ∈ Σ∗ × Z≥0, where Σ is a
finite alphabet. The second component is called the parameter of the problem. A
parameterized problem L is fixed parameter tractable (FPT) if the question whether
(x, k) is in L can be decided in running time f (k) · |x|O(1) for some computable
function f .

For this survey, we will revisit the existing algorithmic results for block-
structured IP from the perspective of parameterized algorithms. As we will provide
details later, the constraint matrix of a block-structured IP is composed of many
copies of some small blocks (submatrices). We will take these small blocks as
“parameters”, more precisely, we take the number of rows and columns, and the
largest absolute value over the entries of the small blocks as parameters. The number
of variables or constraints, on the other hand, are not part of the parameters. We are
interested in algorithms that run in time polynomially in the number of variables
and constraints, while an exponential dependency on the parameters (small blocks)
is acceptable.

3 Optimizing over a Linear Objective

Throughout this section, we consider linear objectives where φ(x) = w ·x. It should
be clear that for linear objectives, the maximization problem can be solved by simply
minimizing the additive inverse of the objective function. Without loss of generality,
we will focus on minimization problem throughout this section, more precisely, we
consider the following:

min {wx : Hx = b, l ≤ x ≤ u, x ∈ Z
N }, (2)
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It is worth mentioning that all the results mentioned in this section also hold if
we replace the equality Hx = b in IP (2) with inequalities Hx ≤ b or Hx ≥ b
(indeed, inequalities can be handled using the standard technique of introducing
slack variables).

3.1 Iterative Augmentation

We define an augmenting step g and a step length ρ ∈ Z as an x-feasible step pair
with respect to a feasible solution x if l ≤ x + ρg ≤ u. An augmenting step h
is a Graver-best step for x if w(x + h) ≤ w(x + ρg) for all x-feasible step pairs
(g, ρ) ∈ G(H) × Z. The next definition and theorem show that it is sufficient to
focus all our attention on finding Graver-best steps.

Definition 2 (Graver-Best Oracle for IP (2)) A Graver-best oracle for IP (2) is
one that, queried on w,b, l,u, and x feasible to (2), returns a Graver-best step h
for x.

Theorem 1 ([13, 14]) Given a Graver-best oracle for IP (2), (1) can be solved with
a number of augmentation steps that are polynomially bounded in the encoding
lengths of H,b,w, l,u.

Proof In each iteration step, consider the current solution x and the optimal solution
x∗. Using the property of Graver basis, we know that x∗ − x = ∑k

i=1 γigi , where
γi > 0 and gi are Graver basis elements that lie in the same orthant. As l ≤ x∗ ≤ u
and l ≤ x ≤ u, we know l ≤ x + γigi ≤ u and hence x + γigi is feasible for any
i. Moreover, by the integer Carathéodory theorem of [6, 27], we can assume that
k ≤ 2N . Let i be the index of a summand attaining the maximal absolute value, i.e.,
i = argmaxi{|wγigi |, 1 ≤ i ≤ k}, and let h be a step returned by the Graver-best
oracle for x, then it follows that

|w(x+ h)− wx| ≥ |w(x+ γigi )− wx| ≥ 1

2N
|wx∗ − wx|,

that is, the gap between wx and wx∗ is reduced by at least a fraction of 1/(2N) via
each call of the Graver-best oracle. Consequently, after O(N log |w∗x − wx|) calls
of the oracle, we achieve an optimal solution and the theorem is proved.

It is worth mentioning that the above theorem also takes care of finding an initial
feasible solution, if it is not known in advance.

The number of calls of Graver-best oracle is polynomially dependent on
log ‖w‖∞ and log ‖l‖∞, log ‖u‖∞. Applying the techniques used by Tardos in
[28], it is further possible to reduce the running time to strongly polynomial, as is
implied by the following.
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Theorem 2 ([22]) Given a Graver-best oracle for H , (1) can be solved with a
number of augmentation steps that are polynomially bounded in the encoding
lengths of H .

It is recently observed by Altmanová et al. [1] and Eisenbrand et al. [9] that
Theorem 2 also holds for an approximate version of Graver-best oracle, as we
describe below.

Definition 3 (c-Approximate Graver-Best Oracle [1]) Let c ∈ R, c ≥ 1. A c-
approximate Graver-best oracle for an integer matrix H is one that, queried on
w,b, l,u, and x feasible to (1), returns a feasible augmentation step h such that
wh ≤ 1/c · wρg for all x-feasible step pairs (g, ρ) ∈ G(H)× Z.

The following lemma states that an approximate Graver-best oracle suffices for
an augmentation algorithm.

Lemma 1 ([1]) Given a c-approximate Graver-best oracle for H , (1) can be solved
with a number of augmentation steps that are polynomially bounded in c and the
encoding lengths of H,b,w, l,u.

It is worth mentioning that the proof of Theorem 2 in [22] can be used to establish
a similar strong polynomial bound on the number of augmentation steps.

The advantage of a c-approximate Graver-best oracle is that we can restrict our
attention to the following subproblem:

Given IP (1) andω ≤ O(log ‖u‖∞+log ‖l‖∞),1 find h such that wh ≤ 1/c·2ωwg
for all x-feasible step pairs (g, 2ω) ∈ G(H)× Z.

If we solve the subproblem for each individual ω ∈ {0, 1, 2, · · · ,O(log ‖u‖∞ +
log ‖l‖∞)}, then the best h among all the subproblems serves as a feasible output of
a 2c-approximate Graver-best oracle.

3.2 Designing the Graver-Best Oracle

We have shown that solving an IP essentially reduces to finding a (approximate)
Graver-best oracle. In general, finding a (approximate) Graver-best step is essen-
tially as hard as solving an arbitrary IP. However, for IP that has a special structure,
an efficient algorithm may exist, and this is particularly the case for IP with a block
structure as we discussed in the preliminary. The crucial observation here is that
for certain types of block-structured IP, its Graver basis element has a nice property
that it has a small 
1- or 
∞-norm. Based on such a bound, an efficient algorithm
for finding a (approximate) Graver-best step may be designed. Indeed, all existing
algorithms for block-structured IP are of this kind, as we provide details in the
following subsections.

1Here we remark that by using proximity results or the standard bound from linear programming,
we can always restrict that log ‖u‖∞ + log ‖l‖∞ is bounded by a polynomial.
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3.2.1 n-Fold IP

The following lemma is a restatement of the finiteness theorem in [17].

Lemma 2 ([17]) Let H be an n-fold matrix. Then ||g||1 ≤ λ for some λ that only
depends on the small matrices A and D, i.e., on si , ti which are the number of rows
and columns of i where i = A,D, and Δ which is the maximal absolute value of
entries of A and D.

Note that the structure of an n-fold matrix requires that tA = tD . The value of λ is
discussed and improved in a series of follow-up papers [9, 14, 22], with the current
best upper of λ ≤ O(sAsDΔ)sAsD [9].

Based on Lemma 2, a dynamic program can be designed to solve the following
subproblem: Given IP (1) and ω ≤ O(log ‖u‖∞+ log ‖l‖∞), find h such that ‖h‖ ≤
O(λ), wh ≤ 2ωwg for all x-feasible step pairs (g, 2ω) ∈ G(H)× Z. The basic idea
for the dynamic program is similar to that of the classical knapsack problem. We
skip the technical details here. Interested readers may refer to [14].

Combining the dynamic program and Lemma 2, we have the following theorem.

Theorem 3 ([9, 14, 22]) There exists an algorithm that solves an n-fold integer
program in fnp(sA, sD, tA, tD,Δ)|I |O(1) time, where fnp is some computable
function and |I | is the encoding length of the input.

The exact running time was shown by Hemmecke et al. [14] to be ΔO(sAsDtA+sAt2A)n3

|I |, and was improved independently in recent papers [9, 22]. In particular, an
algorithm of running time ΔO(s2

AsD+sAs2
D)(ntA)

3+LP was provided by Koutecký et
al. [22], and an algorithm of running time n2t2

Aβ log2(ntA) ·(sAsDΔ)O(s2
AsD+sAs2

D)+
LP was provided by Eisenbrand et al. [9], where β is the logarithm of the largest
number occurring in the input, and LP is the time for solving the LP relaxation
of (1).

Remark We do not know yet whether the running time, particularly its (expo-
nential) dependency on sA and sD is necessary and/or optimal. The exponential
dependency on sA is unavoidable assuming exponential time hypothesis [21],
yet it is not clear whether we can have an algorithm of running time like, e.g.,
(sAsDΔ)O(sA+sD)|I |O(1).

3.2.2 Tree-Fold IP

Tree-fold IP is a generalization of n-fold IP. A recent paper by Chen and Marx [3]
generalizes Lemma 2 as follows.

Lemma 3 ([3]) Let H be a tree-fold matrix consisting of A1, A2, · · · , Aτ . Then
||g||1 ≤ λ for some λ that only depends on the small matrices A1, A2, · · · , Aτ , i.e.,
on si , ti which are the number of rows and columns of Ai where i = 1, 2, · · · , τ ,
and Δ which is the maximal absolute value of entries of all Ai’s.



162 L. Chen

Further generalizing the dynamic programming for n-fold IP, Chen and Marx
were able to present the following algorithm.

Theorem 4 ([3]) There exists an algorithm that solves a tree-fold integer program
in ftf (s1, t1, s2, t2, · · · , sτ , tτ ,Δ)|I |O(1) time, where ftf is some computable func-
tion and |I | is the encoding length of the input.

The running time was further improved very recently in [9, 22]. In particular,
Koutecký et al. [22] showed that the running time can be further made into strongly
polynomial, and Eisenbrand et al. [9] showed an algorithm of an explicit running
time n2β log2(ntA) ·(sΔ)O(σs)+LP, where β is the logarithm of the largest number
occurring in the input, s = ∏τ

i=1(si + 1), σ = ∑τ
i=1 si , and LP is the time for

solving the LP relaxation of (2).

Remark The current best algorithm for tree-fold IP has a running time doubly
exponential in τ . It is an important open problem whether there exists an algorithm
of running time singly exponential in τ .

3.2.3 Multistage Stochastic IP

The following lemma is a restatement of the finiteness theorem (Proposition 8.11)
of [2].

Lemma 4 ([2]) Let H be a multistage stochastic matrix consisting of A1, A2, · · · ,
Aτ . Then ‖g‖∞ ≤ λ for some λ that only depends on the small matrices
A1, A2, · · · , Aτ , i.e., on si , ti which are the number of rows and columns of Ai

where i = 1, 2, · · · , τ , and Δ which is the maximal absolute value of entries of all
Ai’s.

It is worth mentioning that unlike n-fold IP, the general concrete upper bound
on λ is unknown even for the special case of two-stage stochastic IP (i.e., even
if τ = 2). Nevertheless, for any fixed H we can still compute λ [2]. Based on
Lemma 4, Aschenbrenner and Hemmecke were able to show the following.

Theorem 5 ([2]) There exists an algorithm that solves multistage stochastic integer
program in fms(s1, t1, s2, t2, · · · , sτ , tτ ,Δ)|I |O(1) time, where fms is some com-
putable function and |I | is the encoding length of the input.

Recently Koutecký et al. [22] showed that the running time can be further made into
strongly polynomial.

Remark Even for the special case of two-stage stochastic IP, we do not yet know
an algorithm with an explicit running time. It is not even clear whether the running
time is doubly or triply exponential in parameters like τ . This is an important open
problem. To derive such an algorithm, if we still use the iterative augmentation
framework, then we may need an explicit bound for λ in Lemma 4.
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3.2.4 4-Block n-Fold IP

Recall the structure of a 4-block n-fold matrix. Suppose H consists of n copies of
A,B,D and one copy of C, then N = tC+ntB . We write the (tC+ntB)-dimensional
vector x into n + 1 “bricks” x = (x0, x1, · · · , xn), where x0 is tC-dimensional and
xi is tB -dimensional for 1 ≤ i ≤ n. According to the augmentation framework, if
‖g0‖∞ ≤ λ for any g ∈ G(H), then it suffices to solve the following subproblem:

Given IP (2) and ω ≤ O(log ‖u‖∞+ log ‖l‖∞), find h such that ‖h0‖∞ ≤ λ and
wh ≤ 1/c · 2ωwg for all x-feasible step pairs (g, 2ω) ∈ G(H)× Z.

Let h∗ be the optimal solution for the subproblem, as ‖h0∗‖∞ ≤ λ, we can guess,
via O(λ)tB enumerations, the tB -dimensional vector h0∗. Once we guess the correct
h0∗, the subproblem reduces to the following:

Given IP (2) and ω ≤ O(log ‖u‖∞ + log ‖l‖∞), find h such that h0 = h0∗, and
wh ≤ 1/c · 2ωwg for all x-feasible step pairs (g, 2ω) ∈ G(H)× Z.

It is easy to see that the subproblem reduces to exactly a subproblem for
an n-fold integer program, which, according to Theorem 3, can be solved in
fnp(sA, sD, tA, tD,Δ)|I |O(1) time. Hence, we have the following observation,
which is also implicitly used in [5, 15]:

Observation 1 If ‖g0‖∞ ≤ λ for any g ∈ G(H), then 4-block n-fold integer
programming can be solved in O(λ)tB fnp(sA, sD, tA, tD,Δ)|I |O(1) time, where |I |
is the length of the input.

The observation allows us to focus on the 
∞-norm of the first brick g0 of a
Graver basis element. Is the upper bound λ only dependent on the small matrices
A,B,C,D? Unfortunately, this is not true. In 2014, Hemmecke et al. showed
an upper bound of n2O(sc)

fb(sA, sB, sC, sD, tA, tB, tC, tD,Δ) for some computable
function fb, which is doubly exponential in the parameter sC . Very recently, Chen
et al. [5] is able to show the following:

Lemma 5 ([5]) Let H be a 4-block n-fold matrix consisting of A,B,C,D. Then
‖g‖∞ ≤ nsCfb(sA, sB, sC, sD, tA, tB, tC, tD,Δ) for some computable function fb,
where si , ti are the number of rows and columns of matrix i for i = A,B,C,D, and
Δ which is the maximal absolute value of entries of A,B,C,D. Furthermore, there
exists some 4-block n-fold matrix H such that ‖g0‖∞ ≥ Ω(nsC ) for any Graver
basis element g.

The above lemma indicates that, unlike its two special cases, n-fold IP and
two-stage stochastic IP, we do not have a similar finiteness theorem for 4-block
n-fold IP. Nevertheless, we have the following theorem by combining Lemma 5 and
Observation 1.

Theorem 6 ([5]) There exists an algorithm that solves 4-block n-fold integer
program in nO(tBsC)fb(sA, sB, sC, sD, tA, tB, tC, tD,Δ)|I |O(1) time, where fb is
some computable function and |I | is the encoding length of the input.
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Remark The reader can see that the unboundness of the Graver basis elements of 4-
block n-fold IP, as implied by Lemma 5, causes the algorithm to have a much higher
dependency of n in its running time, in particular, it is nO(tBsC) instead of nO(1) in the
running times of algorithms for n-fold and two-stage stochastic IPs. Nevertheless,
this fact only indicates that the traditional approach may not be so efficient for 4-
block n-fold IP. It is still possible that a completely new approach can yield a running
time of f (sA, sB, sC, sD, tA, tB, tC, tD,Δ)nO(1) for some computable function f ,
which is one of the most important open problems in this research direction.

4 Optimizing over a Non-linear Objective

When φ is a non-linear function, the problem is less understood. In particular,
polynomial time algorithms are only known for a restricted class of non-linear
functions. Moreover, even for those non-linear functions that admit a polynomial
time algorithm, it is not yet clear how these running times depend on the parameters.
These known algorithms still rely on the iterative augmentation framework, but we
will need a modified version of the Graver-best oracle.

4.1 Minimizing an Appropriate Convex Function

We define a function ψ : Z → Z to be Z-convex, if for all x, y ∈ Z and for
all 0 ≤ λ ≤ 1 with λx + (1 − λ)y ∈ Z, the inequality ψ(λx + (1 − λ)y) ≥
λψ(x)+ (1− λ)ψ(y) holds. We define a function ψ̄ : Zk+1 → Z to be a separable
Z-convex function if

ψ̄(y0, y1, y2, · · · , yk) = y0 +
k∑

i=1

ψi(yi),

where each ψi is a Z-convex function.
Let ci ∈ Z

N for 0 ≤ i ≤ k. We consider the objective of minφ(x) where
φ(x) = ψ̄(c0x, c1x, · · · , ckx), or more precisely, we consider the following:

min {c0x+
k∑

i=1

ψi(cix) : Hx = b, l ≤ x ≤ u, x ∈ Z
N }, (3)

Hemmecke et al. [13] showed a similar result to Theorem 1, which roughly states
that an integer program that minimizes a separable Z-convex function can be solved
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by calling a polynomial number of a slightly modified Graver-best oracle. More
precisely, We define Ĥ as the augmented matrix such that

Ĥ :=
(
H 0
C Ik

)

,

where Ik is a k × k identity matrix and C = (c1, c2, · · · , ck)T , which consists of
every ci as rows.

Similar to minimizing linear objectives, we define a Graver-best oracle for
separable Z-convex functions as follows. Towards that, recall that any Graver basis
element of G(Ĥ ) is an (N + k)-dimensional vector. We define G(H,C) to be
the projection of vectors in G(Ĥ ) onto its first N coordinates, whereas vectors in
G(H,C) are N -dimensional. Furthermore, by the definition of Ĥ , it is easy to see
that for any g ∈ G(H,C), we have Hg = 0.

Now we are able to define the Graver-best oracle for IP (3). Let the objective
function φ and G(H,C) be defined as above. We define an augmenting step g ∈
G(H,C) and a step length ρ ∈ Z as an x-feasible step pair with respect to a feasible
solution x if l ≤ x + ρg ≤ u. An augmenting step h is a Graver-best step for x if
φ(x+ h) ≤ φ(x+ ρg) for all x-feasible step pairs (g, ρ) ∈ G(H,C)× Z. The next
definition and theorem show that it is sufficient to focus all our attention on finding
Graver-best steps.

Definition 4 (Graver-Best Oracle for IP (3)) A Graver-best oracle for IP (3) is
one that, queried on w,b, l,u, and x feasible to (3), returns a Graver-best step h
for x.

Then the following is true:

Theorem 7 ([13]) Let φ(x) = ψ̄(c0x, c1x, · · · , ckx) = c0x +∑k
i=1 ψi(cix) be a

separable Z-convex function given by a polynomial time comparison oracle which,
when queried on y, z ∈ Z

k+1, decides whether ψ̄(y) < ψ̄(z), ψ̄(y) = ψ̄(z),
or ψ̄(y) > ψ̄(z) holds in time polynomial in the encoding length of y and z.
Let ψ̄max be an upper bound for the difference of maximum and minimum value
of ψ̄ over the feasible set {x : Hx = b, l ≤ z ≤ u, x ∈ Z

N } and assume
that the encoding length of H is of polynomial size in the encoding lengths of
H,b, l,u, c0, c1, · · · , ck . Given a Graver-best oracle for IP (3), (3) can be solved
with a number of augmentation steps that are polynomially bounded in the encoding
lengths of H,b, l,u, c0, c1, · · · , ck .

Combining Theorem 7 and the finiteness results shown by Lemmas 2 and 4, n-
fold and two-stage stochastic IP with certain type of non-linear objective functions
can be solved in polynomial time, as we specify the details in the following.
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4.1.1 Convex n-Fold IP

Consider n-fold IP. Recall that in an n-fold IP H consists of n copies of D ∈ Z
sD×tD

and A ∈ Z
sA×tA , where tA = tD := t , and any feasible solution x is an nt-

dimensional vector. We write x = (x1, x2, · · · , xn)where each xi ∈ Z
t . We consider

the objective function φ such that

φ(x) =
n∑

i=1

φi(xi ),

where each φi satisfies that

φi(z) =
k∑

j=1

φij (cj z)+ ci0z

for convex functions φij , j = 1, 2, · · · , k where k is a fixed constant. Note that here

we have the same vectors cj ’s in each φi , while the linear coefficient ci0 is different
for each φi . We call an IP with H being an n-fold matrix and the objective function
φ being defined as above the problem of minimization convex n-fold IP. Then we
have the following.

Theorem 8 ([13]) Given a polynomial time comparison oracle for each φi : Zt →
Z which, when queried on y, z ∈ Z

t , decides whether φi(y) < φi(z), φi(y) = φi(z),
or φi(y) > φi(z) holds in time polynomial in the encoding length of y and z, there
exists an algorithm that solves the problem of minimization convex n-fold IP in time
polynomial in the input length.

We remark that the explicit running time of the algorithm for Theorem 8 is not
known yet, but the readers may expect a similar running time to that of Theorem 3.
That is, the running time is polynomial if sA, sD, t = tA = tD and Δ are all constant.
It is not clear, though, whether the running time can be made into polynomial in t .

4.1.2 Convex Splittable Two-Stage Stochastic IP

Consider two-stage stochastic IP. Recall that in a two-stage stochastic IP H consists
of n copies of A ∈ Z

sA×tA and B ∈ Z
sB×tB , and any feasible solution x is an

(tB + ntA)-dimensional vector. We write x = (x0, x1, · · · , xn), where x0 ∈ Z
tB and

xi ∈ Z
tA for 1 ≤ i ≤ n. We consider the objective function φ such that

φ(x) =
n∑

i=1

φi(x0, xi ),
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where each φi : RtA+tB → R satisfies that

φi(x0, xi ) =
k∑

j=1

φij (cjx0 + djxi )

for convex functions φij , j = 1, 2, · · · , k, where k is a fixed constant. Note again
that we have the same vectors cj and dj .

We further define a convex function φi : RtA+tB → R that maps Z
tA+tB to Z

splittable, if for all fixed vectors y ∈ Z
tB , z,h1,h2 ∈ Z

tA , and for all finite intervals
[a, b] ⊆ R, there exists polynomially many (in the encoding length of the problem
data) intervals I1, I2, · · · , Ir such that:

• [a, b] = ∪rj=1Ij ,
• Ij ∩ Ij ′ ∩ Z = ∅ for all 1 ≤ j < j ′ ≤ r ,
• for each j = 1, 2, · · · , r , either φi(y, z + αh1) ≤ φi(y, z + αh2) or φi(y, z +

αh1) ≥ φi(y, z+ αh2) holds for all α ∈ Ij .

It is worth mentioning that convex polynomials of a constant maximal degree are
splittable.

We call an IP with H being a two-stage stochastic matrix and the objective
function φ(x) = ∑n

i=1 φ
i(x0, xi ) being such that each φi is a convex splittable

function for the problem of minimization convex splittable two-stage stochastic IP,
then we have the following theorem:

Theorem 9 ([13]) There exists an algorithm that solves the problem of minimiza-
tion convex splittable two-stage stochastic IP in time polynomial in the input length.

Note that the running time is polynomial when sA, sB, tA, tB , and Δ are all constant.
The explicit running time is unknown yet.

4.2 Maximizing an Appropriate Convex Function for n-Fold
IP

The problem of maximizing a convex function is much less understood. It is not
clear, e.g., for two-stage stochastic IP, whether maximizing a convex function, under
appropriate restrictions, can be solved in polynomial time. Nevertheless, there exists
some result for the n-fold IP due to De Leora et al. [7], as we elaborate below.

Consider n-fold IP. Recall that in an n-fold IP H consists of n copies of D ∈
Z
sD×tD and A ∈ Z

sA×tA , where tA = tD := t , and any feasible solution x is an
nt-dimensional vector. We write x = (x1, x2, · · · , xn), where each xi ∈ Z

t .
We consider the objective function φ such that:

φ(x) = ψ(c1x, c2x, · · · , ckx),
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where k is a fixed constant, ci ∈ Z
nt for 1 ≤ i ≤ k, and ψ : Rk → R is a convex

function. We call an IP with H being an n-fold matrix and the objective function φ

being defined as above the problem of maximization convex n-fold IP. We have the
following.

Theorem 10 ([7]) Given a polynomial time comparison oracle for ψ : Rk → R

which, when queried on y, z ∈ Z
nt , decides whether ψ(y) < ψ(z), ψ(y) = ψ(z)

and ψ(y) > ψ(z) holds in time polynomial in the encoding length of y and z, there
exists an algorithm that solves the problem of maximization convex n-fold IP in time
polynomial in the input length.

Note that the running time is polynomial if k, sA, sD, t = tA = tD , and Δ are all
constant.

5 Application to Combinatorial Optimization Problems

Integer programming is a powerful tool for solving many combinatorial optimiza-
tion problems. However, solving a general IP is NP-hard [19], as we mentioned
before in the introduction. To derive polynomial time (approximation or FPT)
algorithms, a common approach is to model the problem with IPs that belong to
the tractable sub-classes. In particular, most previous researches focus on modeling
the problem with IPs that consist of only few variables and utilize Lenstra’s
elegant algorithm [23]. While this approach has proved to be successful in many
problems, sometimes we do encounter difficulty in modeling problems with only
a constant number of integral variables. Block-structured IP, on the other hand,
provides us with a new alternative solution that allows us to model problems by
utilizing an arbitrary number of integral variables. In this section, we will review
recent progress in the application of the block-structured IP in many classical
combinatorial optimization problems. Some of the application involves a highly
non-trivial modeling of the problem, and may inspire future research in this
direction.

We remark that, this section of the survey is dedicated to theoretical algorithmic
results. There do exist researches targeting at implementation. For example, n-
fold IP applied for scheduling and other related problems has been implemented
and evaluated through extensive experiments in [1], where a Github code is also
provided.

5.1 Scheduling

Scheduling is a classical problem in combinatorial optimization whose research
dates back to the 1960s [11]. Most of the existing researches in the past decades
focus on approximation or exact algorithms for different variants of the scheduling
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problem. The study of FPT algorithms for scheduling, however, is relatively new
and was initiated in a recent paper by Mnich and Wiese [24]. A very recent paper
by Knop et al. [20] establishes an interesting connection between n-fold IP and the
scheduling problems, which yields FPT algorithms for a broad class of scheduling
problems. In the following we will first briefly introduce the classical scheduling
problem, and then elaborate their results.

In a classical scheduling problem, there are n independent jobs (tasks) and m

machines (processors). We focus on non-preemptive scheduling in this section,
where each job has to be processed non-preemptively on one of the machines.
The processing time of job j on machine i is pij ∈ Z≥0, giving rise to the
processing time matrix PM = (pij )n×m. A feasible solution (schedule) to the
scheduling problem is an assignment A that assigns each job j to a specific machine
A(j) ∈ {1, 2, · · · ,m}.

There are three common machine environments commonly studied in the
literature, namely:

• Identical machines (P ): pij = pj . In this case, the processing time of job j is
independent of machines.

• Related machines (Q): pij = pj/si for si ∈ Z+, 1 ≤ i ≤ m.
• Unrelated machines (R): pij ’s are arbitrary non-negative integers.

We consider two popular objective functions, minimizing the makespan and
minimizing the total weighted completion times. Given a feasible schedule, we
denote by Cj the completion time of job j , which is the time when the processing of
job j finishes. The makespan, denoted as Cmax , is the latest completion time among
all jobs, i.e., Cmax = maxj Cj . The weighted total completion times, denoted as∑

wjCj , is the weighted sum over all the completion times of jobs, where wj is
the weight of job j , which is a given integer. Adopting the classical three field
notation, the problem of minimizing the makespan on identical machines is denoted
as P ||Cmax . Similarly, the problem of minimizing total weighted completion times
on unrelated machines is denoted as R||∑wjCj .

To give a simple illustration on how we can handle scheduling problems via n-
fold IP, we will take P ||Cmax as an example. We will show that, an FPT algorithm,
parameterized by the largest job processing time, pmax , can be derived by utilizing
Theorem 3. It is worth mentioning that such an FPT algorithm was first discovered
by Mnich and Wiese [24] through a different approach. Nevertheless, n-fold IP
provides an alternative approach to derive an FPT algorithm for P ||Cmax , and
is interesting on its own due to its straightforwardness—the reader will see that,
the natural IP formulation of P ||Cmax already belongs to n-fold IP, and an FPT
algorithm follows directly via Theorem 3.

Consider P ||Cmax and recall that pmax is the largest job processing time. Let Nj

be the number of jobs whose processing time is j ∈ {1, · · · , pmax}. Let T ∈ Z≥0 be
a target makespan, we establish the following integer program to determine whether
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there exists a feasible schedule of makespan bounded by T :

m∑

i=1

xij = Nj , ∀1 ≤ j ≤ pmax (4a)

pmax∑

j=1

pjxij ≤ T , ∀1 ≤ m, (4b)

where xij ∈ Z≥0 denotes the number of jobs whose processing time is j and is
scheduled on machine i.

To see the IP above falls into the class of n-fold IP, we let xi =
(xi1, xi2, · · · , xi,pmax ) and x = (x1, x2, · · · , xm). Define D = Ipmax and
A = (1, 2, · · · , pmax), it is easy to see that Equation (4a) is equivalent to∑m

i=1 Dxi = b0, where b0 = (N1, N2, · · · , Npmax ), and Equation (4b) is equivalent
to Axi ≤ T . That is, the IP above is an n-fold IP. Consequently, applying Theorem 3,
we have the following theorem.

Theorem 11 ([24]) P ||Cmax admits an FPT algorithm parameterized by pmax .

It is worth mentioning that a PTAS for P ||Cmax can be derived by utilizing the
theorem above and the classical rounding technique. More precisely, the classical
rounding technique allows us to transform a given scheduling instance into a
modified instance in which the largest job processing time is O(1/ε log 1/ε) at
the cost of a multiplicative 1 + O(ε) factor in the objective value (see, e.g., [16]).
Applying the theorem above with pmax = O(1/ε log 1/ε), a PTAS follows directly.

Using a similar idea, we may leverage n-fold IP to derive FPT algorithms for
different variants of scheduling problems, despite that the natural IP formulation of
the problem no longer belongs to the n-fold IP, and consequently much more effort
is needed to derive a clever IP formulation. Prior to presenting these more general
results, we first introduce the parameters needed.

Recall the unrelated machine scheduling. We consider a restricted version of
this problem in which the m machines can be divided into K different groups,
where machines of the same group are identical. That is, we have K different
types of machines. In addition to the parameter K , we also consider the following
parameters.

• pmax : largest job processing time,
• wmax : largest job weights,
• m: number of machines, and
• θ : number of distinct job processing times for the objective of Cmax , or number

of distinct job processing times and job weights for the objective of
∑

wjCj .

The following results are due to Knop and Kouteckỳ [20].
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Theorem 12 ([20]) The following scheduling problems admit FPT algorithms
parameterized by τ that is defined as follows for each specific problem:

• Q||Cmax: τ = pmax ,
• R||Cmax: τ = pK

max ,
• R||∑wjCj : τ = max{pK

max,w
K
max}, and

• R||∑wjCj : τ = mθm.

It is remarkable that the above results are all based on the application of n fold IP.
The parameterized algorithms for Q||Cmax and R||Cmax can be further generalized.
Recently, Chen et al. [4] considered a new parameter rk, which is the rank of the
processing time matrix PM . Note that for Q||Cmax , the rank of PM is 1. For
R||Cmax where machines have K different types, the rank of PM is at most K .
Chen et al. [4] showed the following:

Theorem 13 ([4]) R||Cmax admits an FPT algorithm parameterized by pmax and
rk.

Although the algorithm of Chen et al. does not use n-fold IP directly, it utilizes
Theorem 12.

5.2 Computational Social Choice

Computational social choice is an interdisciplinary research field that combines
social choice theory, theoretical computer science, and the analysis of multi-agent
systems. A very recent paper by Knop et al. [21] established a very interesting
connection between n-fold IP and a classical problem in computational social
choice, namely the bribery problem. Prior to presenting the results, we first
introduce some basic concepts in this field.

Election Model Consider a set of m candidates C and a set of n voters V . Each
voter v has a preference list of candidates, which is essentially a total order &v over
candidates. The rank of candidate c in the preference list of voter v is given by
r(c, v).

Voting Rules A voting rule is a function that maps an election, specified by C, V
and the preference lists, to a subset of winners W ⊆ C. There are various different
voting rules. For the purpose of the result to be presented in this section, we focus
on two broad sub-classes of voting rules.

Scoring Rules A scoring rule R assigns a score or point for each candidate based
on their position in the preference list of a voter. More precisely, if a voter v ranks
a candidate c at its h-th position, then the scoring rule assigns a value of s(h),
implying that ci receives s(h) points from vj . Summarizing the scores of ci received
from all the voters, we get the total score of ci . A candidate with the maximal score
becomes the winner. For example, one of the most popular voting rules, Plurality, is
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one kind of scoring rules where each candidate only receives one score from a voter
that prefers him/her the most.

C1 Rules A candidate c ∈ C is called a Cordorcet winner if any other c′ ∈ C \ {c}
satisfies that |{v ∈ V |c &v c′}| > |{v ∈ V |c′ &v c}|. A voting rule R is Condorcet-
consistent if it selects the Condorcet winner in case there is one. Fishburn [10] gives
a classification of Condorcet-consistent voting rules. For our sake, we only focus
on one kind known as C1 rules defined as follows. For any c, c′ ∈ C, we define
v(c, c′) = |{v ∈ V |c &v c′}|. A voting rule is a C1 rule if the Condorcet winner can
be determined as long as we know whether v(c, c′) > v(c′, c), v(c, c′) = v(c′, c),
or v(c, c′) < v(c′, c) for each pair c, c′.

Bribery via Swaps For any pair of candidates c, c′ ∈ C, a swap (c, c′)v is defined
to be the exchange of positions c and c′ in the preference list &v . Suppose there is
an attacker/briber who tries to manipulate the result of an election by a sequence of
swaps. Each swap (c, c′)v is associated with a cost σv(c, c′). The R-swap bribery
problem asks for a set of swaps with a minimum total cost that makes some
designated candidate c∗ a winner. More precisely, consider the following problem:

R-swap Bribery Given are an election C,V together with the preference lists of
voters, a designated candidate c∗, a voting rule R, and a cost function σ . The
goal is to find out a set of swaps such that c∗ becomes the winner and total cost
is minimized.

By establishing a suitable IP formulation of the R-swap bribery problem and
applying the algorithmic results from n-fold IP, Knop et al. [21] were able to show
the following:

Theorem 14 ([21]) R-swap bribery can be solved in time

• |C|O(|C|2)O(|V |3(log |V | + log |σmax |)) for any natural scoring rule R, and
• |C|O(|C|4)O(|V |3(log |V | + log σmax)) for any C1 rule R,

where σmax is the largest swap cost.

We remark that Knop et al. [21] were able to model the R-swap bribery problem
into a special case of n-fold IP where A = (1, 1, · · · , 1), i.e., A is a 1 × t matrix
with each coordinate being 1. They call such a special n-fold IP as combinatorial
n-fold IP. While we can directly utilize the current best-known algorithm for the
n-fold IP in [9] to derive the results as is shown in the above theorem, it is still
possible, though, that the combinatorial n-fold IP admits a better algorithm, yielding
an improved FPT result for R-swap bribery.
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5.3 Multiple TSP on a Tree

TSP (traveling salesman problem) is a fundamental problem in combinatorial opti-
mization. Very recently, Chen and Marx [3] were able to establish the relationship
between a variant of TSP and the tree-fold IP, which is very interesting and also of
great importance, as this is arguably the first application of block-structured IP to
derive FPT algorithms for TSP-related routing problems, with the potential further
extensions to more general graphs. We give a brief introduction to their results in
the following.

We consider the multiple traveling salesman problem on a tree. In this problem,
we are given a tree T = (V ,E) with V and E being the set of vertices and edges.
There is a non-negative weight (length) w(ej ) ∈ Z≥0 associated with each edge ej .
Let rt be the root of the tree. Initially there are m salesmen located at the root. Each
of the salesmen needs to travel along edges to visit a subset of the vertices and return
to the root at last. The problem of multiple TSP on a tree asks for the tour of every
salesman such that every vertex of the tree is visited by at least one salesman, and
the length of the longest tour among all the salesmen is minimized.

It is easy to observe that if the given tree T is a star, then each salesman actually
travels a distinct subset of edges, and the length of the tour is twice the total length
of the edges. If we view the length of an edge as a processing time of a job, it is not
difficult to see that the multiple TSP problem on a star is essentially the identical
machine scheduling problem with the objective of minimizing the makespan.

Notice that for a salesman to visit a subset of vertices and return to the root, if he
has to pass an edge, then he has to pass this edge at least twice, and it is possible for
him to pass this edge exactly twice. Hence, the problem of multiple TSP on a tree
is equivalent to the rooted subtree cover problem in which the goal is to find out m
subtrees rooted at rt whose union covers T such that the largest total weight among
all the subtrees is minimized.

Chen and Marx [3] showed the following in their recent paper.

Theorem 15 ([3]) There exists an FPT algorithm parameterized by k that deter-
mines whether the problem of multiple TSP on a tree admits a feasible solution of
objective value at most k.

The above theorem is proved via formulating multiple TSP on a tree into a tree-
fold IP. The connection between TSP and block-structured IP is quite hindsight and
such a formulation is also non-trivial and requires a lot of technical details, which
are skipped in this survey.
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5.4 Other Applications

Besides the applications mentioned in the previous subsections, block-structured IP
is also used to derive FPT algorithms for many other combinatorial optimization
problems. We give a very brief introduction here.

Non-linear Multicommodity Transportation The problem was defined in [14].
We briefly recap their description. There are of 
 commodities, m suppliers, and
n consumers. Each supplier i has a supply vector si ∈ Z


+ with sik its supply in
commodity k. The amount of commodity k to be routed from supplier i to consumer
j is an integer decision variable x

j
i,k . The total amount

∑

k=1 x

j
i,k of commodities

routed on the channel from i to j should not exceed the channel capacity ui,j

and has cost fi,j (
∑


k=1 x
j
i,k) for suitable univariate functions fi,j . By modeling

the non-linear multicommodity transportation problem into an n-fold IP and using
Theorem 7, Hemmecke et al. showed the following.

Theorem 16 ([14]) For every fixed 
 commodities, m suppliers, and p, there
exists an algorithm that, given n consumers, supplies, and demands si , cj ∈ Z


+,
capacities ui,j ∈ Z+, and convex p-piecewise affine costs fi,j : Z → Z, solves in
polynomial time O(n3L), with L being the input length, the integer multicommodity
transportation problem

min{
m∑

i=1

n∑

j=1

fi,j (


∑

k=1

x
j
i,k) : xji,k ∈ Z+,

∑

j

x
j
i,k = sik,

∑

i

x
j
i,k = cjk ,


∑

k=1

x
j
i,k ≤ ui,j }.

Weighted Set Multicover This is a generalization of the traditional set cover
problem. In this problem, there are a universe U of size k, a set system represented
by a multiset F = {F1, F2, · · · , Fn} ∈ 2U , weights w1, w2, · · · , wn ∈ Z≥0,
demands d1, d2, · · · , dk ∈ Z≥0. The goal is to find a multisubset F ′ ⊆ F
minimizing

∑
i:Fi∈F ′ wi and satisfying |{i : Fi ∈ F ′, j ∈ Fi}| ≥ dj for all

j = 1, 2, · · · , k. By modeling the weighted set multicover problem into an n-fold
IP and using Theorem 3, Knop et al. [21] showed the following.

Theorem 17 There is an algorithm that solves weighted set multicover in time
kO(k2)O(log n+ logwmax), where wmax is the maximal set weight.

String Matching Many variants of string matching problems are shown to admit
an FPT algorithm via n-fold IP. In the following we briefly describe the problem of
δ-multi-strings, which is shown to admit an FPT algorithm by Knop et al. [21]. It is
worth mentioning that although δ-multi-strings are somehow an artificial problem,
its generality allows us to derive FPT algorithms for other closely related string
matching variants, including closest string, d-dismatches, etc. The reader may refer
to [21] for these extensions. In this subsection, however, we will focus on the
problem of δ-multi-strings.
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In this problem, given are a set of strings S = {s1, s2, · · · , sk}, each of length
L over alphabet Σ ∪ {�}, distance lower and upper bounds d1, d2, · · · , dk ∈ Z≥0
and D1,D2, · · · ,Dk ∈ Z≥0, distance function δ : Σ∗ × Σ∗ → Z≥0, and a binary
parameter b ∈ {0, 1}. The goal is to find a string y ∈ ΣL with di ≤ δ(y, si) ≤ Di

for each si ∈ S such that b · (∑k
i=1 δ(y, si)) is minimized.

We define a distance function δ : Σ∗ × Σ∗ → Z≥0 to be character-wise
wildcard-compatible if δ(x, y) =∑L

i=1 δ(x[i], y[i]) for any two strings x, y ∈ ΣL,
and δ(e, �) = 0 for all e ∈ Σ .

Knop et al. [21] showed the following.

Theorem 18 ([21]) There is an algorithm that solves δ-multi-strings in
KO(k2)O(logL) time, where K = max{|Σ |, k,maxa,b∈Σ δ(a, b)} and δ is any
character-wise wildcard-compatible function.

6 Conclusion

In this paper, we have reviewed recent progress in the algorithmic research of block-
structured IP and its application in various combinatorial optimization problems.
There are several important open problems, which have been mentioned in the
remarks at the end of corresponding subsections, and we give a short summary
here. From a theoretical point of view, the concrete running time of the algorithm
for n-fold IP with a linear objective has been shown and improved over a series
of papers; however, for other block-structured IP, e.g., the two-stage or multistage
stochastic IP, we do not know a concrete running time yet. Furthermore, for the
more general 4-block n-fold IP, the current best algorithm has a running time whose
dependency on n is nsC , it is not clear whether an algorithm of a running time
f (sA, sB, sC, sD, tA, tB, tC, tD,Δ)nO(1) exists for some computable function f .
For non-linear objectives, we know even less, e.g., 4-block n-fold IP with a non-
linear objective is much less understood. From the application point of view, we
have applied block-structured IP successfully in many combinatorial optimization
problems and derived interesting results, including scheduling, computational social
choice, string matching, multiple TSP, etc. The investigation of these problems may
also inspire our research in block-structured IP. In particular, the development of the
tree-fold IP is motivated by the problem of multiple TSP on a tree, while the research
on tree-fold IP is also important towards a better understanding of block-structured
IP. With so many different variants of combinatorial optimization problems, it is
always desirable that a unified approach can be derived, and block-structured IP,
particularly n-fold IP, does serve as a general tool for a broad class of problems.
It will be interesting to further investigate and discover the relationship between
block-structured IP and combinatorial optimization problems.
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Online Combinatorial Optimization
Problems with Non-linear Objectives

Zhiyi Huang

Abstract We survey some recent progress on the design and the analysis of online
algorithms for optimization problems with non-linear, usually convex, objectives.
We focus on an extension of the online primal dual technique, and highlight its
application in a number of applications, including an online matching problem
with concave returns, an online scheduling problem with speed-scalable machines
subjective to convex power functions, and a family of online covering and packing
problems with convex objectives.

1 Introduction

Online combinatorial optimization problems are ubiquitous. In these problems,
partial decisions must be made irrevocably based on the information revealed so
far. For example, in the online bipartite matching problem, only one side of the
vertices is given at the beginning. Then, the vertices on other side arrive one by one.
On the arrival of an online vertex, its incident edges are revealed and the algorithm
must irrevocably decide how to match it without any knowledge of the vertices
that will arrive later. Due to the uncertainty of future, it is impossible in general to
guarantee a maximum cardinality matching in the online setting. The performance
of the algorithm is measured by the ratio of the size of the obtained matching to that
of the maximum matching in hindsight. The competitive ratio of the algorithm is
defined to be the above ratio in the worst case.

The online bipartite matching problem and its many variants are extensively
studied in the literature. So are other classic online combinatorial optimization
problems, including online covering and packing problems, online caching and
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paging, and online scheduling. Most of the previous work have focused on problems
with linear objectives in the sense that the objective function can be written as a
linear function of the decision variables. For example, the standard formulation of
online bipartite matching uses an indicator variable xe ∈ {0, 1} to denote whether an
edge e is chosen in the matching. The objective, i.e., the cardinality of the matching,
is simply the sum of all such indicator variables. It remains linear even if we consider
the generalization which allows edge weights and seeks to maximize the total weight
instead of the cardinality of the matching.

However, there are also a wide range of problems whose natural formulations
involve non-linear (often convex or concave) objectives. For instance, a variant of
the online bipartite matching problem originated from the Adwords problem allows
an offline vertex to match multiple online vertices, but imposes a cap (e.g., an adver-
tiser’s budget in the Adwords problem) on the total gain of an offline vertex. In other
words, the contribution of an offline vertex to the objective function is the smaller of
its cap and the sum of weights of matched edges incident to it. The objective is then
the sum of such cap-additive functions of the decision variables, which are concave
instead of linear. Other examples of online combinatorial optimization problems
with non-linear objectives include online scheduling problems with speed-scalable
machines in which the energy consumption of a machine is a convex function of its
speed, and a generalized online resource allocation problems in which each resource
has a “soft capacity constraint” specified by a convex production cost function.

In this chapter, we will survey some recent progress in the design and analysis
of online algorithms for online combinatorial optimization problems with non-
linear objectives. We will talk about a line of research on generalizing the online
primal dual technique by Buchbinder and Naor [6], which was originally designed
for linear objectives, to handle convex and concave objectives. The generalization
allows us to solve the above-mentioned problems that do not admit natural linear
program relaxations.

In particular, we will focus on convex programs and Fenchel’s duality in the non-
stochastic setting. Readers are also referred to other interesting work along this line,
including using the online primal dual technique (or dual fitting) with Lagrangian
duality by Anand et al. [2], Gupta et al. [12], Nguyen [17], and online stochastic
convex optimization by Agrawal and Devanur [1].

1.1 Organization

We will first recap the online primal dual technique (Section 2), and explain how to
extend it to handle convex programs via Fenchel’s duality (Section 3). Then, we will
talk about three applications of the extension: online matching with concave returns
[11] (Section 4), online scheduling with speed scaling [10] (Section 5), and online
covering and packing problems with convex objectives [3] (Section 6).
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2 Online Primal Dual for Linear Objectives

We first give a brief introduction to the original online primal dual technique for
problems with linear objectives by demonstrating its application in the ski-rental
problem (e.g., Buchbinder and Naor [6]). Readers who are familiar with the original
online primal dual technique may skip this section.

In the ski-rental problem, a skier arrives at a ski resort but does not know when
the ski season will end. Every day, if the skier has not bought skis yet, she needs to
decide whether to rent skis at a cost of $1 or to buy skis at a cost of $B. We will
assume for simplicity of our discussion that B is a positive integer. The goal is to
minimize the total cost.

We follow the standard framework of competitive analysis of online algorithms.
That is, we use the optimal cost in hindsight, which equals $T if T ≤ B and $B
otherwise, as the benchmark. The performance of an algorithm for the ski-rental
problem and, in general, for any cost minimization problem, is measured by the ratio
of the expected cost of the algorithm to the optimal cost. We say that an algorithm
is F -competitive or it has competitive ratio F if the aforementioned ratio is at most
F for any instance of the problem. Obviously, the competitive ratio of an algorithm
is always greater than or equal to 1, and the smaller the better.

Consider a natural linear program formulation of the ski-rental problem and the
corresponding dual program below.

minimize B · x +∑T
t=1 yt

subject to x + yt ≥ 1 t = 1, . . . , T

x, yt ≥ 0 t = 1, . . . , T

maximize
∑T

t=1 αt

subject to
∑T

t=1 αt ≤ B

0 ≤ αt ≤ 1 t = 1, . . . , T

Here, x is the indicator of whether the algorithm buys skis, and yt is the indicator
of whether the algorithm rents skis on day t . For simplicity, we will only discuss
solving the linear programs online to minimize the expected primal objective value.
Readers are referred to the survey by Buchbinder and Naor [6, Section 3] for
an online rounding algorithm which convert the online fractional solution into a
randomized integral algorithm for the ski-rental problem with the same competitive
ratio. Roughly speaking, the fractional value of x denotes the probability that the
algorithm buys skis and the fractional value of yt denotes the probability that the
algorithm rents skis on day t .
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2.1 High-Level Plan

As the input information being revealed over time piece by piece, more variables
and constraints of the primal and dual programs are presented to the algorithm. On
each day t , a new primal variable yt ≥ 0, a new primal constraint x + yt ≥ 1, and
a new dual variable 1 ≥ αt ≥ 0 arrive. Online primal dual algorithms maintain at
all time a feasible primal assignment and a feasible dual assignment simultaneously.
Let ΔtP and ΔtD be the changes of the primal and dual objectives, respectively, on
day t . The goal is to update the primal and dual variables to satisfy:

ΔtP ≤ F ·ΔtD (1)

for some fixed parameter F ≥ 1. If Equation (1) holds and the initial values of
the primal and dual objectives are zero, the algorithm is F -competitive because the
final primal objective P is at most F times the final dual objective D, which by
weak duality is less than or equal to the optimal primal objective.1

2.2 Relaxed Complementary Slackness

In order to understand how an online primal dual algorithms can be derived
from the structure of the linear programs, we need to look into their optimality
conditions. It is known that the offline optimal primal and dual solutions satisfy the
complementary slackness conditions, which state that a primal (resp., dual) variable
must be zero unless the corresponding dual (resp., primal) constraint is tight (e.g.,
[9]). Specifically, for the ski-rental problem, we have the followings:

(a) x must be zero unless
∑T

t=1 αt = B;
(b) yt must be zero unless αt = 1;
(c) αt must be zero unless x + yt = 1.

However, it is generally impossible to satisfy all complementary slackness
conditions exactly in an online problem. In particular, it is not possible to guarantee
satisfying conditions (a) and (c) exactly in the ski-rental problem. The best we
could hope for is to satisfy the complementary slackness conditions approximately.
Online primal dual algorithms are therefore driven by satisfying these conditions
approximately, where the value of a primal (resp., dual) variable depends on the
tightness of the corresponding dual (resp., primal) constraint. Concretely, consider

1Some applications of the online primal dual technique maintain an alternative set of invariants,
e.g., one may consider keeping primal and dual objectives equal and guaranteeing primal
feasibility, while showing approximate dual feasibility. However, such variants can be easily
rewritten to fit into the framework in this chapter.



Online Combinatorial Optimization Problems with Non-linear Objectives 183

the following relaxed conditions for the ski-rental problem. Note that condition (b)
will remain the same as it can be satisfied exactly even in the online setting.

(a′) x depends on the tightness of the corresponding dual constraint
∑T

t=1 αt ≤ B,
i.e., it is an increasing function of

∑T
t=1 αt ;

(c′) αt must be zero unless x + yt = 1, at the end of day t (the constraint may have
slack in the future because the algorithm may increase x).

2.3 Online Primal Dual Algorithms

Fix any day 1 ≤ i ≤ T , first consider the new dual variable αi . To maximize the
dual objective, letting αi = min{1, B −∑i−1

t=1 αt } is the most natural choice in light
of the dual constraints. Recall that B is an integer, this is equivalent to letting αi = 1
if i ≤ B and αi = 0 otherwise. As a result,

∑
t αt increases by 1 on each day i ≤ B

and the algorithm increases x according to condition (a′). Let xi denote the value
of x after day i for i = 1, . . . , B, and x0 = 0. After day B,

∑
t αt and, thus, the

value of x must remain constant because of condition (a′). Further, let yi = 1−xi to
satisfy condition (c′). Note that this is also the most natural choice to minimize the
primal objective. Finally, since we let αi = 0 for i > B, we must have yi = 0 and
x = 1 on any day i > B according to condition (b) and, thus, xB = 1 most hold.

In sum, for every monotone sequence xt , t = 0, 1, . . . , B, such that x0 = 0 and
xB = 1, there is an online primal dual algorithm as follows:

1. On day i = 1, . . . , B, let αi = 1, x = xi , and yi = 1− xi .
2. On day i > B, let αi = 0, x remains the same (i.e., equals 1), and yi = 0.

2.4 Online Primal Dual Analysis

It remains to find the best monotone sequence {xt }t=1,...,B such that Equation (1)
holds with the smallest possible F ≥ 1. Note that both the primal and dual objectives
remain the same after day B, so it suffices to analyze Equation (1) on the first B
days. On each day t = 1, . . . , B, x changes from xt−1 to xt , and yt = 1− xt . So the
change of primal objective is equal to:

ΔtP = B · (xt − xt−1)+ (1− xt ) = (B − 1) · xt − B · xt−1 + 1

On the other hand, the algorithm sets αt = 1. So the change of dual objective is

ΔtD = 1
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So Equation (1) becomes (B − 1) · xt − B · xt−1 ≤ F − 1. Reorganizing terms,
it is equivalent to the followings:

xt + F − 1 ≤ B
B−1 (xt−1 + F − 1) ,

Using the above inequality for 1, 2, . . . , t , we get that:

xt ≤
(

B
B−1

)t
(x0 + F − 1)− (F − 1) = (( B

B−1

)t − 1
)
(F − 1) (2)

Let e(B) = ( B
B−1

)B . We have e(B) ≥ e and limB→+∞ e(B) = e ≈ 2.718. By

xB = 1 and the above inequality, we have F ≥ e(B)
e(B)−1 . Let F = e(B)

e(B)−1 and let xt
be such that Equation (2) holds with equality. Then, we have an online primal dual
algorithm with competitive ratio e(B)

e(B)−1 ≤ e
e−1 ≈ 1.582. This competitive ratio is

in fact the best possible (e.g., Buchbinder and Naor [6]).
As a concluding remark of the section, we highlight that the derivation of the

online primal dual algorithm for the ski-rental problem and its analysis follow
mechanically from the primal and dual linear programs and the corresponding
relaxed complementary slackness conditions. No cleverness is needed to derive the
optimal competitive ratio. This is, in my opinion, the main strength of the online
primal dual framework. In more complicated problems, it is non-trivial to obtain
a good enough understanding of the mathematical programs and to find the right
relaxation of their optimality conditions. Once we figure them out, however, the
design of the algorithm and the analysis will again become mechanical.

3 Online Primal Dual for Convex and Concave Objectives

Let us first introduce some necessary background on the conjugates of convex and
concave functions and a duality theory for convex programs.

3.1 Conjugates

Let f : Rn+ �→ R+ be a convex function. Its convex conjugate is defined as:

f ∗(x∗) = max
x≥0

{〈x, x∗〉 − f (x)
}
.

Here, x∗ is also an n-dimensional vector. 〈x, x∗〉 denotes the inner product of vectors
x and x∗. For example, suppose f (x) = 1

α
xα is a polynomial. Then, f ∗(x∗) =

(1 − 1
α
)x∗

α
α−1 is also a polynomial. Here, we add the coefficient 1

α
to f so that

the coefficient of the conjugate f ∗ is simple, without changing the nature of the
functions. We will have similar treatments throughout the chapter.
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For simplicity, we will further assume that f is non-negative, non-decreasing,
strictly convex, differentiable, and normalized such that f (0) = 0 in this chapter. In
this case, the conjugate satisfies the following properties:

• f ∗ is non-negative, non-decreasing, strictly convex, differentiable, and normal-
ized such that f ∗(0) = 0;

• f ∗∗ = f ;
• ∇f and ∇f ∗ are inverse of each other, and we say that x and x∗ form a

complementary pair if x = ∇f ∗(x∗) and x∗ = ∇f (x).
Next, consider a concave function g : Rn+ �→ R. Its concave conjugate is defined

similarly as follows:

g∗(x∗) = min
x≥0

{〈x, x∗〉 − g(x)
}
.

Similar to the convex case, we will further assume g to be non-negative, non-
decreasing, strictly concave, differentiable, and normalized such that g(0) = 0 in
this chapter. In this case, the concave conjugate satisfies the following properties:

• g∗ is non-positive, non-decreasing, strictly concave, and differentiable;
• g∗∗ = g;
• ∇g and ∇g∗ are inverse of each other, and we say that x and x∗ form a

complementary pair if x = ∇g∗(x∗) and x∗ = ∇g(x).
Assuming some mild conditions which hold for all problems in this chapter and,

hence, are omitted, the following strong duality holds. It is known as Fenchel’s
duality theorem.

minimize
x≥0

{
f (x)− g(x)

} = maximize
x∗≥0

{
g∗(x∗)− f ∗(x∗)

}
. (3)

3.2 An Example: Online Auction of an Item with Production
Cost

In the rest of the chapter, we will restrict our attentions to convex programs with
linear constraints. In this section, we will consider an online auction of one item
with production cost as a simple running example to demonstrate the application of
Fenchel’s duality as well as how the online primal dual technique works.

Let there be a seller with one item for sale. Let there be n buyers who arrive
online. Each buyer i has a value vi ∈ R+ that specifies the maximum price i is
willing to pay for a copy of the item. The technique can actually handle much more
general settings with multiple heterogeneous items and combinatorial valuations of
agents. We consider this simple case an illustrative example in this section, and
refer readers to Huang and Kim [13] for further discussions on the general case.
For simplicity, let us omit the strategic behaviors of buyers and assume that the
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valuation of each buyer is revealed to the seller at the buyer’s arrival. On the arrival
of a buyer i, the seller decides whether to allocate a copy of the item to buyer i or
not. The seller may produce an arbitrary number of copies of the item subject to a
production cost function f , i.e., producing y copies of the item leads to a production
cost of f (y). The goal is to maximize the social welfare, i.e., the sum of values of
the buyers for the allocated bundle of items less the production cost.

Below is a natural convex program relaxation of the online combinatorial auction
with production costs. Here, we assume for simplicity that f is defined for all
non-negative real numbers. Readers may think of it as, e.g., f (y) = 1

2y
2, for

concreteness.

maximize
∑n

i=1 vixi − f (y)

subject to
∑n

i=1 xi = y

0 ≤ xi ≤ 1 i ∈ [n]
y ≥ 0

Here, xi is the indicator of whether buyer i gets a copy of the item, and y is the total
number of allocated copies.

The Fenchel’s dual convex program can be derived from the Lagrangian dual and
the definition of convex conjugates. Taking the Lagrangian dual, we have

minimize
u≥0,p

maximize
x,y≥0

∑n
i=1 vixi − f (y)+∑n

i=1 ui
(
1− xi

)+ p
(
y −∑n

i=1 xi
)

First, consider the maximization problem w.r.t. xi , namely

maximize
xi≥0

(vi − ui − p) · xi =
{

0 if ui + p ≥ vi,

+∞ otherwise.

Thus, it imposes a linear constraint ui + p ≥ vi in the dual problem.
Next, consider the maximization problem w.r.t. y, namely

maximize
y≥0

py − f (y)

By the definition of convex conjugates, the optimal value of the above maximiza-
tion problem is f ∗(p).

In sum, the Lagrangian dual can be simplified as follows:

minimize
∑n

i=1 ui + f ∗(p) (4)

subject to ui + p ≥ vi i ∈ [n]
ui ≥ 0 i ∈ [n]
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We leave it to interested readers to verify the above program is equivalent to
the Fenchel’s dual as defined in Equation (3) of the online auction of an item with
production cost. In this dual program, we can interpret p as the price for a copy of
the item and ui as the utility of buyer i, i.e., his value for the allocated bundle less
the total price.

3.3 Optimality Conditions

Similar to their counterparts for linear programs, the online primal dual algorithms
for convex programs are also driven by the optimality conditions of the programs
and their dual programs. There are different ways to formulate such conditions. We
will use the most familiar one known as the Karush–Kuhn–Tucker (KKT) conditions
[14, 15]. We refer readers to Boyd and Vandenberghe [5] for an extensive discussion
on the optimality conditions of convex programs. In this chapter, we will explain the
conditions only on a problem-by-problem basis. For the running example of online
auction of an item with production cost, the conditions are

(a) xi must be zero unless ui + p = vi ;
(b) ui must be zero unless xi = 1;
(c) y and p form a complementary pair.

Here, the first two conditions concern primal/dual linear constraints and the
corresponding dual/primal variables. They are complementary slackness conditions
just like in the case of linear programs. The third condition is about variables
involved in the non-linear parts of the primal and dual objectives. It states that they
must form complementary pairs in the sense that we defined at the beginning of
the section. Next, we will show how one can derive an online algorithm from the
principle of satisfying these conditions approximately.

3.4 High-Level Plan

A meta online primal dual algorithm, much like their counterparts for linear
programs, proceeds as follows. It maintains a feasible dual at all time. At the
beginning, it is just the value of p since none of the ui’s has arrived yet. On the
arrival of a buyer i, it decides whether to allocate a copy of the item to i, i.e., the
value of xi , based on the current dual, sets values to the new dual variable ui , and
updates dual variable p. The high-level principle guiding these decisions is to satisfy
the aforementioned optimality conditions as much as possible. We shall elaborate
how shortly. Finally, the competitive ratio follows by comparing the increments in
the primal and dual objectives in each step.
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3.5 (Approximate) Complementary Slackness

Recall that the KKT conditions for linear constraints are the same as complementary
slackness. An online primal dual algorithm handles these conditions the same way
as in the original approach for linear programs.

In particular, let us consider conditions (a) and (b) in our running example. On
buyer i’s arrival, a new dual variable ui shows up and it is subject to two constraints
ui + p ≥ vi and ui ≥ 0. Therefore, if p > vi , the first constraint cannot hold
with equality and xi must be 0, i.e., we must not allocate a copy of the item to i,
according to condition (a). On the other hand, if p < vi , the value of ui must be
positive, and xi must be 1, i.e., we must allocate a copy of the item to i, according
to condition (b). The decision in the tie-breaking case when vi = p does not matter;
we will assume that the algorithm does allocate a copy in the tie-breaking case. To
this end, the algorithm shall interpret the current value of the dual variable p as a
take-it-or-leave-it price for a copy of the item. It allocates a copy to buyer i if and
only if its value vi is at least the price p. Further, it shall let ui = max{vi − p, 0}.
Doing so will satisfy the complementary slackness conditions (a) and (b) at the end
of i’s arrival. However, the algorithm may increase p in the future at which point
condition (a) will be violated. Condition (b), on the other hand, will be satisfied
exactly since xi and ui will not change in the future.

3.6 (Approximate) Complementary Pairs

So far, we have pinned down how to decide the allocation, i.e., the value of xi , at
each buyer i’s arrival based on the current dual, in particular the current price p. We
have also explained how to set ui accordingly. There is still a missing piece, namely
how to update the price p, after i’s arrival.

This last piece of the algorithm is driving by the last condition. Recall it says
that in the offline primal and dual solutions, y and p form a complementary pair,
i.e., p = f ′(y). This coincides with the economic intuition, namely the unit price
of a copy of the item shall equal to its marginal production cost. In the online
problem, however, the algorithm knows only the current demand y of the item,
but not its final value at the end of the day. As a result, the algorithm needs to in
some sense predict the final demand according to the current demand, and set the
price according to the predicted final demand. For example, we may simply predict
the final demand to be twice the current demand. It turns out this simple heuristic
already gives reasonably good competitive ratio for nice production cost functions
such as polynomials. For simplicity of exposition, we will use a slight variant of this
simple heuristic and assume a specific production function f (y) = 1

2y
2 to explain

the primal dual analysis in the rest of the section.
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3.7 Online Primal Dual Algorithms

Putting together, consider the following online primal dual algorithm:

1. Initially, y = 0, p = f ′(2(y + 1)) = 2.
2. On the arrival of each buyer i:

2a. Let xi = 1 if vi ≥ p, and let xi = 0 otherwise.
2b. Let ui = max{vi − p, 0}.
2c. Update y = y + xi and, subsequently, p = f ′(2(y + 1)) = 2(y + 1).

We remark that a more principled approach is to leave the prediction mapping
as an unknown function g, i.e., let g(y) be the predicted final demand if the current
demand is y and set p = f ′(g(y)), and to derive the optimal prediction mapping
from the analysis. Interested readers are referred to Huang and Kim [13] for the
details.

3.8 Primal Dual Analysis

Recall that f (y) = 1
2y

2. Hence, we have f ∗(p) = 1
2p

2. Clearly, the algorithm
maintains feasible primal and dual at all time by design. It remains to compare the
increments of the objectives due to the arrival of each buyer i.

If i does not get a copy of the item, both the primal and the dual objectives remain
the same. So the increments are both zero and, thus, equal.

If i does get a copy of the item, the primal objective changes by vi , the gain
from allocating a copy to i, less f (y + 1) − f (y) = y + 1

2 , the marginal cost
of producing an extra copy of the item, where y denotes the demand for the item
before i’s arrival. The changes in the dual, on the other hand, equals the utility of
i, ui = vi − p = vi − 2(y + 1), plus the change due to the update of price p,
f ∗(2(y + 2)) − f ∗(2(y + 1)) = 4y + 6. We claim that the increment in the dual
objective is at most 4 times that in the primal objective. That is,

4
(
vi − (y + 1

2 )
) ≥ vi − 2(y + 1)+ (4y + 6)

By the coefficient of vi and that vi ≥ p = 2(y + 1) (otherwise, i would not have
gotten a copy of the item), it suffices to show the inequality for vi = 2(y + 1). In
that case, the inequality becomes

4y + 6 ≥ 4y + 6

and holds with equality.
Note that the initial value of the primal objective is 0 while that of the dual

objective is 2 because the initial value of p = 2. We have that:

4 · Primal ≥ Dual− 2

So the online primal dual algorithm is 4-competitive.
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4 Application: Online Matching with Concave Returns

In this section, we will talk about the problem of online matching with concave
returns. The problem and its analysis were originally from Devanur and Jain [11].
To be consistent with the other parts of the chapter, our exposition of the results and
techniques will be somewhat different from the original version. Nonetheless, the
core maths and the underlying ideas are the same.

4.1 Problem Definition

Let there be m agents (left-hand side offline vertices) that are known upfront. Let
there be n items (right-hand side online vertices) that arrive online. On the arrival
of an item, the online algorithm must immediately decide which agent shall get
the item. Let vij denote agent j ’s value for item i. Let there be a concave, non-
decreasing function g : R+ �→ R+ such that an agent j ’s value for getting a bundle
S of items is g(

∑
i∈S vij ). We shall interpret g as a discount function of an agent’s

value for bundles of items. Further, we do not discount the value if no items have
been allocated to the agent so far, i.e., g′(0) = 1. This is without loss of generality
up to scaling of the g function. The goal is to allocate the items to the agents to
maximize the sum of values of all agents.

We remark that the online primal dual technique can in fact handle a more general
version where different agents have different discount functions. We will omit the
general version in this chapter for simplicity of discussion. Interested readers are
referred to Devanur and Jain [11].

Next, recall that the concave conjugate of g is denoted as g∗. We give a convex
program relaxation of the problem and its dual program below:

maximize
∑m

j=1 g(yj )

subject to
∑n

i=1 xij = 1 i ∈ [n]
yj =∑n

i=1 vij xij j ∈ [m]
xij , yj ≥ 0 i ∈ [n], j ∈ [m]

minimize
∑n

i=1 αi −
∑m

j=1 g∗(βj )

subject to αi ≥ vijβj i ∈ [n], j ∈ [m]

Here, xij is the indicator of whether item i is allocated to agent j . yj denote
the sum of values of the items allocated to agent j . We will focus on solving the
fractional problem. That is, xij ’s may take fractional values between 0 and 1.
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4.2 Relaxed KKT Conditions

The online primal dual algorithms are driven by the optimality conditions of the
primal and dual programs. We list below the relaxed conditions.

(a) xij must be zero unless αi = vijβj when item i comes;
(b) βj = β(yj ) is a function of the current total value yj .

Before moving on to the design of online algorithms based on these conditions,
let us briefly discuss how they differ from the exact versions and why relaxations
are necessary in the online setting. The exact version of (a) requires the condition to
hold at the end of the algorithm. In the online problem, however, the constraint may
gain slack in the future because the algorithm may decrease βj ’s in the future. The
exact version of (b) requires that yj and βj form a complementary pair. Similar to
the previous example of online auction with production cost, instead of setting βj
based on the current value of yj , a smarter algorithm shall anticipate yj to further
increase in the future and predict its final value. Hence, we set βj = β(yj ) to be a
function of yj where the function will be chosen based on the analysis.

4.3 Online Primal Dual Algorithms

The algorithm maintains a pair of feasible primal and dual at all time. Initially, the
primal has only the yj ’s which will be set to 0. The dual has only the βj ’s which
will be set to β(0) according to condition (b).

Then, on the arrival of an item i, the relaxed optimality conditions (a) and (b)
determine the allocation of the item. Concretely, conditions (a) and (b), together
with the need of maintaining a feasible dual, indicate that i shall be allocated to
the agent j such that vijβj is maximized. Here, βj serves as a discount factor of the
value of allocating an item to agent j . Therefore, it makes sense to have the discount
function start from β(0) = g′(0) = 1 and be non-increasing in the agent’s total
value. Once the item is allocated to an agent, the algorithm updates yj accordingly.
Finally, we need to update the dual variables βj as a result of the change in yj .

The actual algorithm is slightly different from the above in that it allocates each
item fractionally to multiple agents since we consider the fractional problem. We
present the algorithm below.

1. Initially, let yj = 0 and βj = β(yj ) = 1 for j = 1, . . . , m.
2. Maintain βj = β(yj ) and yj =∑n

i=1 vij xij throughout.
3. On the arrival of each item i, initialize all xij ’s to be zero, and continuously

increase xij ’s as follows until
∑m

j=1 xij = 1:

3a. Let j∗ = arg maxj∈[m] vijβj , breaking ties arbitrarily.
3b. Increase xij∗ by dx and αi by vij∗βj∗ · dx.
3c. Update yj ’s and, thus, βj ’s accordingly.
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4.4 Online Primal Dual Analysis

Again, since the algorithm mains a pair of feasible primal and dual assignments
at all time, it remains to compare the changes in the primal and dual objectives
due to the arrival of each item. In particular, we would like to show that as the
algorithm continuously increases xij ’s in step 3 of the algorithm, it always holds
that F · dP ≥ dD for some fixed parameter F ≥ 1, where dP and dD are the
changes of the primal and dual objectives, respectively.

When the algorithm increases xij∗ by some infinitesimal amount dx in step
3b (recall that j∗ is the agent with the largest discounted value vijβj ), by simple
calculus, the primal objective increases by:

dP = g′
(
yj∗
)
dyj∗

The dual objective, on the other hand, increases by:

dD = vij∗βj∗dx
︸ ︷︷ ︸

due to αi

− g′∗(βj∗)dβj∗︸ ︷︷ ︸
due to βj∗

= βj∗dyj∗ − g′∗(βj∗)dβj∗

Therefore, to ensure F · dP ≥ dD, it boils down to choosing a non-increasing
function β such that the following differential equation is feasible for the smallest
possible F ≥ 1:

∀y ≥ 0 : F · g′(y) · dy ≥ β(y) · dy − g′∗(β(y)) · dβ(y) (5)

subject to the boundary conditions that β(0) = g′(0) = 1 and β(y) ≥ 0 for all
y ≥ 0.

Then, we have recovered the main algorithmic result in Devanur and Jain [11].

Theorem 1 Suppose there is a non-increasing function β that satisfies the differ-
ential equation (5) for some F ≥ 1. Then, there is an F -competitive online primal
dual algorithm for the online matching problem with concave return function g.

4.5 An Example: Additive Agents with Budgets

Differential equation (5) may look mysterious to the readers. For concreteness,
we next present the optimal solution to the differential equation for a concrete
example, namely g(y) = min{y, B} or some B > 0. This corresponds to the
Adwords problem, where the agents are the advertisers and the items are ad slots. An
advertiser has a budget B that caps its contribution to the seller’s revenue. Again, one
may consider a more general case when different advertisers have different budgets,
which can be solved under the same framework. We will assume equal budget for
the simplicity of our discussions.
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In this case, the conjugate function g∗ is

g∗(y∗) =
{
B(y∗ − 1) if y∗ ≤ 1

0 if y∗ > 1

Therefore, in the special case, the differential equation becomes the following
(recall that β(0) = 1 and therefore β(y) ≤ 1 for all y):

∀0 ≤ y ≤ B : F · dy ≥ β(y) · dy − B · dβ(y)

and

∀y > B : 0 ≥ β(y) · dy − B · dβ(y)

with boundary conditions that β(0) = 1 and β(y) ≥ 0 for all y ≥ 0.
Note that β is non-increasing. It implies that the second part concerning y > B

is feasible only when β(y) = 0 for all y = B.
Next, we solve for the best β to satisfy the first part for 0 ≤ y ≤ B for the

smallest possible F , subject to the boundary condition that β(0) = 1 and β(B) = 0.
It is easy to check that it suffices to consider the differential equation with equality.
Rearrange terms, it becomes

∀0 ≤ y ≤ B : (
F − β(y)

) · dy = B · d(F − β(y)
)

Together with β(0) = 1, we get that:

F − β(y) = (F − 1) · ey/B

Plugging in β(B) = 0, we get that

F = F − β(B) = (F − 1) · e

which implies F = e
e−1 . This is the best possible competitive ratio as it matches

known hardness results from previous work (e.g., [8, 16]).
The corresponding discount function β that achieves this optimal ratio is

β(y) = 1
e−1

(
e − ey/B

)

As a concluding remark, the primal dual technique gives optimal competitive
ratio not only for the above example of additive agents with budgets, but in fact
for arbitrary concave functions g. The cool thing about it is that Devanur and Jain
[11] established the optimality of the algorithm without explicitly giving the optimal
competitive ratio, other than the characterization using the differential equation (5).
Instead, they constructed a family of hard instances that are parameterized by a
function and showed that solving for the worst function is equivalent to solving the
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differential equation (5). This chapter focuses on positive results and will not get
into further details of the hardness. Readers are referred to Devanur and Jain [11].

5 Application: Online Scheduling with Speed Scaling

This section considers another application of the online primal dual framework in
online optimization problems with non-linear objectives. We will consider an online
scheduling problem with speed-scalable machines, where the energy consumption is
naturally a convex function of the speed. The results were originally from Devanur
and Huang [10], which built on an earlier dual fitting approach by Anand et al. [2].

5.1 Problem Definition

Let there be m machines that are known upfront. Let there be n jobs that arrive
online. Each machine j can run at different speeds subject to different energy
consumptions. Let f be the power function such that running a machine at speed
y consumes f (y) energy per unit of time. For concreteness, readers may think
of f (y) = 1

3y
3 as a typical cubic energy function. Each job i is defined by its

arrival time ri , and its volumes vij when allocated to each machine j . That is,
we consider the unrelated machine setting in which different machines may take
different amount of computational resources to complete the same job. A feasible
schedule allocates each job to a machine and more specifically a subset of time slots
on the machine, and specifies how fast the machine runs in each time slot, such that
the total computational resources assigned to the job, i.e., the sum of speeds of the
allocated time slots, are equal to its volume on the machine.

Again, the primal dual framework can in fact handle a more general setting where
(1) jobs have weights and (2) machines may have different energy functions. We will
omit such generalizations and refer interested readers to Devanur and Huang [10].

There are two natural objectives for this problem. The first one is to minimize
total energy consumption, and the second is to minimize the total delay experienced
by the jobs. Here, there are different ways to define delay. We will consider a
popular one known as flow time. The flow time of a job is the difference between
its completion time and arrival time. The flow time of a feasible schedule is the sum
of the flow time of all jobs. Minimizing either objective without considering the
other is trivial. One could get arbitrarily small flow time by running the machines
at extremely high speed, but paying an arbitrarily high energy consumption. One
could also have arbitrarily small energy consumption by running the machines at
extremely low speed, but suffering an arbitrarily large flow time. We will use the
standard combination of minimizing the sum of flow time and energy.

This problem is more complicated than the previous examples in the sense that
the online algorithm needs to make multiple types of online decisions. At each time
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slot, the online algorithm must decide which job shall be run on each machine
(job selection) and at what speed (speed scaling). Further, on the arrival of a job,
the online algorithm must immediately dispatch the job to one of the machines
(job assignment). We consider the preemptive model in which the algorithm may
preempt the current job processing on a machine with the new job and resume after
the new job is finished.

The convex program relaxation and its dual are given below.

minimize
∑n

i=1
∑m

j=1

∫ +∞
ri

(t − ri)(xij t /vij )dt

+∑m
j=1

∫ +∞
0 f (yjt )dt

+∑n
i=1
∑m

j=1

∫ +∞
ri

(f ∗)−1(1)xij t dt

subject to
∑m

j=1

∫ +∞
ri

(xij t /vij )dt = 1 i ∈ [n]
yjt =∑n

i=1 xij t j ∈ [m], t ≥ 0

xij t , yjt ≥ 0 i ∈ [n], j ∈ [m], t ≥ 0

maximize
∑n

i=1 αi −
∑m

j=1

∫ +∞
0 f ∗(βjt )dt

subject to αi ≤ vijβjt + t − ri + vij (f
∗)−1(1) i ∈ [n], j ∈ [m], t ≥ ri

Here, xij t is the speed of machine j at time t that is devoted to processing job i.
yjt is the total speed of machine j at time t . The first primal constraint is a relaxation
of the feasibility constraint. Recall the original constraint says that each job must be
completed on a machine j such that the sum of speed devoted to the job is equal
to vij , i.e.,

∫ +∞
ri

xij t dt = vij . The relaxed constraint, on the other hand, allows
the job to be fractionally processed on different machines so long as the overall
effort processes the entire job. The second primal constraint says that the speed of a
machine at any time must be high enough to execute the schedule given by xij t ’s.

The first term in the primal objective is a relaxation of flow time in the sense that
the fraction of a job i that is completed at time t experiences a flow time defined
by the current time, i.e., t − ri , instead of the flow time given by the completion of
the job. This is usually known as the fractional flow time of the schedule, which is
widely used as an intermediate objective in the study of flow time minimization.

The second term is exactly the energy consumption.
It turns out that these two terms on their own suffer from a large integrability

gap. Consider the case of having only one job arriving at time 0 with volume v

on every machine. An integral schedule must process the job on the same machine
and hence pays a non-zero flow time plus energy. Interested readers may verify that
the minimum cost equals v · (f ∗)−1(1). A feasible schedule of the relaxed linear
program, however, can split the workload and process a 1/m fraction of the job on
each machine. Such a fractional schedule effectively pays 0 in the objective when
m goes to infinity. Introducing the third term fixes this problem. Since the minimum
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cost of assigning a job of volume v is v · (f ∗)−1(1), the extra unit cost of (f ∗)−1(1)
for the xij t volume of a job i that is processed on a machine j at time t sums to
at most the actual flow time plus energy for any feasible integral schedule. Hence,
adding the third term increases the optimal by at most a factor of 2.

5.2 A Simple Online Primal Dual Algorithm

As usual, we start with a set of relaxed optimality conditions that drive the design
of the online primal dual algorithms.

(a) If a job i is dispatched to a machine j and is tentatively scheduled at time t

when it comes, it must be that αi = vijβjt + t − ri + vij (f
∗)−1(1) (there may

be some slack in the future because the algorithm may increase βjt ’s);
(b) βjt = β(yjt ) is a function of the current total speed yt .

Condition (a) is a relaxation in the sense that the actual complementary slackness
condition holds for the optimal primal and dual assignments at the end of the
instance, while here it holds only at the moment when i comes. Again, this is
unavoidable and shall look standard to the readers after seeing similar conditions
in the previous two examples. Condition (b) is a relaxation of the complementary
pair condition saying that yjt and βjt will form a complementary pair. Intuitively,
the online algorithm will predict the final value of yjt , i.e., the speed of machine
j at time t , based on its current value, and set the dual variable βjt to form a
complementary pair with the predicted final value.

We present below the meta online primal dual algorithm driven by the above
relaxed optimality conditions, given any function β : R+ �→ R+.

1. Initially, let yjt = 0 and βjt = β(0) for j = 1, . . . , m, t ≥ 0.
2. Maintain βjt = β(yjt ) and yjt =∑n

i=1 xij t throughout.
3. On the arrival of each job i:

3a. Let j∗ and t∗ be such that vij∗βj∗t∗ + t∗ − ri is minimized. Dispatch the job
i to machine j∗ and tentatively schedule it at time t∗.

3b. Update yj∗t ’s and, thus, βj∗t ’s accordingly.

5.3 A Simple Greedy Algorithm

In this chapter, we will consider a particularly simple greedy algorithm and analyze
it using the online primal dual framework.

The greedy algorithm processes the current jobs using the optimal schedule
assuming that no other jobs will arrive in the future. In particular, given how the
current jobs are assigned to the machines, the greedy algorithm processes the jobs
on each machine from the shortest to the longest. The shortest job first principle is
the best strategy assuming no future jobs will arrive. To see the intuition behind its
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optimality, note that the processing time of the first job will contribute to the flow
time of all remaining jobs, that of the second job will contribute to the flow time of
all but one remaining jobs, and so on. Hence, it makes sense to prioritize on shorter
jobs.

In terms of the choice of speed, it will run the machine at a speed that depends
on the number of remaining jobs on the machines. Concretely, suppose there are
k remaining jobs. Then, the speed y is set such that f ∗(f ′(y)) = k. To see why
this is the right choice, suppose we process a job, say, with volume v, at speed y.
Then, the amount of time needed to process the job is v/y. All k jobs will suffer
from this delay in their flow time and, thus, the total contribution to the objective in
terms of flow time is (v/y)·k. On the other hand, the energy consumption during this
period of time is (v/y)·f (y). Therefore, the optimal speed is the one that minimizes
(v/y) · (k+ f (y)). Then, it is easy to verify that our choice of speed minimizes this
quantity, which equals v · (f ∗)−1(k).

Finally, we will use a simple β mapping such that βjt = f ′(yjt ) forms a
complementary pair with yjt . When a new job arrives, the algorithm dispatches
the job according to step 3a in the meta algorithm. By our choice of speed, for
any machine j and any time t , we have βjt = (f ∗)−1(k) where k is the number
of remaining jobs on machine j at time t . Hence, the right-hand side of the dual
constraint becomes

vijβjt + t − ri + vij (f
∗)−1(1) = t − ri + vij

(
(f ∗)−1(k)+ (f ∗)−1(1)

)

≥ t − ri + vij (f
∗)−1(k + 1)

Here, the inequality follows by the concavity of (f ∗)−1, which is due to the
convexity of f ∗. Having a closer look at the right-hand side of the above inequality,
the t − ri term corresponds to the flow time for having job i wait until time t

before we process it. The last term, on the other hand, is the energy consumption
of processing job i on machine j plus the delay it causes to the flow time of the
existing k jobs and itself, provided that we run the machine with the aforementioned
greedy speed. Hence, we shall interpret the right-hand side as the total increase in
the objective if we decide to dispatch the job to machine j and tentatively schedule
it at time t . Therefore, our job dispatch rule (step 3a) simply greedily minimizes this
increment.

5.4 Online Primal Dual Analysis

Following the above discussion, we shall let αi be the increment in the objective due
to the arrival of job i. Recall that the dual is equal to

∑n
i=1 αi −

∑m
j=1

∫ +∞
0 f ∗(βjt )dt

The first term, by definition, sums to the objective of flow time plus energy
consumption since each αi accounts for the increment in the objective due to the
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corresponding job i. The second term, on the other hand, is equal to the flow time
because f ∗(βjt ) = f ∗(f ′(yjt )) equals the number of remaining jobs on machine j
at time t by our choice of yjt and βjt . Hence, the dual objective is in fact extremely
simple for the greedy algorithm: It equals the energy consumption.

So far, we did not use any special property of the power function f . For arbitrary
power functions, no competitive algorithms exist for this problem. Next, we focus
on polynomial power functions f (y) = 1

α
yα , where α is between 2 and 3 for typical

power functions in practice. In this case, we have f ∗(β) = (1 − 1
α
)βα/(α−1) and,

thus, our choice of speed implies that k = f ∗(f ′(y)) = (1 − 1
α
)yα . Therefore, at

any time, assuming there are k jobs remaining, the contribution (per unit of time)
to flow time, i.e., k = (1 − 1

α
)yα is exactly α − 1 times the contribution to energy

consumption, i.e., f (y) = 1
α
yα . Therefore, the fact that the dual objective equals

the energy consumption means that it is exactly a 1/α fraction of the flow time plus
energy of the algorithm. This implies the following theorem.

Theorem 2 The greedy algorithm is O(α)-competitive for minimizing flow time
plus energy when the power function is f (y) = 1

α
yα .

5.5 Better Online Primal Dual Algorithms

The main drawback of the simple algorithm lies in that it fails to anticipate future
jobs and is conservative in its choice of speed. We can improve the greedy algorithm
with a speed-up. In particular, the greedy algorithm achieves the optimal flow time
plus energy if there are indeed no future jobs, but is far from optimal when there are
a lot of future jobs. A smarter algorithm shall run faster than the optimal schedule
of the remaining instance to hedge between the two cases: If there are no future
jobs, this approach pays more in energy comparing to the simple greedy algorithm;
if there are a lot of future jobs, however, it is better than the simple greedy algorithm
because it has predicted the arrival of future jobs and has run faster in the past.

Specifically, Devanur and Huang [10] considered a family of such algorithms
parameterized by a parameter C ≥ 1 such that the algorithm runs C times faster
than the optimal schedule of the remaining instance. Such an algorithm is called the
C-aggressive greedy algorithm, as given below.

Speed Scaling:

– Choose speed s.t. f ∗(f ′( yjt
C
)) equals the number of remaining jobs.

– Let βjt = 1
C
f ′( yjt

C
) s.t. f ∗(Cβjt ) equals the number of remaining jobs.

Job Selection:

– Schedule jobs from the shortest to the longest.

Job Assignment:

– Dispatch the job to a machine that minimizes the increment in the objective.
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Moreover, Devanur and Huang [10] showed an online primal dual analysis of the
C-aggressive greedy algorithms for all C ≥ 1 and chose C to balance the case with
no future jobs and the case with a lot of future jobs. By doing so, they showed the
following result. We refer readers to Devanur and Huang [10] for the proofs.

Theorem 3 For polynomial power function f (y) = 1
α
yα , the C-aggressive greedy

online primal dual algorithm is O
(

α
logα

)
-competitive for minimizing flow time plus

energy on unrelated machines with C ≈ 1+ logα
α

.

If there are at least two machines, then Devanur and Huang [10] further showed
that the above competitive ratio is asymptotically tight.

Theorem 4 For polynomial power function f (y) = 1
α
yα , there are no o

(
α

logα

)
-

competitive online algorithm for minimizing fractional flow time plus energy with at
least two machines.

Recall that in the previous example of online matching, the upper and lower
bounds match exactly as they both reduce to the same differential equation. In
this example of online scheduling for minimizing flow time plus energy, however,
there is a constant gap between the upper and lower bounds. One of the reasons
is that the algorithms in this example assign jobs to machines integrally, i.e., a job
cannot be processed on multiple machines in parallel as in a fractional solution to
the convex program relaxation. We do not know whether we can derive the same
form of tight upper and lower bounds as in the previous two examples if we allow
parallel processing and truly focus on solving the primal convex program online.

Further, if there is only one machine, Bansal et al. [4] gave a 2-competitive online
algorithm for minimizing fractional flow time plus energy with arbitrary power
functions using a potential function argument. It is an interesting open question
whether there is a 2-competitive online primal dual algorithm for single machine.

Finally, essentially the same algorithm and analysis can be further used to derive
better competitive ratios in the resource augmentation setting, where the online
algorithm can run the machines 1+ ε times faster than the offline benchmark using
the same amount of energy.

Theorem 5 There is a (1 + ε)-speed and O
( 1
ε

)
-competitive online primal dual

algorithm for minimizing flow time plus energy with arbitrary power functions.

6 Application: Online Covering and Packing Problems
with Convex Objectives

As the last example of the chapter, we present a result by Azar et al. [3] that gave
online algorithms for a large family of covering and packing problems with convex
objectives. It generalizes the original online covering and packing problems that
considers linear objectives (e.g., Buchbinder and Naor [7]).
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6.1 Problem Definition

We study the following online covering and packing problems with convex objec-
tives. The (offline) covering problem is modeled by the following convex program:

min
x∈Rn+

f (x) s.t. Ax ≥ 1

where f : Rn+ �→ R+ is a monotone and convex cost function, and A is an m × n

matrix with non-negative entries. Each row of the constraint matrix A corresponds
to a covering constraint. In the online problem, the rows of A come online and the
algorithm must maintain a feasible assignment x that is non-decreasing over time.

The (offline) packing problem, on the other hand, is modeled by the following
convex program:

max
y∈Rm+

∑m
j=1 yj − f ∗(AT y)

where f ∗ : Rn+ �→ R+ is the convex conjugate of f . It is the Fenchel’s dual program
of covering problem. In the online problem, each variable yj arrives online and the
algorithm must decide the value of yj on its arrival.

When f is a linear function in the covering problem, e.g., f (x) = 〈c, x〉 for some
positive vector c, f ∗ becomes a 0-∞ step function that imposes supply constraints
AT y ≤ c in the packing problem. Then, the problems become the original online
covering and packing problems with linear objectives.

In the rest of the section, we will focus on the packing problem, and refer readers
to Azar et al. [3] for the algorithms and the corresponding analysis for the covering
problem. In other words, we will take the packing program as the primal program
and the covering one as the dual.

6.2 Relaxed Optimality Conditions

As usual, we will start with a set of relaxed optimality conditions for the (primal)
packing program and the (dual) covering program. Let Aj = (aj1, aj2, . . . , ajn)

denote the j -th row of matrix A.

(a) yj must be zero unless Ajx = 1 at the end of the round when covering
constraint j and, thus, packing variable j , arrive.

(b) x = ∇g(AT y) for some convex function g.

Condition (a) is a relaxation of the actual complementary condition, which holds
for the final value of x and y. Condition (b) is a relaxation of the condition that x and
AT y form a complementary pair with respect to f and f ∗, i.e., x = ∇f ∗(AT y). Just
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like in the previous examples, a smart algorithm shall anticipate that the variables y
and, thus, AT y will further increase in the future and set x accordingly.

6.3 Online Primal Dual Packing Algorithm

Driven by the above relaxed optimality conditions, we can define the following meta
algorithm that depends on the choice of a convex function g.

1. Initialize x = z = 0.
2. Maintain x = ∇g(z) and z = AT y throughout.
3. When yk and Ak = (ak1, . . . , akn) arrive in round k, do the followings:

2a. Initialize yk := 0;
2b. While

∑n
i=1 akixi < 1, continuously increase yk and do the followings:

(2b.1) Simultaneously for each i ∈ [n], increase zi at rate dz
dyk
= aki .

(2b.2) Increase x according to x = ∇g(z).
Here, the vector x plays an auxiliary role and is initialized to 0. We can interpret

x as a price vector such that xi is the unit price of the i-th resource in the packing
problem. Then, we keep including more of the k-th item into the packing solution as
long as its unit gain of 1 can pay for the total price of the resources that it demands.

We will consider a particularly simple mapping function in this chapter:

g(z) = 1
ρ
f ∗(ρz) = 1

ρ
f ∗(ρAT y)

and, thus, x = ∇g(z) = ∇f ∗(ρz), for some parameter ρ > 1 to be determined in
the analysis. Intuitively, this means that the algorithm anticipates AT y will further
increase by a factor of ρ in the future, and pick x accordingly.

In round k ∈ [m], the vector ak = (ak1, ak2, . . . , akn) is revealed. The variable
yk is initialized to 0, and is continuously increased while

∑
i∈[n] akixi < 1, i.e., the

total price for the amount of resources needed to produce a unit of resource k is less
than 1. To maintain z = AT y, for each i ∈ [n], zi is increased at rate dz

dyk
= aki .

As the coordinates of z are increased, the vector x is increased according to the
invariant x = ∇f ∗(ρz). We shall assume that ∇f ∗ is monotone. Hence, both x and
z increase monotonically as yk increases.

6.4 Online Primal Dual Analysis

For simplicity of our discussion, we will make an assumption that f ∗ is a
homogeneous polynomial with non-negative coefficients (so that the gradient is
monotone) and degree λ > 1. The competitive ratio will depend on λ.
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We first show that the algorithm will not keep increasing yk forever in any round
k and it maintains a feasible primal solution throughout. Concretely, the following
lemma indicates that unless the offline packing problem is unbounded, eventually∑

i∈[n] akixi will reach 1. At this moment, yk will stop increasing and we complete
round k. Recall that the coordinates of x increase monotonically as the algorithm
proceeds. It implies that the covering constraints

∑
i∈[n] ajixi ≥ 1 are satisfied for

all j ∈ [m] at the end of the algorithm since each constraint is satisfied at the end
of the corresponding round. Hence, the vector x is feasible for the dual covering
problem.

Lemma 1 Suppose that the offline optimal packing objective is bounded. Then,
in each round k ∈ [m], eventually we have

∑
i∈[n] akixi ≥ 1, and yk will stop

increasing.

Proof We have

∂P (y)
∂yk
= 1− 〈ak,∇f ∗(z)〉
= 1− 1

ρλ−1 · 〈ak,∇f ∗(ρz)〉
= 1− 1

ρλ−1 · 〈ak, x〉
≥ 1− 1

ρλ−1

Here, the first equality is due to z = AT y, which indicates that when the algorithm
increases yk , it also increases each zi at rate dzi

dyk
= aki . The second equality follows

by that f ∗ is a homogeneous polynomial of degree λ. The third equality is because
of our choice of x. Finally, the last inequality follows because 〈ak, x〉 < 1 when yk
is increased by the definition of the algorithm.

Suppose for contrary that 〈ak, x〉 never reaches 1. Then, the objective function
P(y) increases at least at some positive rate 1− 1

ρλ−1 (recalling ρ > 1 and λ > 1) as
yk increases, which means the offline packing problem is unbounded, contradicting
our assumption.

To complete the competitive analysis, it remains to compare the primal and dual
objectives. In the rest of the section, for k ∈ [m], we let z(k) denote the vector z at
the end of round k, where z(0) := 0. Let P(y) denote the packing objective for any
vector y and the induced vector z = AT y. Similarly, let C(x) denote the covering
objective for any feasible covering solution x.

First, let us look into the contribution to the packing objective from y.

Lemma 2 At the end of round k when yk stops increasing (by Lemma 1)

yk ≥ 1
ρ
· (f ∗(ρz(k))− f ∗(ρz(k−1))

)
.
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In particular, since f ∗(0) = 0, this implies that at the end of the algorithm,

∑

k∈[m]
yk ≥ 1

ρ
· f ∗(ρz(m)) .

Proof Recall again that yk increases only when 〈ak, x〉 < 1, we have

1 ≥
∑

i∈[n]
akixi =

∑

i∈[n]
xi · dzi

dyk
.

Hence, integrating this with respect to yk throughout round k, and observing that
x = ∇f ∗(ρz), we have

yk ≥
∫ z(k)

z=z(k−1)
〈∇f ∗(ρz), dz〉 = 1

ρ
· (f ∗(ρz(k))− f ∗(ρz(k−1))) ,

where the last equality comes from the fundamental theorem of calculus for path
integrals of vector fields.

Therefore, the dual objective is lower bounded by:

1
ρ
f ∗(ρz(m))− f ∗(z(m)) = (ρλ−1 − 1)f ∗(z(m))

Next, we consider the dual (covering) objective. Suppose z(m) = AT y is the
vector at the end of the algorithm, and x(m) = ∇f ∗(ρz(m)). We have the following.

Lemma 3 The covering objective satisfies that:

C(x(m)) = (λ− 1)ρλf (z(m))

Proof By how our algorithm maintains the covering solution, we have

C(x(m)) = f (∇f ∗(ρz(m)))
= maxz≥0

{〈z,∇f ∗(ρz(m))〉 − f ∗(z)
}

= ρz(m)∇f ∗(ρz(m))− f ∗(ρz(m))

= (λ− 1)f ∗(ρz(m))

= (λ− 1)ρλf ∗(z(m)) ,

where the second equality follows by the definition of convex conjugate functions,
the third equality is because the maximum is achieved at z = ρz(m) by first order
condition, the last two equalities are due to our assumption that f ∗ is a homogeneous
polynomial of degree λ.
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Putting together our bounds on the packing and covering objectives, we conclude
that they are with the following bounded factor from each other:

C(x)

P (y)
≤ (λ− 1)ρλ

ρλ−1 − 1
, (6)

Choosing ρ := λ
1

λ−1 , the above ratio becomes

λ
λ

λ−1 = O(λ)

Hence, we conclude that:

Theorem 6 Suppose f ∗ is a convex, homogeneous polynomial with non-negative
coefficients and degree λ. Then, there is an O(λ)-competitive online algorithm for
the online packing problem with a convex objective defined with f ∗.
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Solving Combinatorial Problems
with Machine Learning Methods

Tiande Guo, Congying Han, Siqi Tang, and Man Ding

Abstract With the development of machine learning in various fields, it can also be
applied to combinatorial optimization problems, automatically discovering generic
and fast heuristic algorithms based on training data, and requires fewer theoretical
and empirical knowledge. Pointer network improves the attention mechanism,
instead of allocating different attention to hidden states of encoder to generate
context vectors, using attention as a pointer to select an element of the input
sequence at every step of decoding, which solves the problem of variable dictionary
size of the output sequence. Pointer net (Ptr-Net) applied to three combinatorial
optimization problems, convex hull, Delaunay triangulation, and traveling salesman
problem (TSP), obtains good approximate solutions. Point matching is also a
special kind of combinatorial optimization problems that is to obtain the optimal
corresponding references, which can be modeled by Ptr-Net. However, Ptr-Net can’t
be used to solve point matching problem because it doesn’t take full advantage of
the correspondences between the two point sets. We propose multi-pointer network,
which draws the idea from multi-label classification, to address this limitation by
pointing out a set of input elements. These applications are all based on supervised
learning to approximate expected known solutions. However, high-quality labeled
data is often expensive, unreliable, or simply unavailable and may be infeasible for
new problem statements, making supervised learning being unpractical. Reinforce-
ment learning, as another research hotspot in the field of machine learning, does not
require labeled sample data. It interacts with the environment through trial-and-error
mechanism and focuses more on learning problem-solving strategies. We introduce
a framework to tackle combinatorial optimization problems using neural networks
and reinforcement learning, focusing on the traveling salesman problem. We also
introduce a framework, a unique combination of reinforcement learning and graph
embedding network, to solve graph optimization problems, focusing on maximum
cut (MAXCUT) and minimum vertex cover (MVC) problems.
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1 Introduction

In the early stage, simple combinatorial optimization problems, such as minimum
spanning tree problem [13] and shortest path problem [7], can design convenient and
fast algorithm to obtain its optimal solution. With the development of practice, most
problems about combination and sequential optimization are in fact NP-hard, so, it’s
impossible to find a general polynomial time algorithm to solve it. However, NP-
hard problems have important applications in many fields, such as social networks,
transportation, communications, and scheduling. Therefore, many specialists and
scholars apply themselves to the research of the theory and achieve many perfect
productions.

Traditional methods to tackle NP-hard optimization problem have two main
flavors: exact algorithm and approximation algorithm. Exact algorithm can get
optimal solution of the primal problem, frequently used methods are dynamic
programming, branch and bound, enumeration, and so on. However, these methods
are ideal solutions to smaller scale data, which are difficult to solve the optimiza-
tions because computing time rises exponentially as the problem scale increases.
Approximation algorithms can always provide an optimal approximation solution
for NP-hard problems within a reasonable time limit. Approximation algorithms
have three different types: mathematical programming, heuristics algorithm, and
intelligent optimization algorithm. Algorithm based on mathematical programming
establishes mathematical programming model and obtains approximate solutions by
using Lagrange relaxation, column generation, and other algorithm. According to
the characteristic of problem, heuristics algorithm is designed with some scheduled
rules and experience. This kind of algorithm is more intuitive and fast, but due
to the lack of theoretical basis, the quality of solution is not necessarily good.
Intelligent optimization algorithm is a new global search strategy based on certain
optimization search mechanism. The algorithm includes genetic algorithm [12],
chaos optimization algorithm [3], ant algorithm [9], particle swarm algorithm
[4], simulated annealing [17], and so on. This kind of algorithm has advantages
of high efficiency performance, no special information of the problem, ease of
implementation, and fast speed, but it can also not guarantee the global optimal
solution.

Actually, in many applications, values of coefficients in the objective function or
constraints can be thought of being sampled from the same underlying distribution.
For instance, a courier needs to select an optimal path covering all customers and
return to the starting point in a given area, thousands of similar optimizations need to
be solved, since the daily delivery address is changing. The match problem between
two images maximizes the similarity degree under the constraint of one-to-one
correspondence, such matching problem requires to be solved repeatedly, since the
pair images may be different each time. The objective function of these problems is
fixed, which are maintaining the same combinatorial structure, but differing mainly
in their data. We need to solve the same type of problem over and over again
using traditional methods, which is a waste of time and resources. We need to
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find a general way, which can learn to mine essential information offline, update
solution strategy online automatically, and raise the efficiency of the learning and
the adaptability to real problem resolving.

Machine learning may be applicable to many optimization tasks by automatically
discovering generic and fast heuristic algorithms based on training data. For a long
time before machine learning, feature engineering is achieved manually, which
is time-consuming, specific, and incomplete. Now the representation learning can
realize end-to-end learning of automatic feature engineering, greatly reducing or
even eliminating dependence on domain knowledge. The versatility, expressiveness,
and flexibility of deep neural networks make some tasks easier or possible [29].
There have been great improvements with deep learning in many fields, such as
image recognition [18] and object detection [11].

Recurrent neural networks (RNNs), which are used for sequential data such as
text and voice, have made breakthroughs in speech recognition [14] and natural
language processing [31]. RNN processes an input sequence at every step of the
sequence, and maintains a state vector in the hidden layers, containing all elements
of the past historical information. The sequence-to-sequence model [31] maps the
input sequence to a fixed-sized vector with one RNN as encoder and then maps
the vector to the target sequence with another RNN as decoder. Bahdanau et al.
[1] enhanced the decoder by using content-based attention mechanism to focus on
relevant contextual information of input as context vector instead of fixed-sized
vector.

Many advances in artificial intelligence have been achieved with supervised
learning which is trained using a large amount of real label data. Recently, there
has been some seminal work on using deep neural networks with supervised
learning to learn heuristics for combinatorial problems, including the traveling
salesman problem (TSP). Vinyals et al. [34] introduced pointer network which
solves the problem of variable size output dictionary using the recently proposed
neural attention mechanism. However, label data is usually expensive, unreliable,
or unusable. Even with reliable data, the performance of the system trained in this
way may be limited. Moreover, the architecture used in combinatorial problems
usually requires a large number of instances in order to learn how to extend it to
new instances.

Hence, following the reinforcement learning (RL) to tackle combinatorial opti-
mization. In reinforcement learning, agent is trained from its own experience,
making it possible to surpass human capabilities and realize in fields lacking human
expertise. Recently, deep neural networks using reinforcement learning have made
rapid progress, such as computer games Atari [23] and 3D virtual environments,
performing better than humans. The program AlphaGo Zero is based entirely
on reinforcement learning, without human data, guidance, or domain knowledge
beyond the rules of the game, and achieves superhuman performance [30]. The
success AlphaGo Zero achieved by using reinforcement learning in the game of
Go inspires us to use reinforcement learning to solve the NP-hard problem of
combinatorial optimization, because Go can be seen as a combinatorial optimization
problem requiring decision-making at every step.
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2 Background

For human, we can not only be effective at identifying individual examples, like
handwritten numeral recognition and target classification, but also be good at
analyzing horizontal and vertical logical relation between the input information
sequences, like speech recognition and natural language processing (NLP). As these
problems can’t be solved by traditional multi-layer perception (MLP), recurrent
neural network (RNN) comes into being.

RNN is a neural network structure model put forward by Jordan, Pineda,
Williams, and Elman [25, 37] in the 1980s. But it was a pity that the existence
of vanishing gradient and exploding gradient problem and computing resources
prevented the sound growth of RNN. Only in the last three decades, long short
term memory [15], bidirectional RNN [27], gated recurrent unit [5], attention
mechanism [1], and computation efficiency and stability are introduced to make
a quick breakthrough. Now RNNs have recently shown impressive performance in
several sequence prediction problems including machine translation [31], contextual
parsing [35], image captioning [5], and even video description [8].

2.1 Recurrent Neural Network

RNN is a class of artificial neural network which can use their internal memory to
process arbitrary sequences of inputs. In general, we capture hidden states through
the following equation:

ht = f (ht−1, xt |θ) (1)

where h is the hidden state to store the contextual information, f is the activate
function, and θ represents the network parameters. Figure 1 shows the general form
of unfolding RNN according to the time series.

Fig. 1 The figure shows the general unfolding form of RNN, where W , U , V are the shared param-
eters. Given the input sequence

{
x1, x2, · · · , xTx

}
, output the target sequence

{
y1, y2, · · · , yTy

}
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The network of discrete time could be described as, given a set of N pairs
(
Xi, Y i

)N
i=1, where

(
Xi, Y i

)
is the ith pair of input and its corresponding target.

The goal of the model is to estimate the conditional probability P
(
Y i |Xi

)
, where

Xi =
{
xi1, x

i
2, · · · , xiTx

}
and Y i =

{
yi1, y

i
2, · · · , yiTy

}
. It is noteworthy that the

length of the input sequence Tx may differ from its corresponding output sequence
Ty . The parameters θ of RNN can be estimated by maximizing the following cost
function:

J (θ) = 1

N

N∑

n=1

logP
(
Yn|Xn; θ) (2)

In this case, it is reasonable to model each example using the chain rule to
decompose it as follows (for the sake of brevity, we omit the index i):

P (Y |X; θ) =
Ty∏

t=1

P(yt |y1, y2, · · · , yt−1, X; θ) (3)

2.2 Encoder–Decoder Model

The strategy of encoder–decoder model is to map the input sequence to a fixed-sized
vector c with one RNN, and then map the vector to the target sequence with another
RNN. We call the former RNN the encoder and the latter the decoder. Figure 2
shows the general encoder–decoder model.

The most common encoder approach is to use an RNN such that

et = f1 (xt , et−1) (4)

Fig. 2 The figure shows the general form of encoder–decoder model, where the blue part
represents the encoder process and the violet represents the decoder process
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where et−1, et is the hidden state of the encoder at time t − 1, t , respectively, and
f1 is the activation function of encoder RNN. Generally, we will choose LSTM
combined with Bi-RNN architecture as the activation function f1, which is more
suitable for long range temporal dependencies. Then we get the vector c,

c = q(e1, e2, · · · eTx ) (5)

where q is an another nonlinear function. In paper [31], the fixed-dimensional
representation c is the last hidden state of the LSTM. Then we use another standard
LSTM formulation f2, whose initial hidden state is c, to obtain the hidden state of
the decoder dt at time t ,

dt = f2(dt−1, yt−1, c) (6)

the conditional distribution of the next symbol is

P(yt |y1, · · · yt−1, X; θ) = g(dt , yt−1, c), (7)

where g is an activation function. Generally, the function is represented with a
softmax over all the words in the dictionary.

2.3 Attention Mechanism

However, compressing all necessary information of the input sequence into a
fixed-length vector is a bottleneck problem that limits the performance of the
encoder–decoder model. There are two major concerns about the model. Firstly,
the fixed-length vector could not represent complete information of the whole
input sequence. And if the input sequence is too long, the later information will
overwrite the previous contents. In order to address this issue, Bahdanau et al. [1]
propose a content-based attentional mechanism which encodes the input sentence
into a sequence of vectors and chooses a subset of these vectors adaptively while
decoding the translation. Attention mechanism associates the output sequence with
the sequence of vectors which preserve the intermediate results of input information
produced from encoder. See Figure 3 for graphical illustration of the attention
mechanism.

In encoder process, we adopt bidirectional RNN or other general RNN structure
to encode the input into vector sequence. Unlike the decoder part in encoder–
decoder model, we adopt attention mechanism to get the final output sequence,

P(yt |y1, · · · yt−1, X; θ) = g(dt , yt−1, ct ) (8)
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Fig. 3 The figure illustrates
the general form of attention
mechanism to generate the
t-th target output given a
source sentence{
x1, x2, · · · , xTx

}

where dt represents the decoder hidden state at time t . Attention mechanism
differs from traditional model in that the output yt of each time t is related to the
corresponding content vector ct . Actually, ct is computed as a weighted sum of
encoder hidden state (e1, e2, · · · , eTx ),

ct =
Tx∑

i=1

αti ei (9)

Taking a weighted sum of all the encoder hidden state indicates that attention
distribution is different at the output step t . The higher the αti value describes the
output of time t , pay more attention to the ith input vector. αti is the result of the
combined output hidden state dt and all input hidden states,

αti =
exp(uti)
Tx∑

k=1
ut
k

(10)

uti = a(dt , ei) = vT tanh(W1dt +W2ei) (11)

where vT , W1, W2 are the weighting parameters.
Intuitively, attention mechanism relieves the encoder from the burden of having

to encode all information in the source sentence into a fixed-length vector. In the
meanwhile, the implements a mechanism of attention in the decoder help us to better
understand the internal operation mechanism of the model.
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3 Pointer Network for Solving Some Combinatorial
Optimization Problems

3.1 Pointer Network

Pointer network (Ptr-Net) [34] is an effective model repurposing a recently proposed
mechanism of neural attention [1] to solve combinatorial optimization problem
where the output dictionary size is equal to the length of the input sequence. It
differs from the previous attention attempt in that, using attention as a pointer to
select a member of the source sequence as the target, instead of using attention to
compute the weighted sum of these encoder hidden units at each decoder step.

The encoder–decoder model normally uses a softmax distribution over a fixed-
sized output dictionary to compute P(yt |c, y1, · · · yt−1; θ). This prevents us from
learning solutions to problem that output dictionary size depends on the number of
elements in the input sequence. To overcome this, Ptr-Net does not use attention to
blend hidden units of an encoder ei to a context vector, but instead uses uti as pointer
to select input elements at each decoder step. The modified attention mechanism is
shown as follows:

uti = vT tanh (W1ei +W2dt ) i ∈ (1, 2, · · · , Tx) (12)

P(yt |y1, y2, · · · , yt−1, X; θ) = sof t max(ut ) (13)

where softmax normalizes the vector ut (of length Tx) to be an output distribution
over the dictionary of inputs, and v, W1, and W2 are learnable parameters of
the output model. Ptr-Net provides a novel method for complex combinatory
optimization, in which the output sequence corresponds to the positions in an input
sequence. Figure 4 depicts the pointer network to solve simple scheduling problem.

Fig. 4 The figure describes the pointer network to solve the simple scheduling problem, which
accepts series of numbers and sorts them in ascending order
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3.1.1 Experiments

In [34], they trained the Ptr-Net to output satisfactory solutions to three challenging
geometric problems, computing planar convex hulls, Delaunay triangulations,
and the symmetric planar traveling salesman problem (TSP). The experiments
performed an evaluation of Ptr-Net algorithms on randomly synthesized graphs. All
the training and testing data are sampled from a uniform distribution in [0, 1]×[0, 1]
to generate Cartesian coordinates of the point p = [x, y]. The inputs of all three
problems are planar point sets P = [p1, p2, · · · , pn] with n elements each, where
pi = [xi, yi], and the output are sequences representing the solution associated
with the point set P . We briefly introduce the result of the network, specific data,
and error analysis presented in the paper [34].

Convex hull is a concept in computational geometry (graphics), which is a task
to find the minimal convex polygon of a finite number of points. In order to reduce
the ambiguities during training, Vinyals ranks the output sequence uniformly which
starts with the lowest index and arranges counterclockwise. They report two metrics:
accuracy and area covered of the true convex hull, to carry out the verification on
the effectiveness of the put forward model. The model has the key advantage of
being inherently variable length. The result shows that model trained on a variety
of lengths ranging from 5 to 50 can be generalized to solve even for 500 nodes.
Although the accuracy is only 1.3%, the area coverage achieved with the model is
close to 100%. In fact, this is a common source of errors in most algorithms to solve
the convex hull.

Delaunay triangulation is another intensively studied problem in computer sci-
ence and mathematics. Given a set P of points in a plane, a Delaunay triangulation
is a triangulation such that there is no point from the set P in its interior. During
the training phase, the labels of the output Sp = {

S1, S2, · · · , Sm(P )
}

are the
corresponding sequences representing the triangulation of the point set. Each Si
represents the vertices of the i triangle, the integers of the triple which is from 1 to
n corresponding to the position of set P . Without taking into account the order
of vertex, the accuracy and triangle coverage of n = 5, n = 10, n = 50 are
80.7%/93.0%, 22.6%/81.3%, FAIL/52.8%, respectively.

Traveling salesman problem is a NP-hard, “A complete graph with n points,
which each edge has a weight (tour length), one need to search an optimal sequence
of points with the shortest total length.” Experimental comparisons between the
novel network and three traditional algorithm A1, A2, A3 illustrate that the novel
algorithms are correct and feasible on a small scale (n = 5, n = 10, n = 50).
The experiments also indicate that the quality of algorithm is closely related to the
labels.

Pointer network is a novel network structure, which provides a new method
for complicated combinatorial optimization problems. We can use this network
structure to deal with a series of problems that depend on the input dictionary.
In conclusion, using deep learning combined with suitable network structure can
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Fig. 5 Set A = {p1, p2, p3}, set B = {q1, q2, q3}, and the correspondence of the two sets is
(p1, q2), (p2, q3), (p3, q1). We use the symbol⇒ to represent the end of set A, the symbol⇔ to
represent the end of encoder, and the symbol 〈g〉 to represent the input of the first decoder step. The
two dashed rectangle boxes in the bigger boxes represent the process of the bidirectional RNN. At
each step, the multi-pointer network produces an output that is a sigmoid distribution to point to
two vertices of two sets, respectively

make good use of the computer’s resources, improve efficiency, and conquer the
complexities. At the same time, we should also pay attention to improve the
accuracy and broaden the scope of algorithm (Figure 5).

3.2 Multi-Pointer Network

Point matching is also a special kind of combinatorial optimization problems that is
to obtain the optimal corresponding references, which can be modeled by Ptr-Net.
However, the Ptr-Net doesn’t take full advantage of the correspondences between
two point sets owing to the fact that the output is a member of the input sequence
at each time series. We propose multi-pointer network, which draws the idea from
multi-label classification [38], to address this limitation by pointing out a set of input
elements.

For point sets matching, we define the matching point-pair as the output target
of each time series in training process. After sorting the points of the two sets,
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we construct a series of objective vectors that the elements of each one are zero
besides the position of the matching point-pair. Hence, we need to output a set of
the input sequences simultaneously at the decoder part. Drawing the idea on multi-
label classification, we present a simple modification of the Ptr-Net.

Firstly, we still use Equation (12) to calculate the vector ui to be the “attention”
mask over the inputs. Then a different approach is adapted to obtain the conditional
distribution in every time step.

P(yt |y1, y2, · · · , yt−1, X; θ) = sigmoid(ui) (14)

What makes our model different from Ptr-Net is that we use the sigmoid function
instead of softmax function to fit the multi-label classification loss function. This
allows us to maintain that the output of the every time series is the matching point-
pair or the points of other geometry structure.

Our model is specifically aiming at problems whose outputs of every time
series are high correlation. The nature of point matching intents to determine the
correspondence between two sets. Ptr-Net tends to solve problems where outputs
are discrete and depend on its location in the input sequences. Modification of the
our model mines the underlying information between two point sets. By bringing
about changes of this kind, the information can be spread throughout the two point
sets, which can be greatly improved by the accuracy of matching problems. Besides,
the multi-pointer network can also be applied to the problem of combined structural
optimization, like Delaunay triangulation.

3.2.1 Experiments

The validity of the network is established to solve point matching and Delaunay
triangulation by the synthetic datasets. The accuracy of network on the point sets
matching problem is discussed at different sizes (n = 6, n = 5–10, n = 10) and
different kinds of transformation (transformation, rotation, similarity). The results of
experiments verify that our new method can effectively solve the matching problem
with various transformations. The results are presented in Table 1. Compared to
the Ptr-Net, multi-pointer network doesn’t have to consider the problem as a conse-
quence, any permutation of its elements will represent the same triangulation. The
experiment is about 5 points of the set to achieve in average 0.45% improvement.

Multi-pointer network is a new end-to-end network, which is based on multi-
label classification to improve the pointer network. The results show that the
proposed method can effectively solve the translation and other rigid transformation
with large-scale. In this way, we can rapidly gain the corresponding relations of the
point sets in the inference. Moreover, the method can be extended to solve other
problem of combined structural optimization.
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Table 1 Comparison
between Ptr-Net and our
multi-pointer network on
translation, and different
translation

(a) Translation
Number N = 6 N = 5–10 N = 10

Ptr-Net model 98.59% 96.02% 95.79%

Our model 99.47% 98.18% 97.31%

(b) Rotation (different interval)
Max angle θ θ = 45◦ θ = 90◦ θ = 135◦

N = 5–10 98.87% 97.83% 97.13%

(c) Rotation (different database θ = 30◦)
Number N = 6 N = 5–10 N = 10

Accuracy 99.78% 99.48% 97.83%

(d) Translation + Rotation (θ = 30◦)
Number N = 6 N = 5–10 N = 10

Accuracy 98.45% 97.33% 96.78%

(e) Similarity transformation
Number N = 6 N = 5–10 N = 10

Accuracy 97.35% 96.77% 96.24%

3.3 Objective-Based Learning

For NP-hard problem, the time needed for the exact solution is increasing expo-
nentially with the problems scale. How to take advantages of the resource of
approximate algorithm to obtain highly accurate solution at minimal computational
cost is our goal. In paper [21], Milan introduces a simple, yet effective technique for
improving the initial training set by incorporating the objective cost into the training
procedure.

The training objective of classical supervised learning procedure is the proximity
of the network’s prediction to the label, like the mean squared error (MSE) or
the cross-entropy loss for regression and classification problems, respectively. This
type of loss function is differentiable and thus convenient to be optimized with
back propagation (BP). However, it is not an effective training method to simply
use the supervised method for NP-hard problem. Considering the well-known
traveling salesman problem, we will get the similar node order, as measured by
the log-likelihood classification error [34], but results in a highly non-optimal path
measured by the tour length. Therefore, the objective-based learning scheme is
introduced to calculate the task’s objective function in each iteration. It is only
when the current network’s prediction is better than the approximate precomputed
solution, we will propagate the gradient.

3.3.1 Experiments

They validate the scheme on both synthetic and real data on three applications:
tracking multiple targets, graph matching, and TSP. First, mathematical model of
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tracking multiple targets is linear assignment, which can be formulated as a binary
linear program:

X∗ = arg max
X

cT X

st

∀j : ∑
i

χij = 1

∀i : ∑
j

χij = 1

(15)

where c are the (linear) coefficients, X ∈ {0, 1}n2
is a binary vector, and χ ∈ Rn×n

is the same vector reshaped as a square matrix. The constraints ensure the one-
to-one correspondences. The network reads the c as input and obtains the hidden
state h with full-connected layer. The output is a probability distribution over the
number of elements in the second set, obtained by applying a softmax transform.
The validation of experiments on tracking multiple targets is better than the label
acquired from JPDA10 [10]. Second, by using the same network structure they
validate the quadratic assignment problem (QAP). Different from linear assignment,
the objective of QAP takes on a quadratic form, X∗ = arg max

X

XTQX, which

makes the problem NP-hard. On public Pascal image dataset [19], the matching
accuracy is around 75% on eight point pairs. Third, they verify the effectiveness
of the scheme on planner TSP with 20 nodes. The objective-based learning gains a
better performance than traditional supervised learning with pointer network.

In complex combinatorial problem, especially NP-hard problem, time consuming
increases in exponent as dimension does. The proposed objective-based learning
improves the supervised learning by incorporating the problem specific objective.
This method optimizes the label obtained from suboptimal solution and steers the
training towards higher quality solution. Experiments on multiple applications show
that the scheme results in very good approximations of the globally optimal solution.

4 Reinforcement Learning for Solving Some Combinatorial
Optimization Problems

Supervised learning is training model with a large labeled training dataset of input–
output pairs, in order to minimize a loss function that measures the error between
the predicted output and labeled real output. It is the most common form of machine
learning, but it is often impractical for combinatorial optimization. Supervised
learning is undesirable for NP-hard problems of combinatorial optimization because
(1) the performance of supervised learning model is tied to the quality of the labels,
(2) high-quality labeled data is often expensive, unreliable, or unavailable and may
be infeasible for new problem instances, and (3) finding a competitive and general
algorithm is more important than replicating the results of another algorithm [2].
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By contrast, reinforcement learning systems are trained from their own expe-
rience, without supervised data. Trial-and-error search and delayed reward are
the two most important distinguishing features of reinforcement learning. Using
reinforcement learning to tackle combinatorial optimization problems is feasible,
considering that these problems have relatively simple reward mechanisms based
on themselves; thus, the reward mechanisms can be even used at test time.

In reinforcement learning, an agent interacts with the environment through a
Markov decision process (MDP), learning an optimal strategy through tracking
and error methods for sequential decision-making problems. At each time step t

of interaction with the environment, the agent receives a state st in the state space
S and selects an action at from the action space A, following a policy π(at |st ),
which defines the learning agent’s way of behaving at a given time, i.e., a mapping
from state st to actions at to be taken. Then the agent receives a scalar reward rt
and transitions to the next state st+1, for reward function R(s, a) which maps each
state–action pair to a scalar number and state transition probability P(st+1|st , at ),
respectively. In an episodic problem, this process continues until the agent reaches a
terminal state and then it restarts. The return Rt = ∑∞k=0 γ

krt+k is the discounted,
accumulated reward with the discount factor γ ∈ [0, 1]. The agent’s sole objective
is to maximize the expectation return in the long run [20].

Value function [32], which is a fundamental concept in reinforcement learning, is
a prediction of the expected return, measuring how good each state or state–action
pair is in the long run. The state value function is the total amount of reward an
agent can expect to accumulate over the future for following policy π , starting from
state s:

Vπ(s) = E[Rt |st = s] (16)

Vπ(s) decomposes into the Bellman equation:

Vπ(s) = E[rt + γVπ(st+1)|st = s] (17)

The action-value function is the expected return for following policy π from
selecting action a in state s:

Qπ(s, a) = E[Rt |st = s, at = a] (18)

It similarly decomposes into the Bellman equation:

Qπ(s, a) = E[rt + γQπ(st+1, at+1)|st = s, at = a] (19)

The Bellman equation shows the relationship between the value function of the
current state and the value function of the next state.

Value-based methods, main approaches of reinforcement learning, estimate the
optimal value function Q∗(s, a) by traversing all states and actions and then
selecting the action corresponding to the maximum value over the long run as
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the strategy. In model-based environment, i.e., already knowing reward function
R(s, a) and state transition probability P(st+1|st , at ), use dynamic programming
methods to evaluate value function. While in model-free environment, Monte Carlo
and temporal difference learning are main methods to evaluate value function.
Monte Carlo methods require only experience—sample sequences of states,
actions, and rewards from online or simulated interaction with an environment, then
averaging sample returns as evaluation [32]. Temporal difference learning learns
value function directly from experience with TD error in bootstrapping way. Q-
learning [36] and SARSA as classical learning methods are regarded as temporal
difference learning. Q-learning learns action-value function, with the update rule:

Q(s, a)← Q(s, a)+ α[r + γmaxa′Q(s′, a′)−Q(s, a)] (20)

where r + γmaxa′Q(s′, a′)−Q(s, a) is called TD error.
However, classical reinforcement learning methods such as Q-learning can’t

solve the problems with high-dimensional state and action space. Function approx-
imation is a way for generalization when the state or action spaces are high-
dimensional or continuous. Mnih et al. [22] introduce deep Q-network (DQN) which
uses deep neural networks to approximate value function, and apply to the Atari
game, taking game screen as input and game scores as reward signal of learning,
achieving better than human, which is a groundbreaking work of deep reinforcement
learning.

Policy descent methods, another main approaches of reinforcement learning,
optimize the policy π(a|s; θ) directly and update the parameters θ by gradient
ascent on E[Rt ]. Policy gradient methods are widely applied to continuous state
or action spaces. Stochastic policy πθ(a|s) = P [a|s; θ ] defines probability
distribution of actions among total space at state s. Sutton et al. [33] introduce an
alternative approach in which the policy is explicitly represented by its own function
approximator, independent of the value function, and is updated according to the
gradient of expected reward with respect to the policy parameters:

∇θL(πθ ) =
∫

S

ρπ (s)

∫

A

∇θπθ (a | s)Qπ(s, a) da ds

= Es∼ρπ ,a∼πθ [logπθ (a | s)Qπ(s, a)]

While deterministic policy a = μθ(s) maps directly state to action. Silver et al.
[28] show that the deterministic policy gradient does indeed exist, and furthermore
it has a simple model-free form that simply follows the gradient of the action-value
function:

∇θL(πθ ) =
∫

S

ρμ(s)∇θμθ (s)∇θQμ(s, a)|a=μθ (s)
ds

= Es∼ρμ [∇θμθ (s)∇θQμ(s, a)|a=μθ (s)
]
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Actor–critic algorithm is a widely used architecture [24]. The actor–critic algorithm
consists of two eponymous components. The critic updates action-value function
parameters, and the actor updates policy parameters, in the direction suggested by
the critic.

Deep neural networks using reinforcement learning have made rapid progress,
especially in the game of Go. Go is essentially a game that makes decisions many
times, similar to combinatorial optimization problems. Each decision produces a
variety of different changes, and the possible changes are millions, like a huge tree
search map. The game of Go has vast search space and difficulty in evaluating the
position and movement of the board. Humans consider it as a huge challenge for
artificial intelligence in very long period of time.

In 2016, Google DeepMind introduced a new program named AlphaGo which
achieved a 99.8% winning rate against other Go programs, and defeated the human
world Go champion by 4 games to 1. This is the first time that a computer program
has beaten a professional human chess player in a full-scale Go game, a feat that
was thought to take at least 10 years. AlphaGo combines Monte Carlo tree search
(MCTS) with deep neural networks consisting of value and policy networks, greatly
reducing the computation of searching process and improving the accuracy of board
estimation. Similar to actor–critic algorithm, policy network selects movement of
board as actor, and value network evaluates board positions as critic. These networks
are trained by a novel combination of supervised based on data of human expert
games, and reinforcement learning from games of self-play [29].

In 2017, Google DeepMind introduced a new program named AlphaGoZero

based solely on reinforcement learning, without human data, guidance, or domain
knowledge beyond game rules, winning 100-0 against the previously published,
champion-defeating AlphaGo. Other than AlphaGo, AlphaGoZero doesn’t need
human data and uses a single neural network to evaluate board positions and select
moves, rather than separate policy and value networks. The success AlphaGoZero

achieved by reinforcement learning inspires people to use reinforcement learning to
solve the NP-hard problem of combinatorial optimization, because Go can be seen
as a combinatorial optimization problem requiring decision-making at every step.

4.1 Examples

Reinforcement learning that trains a model through trial and error provides a feasible
approach for combinatorial optimization problems, considering that these problems
have relatively simple reward mechanisms based on themselves.

4.1.1 Traveling Salesman Problem (TSP)

Bello et al. [2] propose neural combinatorial optimization, a framework combining
deep neural networks with reinforcement learning to tackle combinatorial optimiza-
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tion problems, focusing on the 2D Euclidean traveling salesman problem (TSP),
achieving close to optimal solutions with up to 100 nodes.

Given an input graph s = {xi}ni=1 of 2D Euclidean TSP with n cities, a tour
length defined by a permutation π :

L(π | s) = ∥∥xπ(n) − xπ(1)
∥
∥

2 +
n−1∑

i=1

∥
∥xπ(i+1) − xπ(i)

∥
∥

2

It’s straightforward to take the negative tour length as reward signal in reinforcement
learning. They follow the network structure of [34], using pointer network pointing
to a specific position in the input sequence of city coordinates, to learn parameter
θ of a stochastic policy p(π | s) that assigns high probabilities to short tours. The
objective function is the expected tour length:

J (θ |s) = Eπ∼pθ (.|s)L(π |s) (21)

They use policy gradient methods and stochastic gradient descent to optimize the
parameter. The gradient of objective function:

∇θJ (θ |s) = Eπ∼pθ (.|s)[(L(π |s)− b(s))∇θ logpθ(π |s)] (22)

where b(s) denotes a baseline function that estimates the expected tour length to
reduce the variance of the gradients.

The first method called RL pre-training, an actor–critic algorithm, doesn’t
require supervision, still requires training data and thus generalization depends
on the training data distribution S, described in Algorithm 1. The actor network
uses policy gradient method to optimize parameter π of policy and the gradient is
approximated with Monte Carlo sampling:

∇θJ (θ) ≈ 1

B

B∑

i=1

(L(πi |si)− b(si))∇θ logpθ(πi |si) (23)

The critic network learns its parameter θv by stochastic gradient descent. The loss
function is a mean squared error objective between its predictions bθv (s) and the
actual tour lengths sampled by the most recent policy:

L(θv) = 1

B

B∑

i=1

∥
∥bθv (si)− L(πi |si)

∥
∥2

2 (24)

At test time, using the learnt policy to inference by greedy decoding that always
selects the index corresponding to largest probability, or sampling that samples
several candidate solutions, then selects the best one. They show sampling at test
time is more effective than greedy decoding in their experiments.
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Algorithm 1 Actor–critic training
1: Train (training set S, number of training steps T , batch size B)
2: Initialize pointer network params θ
3: Initialize critic network params θv
4: for t = 1 to T do
5: si ∼SAMPLEINPUT(S) for i ∈ 1, . . . , B
6: πi ∼SAMPLESOLUTION (pθ (.|si )) for i ∈ {1, . . . , B}
7: bi ← bθv (si ) for i ∈ 1, . . . , B
8: gθ ← 1

B

∑B
i=1(L(πi |si )− b(si ))∇θ logpθ (πi |si )

9: Lv ← 1
B

∑B
i=1 ‖bi − L(πi)‖22

10: θ ← ADAM (θ, gθ )

11: θv ← ADAM (θv,∇θvLv)

12: end for
13: return θ

The second method called active search does not require training data so it’s
distribution independent, presented in Algorithm 2. The method can start with a
random policy, iteratively optimizing parameters of policy on a single test instance
with policy gradient, and draw Monte Carlo samples over candidate solutions
π1, π2, . . . , πB ∼ pθ(.|s) for a single test input. Instead of a parameterized critic
network, it resorts to an exponential moving average baseline.

Algorithm 2 Active search
1: TRAIN (ActiveSearch(input s,θ , number of candidates K,B, α))
2: π ← RANDOMSOLUTION()
3: Lπ ← L(π |s)
4: n← �K

B
�

5: for t = 1 . . . n do
6: πi ∼SAMPLESOLUTION (pθ (.|s)) for i ∈ {1, . . . , B}
7: j ← ARGMIN (L(π1|s) . . . L(πB |s))
8: Lj ← L(πj |s)
9: if Lj < Lπ then

10: π ← πj
11: Lπ ← Lj

12: end if
13: gθ ← 1

B

∑B
i=1(L(πi |s)− b)∇θ logpθ (πi |s)

14: θ ← ADAM (θ, gθ )

15: b← α × b + (1− α)× ( 1
B

∑B
i=1bi)

16: end for
17: return π

They conduct experiments for three tasks, 2D Euclidean TSP20, TSP50, and
TSP100 which points are drawn uniformly at random in the unit square [0, 1]2,
and their results are better than results of pointer network with supervised learning.
In their experiments, among five kinds of neural combinatorial optimization, RL
pretraining-sampling and RL pretraining-active search are the most competitive
methods for test cases.
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4.1.2 Maximum Cut (MAXCUT) and Minimum Vertex Cover (MVC)

Maximum Cut (MAXCUT): Given a graph G, find a subset of nodes S ⊆ V such
that the weight of the cut-set which edges between S and the complementary subset,∑

(u,v)∈Cw(u, v), is maximized.
Minimum Vertex Cover (MVC): Given a graph G, find a subset of nodes S ⊆ V

such that every edge is covered, i.e., (u, v) ∈ E ⇔ u ∈ S or v ∈ S, and |S| is
minimized.

The learning meta-algorithm [16], using a common formulation to solve graph
optimization problems, designs a unique combination of reinforcement learning and
graph embedding network which is called structure2vec (S2V) [6] to represent the
nodes in the graph. The greedy algorithm constructs a solution by sequentially
adding nodes to a partial solution S, based on maximizing evaluation function Q

measuring the quality of a node.
An algorithm A(G, h(·), t (·), c(·)) consists of a problem instance G, the helper

function h used to map set S to a combinatorial structure, the termination criterion
t , and the cost function c, and then output a final solution Ŝ determined by the
evaluation function Q, which is learned by using a set of problem instances:

Ŝ := A(G, h(·), t (·), c(·)),where G ∼ D (25)

The partial solution S will be extended as:

S := A(S, v∗),where v∗ := arg max
v∈S

Q(h(S), v) (26)

For maximum cut (MAXCUT) problem, to satisfy the constraint, the helper
function divides V into two sets, S and its complement S = V \ S, and maintains
a cut-set C = (u, v) ∈ E, u ∈ S, v ∈ S. And the cost function is c(h(S),G) =∑

(u,v)∈Cw(u, v).
For minimum vertex cover (MVC), c(h(S),G) = −|S|.
With function approximation method, Khalil et al. use Q̂ parameterized by Θ

instead of Q:

Q̂(h(S), v;Θ) ≈ Q(h(S), v) (27)

Structure2vec (S2V), the graph embedding network, computes a p-dimensional
feature embedding μv for each node v ∈ V and updates the embeddings
synchronously at each iteration:

μ(t+1)
v := F

(
xv, {μ(t)

u }u∈N(v), {w(v, u)}u∈N(v);Θ
)

(28)

where xv is an additional feature on node v: xv = 1 if v ∈ S and 0 otherwise. N(v)

is the set of neighbors of node v in graph G, and F is a generic nonlinear mapping
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such as a neural network or kernel function. Designing F to update a p-dimensional
embedding μv:

relu
(
θ1xv + θ2

∑

u∈N(v)
μu + θ3

∑

u∈N(v)
relu(θ4w(v, u))

)
(29)

Using the embeddings from structure2vec to parameterize Q̂:

Q̂(h(S), v;Θ) = θ05 relu[θ6

∑

u∈V μu, θ7μv] (30)

Using a combination of n-step Q-learning and fitted Q-iteration [26] to learn the
parameters in Q̂(h(S), v;Θ), as illustrated in Algorithm 3. Using n-step Q-learning,
the parameters are trained with stochastic gradient descent on the squared regression
loss objective:

(y − Q̂(h(St ), vt ;Θ))2 (31)

where

y =
n−1∑

i=0

r(St+i , vt+i )+ γ max
v′

Q̂(h(St+n), v′;Θ) (32)

The fitted Q-iteration approach uses experience replay to randomly sam-
ple batch from a dataset E consisting of tuples of previous episodes,
similarly to deep Q-Network (DQN) [22]. Hence, they call the algorithm
structure2vec deep Q-learning (S2V-DQN).

Algorithm 3 Q-learning for the greedy algorithm
1: Initialize experience replay memory M to capacity N

2: for episode e = 1 to L do
3: Draw graph G from distribution D

4: Initialize the state to the empty sequence S1 = ()

5: for step t = 1 to T do
6: Add vt to partial solution: St+1 := (St , vt )

7: if t ≥ n then
8: Add tuple (St−n, vt−n, Rt−n,t , St ) to M

9: Sample random batch from B ∼M

10: Update Θ by SGD
11: end if
12: end for
13: end for
14: return Θ

From their experiment of two types of graph: Erdos–Renyi (ER) graph and
Barabasi–Albert (BA) graph, the performance of S2V-DQN is particularly better
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than performance of pointer network trained with actor–critic (PN-AC) [2] and
other heuristic algorithms. In this experiment, training and testing graphs obey the
same distribution and that the sizes of graph are varied in the ranges {15–20, 40–
50, 50–100, 100–200, 400–500} for the MVC problem, while for the MAXCUT
problem the sizes are {15–20, 40–50, 50–100, 100–200, 200–300}. Particularly, the
approximation ratio respect to optimal solution is approximately 1 for the MVC
problem. They also show the generalization ability of the proposed model S2V-
DQN and show that it can get very low approximation ratio of testing graphs with
up to 1200 nodes when training on graphs with 50–100 nodes.

5 Conclusion

Combinatorial optimization problem has developed in many fields and been increas-
ingly addressed theoretically by scholars and practically by programmers. The
development and application of deep neural network provides a new method for
complicated combinatorial optimization problems. This chapter introduces several
models for solving combinatorial optimization problems using deep neural net-
works, like pointer network, multi-pointer network, and so on. However, traditional
supervised learning techniques typically require a large number of high-quality
labeled data to learn an accurate model. Therefore, scholars pay more attention to
the theory and practice of combining training mechanism based on reinforcement
learning with appropriate network model. The present results demonstrate the
effectiveness of the proposed framework as compared with manually designed
greedy algorithm. For instance, on graphs with 1200 nodes, only using a single GPU,
paper [16] find the solution of MVC within 11 s while getting an approximation
ratio of 1.0062. In future, with the rapid development of the computer science, we
are supposed to design a general frame to solve the optimization problem using
machine learning methods.
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1 Introduction

Wireless sensor networks (WSNs) have been successfully applied to a variety of
fields [1–4], such as smart cities [5, 6], environment monitoring[7], and border
protection. For all these applications, sensory data is gathered from each sensor
through wireless communications and then manipulated. One significant challenge
of data gathering and manipulation is to explore how to guarantee data availability,
integrity, and reliability, due to limitations of sensor nodes in terms of energy,
storage, and computation capacity [8–10]. Furthermore, more challenges rise due
to the popularity of mobile wireless sensor networks (MWSNs), which form a
dynamically changing network topology. In MWSN, mobility of nodes enables
data communication to eliminate the limitation of geographic space [11]. These
deficiencies provide great opportunities for malware to inject malicious codes into
sensor nodes, which not only compromise data integrity and reliability, but also
compromise data availability due to bad influence on network lifetime and channel
utilization [12–17].

A lot of effort has been put into designing effective models to characterize
the propagation dynamics of malware and developing effective cybersecurity
methods[10], with different focuses such as spatial–temporal model[18, 19], pulse
immunization[20], trade-off model between prevention cost and network utility[21,
22], and so on. In this chapter, we introduce and summarize the recent advances in
propagation modeling and prevention, and present some related works.

In general, the application scenarios of malware propagation modeling and pre-
vention include two parts: static WSNs and MWSNs. Compared with static WSNs,
the network topology in MWSNs changes dynamically because of node mobility.
Although MWSN technologies are successfully used in smart cities nowadays,
cybersecurity issues are emerging increasingly[23, 24]. Furthermore, dynamically
changing network topology also poses serious challenges to the implementation of
prevention methods.

Meanwhile, prevention methods can be further classified as immunization and
quarantine [25–28]. In immunization, security packages are installed in advance to
immunize nodes from malware. Through restoring the security flaws that could be
exploited by malware, susceptible nodes could be immunized and their states are
transferred to recovered nodes. In quarantine, malware is first removed from the
infected nodes, and then these nodes are immunized. Finally, the infected nodes can
carry out data collection and manipulation normally, and their states are transferred
to recovered nodes.

When dealing with malware propagation modeling and prevention for WSNs,
the constraints and limitations of WSNs in terms of energy supply, mobility,
communication capacity, and immunization and quarantine costs introduce many
challenges. We summarize some of the main challenges as follows.

– Network Utility and Prevention Efficiency Trade-off. Installing immunization
packets continuously or removing malware at high intensity will seriously
occupy the limited communication channels, deplete limited battery energy,
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which definitely exacerbates communication delay, and shorten the life-cycle
of networks. How to conduct propagation modeling and prevention to achieve
a trade-off between network utility and prevention efficiency is a significant
challenge. The goal is to enable the proposed models and prevention methods
to not only prevent further propagation of malware but also to guarantee utility
of the network.

– Prevention Cost and Efficiency Trade-off. Installing immunization packets and
removing malware jams regular network communication and shortens the net-
work lifetime. Furthermore, these immunization packets will occupy expensive
memory space and computational capacity of the node, which further exacerbates
the performance deduction of data collection and manipulation. Therefore, the
cost of immunization and quarantine cannot be ignored, which poses a challenge
to achieving the trade-off between prevention cost and efficiency.

– Prevention Methods with Time Limitation. It is very important to the decision
makers to know whether or not malware in the network will die out under the
prevention methods. At the same time, strong prevention methods may lead to
the rapid disappearance of the malware, but the cost is considerable. The goal is
to develop prevention methods that can guarantee that the malware extincts at the
end of an expected time period with the lowest prevention cost.

– Maximum Immunization Period. Continuous immunization method is widely
applied in large WSNs, which install immunization packets on susceptible nodes
continuously. Although continuous immunization largely reduces the chance
of propagation of malware, it also depletes network resources continuously.
Especially, it jams regular network communication intensively and shortens the
network lifetime aggressively. Therefore, there should be a discrete immuniza-
tion plan that immunizes susceptible nodes at some regular interval. How to find
such a proper interval offers another challenge.

– Spatial–Temporal Dynamic Modeling. Temporal dynamic modeling is used to
predict malware propagation dynamics for some time into the future, but it cannot
offer insight on propagation dynamics in geographic space. For preventing mal-
ware propagation, expected methods are to either install immunization packets on
susceptible nodes or quarantine infected nodes in both spatial–temporal dimen-
sions. How to model the spatial–temporal dynamics of malware propagation in
WSNs and develop target immunization and quarantining methods is a significant
challenge. The goal is to immunize susceptible nodes prior to the next peak of
node infection and quarantine infected nodes to prevent the occurrence of next
peak of node infection.

– Malware Propagation Threshold. Malware propagation dynamics is inherently
determined by network properties, such as node communization range, mobility
rate, and packet delivery rate. For example, susceptible nodes are easier to be
infected by malware in a network with larger communication, mobility rate, and
packet delivery rate, since infected nodes can reach more susceptible neighbors
easily. Therefore, the last challenge is to identify a threshold that determines
whether the malware continuously propagates or becomes extinct in the future,
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which also formulates a restrictive relationship between network properties and
prevention methods.

The rest of this chapter is organized as follows: In Section 2, the background
of malware propagation in WSNs is provided. Then we review and summarize
the existing propagation dynamic models and prevention methods, followed by the
discussion of four famous modeling and prevention schemes. Finally, we conclude
this chapter and point out some possible future research directions in Section 4.

2 Malware Propagation in Wireless Sensor Networks

In this section, we first introduce some background knowledge on malware propa-
gation in WSNs. Subsequently, we review some existing modeling and prevention
methods. Finally, we discuss one popular spatial–temporal model that describes the
propagation dynamics of malware in WSNs, which is also the best existing model
with respect to predicting the propagation dynamics in spatial–temporal dimensions
of malware in WSNs [18].

2.1 Introduction of Malware Propagation in WSNs

Recent years have witnessed an overwhelming propagation of malware in WSNs
and traditional Internet. The cybersecurity and privacy issues in WSNs are of great
importance as the sensory data collected and aggregated by sensor nodes could
be very sensitive, and moreover, most of the sensor nodes generally operate in
field environment, or even hostile environment [29–31]. For example, although
smart cities are becoming ubiquitous in the scientific, social and economic fields,
WSNs are the first step in the development of big data collection, aggregation
and applications. For those sensors across cities, the collected data could be from
smart home, smart grid, and smart government, which pose serious threat on our
cities. WSNs are prone to be vulnerable to various attacks, such as eavesdropping,
intrusion, or malicious interference with their normal operations, or even malicious
hardware damage[32–34]. Malwares are injected into sensor nodes, which can
destroy nodes, deplete their energy, block regular communications, or damage the
integrity of regular data packets. This terminology refers to a variety of hostile
software, including network worms, viruses, Trojan Horses and spyware [35].
Furthermore, when malware is injected into some nodes, they can propagate across
the entire network, with the propagation of tampered data.

Existing results showed that the process of malware propagation is closely
related to network properties, involving sensor node density, energy consumption
(remaining energy), communication range, movement speed, network topology,
and work interleaving schedule policy. According to that, the process of malware
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propagation in WSN has its own unique features, compared with other traditional
networks:

1. When malware propagates on a network like the Internet, it injects malicious
codes into other hosts by randomly scanning other hosts’ IP addresses, whereas
malware in a WSN can propagate malicious codes to entire networks by
outspreading neighbors, and there are no geographical limitations for malware
propagation in MWSNs.

2. Due to the sleep and active intervals, the malware on an active node can propagate
to neighbor nodes that are active, but the sleeping neighbors of that active node
do not get infected. Moreover, while a node is sleeping, any malware on that
node cannot infect other nodes, since there is no communications between this
sleeping node and its neighbors.

3. When the energy of a WSN is exhausted, more and more nodes become
dead nodes, then the network cannot effectively carry on data collection and
aggregation. Meanwhile, malwares also cannot effectively propagate in network,
because dead nodes will not participate in the process of propagating malware in
a WSN.

4. When malware propagates in MWSN, node movement removes spatial restric-
tions. Network topology changes enable the malware to propagate to a larger
geographic space.

5. When malware propagates on a node with small communication rate, the number
of infected neighbors is limited. Only those nodes located in its communication
rage can be infected. For a network with high density, malware can easily
propagate to a large network area.

In view of the above challenges and properties, existing research works can
be broadly divided into two categories as follows: (a) mathematically model the
propagation dynamics of malware in WSNs [36–43]; (b) develop prevention meth-
ods that can achieve the trade-off among network utility, prevention efficiency, and
prevention cost so that the propagation of malware can be prevented while tolerable
network utility and prevention cost can also be guaranteed [18, 20–22, 44–49].

2.2 Overview of Modeling and Prevention

In this subsection, we review some recent works on malware propagation mod-
eling and prevention methods in WSNs. Some comprehensive surveys have been
conducted in [50–54]. Furthermore, the research advances in malware propagation
prevention are summarized in [55–57]. Following this, we summarize new advances
in malware propagation modeling and prevention in four aspects: spatial–temporal
dynamic model, pulse immunization model, cost-efficient prevention methods, and
information propagation dynamics in heterogeneous network.
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2.2.1 Spatial–Temporal Modeling of Malware Propagation

In [18], a spatial–temporal dynamic model is proposed that characterizes the process
of malware propagation in WSNs, based on epidemic models [58] and diffusion–
reaction models [59, 60]. First, the functional relations between network properties
and malware propagation are investigated, which play vital roles in determining
the general modeling and offering an insight on preventing malware propagation
by making some changes to the network properties. Furthermore, epidemic models
and diffusion–reaction models are inherently dependent on differential equations,
so that it is fundamental to incorporate network properties into models of malware
propagation. Second, by analyzing the solution properties of the proposed system
(i.e., the stability of the equilibrium solutions [61]), a threshold is obtained which
determines whether the malware continually propagates or dies out in a WSN. On
the one hand, system solutions indicate the density of susceptible nodes in the future,
because they are actually the function of susceptible nodes, infected nodes and
recovered nodes at any time t in any geographic space. On the other hand, system
solutions offer great insight on carrying out prevention methods since they are also
the functions of network properties, as shown in the theorem given in [18]:

Theorem 1 When there is a positive–equilibrium point and the probability of
immunizing the susceptible nodes is greater than the probability of patching the
infected nodes, the proposed system finally reaches this equilibrium point, and it
indicates that the malware will continuously propagate in the MWSN.

Since the geographical distribution of infected nodes in the future can be
predicted in advance, a targeted immunization strategy can be used to recover the
infected nodes in some extensively infected regions.

2.2.2 Pulse Immunization Model of Malware

In [20], a pulse immunization model is proposed that implements prevention meth-
ods in every optimized pulse period based on pulse differential equation models. The
prevention method that is successfully applied in large WSNs is to install security
packets on susceptible sensor nodes, so that those nodes will not be infected by
malware in the future. The crucial problem is, when immunization packets should
be installed for a WSN. In recent years, many continuous immunization methods are
proposed, and they install immunization packets randomly. If immunization packets
are installed intensively, network resources will be depleted intensively. Especially,
regular network communication will be jammed intensively and network lifetime
is also shortened aggressively. However, if immunization packets are installed
infrequently, the malware propagation cannot be controlled and more and more
susceptible nodes will transform to infected nodes. Therefore, there should be
a discrete immunization plan that immunizes susceptible nodes at some regular
interval. Furthermore, most of the current prevention methods are designed only
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for static WSNs without considering the influence of node mobility on malware
propagation. Therefore, how to define prevention methods that can be applied to
MWSNs is a serious challenge.

Motivated by [18], this work developed a differential equation model to char-
acterize the propagation dynamics of malware in MWSNs based on epidemic
model, and then developed an pulse immunization method that carries out the
installation of immunization packets at some regular interval. Finally, this work
mathematically analyzed the existence and stability of a malware-free solution of
the proposed model, and derived the maximal immunization interval T . At every
interval T , immunization packets are installed on susceptible nodes to prevent
malware. The derived immunization interval guarantees that immunization packets
can be installed with minimum frequency, while malware can extinct over time in
MWSN.

2.2.3 Cost-Efficient Prevention Methods

In [62], computational models and optimal control strategies are proposed for
emotion contagion in the human population in emergencies that implements pre-
vention methods in every optimized pulse period based on Pontryagin’s maximum
principle [63]. There are two methods for preventing malware propagation in WSNs:
immunization and quarantine. In immunization, security packages are installed in
advance to immunize nodes from malware. Through restoring the security flaws
that could be exploited by malware, susceptible nodes could be immunized and their
states are transformed to recovered nodes. In quarantine, malware is first removed
from infected nodes, and then these nodes are immunized.

Unfortunately, the costs of carrying out these two methods are usually ignored.
Installing immunization packets and removing malware jam regular network com-
munication and shorten network lifetime. Furthermore, these immunization packets
will occupy precious memory space and computational capacity of node, which
further exacerbates the performance deduction of data collection and manipulation.
Therefore, the cost of immunization and quarantine cannot be ignored, which
poses a challenge to achieving the trade-off between prevention cost and efficiency.
Moreover, immunization and quarantine are considered individually in most exist-
ing works [64–68]. Hence, prior works overestimate the efficiency of proposed
prevention methods and are costly. In this work, a prevention method is proposed
that prevents malware propagation by exploiting both immunization and quaran-
tine methods with limited costs. With this idea, a real-time optimization (RTO)
prevention method is proposed based on Pontryagin’s maximum principle, which
can minimize the malware prevention cost by optimally combining immunization
and quarantine, while a rumor can become extinct within an expected time period.
With the optimization objective, RTO provides optimized rates for immunization
and quarantine in a real-time manner.
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2.2.4 Information Propagation Dynamics in Heterogeneous Network [22]

Since information propagation in online social networks (OSNs) has similar
dynamics as malware propagation in WSNs, in this subsection, we discuss a recently
published cost-efficient strategy for restraining rumor spreading in OSNs. It is
a heterogeneous network based epidemic model which tries to achieve a rumor
restraining trade-off between cost and efficiency.

This paper takes the influence of network heterogeneity and the cost of preven-
tion methods into account, and proposes a heterogeneous network based epidemic
model that incorporates both network heterogeneity influence and two prevention
methods. First, by analyzing the existence and stability of equilibrium solutions
of the proposed model, the critical conditions that determine whether a rumor
continuously propagates or becomes extinct are derived. Second, the cost of the
countermeasures, i.e., blocking rumors at influential users and spreading truth to
clarify rumors, are incorporated in the propagation model. Finally, based on the
Pontryagin’s maximum principle, the optimized countermeasures that guarantee that
a rumor can become extinct at the end of an expected time period with lowest cost
are derived. Both the critical conditions and the optimized countermeasures provide
a real-time decision reference to restrain the rumor spreading

In phase one, based on epidemic model, ONS users can be divided into three
groups: Susceptible (S) represents the users that are not infected by rumor but are
susceptible to it; Infected (I) represents users that are infected and act as rumor
spreaders; and Recovered (R) represents the users that are immunized to rumors
because of knowing truth. Obviously, one user belongs to only one of the three
groups. The acceptance rates for information (rumor and truth) of different users is
different because of their different social connectivity. Users can be characterized
based on their social connectivity (also called degree) that reflects the social
influence of one user. Degree based heterogeneity can effectively characterize
information diffusion in scale free networks [4, 6, 13] (i.e., power-law degree
distribution). Based on degree, the users in a network can be classified into n

groups and the users in one group have same social connectivity. For group i (i
= 1, 2, . . . , n), ki denotes the social connectivity of the individuals in this group. Let
Ski (t), Iki (t), and Rki (t) denote the density of susceptible, infected, and recovered
individuals in group i at time t , respectively, and Ski (t)+ Iki (t)+ Rki (t) = 1.

Based on the above analysis, this work finally draws the following conclusions.

Theorem 2 If prevention methods’ countermeasures are effective resulting to r0 ≤
1, the rumor will be extinct. Otherwise, if prevention methods’ result is r0 > 1, the
rumor will continuously propagate and the density of infected users will converge
to a stable level.

In Theorem 2, r0 is the threshold which determines the existence of the
equilibrium solution for the proposed model.
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2.3 Reaction–diffusion Modeling of Malware Propagation
in MWSN [18]

This work abstracts a WSN as a two dimensional area Ω with area Φ, which is
divided into a set of blocks. Each block represents a piece of geographic subarea.
The area of block x is denoted by Φx . N(t) is used to denote the number of active
sensor nodes in Ω at time t . This work uses random walk model to model the
behavior of mobile nodes. The mobility behavior of nodes follows random walk
model, which indicates nodes randomly roam with an average velocity v in Ω . The
node density is denoted by σ , which is defined as σ = N/Φ. Then, the number of
nodes located in block x is: N(x, t) = ΦxN/Φ. Any two neighboring nodes ni ,
nj in Ω , can directly communicate with each other. The number of neighbors of
each node is denoted by δ with average value πr2σ , assuming nodes are uniformly
distributed over Ω , where r is the communication range of sensor node. The packet
transmission rate is denoted as ρ, 0 ≤ ρ ≤ 1, which means one node sends ρ data
packets to its neighbors per unit time.

A node is infected if it is injected with malicious codes by malware. An infected
node propagates multiple copies of the malware to its neighbors while transmitting
regular data packets. A node is susceptible if it has not yet been infected by malware,
but is prone to be infected. A node is recovered if it is installed with immunization
packets or is quarantined from the infected nodes. A node is dead if it is unable to
conduct data collection and manipulation because of hardware damage or energy
exhaustion.

Let S(x, t), I (x, t), and R(x, t) denote the number of susceptible nodes, infected
nodes, and recovered nodes in block (x, t) at time t , respectively. For the active
nodes in Ω , S(x, y, t)+ I (x, y, t)+ R(x, y, t) = N(t). In block x, the proportion
of susceptible nodes is S(x, t)/N(x, t) = S(x, t)/(σΦx). Meanwhile, the number
of susceptible neighbors for each infected node in block x is δS(x, t)/(σΦx) =
πr2S(x, t)/Φx . Since packet loss generally occurs in WSNs, when an infected node
sends ρ data packets to its neighbors per unit time, the probability that one of ρ data
packets is at least successfully received by its susceptible neighbors is 1− (1−ρ)ρ ,
where ρ is the average probability of one packet that is successfully sent. Thus,
the number of susceptible neighbors to which an infected node can successfully
send malware is Ns = πr2(1 − (1 − ρ)ρ)S(x, t)/Φx . For simplicity, denote λ =
πr2(1− (1− ρ)ρ)/Φx .

Intuitively, the capability of an infected node to infect a large set of neighbors
by sending malware to its neighbors reduces with the increase of infected nodes in
network. This effect is called saturation effect [10]. For simplicity, S(x, t), I (x, t),
R(x, t), and D(x, t) are represented by S, I , R, and D, respectively. To characterize
the saturation effect, a parameter is introduced: β = I

1+αI 2 , where α is an adjusting
factor related to the network property. In general, α take value from: 0 ≤ α ≤ 1;
obviously, 0 ≤ β < 1.

Because some nodes will die due to hardware damage and energy exhaustion,
new nodes must be added to the network. A is used to represent the rate at which
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new nodes (susceptible nodes) are added to the network. The death rate of nodes
is denoted by η, 0 < η < 1. At any time, the state transition of sensor nodes can

be described as Figure 1. The weight ς on F
ς−→ H means that ς nodes in state

F enter state H , where F , H ∈ {S, I, R,D}, F = H . ε1 is the probability with
which a susceptible node transforms to a recovered node, and ε2 is the probability
with which an infected node transforms to a recovered node, 0 < ε1 < 1 and
0 < ε2 < 1.

Nodes continuously transform to another state, as malware propagates in net-
work. The change rate of the density of nodes in different states with time can
be represented as ∂S

∂t
∂I
∂t

and ∂R
∂t

. The process of malware propagation involves
both spatial and temporal dynamics. Therefore, the spatial–temporal propagation
dynamics of malware can be modeled using reaction–diffusion system:

∂S

∂t
= γ (S, I, R)+ μS∇2S,

∂I

∂t
= χ(S, I, R)+ μI∇2I,

∂R

∂t
= γ (S, I, R)+ μR∇2R,

(1)

where the left part of each equation is the rate of density change of susceptible,
infected, and recovered nodes in network, respectively. γ (S, I, R), χ(S, I, R) and
γ (S, I, R) characterize the state transformation of nodes, which are called reaction
functions (or reaction terms). μS∇2S, μI∇2I and μR∇2R are called diffusion
terms, which are used to characterize the influence of node mobility, where μS , μI

and μR are the diffusion coefficients, which reflect the influence of data mobility on
change rate of node density. Assuming all nodes are moving with the same speed,
μS = μI = μR . ∇2 is the Laplace operator, a second-order differential operator
in multivariable calculus [69]. In a two dimensional region, ∇2 is defined as ∇2 =
∂2/∂x2 + ∂2/∂y2.

If prevention methods are effective, a malware does not propagate any more.
Otherwise, a malware would continuously propagate. These two cases correspond
to the malware-free equilibrium solution and the positive-equilibrium solution of
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System (1), respectively. If a malware-free equilibrium point exists and is stable,
the malware in network will finally extinct. If a positive-equilibrium point exists
and is stable, the malware will continuously propagate and the density of all nodes
will finally reach a steady state. Otherwise, the malware propagation finally goes
into an oscillation state. From the non-linear system theory [69], we know that a
diffusion system has the same constant equilibrium points with its corresponding
non-diffusion system.

Theorem 3 When there is a positive-equilibrium point and the immunization rate
on susceptible nodes is greater than the quarantining probability on infected nodes,
the proposed system finally reaches its equilibrium point, and the malware will
continuously propagate in the MWSN.

2.4 Pulse Immunization Model

Consider a MWSN with area A and N nodes. Each node moves in a random
direction with speed v in network, which results in uniform distribution of nodes
in geographic space. Each node is restricted by limited battery capacity and
communication range that can be viewed as a circle with radius r , b represents the
probability of a node dying due to hardware damage or energy exhaustion. To keep
the active nodes in network steady, new susceptible nodes are continuously placed
into network with rate b.

The state transformation among nodes is represented in Figure 2. In Figure 2,
ρ is the probability of a node being transformed to a recovered node, and ε is the
probability of node being transformed to a dead node. λ is the rate that represents
the contacting chance of any two nodes per unit time. Because the total number of
acting nodes is steady, then S(t) + I (t) + R(t) = 1. The movement process of each
node nj is divided into finite continuous K stages, represented by t1, t2, . . . tK , and
ti+1− ti = ti+2− ti+1 = t , where 1 ≤ i ≤ K− 2. In any stage ti , node nj moves or
stops in an interleaving way. For an arbitrary node, assuming that the mobility time
is T1 and that the stopping time is T2, where T1 + T2 = t . Therefore, a larger T1
implies a smaller T2, and vice versa.

DRS I

bI

εIλSI

ρS

bS

bR
b

Fig. 2 State transition relationships of nodes
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Obviously, the distance that node nj can move is vT1 at state t , and the
communication region area of node nj is Φ = 2rvT1+πr2. Therefore, the number
of neighbors of nj is ζ = μΦ = (2rvT1 + πr2)N/A at one stage. In addition,
β is used to represent the rate of nj to scan neighbors for sending data package.
The probability of one infected node to successfully send malware to its neighbors
is α. The capability of an infected node to successfully infect its neighbors is
defined by η = αβ. Therefore, the number of susceptible nodes that can be infected
successfully by an infected node at stage t is δ = ηζS(t) = (2rvT1 + r2)N/A. Let
λ = (2rvT1 + r2)N/A.

The node state transformation part is described as follows, when t = nT , based
on transformation in Figure 2:

dS(t)

dt
= b − λS(t)I (t)− bS(t);

dI (t)

dt
= λS(t)I (t)− εI (t)− bI (t);

dR(t)

dt
= εI (t)− bR(t).

(2)

The pulse immunization part is described as: when t = nT , S(nT +) = (1 −
p)S(nT ); I (nT +) = I (nT ); R(nT +) = R(nT ) + pS(nT ), where n is a positive
integer. [nT , (n+1)T ] is n-th time intervals between two immunization operation at
time nT and (n+1)T . Since pulse immunization lets nodes transform states sharply
at each time nT , the above proposed system is a pulse differential system. At any
time t = nT , nodes’ states are transformed because of malware propagation. We
use nT + to represent the next immunization point of nT . At any time t = nT , a
set of nodes’ states are transformed because of pulse immunization. As shown in
the system, the number of susceptible node is sharply deducted pS(nT ), at nT +
after pulse immunization at nT . Furthermore, the number of infected nodes does
not change in the process of pulse immunization, because pulse immunization only
transforms susceptible nodes into recovered nodes at each time point t = nT .

If there exists a malware-free and stable T -period solution of proposed system,
malware will extinct finally. Otherwise, malware will continuously propagate.

Theorem 4 If the immunization period is T , the T -period zero-equilibrium of
proposed System is ST (t), where ST (t) = (1 + (S∗ − 1)e−b(t−nT )) and S∗ =
(1−p)(ebT−1)
ebT+p−1

.

Immunizing susceptible users with the maximum immunization period can
minimize the frequency of jamming regular network communication and shortening
network lifetime. Then, the maximum immunization period Tmax is the threshold
that determines whether the T -period zero-equilibrium solution is stable. If T <

Tmax , i.e., immunization frequency is less than maximum frequency, malware will
extinct finally. On the contrary, any immunization period T with T > Tmax would
let malware propagate in the network continuously.
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2.5 Emotion Contagion in the Human Population
in Emergencies [62]

In this chapter, we discuss a new emotion information diffusion model SLIR, which
is extended from the traditional epidemic model and can describe the spatial–
temporal diffusion of emotion information more accurately in self-organizing
networks.

In SLIR model, the author divides nodes into four categories in an ad hoc
network: the susceptible state (S), the latent state (L), the infected state (I), and the
recovered state (R). If one node does not receive any information, the node belongs
to S-state. If one node receives emotional information, it may be infected by that
emotional information. Because of the cognitive psychology of the users, the users
who receive the emotional information first enter the thinking and wandering stage,
considering the authenticity of the information, and whether or not to believe the
information. The node in the state of wandering and thinking belongs to the L-state.

If the L-state nodes believe the emotional information after a period of thinking,
the nodes are transformed to I-state. If the nodes lose interest in the received
emotional information, or the nodes no longer believe the emotional information,
they will not receive the emotional information from then on, and the nodes belong
to R state.

When the S-state nodes encounter the I-state nodes, the I-state nodes can transmit
emotional information to the S-state nodes through conversation. Then, the S-state
nodes are transformed to the I-state nodes with probability α(t), or transformed to
the L-state nodes with probability β(t), or transformed to the R-state nodes with
probability 1− α(t)− β(t), at any time t. When the I-state nodes encounter the R-
state nodes, the I-state nodes are transformed to the R-state nodes with probability
γ (t). When the L-state nodes encounter the R-state nodes, the L-state nodes are
transformed to the R-state nodes with probability δ(t). When the L-state nodes
encounter the I-state nodes, the L-state nodes are transformed to the I-state nodes
with probability θ(t). The probability of the L-state nodes jump out of thinking
and wandering state is ρ. After jumping out of the wandering period, L-state nodes
are transformed to the R-state nodes with probability σ(t), or transformed to the
I-state nodes with probability 1− σ(t). The nodes in the I-state may lose interest in
emotional information and thus become nodes in R state. Since the nodes in R state
may be interested in emotional information again, so it could transform to S-state
with probability ξ(t).

In particular, this work proposes a novel method for determining these probability
parameters based on the psychological model. This method incorporates these
parameters into a time-decay model, which can accurately describe the process
of nodes losing interest in information over time. For example, the authors model
interest decay as α(t) = ωe−ψ1(t−t0), where t0 indicates the occurrence time of
event. ω and ψ1 are positive constants. When one event occurs, ω indicates the
influence of emotional information involving the event. The ψ1 can be used to
express the attenuation of emotional information’s influence over time, and the
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larger the ψ1, the faster the attenuation of information influence. The authors use
the mean field equations to express the emotional information diffusion model.

To sum up, the advantages of the SLIRS model are that: (1) Based on a
systematic discussion of the existing models for characterizing the process of
emotion information diffusion, the authors identify some strengths and limitations
of the existing models. The concept of latent state is introduced to describe the nodes
in thinking or wandering state, which are considered separately from other types of
nodes in modeling; (2) The model fully considers the complex interaction between
nodes in different states and the transformation process between nodes in different
states, and further establishes the computational model of emotion information
diffusion dynamics; and (3) According to the attenuated mental model, the authors
have different mathematical descriptions of the time varying parameters of node
state transition probabilities. The attenuation function is introduced to describe the
influence of attenuation of interest on information diffusion more accurately.

2.6 Optimal Control Method for Information Diffusion

In this chapter, the authors introduce an optimal control method for the propagation
of panic emotion in the network. Based on the SLIRS model mentioned above,
the author further proposes some cooperative control strategies. For the potential
loss derived from the propagation of panic emotion information, the authors also
consider the cost of preventing the propagation of panic emotion information, based
on optimal control theory, with the goal of minimizing the total cost.

In particular, the authors take different control measures for S-state nodes, L-
state nodes, and I-state nodes in the SLIRS model. The measure taken by S-state
nodes is called vaccination measure, which enables the S-state nodes to hold some
information that the panic emotion information is not true, in advance, so that the
S-state nodes can be protected from panic emotion information when they receive
such information, rather than transforming to R-state nodes. The measure taken by
L-state nodes is called quarantine measure, which enables the L-state nodes to know
that the panic emotion information they receive is untrue. In this way, L-state nodes
will not be infected by emotional information and will not further generate panic
emotion, and then turn into R-state nodes. The measure taken by I-state nodes is
called treatment measure, which tries to pacify and dispel rumors on those nodes that
have been infected by panic emotional information, so that these nodes no longer
panic, and then turn into R-state nodes.

Through the implementation of the above three control measures, the panic
information in network can be effectively controlled. However, an important issue
needs to be considered. Since the cost of implementing the three control measures
is different, how to determine the real-time strength of the three control measures, at
the minimum total cost to control the propagation of panic information? Moreover,
since the damage of panic information to nodes in various states is not feasible, how
to minimize the total loss of all nodes in network based on the above three control
measures?
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In order to solve the above problems, the authors first express the costs of
implementing vaccination, quarantine, and treatment control strategies at time t as
v2

1(t), v
2
2(t), and v2

3(t), respectively, and then express the loss of panic emotion
information to L-state nodes and I-state nodes at time t as pL(t) and zI (t),
respectively. Finally, the cost and loss can be considered as the total cost of the
system. The goal of the author’s optimization is to minimize the total cost of the
system.

After establishing the optimization problem, the author uses the optimal control
theory to analyze the existence of the optimal solution and to solve it. The following
conclusions are obtained:

Theorem 5 There exists only one optimal control pair (v∗1(t), v∗2(t), v∗3(t)), such
that J (v∗1(t), v∗2(t), v∗3(t)) = minv1(t),v2(t),v3(t) J (v1(t), v2(t), v3(t)) subject to
SLIRS model with vaccination, quarantine, and treatment control strategies.

Theorem 6 For a small time interval [0, t], at any time t ∈ [0, t] the bounded
solutions of the optimality system are unique.

To sum up, the advantages of the optimal control method for panic information
diffusion are as follows: (1) Three different control strategies (vaccination, quar-
antine, and treatment) are established for different states of users in the network,
which can efficiently control different states of nodes to varying degrees. (2) The
authors systematically consider the impact of panic information propagation on
users in the network and the cost of implementing control strategies. The two
aspects are modeled as the control objectives of the optimization problem. (3) By
using the optimal control theory, the existence theory of the optimal solution of the
optimization problem is analyzed and the optimal solution is derived.

3 Discrete Models Based on Cellular Automata

Apart from these dynamic models based on epidemic models and differential
equations, another type of models based on cellular automata has also been applied
in large WSNs successfully. In the following [36, 70–73], cellular automata are
introduced to characterize the propagation dynamics of malware in WSNs.

Cellular automata are simple computational models that are also successfully
applied in large WSNs, which are finite-state machines that can characterize system
dynamics efficiently and effectively. They consist of a finite set of cells that interact
with each other via a certain policy, so that at any time, each cell is in one state
from among a finite number of possible states. Such set of cells can be viewed as
a set of blocks and then each cell represents a piece of geographic space. Nodes
located in one cell ci could be susceptible nodes, infected nodes, or recovered
nodes. The topologies that determine the state change of nodes in one cell are
malware propagation dynamics and prevention methods. In cellular automata, the
state change of nodes in a cell is also determined by its neighbors.
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4 Conclusions and Future Work

In this chapter, the techniques of modeling malware propagation and prevention
methods in WSNs are discussed. First, the application background and definitions
of WSNs and malware are introduced, followed by the challenges of modeling
malware propagation dynamics and developing prevention methods. Subsequently,
the recent advances in modeling and prevention methods are summarized. Three
recently published papers that focus on spatial–temporal modeling, pulse immuniza-
tion, and cost-efficiency trade-off are then introduced in detail, respectively. Spatial–
temporal modeling is applied in MWSNs to characterize malware propagation
dynamic from both spatial and temporal dimensions, which can effectively predict
the spatial and temporal distribution of malware in future. The result from spatial–
temporal analysis offers great opportunity to prevent malware propagation by target
immunization and quarantine. Pulse immunization method installs immunization
packets on sensors with a maximum period; therefore, network utility can be largely
improved. To further achieve the trade-off between network utility and prevention
costs, we further introduce a method that derives the optimized immunization
and quarantine rate based on Pontryagin’s maximum principle; so that malware
propagation can stop propagating at the end of given time period, with minimum
cost.

In recent years, since the use of WSNs is becoming increasingly wider and
deeper, and cybersecurity and data privacy issues are also becoming very serious,
there are still many new challenges introduced by different applications involving
malware propagation in Internet of Things, smart cities applications. Therefore, the
following future research directions exist.

– Most of the existing works on modeling and preventing are deterministic, based
on differential equations, cellular automata, or Markov chain. Therefore, they
may be unable to simulate the individual dynamics of each node. These works
declare that the overall propagation dynamics observed reflect the propagation
trends of malware enough.

– Almost all of the existing works on modeling and preventing malware propa-
gation are based on the strong assumption that data movement follows certain
data mobility models, such as random direction, random walk, Gauss–Markov
model, etc. However, for specific applications, data mobility is very hard to
characterize. For example, in smart cities, people taking their smart phones do
not follow any models strictly to move around. Therefore, this assumption may
not be enough with the wider application of WSN technology in smart cities.
Therefore, developing reliable node mobility models is a prerequisite for wide
application in smart cities.

– Most of the models based on epidemic models and differential equations ignore
network heterogeneity. Especially, almost all works based on epidemic models
assume that nodes are infected at the same rate, nodes are uniformly distributed
in a geographic space, or have same node mobility speed, etc. These models
simply classify all nodes into different groups, such as susceptible nodes, infected
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nodes, recovered nodes, or dead nodes. Then there is almost no any heterogeneity
for nodes in one group. However, in actual applications, one susceptible node
entering the communication range of one infected node is a random event. For
example, in smart cities, the route of cars cannot be simulated in 1 day.
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Composed Influence Maximization in
Social Networks

Smita Ghosh, Jianming Zhu, and Weili Wu

Abstract Influence maximization has been studied extensively in the literature. Its
mathematical formulation is a monotone nondecreasing submodular maximization.
However, when composed influence is considered, the corresponding problem
becomes a nonsubmodular maximization. A composed influence results from a
combination of at least two active members in the social network. To study this
problem, a hypergraph model is introduced and hence different methodologies are
involved.

1 Introduction

The rapid growth of online social network communities such as Facebook and
Twitter has intrigued the interest of researchers and scientist all over the world to
study and analyze large-scale social structure and behavior. Abundance of rich data
is now available from social networks that can be analyzed and studied to understand
information flow and social dynamics.

A social network is depicted as a graph with nodes that represent individuals
and edges that represent the relationship shared among the nodes in the graph. The
influence maximization problem takes in input a graph G(V, E), where V is the set
of users and E is the set of (directed/undirected) edges in G. The objective of this
problem is to find a set of users with the maximum influence in graph G. The output
to this problem is a k-sized seed set, which when initially influenced is expected
to give the set of maximum influenced nodes in the graph G. Influence in social
networks is propagated through stochastic cascade models. Given a social graph G,
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a user set S ⊂ V , and a diffusion model M captures the stochastic process for S
spreading information on G. The influence spread of S, denoted as σG,M (S), is
the expected number of users influenced by S, where σG,M (.) is a non-negative
function defined on any subset of users, i.e., σG,M : 2V ⇒ R≥0 [12].

1.1 Composed Influence in Social Networks

Prior work on social network analysis has been focused on traditional graph analysis
which assumed interaction between a pair of nodes in the graph where one node
influences only on other node (represented by an edge between them). But in reality,
the social interaction is not only between pairs of individuals but is most commonly
observed among the members of a group. Researchers have studied that the best way
of representing these group dynamics is through a different graph model known
as hypergraphs. Crowd psychology plays an important role in determining the
decisions that an individual makes in their daily life [24]. Influence maximization
(IM) problem is a widely researched problem in the area of social network analysis.
In this chapter we look into social influence maximization in hypergraphs in social
networks. A hypergraph is a variation of a normal graph, in which an edge can join
any number of vertices. A hypergraph H is defined as a pair H = (X,E), where X
is a set of elements called nodes or vertices, and E is a set of non-empty subsets of
X called hyperedges or edges. Therefore, E is a subset of P(X) \ , where P(X) is
the power set of X.

1.2 Submodular and Nonsubmodular Functions

The mathematical formulation of influence maximization is a monotone nonde-
creasing submodular maximization. A monotonic function, in mathematics [11] (or
monotone function) is defined as a function between ordered sets that preserves
or reverses the given order. A function is called monotonically increasing (also
increasing or nondecreasing), if for all x and y such that x ≤ y one has f (x) ≤ f (y)

so f preserves the order. Similarly a function is called monotonically decreasing
(also decreasing or nonincreasing [3]) if, whenever x ≤ y, then f (x) ≥ f (y), so it
reverses the order. A submodular set function (also known as a submodular function)
is a set function whose value has the property that the difference in the incremental
value of the function that a single element makes when added to an input set
decreases as the size of the input set increases. Submodular functions have a natural
diminishing returns property which makes them suitable for many applications,
including approximation algorithms, game theory (as functions modeling user
preferences), and electrical networks. Recently, submodular functions have also
found immense utility in influence maximization and social network analysis. It also
has applications in several real-world problems in machine learning and artificial
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intelligence, including automatic summarization, multi-document summarization,
feature selection, active learning, sensor placement, image collection summariza-
tion, and many other domains [13]. The popular problem of influence maximization
has been formalized as a monotone nondecreasing submodular maximization. But
when we extend the traditional problem of influence maximization to the composed
influence maximization problem, the formalization of the corresponding problem
becomes nonsubmodular.

1.2.1 Methods for Maximizing Monotone Nondecreasing Set Functions

Research on approximation for maximizing monotone nondecreasing set functions
has focused on greedy methods. In [22], the authors have showed that the greedy
algorithm can find a solution with value at least 1/1 + μ of the optimum value for
a general monotone nondecreasing function. In [17] the authors have worked on the
problem of maximizing a monotone submodular functions over the integer lattice.
Recently in [1] the authors have analyzed the performance of the greedy algorithm,
and also analyzed a discrete semi-gradient based algorithm, for maximizing the sum
of a suBmodular and suPermodular (BP) functions (both of which are non-negative
monotone nondecreasing) under two types of constraints, either a cardinality
constraint or p ≥ 1 matroid independence constraints.

1.2.2 Maximization of Nonsubmodular Functions

Composed influence in social network analysis is formulated as a nonsubmodular
function. Researchers have studied different ways to maximize nonsubmodular
functions. One such method is mentioned in [2]. In this paper the authors have
investigated the performance of the standard GREEDY algorithm for cardinality
constrained maximization of nonsubmodular nondecreasing set functions. There
exists strong theoretical guarantees on the performance of GREEDY for maximizing
submodular functions, but there are few theoretical analysis on guarantees for
nonsubmodular ones. In this paper they prove theoretical guarantees supporting the
empirical performance. Their guarantees are characterized by a combination of the
(generalized) curvature α and the submodularity ratio γ . They prove that GREEDY
has a tight approximation guarantee of 1/α(1 − e−γα) for cardinality constrained
maximization.

1.3 Diffusion Models

In a diffusion model framework, each user u ∈ V with a status of either inactive or
active. Based on the social graph G, at first, it views the status of a set of chosen
users, called seed set S ⊂ V , to be active, while other users in V are inactive.
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Then, it considers the diffusion process that the seed users in S can “influence”
their neighbors to be active. The newly activated users can further activate their
neighbors, and so on. This diffusion process terminates when no new users can be
activated [12]. There are various types of diffusion model, namely the independent
cascade (IC) model, the linear threshold (LT) model, the triggering (TR) model,
time-aware diffusion model, and non-progressive diffusion Model.

1.3.1 Independent Cascade Model

In the IC Model [6], a user v is activated by each of its incoming neighbors
independently by introducing an influence probability pu, v to each edge e = (u, v).
Based on the influence probabilities and given a seed set S at time step 0, a diffusion
instance of the IC model unfolds in discrete steps. Each active user u in step
t will activate each of its outgoing neighbor v that is inactive in step t-1 with
probability pu, v. The activation process can be considered as flipping a coin with
head probability pu, v : if the result is head, then v is activated; otherwise, v stays
inactive. The diffusion instance terminates when no more nodes can be activated.
The influence spread of seed set S under the IC model is the expected number
of activated nodes when S is the initial active node set and the above stochastic
activation process is applied.

1.3.2 Linear Threshold Model

In the LT model [7, 16], each edge e = (u,v) E is associated with a weight bu, v.
Let NI(v) be the set of incoming neighbors of user v, and it satisfies that Σu ∈
NI (v)bu, v ≤ 1. Each user v is also associated with a threshold θv . The LT model
first samples the value of v of each user v uniformly at random from [0,1]. In step
0, it sets the status of users in S as active and others as inactive. Then, it updates
the status of each user iteratively. In step t, all users that were active in step t-1
remain active, and any user v that were inactive in step t -1 switches to active if the
total weight of its active neighbors in NI (v) is at least θv . The diffusion instance
terminates when no more user is to be activated. Given multiple instances of the
diffusion processes, the influence spread of seed set S under the LT model, i.e.,
σ(S), is the expected number of activated nodes when S is initially activated.

A lot of research has been done since Kempe [9] introduced the concept of
influence maximization first in the year 2003. Throughout the years, influence
maximization problems have been studied and have wide applications such as
viral marketing, network monitoring, rumor control, and social recommendation.
However there still exist some challenges while studying this problem. The first
challenge is modeling the information diffusion process in a social network which
would heavily affect the influence spread of any seed set. The second challenge
is that IM problems are theoretically complex in general. It has been proved that
obtaining an optimal solution of IM is NP-hard under most of the diffusion models.
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The third challenge is due to the stochastic nature of information diffusion, even
the evaluation of influence spread of any individual seed set is computationally
complex. Active research is going on to determine the stability of IM algorithms.
Previous work shows that there is a poor stability of IM algorithms when the input
influence probabilities are adversarially noisy [12]. Research is being done to break
the boundary of submodularity by modeling influence function with more general
functions. Also, a prospective future direction is to consider the concept of group
influence.

2 Related Work

Kempe et al. [9] was the first to formulate social influence maximization problem
(SIMP) as an optimization problem under the IC model. Inspired by the concept of
“word of mouth” in the promotion of new products, the authors provided the first
provable approximation guarantees for efficient algorithm. They showed that their
designed natural greedy strategy yields (1 − 1/e − ε)-approximate solutions for
any ε > 0 and the obtained solution is provably within 63% of optimal for several
classes of models. They backed up their problem formulation with experimental
observations showing that their algorithm outperforms node selection heuristics
based on the well-studied notions of degree centrality and distance centrality from
the field of social network. Inspired by this work, a lot of literature on SIMP has
been since developed.

In [10], the authors have presented a general methodology for near optimal
sensor placement in a given network. They demonstrate that many realistic outbreak
detection objectives (e.g., detection likelihood and population affected) exhibit the
property of “submodularity.” They exploit submodularity to develop an efficient
algorithm that scales to large problems, achieving near optimal placements, while
being 700 times faster than a simple greedy algorithm. They also derived online
bounds on the quality of the placements obtained by any algorithm. Their algorithms
and bounds also handle cases where nodes (sensor locations and blogs) have
different costs. In another paper [21], the authors have proposed a new algorithm
called community based greedy algorithm for mining top-K influential nodes. The
proposed algorithm has two components. The first is, an algorithm for detecting
communities in a social network by taking into account information diffusion and
second is a dynamic programming algorithm for selecting communities to find
influential nodes. They have also provided provable approximation guarantees for
their algorithm. Empirical studies on a large real-world mobile social network show
that their algorithm is more than an order of magnitudes faster than the state-of-
the-art greedy algorithm for finding top-K influential nodes and the error of our
approximate algorithm is small.

However most of the existing methods are not fast enough for scaling billions
of edges in networks such as those in Facebook, Twitter, and World Wide Web.
This problem is targeted by [4], where the authors have developed a novel
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sketch-based design for influence computation. Their greedy sketch-based influence
maximization (SKIM) algorithm scales to graphs with billions of edges, with one
to two orders of magnitude speedup over the best greedy methods. It guarantees an
approximation ratio, and its quality nearly matches that of exact greedy. They also
presented influence oracles, which use linear-time preprocessing to generate a small
sketch for each node, allowing the influence of any seed set to be quickly answered
from the sketches of its nodes.

Prior studies show that there are two scalable models, namely TIM/TIM+ [18]
and IMM [19] with a (1 − 1/e − ε)-approximate guarantee for SIMP. In [18] and
IMM [19], the authors utilize a novel reverse influence set (RIS) sampling technique
introduced in [3]. Both TIM+ and IMM focus on generating a (1 − 1/e − ε)-
approximate solution by using minimum number of RIS samples. One challenge
this method has is it may take a long period of time (even spanning over a number
of days) to process a large-scale network with over a billion edges. In [15]; however,
the author makes a breakthrough by proposing two novel sampling algorithms,
namely SSA and D-SSA. These algorithms were faster than the previously proposed
TIM+ and IMM algorithms and also providing the (1 − 1/e − ε)-approximate
guarantee.

Apart from intensive research being done on SIMP, a lot of work has also
been done on group-level influence maximization [23]. Existing work often focuses
on the influence of individual nodes, ignoring that infecting different seeds may
require different costs. In [23] the authors have investigated the problem of group-
level influence maximization with budget constraint. They introduced a statistical
method to reveal the influence relationship between the groups, based on which they
proposed a propagation model that can dynamically calculate the influence spread
scope of seed groups, followed by presenting a greedy algorithm called GLIMB to
maximize the influence spread scope with a limited cost budget via the optimization
of the seed-group portfolio. Theoretical analysis shows that GLIMB can guarantee
an approximation ratio of at least (1−1/

√
e). Experimental results on both synthetic

and real-world data sets verified the effectiveness and efficiency of their approach.
In another paper [8] the authors proposed local information maximization (LIM),
considering group impact in terms of local propagation where the influencer(s) of
each community has a direct effect on the nodes in the same community. They
conducted experiments on synthetic data set and compared the performance of the
LIM to various other heuristics.

3 Problem Formulation

In this section we will focus on how group influence can be represented as hyper-
graphs and introduce the different formulations for social influence maximization in
hypergraphs.
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Fig. 1 Information diffusion
process in SIMPH with initial
seeds {V1, V2}

3.1 Information Diffusion in Hypergraphs

Motivated by the crowd influence in social networks, a social influence maximiza-
tion problem in hypergraph (SIMPH) that aims to maximize the expected number
of eventually influenced users under independent cascade(IC) model is proposed
in [24]. Given a directed hypergraph G = (V ,E, P ), where V is a set of nodes
(representing users in an online social network (OSN)), E is a set of directed
hyperedges, and P is the weight function on hyperedge set E. Hyperedges represent
influence propagation directions, including personal and crowd influences. For a
hyperedge e = (He, v), let He denote its head set of nodes and v be the tail node. If
He contains only one node u, it means e is a normal directed edge and the influence
is personal. While He contains more than one node, the hyperedge e means there
is crowd influence from He to v. Let Pe denote the weight of e, representing the
influence propagation probability (0 ≤ Pe ≤ 1). Specifically, Pe is the probability
that v is activated by He after each node in He is activated. The diffusion process of
SIMPH is shown in Figure 1.

3.2 Influence Maximization in Hypergraphs

The social influence maximization problem in hypergraph (SIMPH) also considers
information diffusion in social network with crowd influence under the IC model.
Given a directed hypergraph G = (V ,E, P ), the objective is to select k initially
influenced seed users to maximize the expected number of eventually influenced
users:

max σ(S) (1)

s.t.|S| ≤ k, (2)

where S is the initial seed set and σ(S) the expected number of eventually influenced
nodes.
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3.3 Example Objective Function Formulation

Prior literature states that the objective function of influence maximization is
submodular under the IC model. However, the objective function in influence
maximization problem in hypergraph is not submodular. It is shown that σ(·) is
not supermodular as well.

Theorem 1 σ(·) is not submodular under IC model.

Proof Proved by a counterexample. Consider Figure 2. A social network G =
(V ,E, P ) has V = {v1, v2, v3, v4}, E = {(v1, v4), (v3, v4), ({v1, v2}, v3)}, and
{P(v1,v4) = 1, P(v3,v4) = 1, P({v1,v2},v3) = 1}. Let A = ∅ and B = {v2}, we
have σ(A) = 0, σ (B) = 1. Putting v1 into A and B, we have σ({v1}) = 2 and
σ({v2, v1}) = 4. Thus,

σ(A ∪ {v1})− σ(A) < σ(B ∪ {v1})− σ(B).

Therefore, σ(·) is not submodular. 12
From the proof, it is seen that the reason why σ(·) is not submodular is the crowd

influence from the newly added node and the existing seed nodes.

Theorem 2 σ(·) is not supermodular under IC model.

Proof Proved by a counterexample. Consider Figure 2. Let A = ∅ and B = {v1},
we have σ(A) = 0, σ (B) = 2. Putting v3 into A and B, we have σ({v3}) = 2 and
σ({v1, v3}) = 3. Thus,

σ(A ∪ {v3})− σ(A) > σ(B ∪ {v3})− σ(B).

Therefore, σ(·) is not supermodular. 12
There is no general method to optimize a nonsubmodular function. In [14]

the authors proposed a sandwich approximation strategy, which approximates the
objective function by looking for its lower bound and upper bound.

In [24], the authors have shown derivations for building the upper bound and the
lower bound. Figures 3 and 4 show an instance of the upper bound and lower bound
formulation.

Fig. 2 Counterexample
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Fig. 3 An example for generation of each pair of nodes for the upper bound. (a) A node pair u
and v with three head node sets H1, H2, H3 contain u as shown in hypergraph (a). (b) Shows the
generation process for directed edge (u, v) with probability P(u, v) = 1−(1−P1)(1−P2)(1−P3)

Fig. 4 An example for generation of directed graph for lower bound problem. (a) Sample
hypergraph for applying lower bound problem. (b) Directed graph generated from (a). (c) Directed
graph for lower bound problem

4 Method for Solving SIMPH

The dynamic-stop-and-stare (D-SSA) algorithm was extended to solve general
weighted SIMP. Then a randomized algorithm based on a greedy strategy is
designed for solving SIMPH. At the end, a sandwich approximation framework is
proposed for analyzing performance of the algorithms.

4.1 RIS Sampling

Given a graph G = (V , C,E, P, f ), where C ⊆ V is a candidate seed set.
RIS captures the influence landscape of G through generating a set R of random
weighted reverse reachable(WRR) sets. Each WRR set Rj is a subset of V and
constructed as follows:

Definition 1 (Weighted Reverse Reachable (WRR) Set) GivenG = (V , C,E, P,

f ), a random WRR set Rj is generated from G by (1) selecting a random node
v ∈ V ; (2) generating a sample graph g from G; (3) returning Rj as the set of nodes
that can reach v in g and (4) w(Rj ) = f (v).
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Fig. 5 An example for generating random WRR sets under IC model. R1, R2, R3 with w(R1) =
3, w(R2) = 5, w(R1) = 4 are generated. (a) Is the original weighted random graph. (b) Contains
three WRR sets up to three sample graphs

For a seed set S, denote the coverage number of set S as CovR(S) =∑
Rj∈R min{|S∩Rj |, 1} and the coverage weight as WCovR(S) =∑Rj∈R w(Rj )

min{|S ∩Rj |, 1}. σ ′(S) can be estimated by computing weighted coverage of set S.
Figure 5 shows an example of generating a collection of random WRR sets. Suppose
seed set S = {t}, then CovR(S) = 2 and WCovR(S) = 7.

4.2 Greedy Strategy for SIMPH

4.2.1 Influence Estimation

Given a directed hypergraph G = (V ,E, P ) with n nodes, σ(S) is the expected
number of eventually influenced nodes for seed set S. Suppose g = (V ,E′) is a
sample graph of G, let σg(S) denote the number of eventually influenced nodes.

Then σg(S)

n
is random variable distributed in interval [0, 1].

4.2.2 Greedy Algorithm

The nodes in the head set of a hyperedge will try to activate the tail node only when
they are all active themselves. The reverse technique in RIS sampling is unsuitable.
Then, we design a greedy algorithm, as shown in Algorithm 3. Starting with an
empty seed set, the greedy strategy iteratively adds a node that maximizes the
marginal gain of σ(S), until k nodes are selected.

5 Sandwich Approximation Framework

A lower bound and upper bound was designed so that the sandwich framework [5]
can be applied to SIMPH.

For sandwich approximation framework, we can get the following result.
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Algorithm 1 D-SSA Algorithm for general weighted SIMP
Require: Graph G = (V , C,E, P, f ), n = |V |, 0 ≤ ε, δ ≤ 1 and k.
Ensure: An (1− 1/e − ε)-approximation solution Ŝk .
1: Γ ← 4(e − 2)(1+ ε)2 ln(2/δ)(1/ε2)

2: R ← generate Γ random RR sets by RIS
3: < Ŝk, σ̂ ′(Ŝk) >←Weighted Max-Coverage(R, k, f (·))
4: while |R| ≥ (8+ 2ε)n · ln( 2

δ
)+lnCk

n

ε2 do
5: R′ ← generate Γ random RR sets by RIS

6: σ ′c(Ŝk)← WCovR′ (Ŝk) ·∑v∈V f (v)/
∑|R′ |

j=1 w(Rj )

7: ε1 ← σ̂ ′(Ŝk)/σ ′c(Ŝk)− 1
8: if (ε1 ≤ ε) then
9: ε2 ← ε−ε1

2(1+ε1)
, ε3 ← ε−ε1

2(1−1/e)

10: δ1 ← e
− CovR(Ŝk )ε

2
3

2c(1+ε1)(1+ε2)

11: δ2 ← e
− (CovR′ (Ŝk )−1)ε2

2
2c(1+ε2)

12: if δ1 + δ2 ≤ δ then
13: return Ŝk
14: end if
15: end if
16: R ← R ∪R′
17: < Ŝk, σ̂ ′(Ŝk) >←Weighted Max-Coverage(R, k, f (·))
18: end while
19: return Ŝk

Proof Let S∗L, S∗U , and S∗ be the optimal solution to maximizing the lower bound,
the upper bound, and the original SIMPH. Then, we have

σ(SU) = σ(SU )

σU (SU )
σU (SU ) ≥ σ(SU)

σU (SU )
(1− 1

e
− ε)σU (S

∗
U)

≥ σ(SU )

σU (SU )
(1− 1

e
− ε)σU (S

∗) ≥ σ(SU)

σU (SU )
(1− 1

e
− ε)σ (S∗).

and

σ(SL) = σL(SL) ≥
(

1− 1

e
− ε

)

σL(S
∗
L) ≥

σL(S
∗
L)

σ (S∗)

(

1− 1

e
− ε

)

σ(S∗)

Let Smax = arg maxS0∈{SL,SU ,SA} σ(S0), then

σ(Smax) ≥ max{ σ(SU )
σU (SU )

,
σL(S

∗
L)

σ (S∗)
}
(

1− 1

e
− ε

)

σ(S∗).

Since ∀S0 ∈ {SL, SU , SA}, (1− ε)σ (S0) ≤ σc(S0) ≤ (1+ ε)σ (S0), we have

(1+ ε)σ (S) ≥ σc(S) ≥ σc(Smax) ≥ (1− ε)σ (Smax).
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It follows that

σ(S) ≥ 1− ε

1+ ε
σ (Smax).

≥ max{ σ(SU )
σU (SU )

,
σL(S

∗
L)

σ (S∗)
}1− ε

1+ ε
(1− 1

e
− ε)σ (S∗)

12

6 Conclusion

Influence maximization is theoretically formulated as a monotonic submodular
function. But when group influence of social networks is represented in the form
of a hypergraph, the problem becomes a nonsubmodular function. In this chapter
we showed one such method to solve the nonsubmodular formulation of composed
influence. In this proposed method the objective function of SIMPH converts
to a nonsubmodular function. A method was discussed to transform a function
into nonsubmodular as seen in [24] where the authors have modeled the crowd
influence in information diffusion process by using a hyperedge. Social influence
maximization problem in hypergraph (SIMPH) was formulated to select initially
influenced seed users under independent cascade (IC) model to maximize the

Algorithm 2 APP-Calculation procedure
Require: a directed hypergraph G = (V ,E, P ), n = |V |, 0 ≤ ε, δ ≤ 1, seed set S.
Ensure: σc(S) such that σc(S) ≤ (1+ ε)σ (S) with at least (1− δ)-probability
1: Υ1 = 1+ 4(1+ ε)(e − 2) ln(2/δ)/ε2

2: SumZ = 0
3: N = 0
4: while SumZ ≤ Υ1 do
5: g← generate sample graph of G
6: N = N + 1,S1 = S,S2 = S

7: while S2 = ∅ do
8: S1 = S1 ∪ S2
9: S2 = ∅

10: for each hyperedge e = (He, v) ∈ E in g and v is inactive do
11: if He ⊆ S1 then
12: Add v to S2
13: end if
14: end for
15: end while
16: SumZ = SumZ + |S1|

n
17: end while
18: return σc(S) = n · SumZ

N
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Algorithm 3 Greedy strategy for SIMPH
Require: a directed hypergraph G = (V ,E, P ), k.
Ensure: a set of seed nodes, S.
1: S = ∅
2: for i = 1 to k do
3: v← arg maxv∈V (APP-Calculation(G, S ∪ {v})−APP-Calculation(G, S))
4: Add v to S

5: end for
6: return S

Algorithm 4 Sandwich approximation framework
Require: a directed hypergraph G = (V ,E, P ), k, ε, δ.
Ensure: a set of seed nodes, S.
1: Let SL be the output seed set of solving the auxiliary problem GL = (V ∪ V ′, EL, P

L) for
lower bound by D-SSA Algorithm.

2: Let SU be the output seed set of solving the auxiliary problem GU = (V ,EU , P
U ) for upper

bound by D-SSA Algorithm.
3: Let SA be the output seed set of solving G = (V ,E, P ) by Greedy Strategy for

SIMPH(Algorithm 3).
4: S =arg maxS0∈{SL,SU ,SA}APP-Calculation(G, S0)

5: return S

expected number of eventually influenced users. SIMPH was shown to be NP-hard
and the objective function was neither submodular nor supermodular. To read more
about optimization problems refer to [20].
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Friending

Shuyang Gu, Hongwei Du, My T. Thai, and Ding-Zhu Du

Abstract The friending is a popular and important operation in online social
networks. In this article, we discuss various optimization problems about friending.
They can be formulated into nonlinear combinatorial optimization problems.

1 Active Friending

If you have a LinkedIn or Facebook account, then you may frequently receive a
message like this “Xuefei Zhang added connections you may know,” which reminds
you that you may know someone, or someone is your friend’s friend. If you open the
message, then you may find a link to login your account and from your account, you
may find some names who invited you to be their friend, and a list of names whom
you may consider to invite for your friends. These activities are called friending.

The active friending is the first optimization problem appeared in the literature
[34] about friending. The problem can be described as follows:

Definition 1 (Active Friending) Consider a social network represented as directed
graph G = (V ,E) with an information diffusion model m. Suppose S is the list of
existing friends of a node s and t is a target node that s wants to include in his friend
list. Given an integer r > 0, the problem is to find a subset R with at most r nodes
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to maximize the success probability Prob(s, S, R, t), i.e., the probability that node
t is activated through subgraph induced by R ∪ S ∪ {s, t} when initially set up all
nodes in S ∪ {s} to be active.

There are two popular information diffusion models studied in the literature:
the independent cascade (IC) model and the linear threshold (LT) model. They are
defined as follows:

The IC Model Each node has two states: active and inactive. Every arc (u, v) is
labeled with a probability puv which means that if u is active and v is inactive,
then the event that v accepts the influence of u, i.e., v becomes active because
of active u, occurs with probability puv . Before the process starts, all nodes are
inactive. Initially, choose a subset of nodes, called seeds, and activate them. In each
of the subsequence steps, every fresh-active node tries to influence its inactive out-
neighbors where a node is fresh-active if it becomes active in the step right before
current step. If an inactive node v gets influenced by more than one, say k, fresh-
active nodes u1, u2, . . . , uk at the same step, then all k events that ui influences v
successfully are treated as k independent events. This process ends if no fresh-active
node is produced.

The LT Model Each node has two states: active and inactive. Every arc (u, v) is
labeled with a positive weight wuv such that for any node v, Σu∈N−(v)wuv ≤ 1,
where N−(v) = {u|(u, v) ∈ E}. Before the process starts, all nodes are inactive.
Initially, choose a subset of nodes, called seeds, and activate them; meanwhile each
node u chooses a threshold θu uniformly and randomly from [0, 1]. In each of the
subsequence steps, every inactive node v evaluates the total weight of wuv for u
over all active in-neighbors. If this total weight is at least θv , then v becomes active;
otherwise, v keeps inactive. This process ends if no fresh-active node is produced.

The following is proved in [34] by using dynamic programming.

Theorem 1 For an arborescence directed to t with the IC model, the active
friending can be solved in polynomial-time.

Using this result, they also designed a heuristic by, first, approximating the
general network with an in-arborescence with root t . This arborescence is the union
of all the most influential paths from each S∪{s} to t where the most influential path
from s′ ∈ S ∪{s} to t is the shortest path when we consider−logpuv as the distance
from node u to v and puv is the probability that node v accepts the influence from u

in the IC cascade model.
Kempe et al. [13] generalized the LT model and the IC model to the general

threshold model and the general cascade model, and proved that every general
threshold model is equivalent to a general cascade model, vice versa. For this
equivalence, the LT model is equivalent to a general cascade model, called the
mutually exclusive cascade (MC) model. The MC model can be defined in the same
way as that of the IC model, except that when k fresh-active nodes u1, u2, . . . , uk
try to influence an inactive node v at the same step, this is considered as that k
mutually exclusive events occur. In the equivalence relation between the LT model
and the MC model, wuv = puv . The MC model (of course, the LT model, too)
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has an important property. Consider a social network with four nodes u, v, x, y and
three arcs (u, x), (v, x), (x, y) in the MC model. Suppose u and v are seeds. Then
the probability that y becomes active is

(pux + pvx)pxy = puxpxy + pvxpxy,

that is, this probability is the sum of the probability that y accepts the influence of
u through the path from u to y and the probability that y accepts the influence of v
through the path from v to y. In general, this property can be stated in the following
lemma:

Lemma 1 In the LT model, a node v accepts the influence from a seed set S with
probability equal to

∑

P∈P
Prob(P ),

where P is the set of paths from S to v and Prob(P )is the probability that v accepts
the influence of a seed in S along path P .

This property makes that the problem in the LT model sometimes is easier than
that in the IC model. For example, the influence maximization in-arborescence
directed to the root is polynomial-time solvable in the LT model [27], however NP-
hard in the IC model [18]. (This result was first conjectured in [2] and then proved
in [18].)

With this special property of the LT model, Yuan et al. [35] proved the following
result about Prob(s, S, R, t).

Theorem 2 Prob(s, S, R, t) is a monotone nondecreasing, supermodular function
with respect to R for social network G in the linear threshold model, that is, for any
R′ ∈ R, Prob(s, S, R′, t) ≤ Prob(s, S, R, t), and for any R and R′,

Prob(s, S, R, t)+ Prob(s, S, R′, t) ≤ Prob(s, S, R ∪ R′, t)
+ Prob(s, S, R ∩ R′, t).

Proof It is easy to see the property of monotone nondecreasing. We next show the
supermodularity. Before doing so, let us first recall a special property proved in
[27] that the linear threshold model is equivalent to the mutually exclusive cascade
model in which when k fresh-active nodes influence an inactive node, this event is
considered as a composed event of k mutually exclusive events. This property yields
that in the linear threshold model, Prob(s, S, R, t) is equal to the sum of accepting
probabilities each of which is the probability that t accepts the invitation from a
node s′ ∈ S∪{s} along a path p to t where p is over all paths from a node in S∪{s}
to t and with all nodes in R. Let P(R) denote the set of all such paths p.

Now, we compare P(R) ∪ P(R′) with P(R ∪ R′) and P(R ∩ R′). Clearly, both
P(R) and P(R′) are subsets of P(R ∪ R′). Moreover, if a path p appears in both
P(R) and P(R′), then p must appear in P(R ∩ R′). Therefore,
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Prob(s, S, R, t)+ Prob(s, S, R′, t) ≤ Prob(s, S, R ∪ R′, t)
+ Prob(s, S, R ∩ R′, t).

By Theorem 2, the active friending with the LT model can be formulated into the
following problem:

max Prob(s, S, R, t)

subject to |R| ≤ r,

that is, a monotone supermodular maximization with size constraint. This formula-
tion suggests that the discrete Lagrangian method [21] is suitable to solve the active
friending problem for the LT model. The greedy algorithm in [1] can also be used.
However, the estimation of the curvature is a trouble, which may be done possibly
only for some special networks, such as power-law graphs.

Next, we move our attention to the IC model. Let P be the set of all paths
from {s} ∪ S to t . Denote by Prob(R;P) the probability that the randomized
subgraph induced by R ∪ S ∪ {s, t} containing all paths in P . Denote Pi =∑
|P |=i,P⊆P Prob(R;P). By the inclusive–exclusive formula,

Prob(s, S, R, t) = P1 − P2 + P3 − P4 + · · · + (−1)|P|P|P|.

By an argument similar to that in the proof of Theorem 2, we can show the following
result.

Lemma 2 Prob(R;P) is monotone nondecreasing supermodular with respect
to R.

Proof It is clear that Prob(R;P) is monotone nondecreasing. Next, we show the
supermodularity. Consider two node subsets R1 and R2. Note that the randomized
subgraph induced by (R1 ∪ R2) ∪ S ∪ {s, t} contains those paths contained by
the randomized subgraph induced by Rj ∪ S ∪ {s, t} for j = 1, 2. In addition, it
also contains those paths contained by union of these two randomized subgraphs.
Therefore,

Prob(R1;P)+ Prob(R2;P) ≤ Prob(R1 ∪ R2;P)+ Prob(R1 ∩ R2;P),

that is, Prob(R;P) is supermodular.

By the above lemma, the following holds.

Theorem 3 In the IC model, Prob(s, S, R, t) can be represented as a difference of
two nonnegative monotone nondecreasing supermodular functions, i.e.,

Prob(s, S, R, t) = (P1 + P3 + · · · )− (P2 + P4 + · · · ).
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By Theorem 3, we may employ the sandwich method [7, 17, 25, 28], the
submodular–supermodular method [20], the modular–modular method [11], and
the iterated sandwich method [31] to solve the active friending problem for the IC
model.

2 Target Friending

The second optimization problem on friending is the target friending described as
follows:

Definition 2 (Target Friending) Consider a social network represented as directed
graph G = (V ,E) with an information diffusion model m. Suppose S is the list of
existing friends of a node s and t is a target node that s wants to include in his friend
list. Given an integer 0 < ρ < 1, the problem is to find a minimum node subset R
such that Prob(s, S, R, t) ≥ ρ.

By Theorem 2, the target friending for the LT model is a supermodular cover
problem as follows:

min |R|
subject to Prob(s, S, R, t) ≥ ρ.

The target friending for the IC model is a generalization of the well-known
submodular cover problem [30], the same as above except that Prob(s, S, R, t)
is a nonsubmodular and nonsupermodular function in the cover constraint. It is an
interesting research subject to see how to generalize the approximation analysis for
the submodular cover problem. In fact, there are so many different proofs for the
same theorem regarding the approximation performance ratio of a greedy algorithm
for the submodular cover [9, 26, 30]. None of them is able to give a generalization
for the above nonsubmodular cover problem so far.

3 Group Friending

The group friending was first studied in [6]. They consider a romantic scenario as
follows: A boy found an attractive girl. However, they do not really know each other.
The boy worries that he may get rejected if he asks her directly. Hence, he wants
to influence her friends at the first stage. Thus, her friends form target group for
friending. The objective in this problem is the expected number of her friends who
become his friends after the friending process. This problem has no much difference
from active friending.
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Definition 3 (Active Group Friending) Consider a social network represented as
directed graph G = (V ,E) with an information diffusion model m. Suppose S is
the list of existing friends of a node s and T is a set of target nodes that s wants to
include in his friend list. Given an integerr > 0, the problem is to find a subset R
with at most r nodes to maximize the expected number of active nodes in T , which
are activated through subgraph induced by R ∪ S ∪ {s, t} when initially set up all
nodes in S ∪ {s} to be active.

The mathematical formulations are similar, respectively, to that of active friend-
ing in the LT model and the IC model.

Shen et al.[22] proposed another formulation based on quite different scenario.
Suppose we want to organize a social activity with at least p persons, in order to
make new friendship between members in a big social organization. Two factors are
very important for us, existing friendship between members and potential friendship
between members. To evaluate the success of the activity, we may give each
potential friendship a positive weight in (0, 1] and a measure of making new friends
which is the ratio between the total weight and group size.

Definition 4 (Hop-Bounded Group Friending) Consider a heterogeneous social
graph G = (V ,E,R) with edge weight w : R → (0, 1], where V is the set of
nodes, E is the set of friend edges, and R is the set of potential friend edges. Given
a hop constraint h and a group size constraint p, find a subset of at least p nodes,
H , such that every pair of nodes u and v is within distance h in graph with node set
V and edge set E and σ(H) reaches the maximum, where σ(H) = w(H)/|H | and
w(H) is the total weight of potential friend edges in the subgraph induced by H .

This problem has been proved to be NP-hard and has no polynomial-time
approximation with a performance ratio ρ < 1 unless NP=P [22].

Finding a cohesive group from a social network with existing friend edges is an
important research topic in the literature. However, before [22], all efforts are based
on existing friendship [10, 19, 23, 24, 29, 32, 33, 36] and no “friending” is involved.
In order to have “friending” involved, the potential friend edges are employed in
the hop-bounded group friending. How to know the potential friend edges? The link
prediction methods are used [8, 12, 14–16]. They analyze the features, the similarity,
and/or the interactive patterns to make recommendation for potential friendship.

In the community expansion [3–5], each community consists of all customers
for a certain business which always wants to expanse their service. Therefore, a
different type of “friending” problems is raised. They can all be formulated into
nonlinear combinatorial optimization problems.
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Optimization on Content Spread in Social
Network Studies

Yi Li, Ruidong Yan, and Weili Wu

Abstract With the rapid growth of online social networks, people change the
way of generating, sharing, and spreading various social contents. The conta-
giousness of social content is highly depending on the size of of seed nodes and
connectivity of the network. In this study, we propose the optimization problems
of information content diffusion over social networks. The content here can be
either useful information such as news, innovation ideas, and marketing purpose
content or negative content such as misinformation and malicious rumors. We
show that the optimization problem on information diffusion has been discussed
in previous researches from different aspects using different approaches. In our
study, we formulate two optimization problems—content spread maximization and
misinformation minimization—which are both NP-hard and non-submodular. To
tackle the difficulty of these problems we sandwich approximation which has data-
dependent guarantees.

1 Introduction

In the past decade, social networks have gained popularity at a rapid pace and
become an integral part of our lives. Online social network sites such as Facebook,
Twitter, LinkedIn, Instagram, etc. not only help us keep in touch with friends and
families but also keep abreast of emerging contents and share daily activities. These
social network sites have become significant platforms for users to generate, share,
and spread a large amount of social content. They provide access to a vast source
of information on an unprecedented scale. Statistic shows that Facebook Messenger
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and WhatsApp handle 60 billion messages a day. A 2011 study by AOL/Nielsen
showed that 27 million pieces of content were shared every day, and 3.2 billion
images are shared each day [18]. Billions of active social network users are engaging
in spreading content such as photos, videos, comments, news, or even rumors
and misinformation over social networks. For the positive information such as
innovation ideas, or useful information we usually hope to maximize through social
network, while for the negative contents such as fake or inaccurate information
it should be limited or contained. The background and motivations of these two
problems will be discussed separately in the following sections.

1.1 Positive Content Maximization

The extent to which a social network spreads content is a key metric that impacts
both user engagement and network revenues. The more the novel content spread,
the more the useful information users end up discovering, and the more the value
users derive from being part of the social network. Also from the perspective of
social networks, higher content spread helps users engagement which in turn leads to
improved user retention and audience growth [4]. Therefore, it is very important to
explore the maximization problem of positive content disseminate across the entire
social graph.

In social networks, users recursively share contents with their neighbors that
will be expected to quickly reach and influence a large number of audience. But
in some cases content spread efficiency is not what we expected. There is a research
that shows that a piece of content such as a photo spread on Flickr usually only
influences the users within two hops then burnout quickly [3]. In addition, even
though the breadth and depth of information dissemination are somehow related
to the selection of initial seeds, sometimes the seed users are predetermined. For
example, if a beauty company wants to use viral marketing to promote their products
with minimum startup cost they usually send free samples to predetermined users
such as well-known beauty bloggers and celebrities. Due to the limited cost or
companies’ preference, we hope to find a way to boost content spread with fixed
seed users in advance.

There is a very straight forward way to think about this content spread maxi-
mization problem. We need to simply increase the connectivity of social networks.
Some social network sites such as Facebook, Twitter, etc. already have the friend
recommendation function to help people make possible connections. But in this way,
the possible links are usually based on common friends, interests, communities, and
other personal related features. While in some cases, personal related information
are considered as privacy data that cannot be accessed easily. And the recom-
mendations based on friends of friends or interests similarity can be significantly
large which can have diverse content spread characteristics. So simply considering
recommendation connections based on a number of mutual friends or common
interests may not maximize content spread in the social network [4]. We will show
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some existing works on maximizing content spread in Section 2 and then propose
our formulation and analysis for this positive content maximization problem.

1.2 Negative Content Minimization

Even though social networks bring us the convenience of spreading information,
negative contents such as misinformation and malicious rumors will also diffuse
widely and quickly. With widespread of negative contents, social network would
lose its reliability and cause panic over community and society.

One of the most valuable characteristics of social networks is its capability
for user generated contents circulating rapidly through the network. But when it
comes to misinformation this valuable characteristic will make things even worse.
For example, when the devastating wildfires happened in California in October
2017, the officers not only need to help with evacuating residents and searching for
missing persons they still had to take time to deal with fake news [13]. Although
the misinformation was shot down by the officers and was debunked by some
government websites afterwards, the original story was shared 60,000 times and
similar stories were shared 75,000 times on Facebook in a very short time.

Another major aspect of online social networks is its openness to everyone.
They enable not only organizations and government agencies to publish infor-
mation and news, but also our ordinary people to post from own perspectives
and experience [24]. Because of the openness, anyone could share any content
without validating it. Therefore, taking effective strategies to minimize the negative
influence from misinformation should be very crucial to social networks. Or it may
cause catastrophic effects in the physical world in a short period.

Existing works have explored the negative content spread problem from different
perspectives. Some previous works show that by removing nodes in decreasing
order of outdegree and blocking edges can be effective for minimizing the negative
information [9, 14, 21, 23]. There are also some other works trying to find minimal
set of protectors to limit the diffusion of misinformation [7] or introduce a positive
cascade competing against the negative content [20]. We will expand the details of
these existing works in Section 2 and discuss our proposed problem in Section 3.

2 Related Works

In this section, we will show some previous researches on the optimization of
content spread over social networks. We will also discuss in two parts—the existing
works focus on maximizing the positive content and the previous works explore to
minimize the misinformation and malicious rumors on social networks.
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2.1 Classic Influence Diffusion Problems

There have been abundant studies on various models and computational methods for
maximizing and minimizing influence. Kempe et al. [8] first formulate the influence
maximization problem which asks to find a set S of k nodes so that the expected
influence spread is maximized under a predetermined influence propagation model.
The problem is NP-hard under both IC and LT models. In [5], Chen et al. show that
to compute the expected influence spread for a given set is #P-hard. But it can be
formulated as a submodular and monotone function of S for both IC and LT models
which can use a simple greedy algorithm [8] to guarantee the results.

There are also some existing studies that have explored negative influence
minimization problem. Nguyen et al. [15] study a set of problems named node
protectors, which aims to find the smallest set of highly influential nodes whose
decontamination with good information helps to contain the viral spread of mis-
information. Kimura et al. [9] proposed a link blocking method to minimize the
expected contamination area of the network.

In this work, we think of the influence optimization problems in a different
perspective. Instead of choosing the initial seed set we aim to add edges to maximize
or minimize the content spread. We focus on the diffusion process from the seed
nodes to the nodes with high probability to influence other nodes and low probability
to be activated by seed nodes. In our settings, the seed nodes are predetermined.

2.2 Optimizations on Content Spread

2.2.1 Boosting Content Spread

Vineet Chaoji et al. [4] formulate the problem of boosting content spread on
social network by adding up to k connections per user such that the probabilistic
propagation of content in the social network is maximized. Since the content maxi-
mizing problem is NP-hard and the content spread function is not submodular they
construct a more restricted variant that is submodular and devise an approximation
algorithm that computes an edge set which satisfies constraints. But their content
spread function under IC and RMPP model has a few limitations. First, computing
the spread of specific content C with any given seed set is #P-hard which leads
to substantial computation time for running expensive simulations. Second, the
restrictions on information propagation may not reflect the real flow on the network.
Additionally their model assumes that a predefined number of new links should be
added for each user in the network, thus leading to all the users in the network to
accept the same number of recommended connections, a case which not necessarily
reflects the power law property of real world social network.

The authors of [19] also raise the question of changing the structure of networks-
to add or remove edges from a network to speed up a dissemination. The problem
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boils down to the eigenvalue optimization problem. They propose an algorithm to
optimize the key graph parameter such as leading eigenvalue of the graph adjacency
matrix which controls the information dissemination process in their models.

In [1, 16, 17], the authors define the link injection problem which is aiming at
boosting overall diffusion of information over the social networks, unlike other link
prediction methods which do not consider the optimization of information cascades
as an explicit objective. They propose the method that the injected links are being
predicted in a collaborative-filtering fashion, based on factorizing the adjacency
matrix that represents the structure of the social network and controls the number
of injected links to avoid an aggressive injection scheme that may compromise the
experience of users. Then they perform the link injection by attaching links to users
according to their scores.

Lin et al. [11] propose a k-boosting problem which aims to find k users who
are initially uninfluenced and increase their probability to be influenced. It is
different from influence maximization problem because boosted users are initially
uninfluenced. Their work consider the content spread maximization problem from
initial users’ perspective.

2.2.2 Negative Content Minimization

The problem of minimizing the negative influence of rumors and misinformation
although is an important research topic but gets less attention compared to influence
maximization. There are mainly two types of strategies that include blocking
influential users and clarifying rumor by spreading truths.

Wang et al. [21] consider the situation that when negative information such as
a rumor emerges in the social network and part of users have already adopted it,
how to minimize the size of ultimately contained users. They propose a greedy
method which efficiently finds a good approximate solution to discover and block k
uninfected users to minimize the negative content diffusion. In [22], authors study
the problem of minimizing the misinformation spread via changing the connectivity
of social network.

Comin et al. [6] analyze three spreading schemes and then propose an effective
methodology for the identification of the source nodes. If the source nodes are
detected, then using any method to block them could achieve our goal of minimizing
the negative content. Their method is based on the calculation of the centrality
(degree, betweenness, closeness, and eigenvector) of the nodes on sampled network.
Similar to [6], Kitsak et al. [10] study the problem of identifying the most efficient
“spreaders” in a network which is very useful for optimizing the information spread
problem. They find that the most efficient spreaders are those located with the core
of the network as identified by the k-shell decomposition and that when multiple
spreaders are considered simultaneously the distance between them becomes the
crucial parameter that determines the extent of the spreading.

Budak et al. [2] study the notion of competing campaigns in a social network and
address the problem of influence limitation where a “bad” campaign starts propa-
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gating from a certain node in the network and use the notion of limiting campaigns
to counteract the effect of misinformation. The problem can be summarized as
identifying a subset of individuals that need to be convinced to adopt the competing
(or “good”) campaign so as to minimize the number of people that adopt the “bad”
campaign at the end of both propagation processes. This problem is proved to be NP-
hard but they use a greedy algorithm to achieve approximation grantee due to the
submodularity of objective function. Our work differs from the above because we
focus on the manipulation of edges and we consider the network structure changing
after each edge is removed.

3 Problem Description and Formulation

In this section, we will discuss how we formulate our problems with detailed
explanation of objective functions.

3.1 Information Diffusion Model

Before discussing the proposed problems and formulations, we first want to show
how a piece of content will spread over the whole networks. So we briefly introduce
the information diffusion model: independent cascade (IC) model [8]. Given a social
network G = (V ,E, p), where V is the node set (users) and E ⊆ V ×V is the edge
set (the relationships between users). evu ∈ E denotes an arbitrary edge and pvu
of edge evu denotes the probability that node v can successfully activate node u.
We call a node active if it accepts information from other nodes, inactive otherwise.
Influence propagation process unfolds in discrete time steps. The initial seed set is
S0, let ST denotes the active nodes in time step T , and each node v in ST has single
chance to activate each inactive neighbor u through its out-edge with probability
pvu at time T + 1. Repeat this process until no more new nodes can be activated.
Note that a node can only switch from inactive to active, but not in reverse direction.

3.2 Content Spread Maximization

In this section, we show how we formulate the content spread function from a
marginal increment perspective. Our formulation based on the classical independent
cascade (IC) model is discussed in the last part.

For the given acyclic directed social network G(V,E, P ), we denote pi as
the probability with which node i shares content independently with each of its
neighbors and qcEv,S is the spread of a content c ∈ C contained at v ∈ V under the
topology of E (which means only the edges in E can be used in the propagation
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of content c) with seed set S, that is, every node in S contains content c and

qcES = (· · · , qcEv,S, · · · )T is the content spread vector. Then we need to find out

how to calculate the marginal gain Δest q
cE
v,S of content spread c at node v when an

edge est ∈ X from a candidate set is added to current topology of E. We give the
following theorem.

Theorem 1 The marginal gain Δest q
cE
v,S of content spread of c at node v when an

edge est ∈ X from a candidate set is added to current topology of E is calculated
recursively as follows:

Δest q
cE
t,S = (1− qcEt,S )psq

cE
s,S .

And for any v ∈ Nout (t), where Nout (t) is the out-neighbor set of vertex t , we have

Δest q
cE
v,S =

1− qcEv,S

1− ptq
cE
t,S

ptΔest q
cE
t,S . (1)

In addition, for other vertex v ∈ V that can be reachable from vertex t , we can
update the marginal gain similarly according to the topology order in recursive
manner. We have Δest q

cE
v,S = 0, for the vertex which is unreachable from vertex t

during this process.

During the process of updating marginal spread, if there are paths from vertex t

reaching to different in-neighbor nodes of node w, the marginal gain of spread of w
should be updated according to Equation (1) multi-times. But the overall marginal
gain of content spread for w is independent of the updating orders.

In fact, suppose there exist two paths from t to both node u and v and w ∈
Nout
E (u)

⋂
Nout
E (v). We first consider update from u to w, a marginal gain of spread

Δu
est
qcEw,S =

1−qcEw,S
1−puqcEu,S

puΔest q
cE
u,S is obtained. Then considering update from v to w,

another marginal gain of spread Δu+v
est

qcEw,S =
1−(qcEw,S+Δu

est
qcEw,S)

1−pvqcEv,S
pvΔest q

cE
v,S . Thus the

overall marginal gain of spread of w is Δest q
cE
w,S = Δu

est
qcEw,S +Δu+v

est
qcEw,S which is

also equal to Δv
est
qcEw,S +Δv+u

est
qcEw,S .

From Theorem 1 and the note above, the objective function of content spread in
the marginal gain form can be expressed as

f (X) =
∑

c∈C

∑

v∈V
(qcEv,S +

∑

est∈X
Δest q

c(E
⋃

Xst )

v,S ), (2)

where Xst denotes the edge set that has already been added into the network before
edge est . This definition is consistent with the content propagation process and there
is no loss during content spread process. Using f (X) as the objective function to be
maximized we give our content spread maximization problem (GSMP) as follows.
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Definition 1 (GSMP) Given a directed acyclic graph G = (V ,E, P ), a constant
K , and content set C with given initial seed sets Sc for each c ∈ C, find an edge set
X ⊆ X = {eij : i, j ∈ V, i ∈ Nj , j ∈ Ni}, where Ni is the candidate node set of i
to be connected such that: (1) At most K edges from X, and (2)f (X) is maximum.

3.3 Negative Content Minimization

Here we define an opposite problem called negative content minimization problem.
Given a directed acyclic social network G = (V ,E, p), where V represents users
and E represents relationships between users, a diffusion model M , a candidate
edge set E′ ⊆ E, and the predetermined seed set Sc for each negative content
c ∈ C such as rumors and gossips, etc. Further, each node v has the following
parameters: (1) Let pvu denote the probability that v independently shares content
with its neighbor u; (2) Let θcE(v, Sc,M ) denote the probability that seed set Sc
successfully activates v on topology E under information diffusion model M . We
omit the parameter M if the context is clear, i.e., θcE(v, Sc).

The goal of this problem is to identify K edges denoted by E from candidate edge
set E′. Then we remove E from original graph G such that the negative content
spread is minimized. We define negative content spread minimization problem as
follows.

Definition 2 (Negative Content Spread Minimization (NCSM)) Given a
directed acyclic social network G = (V ,E), an diffusion model M , a blocking
candidate edge set E′, and the predetermined seed set Sc for each negative content
c ∈ C, NCSM finds a K edges set E from candidate edge set E′ such that the
negative content spread L(E ) = ∑c∈C

∑
v∈V θc

E\E (v, Sc) is minimized, namely it
is equivalent to seek

E ∗ = arg min
E⊆E′,|E |=K

∑

c∈C

∑

v∈V
θc
E\E (v, Sc), (3)

where θc
E\E (v, Sc) denotes the probability that the seed set Sc activates v success-

fully on topology E\E .
Let θcE\{est }(v, Sc) denote the probability that the seed set Sc activates v success-

fully when the edge (s, t) = est ∈ E′ is removed from E. We focus on the marginal
decrement when an edge is removed from network. Then we have the following
formula to calculate the marginal decrement Δest θ

c
E\{est }(v, Sc) when edge est is

removed where v ∈ V and c ∈ C (see Figure 1).
When an edge est is removed from current topology E, we consider the following

two steps. We first update the marginal decrement of the t . Now we update the
content spread of each node in the newly formed network structures and then
calculate the marginal decrement of t’s neighbor. We recursively use these two steps
to update the probability of each node when the edge est is removed from current
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Fig. 1 An instance for
NCSM problem

topology until no more nodes can be updated. In particular, if there exist multiple
paths from t to w (e.g., t → v1 → w and t → v2 → w, see Figure 1), we show
that the marginal decrement of w ∈ Nout

E\{est }(v1)
⋂

Nout
E\{est }(v2) is independent of

updating order. Here we omit the proof.
Based on the above discussion, the objective function (3) can be rewritten with

respect to marginal decrement, i.e.,

L(E ) =
∑

c∈C

∑

v∈V
(θcE(v, Sc)−ΔE θ

c
E\E (v, Sc)), (4)

where E ∈ E′ denotes the edges set removed from network and |E | = K . The
item

∑
c∈C

∑
v∈V θcE(v, Sc) is fixed with the given initial network G. So minimize

function (4) is equivalent to maximize total marginal decrement. Thus we focus
on total marginal decrement caused by removing E . Our final objective function is
shown as follows:

f (E ) =
∑

c∈C

∑

v∈V
ΔE θ

c
E\E (v, Sc). (5)

4 Problem Analysis

4.1 NP Hardness

Theorem 2 The content optimization problems (content spread maximization prob-
lem and negative content spread minimization problem) are NP-hard under IC
model.

Proof Follows from the reduction of the set cover problem to the content spread
maximization problem. The CSMP is NP-hard. NCSM can be proved NP-hard from
the reduction of knapsack problem. Details omitted due to space constraints.

4.2 Submodularity

Theorem 3 The objective functions of CSMP and NCSM are both non-submodular.
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Fig. 2 Counterexample for
non-submodularity

We will show the proof of non-submodularity of NCSM problem by giving a
counterexample. The proof of CSMP is similar so we will omit it here.

Proof Submodular functions have a natural diminishing returns property. If E is a
finite set, a submodular function is a set function F : 2E → %, where 2E denotes
the power set of E, which satisfies: for every A ⊆ B ⊆ E and e ∈ E\B, F(A ∪
{e}) − F(A) ≥ F(B ∪ {e}) − F(B). We prove that function (3) is not submodular
by the counterexample in Figure 2.

Suppose that only node 1 (seed) has a piece of negative content c, and each
node shares content with its neighbors with probability of 1. Let A = {e14}, B =
{e14, e34}, and e = {e23}. Note that A ⊆ B ⊆ E and e ∈ E\B. L(A) = 4,
L(A ∪ {e}) = 2, L(B) = 3, and L(B ∪ {e}) = 2. Thus L(A ∪ {e}) − L(A) <

L(B ∪ {e})− L(B) indicates that function L is not submodular.

4.3 Methods

Since the proposed problems lack submodularity, we cannot achieve (1 − 1/e)-
approximation to the optimal solution. So we adopt a sandwich approximation
strategy [12] that leads to a data-dependent approximation factor. Since the original
content spread function f (X) is non-submodular, we need to obtain both submodu-
lar lower f (X) and upper bounds f (X). Therefore the sandwich framework can be
applied. The sandwich approximation strategy works as follows. First, a solution to
the original problem with any strategy is found. Then, an approximate solution to the
submodular lower-bound and the submodular upper-bound is found, respectively. At
last, the solution that has the best result for the original problem is returned.

5 Conclusion

We introduce two problems of optimizations on content spread over social network.
For the positive content such as innovation ideas or product promotion contents
we hope to boost the diffusion, while for the negative content of malicious
rumors and misinformation we need to contain. In the proposed problems, we
focus on the connectivity of network structures by adding and removing edge set
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from the network to maximize and minimize the content spread from a marginal
increment/decrement perspective. We show that both problems are NP-hard and
non-submodular. So we need to derive sandwich framework and marginal increment
based algorithm to give a data-dependent approximation factor guaranteed solution.
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Interaction-Aware Influence
Maximization in Social Networks

Shuyang Gu, Chuangen Gao, and Weili Wu

Abstract Influence maximization problem is among the most important topics in
the area of social networking, it has attracted a lot of research work. Recently, the
influence maximization problem has been extended to practical scenarios. In this
chapter, we present one cutting-edge problem named interaction-aware influence
maximization, which involves nonsubmodular optimization.

1 Introduction

With the advancements in information science in the last two decades, online social
networks find important applications in viral marketing, under this circumstance,
influence maximization becomes a very popular research direction, which could be
described as the problem of finding a small set of most influential nodes in a social
network so that the number of influenced nodes under certain diffusion model in the
network is maximized.

Kempe et al. [10] first formulate it as the influence maximization problem: a
social network is modeled as a graph with vertices representing individuals and
edges representing relationship between two individuals. Influence is propagated
in the network according to a stochastic cascade model. One of the most popular
cascade models is independent cascade (IC) model: each edge (u, v) in the graph
is associated with a propagation probability p(u, v), which is the probability that
node u independently activates node v at step t + 1 if u is activated at step t . Given
a social network graph, the IC model, and a number k, the influence maximization
problem is to find k nodes in the graph (referred to as seeds) such that under the
influence cascade model, the expected number of nodes activated by the k seeds
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(referred to as the influence spread) is the largest possible. Kempe et al. [10] prove
that the optimization problem is NP-hard, and they present a greedy algorithm which
guarantees that the influence spread is within (1− 1/e− ε) of the optimal influence
spread, where e is the base of natural logarithm, and ε depends on the accuracy of
their Monte Carlo estimate of the influence spread given a seed set.

A large amount of efforts have been made in this research topic since Kempe
et al. [10] first defined the problem and obtained plentiful results in many ways.
Most of the works focus on maximization of the spread of influence, which
considers the number of users influenced by viral marketing or “word-of-mouth”
effect in online social networks. These works are based on the assumption that the
number of influenced users determines the profit of product. However, some types
of products earn profit in a continuous way besides the sales of product itself. The
revenue model of online games is a good example, the sales of game is just one
source of a game company’s profit, another important part of revenue depends on
the participation and interaction of players who have already bought the game.

The interactions among users contribute to game profit in several ways. First,
the interactive users play games in an online manner, which will attract more in-
game advertising. In-game advertising allows advertisers to pay to have their name
or products featured in games, in 2017, $109 billion dollars was spent on in-game
advertising. Second, the virtual goods transactions in games depend on players’
interactions. In 2009, the sale of virtual goods brought in $1 billion dollars.

We analyze such revenue model and define a novel problem of interaction-aware
influence maximization. Since the first part of revenue, sales of game, depends on
the spread of influence, the objective is same as the classical influence maximiza-
tion. The second part of revenue hinges on the interactions among users. We use
interaction profit to represent such revenues related to the strength of interactions
among players. We then define an interaction-aware profit maximization problem,
which is how to select a seed set to maximize both the number of influenced users
and the interaction profits among active nodes.

For traditional influence maximization problem, since its submodularity, the
greedy algorithm can achieve a guaranteed approximation with 1 − 1/e. But
unfortunately, interaction-aware influence maximization problem is not submod-
ular; thus, the greedy strategy can’t be directly applied to our problem to get a
guaranteed approximate solution. To solve this problem, we propose a new method
called decomposition strategy in which we decompose our objective function as
a difference of two submodular functions. And based on the decomposition we
replace them with the modular functions which are upper or lower bound of them
to address the nonsubmodularity part of problem and design an iterated sandwich
algorithm.
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2 Related Work

Influence maximization was first described as an algorithm problem by Domingos
and Richardson [7, 15], they model the problem using Markov random fields and
propose heuristic solutions. Kempe et al. [10] formulated the influence maximiza-
tion problem from the view of combinatorial optimization and showed that the
problem is NP-hard under both the IC and LT models, and they proposed a simple
greedy algorithm with an approximation ratio of 1 − 1/e. However a drawback
of their work is the scalability of the greedy algorithm. Since then a number of
efficient heuristic algorithms haven been proposed in many works to address the
issue, one direction is to improve the greedy algorithm, and the other is to propose
effective heuristics. In [11], Leskovec et al. present a “lazy-forward” optimization in
selecting new seeds, which exploits submodularity and greatly reduces the number
of evaluations on the influenced nodes, the main idea is that the marginal gain of a
node in the current iteration cannot be better than its marginal gain in the previous
iterations.

In [3], Chen et al. improved the greedy algorithm by combining with the CELF
optimization proposed in [11], and they also proposed a degree discount heuristics
under the independent cascade model. The main idea of degree discount heuristics
is when selecting a node based on its degree, and the degree does not include the
neighbors that are already activated. In[4], they show that computing influence
spread in the independent cascade model is #P -hard, and they propose that a
heuristic algorithm uses local arborescence structures of each node to approximate
the influence propagation. The heuristic algorithm restricts computations on the
local influence regions of nodes. Moreover, by tuning the size of local influence
regions, this heuristic is able to achieve tunable tradeoff between efficiency (in terms
of running time) and effectiveness (in term of influence spread). In [8], Goyal et al.
introduce CELF++ that further optimizes CELF by exploiting submodularity, the
advantage of the algorithm CELF++ is that it avoids unnecessary re-computations
of marginal gains incurred by CELF.

The influence maximization problem has also been extended to practical scenar-
ios in recent works. Chen et al. [6] studied the topic-aware influence maximization
problem which considers user interests. In real-world social networks, users have
their own interests (topics) and are more likely to be influenced by their friends
with similar topics. To address this problem, they study topic-aware influence
maximization, that is, given a topic-aware influence maximization (TIM) query,
find k seeds from a social network such that the topic-aware influence spread of
the k seeds is maximized.

In [12], a keyword-based targeted influence maximization is proposed, where
users who are relevant to a given advertisement are targeted. In [9], the problem of
privacy reserved influence maximization in both cyber-physical and online social
networks is studied, and they propose a model that merges both GPS data and
relationship data from social network. Bharathi et al. [2] studied the game of
innovation diffusion with multiple competing innovations, for example, multiple
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companies market competing products using viral marketing. In [5], Chen et al.
propose an extension to the independent cascade model that incorporates the
emergence and propagation of negative opinions, and the new model has a quality
factor to model the natural behavior of people turning negative to a product due to
product defects.

Most of the works only consider the number of activated users or the nodes of
social graphs but a few works consider interactions among users in viral marketing.
The interaction activities between users are first processed by [17]. They consider a
specific problem of how one can stimulate the discussion about a topic in a social
network as much as possible within a budget. They model the problem as activity
maximization. Given a propagation network, which records user interaction activity
strength along each edge, the goal is to find an optimal set of seed users under a
given budget, such that starting information propagation from the seed users leads to
the maximum sum of activity strengths among the influenced users. They show that
the activity maximization problem is NP-hard under IC model and LT model. The
objective function of the problem is proved neither submodular nor supermodular.

Activity maximization does not include maximizing the influence spread in
the meantime and only count activity strength of the directly connected users.
We propose a different problem-interaction-aware influence maximization, which
takes both parts into consideration, in the following section we will go through the
formulations of these two problems and then we will discuss a method to solve
interaction-aware influence maximization.

3 Problem Formulations

In this section, let us introduce the different formulations on influence maximization
problems that consider activity/interactions among users.

3.1 Activity Maximization

This problem was first processed by [17]. Consider a social network represented by
a directed graph G = (V ,E), together with an information diffusion model m. In
this model, each node has two states, active and inactive. Initially, all nodes are in
inactive state. The influence diffusion consists of discrete steps. At beginning, a set
of nodes are activated. Nodes in this set are called seeds. At each subsequent step,
every inactive node v evaluates its status and decides whether it should be activated
or not, based on the rule in the model m. The process ends at a step in which no
more inactive node becomes active.

Let S denote the set of seeds and Im(S) the set of active nodes at the end of
diffusion process. Suppose that for each pair of active nodes u, v ∈ Im(S), if (u, v) is
an edge of G, i.e., (u, v) ∈ E, then an activity profit A(u, v) will be generated where
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A : E → R+ is a nonnegative activity profit function. The activity maximization is
the following problem:

maxα(S) =
∑

(u,v)∈E:u,v∈Im(S)
A(u, v) (1)

subject to |S| ≤ k

S ⊆ V.

This problem has been proved to be NP-hard in [17]. There are also counterexamples
in [17], which show that α(S) is neither submodular nor supermodular. However,
Wang et al. [17] introduced two monotone nondecreasing submodular set functions
β : 2V → R+ and γ : 2V → R+ such that for any S ∈ 2V , β(S) ≥ α(S) ≥ γ (S).
These two set functions are defined as follows:

β(S) =
∑

(u,v)∈E:u∈Im(S)
A(u, v)

and

γ (S) =
∑

s∈S

∑

(u,v)∈E:u,v∈Im({s})
A(u, v).

By a theorem of Nemhauser and Wolsey [14], there is a greedy algorithm which is
able to find (1− e−1)-approximation solutions for the following two problems:

maxβ(S) (2)

subject to |S| ≤ k,

S ⊆ V

max γ (S) (3)

subject to |S| ≤ k,

S ⊆ V.

Let Sβ and Sγ be (1 − e−1)-approximation solutions for problems 2 and 3,
respectively. Let Sα be a feasible solution for problem 1. Choosing the best one
from Sα , Sβ , and Sγ , we would obtain a data-dependent approximation solution for
problem (α), i.e., the data-dependent approximation solution is

Sdata = argmaxS∈{Sα,Sβ ,Sγ }α(S).
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3.2 Interaction-Aware Influence Maximization

The goal of interaction-aware influence maximization is to find a set of initial users
to maximize the total profit related to both the number of the influenced nodes and
the interaction among the influenced nodes.

Again the social network is represented as directed graph G = (V ,E) to
represent a social network, where V is the set of users and E is the set of social
relations between users. Each edge (u, v) ∈ E is assigned with a probability puv
so that when u is active, v is activated by u with probability puv . And the benefit
related to the interaction between nodes is represented by a nonnegative function
b : V ×V → R≥0, in which b(u, v) = b(v, u) for the unordered pair {u, v} of node
u and v. Note that for each {u, v}, we only compute once the benefit between them,
i.e., b(u, v) or b(v, u) instead of b(u, v)+ b(v, u).

Consider a moment in the propagation process under IC model, when node u

has just become active, and it attempts to activate its neighbor v, succeeding with
probability pu,v . We can view the outcome of this random event as being determined
by flipping a coin of bias pu,v . With all the coins flipped in advance, the edges in G

for which the coin flip indicated a successful n activation are declared to be live; the
remaining edges are declared to be blocked [10]. We use g to represent the outcome
of this process which is called a live graph of G since it consists of all edges declared
to be live. We denote as g ∼ D, where D is the distribution of g. For any seed set S,
denote by Ig(S) the set of all active nodes at the end of the cascade process in live
graph g. Its cardinality is represented by |Ig(S)|.

The total expected benefit would be defined as

f (S) = Eg∼D[α · |Ig(S)| + β ·
∑

{u,v}⊆Ig(S)
b(u, v)]

=
∑

g

P rob[g] · (α · |Ig(S)| + β ·
∑

{u,v}⊆Ig(S)
b(u, v)).

The benefit consists of two parts, the first part denoted as α · Ig(S) is
related to the number of nodes that are finally activated, and the second part
β ·∑{u,v}⊆Ig(S) b(u, v) is related to the strength of interaction between the active
nodes. The parameters α, β are used to balance the weight of the two parts of the
profits, and {u, v} ⊆ I (S) denotes the all unordered pair in the set I (S). Note that
for each unordered pair {u, v}, since b(u, v) = b(v, u), we only compute once the
benefit between them. The expectation is respected to g.

The interaction-aware influence maximization is the following problem: given a
social network G = (V ,E), a propagation probability puv for each edge (u, v)

under the IC model, a benefit function b : V × V → R≥0, and a positive
integer k, find a set S of k seeds to maximize the expected profit through influence
propagation:
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Fig. 1 Counter example a

c d
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s.t.|S| ≤ k.

This problem can be proved NP-hard by showing that a special case of
interaction-aware influence maximization problem is NP-hard, where α = 0, since
a problem being NP-hard in a special case implies NP-hardness in general case. The
seeds size equals k. Then the problem is transferred to seek k seeds that maximize
the benefit between activated nodes. Now we prove by reducing from the set cover
problem, which is NP-complete [1]. Given a ground set U = {u1, u2, . . . , un} and a
collection of sets {S1, S2, . . . , Sm} whose union equals the ground set, the set cover
problem is to decide if there exist k sets in S so that the union equals U . Given an
instance of the set cover problem, we construct a corresponding graph with m+ 2n
nodes as follows. For each set Si we create one node pi , and for each element uj we
create two nodes qj and q ′j . If the Si contains the element uj , then we create two
edges (pi, qj ) and (pi, q

′
j ). Note that each edge is live which means the probability

is 1. Now we design the benefit function over pairs of nodes. For the pairs {qj , q ′j },
the benefit equals to 1, and the other pairs equal to 0. Then the set cover problem is
equivalent to deciding if there is a set S of k nodes such that the benefit of S equals
to n. The NP-hardness follows immediately.

There are also counterexamples which show that f (S) is neither submodular
nor supermodular. We prove by the counter example shown in Figure 1. The first
element in the tuple tied on each edge represents the propagation probability, and the
second one denotes the benefit between its two end nodes. For pairs {u, v} between
which there is no edge set b(u, v) = 0 except pair {b, d}. In Figure 1, (0, 1) on
edge (a, b) means propagation probability pab = 0 and b(a, b) = 1, then we have
f ({a}) = 1 + 0 = 1, f ({a, b}) = 2 + 1 = 3, f ({a, d}) = 2 + 0 = 2, and
f ({a, b, d}) = 3 + 3 = 6. Thus, f ({a, d}) − f ({a}) < f ({a, b, d}) − f ({a, b}),
which implies f (S) is not submodular. Also, we have f ({c}) = 2 + 2 = 4,
f ({d, c}) = 2+ 2 = 4, and f ({d}) = 1. Thus, f ({c})−f (∅) > f ({d, c})−f ({c})
which implies f (S) is not supermodular.

4 A Method for Interaction-Aware Influence Maximization

We have the following theoretical result leading us to a new method to solve our
nonsubmodular problem.
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Theorem 1 For any set function f : 2X → R and any set Y ⊂ X, there are two
modular/submodular/supermodular functions mu

f : 2X → R and ml
f : 2X → R

such that mu
f (X) ≥ f (X) ≥ ml

f (X) and mu
f (Y ) = f (Y ) = ml

f (Y ).

We can apply the theorem as long as we have a decomposition of the objective
function into two submodular functions. This decomposition sometimes can be
obtained trivially from the set function structure (or problem structure). However,
in general, it is conjectured to be NP-hard [13]. In our case, it is not trivial, but we
successfully found a decomposition with special technique and moreover, we made
the obtained submodular functions computationally possible.

The following shows how we decompose our objective function f (S) as the
difference of f1(S) and f2(S) both of which are submodular proved as following,
i.e., f (S) = f1(S)− f2(S).

Given a seed set S and a live graph g, we define the B1(S) as benefit between
activated users Ig(S) and all users V , and define B2(S) as the benefit among all
activated users Ig(S) plus the benefit between the activated users Ig(S) and the non-
activated users V \ I (S), which are formulated as follows:

B1(S) =
∑

u∈Ig(S)

∑

v∈V
b(u, v)

=
∑

{u,v}⊆Ig(S)
2 · b(u, v)+

∑

u∈Ig(S)

∑

v∈V \Ig(S)
b(u, v)

B2(S) =
∑

{u,v}⊆Ig(S)
b(u, v)+

∑

u∈Ig(S)

∑

v∈V \Ig(S)
b(u, v).

Thus we have

B(S) = B1(S)− B2(S)

=
∑

{u,v}⊆Ig(S)
b(u, v).

And given a seed set S, we define the following functions:

f1(S) = Eg∼D[α · |Ig(S)| + β · B1(S)]
f2(S) = Eg∼D[β · B2(S).]

Then we have

f (S) = Eg∼D[α · |Ig(S)| + β ·
∑

{u,v}⊆I (S)
b(u, v)]

= Eg∼D[α · |Ig(S)| + β · (B1(S)− B2(S))]
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= Eg∼D[α · |Ig(S)| + β · B1(S)] − Eg∼D[β · B2(S)]
= f1(S)− f2(S).

Thus f (S) is decomposed as a difference between function f1 and f2, and both of
them are submodular. According to Theorem 1 and our decomposed submodular
functions, we can design iterated sandwich algorithm to solve interaction-aware
influence maximization problem. The main idea of our algorithm is to find the upper
bound function and lower bound function based on current seed set, then solve
the three functions: the upper bound function, the lower found function, and the
objective function, and then we choose the best solution from those three solutions,
this best solution is then the seed set for generation of upper and lower bound
functions in next iteration. The procedure iterates until converged.

5 Conclusion

When the influence maximization problem is converted to capture the interactions
among users as we discussed above, the objective functions are transformed to
nonsubmodular functions, one of the possible method to solve such function is
discussed in this chapter. The key is DS function maximization where a DS function
is a difference of two submodular function. Some fundamental theoretical problems
are still open. For more information on social networks, please refer to [16].
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Multi-Document Extractive
Summarization as a Non-linear
Combinatorial Optimization Problem

Meghana N. Satpute, Luobing Dong, Weili Wu, and Ding-Zhu Du

Abstract Multi-document summarization deals with finding the core theme pre-
sented in multiple documents. This can be done by selecting the important infor-
mation from the text in the multiple documents. Extractive summarization selects
and extracts such sentences which represent the gist of the documents. In this paper,
we have surveyed how research in multi-document summarization has evolved from
simple sentence-based techniques like sentence position to complex neural network
based supervised learning techniques. In recent years, more and more supervised
learning methods are proposed to tackle this problem along with some unsupervised
approaches described in LSA (Deerwester et al. J Am Soc Inf Sci 41(6): 391–
407, 1990) and TextRank (Mihalcea et al. Textrank: Bringing order into text. In:
Proceedings of the 2004 conference on empirical methods in natural language
processing, 2004). In this chapter, we have proposed an alternative unsupervised
method where the problem of multi-document summarization can be viewed as a
non-linear combinatorial optimization problem. We have formulated the problem
and discussed possible solution to this problem.

1 Introduction

Automatic multi-document summarization is a process of creating shorter version
of given text from different but related documents in such a way that it retains
the important information the documents are meant to convey. With the advent
of Internet, vast amount of data became accessible to everyone. People are better
equipped to gain knowledge and make decisions. From online shopping to reading
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books, people can read reviews and summaries. But due to time constraint, it is
not possible to read every webpage or document available. Thus, people are more
inclined to read summaries, i.e., summary of book, summary of news articles, etc.
Hence, multi-document summarization research is gaining momentum due to its
practical usefulness in day to day life.

There are two main approaches of automatic summarization techniques: extrac-
tive and abstractive. Extraction-based summarizers extract individual sentences
from the given text (multiple documents). Depending on some criteria, these
sentences are deemed important by summarizer. The final summary is composed by
using these extracted sentences. Thus, the sentences in the summary come directly
from the given text. Abstraction-based summarizers select important sentences or
paragraphs from the given text but the final summary is composed by generating
new sentences using the selected sentences. Thus, the sentences in summary are
often different from sentences in given text.

Initial research in automatic summarization has emphasized on extracting sum-
mary from single document. Later on, as more and more text becomes available
online, reader wanted to gather information from different but related documents.
Hence, the research has diverted more towards multi-document summarization.

Multi-document summarization is a complex problem. A good summarizer is
expected to cover all important information from the text from different documents,
avoid redundancy, and produce coherent sentences as summary. To train the
summarizer, large annotated data is needed but often not available. Even the
available data does not cover different document styles, i.e., email data and social
network data. Furthermore, there is no consensus among researchers about which
sentences are needed to be in summary and which are not, making it harder problem
to solve.

In this paper, we study how summarization techniques have evolved from simple
heuristic-based techniques to applying complex neural network based learning
mechanisms. Lin and Blimes [16] first noticed submodularity of natural language
processing (NLP) problems and proposed that these problems can be solved as
optimization problems. Extractive multi-document summarization is essentially
selecting subset of sentences from a set of related documents based on some
constraints. We discuss this problem as a combinatorial optimization problem and
formulate the problem.

Section 2 describes background and approaches of summarization problem in
early days. Section 3 describes the survey of how summarization techniques have
been evolved for summarizing texts. Section 4 proposes a new way to look at
extracting summary problem as non-linear combinatorial optimization problem and
depicts possible formulation of this problem as an optimization problem. Section 5
concludes the contributions of this work.
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2 Background

Automatic summarization efforts were started by researchers in late 1950s when
they wanted to have condensed version of scientific and research papers which
covers the important content.

2.1 Heuristic-Based Methods

Even though initial summarization methods were not as complex as today’s
summarization techniques, they were efficient and good enough for summarization
needs for that time. These methods were mainly based on some rules or heuristics
about how to decide which sentences are important. Once this decision is made,
the important sentences are extracted as summary. In the method proposed by
Luhn et al. [18], first the stop-words are removed from the sentences since even
if they occur frequently, they do not add much meaning to summary. For all
remaining words, their frequency is calculated and frequent words are deemed
important. Sentences having many frequent words are considered summary-worthy
and included in summary. In the work by Baxendale et al. [2], sentence position
is given more importance. First and last sentences in a paragraph are extracted
as significant sentences and included in summary. It is also observed that this
assumption is true in the data set of scientific papers for which the summary is
desired. Another such observation was that, in case of news articles, first two
sentences of a paragraph are more significant than remaining sentences [26].
Edmundson et al. [7] proposed four components to weigh sentences, instead of just
word frequency like previous research. He experimented with different weights for
the presence of high-frequency keywords, pragmatic words, title and heading words,
and sentence location. This research indicated that considering several linguistic
features while deciding extract-worthy sentences offers better results.

3 Multi-Document Summarization Approaches

In multi-document summarization problem, the information comes from multiple
documents which are related and often complement each other. While deciding the
sentences to be selected, we need to make sure that they are coherent, not redundant
and cover all important content. Various approaches are used in the research of
multi-document summarization. Some approaches are extension of the work done
for single document summarization and some are newly evolved approaches.
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3.1 Statistical Approaches

The paper by Gambir and Gupta [12] has described the process of automatic
extractive summarization using the following block diagram in Figure 1. Automatic
summarization process begins with collecting the different but related documents
from different sources. These documents are then pre-processed, i.e., removal of
stop-words, stemming, etc. Then linguistic and statistical features are extracted from
the documents. Based on the occurrence of features in a sentence, each sentence is
scored using score function. Sentences with high score are extracted as a summary.

In [10] by Ferreira and others, an unsupervised system is built based on statistical
and linguistic features in the text. They proposed a clustering algorithm to ensure
coherence and reduce redundancy when multiple statements of the same meaning
are present in the documents. In [5] Latent Semantic Analysis (LSA) is used to index
and find topics by creating vectors of a documents based on the semantics in the
text. Considering features among sentences such as statistical similarity, semantic
similarity, coreference, and discourse relations, text is converted into a graph model.
Main sentences are identified by using TextRank algorithm [21]. Based on similarity
among the sentences, clusters of sentences are formed. Finally, main sentences from
the clusters are selected to form summary.

In research by Ko et al. [15], a hybrid method is proposed which makes
use of contextual and statistical information in the given text. In this method,
two consecutive sentences are merged and bigram pseudo sentences are formed.
Several statistical features are combined to score the pseudo sentence, such as how
far the sentence is from the title, the location of sentence, score of a sentence
based on aggregation similarity (which is the sum of similarities with all other
sentences), term frequency of terms in the sentence, and term frequency based
query (where high-frequency terms are used to query the document to find important
sentence). After the extraction of high score bigram pseudo sentences, the sentences
are fragmented to original sentences and summary is generated. They achieved
performance gain due to combination of several important features for deciding
which sentences need to be extracted.

Source documents Formation of summary

Extraction of important sentences

Calculation of sentence score

Pre-processing

Computation of features’ scores

Fig. 1 Extractive summarization using statistical approach [12]
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Yeh et al. [31] used different kinds of statistical and contextual features, including
sentence position in the paragraph (first sentence in paragraph introduces para-
graph and last sentence in paragraph summarizes paragraph), positive or negative
keywords (positive keywords are most likely included in summary, while negative
keywords are omitted), and centrality of sentence (similarity of the sentence with the
other sentences in text. If sentence is too similar with other sentences, then it means
it reflects central theme, resemblance with the title of the document. The summary
is generated by using linear weighted combination of these features to obtain score
function. Genetic algorithm is implemented to find optimal weights of the features
while extracting the summary.

3.2 Topic Based Approaches

Topic signatures extract topic-related sentences as summary through two steps, i.e.,
topic recognition and interpretation. These two steps are considered as two basic
steps in a typical automated text summary system. Lin and Hovy [17] proposed the
idea of topic signatures. Each topic signature is represented as the terms related to
the topic and weight of the term to that topic. One example mentioned in their paper
is of topic restaurant visit which can be inferred by terms such as menu, waiter,
order, etc. It is observed that often the topic words co-occur and hence their co-
occurrence suggests that they belong to same topic. The sentences are scored based
on their relevance to the topic signatures and high scored sentences are included in
summary.

Harabagiu and Lacatusu [13] used two novel topic representations based on topic
themes. Then based on their topics, the documents are classified as relevant or non-
relevant to the pertaining topic. Sentences are ranked based on their score. In this
paper, they considered relation between sentences and within the sentences. They
used shallow semantic information from the text on top of lexical information.
Extraction of summary sentences is done in different ways based on topic signature,
sentence score, weights on topic relevant terms, etc.

3.3 Graph-Based Approaches

These methods converted text into graph by using vertices to represent sentences or
concepts and edges to represent the semantic relatedness between two sentences or
concepts. Graph-based summarization became effective summarization technology
due to capturing contextual information among concepts.

In [20], Mani and Bleodorn described a graphical model which captures concepts
shown by words, proper nouns, and phrases and then designate those as vertices.
Edges represent the semantic relations between vertices. Figure 2 from [20] depicts
three possible relations between concepts. Adj links are shown between adjacent
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PHRASE

ADJ
ADJ

alpha SAME

1. 2.

3.

ADJ ADJ

ADJ

NAME

NAME

ADJ

ADJ

COREF

Fig. 2 Possible semantic relations between concepts [20]

concepts in the text. Name links can show person or entities. Phrase links can tie
concepts together in a phrase. Coref links tie a concept to another whenever there
is coreference. Alpha links are used when two concepts point to the same meaning,
i.e., “President” in one sentence can be of same meaning as “Mr. Donald Trump” in
another. Sentence selection for summary is based on the coverage of same vertices
in the common lists and different lists. Sentences are selected greedily based on the
average activated weight of the covered words.

In LexPageRank system by Erkan and Radev [8], sentences are depicted as
vertices and link between vertices exists if the cosine similarity between two
sentences exceeds predefined threshold. Sentence clusters are formed on the basis
of sentence similarity. They hypothesize that the sentence which is more similar to
other sentences contain main theme and hence central. The degree of each vertex
is calculated. Each link or edge between vertices represents a vote. They used
PageRank [24] algorithm to calculate vote of each link. Most voted sentences are
included in summary. Their architecture also took care of sentence subsumption.
When one sentence subsumes information from another sentence and possesses
some additional information, then it is included in summary and another sentence is
omitted from summary.

3.4 Machine Learning Based Approaches

As the research progressed, machine learning based methods caught the attention
of scientific research. Machine learning methods enable computer to summarize
documents by learning from the original documents and “understanding” the
potential semantics. For example, methods using classifiers such as Naive Bayesian,
support vector machine (SVM) [9], recurrent neural network (RNN) [23], neural
convolution network (NCN) attention [30], and recursive neural network [4] have
shown significant performance gains.
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Machine learning based methods fall into one of the following categories:
supervised, semi-supervised, or unsupervised. Supervised learning relies on large
data sets to learn features and then using those features, it can classify the test
data. Availability of big data set which covers all possible variations is a bottleneck
in research of NLP tasks, as it is very time consuming to annotate the data.
Unsupervised learning methods learn from the available target data for which the
NLP task is to be performed. Classification task is done by learning features from
that data itself. Semi-supervised approach relies on some seed examples provided
by the user. From these examples patterns are learned and classification task is done.

Fattah et al. [9] experimented summarization problem using many machine
learning classifiers such as Naive Bayesian, maximum entropy, support vector
machine, decision trees, neural networks, mathematical regression, etc. The method
considers summary generation task as a classification problem and each sentence
is either included in summary or excluded. Fattah et al. [9] employed a hybrid
model for summary generation task which constitutes the following three classifiers:
maximum entropy, Naive Bayes, and support vector machine. Several features are
taken into account to train the classifiers. For example, words similarity between
sentences and between paragraphs, score using term frequency of document, key
phrases, position of sentence, occurrence of not-needed information, text format,
etc. These features are provided to the three classifiers in training phase. In testing
phase, features are extracted and sentences are ranked by feature weights learned in
the training phase. Using hybrid model of three classifiers, final summary is created.

Cao et al. [4] presented recursive neural networks (R2N2) to score sentences for
extractive multi-document summarization. Each sentence is first converted into a
parse tree. Information from different parts of sentence is gathered and fed to R2N2.
Some features used in this process are term frequency, inverse document frequency,
sentence length, named entity, position of sentence, etc. Sentence relevance is
evaluated and sentence rank is given by a hierarchical regression process. On
the basis of information from word level to sentence level, features are learned
by recursive neural networks apart from the given features. Important sentences
for summary are selected based on their ranking score. They employed greedy
algorithm and integer linear programming (ILP) for selecting the sentences to be
part of summary.

Nallapati et al. [23] presented SummaRuNNer, a model based on recurrent neural
network (RNN) for extractive multi-document summarization. SummaRuNNer is
trained using reference summaries. Summarization is considered as sequential
binary classification problem where each sentence is classified as summary sentence
or non-summary sentence. They used two-layer bidirectional RNN where one layer
operates at word level, while another layer operates at sentence level. Using words
and word embedding, hidden states are generated. They use greedy approximation
to create labels from given summaries. The entire document is modeled as follows:

d = tanh

⎛

⎝Wd ∗ (1/Nd)

Nd∑

j=1

[hfj , hbj ] + b

⎞

⎠ , (1)
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where states starting with h are the hidden states corresponding to the sentence of
the forward and backward sentence-level RNNs, respectively, and Nd is the number
of sentences in the document. Features such as novelty of a sentence, position, and
content are considered in their study. These features are learned rather than hand
crafting and providing it to system.

3.5 Optimization Based Approaches

Lin and Blimes [17] were first to notice the submodularity in summarization. They
modeled the problem as a knapsack constraint of selecting subset of sentences S

from the sentences of whole document set V under the constraint of length of
summary. They devised it as a maximization function of quality of summary shown
in the following formula, where ci is cost for adding sentence si in summary and b

is budget constraint

S′ ∈ arg max
S⊆V F (S)

s.t.
∑

i⊆S
ci ≥ b.

(2)

Although it is NP-hard problem, it can be solved using greedy algorithm. It
becomes too computationally expensive for real-world applications [17].

Shigematsu and Kobayashi [29] used differential evolution approach to overcome
the problem of computational complexity of optimization function for summariza-
tion. First they used LDA [3] to detect topics in the text. Sentences are ranked based
on the topical information each sentence possesses. Resulting number of summary
sentences will depend upon the length constraint over summary sentences. This
method has reduced the calculation time to generate summary, to great extent but
precision is worse than the method with an explicit solution technique using greedy
algorithm [29].

Galanis and others used combination of support vector regression (SVR) along
with integer linear programming (ILP) [11]. They used features such as sentence
position, named entities, Levenshtein distance, word overlap, and content word fre-
quency. These features are given to SVR to score each sentence from the document
set. Instead of using the sentence scores directly to formulate summary, they first
normalize the sentence scores. These scores are multiplied by the length of the
sentence to take care of problem of the method picking short sentences. Importance
of summary is calculated by adding the normalized scores of sentences. The
importance of summary is maximized. While forming final summary, the number of
distinct bigrams it can cover is also maximized. The underlying assumption was that
the more the number of bigrams, the summary covers the less redundant it is. Like
previous method by Shigematsu [29], length of summary sentences is considered
the constraint over which ILP is done.
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4 Our Approach to Multi-Document Summarization as a
Non-linear Combinatorial Optimization Problem

In summarization, a group of sentences is selected from a bigger group of sentences.
Whenever a subset of elements is to be selected from a set of elements based on
some constraint, then we can formulate that problem as submodular or supermodular
optimization problem.

The maximization or minimization of a set function can be formulated as com-
binatorial optimization problem. They are widely used in many areas of computer
science and applied mathematics [6]. Minimization or maximization problems are
defined on the set of subsets of a given base set S. In combinatorial optimization,
submodular/supermodular functions have a role somewhat similar to that played by
convex/concave functions in continuous optimization [1]. Researchers also proved
that some existing extractive summarization methods can be viewed as a problem
of submodular function maximization [16], such as maximum marginal relevance
(MMR).

Given a finite set S, we use 2S to denote the power set of S. A set function
f : 2S → R is submodular if it satisfies one of the following equivalent conditions:

• For every A,B ⊆ S with A ⊆ B and every a ∈ S−B we have that f (A∪{a})−
f ({a}) ≥ f (B ∪ {a})− f ({a}).

• For every A,B ⊆ S, we have that f (A)+ f (B) ≥ f (A ∪ B)+ f (A ∩ B).
• For every A ⊆ S and a1, a2 ∈ S−A, we have that f (A∪ {a1})+ f (A∪ {a2}) ≥

f (A ∪ {a1, a2})+ f (A).

A set function f is monotonically increasing, if for every A ⊆ B we have f (A) ≤
f (B). A function f is supermodular if and only if−f is submodular. A set function
f is monotonically increasing, if for every A ⊆ B we have f (A) ≤ f (B).

When a single element is added to an input set, as the size of the input
set increases, the difference in the incremental value of a submodular function
decreases. For a combinatorial optimization problem, a greedy algorithm can be
designed if the objective function is submodular. Greedy algorithm can give an
approximate solution in polynomial time with an approximation guaranteed to be
within e−1

e
≈ 0.63 of the optimal solution [22].

4.1 Diversity in Summary

Main objective of summary is to obtain maximum information from a given
document set in short version in such a way that it captures the gist of the document
set. In order to capture more information from document, it is necessary to cover
diverse topics from the documents.

Diversity is a central theme in ecology. The diversity concept was first used by
ecologists to measure the number of different species in community quantitatively.



304 M. N. Satpute et al.

Ecological communities with many species are more diverse than ecological
communities with fewer species. Ecologists tried to sample with high diversity to
increase the probability of finding small species [19]. Ecologists have proposed
many methods to measure the diversity of species in these decades, such as the
Shannon index or the Simpson index [28]. A diversity index called as quadratic
diversity (Q) is proposed by Rao [27]. Q =∑S

i=1
∑S

j=1 dijpipj quadratic diversity
incorporates both species relative abundances (pipj ) and a measure of the pairwise
distances between species (dij ).

The main theme of summarization is to get as much content from the documents
as possible in a compact manner. Thus we want to ensure that the summary gathers
information about all topics from the documents. If document set has sentences that
convey the same meaning, then these are redundant sentences and must be omitted
from summary. If there is sentence limit on summary and redundant sentences exist
in the summary, then some other information, which should be part of summary,
is missed from the summary. Summarization diversity controls this problem of
redundancy and gives the reader insight into different distinct topics covered in the
text.

Shannon entropy was originally proposed to quantify the amount of information
in a signal or event. For a discrete random variable X with possible states
x1, x2, · · · xn, its Shannon entropy is defined as Formula (3). In Formula (3),
p(xi) = Pr(X = xi) is the probability of xi

H(X) =
n∑

i=1

p(xi) log2

(
1

p(xi)

)

. (3)

Intuitively, when there is only one possible state of X, then H(X) becomes 0. H(x)

increases as number of possible states of X increase denoting more diversity.

4.2 Problem Formulation

In this paper, we address the problem of how to extract a summary from a set of
documents that covers as much real content of all subtopics as possible. We first
identify all subtopics from the document set and then summarize the documents.

After extracting subtopics, assume that we get a subtopic set C. In this subsec-
tion, we propose a new formulation for a method to extract a small and limited set of
sentences from set C which can be representative of the entire document set, which
is also the goal of the summarization.

We cannot give equal weightage to all subtopics because some subtopics
constitute a very few number of sentences, while other subtopics might have many
sentences written about them. Thus the subtopics having small number of sentences
do not contribute much to the document set and hence can be deleted. For simplicity,
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we use the symbol C′ to denote the subtopic set after the small sized subtopics are
deleted.

In this step, for the process of calculation of semantic distance, single sentence
is taken into consideration as the basic unit of calculation. C′ can be represented as
a subtopics covering set of sentences C′ = {st1, st2, . . . , stq}, where each sentence
sti belongs to a subtopic sk and it also belongs to a paragraph set ck . If sti ∈ pef

and pef � sk , then sti ∈ ck .
We use notation SDS(sti , stj ) to represent the semantic distance between two

sentences sti and stj . SDSS(sti , A) (A ⊆ C′) is used to denote the semantic
distance between a sentence sti to a sentence set A. It is defined as the following
Formula (4):

SDSS(sti , A) = min
stj∈A

SDS(sti , stj ). (4)

The semantic distance between the two subsets of C′ is represented as a function
SDT S : (2C′ , 2C

′
)→ R. SDT S can be defined as Formula (5)

SDT S(A,B) =
∑

stj∈(B−A)
SDSS(stj , A) A ⊆ C′, B ⊆ C′. (5)

The set of summary sentences is a size limited subset I of C′ which is a set of
sentences from document set D. We need to find I such that the similarity between
sets I and D is as high as possible, which intuitively means the semantic distance
between I and C′ is as small as possible. At the same time, we also want subtopic
diversity, the more the subtopics that I can cover, the better. Shannon entropy can
be used to measure the diversity (Formula (6))

HD(I) =
q∑

i=1

|Ik|
|I | log2

( |I |
|Ik|
)

Ik = {sti |sti ∈ C′, sti ∈ ck}. (6)

Therefore, there are two targets: minimizing the distance between I and C′
(Formula (7)) and maximizing the subtopic diversity (Formula (8)). At the same
time, we have a constraint that the sentence number of the final summary is less than
some constant b (|I | ≤ b). The summary subtopic diversity HD(I) is known to be
submodular and monotone increasing [25]. Interestingly, SDT S(I, C′) is monotone
decreasing and supermodular.

min
I⊆C′

SDT S(I, C′) (7)

max
I⊆C′

HD(I). (8)
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We know that the minimizing value of the supermodular function SDT S(I, C′)
maximizes value of −SDT S(I, C′) which is submodular and the maximization
of a submodular function with cardinality constraint is NP-hard [14]. Fortunately,
HD(I) − γ SDT S(I, C′) is submodular, and we can formulate our objective
function as Formula (9) which can be approximately solved

arg max
I⊆C′

HD(I)− γ SDT S(I, C′)

s.t. |I | ≤ b,

(9)

where γ is a parameter which can be adjusted experimentally.

5 Conclusion

Through this work, we have surveyed different approaches in multi-document
summarization and proposed it as a combinatorial optimization problem. The
proposed formulation can extract meaningful summary from multiple documents.
Using the sentence distances and subtopics as backbones we have formulated the
problem as submodular combinatorial optimization problem of minimizing distance
between summary and document set and maximizing subtopic diversity in the
summary.

References

1. Bach, F., et al.: Learning with submodular functions: a convex optimization perspective. Found.
Trends R©Mach. Learn. 6(2-3), 145–373 (2013)

2. Baxendale, P.B.: Machine-made index for technical literature: an experiment. IBM J. Res. Dev.
2(4), 354–361 (October 1958)

3. Blei, D.M., Ng, A.Y., Jordan, M.I., Lafferty, J.: Latent Dirichlet allocation. J. Mach. Learn.
Res. 3, 2003 (2003)

4. Cao, Z., Wei, F., Dong, L., Li, S., Zhou, M.: Ranking with recursive neural networks and
its application to multi-document summarization. In: Proceedings of the Twenty-Ninth AAAI
Conference on Artificial Intelligence, AAAI’15, pp. 2153–2159. AAAI, Palo Alto (2015)

5. Deerwester, S., Dumais, S.T., Furnas, G.W., Landauer, T.K., Harshman, R.: Indexing by latent
semantic analysis. J. Am. Soc. Inf. Sci. 41(6), 391–407 (1990)

6. Dong, L., Guo, Q., Wu, W.: Speech corpora subset selection based on time-continuous
utterances features. J. Comb. Optim. 1–12 (2018). https://doi.org/10.1007/s10878-018-0350-2

7. Edmundson, H.P.: New methods in automatic extracting. J. ACM 16(2), 264–285 (1969)
8. Erkan, G., Radev, D.R.: LexPageRank: prestige in multi-document text summarization. In:

Proceedings of the 2004 Conference on Empirical Methods in Natural Language Processing
(2004)

9. Fattah, M.A.: A hybrid machine learning model for multi-document summarization. Appl.
Intell. 40(4), 592–600 (2014)

https://doi.org/10.1007/s10878-018-0350-2


Multi-Document Extractive Summarization as a Non-linear Combinatorial. . . 307

10. Ferreira, R., Cabral, L.D.S., çalves de Freitas, F.L.G., Lins, R.D., de França Pereira e Silva,
G., Simske, S.J., Favaro, L.: A multi-document summarization system based on statistics and
linguistic treatment. Expert Syst. Appl. 41(13), 5780–5787 (2014)

11. Galanis, D., Lampouras, G., Androutsopoulos, I.: Extractive multi-document summarization
with integer linear programming and support vector regression. In Proceedings of COLING,
pp. 911–926. IIT, Bombay (2012)

12. Gambhir, M., Gupta, V.: Recent automatic text summarization techniques: a survey. Artif.
Intell. Rev. 47, 1–66 (2016)

13. Harabagiu, S.M., Lacatusu, V.F.: Using topic themes for multi-document summarization. ACM
Trans. Inf. Syst. 28(3), 13:1–13:47 (2010)

14. Iyer, R.K., Bilmes, J.A.: Submodular optimization with submodular cover and submodular
knapsack constraints. In: Advances in Neural Information Processing Systems, pp. 2436–2444
(2013)

15. Ko, Y., Seo, J.: An effective sentence-extraction technique using contextual information and
statistical approaches for text summarization. Pattern Recogn. Lett. 29(9), 1366–1371 (2008)

16. Lin, H., Bilmes, J.: A class of submodular functions for document summarization. In: Proceed-
ings of the 49th Annual Meeting of the Association for Computational Linguistics: Human
Language Technologies, vol. 1, pp. 510–520. Association for Computational Linguistics,
Stroudsburg (2011)

17. Lin, C.-Y., Hovy, E.: The automated acquisition of topic signatures for text summarization. In:
Proceedings of the 18th Conference on Computational Linguistics - Volume 1, COLING ’00,
pp. 495–501. Association for Computational Linguistics, Stroudsburg (2000)

18. Luhn, H.P.: The automatic creation of literature abstracts. IBM J. Res. Dev. 2(2), 159–165
(1958)

19. Magurran, A.E.: Why diversity? In: Ecological diversity and its measurement, pp. 1–5.
Springer, Dordrecht (1988)

20. Mani, I., Bloedorn, E.: Multi-document summarization by graph search and matching. In:
Proceedings of the Fourteenth National Conference on Artificial Intelligence and Ninth
Conference on Innovative Applications of Artificial Intelligence, AAAI’97/IAAI’97, pp. 622–
628. AAAI, Cambridge (1997)

21. Mihalcea, R., Tarau, P.: Textrank: bringing order into text. In: Proceedings of the 2004
Conference on Empirical Methods in Natural Language Processing (2004)

22. Minoux, M.: Accelerated greedy algorithms for maximizing submodular set functions. In:
Optimization Techniques, pp. 234–243. Springer, Berlin (1978)

23. Nallapati, R., Zhai, F., Zhou, B.: Summarunner: a recurrent neural network based sequence
model for extractive summarization of documents. In: AAAI, pp. 3075–3081. AAAI, Cam-
bridge (2017)

24. Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank citation ranking: bringing order
to the web. Technical Report 1999-66, Stanford InfoLab, November 1999. Previous number =
SIDL-WP-1999-0120

25. Polyanskiy, Y.: Lecture notes, chapter 1: Information measures: entropy and divergence
(January 2016)

26. Radev, D.: [Artificial Intelligence - All in one]. (2016, April 5). Summarization Techniques
(NLP) University of Michigan [Video file]. Retrieved from https://www.youtube.com/watch?
v=N5N-HCUE3G4

27. Rao, C.R.: Diversity and dissimilarity coefficients: a unified approach. Theor. Popul. Biol.
21(1), 24–43 (1982)

28. Ricotta, C., Szeidl, L.: Towards a unifying approach to diversity measures: bridging the gap
between the Shannon entropy and Rao’s quadratic index. Theor. Popul. Biol. 70(3), 237–243
(2006)

29. Shigematsu, H., Kobayashi, I.: Topic-based multi-document summarization using differential
evolution for combinatorial optimization of sentences. In: Proceedings of the 28th Pacific Asia
Conference on Language, Information and Computing (2014)

https://www.youtube.com/watch?v=N5N-HCUE3G4
https://www.youtube.com/watch?v=N5N-HCUE3G4


308 M. N. Satpute et al.

30. Yasunaga, M., Zhang, R., Meelu, K., Pareek, A., Srinivasan, K., Radev, D.: Graph-based neural
multi-document summarization. In: Proceedings of the 21st Conference on Computational
Natural Language Learning (CoNLL 2017), pp. 452–462. Association for Computational
Linguistics, Vancouver (2017)

31. Yeh, J.-Y., Ke, H.-R., Yang, W.-P., Meng, I.-H.: Text summarization using a trainable
summarizer and latent semantic analysis. Inf. Process. Manag. 41(1), 75–95 (2005). An Asian
Digital Libraries Perspective



Viral Marketing for Complementary
Products

Jianxiong Guo and Weili Wu

Abstract When you purchase a product in internet, a recommendation may appear
“the customer who buys A may also buy B.” When you purchase both products A
and B, another recommendation may appear “the customer who buys A and B may
also buy C.” Products A, B, and C are complementary. Both recommendations are
established based on historical data and statistical analysis. Here, complementary
products are those that tend to be purchased together, for example, iPhone and its
accessories, computer and monitor, etc. In this article, we would like to address this
issue in viral marketing.

1 Who Buys A May also Like to Buy B

First, we consider the complementary relationship between two products, that is,
there is a certain probability that buying product A would make the customer to buy
product B.

Consider a (directed) social network G = (V ,E) with independent cascade
model for information diffusion, that is, each arc (u, v) is associated with a number
puv which is the probability that v accepts influence of u. Consider k products
g1, g2, . . . , gk with prices c1, c2, . . . , ck , respectively. Suppose that a customer u
who buys product gi would also buy product gj with probability puij . We study the
following problem.

Research Problem 1 (Viral Marketing for Complementary Products) Given a
budget B, find a set of customers for giving free samples within the budget B to
maximize the expected total sales of the product.

For this problem, at each step of information diffusion process, there are two
types of influences to each customer v for each product gj :
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(1) The influence from a customer u who purchases product gj and has the
probability puv for success of the influence.

(2) The influence from a product gi because the customer v purchased gi at a
previous step. The success of this influence has probability pvij .

Theorem 1 Suppose above influences at each customer are independent and influ-
ence can be successful only at fresh (i.e., at the step that the influence just occurs).
Then the problem of viral marketing for complementary products is a special case
of following influence maximization problem in weighted case: Consider a social
network G = (V ,E) with independent cascade model. For each node u, assign a
cost c(u) and suppose that it costs c(u) to choose u as a seed and obtain benefit
c(u) if u becomes active. Given a budget B, find a set of customers for giving free
samples within the budget B to maximize the expected total cost of active nodes.

Proof Let G be the social network in the problem of viral marketing for comple-
mentary products. For each product gi , make a copy Gi of G. Denote by ui the copy
of node u. Consider G1 ∪ G2 ∪ · · · ∪ Gk . For every two nodes ui and uj , add an
arc (ui, uj ) associated with a probability pij (u). The problem of viral marketing
for complementary products would be equivalent to the influence maximization on
constructed network with cost function c(ui) = ci . �

By Theorem 1, the viral marketing for complementary products can be formu-
lated as a knapsack-constrained submodular maximization as follows:

max f (A)

subject to
∑

x∈A
c(x) ≤ B

A ⊆ V,

where f is a monotone (nondecreasing) submodular function on 2V with f (∅) = 0.

2 Knapsack-Constrained Submodular Maximization

There are three algorithms [7, 10, 13] in the literature for knapsack-constrained
submodular maximization. The first two are motivated from two algorithms for the
well-known knapsack problem as follows:

max c1x1 + c2x2 + · · · + cnxn

subject to s1x1 + s2x2 + · · · + snxn ≤ B

x1, x2, . . . , xn ∈ {0, 1}.

Assume si ≤ B. Following is its 2-approximation.
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2-Approximation Algorithm for Knapsack
Sort c1

s1
≥ c2

s2
≥ · · · ≥ cn

sn
.

Choose k such that
∑k

i=1 ≤ B <
∑k+1

i=1 .
output cG = max(

∑k
i=1, ck+1).

Next, we see a similar algorithm for knapsack-constrained submodular maxi-
mization. Here denote Δvf (A) = f (A ∪ {v})− f (A).

Algorithm 1 Knapsack-constrained submodular maximization
1: A← ∅
2: while c(A) < B do
3: choose v ∈ V \ A to maximize Δvf (A)

c(v)
4: set A← A ∪ {v}
5: end while
6: return argmax(f (A \ {v}), f ({v}))

Theorem 2 ([10]) Algorithm 1 is a (1 − e−1)/2-approximation for knapsack-
constrained submodular maximization.

Proof Let v1, v2, . . . , vk+1 be generated by Algorithm 1 and denote Ai =
{v1, . . . , vi}. Then

vi+1 = argmaxv∈V \Ai

Δvf (Ai)

c(v)

and c(Ak) < B ≤ c(Ak+1). Suppose optimal A∗ = {u1, u2, . . . , uh}.

f (A∗) ≤ f (Ai ∪ A∗)
= f (Ai)+Δu1f (Ai)+Δu2f (Ai ∪ {u1})+ · · · +Δuh

f (Ai ∪ {u1, . . . , uh−1})
≤ f (Ai)+ δu1(Ai)+Δu2f (Ai)+ · · · +Δuhf (Ai)

≤ f (Ai)+ c(u1)

c(vi+1)
Δvi+1f (Ai)+ c(u2)

c(vi+1)
Δvi+1

f (Ai)+ · · · + c(uh)

c(vi+1)
Δvi+1f (Ai)

= f (Ai)+ c(A∗)
c(vi+1)

(f (Ai+1)− f (Ai)).

Denote αi = f (A∗)− f (Ai). Then αi ≤ c(A∗)
c(vi+1)

(αi − αi+1). This,
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αi+1 ≤
(

1− c(vi+1)

c(A∗)

)

αI ≤ e−c(vi+1)/Bαi

since 1+ x ≤ ex . Hence

αk+1 ≤ e−c(Ak+1)/Bα0 ≤ e−1f (A∗),

that is, f (A∗) − f (Ak+1) ≤ e−1f (A∗). Hence, f (Ak+1) ≥ (1 − e−1)f (A∗).
Since f (Ak) + f ({vk+1}) ≥ f (Ak+1) + f (∅) ≥ f (Ak+1), we have
max(f (Ak), f ({vk+1})) ≥ (1− e−1)/2 · f (A∗). �

This is a PTAS for the knapsack problem.

PTAS for Knapsack
Let c +G be obtained from 2-approximation algorithm for knapsack problem.
Set a = cG · ε

1+ε .
Suppose that for 1 ≤ i ≤ m, ci ≤ a and for m+ 1 ≤ i ≤ n, ci > a.
Sort c1

s1
≥ c2

s2
≥ · · · ≥ cm

sm
.

For each I ⊆ {m+ 1, . . . , n} with |I | ≤ 2(1+ ε)/ε,
if
∑

i∈I si > B,
then define c(I ) = 0
else choose maximum k ≤ m such that

∑k
i=1 si ≤ B −∑i∈I si

and define c(I ) =∑i∈I ci +
∑k

i=1 ci ;
output Ioutput = argmaxI c(I ).

A similar algorithm for knapsack-constrained submodular maximization is as
follows.

Algorithm 2 Knapsack-constrained submodular maximization
1: for every I ⊆ V with |I | ≤ d do
2: A← I

3: T ← V \ I
4: while T = ∅ do
5: choose v ∈ T to maximize Δvf (A)

c(v)
6: set T ← T \ {v}
7: if c(A ∪ {v}) ≤ B then
8: A← A ∪ {v}
9: end if

10: end while
11: end for
12: return AG = argmaxI f (A(I))

Theorem 3 ([7]) For d ≥ 3, Algorithm 2 is a (1 − e−1)-approximation for
knapsack-constrained submodular maximization.

Proof Suppose optimal solution A∗ = {u1, u2, . . . , uh} in ordering
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ui = argmaxu∈A∗(f ({u1, . . . , ui−1, u} − f ({u1, . . . , ui−1})).

Let I = {u1, u2, . . . , ud}. Define g(X) = f (X ∪ I ) − f (I). Then computation of
A(I) can be seen as a greedy algorithm applying to monotone submodular function
g(·). Suppose this computation produces A \ I = {v1, . . . , vt }. If A∗ \ I = A \ I ,
then AG = A(I) = A∗ and hence the theorem holds. Therefore, we may assume
A∗ \ I = A \ I . In this case, there exists element in A∗ \ I , but not in A \ I . Let
vt+1 ∈ A∗ \ I be the first one which violates the knapsack constraint, that is,

c(I ∪ {v1, . . . , vt }) ≤ B and c(I ∪ {v1, . . . , vt , vt+1}) > B.

By the proof of Theorem 2, we would obtain

g({v1, v2, . . . , vt , vt+1}) ≥ (1− e−1)g(A∗ \ I ).

Thus,

f (I ∪ {v1, v2, . . . , vt , vt+1}) ≥ (1− e−1)f (A∗)+ e−1f (I).

Hence,

f (A(I)) ≥ f (I ∪ {v1, v2, . . . , vt })
≥ (1− e−1)f (A∗)+ e−1f (I)−Δvt+1f (I ∪ {v1, v2, . . . , vt }).

Note that

Δvt+1f (I ∪ {v1, v2, . . . , vt }) ≤ Δvt+1f (I) ≤ Δud+1f (I) ≥ · · · ≥ Δu1f (∅)
= f ({u1}).

Thus,

Δvt+1f (I∪{v1, v2, . . . , vt })≤ 1

d
·(Δud f ({u1, . . . , ud−1})+ · · ·+Δu1f (∅)=

1

d
f (I).

Therefore,

f (A(I)) ≥ f (I ∪ {v1, v2, . . . , vt }
≥ (1− e−1)f (A∗)+ e−1f (I)− 1

d
f (I)

≥ (1− e−1)f (A∗) for d ≥ 3.

�
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Algorithm 1 runs faster, but its performance is worse than Algorithm 2. An
improvement is given in [13], which gives a (1−e−2)/2-approximation with running
time comparable with Algorithm 1.

There exist more approximation algorithms in the literature for the knapsack
problem and its variations. Can we get motivation from them to design better
approximations for the knapsack-constrained submodular maximization and its
variations?

3 Who Buys A and B May also Like to Buy C

In general, the viral marketing for complementary product would induce a maxi-
mization problem on monotone nonsubmodular function with a knapsack constraint,
especially, when we consider influence of two or more products on one. This case
is much similar to the composed influence studied in [14].

For monotone nonsubmodular maximization, there are several choices of
methodology, such as super modular degree [2–4, 6], sandwich methods [1, 8, 11],
and algorithms based on DS decomposition (submodular–supermodular algorithm
[9] modular–modular algorithm [5], and iterated sandwich method [12]). Among
them, the DS decomposition is more challenging.
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