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Abstract The rise of antibiotic-resistant bacterial strains is a global concern in
many sectors, such as aquaculture, as described in chapter “The Rise and Fall of
Antibiotics in Aquaculture.” To counter this phenomenon, several alternatives or
complement to antibiotics have been investigated. Here, we will look at one of those
proposed strategies that of using bacteria-specific viruses, called bacteriophages, or
commonly phages. Since their discovery in the early 1900s, bacteriophage treat-
ments have had a fleeting popularity in Western countries due to several scientific
reasons as well as in some cases, political motives. Only recently, with the appear-
ance of multidrug-resistant bacterial strains, a new craze for phage therapy appeared
in Western countries. In an aquaculture context, some studies have shown promising
results for the treatment of fish diseases using phages. More specifically, the
experimentations with phage cocktail against A. salmonicida, infectious agent of
furunculosis in salmonids, both in vitro and in vivo, provide an interesting founda-
tion for future alternative treatments. However, since phages and bacteria are
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evolving entities, this biological war is far from over. The presence of phage-
resistance mechanisms in bacteria and other technical aspects of phage therapy in
aquaculture are factors to consider before having any applicable treatments.

1 The Enemy of My Enemy Is My Friend

Viruses are biological entities capable of infecting the entire kingdom of life,
including bacteria. Bacterial viruses are called bacteriophages or more commonly
phages, and they were co-discovered independently by Frederick Twort (1915) and
Félix d’Hérelle (1917). Rapidly after their discovery, studies on the therapeutic
potential of phages, also called phagotherapy, were published (McKinley 1923).
Félix d’Hérelle was the pioneer of the phagotherapy, using phages against dysentery
but also against cholera and bubonic plague (Chanishvili 2012). However, the lack
of standardized methods including proper controls has resulted in several conflicting
studies on the potential of phages in a therapeutic context (Summers 2012). In
addition, phages usually have a narrow host range (limited to a few bacterial strains
is some cases), which makes their use highly targeted, unlike antibiotics, which have
a much broader spectrum (Summers 2012). As indicated in chapter “The Rise and
Fall of Antibiotics in Aquaculture,” the Second World War was a decisive moment
in the discovery and use of antibiotics and thus a breaking point for the use of phages
in several countries, with the exception of the Soviet Union and Germany (Cisek
et al. 2017).

Nevertheless, even today, phage therapy is still used in several Eastern European
countries, such as the Georgia, Poland, and Russia (Abedon et al. 2011). The largest
institute dedicated to phage therapy is in Georgia. The Eliava Institute is a historic
center founded by the Georgian microbiologist George Eliava in collaboration with
Félix d’Hérelle (Sulakvelidze and Alavidze 2001). This unique phage therapy clinic
offers highly specialized and personalized treatments for ears, throat, nose, urologic,
and gynecologic human infections. With the growing crisis of antibiotic-resistant
bacteria, the use of phages in a therapeutic or biocontrol context has been
rediscovered (Abedon 2014). This growing interest of phages in a therapeutic
context can be illustrated by the increasing number of articles about “phage therapy”
that are indexed by Web of Science (Fig. 1).

A recent clinical study has shown excellent success rates for treating chronic otitis
caused by Pseudomonas aeruginosa with phages (Wright et al. 2009). In addition, a
European initiative, PhagoBurn (http://www.phagoburn.eu), is currently investigat-
ing phage therapy against Escherichia coli and P. aeruginosa. From a commercial
point of view, several companies are interested in a therapeutic application of
phages, and some products based on these viruses are already approved and
marketed in Western countries (Sarhan and Azzazy 2015). For example, in
Canada, it is possible to use the product AgriPhage-CMM, which contains phages
against Clavibacter michiganensis subsp. michiganensis, the etiological agent caus-
ing canker of tomatoes. Phage products are also registered in the USA for food
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applications (Bai et al. 2016), including among others ListShield (against Listeria
monocytogenes), EcoShield (against E. coli O157: H7), and SalmoFresh (against
Salmonella enterica).

2 The Biology of Phages

Similarly to the majority of antibiotic molecules (before some artificial chemical
modifications), phages are naturally found in the environment, particularly in
bacteria-colonized ecosystems. Phages can be found at a titer of up to 2.5 � 108

viral particles per milliliter of water in natural environments (Bergh et al. 1989). In
addition, it is now well known that phages play important ecological roles in
controlling bacterial populations and participating in the regulation of several bio-
geochemical cycles (Bratbak et al. 1990; Proctor and Fuhrman 1990; Suttle 2007;
Sime-Ngando 2014).

Inside the bacterial host cells, a phage can remain in at least four forms leading to
different evolutionary strategies: as a replicating virus during the lytic cycle, as an
unstable carrier state termed pseudolysogeny, as a prophage with complete genome
during the lysogeny state, or as a defective cryptic prophage (Golais et al. 2013). To
simplify, we often talk about the lytic cycle in opposition to the lysogenic state
(Fig. 2). A lytic cycle comprises five major steps (Sulakvelidze and Alavidze 2001;
Drulis-Kawa et al. 2012): (I) adsorption of the phage on the surface of the bacterium,
(II) injection of the phage genetic material in the host bacterium, (III) phage genome
replication and host cell machinery redirection for viral particle production,
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Fig. 1 Occurrence of the term “phage therapy” in Web of Science-indexed publications (ISI)
(by choosing “All Databases”) on June 3, 2018
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(IV) phage assembly, and (V) host cell lysis. For a temperate phage, steps I and II
occur as for a lytic phage; however, during lysogeny the phage DNA is inserted into
the bacterial chromosome (Sulakvelidze and Alavidze 2001). At this stage, the phage
DNA is replicated along with the bacterial DNA and is called a prophage. Any given
stress can cause excision of the prophage, allowing it to continue its cycle in steps III,
IV, and V as for a lytic phage. It should be noted that some prophages, including
those found in the bacteria Leptospira, can replicate their DNA in an extrachromo-
somal manner similar to that of plasmids (Girons et al. 2000; Zhu et al. 2015).

In a therapeutic context, strictly lytic phages are favored because the only
outcome is killing the phage-infected bacterium. Indeed, temperate phages can
cause some undesirable effects. During the lysogenic cycle, phage DNA becomes
an integral part of the bacterial genome and can therefore make its genes usable by
the bacterium (De Paepe et al. 2014). Several bacterial genomes are known to
contain prophages, and in some cases, the percentage of phage DNA can reach
more than 20% of the total genome (Hatfull and Hendrix 2011; Casjens 2003).
Prophages are recognized for potentially conferring certain characteristics such as

Fig. 2 Schematization of the stages of lytic and lysogenic cycles
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causing an increased in the fitness of the bacterium, protecting against phage
infections, as well as enhancing virulence through lysogenic conversion factors
(Brüssow et al. 2004). The bacterium E. coli O157:H7 is a known example of
bacteria with toxin genes (Shiga toxins) from a prophage (Plunkett et al. 1999).

While strictly lytic phages remain by far the favorite option for eradication
purposes, recent works expand the horizon of phagotherapy. Indeed, some groups
have begun to explore the possibility of using temperate phages naturally present in
bacteria or completely engineered (Monteiro et al. 2018) as alternative options. The
temperate phage therapy may be useful in some cases where it is hard to isolate lytic
phages against some specific pathogenic bacteria. For example, there is a lack of
virulent phages that target Clostridium difficile, an anaerobic pathogen (Hargreaves
and Clokie 2014). To overcome this problem, the combination of temperate and lytic
phages was used. The cocktail caused the complete lysis of C. difficile in vitro and
prevented the appearance of lysogens (Nale et al. 2016).

There are also other biological aspects to consider when using phages in a
therapeutic context. For example, the host range of the lytic phage and the ability
of the targeted bacteria to evolve a defense mechanism are crucial parameters.
Phages tend to be specific to one or a few bacterial species or even a few strains
(Hyman and Abedon 2010). This can be problematic in a therapeutic context since it
requires knowing precisely the bacterium causing the infection, which can still be
challenging. However, it is often suggested that a mixture of phages, in the form of a
cocktail, could increase the bacterial host range (Chan and Abedon 2012; Chan et al.
2013). For example, a metagenomic method has revealed that the Intesti-
bacteriophage cocktail, initially developed by d’Hérelle and now produced by the
Eliava Institute, contains about 23 phages, allowing to target a large number of
different bacteria (Zschach et al. 2015).

Bacteria can protect themselves against phage infection by several mechanisms. It
is possible to categorize these mechanisms in various classical groups: the inhibition
of phage adsorption, the blocking of the entry of phage genetic material, the
degradation of phage nucleic acids (CRISPR-Cas and restriction-modification sys-
tems), and cell death, the latter known as bacterial abortive infection (Abi) systems
(Labrie et al. 2010). However, a plethora of additional and novel phage defense
mechanisms are still been identified (Doron et al. 2018; Kronheim et al. 2018).
Phages, unlike antibiotics, are dynamic biological entities that can evolve to coun-
teract bacterial protection mechanisms (Samson et al. 2013). Again, it is proposed
that the use of a cocktail of phages would be able to decrease the level of resistance to
these phages (Lu and Koeris 2011; Abuladze et al. 2008). However, it is
recommended to minimize the number of viruses and rigorously test the cocktail
to verify that phages have no antagonistic effects and that there is no recombination
capability between phage genomes (Mateus et al. 2014; Klumpp and Loessner
2013).
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3 Phagotherapy in the Digital Age: What if We CouldMake
a Custom Phage?

As noted in chapter “The Rise and Fall of Antibiotics in Aquaculture,” several
antibiotic molecules are naturally produced by various organisms, either to protect
themselves or to compete for resources. As reviewed elsewhere (Wright et al. 2014;
Nicolaou and Rigol 2018), chemists have used, modified, and recreated these
molecules in order to have active, safe, bioavailable, optimized, and economically
viable compounds. It is interesting that the chemistry of antibiotics, which arguably
began in the laboratory of Paul Ehrlich, was born in the early 1900s, as was the
discovery of phages by Twort and d’Hérelle. However, it was not until several
important discoveries in molecular biology were made before phage could be
modified.

Ironically, phages played a crucial role in the discovery of key enzymes used in
molecular biology, such as restriction enzymes (Smith andWelcox 1970) and ligases
(Weiss and Richardson 1967). The first genomes sequenced were those of phage
MS2 (single-stranded RNA) (Fiers et al. 1976), ΦX174 (single-stranded DNA)
(Sanger et al. 1977) and λ (double-stranded DNA) (Sanger et al. 1982). More
recently, it has been shown that the CRISPR-Cas system, an adaptive defense of
bacteria against exogenous DNAs such as phage genomes and plasmids (Barrangou
et al. 2007; Marraffini and Sontheimer 2008), can be used to make targeted double-
strand DNA breakage and thus be a powerful tool for genome editing (Jinek et al.
2012). Now, thanks to this system, it is even possible to modify phage genomes very
precisely (Martel and Moineau 2014; Lemay et al. 2017).

In addition to modifying an existing genome, it is now possible, thanks to the
advances made in molecular biology and bioinformatics, to de novo create synthetic
genomes and thus reconstitute organisms. This allowed the team of J. Craig Venter
in 2003 to artificially recreate, from oligonucleotides, the genome of the phage
ΦX174 (infecting E. coli) and to generate infectious virions from this synthetic
genome (Smith et al. 2003). Although the creation of synthetic genomes must be
ethically accepted (Cho et al. 1999), it is clear that this new discipline has the
potential to radically change many facets of science and medicine, including, of
course, phage therapy (Kilcher et al. 2018; Kilcher and Loessner 2018).

In this sense, given the advances in genome engineering and synthetic biology, it
would be possible to modify/create a phage having features ideally designed for a
therapeutic context, such as a larger host range and no lysogenic cycle (Barbu et al.
2016; Brown et al. 2017). For example, it has already been possible to modify the
host range of phage T2 (infecting E. coli) by changing its long tail fiber genes, 37 and
38, by those of phage IP008, which naturally has a much larger host spectrum than
the one of T2 (Mahichi et al. 2009). Similarly, another study demonstrated that by
swapping the same genes of phage T2 with those of phage PP01, infecting specif-
ically the pathogenic E. coli O157:H7, the modified phage T2 was also able to infect
this bacterium (Yoichi et al. 2005). Since it is possible to more closely control the
genes present in phage genomes, it is also realistic to think that synthetic biology will
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make it easier to satisfy safety requirements for the approval process with the
different agencies. Like the antibiotic molecules currently available, it is possible
to believe that in the near future, natural, semisynthetic, and synthetic phage
products will emerge in the market of antimicrobial compounds.

4 Phage Therapy in Aquaculture

As with all other living things, aquatic animals are subject to diseases. In addition, as
discussed in chapter “The Rise and Fall of Antibiotics in Aquaculture,” it is
increasingly difficult to sustainably treat certain bacterial diseases because of the
rise of antibiotic-resistant strains. This is why, in recent years, several studies have
investigated the potential of phage therapy in the aquatic environments (Gon
Choudhury et al. 2017). For example, phages have been tested to control infections
caused by Vibrio (vibriosis disease) (Wang et al. 2017; Kalatzis et al. 2018),
Flavobacterium columnare (columnaris disease) (Prasad et al. 2011; Laanto et al.
2015), Thalassomonas loyana (white plague coral disease) (Atad et al. 2012), and
Aeromonas salmonicida subsp. salmonicida (furunculosis disease) (Imbeault et al.
2006; Silva et al. 2016). For a little over a year now, it is possible for fish farmers to
obtain the product BAFADOR®, a new bacteriophage-based preparation, to fight
two of the most common pathogens responsible for mortality in farmed fish,
Aeromonas hydrophila and Pseudomonas fluorescens (globalaginvesting.com).
This preparation can be used both prophylactically to increase the resistance of the
fish and eels and therapeutically in case of infection (Schulz et al. 2019).

While these studies all show promising results, the fact remains that there are
significant challenges inherent to aquaculture that must be considered. One of these
challenges is undoubtedly the method of phage delivery (Gon Choudhury et al.
2017). Unlike humans or large animals, with which it is possible to use the oral or
intracutaneous routes, the administration of drugs has additional constraints with
fish. Several ways of administration were already been proposed. Among these,
there is the immersion of fish in a solution containing phages, the addition of viruses
in the feed or even their addition directly in water. Finally, other ways also include
the anal intubation or the injection of phages. However, these last two methods
require important handling of fish that may be difficult to put in place in a fish-
farming context. In addition the phage delivery via the parenteral route, i.e., intra-
peritoneal injection in fish, against Flavobacterium resulted in immediate distribu-
tion of phages to the circulation system and organs, but no significant reduction of
fish mortality was detected (Castillo et al. 2012). By the oral route, the immersion, or
directly in circulation system, the phage treatment is likely to be diluted in water
(Christiansen et al. 2014). Although it is possible to add phages to food (Nakai and
Park 2002; Park and Nakai 2003; Jun et al. 2013), it is well known that fish compete
for it (Cuenco et al. 1985); phage intake would consequently be unequal between
individuals, especially for those who have less energy to feed oneself like sick fish.
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Some other aspects must be challenged with phage therapy in aquaculture. One of
them is the bacterial community that is very variable over seasons and years,
showing a higher complexity during warm seasons. On the other hand, it seems
that the diversity of pathogenic bacteria showed lower seasonal variation as reported
for Vibrio genus (Pereira et al. 2011a, b). It was suggested that the spring season is
the best time to apply phages and that an annual water monitoring is needed. It is also
important to consider that the chemical disinfection use in the farms is often a source
of disturbance and variation of the microbial community.

It is crucial to identify the main pathogenic bacteria and to choose the best phage
cocktail. This information must be rapidly known to avoid the spreading of the
infectious agents. The culture-independent in situ hybridization using specific probes
provides an overview of the real proportion of cultivable and non-cultivable patho-
genic bacteria (Taylor-Brown et al. 2017), or multiplex PCR approaches can be used
to diagnostic in a short time (Nishiki et al. 2018). In fact, an annual follow-up of the
bacterial diversity could be a good way to use the phages in preventive treatment
instead of curative in aquaculture context.

Finally, the phage therapy in aquaculture could be possible if phages show a good
survival time in water system according to the chosen method of administration,
have only a moderated impact on the overall bacterial community structure, and
provide desired specificity and efficiency for the targeted pathogenic bacteria
(Pereira et al. 2011a, b).

5 Toward Phagotherapy to Control Furunculosis

The bacterium A. salmonicida subsp. salmonicida is the etiologic agent of furuncu-
losis, a worldwide disease affecting salmonids (Dallaire-Dufresne et al. 2014).
Historically, the control of furunculosis is through vaccination and antibiotic ther-
apy. While vaccination implies heavy fish handling and high cost, the use of
antibiotics was, and still is, the preferred method for treating furunculosis. However,
more and more cases of A. salmonicida subsp. salmonicida strains resistant or even
multiresistant to antibiotics are listed (Vincent et al. 2014, 2016a; Trudel et al. 2016;
Bartkova et al. 2017). With increasing access to high-throughput sequencing tech-
nologies, it is now possible to effectively investigate the determinants of resistance
to different antimicrobial compounds (Chan 2016). In the case of A. salmonicida
subsp. salmonicida and as discussed in chapter “The Rise and Fall of Antibiotics in
Aquaculture,” several recent studies have shown that plasmids are important vectors
in the spread of antibiotic resistance genes. A study has shown, for example, that two
plasmids, pSN254b and pAB5S9b, can provide resistance to all antibiotics approved
by the Veterinary Drugs Directorate (VDD) of Health Canada to treat infected fish
(Trudel et al. 2016). It is therefore clear that effective alternatives to antibiotics are
needed to control furunculosis.

Several independent studies showed in vitro that phage therapy might be one of
the alternatives to antibiotics against furunculosis. Many lytic phages infecting
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A. salmonicida subsp. salmonicida have been found and characterized (Vincent
et al. 2017a). Importantly, some of these phages can infect a large number of
bacterial strains without distinction of geographical origin or other parameters.
Although it is often considered preferable to have phages with a large host range to
facilitate treatment, it is also important to avoid using phages that can lyse non-targeted
species or strains. In the case of A. salmonicida, this seems to be guaranteed by a
biological barrier imposed by the bacterium itself. The strains of the subspecies
salmonicida are psychrophilic, so they cannot grow at 37 �C (Dallaire-Dufresne
et al. 2014). However, several mesophilic strains of A. salmonicida have recently
been characterized, although there is no subspecies attribution yet (Vincent et al.
2016a, b, 2017b, 2019). This biological dichotomy also reflected in phage sensitivity,
where mesophilic strains are resistant to phages infecting psychrophilic ones (includ-
ing strains of other psychrophilic subspecies of A. salmonicida) (Table 1). It is
interesting to note that the mesophilic strain A527 is an exception since it is sensitive
to phage 44RR2.8t.2, isolated from a strain of subspecies salmonicida. This suggests
that the phage receptor 44RR2.8t.2 may be present in strain A527, although still
unknown.

Another major concern with the use of phages in aquaculture is how these
bacterial viruses are maintained under aquaculture conditions. Three phages
infecting A. salmonicida subsp. salmonicida were found to persist in water similar
to that found in aquaculture for a long period of time (Fig. 3). While the phages were
diluted in water, still a considerable number of virions remained detectable in spite of
the absence of host bacteria to ensure their replication. It should also be noted that
phages can replicate in the presence of their host, allowing a potential for autodosing
and thus minimizing the impact of dilution. Another study has also evaluated the

Table 1 Specificity of A. salmonicida ssp. salmonicida bacteriophages

Strains

Bacteriophages

SW69-9
(HER523)

44RR2.8t.2
(HER98)

65.2
(HER110)

A. salmonicida subsp. salmonicida 01-B526a,p Strong Weak Weak

A. salmonicida subsp. salmonicida 2009-144 K3b,p Weak Weak Weak

A. salmonicida subsp. salmonicida A449c,p Strong Weak Weak

A. salmonicida subsp. achromogenes JF3116c,p Strong Strong Strong
A. salmonicida subsp. pectinolytica 34melTc,p Resistant Resistant Resistant
A. veronii biovar sobria AH-42c,p Resistant Resistant Resistant
A. salmonicida Y577c,m Resistant Resistant Resistant
A. salmonicida A527c,m Strong Resistant Strong
A. hydrophila C-1c,m Resistant Resistant Resistant

Bold ¼ bacteria resistant to infection by phages; Italic¼ weak lytic capacity by phages on bacteria;
Bold italic ¼ strong lytic capacity by phages on bacteria
p psychrophilic, m mesophilic
aOrigin from Quebec
bOrigin from Canada
cOrigin from Europe

Would Bacteriophages Be a New Old Complement to Antibiotics in Aquaculture? 59



persistence of A. salmonicida subsp. salmonicida phages with brook trout by
reinfecting fish with doses of A. salmonicida subsp. salmonicida. After 7 days, the
phages remained in aquariums and allowed decrease of the pathogen population
(Imbeault et al. 2006).

The emergence of bacteriophage-insensitive mutants (BIM) during phage infec-
tion has been reported in some studies in aquaculture context (Hossain et al. 2012;
Tan et al. 2015), but the mechanisms of phage resistance are not yet completely
understood. The presence of quorum-sensing-regulated phage defense mechanisms
depending on population cell density and mutation of the phage receptor seem to be
probable strategies to resist phage infection (Hossain et al. 2012). In A. salmonicida
subsp. salmonicida, some phage-resistant bacteria also emerged after phage treat-
ment including successive streak-plating steps (Moreirinha et al. 2018). A significant
modification in the expression of intracellular proteins was observed when compared
with the phage-sensitive bacteria. These proteins would have molecular function
associated in phage replication. This decrease of proteins in the host cell prevented
the phage from completing its lytic cycle. Fortunately, phages have also developed
strategies to overcome bacterial resistance (Samson et al. 2013) making this constant
battle very interesting for therapeutic purpose.

The use of a phage cocktail rather than a single phage for therapeutic purpose has
been mentioned in the previous section to avoid bacterial resistance, at least, to
decrease it. Although mixing several phages in a same cocktail can make it more
effective or synergistic, it can also result in antagonistic effects. A cocktail combin-
ing two specific phages against A. salmonicida showed significantly higher antimi-
crobial activity than other cocktails (with three, four, or five phages) and individual
phages (Chen et al. 2018).

Fig. 3 Detection by qPCR of A. salmonicida phage DNA from a phage cocktail in water circulation
system in time. Bacteriophages were amplified separately at an initial concentration of
1 � 107 UFP/ml and pooled into the same circulating water system. Time 0 was taken 1 h after
the water was completely recircularized. Three water samples were then taken each week. The
amount of residual phage DNA was then analyzed by qPCR in triplicate
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Fish immune responses are also possible (Khan Mirzaei et al. 2016) if there are
bacterial debris present in the phage cocktail (Abedon 2014; Dufour et al. 2016). It
would consequently be crucial to develop a protocol for the production and purifi-
cation of A. salmonicida subsp. salmonicida phages. Attempts to optimize such
general processes have already been made (Bourdin et al. 2014; Lipinski et al. 2016).
Finally, the determination of an experimental animal model is of great importance in
the study of fish infection to avoid variations and to be close to the reality (Romero
et al. 2016).

What about the in vivo trials in aquaculture context against furunculosis? To date,
only few publications mention the use of phages against furunculosis (Imbeault et al.
2006; Silva et al. 2016). One of them demonstrated that phage therapy can increase
the survival of infected rainbow trout model against an infection with A. salmonicida
subsp. salmonicida (Kim et al. 2015). The intramuscular administration of single
phage dose at MOI of 10,000 against A. salmonicida subsp. salmonicida showed
notable protective effects such as increasing the survival rates. For all the smallest
MOI, the bacterial growth was markedly retarded up to 12 h after phage inoculation
but started to increase gradually after 24 h. Furthermore, no development of fish
humoral immunity was shown in this study. These results demonstrated that some
phages could be considered as alternative biological control agents against
A. salmonicida subsp. salmonicida infections in rainbow trout, but the required
concentration of phages (MOI) is very high. Future works will have to focus on
isolating and characterizing phages with high replication rate at lower doses of
infection and to test other administration routes.

The early stage of fish growth is particularly important because traditional
antibiotic treatments or vaccination are not effective. The implementation of
approaches to control furunculosis in juvenile fish is essential to ensure the sustain-
ability of production, and phage therapy could be attractive in this context. After
submerging juvenile Solea senegalensis in a phage bath for 6 h, the growth of
A. salmonicida was inhibited. After 72 h, none of the fish had died, while a mortality
rate of 36% was reported when fish were exposed only to the pathogen without
phages (Silva et al. 2016).

On a less positive note, a 2007 study from the UK on Atlantic salmon and
rainbow trout (Verner-Jeffreys et al. 2007) showed that phage administration by
the intraperitoneal route or by oral infeed against did not offer protection for fish
against A. salmonicida subsp. salmonicida. Because promising results in vitro do not
seem to be always reflected in in vivo challenges (Tsonos et al. 2014), more research
studies are clearly needed on the use of phages to treat/prevent fish infections by
A. salmonicida subsp. salmonicida.

6 Keep Going Until Efficient Phagotherapy

With the emergence of multidrug-resistant bacterial strains, we can observe the
return in force of the phagotherapy. The natural, specific, and quick way that phages
eliminate bacteria suggest the possibility of creating an alternative or complement
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treatment that is effective and simple against pathogenic bacteria in aquaculture
(Dy et al. 2018), as already done in other fields. On the other hand, several
parameters have yet to be optimized, such as isolation of hyper-efficient phages
accompanied with a well genomic and phenotypic characterization. Understanding
the host range and ensuring that the phages will not transfer unwanted genes to the
bacterial community is a priority. It will also be of prime importance to increase our
understanding about the mechanisms used by pathogenic bacteria to protect them-
selves against phages. In this sense, it will be crucial to avoid repeating the same
mistakes made with antibiotics. Finally, the increase of in vivo experiments could
allow us to determine the best route of administration in an aquaculture context and
to confirm the feasibility of this approach.

This chapter shows that the commercial use of phages against fish diseases has
still some hurdles to clear. However, the fact that phage-based products are already
marketed might help to pave the way for more similar products in aquaculture and
specifically against furunculosis. It is hoped that the BAFADOR® product offered
against P. fluorescens and A. hydrophila to protect and cure farmed eel is just the
beginning.

In parallel, other alternative treatments to antibiotics should be deployed to avoid
relying on a single therapeutic strategy. For example, improving the composition
and methods of vaccination in aquaculture is a topic of research for many groups
(Gudding et al. 1999; Hastein et al. 2005; Kashulin et al. 2017). It has been also
demonstrated that phages are more effective when used with antibiotics, regardless
of the antibiotic resistance state of the bacterium (Comeau et al. 2007). This
phenomenon, called the phage-antibiotic synergy, suggested that other molecules
or combined treatments can also be synergistic with phages. For example, carvacrol,
an essential oil, combined with pneumococcal phage lysozyme improves their lytic
activity (Díez-Martínez et al. 2013). The use of probiotics is also a popular approach
(see chapter “Host-Microbiota Interactions and their Importance in Promoting
Growth and Resistance to Opportunistic Diseases in Salmonids”) in aquaculture
(Das et al. 2008; Hai 2015) that could be combined with phagotherapy.

Governmental approval will also likely be needed for these phage-based prod-
ucts. The acceptance of the phage technology and its adoption by the fish farmers
and consumers may dictate its commercial success. If fish consumers and producers
are willing to accept phage treatments once proven to be effective, reproducible, and
safe, then different governmental agencies will be more prone to approve the use of
these products.
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