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Abstract. In this paper, we propose a Variational Deep Collaborative
Matrix Factorization (VDCMF) algorithm for social recommendation
that infers latent factors more effectively than existing methods by incor-
porating users’ social trust information and items’ content information
into a unified generative framework. Unlike neural network-based algo-
rithms, our model is not only effective in capturing the non-linearity
among correlated variables but also powerful in predicting missing val-
ues under the robust collaborative inference. Specifically, we use varia-
tional auto-encoder to extract the latent representations of content and
then incorporate them into traditional social trust factorization. We pro-
pose an efficient expectation-maximization inference algorithm to learn
the model’s parameters and approximate the posteriors of latent fac-
tors. Experiments on two sparse datasets show that our VDCMF signifi-
cantly outperforms major state-of-the-art CF methods for recommenda-
tion accuracy on common metrics.

Keywords: Recommender System · Matrix Factorization ·
Deep Learning · Generative model

1 Introduction

Recommender System (RS) has been attracting great interests recently. The
most commonly used technology for RS is Collaborative Filtering (CF). The goal
of CF is to learn user preference from historical user-item interactions, which can
be recorded by a user-item feedback matrix. Among CF-based methods, matrix
factorization (MF) [17] is the most commonly used one. The purpose of MF is to
find the latent factors for users and items by decomposing the user-item feedback
matrix. However, the feedback matrix is usually sparse, which would result in the
poor performance of MF. To track this problem, many hybrid methods such as
those in [12,21–24,26], called content MF methods, incorporate auxiliary infor-
mation, e.g., content of items, into MF . The content of items can be their tags
and descriptions etc. These methods all first utilize some models (e.g., Latent
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Dirichlet Allocation (LDA) [1], Stack Denoising AutoEncoders (SDAE) [20] or
marginal Denoising AutoEncoders (mDAE) [3]) to extract items’ content latent
representations and then input them into probabilistic matrix factorization [17]
framework. However, these methods demonstrate a number of major drawbacks:
(a) They assume that users are independent and identically distributed, and
neglect the social information of users, which can be used to improve recom-
mendation performance [15,16]. (b) those methods [21,22] which are based on
LDA only can handle text content information which is very limited in current
multimedia scenario in real world. The learned latent representations by LDA
are often not effective enough especially when the auxiliary information is very
sparse [24] (c) For those methods [12,23,24,26] which utilize SDAE or aSDAE.
The SDAE and mDAE are in fact not probabilistic models, which limits them to
effectively combine probabilistic matrix factorization into a unified framework.
They first corrupt the input content, and then use neural networks to recon-
struct the original input. So those model also need manually choose various
noise (masking noise, Gaussian noise, salt-and-peper noise, etc), which hinders
them to expand to different datasets. Although some hybrid recommendation
methods [2,10,18,25] that consider user social information have been proposed,
they still suffer from problem (b) and (c) mentioned above. Recently, the deep
generative model such Variational AutoEncoder (VAE) [11] has been utilized
to the recommendation task and achieve promising performance due to it’s full
Bayesian nature and non-linearity power. Liang et al. proposed VAE-CF [14]
which directly utilize VAE to the CF task. To incorporate item content infor-
mation into VAE-CF, chen et al. proposed a collective VAE model [4] and Li et
al. proposed Collaborative Variational Autoencoder [13]. However those meth-
ods all don’t consider users’ social information. To tackle the above problems,
we propose a Variational Deep Collaborative Matrix Factorization algorithm
for social recommendation, abbreviated as VDCMF, for social recommendation,
which integrates item contents and user social information into a unified genera-
tive process, and jointly learns latent representations of users and items. Specif-
ically, we first use VAE to extract items’ latent representation and consider
users’ preferences effect by the personal tastes and their friends’ tastes. We then
combine these information into probabilistic matrix factorization framework.
Unlike SDAE based methods, our model needs not to corrupt the input content,
but instead to directly model the content’s generative process. Due to the full
Bayesian nature and non-linearity of deep neural networks, our model can learn
more effective and better latent representations of users and items than LDA-
based and SDAE-based methods and can capture the uncertainty of latent space
[11]. In addition, with both item content and social information, VDCMF can
effectively tackle the matrix sparsity problem. In our VDCMF, to infer latent fac-
tors of users and items, we propose a EM-algorithm to learn model parameters.
To sum up, our main contributions are: (1) We propose a novel recommendation
model called VDCMF for recommendation, which incorporates rich item con-
tent and user social information into MF. VDCMF can effectively learn latent
factors of users and items in matrix sparsity cases. (2) Due to the full Bayesian
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nature and non-linearity of deep neural networks, our VDCMF is able to cap-
ture more effective latent representations of users and items than state-of-the-art
methods and can capture the uncertainty of latent content representation. (3)
We derive an efficient parallel variational EM-style algorithm to infer latent fac-
tors of users and items. (4) Comprehensive experiments conducted on two large
real-world datasets show VDCMF can significantly outperform state-of-the-art
hybrid MF methods for CF.

2 Notations and Problem Definition

Let R ∈ {0, 1}N×M be a user-item matrix, where N and M are the number
of users and items, respectively. Rij = 1 denotes the implicit feedback from
user i over item j is observed and Rij = 0 otherwise. Let G = (U , E) denote
a trust network graph, where the vertex set U represents users and E repre-
sents the relations among them. Let T = {Tik}N×N denote the trust matrix
of a social network graph G. We also use Ni to represent user i’s direct friends
and UNi

as their latent representations. Let X = [x1,x2, . . . ,xM ] ∈ R
L×M

represent item content matrix, where L denotes the dimension of content vec-
tor xj , and xj be the content information of item j. For example, if item j is
a product or a music, the content xj can be bag-of-words of its tags. We use
U = [u1,u2, . . . ,uN ] ∈ R

D×N and V = [v1,v2, . . . ,vM ] ∈ R
D×M to denote

user and item latent matrices, respectively, where D denotes the dimension. ID
represents identity matrix with dimension D.

3 Variational Deep Collaborative Matrix Factorization

In this section, we propose a Variational Deep Collaborative Matrix
Factorization for social recommendation, the goal of which is to infer user latent
matrix U and item latent matrix V given item content matrix X, user trust
matrix T and user-item rating matrix R.

3.1 The Proposed Model

To incorporate users’ social information and item content information in to prob-
abilistic matrix, we consider a users’ feedback or rating on items are a balance
between item content, user’s taste and friend’s taste. For example, users’s rating
on movies is effected by the movie’s content information (e.g., the genre and the
actors) and his friend advices from their tastes. For items’ content information,
since it can be very complex and various, we do not know its real distribution.
However, we know any distribution can be generated by mapping simple Gaus-
sian through a sufficiently complicated function [7]. In our proposed model, we
consider item contents to be generated by their latent content vectors through
a generative network. The generative process of VDCMF is as follows:

1. For each user i, draw user latent vector ui ∼ N (0, λ−1
u )

∏
f∈Ni

N (uf , λ−1
f

T−1
if ID).
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Fig. 1. Graphical model of VDCMF: generative network (left) and inference network
(right), where solid and dashed lines represent generative and inference process, shaded
nodes are observed variables.

2. For each item j:
(a) Draw item content latent vector zj ∼ N (0, ID).
(b) Draw item content vector pθ (xj |zj).
(c) Draw item latent offset kj ∼ N (0, λvID) and set the item latent vector

as vj = zj + kj .
3. For each user-item pair (i, j) in R, draw Rij :

Rij ∼ N (u�
i vj , c

−1
ij ). (1)

In the process, λv, λu and λg are the free parameters, respectively. Similar to
[21,24], cij in Eq. 1 serves as confident parameters for Rij and Sik, respectively:

cij =
{

ϕ1 if Rij = 1,
ϕ2 if Rij = 0,

(2)

where ϕ1 > ϕ2 > 0 is the free parameters. In our model, we follow [18,24] to
set ϕ1 = 1 and ϕ2 = 0.1. pθ (xj |zj) represents item content information and xj

is generated from latent content vector zi through a generative neural network
parameterized by θ. It should be noted that the specific form of the probability
pθ (xj |zj) depends on the type of the item content vector. For instance, if xj is
binary vector, pθ (xj |zj) can be a multivariate Bernoulli distribution Ber(Fθ (zj))
with Fθ (zj) being the highly no-linear function parameterized by θ.

According to the graphic model in Fig. 1, the joint probability of R,X,U ,V ,
Z and T can be represented as:

p(O,Z) =
∏N

i=1

∏M

j=1

∏N

k=1
p(Oijk,Zijk) =

∏N

i=1

∏M

j=1
∏N

k=1
p(zj)p(ui|UNi

,T )pθ (xj |zj)p(vj |zj)p(Rij |ui,vj), (3)

where O = {R,S,X} is the set of all observed variables, Z = {U ,V ,Z} is the
set of all latent variables needed to be inferred, and Oijk = {Rij , Tik,xj} and
Zijk = {ui,vj ,zj} for short.
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3.2 Inference

Previous work [21,24] has shown that using an expectation-maximization (EM)
algorithm enables recommendation methods that integrate them to obtain high-
quality latent vectors (in our case, U and V ). Inspired by these work, in this
section, we derive an EM algorithm called VDCMF from the view of Bayesian
point estimation. The marginal log likelihood can be given by:

log p(O) = log
∫

p(O,Z)dZ ≥
∫

q(Z) log
p(O,Z)
q(Z)

dZ

=
∫

q(Z) log p(O,Z) −
∫

q(Z) log q(Z) ≡ L(q), (4)

where we apply Jensen’s inequality, and q(Z) and F(q) are variational dis-
tribution and the evidence lower bound (ELBO), respectively. For variational
distribution q(Z), we consider variational distributions in it to be matrix-wise
independent:

q(Z) = q(U)q(V )q(Z) (5)

=
∏N

i=1
q(ui)

∏M

j=1
q(vj)

∏M

j=1
q(zj).

For Bayesian point estimation, we assume the variational distribution of ui is:

q(ui) =
∏D

d=1
δ(Uid − Ûid). (6)

q(vj) =
∏D

d=1
δ(Vjd − V̂jd). (7)

where {Ûid}Dd=1 are variational parameters and δ is a Dirac delta function. Vari-
ational distributions of vj and gk are defined similarly. When Uid are discrete,
the entropy of ui is:

H(ui) = −
∫

q(ui) log q(ui) =
∑D

d=1

∑

Uid

δ(Uid − Ûid) log δ(Uid − Ûid) = 0.

(8)

Similarly, H(vj) is 0 when the elements are discrete. Then the evidence lower
bound L(q) (Eq. 4) can be written as:

Lpoint(Û , V̂ ,θ,φ) = 〈log p(U |T ,UNi
)p(V |Z) (9)

p(X|Z)p(R|U ,V )〉q − KL(qφ(Z|X)||p(Z)),

where 〈·〉 is the statistical expectation with respect to the corresponding vari-
ational distribution. Û =

{
Ûid

}
and V̂ =

{
V̂jd

}
are variational parameters

corresponding to the variational distribution q(U) and q(V ), respectively.
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For latent variables Z, However, it is intractable to infer Z by using tradi-
tional mean-field approximation since we do not have any conjugate probability
distribution in our model which requires by traditional mean-field approaches.
To track this problem, we use amortized inference [6,8], it consider a shared
structure for every variational distributions, instead. Consequently, similar to
VAE [11], we also introduce a variational distribution qφ(Z|X) to approximate
the true posterior distribution p(Z|O). qφ(Z|X) is implemented by a inference
neural network parameterized by φ (see Fig. 1). Specifically, for zj we have:

q(zj) = qφ(zj |xj) = N (μj ,diag(δ2
j )), (10)

where the mean μj and variance δj are the outputs of the inference neural
network.

Directly maximizing the ELBO (Eq. 9) involves solving parameters Û , V̂ , θ
and φ, which is intractable. Thus, we derive an iterative variational-EM (VEM)
algorithm to maximize Lpoint(Û , V̂ ,θ,φ) , abbreviated Lpoint.

Variational E-step. We first keep θ and φ fixed, then optimize evidence lower
bound Lpoint with respect to Û and V̂ . We take the gradient of L with respect
to ui and vj and set it to zero. We will get the updating rules of ûi and v̂j :

ûi ← (V CiV
� + λuID + λfTi1IID)−1(λfUT �

i + V CiRi), (11)

v̂j ← (ÛCjÛ
� + λvID)−1(ÛCjRj + λv〈zj〉), (12)

where Ci = diag(ci1, ...ciM ), Ti = diag(Ti1, ...TiM ), Ri = [Ri1, ...RiM ]. IN is a N
dimensional column vector with all elements elements to 1. For item latent vector
vj , Cj and Rjare defined similarly. ûi = [Ûi1, ...ÛiD] and v̂j = [V̂j1, ...V̂jD]. For
zj , its expectation is 〈zj〉 = μj , which is the output of the inference network.

It can be observed that λv governs how much the latent item vector zj

affects item latent vector vj . For example, if λv = ∞, it indicate we direct use
latent item vector to represent item latent vector vj ; if λv = 0, it means we
do not embed any item content information into item latent vector. λf serves
as a balance parameter between social trust matrix and user-item matrix on
user latent vector ui. For example, if λf = ∞, it means we only use the social
network information to model user’s preference; if λf = 0, we only use user-item
matrix and item content information for prediction. So λv and λf are regarded
as collaborative parameters for item content, user-item matrix and social matrix.

Variational M-step. Keep Û and V̂ fixed, we optimize Lpoint w.r.t. φ and θ
(we only focus on terms containing φ and θ).

Lpoint = constant +
∑M

j=1
L(θ,φ;xj ,vj) = constant +

∑M

j=1
(13)

− λv

2
〈(vj − zj)�(vj − zj)〉q(Z)+〈log pθ (xj |zj)〉qφ (zj |xj)−KL(qφ(zj |xj)||p(zj)),

where M is the number of items and the constant term represents terms which
don’t contain θ and φ. For the expectation term 〈pθ (xj |zj)〉qφ (zj |xj), we can not
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solve it analytically. To handle this problem, we approximate it by the Monte
Carlo sampling as follows:

〈log pθ (xj |zj)〉qφ (zj |xj) =
1
L

∑L

l=1
pθ (xj |zl

j), (14)

where L is the size of samplings, and zl
j denotes the l-th sample, which is repa-

rameterized to zl
j = εlj 
 diag(δ2

j ) + μj . Here εlj is drawn from N (0, ID) and

 is an element-wise multiplication. By using this reparameterization trick and
Eq. 10, L(θ,φ;xj ,vj) in Eq. 13 can be estimated by:

L(θ,φ;xj ,vj) � L̃j(θ, φ) = −λv

2
(−2μ�

j v̂j + μ�
j μj

+ tr(diag(δ2
j ))) +

1
L

∑L

l=1
pθ (xj |zl

j) − KL(qφ(zj |xj)||p(zj)) + constant. (15)

We can construct an estimator of Lpoint(φ,θ;X,V ), based on minibatches:

Lpoint(θ,φ) � L̃P (θ,φ) =
M

P

∑P

j=1
L̃j(θ,φ). (16)

As discussed in [11], the number of samplings L per item j can be set to 1 as
long as the minibatch size P is large enough, e.g., P = 128. We can update θ
and φ by using the gradient ∇θ ,φ L̃P (θ,φ).

We iteratively update U ,V ,G,θ, and φ until it converges.

3.3 Prediction

After we get the approximate posteriors of ui and vj . We predict the missing
value Rij in R by using the learned latent features ui and vj :

R∗
ij = 〈Rij〉 = (〈zj〉 + 〈kj〉)�〈ui〉 = 〈vj〉�〈ui〉 (17)

For a new item that is not rated by any other users, the offset εj is zero, and we
can predict Rij by:

R∗
ij = 〈Rij〉 = 〈zj〉�〈ui〉 (18)

4 Experiments

4.1 Experimental Setup

Datasets. In order to evaluate performance of our model, we conduct experi-
ments on two real-world datasets from Lastfm1 (lastfm-2k) and Epinions2 (Epin-
ions) datasets:

1 http://www.lastfm.com.
2 http://www.Epinions.com.

http://www.lastfm.com
http://www.Epinions.com
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Lastfm. This dataset contains user-item, user-user, and user-tag-item relations.
We first transform this dataset as implicit feedback. For Lastfm dataset, we
consider the user-item feedback is 1 if the user has listened to the artist (item);
otherwise, it is 0. Lastfm only contains 0.27% observed feedbacks. We use items
bag-of-word tag representations as their items content information. We direct
use user social matrix as trust matrix.

Epinions. This dataset contains rating , user trust and review information. We
transform this dataset as implicit feedback. For those >3 ratings, we transform
it as ‘1’; otherwise, it is 0. We use item’s review as its content information.
Epinions contains 0.08% observed feedbacks.

Baselines. For fair comparisons, like that in our VDCMF, the baselines we
used also incorporate user social information or item content information into
matrix factorization. (1) PMF. This model [17] is a famous MF method, and
only uses user-item feedback matrix. (2) SoRec. This model [15] jointly decom-
poses user-user social matrix and user-item feedback matrix to learn user and
item latent representations. (3) Collaborative topic regression (CTR). This
model [21] utilizes topic model and matrix factorization to learn latent repre-
sentations of users and items. (4) Collaborative deep learning (CDL). This
model [24] utilizes stack denoising autoencoder to learn latent items’ content
representations, and incorporates them into probabilistic matrix factorization.
(5) CTR-SMF. This model [18] incorporates topic modeling and probabilistic
MF of social networks. (6) PoissonMF-CS. This model [19], jointly models use
social trust, item content and users preference using Poisson matrix factorization
framework. It is a state-of-the-art MF method for Top-N recommendation on the
Lastfm dataset. (7)Neural Matrix Factorization (NeuMF). This model is
a state-of-the-art collaborative filtering method, which utilizes neural network to
model the interaction between user model [9] is a state-of-the-art collaborative
filtering method, which utilizes neural network to model the interaction between
users and items.

Settings. For fair comparisons, We first set the parameters for PMF, SoRec,
CTR, CTR-SMF, CDL, NeuMF via five-fold cross validation. For our model,
we set λu = 0.1, D = 25 for Lastfm and D = 50 for Epinions. Without special
mention, we set λv = 0.1 and λf = 0.1. We will further study the impact of the
key hyper-parameters for the recommendation performance.

Evaluation Metrics. The metrics we used are Recall@K, NDCG@K and
MAP@K [5] which are common metrics for recommendation.

4.2 Experimental Results and Discussions

Overall Performance. To evaluate our model in top-K recommendation task,
we evaluate our model and baselines in two datasets in terms of Recall@20,
Recall@50, ND CG@20 and MAP@20. Table 1 shows the performance of our
VDCMF and the baselines using the two datasets. According to Table 1, we
have following findings: (a) VDCMF outperforms the baselines in terms of all
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Table 1. Recommendation performance of VDCMF and baselines. The best baseline
method is highlighted with underline.

Lastfm dataset Epinions dataset

Recall@20 Recall@50 NDCG@20 MAP@20 Recall@20 Recall@50 NDCG@20 MAP@20

PMF 0.0923 0.1328 0.0703 0.1083 0.4012 0.5121 0.3019 0.3365

SoRec 0.1088 0.1524 0.0721 0.1128 0.4341 0.5547 0.3254 0.3621

CTR 0.1192 0.1624 0.0799 0.1334 0.5024 0.6125 0.3786 0.4197

CTR-SMF 0.1232 0.1832 0.0823 0.1386 0.5213 0.6217 0.3942 0.4437

CDL 0.1346 0.2287 0.0928 0.1553 0.5978 0.6597 0.4502 0.4792

NeuMF 0.1517 0.2584 0.1036 0.1678 0.6043 0.6732 0.4611 0.4987

PoissonMF-CS 0.1482 0.2730 0.1089 0.1621 0.5876 0.6533 0.4628 0.4876

VDCMF (ours) 0.1613 0.3006 0.1114 0.1695 0.6212 0.6875 0.4782 0.5123

Fig. 2. Evaluation of Top-K item recommendation where K ranges from 50 to 250 on
Lastfm

matrices on Lastfm and Epinions, which demonstrates the effectiveness of our
method of inferring the latent factors of users and items, and leading to better
recommendation performance. (b) For more sparse dataset, Epinions, VDCMF
also achieves the best performance, which demonstrates our model can effec-
tively handle matrix sparsity problem. We attribute this improvement to the
incorporated item content and social trust information. (c) We can see meth-
ods which both utilizes content and social information (VDCMF, NeuMF and
PoissonMF-CS) outperform others (CDL,CTR, CTR-SMF, SoRec and PMF),
which demonstrates incorporating content and social information can effectively
alleviate matrix sparse problem. (d) Our VDCMF outperforms the strong base-
line PoissonMF-CS, though they are both Bayesian generative model. The reason
VDCMF is that our VDCMF incorporates neural network into Bayesian gener-
ative model, which makes it have powerful non-linearity to model item content’s
latent representation. To further evaluate our VDCMF robustness, we evalu-
ate the empirical performance of large recommendation list for our VDCMF on
Lastfm and report results in Fig. 2. We can find our VDCMF significantly and
consistently outperforms other baselines. This, again, demonstrates the effective-
ness of our model. All of these findings demonstrates that our VDCMF is robust
and it is able to achieve significant improvements of top-k recommendation over
the state-of-the-art.
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Fig. 3. The effect of λv and λf of the proposed VDCMF with Recall@50 on Lastfm
and Epinions.

Impact of Parameters. In this section, we study the effect of the key hyper-
parameters of the proposed model. We first study the parameters of λf and λv.
We use Recall@50 as an example, the plot the contours on Lastfm and Epin-
ions datasets. Figure 3(a) and (b) show the contour of Recall@50. As we can
see, VDCMF achieves the best recommendation performance when λv = 0.1 and
λf = 0.1 on Lastfm, and λv = 1 and λf = 0.1 on Epinions. From Fig. 3(a) and
(b), we can find our model is sensitive to λv and λf . The reason is that λv can
control how much item content information is incorporated into item latent vec-
tor, λq can control how much social information is incorporated into user latent
vector. Figure 3(a) and (b) show that we can balance the content information
and social information by varying λv and λq, leading to better recommendation
performance.

5 Conclusion

In this paper, we studied the problem of inferring effective latent factors of users
and items for social recommendation. We have proposed a novel Variational Deep
Collaborative Matrix Factorization algorithm, VDCMF, which incorporates rich
item content and user social trust information into a full Bayesian deep gen-
erative framework. Due to the full Bayesian nature and non-linearity of deep
neural networks, our proposed model is able to learn more effective latent rep-
resentations of users and items than those generated by state-of-the-art neural
networks based recommendation algorithms. To effectively infer latent factors
of users and items, we derived an efficient expectation-maximization algorithm.
We have conducted experiments on two publicly available datasets. We evalu-
ated the performance of our VDCMF and baselines methods based on Recall,
NDCG and MAP metrics. Experimental results demonstrate that our VDCMF
can effectively infer latent factors of users and items.

Acknowledgement. This work is supported by the National Key Research and Devel-
opment Program of China (No. #2017YFB0203201) and Australian Research Council
Discovery Project DP150104871.
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