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PC Chairs’ Preface

It is our great pleasure to introduce the proceedings of the 23rd Pacific-Asia Conference
on Knowledge Discovery and Data Mining (PAKDD 2019). The conference provides
an international forum for researchers and industry practitioners to share their new
ideas, original research results, and practical development experiences from all
KDD-related areas, including data mining, data warehousing, machine learning, arti-
ficial intelligence, databases, statistics, knowledge engineering, visualization,
decision-making systems, and the emerging applications.

We received 567 submissions to PAKDD 2019 from 46 countries and regions all
over the world, noticeably with submissions from North America, South America,
Europe, and Africa. The large number of submissions and high diversity of submission
demographics witness the significant influence and reputation of PAKDD. A rigorous
double-blind reviewing procedure was ensured via the joint efforts of the entire
Program Committee consisting of 55 Senior Program Committee (SPC) members and
379 Program Committee (PC) members.

The PC Co-Chairs performed an initial screening of all the submissions, among
which 25 submissions were desk rejected due to the violation of submission guidelines.
For submissions entering the double-blind review process, each one received at least
three quality reviews from PC members or in a few cases from external reviewers (with
78.5% of them receiving four or more reviews). Furthermore, each valid submission
received one meta-review from the assigned SPC member who also led the discussion
with the PC members. The PC Co-Chairs then considered the recommendations and
meta-reviews from SPC members, and looked into each submission as well as its
reviews and PC discussions to make the final decision. For borderline papers, addi-
tional reviews were further requested and thorough discussions were conducted before
final decisions.

As a result, 137 out of 567 submissions were accepted, yielding an acceptance rate
of 24.1%. We aim to be strict with the acceptance rate, and all the accepted papers are
presented in a total of 20 technical sessions. Each paper was allocated 15 minutes for
oral presentation and 2 minutes for Q/A. The conference program also featured three
keynote speeches from distinguished data mining researchers, five cutting-edge
workshops, six comprehensive tutorials, and one dedicated data mining contest session.

We wish to sincerely thank all SPC members, PC members and externel reviewers
for their invaluable efforts in ensuring a timely, fair, and highly effective paper review
and selection procedure. We hope that readers of the proceedings will find that the
PAKDD 2019 technical program was both interesting and rewarding.

February 2019 Zhiguo Gong
Min-Ling Zhang



General Chairs’ Preface

On behalf of the Organizing Committee, it is our great pleasure to welcome you to
Macau, China for the 23rd Pacific-Asia Conference on Knowledge Discovery and Data
Mining (PAKDD 2019). Since its first edition in 1997, PAKDD has well established as
one of the leading international conferences in the areas of data mining and knowledge
discovery. This year, after its four previous editions in Beijing (1999), Hong Kong
(2001), Nanjing (2007), and Shenzhen (2011), PAKDD was held in China for the fifth
time in the fascinating city of Macau, during April 14–17, 2019.

First of all, we are very grateful to the many authors who submitted their work to the
PAKDD 2019 main conference, satellite workshops, and data mining contest. We were
delighted to feature three outstanding keynote speakers: Dr. Jennifer Neville from
Purdue University, Professor Hui Xiong from Baidu Inc., and Professor Josep
Domingo-Ferrer from Universitat Rovira i Virgili. The conference program was further
enriched with six high-quality tutorials, five workshops on cutting-edge topics, and one
data mining contest on AutoML for lifelong machine learning.

We would like to express our gratitude to the contributions of the SPC members,
PC members, and external reviewers, led by the PC Co-Chairs, Zhiguo Gong and
Min-Ling Zhang. We are also very thankful to the other Organizing Committee
members: Workshop Co-Chairs, Hady W. Lauw and Leong Hou U, Tutorial
Co-Chairs, Bob Durrant and Yang Yu, Contest Co-Chairs, Hugo Jair Escalante and
Wei-Wei Tu, Publicity Co-Chairs, Yi Cai, Xiangnan Kong, Gang Li, and Yasuo Tabei,
Proceedings Chair, Sheng-Jun Huang, and Local Arrangements Chair, Andrew Jiang.
We wish to extend our special thanks to Honorary Co-Chairs, Hiroshi Motoda and
Lionel M. Ni, for their enlightening support and advice throughout the conference
organization.

We appreciate the hosting organization University of Macau, and our sponsors
Macao Convention & Exhibition Association, Intel, Baidu, for their institutional and
financial support of PAKDD 2019. We also appreciate the Fourth Paradigm Inc.,
ChaLearn, Microsoft, and Amazon for sponsoring the PAKDD 2019 data mining
contest. We feel indebted to the PAKDD Steering Committee for its continuing
guidance and sponsorship of the paper award and student travel awards.

Last but not least, our sincere thanks go to all the participants and volunteers of
PAKDD 2019—there would be no conference without you. We hope you enjoy
PAKDD 2019 and your time in Macau, China.

February 2019 Qiang Yang
Zhi-Hua Zhou
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Abstract. Sparsity is a problem which occurs inherently in many real-
world datasets. Sparsity induces an imbalance in data, which has an
adverse effect on machine learning and hence reducing the predictabil-
ity. Previously, strong assumptions were made by domain experts on the
model parameters by using their experience to overcome sparsity, albeit
assumptions are subjective. Differently, we propose a multi-task learn-
ing solution which is able to automatically learn model parameters from
a common latent structure of the data from related domains. Despite
related, datasets commonly have overlapped but dissimilar feature spaces
and therefore cannot simply be combined into a single dataset. Our pro-
posed model, namely hierarchical Dirichlet process mixture of hierarchi-
cal beta process (HDP-HBP), learns tasks with a common model param-
eter for the failure prediction model using hierarchical Dirichlet process.
Our model uses recorded failure history to make failure predictions on
a water supply network. Multi-task learning is used to gain additional
information from the failure records of water supply networks managed
by other utility companies to improve prediction in one network. We
achieve superior accuracy for sparse predictions compared to previous
state-of-the-art models and have demonstrated the capability to be used
in risk management to proactively repair critical infrastructure.

Keywords: Multi-task learning · Sparse predictions ·
Dirichlet process · Beta process · Failure predictions

1 Introduction

Sparsity is an undesirable property which occurs in many real-world datasets
and is known to degrade the prediction performance of machine learning models.
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Sparsity may arise intrinsically and/or extrinsically, e.g., high dimensionality of
feature space or label space, and a small number of observations respectively. It
is easy to say that we can improve a model by providing more training data,
but there are many situations in which it is infeasible, e.g., infrastructure failure
history. In the past, clustering is used to gain additional information from data
points with similar characteristics. However, sparsity also degrades the quality
of clustering which in turn also degrades the quality of predictions [10]. Indeed,
sparse prediction problem is difficult to overcome using a single dataset because
there is simply not enough data to build a reliable model. Previous solutions have
been relying on the assistance from domain experts and using strong assumptions
in model construction [9]. Differently, we propose a multi-task learning solution
to automatically learn the model parameters for a group of tasks from multiple
domains to be applied to a failure prediction model such as the hierarchical beta
process (HBP) [14].

HBP is a Bayesian non-parametric model (BNP) which is well suited to
make sparse predictions by using information obtained from clustering. How-
ever, HBP model itself in the plain form is unable to assign data points to
a cluster. Previously, there have been proposals to apply a Dirichlet prior to
create a generalised hierarchical beta process (G-HBP) [4,10] to automatically
learn the model parameters. However, this does not overcome the sparsity issue
because it is difficult to produce low variance clusters in a sparse dataset, and
it is also difficult to select the model parameters for each task. Differently, we
propose a solution which uses a BNP approach to automatically select the model
parameters previously selected by domain experts by learning the task for a sub-
set of data. Specifically, we adapt hierarchical Dirichlet process (HDP) [13] to
form a multi-task learning framework to simultaneously learn the model param-
eters and prediction tasks. The proposed model can be used as a stand-alone
transfer learning model for clustering sparse datasets or can be connected to
HBP to form our proposed hierarchical Dirichlet process mixture of hierarchical
beta process (HDP-HBP) to learn the model parameters for a group of tasks to
make sparse predictions.

Our proposed model is applied to make water pipe failure predictions to
demonstrate its capability performing multi-task learning to improve sparse pre-
dictions. American Society for Civil Engineers estimated that the United States
needs to invest $3.6 trillion by 2020 to maintain its infrastructure [7]. Failures
could lead to significant social and economic cost in a city a single failure could
cost around 10 times the repair cost. Prioritising the correct water pipes to repair
with a limited budget could have huge financial savings by preventing financial
loss from water pipe failure. The datasets used to make water pipe failure pre-
dictions are extremely sparse because the feature space is large. Moreover, there
is only a very short observation period available and critical water main (CWM)
have a low failure rate of about 0.5%. However, despite the low failure rate, the
failure of a single CWM could lead to major disruptions and heavy financial loses
in a society. Predicting failure of CWM is very difficult because CWM compo-
nents only make up only 10% of the network. Due to the low event rate and the
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small number of components in each network, it is very difficult to train a model
with a single dataset without taking any strong assumptions. Currently, most
of these critical infrastructures are repaired reactively. Our multi-task learning
provides a solution by using additional datasets supplied by other utility com-
panies (i.e. different feature space) to automatically learn model parameters and
tasks to make predictions for critical components. A task in our case study is
defined to be a group of pipes with the same subset of features (i.e. A cluster).
This subset of features is created by Dirichlet Process (DP) to cluster on features
with similar failure rates. It is defined to be a task because they will have the
same model-parameters and hyper-parameters, but different observations when
making the failure prediction.

2 Related Work

2.1 Failure Predictions for Sparse Data

A number of statistical models have previously been used to make failure predic-
tion. Some example used in the past include, survival analysis such as Cox pro-
portional hazard model [3,10] and Weibull models [5]. However, survival analysis
may not be well suited for this task because in practice, only a small section of
the component is repair instead of replacing the entire asset. More recent formu-
lations of infrastructure failure prediction attempt to estimate the latent failure
rate given the historical failure records for each asset. Unlike the approached
used in survival analysis, this approach does not assume a ‘life’ for each asset,
but instead group assets using features to estimate the failure rate. An exam-
ple is hierarchical beta process [8,14], where the failure rates are estimated by
using a combination of individual observations for each pipe and the average
group observations. When the model was originally proposed, a heuristic pro-
vided by domain experts was used to group water pipes with similar characteris-
tics together based on the intrinsic pipe failures [8]. Later on, techniques such as
stochastic block models [11] and DPs [10] have been proposed to automatically
create clusters with similar failure rate. However, none of these methods are able
to accurate predictions for extremely sparse components, such as a critical water
main, where there are only very few components for any water pipe network.
Our proposed approach aims to solve this issue by automatically selecting the
model-parameters by clustering across domains to learn a common task for the
failure prediction model.

2.2 Multi-task Learning in Hierarchical BNP Models

Hierarchical model are a natural way to formulate a multi-task learning frame-
works. Hierarchical models are able to apply a constraint to ensure that the
distribution between the domains learn a common marginal probability distri-
bution by learning a common parameter or prior [12]. For example, multi-task
learning in Gaussian process (GP) a common kernel is learned to share informa-
tion between domains [1]. Dirichlet Process (DP) and Beta Process (BP) have
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also been explored in multi-task learning by using it as a prior in hierarchical
Bayesian models [4,15]. Multi-task learning in DP and BP attempts to learn the
parameters for a group of common tasks. The parameters learnt by the DP and
BP can then be applied to the prediction model to perform each task. We use
the multi-task learning techniques previously used in BNP and apply it to HBP
to formulate a solution which is able to simultaneously learn a group of tasks
along with the model parameters (i.e. qk) for failure prediction.

3 Preliminary Model

3.1 Stick-Breaking Process

Beta Process. The BP, B ∼ BP (c,B0) is defined as a Lévy process over a
general space Ω with a random measure B0. The BP can also be derived from
the stick-breaking process. BP uses the part of the stick which has been broken
off to continue the process. This process can be represented as,

H (ω) =
∑

i

πiδωi
(ω) , πi ∼ Beta (cqi, c (1 − qi)) , δωi

∼ B0, (1)

where c is the concentration parameter, H0 is the mean parameter and B0 is the
discrete form of the base measure defined by B0 =

∑
i qiδωi

. The beta process
can be used as a natural prior to the Bernoulli process to make prediction on
binary data.

3.2 Chinese Restaurant Process

The Chinese restaurant process (CRP) is a perspective on DP which uses the
Pólya urn modelling scheme representation. The name CRP comes from the
analogy used to explain the model. Imagine a restaurant which has tables that
can support an infinite number of customers. When a customer (i.e. a new data
point) enters the restaurant (i.e. the domain), the probability for the new cus-
tomer to be assigned to a table (i.e. the cluster) is proportional to the number
of customers sitting on that particular table. Since each table attracts a new
customer proportional to the number of customers on the table. The equation
for CRP is given by,

P (zi = a|z1, . . . , zi−1) = CRP (γ) =

{
na

N−1+γ If k ≤ K
γ

N−1+γ Otherwise
(2)

Where na is the number of data points in each table, k is the cluster index
in K, N is the total number of customers in the restaurant and γ is the hyper-
parameter controlling the probability of the new customer sitting on a new table.

The CRP can be constructed in hierarchy of each other to create hierarchical
Dirichlet process (HDP) from a CRP perspective, this is a Chinese restaurant
franchise (CRF) [13]. Explaining HDP with the same analogy as CRP, each
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customer enters restaurant franchise with a shared menu (i.e. a list of dishes).
At each table, one dish (i.e. model parameter) is ordered from the menu and is
shared among all customers who sit at that table. Each restaurant can serve the
same dish at different table, the same dish can be served at different restaurants.

Both CRP and CRF are often used as a prior for clustering and mixture
models because the exchangeability property provides a computational efficient
method to solve DP.

4 Our Proposed Model for Sparse Predictions

This section presents our proposed model for failure prediction Hierarchical Beta
Process and our parameter selection via HDP.

4.1 Problem Definition Based on HBP Model

For a given water pipe dataset, X = {x�j ∈ {0, 1}} represents a sparse dataset
with recorded failure history for all water pipe � in year j. When a failure occurs,
only a small section where the failure has occurred of the water pipe is repaired.
The entire water pipe is not replaced with a new asset (i.e. newly repaired pipe
does not mean lower chance of failure). For CWM, the failure rate of these
water pipes is extremely low (on average less than 0.5% per year). Therefore an
assumption has been made that the failures are independent from each other,
where the event of a failure is drawn from a Bernoulli process x�j ∼ BerP (π�j).
π�j represents the predicted failure rate on a beta process which is a natural prior
to the Bernoulli process. The plate notation of the Hierarchical Beta Process
(HBP) is shown in Fig. 1a and the algebraic formulation is given as follows,

qkj ∼ BetaP (c0q0, c0 (1 − q0)) , π�j ∼ BetaP
(
ckjqkj , ckj

(
1 − qkj

))
, x�j ∼ BerP

(
π�j

)
. (3)

where c0 (concentration) and q0 (mean) are the hyper-parameters of the upper-
layer of the beta process. ckj and qkj are the latent parameters for the middle
layer beta process. Each k represents a cluster of feature, where each feature
combination represents a group of pipes with the same features. Making a pre-
diction directly from the beta-Bernoulli process P (π�j |x�j) will have a high bias
for sparse observations. HBP overcomes this issue by making a prediction for
π�j using the clustering information and the individual observation to reduce
the bias in the prediction (i.e. P (π�j |qkjX, c0, q0)). However, HBP does not pro-
vide a method to learn qkj . Previous approaches such as self-taught clustering [2],
flexible grouping approach [11] and stochastic block models [6] are all prone to
learning a bias in the model parameter qkj in sparse datasets. Our proposed
approach attempts to reduce the bias using multi-task learning by learning qkj

from P (qkj |XT , {XS} , c0, q0), where T represents the target (sparse) domain
and S represents the source domain. An assumption used in multi-task learning
is applied to the marginal probability distribution to enforce that the source
and target domain are equal. Each tasks learnt in the model share a common
parameter qkj . The next section will discuss how we learn qkj using a multi-
task learning framework to reduce the bias in the model by learning the model
parameters for a group of task.
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Fig. 1. Plate diagrams: (a) Hierarchical beta process (HBP), (b) Hierarchical Dirichlet
process mixture model constructed, and (c) Our proposed hierarchical Dirichlet process
mixture of hierarchical beta process (HDP-HBP).

4.2 Sharing Parameter Estimation with HDP-HBP Model

We propose to use hierarchical Dirichlet process mixture model (HDPMM) to
perform the clustering to group across domain and use the HBP as the mixture
component to make the failure prediction. The aim of HDPMM framework is to
perform cross domain clustering to find a better representation of the structure
of the failure patterns in a given network.

Θ ∼ Beta (c0q0, c0 (1 − q0)) , Θ = {θ1...∞} ;
Φ ∼ DP (α0) , Φ = {φ1...∞}
t ∼ Mul (Φ) ;

Ψd ∼ DP (γd) , Ψd ∼ {ψd,1...∞} ;
zd� ∼ Mul (ψd) ;
qzdl

= θt,

πd� ∼ Beta (czd�
qzd�

, czd�
(1 − qzd�

)) ,

Xd�j ∼ BerP (πd�) ;

(4)

Formulating the problem in this way allows HDP-HBP to have the ability
to learn different tasks from domains with different feature space X . In this
formulation, each table in the CRP represents a task. Each task to learn its
own model parameter qk for its prediction function. The dishes from the global
menu provides a constraint for sparse data to prevent assignment to new tables.
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Each domain has a parameter ck which controls contribution between the beta-
Bernoulli process and the group level from qk. This allows parameter ck to be
used to control the variance of the clustering. Later on we introduce Theorem1
to shows how ck changes the behaviour of the prediction model.

We will use the analogy used to explain the CRP’s representation of HDP
(discussed in Sect. 3.2) to explain the information is transferred:

Our approach treats the denser domain as a restaurant which can assign new
tables and add new dishes to the global menu shared amongst the restaurants.
Both the dense and sparse domains are able to assign new dishes into the global
menu. This gives the opportunity for both sparse and dense domains to create
new clusters. The amount of clusters created by each domain is controlled by
the concentration parameter. For this approach it is not required to know in
advance which domain is sparse and which domain is dense.

4.3 Inference Algorithm

The objective of the inferencing algorithm is a combination of both clus-
tering and estimating the latent feature rate in the target dataset. This
can be seen as a maximum a posteriori (MAP) estimation problem (i.e.
P (z,q|XT , {XS} , c0, q0, α0, ck, f (·))). Gibbs sampling is used to update the
upper layer of the Dirichlet process (dish level).

P (qk = θt|XT , {XS} , α0,−qk, Θ) = CRP (α0)
P (xdl, xd,−l|qt, ct)

P (x−l|qt, ct)

= CRP (α0)
∏

�∈l

P (xdl|qt, ct)
(5)

The mean of each cluster qk is then determined by,

P (zdl = k|qzk
,XT , {XS} , γk,−zdl) = CRP (γk)

∏

l:zdl=k

P (xdl|qk, ck) (6)

The likelihood functions P (xl|qk, ck) and P (xl|θ, ck) are easily solved because
beta-Bernoulli are conjugate priors.

The value of qk can be approximated by Lemma1, where sd� =
∑

d,j Xd,�,j

and m is the number of observations.

Lemma 1 (Mixture component of the Hierarchical Beta Process). The
mixture component of the Hierarchical Beta Process qk can be approximated as
a beta distribution.

P
(

qk|ck, δzd�=k
, Xd�,1...m

)
∼ Beta

(
c0q0 +

∑
�

sd�, c0 (1 − q0) +
∑

�

∑m−sd�−1

t

ck

ck + t

)
. (7)

Finally π can be sampled directly from its conditional distribution by using the
group index generated by θd� as follows

P
(
πd�|qzd� , zd�, czd� , Xd�,1...m

) ∼ Beta (czd�qzd� + sd�, czd� (1 − qzd� ) + m − sd�) . (8)
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All of the updating steps outlined above are repeated iteratively until conver-
gence has been reached. The inferencing algorithm above does not outline a
method to select the parameters for ck. Theorem 1 provides some guidelines on
how to select ck.

Theorem 1 (Variance of the Prediction by the Hierarchical Beta Pro-
cess). The variance of the prediction in the Hierarchical Beta Process is mono-
tonically decreasing with respect to number of observation m, if czd�

≥ s.

Theorem 1 applies for Eqs. 7 and 8. From this result a reasonable choice
for the concentration parameter should be czd�

≥ m. The value to select for
czd�

is non-trivial and is subjected to further research in future work. For our
experiment, the value of czd�

is fixed to m as s ≤ m to ensure that there is a
decreasing variance with an increasing number of observation.

5 Experiments

5.1 Synthetic Data

For our synthetic data experiment, we attempt to create a typical dataset from a
utility company to make infrastructure failure prediction. We create a synthetic
infrastructure dataset with categorical features that has 512 unique features com-
binations and assign a true failure rate Ptrue fr to each of these features using a
beta distribution. Another beta distribution to assign the true distribution on
unique features Ptrue f . Samples are then from Ptrue f and then draw the sam-
ples for the observations for each feature sample from Ptrue fr. A dense domain
with sample size N = 106 is also created using the same marginal probability
distribution.

(a) (b)

Fig. 2. (a) Synthetic data experiment generated using a beta distribution with parame-
ters α = 0.5, β = 10, comparing HDP-HBP learning from a single domain and multiple
domains for varying sample size. (b) Sensitive of the hyper-parameters for a sample
size of N = 104.
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We create a scenarios using a beta distribution with parameters α = 0.5,
β = 10 to simulate the failure observations in a water pipe network. For each
sample size, we create 20 independent datasets and take the mean value of the
mean averaged error (MAE). The result in Fig. 2a has shown that multi-task
learning is able to produce a lower error prediction compare to DPMHBP for
the single task. As the dataset increases, the error of just using a single domain
reduces to the same order of magnitude as using multi-task learning. This is
because for large sample size, the dataset is no longer considered sparse, therefore
there is less of a improvement when using multi-task learning.

A sample size of N = 104 to study the sensitively of the concentration param-
eter α0, γk and ck. For this experiment, for simplicity, we set α0 = γk and all
values of ck are equal. The parameters are then normalised by dividing ck by
the number of observations and α0 and γk are normalised by dividing with the
number of features. Figure 2b shows that decreasing the concentration parame-
ter in DP allow for a lower MAE, however, the model becomes more sensitive
to ck. This is because a lower concentration from DP allows more clusters to
be formed closer to each data point, however, the increase in model complexity
increases the difficulty to tune the parameters.

5.2 Case Study: Water Pipe Failure Prediction

The data collected for each metropolitan area includes the water pipe network
data and water pipe failure data. Three sets of data are used and referred as
Region A (a central business district, population:210,000, area:25 km2), Region
B (a prominent suburb, population:230,000, area:80 km2) and Region C (a large
rural city, population:205,000, area:685 km2). The water pipe network data con-
tains all pipe information in the network. This consists of a unique pipe ID to
identify the pipe, pipe attributes and location. The pipe attributes represent
intrinsic features belonging to each pipe. These include the year the pipe is
laid, protective coating, diameter, Materials and Methods to join pipe segments
together. These particular features are factors which may be correlated to the
failure rate. Additionally, there are also external factors such as, tree canopy
converge, soil corrosion, water supply demand and temperature which are also
identified as external factors which may be correlated with the failure rate. The
failure data is a time series data which contains the pipe ID, failure dates and
the failure location. A new record is added to the dataset each time a failure has
been observed in the water supply network.

For the dataset collected for the three metropolitan areas, the pipes are laid
between years 1884–2011. These pipes are often split into two main categories,
reticulation water main (RWM) and critical water main (CWM). The categories
of these pipes are defined by domain experts according to the impact of each
water main, such as the financial cost of compensation and the social effect during
an event of a failure. The ratio of these pipes for each region is summarized in
Table 1. As the role of RWM and CWM is different, it is expected that the failure
behaviour of RWM and CWM is also different. Therefore, RWM and CWM are
considered as separate domains. Quite typically, the water supply network is
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Table 1. Summary of pipe network and pipe failure data

Region Type No. pipes No. failures Avg. failure per. year Total length[m]

Region A RWM 23 926 3 782 0.99% 879 050

CWM 2 945 182 0.39% 229 915

Region B RWM 62 089 10 717 1.08% 3 878 255

CWM 7 119 435 0.38% 671 884

Region C RWM 45 030 10 719 1.49% 2 593 412

CWM 5 001 606 0.76% 477 094

Table 2. Area Under Curve (AUC)

Dense-to-sparse

HDP-HBP DPMHBP HBP Cox SVM Boost

AUC Region A 67.00% 62.45% 62.38% 60.94% 61.07% 66.19%

Region B 89.46% 84.10% 86.62% 63.33% 77.91% 63.95%

Region C 87.81% 86.93% 87.24% 75.96% 82.98% 89.92%

comprised of approximately 10% CWM and 90%. The average failure rate each
year for the CWM across the entire network is approximately 0.5%. The failure
history recorded has an observation period of 16 years spanning from 1997 to
2012 which is very short given the failure rate. Due to a combination these factors
the dataset used to make failure predictions on water pipe is extremely sparse.

Our experiments focus on a dense-to-sparse transfer scenario. The dense-to-
sparse scenario attempts to improve the learning performance by transferring
information from RWM to CWM. RWM is considerably denser compared to
CWM as there are fewer pipes and failures observed, which makes it much more
difficult for a model to use a single CWM dataset to learn the failure patterns
as there are fewer training examples. We demonstrate the ability for HDP-HBP
to use the information from RWM and CWM to improve the failure prediction
performance. Figure 3 shows the results of the dense-to-sparse transfer.

In Fig. 3 the behavior of HBP based models are similar on the left-hand side
due to the contribution from the beta-Bernoulli process. If there is a high number
of observations of failure for the water pipe, these water pipes are generally
ranked with the highest probability of failure in each cluster. As a result, on the
left-hand side all variants of HBP model, HBP, DPMHBP and HDP-HBP have
very similar failure prediction performance. In Fig. 3, Region A has shown to
have detected very little failure across all HBP models.

Manually inspecting these water pipes in the dataset, these water pipes have
historically had a high failure rate. Towards the right-hand side, these pipes
generally have either no observations or very few observations of failure during
its observation period. In this region, our proposed model is shown to perform
much better by providing better clustering and parameter selection. In Region A
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(a) Region A (b) Region B

(c) Region C (d) Visualisation of Region C

Fig. 3. Failure prediction results for each region in 2012.

and Region B, HDP-HBP has shown that it is superior in learning the model
parameters for each group of task. The AUC can be used to quantify the average
model performance. The AUC for each model is shown in Table 2. A visualising
of the clustering in Region C. The top three clusters are shown to avoid clutter
in the visualisation. The solid line represents the model mean, the dotted line
represents the empirical mean. ‘X’ denotes data from the sparse domain, while ‘.’
denotes data from a dense domain. Grey points are other feature combinations
which are not in the top 3 clusters. The improvement in performance by the
hierarchical clustering can be seen clearly in the magenta line, where there is a
difference in the failure rate (the exponential of the gradient).

6 Conclusion

This paper has proposed a multi-task learning solution using a Bayesian non-
parametric approach to construct a model which can automatically learn the
model parameters for a group of tasks to improve the failure prediction model
for sparse datasets by using data obtained from other domains with different
feature space. The cross domain clustering learns a common latent structure to
be used as the model parameters for failure prediction for each task. We have



14 S. Luo et al.

demonstrated how cross domain clustering can be achieved by using hierarchical
Dirichlet process mixture model (HDPMM) and then can be applied to the hier-
archical beta process (HBP) in two separate steps. We have then shown that this
approach can be further improved by combining the clustering and prediction
model to create a new framework called hierarchical Dirichlet process mixture
of hierarchical beta process (HDP-HBP). Our proposed model has been able to
improve upon previous state-of-the-art methods with higher prediction accuracy.
Our proposed solution has provided an improved capability for utility compa-
nies to proactively inspect extremely sparse critical infrastructure components
instead of repairing failures reactively.
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Abstract. In binary classification framework, we are interested in mak-
ing cost sensitive label predictions in the presence of uniform/symmetric
label noise. We first observe that 0–1 Bayes classifiers are not (uniform)
noise robust in cost sensitive setting. To circumvent this impossibility
result, we present two schemes; unlike the existing methods, our schemes
do not require noise rate. The first one uses α-weighted γ-uneven margin
squared loss function, lα,usq, which can handle cost sensitivity arising due
to domain requirement (using user given α) or class imbalance (by tun-
ing γ) or both. However, we observe that lα,usq Bayes classifiers are also
not cost sensitive and noise robust. We show that regularized ERM of
this loss function over the class of linear classifiers yields a cost sensitive
uniform noise robust classifier as a solution of a system of linear equa-
tions. We also provide a performance bound for this classifier. The second
scheme that we propose is a re-sampling based scheme that exploits the
special structure of the uniform noise models and uses in-class probability
estimates. Our computational experiments on some UCI datasets with
class imbalance show that classifiers of our two schemes are on par with
the existing methods and in fact better in some cases w.r.t. Accuracy
and Arithmetic Mean, without using/tuning noise rate. We also consider
other cost sensitive performance measures viz., F measure and Weighted
Cost for evaluation.

1 Introduction

We are interested in cost sensitive label predictions when only noise corrupted
labels are available. The labels might be corrupted when the data has been
collected by crowd scouring with not so high labeling expertise. We consider the
basic case when the induced label noise is independent of the class or example,
i.e., symmetric/uniform noise model. In real world, there are various applications
requiring differential misclassification costs due to class imbalance or domain
requirement or both; we list these below and elaborate in the long version of
the paper. The long version also has details of some examples, proofs and some
computations.

A long version of this paper along with Supplementary material is available at https://
arxiv.org/abs/1901.02271.
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In case 1, there is no explicit need for different penalization of classes but
the data has imbalance. Example: Predicting whether the age of an applicant
for a vocational training course is above or below 15 years. Here, asymmetric
cost should be learnt from data.

In case 2, there is no imbalance in data but one class’s misclassification cost
is higher than that of other. Example: Product recommendation by paid web
advertisements. Here, the misclassification cost has to come from the domain.

In case 3, there is both imbalance and need for differential costing. Example:
Rare (imbalance) disease diagnosis where the cost of missing a patient with dis-
ease is higher than cost of wrongly diagnosing a person with disease. The model
should incorporate both the cost from domain and the cost due to imbalance.

In Sect. 1.1, we provide a summary of how these 3 cases are handled. For cost
and uniform noise, we have considered real datasets belonging to cases 2 and 3.

Contributions

• Show that, unlike 0–1 loss, weighted 0–1 loss is not cost sensitive uniform
noise robust.

• Show α-weighted γ-uneven margin squared loss lα,usq with linear classifiers is
both uniform noise robust and handles cost sensitivity. Present a performance
bound of a classifier obtained from lα,usq based regularized ERM.

• Propose a re-sampling based scheme for cost sensitive label prediction in the
presence of uniform noise using in-class probability estimates.

• Unlike existing work, both the proposed schemes do not need true noise rate.
• Using a balanced dataset (Bupa) which requires domain cost too, we demon-

strate that tuning γ on such corrupted datasets can be beneficial.

Related Work. For classification problems with label noise, particularly in
Empirical Risk Minimization framework, the most recent work [3,4,7,8,13] aims
to make the loss function noise robust and then develop algorithms. Cost sensi-
tive learning has been widely studied by [2,5,10] and many more. An extensive
empirical study on the effect of label noise on cost sensitive learning is presented
in [14]. The problem of cost sensitive uniform noise robustness is considered in
[6] where asymmetric misclassification cost α is tuned and class dependent noise
rates are cross validated over corrupted data. However, our work incorporates
cost due to both imbalance (γ) and domain requirement (α) with the added
benefit that there is no need to know the true noise rate.

Organization. Section 1.1 has some details about weighted uneven margin loss
functions and in-class probability estimates. In Sect. 2, weighted 0–1 loss is shown
to be non cost sensitive uniform noise robust. Sections 3 and 4 present two differ-
ent schemes that make cost sensitive predictions in the presence of uniform label
noise. Section 5 has empirical evidence of the performance of proposed methods.
Some discussion and future directions are presented in Sect. 6.
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Notations. Let D be the joint distribution over X × Y with X ∈ X ⊆ R
n

and Y ∈ Y = {−1, 1}. Let the in-class probability and class marginal on D be
denoted by η(x) := P (Y = 1|x) and π := P (Y = 1). Let the decision function
be f : X �→ R, hypothesis class of all measurable functions be H and class of
linear hypothesis be Hlin := {(w, b),w ∈ R

n, b ∈ R : ‖w‖2 ≤ W} for a given
W . Let D̃ denote the distribution on X × Ỹ obtained by inducing noise to D
with Ỹ ∈ {−1, 1}. The corrupted sample is S̃ = {(x1, ỹ1), . . . , (xm, ỹm)} ∼ D̃m.
The noise rate ρ := P (Ỹ = −y|Y = y,X = x) is constant across classes and
the model is referred to as Symmetric Label Noise (SLN) model. In such cases,
the corrupted in-class probability is η̃(x) := P (Ỹ = 1|x) = (1 − 2ρ)η(x) + ρ and
the corrupted class marginal is π̃ := P (Ỹ = 1) = (1 − 2ρ)π + ρ. Symmetric and
uniform noise are synonymous in this work.

1.1 Some Relevant Background

The first choice of loss function for cost sensitive learning is that of α-weighted
0–1 loss defined as follows:

l0−1,α(f(x), y) = (1 − α)1{Y =1,f(x)≤0} + α1{Y =−1,f(x)>0}, ∀α ∈ (0, 1) (1)

Let the α-weighted 0-1 risk be RD,α := ED[l0−1,α(f(x), y)]. The minimizer of
this risk is f∗

α(x) = sign(η(x) − α) and referred to as cost-sensitive Bayes clas-
sifier. The corresponding surrogate lα based risk and the minimizer is defined
as RD,lα := ED[lα(f(x), y)] and f∗

lα
∈ H respectively. Consider the following

notion of α-classification calibration.

Definition 1 (α-Classification Calibration [10]). For α ∈ (0, 1) and a loss
function l, define the α-weighted loss:

lα(f(x), y) = (1 − α)l1(f(x)) + αl−1(f(x)), (2)

where l1(·) := l(·, 1) and l−1(·) := l(·,−1). lα is α-classification calibrated (α-
CC) iff there exists a convex, non-decreasing and invertible transformation ψlα ,
with ψ−1

lα
(0) = 0, such that

ψlα(RD,α(f) − RD,α(f∗
α)) ≤ RD,lα(f) − RD,lα(f∗

lα). (3)

If the classifiers obtained from α-CC losses are consistent w.r.t lα-risk then they
are also consistent w.r.t α-weighted 0–1 risk. We consider the α-weighted uneven
margin squared loss [10] which is by construction α-CC and defined as follows:

lα,usq(f(x), y) = (1−α)1{y=1}(1−f(x))2+α1{y=−1}
1
γ

(1+γf(x))2, γ > 0 (4)

Interpretation of α and γ. The role of α and γ can be related to the three
cases of differential costing described at the start of this paper. In case 1, there
are 3 options: fix α = 0.5 and let tuned γ pick up the imbalance; fix γ = 1 and



18 S. Tripathi and N. Hemachandra

tune α; tune both α and γ. Our experimental results suggest that latter two
perform equally good. For case 2, α is given and γ can be fixed at 1. However,
we observe that even in this case tuning γ can be more informative. For case 3,
γ is tuned and α is given a priori. There would be a trade-off between α and
γ, i.e., for a given α, there would be an optimal γ in a suitable sense. Above
observations are based on the experiments described in Supplementary material
Section D.

Choice of η Estimation Method. As η estimates are required in re-sampling
scheme, we investigated the performance of 4 methods: Lk-fun [9], uses classifier
to get the estimate η̂; interpreting η as a conditional expectation and obtain-
ing it by a suitable squared deviation minimization; LSPC [11], density ratio
estimation by l2 norm minimization; KLIEP [12], density ratio estimation by
KL divergence minimization. We chose to use Lk-fun with logistic loss llog and
squared loss lsq, LSPC, and η̂norm, a normalized version of KLIEP because in
re-sampling algorithm we are concerned with label prediction and these estima-
tors performed equally well on Accuracy measure. A detailed study is available
in Supplementary material Section F.

2 Cost Sensitive Bayes Classifiers Using l0−1,α and lα,usq

Need Not Be Uniform Noise Robust

The robustness notion for risk minimization in cost insensitive scenarios was
introduced by [4]. They also proved that cost insensitive 0–1 loss based risk
minimization is SLN robust. We extend this definition to cost-sensitive learning.

Definition 2 (Cost sensitive noise robust). Let f∗
α,A and f̃∗

α,A be obtained
from clean and corrupted distribution D and D̃ using any arbitrary scheme A,
then the scheme A is said to be cost sensitive noise robust if

RD,α(f̃∗
α,A) = RD,α(f∗

α,A).

If f∗
α,A and f̃∗

α,A are obtained from a cost sensitive loss function l and noise
induced is symmetric, then l is said to be cost sensitive uniform noise robust.

Let the l0−1,α risk on D̃ be denoted by RD̃,α(f). If one is interested in cost
sensitive learning with noisy labels, then the sufficient condition of [3] becomes
(1 − α)1[f(x)≤0] + α1[f(x)>0] = K. This condition is satisfied if and only if
(1 − α) = K = α implying that it cannot be a sufficient condition for SLN
robustness if there is a differential costing of (1 − α, α), α 
= 0.5.

Let f∗
α and f̃∗

α be the minimizers of RD,α(f) and RD̃,α(f). Then, it is known
that they have the following form:

f∗
α(x) = sign (η(x) − α) (5)

f̃∗
α(x) = sign(η̃(x) − α) = sign

(
η(x) − α − ρ

(1 − 2ρ)

)
(6)
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The last equality in (6) follows from the fact that η̃ = (1 − 2ρ)η + ρ. In
Example 1 below, we show that l0−1,α is not cost sensitive uniform noise robust
with H.

Example 1. Let Y has a Bernoulli distribution with parameter p = 0.2. Let X ⊂
R be such that X|Y = 1 ∼ Uniform(0, p) and X|Y = −1 ∼ Uniform(1 − p, 1).
Then, the in-class probability η(x) is given as follows:

η(x) = P (Y = 1|X = x) = p = 0.2

Suppose ρ = 0.3. Then, η̃(x) = (1 − 2ρ)η(x) + ρ = 0.38. If α = 0.25, f∗
α(x) =

−1 and f̃∗
α(x) = 1,∀x ∈ X. Consider the α-weighted 0–1 risk of f∗

α(x) and
f̃∗

α(x):

RD,α(f
∗
α) = ED[l0−1,α(f

∗
α(x), y)] = (1 − α)p, since f∗

α(x) ≤ 0 ∀x
RD,α(f̃

∗
α) = ED[l0−1,α(f̃

∗
α(x), y)] = α(1 − p), since f̃∗

α(x) > 0 ∀x
Therefore, RD,α(f∗

α) 
= RD,α(f̃∗
α) implying that the α-weighted 0–1 loss function

l0−1,α is not uniform noise robust with H. Details are in Supplementary material
Section B.1. Note that due to p < 0.5, D is linearly separable; a linearly insepara-
ble variant can be obtained by p > 0.5. Another linearly inseparable distribution
based counter example is available in Supplementary material Section B.4.

In view of the above example, one can try to use the principle of induc-
tive bias, i.e., consider a strict subset of the above set of classifiers; however,
Example 2 below says that the set of linear class of classifiers need not be cost
sensitive uniform noise robust.

Example 2. Consider the training set {(3,−1), (8,−1), (12, 1)} with uniform
probability distribution. Let the linear classifier be of the form fl = sign(x+ b).
Let α = 0.3 and the uniform noise be ρ = 0.42. Then,

fl∗α = argmin
fl

ED[l0−1,α(y, fl)] = b∗ ∈ (−8, −12) with Rα,D(fl∗α) = 0.

f̃ l
∗
α = argmin

f̃ l
ED̃[l0−1,α(ỹ, f̃ l)] = b̃∗ ∈ (−3, ∞) with Rα,D(f̃ l

∗
α) = 0.2.

Details of Example 2 are available in Supplementary material Section B.2. To
avoid above counter examples, we resort to convex surrogate loss function and
a type of regularization which restricts the hypothesis class. Consider an α-
weighted uneven margin loss functions lα,un [10] with its optimal classifiers on
D and D̃ denoted by f∗

lα,un
and f̃∗

lα,un
respectively. Regularized risk minimization

defined below is known to avoid over-fitting.

Rr
D,lα,un

(f) = ED[lα,un(f(x), y)] + λ‖f‖22, where λ > 0 (7)

Let the regularized risk of lα,un on D̃ be Rr
D̃,lα,un

(f). Also, let the minimiz-

ers of clean and corrupted lα,un-regularized risks be f∗
r,lα,un

and f̃∗
r,lα,un

. Now,
Definition 2 can be specialized to lα,un to assure cost sensitivity, classification
calibration and uniform noise robustness as follows:
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Definition 3 ((α, γ, ρ)-robustness of risk minimization). For a loss func-
tion lα,un and classifiers f̃∗

lα,un
and f∗

lα,un
, risk minimization is said to be

(α, γ, ρ)-robust if

RD,α(f̃∗
lα,un

) = RD,α(f∗
lα,un

). (8)

Further, if the classifiers in Eq. (8) are f∗
r,lα,un

and f̃∗
r,lα,un

then, we say that
regularized risk minimization under lα,un is (α, γ, ρ)-robust.

Due to squared loss’s SLN robustness property [4], we check whether lα,usq

is (α, γ, ρ) robust or not. It is not with H as shown in Example 3; details of
Example 3 are available in Supplementary material Section B.3.

Example 3. Consider the settings as in Example 1. Let α = 0.25 and γ = 0.4.
Then, for all x,

f
∗
lα,usq

(x)=
η(x) − α

η(x)(1 − α) + γα(1 − η(x))
=−0.21, f̃

∗
lα,usq

(x)=
η̃(x) − α

η̃(x)(1 − α) + γα(1 − η̃(x))
= 0.37.

And, RD,α(f
∗
lα,usq

) = (1 − α)p = 0.15, RD,α(f̃
∗
lα,usq

) = α(1 − p) = 0.2.

Hence, RD,α(f∗
lα,usq

) 
= RD,α(f̃∗
lα,usq

), implying that lα,usq based ERM may not
be cost sensitive uniform noise robust.

We again have a negative result with lα,usq when we consider hypothesis class
H. In next section, we present a positive result and show that regularized risk
minimization under loss function lα,usq is (α, γ, ρ)-robust if the hypothesis class
is restricted to Hlin.

3 (lα,usq,Hlin) Is (α, γ, ρ) Robust

In this section, we consider the weighted uneven margin squared loss function
lα,usq from Eq. (4) with restricted hypothesis class Hlin and show a positive
result that regularized cost sensitive risk minimization under loss function lα,usq

is (α, γ, ρ)-robust. A proof is available in Supplementary material Section A.1.

Theorem 1. (lα,usq,Hlin) is (α, γ, ρ)-robust, i.e., linear classifiers obtained
from α-weighted γ-uneven margin squared loss lα,usq based regularized risk min-
imization are SLN robust.

Remark 1. The above results relating to counter examples and Theorem1 about
cost sensitive uniform noise robustness can be summarized as follows: There are
two loss functions, l0−1,α and lα,usq and two hypothesis classes, Hlin and H. Out
of the four combinations of loss functions and hypothesis classes only lα,usq with
Hlin is cost sensitive uniform noise robust, others are not.

Next, we provide a closed form expression for the classifier learnt on cor-
rupted data by minimizing empirical lα,usq-regularized risk. We also provide a
performance bound on the clean risk of this classifier.
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3.1 lα,usq Based Classifier from Corrupted Data and Its
Performance

In this subsection, we present a descriptive scheme to learn a cost-sensitive linear
classifier in the presence of noisy labels, by minimizing lα,usq based regularized
empirical risk, i.e.,

f̂r := arg min
f∈Hlin

R̂r
D̃,lα,usq

(f), (9)

where R̂r
D̃,lα,usq

(f) := 1
m

m∑

i=1

lα,usq(f(xi), ỹi) + λ‖f‖22, α is user given, γ and

regularization parameter λ > 0 are to be tuned by cross validation. A proof is
available in Supplementary material Section A.2.

Proposition 1. Consider corrupted regularized empirical risk R̂r
D̃,lα,usq

(f) of

lα,usq. Then, the optimal (α, γ, ρ)-robust linear classifier f̂r = (w, b) ∈ Hlin with
w ∈ R

n has the following form:

f̂r = w̄∗ = (A + λI)−1c, λ > 0 (10)

where w̄ = [w1, w2, . . . , wn, b]T , a n + 1 dimensional vector of variables; A, a
(n+1×n+1) dimensional known symmetric matrix and c, a n+1 dimensional
known vector are as follows:

A + λI =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m∑
i=1

x2
i1ai + λ

m∑
i=1

xi1xi2ai . . .
m∑

i=1

xi1xinai

m∑
i=1

xi1ai

m∑
i=1

xi2xi1ai

m∑
i=1

x2
i2ai + λ . . .

m∑
i=1

xi2xinai

m∑
i=1

xi2ai

...
...

. . .
...

...
m∑

i=1

xinxi1ai

m∑
i=1

xinxi2ai . . .
m∑

i=1

x2
inai + λ

m∑
i=1

xinai

m∑
i=1

xi1ai

m∑
i=1

xi2ai . . .
m∑

i=1

xinai

m∑
i=1

ai + λ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, c =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m∑
i=1

xi1ci

m∑
i=1

xi2ci

...
m∑

i=1

xinci

m∑
i=1

ci

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

with ai = (1[ỹi=1](1 − α) + γα1[ỹi=−1]) and ci = (1[ỹi=1](1 − α) − α1[ỹi=−1]).

Next, we provide a result on the performance of f̂r in terms of the
Rademacher complexity of the function class Hlin. For this, we need Lemmas 1
and 2 whose proofs are available in Supplementary material Section A.3 and A.4
respectively.

Lemma 1. Consider the α-weighted uneven margin squared loss lα,usq(f(x), y)
which is locally L-Lipschitz with L = 2a + 2 where |f(x)| ≤ a, for some a ≥ 0.
Then, with probability at least 1 − δ,

max
f∈Hlin

|R̂D̃,lα,usq
(f) − RD̃,lα,usq

(f)| ≤ 2LR(Hlin) +

√
log(1/δ)

2m
,

where R(Hlin) := EX,σ

[

sup
f∈Hlin

1
m

m∑

i=1

σif(xi)

]

is the Rademacher complexity of

the function class Hlin with σi’s as independent uniform random variables taking
values in {−1, 1}.
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Lemma 2. For a classifier f ∈ H and user given α ∈ (0, 1), the lα,usq risk on
clean and corrupted distribution satisfy the following equation:

RD̃,lα,usq
(f) = RD,lα,usq

(f) + 4ρED[yf(x)[(1 − α)1[y=1] + α1[y=−1]]]. (11)

Theorem 2. Under the settings of Lemma 1, with probability at least 1 − δ,

RD,lα,usq
(f̂r) ≤ min

f∈Hlin

RD,lα,usq
(f) + 4LR(Hlin) + 2

√
log(1/δ)

2m
+ 2λW 2

+
4ρ

(1 − 2ρ)
EX[(f̃ l∗lα,usq

(x) − (1 − 2ρ)f̂r(x))(η(x) − α)]

where f̃ l∗lα,usq
is the linear minimizer of RD̃,lα,usq

and η(x) is the in-class prob-
ability for x. Furthermore, as lα,usq is α-CC, there exists a non-decreasing and
invertible function ψlα,usq

with ψ−1
lα,usq

(0) = 0 such that,

RD,α(f̂r) − RD,α(f
∗
α) ≤ ψ−1

lα,usq

(
min

f∈Hlin

RD,lα,usq (f) − min
f∈H

RD,lα,usq (f) + 4LR(Hlin)

+2

√
log(1/δ)

2m
+

4ρ

(1 − 2ρ)
EX[(f̃ l∗lα,usq

(x) − f̂r(x))(η(x) − α)]

+
8ρ2

(1 − 2ρ)
EX[f̂r(x)(η(x) − α)] + 2λW 2

)
. (12)

A proof of Theorem2 is available in Supplementary material Section A.5. The
first two terms (involving the difference) in the right hand side of Eq. (12) denotes
the approximation error which is small if Hlin is large and the third term involv-
ing the Rademacher complexity denotes the estimation error which is small if
Hlin is small. The fourth term denotes the sample complexity which vanishes as
the sample size increases. The bound in (12) can be used to show consistency of
lα,usq based regularized ERM if the argument of ψ−1

lα,usq
tends to zero as sample

size increases. However, in this case, it is not obvious because the last two terms
involving noise rates may not vanish with increasing sample size. In spite of this,
our empirical experience with this algorithm is very good.

4 A Re-sampling Based Algorithm (η̃, α)

In this section, we present a cost sensitive label prediction algorithm based on
re-balancing (which is guided by the costs) the noisy training set given to the
learning algorithm. Let us consider uneven margin version of α-weighted 0–1 loss
from Eq. (1) defined as follows:

l0−1,α,γ(f(x), y) = (1 − α)1{Y =1,f(x)≤0} +
α

γ
1{Y =−1,γf(x)>0}, ∀α ∈ (0, 1)

where α is user given cost and γ, tunable cost handles the class imbalance.
This definition is along the lines of the uneven margin losses defined in [10]. Let
l0−1,α,γ-risk on D be RD,α,γ(f) and corresponding optimal classifier be f∗

0−1,α,γ :

f∗
0−1,α,γ = arg min

f∈H
RD,α,γ(f) = sign

(

η(x) − α

γ + (1 − γ)α

)

. (13)
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Also, let l0−1,α,γ-risk on D̃ be RD̃,α,γ(f) and the corresponding optimal classifier
be f̃∗

0−1,α,γ as given below:

f̃∗
0−1,α,γ = sign

(

η̃(x) − α

γ + (1 − γ)α

)

. (14)

We propose Algorithm (η̃,α) which is mainly based on two ideas: (i) predictions
based on a certain threshold (p∗) can correspond to predictions based on thresh-
old (p0) if the number of negative examples in the training set is multiplied by
r∗ = p∗

1−p∗
1−p0

p0
(Theorem 1 of [2]) (ii) for a given x, η̃(x) and η(x) lie on the

same side of threshold 0.5 when noise rate is ρ. We first formalize the latter
idea in terms of a general result. A proof is available in Supplementary material
Section A.6.

Lemma 3. In SLN models, for a given noise rate ρ < 0.5, the clean and cor-
rupted class marginals π and π̃ satisfy the following condition:

π � 0.5 ⇒ π̃ � 0.5.

Further, the above monotonicity holds for η(x) and η̃(x) too.

In our case, the cost sensitive label prediction requires the desired threshold
to be α

γ+(1−γ)α (= p∗) but the threshold which we can use is 0.5 (= p0) implying
that for us r∗ = α

γ(1−α) . If m+ and m− are number of positive and negative
examples in mtr, then we should re-sample such that the size of balanced dataset
is mtr,b = m++

⌊
αm−

γ(1−α)

⌋
. As we have access to only corrupted data, the learning

scheme is: re-balance the corrupted data using r∗ and then threshold η̃ at 0.5.
Since, for SLN model, predictions made by thresholding η̃ at 0.5 are same as the
predictions made by thresholding η at 0.5, for a test point x0 from D, predicted
label is sign(η̃(x0)−0.5). The main advantage of this algorithm is that it doesn’t
require the knowledge of true noise rates. Also, unlike Sect. 3’s scheme involving
lα,usq based regularized ERM, this algorithm uses η̃ estimates and hence is a
generative learning scheme.

Since, we do not want to lose any minority (rare) class examples, we reassign
positive labels to the minority class WLOG, if needed, implying that negative
class examples are always under-sampled. The performance of Algorithm (η̃,α)
is majorly dependent on sampling procedure and η̃ estimation methods used.

Remark 2. Algorithm (η̃,α) exploits the fact that sign(η̃ − α
γ+(1−γ)α ) =

sign(η̃b−0.5) where η̃b is learnt on re-sampled data. This implies RD,α(sign(η̃b−
0.5)) = RD,α(sign(η̃ − α

γ+(1−γ)α )) but due to counter examples in Sect. 2, these
risks may not be equal to RD,α(sign(η − α

γ+(1−γ)α )). Hence, this scheme is
not in contradiction to Sect. 2. However, as η̃ estimation methods use a subset
of H (e.g., LSPC and KLIEP use linear combinations of finite Gaussian ker-
nels as basis functions), these risks may be equal to RD,α(sign(η̃e − α

γ+(1−γ)α ))
where η̃e is estimate of η̃ obtained from strict subset of hypothesis class. Also,
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Algorithm (η̃, α). η̃ based scheme to make cost sensitive label predictions from
uniform noise corrupted data
Input: Training data S̃tr = {(x1, ỹi)}mtr

i=1 , test data Ste = {(xi, yi)}mte
i=1 , cost α, per-

formance measure PM ∈ {Acc, AM, F, WC}
Output: Predicted labels and η̃ estimate on test data Ste

1: γ0 = α
1−α

+ 0.001, since for under-sampling r∗ = α
γ(1−α)

< 1 ⇒ γ0 > α
1−α

2: Γ = { α
1−α

+ i × 0.05 i = 1, . . . , 12}
3: for γ ∈ Γ do

4: Under-sample the −ve class to get S̃tr,b such that |S̃tr,b| = m+ +
⌊

αm−
γ(1−α)

⌋
.

5: Use 5-fold CV to estimate η̃ from S̃tr,b via Lk-fun or LSPC or KLIEP.
6: Compute 5-fold cross validated PM from the partitioned data.
7: end for
8: γ∗ = argmax

γ∈Γ
PM if PM = {Acc, AM, F} otherwise γ∗ = argmin

γ∈Γ
WC.

9: Under-sample the −ve class to get S̃tr,b such that |S̃tr,b| = m+ +
⌊

αm−
γ∗(1−α)

⌋
.

10: Estimate η̃ from S̃tr,b using Lk-fun method or LSPC or KLIEP.
11: for i = 1, 2, . . . , mte do
12: Compute η̃(xi)
13: ŷi = sign(η̃(xi) − 0.5)
14: end for

based on very good empirical performance of the scheme, we believe that
RD,α(sign(η̃e − α

γ+(1−γ)α )) = RD,α(sign(ηe − α
γ+(1−γ)α )) where ηe is an esti-

mate of η.

5 Comparison of lα,usq Based Regularized ERM and
Algorithm (η̃, α) to Existing Methods on UCI Datasets

In this section, we consider some UCI datasets [1] and demonstrate that lα,usq is
(α, γ, ρ)-robust. Also, we demonstrate the performance of Algorithm (η̃,α) with
η̃ estimated using Lk-fun, LSPC and KLIEP. In addition to Accuracy (Acc),
Arithmetic mean (AM) of True positive rate (TPR) and True negative rate
(TNR), we also consider two measures suited for evaluating classifiers learnt on
imbalanced data, viz., F measure and Weighted cost (WC) defined as below:

F =
2TP

2TP + FP + FN
and WC = (1 − α)FN +

α

γ
FP

where TP, TN, FP, FN are number of true positives, true negatives, false posi-
tives and false negatives for a classifier.

To account for randomness in the flips to simulate a given noise rate, we
repeat each experiment 10 times, with independent corruptions of the data set
for same noise (ρ) setting. In every trial, the data is partitioned into train and
test with 80-20 split. Uniform noise induced 80% data is used for training and
validation (if there are any parameters to be tuned like γ). Finally, 20% clean
test data is used for evaluation. Regularization parameter, λ is tuned over the set
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Λ = {0.01, 0.1, 1, 10}. On a synthetic dataset, we observed that the performance
of our methods and cost sensitive Bayes classifier on clean data w.r.t. Accuracy,
AM, F and Weighted Cost measure is comparable for moderate noise rates;
details in Supplementary material Section E.3. In all the tables, values within
1% of the best across a row are in bold.

Class Imbalance and Domain Requirement of Cost. We report the accu-
racy and AM values of logistic loss based unbiased estimator (MUB) approach
and approach of surrogates for weighted 0–1 loss (S-W0-1), as it is from the
work of [6] and compare them to Accuracy and AM for our cost sensitive learn-
ing schemes. It is to be noted that [6] assumes that the true noise rate ρ is known
and cost α is tuned. We are more flexible and user friendly as we don’t need the
noise rate ρ and allow for user given misclassification cost α and tune γ.

It can be observed in Table 1 that as far as Accuracy is concerned Algorithm
(η̃,α) and lα,usq based regularized ERM have comparable values to that from
MUB and S-W0-1 on all datasets. As depicted in Table 2, the proposed algo-
rithms have marginally better values of AM measure than that of MUB and
S-W0-1 method. Due to lack of a benchmark w.r.t. F and WC, on these mea-
sures, we compared our schemes to the SVMs trained on clean data and observed
that our schemes fare well w.r.t to these measures too. However, due to space
constraint the details are presented in Supplementary material Section E.1.

Table 1. Averaged Acc (± s.d.) of the cost sensitive predictions made by Algorithm
(η̃, α) and lα,usq based regularized ERM on UCI datasets corrupted by uniform noise.

Dataset Cost ρ Algorithm (η̃, α): η̃ estimate from lα,usq

RegERM

MUB S-W0-1

(n, m+, m−) α Lk-fun

with lsq

Lk-fun

with llog

LSPC KLIEP llog llog

Breast cancer

(9,77,186)

0.2 0.2 0.71± 0.06 0.72 ± 0.04 0.72 ± 0.04 0.61± 0.09 0.72 ± 0.04 0.70 0.66

0.4 0.45± 0.15 0.46 ±0.16 0.52± 0.11 0.54± 0.13 0.66 ± 0.06 0.67 0.56

Pima diabetes

(8,268,500)

0.16 0.2 0.74± 0.02 0.74± 0.03 0.71± 0.04 0.63± 0.03 0.77 ± 0.03 0.76 0.73

0.4 0.70± 0.06 0.71 ± 0.04 0.51± 0.09 0.57± 0.07 0.71 ± 0.04 0.65 0.66

German

(20,300,700)

0.3 0.2 0.74 ± 0.02 0.74 ± 0.02 0.72± 0.01 0.70± 0.03 0.74 ± 0.03 0.66 0.71

0.4 0.64± 0.05 0.64± 0.05 0.58± 0.04 0.66 ± 0.02 0.64± 0.03 0.55 0.67

Thyroid

(5,65,150)

0.25 0.2 0.84± 0.04 0.85± 0.05 0.89 ± 0.03 0.76± 0.13 0.84± 0.03 0.87 0.82

0.4 0.70± 0.15 0.67± 0.15 0.61± 0.07 0.70± 0.12 0.82 ± 0.06 0.83 0.76

Class Balanced and Domain Requirement of Cost. We consider the Bupa
dataset [1] with 6 features where the label is +1 if the value of feature 6 is
greater than 3 otherwise −1 (m+ = 176,m− = 169). We learn a cost sensitive
classifier by implementing Algorithm (η̃,α) with α = 0.25 and η̃ estimated
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Table 2. Averaged AM (± s.d.) of the cost sensitive predictions made by Algorithm
(η̃, α) and lα,usq based regularized ERM on UCI datasets corrupted by uniform noise.

Dataset Cost ρ Algorithm (η̃, α): η̃ estimate from lα,usq

RegERM

MUB S-W0-1

(n, m+, m−) α Lk-fun

with lsq

Lk-fun

with llog

LSPC KLIEP llog llog

Breast cancer

(9,77,186)

0.2 0.2 0.62± 0.06 0.64 ± 0.05 0.60± 0.07 0.56± 0.09 0.59± 0.04 0.59 0.63

0.4 0.49± 0.04 0.50± 0.03 0.54± 0.05 0.52± 0.05 0.56 ± 0.05 0.51 0.56

Pima diabetes

(8,268,500)

0.16 0.2 0.71± 0.02 0.72± 0.02 0.71± 0.02 0.65± 0.01 0.73 ± 0.03 0.63 0.74

0.4 0.67 ± 0.06 0.68 ± 0.07 0.54± 0.03 0.57± 0.06 0.68 ± 0.05 0.56 0.67

German

(20,300,700)

0.3 0.2 0.67± 0.02 0.66± 0.01 0.63± 0.03 0.59± 0.04 0.65± 0.04 0.67 0.69

0.4 0.57± 0.06 0.56± 0.06 0.57± 0.03 0.53± 0.04 0.60 ± 0.03 0.51 0.56

Thyroid

(5,65,150)

0.25 0.2 0.78± 0.06 0.80± 0.05 0.85 ± 0.06 0.72± 0.18 0.75± 0.05 0.82 0.78

0.4 0.63± 0.14 0.62± 0.11 0.64± 0.06 0.63± 0.19 0.74 ± 0.08 0.53 0.72

using Lk-fun with logistic loss. When comparing tuned γ case (from the set
Γ = {0.5, 0.8, 1, 1.2, 1.5}) and γ = 1 case, we observed in Table 3 that tuning γ
is favorable for all measures. Increase in noise rates from (0.1/0.2/0.3) to 0.4 leads
to change in γ values from 0.5 to 1 or 1.5 due to imbalance induced by noise.
Results for η̃ estimated using Lk-fun with lsq are available in Supplementary
material E.2.

Table 3. Dataset: BUPA Liver Disorder (6, 176, 169). The above table depicts the
performance of Algorithm (η̃, α) when η̃ estimate is from Lk-fun with llog based reg-
ularized ERM (λ tuned via CV). Here, α = 0.25 and γ is tuned.

Algorithm (η̃, α): η̃ estimate from Lk-fun with llog

γ tuned γ = 1

ρ Acc AM F WC Acc AM F WC

0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 0.0 ± 0.0 0.99± 0.00 0.99± 0.005 0.99± 0.005 0.05± 0.1

0.1 0.96 ± 0.02 0.96 ± 0.03 0.96 ± 0.04 2.36 ± 1.01 0.88± 0.88 0.88± 0.07 0.89± 0.05 2.22 ± 1.29

0.2 0.91 ± 0.03 0.90 ± 0.03 0.91 ± 0.02 4.09 ± 1.33 0.68± 0.11 0.68± 0.11 0.77± 0.06 5.95± 1.88

0.3 0.88 ± 0.03 0.88 ± 0.03 0.82 ± 0.1 5.47 ± 0.32 0.55± 0.05 0.55± 0.05 0.69± 0.02 8.02± 0.96

0.4 0.61 ± 0.11 0.58 ± 0.09 0.67 ± 0.00 5.64 ± 0.29 0.51± 0.01 0.51± 0.01 0.67 ± 0.01 8.3± 0.475

6 Discussion

We considered the binary classification problem of cost sensitive learning in the
presence of uniform label noise. We are interested in the scenarios where there
can be two separate costs: α, the one fixed due to domain requirement and γ
that can be tuned to capture class imbalance. We first show that weighted 0–1
loss is neither uniform noise robust with measurable class of classifiers nor with
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linear classifiers. In spite of this, we propose two schemes to address the problem
in consideration, without requiring the knowledge of true noise rates.

For the first scheme, we show that linear classifiers obtained using weighted
uneven margin squared loss lα,usq is uniform noise robust and incorporates cost
sensitivity. This classifier is obtained by solving lα,usq based regularized ERM,
that only requires a matrix inversion. Also, a performance bound with respect to
clean distribution for such a classifier is provided. One possible issue here could
be weighted uneven margin squared loss function’s susceptibility to outliers.
However, in our experiments, this scheme performed well. The second scheme
is a re-sampling based algorithm using the corrupted in-class probability esti-
mates. It handles class imbalance in the presence of uniform label noise but
it can be heavily influenced by the quality of η̃ estimates. However, we chose
the η̃ estimation method based on their label prediction ability (as discussed in
Supplementary material Section F.6) and obtained good empirical results.

We provide empirical evidence for the performance of our schemes. We
observed that the Accuracy and AM values for our schemes are comparable to
those given by [6]. Our schemes have other measures like F and Weighted Cost
comparable to that of SVMs trained on clean data; details are in Supplementary
material Section E.1. The two proposed schemes have comparable performance
measures among themselves.

An interesting direction to explore would be cost sensitive learning in Class
Conditional Noise (CCN) models without using/tuning noise rates ρ+ and ρ−.
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Abstract. A combination method is an integral part of an ensemble
classifier. Existing combination methods determine the combined predic-
tion of a new instance by relying on the predictions made by the majority
of base classifiers. This can result in incorrect combined predictions when
the majority predict the incorrect class. It has been noted that in group
decision-making, the decision by the majority, if lacking consistency in
the reasons for the decision provided by its members, could be less reli-
able than the minority’s decision with higher consistency in the reasons
of its members. Based on this observation, in this paper, we propose a
new combination method, EBCM, which considers the consistency of the
features, i.e. explanations of individual predictions for generating ensem-
ble classifiers. EBCM firstly identifies the features accountable for each
base classifier’s prediction, and then uses the features to measure the
consistency among the predictions. Finally, EBCM combines the predic-
tions based on both the majority and the consistency of features. We
evaluated the performance of EBCM with 16 real-world datasets and
observed substantial improvement over existing techniques.

1 Introduction

With the rapid development of artificial intelligence, we are increasingly relying
on machine-generated decisions such as approval of bank loans or credit cards.
Due to their higher prediction accuracy, ensemble classifiers are often used for
facilitating such automated decision making [5,6]. Ensemble classifiers use group
decision-making process to make predictions using a set of base classifiers.

Traditional ensemble classifiers combine the predictions using majority voting
(MV) or arithmetic operations such as sum, average, product, and max [11,17].
The main idea in these methods is that the class predicted by most base classifiers
is most likely to be the true class [12]. However, in many cases, reliance on the
majority voting leads to incorrect combined predictions, because if the majority
of classifiers make incorrect predictions, their combination will be incorrect as
well. To illustrate, Fig. 1 shows an ensemble classifier using MV for sentiment
analysis of patients’ reviews on their doctors. Each review is lablled as positive
or negative based on the expressed sentiment [21]. For the given example, though
c© Springer Nature Switzerland AG 2019
Q. Yang et al. (Eds.): PAKDD 2019, LNAI 11439, pp. 29–41, 2019.
https://doi.org/10.1007/978-3-030-16148-4_3
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Fig. 1. Majority voting predicts the incorrect class.

the true sentiment is negative, the majority (three out of five) predict positive
sentiment. Consequently, the ensemble fails to predict the true sentiment.

Moreover, favouring the majority may not be reliable when the probabilities
of the predicted classes are very close. For example, if P(−) = 0.51 and P(+) =
0.49 for all three majority classifiers, and P(−) = 0.48 and P(+) = 0.52 for both
minority classifiers then the ensemble output is “−”, the true class which is not
reliable as the probabilities of different classes are not significantly different.

To improve combined predictions, researchers have proposed various methods
to assign weights to the base classifiers, based on their performance, and thus
more accurate base classifiers contribute more to the combined prediction [3,
14]. However, the weights cannot resolve the issues depicted in Fig. 1, as the
majority of the base classifiers have predicted “+”, and the weighted aggregated
probability of “+” is still higher than that of “−”. Moreover, the weights are
computed once and the same weights are applied to all instances, but in reality
a classifier can make better predictions for a certain type of data even though
its overall accuracy is poor.

To solve the above problems, we revisit the human group decision-making
process. Research shows that conflicting decisions (e.g. some people in a group is
supporting “+” and some “−”) often lead to errors [8]. Hence, when a decision is
made by a group of people, we ask not only for each persons’s decision, but also
the reason why such a decision is made. For example, when three people vote for
“+”, but giving inconsistent reasons for their decisions, while two people vote
for “−” with consistent reasons, it is reasonable to have the final decision as
“−” even fewer people support it. The reason is that inconsistent explanations
among the majority group has lowered their confidence on the decision.

Inspired by these observations, we propose a novel Explanation-Based Com-
bination Method (EBCM) to make use of the semantic explanations to base
classifiers’ predictions to facilitate the generation of the final prediction. To the
best our knowledge, this is the first work which combines multiple predictions
based on their semantic explanations.

The main contributions of our work can be summarized as follows:
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• By analysing the human group decision-making process we propose the idea
of including semantic explanations in ensemble learning.

• We propose EBCM for incorporating semantic explanations in ensemble learn-
ing and two measures for determining the most consistent predictions.

2 Problem Definition

Let C = {Cl1, Cl2, . . . , ClT } be a set of classifiers and W = {ω1, ω2, . . . , ωK} be
a set of target classes. Given an instance x, Clt derives a probability pk,t for
ωk and makes a prediction Pt. The goal of a combination method is to combine
P = {Pt : (1 ≤ t ≤ T )} to produce a final prediction (the ensemble prediction).

Let SCk = {Clt | Pt = ωk, 1 ≤ t ≤ T}, 1 ≤ k ≤ K be the set of clas-
sifiers whose predictions are ωk, or supporting ωk. The prediction Pt = ωk

if ∀i ∈ {1, . . . ,K}, pk,t ≥ pi,t. We use Q to denote the set of maximum
class probabilities by all the classifiers respectively over the K classes, i.e.
Q = {pk∗,t | pk∗,t = max{pi,t : 1 ≤ i ≤ K}, 1 ≤ t ≤ T}.

Our problem is to define a combination measure Ψk, 1 ≤ k ≤ K, which
is a function from SCk to a real number i.e., Ψk : SCk → R. The combined
predication then can be represented as:

ω∗ = arg max
k∈{1,2,...,K}

{Ψk} (1)

Traditional combination methods define Ψk based on the base classifiers’
predictions supporting class ωk. In this paper, we follow the idea of human
group decision-making, and we expect Ψk to reflect the bases (or explanations)
on which the predictions are made. Though the classifiers in SCk agree on the
class ωk, we cannot differentiate whether their agreement is based on the same
ground or not from pk∗,t only.

Therefore Ψk should consider two factors in the decision making. The first
factor should reflect the probabilities of the class ωk, denoted as μk. The second
factor should reflect the consistency of the explanations to the prediction made
by the base classifiers in SCk, denoted by ck. Following [20], Ψk can be obtained
by multiplying the two factors, that is,

Ψk = μk × ck (2)

Now the question is how to obtain ck based on the set of classifiers SCk. This
question can be divided into the following two sub-questions:

1. Given a set of classifiers SCk and their prediction ωk, how to extract the
explanations to the prediction by all classifiers in SCk, denoted as Ek?

2. Given Ek, how to measure the consistency of the explanations of all classifiers
in SCk, i.e. how to define ck?
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3 Explanation-Based Combination Method (EBCM)

The flow of EBCM consists of three steps. Firstly, for each supporting clas-
sifiers set SCk, we compute the aggregated probabilities μk from Q following
[11,17]. Secondly, we extract the explanations for the predictions (Sub-Problem
1). Finally, we compute the consistency score ck among the explanations sup-
porting ωk (Sub-Problem 2).

An overview of EBCM, expanding the example in Fig. 1, is given in Fig. 2. We
use NB, DT and LR to refer to the Näıve Bayes, Decision Tree, and Regression
classifiers respectively. Hence, W = {−,+}, Q = {0.77, 1, 0.6, 0.57, 0.56} the
supporting classifiers sets are SC− = {SVM,LR} and SC+ = {NB,DT, kNN}.
Accordingly, the averaged probabilities of the corresponding predicted classes
are μ− = 0.57 and μ+ = 0.79.

Fig. 2. An overview of EBCM.

3.1 Explanation Extraction

In this step, we extract explanations for the predictions and then calculate the
consistency scores ck, 1 ≤ k ≤ K from the explanations. Each classifier Clt learns
different weights for the features during the training phase. For a new instance,
Clt maps the features in the instance to the target classes using the learned
weights. We extract such features as the explanation ek,t for each prediction cor-
responding to the probabilities in Q such that features in ek,t are most weighted
to generate pk∗,t. Most of the classifiers do not provide explanations [1] i.e., the
features used by Clt to derive the prediction are often not available directly.

To extract ek,t, we use LIME [18] which gives the most valued features for
a prediction. Given any classifier Clt and instance x, LIME creates a sampled
training set by randomly sampling with a probability inversely proportional to
the distance to x and obtaining the labels by applying Clt to the samples. We
note that LIME is independent of the type of Clt and works on an explainable
feature space (transformed from the original features) to return easy to under-
stand explanations. Hence, the interpretability of Clt is not important. For text
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classification, bag-of-words features (used in our experiments) are self explana-
tory and hence, we do not use any transformation. LIME selects a set of features
using Lasso (linear model fitted to the sampled and relabelled dataset) explain-
ing the prediction made by Clt for an instance. We empirically elect the number
of features in the returned explanation word set. We take the explanation word
set for the predictions of the classifiers in SCk to constitute Ek.

For the example in Fig. 2, we extract the following explanations using LIME.

• e+,NB = {recommended,willingness, knowledge}
• e+,DT = {treatment,fibroids, limited}
• e+,kNN = {patient, recommended,pain}
• e−,SVM = {pain, extreme,fibroids}
• e−,LR = {pain, extreme,fibroids}

The explanations provide insights regarding the predictions supporting a
certain class. For example, e+,NB = {recommended,willingness, knowledge} dis-
closes that NB predicts the negative class based on the features recommended,
willingness and knowledge. Once we have the explanations, we evaluate them to
determine the most reliable supporting classifiers SCk by computing c− from
E− = {e−,SVM, e−,LR}, and c+ from E+ = {e+,NB, e+,DT, e+,kNN} as follows.

3.2 Consistency Measurement

Our intuition is that for the same input, the classifiers predicting the same class
with similar explanations should be weighted more towards the combined pre-
diction (larger value for ck). Similarly, if multiple predictions support the same
class based on different features, then we should downweight their contributions
towards the combined prediction (smaller value for ck). To illustrate our intu-
ition, let us consider the explanations showed in Fig. 2 where the explanations
in E− have the same set of features whereas the explanations in E+ do not have
a single common feature. In this example, the E− is more consistent than the
E+, therefore the c− should be greater than the c+.

Fig. 3. Intuitions for cohesion-based and cohesion and separation-based consistency
measures. Explanations corresponding to two target classes are presented by filled and
unfilled circles. (Color figure online)
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Based on the above intuition, we propose the following two consistency mea-
sures to compute the consistency score ck for each Ek.

Cohesion-Based Measure (C): This consistency measure is based on the
closeness of the explanations within the same cluster. The closer, the higher the
consistency. The consistency is measured by the similarities among the expla-
nations (cohesion). We calculate the pairwise similarities for all pairs of expla-
nations in Ek and take their average. For example, Fig. 3(a) shows the pairwise
similarities from the explanation marked in the red circle to the other expla-
nations supporting the same class. Considering sim(ek,i, ek,j) be the similarity
between the explanation ek,i and ek,j , we define the consistency score ck in
Eq. 3. We use any similarity measure (e.g., cosine, Jaccard etc.) to calculate
sim(ek,i, ek,j).

ck =
|Ek|
|C|

∑

ek,x,ek,y∈Ek∧x�=y

sim(ek,x, ek,y) (3)

Note that if all base classifiers predict the same class, then the consistency scores
corresponding to the other classes are 0.

Cohesion and Separation-Based Measure (CS): Our second consistency
measure is based on the distance among the explanations in Ek (cohesion) com-
pared to the explanations corresponding to the classifiers supporting other classes
(separation). If the explanations of classifier set SCk are far away from the expla-
nations belonging to other classifier sets, the consistency is higher.

To define this measure, we use concepts from clustering where the measure
silhouette coefficient [19] assigns a score to each point indicating how well it suits
in the corresponding cluster. A large score (closer to 1) indicates that the point
is well clustered, 0 means that it is on the border of two clusters and a negative
score means that the point is better suited in a different cluster.

In our context, the explanations Ek form a cluster corresponding to the
classifiers predicting the same class ωk. We derive a fitness score for each ek,t
which describes how an explanation in Ek is similar to other explanations. As
shown in Eq. 4, it is derived from ek,t’s average distance a(ek,t) within the cluster
of explanations and its average distance b(ek,t) to the explanations outside the
cluster. Here, d(ek,t, el,j) is the distance between the two explanations.

f(ek,t) =
b(ek,t) − a(ek,t)

max (a(ek,t), b(ek,t))
(4)

where,

a(ek,t) =
1

|Ek| − 1

∑

ek,i∈Ek

d(ek,t, ek,i) and

b(ek,t) = min
ek,t /∈El

⎧
⎨

⎩
1

|El|
∑

el,j∈El

d(ek,t, el,j)

⎫
⎬

⎭
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In this measure, the consistency score ck is then derived from f(ek,t) as shown
in Eq. 5. It is the average of the fitness scores of the explanations in the cluster.
When a cluster is more compact, it is far away from other clusters, the measure
is closer to 1. Otherwise, it is closer to 0.

ck =
1

|Ek|
∑

ek,t∈Ek

f(ek,t) (5)

Note that if all base classifiers predict the same class, then ck = −1 as b(ek,t) = 0
in Eq. 4 and consistency scores corresponding to the other classes are set to 0.

To illustrate, the fitness score of the explanation marked in the red circle in
Fig. 3(b) is computed from its average distance from the explanations supporting
the same class (shown in blue dotted lines) and the average distance from the
explanations supporting the other class (shown in orange dashed lines). The first
average distance is the a(ek,t) and the minimum of the second average distance is
the b(ek,t). The fitness scores of the explanations are computed using Eq. 4. The
fitness scores of the other explanations supporting the same class are computed
in a similar fashion and their average is the desired ck.

Our method is summarized in Algorithm 1. The EBCM divides the classifiers
into K supporting sets where each classifier Cli ∈ SCk supports a target class
ωk ∈ W. For each SCk, the EBCM accumulates the probability of each target
class μk from Q, extracts explanations Ek corresponding to the predictions and
measures a consistency score ck using one of the consistency measures described
above. Finally, the combined prediction ω∗ is made by selecting the class with
the maximum value of Ψk = ck × μk.

Applying Algorithm1 to Fig. 2, we get c− = 1.0 and c+ = 0.11 using the
C measure. Similarly, using the CS measure, we get c− = 1.0 and c+ = −0.06.
Combining the consistency scores with the supports μ− = 0.57 and μ+ = 0.79,
EBCM correctly predicts the “−” class as the combined prediction using both
consistency measures, although three out of five classifiers predict the “+” class.

Algorithm 1. Explanation-Based Combination Method (EBCM)

Input: A set of classifiers C, predictions P, target classes W and a test instance x.
Output: Combined prediction ω∗.
1: for t ∈ {1, 2, . . . , |C|} do
2: Q ← Q ∪ (pk∗,t = max{pk,t : (1 ≤ k ≤ |W|)})
3: end for
4: Find the sets of supporting classifiers {SCk : (1 ≤ k ≤ |W|)}
5: for k ∈ {1, 2, . . . , |W|} do

6: μk ← 1
|SCk|

∑|SCk|
t=1 pk∗,t

7: Ek ← extracted explanations for the predictions of SCk

8: ck ← using Eq. 3 or Eq. 5 from Ek

9: Ψk ← μk × ck
10: end for
11: return ω∗ = arg max1≤k≤|W|{Ψk}
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4 Experiments

We apply EBCM to create an ensemble of five base classifiers for sentiment
analysis, and evaluate the method with 16 real-world datasets, in comparison
with five baseline methods for ensemble creation.

4.1 Experiment Setup

Datasets. Table 1 provides a summary of the 16 real-world social media datasets
used in the experiments (after some preprocessing as described in the next para-
graph). These datasets can be divided into the following three categories:

1. User reviews on products or services, including TVShow, Radio, Camera,
Camp, Music, Drug, Doctor and Movies.

2. Tweets on various events or entities, including Sanders, HCR, OMD, SST-
witter, TwiSent, and SE2017.

3. User comments on YouTube videos, including SSYouTube and SenTube.

For the original datasets with more than two classes in our experiments, we
only take the instances with positive and negative labels. For the datasets where
numerical ratings are provided, we categorize the numerical values to positive
and negative labels. For a dataset with imbalanced numbers of positive and
negative instances (i.e., unequal numbers of instances from both class), after
taking all the samples in the minor class, we randomly select the equal number
of samples from the major class to form a balanced dataset. We use bag-of-words
with binary weights [15] as features.

Table 1. Summary of the datasets.

Dataset #Instance #Features #AW Source

TVShow 190 1704 22 http://cs.coloradocollege.edu/∼mwhitehead

Radio 460 3406 25 http://cs.coloradocollege.edu/∼mwhitehead

Camera 468 4556 63 http://cs.coloradocollege.edu/∼mwhitehead

Camp 534 3839 34 http://cs.coloradocollege.edu/∼mwhitehead

Music 550 7311 70 http://cs.coloradocollege.edu/∼mwhitehead

Drug 662 3877 36 http://cs.coloradocollege.edu/∼mwhitehead

Doctor 876 4727 27 http://cs.coloradocollege.edu/∼mwhitehead

Movies 2000 38952 313 http://www.cs.cornell.edu/people/pabo/movie-review-data/

Sanders 852 2868 16 http://www.sananalytics.com/

HCR 1050 3596 19 https://bit.ly/2yfmZiL

OMD 1080 3002 16 https://bit.ly/2QAWyKT

SSTwitter 1638 5910 17 http://sentistrength.wlv.ac.uk/

TwiSent 2160 7250 18 http://www.mpi-inf.mpg.de/∼smukherjee/data/

SE2017 6034 12655 20 http://alt.qcri.org/semeval2017/task4/

SSYouTube 628 4879 18 http://sentistrength.wlv.ac.uk/

SenTube 4684 11500 19 http://ikernels-portal.disi.unitn.it/projects/sentube/

#AW: average words per instance.

http://cs.coloradocollege.edu/~mwhitehead
http://cs.coloradocollege.edu/~mwhitehead
http://cs.coloradocollege.edu/~mwhitehead
http://cs.coloradocollege.edu/~mwhitehead
http://cs.coloradocollege.edu/~mwhitehead
http://cs.coloradocollege.edu/~mwhitehead
http://cs.coloradocollege.edu/~mwhitehead
http://www.cs.cornell.edu/people/pabo/movie-review-data/
http://www.sananalytics.com/
https://bit.ly/2yfmZiL
https://bit.ly/2QAWyKT
http://sentistrength.wlv.ac.uk/
http://www.mpi-inf.mpg.de/~smukherjee/data/
http://alt.qcri.org/semeval2017/task4/
http://sentistrength.wlv.ac.uk/
http://ikernels-portal.disi.unitn.it/projects/sentube/
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Base Classifiers and Baseline Combination Methods. To evaluate EBCM,
we apply it to build an ensemble of five base classifiers - Näıve Bayes (NB), Deci-
sion Tree (DT), k-Nearest Neighbour (kNN), Support Vector Machine (SVM),
and Logistic Regression (LR). We compare EBCM with the other five ensemble
classifiers built using the same base classifiers and the five commonly used com-
bination methods - Majority Vote (MV), Averaging (AVG), Weighted Averaging
(WAvg), Maximum (Max), and Sum, respectively [11,17].

We use the implementation of the base classifiers in the Python Scikit-learn
machine learning library (http://scikit-learn.org/) with their default parameters.
Then we implement the combination methods using Python.

Evaluation Approach. To measure the performance of EBCM, we firstly com-
pare EBCM with the baseline methods in terms of their performance for the close
instances where two among the five base classifiers predict a class and three pre-
dict the other class. For non-close instances, EBCM works in the same way as
MV, thus we evaluate EBCM for close instances to see how it improves the pre-
diction in such cases. Then we compare the prediction accuracy of EBCM with
the baseline combination methods in order to evaluate the general performance
of the ensemble classifier built using EBCM as the combination method. We also
include the prediction accuracy of the base classifiers in the comparison.

4.2 Results

EBCM Significantly Reduces Errors in Close Instances. Table 2 shows
the experimental results in the close instances. In each cell of Table 2, the con-
tent R1/R2/R3 represents the number of incorrect predictions (or misclassified
instances) by a baseline method (R1), by EBCM using the cohesion-based (C)
consistency measure (R2), and by EBCM using cohesion and separation-based
(CS) consistency measure (R3). For example, 10/6/2 in the cell for dataset
TVShow and baseline MV means that among all the close instances for this
dataset, MV misclassified 10 instances, whereas EBCM misclassified only 6 and
2 close instances using the C and CS consistency measures respectively. In other
words, EBCM recovers 8 of 10 errors using CS consistency measure over the MV
method, achieving 80% improvement.

From Table 2, we see that in all cases, except for the Camp dataset, the CS
measure reduces more errors than the C measure. EBCM significantly reduces
errors by making correct predictions for the close instances.

A deeper analysis of the results confirms that EBCM achieves such a signif-
icant reduction in errors due to the contribution of the consistency scores. For
illustration, two instances are presented in Fig. 4. Three out of the five base clas-
sifiers predict the incorrect class in both instances. For Fig. 4(a) the true class
is “+” and for Fig. 4(b) the true class is “−”. MV fails due to the incorrect pre-
dictions of the majority classifiers. Moreover, the aggregated probability of the
incorrect class is greater than that of the correct class i.e., for Fig. 4(a) μ− > μ+

and for Fig. 4(b) μ+ > μ−. Therefore, AVG, WAvg, Max, and Sum make errors.
A close look at the explanations in Fig. 4 shows in Fig. 4(a) the explanations or

http://scikit-learn.org/
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Table 2. # misclassified close instances per dataset by the baselines and EBCM.

Dataset MV/C/CS AVG/C/CS WAvg/C/CS Max/C/CS Sum/C/CS

TVShow 10/6/2 12/5/1 12/5/1 24/6/2 12/5/1

Radio 46/38/31 49/23/21 43/22/20 54/16/16 49/23/21

Camera 40/25/23 33/18/17 33/19/17 60/12/17 33/18/17

Camp 26/19/20 21/11/11 22/14/15 37/5/6 21/11/11

Music 58/37/33 70/20/18 68/22/20 87/13/16 70/20/18

Drug 69/52/41 70/29/20 71/34/23 93/20/17 70/29/20

Doctor 45/29/25 46/17/13 46/24/20 72/12/11 46/17/13

Movies 154/74/72 158/46/43 148/50/47 333/47/47 158/46/53

Sanders 56/44/32 64/31/17 60/34/19 99/27/15 64/31/17

HCR 77/68/49 73/40/28 71/40/28 72/27/19 73/40/28

OMD 84/70/55 92/45/34 85/48/32 124/38/25 92/45/34

SSTwitter 136/120/92 152/76/59 140/80/62 213/58/47 152/76/59

TwiSent 200/168/130 209/92/73 208/96/77 252/60/53 209/92/73

SE2017 360/245/184 417/158/117 391/164/117 590/112/83 417/158/117

SSYouTube 45/40/33 46/28/19 45/27/18 49/15/4 46/28/19

SenTube 427/363/273 434/265/174 424/271/178 540/189/119 434/265/174

extracted features (words) of the two classifiers which predicted “+” are more
consistent than those for the “−” class. In Fig. 4(b), the explanations for the two
classifiers which predicted “−” class are more consistent. This is also reflected
in the consistency scores (using CS measure), as for Fig. 4(a) c+ > c− and for
Fig. 4(b) c− > c+. Hence, EBCM was able to correct the errors of the baseline
methods by combining the consistency scores c with μ.

Fig. 4. Examples of correct predictions of EBCM.

EBCM Achieves Better Prediction Accuracy. Figure 5 shows the predic-
tion accuracy of EBCM and the baselines, as well as the average prediction
accuracy of the five base classifiers (i.e. the left-most bar labelled with Indv).
The prediction accuracy of each ensemble classifier and each base classifier is
the average accuracy over the 10-fold cross-validations of the classifier with the
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Fig. 5. The prediction accuracies of the
methods over all 16 datasets.

Fig. 6. Average ranks from the Fried-
man test. The lower the better.

16 datasets. From Fig. 5 we see that all baselines (except Max) perform better
than the base classifiers, and among the combination methods, EBCM achieves
the highest accuracy using both C and CS consistency measures. Overall, our
approach outperforms all the compared methods. Among the two consistency
measures, CS achieves better accuracy than C.

The statistical analysis involving the accuracies of the compared methods
confirms that they are significantly different. We apply the Friedman test fol-
lowed by a post-hoc Bonferroni-Dunn test [4,7]. From the Friedman test, we
obtain the p-value = 4.58e−11, i.e., the differences in the prediction accuracies
of the methods (EBCM, baselines and average of the base classifiers) are sta-
tistically significant. The average ranks of the methods, obtained during the
Friedman test and a cut line from the Bonferroni-Dunn test [7] at α = 0.05
(critical difference CD= 2.12) are illustrated in Fig. 6. The methods whose ranks
are above the cut line are worse than the methods below the line. Thus, Fig. 6
confirms that the compared methods are significantly worse than EBCM.

5 Related Work

The combination methods can be divided into trainable and non-trainable meth-
ods [10,17]. The trainable methods either create a set of reference points or a
new classifier form the predictions of the base classifiers on the training dataset.
Given a new instance, the combined prediction is obtained by comparing the
predictions of the base classifiers with the reference points [9,13] or from the
output of the new classifier [2,22]. In contrast, the non-trainable methods aggre-
gate the predictions by counting the frequency of the target classes or applying
an arithmetic operator. Our work belongs to the non-trainable methods.

Among the non-trainable methods, Majority Voting (MV) selects the most
frequent class as the output ignoring the probabilities of the target classes pro-
vided by the base classifiers. To combine the probabilities, there are several meth-
ods based on arithmetic operators such as summation (Sum), average (Avg),
product (Prod), maximum (Max), and minimum (Min) [11,23].

Some non-trainable combination methods use weights to emphasize the pre-
dictions from more accurate classifiers. Generally, the weights are calculated from
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the training set and the simplest strategy is to consider performance as weights
[11,17]. Among other approaches to determine weights, some researchers have
formulated the weight assignment problem as an optimization problem [3,14].

The aforementioned combination methods use information available in the
outputs and but do not benefit from the valuable insights hidden in the underly-
ing features considered for generating particular predictions. Our work looks at
a new way to incorporate the consistencies among the classifiers’ predictions by
extracting features explaining individual predictions and measuring consisten-
cies among the explanations. There are some studies incorporating knowledge
from additional sources to improve ensemble classifiers [16,24]. However, their
approaches provide additional information to the predictions, but cannot distin-
guish the predictions based on the reasoning.

6 Conclusion

In this article, we have presented a new combination method for ensemble classi-
fiers. Unlike previous combination methods that usually combine the predictions
based on the predictions of the majority of the classifiers, our method extracts
feature level explanations for each individual prediction and incorporate consis-
tency among explanations in combination. We have evaluated our method on
sentiment classification task on 16 real-world social media datasets. Experimen-
tal results have shown that our proposed method outperforms the alternative
methods. Although our experiments were performed on sentiment classification,
the proposed method can be used in any multi-classifier system with an appro-
priate consistency measure. In future, we plan to investigate the semantic expla-
nations for evaluating base classifiers in order to improve ensemble systems by
combining only the reliable predictions.
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Abstract. Traditional generative models annotate images by multiple
instances independently segmented, but these models have been becom-
ing prohibitively expensive and time-consuming along with the growth
of Internet data. Focusing on the annotated data, we propose a latent
Gaussian-Multinomial generative model (LGMG), which generates the
image-annotations using a multimodal probabilistic models. Specifically,
we use a continuous latent variable with prior of Normal distribution as
the latent representation summarizing the high-level semantics of images,
and a discrete latent variable with prior of Multinomial distribution as
the topics indicator for annotation. We compute the variational posteri-
ors from a mapping structure among latent representation, topics indi-
cator and image-annotation. The stochastic gradient variational Bayes
estimator on variational objective is realized by combining the reparam-
eterization trick and Monte Carlo estimator. Finally, we demonstrate
the performance of LGMG on LabelMe in terms of held-out likelihood,
automatic image annotation with the state-of-the-art models.

Keywords: Annotated data · Gaussian-Multinomial ·
Multimodal generative models · Latent representation ·
Topics indicator

1 Introduction

Today, the multimedia data produced by the Internet devices is not mere collec-
tions of single type data, but is assemble of related text, images, audio, video and
so on. Annotating image is an essential task in the information retrieval, but arti-
ficial annotating has been becoming prohibitively expensive and time-consuming
with the increasing growth of the Internet data. We take interest in finding auto-
matic methods which find probabilistic model over image-annotations instead
annotating all images explicitly.

In the past few years, a number of methods had been proposed to model
annotated data. Some earlier works view image annotation as a classification
problem [1,2] and make a yes/no decision on every word in vocabulary. How-
ever, the discriminative function cannot estimate the probabilities of annota-
tions. Capturing this probability would be helpful for further annotating new
c© Springer Nature Switzerland AG 2019
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https://doi.org/10.1007/978-3-030-16148-4_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16148-4_4&domain=pdf
https://doi.org/10.1007/978-3-030-16148-4_4


Latent Gaussian-Multinomial Generative Model for Annotated Data 43

images [1]. The probabilistic generative models take the image annotation as a
multiple instances learning problem [3,5], in which each image is represented
by a bag of regions (i.e. instances) artificially segmented from image, and cor-
responding annotation is represented by a bag of words (i.e. annotations). In
this research field, Blei had explored a range of models for annotated data,
among which Gaussian-Multinomial mixture model (GM-Mixture) and corre-
spondence latent Dirichlet allocation (cLDA) are very popular [3]. GM-Mixture
assumes each image-annotation is generated with a common topic, so the result-
ing Multinomial over annotations and Gaussian over images are correlative. But
the independent generative processes for segmented regions and annotated words
lose abundant mutual information between specific regions and words. cLDA is
a Bayesian probabilistic model over a mixture of topics. Given a corpus, cLDA
firstly sample a topic indicator and then draws the word in annotation from
a Multinomial model. cLDA learns a range of probabilistic distributions on the
bag-of-regions for each word in annotation, but it ignores the correlative relation-
ship among instances in common image to some independent instances, which
is one important cause led to incorrect image annotation.

In recent years, deep learning models, including CNN-based regression model
[6], deep multiple instance learning [7] and Recurrent Neural Network Fisher Vec-
tor [8] make use of features extracted from neural network and embedding vectors
to represent the associated tags between image and annotation, then learn the
relationships between the two-types features. These promising researches have
enlightening reference value for further studies. However, traditional deep learn-
ing models cannot calculate the precise probability which is an insufficiency.
Most noteworthy, the neural variational inference [9] has been becoming popu-
lar to optimize latent variational models. In this frame, variational autoencoders
(VAEs) [10,11] are typical models, and they suppose each observation has an
unique latent representation used to summarize the high-level semantics of the
observation. If the observation is image, the latent representation can summa-
rize the structure, color, light and so on. VAEs use a inference network mapping
from observation to compute the variational posterior of latent representation,
and calculate the parameters of generative model on observations from a neu-
ral network with sampling latent representations. The inference network and
generative model are jointly optimized by stochastic gradient variational Bayes
estimator on variational objective.

In this paper, we propose a latent Gaussian-Multinomial generative model
(LGMG) for the annotated data, which is inspired by the neural variational infer-
ence and a higher expressive architecture. Unlike the multiple instances learning
methods, LGMG doesn’t segment image into multiple regions, but builds a multi-
modal generative models for annotated data. In the generative models, a mixture
of Gaussian or Bernoulli is used to generate images and a mixture of Multino-
mial is used to generate annotation. Both generative models share a same topic
and are computed from neural networks with same latent representation, so the
images and annotations are tighter correlative than GM-Mixture and cLDA.
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This paper is organized as follow. We briefly describe the latent Gaussian-
Multinomial generative model and variational autoencoders in Sect. 2. The
details of latent Gaussian-Multinomial generative model and its variational infer-
ence will be described in Sect. 3. Experiments and analysis are presented in
Sect. 4. Finally, we conclude with a brief summary in Sect. 5.

2 Related Works

2.1 Gaussian-Multinomial Mixture Model

Gaussian-Multinomial mixture model (GM-Mixture) is a sample finite mixture
model over annotated data [12–14], and its generative model over annotation is
multiple instances learning. In GM-Mixture model, a discrete latent variable c
with prior of multinomial Mult(λ) is used to represent a joint topic for image-
annotation pair {r,w}. Each {r,w} in dataset is assumed to be generated by
first choosing a value c ∼ Mult(λ), and then repeatedly sampling N region
descriptions (r1, r2, ..., rN ) from a Gaussian N (μ,σ) and M annotation words
(w1, w2, ..., wM ) from a multinomial Mult(β). These generative models over
regions and annotations are both conditional on the chosen value cn. The value
of latent topic variable is sampled once on per image-annotation, and is held
fixed during the generative process. Given the parameters μ, σ, β, the joint
distribution of GM-Mixture is given by,

p(c, r,w) = p(c|λ)
N∏

n=1

p(rn|c,μ,σ)
M∏

m=1

p(wm|c,β). (1)

Given a predefined dimension on latent topic c and a dataset of image-
annotations, the parameters of GM-Mixture model are estimated by the EM
algorithm. Since each image and its annotation are assumed to have been gen-
erated with the condition of same latent topic, the resulting Multinomial and
Gaussian will be corresponding. However, regions and annotations are generated
independently, that results in the lack of mutual information between specific
regions and annotations.

2.2 Variational Autoencoders

Given a dataset X = {xn}Nn=1 consisting of N i.i.d. observations, variational
autoencoders (VAEs) suppose each sample xn is generated by following pro-
cess: (1) a latent representation zn is generated from distribution N (0, I); (2)
a sample xn is generated from a conditional distribution pθ (x|zn). VAEs use
a disentangled inference model qφ(z|x) as a proxy to intractable true poste-
rior pθ (z|x), and its inference and generative models are computed by neural
networks. The model is optimized with maximizing the evidence lower bound
(ELBO) [10,11],

log p(x) ≥ LELBO = Ez∼q[log pθ (x|z)] − DKL(qφ(z|x)‖p(z)), (2)
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where sample zn is yield from the inference model qφ(z|x) = N (z;μφ(xn),
Σφ(xn) by reparameterization trick [15,16].

zn =
1
L

L∑

l=1

μφ(xn) + Σφ(xn) ∗ εn with εn ∼ N (0, I). (3)

The parameters φ, θ can be jointly optimized through maximizing the ELBO
L(θ,φ;x) by stochastic gradient descent (SGD) method [17,18]. And using val-
ues sampled from the inference network, we will be able to compute gradient
estimates for a large class of models and inference networks with higher expres-
sive architectures.

3 Latent Gaussian-Multinomial Generative Model

In consideration of the limitations of artificially segmenting image used in tra-
ditional generative models over annotated data, we propose a latent Gaussian-
Multinomial generative model (LGMG) for annotated data and to realize auto-
matic image annotation. We use a continuous latent variable in LGMG to rep-
resent the abstract semantics of images, and approximate it using a inference
network computed from a neural network with images. Additionally, we assume
the latent topic shared by image and annotation has a prior of Multinomial, and
use a Dirichlet parameterized by a neural network with latent representation
as its inference network. Furthermore, we also build up a multimodal genera-
tive models on the image-annotation pair {x,w} respectively computed from
neural networks. The variational objective is calculated by the combination of
Monte Carlo estimator and reparameterization trick, and it is able to be back-
propagated through neural network.

3.1 Generative Models

Given a dataset D containing N image-annotation pairs {xn,wn}Nn=1, we con-
sider the annotation wn is generated from a mixture of Multinomial, and the
image xn is generated from a mixture of Gaussian or Bernoulli. The generative
process is,

1. For each image-annotation pair {xn,wn} in dataset D:
Choose a topic cn from Mult(π)

2. For image xn:
Sample zn ∼ N (0, I)
Generate image xn from pΘ (x|zn, cn) =

∏K
k=1 pθk

(x|zn)ck
3. For annotation wn:

Generate annotation wn from pη (w|cn) =
∏K

k=1 pηk
(w)ck

where Θ = {θ1,θ2, ...,θK} and η = {η1,η2, ...,ηK}. The k-dimensional variable
c represents the latent topic with a prior of Multinomial distribution Mult(π),
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Fig. 1. The generative process of
image-annotation {x,w}. Each image
x in dataset is generated from a
mixture of Gaussian or Bernoulli
pΘ (x|z) =

∏K
k=1[pθk (x|z)]ck , and its

annotation w is generated from a
mixture of Multinomial pη (w|z, c) =∏K

k=1[pηk (w)}ck .

Fig. 2. The graphical models on the
generative process and inference net-
works in LGMG. In which the solid lines
denote the generative model, dashed
lines denote the inference models on
latent representation z and π respec-
tively.

the image and annotation in a pair share a common topic. The generative model
pΘ (x|z) over image is a mixture of Gaussian for continue data or a mixture
of Bernoulli for discrete data. And each image has an unique latent represen-
tation z generated from Normal distribution N (0, I). Each annotation wn can
be generated from a mixture of Multinomial pη (w|c) =

∏K
k=1[pηk

(w)]ck . The
generative process of image-annotation based in LGMG is shown in Fig. 1.

Given the parameters Θ, η, π, the joint distribution of LGMG is given by,

p(x,w,z, c|Θ,η,π) =
K∑

k=1

p(ck = 1|π)pθk
(x|z)p(z)pηk

(w) (4)

To estimate the LGMG model, we study a structure among the image x,
latent representation z and latent topic c by neural networks, which can explore
the complex relationship between image and annotation and realize the auto-
matic image annotation.

3.2 Neural Variational Inference

• Inference Networks over Latent Variables
For the latent representation z ∼ N (0, I), we choose the inference network

qφ(z|x) = N (z;μφ(x),Σφ(x)) as a proxy for its intractable posterior pΘ (z|x),
where parameters μφ(x) and Σφ(x) are neural networks parameterized by φ.

The latent representation z can summarize high-level semantics of images,
so it is useful for the annotations. We choose a inference network qβ (c|z) =
Dir(f(z,β)) as a proxy of the true posterior pΘ ,η (c|x,w). In which, f(z,β)
is a neural network with K-dimensional output and sigmoid activation. Stick-
Breaking sampler is one popular construction for Dirichlet distribution c ∼
Dir(α), which bases on a key point that each marginal distribution p(ck) is
a Beta(αk,

∑
j<k αj). So we consider the probability of latent topic as,

qβ (ck = 1|f(z,β)) =
exp(fk(z,β))∑

j<k[1 + exp(fj(z,β))]
. (5)
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• Generative Networks over Image-Annotations
In each topic, the generative model over images pθk

(x|z), k = 1, 2, ...,K, is
computed from a fully-connected neural network parameterized by θk. In the
case of binary data, we use

log pθk
(x|z) =

D∑

i=1

[xi log yk,i + (1 − xi) log(1 − yk,i)] with yk = f(z,θk).

(6)
In the case of real-value data, we use

log pθk
(x|z) = log N (x;μk,σ

2
kI)

with μk = fμ(z,θk) and log σ2
k = fσ (z,θk).

(7)

where f , fμ and fσ are the elementwise sigmoid activation function, and θ is
the set of weights and biases of these neural networks.

In generative model over annotations, each topic is generated by a mapping
from latent representation with sufficiently complicated function. We use a fully-
connected neural network parameterized by ηk as the complicated function,

log pηk
(w|z) =

V∑

v=1

wv log �v with  = f (z,ηk), (8)

where f is a neural network with elementwise sigmoid activation, and it out-
puts V -dimensional vector as the generated annotation. The parameters set ηk

represents weights and biases of this neural network.
Figure 2 shows the complete directed graphical models for all inference net-

works on latent variables z, c and generative networks on image-annotation
{x,w}. The solid lines represent the generative process, and dashed lines repre-
sent the inference networks.

3.3 The Variational Bound

In the LGMG, the marginal likelihood over each image-annotation {x,w} can
be written as a combination of KL divergence and ELBO,

log p(x,w) = DKL(qφ (z|x)‖pΘ (z|x, c)) + DKL(qβ (c|z)‖pΘ ,η (c|x,w)) + L(φ,β,Θ,η),

where both DKL and log p(x,w) are onstant, and the lower bound L(φ,β,Θ,η)
on the marginal likelihoods of x and w can be rewritten as,

L(φ,β,θ,η) =Eqφ (z |x)qβ (c|z)[
K∑

k=1

ck log pθk
(x|z)] + Eqβ (c|z)[

K∑

k=1

ck log pηk
(w|z)]

− DKL(qφ(z|x)‖p(z)) − DKL(qβ (c|z)‖pπ (c))

The parameters φ,β,Θ,η can be jointly optimized by maximizing
L(φ,β,θ,η) with the stochastic optimization method, that is,

{φ,β,Θ,η} ← arg max L(φ,β,Θ,η) (9)
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3.4 SGVB Estimator

The stochastic gradient variational Bayes (SGVB) estimator [22,23] which eval-
uates the intractable integration by averaged sampling, and we use it to optimize
the lower bound. For L(φ,β,θ,η), we use two practical sampling methods to
yield samples from qφ(z|x) and qβ (c,π|z) respectively.

Firstly, we use reparameterization trick to sample value z(i) from the infer-
ence model qφ(z|x) = N (z;μφ(x),Σ(x)). Given sample x(i), we sample latent
representation z(i) by noise samples ε(l) ∼ N (0, I), that is,

z(i) =
1
L

L∑

l=1

z(i,l) with z(i,l) = μφ(x(i)) + Σ
1
2
φ (x(i) ∗ ε(l). (10)

The Monte Carlo estimates of some function f(z) can be calculated by,

f(z(i)) = Ep(ε)[f(z(i))] ≈ 1
L

L∑

l=1

f(z(i,l)). (11)

Secondly, we sample π and the probability of c from inference model
qβ (c|z) = Dir(f(z,β)). Its Monte Carlo estimates [20] can be calculated by
sampling parameters f(z,β), that is,

π
(i)
k = qβ (c(i)k = 1|z(i)) = Eqφ (z |x(i))[qβ (c(i)k = 1|z(i))]

≈ 1
L

L∑

l=1

exp(fk(z(i,l),β ))∑
j<k[1 + exp(fj(z(i,j),β))

(12)

c
(i)
k =

{
1 where qβ (c(i)k = 1|z(i)) > qβ (c(i)j = 1|z(i)) k �= j

0 otherwise
(13)

We use minibatch technique to train our model, and Kingma [10] had verified
that as long as the minibatch size M is large enough the number L of samples
in reparameterization trick can be set as 1. In this paper we set the parameters
M = 500 and L = 1. For the minibatch XM = {x(i)}Mi=1 randomly drawn from
dataset, our SGVB estimator on ELBO is shown as follows,

L(φ,β , θ , η) ≈ − 1

M

M∑

i=1

[log qβ (c
(i)|z (i)

) − log p(c
(i)

) + log qφ (z
(i)|x(i)

) − log p(z
(i)

)]

+
1

M

M∑

i=1

K∑

k=1

c
(i)
k [log pη (w

(i)|z (i)
) + log pθk

(x
(i)|z (i)

)].

We can derivate the gradient ∇φ,β ,θ ,ηL(φ,β,θ,η) used in conjunction with
stochastic gradient descend (SGD) method. The generative performance can be
qualified by the negative log-likelihood (NLL) of input {x(i),w(i)}:

NLL = − 1
M

M∑

i=1

K∑

k=1

c
(i)
k [log pη (w(i)|z(i)) + log pθk

(x(i)|z(i))]. (14)



Latent Gaussian-Multinomial Generative Model for Annotated Data 49

4 Experimental Analysis

We evaluated the proposed LGMG by several experiments comparing with tr-
mmLDA [4], cLDA [2], VAEs [10,11] and cVAE [21], among which LGMG, VAEs
and cVAE were all trained end-to-end with minibatch size M = 500, epochs 200
and learning rate 0.001. The dataset used in our experiments is LabelMe [12] con-
sisting of image-annotation pairs. The inference models on latent representation
z in LGMG, VAEs and cVAE were all fixed with same architecture. Specifically,
the preceding two hidden layers were CNN (Convolutional neural network) [23],
and the next two hidden layers were fully connected network with two hidden
layers (each layer with 500 units and activation function Tanh). The generative
networks over image x in LGMG, VAEs and cVAE were an invertible archi-
tecture of the inference network. In LGMG, the generative network pηk

(w|z)
in each topic was a fully connected neural network with two hidden layes, each
layer had 500 units with activation function Tanh, and the output layer in which
had 198 (the amount of words in vocabulary of LabelMe) units with activation
function sigmoid. Inference network qβ (c|z) of latent topic indictor was a fully
connected neural network with two hidden layers, each hidden layer has 500 units
with activation function Tanh, and the output layer had three (the amount of
topics) units with activation function sigmoid. In addition, in cLDA and LDA
the topic indicator was set as 3-dimensions, and the annotation corpus was set
as 198-dimensions.

In Sect. 4.1, we compared and analyzed the generative likelihood perfor-
mances in all comparative models on LabelMe. In Sect. 4.2, we compared the
latent representative spaces between LGMG and VAEs. Finally, we analyzed
the results of automatic image annotation in models of LGMG, tr-mmLDA and
cLDA in Sect. 4.3.

4.1 Automatic Image Annotation

After training LGMG on dataset, we can sample the value z(i) from inference
network qφ(z|x) to generate new image x(i), then sample the topic indictor c(i)

from the posterior qβ (c|z) and generate annotation w(i) ∼ ∏K
k=1[pηk

(w|z)]ck . In
order to evaluate the performance of automatic image annotation, we compared
the generated annotations from cLDA, tr-mmLDA and LGMG on the selected six
images (Fig. 3). We presented the words annotated by three models in Fig. 3, and
these annotations all had more superior likelihoods. In addition, we presented
the likelihoods of annotations generated from LGMG in Table 2.

From Fig. 3 we can see that our model annotated the optimal results among
three models. In comparison, the annotations generated by tr-mmLDA and
cLDA both occurred redundant words and missed some truth words. The reason
for this results is the probabilistic distributions over annotations in tr-mmLDA
and cLDA are both based on independent instances segmented from image, which
ignored the important information of correlations between these instances. If two
instances (for example, the sea and sky) have similar feature, the results of anno-
tations in these two models perhaps be confused. LGMG was not depending on
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Fig. 3. The results of automatic annotated annotations in models of LGMG, tr-
mmLDA and cLDA on selected images from testing set of LabelMe. The error anno-
tations are labeled by blue bold font. (Color figure online)

segmented instances, but used a latent representation to summarize the abstract
semantics (for example the color, light, lines, shape and so on) for image. More
importantly, LGMG generated two types both from neural networks with same
latent representation, which connected the correspondence between image and
annotation. For example, an image is likely the sky if it occurred an airplane
together with some clouds, while it would be the sea if it occurred some chairs
together with motorboats. These results showed the LDAbased models ignored
the important relevant information between instances. While the recognition
model of LGMG could learn an abstract representation on whole image, and
the network-based recognition and generative models are more flexible than tr-
mmLDA and cLDA.

4.2 Generative Likelihood Performance

In this experiment, we compared LGMG with other comparative models in term
of the generative likelihoods on images and annotations. For images, we com-
pared the negative log-likelikoods among LGMG, VAEs and cVAE with different
dimensions of latent representation z. These results were presented in Table 1.
For annotations, we randomly selected six images (Fig. 3) from LabelMe and
recorded the annotations learned by LGMG, tr-mmLDA and cLDA. The prob-
abilities of generated annotations were shown in Table 2.

Table 1. Negative log-likelihoods in models of LGMG, VAEs and cVAE for different
dimensions of z on LabelMe.

Latent representation VAEs cVAEs LGMG (ours)

Dz = 2 −2667.909 −2567.42 −2634.722

Dz = 5 −2441.334 −2398.442 −2435.358

Dz = 10 −2383.964 −2321.336 −2382.739
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Fig. 4. The 2000-epochs training of LGMG with 20-dimensional latent representation.
The blue line represents negative KL divergences over topics indicator scaled by the
right-axis, the red line represents NLLs over images scaled by the left y-axis. (Color
figure online)

Table 2. The probabilities of annotations generated from LGMG for selected images
from LabelMe.

Images Latent

representation

Generated likelihoods for annotations

Image 1 water sea sky mountain sunset sun others

Dz = 2 0.663 0.337 0.466 0.473 0.529 0.40 ≤0.14

Dz = 5 0.987 0.949 0.970 0.942 0.870 0.908 ≤0.027

Dz = 10 0.972 0.966 0.969 0.929 0.876 0.904 ≤0.04

Dz = 20 0.995 0.962 0.994 0.980 0.965 0.972 ≤0.02

Dz = 40 0.985 0.994 0.937 0.938 0.960 0.941 ≤0.015

Image 2 sky trees field others

Dz = 2 0.52 0.07 0.143 ≤0.15

Dz = 5 0.957 0.913 0.920 ≤0.015

Dz = 10 0.984 0.970 0.971 ≤0.04

Dz = 20 0.999 0.972 0.965 ≤0.03

Dz = 40 0.994 0.785 0.84 ≤0.01

Image 3 tree trunk trees ground grass path others

Dz = 2 0.742 0.821 0.917 0.934 0.964 0.963 ≤0.55

Dz = 5 0.995 0.971 0.913 0.952 0.947 0.923 ≤0.15

Dz = 10 0.962 0.972 0.971 0.950 0.961 0.968 ≤0.04

Dz = 20 0.991 0.964 0.976 0.951 0.954 0.950 ≤0.015

Dz = 40 0.992 0.901 0.965 0.952 0.958 0.963 ≤0.025

Image 4 water sky mountain river snow snowy glacier others

Dz = 2 0.735 0.823 0.888 0.872 0.723 0.861 0.894 ≤0.20

Dz = 5 0.979 0.965 0.977 0.962 0.960 0.965 0.964 ≤0.20

Dz = 10 0.984 0.968 0.959 0.971 0.943 0.931 0.954 ≤0.03

Dz = 20 0.974 0.970 0.984 0.977 0.978 0.913 0.969 ≤0.02

Dz = 40 0.972 0.983 0.984 0.953 0.946 0.957 0.958 ≤0.016

Image 5 building road pole door pane others

Dz = 2 0.909 0.718 0.644 0.498 0.878 ≤0.20

Dz = 5 0.970 0.978 0.942 0.967 0.978 ≤0.16

Dz = 10 0.95 0.938 0.951 0.922 0.917 ≤0.02

Dz = 20 0.987 0.996 0.963 0.969 0.954 ≤0.15

Dz = 40 0.940 0.914 0.977 0.991 0.902 ≤0.17

(continued)
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Table 2. (continued)

Images Latent

representation

Generated likelihoods for annotations

Image 6 sky building tree skycraper others

Dz = 2 0.629 0.70 0.774 0.781 ≤0.20

Dz = 5 0.965 0.99 0.968 0.97 ≤0.04

Dz = 10 0.95 0.973 0.939 0.936 ≤0.04

Dz = 20 0.959 0.999 0.961 0.965 ≤0.015

Dz = 40 0.926 0.99 0.983 0.98 ≤0.02

From Table 1 we can see that the generative likelihoods among LGMG, VAEs
and cVAE were very closed. From this results we observe that in different dimen-
sions of latent representation z, the negative log-likelihoods generated by LGMG
were all slightly better than VAEs. This results verified that the LGMG can keep
the generative likelihood performance on image with VAEs.

Figure 4 showed the training process of LGMG on LabelMe, in which the
blue line represents the negative log-density on images and its scales on the left,
and the red line represents the negative log-density on annotations and its scales
on the right. As we can see in this result, the NLL of annotations generated from
LGMG attained to 0 when the epoch beyonds 1500. That is to say, the annota-
tions generated from LGMG closed to truth values. We recorded the likelihoods
for annotation generated by a series LGMG with different dimensions Dz of
latent representation. We can see from these results that along with increase of
Dz the generated likelihoods for annotations became larger, and all big than 0.9
when Dz ≥ 20. In addition, when Dz ≥ 20 the generated likelihoods for untruth
annotations are all less that 0.03.

5 Conclusion

In this paper, we have proposed the LGMG model for annotated data, which
used a latent representation with prior of Normal distribution to summarize the
abstract semantics of images. We assumed the image was generated from a mix-
ture of Gaussian or Bernoulli, and its annotation was generated from a mixture
of Multinomial. Two generative models shared a common topic and latent rep-
resentation and computed from neural networks. Besides, we organized a map-
ping structure to calculate the variational posteriors of latent representation and
topics indicator. Furthermore, we optimized the variational objective through
sampling the latent representation and discrete latent indicator from reparam-
eterization trick and Monte Carlo estimator respectively. The annotation for a
new image was inferred by the probabilities computed from multinomial gener-
ative models. The experimental results have shown that LGMG improved the
accuracy of automatic image annotation, meanwhile it kept likelihood perfor-
mance on images with state-of-the-art generative models. We believe that the
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latent Gaussian-Multinomial generative model is a promising direction for the
application of image-annotation.
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Abstract. Given the wide use of machine learning approaches based on
opaque prediction models, understanding the reasons behind decisions
of black box decision systems is nowadays a crucial topic. We address
the problem of providing meaningful explanations in the widely-applied
image classification tasks. In particular, we explore the impact of chang-
ing the neighborhood generation function for a local interpretable model-
agnostic explanator by proposing four different variants. All the proposed
methods are based on a grid-based segmentation of the images, but each
of them proposes a different strategy for generating the neighborhood of
the image for which an explanation is required. A deep experimentation
shows both improvements and weakness of each proposed approach.

1 Introduction

In the last years, automated decision systems are widely used in all those situa-
tions in which classification and prediction tasks are the main concern [20]. All
these systems exploit machine learning techniques to extract the relationships
between input and output. Input variables can be of any type, as long as it is
possible to find a convenient representation for them. For instance, we can rep-
resent images by matrices of pixels or by a set of features that correspond to
specific areas or patterns of the image [5,16].

We talk about “black box” classifiers when dealing with classifiers having
an opaque, hidden internal structure whose comprehension is not our main con-
cern [12]. The typical example of black box is a neural network, one of the most
used machine learning approaches due to its excellent performance. Therefore,
the recent interest in explanations derives from the fact that we constantly use
decision systems that we cannot understand. How can we prove that an image
classifier built to recognize poisonous mushrooms actually focuses on the mush-
rooms themselves and not on the background?

Another reason for the recent interest in black box explanations is the General
Data Protection Regulation approved by the European Parliament in May 2018.
Besides giving people control over their personal data, it also provides restrictions
c© Springer Nature Switzerland AG 2019
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https://doi.org/10.1007/978-3-030-16148-4_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16148-4_5&domain=pdf
https://doi.org/10.1007/978-3-030-16148-4_5


56 R. Guidotti et al.

and guidelines for automated decision-making processes which, for the first time,
introduce a right of explanation. This means that an individual has the right
to obtain meaningful explanations about the logic involved when automated
decision making takes place [13,18,27].

In this work we study the reasons that lead classifiers to make certain predic-
tions. A common approach for “opening” black boxes is to focus on the predic-
tions themselves by understanding the predictions a-posteriori and comprehend
on what the black box focused for returning the prediction [8]. A recently estab-
lished approach consists in generating a neighborhood composed of both similar
and different instances from the one to be explained [11,21]. Then, observing the
behavior of the black box on the neighborhood is possible to understand which
are the features used for the prediction.

In this work, we propose four variants of the LIME method [21] that enable
the explanation of image classifications based on sparse linear approaches. In
particular, we design alternative ways for generating the neighborhood of the
classified image for which an explanation is required. All the proposed meth-
ods use a grid-based approach for the image segmentation instead of the seg-
mentation based on the quickshift [26] algorithm typical of LIME. However,
each method differs in the strategy adopted for generating a neighborhood of
images as perturbation of the image for which an explanation is required. The
idea behind our proposals is to obtain neighbors by replacing some parts of the
image to be explained with parts of other images and not by simply obscuring
the original pixels. We experiment the impact of these approaches to understand
which are the informative image regions and the overall quality of the explana-
tions by introducing a systematic approach for the evaluation of explanations.
Our evaluation highlights for each proposed approach both improvements and
deficiencies.

The rest of this work is organized as follows. In Sect. 2 we provide an
overview of state-of-art methods for explaining predictions in image classifica-
tion. Section 3 summarizes LIME and provides evidence for some inconsistencies.
In Sect. 4 we present the details of the proposed explanation methods. Section 5
contains a deep experimentation of the proposed approaches. Finally, Sect. 6
concludes the paper by discussing strengths and weaknesses of the proposed
solutions and future research directions.

2 Related Work

In this section we provide an overview of the state-of-the-art for explaining the
predictions of a black box image classifier. According to [12], the problem faced
in this work is the outcome explanation problem that aims at returning a local
explanation for an individual instance. The common strategy for the methods
solving this problem is to provide a locally interpretable model (i.e. that can
be clearly understood by a human). In case of image classification, such inter-
pretable model can be an heatmap, defining the most important regions of the
image that contribute to the prediction [21], or a mask, defining the minimal
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amount of information that, when deleted, causes the prediction to change dras-
tically [8]. Other approaches, instead, aim at providing as explanation a proto-
typical image that clearly illustrates the treats for the given outcome [15].

Approaches based on saliency masks highlights which are the parts of an
image that contribute the most to the prediction. A saliency mask is a subset
of the record to be explained, i.e. a specific part of an image in our case, that
causes the black box to make that specific prediction. The strategy adopted
by [29] consists in the generation of attention maps for a CNN (Convolutional
Neural Network), which highlight salient regions of an image and localize various
categories of objects. Such maps are generated by using the backpropagation
scheme. In this setting, each neuron of a convolutional layer can be matched
with a specific area of an image. Also in the approaches presented in [23,32]
neuron activations are incorporated in their visual explanations. For this reason,
the only family of models that can be explained by these approaches are CNN.

In [8] is presented a model-agnostic framework that defines saliency masks
as meaningful perturbations. The goal is to study the effect of deleting specific
regions from and image and find the smallest deletion mask or artifact that,
when applied, causes the accuracy to drop significantly. Such deletion mask
are presented as explanation. A problem with artifacts is that they can look
unintuitive and unnatural and this impacts heavily on the quality of the visual
explanation. The authors of [8] suggest to not focus on the specific details of the
mask and apply a random jitter.

In [6] is developed a detection method performed by single forward pass
(rather than iteratively, like in [31]) that produces high quality and sharp masks.
The problem of artifacts is solved by cropping the input image rather than
masking it: the goal is to find the tightest rectangular crop that contains the
entire salient region of the image.

All the aforementioned methods define, with different strategies, an expla-
nation at pixel level which identifies “unstructured” relevant areas of an image.
The union of these areas may highlight a mixture of features that does not
express a well defined concept but a blend of many aspects. In contrast, the aim
of [30] is to produce explanation at object level that specify clear, distinct and
highly interpretable parts of an image. The approach is based on the definition of
interpretable CNNs by modifying the way features are represented inside filters
of convolutional layers.

Our approach shares some properties with [23,29,32] with respect to the
definition of masks highlighting the salient regions of an image for a certain
prediction. However, in these approaches the masks are created by digging into
the architecture of specific CNN and they can not be used for other types of
black boxes (see [12] for more details). On the other hand, since we propose a
set of methods extending LIME, they are black box agnostic by design. Finally,
the proposed methods differ both from [21] and [8] because, as detailed in the
following, the neighborhood is not generated by just blurring or obfuscating part
of the image for which an explanation is required, but rather by replacing some
feature of this image with features of other images.
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As last remark we point out that, with respect to the way images are repre-
sented, our methods differs from traditional matrix of pixels, bags of pixels [14],
and bag-of-words [5,17,28]. Since we intent to highlight, cut and replace contigu-
ous patches of pixels, our natural choice is to use grids of RGB values obtained
by aggregating the pixels in the same cell. Further details are provided in Sect. 4.

3 Background

In this section we summarize LIME [21], its main logic, and we provide evidence
for some inconsistencies. LIME is a local model-agnostic explainer. It can pro-
vide an explanation for individual predictions of any classifier without making
any assumptions on its internal structure. LIME’s explanations consists in pro-
viding feedback that can help to understand which are the relationships between
the input and the outcome. In the specific case of image classification, LIME’s
explanation is a saliency mask highlighting the areas that the black box looks
at when taking its decision.

Fig. 1. LIME neighborhood generation process. Left: original image x. Right neighbor
image z ∈ Nx. Top neighborhood of IDRs weights, first row in blue original image
weights, last column in red black box probability of labeling the image as red fox (best
displayed in colors). (Color figure online)

For every image to explain x, LIME builds an interpretable model that mim-
ics the black box in the vicinity of x. To ensure interpretability, LIME builds
ad-hoc interpretable data representations (IDR) x̂ for x by “shattering” x into a
set of areas made of contiguous pixels (regardless of their shape). The IDR x̂ is
therefore defined as an array of bits telling whether or not the single areas are
present1. In order to build the local interpretable model for x, LIME generates
a neighborhood Nx by randomly changing x̂. Then, Nx is provided to the black
box for approximating its local behaviour and seeing how it reacts to variations
1 IDRs do not necessarily correspond to the features used by the black box in the

prediction process. Indeed, such features may be not suitable for being shown as
explanation.
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of the input image x. To do that, a certain number m of samples is drawn uni-
formely at random from the domain of the IDRs in the form of binary vectors
w ∈ {0, 1}k where k is the number of features (contiguous patches of pixels2)
in the image x and each term of w indicates the fact that the corresponding
i-th feature is included, if wi = 1, or not3. More formally, the neighborhood is
defined as Nx = {x̂ × wi|w ∈ {0, 1}k} where w is drawn uniformally at random
from {0, 1}k.

The visual version of an image z ∈ Nx has a plain color area (e.g. grey,
white or black) for the features equals to 0 and the same areas of x for the
features equals to 1. Figure 1 shows how a neighborhood image looks like. In
the neighborhood image we highlight in yellow all the areas the image has been
split into. They are contiguous patches of pixels with an irregular shape. LIME
adopts quickshift [26] an algorithm based on an approximation of mean-shift [4]
for obtaining the contiguous areas.

Keeping the label of the real image as a reference, LIME applies the black box
to the images z in Nx obtaining an array p ∈ [0, 1]m of prediction probabilities
(highlighted in red in Fig. 1), where m is the number of samples in Nx. Each value
is the probability that the black box assigns the original label to a neighborhood
image. Then, LIME trains a comprehensible regression model c where the input
are the IDRs in Nx and the targets are the corresponding values of p. If a
weight of c is positive, it means that the associated area of the image contributes
positively to the prediction of the black box, if the weight is negative, then the
corresponding feature contributes negatively. Hence, for LIME as well as for the
methods we propose, an explanation e is a vector where ei is the importance of
the i-th feature of the image. Finally, LIME returns as explanation the top n
features in e (ordering them by their weights, in descending order) and highlights
the corresponding areas in the image. Intuitively, those are the areas where the
black box looks when making such a prediction. An example of neighborhood
images and explanation can be found in Fig. 2-(top left).

4 Explanation Methods

In this paper we try to overcome a conceptual problem with the neighborhood
generation of LIME. Similarly to [8], LIME does not really generate images
with different information, but it only randomly removes some features, i.e.,
it suppresses the presence of an information rather than modifying it. On the

2 In the rest of this work, feature, patch, area, piece are used to denote the same
concept.

3 For the neighborhood Nx LIME generates m vectors w uniformly at random, assign-
ing to them a weight that is proportional to their distance from the original image.
The distance is used for assigning less importance to noisy images (that are too far
away to be considered neighbors) and for focusing on the samples that are close to
the original picture.
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other hand, with respect to tabular data, LIME behaves differently. It generates
the neighborhood not by information suppression, but by changing the feature
values with other values of the domain: e.g., if the value of the age feature for
a customer is 24, then LIME might replace it with 18 or 36. Our objective is to
understand if an actual modification of the image to generate the neighborhood
can lead to any improvement in the explanation itself.

Therefore, the goal of this work is to explore the impact of changing the
neighborhood generation of LIME when it tries to provide an explanation for
an image classification obtained by a black box. To this end we propose four
different variants of the original LIME approach which are described in details
in the following.

LIME# adopts a grid-based tessellation function that leads to patches with
a regular shape. More formally, given an image x this function returns the vector
x̂ representing a grid with size k = kw×kh. Any element x̂i is a cell corresponding
to the i-th feature of the original image. Given the IDR x̂ and the vector w
(introduced in the Sect. 3), the feature replacement function of LIME# works as
in LIME, i.e., it replaces all the pixels in the feature xi with wi = 0 with a plain
color (e.g. gray, black or white). The grid size k is a parameter of LIME# and
has to be specified by the user, for example in Fig. 2-(top right) is fixed to 8× 8.
This figure shows the result of the application of this approach. The explanation
illustrated by the green cells is simple and clear.

R-LIME# applies the same grid-based tessellation of LIME#. However, it
completely changes the feature replacement function. In particular, it uses an
image-based replacement, that substitutes any feature x̂i having wi = 0 with the
corresponding feature ẑi of an image z randomly selected among a set of given
images I, arbitrary provided by the user. As a consequence R-LIME# takes
as input the image to be explained and a set of images I which will be used

LIME LIME#

R-LIME# C-LIME#

Fig. 2. Examples of neighborhood images generated by LIME, LIME#, R-LIME#,
C-LIME#, respectively from left to right, from top to bottom. The first two images
are an example of neighbors while the third one highlights the explanation for the label
tricycle for the four methods. (Color figure online)
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for the image-based replacement. Such kind of random generation would have
been not possible in a straightforward way without the grid-based segmentation
providing regular (and hence easily replaceable) features. For each image the
algorithm computes the grid-based segmentation and generates the neighbors as
described above. Figure 2-(bottom left) shows the application of R-LIME#, i.e.,
some images in the neighborhood and the explanation for a specific image.

C-LIME# differs from R-LIME# in the definition of the image-based
replacement function. The basic idea of C-LIME# is to use images similar to
that one to be explained for its neighborhood generation. Given an image x,
and an initial set of images I, C-LIME# opportunely constructs the image pool,
to be used for the neighborhood generation of x by selecting only images simi-
lar to x itself. To this aim, C-LIME# applies on I a clustering algorithm that
returns groups of similar images C = {C1, . . . Ct}. Let f be the function that
given an image x assigns it to the closer cluster. Then, for explaining a specific
image x, C-LIME# builds the image pool using only images of the cluster f(x).
Once the image pool is built, the image-based replacement function works as
R-LIME#. Figure 2-(bottom right) shows the impact of applying this method
for the neighborhood generation. The neighborhood images still contain pieces
of other images, but we can notice some interesting details such as wheels of
other vehicles.

The clustering of images is computed by applying a process of undersampling
of each image that depends on the size of the grid. Given the grid size kw × kh
the clustering is performed on images undersampled to kw × kh pixels. The
process first applies the grid-based segmentation to each image. Then, before
the set of images is passed to the clustering algorithm they are flattened into a
monodimensional vector. Clearly, C-LIME# is parametric with respect to the
clustering algorithm and its own parameters.

Lastly, we propose H-LIME#, an hybrid approach that as C-LIME# applies
a clustering algorithm on the set of images I (input of the algorithm) for finding
groups of visually similar images C = {C1, . . . Ct}. However, the image pool is
not composed only by images belonging to the same cluster of the image x to
be explained. Instead, it includes the whole set of images, where each image x
has associated the information about the cluster label f(x). Thus, the image-
based replacement function, given the image x to be explained, substitutes any
feature x̂i having wi = 0 applying the following steps: (i) following a uniform
probability distribution, it randomly decides if using an image belonging to the
closest cluster f(x) or one of the other images4; (ii) then, it randomly draws an
image ẑ from the selected group and replaces x̂i with ẑi.

4 For the sake of space we do not report experiments varying the probability of selec-
tion.
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Table 1. Selected classes (from ILSVRC2012) for the dataset used in the experiments.
For each of the 20 classes, we picked all the 50 corresponding images.

Food Animals Clocks Shops Vehicles

Cheeseburger Timber wolf Analog clock Tobacco shop Motor scooter

Hotdog White wolf Digital clock Barbershop Mountain bike

Red wolf Digital watch Bookshop Unicycle

Coyote Wall clock Toyshop Tricycle

Dingo Bicycle-for-two

Fig. 3. Original image (left), Reference area (right).

5 Experiments

In this section we evaluate the methods described in Sect. 4. First, we present the
dataset used for the evaluation of the explanations, then we define the measures
used for the evaluation and finally, we present the results. The main points we
address are the following: (i) what is the impact of the neighborhood generation?
(ii) is it useful to generate neighborhood using visually similar images when
replacing features? (iii) how well do the explanations approximate the area of
the image containing the label? (iv) what is the ideal number of features?

The experiments5 were performed on Ubuntu 16.04.5 64 bit, 504 GB RAM,
3.6 GHz Intel Xeon CPU E5-2698 v4.

5.1 Dataset and Black Box

Answering the previous questions requires a dataset of images with the areas
responsible for the image classification, so that they can be compared with those
of the explanations. In our experiments we use a subset of the images of the
ILSVRC2012 dataset [22]. We selected a subset of 1000 images belonging to 20
classes from the test set, keeping them equally distributed (50 images per class).
This set of images represent the images requiring an explanation. Table 1 shows
the single classes, grouped by category. We grouped together similar objects
to test the model’s ability to distinguish between small particulars. In these
images we isolated by hand their reference areas by selecting the parts that best
5 Source code and dataset can be found at: https://github.com/leqo-c/Tesi.

https://github.com/leqo-c/Tesi
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represent the object specified in the label provided by the black box and filling
all the remaining parts with a plain white color. The result of this operation is an
enriched dataset that can be used as a reference when evaluating explanations.
A sample image from such dataset is shown in Fig. 3.

As black box we adopt the Inception v3 [24]. Inception v3 is a CNN that
operates on salient parts of the image. If we consider a picture of a bicycle, we
may think of a feature as one of its wheels. Hence, the areas of interest identified
by the black box fit the type of explanations provided by LIME and by the
variants we propose.

5.2 Evaluation Measures

In order to compare the different methods, we define some quality measures
among explanations. Intuitively, we want to measure the ability of the explana-
tions to cover the reference area: the more the explanation covers the reference
area and do not cover not-reference areas, the more it can be trusted. Given
the n most important features of an explanation e, namely e(n), and the refer-
ence area r for a certain image x, we redefine well-known precision, recall and
F-measure as follows:

pre(e(n), r) =
|{e

(n)
i � r|e(n)i ∈ e(n)}|

n
rec(e(n), r) =

pixels({e
(n)
i � r|e(n)i ∈ e(n)})
pixels(r)

F -measure(e(n)r) = (1 + β2) · pre(en, r) · rec(en, r)
(β2 · pre(en, r)) + rec(en, r)

where e
(n)
i � r means that a feature among the top n in the saliency mask of the

explanation is completely contained in the reference area, and pixels(·) returns
the number of pixels in a certain area. The precision measures the ability to
highlight only the relevant parts in the image, the recall measures the ability to
highlight the overall number of pixels of the reference area, while the F-measure
with β = 0.5 puts more emphasis on precision than recall [3] as we want to focus
on quantifying correct explanations [10].

5.3 Assessing Explanation Quality

In this section we analyze the results of the different methods in terms of preci-
sion and F-measure. The results are presented by varying the following param-
eters6:

– the grid size k that takes values in the power of 2, i.e., 8× 8, 16× 16, 32× 32,
etc.7

6 For the sake of simplicity of exposure and due to length constraints, we analyze both
parameters in the same plots and we remand interested readers to the repository for
further details.

7 We do not report results using grid size lower than 8 × 8 (i.e., 2 × 2, 4 × 4, 6 × 6)
or higher than 32 × 32 (i.e., 64 × 64, 128 × 128) has they have poor performance
compared to those reported.
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Fig. 4. Precision of LIME#, R-LIME#, C-LIME#, H-LIME# (from left to right)
w.r.t. LIME varying the number of shown features, with different lines for different
values of the grid size.

Fig. 5. F-measure of LIME#, R-LIME#, C-LIME#, H-LIME# (from left to right)
w.r.t. LIME varying the number of shown features, with different lines for different
values of the grid size.

– the number of top n features shown as explanation that takes values in [1, 100].

As clustering algorithm for C-LIME# and H-LIME# we tested an array of
approaches, i.e., K-Means [25], DBSCAN [7], Spectral [19]. We evaluated their
performance both using internal validation measures (e.g., SSE [25]), and also
by checking the cluster purity with respect to the label of the images clustered
together. As result, we selected K-Means with 20 clusters as best performer to
be used for C-LIME# and H-LIME#.

In Figs. 4 and 5 we report the average precision and F-measure, respectively.
In these plots we vary the number of shown features n on the x-axis, and we
report different lines for different values of the grid size k. Each plot reports the
results with one of the proposed methods, from left to right LIME#, R-LIME#,
C-LIME#, H-LIME#, and compares them with the original version of LIME.

The precision reaches a maximum of about 0.6 using LIME# (Fig. 4 leftmost
plot) with k = 8 × 8 and considering 5 features in both. For shown features ≤ 50
LIME# outperforms LIME. Higher values of grid size, have a negative impact
on the precision, which stabilizes around low values (about 0.25 and 0.1 respec-
tively). R-LIME#, 2nd plot in Fig. 4, has a precision slightly worse than those
of LIME#, except when shownfeatures = 60. C-LIME#, 3rd plot in Fig. 4,
is outperformed by R-LIME# in terms of precision. This is signaling that gen-
erating a neighborhood where the neighbors are created by replacing a part
of an image with a part of a similar image (belonging to the same cluster)



Investigating Neighborhood Generation for Explanations of Image Classifiers 65

drops the ability of the explainer in finding which are the important features.
Indeed, as we replace a patch with a visually similar patches, the probability
of disrupting the prediction is lower, causing the features not to be considered
relevant. H-LIME# (rightmost plot in Fig. 4) tries to mitigate the weaknesses of
C-LIME# by partly using a random replacement similar to R-LIME#. As result
H-LIME# outperforms the other methods when shown features is in the range
[10, 40]. Concerning the F-measure shown in Fig. 5, we can notice the following
aspects. First, with a number of shown features n which does not cover nearly
the whole image (i.e., n < 50), the F-measure reaches a maximum of about
0.42 with LIME# with n = 15 and k = 8 × 8 overcoming LIME. Second, grid
size = 8 × 8 always outperforms the methods with a different setting. Third, for
gridsize ∈ {16× 16, 32× 32} the F-measure rapidly increases for shown features
lower than 30, while remains almost constant for LIME.

An evident result is that high values of grid size inevitably lead to low-quality
explainers. This is because the more we reduce the size of the features, the less
we are likely to capture meaningful patterns inside an image. On the other
hand, lower values noticeably increase the chance of highlighting informative
regions. We should however keep in mind that overlying extended areas (e.g.
grid size = 4 × 4) would lead to dispersive and coarse explanations. Moreover, it
is worth to analyze some information about the sizes of the superpixels generated
by LIME and those of the cells of the grid adopted by the proposed methods.
The total number of pixels in an image of the dataset is about 90,000 (300×300).
The average number of pixels in a superpixel generated by LIME is 1,405 ± 221.
On the other hand, the number of pixels in a cell of the grid depends on the
size of the grid. Using grid size k = 8 × 8 we obtain 300/8 × 300/8 = 1, 406.25.
Therefore, a grid size k = 8 × 8 on average generates cells that resemble the
dimension of the superpixels. This high correspondence of pixels in a feature is a
plausible justification for the similar performance got by the proposed methods
with respect to LIME.

As a consequence, the *LIME# family of methods is generally more precise
than LIME itself. This statement is validated by the deeper analysis we present
in the following. Considering that the object of an image, i.e., its reference area,
on average covers more than one third of the image itself, we can suppose that
for covering the relevant area we need a number of features between 15 and
30. Using grid size = 8 × 8, in Tables 2 and 3 we report the mean and standard
deviation of precision and F-measure for the analyzed methods, respectively. We
report in bold the best method for each row, an up-arrow � highlights if a method
outperforms the original version of LIME. From Table 2 we can notice that the
members of the *LIME# family of methods are (nearly) always more precise
than LIME, and H-LIME# is the most precise and stable method. On the other
hand, Table 3 underlines that (i) only LIME# and H-LIME# overtake LIME in
terms of F-measure, (ii) LIME# as the highest F-measure for the shown features
observed, (iii) H-LIME# is still the most stable approach.



66 R. Guidotti et al.

Table 2. Precision (mean ± stdev) of the methods evaluated for grid size k = 8 × 8).
For each row, the best method is reported in bold, an up-arrow � highlights if a method
outperforms LIME.

n LIME LIME# R-LIME# C-LIME# H-LIME#

10 .485 ± .260 .521± .256 � .477 ± .260 .473 ± .257 .495 ± .252 �

15 .437 ± .243 .469 ± .243 � .443 ± .246 � .440 ± .244 � .478± .239 �

20 .406 ± .237 .436 ± .237 � .416 ± .236 � .417 ± .238 � .438± .231 �

25 .384 ± .234 .411 ± .231 � .396 ± .232 � .401 ± .234 � .415± .227 �

30 .367 ± .232 .393 ± .227 � .384 ± .230 � .384 ± .231 � .396± .224 �

Table 3. F-measure (mean ± stdev) of the methods evaluated for grid size = 8 × 8).
For each row, the best method is reported in bold, an up-arrow � highlights if a method
outperforms LIME.

n LIME LIME# R-LIME# C-LIME# H-LIME#

10 .403 ± .181 .405± .161 � .368 ± .163 .365 ± .161 .382 ± .159

15 .398 ± .183 .411± .172 � .386 ± .173 .383 ± .172 .399 ± .170 �

20 .391 ± .191 .409± .183 � .389 ± .182 .390 ± .184 .403 ± .180 �

25 .384 ± .200 .404± .191 � .388 ± .192 � .392 ± .195 � .401 ± .189 �

30 .376 ± .207 .399± .199 � .389 ± .201 � .389 ± .203 � .397 ± .197 �

6 Conclusion

We have presented an array of methods based on the re-design of the neigh-
borhood generation process of LIME. We have focused on the concept of inter-
pretability of an explanation returned in terms of saliency mask, and we have
tested the impact of using different techniques in the definition of the images’
features. In particular, we argued that replacing patches with a solid color is not
a natural way for producing a significant perturbed image. As additional con-
tribution we have defined a systematic measure for assessing the quality of an
explanation (i.e. what is its level of comprehensibility) by creating an annotated
dataset, that contains for each image an ideal reference area, i.e., the part of the
image that would be highlighted by an explanation provided by a human.

Our results show that replacing features with similar patterns (rather than
random ones) like for C-LIME# prevents the explanation system from indi-
viduating relevant areas in the original image. On the other hand, H-LIME#
which is based on both random patches and patches similar to the image to be
explained, can help in improving the precision of an explanation. Nevertheless,
LIME# which simply suppresses the information of a feature, has an overall
better accuracy.

The findings of this paper are a solid starting point for a work that extends the
methods presented by removing the constraint of the grid tessellation that, while
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simplifying the replacement process, it anchors all the approaches to behave too
similarly to the original LIME method. Indeed, a fascinating research direction
would be to adopt other techniques for embedding images into vectors (e.g., by
means of image histograms [2], bag of visual words from SIFT key-points [16],
or the embedding provided by another neural network [9]), to produce the ran-
dom perturbations on these vectors and then, to reconstruct the corresponding
neighbor images. Another interesting evolution of this work consists in extending
the image neighborhood generation process using more sophisticated generation
techniques, such as genetic programming [11], or an approach based on the min-
imum descriptive set [1], rather than drawing instances completely at random.
Finally, even though an experimentation on different datasets and neural net-
works would not probably provide further insights relatively to the goodness of
the neighborhood generation processes due to the nature of CNN generally used
for classification of images, it would be interesting to check empirically these
assumptions.
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Abstract. Nested dichotomies (NDs) are used as a method of trans-
forming a multiclass classification problem into a series of binary prob-
lems. A tree structure is induced that recursively splits the set of classes
into subsets, and a binary classification model learns to discriminate
between the two subsets of classes at each node. In this paper, we demon-
strate that these NDs typically exhibit poor probability calibration, even
when the binary base models are well-calibrated. We also show that this
problem is exacerbated when the binary models are poorly calibrated.
We discuss the effectiveness of different calibration strategies and show
that accuracy and log-loss can be significantly improved by calibrating
both the internal base models and the full ND structure, especially when
the number of classes is high.

1 Introduction

As the amount of data collected online continues to grow, modern datasets
utilised in machine learning are increasing in size. Not only do these datasets
exhibit a large number of examples and features, but many also have a very high
number of classes. It is not uncommon in some application areas to see datasets
containing tens of thousands or even millions of classes [2,10].

An attractive option to handle datasets with such large label spaces is to
induce a binary tree structure over the label space. At each split node k, the
set of classes present, Ck, is split into two disjoint subsets Ck1 and Ck2. Then, a
binary classification model is trained to distinguish between these two subsets
of classes. Many algorithms have been proposed that fit this general description,
for example [3,5,8,9]. Often, a greedy inference approach is taken in these tree
structures, i.e., test examples only take a single path from the root node to leaf
nodes. This has the inherent drawback that a single mistake along the path to
a leaf node results in an incorrect prediction [5,11].

In this paper, we consider methods with probabilistic classifiers at the inter-
nal nodes, called nested dichotomies (NDs) in the literature [15]. Utilising prob-
abilistic binary classifiers to make routing decisions for test examples has several
advantages over simply taking a hard 0/1 classification. For example, multi-
class class probability estimates can be computed in a natural way by taking
the product of binary probability estimates on the path from the root to the
leaf node [14]. However, although hard classification decisions are avoided, small
errors in the binary probability estimates can accumulate over this product,
c© Springer Nature Switzerland AG 2019
Q. Yang et al. (Eds.): PAKDD 2019, LNAI 11439, pp. 69–80, 2019.
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resulting in inaccurate predictions. Datasets with more classes result in deeper
trees, exacerbating this issue.

In this paper, we investigate approaches to reduce the impact of the accumu-
lation of errors by utilising probability calibration techniques. Probability cali-
bration is the task of transforming the probabilities output by a model to reflect
their true empirical distribution; for the group of test examples that are predicted
to belong to some class with probability 0.8, we expect about 80% of them to
actually belong to that class if our model is well-calibrated. Our main hypothesis
is that the overall predictive performance of NDs can be improved by calibrat-
ing the individual binary models at internal nodes (which we refer to as internal
calibration). However, we also observe that significant performance gains can be
achieved by calibrating the predictions made from the entire ND (referred to as
external calibration), even if the internal models are well-calibrated.

This paper is structured as follows. First, we briefly review NDs and prob-
ability calibration. We then discuss internal and external calibration, provid-
ing theoretical motivation and showing experimental results for each method.
Finally, we conclude and discuss future research directions.

2 Nested Dichotomies

NDs are used as a binary decomposition method for multiclass problems [15].
In this paper, we only consider the case where a single ND structure is built,
although generally superior performance can be achieved by training an ensem-
ble of NDs with different structures. Ensembles of NDs have been shown to
outperform binary decomposition methods like one-vs-all [33], one-vs-one [16]
and error-correcting output codes [12], on some classification problems [15].

The structure of an ND can have a large impact on the predictive perfor-
mance, training time and prediction time. To this end, several methods have
been proposed for deciding the structure of NDs [13,22,23,26,35]. In this paper,
we focus on a simple method that randomly splits the class set into two at each
internal node.

As previously stated, a useful feature of NDs is the ability to produce mul-
ticlass probability estimates p̂i for a test instance (xi, yi) from the product of
binary estimates on the path Pc to the leaf node corresponding to class c:

p̂(c)
i = p(yi = c|xi)

=
∏

k∈Pc

(
I(c ∈ Ck1)p(c ∈ Ck1|xi, yi ∈ Ck) + I(c ∈ Ck2)p(c ∈ Ck2|xi, yi ∈ Ck)

)

where I(·) is the indicator function, Ck is the set of classes present at node k and
Ck1, Ck2 ⊂ Ck are the sets of classes present at the left and right child of node k,
respectively. If desired, one can still perform greedy inference by taking the most
promising branch at each split point, but this is not guaranteed to find the best
solution [5]. Having binary class probability estimates facilitates efficient tree
search techniques [11,20,27] for better inference, as well as top-k prediction.
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3 Probability Calibration

Probability calibration is the task of transforming the outputs of a classifier to
accurate probabilities. It is useful in a range of settings, such as cost-sensitive
classification and scenarios where the outputs of a model are used as inputs for
another. It is also important in real world decision making systems to know when
a prediction from a model is likely to be incorrect.

Some models, like logistic regression, tend to be well-calibrated out-of-the-
box, while other models like näıve Bayes and boosted decision trees usually
exhibit poor calibration, despite high classification accuracy [30]. Some other
models such as support vector machines cannot output probabilities at all, but
calibration can be applied to produce a probability estimate. Calibration is typ-
ically applied as a post-processing step—a calibration model is trained to trans-
form the output score from a model into a well-calibrated probability.

3.1 Calibration Methods

The most commonly used calibration methods in practice are Platt scaling
(PS) [32] and isotonic regression (IR) [36]. Both of these methods are only
directly applicable to binary problems, but standard multiclass transformation
techniques can be used to apply them to multiclass problems [37].

Platt Scaling is a technique that fits a sigmoid curve

σ(zi) =
1

1 + eαzi+β

from the output of a binary classifier zi to the true labels. The parameters α and
β are fitted using logistic regression. PS was originally proposed for scaling the
output of SVMs, but has been shown to be an effective calibration technique for
a range of models [30]. Usually, PS is applied to the log-odds (sometimes called
logits) of the positive class, rather than the probability.

Matrix and Vector Scaling are simple extensions of PS for multiclass prob-
lems [17]. In matrix scaling (MS), instead of single parameters α and β, a matrix
W and bias vector b are learned:

σ(zi) =
1

1 + eWzi+b

where zi is the vector of the log-odds of each class for instance i. MS is equiv-
alent to a standard multiple logistic regression model applied to the log-odds.
It is expensive for datasets with many classes, as the weight matrix W grows
quadratically with the number of classes. Vector scaling (VS) is designed to
overcome this. It is a variant where W is restricted to be a diagonal matrix to
achieve scaling that is linear in the number of classes.
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Isotonic Regression is a non-parametric technique for probability calibra-
tion [36]. It fits a piecewise constant function to minimise the mean squared
error between the estimated class probabilities and the true labels. IR is a more
general method than PS because no assumptions are made about the function
used to map classifier outputs, other than that the function is non-decreasing
(isotonicity). IR has been found to work well as a calibration model, but the
flexibility of the fitted function means it can overfit on small samples.

Other Related Work. In this paper, efficiency is a concern as there are many
models to be calibrated. For this reason, we opt for the simple calibration meth-
ods mentioned above in our experiments. However, there are several more expres-
sive (and expensive) calibration methods in the literature. Zhong and Kwok [38]
and Jiang et al. [19] propose methods for creating a smooth spline from the
piecewise constant function produced in IR. Naeini et al. [29] propose a method
for performing Bayesian averaging over all possible binning schemes—schemes
that split the probability space into several bins and establish a calibrated prob-
ability value per bin. Leathart et al. [21] split the feature space into regions using
a decision tree and build a localised calibration model in each region.

3.2 Measuring Miscalibration

The level of probability calibration that a model exhibits is frequently measured
by the negative log-likelihood (NLL):

NLL = − 1
n

n∑

i=1

yi log p̂i

where n is the number of examples, yi is the one-hot true label for an instance
i and p̂i is the estimated probability distribution. NLL heavily penalises proba-
bility estimates that are far from the true label. For this reason, models which
optimise NLL in training tend to be well-calibrated, although interestingly it
has been shown recently that the kinds of architectures used in modern neural
networks can also produce poorly calibrated models [17]. NLL is also commonly
used as a general measure of model accuracy.

Probability calibration for classification tasks can be visualised through relia-
bility diagrams [28]. In reliability diagrams, the probability range [0, 1] is discre-
tised into K bins B1, . . . , Bk. These bins are chosen such that they have equal
width, or equal numbers of examples. The confidence of each bin is given as
the average estimated probability of examples that fall inside the bin, while the
accuracy of each bin is the empirical accuracy:

conf(Bk) =
1

|Bk|
∑

i∈Bk

p̂i, acc(Bk) =
1

|Bk|
∑

i∈Bk

I(ŷi = yi)

where yi is the true binary label, ŷi is the predicted label, and p̂i is the esti-
mated probability for an instance i [17]. Intuitively, a well-calibrated classifier
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should have comparable confidence and accuracy for each bin. The confidence
and accuracy are plotted against each other for each bin, producing a straight
diagonal line for a well-calibrated classifier.

Naeini et al. applied the same idea to give a direct quantitative measure
of calibration [29], called the expected calibration error (ECE). This is simply
a weighted average of the residuals in a reliability diagram, weighted by the
number of instances that fall inside each bin.

4 Internal Calibration

In this section, we investigate the effect of calibrating the internal models of
NDs. Our hypothesis is that by improving the quality of the binary probability
estimates, the final multiclass predictive performance will be improved. This is
due to the fact that multiclass probability estimates are produced by computing
the product of a series of binary probability estimates. If the binary probability
estimates are not well-calibrated, then these errors will accumulate throughout
the calculation.

4.1 Theoretical Motivation

It seems reasonable that improving the calibration of internal models will result
in superior probability estimates for the ND, but can we theoretically quantify
this improvement? It turns out that reducing the binary NLL of any internal
model by some amount δ strictly reduces the multiclass NLL of the ND, and
depending on the depth of the internal model being calibrated, the reduction in
multiclass NLL can be as high as δ.

Proposition 1. The NLL of an instance under an ND is equal to the sum of
NLLs of the instance under the binary models on the path from the root node to
the leaf node.

Proof. The NLL of an instance i is given by

NLL = −yi log p̂i = − log p̂(c)
i (1)

where p̂(c)
i is the probability estimate for the true class c. Let Pc be the set of

internal nodes on the path from the root to the leaf corresponding to class c.
Then, p̂(c)

i can be expressed as

p̂(c)
i =

∏

k∈Pc

ỹikp̂ik + (1 − ỹik)(1 − p̂ik) (2)

where ỹik ∈ {0, 1} is the binary meta-label and p̂ik ∈ [0, 1] is the estimated
probability of the positive meta-label for instance i for the binary model at node
k respectively. Because ỹik ∈ {0, 1}, it is equivalent to write

p̂(c)
i =

∏

k∈Pc

p̂ ỹik

ik (1 − p̂ik)(1−ỹik). (3)
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Plugging this into (1) yields

NLL = − log
∏

k∈Pc

p̂ ỹik

ik (1 − p̂ik)(1−ỹik) (4)

= −
∑

k∈Pc

log
(
p̂ ỹik

ik (1 − p̂ik)(1−ỹik)
)

(5)

= −
∑

k∈Pc

ỹik log p̂ik + (1 − ỹik) log(1 − p̂ik), (6)

the sum of NLLs from the models k ∈ Pc. ��
It directly follows that reducing the binary NLL for the model at internal

node k by some amount δ results in a reduction of the multiclass NLL by δ
for each class corresponding to the leaf nodes that are descendants of node k.
This means that a calibration resulting in a binary NLL reduction of δ for some
internal node k reduces the multiclass NLL by δ(nk/n), where nk is the number
of examples in classes whose corresponding leaf nodes are descendants of k.

5 External Calibration

As well as calibrating each internal model, we also consider external calibration
of the entire ND. Even models like logistic regression are usually not perfectly
calibrated in practice. We hypothesise that these minor miscalibrations accumu-
late as the ND gets deeper, which can be rectified by an external calibration
model. More specifically, the accumulated miscalibration is likely to be realised
as under-confident predictions. This is because the final multiclass probability
estimates are established by computing a product of probability estimates along
the path from the root to the leaf. For example, consider an ND of depth six for
some multiclass problem. If each binary model on the path is highly confident
with a probability estimate of 0.9, the correct class will be assigned a relatively
low probability estimate of 0.96 = 0.531. Naturally, this effect is greater for
problems with more classes, as the paths to leaf nodes will be longer.

As an illustrative investigation into the effect of ND depth on their cali-
bration, we built an ND with logistic regression base learners for the ALOI
dataset (see Table 1). Figure 1 shows reliability plots for versions of this ND that
have been “cut-off” at incrementally increasing depths. A test example is con-
sidered to be classified correctly at depth d if its actual class is in the subset of
classes Ck of the node k with highest probability and maximum depth d. Limited
to a depth of one, the ND is simply a single binary logistic regression model,
which exhibits good calibration. However, as the depth cut-off limit increases, it
is clear that the ND becomes increasingly under-confident, i.e., bins that have
high accuracy often have low confidence (Fig. 1, top row). This corresponds to
the curve sitting above the diagonal line. The ECE increases linearly with the
depth of the tree.

This is adequately and efficiently compensated for by applying VS (Fig. 1,
bottom row). VS exhibits low complexity in the number of classes—only two
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Fig. 1. Reliability plots for an ND with logistic regression base learners, cut off at
increasing depth. Top: no external calibration. As the depth increases, the ND becomes
increasingly under-confident because of the effect of multiplying probabilities together.
Bottom: externally calibrated using vector scaling.

Table 1. Datasets used in our experiments.

Name Instances Features Classes

optdigits1 5,620 64 10
micromass1 571 1,301 20
letter1 20,000 16 26
devanagari1 92,000 1,000 46

Name Instances Features Classes

RCV12 15,564/518,571 47,236 53
sector2 6,412/3,207 55,197 105
ALOI2 97,200/10,800 128 1,000
ILSVR201031,111,406/150,000 1,000 1,000
ODP-5K4 361,488/180,744 422,712 5,000

1 UCI Repository [24] , 2 LIBSVM Repository [7], 3 ImageNet [34], 4 ODP [4]

parameters per class—making it suitable for problems with many classes typi-
cally handled by NDs. For externally calibrated NDs, the ECE initially increases
linearly with the depth of the tree (although for d > 1, the ECE values are much
lower than their uncalibrated counterparts). However, at d = 5, the ECE levels
off and even begins to decrease slightly.

6 Experiments

In this section, we present experimental results of calibration of NDs using dif-
ferent base classifiers on a series of datasets. The datasets we used in our experi-
ments are listed in Table 1, and were chosen to span a range of numbers of classes.
Optdigits, letter and devanagari [1] are character recognition datasets for digits,
latin letters, and Devanagari script respectively. Micromass [25] is for the iden-
tification of microorganisms from mass spectroscopy data. RCV1, sector and
ODP-5K are text categorisation tasks, while ALOI and ILSVR2010 are object
recognition tasks. We use the visual codewords representation for ILSVR2010.

In order to obtain performance estimates, we performed 10 times 10-fold
cross-validation for the datasets from the UCI repository, while adopting the



76 T. Leathart et al.

Table 2. NLL (left) and classification accuracy (right) of NDs with logistic regression,
before and after external calibration.

Dataset Baseline Ext. VS

optdigits 0.30 (0.07) 0.30 (0.08)
micromass 5.92 (1.83) 1.88 (0.51)
letter 1.50 (0.06) 1.44 (0.08)
devanagari 2.43 (0.11) 2.03 (0.05)

RCV1 1.00 (0.02) 0.58 (0.01)
sector 2.86 (0.01) 1.25 (0.02)
ALOI 3.60 (0.02) 3.05 (0.03)
ILSVR2010 6.44 (0.01) 5.78 (0.01)
ODP-5K 5.80 (0.01) 4.97 (0.01)

Dataset Baseline Ext. VS

optdigits 90.5 (0.02) 90.6 (0.03)
micromass 80.4 (0.06) 77.2 (0.05)
letter 51.2 (0.03) 53.6 (0.03)
devanagari 42.8 (0.02) 42.8 (0.02)

RCV1 81.4 (0.01) 85.5 (0.00)
sector 84.8 (0.01) 86.7 (0.00)
ALOI 27.4 (0.01) 33.1 (0.01)
ILSVR2010 6.3 (0.00) 5.3 (0.00)
ODP-5K 18.9 (0.00) 22.8 (0.00)

standard train/test splits for the larger datasets with a larger number of classes
(m > 50). The number of instances stated in Table 1 for the larger datasets is
split into number of training and test instances. Note that in each fold and run of
10 times 10-fold cross-validation, a different random ND structure is constructed.
In the case of the larger datasets, the average of 10 randomly constructed NDs is
reported. Standard deviations are given in parentheses, and the best result per
row appears in bold face. The original ODP dataset contains 105,000 classes—
we took the subset of the most frequent 5,000 classes to create ODP-5K for the
purposes of this investigation. We also reduce the dimensionality to 1,000 when
evaluating NDs with boosted trees, by using a Gaussian random projection [6].

We implemented VS [17] and NDs in Python, and used the implementations
of the base learners, IR and PS available in scikit-learn [31]. Our implemen-
tations are available online at https://github.com/timleathart/pynd.

6.1 Well-Calibrated Base Learners

As shown in Fig. 1, overall calibration of NDs can degrade to systematically
under-confident predictions as the depth of the tree increases, even if the base
learners are well-calibrated. To further investigate the effects of ND depth on
predictions, we performed experiments with external calibration to determine
the extent to which the classification accuracy and NLL are affected as well.

Table 2 shows the NLL and accuracy of NDs with logistic regression, before
and after external calibration is applied. Logistic regression models are known to
be well-calibrated [30]. VS [17] is used as the external calibration model. We use
a 90% sample of the training data to build the ND including the base models,
and the remaining 10% to train the external calibration model.

Discussion. Table 2 shows that, for all datasets, a reduction in NLL is observed
after applying external calibration with VS (Ext. VS). For some of the datasets
with fewer classes (optdigits and letter), the reduction is modest, but the
larger datasets see substantial improvements. Interestingly, for some datasets
a large improvement in classification accuracy is also observed, especially for the

https://github.com/timleathart/pynd
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datasets with more classes. A surprising finding is that the accuracy degrades
for ILSVR2010 and micromass, despite a large improvement in NLL.

6.2 Poorly Calibrated Base Learners

Tables 3 and 4 show the NLL and classification accuracy respectively of NDs
trained with poorly calibrated base learners, when different calibration strate-
gies are applied. Specifically, we considered NDs with näıve Bayes and boosted
decision trees as the base learners. The calibration schemes compared are inter-
nal PS (Int. PS), internal IR (Int. IR) and external VS (Ext. VS), as well as
each internal calibration scheme in conjunction with external VS (Both PS and
Both IR, respectively). Three-fold cross validation is used to produce the train-
ing data for the internal calibration models, rather than splitting the training
data. This is to ensure that each internal calibration model has a reasonable
amount of data points to train on. When external calibration is performed, 10%
of the data is held out to train the external calibration model. Note that this
means 10% less data is available to train the ND and (if applicable) perform
internal calibration. Gaussian näıve Bayes is applied for optdigits, micromass,
letter and devanagari, and multinomial näıve Bayes is used for RCV1, sector,
ALOI, ILSVR2010 and ODP-5K as they have sparse features. We use 50 decision
trees with AdaBoost [18], limiting the depth of the trees to three.

Discussion. Tables 3 and 4 show that applying internal calibration is very bene-
ficial in terms of both NLL and classification accuracy. There is no combination
of base learner and dataset for which the baseline gives the best results, and
there are very few cases where the baseline does not perform the worst out of
every scheme. When näıve Bayes is used as the base learner, applying inter-
nal calibration with IR always gives better results than the baseline, and when
an ensemble of boosted trees is used as the base learner, applying internal PS
always outperforms the uncalibrated case. It is well known that these calibration
methods are well-suited to the respective base learners [30], and this appears to
also apply when they are used in an ND.

External calibration also has a positive effect on both NLL and classifica-
tion accuracy in most cases compared to the baseline. However, the best results
are usually obtained when both internal and external calibration are applied
together. For näıve Bayes, the smaller datasets as well as the two object recog-
nition datasets (ALOI and ILSVR2010) generally see the best performance for
both NLL and classification accuracy when applying internal IR in conjunc-
tion with external calibration. Interestingly, the best results for the three text
categorisation datasets were obtained through external calibration only.

Performing both internal PS and external calibration gives the best NLL per-
formance for NDs with boosted trees in most cases, although the improvement
compared to IR is usually small. However, performance in terms of classifica-
tion accuracy is less consistent, sometimes being greater when only calibrating
internally.
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Table 3. NLL of NDs with poorly calibrated base classifiers.

Model Dataset Baseline Ext. VS Int. PS Both PS Int. IR Both IR

Näıve
Bayes

optdigits 4.25 (0.92) 0.84 (0.13) 0.85 (0.11) 0.80 (0.09) 0.71 (0.12) 0.64 (0.09)
micromass 8.66 (1.72) 1.62 (0.42) 0.92 (0.08) 0.75 (0.12) 0.76 (0.12) 0.71 (0.15)
letter 2.33 (0.08) 2.15 (0.08) 2.16 (0.06) 2.06 (0.07) 2.05 (0.07) 1.95 (0.06)
devanagari 13.14 (0.59) 3.31 (0.16) 2.98 (0.05) 2.60 (0.02) 2.75 (0.07) 2.44 (0.05)

RCV1 1.69 (0.19) 0.86 (0.01) 1.14 (0.07) 0.94 (0.03) 0.99 (0.04) 0.91 (0.02)
sector 3.79 (0.36) 1.40 (0.09) 2.07 (0.20) 1.51 (0.10) 1.91 (0.21) 1.77 (0.09)
ALOI 32.9 (0.43) 6.84 (0.02) 5.53 (0.02) 4.33 (0.03) 4.85 (0.03) 4.13 (0.01)
ILSVR2010 32.3 (0.20) 6.81 (0.00) 6.16 (0.00) 6.12 (0.01) 6.17 (0.00) 6.11 (0.00)
ODP-5K 8.49 (0.31) 5.16 (0.05) 6.10 (0.00) 5.51 (0.02) 6.05 (0.11) 5.36 (0.01)

Boosted
Trees

optdigits 3.86 (0.57) 0.63 (0.07) 0.40 (0.04) 0.29 (0.04) 0.39 (0.03) 0.30 (0.04)
micromass 10.01 (2.05) 2.51 (0.52) 1.26 (0.11) 1.00 (0.14) 1.23 (0.27) 0.95 (0.19)
letter 4.86 (0.27) 0.92 (0.04) 0.56 (0.02) 0.44 (0.03) 0.55 (0.02) 0.44 (0.03)
devanagari 3.42 (0.28) 1.03 (0.04) 2.26 (0.17) 0.71 (0.02) 1.97 (0.12) 0.73 (0.02)

RCV1 1.96 (0.02) 1.02 (0.00) 0.93 (0.01) 0.71 (0.01) 0.86 (0.00) 0.74 (0.01)
sector 3.63 (0.20) 2.91 (0.11) 2.67 (0.03) 2.03 (0.03) 2.59 (0.05) 2.20 (0.07)
ALOI 4.44 (0.26) 2.51 (0.05) 4.88 (0.03) 1.05 (0.02) 4.28 (0.04) 1.17 (0.03)
ILSVR2010 6.55 (0.10) 5.86 (0.00) 5.64 (0.00) 5.21 (0.00) 5.45 (0.00) 5.20 (0.00)
ODP-5K 7.73 (0.04) 7.19 (0.00) 7.12 (0.00) 6.60 (0.00) 6.98 (0.00) 6.57 (0.00)

Table 4. Accuracy of NDs with poorly calibrated base classifiers.

Model Dataset Baseline Ext. VS Int. PS Both PS Int. IR Both IR

Näıve
Bayes

optdigits 71.9 (0.05) 74.9 (0.04) 71.9 (0.05) 73.5 (0.04) 77.4 (0.04) 79.5 (0.04)
micromass 74.9 (0.05) 72.4 (0.05) 77.0 (0.05) 76.2 (0.05) 77.2 (0.05) 75.6 (0.05)
letter 32.9 (0.02) 36.4 (0.03) 31.8 (0.03) 36.5 (0.03) 37.6 (0.03) 41.2 (0.03)
devanagari 20.2 (0.02) 22.4 (0.04) 16.7 (0.02) 26.9 (0.01) 26.5 (0.04) 34.0 (0.01)

RCV1 64.4 (0.04) 78.1 (0.00) 69.1 (0.03) 75.6 (0.00) 73.4 (0.01) 76.5 (0.01)
sector 33.7 (0.07) 77.2 (0.01) 63.3 (0.04) 73.7 (0.03) 69.2 (0.04) 69.0 (0.01)
ALOI 2.4 (0.00) 2.9 (0.00) 1.9 (0.00) 12.4 (0.00) 9.4 (0.00) 16.6 (0.01)
ILSVR2010 0.9 (0.00) 1.5 (0.00) 1.4 (0.00) 1.9 (0.00) 2.1 (0.00) 2.6 (0.00)
ODP-5K 4.3 (0.01) 21.0 (0.00) 9.1 (0.00) 16.1 (0.00) 13.5 (0.01) 18.0 (0.00)

Boosted
Trees

optdigits 88.8 (0.02) 88.3 (0.02) 92.2 (0.01) 91.7 (0.01) 92.1 (0.01) 91.5 (0.01)
micromass 71.0 (0.06) 65.0 (0.06) 74.1 (0.06) 72.9 (0.06) 73.7 (0.06) 72.7 (0.05)
letter 85.9 (0.01) 85.1 (0.01) 88.8 (0.01) 88.3 (0.01) 89.0 (0.01) 88.4 (0.01)
devanagari 10.3 (0.06) 71.0 (0.01) 48.8 (0.11) 79.3 (0.01) 63.6 (0.04) 78.3 (0.01)

RCV1 68.1 (0.06) 74.8 (0.01) 81.0 (0.00) 81.4 (0.01) 81.0 (0.00) 80.7 (0.00)
sector 17.4 (0.08) 40.9 (0.02) 60.3 (0.01) 57.6 (0.01) 57.8 (0.01) 55.2 (0.01)
ALOI 7.1 (0.03) 45.1 (0.01) 16.1 (0.01) 74.3 (0.01) 36.8 (0.01) 72.3 (0.00)
ILSVR2010 1.9 (0.00) 4.0 (0.00) 9.3 (0.00) 10.2 (0.00) 9.7 (0.00) 10.0 (0.00)
ODP-5K 3.2 (0.00) 3.8 (0.00) 5.5 (0.00) 6.8 (0.00) 6.2 (0.00) 7.2 (0.00)

7 Conclusion

In this paper, we show that the predictive performance of NDs can be sub-
stantially improved by applying calibration techniques. Calibrating the internal
models increases the likelihood that the path to the leaf node corresponding to
the true class is assigned high probability, while external calibration can correct
for the systematic under-confidence exhibited by NDs. Both of these techniques
have been empirically shown to provide large performance gains in terms of accu-
racy and NLL for a range of datasets when applied individually. Additionally,
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when both internal and external calibration are applied together, the perfor-
mance often improves further, especially so when the number of classes is high.

Future work in this domain includes evaluating alternative external calibra-
tion methods. In our experiments, we applied VS as it is an efficient and scal-
able solution for large multiclass tasks. However, when resources are available,
it is possible that employing a more complex method such as matrix scaling,
or IR with one-vs-rest, could provide superior results. It would also be interest-
ing to investigate whether such calibration measures are as effective for other
methods of constructing NDs than random subset selection [13,22,23,26,35].
We expect that the calibration techniques discussed in this paper will transfer
to such methods.

References

1. Acharya, S., Pant, A.K., Gyawali, P.K.: Deep learning based large scale handwrit-
ten Devanagari character recognition. In: SKIMA, pp. 1–6. IEEE (2015)

2. Agrawal, R., Gupta, A., Prabhu, Y., Varma, M.: Multi-label learning with millions
of labels: recommending advertiser bid phrases for web pages. In: WWW, pp. 13–24
(2013)

3. Bengio, S., Weston, J., Grangier, D.: Label embedding trees for large multi-class
tasks. In: NIPS, pp. 163–171 (2010)

4. Bennett, P.N., Nguyen, N.: Refined experts: improving classification in large tax-
onomies. In: SIGIR, pp. 11–18. ACM (2009)

5. Beygelzimer, A., Langford, J., Ravikumar, P.: Error-correcting tournaments. In:
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Abstract. A system of nested dichotomies (NDs) is a method of decom-
posing a multiclass problem into a collection of binary problems. Such a
system recursively applies binary splits to divide the set of classes into
two subsets, and trains a binary classifier for each split. Many methods
have been proposed to perform this split, each with various advantages
and disadvantages. In this paper, we present a simple, general method
for improving the predictive performance of NDs produced by any subset
selection techniques that employ randomness to construct the subsets.
We provide a theoretical expectation for performance improvements, as
well as empirical results showing that our method improves the root
mean squared error of NDs, regardless of whether they are employed as
an individual model or in an ensemble setting.

1 Introduction

Multiclass classification problems are commonplace in real world applications.
Some models, like neural networks and random forests, are inherently able to
operate on multiclass data, while other models, such as classic support vector
machines, can only be used for binary (two-class) problems. The standard way to
bypass this limitation is to convert the multiclass problem into a series of binary
problems. There exist several methods of performing this decomposition, the
most well-known including one-vs-rest [26], one-vs-one [16] and error-correcting
output codes [7]. Models that are directly capable of working with multiclass
data may also see improved accuracy from such a decomposition [13,25].

The use of ensembles of nested dichotomies (NDs) is one such method for
decomposing a multiclass problem into several binary problems. It has been
shown to outperform one-vs-rest and perform competitively compared to the
aforementioned methods [11]. In an ND [10], the set of classes is recursively split
into two subsets in a tree structure. At each split node of the tree, a binary
classifier is trained to discriminate between the two subsets of classes. Each
leaf node of the tree corresponds to a particular class. To obtain probability
estimates for a particular class from an ND, assuming the base learner can
Electronic supplementary material The online version of this chapter (https://
doi.org/10.1007/978-3-030-16148-4 7) contains supplementary material, which is avail-
able to authorized users.
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Fig. 1. Growth functions for each subset selection method discussed.

produce probability estimates, one can simply compute the product of the binary
probability estimates along the path to the leaf node corresponding to the class.

For non-trivial multiclass problems, the space of potential NDs is very large.
An ensemble classifier can be formed by choosing suitable decompositions from
this space. In the original formulation of ensembles of NDs, decompositions
are sampled with uniform probability [11], but several other more sophisticated
methods for splitting the set of classes have been proposed [8,9,19]. Superior per-
formance is achieved when ensembles of NDs are trained using common ensemble
learning methods like bagging or boosting [27].

In this paper, we describe a simple method that can improve the predictive
performance of NDs by considering several splits at each internal node. Our
technique can be applied to NDs built with almost any subset selection method,
only contributing a constant factor to the training time and no additional cost
when obtaining predictions. It has a single hyperparameter λ that provides a
trade-off between predictive performance and training time, making it easy to
tune for a given learning problem. It is also straightforward to implement.

The paper is structured as follows. First, we describe existing methods for
class subset selection in NDs. Following this, we describe our method and provide
a theoretical expectation of performance improvements. We then present and
discuss empirical results for our experiments. Finally, we touch on related work,
before concluding and discussing future research directions.

2 Class Subset Selection Methods

At each internal node i of an ND, the set of classes present at the node Ci is
split into two non-empty, non-overlapping subsets, Ci1 and Ci2. In this section,
we introduce existing class subset selection methods for NDs. These techniques
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are designed to primarily be used in an ensemble setting, where multiple ND
decompositions are generated that each form an ensemble member. Note that
other methods than those listed here have been proposed for constructing NDs—
these are not suitable for use with our method and are discussed later in Sect. 5.

2.1 Random Selection

The most basic class subset selection method is to split the set of classes into two
subsets using a random split.1 This approach has several attractive qualities. It
is easy to compute, and does not scale with the amount of training data, making
it suitable for large datasets. Furthermore, for an n-class problem, the number
of possible NDs is very large, given by the recurrence relation

T (n) = (2n − 3) × T (n − 1)

where T (1) = 1. This ensures that, in an ensemble of NDs, there is a high level
of diversity amongst ensemble members. We refer to this function that relates
the number of classes to the size of the sample space of NDs for a given subset
selection method as the growth function. Figure 1 shows the growth functions for
the three selection methods discussed in this chapter.

2.2 Balanced Selection

An issue with random selection is that it can produce very unbalanced tree struc-
tures. While the number of internal nodes (and therefore, binary models) is the
same in any ND for the same number of classes, an unbalanced tree often implies
that internal binary models are trained on large datasets near the leaves, which
has a negative effect on the time taken to train the full model. Deeper subtrees
also provide more opportunity for estimation errors to accumulate. Dong et. al.
mitigate this effect by enforcing Ci to be split into two subsets Ci1 and Ci2 such
that abs(|Ci1| − |Ci2|) ≤ 1 [8]. This has been shown empirically to have little
effect on the accuracy in most cases, while reducing the time taken to train
NDs. Balanced selection has greater benefits for problems with many classes.

It is clear that the sample space of class balanced NDs is smaller than that of
random NDs, but it is still large enough to ensure sufficient ensemble diversity.
The growth function for class balanced NDs is given by

TCB(n) =

{
1
2

(
n

n/2

)
TCB(n

2 )TCB(n
2 ), if n is even(

n
(n+1)/2

)
TCB(n+1

2 )TCB(n−1
2 ), if n is odd

where TCB(2) = TCB(1) = 1 [8]. Dong et. al. also explored a form of balancing
where the amount of data in each subset is roughly equal, which gave similar
results for datasets with unbalanced classes [8].

1 This is a variant of the approach from [11], where each member of the space of NDs
has an equal probability of being sampled.
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2.3 Random-Pair Selection

Random-pair selection provides a non-deterministic method of creating Ci1 and
Ci2 that groups similar classes together [19]. In random-pair selection, the base
classifier is used directly to identify similar classes in Ci. First, a random pair
of classes c1, c2 ∈ Ci is selected, and a binary classifier is trained on just these
two classes. Then, the remaining classes are classified with this classifier, and its
predictions are stored as a confusion matrix M . Ci1 and Ci2 are constructed by

Ci1 = {c ∈ Ci \ {c1, c2} : Mc,c1 ≤ Mc,c2} ∪ {c1}
Ci2 = {c ∈ Ci \ {c1, c2} : Mc,c1 > Mc,c2} ∪ {c2}

where Mj,i is defined as the number of examples of class j that were classified
as class i by the binary classifier. In other words, a class is assigned to Ci1 if it is
less frequently confused with c1 than with c2, and to Ci2 otherwise. Finally, the
binary classifier is re-trained on the new meta-classes Ci1 and Ci2. This way, each
split is more easily separable for the base learner than a completely random split,
while exhibiting a degree of randomness, which produces diverse ensembles.

Due to the fact that the size of the sample space of NDs under random-pair
selection is dependent on the dataset and base learner (different initial random
pairs may lead to the same split), it is not possible to provide an exact expression
for the growth function TRP (n); using logistic regression (LR) as the base learner,
it has been empirically estimated to be

TRP (n) = p(n)TRP

(
n

3

)
TRP

(
2n

3

)

where TRP (2) = TRP (1) = 1 and p(n) = 0.3812n2 − 1.4979n + 2.9027 [19].

3 Multiple Subset Evaluation

In class subset selection methods, for each node i, a single class split (Ci1, Ci2)
of Ci is considered, produced by some splitting function S(Ci) : Nn → N

a × N
b

where a + b = n. Our approach for improving the predictive power of NDs is
a simple extension. We propose to, at each internal node i, consider λ subsets
{(Ci1, Ci2)1 . . . (Ci1, Ci2)λ} and choose the split for which the corresponding model
has the lowest training root mean squared error (RMSE). The RMSE is defined
as the square root of the Brier score [5] divided by the number of classes:

RMSE =

√√√√ 1
nm

n∑
i=1

m∑
j=1

(ŷij − yij)2

where n is the number of instances, m is the number of classes, ŷij is the esti-
mated probability that instance i is of class j, and yij is 1 if instance i actually
belongs to class j, and 0 otherwise. RMSE is chosen over other measures such
as classification accuracy because it is smoother and a more sensitive indicator
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Fig. 2. Left: Growth functions for random selection with multiple subset evaluation
and λ ∈ {1, 3, 5, 7}. Solid lines indicate the upper bound, and dashed lines indicate the
lower bound. Middle: Considering class-balanced selection instead of random selection.
Right: Growth functions for random-pair selection.

of generalisation performance. Previously proposed methods with single subset
selection can be considered a special case of this method where λ = 1.

Although conceptually simple, this method has several attractive qualities.
By choosing the best of a series of models at each internal node, the overall
performance should improve, assuming the size of the sample space of NDs is
not hindered to the point where ensemble diversity begins to suffer.

Multiple subset evaluation is also widely applicable. If a subset selection
method S has some level of randomness, then multiple subset evaluation can be
used to improve the performance. One nice feature is that advantages pertaining
to S are retained. For example, if class-balanced selection is chosen due to a
learning problem with a very high number of classes, we can boost the predictive
performance of the ensemble while keeping each ND in the ensemble balanced. If
random-pair selection is chosen because the computational budget for training is
high, then we can improve the predictive performance further than single subset
selection in conjunction with random-pair selection.

Finally, implementing multiple subset evaluation is very simple, and the com-
putational cost for evaluating multiple subsets of classes scales linearly in the
size of the tuneable hyperparameter λ, making the tradeoff between predictive
performance and training time easy to navigate. Additionally, multiple subset
evaluation has no effect on prediction times.

Higher values of λ give diminishing returns on predictive performance, so
a value that is suitable for the computational budget should be chosen. When
training an ensemble of NDs, it may be desirable to adopt a class threshold,
where λ = 1 is used if fewer than a certain number of classes is present at an
internal node. This reduces the probability that the same subtrees will appear
in many ensemble members, and therefore reduce ensemble diversity. In lower
levels of the tree, where the number of classes is small, the number of possible
binary problems is relatively low (Fig. 2).
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3.1 Effect on Growth Functions

Performance of an ensemble of NDs relies on the size of the sample space of
NDs, given an n-class problem, to be relatively large. Multiple subset evaluation
removes the λ − 1 class splits that correspond to the worst-performing binary
models at each internal node i from being able to be used in the tree. The
effect of multiple subset evaluation on the growth function is non-deterministic
for random selection, as the sizes of Ci1 and Ci2 affect the values of the growth
function for the subtrees that are children of i. The upper bound occurs when
all worst-performing splits isolate a single class, and the lower bound is given
when all worst-performing splits are class-balanced. Class-balanced selection, on
the other hand, is affected deterministically as the size of Ci1 and Ci2 are the
same for the same number of classes.

Growth functions for values of λ ∈ {1, 3, 5, 7}, for random, class balanced
and random-pair selection methods, are plotted in Fig. 2. The growth curves for
random and class balanced selection were generated using brute-force computa-
tional enumeration, while the effect on random-pair selection is estimated.

3.2 Analysis of Error

In this section, we provide a theoretical analysis showing that performance of
each internal binary model is likely to be improved by adopting multiple subset
evaluation. We also show empirically that the estimates of performance improve-
ments are accurate, even when the assumptions are violated.

Let E be a random variable for the training root mean squared error (RMSE)
for some classifier for a given pair of class subsets Ci1 and Ci2, and assume
E ∼ N(μ, σ2) for a given dataset under some class subset selection scheme.
For a given set of λ selections of subsets S = {(Ci1, Ci2)1, . . . , (Ci1, Ci2)λ} and
corresponding training RMSEs E = {E1, . . . , Eλ}, let Êλ = min(E). There is no
closed form expression for the expected value of Êλ, the minimum of a set of
normally distributed random variables, but an approximation is given by

E[Êλ] ≈ μ + σΦ−1

(
1 − α

λ − 2α + 1

)
(1)

where Φ−1(x) is the inverse normal cumulative distribution function [28], and
the compromise value α is the suggested value for λ given by Harter [15].2

Figure 3 illustrates how this expected value changes when increasing values
of λ from 1 to 5. The first two rows show the distribution of E and estimated
E[Êλ] on the UCI dataset mfeat-fourier, for a LR model trained on 1,000
random splits of the class set C. These rows show the training and testing RMSE
respectively, using 90% of the data for training and the rest for testing. Note
that as λ increases, the distribution of the train and test error shifts to lower
values and the variance decreases.

2 Appropriate values for α for a given λ can be found in Table 3 of [15].
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Fig. 3. Empirical distribution of RMSE of LR trained on random binary class splits,
for values of λ from one to five. The shaded region indicates empirical histogram,
the orange vertical line shows the empirical mean, and the black dotted vertical line
is the expected value, estimated from (1). Top two rows: train and test RMSE of LR
trained on random binary class splits of mfeat-fourier UCI dataset. For the test data,
the approximated value of E[Eλ] is estimated from the mean and standard deviation
of the train error. Third row: train RMSE of an ND built with random splits and
multiple-subset evaluation, trained on mfeat-fourier for different values of λ. Bottom
row: train RMSE of LR trained on random binary class splits of segment data. (Color
figure online)

This reduction in error affects each binary model in the tree structure, so
the effects accumulate when constructing an ND. The third row shows the dis-
tribution of RMSE of 1,000 NDs trained with multiple subset evaluation on
mfeat-fourier, using LR as the base learner, considering increasing values of
λ. As expected, a reduction in train error with diminishing returns is seen.

In order to show an example of how the estimate from (1) behaves when the
error is not normally distributed, the distribution of E for LR trained on the
segment UCI data is plotted in the bottom row. The assumption of normality is
commonly violated in real datasets, as the distribution is often skewed towards
zero error. As with the other examples, 1,000 different random choices for C1 and
C2 were used to generate the histogram. Although the distribution in this case is
not very well modelled by a Gaussian, the approximation of E[Êλ] from (1) still
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closely matches the empirical mean. This shows that even when the normality
assumption is violated, performance gains of the same degree can be achieved.
This example is not atypical; the same behaviour was observed on the entire
collection of datasets used in this study.

4 Experimental Results

All experiments were conducted in WEKA 3.9 [14], and performed with 10 times
10-fold cross validation. We use class-balanced NDs and NDs built with random-
pair selection, with LR as the base learner. For both splitting methods, we
compare values of λ ∈ {1, 3, 5, 7} in a single ND structure, as well as in ensemble
settings with bagging [4] and AdaBoost [12]. The default settings in WEKA
were used for the Logistic classifier as well as for the Bagging and AdaBoostM1
meta-classifiers. We evaluate performance on a collection of 15 commonly used
datasets from the UCI repository [21], as well as the MNIST digit recognition
dataset [20]. Note that for MNIST, we report results of 10-fold cross-validation
over the entire dataset rather than the usual train/test split. Datasets used in our
experiments and their characteristics are listed in the supplementary material.

We provide critical difference plots [6] to summarise the results of the exper-
iments. These plots present average ranks of models trained with differing val-
ues of λ. Models producing results that are not significantly different from each
other at the 0.05 significance level are connected with a horizontal black bar. Full
results tables showing RMSE for each experimental run, including significance
tests, are available in the supplementary materials.

4.1 Individual Nested Dichotomies

Restricting the sample space of NDs through multiple subset evaluation is
expected to have a greater performance impact on smaller ensembles than larger
ones. This is because in a larger ensemble, a poorly performing ensemble member
does not have a large impact on overall performance. On the other hand, in a
small ensemble, one poorly performing ensemble member can degrade ensemble
performance significantly. In the extreme case, where a single ND is trained,
there is no need for ensemble diversity, so a technique for improving the pre-
dictive performance of an individual ND should be effective. Therefore, we first
compare the performance of single NDs for different values of λ.

Figure 4 shows critical difference plots for both subset selection methods.
Class balanced selection shows a clear trend that increasing λ improves the
RMSE, with the average rank for λ = 1 being exactly 4. For random-pair selec-
tion, choosing λ = 3 is shown to be statistically indistinguishable from λ = 1,
while higher values of λ give superior results on average.

4.2 Ensembles of Nested Dichotomies

Typically, NDs are utilised in an ensemble, so we investigate the predictive per-
formance of ensembles of ten NDs with multiple subset evaluation, with bagging
and AdaBoost employed as the ensemble methods.
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Fig. 4. Critical differences charts for individual NDs. Left: Class balanced selection.
Right: Random-pair selection.
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Fig. 5. Effect of changing the class threshold on RMSE for ensembles of NDs.

Class Threshold. The number of binary problems is reduced when multiple
subset evaluation is applied, which can have a negative effect on ensemble diver-
sity, potentially reducing predictive performance. To investigate this, we built
ensembles of NDs with multiple subset evaluation by introducing a class thresh-
old, the number of classes present at a node required to perform multiple subset
evaluation, and varying its value from one to seven. We plot the test RMSE, rel-
ative to having a class threshold of one, averaged over all the datasets in Fig. 5.
Interestingly, the RMSE increases monotonically, showing that the potentially
reduced ensemble diversity does not have a negative effect on the RMSE for
ensembles of this size. Therefore, we use a class threshold of one in our sub-
sequent experiments. However, note that increasing the class threshold has a
positive effect on training time, so it may be useful to apply it in practice.

Number of Subsets. We now investigate the effect of λ when using bagging
and boosting. Figure 6 shows critical difference plots for bagging. Both sub-
set selection methods improve when utilising multiple subset selection. When
class-balanced selection is used, as was observed for single NDs, the average
ranks across all datasets closely correspond to the integer values, showing that
increasing the number of subsets evaluated consistently improves performance.
For random-pair selection, a more constrained subset selection method, each
value of λ > 1 is statistically equivalent and superior to the single subset case.

The critical difference plots in Fig. 7 (left) show boosted NDs are significantly
improved by increasing the number of subsets sufficiently when class-balanced
NDs are used. Results are less consistent for random-pair selection, reflected in
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Fig. 6. Critical differences charts for ensemble of ten bagged NDs. Left: Class balanced
selection. Right: Random-pair selection.
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Fig. 7. Critical differences charts for ensemble of ten NDs, ensembled with AdaBoost.
Left: Class balanced selection. Right: Random-pair selection.

the critical differences plot (Fig. 7, right), which shows single subset evaluation
statistically equivalent to multiple subset selection for all values of λ, with λ =
7 performing markedly worse on average. As RMSE is based on probability
estimates, this may be in part due to poor probability calibration, which is
known to affect boosted ensembles [24] and NDs [18].

5 Related Work

Splitting a multiclass problem into several binary problems in a tree structure is a
general technique that has been referred to by different names in the literature.
For example, in a multiclass classification context, NDs in the broadest sense
of the term have been examined as filter trees, conditional probability trees,
and label trees. Beygelzimer et al. proposed algorithms which build balanced
trees and demonstrate the performance on datasets with very large numbers of
classes. Filter trees, with deterministic splits [3], as well as conditional probability
trees, with probabilistic splits [2], were explored. Bengio et al. [1] define a tree
structure and optimise all internal classifiers simultaneously to minimise the tree
loss. They also propose to learn a low-dimensional embedding of the labels to
improve performance, especially when many classes are present. Melnikov and
Hullermeier [23] also showed that a method called best-of-k models—simply
sampling k random NDs and choosing the best one based on validation error—
gives competitive predictive performance to the splitting heuristics discussed
so far for individual NDs. However, it is very expensive at training time, as k
independent NDs must be built and tested on a held-out set.

A commonality of these techniques is that they attempt to build a single ND
structure with the best performance. NDs that we consider in this paper, while
conceptually similar, differ from these methods because they are intended to be
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trained in an ensemble setting, and as such, each individual ND is not built
with optimal performance in mind. Instead, a group of NDs is built to maximise
ensemble performance, so diversity amongst the ensemble members is key [17].

NDs based on clustering [9] are deterministic and used in an ensemble by
resampling or reweighting the input. They are built by finding the two classes
(c1, c2) ∈ Ci for which the centroids are furthest from each other, and grouping
the remaining classes based on the distance of their centroids from c1 and c2.

Wever et al. [29] utilise genetic algorithms to build NDs. In their method,
a population of random NDs is sampled and is evolved for several generations.
The final ND is chosen as the best performing model on a held-out validation
set. An ensemble of k NDs is produced by evolving k populations independently,
and taking the best-performing model from each population.

6 Conclusion

Multiple subset selection in NDs can improve predictive performance while
retaining the particular advantages of the subset selection method employed.
We present an analysis of the effect of multiple subset selection on expected
RMSE and show empirically in our experiments that adopting our technique
can improve predictive performance, at the cost of a constant factor in training
time.

The results of our experiments suggest that for class-balanced selection, per-
formance can be consistently improved significantly by utilising multiple subset
evaluation. For random-pair selection, λ = 3 yields the best trade-off between
predictive performance and training time, but when AdaBoost is used, multiple
subset evaluation is not generally beneficial.

Avenues of future research include comparing multiple subset evaluation with
base learners other than LR. It is unlikely that training RMSE of the internal
models will be a reliable indicator when selecting splits based on more com-
plex models such as decision trees or random forests, so other metrics may be
needed. Also, it may be beneficial to choose subsets such that maximum ensem-
ble diversity is achieved, possibly through information theoretic measures such
as variation of information [22].
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Abstract. Microblogging services, such as Twitter and Sina Weibo,
have gained tremendous popularity in recent years. The huge amount of
user-generated information is spread on microblogs. Such user-generated
contents are a mixture of different bursty topics (e.g., breaking news) and
general topics (e.g., user interests). However, it is challenging to discrimi-
nate between them due to the extremely diverse and noisy user-generated
text. In this paper, we introduce a novel topic model to detect bursty
topics from microblogs. Our model is based on an observation that dif-
ferent topics usually exhibit different bursty levels at a certain time. We
propose to utilize the topic-level burstiness to differentiate bursty topics
and non-bursty topics and particularly different bursty topics. Extensive
experiments on a Sina Weibo Dataset show that our approach outper-
forms the baselines and the state-of-the-art method.

Keywords: Sina Weibo · Bursty topic detection · Topic model ·
Hypothesis testing

1 Introduction

Microblogs, such as Twitter and Sina Weibo, have gained an explosive growth in
popularity in recent years. Users on microblogs publish short posts about various
topics. Due to the real-time nature compared with traditional media, microblogs
have become an important resource for reporting events. Thus, bursty topic
detection in microblogs is a non-trivial work and benefits a lot of applications
like crisis management and decision making.

Bursty topics usually refer to the real world happenings whose popularity
goes through a burst increase at the occurring time [13,18]. The large volume
of event-driven posts published on microblogs makes the bursty topic detection
possible. However, people in microblog not only talk about the daily events but
also their daily lives, which makes posts particularly diverse and noisy. Therefore,
it is challenging to do bursty topic detection in microblogs [19].

To address this problem, many works resort to the probability topic models
[2,4,6,16,17,20], where text co-occurrence at a specific time or a location is
captured as the bursty topic. Another attempt is to detect bursty words first, and
c© Springer Nature Switzerland AG 2019
Q. Yang et al. (Eds.): PAKDD 2019, LNAI 11439, pp. 97–109, 2019.
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then cluster them [11,15,17]. For example, [17] modeled the bursty probability
of words and consider it as the prior information of bursty topics when doing
clustering. However, the essential difference between topics is that they exhibit
different bursty levels at a certain time. To illustrate our motivation, we give
a real example regarding the popularity of three topics A, B and C in Fig. 1.
Generally, more frequently talked of a topic compared with previously, more
popular it is at present. From Fig. 1, we can see that different topics present
different bursty levels. Notably, the popularity of topics A and B experience an
increase on 3 Sept 2015, while topic C does not. Accordingly, topics A and B are
bursty topics, and topic C is a general topic. In addition, topic A is more popular
to people compared to topic B. The reason may be that people usually pay
different attention to different topics at the specific time. This example motivates
us to have the following two ideas. First, we can use the burstiness of topics to
differentiate between bursty topics and non-bursty topics. Second, bursty levels
can also be utilized to distinguish different bursty topics. Unfortunately, prior
works only focus on the burstiness of words and did not systematically explores
how to model the bursty level of topics for bursty topic detection.
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Fig. 1. Bursty topic and general topic in Sina Weibo (the normalized frequency is
derived from the frequency of their keywords).

In this paper, we aim to model the topic-level bursty for bursty topic detec-
tion in microblogs. We propose a novel topic model, named Topic-level Bursty
Detection model (TBD). TBD is designed to detect time-specific topics. TBD
parameterizes one distribution over words associated with each temporal topic,
which potentially assumes that posts published at the same time are more likely
to talk about the same topic. Moreover, TBD parameterizes another distribution
over words’ bursty levels for each topic, which potentially assumes that words
with similar bursty levels at the same time are more likely to belong to the same
topic. Topics are responsible for generating both the words and words’ bursty
levels. When a strong co-occurrence of words and their bursty levels appears at a
certain time, TBD will create a topic for them. After learning the latent param-
eters within the model, we identify the bursty topics based on their burstiness
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through a hypothesis testing method. Modeling the topic-level burstiness enjoys
substantial merits for several reasons. First, burstiness is the essential difference
between bursty topics and general topics and particularly different bursty topics,
which makes our approach outperform the compared methods. Second, it pro-
vides a new insight to interpret the discovered topics and enable people to grasp
what topics others pay more attention to, which is beneficial for applications
such as crisis management and decision making. Through the experiments on a
real-world dataset from Sina Weibo, we prove that TBD is a robust model that
not sensitive to the number of topics in terms of precision and outperforms the
baselines and the-state-of-art method in both precision and recall.

2 Bursty Topic Detection Model

In this section, we first introduce how to model the bursty level of words. Fur-
thermore, we present our Topic-level Bursty Detection model (TBD) that models
the bursty level of topics based on the bursty level of words. In what follows,
we show Gibbs Sampling for parameter estimation. We give the notation used
throughout this paper in Table 1.

Table 1. Notations

Notation Description

w, b, z, d Label for word, word’s burstiness, topic and post

y Binary indicator of topics or background topics for word and burstiness

α, β, β′, γ, γ′, ρ Parameters of the Dirichlet (Beta) priors on Multinomial (Bernoulli) distributions

θ Per-time topic distribution

η Per-time Bernoulli distribution over indicators

ϕ Per-topic word distribution

ϕ′ Background word distribution

π Per-topic burstiness distribution

π′ Background burstiness distribution

T, D, V, B, K Number of time slices, posts, unique words, unique burstiness level, topics

Nd, N′
d Number of words and burstiness levels of post d

2.1 Bursty Level of Words

Bursty words usually correspond to the bursty topics. Suppose a word w occurred
n
(t)
w times at time t and assume n

(t)
w is drawn from a Gaussian distribution with

mean μ̂w and standard deviation δ̂w. The bursty level of w at time t can be
calculated by z-score [21] as

bt
w =

n
(t)
w − μ̂w

δ̂w

, (1)
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where μ̂w is the mean of nw in the past S time slices, i.e., μ̂w = 1
S

S∑

s=1
n
(t−s)
w ,

and δ̂w is the standard variance of nw in the past S time slices, i.e., δ̂w =√

1
S

S∑

s=1
(n(t−s)

w − μ̂w)
2
.

The z-score is to compare an observation to a standard normal deviate and
is a dimensionless quantity. The larger the z-score is, the more bursty the word
is. Given the bursty level of words, in the following section, we introduce how
to build the connection between the burstiness of words and the burstiness of
topics.

2.2 Topic-Level Bursty Detection Model

In this section, we propose the Topic-level Bursty Detection model (TBD) for
bursty topic detection. The basic idea of TBD is that different topics usually
present the different bursty levels at a specific time. If words with the similar
bursty levels co-occur more frequently at a point, they are more likely to belong
to the same topic. Unlike previous works that try to strictly divide topics into two
sets (bursty topics and general topics), we detect one set of topics and associate
each topic with a bursty level from which we identify the bursty topics. The
plate notation for TBD is depicted in Fig. 2.

First of all, TBD is a topic model which aims to learn time-specified topical
distributions θ. Each topic in TBD is viewed as a mixture of words, i.e., the
multinomial distribution ϕ. Moreover, we associate each topic with a multinomial
distribution π over the bursty levels of words. When a strong co-occurrence of
words and their bursty levels appears, TBD will create an topic for them. If the
topic mainly covers the high bursty levels, then it is a bursty topic, otherwise,
it is a general topic.

Fig. 2. Plate diagram of TBD
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Besides, a binary indicator y is generated from a Bernoulli distribution η to
filter out the background words that are not related to any topic. Multinomial
distributions ϕ′ and π′ are responsible for capturing these background words and
the corresponding bursty levels, respectively. Given that people usually focus on
one topic in a post, we design TBD by associate a single hidden variable with each
post to indicate its topic. Note that, in contrast to prior generative models that
only model the observed data [4,6,17,20], TBD generates not only the observed
words in the posts but also their bursty levels which are not directed observed. In
our model, we adopt conjugate prior of Dirichlet distribution for the multinomial
distribution and Beta distribution for the Bernoulli distribution. At last, each
topic z will be determined by a distribution over words and a distribution over
words’ bursty levels.

The generative process is summarized in Algorithm 1. Consider there is a post
d published at time t, we first select a topic zt,d by a time-topic distribution θt. To
generate a word wt,d,m with the bursty level bt,d,m in post d, we use a Bernoulli
distribution ηt to generate a binary indicator parameter yt,b,m to decide the
resource of wt,d,m and bt,d,m. When yt,b,m = 1, the word and its bursty level are
generated by a topical distribution. We use the multinomial distributions ϕzt,d

to
generate the word and πzt,d

to generate its bursty level. When yt,b,m = 0, they
are generated by the background distribution, where we use the multinomial
distribution ϕ′

t and π′
t to generate the background words and the corresponding

bursty levels.

Algorithm 1. Generative process for TBD
Sample ϕ′ ∼ Dirichlet (β′) and π′ ∼ Dirichlet (γ)
for each topic z ∈ [1, K] do

Sample the distribution over words ϕk ∼ Dirichlet (β)
Sample the distribution over words’ bursty levels πk ∼ Dirichlet (γ)

for each time slice t ∈ [1, T ] do
Sample the distribution over topics θt ∼ Dirichlet (α)
for each post d ∈ [1, D] of time t do

Sample the distribution over indicators ηt ∼ Dirichlet (ρ)
Sample the topic zt,d ∼ Multinomial (θt)

for the mth word and burstiness level of post d, where m ∈ [1, Nd] do
Sample the indicator yt,d,m ∼ Bernoulli (ηt)
if yt,d,m = 1 then

Sample the word wt,d,m ∼ Multinomial (ϕzt,d
)

Sample the burstiness level bt,d,m ∼ Multinomial (πzt,d
)

if yt,d,m = 0 then
Sample the word wt,d,m ∼ Multinomial (ϕ′

t)
Sample the burstiness level bt,d,m ∼ Multinomial (π′

t)

2.3 Parameter Estimation

Since exact inference for TBD model is intractable, we therefore utilize collapsed
Gibbs sampling [8], a widely used Markov Chain Monte Carlo (MCMC) algo-
rithm, to obtain samples of the hidden variable assignment and to estimate the
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model parameters from these samples. Gibbs sampling iteratively samples latent
variables (i.e., z, y in TBD) from a Markov chain, whose stationary distribution
is posterior.

Let z¬i denote the set of all hidden variables of topics except zi and n
(.)
.,¬i

denote the count that the element i is excluded from the corresponding topic. We
use similar symbols for other variables. Firstly, we sample the topic assignments
zt,d for post d at time t with index i = (t, d) given the observations and other
assignments using a Gibbs sampling procedure as follows:

p(zi = k|z¬i, w, b, α, β, γ) ∝
W∏

w=1

ni,w∏

x=1
(n(w)

k − x + β)

Nd∏

q=1
(

W∑

w=1
n
(w)
k − q + Wβ)

B∏

b=1

ni,b∏

x=1
(n(b)

k − x + γ)

Nd
′∏

q=1
(

B∑

b=1

n
(b)
k − q + Bγ)

(n(k)
t,¬i + α)

(2)

where ni,w and ni,b denote the number of times that word w and bursty level
b occur in post d, n

(w)
k and n

(b)
k denote the number of times that word w and

bursty level b have been observed with topic k, Nd and N ′
d refer to the number

of words and words’ bursty levels occurs in post d, n
(k)
t,¬i denotes the number of

times that topic k has been observed with a post at time t.
Then, for a word wt,d,m and its bursty level bt,d,m in post d at time t with

index j = (t, d,m), we sample yj from the conditional as Eqs. 3 and 4:

p(yj = 1|β, γ, ρ)

∝ n
(w)
k,¬j + β

W∑

w=1
n
(w)
k,¬j + Wβ

n
(b)
k,¬j + γ

B∑

b=1

n
(b)
k,¬j + Bγ

(n(yj=1)
t,¬j + ρ) (3)

p(yj = 0|β′, γ′, ρ)

∝ nw,¬j + β′
W∑

w=1
nw,¬j + Wβ′

nb,¬j + γ′
B∑

b=1

nb,¬j + Bγ′
(n(yj=0)

t,¬j + ρ) (4)

where nw,¬j and nb,¬j denote the number of times word w and bursty level b

assigned to the background distribution, n
(yj=1)
t,¬j and n

(yj=0)
t,¬j refer to the number

of times the word and the corresponding bursty level pair (wj , bj) assigned to
the topical distribution and the background distribution.

After a sufficient number of iterations, we can estimate the unknown param-
eters based on the samples as follows:

θk =
n
(k)
t + α

K∑

k=1

n
(k)
t + Kα

, (5)
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ϕk,w =
n
(w)
k + β

W∑

w=1
n
(w)
k + Wβ

, (6)

ϕ′
w =

nw + β′
W∑

w=1
nw + Wβ′

, (7)

πk,b =
n
(b)
k + γ

B∑

b=1

n
(b)
k + Bγ

, (8)

π′
b =

nb + γ′
B∑

b=1

nb + Bγ′
, (9)

ηy =
n
(y)
t + ρ

n
(y=0)
t + n

(y=1)
t + 2ρ

. (10)

The time complexity of LDA model is o(Niter ∗ K ∗ Nw), where Niter is
the iteration times, K is the number of topics and Nw is the total number of
words. Compared with LDA, TBD introduces an additional topic for capturing
the background words. Thus it’s time complexity is o(Niter ∗ (K + 1) ∗ Nw).

2.4 Hypothesis Testing

Given the estimated parameters, we can easily find out what event topic k refers
to based on its top keywords in ϕk and if k is a bursty topic based on its top
bursty levels in πk. To be more scientific, we resort to hypothesis testing to
determine which topics in the detected topics are bursty topics. The idea is that
assuming the bursty levels in a topic are generated from a multivariate normal
distribution which can be learned from the historical data. If the probability of
current bursty levels in this topic is generated by the learned multivariate normal
distribution over a specified confidence level, it is a bursty topic, otherwise, it is
a non-bursty topic. We use b

(t)
k to denote a bursty level set assigned to topic k at

time t and assume each bursty level b
(t)
k,w ∈ b

(t)
k subject to normal distribution.

Thus, b(t)
k can be regarded as generated from the multivariate normal distribu-

tion. We introduce the null hypothesis as H0: b
(t)
k comes from the multivariate

normal distribution, and the alternative hypothesis is H1: b
(t)
k do not come from

the multivariate normal distribution. We set the confidence level to 0.95. If the
probability of b(t)

k generated by the multivariate normal distribution is less than
0.95, we reject H0 and accept H1 so that topic k is a bursty topic.
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3 Experiment Evaluation

3.1 Dataset

For comparing with the previous works, we use a dataset crawled from Sina
Weibo1, which is one of the most popular microblog platforms. The dataset is
crawled by starting from a list of seed users and tracing their followers in the
breadth-first traversal. The basic statistics of this dataset are given in Table 2.
In the preprocess phase, we segment posts into words and remove the stop words
as well as low-frequency words with a threshold of 50. We also remove the posts
less than ten characters.

Table 2. Statistics of experimental dataset

Dataset Posts Words Period

Sina Weibo 1.8M 71M Aug 20 to Sept 13, 2015

3.2 Experiment Setup

Hyperparameter Setting. A significant step in such parametric method is
choosing the proper hyperparameter values. We empirically set the hyperpa-
rameters α = 50

K , β = β′ = 0.01, ρ = 1. For the number of topics K, we vary
K from 5 to 20 with a step of 5 in the evaluation since the detected number of
bursty topics are no more than 10 as observed. It is worth noting that we set
γ = γ′ = 0, since we intend to avoid the smoothing effect by the hyperparame-
ter to the distribution of topics over bursty levels, i.e., π and π′, and drive the
learned distribution to be sparse. In this way, we get the different bursty level
samples for different topics, which makes the hypothesis testing possible. The
length of a time slice is set to a day, a typical setting in the literature [10]. Thus
the time slice ranges from 1 to 25, where 25 denotes the most recent time slice.
We use the data from previous 15 days to calculate the bursty levels of words and
the following 10 days data to train different models. We run the Gibbs sampling
for 500 iterations.

Compared Methods. We evaluate our approach by comparing it with the
following three topic models. First, Latent Dirichlet allocation (LDA) [3],
which is the basic topic model for documents clustering and aims to identify the
latent topics within the documents. Second, TimeLDA [6], which is based on
Twitter-LDA [19] and assumes that each post is only assigned to one topic. More
than that, TimeLDA aims to learn time-specified topical distributions. Third,
Bursty Biterm Topic Model (BBTM) [17], which is the state-of-the-art
method in topic modeling for bursty topic detection in microblogs. BBTM tries
to learn two kinds of topics, i.e., bursty topics and general topics, by considering
the burstiness of words as the prior knowledge of topical distributions.
1 http://weibo.com.

http://weibo.com
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Table 3. Topics by TBD over the data of Sept 4, 2015. The third topic, the 70th
Anniversary of the Victory of the World Anti-fascist War, is recognized as a non-
bursty topic by TBD because it occurred 4 days ago and is not bursty any more, which
is clearly illustrated in Fig. 1.

Topic Top keywords Top bursty levels Hypothesis

testing

People mourn the 3-year-old

Syrian child whose body

washed up on a beach in

Turkey

Syria, photographs, Europe,

refugee, war, boy, mourn, children,

beach, heaven

10.7, 11.2, 5,

8.5,13.3, 2.8,

6.3,3.1, 4.1, 7

Bursty topic

Dizang Bodhisattva Festival Bodhisattva, Dizang, all living

creatures, festival, peace,

vegetarian, sutras

4.3, 7.7, 2.3, 4.1,

2.5, 1.6, 6.8, 1.2,

3.8, 2.6

Bursty topic

The 70th Anniversary of the

Victory of the World

Anti-fascist War

Parade, victory, residence, veteran,

history, commemorate, equipment,

attending, formation

1.4, 0.5, 0.8, 1,

−0.3, 0.9, −0.4,

−0.7, −0.2, 0.6

Non-bursty

topic

Work and life Work, life, movie, feel, opportunity,

way, grateful, health, hour, simple

−0.3, −0.4, −0.7,

−0.2,1,0.5, −0.6,

0.9, 0.8, 1.4

Non-bursty

topic

3.3 Topics Discovered from Sina Weibo Dataset

To have an intuitive idea of the detected topics, Table 3 shows some interesting
results referring to bursty topics and non-bursty topics with their top keywords
and bursty levels. From the bursty levels, it is clearly that the first two topics are
bursty topics and the rest two topics are non-bursty topics. Hypothesis testing
also gives the same results. We see that the first topic is more attractive than
the second topic since its top bursty levels are greater. These results verify our
idea that the bursty level of topics can be used to distinguish between bursty
topics and non-bursty topics, and particularly different bursty topics.

3.4 Precision and Recall for Bursty Topic Detection

Evaluation Metrics. We detect a list of daily bursty topics and evaluate dif-
ferent methods in terms of precision and recall over different settings of topic
number K, i.e., P@K and R@K.

Specifically, P@K is calculated as the fraction of correctly detected bursty
topics over all detected bursty topics as Eq. 11.

P@K =
number of correctly detected bursty topics

number of detected bursty topics
. (11)

R@K is calculated as the fraction of correctly detected bursty topics over all
labeled bursty topics as Eq. 12.

R@K =
number of correctly detected bursty topics

number of labeled bursty topics
, (12)

where the labeled bursty topics are the union set of labeled bursty topics in all
methods.
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(a) Precision (b) Recall

Fig. 3. Precision and recall at K of bursty topics detection on all data.

Ground Truth. For a quantitative evaluation in terms of precision and recall,
we build up the ground truth by labeling the detected topics. Specifically, we
mixed the topics detected by different methods and asked 5 students to manually
label the topics by assigning a score (0: non-bursty topic, 1: bursty topic). The
criterion is whether the presented topic is meaningful and bursty in its time
slice. We provided the students with the top 20 keywords of each topic and time
information. They are allowed to consult the external resources, like Google and
Sina Weibo search, to help their judgment. A bursty topic is correctly detected
if more than half of judges assigned a score of 1 to it.

Precision and Recall. Note that, all redundant topics are removed from the
results. Firstly, we evaluate different methods in terms of P@K and R@K on all
data in Fig. 3, where K is the number of topics. We see that TBD substantially
outperforms the other methods in both precision and recall over all settings of
K. Notably, TBD get a precision of 90% when K = 20, which improves LDA,
Time-LDA and BBTM by 260%, 350% and 100%, respectively. Moreover, the
precision of the competitors basically decreases when K increases, while TBD is
not sensitive to the variance of K. This is because TBD select the topics with
high bursty levels as the bursty topics from the detected K topics. However,
Time-LDA and BBTM are designed to detect K bursty topics, where a bad
setting of K will highly disturbance their performance.

Next, we evaluate different models in terms of mean P@K and mean R@K
on 10 individual time slice in Fig. 4. We see that TBD still produces dramatically
better results than the competitors. Note that BBTM consistently produces 0
over different settings of K in both precision and recall. The reason is that
BBTM is designed to capture the co-occurrence of words within different time
slices. When it works on a single time slice, it loses the basic heuristic information
and falls into confusion, which leads BBTM to be ineffective on the individual
time slice.
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(a) Precision (b) Recall

Fig. 4. Mean precision and recall at K of bursty topics detection on 10 single time
slices. Error bars are standard errors. We omit the results of BBTM since it produces
0 over all settings of K.

4 Related Work

Bursty topic detection, such as earthquake detection [12], influenza epidemics
detection [1], has attracted lots of attentions. Clustering methods are proposed
to solve this problem. In work [9], a high utility pattern clustering (HUPC)
framework is proposed by extracting a group of representative patterns from
the microblog streams. Dirichlet-Hawkes Process is also used for bursty topic
clustering in asynchronous streaming data, which is a scalable probabilistic gen-
erative model inheriting the advantages from both the Bayesian nonparametrics
and the Hawkes Process [7]. Bursty topic detection problem is also considered
as an anomalous subgraph detection problem. Multivariate evolving anomalous
subgraphs scanning (DMGraphScan) framework is proposed in dynamic multi-
variate social media networks [13].

Recently, with the popularity of Latent Dirichlet Allocation (LDA) [3], many
LDA-based extensions and variants have been proposed for topic discovery in
microblogs [14]. Temporal information is used in LDA model to capture the
bursty patterns with regards to time [18]. On the basis of temporal informa-
tion, location of social messages is also captured by a location-time constrained
(LTT) topic model [20] for bursty event detection. Images is also employed for
generate visualized bursty topic summarization [2]. The impact of tweet images
are thoroughly studied in [4], where a topic model integrating five features, i.e.,
text, time, position, hashtag and images, is designed to detect bursty events. The
common idea of these models is to employ different features to strictly divide the
topics into two sets, i.e., bursty topics and general topics. However, noise-filled
microblog data seriously hurts their performance. In contrast, we detect one set
of topics and associate each of them with a bursty level from which we identify
the bursty topics.

Several works try to model the burstiness of words when detecting bursty
topics. For example, wavelet analysis is used to build the burstiness for individual
word, and then bursty words are clustered to form events with a modularity-
based graph partitioning method [15]. A similar approach is employed to detect
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bursty tweet segments at first and then clusters the event segments into events
by considering both their frequency distribution and content similarity [11]. The
work [5] proposes a novel term aging model to compute the burstiness of each
term, where it provides a graph-based method to retrieve the minimal set of
terms, and then uses the knowledge of users’ topic preferences to highlight the
most emerging topics. Burstiness of words is also considered as prior information
in a graphical model [17]. However, they all neglect the connections between
words’ bursty levels and topics, where words with the similar bursty levels usually
refer to the same topic, which we have proved to be critical for the high-precision
bursty topic detection.

5 Conclusion

This paper addressed the problem of bursty topic detection on microblogs. We
propose to model the burstiness of topics in the microblog for bursty topic detec-
tion. For this purpose, we present a novel topic model named Topic-level Bursty
Detection model, which exploits words, burstiness of words and temporal infor-
mation. After that, we identify the bursty topics through the hypothesis testing
method. Our qualitative and quantitative evaluations on a real dataset from
Sina Weibo demonstrate that our approach is more effective than the competi-
tors. For future work, if regarding a time slice as a data stream, our method is
amenable to be a dynamic model to do bursty topic detection in microblog data
streams. Meanwhile, our model can be extended to a non-parametric method
such that it can automatically estimate the number of topics in each time slice.
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Abstract. Handwritten character recognition (HCR) plays an impor-
tant role in real-world applications, such as bank check recognition, auto-
matic sorting of postal mail, the digitization of old documents, intelli-
gence education and so on. Last decades have witnessed the vast amount
of interest and research on handwritten character recognition, especially
in the competition of HCR tasks on the specific data sets. However, the
HCR task in real-world applications is much more complex than the one
in HCR competition, since everyone has their own handwriting style,
e.g., the HCR task on middle school students is much harder than the
one on adults. Therefore, state-of-the-art methods proposed by the com-
petitors may fail. Moreover, there is not enough labeled data to train a
good model, since manually labelling data is usually tedious and expen-
sive. So one question arises, is it possible to transfer the knowledge from
related domain data to train a good recognition model for the target
domain, e.g., from the handwritten character data of adults to the one
of students? To this end, we propose a new neural network structure for
handwritten Chinese character recognition (HCCR), in which we try to
make full use of a large amount of labeled source domain data and a small
number of target domain data to learn the model parameters. Further-
more, we make a transfer on the category-classifier level, and adaptively
assign different weights to category-classifiers according to the usefulness
of source domain data. Finally, experiments constructed from three data
sets demonstrate the effectiveness of our model compared with several
state-of-the-art baselines.

1 Introduction

The handwritten character recognition problem has attracted much interest
and research for a long time, and plays an important role in various kinds of
c© Springer Nature Switzerland AG 2019
Q. Yang et al. (Eds.): PAKDD 2019, LNAI 11439, pp. 110–122, 2019.
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applications [10,20,22], such as bank cheque recognition, automatic sorting of
postal mail, the digitization of old documents, intelligence education and so on.
The previous handwritten character recognition works can be grouped into differ-
ent types, including the recognition tasks concerning about digits [10], English
characters [11], Chinese characters [20,22], French characters [7] etc. In this
paper, we focus on the handwritten Chinese character recognition (HCCR) prob-
lem, and consider more challenging recognition scenarios which are much closer
to approaching the real-world applications.

The HCCR problem has been extensively studied for more than 40 years [12],
and can be further divided into two types: online and off-line recognition. The
online recognizer identifies characters during the writing process using the digi-
tised trace of the pen, while off-line recognition deals with images scanned of
previously handwritten characters. Usually, the online recognition task is easier
than the off-line one since there is much digitised trace information available
for training the models. However, off-line recognition has broader applications,
e.g., automatic sorting of postal mail and the editing of old documents. In the
recent decade, there are many research works and competitions devoted to the
off-line recognition of Chinese characters, especially based on the deep neu-
ral network framework [1,18]. Convolution neural network (CNN), which was
originally developed by LeCun et al. [10], provided a new end-to-end approach
to handwritten Chinese character recognition with very promising results in
recent years [18,22], e.g., the extended deeper architectures of AlexNet, VGG,
GoogLeNet, ResNet with dropout and nonlinear activation function ReLU.
Ciresan et al. [2] proposed the multi-column deep neural network (MCDNN),
which may be the first successful model based on deep neural network (DNN)
used in the application of large-scale HCCR tasks. The winner of online and
off-line handwritten Chinese character recognition competition in ICDAR2013
was based on MCDNN [20]. Zhong et al. [22] proposed HCCR-GoogLeNet and
employed three types of directional feature maps, namely the Gabor, gradient
and HoG feature maps, to enhance the performance of GoogLeNet, leading to
the high accuracy of 96.74% on the ICDAR2013 off-line data set. Recently, Yang
et al. [19] proposed a new training method DropSample to enhance deep convo-
lutional neural networks for large-scale HCCR problems.

Fig. 1. The examples of three data sets, HCL2000, CASIA-HWDB1.1 and MSS-HCC.
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Though there are many advanced algorithms proposed for HCCR, HCCR
is still a challenging task. First, comparing English characters with only 26
basic categories, in Chinese the national standard GB2312-80 coding defined
6763 categories of commonly used Chinese characters. GB18010-2000 fur-
ther expanded the Chinese character set to 27,533 categories. Even for the
recently used Chinese character sets HCL2000 [21] and CASIA-HWDB1.1 [13],
which both contain 3,755 categories of characters. Second, handwritten Chi-
nese characters are very casual and diverse compared with regular printed
characters. Third, there are many similar and confusing Chinese characters,
which human can recognize easily but very hard for computer. For example,

Moreover, there are
also other technical challenges in addition to the complexity of Chinese char-
acters. On one hand, recent HCCR competitions are targeted at improving the
performance on a specific standard data set, e.g., CASIA-HWDB1.1 is adopted
in ICDAR2013, but the recognition scenarios are much more complex and dif-
ficult in real-world applications. Figure 2 shows some examples from three data
sets, in which HCL2000 and CASIA-HWDB1.1 are both well known off-line
handwritten Chinese character data sets, while MSS-HCC is the one we collect
from the middle school students writing answers and compositions in a spe-
cific exam1. From this figure, we can find that the recognition of MSS-HCC is
much harder than HCL2000 and CASIA-HWDB1.1. On the other hand, there
is usually not enough labeled data to train a satisfying model, since manually
labelling is tedious, time-consuming and expensive. Also, it might fail when sim-
ply applying the model trained from one data set to another data set, e.g., the
proposed model [22] trained on HCL2000 only obtains about 63% accuracy on
CASIA-HWDB1.1.

Transfer learning aims to adapt the knowledge from related source domain
data to the model learning in the target domain, which provides the possibility of
success for HCCR tasks. Along this line, we propose a transfer handwritten Chi-
nese character recognition model based on the successful deep network structure
AlexNet [9]. Specifically, for both source and target domain data, we share the
network parameters with five convolution layers and three pooling layers, and
then learn the parameters of three fully connected layers separately. In addi-
tion, to adaptively transfer the category knowledge from the source domain to
the target domain, we impose a regularization item with different weights to
learn the similarity of category-classifiers trained from the source to the target
domain. Finally, we conduct extensive experiments on three data sets to validate
the effectiveness of our model.

The remainder of this paper is organized as follows. Section 2 briefly intro-
duces the related work of handwritten character recognition and transfer learn-
ing, followed by the problem formalization and the details of the proposed model
in Sect. 3. Section 4 presents the experimental results to demonstrate the effec-
tiveness of our model, and finally Sect. 5 concludes this paper.

1 This work does not consider how to segment the characters, but only focuses on the
recognition of segmented isolate characters.
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2 Related Work

In this section, we will briefly introduce the most related work about handwritten
Chinese character recognition and transfer learning.

2.1 Handwritten Chinese Character Recognition

Ciresan et al. [4] first used CNNs to realize the classification of 1,000 types
of handwritten digit characters, then based on which IDSIA Lab won the first
place on off-line HCCR data set with the accuracy of 92.12% and the fourth
place on online HCCR data set with 93.01% in ICDAR2011 competition [14].
The champions of off-line and online HCCR competition in ICDAR2013 [20] are
based on MCDNN. Wu et al. [18] proposed to improve the performance of off-line
HCCR task up to 96.06% by adopting the ensemble of four alternately trained
relaxation convolutional neural networks (ATR-CNN). After that in 2015, Zhong
et al. [22] proposed the HCCR-GoogLeNet with Gabor, gradient and HoG feature
maps to obtain an accuracy of 96.74% accuracy on ICDAR2013 off-line data set,
which is the first time computers outperformed human recognition accuracy
96.13%. Furthermore, Chen et al. [1] uses a deeper CNN network to achieve
96.79% accuracy, and Yang et al. [19] proposed a new DropSample to train
ensemble CNNs model to get 97.06% accuracy on ICDAR2013 data set. However,
these above methods are all designed for a specific standard data set, which might
fail in more complex HCCR scenarios. Also, they don’t consider to make use of
the large amount of auxiliary data, i.e., HCL2000. Therefore, in this work we try
to apply the knowledge from related source domain data for further improving
the recognition performance in target domain.

2.2 Transfer Learning

Transfer learning targets at learning the knowledge from large amount of related
source/auxiliary data to help improve the prediction performance of target
domain data [16]. In recent decade, transfer learning has provoked vast amount
of attention and research for variable kinds of applications, e.g., text classifica-
tion [5], image classification [23], visual categorization [17] etc. To the best of
our knowledge, there is little work of transfer learning for handwritten Chinese
character recognition problems. The work [3] actually learnt Chinese characters
by first pre-training a DNN on other data sets. Thus, we will employ transfer
learning manner based on deep network to deal with HCCR. Furthermore, most
previous work make transfer on the instance level [8], the model level [6], and
the feature learning level [15], but we focus on transferring the knowledge on the
category-classifier level.
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3 Adaptively Transfer Category-Classifier for Chinese
Handwriting Recognition

3.1 Problem Formulation

For clarity, the frequently used notations are listed in Table 1. Supposing we
have data in both the source and the target domain Ds = {x

(s)
i , y

(s)
i }|ns

i=1

and Dt = DL
t ∪ DU

t = {x
(t)
i , y

(t)
i }|nL

t
i=1 ∪ {x

(t)
i }|nU

t
i=1, respectively, where x

(s)
i , x

(t)
i

∈ R
m×m are the data instances with image size m×m, y

(s)
i , y

(t)
i ∈ {1, · · · , c} are

their corresponding labels, c is the number of categories, ns and nt = nL
t + nU

t

are respectively the numbers of instances in source and target domains. Usually
there are large number of labeled instances in source domain and only a small
portion of labeled instances in target domain, i.e., nL

t � ns and nL
t � nU

t , thus
this is an challenging recognition task. Since the data distributions of source
domain and target domain are different, our goal adopts transfer learning to
make full use of source domain data Ds and a small portion of labeled target
domain data DL

t to train a recognition model and obtain satisfying performance
on the unlabeled target domain data DU

t .

Table 1. The notation and denotation

Ds, Dt The source and target domains

ns The number of instances in source domain

nt The number of instances in target domain

l The index of layer

nL
t (nU

t ) The number of labeled (unlabeled) instances in target domain

m The width and the height of original map

Kl
ij The j-th kernel filter in the l-th layer connected to the i-th

map in the (l − 1)-th layer

kl The number of nodes in l-th full connected layer

κl The kernel size in l-th convolutional layer

c The number of categories

x
(s)
i , x

(t)
i The i-th instance of source and target domains

y
(s)
i , y

(t)
i The label of instances x

(s)
i and x

(t)
i

al The output of the l-th full connected layer

W l, bl Weight matrix and bias for the l-th full connected

θj θj(j ∈ {1, · · · , c}) is the j-th column of W 8

� The transposition of a matrix

ξ(s), ξ(t) The input of the softmax layer
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3.2 Adaptively Transferring Category-Classifier Model

Motivated by the success of deep network structure AlexNet for image classifica-
tion [9] and handwritten character recognition [22], we propose a new Adaptively
Transferring Category-classifier model for HCCR (ATC-HCCR for short) based
on AlexNet. The architecture of the network of ATC-HCCR is shown in Fig. 2.
Particularly, this network has a total of eight layers including the first five suc-
cessive convolutional layers conv1, · · · , conv5 (conv1, conv2, conv5 are followed
by pooling layers.) and three fully connected layers fc6, fc7, and fc8. In Fig. 2,
two important transfer learning components are utilized to improve the perfor-
mance. The first knowledge transfer is achieved when both the source and the
target domain share the same parameters of the five convolutional layers and
three pooling layers for the shared convolutional kernels and pooling operations.
Then, the network is diverged into two branches to learn the parameters of
three fully connected layers separately, where one is for the source domain and
the other one is the target domain. Furthermore, we impose a regularization item
with different weights as the second transfer knowledge component to adaptively
transfer the category knowledge from the source domain to the target domain by
learning the similarity of category-classifiers trained from the source domain to
the target domain.

Fig. 2. The network structure of ATC-HCCR.

Given xl
i ∈ R

ml×ml

represents the i-th map in the l-th layer and the map
size is ml × ml, j-th kernel filter in the l-th layer connected to the i-th
map in the (l − 1)-th layer denoted as Kl

ij ∈ R
κl×κl

and index maps set
Mj = {i|i-th map in the (l−1)-th layer connected to j-th map in the layer}. So
the convolutional operation is defined by the following equation,

xl
j = f(

∑

i∈Mj

xl−1
i ∗ Kl

ij + bl
j), (1)

where ∗ denotes convolutional operation, f(z) = max(0, z) is ReLU non-linearity
activation function and bl

j is bias.
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Next, pooling layer then combines the output of the neuron cluster at one
layer to single neuron in the next layer. Pooling operations are carried out to
reduce the number of data points and to avoid overfitting. And pooling equation
can be described as

xl
j = down(xl

j), (2)

where down(·) is max pooling to computer the max value of each p × p region
in xl

jmap. After the last pooling layers, pixels of pooling layers are stretched
to single column vector. These vectorized and concatenated data points are fed
into fully connected layers for the classification.

The output of the l-th fully connected layer of the branch of source domain
is listed as follows, and the one of target domain is similar.

al
s = f(W l

sa
l−1
s + bl

s) (3)

The fc6 and fc7 in Fig. 2 both have an output al
s ∈ R

kl×1(l-th full connected
layer) of kl nodes, a weight matrix W l

s ∈ R
kl×k(l−1)

, and a bias vector bl
s ∈

R
kl×1(the l-th full connected layer). And the output of the fc7 is denoted as

ξ(s) ∈ R
k7×1.

y(s) = g(W 8
s ξ(s) + b8s), (4)

g(·) is a softmax function, and y(s) ∈ R
c×1,W 8

(s) ∈ R
c×k7

. Let W 8
s = [θ(s)1 , θ

(s)
2 ,

· · · , θ
(s)
c ]�, W 8

t = [θ(t)1 , θ
(t)
2 , · · · , θ

(t)
c ]�, γ = [γ1, γ1, · · · , γc], the objective func-

tion to be minimized in our proposed learning framework is formalized as follows:

L = Jr(Ds ∪ DL
t , y) + Ω(W 8

s ,W 8
t ), (5)

where the first term is the Cross Entropy for both the source and target domain,
which can be further detailed defined as

Jr(Ds ∪ DL
t , y) = − 1

ns + nL
t

ns+nL
t∑

i=1

c∑

j=1

1{yi = j} log
eθ�

j ξi

∑c
u=1 eθ�

u ξi
, (6)

where ξi is the i-th instance, and θ�
j ∈ R

k7×1(j ∈ {1, ..., c}) is the j-th row of
W 8

s or W 8
t . The second term of the objective is the regularization term, which

is defined as

Ω(W 8
s ,W 8

t ) = λ

c∑

i=1

γi · |θ(s)i − θ
(t)
i |. (7)

In the regularization term, there are two parameters, namely, the trade-off
parameter λ and the weights γ. λ controls the significance of the regularization
term, while γ is for transferring category-classifiers between the source and target
domain. The term |θ(s)i − θ

(t)
i | represents the distance of i-th category-classifier

between the two domains.
We use tensorflow to implement our network and AdamOptimizer as the

optimizer, and the detailed algorithm is shown in Algorithm1. Note that, there is
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Algorithm 1. Transfer Learning with Adaptively Transfer Category-classifier

Input: Given one source domain Ds = {x
(s)
i , y

(s)
i }|ns

i=1 , and one target domain Dt =

DL
t ∪ DU

t = {x
(t)
i , y

(t)
i }|nL

t
i=1 ∪ {x

(t)
i }|nU

t
i=1, trade-off parameters λ and weights γ, the

number of nodes in full connected layer and label layer, k and c.
Output: Results of xi belongs to the vector of probability for each category.

1. Use both Ds and DL
t to train AlexNet.

2. Use the parameters in Step1’s model to initialize ATC-HCCR shown in Figure 2.
3. Choose a batch of instances from Ds or DL

t as input.
4. Use AdamOptimizer with loss function Eq. (5) to update all variables.
5. Continue Step3 and Step4 until the algorithm converges.
6. Input DU

t and get the vector of probability for each category that xi belongs to.

only a small amount of labeled data in the target area, oversampling is required.
Besides, training a randomly initialized model can waste a lot of time, so pre-
training method is used. Specifically, we first use the source domain and the
small amount of labeled target domain data to train a AlexNet, and then we
use the parameters of this model to initialize our model. In our experiment,
oversampling and pre-training are both used in ATC-HCCR.

After all the parameters are learned, we can use the classifiers to predict the
target domain. That is, for any instance x(t) in target domain, the output of the
y(t) can indicate x(t) belonging to the vector of probability for each category. We
choose the maximum probability and the corresponding label as the prediction.

4 Experimental Evaluation

In this section, we conduct extensive experiments on three real-world handwrit-
ten Chinese character data sets to validate the effectiveness of the proposed
framework.

4.1 Data Preparation

Two of the three data sets are standard ones, i.e., HCL2000 and CASIA-
HWDB1.02, and the rest one MSS-HCC is collected by ourselves. The statistics
of three data sets are listed in Table 2.

Table 2. The statistics of three data sets.

HCL2000 CASIA-HWDB1.1 MSS-HCC

#category 3,755 3,755 27

#instance 3,755,000 1,126,500 5,920

2 We thank the authors for providing these two data sets.
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HCL2000 [21] contains 3,755 categories of frequently used simplified Chinese
characters written by 1,000 different persons. All images for each character in
this data set is 64 × 64. As shown in Fig. 1(a), the characters in the data set are
neat and orderly.

CASIA-HWDB1.1 [13] is produced by 300 persons, which includes 171 cate-
gories of alphanumeric characters and symbols, and 3,755 categories of Chinese
characters. The Chinese characters are used as the experimental data. As shown
in Fig. 1(b), the characters are written less neat and orderly.

MSS-HCC is labeled by ourselves. We collect this data set from the mid-
dle school students writing answers and compositions in a specific exam, and
after segmentation the images with size 108 × 108 for each Chinese character
are obtained. Then we labeled about 20,000 images, and those categories of Chi-
nese characters whose number of instances larger than 100 are selected as the
experimental data. As shown in Fig. 1(c), this data set is written much in messy.

For these three data sets, we conduct some preliminary tests applying the
HCCR method in [22]. We use HCL2000 as training data and CASIA-HWDB1.1
for test, then the accuracy is 63%. In contrast, using CASIA-HWDB1.1 as train-
ing data and HCL2000 for test, the accuracy is achieved at 94%. This shows that
HCL2000 is more neat than CASIA-HWDB1.1. In addition, respectively using
HCL2000 and CASIA-HWDB1.1 as training sets, MSS-HCC for test has accu-
racies of 53% and 71%. In contrast, using MSS-HCC as the training data, the
accuracies on HCL2000 and CASIA-HWDB1.1 are 86% and 87%. These results
reveal that MSS-HCC is more messy than HCL2000 and CASIA-HWDB1.1. In
the experiments, we focus on the knowledge transfer from source domain to
improve the recognition performance of much more difficult tasks. Therefore,
three transfer HCCR problems are finally constructed, i.e., HCL2000 → CASIA-
HWDB1.1, HCL2000 → MSS-HCC and CASIA-HWDB1.1 → MSS-HCC.

4.2 Baselines and Implementation Details

Baselines: We mainly compare our model with following two state-of-the-art
baselines,

– AlexNet-HCCR [22], which uses AlexNet for HCCR task, contains five con-
volutional layers, three pooling layers, and three full connected layers. There
is not transfer mechanism for this method.

– preDNN [3], is actually an accelerated deep neural network (DNN) model by
first pretraining a DNN on a small subset of all classes and then continuing to
train on all classes. As claimed in their original paper, preDNN is a transfer
learning approach for handling HCCR problems.

For AlexNet-HCCR, we record three values of accuracy for each transfer learning
problem. Specifically, training the models on labeled source domain data Ds,
labeled target domain data DL

t , labeled source and target domain data Ds ∪
DL

t , respectively, and then testing unlabeled target domain data DU
t , denoted

as AlexNet-HCCR(s), AlexNet-HCCR(t) and AlexNet-HCCR(s+t), respectively.
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For preDNN, we first pretrain the model on Ds, then continue to train on DL
t ,

and finally make prediction on DU
t .

Implementation Details: There are two parameters, i.e., trade-off parameter
λ and weights γi(1 ≤ i ≤ c) for transferring category-classifiers between source
and target domains. We set λ = 5 for all experiments, and for γi(1 ≤ i ≤ c)
we simply set them according to the accuracies on DL

t given by the AlexNet-
HCCR model trained from Ds, i.e., the higher value of accuracy for the i-th
category, the larger value is set to γi(1 ≤ i ≤ c), and vice versa. Certainly, it
would be better to study the optimum setting for γi(1 ≤ i ≤ c), which will be
our future work. The number of iterations for optimization is 50,000, and the
average values of accuracy are recorded for 3 trials. Finally, a small portion of
target domain data are randomly sampled as labeled ones. Specifically, we set
the sampling ratio from [1.67%, 10%] with interval 1.67% for CASIA-HWDB1.1
as target domain, and from [5%, 30%] with interval 5% for MSS-HCC as target
domain. The prediction accuracy is adopted as the evaluation metric.

4.3 Experimental Results

We evaluate all the approaches under different sampling ratios of labeled target
domain data, and all the results are shown in Table 3. From these results, we
have the following insightful observations,

– Except AlexNet-HCCR(s) only using labeled source domain data, the per-
formance of all the other algorithms improves with the increasing values of
sampling ratio of target domain data as labeled data. Generally, the perfor-
mance increases significantly with the increasing of sampling ratio, and then
slowly, which coincides with our expectation. Because if there are enough
labeled data for training a good model, incorporating more labeled data will
not take much effect.

– Our model ATC-HCCR achieves the best results over all baselines, under dif-
ferent sampling ratios of target domain data, which demonstrates the effec-
tiveness of the proposed transfer learning framework for HCCR tasks. Also,
we observe that ATC-HCCR beats baselines with a large margin of improve-
ment on the problem of HCL2000 → CASIA-HWDB1.1, and much smaller
margin on the problems of HCL2000 → MSS-HCC and CASIA-HWDB1.1 →
MSS-HCC. This is due to the fact that the recognition of MSS-HCC data
set is more challenging. On the other hand, for a challenging problem, even
a small value of 0.5% improvement is remarkable.

– Both transfer learning models ATC-HCCR and preDNN outperform AlexNet-
HCCR, which indicates the importance and necessity of applying transfer
learning for tackling HCCR problems. ATC-HCCR is better than preDNN,
since preDNN, as a simple transfer learning algorithm, only tries to adopt all
network parameters from the source domain for initialization but not consid-
ers the transfer of category-classifiers.
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Table 3. The performance (%) comparison on three data sets among AlexNet-HCCR,
preDNN and ATC-HCCR.

HCL2000 → CASIA-HWDB1.1 Mean

1.67% 3.33% 5% 6.67% 8.33% 10%

AlexNet-HCCR(s) 63.30 63.31 63.40 63.48 63.53 63.41 63.41

AlexNet-HCCR(t) 30.83 61.64 79.52 78.04 81.01 81.85 68.82

AlexNet-HCCR(s+t) 73.07 76.78 79.52 81.13 82.24 82.08 79.14

preDNN 73.01 76.89 79.37 81.47 82.47 83.56 79.46

ATC-HCCR 76.79 79.78 82.37 84.13 85.08 85.06 82.20

HCL2000 → MSS-HCC Mean

5% 10% 15% 20% 25% 30%

AlexNet-HCCR(s) 61.49 63.18 62.61 62.75 63.92 64.30 63.04

AlexNet-HCCR(t) 66.44 82.83 89.77 90.96 92.57 93.00 85.93

AlexNet-HCCR(s+t) 86.31 88.95 91.02 91.55 92.22 94.76 90.80

preDNN 86.93 90.69 92.61 93.45 93.90 94.61 92.03

ATC-HCCR 87.76 91.12 93.24 93.71 94.57 94.88 92.55

CASIA-HWDB1.1 → MSS-HCC Mean

5% 10% 15% 20% 25% 30%

AlexNet-HCCR(s) 76.01 78.38 78.27 78.12 78.38 77.87 77.84

AlexNet-HCCR(t) 66.44 82.83 89.77 90.96 92.57 93.00 85.93

AlexNet-HCCR(s+t) 89.48 91.38 92.27 93.67 94.21 94.98 92.67

preDNN 89.19 92.64 92.74 93.58 94.61 94.98 92.96

ATC-HCCR 90.98 93.14 93.80 94.55 94.68 95.29 93.74

Table 4. The Influence of trade-off parameter λ on the performance (%) of ATC-
HCCR.

λ HCL2000 → CASIA-HWDB1.1

1.67% 3.33% 5% 6.67% 8.33% 10%

0 75.77 79.58 82.03 83.83 84.65 84.90

0.05 76.30 80.14 82.56 83.83 85.05 85.10

0.5 76.51 79.76 82.41 84.08 84.84 85.29

5 76.79 79.78 82.37 84.13 85.08 85.06

4.4 The Influence of Trade-Off Parameter λ

We investigate the influence of trade-off parameter λ on the performance of
ATC-HCCR over the problem HCL2000 → CASIA-HWDB1.1, and λ is sampled
from {0, 0.05, 0.5, 5}. The results are shown in Table 4. λ = 0 indicates that
ATC-HCCR only considers the parameters sharing of five convolutional layers
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and three pooling layers during the optimization, and even so ATC-HCCR can
outperform preDNN. When λ > 0, the transfer category-classifier regularization
is integrated in our model, and the performance of ATC-HCCR can be further
improved, which shows the effectiveness of transfer category-classifier regular-
ization. In our experiments, we simply set the weights γi(1 ≤ i ≤ c) according to
the accuracies of AlexNet-HCCR making predictions on DL

t . If the size of DL
t is

small, the estimation of γi may not be reliable, therefore λ is not set to a large
value, i.e., λ = 5 in the experiments.

5 Conclusion

In this paper, we study the challenging handwritten Chinese character recogni-
tion (HCCR) problem in real-world applications. As there is little work about
transfer learning for HCCR, based on Alexnet, we propose a new network frame-
work by adaptively transferring category-classifier for HCCR problems. In our
framework, there are actually two components for knowledge transfer. First, the
parameters of five convolutional layers and three pooling operations are shared
across the source and the target domain during the optimization; second, observ-
ing that the category-classifiers from two domains have different similarities,
therefore different weights are imposed to regularize the category-classifier trans-
fer. Furthermore, we also collect a small set of much more challenging HCCR
data, and finally conduct experiments on three data sets to demonstrate the
effectiveness of our model. In future work, we will collect more data and con-
sider how to find the optimum values of weights.
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Abstract. Aspect Term Extraction (ATE) plays an important role in
aspect-based sentiment analysis. Syntax-based neural models that learn
rich linguistic knowledge have proven their effectiveness on ATE. How-
ever, previous approaches mainly focus on modeling syntactic structure,
neglecting rich interactions along dependency arcs. Besides, these meth-
ods highly rely on results of dependency parsing and are sensitive to
parsing noise. In this work, we introduce a syntax-directed attention net-
work and a contextual gating mechanism to tackle these issues. Specifi-
cally, a graphical neural network is utilized to model interactions along
dependency arcs. With the help of syntax-directed self-attention, it could
directly operate on syntactic graph and obtain structural information.
We further introduce a gating mechanism to synthesize syntactic infor-
mation with structure-free features. This gate is utilized to reduce the
effects of parsing noise. Experimental results demonstrate that the pro-
posed method achieves state-of-the-art performance on three widely used
benchmark datasets.

Keywords: Aspect term extraction · Syntactic information ·
Gating mechanism

1 Introduction

Aspect term extraction plays an important role in fine-grained sentiment anal-
ysis. The goal of ATE is to identify explicit aspect terms from user generated
contents such as microblogs, product reviews, etc. For example, an ATE system
should extract “new Windows” and “touchscreen functions” as aspect terms
from a review “I do not enjoy the new Windows and touchscreen functions”.

It is a common phenomenon that there exist semantic relations between
opinion indicators and aspect terms. Syntax-based models have proven to be
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Fig. 1. Architecture of dependency tree and corresponding syntactic graph

effective in capturing such semantic relations. These methods could learn long-
term syntactic dependency and semantic representation that are irrelevant to the
surface form of text. For the example introduced above, we need 5 steps from
“enjoy” to “functions” in sequential order, but with the help of dependency arcs
as shortcut, the relative distance could be reduced to 2 as shown in Fig. 1. Apart
from capturing existence evidence, the “amod” relation between “Windows”
and “new” and the “compound” arc between “touchscreen” and “functions”
also present the inner structure of aspect terms.

There are some prior works that utilize syntactic information for ATE. [22]
use hand-crafted syntactic rules as features, however, designing these rules is
labor-intensive. Recently, there are some neural network based approaches that
make use of syntactic information. For example, [20] propose a syntax-based rep-
resentation learning method, but the unsupervised features do not achieve satis-
factory results because they could not be fine-tuned. [11,17] leverage tree-based
networks to propagate syntactic information along dependency trees recursively.
Besides, Graphical Convolutional Networks (GCNs) are also adopted to operate
on syntactic graphs [19] to learn dependency information.

However, these approaches face several challenges. First, tree-based neu-
ral models are usually difficult to parallelize and thus computationally ineffi-
cient [21]. Second, GCNs based models could be parallelized but they directly
receive information from syntactically related nodes [19] or use edge-wise gat-
ing [13] to control information flow, these models neglect the fact that there
should be interactions along dependency relations. Third, previous syntax-aware
methods mainly focus on modeling syntactic structure. They highly rely on cor-
rect parse trees and pay little attention to maintaining word order information.
As a result, these methods suffer from error propagating along noisy dependency
arcs when dealing with imperfect trees.

In this work, we introduce a novel syntax-aware representation frame-
work to resolve these issues. Attention mechanism, which is parallelizable and
computational efficient, is introduced to model syntactic information. With the
constraint of syntactic structure, the attention mechanism could dynamically
calculate interactions along dependency arcs and obtain information from seman-
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tically related words. Moreover, we present a novel gating mechanism to syn-
thesize structural model with syntax-free model. This method could alleviate
the effects of parsing noise. Experimental results show that both of the pro-
posed components could improve the performance of ATE and our syntax-aware
representation framework achieves state-of-the-art results on three widely used
datasets.

Our main contributions can be summarized as follows:

– We propose Syntax-Directed Attention Network (SDAN) to model the
interactions along dependency paths and generate high quality syntax-aware
representations for ATE.

– To make the model more robust for parsing noise, we further introduce Con-
textual Gating Mechanism (CGM) that could synthesize syntactic informa-
tion and syntax-free features.

– Experimental results show that the proposed model achieves state-of-the-art
performance on three widely used datasets.

2 Related Work

Extracting explicit aspect terms has been actively investigated in the past.
There are many unsupervised methods such as frequent terms mining based app-
roach [6], rule-based method [22] and topic modeling based models [2,9]. The
mainstream of supervised approach is Conditional Random Field (CRF) [4],
which treats ATE as a sequence labeling problem and relies on hand-crafted
features. Recently, many deep learning based methods have been explored for
ATE. Most of these approaches utilize recurrent neural network [8], represen-
tation learning [20] or multi-task learning [10,18] methods to learn semantic
representation. Nevertheless, these methods do not explicitly model syntactic
structures and it is hard for them to capture long-term semantic dependency.

As an important linguistic resource, syntactic information has been adopted
for ATE. There are some tree-based neural models [11,17] that could propagate
information along parse tree, however, operating on tree structure recursively is
time-consuming. As an alternative, GCNs [13,19] are introduced to learn syntac-
tic information. GCNs could directly operate on dependency graph and obtain
information from syntactic neighbors. However, these methods neglect the inter-
actions along dependency arcs, it is hard for them to weight the importances of
syntactically connected nodes.

We utilize self-attention to handle this issue. Conventional self-attention
models the interactions between all word pairs in a single sequence and attends
to semantically related words. In this work, instead, we use syntactic informa-
tion to constrain the model and force it to only attend to syntactically connected
nodes. Our SDAN also takes dependency types into consideration when calcu-
lating the scores of dependency arcs. This is different from previous works [1]
because their attention values are hand-coded. Our SDAN is similar to Graph
Attention Network [15], however, it is designed for node classification task and
does not consider syntactic information.
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Moreover, we explore a novel gating mechanism to synthesize syntactic infor-
mation with syntax-free features. Previous works have shown that contextualized
representation could improve syntactical models. These approaches alleviate the
effects of parsing noise by simply stacking syntactic model on the top of sequen-
tial layers [13] or in the reverse order [11,17]. However, these methods could
not handle noise introduced by propagating information through wrong depen-
dency arcs. To the best of our knowledge, we are the first to introduce gating
mechanism that could restrain noise propagating along dependency arcs.

3 The Proposed Method

Formally, a sentence is denoted as a sequence of tokens X = {x1, x2, . . . , xn},
where n is the length of a sentence and xi is the index of a token in a predefined
vocabulary. Following standard BIO tagging schema, the corresponding labels
of a given sentence are Y = {y1, y2, . . . , yn}, where yi ∈ {B, I,O}. Every token
is labeled as B if the token is the beginning of an aspect term, I if the token is
the inside word of a multi-word aspect term but not the first word, or O if the
token does not stand for any aspect term.

3.1 Overview of the Model

The overall architecture of the proposed model consists of 3 main layers. The
input sentence is first mapped into a matrix of embeddings and a Bi-LSTM layer
is utilized to build initial representations. We then feed the result of Bi-LSTM
layer to syntactic learning layers to generate syntax-aware representations. As
shown in the right side of Fig. 2, one syntax-aware layer consists of a SDAN to
learn syntactic structure and a CGM to integrate dependency information with
contextual features. By stacking multiple such syntactic layers the model could
learn complex dependency structure. Finally, we feed syntax-aware representa-
tions to a CRF decoding layer and generate corresponding labels.

3.2 Initial Representation

Each input sentence is firstly converted into a sequence of word embedding
Wi = {w1, w2, w3, . . . wn} through a look-up table Wemb ∈ R

|V |×dw , where
dw is the dimension of word vectors and |V | is the vocabulary size. We utilize
Bi-LSTM network to build initial token level representation. A Bi-LSTM layer
consists of a forward LSTM cell that processes input embeddings from left to
right sequentially and a backward LSTM cell that processes the same inputs in
a reverse order. We concatenate outputs of both directions and get the initial
representation ht = [

−→
ht ;

←−
ht ] where ht ∈ R

2∗dm and dm is the dimension of LSTM
hidden unit.
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G

Fig. 2. Architecture of the proposed model.

3.3 Syntax-Directed Attention Network

Guided by the intuition that some dependency relations are crucial for identify-
ing aspect terms while others contribute less, we utilize self-attention mechanism
to weight syntactic relations and dynamically receive information from syntac-
tic neighbors. we utilize an approach the same as [13] to convert dependency
parse tree into syntactic graph. Syntactic graph of a sentence can be viewed as
a labeled and directed graph G = {V, E}, where V(|V| = n) and E represent sets
of nodes and edges in the graph G respectively. Each node in the graph repre-
sents a word in the sentence and each edge (u, v) in E is directed from one word
to its syntactic governor or the inverse edge with dependency label l(u, v) and
dependency direction dir(u, v). We also consider self-loop with a special label
l(u, u) and direction dir(u, u).

The architecture of SDAN is shown in the left side of Fig. 2. We define the
output matrix for the kth SDAN layer as Hsdan−k ∈ R

n×ds , where ds is the
dimension of node vector and the uth row hu

sdan−k ∈ R
ds is the representation

of a node u at the kth layer. For each node u in the graph, we firstly apply a linear
transformation on each syntactic neighbor v to capture syntactic information,
this is formulated as:

hsdan−k
u,v = W k

d(u,v)h
k−1
v + bkl(u,v) (1)

Where W k
d(u,v) ∈ R

di×ds and bkl(u,v) ∈ R
ds are weight matrix and bias for the

kth SDAN layer respectively, di is the dimension of SDAN input. This phase
generates relation specific representations for nodes immediately connected to a
central node in the dependency graph. Since datasets for ATE task often have
moderate size with respect to the deep learning perspectives, we utilize direction
specific weight matrix instead of relation type transform weights to avoid over-
parametrization.
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The importance of syntactically related neighbors of node u is weighted by
their contributions to discriminate aspect terms, formulated as:

eku,v =
hsdan−k
u,u hsdan−k

u,v√
ds

(2)

Where hsdan−k
u,u and hsdan−k

u,v represent the linear transformation of self-loop and
a nearby node with a specific dependency relation. We use scaled dot production
as the similarity function. The normalized importance is calculated as:

αk
u,v = softmax(eku,v) =

exp(eku,v)∑

k∈N (u)

exp(eku,k)
(3)

Where N (u) indicates all the direct syntactic neighbors of a node u. The output
of a SDAN layer is formulated as:

hsdan−k
u = ReLU(

∑

v∈N (u)

αk
u,vh

sdan−k
u,v ) (4)

We use ReLU as the nonlinear activation function.

3.4 Contextual Gating Mechanism

Syntax-based models could learn rich linguistic knowledge, however, these meth-
ods highly rely on structural information and are sensitive to parsing noise.
Automatically generated dependency trees are noisy in many cases, especially
for ungrammatical reviews. To this end, we present a novel contextual gating
mechanism to dynamically synthesize syntax-aware representation and syntax-
free features to prevent information flow along noisy dependency arcs. From
now on, we use sequential index i to represent a token. We firstly utilize CNN
to capture syntax-free local representations. Considering a CNN component of
the kth layer CNNk with the input matrix Hk−1 ∈ R

n×di , the output of the
CNN component is formulated as:

hcnn−k
i = W k

c [hk−1
i−(w−1)/2, . . . , h

k−1
i , . . . , hk−1

i+(w−1)/2] (5)

The convolution filter W k
c ∈ Rw×di×dc is applied to a window of w words, where

di and dc are dimensions of the input and output of a CNN layer. To utilize
a gating mechanism, we set the number of output channels the same as the
dimension of syntax-aware representations. As shown in the right side of Fig. 2,
the gate in orange block is controlled by both syntax-aware information and
contextual features. Each element of the gate is influenced by both syntactic
representations and context features, formulated as:

gki = σ(W k
cnnhcnn−k

i + W k
sdanhsdan−k

i + bkg) (6)
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Where W k
cnn ∈ R

ds×ds and W k
sdan ∈ R

ds×ds are weight matrices of the kth gating
mechanism and bkg ∈ R

ds is the bias term, σ is the logistic sigmoid function. The
overall output of the kth syntax-aware layer is calculated as:

hk
i = ReLU(gki · hsdan−k

i + (1 − gki ) · hcnn−k
i ) (7)

3.5 Training and Inference

We use a linear transformation to get the scores of labels. There exist strong
dependencies across output labels for ATE task. Therefore, we utilize CRF [5]
to model dependency of labels. Considering P ∈ R

n×(q+2) is a matrix of scores
output by previous network, where q is the number of distinct labels, Pi,j corre-
sponding to the score of the jth label of the ith token in a review; The last two
columns of P are scores of start and end of a sequence. We define the score of a
specific prediction sequence:

S(y|X) =
n∑

i=0

(Ayi,yi+1 + Pi,yi
) (8)

Where A ∈ R
(q+2)×(q+2) is a label-transition matrix, Ai,j represents the score of

jumping from label i to label j; yq and yq+1 are special labels indicating start
and end of a sentence. The overall possibility of an output path is calculated as:

p(y|X) =
exp(S(y|X))

∑

y′∈YX

exp(S(y′ |X))
(9)

Where YX indicates all possible labeling sequences for a given input sentence.
The CRF layer is jointly trained with previous representation layers via

Stochastic Gradient Descent (SGD). During training phase, the log-probability
of a gold-standard label sequence can be calculated with dynamic programming:

log(p(y|X)) = S(y|X) − logadd
∑

y′∈YX

S(y
′ |X) (10)

While decoding, we use viterbi algorithm to decode output path with maxi-
mum score:

y∗ = arg max
y′∈YX

S(y
′ |X) (11)

4 Experiment

4.1 Datasets and Experimental Settings

To evaluate the effectiveness of the proposed method, we conduct experiments on
three widely used benchmark datasets from SemEval141 and SemEval152 ABSA
challenges. Table 1 shows the statistics.
1 http://alt.qcri.org/semeval2014/task4/.
2 http://alt.qcri.org/semeval2015/task12/.

http://alt.qcri.org/semeval2014/task4/
http://alt.qcri.org/semeval2015/task12/
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Table 1. Statistics of datasets.

Dataset Train sentences Train terms Test sentences Test terms

14-laptop 3045 2358 800 654

14-rest 3041 3693 800 1134

15-rest 1315 1192 685 542

We use Stanford CoreNLP toolkits3 to generate parse trees. Word embed-
dings are initialized with 300d Glove 840B vectors4. Hyper-parameters are chosen
by grid-search. We set the dimensions of LSTM cell, SDAN hidden units and
CGM to 100. Dropout of 0.5 is applied over the input of every layer. We use
2 syntax-aware layers to learn syntactic information, and the window size for
contextual features is 3. SGD is utilized to optimize the model with batch size
of 20. We first train the model for 15 epochs with a fixed learning rate of 0.1,
and then train another 35 epochs with a decay rate of 0.9. Following the setting
of [11], we run model 20 times with the same settings and use F1 score as the
evaluating metric.

4.2 Baselines

To evaluate the proposed method, we select multiple state-of-the-art models as
baseline systems. (1)Top systems for SemEval14 and SemEval15 challenges such
as IHS RD [3], DLIREC(U) [14] and EliXa(U) [16]; (2)Models that only uti-
lize sequential information such as BiLSTM+CRF [7] and BiLSTM+CNN [12];
(3)Multi-task based approaches that extract both aspect terms and opinions
such as MIN [10] and CMLA [18] and (4)Previous methods that explore syntac-
tic information such as DTBCSNN+F [19], RNCRF [17] and BiTree [11].

4.3 Main Results

The F1 scores of baselines and the proposed method are shown in Table 2. Per-
formances on datasets from different domains and various sizes demonstrate that
the proposed method consistently outperforms baseline methods.

The proposed method achieves 7% and 1.67%, 0.96% absolute gains over win-
ning systems of SemEval challenges for three datasets respectively. This confirms
the effectiveness of the proposed method. Both previous syntax-based methods
and our model outperform sequential models with a large margin, which indi-
cates that syntactic information contributes a lot to ATE. Our model also per-
forms better than multi-task learning methods. This demonstrates that syntactic
information is a better choice for ATE than leveraging a monolithic model to
fit multiple tasks and share representations. The proposed model also exceeds

3 https://stanfordnlp.github.io/CoreNLP/.
4 https://nlp.stanford.edu/projects/glove/.

https://stanfordnlp.github.io/CoreNLP/
https://nlp.stanford.edu/projects/glove/
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Table 2. Experimental results. Scores marked with ‘*’ are copied from the paper of
BiTree.

Model 14-laptop 14-rest 15-rest

IHS RD 74.55 79.62 -

DLIREC(U) 73.78 84.01 -

EliXa(U) - - 70.05

BiLSTM+CRF* 76.10 82.38 65.96

BiLSTM+CNN* 78.97 83.87 69.64

MIN 77.58 73.44 -

CMLA 77.80 85.29 70.73

DTBCSNN+F 75.66 83.97 -

RNCRF 78.42 84.93 67.74

BiTree 80.57 84.83 70.83

OURS 81.68 85.68 71.01

Table 3. Effect of proposed components. Since CGM must works together with a
syntactic related model, we refer replacing SDAN with SGCN [13] as “w/o SDAN”.

Model 14-laptop 14-rest 15-rest

SDAN-CGM 81.68 85.68 71.01

w/o SDAN(SGCN-CGM) 80.52(−1.16) 85.14(−0.54) 69.66(−1.35)

w/o CGM(SDAN) 80.57(−1.11) 84.72(−0.96) 70.58(−0.43)

w/o SDAN & CGM (SGCN) 77.78(−3.90) 84.10(−1.58) 65.95(−5.06)

previous syntax-based approaches, indicating that the proposed method could
learn better syntax-aware information than those models.

Further, we notice that the proposed method outperforms previous best
model on 14-laptop dataset with a large margin, while the gains are less on 14-
rest and 15-rest datasets. We believe that is because there are more long aspect
terms in laptop domain and extracting aspect terms in laptop domain requires
more long-term dependency information than that in restaurant domain. Finally,
we observe that the gain on 15-rest dataset is relative small and the F1 score
is lower than that on other datasets, we believe that this is caused by limited
training samples of 15-rest dataset.

4.4 Analysis of the Proposed Methods

We further conduct extensive experiments to analysis the proposed components.

Computational Efficiency. We evaluate the training and inference time of
BiTree model and the proposed method on a GTX 1080Ti GPU with minibatch
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Table 4. Performance with different synthesize methods.

Method 14-laptop 14-rest 15-rest

w/o fusion 80.57 84.72 70.58

STACK 80.98 85.07 69.25

SUM 81.09 85.28 70.83

CONCAT 81.33 85.35 70.96

CGM 81.68 85.68 71.01

size of 20. The proposed framework achieves 8.4x and 9.2x speedup over Bi-
Tree during training and inference. For example, inference on the test set of
15-rest dataset takes 0.45 s for the proposed method. While it requires 4.48 s for
BiTree model. The speeding-up comes from that the proposed components do
not require recursive operations and are convenient to parallelize.

Effect of Proposed Components. Results of different settings are shown in
Table 3. As we excepted, both of the proposed components could improve the
performance of ATE. Tree-based neural models tend to capture long term depen-
dency path and ignore local information. SDAN, instead, receives informative
representation from local connected neighbors and relies on hierarchy structure
to learn multi-hop dependency. This method could learn long term semantic
relation while focusing on local structure. Comparing with previous GCN-based
method, we introduce attention mechanism instead of arc-gate. SDAN first uses
an arc-specific matrix to transform representations of nearby nodes into the same
semantic space and then receive relevance information with attention.

CGM could also improves the performance of both SDAN and SGCN. As a
local model, CNN could effectively extracts context that is irrelevant with syn-
tactic parsing structures. With a gating mechanism, CGM could dynamically
weight the outputs of SDAN and CNN according to the confidence and infor-
mation provided by these components. Notice that the F1 score of SDAN on
14-laptop dataset is comparable to previous best result, adding CGM further
improves the score by 1% absolute gain. These facts clearly demonstrate that
the GCM is an effective method to enhance syntactical models.

Effects of Different Fusion Methods. We further compare CGM with several
fusion methods as shown in Table 4. All those fusion methods could improve
the performance, demonstrating that syntax-free features do improve syntax-
based models. STACK indicates stacking CNN layer on SDAN, which leads to
a deeper model and makes it harder to optimize. Both SUM and CONCAT
outperform STACK, however, they simply sum or concatenate features and lack
the capacity to model the importance of different information channels. Our
CGM utilizes gating mechanism to dynamically synthesize syntax-aware and
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Fig. 3. Experimental results with different numbers of syntactic layers

syntax-free features, which could re-weight the contribution of these channels
and reduce the effects of parsing noise, thus achieves the best performance.

Effects of Syntactic Layers. The impact of numbers of syntactic layers is
shown in Fig. 3. The performance of SGCN drops rapidly with the growth of syn-
tactic depth, while that of others do not. This is because both modeling depen-
dency interactions and synthesizing syntax-free features contribute to reducing
the effects of parsing noise. SDAN-CGM achieves best performances with two
syntax-aware layers. This is reasonable because one syntactic layer could only
model one-hop dependency relation, it is not sufficient for capturing long-term
dependency as shown in Fig. 1. Adding more than two syntactic layers could
learn longer dependency relations, however, it might introduce too much noise
and even cause over-fitting considering the relative small data size.

5 Conculsion

In this work, we introduce a syntactic-based representation learning framework
to obtain robust syntax-aware information for ATE. The proposed method con-
sists of two main components, a graphical neural network SDAN to capture
dependency relations and a fusion method CGM to integrate semantic infor-
mation with local features and reduce the effects of parsing noise. Equipped
with syntax-directed self-attention, the SDAN model could attend to syntactic
neighbors that contribute a lot for the identification of current node. The CGM
utilizes a gating mechanism to dynamically calculate the contribution of syntac-
tic information and local features. Experiments results show that the proposed
framework achieves state-of-the-art performances on three widely used bench-
marks. We believe the proposed method could be applied to many other tasks
that require syntactic information such as event extraction.

Acknowledgements. We thank Xiao Liang, Hongzhi Zhang, Yunyan Zhang, Wenkai
Zhang and Hongfeng Yu, and the anonymous reviewers for their thoughtful comments
and suggestions.
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Abstract. Measuring the similarity between short texts is made difficult
by the fact that two texts that are semantically related may not contain
any words in common. In this paper, we propose a novel short text
similarity measure which aggregates coupled semantic relation (CSR)
and strong classification features (SCF) to provide a richer semantic
context. On the one hand, CSR considers both intra-relation (i.e. co-
occurrence of terms based on the modified weighting strategy) and inter-
relation (i.e. dependency of terms via paths that connect linking terms)
between a pair of terms. On the other hand, Based on SCF for similarity
measure is established based on the idea that the more similar two texts
are, the more features of strong classification they share. Finally, we
combine the above two techniques to address the semantic sparseness
of short text. We carry out extensive experiments on real world short
texts. The results demonstrate that our method significantly outperforms
baseline methods on several evaluation metrics.

Keywords: Short text · Coupled semantic relation ·
Strong classification feature · Short text similarity

1 Introduction

Text similarity measures play a vital role in text related applications in tasks
such as NLP, information retrieval, text classification, text clustering, machine
translation and others. As the emergence of various social media, there are a
large number of short texts, such as microblogs, and instant messages, are very
prevalent on todays websites. In order to mine semantically similar information
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from massive data, a fast and effective similarity method for short texts has
become an urgent task [1]. The challenge in measuring the similarity between
short texts lies in the sparsity, i.e., there are likely to be no term co-occurrence
between two texts. For example, two short texts Dogs chase cats and Felines
kill mice refer to similar topics, even though there are no term co-occurrence.
However, employ vector space similarity measures such as cosine similarity will
still yield a value of 0. In order to get over the sparsity, enriching the semantic
information of short texts using external corpus or knowledge is needed.

At present, the methods of short text similarity measure are mainly divided
into two categories, namely, knowledge based and corpus based. Knowledge based
approaches rely on handcrafted resources such as thesauri, taxonomies or ency-
clopedias, as the context of comparison. Previous methods based on lexical a
taxonomy (tree), which is a hierarchical network representation consists of con-
cepts and relations between these concepts. Most works depend on the semantic
is a relations in WordNet [2,3]. Corpus based approaches work by extracting the
contexts of the terms from large corpora and then inducing the distributional
properties of words or n-grams [4,5]. Corpus can be anything from webpages,
web search snippets to other text repositories.

However, knowledge based measures faced several challenges. First, the scale
and scope of the concept or instance is not big enough, in other words, those con-
cepts don’t cover many proper nouns, or very popular senses. Second, exist meth-
ods treat concept as black and white, most of these knowledge based measures
are deterministic instead of probabilistic. Nevertheless, corpus based approaches
also face several serious limitations. First, corpus based measures extremely sen-
sitivity to noise data. Second, corpus based approaches can’t effectively addresses
both synonymy and polysemy. Final, corpus-based methods focus on context of
a term, which is more suitable to the calculation of semantic relatedness rather
than similarity. For example, photo and delicacy would have high semantic relat-
edness because they co-occurrence very frequently.

In this paper, we propose an efficient and effective framework for computing
semantic similarity (a number between 0 and 1) between two short texts. The
major contributions of the paper are summarized as follows:

– We propose CSR-based method for acquiring similarity by coupling intra-
relation and inter-relation to capture the richer semantic information, namely
coupled semantics relation for similarity measure (CSRS).

– We design a strong classification feature-based similarity function, called
strong classification feature-based similarity (SCFS), by utilizing the
improved expected cross entropy to extract the strong category features of
each class from labeling data set. Besides, aiming at multi-sense word, we
propose a novel terms sense disambiguation by utilizing terms context simi-
larity.

– Our approach employs a smoothing parameter to regulate the importance of
the CSRS method and the SCFS method(i.e.CSRS-SCFS). This provides a
complete representation of the semantic information for the document set.
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– We conduct extensive experiments on the real-world text corpora. Experi-
mental results prove the effectiveness of our proposed approach over many
competitive baseline approaches.

The remainder of this paper is organized as follows. In Sect. 1 the related works
are introduced. In Sect. 2 we present our proposed approach in details. In Sect. 3,
we show experiments and result analysis, respectively on two real-world data
sets. And the concluding remarks in Sect. 4.

2 The Proposed Methods

In our work, the whole framework consists of three phases: (i) an effective app-
roach is presented to measure the relationship between terms by capturing both
explicit and implicit semantic relations, which is implemented via utilizing modi-
fied intra-relation and inter-relation; (ii) the difference contribution of a term for
a category is calculated based on the improved expected cross entropy; and (iii)
the term correlation and the difference contribution of the term are aggregated
to capture the comprehensive relationship between short texts.

2.1 Coupled Semantic Relation for Similarity Measure

In this section, we present the notations and define the problem of similarity
measure. Let D = {d1, d2, ..., dm} is the set of m short texts in a document set
D, and T = {t1, t2, ..., tn} is the set of n terms in a vocabulary set T .

We assign weight for a particular term in a certain short text by considering
the co-occurrence, distance of term pairs and term discrimination (following the
ideas of reference [6]). Thereafter, we can obtain the correlation weight of the
term ti (ti ∈ T ) in given text ds (ds ∈ D), which is defined as wds

(ti).

Intra-relation. We adapt the popular co-occurrence measure Jaccard to eval-
uate the intra-relation.

Definition 1 (intra-relation). If two terms co-occur in at least one text ds,
they are said to be intra-related. The intra-relation of term ti and tj can be
described as:

CoR(ti.tj) =
1

|H| ×
∑

ds∈H

wds
(ti) × wds

(tj)
wds

(ti) + wds
(tJ ) − wds

(ti) × wds
(tj)

(1)

where wds
(ti),wds

(tj), denote the correlation weights of term ti and tj in
ds, respectively. |H| denotes the number of elements in H = {ds|wds

(ti) �=
0 ∨ wds

(tj) �= 0}, if H = φ, we define CoR(ti, tj) = 0. We further normalize
CoR(ti, tj) to [0,1] as follows:

UIaR(ti|tj) =

{
1 i = j

CoR(ti,tj)∑n
i=1 CoR(ti,tj)

i �= j
(2)
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where UIaR(ti|tj) describes intra-relation of term ti and tj accounting for
the proportion of all intra-relation of term ti and other terms except tj . Note
that UIaR(ti|tj) is asymmetric, we define intra-relation in a symmetric way:

IaR(ti, tj) =
UIaR(ti|tj) + UIaR(tj |ti)

2
(3)

Inter-relation. The intra-relation introduced above only captures the explicit
relatedness of two co-occurrence terms, but fails to consider the relatedness of
term pairs in a global view, for the reason that the intra-relation fails to capture
the semantic relatedness of term pairs by taking the interactions of other terms in
the document set into consideration. In this subsection, we introduce an approach
to model the implicit relatedness based on the graph, namely inter-relation [7].
Assume that the document set may be drawn as a graph which is consist of
vertexes and edges to indicate the terms and their relatedness separately. If and
only if term pairs co-occur in the document, they should have relation, i.e., there
is an edge between the term pairs.

Definition 2 (inter-relation path). For given two terms ti and tj , there exist
paths starting at ti and ending at tj , and linking finite terms which connect a
sequence of terms. The path is defined as inter-relation path (IeP ). Obviously,
term pair may contain multiple paths. Therefore, we define IeP of any existing
path as follows:

Path(ti, tj) = {TP
i:j |ti, tl1 , · · · , tlg , tj , tj ∈ TP

i:j , eil1 , el1l2 , · · · , elgj ∈ EP
i:j} (4)

where ti is the initial vertex and tj is the ending vertex, tl1 stands for the
terms on Path(ti,tj), g is the number of these terms. TP

i:j denotes vertex set of
the path. EP

i:j is the set of edges that passed by Path(ti,tj). And g ∈ [1, θ], θ
is a user-defined threshold to limit the number of tlg , i.e., the length of a path.
The longer the path is, the weaker the path strength is. Nevertheless, the inter-
relation is defined in fails to capture the high-order correlation among multi-
terms. The relations among multi-terms are too complex to be described via
merely using the binary correlation. Thus, it is necessary to find a new measure
to represent the high-order relations among multi-terms. We further define set
of terms between two terms on a particular path as:

Definition 3 (linking term set). All terms between ti and tj on Path(ti, tj)
construct a linking term set T p−link with length h, which is formalized as:

T p−link = {tlh |tlh ∈ TP
i:j , T

P
i:j ∈ Path(ti, tj)} (5)

For any term pairs, we will consider the relation on possible paths, to dis-
cover the semantic relationship between the terms. A new measure called sharing
entropy is adopted to measure the high-order correlation among multiple features
[8], which is defined as:
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Definition 4 (sharing entropy). Sharing entropy is defined as correlation
degree on the p path of the term ti and tj from T p−link as follows:

Sq(T p−link) = (−1)0
∑

tlh
J(tlh) + (−1)1

∑
1<i≤j≤h

J(tli , tlj )+

· · · + (−1)hJ(T p−link)
(6)

where J(•) denotes joint entropy of linking terms on the pth path, and h
denotes the length of the pth path joint entropy [9] measures the amount of
information contained in these multiple terms:

J(T p−link)=− ∑
ti,tl1 ,··· ,tlh ,tj

P (ti, tl1 , · · · , tlh , tj) × log2 P (ti, tl1 , · · · , tlh , tj) (7)

Noticeably, the sharing entropy reduces to the entropy of a single term when
the path only have one linking term. If the path contains two terms, its sharing
entropy degrades into information gain between the two terms. For any term
pairs, the larger the shared entropy is, the closer multi-terms are correlated. In
this work, we ignore the first two cases, in other words the length h> 2.

We normalize Eq. (6) based on the proportional heuristic that the sharing
entropy of a term pair on p paths divided by the sharing entropy of all possible
paths q. We define the inter-relation of the path p as follow:

IeRp(ti, tj) =
Sp

(
T p−link

)
∑q

p=1 (T p−link)
(8)

To the end, we acquire inter-relation of term pairs by selecting the max value
of the sharing entropy on the all possibly paths.

IeR(ti, tj) = max {IeRp(ti, tj)} (9)

Given term pair(ti, tj), the coupled semantic relation is defined as:

CSR (ti, tj)=

⎧
⎨

⎩

1 i=j
αIaR (ti, tj)+
(1−α) IeR(ti, tj)

i �= j
(10)

where α ∈[0, 1] is the smoothing factor to trade off the important between
intra-relation and inter-relation. Let M be a set of all term pairs with strong
coupled semantic relation, which satisfies the user specified minimum threshold
CSR(ti, tj) ≥ 0.3. The CSRS can be defined as:

SCSRS (d1, d2) = 1
‖d1‖‖d2‖

∑
ti∈d1

∏
wd1 (ti) × wd2h (ti) × CSR (ti, h (ti)) (11)

where h(ti) = tj |tj ∈ d2 ∧ (ti, tj) ∈ M . This method adopts term ti in the
text d1 to mapping others terms that has coupled relation in the text d2. Hence
our method essentially aligns each term in d1 with its best match term in d2.
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2.2 The Strong Classification Feature-Based Similarity

Traditional similarity methods do not take category distribution information
of terms into consideration. In our work, we measure the weight of a term in a
particular class, which utilize improved expected cross entropy (ECE′′) to obtain
strong classification features in given each class.

Improved Expected Cross Entropy. Let Dl = {dl1, d
l
2, · · · , dlx} be the set

of short texts with labels. C ={C1,C2. . .Cy} is the collection of all classes. For
any term ti that belongs to the text ds, the correlation weight of the term ti in
the given class Cr(i.e. Cr ∈ C ) is defined as:

cowCr
(ti) =

(∑
ds∈Cr

cowds
(ti)

|Cr (ti)|
)

(12)

where cowds
(ti) represents the correlation weight of term ti in the given

short text. |Cr(ti)| is the number of texts that both contain term ti and belong
to Cr. In this subsection, we will discuss class-based weight by calculating the
weight of a term ti in different categories separately, i.e. improved expected cross
entropy. The key idea is that a representative term of category A may be not of
great importance in category B, therefore we should assign different weights in
different categories.

The importance of term ti in a particular class Cr (i.e.expected cross entropy)
can be calculated as follows:

ECECr
(ti)=

{
cowCr

(ti)P (Cr|ti) log P (Cr|ti)
P (Cr)

cowCr
(ti)P (Cr|ti) log P (Cr)

P (Cr|ti)
(13)

From Eq. (13), two scenarios are set up (i.e. P (Cr) ≤ P (Cr|ti) and P (Cr) >
P (Cr|ti) respectively) to prevent value is negative. We can see that if ti has a
strong indication forCr, it is more likely to assign a relatively higher weight with
regard to category Cr for ti. Next, the ECECr

(ti) of term ti is defined as the
average importance of term ti on all classes except Cr, which is formulated as:

ECE′
Cj

(ti) =

∑
j �=r ECECj

(ti)
y − 1

(14)

The improved expected cross entropy is then defined as follows:

ECE′′
Cr

(ti) =
ECECr

(ti)
ECE′

Cj
(ti) + 0.01

(15)

Equation (15) is used to measure the class-based weight of a term with regard
to a category. It is clear that if ti has a strong relationship with category Cr but
weak class indication for other categories, the term ti has higher possibility to
have high weight with regard to category Cr. The value of ECE′′

Cr
reflects the

importance and representativeness of term ti in certain class Cr.
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We also introduce the inverse document frequency as an external weight to
enforce the global importance of the terms. The final weight of term ti in class
Cr is as follows:

WCr
(ti) = ECE′′

Cr
(ti) × idf(ti) (16)

The top-K distinctive terms for each category are selected to represent strong
classification dictionary S ={s1,s2. . . sy×k}.

Strong Classification Feature Similarity. The basic idea of SCFS is that
the more similar two texts are, the more features of strong classification they
share. It is reasonable because the most representative features that are strongly
related to target classes are selected from each classes. However, human language
is ambiguous, so that many terms can be interpreted in multiple ways depending
on the context in which they occur. For instance, consider the following short
texts: “I have apple juice” and “I have apple shares” The occurrences of the term
apple in the two short texts clearly denote different meanings: a type of fruit
and a company, respectively. Therefore, we need identify terms sense, namely
distinguish the term whether or not express the same meaning in different texts.

In our approach, we merely take into account the strong classification features
that are contained in both texts, i.e. each terms ti in short text should satisfy the
constraint: ti ∈ s(t) = {tj |tj ∈ d1 ∧ tj ∈ d2 ∧ tj ∈ S}. In general, nearby words
provide strong and consistent clues to the sense of a target term, conditional on
relative distance, and semantic relation. The word sense disambiguation (WSD)
algorithm is performed by comparing context similarity of the term ti (ti ∈ s(t))
within fixed-size context windows. The context of term ti between in two text
can be defined as:

Kd1(ti)={tj |tj ∈ d1, disd1(ti, tj) ≤ ϕ} (17)

Kd2(ti)={tj |tj ∈ d2, disd2(ti, tj) ≤ ϕ} (18)

where disd1(ti, tj) is the distance between terms ti and tj in a given text
d1, i.e. the number of terms in-between. ϕ is a threshold to control the size of
windows. In this paper, we set ϕ = 2. Then, we exploit the context of terms to
calculate context similarity, which is calculated as:

Scox(ti) =

∑

t1∈Kd1 (ti)

∑

t2∈Kd2 (ti)

CSR(ti, tj)

|Kd1(ti)| × |Kd2(ti)|
(19)

After obtaining the context similarity of term ti in the pair of texts, we can
judge whether the strong classification features suggest the same meaning in
these two short texts. An indicator function I(ti) is defined to reveal real sense
for a term:

I(ti) =
{

1 Scox(ti) ≥ 0.5
0 otherwise

(20)
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A comprehensive weighting strategy for strong classification features in the
short text is adopted combining the correlation weight(following the ideas of
references [6] and ranking value of term ti in the corresponding class (calculated
by (16)). The weight of term ti in a particular short text d1 is redefined as:

w′
d1

(ti) = wd1(ti) × wCr
(ti) (21)

With all term senses are disambiguated and weights are updated, we can
compute the strong classification feature similarity (SCFS ) defined as:

SSCFS(d1, d2) =
y∑

r=1

∑

ti∈Cr

(min(w′
d1

(ti), w′
d2

(ti)) × I(ti)) (22)

The higher the value of SSCFS(d1, d2) is, the higher probability of texts
belong to same class is, the more similar the texts are. We further define the
strong classification feature similarity via normalizing the relation between texts
(i.e. SSCFS(d1, d2) to [0, 1]), which is calculated as follows:

S′
SCFS(d1, d2) =

SSCFS(d1, d2)
y∑

r=1

∑
ti∈Cr

(max(w′
d1

(ti), w′
d2

(ti)) × I(ti))
(23)

2.3 Combination of the Coupled Semantic Relation and Strong
Classification Feature for Similarity Measure

In this paper, we propose a novel similarity measure of short text, namely combi-
nation of the coupled semantic relation and strong classification feature similarity
measure of short text (CSRS-SCFS), which is formalized as:

SCSRS−SCFS(d1, d2) = β × SCSRS(d1, d2) + (1 − β) × S′
SCFS(d1, d2) (24)

where β is a damping factor to determine relatively importance between the
CSRS and the SCFS. If β > 0.5, the importance of CSRS is greater than SCFS.
The value of β falls into [0, 1], when β = 0 and β = 1, our approach degrade
into the SCFS and the CSRS, respectively.

3 Experimental Results

In this section, we first give the experimental setup in Sects. 3.1, then we observe
performance with parameter changing in Sect. 3.2. Finally, we compare the effec-
tiveness of our approach with existing approaches in document clustering on two
data sets in Sect. 3.3.
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3.1 Experimental Setup

We use two data sets in the following experiments, including DBLP data set [10]
and Sogou corpus data set [11]. For the experiments on the DBLP data set, we
used a random sample of 10000 paper titles from the 10 domains averagely, such
as Data Mining, Artificial Intelligence, Natural Language Processing and so on.
Sogou corpus data set is composed of 11 categories, including car, finance, IT,
health, and tourism, et al. 1000 news headlines are randomly selected in each
category as experimental data. We carry out experiments on document cluster-
ing on both data sets. For a clustering algorithm, the performance of clustering
depends heavily on the similarity mechanism. Namely, the performance of sim-
ilarity measurements can be evaluated through the clustering results. In this
paper, we adopt k-means as the clustering algorithm, and we set k equal to the
number of classes in the document set for comparison. The 5-fold cross valida-
tion is employed in our experiments, and each fold composes of 80% of data for
training and 20% for testing. We make use of F-measure and Rand Index (RI)
as the clustering validation criteria.

3.2 Parameter Analysis

In this section, we describe some experiments on three important parameters
(i.e. α,K, β) involved in our approaches. From previous analysis, we know
that parameter α trades off the relative importance of intra-relation and inter-
relation. The parameter K is related to the number of strong classification fea-
tures, and the parameter β indicates the relative important of similarity between
the two methods (CSRS and SCFS). In the following experiments, RI and F-
measure are adopted to observe the effects with parameters changing on the
clustering task. The obtained threshold is verified on a test data set, and, if it
produces a satisfactory performance, then that value is adopted as the optimal
one.

Fig. 1. The effect of the parameter α on the RI and F-measure

We report the values of RI and F-measure on two data sets varying with
the values of α from 0 to 1 with a 0.1 step. The experimental results in Fig. 1
show that as the value of α increases, the value of RI and F-measure are linearly
increasing on both data sets, while the value of RI and F-measure first increase
to a peak value (in the case of α = 0.5), then continuously declines. The results
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demonstrate that the inter-relation has great impact on the performance of doc-
ument clustering, and it plays equal important role as the intra-relation, hence
we set the value of α = 0.5 as the optimal value. Fig. 2 reports the curves of
the F-measure value with varying parameter K from 50 to 500 with a 50 step
in SCFS on both data set. Experimental results show that as the value of K
increases, the F-measure are linearly increasing. While the F-measure value first
increases to a max value (in this case K = 200), then decreases with K value
increasing. This may be due to the fact that if the value of K is too small, it will
lead to the lack of strong category information. On the contrary, a large K value
will incorporate some useless terms as strong category features, which may be
considered as noises.

Fig. 2. The effect of varying the parameter K on both data set

Fig. 3. The effect of the parameter α on the RI and F − measure

Parameter β is a damping factor to balance bias between CSRS and SCFS.
For parameter β, we analyze how it affects the performance of CSRS-SCFS by
fixing the remaining parameters (α = 0.5, K = 200). The growth trends of RI
and F-measure scores on each value of β are represented in Fig. 3, ranging from
0 to 1 with the increment of 0.1 on different data sets. From the result in Fig. 3
that we can observe that the curve keeps growing at the beginning, then starts
to descend after it reaches the peak, indicating that clustering achieves best
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performance at a peak point with respect to a certain value of β = 0.7. There-
fore we set β = 0.7 as the optimal value. We believe the reason is that CSRS
comprehensively considers both explicit relation and implicit relation of terms
while SCFS only relies on explicit relation (i.e. Co-occurrence relation) of terms
with category information. Moreover, Fig. 3 reveals a fact that the incorpora-
tion of SCFS will improve the calculation of similarity accuracy between short
texts, while richer semantic context and category knowledge between terms are
revealed, leading to improve clustering performance.

3.3 Performance Comparison with Different Similarity Methods

In this section, we aim to observe the effectiveness of our approaches from two
aspects. Firstly, we compare different methods proposed in this paper (namely
CSRS, SCFS and CSRS-SCFS). The results in Fig. 4 demonstrate the supe-
riority of our similarity measure on both data sets in terms of both RI and
F-measure. The reason is that CSRS-SCFS not only considers the coupled rela-
tionship between the terms, but also takes the category information into account.
Besides, Fig. 4 indicates that CSRS is superior to the SCFS on both evaluation
metrics. It is reasonable because SCFS merely employs the terms co-occurrence
relation with category information and the implicit interactions with other link
terms are neglected.

(a) Comparing approaches on DBLP (b) Comparing approaches on Sogou

Fig. 4. Comparing the effectiveness in document clustering between our approaches

Secondly, we compare CSRS-SCFS with the three benchmark methods to ver-
ify its effectiveness. The three benchmark methods are as follows: Co-occurrence
Distance and Discrimination Based Similarity Measure on Short Text (CDPC)
[12], Semantic Coupling Similarity (CRM) [7], and Strong Classification Fea-
tures Affinity Propagation (SCFAP) [13]. Table 1 compares the F-measure and
RI of our approaches with that of three others. From the experimental results,
we make the following observations. First, our most advanced approach, CSRS-
SCFS, leads the competition against the peers by large margins in all data sets.
Second, CRM performs better than CDPC, the reason is CDPC only use the
co-occurrence between the terms but fails to capture the high-order correlation
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among terms. Finally SCFAP performs the worst, we believe the reason is that
SCFAP exploits the small amount of the categories information but overlooks
the semantic context and the correlation between terms. As a whole, unlike three
benchmark methods which overlook the internal interactions and category infor-
mation between terms, CSRS-SCFS accomplishes a comprehensive consideration
that both combines coupled relation and strong classification features. Moreover,
CSRS-SCFS also addresses the term sense ambiguity by utilizing context simi-
larity.

Table 1. F-measure and RI of the k-means clustering with different similarity methods

Methods DBLP Sogou

RI F-measure RI F-measure

SCFAP 0.478 0.378 0.358 0.325

CDPC 0.502 0.482 0.542 0.512

CRM 0.534 0.512 0.425 0.394

CSRS-SCFS 0.724 0.665 0.759 0.732

4 Conclusion

In this paper, we propose a novel similarity measure for short text based on
coupling realton and strong classification features. CSRS-SCFS achieves this
in terms of a three-step procedure: (1) Defining the coupled semantic relation
based on the combination of intra- and inter-relation to comprehensively capture
the semantic relatedness of term pairs. (2) Developing a strong classification
features for similarity measure by considering category information, which utilize
modified the expected cross entropy to acquire strong classification features. (3)
Combining two kinds of similarity methods to get the final short text similarity.
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Abstract. Nowadays, the online interactions between users and items
become diverse, and may include textual reviews as well as numerical
ratings. Reviews often express various opinions and sentiments, which
can alleviate the sparsity problem of recommendations to some extent.
In this paper, we address the personalized review-based rating prediction
problem, namely, leveraging users’ historical reviews and corresponding
ratings to predict their future ratings for items they have not interacted
with before. While much effort has been devoted to this challenging prob-
lem mainly to investigate how to jointly model natural text and user per-
sonalization, most of them ignored sequential characteristics hidden in
users’ review and rating sequences. To bridge this gap, we propose a novel
Hybrid Review-based Sequential Model (HRSM) to capture future tra-
jectories of users and items. This is achieved by feeding both users’ and
items’ review sequences to a Long Short-Term Memory (LSTM) model
that captures dynamics, in addition to incorporating a more traditional
low-rank factorization that captures stationary states. The experimental
results on real public datasets demonstrate that our model outperforms
the state-of-the-art baselines.

Keywords: Recommender systems · Rating prediction ·
Review analysis · Sequential model

1 Introduction

With the rapid development of the Internet, massive amounts of information
spring up every day, posing both opportunities and challenges. Among many
adopted techniques, recommender systems have been playing an increasingly
vital role, being advantageous to alleviate information overload for ordinary
users and increase sales for e-commerce companies. Particularly, in the field of
recommender systems, rating prediction is a fundamental problem and has draw
much attention since the success of Netflix Prize Competition1. Given historical

1 https://www.netflixprize.com/.
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ratings, rating prediction is required to predict users’ ratings for items they have
not evaluated before.

Latent factor models [10,13,19] behave well and are widely applied to the
rating prediction problem. The main goal of such models is to learn low dimen-
sional vector representations for both users and items, reflecting their proxim-
ity in the corresponding latent space. Salakhutdinov et al. [19] first formulated
latent factor model from a probabilistic perspective. Beyond basic latent factor
models, Koren et al. [10] introduced additional user and item rating biases as
new features to improve prediction. Nowadays, the online interactions between
users and items become diverse, and may include textual reviews besides ratings.
According to the survey [20], reviews as a kind of side information are valuable
for recommender systems because of the sentiment dimension.

Review-based rating prediction problem was well formulated in the model of
Hidden Factor as Topics (HFT) [15], aiming at leveraging the knowledge from
ubiquitous reviews to improve rating prediction performance. As reviews can be
regarded as the interactions between users and items, they contain information
related to both user and item latent factors. Previous work for solving this
problem could be roughly classified into two categories. One is employing topic
models to generate the latent factors for users and items based on their review
texts [1,3,14,15,21,24]. Another is making use of fresh neural networks to model
the semantic representation of words or sentences in the review texts [22,25,26].
However, most of the current review-based models mainly focus on learning
semantic representations of reviews and ignore the sequential features among
the reviews, which is the major focus of our work. Note that the task of review-
based rating prediction is different from the task of sentiment classification.
The difference is that our task focuses on leveraging users’ historical reviews to
predict their future ratings, but the sentiment classification task is to classify the
current textual review’ sentiment. Specifically, the method of learning semantic
representation can be referred in the elementary component of our task.

To highlight the peculiarity of our proposed model, we first introduce the
sequential models briefly, which take temporal dimension into consideration.
Since preferences of users tend to vary along time and are influenced by the newly
interacted items, sequential interaction history, as a kind of side information like
reviews mentioned in [20], potentially serve as an important factor for predicting
ratings. Apart from users, the characteristics of items might also be influenced
by its recently interacted users. However, the existing methods based on matrix
factorization [9] or deep neural networks [4,5,23], are mainly designed for mining
temporal information on ratings, so that they cannot be directly employed to
model the sequential features among the reviews.

From the above introduction, we can see that most of the current review-
based models and sequential models only consider either review information or
temporal information. To bridge this gap, we propose a novel Hybrid Review-
based Sequential Model (HRSM) to capture future trajectories of users and
items. The sequential information hidden in the textual reviews can help us to
reveal the dynamic changes of user preferences and item characteristics. These
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two kinds of side information, namely reviews and temporality, are captured
simultaneously in our proposed model. Furthermore, stationary latent factors of
user and item generated from latent factor model potentially keep the inherent
features over a long period. We integrate these stationary states with user’s and
item’s dynamic states learned from review sequences to jointly predict ratings.
The key differences between our proposed model named HRSM and the repre-
sentative models for comparison in the rating prediction task, including PMF
[19], BMF [10], HFT [15], DeepCoNN [26], RRN [23], are summarized in Table 1.

Table 1. Comparison of different models.

Characteristics PMF BMF HFT DeepCoNN RRN HRSM

Ratings
√ √ √ √ √ √

Reviews
√ √ √

Deep learning
√ √ √

Sequences
√ √

In summary, the main contributions of our work are as follows.

(1) We propose a hybrid review-based sequential model for rating prediction,
which enables capturing temporal dynamics of users and items by leveraging
their historical reviews.

(2) We integrate user’s and item’s stationary latent factors with dynamic states
learned from review sequences to jointly predict ratings.

(3) Extensive experiments conducted on real public datasets demonstrate that
our model outperforms the state-of-the-art baselines and obviously benefits
from employing the sequential review content.

2 Related Work

Document Representation. Learning the document representation is the fun-
damental task of Natural Language Processing (NLP). LDA [2] as a traditional
method is to learn the topic distribution from a set of documents. Based on
neural networks, word2vec [17] and doc2vec [12] achieved a great success in
modeling the distributed representation of words and documents, respectively.
In recently years, methods employing deep learning technology outperform the
previous models. Kim et al. [7] applied a convolutional layer to extract local
feature among the words, and Lai et al. [11] added a recurrent structure based
on it to reduce noise.

Review-Based Model for Rating Prediction. McAuley et al. [15] proposed
the HFT model to use reviews to learn interpretable representation of users and
items for review-based rating prediction problem. Many studies were inspired
later, employing topic models as McAuley et al. did. TopicMF [1] as an exten-
sion of HFT, used non-negative matrix factorization for uncovering latent top-
ics correlated with user and item factors simultaneously. Diao et al. [3] further
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designed a unified framework jointly modeling aspects, ratings and sentiments of
reviews. Ling et al. [14] used mixture of Gaussian instead of matrix factorization
to retain the interpretability of latent topics. Tan et al. [21] proposed a rating-
boosted method to integrate review features with the sentiment orientation of
the user who posted it. Recently, methods under the help of neural networks
perform better in review-based rating prediction. Zhang et al. [25] combined
word embedding method with biased matrix factorization, and Wang et al. [22]
integrated the stacked denoising autoencoders with probabilistic matrix factor-
ization. Zheng et al. [26] designed DeepCoNN which modeled the user and item
representations using review embeddings learned by Convolutional Neural Net-
work (CNN). However, most current review-based models fail to pay attention
to the sequential features among the reviews, which is the major focus of our
work.

Sequential Model for Rating Prediction. To model the dynamics, Koren
et al. [9] designed a time piecewise regression to make use of dynamic informa-
tion. He et al. [5] later adopted a metric space optimization method to capture
additive user-item relations in transaction sequences. Recently, Recurrent Neural
Networks (RNN) based models like User-based RNN [4] and RRN [23] have been
shown effective in extracting temporal features from rating sequences, leading
to a further improvement in prediction. However, the existing sequential models
mainly focus on rating sequences. Informative review sequences ignored by them
are considered in our model.

3 Preliminary

3.1 Problem Formulation

Assume the user set and item set are denoted as U and V, respectively. We
further represent the rating matrix as R and the collection of review text as D.
For u ∈ U and v ∈ V, ruv ∈ R indicates the rating value which the user u assigns
to the item v, while duv ∈ D indicates the corresponding review text written by
the user u to the item v. Given historical observed ratings and reviews, the
problem of personalized review-based rating prediction is to predict the missed
rating values in the rating matrix R.

3.2 Biased Matrix Factorization

In order to verify how the temporal information and review text work, we briefly
introduce a stationary model first. Biased Matrix Factorization (BMF) [10] is
a collaborative filtering model for recommender systems. It is a classical and
strong baseline applied in various scenes. The predicted rating r̂uv of the user u
to the item v can be computed as:

r̂uv = p�
u qv + bu + bv + g, (1)

where pu and qv are stationary latent vectors of the user and item, respectively.
bu and bv correspond to their rating biases, respectively, and g is the global
average rating.
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4 Proposed Methodology

In this paper, we propose a novel Hybrid Review-based Sequential Model
(HRSM). The overall framework of our proposed model is described in Fig. 1.
Specifically, we first get each review’s representation by feeding the inside words
into CNN step by step. Then LSTM [6] is employed to model the sequential
property of review sequences and thus we obtain the dynamic states of users
and items. We further combine the dynamic states with user and item station-
ary latent vectors, and train them together to make the final rating prediction.
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Fig. 1. The architecture of the hybrid sequential model for review-based rating
prediction.

4.1 Review Representation

As we know, reviews contain abundant information. Emotional words among
reviews, such as positive or negative words, indicate the preferences shown by
a user to an item. Before exploring the sequential relation among reviews, we
first need to obtain the representation for each given review. Each review d (d =
{w1, w2, ...}) consists of a certain number of words, where each word w ∈ W
comes from a vocabulary W. By padding zeros in the front of review if necessary,
each review could be transformed into a fixed-length matrix, with original one-
hot representations for each word. After transformation by an embedding layer,
each word inside the review is represented as an embedding w. For each review,
we adopt a convolutional layer to extract the local features and then adopt a
mean-pooling layer to average the local features over its inner words. At last,
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the output vector d is regarded as the representation of the current input review
d. The above procedures can be formulated as follows:

d = MP(CONV(EMB(d))), (2)

where EMB(·), CONV(·) and MP(·) denote the word embedding, the convolution
and the mean-pooling operations, respectively.

Note that an LSTM layer can also be applied to learn the review representa-
tion from the mention in the related work part. But in the following procedure,
we employ another LSTM layer to model the review sequences. The nested struc-
tures composed of these two kinds of LSTM layer will make the whole model
too complicated to perform well in the attempted trial. Therefore, we choose the
CNN layer as the alternative.

4.2 Review-Based States of User and Item

Because the procedures of learning dynamic state representations of users and
items based on their reviews are conducted in a similar fashion, we just illustrate
how to model review-based state for users in more detail. In order to model the
dynamic states of users, we are supposed to take the timestamps of reviews into
consideration.

Assume that the current user u already has interactions with n items.
After sorting the interactions by their timestamps, we get an item id sequence
denoted as V Su (V Su = {v1, v2, ..., vn}) and a review sequence denoted as
DSu (DSu = {duv1 , duv2 , ..., duvn

}). Different from the previous studies, we
model the dynamic changes of user u from its review sequence DSu rather
than item id sequence V Su, due to the reason that reviews denote the inter-
actions between current user u and other items, and tend to contain both
user’s opinion and item’s characteristic simultaneously. For user u and item v
at time step t, their rating is denoted as ruv|t. Obviously, ruv|t is only associ-
ated with the interactions before t. For a rating ruv|t, the latest k interactions
(v itself excluded) assigned by u, constitute a subsequence of DSu, denoted as
DSut (DSut = {duvt−k

, duvt−k+1 , ..., duvt−1}). After getting review embeddings
using Eq. (2), the review sequence DSut is transformed into the review embed-
ding sequence DSut (DSut = {duvt−k

,duvt−k+1 , ...,duvt−1}) ∈ R
l×k, where l is

the dimension of review embedding and k is the sequence length. Here k also
means the time window size. When the time window keeps sliding over the whole
review sequence DSu, multiple DSut are generated and are regarded as the input
instances of the LSTM layer. To make the input sequences of LSTM have equal
length, we assume that each current rating to be predicted explicitly results
from its latest k interactions. The impact of parameter k will be discussed in the
experiment part (see Sect. 5.5).

For the stationary model, we obtain stationary states of user and item by
means of matrix factorization shown in Eq. (1). Differently, for sequential model,
we apply LSTM [6] to learn the dynamic states of a user from its review sequence.
At each time step τ of the sequence DSut, the hidden state huτ

of LSTM is
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updated based on the current review embedding duvτ
and the previous hidden

state huτ−1 by a transition function f . The relationship is formulated in Eq. (3).
Three gates inside the function f , namely input gate, forget gate and output
gate, collaboratively control how information flows through the sequence. In
this way, each review among the whole review sequence is considered together,
since that current review can influence all subsequent reviews when the hidden
state propagates through the sequence. When we feed sequence DSut into the
LSTM layer, transition function f are conducted k times in total. We obtain the
last hidden state as user dynamic state representation put based on its recent
review sequence. This procedure is formulated in Eq. (4).

huτ
= f(duvτ

,huτ−1), (3)
put = LSTM(DSut). (4)

In a similar manner, for current item v we can obtain its review
sequence DSv(DSv = {du1v, du2v, ..., dumv}) consisting of reviews written by
m users. For rating ruv|t, item v also has a subsequence DSvt(DSvt =
{dut−kv, dut−k+1v, ..., dut−1v}) of DSv. Note that according to the definition, DSut

and DSvt have not exactly the same review documents although they have the
same length. After applying the LSTM layer, we can also obtain the dynamic
state qvt of item v based on its review sequence.

4.3 Joint Rating Prediction

Up to now, we have obtained the dynamic states of user and item based on
their review sequences. It is noted that both user and item have some inherent
features that do not change with time. For example, user has fixed gender and
item has stable appearance. Therefore, it is necessary to combine the dynamic
and stationary states together for rating prediction. To be specific, we introduce
a fully-connected layer consisting of a weight matrix W1 (biases as parameter
included) and a ReLU activation function [18] to map the dynamic state into the
same vector space as that of the stationary state. We formulate the final states
of user and item as follows

Put = ReLU(W�
1 put) + pu, (5)

Qvt = ReLU(W�
2 qvt) + qv, (6)

where Put denotes the joint state of user u, and Qvt denotes the joint state of
item v.

Previous work like BMF [10], mainly illustrated in Eq. (1), simply conducts
the dot product of two latent vectors to produce a scalar as predicted rating.
In that case, different dimensions among the latent vectors of user and item are
considered to be equally important. To improve generalization, a linear transfor-
mation using a weight matrix W3 is added to distinguish significant dimensions.
Finally, our model adopt the following equation to predict rating r̂uv|t,

r̂uv|t = W�
3 (Put � Qvt) + bu + bv + g, (7)
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where � is the hadamard product, representing the element-wise product of two
vectors.

4.4 Inference

We define our objective function by minimizing the regularized squared error
loss between the prediction and the ground truth,

min
θ

∑

(u,v,t,d)∈Ktrain

(ruv|t − r̂uv|t(θ))2 + Reg(θ), (8)

where θ denotes all the parameters, which can be learned using backpropagation.
(u, v, t, d) means each observed tuple in the training dataset Ktrain, and Reg(θ)
denotes some optional regularizations.

5 Experiments

In this section, we describe our experimental setup and make a detailed analysis
about our experimental results.

5.1 Dataset

We conduct experiments based on the Amazon dataset2 [16]. We generally adopt
two large subsets: “CDs and Vinyl” (hereinafter called CD) and “Movies and
TV” (hereinafter called Movie). The CD dataset is more related to audio term
while the Movie dataset is more related to video term.

To obtain enough sequence instances, we remove users and items with less
than 20 occurrences in the dataset. After filtering, the total interactions (ratings
or reviews) still number over 1 × 105 and 4 × 105 on CD and Movie dataset,
respectively. A detailed summary is shown in Table 2. As our sequential model
takes the historical reviews as the input, to ensure fair comparison with other
stationary models, the test set is built with the last interacted item of each
user. The remaining items form the training set. Furthermore, we partition the
training set with the same strategy to obtain the validation set, which is used
to tune the hyper-parameters. Mean Square Error (MSE) is employed as the
evaluation metric for measuring model performance.

Table 2. Statistics of datasets.

Datasets #ratings/reviews #users #items Density Avg text len

CD 107,518 2,230 2,672 0.018 236

Movie 441,783 7,506 7,360 0.008 242

2 http://jmcauley.ucsd.edu/data/amazon/.

http://jmcauley.ucsd.edu/data/amazon/
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5.2 Baselines

Our model HRSM is compared with three traditional and three state-of-the-art
models, including GloAvg, PMF, BMF, HFT, DeepCoNN, and RRN. Specifi-
cally, the first three methods use numerical ratings, and the following two meth-
ods learn review representations with topic models or neural networks, and the
last one incorporates temporal information. The differences of the comparative
approaches (excluding GloAvg) are summarized in Table 1.

– GloAvg. GloAvg simply uses the global factor g in Eq. (1) when making
predictions.

– PMF [19]. PMF formulates matrix factorization from a probabilistic per-
spective with no rating biases.

– BMF [10]. BMF uses matrix factorization considering additional user’s and
item’s biases on the basis of PMF.

– HFT [15]. HFT is the classical method that combines reviews with ratings.
It integrates matrix factorization with topic models, where the former learns
latent factors and the later learns review parameters.

– DeepCoNN [26]. This is the state-of-the-art method for review-based rating
prediction problem, which indistinguishably merges all reviews of each user
or item into a new large document and then employs CNN to learn review
representations.

– RRN [23]. This is the state-of-the-art sequential model for rating prediction
problem, which employs LSTM to capture the dynamics by modeling user’s
and item’s id sequences without considering reviews.

5.3 Hyper-parameter Setting

Our model is implemented in Keras3, a high-level neural network API framework.
We employ Adam [8] to optimize parameters. To obtain the robust performance
of our model and the compared baselines, we initialize each model with different
seeds, and repeat the experiments five times, and report their average results.

Hyper-parameters are tuned in the validation sets using grid search. We apply
40-dimensional stationary latent vectors and 40-dimensional dynamic states
based on reviews. Word embedding is 100-dimension and the LSTM layer con-
tains 40 units. The batch size is set to 256 and the learning rate is set to 0.001.
We use L2 regularization and its parameter is set to be 1 × 10−5 on CD dataset
while 1 × 10−4 on Movie dataset. The hyper-parameters in baselines are also
tuned in the similar method.

5.4 Results Analysis

The performances of models on two datasets are reported in Table 3. From the
results, we have the following observations: (1) GloAvg is the weakest baseline,

3 https://keras.io/.

https://keras.io/
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since it is a non-personalized method. Compared with PMF, BMF performs
better by introducing the additional rating biases. (2) Apart from using rating
matrix as PMF and BMF do, the following three methods (HFT, DeepCoNN,
and RRN) consider additional information like textual review or sequential prop-
erty, generally achieving better results. RRN performs poorly on Movie dataset,
and the reason might be that this dataset has sparser information in user’s and
item’s id sequences. (3) RRN and DeepCoNN are the best baselines on CD and
Movie datasets, respectively. It shows approaches utilizing deep neural networks
usually perform better than the other baselines. (4) Our model HRSM consis-
tently outperforms all the baselines on two datasets. Both HRSM and RRN are
deep neural networks considering the sequential information, but HRSM achieves
better results, which shows that review information is complementary to ratings.
Although both HRSM and DeepCoNN are deep neural networks taking textual
reviews into account, our model performs better due to exploiting the sequential
information in addition.

Table 3. Performance comparison on two datasets.

Models CD Movie

GloAvg 1.4956 1.6908

PMF 1.0099 1.1694

BMF 0.9905 1.1623

HFT 0.9852 1.1618

DeepCoNN 0.9812 1.1530

RRN 0.9748 1.1793

HRSM 0.9584 1.1378

5.5 Impact of Time Window Size

In this part, we discuss how the important parameter k influences model per-
formance. According to the definition of k, when k increases, the input review
sequence of LSTM becomes longer and the number of input instances becomes
less. The shortest length of user’s or item’s review sequence is 20 after data
preprocessing (see Sect. 5.1). To obtain the best performance of our model, we
examine the impact of different time window size k from 1 to 19 on both datasets.
As the results are shown in Fig. 2, we have the following observations: (1) For
two datasets, MSE decreases with the increase of k. In other words, when the
review sequence becomes longer, the sequential information becomes more suffi-
cient, which leads to the better performance. (2) When k increases into the later
part of the range 1–19, the performance remains stable in general. Actually, our
model can obtain global sequential information to some extent because the time
window keeps sliding over the whole review sequence. When k is small, the input
sequence of LSTM is too short to contain enough information, resulting in the
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Fig. 2. Impact of the varying k on two datasets.

poor performance. But when k increases to a large value, the marginal benefit
for model brought by the increment of k becomes smaller. This observation can
help us determine how long a sequence should be as the input instance of LSTM.

6 Conclusion

In this paper, we propose a novel hybrid sequential model for the personalized
review-based rating prediction problem. Previous models consider either review
information or temporal information. But these two kinds of side information
are captured simultaneously in our proposed model. Leveraging deep neural
networks, our model learns the dynamic features of users and items by exploiting
the sequential property contained in their review sequences. Experimental results
on real public datasets demonstrate the effectiveness of our proposed model and
prove that the sequential property hidden in reviews contributes a lot in the task
of rating prediction.
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Abstract. Recently, there is a surge of research on aspect mining, where
the goal is to predict aspect ratings of shops with reviews and overall
ratings. Traditional methods assumed that aspect ratings in a specific
review text are of the same level, which equal to the corresponding over-
all rating. However, recent research reveals a different phenomenon: there
is an obvious rating bias between aspect ratings and overall ratings.
Moreover, these methods usually analyze aspect ratings of reviews with
topic models at textual level, while totally ignore potentially structural
information among multiple entities (users, shops, reviews), which can
be captured by a Heterogeneous Information Network (HIN). In this
paper, we present a novel model integrating Topic model and HIN for
Aspect Mining with rating bias (called THAM). Firstly, a phrase-level
LDA model is designed to extract topic distributions of reviews by using
textual information. Secondly, making full use of structural information,
we constructs a topic propagation network, and propagate topic distri-
butions in this heterogeneous network. Finally, by setting review as the
sharing factor, the two parts are integrated into a uniform optimization
framework. Experimental results on two real datasets demonstrate that
THAM achieves significant performance improvement, compared to the
state of the arts.

Keywords: Aspect mining · Rating bias · Topic model ·
Topic propagation network · Heterogeneous information network

1 Introduction

With the rapid development of E-commerce, a large number of opinion reviews
and ratings have been accumulated on the Web in the past decade [3,9,14].
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These reviews and ratings have played an important role which can not only help
people make more favorable purchase decisions, but also give valuable advice to
the shops [1,10]. For instance, users may pay attention to both of overall ratings
and reviews of a shop before making purchase decisions. The owner of a shop
can learn the positive and negative feedback embedded in users’ reviews as well.

In recent years, there is a surge of research on aspect mining and the main goal
of aspect mining is tox effectively discover the aspect distribution and the aspect
ratings of entities [16]. To address this problem, the earlier studies prefer to take
advantage of Probabilistic Latent Semantic Analysis (PLSA). For example, both
of Lu et al. [5] and Luo et al. [7] regarded reviews as several opinion phrases
and respectively designed two PLSA-based models. However, these two models
ignored the influence of ratings to reviews. Recently, many researchers [6,8,13,15]
took the influence of ratings into consideration and utilized Latent Dirichlet
Allocation (LDA) to describe the generation of reviews in details. Luo et al.
[6] paid attention to the latent distribution of overall ratings and designed an
LDA-based method for aspect rating prediction. Laddha et al. [2] integrated
both discriminative conditional random field, regression, LDA to simultaneously
extract phrases and predict ratings.

Almost all models for aspect mining usually have a basic assumption that
the overall rating could be close to aspect ratings or the average score of aspect
ratings. Thus, these methods preferred to directly associate review phrases or
terms with the corresponding overall rating. However, recent research [4] found
an insightful observation that there is an obvious rating bias between overall
rating and aspect ratings. For example, in Dianping, the bias between overall
rating and Environment is often +0.54, while in TripAdvisor, the bias between
overall rating and Food is −0.09. This phenomenon indicates that review phrases
or terms are more likely rated by latent aspect ratings rather than overall rat-
ing. Furthermore, Li et al. [4] proposed the RABI model to handle aspect rat-
ing prediction considering rating bias. Although the RABI obtains performance
improvement on aspect rating prediction compared to previous models, there
are several weaknesses existing in RABI. On the one hand, this model is based
on PLSA without considering some other latent dependence, for example, the
topic of modifier. This may restrict performance improvement. On the other
hand, in the RABI model, it assumes that overall rating is on the center of the
model, where it determines the reviews and aspects. Although this assumption
may simplify the model, it is a little against our common sense.

Besides, contemporary aspect mining methods all focus on making use of
textual information and overall rating, but ignore abundant structural informa-
tion existing on review networks among the multi-typed entities, such as users,
shops, and reviews. However, these structural information may be useful for
aspect mining. For example, the reviews given by a user can describe his profile
and the generation of a review is influenced by the quality of a shop as well as
the corresponding user profile. In order to utilize the rich structural information
of these multi-typed entities (e.g., users, reviews, and shops) and the various
relations (e.g., writing and evaluating) among them, it is naturally to form the
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review network as a Heterogeneous Information Network (HIN) [11,12]. In a
review HIN, both of user profile and shop profile can be easily described by
propagating topic distribution of review texts to neighbour entities. Similarly,
the topic distribution of review texts can be influenced by the profiles of their
neighbour entities.

Motivated by these observations, we propose a novel method integrating
Topic model and Heterogeneous information network for Aspect Mining with
rating bias (THAM for short). To overcome the weaknesses of RABI [4] and
describe the process of generating reviews more reasonably, THAM designs a
LDA-based topic model at phrase-level to describe the generation of reviews
and mine the aspect rating distribution of each review text. In this topic model,
the modifier term of a phrase is associated with the sampled aspect rating rather
than directly rated by overall rating because of the existing rating bias. More-
over, taking the abundant structural information into consideration, we pro-
pose a topic propagation network based on HIN to propagate topic distribution
among users, shops and reviews for keeping the consistency of topic distributions
of neighbour entities. Furthermore, in order to effectively fuse textual informa-
tion and structural information, we design a uniform optimization framework
through setting reviews as the sharing factor to integrate topic model and topic
propagation network. An iterative optimization algorithm is proposed for this
optimization framework.

2 Preliminary

Here we introduce the relevant concepts and the problem of aspect mining with
rating bias.

Review: A review d is the text to express the user’s opinion of a shop, and
there are |D| reviews in total.

Phrase: A phrase l =< h,m > consists of a head term h and its modifier
term m, for example, < food, delicious >. There are |L| phrases in all.

Aspect/Topic: An aspect z is a specific topic of a shop. There are K
aspects/topics. Note that, “topic” and “aspect” are used interchangeable in this
paper.

Overall rating: An overall rating r is the quantified overall opinion of a
review d. There are R levels of overall ratings and R is usually 5.

Aspect rating: An aspect rating rs,z is a numerical rating on the aspect z
of the shop s. There are R levels of aspect ratings too.

Rating bias: The rating bias is the gap between the average of overall ratings
and the average of aspect ratings.

Heterogeneous information network: Heterogeneous information net-
work (HIN) is a special information network containing multiple entities and
various relations [11]. For instance, the review network shown in left box of
Fig. 1 is such a network, which contains three types of entities: user (u), shop
(s), and review (d), and each edge represents a specific relation (e.g., “writing”
for u to d).
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Aspect rating prediction with rating bias: This problem is to predict
ratings on each aspect for each shop with the bias prior information. Given a set
of reviews D written by users U to evaluate shops S, the task is to identify the
aspect of each phrase and predict the aspect ratings of shops considering rating
bias.

Since aspect ratings are always missing in real applications but very valuable
to users and shops, aspect rating prediction is an effective way to repair the miss-
ing information. Moreover, rating bias plays an significant role to improve the
accuracy of aspect ratings [4]. Therefore, it is meaningful to study the problem
of aspect mining with rating bias.

3 The THAM Model

In this section, we propose the THAM model, which makes full use of textual
information and structural information for addressing the problem of aspect
identification and aspect rating prediction with rating bias.

Fig. 1. The framework of THAM model. The dotted-line box is a network schema of
topic propagation network, and the solid-line box describes the phrase-rating LDA.

3.1 The Phrase-Rating LDA

Here we design the phrase-rating LDA to more effectively learn topic distribu-
tions of reviews at textual level. In Fig. 2, both of aspect and aspect rating of a
review are assumed as latent factor respectively sampled by aspect distributions
and aspect rating distributions. Moreover, each review consists of several opin-
ion phrases, in which head terms are generated by aspects while modifier terms
are dependent on the sampled aspect ratings. Different from related methods,
we consider the sampled aspect rating is associated with not only the observed
overall rating but also the corresponding rating bias. Obviously, rz, the sampled
aspect rating of modifier term m, plays quite significant role in this model. Tak-
ing rating bias into consideration, we make two basic assumptions about aspect
ratings. On the one hand, rz is sampled by the aspect rating distribution of d.
On the other hand, the mean of aspect rating distribution could be similar to
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Fig. 2. The graphical model of the phrase-rating LDA.

but not equal to overall rating r because of the rating bias. Therefore, we design
an aspect rating distribution ψ and regard that the Dirichlet prior parameter
for aspect rating distribution, π, is related to the overall rating r. Given the
observed overall rating r, the πr,k,rz is defined as follows:

πr,k,rz = B(r′
z|ω(1 − r′), ω(r′)), (1)

where B(·) is the beta probability distribution, 0 < r′ < 1, 0 < r′
z < 1 respec-

tively represents the small scaled value of r and rz, ω is the prior parameter.
By using Eq. 1, we cleverly utilize overall rating to constrain the corresponding
aspect rating distribution. Moreover, taking the rating bias into consideration,
we set the aspect z’s rating levels as {1 − bz, 2 − bz, ..., R − bz}.

Given a set of review texts and overall ratings, both of r and < h,m >
are the observed variable, α, β, γ, π are the Dirichlet prior parameters, and
the main latent parameters learnt are θ, ψ, φ, δ, z, and rz. Given the model
parameters and overall rating, the probability of observing the review text (i.e.,
the likelihood) is:

L1 = −log(
∏

d

∏

l

∑

z

∑

rz

p(z|θd)p(rz|ψd,z)p(hl|φz)p(ml|δrz,z)). (2)

We employ Gibbs sampling to estimate the posterior probability given the
observed phrases.

It is noteworthy that the phrase-rating LDA does not describe the depen-
dence between aspect distribution θ and overall rating r, because the dependence
is closely associated with user profile and shop profile.

3.2 Topic Propagation on Review Network

In order to make full use of structural information for aspect mining, we design a
HIN-based topic propagation network shown in Fig. 3, to propagate topic distri-
bution among neighbour entities so as to describe user profile and shop profile.

In the topic propagation network, the topic distribution of each entity should
be related to its neighbour entities. Furthermore, we constrain the topic propa-
gation must under the same overall rating. This constraint is reasonable because
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Fig. 3. An example of topic propagation network and the topic propagation strategy.

the aspect distributions under different overall ratings represent different mean-
ings. For instance, if a user gives high overall rating to a shop, he is likely to
write many positive phrases to describe the aspect he cares, and vice versa.

Therefore, given the topic distribution of a review p(z|d, r) where r is the
observed overall rating of the corresponding review d, we design the topic prop-
agation strategy as shown in Fig. 3(b), and the topic distribution of a user u is
constructed by his/her reviews, denoted as:

p(z|u, r) =
∑

du,r∈Du,r

p(z|du,r)p(du,r|Du,r) =
∑

du,r∈Du,r

p(z|du,r)
|Du,r| , (3)

where Du,r is the set of reviews under overall rating r belonging to user u,
|Du,r| is the number of these reviews. Similarly, the topic distribution for a shop
is constructed by its reviews, calculated by:

p(z|s, r) =
∑

ds,r∈Ds,r

p(z|ds,r)p(ds,r|Ds,r) =
∑

ds,r∈Ds,r

p(z|ds,r)
|Ds,r| , (4)

where Ds,r is the set of reviews under overall rating r belonging to shop s, |Ds,r|
is the number of these reviews.

Furthermore, the review d should have similar topic distribution with its
author u and its shop s. Therefore, aiming at obtaining effective topic distri-
bution of reviews, we design two functions, one of which is to calculate the
similarity of d and u, and the other is to calculate the similarity of d and s. The
two functions are shown as follows:

L2 =
1
2

∑

d

∑

z

[p(z|d, r) − p(z|ud, r)]
2
, (5)

L3 =
1
2

∑

d

∑

z

[p(z|d, r) − p(z|sd, r)]2, (6)

where ud is the user who writes the review d and sd is the shop whom the review
d evaluates.
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3.3 Uniform Optimization Framework

To make full use of textual information and structural information at the same
time, the THAM model incorporates the topic model and the topic propagation
into a uniform optimization framework.

In this framework, we consider the review d as the sharing factor, which
plays significant role not only in topic propagation but also in topic modelling.
To ensure the optimization process of the model, we design a combined loss
function here:

Loss = L1 +
λ

2
(L2 + L3), (7)

where λ ≥ 0 is to control the balance between topic modelling and topic propa-
gation. Obviously, if λ = 0, we only take into account the loss of phrase-rating
LDA. With the increase of λ, the loss from topic propagation will be paid more
and more attention.

There are two main steps for learning the algorithm. In topic modelling, we
sample the distribution of reviews on phrase-rating LDA to reduce L1 where
L2 and L3 are fixed. In topic propagation, we get rid of the Newton-Raphson
updating formula, which decreases function f(x) by updating xt+1 = xt−ξ f ′(xt)

f ′′(xt)
,

to decrease L2 and L3. p(z|d, r) in topic propagation is updated by:

p(z|d, r)t+1 = (1 − ξ)p(z|d, r)t +
ξ

2
(p(z|ud, r)t + p(z|sd, r)t), (8)

where ξ is a step parameter. Then, the corresponding topic distribution of ud

and sd can also be updated by in Eqs. (3) and (4) respectively. In this step, we
also take L1 into consideration because the updated p(z|d, r) (i.e., θ) can also
influence the value of L1.

3.4 Aspect Identification and Rating Prediction

Based on the obtained aspect-head distribution φ and aspect-modifier distribu-
tion δ, we can identify the aspect which phrase l = < h,m > should be assigned
to by using Eq. (9):

g(l) = argmax
z′

∑

rz

δrz,z′,mφz′,h, (9)

and the corresponding rating of l is:

rl =

∑
rz

δrz,z,mφz,hrz∑
rz

δrz,z,mφz,h
, (10)

where z = g(l). And the predicted aspect rating of each shop is calculated by:

r̂s,z =

∑
d∈Ds

∑
rz

ψd,z,rzrz∑
d∈Ds

∑
rz

ψd,z,rz

, (11)

where r̂s,z is the rating on aspect k of shop s, Ds is the set of reviews of shop s.
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4 Experiments

4.1 Dataset

There are two real datasets in different languages for conducting experiments:
Dianping in Chinese [4] and TripAdvisor in English. The review information
in Dianping dataset consists of a Chinese review text and three aspect ratings
on Taste, Service, and Environment. Similarly, the TripAdvisor dataset crawled
from the TripAdvisor website, is a set of English reviews and each review includes
English comments, an overall rating and three aspect ratings on Value, Service,
and Food. In addition, the range of ratings in the two datasets are in [1, 5]. The
statistics of the two datasets are shown in Table 1. Note that, b1, b2, and b3

respectively represents the rating bias of Taste, Service and Environment (on
Dianping) or Value, Service, and Food (on TripAdvisor).

4.2 Preparation

To obtain phrases from reviews, the dataset is preprocessed via the process
similar to that in RABI [4] Besides, the number of aspects K is set as 3 for both
of Dianping and TripAdvisor. The prior parameters α, β, and γ in the phrase-
rating LDA are set as 50/K, 0.01, 0.01 respectively. ω is set as 2.5 and ξ is set as
0.1. The max iteration is 1000. The controlling parameter λ is adjusted to 9000
on both the two datasets by parameter analysis.

Since the performance of an aspect mining method may be affected by the size
of the training dataset [4], we sample four subsets for Dianping and TripAdvisor
with different scales of reviews (i.e., 25%, 50%, 75%, 100% of review data). To
ensure that the latent aspects correspond to the given aspects, we also select
several head terms as prior for each latent aspect.

We select Root Mean Square Error (RMSE) and Pearson Correlation Coef-
ficient (PCC) as evaluation metrics. RMSE is to measure the average difference
between real ratings and predicted ratings on all aspects. The smaller the value
of RMSE, the better the algorithm performs. Considering that rating prediction
are often used for ranking-based recommendation, we also measure the linear
relation of the predicted results and the real results by the PCC metric. The
larger value of PCC represents the better performance.

4.3 Comparison Methods

To demonstrate the effectiveness of THAM model, four representative meth-
ods, including QPLSA [7], SATM [13], AIR [3], and RABI [4], are adopted

Table 1. The statistic information of Dianping and TripAdvisor

Dataset # Users # Shops # Reviews # Phrases Avg. Overall

Rating

b1 b2 b3

Dianping 14519 1097 216291 696608 3.97 +0.28 +0.48 +0.54

TripAdvisor 107368 5178 243186 2544148 4.10 +0.27 −0.05 −0.09
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for comparisons. Since neither QPLSA and SATM nor AIR takes into account
the rating bias, we adjust the results of the three baselines through subtract-
ing/adding the rating bias for fair comparison and mark the adjusted method
with “*”.

Furthermore, in order to validate the effectiveness of rating bias and structure
information, we also test three simplified versions of our THAM. First, we remove
the assumption of rating bias from THAM, and call this version THAM\B.
Second, we only use the textual information without topic propagation. We call
it THAM\H. Third, we remove both of rating bias and topic propagation form
THAM, and call this version THAM\HB.

Table 2. Top 10 rated phrases for different aspects of the two datasets

Datasets Aspects Phrases (Ratings)

Dianping Taste great taste (4.35), good mouth-feel (3.61), delicious dish (3.54), suitable

price (3.52), delicious drink (3.33), good restaurant (3.28), high taste

(3.17), light flavour (3.04), common flavour (2.58), few dish (2.51)

Service enjoyable service (3.95), enthusiastic service (3.92), comfortable service

(3.78), nice shop (3.72), delicious service (3.43), handsome waiter

(3.43), good impression (3.28), good attitude (3.25), cold waiter (1.95),

not enthusiastic service (1.85)

Environment elegant style (4.29), cheap price (4.08), nice inside (3.56), good feeling

(3.32), suitable position (3.32), easy to find (3.20), good traffic (3.09),

common environment (2.76), small room (2.31), unreasonable

design(2.05)

TripAdvisor Value unbeatable price (4.48), best quality (4.19), cheap price (3.89),

reasonable price (3.57), pricey fare (3.44), great place (3.41), big price

(3.29), good place (3.29), good selection (3.20), poor value (1.81),

Service fantastic waitress (4.12), friendly service (4.03), courteous waiter

(3.89), great experience (3.53), interesting waitress (3.18), good drink

(3.31), good meal (3.24), first experience (3.09), slowest service (1.82),

disgusting service (1.57)

Food amazing food (4.54), wholesome food (4.20), excellent dishes (4.03),

nice location (3.98), rich menu (3.31), good food (3.06), good

atmosphere (3.02), small dish (2.91), small restaurant (2.77), not

fresh dish (2.59)

4.4 Aspect Identification

Since the opinion phrases are unlabelled, it is hard to quantitatively validate
the effectiveness of aspect identification. Therefore, we list some representative
rated phrases for each aspect on the two datasets respectively for illustration.
The most possible phrases for each aspect are automatically mined and shown in
Table 2. In addition, we rank these phrases by their ratings and the meaningless
phrases are marked in italic type.

Here we find that most of the extracted phrases in both English and Chi-
nese can accurately express users’ feelings about specific aspects and these fre-
quent opinion phrases are effectively assigned to the related aspects which they
describe. On the one hand, the head term of a phrase can indicate the aspect
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which the user describes, such as “mouth-feel” for taste and “room” for environ-
ment. On the other hand, a positive modifier term can express a positive evalu-
ation while a negative modifier term may indicate a lower rating. It is obvious
that some phrases with positive modifier terms, like “great” and “unbeatable”
can get high ratings while those with negative modifier terms, like “poor” and
“slowest” get the lowest ratings.

4.5 Effectiveness Experiments

In this section, we present the results of predicted aspect ratings on reviews with
overall ratings and measure the performances of the different methods in terms
of RMSE and PCC. In addition, each method here is run ten times and the
average results (RMSE and PCC) are recorded in Tables 3 and 4 respectively.

RMSE Performance. To evaluate the accuracy of these methods on predicting
aspect ratings, we calculate all RMSE values of these results. As is shown in
Table 3, we can clearly find the following observations:

Table 3. RMSE performances of different methods on two datasets.

Dataset Dianping TripAdvisor

25 % 50 % 75 % 100 % 25 % 50 % 75 % 100 %

QPLSA 0.5806 0.5750 0.5724 0.5705 0.5805 0.4628 0.4005 0.3876

QPLSA* 0.3639 0.3518 0.3483 0.3460 0.5798 0.4486 0.3944 0.3833

SATM 0.5783 0.5754 0.5698 0.5601 0.6101 0.4886 0.4203 0.4064

SATM* 0.3818 0.3783 0.3704 0.3642 0.6012 0.4737 0.4136 0.3822

AIR 0.5369 0.5307 0.5157 0.5112 0.6517 0.5572 0.4778 0.4408

AIR* 0.3363 0.3207 0.3055 0.3034 0.6446 0.5475 0.4546 0.4380

RABI 0.3228 0.3150 0.3024 0.2951 0.5286 0.4388 0.3771 0.3695

THAM\HB 0.5064 0.4910 0.4873 0.4855 0.5027 0.4128 0.3614 0.3247

THAM\H 0.3089 0.2897 0.2833 0.2798 0.4920 0.4024 0.3477 0.3191

THAM\B 0.5060 0.4906 0.4869 0.4843 0.4985 0.4160 0.3610 0.3261

THAM 0.3078 0.2891 0.2822 0.2789 0.4889 0.4048 0.3475 0.3101

Compared with baselines, our THAM achieves the best performances on
all subsets. There are two main advantages of our THAM. On the one hand,
we utilize the bias prior information more effectively by designing a reasonable
LDA-based topic model, and this topic model can overcome the weaknesses of
RABI. On the other hand, we take into account not only textual information
but also structural information contained in the review network, while all of
baselines only focus on review texts and ratings. Comparing THAM with its
variant versions, we find that THAM performs the best on most situations.
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We can make two main conclusions as follows: (1) Bias prior information is
effectively utilized in THAM, by comparing THAM and THAM\B; (2) The topic
propagation strategy can improve the performance of our method, by comparing
THAM and THAM\H.

Table 4. PCC performances of different methods on two datasets.

Dataset Dianping TripAdvisor

25 % 50 % 75 % 100 % 25 % 50 % 75 % 100 %

QPLSA 0.5689 0.5766 0.5752 0.5837 0.5715 0.5855 0.5860 0.5918

SATM 0.3503 0.3656 0.3735 0.3984 0.5535 0.5919 0.6279 0.6471

AIR 0.5670 0.5707 0.5875 0.5949 0.6643 0.6667 0.6979 0.7218

RABI 0.6130 0.6245 0.6378 0.6398 0.6582 0.6621 0.6740 0.6801

THAM\H 0.6691 0.6956 0.6999 0.7060 0.7563 0.7696 0.7901 0.8030

THAM 0.6721 0.6971 0.7031 0.7093 0.7594 0.7665 0.7907 0.8075

PCC Performance. To evaluate the ability of these models to maintain relative
order among shops, we also calculate all PCC performance of these models on
datasets, and show the results in Table 4. Because rating bias rarely affects the
order of shops, we only compare these original methods and our THAM\H,
THAM.

As is shown in Table 4, obviously, the proposed THAM obtains the best
performances on almost all datasets than other baselines. We can also observe
that RABI performs better than AIR on Dianping dataset while AIR does better
than RABI on TripAdvisor dataset. These observations once again validate that
THAM is stable and robust enough to predict aspect ratings of shops. Therefore,
THAM is proved as a better choice when recommending Top-N aspect ranking
orders than other baselines.

5 Conclusion

In this paper, we have proposed THAM to integrate topic model and heteroge-
neous information network for aspect mining with rating bias. Taking advantage
of both textual and structural information, THAM designs a phrase-level LDA
model and the topic propagation strategy for aspect mining. In order to integrate
the two parts for optimization, THAM sets the reviews as the sharing factor and
proposes a uniform iterative optimization model. By comparing the performances
of baselines, THAM performs better on the two datasets for aspect mining. In
the future, we can make use of heterogeneous information network more effec-
tively for aspect mining by taking the user attributes and shop attributes into
consideration.
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Abstract. This paper studies the emotion responses evoked by the news
articles. Most work focuses on extracting effective features from text for
emotion classification. As a result, the valuable information contained in
the emotion labels has been largely neglected. In addition, all words are
potentially conveying affective meaning yet they are not equally signifi-
cant. Traditional attention mechanism can be leveraged to extract impor-
tant words according to the word-label co-occurrence pattern. However,
words that are important to the less popular emotions are still difficult
to identify. Because emotions have intrinsic correlations, by integrating
such correlations into attention mechanism, emotion triggering words
can be detected more accurately. In this paper, we come up with an
emotion dependency-aware attention model, which makes the best use
of label information and the emotion dependency prior knowledge. The
experiments on two public news datasets have proved the effectiveness
of the proposed model.

Keywords: Emotion analysis · Attention mechanism ·
Neural sentiment analysis

1 Introduction

Emotion detection is a challenging task, the complexity stems from the fact
that emotions are highly sensitive to contextual and personal factors [1]. Most
of the studies [2–4] in textual emotion detection rely on explicit expression of
emotions using some emotion bearing words, which can be found in tweets,
blog posts and product reviews. But emotion expression can also happen in an
emotion provoking situation. For example, the emotions of readers evoked by
news articles. Several news websites have made such affective data available by
providing a mood meter widget on the news web page, as illustrated in Fig. 1.

In addition, attention mechanism [5] has shown promising results in many
NLP tasks [6,7]. The attention implementations are based on context informa-
tion and allow the model to focus on important words in a sentence by learning
a weight vector over sentence representation. The importance of words largely
depends on the co-occurrence of words and labels in the task. There also has
c© Springer Nature Switzerland AG 2019
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Fig. 1. The emotion votes for a Rappler news article.

work building attention layer over both word embedding and label embedding [8],
however, the dependencies of labels are neglected. Past research [9,10] has the-
oretically proved that some basic emotions can coexist and blend to form more
complex forms. Existing work has also reported the improvement of emotion
prediction accuracy after integrating emotion dependencies into the models [12–
14]. Hence, in this paper, we empower the traditional attention module with the
knowledge conveyed in labels, so that the words that are important to those less
popular emotions can be better captured. Specifically, we first use news head-
lines to guide the attention module as we observed that news headlines usually
hold the important information of the news body. The attention module is fol-
lowed by a CNN classifier, which can generate an emotion signal, as shown in
Fig. 2. The emotion signal is then transformed by an emotion embedding layer
as well as an emotion dependency matrix into emotion representation, which
will guide another attention module to attend the context again. The final news
representation is thus generated not only from the knowledge of words, but also
from the word-label co-occurrence patterns and the label-label dependency prior
knowledge, which can help improve the emotion prediction results.

In particular, instead of using symmetric emotion dependency matrix as
in [12–14], we generate a “dominant-emotion-centered” asymmetric emotion
dependency matrix. The matrix is row-wise explicable that each row represents
the correlations between the dominant emotion (top voted emotion) and the
other emotions. For instance, in the matrix, the diagonal items represent the
dominant emotions. In each row, the values other than the diagonal stand for
the correlations between the dominant emotion and the other emotions. There-
fore, the distribution of the emotions are actually different given different domi-
nant emotions. The matrix can thus reflect the complicated emotion status more
accurately.

This work validated the proposed emotion dependency-aware attention model
by experimenting on two real world news datasets, Rappler1 and Yahoo2. Results
show the proposed model outperforms the other baselines.

1 https://www.rappler.com.
2 https://tw.news.yahoo.com.

https://www.rappler.com
https://tw.news.yahoo.com
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Embedding Conv2d Attention News Representation CNN Classifier Emotion Prediction

News

Emotion Signal

Dependency Matrix

Headline

Body

Emotion

Emotion Signal

Fig. 2. Architecture of the proposed neural network. The model works in two spaces,
context space (upper) and emotion space (lower), and it starts from the context space.
The attention consists of two parts, headline-guided attention (upper) and emotion
dependency-aware attention (lower). The emotion signal is generated and fed to an
emotion embedding layer as well as an emotion dependency matrix to obtain the emo-
tion representation, which will be used in emotion dependency-aware attention module.
The news representations from two spaces will be concatenated and output to a CNN
Classifier for the final prediction.

2 Approach

In the proposed model, two guided attention layers are involved. One is guided
by the context information from headlines to generate emotion signals, the other
is guided by the emotion information from the emotion embedding and emotion
dependency matrix.

2.1 Context Guided Attentive CNN

The proposed model first generates the basic news representation with a word
embedding layer and a 2-dimension CNN. In particular, it first transforms news
article with a d-dimension word embedding layer into vectors X = {H,B}, where
H = {h1, h2, ..., hl} ∈ Rl×d and B = {b1, b2, ..., bm} ∈ Rm×d are representation
for news headlines and news bodies, respectively. It then extracts n-gram fea-
ture maps with a 2-dimension convolution operation with filter W1 ∈ Rf×n×d,
where f is the number of filters and (n, d) is kernel size. We denote headline
feature map from filter k as Uk = {u1

k, u
2
k, ..., u

l
k} and body feature map as

Vk = {v1
k, v

2
k, ..., v

m
k }, where ui ∈ Rf and vi ∈ Rf represent the feature map

for ith n-gram in news headlines and news bodies. We use zero paddings in all
convolution operations with stride size 1, so the output size of convolution layer
is the same as input.
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ui = Elu(W1 · Hi:i−n+1 + b1)

vi = Elu(W1 · Bi:i−n+1 + b1)
(1)

b1 ∈ Rf is the bias item. We use non-linear exponential linear unit (ELU) as
activation to reduce the bias shift effect. The energy function to weight the ith
n-gram feature involvement in the news bodies is denoted as s and defined as:

s = tanh(W2U + W3V + b2) (2)

where s ∈ Rm, W2, W3 are trainable weights and b2 is bias. So the news body
representation Xb ∈ Rf×m can be derived by Eq. 4.

αh = softmax(s) (3)

Xb = αh · V (4)

CNN Classifier. With Xb, we build a CNN classifier to generate an emotion
signal. The CNN classifier consists of a 1-dimension convolution operation with
a global average pooling. In particular, we apply convolution on Xb to generate a
feature map for every emotion category. Let us denote fc ∈ Rm, as the generated
feature map for emotion category c ∈ C, W4 ∈ RC×f as filters and b3 ∈ RC as
bias:

fc = Elu(W4 · Xb + b3) (5)

We use average pooling to take the spatial average of feature map, and feed the
result directly to a softmax layer.

pc = avgpooling(fc) (6)

P1 = softmax(p1) (7)

ĉ = argmax(P1) (8)

The average pooling result pc can be seen as the “confidence” for predicting the
emotion category c. We have p1 = {pc}, which can be interpreted into probabil-
ities P1 by a softmax function. Then the emotion with highest probability ĉ will
be used as an emotion signal and sent to the emotion space.

2.2 Emotion Dependency-Aware Attentive CNN

So far the features are solely from context knowledge and weighted by the close-
ness to the news headlines. However, some emotion triggering words and phrases
that are not semantically close to headlines are also important to the task. There-
fore, we design an emotion dependency-aware attentive CNN structure to extract
features from emotion space, which consists of an emotion dependency matrix,
an emotion embedding layer, an attention layer and a CNN classifier.
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Emotion Dependency Matrix. We first divide the news from training data
into C groups according to its dominant emotion label. Inside of each group, we
rank the emotions for each article and then calculate the Kendall’s tau, which
is a more robust correlation measure. With all groups calculated, we can obtain
an emotion dependency matrix M ∈ RC×C where each row Mĉ represents the
emotion distribution when ĉ is the dominant emotion. Figures 3 and 4 display
the emotion dependency of Rappler and Yahoo news dataset, from which we can
tell that most emotions are correlated. By observing the first matrix by rows, we
can see that when sad is the dominant emotion, amused is negatively correlated
while angry and afraid are closely correlated to sad. From Fig. 4, we can see
that happy can be correlated to many other emotions, even the negative ones.
This demonstrates that the evoked emotion varies from person to person, which
explains the complexity nature of the emotion.

Fig. 3. Emotion dependency for Rap-
pler dataset.

Fig. 4. Emotion dependency for Yahoo
dataset.

Emotion Dependency-Aware Attention. The emotion signal ĉ will be used
to select the corresponding row Mĉ in M . On the other hand, ĉ will be trans-
formed into vectors Eĉ by a d′-dimensional emotion embedding layer E ∈ R1×d′

.
The vectorized emotion signal S ∈ RC×d′

can be obtained by a product of two
matrices.

S = MT
ĉ Eĉ (9)

The emotion representation R ∈ Rf×c will be extracted by a 2-dimension con-
volution layer with kernel size (1, d′).

R = Elu(W5 · S + b4) (10)

W5 ∈ Rf×d′
is the trainable filter weight where f is the number of filters. b4 is

the bias. Similar to the context space, the energy function here is defined as:

s′ = tanh(W6R + W7V + b5) (11)
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where W6 ∈ Rm×c, W7 ∈ Rm×m are weights and b5 is bias. Then the news
body representation Xe ∈ Rf×m attended by emotion signal can be obtained as
follows:

αe = softmax(s′) (12)

Xe = αe · V (13)

We concatenate two representations from the context space and the emotion
space, so the final representation can be denoted as X = [Xb,Xe].

CNN Classifier. Similar to the classifier in context space, we apply another
CNN classifier to predict final emotion distribution P2.

fc′ = Elu(W8 · X + b6) (14)

pc′ = avgpooling(fc′) (15)

P2 = softmax(p2) (16)

ĉ′ = argmax(P2) (17)

where p2 = {pc′}. Therefore, we obtain the final emotion prediction ĉ′, which
is derived not only from the knowledge of words, but also the knowledge of
word-emotion co-occurrence pattern and emotion dependency prior knowledge.

2.3 Composition of Networks

Noted that in our settings we use n-gram to represent the granularity of words
and phrases. By simply composing different sizes of phrases, the information
from both spaces will be better expressed. For example, for 3, 4, 5-grams, there
will be 3 emotion signals being predicted by using different size of kernels 3, 4, 5.
All 3 emotion signals can be sent into emotion space to set up a more reliable
emotion representation E.

2.4 Training

We have two predictions in forward propagation, P1 and P2, which give us two
different loss items. We use cross entropy lossce as loss functions for both.

lossce = −
∑

n∈D

C∑

i=1

P t
i (n) · log(Pi(n)) (18)

where D and C denote the number of news articles for training and the emo-
tion categories, respectively. P t

i (n) denotes the true emotion label with one-hot
encoding mechanism and Pi is the predicted emotion distribution.

Loss = lossce1 + lossce2 (19)

During training, batch normalization has been applied after every convolution
operation, before Elu activations. Dropout is used in CNN classifier before con-
volution, which is set as 0.2. We set number of filters f as 128, and experiment
on different sizes of kernels. All the parameters are optimized by Adam optimizer
with learning rate 0.001.
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3 Experiment

3.1 Datasets

Two datasets are involved, Rappler and Yahoo, both are publicly accessible.
Rappler is developed by [15] with 8 emotion labels, and Yahoo is a Chinese
Yahoo Kimo news dataset with 7 emotions (originally 8 emotion categories, but
we excluded the label “informative” as it is not related to an emotional state).
Table 1 summaries the statistic of the datasets.

Table 1. Datasets statistics: number of articles that the emotion has the highest
number of votes.

Rappler # of articles Yahoo # of articles

Happy 12,304 Happy 17,023

Sad 4,571 Sad 1,545

Angry 3,003 Angry 12,884

Amused 3,449 Surprised 3,001

Afraid 2,576 Bored 2,429

Annoyed 1,311 Warm 521

Inspired 2,729 Awesome 2,123

Don’t care 1,164 - -

Total 31,107 Total 49,000

We split the data into training/development/testing by 7/1/2. Because the
data is highly imbalanced, stratified sampling is applied to keep the proportion
of each category the same in training/development/testing.

3.2 Baselines

We classify our baselines into four groups. First group is based on machine
learning methods.

– LR, Logsitic Regression with tf-idf weighted unigrams and bigrams.
– SVM, multi-class SVM classifier with unigram and bigram features.

Group 2 has RNN-based neural networks.

– GRNN, Gated RNN proposed in [16].
– SelfATTN, structured self-attentive sentence embedding proposed in [17].
– BLSTM-ATTN, BLSTM with an attention layer over hidden outputs.
– HAN, hierarchical attention networks proposed in [18].
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Group 3 contains CNN-based neural networks.

– CNN, a CNN model for sentence classification, proposed in [19].
– CNN-ATTN, an attentive CNN model proposed in [8].
– Inception, proposed in [20] with deeper architecture of convolutions.

Group 4 includes neural networks without RNN/CNN structures.

– Transformer an attention-only model proposed in [5].
– FastText, a neural network for representation learning, proposed in [21].

We also investigate the performance of the proposed model in different settings.

– Proposed-NT is the proposed model with no headline attention guidance.
– Proposed-NE is the version without emotion dependency matrix.
– Proposed-ngram is the proposed model with convolution kernel size n.
– Proposed-3, 4, 5 is the composed version having kernel sizes 3, 4, 5.

3.3 Model Configuration

All the neural networks are using 200-dimension word embedding initialized with
Glove [22] word vectors. The number of hidden outputs is 256. Dropout is set as
0.2. For uncommon parameters, such as the number of attention heads, are set
according to the original papers.

4 Results

Measures. We use Accuracy and RMSE to evaluate the performance of models.

Accuracy =
T

D
(20)

RMSE =

√∑N
i=1 (yi − ŷi)

2

N
(21)

Accuracy is a standard metric to measure the overall emotion classification per-
formance. T denotes the number of news that are correctly classified and D
is the total number of news in test dataset. RMSE measures the divergences
between predicted and the ground truth emotions, where ŷi and yi represent the
predicted outputs and gold labels, respectively. We summarize the experiment
results in Table 2.

Result Analysis. From Table 2, we can observe that the machine learning
models are comparably weaker than deep learning models.
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Table 2. Emotion classification on different models.

Models Rappler Yahoo

Accuracy % RMSE Accuracy% RMSE

LR 57.93 0.234 70.04 0.187

SVM 72.99 0.234 78.43 0.234

GRNN 75.07 0.232 83.04 0.203

SelfATTN 75.01 0.229 83.86 0.223

BLSTM-ATTN 78.37 0.215 84.67 0.193

HAN 75.08 0.221 82.16 0.214

CNN 78.23 0.191 85.09 0.189

CNN-ATTN 78.18 0.214 85.27 0.225

Inception 75.38 0.222 80.45 0.227

Transformer 77.98 0.183 84.72 0.277

FastText 75.99 0.226 84.23 0.227

Proposed-NT 78.80 0.226 84.74 0.221

Proposed-NE 77.55 0.185 83.93 0.220

Proposed-3gram 77.11 0.181 84.48 0.228

Proposed-4gram 79.06 0.193 83.88 0.227

Proposed-5gram 79.72 0.211 83.33 0.217

Proposed-3, 4, 5 79.44 0.218 85.67 0.175

Compared to RNN-based methods, the proposed CNN-based method per-
forms better. Generally, RNNs suffer from long sequence encoding. HAN does
not improve the prediction results. This indicates that the information conveyed
by the sentence structure is not helpful in differentiating the emotions in news
articles.

From the third group we can observe that simple CNN structure outper-
forms all the other CNN models. The evaluation on accuracy and RMSE shows
that our model can achieve better performance in most scenarios. Compared
to the attention-free CNN model, such as CNN and Inception, our method per-
forms better. It indicates that the attention modules are helpful in attending the
important words and giving better news representation. Besides, our method
outperforms CNN-ATTN which builds the attention module over word-label
compatibility without considering the label-label dependencies.

As for the models in group 4, the proposed model outperforms these baselines
on both two metrics. This indicates that CNN is more effective for feature extrac-
tion, and the combination with attention mechanism can improve the prediction
results.

Additionally, as shown in Table 2, our model with 5-gram kernel performs the
best on Rappler and with 3, 4, 5-gram kernel the best on Yahoo. This demon-
strates that 5-gram can represent low-level information in our English dataset



Dependency-Aware Attention Model for Emotion Analysis for Online News 181

more properly while 3, 4, 5-gram features are better for our Chinese dataset. Fur-
thermore, accuracy is better when the emotion dependencies are considered. We
can also observe that the accuracy has a small improvement when the head-
line guidance is added. Besides, the composition of different kernel sizes is not
always necessary. For example, on Rapper, the single emotion signal generated
from 5-gram convolution outperforms the other settings, including the model
compositions.

5 Discussion

5.1 Multi-task Training

In the proposed model, two outputs can be treated as two tasks and one’s output
is the input of the other. In order to observe how these tasks interact, we train
Proposed-3, 4, 5 and analyze the prediction accuracy for 4 outputs (3 emotion
signals and 1 final prediction) at the end of each epoch, as shown in Fig. 5. train
refers to final prediction on training dataset and test means on test dataset. n
means the output emotion signal from the n-gram kernel. We can see from the
figure that three auxiliary tasks are helping the main task to achieve good result
very fast. After the 10th epoch, the model is then focusing on improving the
predictions of emotion signals, which also slightly increases the accuracy of the
main task.
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Fig. 5. The accuracy results on Rappler dataset.

5.2 Attention Visualization

To illustrate the results more straightforwardly, we investigate the performance
of the emotion dependency-aware attention module by visualizing the attended
content in a news sample, as shown in Fig. 6.

The yellow part is the context attended by the context attention module,
while the red one is captured by the emotion dependency-aware attention mod-
ule. We can observe that the context attention does attend useful words, yet the
red part is also useful because it does trigger and exaggerate some emotional
feelings.
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Fig. 6. Attention visualization on a Rappler news sample. ‘UNK’ denotes the out-of-
vocabulary token. (Color figure online)

6 Related Work

There are two lines of work for emotion analysis: lexicon based and machine
learning based approaches. Lexicon based methods usually depend on emotion
lexicons [3,23–27]. The lexicons are easy to use but suffer the inability of distin-
guishing different meanings of words in different context [2]. Machine learning
based methods focus on learning the important features from the text. Emo-
tion analysis can be cast into multi-class classification [4], multi-label classifica-
tion [28], emotion distribution learning [13] or ranking problems [12].

Emotion analysis for online news originates from the SemEval task Affective
Text [11] in 2007, which aims to explore the connection between news headlines
and the evoked emotions of readers. In [2,4,28,29], authors built topic models to
use a latent layer to bridge the gap between emotions and documents. Work [13]
proposed a method to learn a mapping function from sentences to their emotion
distributions. However, the valuable information conveyed in the emotion labels
has been neglected in these methods.

7 Conclusions

In this work, we propose a framework for emotion analysis for online news.
We first introduce the headline-guided attention module to learn the important
words and phrases in news articles, and produce an emotion signal from the con-
text space. Then we design a dependency-aware attention module, which utilizes
an emotion embedding layer and an emotion dependency matrix to transform
the emotion signal into emotion representation. The emotion representation will
enable the attention module to identify emotion triggering words particularly.
Our model achieved better prediction results in the experiment comparing to
various of baselines.
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Abstract. Detecting and aggregating sentiments toward people, organi-
zations, and events expressed in unstructured social media have become
critical text mining operations. Early systems detected sentiments over
whole passages, whereas more recently, target-specific sentiments have
been of greater interest. In this paper, we present MTTDSC, a multi-task
target-dependent sentiment classification system that is informed by fea-
ture representation learnt for the related auxiliary task of passage-level
sentiment classification. The auxiliary task uses a gated recurrent unit
(GRU) and pools GRU states, followed by an auxiliary fully-connected
layer that outputs passage-level predictions. In the main task, these
GRUs contribute auxiliary per-token representations over and above
word embeddings. The main task has its own, separate GRUs. The
auxiliary and main GRUs send their states to a different fully con-
nected layer, trained for the main task. Extensive experiments using
two auxiliary datasets and three benchmark datasets (of which one is
new, introduced by us) for the main task demonstrate that MTTDSC
outperforms state-of-the-art baselines. Using word-level sensitivity anal-
ysis, we present anecdotal evidence that prior systems can make incor-
rect target-specific predictions because they miss sentiments expressed
by words independent of target.

1 Introduction

As the volume of news, blogs [8], and social media [14] far outstrips what an indi-
vidual can consume, sentiment classification (SC) [12,15] has become a powerful
tool for understanding emotions toward politicians, celebrities, products, gover-
nance decisions, etc. Of particular interest is to identify sentiments expressed
toward specific entities, i.e., target dependent sentiment classification (TDSC).
Recent years have witnessed many TDSC approaches [21–23] with increasing
sophistication and accuracy.

Possibly because research on passage-level and target-dependent sentiment
classification were separated in time by the dramatic emergence of deep learn-
ing, TDSC systems predominantly use recurrent neural networks (RNNs) and
c© Springer Nature Switzerland AG 2019
Q. Yang et al. (Eds.): PAKDD 2019, LNAI 11439, pp. 185–197, 2019.
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borrow little from passage-level tasks and trained models. From the perspective
of curriculum learning [2], this seems suboptimal: representation borrowed from
passage-level SC should inform TDSC well. Moreover, whole-passage labeling
entails considerably lighter cognitive burden than target-specific labeling. As a
result, whole-passage gold labels can be collected at larger volumes.

In this paper, we present MTTDSC, Multi-Task Target Dependent
Sentiment Classifier1, a novel multi-task learning (MTL) system that uses
passage-level SC as an auxiliary task and TDSC as the main task. MTL has
shown significant improvements in many fields of Natural Language Processing
and Computer Vision. In basic (‘naive’) MTL, we jointly train multiple models
for multiple tasks with some shared parameters, usually in network layers closest
to the inputs [13], resulting in shared input representation learning. Symmetric,
uncontrolled sharing can be detrimental to some tasks.

In MTTDSC, the auxiliary SC task uses bidirectional GRUs, whose states
are pooled over positions to make whole-passage predictions. This sensitizes the
auxiliary GRU to target-independent expressions of sentiments in words. The
main TDSC task combines the auxiliary GRUs with its own target-specific
GRUs. The two tasks are jointly trained. If passages with both global and target-
specific labels are available, they can be shared between the tasks. Otherwise, the
two tasks can also be trained on disjoint passages. MTTDSC can be interpreted
as a form of task-level curriculum learning [2], where the simpler whole-passage
SC task learns to identify sentiments latent in word vectors, which then assists
the more challenging TDSC task. Static sentiment lexicons, such as SentiWord-
Net [6], are often inadequate for dealing with informal media.

Using two standard datasets, as well as one new dataset we introduce for
the main task, we establish superiority of MTTDSC over several state-of-the-
art approaches. While improved accuracy from additional training data may
seem unsurprising from a learning perspective, we show that beneficial integra-
tion of the auxiliary task and data is nontrivial. Simpler multi-task approaches
[13], where a common feature extraction network is used for jointly training
on multiple tasks, perform poorly. We also use word-level sensitivity tests to
obtain anecdotal evidence that direct TDSC approaches (that do not borrow
from whole-passage SC models) make target-specific prediction errors because
they misclassify the (target independent) sentiments expressed by words. Thus,
MTTDSC also provides a more interpretable model, apart from accuracy gains.

The contributions of our work are summarized as follows:

– MTTDSC, a novel neural MTL architecture designed specifically for
TDSC. We show the superiority of our model and also compare it with other
state-of-the-art models of TDSC and multi-task learning.

– A new dataset for target dependent sentiment classification which is better
for real world analysis on social media data.

1 MTTDSC code and datasets are available at https://github.com/divamgupta/
mttdsc.

https://github.com/divamgupta/mttdsc
https://github.com/divamgupta/mttdsc
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– Thorough investigation of the reasons behind the success of
MTTDSC. In particular, we show that current models fail to capture many
emotive words owing to insufficient training data.

2 Related Work

Target Dependent Sentiment Classification: An input text passage is a
sequence of words w1, w2, . . . , wN . We use ‘tweet’ and ‘passage’ interchangeably,
given the preponderance of social media in TDSC applications. One word posi-
tion or contiguous span is identified as a target. For simplicity, we will assume
compounds like New York to be pre-fused and consider a target as a single word
position. A passage may have one or more targets. In gold labeled instances,
the target is associated with one of three labels {−1, 0,+1}, corresponding to
negative, neutral, and positive sentiments respectively. The passage-level task
has a label associated with the whole passage [11], rather than a specific target
position. E.g., in the tweet “I love listening to electronic music, however artists
like

����
Avici &

�����
Tiesta copy it from others”, the overall sentiment is positive but

the sentiments associated with both targets ‘Avici’ and ‘Tiesta’ are negative.
TDLSTM [20] and TDParse [22] divide the sentence into left context, right

context and the target entity, and then combine their features. TDLSTM
uses a left-to-right LSTMlr on the context left of the target (w1, . . . , wi), a
right-to-left LSTMrl on the context right of the target (wi, . . . , wN ), and a fully
connected layer Wtdlstm that combines signals from LSTMlr and LSTMrl. If
LSTM state vectors are in R

D, then2 Wtdlstm ∈ R
2D×3. Given a tweet and target

position i, LSTMlr is applied to (pre-trained and pinned) input word embed-
dings of w1, . . . , wi, obtaining state vectors LSTMlr[1], . . . ,LSTMlr[i]. Similarly,
LSTMrl is applied to (word embeddings of) wi, . . . , wN , obtaining state vectors
LSTMrl[i], . . . ,LSTMrl[N ]. The output probability vector in Δ3 is

SoftMax
([

LSTMlr[i],LSTMrl[i]
]
Wtdlstm

)
, (1)

where Δ3 is a 3-class multinomial distribution over {−1, 0, 1}, obtained from
the softmax. Standard cross-entropy against the one-hot gold label is used for
training. TCLSTM [20] is a slight modification to TDLSTM, where the authors
also concatenated the embedding of the target entity with each token in the given
sentence. They showed that TCLSTM has a slight improvement over TDLSTM.

By pooling embeddings of words appearing on dependency paths leading to
the target position, TDParse [22] improves further on TDLSTM accuracy. More
details of these systems are described in Sect. 4.4, along with their performance.
The major problem in TDParse is the inability to learn compositions of words.
TDParse usually fails for the sentences containing a polar word which is not
related to the entity.

2 We elide possible scalar offsets in sigmoids and softmaxes for simplicity throughout
the paper.
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The “naive segmentation” (Naive-Seg) model of Wang et al. [22] concatenates
word embeddings of left context, right context and sub sentences of the tweets.
Various pooling functions are used to combine them and an SVM is used for label-
ing. Naive-Seg+ extends Naive-Seg by using sentiment lexicon based features.
TDParse extends Naive-Seg by using dependency parse paths incident on the tar-
get entity to collect words whose embeddings are then pooled. TDParse+ further
extends TDParse by using sentiment lexicon [6] based features. TDParse+ beats
TDLSTM largely because of carefully engineered features (including SentiWord-
Net based features), but may not generalize to diverse datasets.

Pooling word embeddings over dependency paths may not capture complex
compositional semantics. Given enough training data, TDLSTM should capture
complex compositional semantics. But in practice, neural sequence models start
with word vectors that were not customized for sentiment detection, and then
get limited training data.

Multi-task Learning: Multi-task learning has been used in many applications
related to NLP. Peng et al. [16] showed improved results in semantic dependency
parsing be learning three semantic dependency graph formalisms. Choi et al.
[3] improved the performance on question answering by jointly training answer
generation and answer retrieval model. Sluice networks proposed by Ruder et al.
[18] claims to be a generalized model which could learn to control the sharing
of information between different task models. Sluice networks do not perform
well for TDSC, as the sharing of information happens at all positions of the
sentence. On the other hand, our model forces the auxiliary task to learn feature
representation at all positions and share them at the appropriate locations with
the main task.

3 MTTDSC: A Multi-task Approach to TDSC

Recurrent models for TDSC have to solve two challenging problems in one shot:
identify sentiment-bearing words in the passage, and use influences between hid-
den states to connect those sentiments to the target. A typical TDSC system
attempts to do this as a self-contained learner, without representation support
from an auxiliary learner solving the simpler task of whole-passage SC. We
present anecdotes in Sect. 4.5 that reveal the limitations of such approaches. In
response, we propose a multi-task learning (MTL) approach called MTTDSC.
Representations trained for the auxiliary task (Sect. 3.1) inform the main task
(Sect. 3.2). The combined loss objective is described in Sect. 3.3 and implemen-
tation details are presented in Sect. 3.4.

Our MTL framework is significantly different from traditional ones. In par-
ticular, we do not require auxiliary and main task gold labels to be available
on the same instances. (This makes it easier to collect larger volumes of auxil-
iary labeled data.) As a result, in standard MTL, attempts to improve auxiliary
task performance interferes with the learning of feature representations that are
important for the main task. To solve this problem, we use separate RNNs for
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the two tasks, the output of the auxiliary RNN acting as additional features to
the main model. This ensures that the gradients from the auxiliary task loss do
not unduly interfere with the weights of the main task RNN.

3.1 Auxiliary Task

The network for the auxiliary task is shown at the top of Fig. 1. The auxiliary
model consists of a left-to-right GRUaux

lr , a right-to-left GRUaux
rl , and a fully-

connected layer Waux ∈ R
2D×3. The auxiliary model is trained with tweets that

are accompanied by whole-tweet sentiment labels from {−1, 0, 1}. First GRUaux
lr

and GRUaux
rl are applied over the entire tweet (positions 1, . . . , N). At every

token position i, we construct the concatenation
[
GRUaux

lr [i − 1],GRUaux
rl [i + 1]

]

Main task

Auxiliary task

…
…

Auxiliary SC gold label

love music but Tiesta copies from others

Ti
edTi
ed

Main TDSC gold label

Friday on Jimmy Fallon show Funny stuff

Fig. 1. MTTDSC network architecture. Passage-level gold labels are used to compute
loss in the upper auxiliary network. Target-level gold labels are used to compute loss
in the lower main network. These are coupled through tied parameters in auxiliary
GRUs. The main task uses another set of task-specific GRUs.

These are then averaged over positions to get a fixed-size pooled representation
x̄xx ∈ R

2D of the whole tweet:

x̄xx =
1
N

N∑
i=1

[
GRUaux

lr [i − 1],GRUaux
rl [i + 1]

]
(2)

Average pooling lets the auxiliary model learn useful features at all posi-
tions of the tweet. This helps the primary task, as the target entity of the
primary task can be at any position. The whole-tweet prediction output is
SoftMax(x̄xx Waux) ∈ Δ3. Again, cross-entropy loss is used.
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3.2 Main Task

Beyond the auxiliary model components, the main task uses a left-to-right
GRUmain

lr , a right-to-left GRUmain
rl , and a fully connected layer Wmain ∈ R

4D×3

as model components.
Let target entity be at token position i. GRUaux

lr and GRUmain
lr are run over

positions 1, . . . , i − 1. GRUaux
rl and GRUmain

rl are run over positions i + 1, . . . , N .
The four resulting state vectors GRUaux

lr [i − 1], GRUaux
rl [i + 1], GRUmain

lr [i − 1],
and GRUmain

rl [i + 1] are concatenated into a vector in R
4D, which is input into

the fully-connected layer followed by a softmax.

SoftMax
([

GRUaux
lr [i− 1],GRUmain

lr [i− 1],GRUaux
rl [i + 1],GRUmain

rl [i + 1]
]
Wmain

)
. (3)

Our network for the situation where the auxiliary and main tasks do not share
instances is shown in Fig. 1.

3.3 Training the Tasks

Suppose the auxiliary task has instances {(xi, yi) : i = 1, . . . , A} and the
main task has instances {(xj , yj) : j = 1, . . . , M}. Let GRU∗

∗ be all the GRU
model parameters in {GRUaux

lr ,GRUaux
rl ,GRUmain

lr ,GRUmain
rl }. Then our overall

loss objective is

A∑
i=1

lossaux(xi, yi; GRUaux
lr ,GRUaux

rl ,Waux) + α

M∑
j=1

lossmain(xj , yj ; GRU∗
∗,Wmain)

(4)
Standard cross-entropy is used for both lossaux and lossmain. Before training the
full objective above, we pre-train only the auxiliary task for one epoch. The
situation where instances may be shared between the auxiliary and main tasks
is similar, except that GRU cells are now directly shared between auxiliary and
main tasks. We anticipate this multi-task setup to do better than, say, fine-tuning
word embeddings in TDLSTM, because the auxiliary task is better related to the
main task than unsupervised word embeddings. By the same token, we do not
necessarily expect our auxiliary learner to outperform more direct approaches
for the auxiliary task—its goal is to supply better word/span representations to
the main task.

3.4 Implementation Details

GRU instead of LSTM: We used GRUs instead of LSTMs, which are more
common in prior work. GRUs have fewer parameters and are less prone to overfit-
ting. In fact, our TDGRU replacement performs better than TDLSTM (Tables 1
and 2).
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Hyperparameters: We set the hidden unit size of each GRU network as 64.
Recurrent dropout probability of the GRU is taken as 0.2. We also used a dropout
of 0.2 before the last fully connected layer. For training the models we used the
Adam optimizer with learning rate of 0.001, β1 = 0.9, β2 = 0.999. We used a
mini-batch size of 64.

Ensemble: While reimplementing and/or running baseline system codes, we saw
large variance in test accuracy scores for random initializations of the network
weights. We improved the robustness of our networks by using an ensemble of the
same model trained on the complete dataset with different weight initializations.
The output class scores of the final model are the average of the probabilities
returned by members of the ensemble. For a fair comparison, we also use the
same ensembling for all our baselines.

Word Embeddings: MTTDSC, TDLSTM and TCLSTM use GloVe embed-
dings [17] trained on the Twitter corpus.

4 Experiments

We summarize datasets, competing approaches, and accuracy measures, followed
by a detailed performance comparison and analysis.

4.1 Datasets for Auxiliary SC Task

Go [7]: This is a whole-passage SC dataset, containing 1.6M tweets automatically
annotated using emoticons, highlighting that SC labeling can be easier to acquire
at large scale. It has only positive and negative classes.

Sanders [19]: The second dataset is provided by Sanders Analytics and has
5,513 tweets over all 3 classes. These are manually annotated.

4.2 Datasets for Main TDSC Task

Dong [5]: Target entities are marked in tweets (one target entity per tweet),
and one of three sentiment labels manually associated with each target. The
training and test folds contain 6,248 and 692 instances respectively. The class
distribution is 25%, 50% and 25% for negative, neutral and positive respectively.

Election1 [22]: Derived from tweets about the recent UK election, this dataset
contains 3,210 training tweets that mention 9,912 target entities and 867 test-
ing tweets that mention 2,675 target entities. The class distribution is 45.3%,
36.5%, and 17.7% for negative, neutral and positive respectively, which is highly
unbalanced. There are an average of 3.16 target entities per tweet.

Election2: In this paper, we introduce a new TDSC dataset, also based on
UK election tweets. We first curated a list of candidate hashtags related to the
UK General Elections, such as #GE2017, #GeneralElection and #VoteLabour.
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The collection was done during a period of 12 days, from June 2, 2017 through
June 14, 2017. After removing retweets and duplicates (tweets with the same
text), we ended up with 563,812 tweets. After running the named entity tagger,
we observed that 158,978 tweets (28.19%) had at least one named entity, 38,809
tweets (6.88%) had at least two named entities and the remaining 7,992 tweets
(1.42%) had three or more named entities. We took all the tweets which had
at least two named entities, and randomly sampled an equal number of tweets
from the set of tweets which had only one named entity.

4.3 Details of Performance Measures

Past TDSC work reports on 0/1 accuracy and macro averaged F1 scores, and we
do so too, for 3-class {−1, 0, 1} instances and 2-class {−1, 1} subsets. However,
SC is fundamentally a regression or ordinal regression task; e.g., loss(−1, 1) >
loss(−1, 0) > loss(−1,−1) = 0. Evaluating ordinal regression in the face of
class imbalance can be tricky [1]. In addition, the system label may be discrete
from {−1, 0, 1} or continuous in [−1, 1]. Therefore we report on two additional
performance measures. Let (xi, yi, ŷi) be the ith of I instances, comprised of a
tweet, gold label, and system-estimated label.

Mean Absolute Error (MAE): It is defined as (1/I)
∑

i |yi−ŷi|. Downstream
applications that use the numerical values of ŷ will want MAE to be small.

Pair Inversion Rate (PIR): For a pair of instances (i, j), if yi >
yj but ŷi < ŷj , that is an inversion. PIR is then defined as(∑

i�=j

�
(yi − yj)(ŷi − ŷj) < 0

�) /(
I
2

)
. Closely related to the area under the

curve (AUC) for 2-class problems, PIR is widely used in Information
Retrieval [10].

4.4 Various Methods and Their Performance

Table 1 shows aggregated and per-class accuracy for the competing methods.
It has three groups of rows. The first group includes methods that use no or
minimal target-specific processing. The second group includes the best-known
recent target-dependent methods. The third group includes our methods and
their variants, to help elucidate and justify the merits of our design.

Target Independent Baselines: In the first block, LSTM means a whole-
tweet LSTM was applied, followed by a linear SVM on the final state.
Target-ind [9] pools embedding features from the entire tweet. Target-
dep+ extends Target-dep. Target-dep+ extends Target-dep by identifying
sentiment-revealing context features with the help of multiple lexicons (such as
SentiWordNet3).

3 http://sentiwordnet.isti.cnr.it/.

http://sentiwordnet.isti.cnr.it/
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Table 1. Performance of various methods on Dong dataset: (a) overall, (b) class-wise.
MTTDSC beats other baselines across diverse performance measures.

(a) (b)

Model 3 class performance 2-class Class-wise F1

Accuracy Precision Recall F1 MAE PIR% F1 −1 0 +1

Baseline LSTM 66.5 66.0 63.3 64.7 0.367 5.39 60.6 64.4 71.8 56.9

Target-ind 67.3 69.2 61.7 63.8 0.351 5.45 58.8 60.9 73.6 56.8

Target-dep+ 70.1 69.9 65.9 67.7 0.341 5.31 62.6 65.9 75.7 59.4

TDLSTM 70.8 69.5 68.8 69.0 0.335 5.61 65.7 68.9 75.6 62.5

TCLSTM 71.5 70.3 69.4 69.5 0.321 5.47 67.2 68.4 75.1 65.9

SLUICE 69.2 67.9 67.2 67.5 0.348 5.90 64.4 67.6 73.7 61.6

Naive-Seg+ 70.7 70.6 65.9 67.7 0.332 5.54 63.2 66.0 76.3 60.0

TDParse 71.0 70.5 67.1 68.4 0.331 5.86 64.3 65.8 76.7 62.7

TDParse+ 72.1 72.2 68.3 69.8 0.312 5.00 66.0 67.5 77.3 64.5

TDParse+ (m) 72.5 72.6 68.9 70.3 0.308 4.95 66.6 68.3 77.6 65.0

Our TDGRU 71.0 70.2 68.7 69.3 0.324 5.14 66.4 67.8 75.1 65.0

TDGRU+SVM 71.7 71.4 68.7 69.7 0.315 5.16 66.5 68.9 76.2 64.1

TD naive MTL 63.0 63.2 57.4 59.1 0.403 6.22 46.2 55.0 70.3 52.0

TDFT 73.3 72.7 70.8 71.6 0.299 5.17 68.8 70.0 77.4 67.7

MTTDSC 74.1 74.0 71.7 72.7 0.286 4.22 70.0 72.8 77.9 67.3

Prior Target-Dependent Baselines: The second block shows more competi-
tive target-aware TDSC approaches. TDLSTM and TCLSTM are from Tang
et al. [20]. Naive-Seg+ segments the tweet using punctuations. Word vectors in
each segment are pooled to give a segment embedding. Additional features are
generated from the left and right contexts based on multiple sentiment lexicons.
TDParse [22] uses a syntactic parse to pool embeddings of words connected
to the target. TDParse+ extends TDParse by adding features from sentiment
lexicons. TDParse+(m) considers the presence of the same target multiple
times in the tweet. Feature vectors generated from multiple target positions are
merged using pooling functions.

MTTDSC and Variations: The third block shows MTTDSC and some
variations. TDGRU replaces the two LSTMs of TDLSTM with two GRUs
[4] which have fewer parameters but perform slightly better than LSTMs. In
TDGRU+SVM, we first train the TDGRU model. Then, at entity position i,
we extract the features

[
GRUlr[i]; GRUrl[i]

]
of the two GRU models and train

an SVM with RBF kernel with the extracted features. TDGRU with SVM is
expected to perform better due to the non-linear nature of the features at the
penultimate layer, which the SVM can then recognize without overfitting prob-
lems. TD naive MTL is similar to MTTDSC, but, rather than having separate
GRUs for primary and auxiliary tasks, shared GRUlr and GRUrl are used for
both tasks. The tasks are trained jointly as in MTTDSC. In TDFT, we first
train GRUlr, GRUrl and Waux on the auxiliary whole-passage SC task. We then
use the weights of GRUlr and GRUrl learnt by the auxiliary task in TDGRU
and train it on TDSC with a new Wmain.
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Table 2. Performance of various methods on our Election2 dataset: (a) overall,
(b) class-wise. The extreme label skew makes it easy for simpler algorithms to do
well at MAE and PIR, although MTTDSC still leads in traditional measures, and
recognizes neutral content better.

(a) (b)

Model 3 class performance 2-class Class-wise F1

Accuracy Precision Recall F1 MAE PIR% F1 −1 0 +1

Baseline LSTM 55.6 53.4 43.1 42.3 0.484 7.76 29.0 47.9 57.2 56.8

Target-ind 55.6 52.3 43.7 42.7 0.484 7.87 30.0 42.5 68.1 17.4

Target-dep+ 59.4 59.6 48.1 48.4 0.447 7.30 37.2 47.2 70.9 27.1

TDLSTM 58.6 54.5 50.0 50.7 0.479 10.46 41.1 48.0 70.0 34.2

TCLSTM 58.4 54.3 49.3 50.1 0.474 9.73 40.1 45.1 70.1 35.1

SLUICE 58.8 54.8 53.0 52.9 0.489 10.9 45.2 54.9 68.3 35.4

Naive-Seg+ 60.5 60.0 51.1 52.2 0.433 7.06 43.0 51.1 70.5 34.9

TDParse 58.9 56.5 50.8 51.6 0.460 8.67 42.9 51.3 68.8 34.5

TDParse+ 61.1 59.8 52.7 53.6 0.438 8.16 45.1 53.4 70.8 36.7

TDParse+(m) 60.6 59.1 52.2 53.1 0.440 8.40 44.5 52.4 70.5 36.6

Our TDGRU 59.5 55.4 53.0 53.8 0.475 10.67 45.8 50.8 69.7 40.8

TDGRU+SVM 59.2 56.0 51.6 52.5 0.469 9.93 43.9 50.0 69.6 37.9

TD naive MTL 56.5 57.1 43.2 41.4 0.473 7.04 27.3 51.2 57.5 62.7

MTTDSC 61.6 60.1 53.1 54.1 0.439 8.79 45.3 52.6 71.8 38.0

Observations: Table 1 shows that MTTDSC outperforms all the baselines
across all the measures on Dong dataset. MTTDSC achieves 2.8%, 3.41%, 7.14%
and 24.5% relative improvements in accuracy, F1, MAE and PIR respectively
over TDParse+(m) (best model by Wang et al. [22]). The improvement in 2-class
F1 is also substantial (5.1%). MTTDSC maintains a better balance between pre-
cision, recall and F1 across the three classes (Table 1(b)).

TDFT improves on TDLSTM and TDGRU because it learns important fea-
tures during pre-training. TDFT is better than TD naive MTL; jointly training
the latter results in auxiliary loss prevailing over primary loss. TD naive MTL
also loses to MTTDSC, because, in fine tuning, the primary task training makes
the model forget some auxiliary features critical for the primary task. Summa-
rizing, MTTDSC’s gains are not explained by the large volume of auxiliary data
alone; good network design is critical.

Table 2 shows results for Election2. The trend is preserved, with our gains in
macro-F1 being more noticeable than micro-accuracy. This is expected given the
label skew. Table 3 shows similar behavior on the Election1 dataset. Although
TDPWindow-12 is slightly better for 0/1 accuracy, MTTDSC achieves 4.97% and
6.77% larger F1 score for 3-class and 2-class sentiment classification respectively.
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Table 3. Performance comparison on Election1 dataset. The results of the baselines
are taken from Table 3 of Wang et al. [22] where TDPWindow-12 (which extracts
features exactly like TDParse+, but limits the size of left and right contexts to 12
tokens) was reported as the best model. To save space, we report the accuracy w.r.t.
only three measures. The broad trends are similar to Election2.

Model Accuracy 3-class F1 2-class F1

Target-ind 52.30 42.19 40.50

Target-dep+ 55.85 43.40 40.85

TDParse 56.45 46.09 43.43

TDPWindow-12 56.82 45.45 42.69

TDGRU 55.46 47.12 44.22

MTTDSC 56.67 47.71 45.58

4.5 Side-by-Side Diagnostics and Anecdotes

Given their related architectures, we picked TDLSTM and MTTDSC, and
focused on instances where MTTDSC performed better than TDLSTM, to tease
out the reasons for the improvement.

Table 4. Word sensitivity studies. (Must be viewed in color.) Green words are regarded
as positive and red words are regarded as negative by the respective RNNs. Intensity of
color roughly represents magnitude of sensitivity. TDLSTM makes mistakes in estimat-
ing the polarity of words independent of context, which lead to incorrect predictions.
Assisted by the auxiliary task, MTTDSC avoids such mistakes.

MTTDSC Word Polarities MTTDSC
Prediction

TDLSTM Word Polarities TDLSTM
Prediction

Ground
Truth

just saw stephen colbert and
the roots covering friday on
the jimmy fallon show. funny
stuff .

0 just saw stephen colbert and
the roots covering friday on the
jimmy fallon show. funny stuff.

-1 0

page 12 of comedy videos.
will ferrell as george bush ,
trunk monkey , and some
hilarious pranks

0 page 12 of comedy videos. will
ferrell as george bush , trunk
monkey, and some hilarious
pranks

-1 0

playing on the wii fit with my
mum , its hilarious :p

+1 playing on the wii fit with my
mum, its hilarious :p

0 +1

merry christmas! i keep
seeing that a christmas carol
commercial. now i feel like
britney spears , randomly
wishing people a merry
christmas.

+1 merry christmas ! i keep seeing
that a christmas carol
commercial. now i feel like
britney spears , randomly
wishing people a merry
christmas .

0 +1
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Word-level sensitivity analysis: For each word in the context of the target
entity, we replaced the word with UNK (unknown word) and noted the drops
in scores of labels +1 and −1. A large drop in the score of label +1 means
the word was regarded as strongly positive, and a large drop in the score of
label −1 means the word was regarded as strongly negative. We use these scores
to color-code context words in the form of a heatmap. Table 4 shows the positive
and the negative words highlighted accordingly to their sensitivity scores. The
words highlighted in green color contribute to the positive label and the words
highlighted red contribute to the negative label. In the first row, MTTDSC
correctly identifies funny as a positive word, whereas TDLSTM considers funny
to be a negative word. TDLSTM also finds stronger negative polarity in neutral
words like the and covering. In the second row, MTTDSC correctly identifies
hilarious as a positive word, whereas TDLSTM finds hilarious strongly negative.
In the third row, MTTDSC finds hilarious positive, whereas TDLSTM misses the
signal. Although TDLSTM correctly identifies more positive words in the fourth
row than MTTDSC, it also incorrectly identifies negative words like randomly
and people, leading to an overall incorrect neutral prediction. The examples show
that TDLSTM either misses or misclassifies crucial emotive, polarized context
words.

5 Conclusion

We presented MTTDSC, a multi-task system for target-dependent sentiment
classification. By exploiting the easier auxiliary task of whole-passage senti-
ment classification, MTTDSC improves on recent TDSC baselines. The aux-
iliary LSTM learns to identify corpus-specific, position-independent sentiment
in words and phrases, whereas the main LSTM learns how to associate these
sentiments with designated targets. We tested our model on three benchmark
datasets, of which we introduce one here, and obtained clear gains in accuracy
compared to many state-of-the-art models.
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Research Award (SERB, India), and the Center for AI, IIIT Delhi, India.
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Abstract. Named Entity Recognition (NER) is a basic task in Nat-
ural Language Processing (NLP). Recently, the sequence-to-sequence
(seq2seq) model has been widely used in NLP task. Different from the
general NLP task, 60% sentences in the NER task do not contain enti-
ties. Traditional seq2seq method cannot address this issue effectively. To
solve the aforementioned problem, we propose a novel seq2seq model,
named SC-NER, for NER task. We construct a classifier between the
encoder and decoder. In particular, the classifier’s input is the last hid-
den state of the encoder. Moreover, we present the restricted beam search
to improve the performance of the proposed SC-NER. To evaluate our
proposed model, we construct the patent documents corpus in the com-
munications field, and conduct experiments on it. Experimental results
show that our SC-NER model achieves better performance than other
baseline methods.

Keywords: Named Entity Recognition ·
Sequence-to-sequence model · Deep learning

1 Introduction

Named Entity Recognition (NER) [27] is a basic task in Natural Language Pro-
cessing (NLP) [9], which has attracted extensive attention for a long time [3].
NER aims to identify entities (e.g., names, places, and organization names) in
the text. An entity can express the core information of the sentence, which is
useful for various NLP tasks [16,17].

In the last few years, deep learning has been widely used in NLP tasks such as
text classification [18], language recognition [24], and machine translation [12].
In these studies, the Recurrent Neural Networks (RNNs) [22] is widely used
to obtain the sequential nature of the sentence. Especially, Long Short-Term
Memory network (LSTM) [24], as a popular RNN model, is adopted to extract
semantic features reflecting sequential nature of the text. Moreover, the RNNs

c© Springer Nature Switzerland AG 2019
Q. Yang et al. (Eds.): PAKDD 2019, LNAI 11439, pp. 198–209, 2019.
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like to model the conditional probability P (y|x), where the output sequence
y = (y1, ..., yn) (n is the length of sequence.) is generated from the input sequence
x. Recently, researchers leverage sequence-to-sequence (seq2seq) model [32] to
solve the sequence generation [5] problems in NLP tasks. In general, the NER
is considered as a sequence problem [11], where the NER model tags each word
to indicate whether the word is part of any named entity. So we apply seq2seq
model [13] to the NER task, which encodes a sequence as a vector and decodes
the vector into a tag sequence. Both encoder and decoder are constructed based
on RNN.

However, the most evident difference between the normal natural language
generation task [30] (e.g., human-computer conversation) and the NER task [29]
is that 60% sentences in our corpus may not have an entity. This feature is non-
trivial, and we should pay attention to it when designing the seq2seq model in
NER task. Moreover, the seq2seq model learns to predict an output sequence at
the training time, and it chooses the best tag sequence using the beam search [34]
at the test time. The beam search is a heuristic search algorithm [21], and it
works well in many tasks with large search space. However, the standard beam
search [14] is not suitable for NER task, since the search space of NER task is
small.

In the proposed seq2seq model named SC-NER, the tag sequence is generated
in two steps: (1) We use the encoder’s output to construct a classifier, which
identifies whether the input sequence has an entity. In particular, we choose the
LSTM for both encoder and decoder. The encoder will output the cell state and
the last hidden state. The last hidden state is input into the classifier. (2) The
classifier’s output is considered as the starting vector of the decoder. Usually,
the decoder generates the tag sequence based on the starting vector and cell
state. In addition, the beam search is always utilized in tag sequence generation.
The standard beam search, however, is not suitable for NER task. Therefore,
we present a restricted beam search. The main contributions of our work are as
follows:

– To the best of our knowledge, it is the first time for the seq2seq model to be
used in NER task.

– In the proposed SC-NER model, a classifier is added to determine whether
sentences have entities. Moreover, the training of classifier, encoder, and
decoder is seamless.

– We present a restricted beam search to adjust the search space. The restricted
beam search is more suitable to the NER task than the standard beam search.

The remaining part of this paper is organized as follows. Section 2 reviews the
related work. Section 3 describes the details of our model. Section 4 introduces
the data set. Experiment results are reported in Sect. 5. Section 6 concludes our
work.
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2 Related Work

Su and Su [31] presented a Hidden Markov Model (HMM) based block marker to
identify and classify names, times, and numbers. It achieves high performance on
the MUC-6 and MUC-7 English NER tasks and performs better than manual
rule-based methods. Hai and Ng [15] proposed a maximum entropy approach
for NER task, which showed the feasibility of extracting useful features (global
features) using the occurrences of each word in a document. Mccallum and Li [26]
presented a feature induction method for CRFs (Conditional Random Fields),
which obtained a high F1-score.

In order to improve the performance on NER with more diverse entity types,
researchers tend to use the deep learning methods. Wu and Xu [35] used DNNs
for the NER task, the experiments show that it outperforms the CRF’s model.
Chiu and Nichols [7] showed that CNN is effective in the feature engineering.
However, the CNN pays more attention to learn the spatial features, while the
text is mainly represented by temporal features. Instead of the CNN, researchers
use the RNN [2] to learn the sequential feature in the text. However, Bengio et
al. [4] presents that RNN did not consider the long-term dependencies, and Long
Short-Term Memory network (LSTM), which is a particular RNN, is adopted to
learn the long-term dependencies. Yao and Huang [36] used the LSTM for the
word segmentation, and it has a positive impact on the NER task. Lin et al. [23]
proposed a Multi-channel BiLSTM-CRF Model for NER in Social Media.

Recently, researchers tend to use the sequence-to-sequence model for the
NLP task. Cho et al. 168 [8] proposed a novel neural network model called
RNN Encoder-Decoder for statistical machine translation. The model can learn
a semantically and syntactically meaningful representation of linguistic phrases.
Shao et al. [30] used the sequence-to-sequence model for generating high-quality
and informative conversation responses. Moreover, self-attention was added to
the decoder to maintain coherence in longer responses. Konstas et al. [19]
applied the sequence-to-sequence models for parsing and generation. It showed
that sequence-based models are robust against ordering variations of graph-to-
sequence conversions.

3 Model

In this section, we present our SC-NER model in detail. Section 3.1 provides an
overview, Sect. 3.2 introduces the encoder and classifier, Sect. 3.3 elaborates the
decoder. We describe the restricted beam search algorithm in Sect. 3.4.

3.1 Overview

Figure 1 illustrates the overall architecture of our model. The sentence classifier
is added to the traditional seq2seq model. The traditional seq2seq model [10,32]
contains the encoder and the decoder. We modify the encoder and use the last
hidden state h as the input of sentence classifier. Moreover, the decoder generates
the final sequence based on the cell state c and the output of the classifier (i.e.,
the class label l).
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Fig. 1. An overview of our SC-NER model.

3.2 Encoder and Classifier

In the SC-NER model, we use two different LSTMs [24]: one for encoder and
another for decoder. It is common to train the LSTMs on the pairs of two
sequence in different features at the same time. In the NER task, the input
sequence represents a natural sentence. However, the output sequence is just a set
of tags without any semantic information. Moreover, attention-based LSTM [6,
33] can significantly outperform standard LSTM, then we use the LSTM with
attention for encoder part.

Figure 2 shows the structure of the cell state in LSTM [2]. It uses the input
gate(it), forget gate(ft) and output gate(ot) to protect and control the cell
state(ct).

ft = σ(Wf · [ct−1, ht−1, xt] + bf ), (1)
it = σ(Wi · [ct−1, ht−1, xt] + bi), (2)
c̃t = tanh(Wc · [ct−1, ht−1, xt] + bc), (3)
ct = ft · ct−1 + it · c̃t, (4)
ot = σ(Wo · [ct−1, ht−1, xt] + bo), (5)
ht = ot · tanh(ct), (6)

where σ(·) is the logistic sigmoid function, W and b denote the weight matrix
and the bias vector of each gate respectively, xt presents the current input vector,
ht−1 means the previous hidden state, and ct−1 denotes the previous cell state.

According to statistics, more than half of sentences in corpus have no entity.
For example, the sentence “This method performs very well in many applica-
tions” contains no entity, and its tag sequence is very simple. Thus, the NER
model should filter out sentences that do not contain entities. Therefore, we pro-
pose an Multi-Layer Perceptron (MLP) classifier to determine whether sentences
contain entities.

Note that, the outputs of encoder are the last hidden state (h) and cell state
(c) [30]. We can observe the difference between the hidden state and cell state
from the above Eqs. 4 and 6. The LSTM uses the cell state to store the context
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Fig. 2. The structure of the cell state in LSTM is combined with the three gates.

information. Therefore, the cell state changes slowly. The hidden state, however,
changes faster than the cell state. The ht may be very different from the ht−1

since Eq. 6 shows that it contains the activation function (i.e., tanh) and the dot
product. Generally, the last hidden state pays more attention to the conclusion
of the sentence and the cell state carries the information of the whole sentence.
Therefore, the last hidden state is used as input of MLP classifier. The classifier
is added after the encoder. The output of classifier based on Eq. 7 is class label
l. The training objective of the classifier is to minimize the Cross-Entropy of the
data.

l = σ(Wl · ht + bl). (7)

It is well-known that NER has the data imbalance problem. The seq2seq
model with MLP classifier also can solve this problem to a certain extent.

3.3 Decoder

The decoder is also realized by LSTM. The cell state and the classifier’s output
are taken as the input in our SC-NER model, which is different from the tra-
ditional seq2seq model. The inputs of decoder in traditional seq2seq model are
the cell state and a starting vector, and the starting vector is always initialized
as the all-zero vector or the last hidden state of encoder. In other words, the
output of MLP classifier is used as the starting vector in our model, which will
inform the decoder whether a sentence contains entity. If there is no entity in
this sentence, the decoder can almost ignore the information of the cell state.

The training method for decoder is based on SGD (Stochastic Gradient
Descent) to minimize the negative logarithm likelihood.
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Fig. 3. The structure of two beam search algorithm.

3.4 Restricted Beam Search

The seq2seq models are trained to generate an output sequence. At the test time,
the model usually uses beam search [34] to choose the best sequence given the
input. Beam Search is a heuristic graph search algorithm. It is usually used when
the search space of the graph is large. As illustrated in Fig. 3(a), at each step of
the depth expansion, the score of each hypothesis is calculated by standard beam
search. Some low score hypotheses are cut off, and the high score hypotheses are
left.

Table 1. Examples of the named entities and its tags.

Named Entity Tag

MCU S

Vector coding B E

Hidden Markov models B I E

The search space, however, is relatively small in the NER task [23], where
the search space (i.e. tag set) includes five tags to represent the entity boundary
information i.e. BIESO [1] (e.g., Beginning, Internal, Ending, Single and Other).
‘B’, ‘I’, and ‘E’ denote the beginning, the internal and the ending of an entity.
‘S’ denotes the entities with a single word. ‘O’ denotes the other words. Table 1
shows some examples of the named entities and its tags. Therefore, the beam
size for NER task is small. Moreover, we add some constraints in the restricted
beam search to adjust the search process. As shown in Fig. 3(b), the score of
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each hypothesis is updated by adding an additional term γ to the original value,
where γ denotes the dependency between the current hypothesis and its parent.

We set the term γ as the transition probability between the tags in the
corpus. The γ is able to reduce the error of sequence generation. For instance,
the tag sequence “O O E” is never generated by the decoder since‘E’ should
be presented following the ‘B’ or ‘I’. The restricted beam search thus generally
favors choosing hypotheses with the higher transition probability, which leads to
a more appropriate N-best list.

4 Data

We like to evaluate the SC-NER model on the patent documents corpus in the
communications field. The data set contains approximately ten thousand patents
and 1000 test patents downloaded from Google Patent Search1. The NER task
is to recognize all the named entities and determine its type for each patent
document. For example, given a sentence “The present invention relates to a
multi-party real-time communication technology.”, the NER task is to recognize
the named entity “multi-party real-time communication” and determine its type.
Table 2 shows the description of our corpus.

Table 2. The description of our corpus

Entity type Total

Method 3041

Material 4827

Product 4205

4.1 Data Preprocessing

The patent documents corpus is provided in Extensible Markup Language
(XML). Patent documents contain many fields. Some fields are noise in our
task. Examples of such fields are country, bibliographic data, legal-status, or
non-English abstracts. Therefore, in order to focus on the NER task, the follow-
ing fields are chosen: Title, Abstract, Description, and Claims.

4.2 Named Entity Recognition

In the traditional area, NER is to determine whether a sentence contains a named
entity and to identify its type. The entity types [27] generally include person’s
name, place name, and time information. However, in our task, the entity types
are predefined as:
1 https://patents.google.com.

https://patents.google.com
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Table 3. The results of different methods

Method Type Precision Recall F1-score

Passos et al. [28] Method 87.48 81.35 84.30

Material 88.23 83.33 85.71

Product 88.02 81.55 84.66

Passos et al. [28] + artificial features Method 87.36 83.42 85.34

Material 88.63 85.85 87.22

Product 88.25 84.87 86.53

Ma and Hovy [25] Method 89.44 85.16 87.25

Material 89.87 86.74 88.28

Product 88.89 85.66 87.24

Lample et al. [20] Method 90.30 87.54 88.90

Material 91.01 88.41 89.69

Product 91.36 87.33 89.30

SC-NER Method 92.30 87.54 89.86

Material 92.71 87.75 90.16

Product 91.86 86.30 88.99

– Method Names:
The meaning of a method is a theoretical solution to a certain problem.

– Material Names:
Materials are those substances that humans use to make objects, devices,
components and machines.

– Product Names:
Products are tangible items that can be supplied to the market, used and
consumed by people, and can meet people’s needs, such as mobile phones,
routers, processors, etc.

5 Experiments and Analysis

5.1 Experiments

In our experiment, we validate the performance of SC-NER model under different
conditions. (1) The effect of the sentence classification module. (2) Whether the
restricted beam search can improve the performance of the proposed model.
Furthermore, we also compared the proposed model with many existing methods,
such as Passos et al. [28], which is based on CRFs, and the deep learning methods
based on the CNN [25] and LSTMs [20]. We evaluate all models performance
using several criteria (e.g., Precision Rate, Recall Rate, and F1-score).
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Fig. 4. The experimental results about the sentence classification module and the
restricted beam search.

5.2 Results

Figure 4 shows that the performance of the SC-NER model and the SC-NER
without classifier. From Fig. 4, we can observe that SC-NER achieves the better
precision rate and the similar recall rate to the SC-NER without classifier. Based
on the experimental result, we conclude that the sentence classifier is effective
in the SC-NER model, because classifier can filter out sentences that do not
contain entities.

Figure 4 also shows that the restricted beam search can improve the recall
rate, and get the similar precision rate to the standard beam search. There exist
two important factors that affect the recall rate. (1) Sentence contains enti-
ties, while the model can not recognize them. (2) The model tags the incorrect
sequence for the sentence. The restricted beam search can alleviate the second
issue above, since it can keep SC-NER model from generating the incorrect tag
sequence.

Finally, Table 3 presents the results of all methods for the patent NER under
precision, recall, and F1-score. The experimental result shows that the perfor-
mance of our proposed model outperforms other approaches. The F1-score of
the two Standford NER models are lower than SC-NER since the CRFs can not
extract the effective features for patents.

As shown in Table 3, the recognition performance on different entity types
are different. The performance of recognizing the Material entity is better than
identifying the other types of entity, i.e., Method and Product. The reason for
this result is that Material entities are usually relatively short. Method entity
and Product entity appears to be compound words, which is difficult for the
model to extract contextual features.

6 Conclusion

In this paper, we propose the novel seq2seq model SC-NER for the communi-
cation patent NER, and the model achieves the good performance in this NER
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task. We add an MLP classifier between the encoder and the decoder. The clas-
sifier can filter out sentences that do not contain entities, which can make the
SC-NER model efficient and solve the data imbalance problem. Moreover, the
classifier can be trained jointly with the encoder and the decoder. At the test
time, we propose the restricted beam search, which is suitable for small search
space in the NER task.

Experimental results show that our model makes some improvements in both
the precision rate and recall rate compared with other traditional baselines such
as the CRFs, CNN, and Bi-LSTMs.

In the future, we plan to enhance the generalization ability of the proposed
model. The transfer learning is an option.
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Abstract. In this paper, we propose a new neural model BAB-QA to
address the task of emotion detection in multi-party dialogues, which
aims to detect emotion for each utterance in a dialogue among four
label candidates: joy, sadness, anger, and neutral. A variety of models
have been proposed to solve this task, but few of them manage to cap-
ture contextual information in a dialogue properly. Therefore, we adopt
a Bi-directional Long Short-Term Memory network (BiLSTM) and an
attention network to obtain representations of sentences and then apply
a contextualization network to refine the sentence representations for
classification. More importantly, we propose and incorporate a new mod-
ule called QA network in our model, which is inspired by natural lan-
guage inference tasks. This QA network enables our model to acquire
better sentence encodings by modeling adjacent sentences in a dialogue
as question-answer pairs. We evaluate our model in the benchmark Emo-
tionX datasets provided by SocialNLP2018 and our model achieves the
state-of-the-art performance.

Keywords: Emotion detection · Multi-party dialogue · Neural model

1 Introduction

With rapid development of social media, people today confront a huge amount
of online information. We always express our emotional tendency through utter-
ances in conversations with others. And the emotional tendency is of great help
for social media analysis and public opinion investigation. To deal with over-
whelming online information, automatic emotion detection by computer program
has attracted much more attention.

The goal of this research is to develop a model to recognize emotional ten-
dency in multi-party dialogues, i.e., to detect the emotion for each utterance in
dialogues among four label candidates: joy, sadness, anger, and neutral. Unlike
ordinary emotion detection task, this task is based on utterances in dialogue,
which means the sentences will be very casual and arranged in a sequence. An
c© Springer Nature Switzerland AG 2019
Q. Yang et al. (Eds.): PAKDD 2019, LNAI 11439, pp. 210–221, 2019.
https://doi.org/10.1007/978-3-030-16148-4_17
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example of the dialogue is shown in Table 1. The last two sentences are exactly
the same but, according to the context, they have different emotional tendency.
So in this task, we try to take advantage of the sequential relations between
sentences and enable the model to make use of more contextual information and
thus obtain a better performance.

Table 1. Example of EmotionX dataset

Speaker Sentence Emotion

Rachel Oh okay, I’ll fix that to. What’s her e-mail address? Neutral

Ross Rachel! Anger

Rachel All right, I promise. I’ll fix this. I swear. I’ll-I’llI’ll-I’ll talk
to her

Non-neutral

Ross Okay! Anger

Rachel Okay! Neutral

Our proposed model BAB-QA can be divided into four parts: a word embed-
ding layer, a sentence encoding layer, a contextualization and classification net-
work, and a QA network. In the word embedding layer, we convert words into
word vectors using pre-trained wording embeddings [18]. In the sentence encod-
ing layer, the sequence of word vectors is taken as input of a BiLSTM network
and an attention network to obtain the contextual representations of words. We
then use max-pooling to get a vector representation for the sentence. For the
contextualization and classification network, we use another BiLSTM to refine
the sentence representations for emotion classification. The QA network is used
to acquire better sentence encodings by modeling adjacent sentences in a dia-
logue as question-answer pairs. A joint loss considering both classification loss
and QA loss is used for the optimizer.

We conduct experiments on the benchmark EmotionX datasets provided by
SocialNLP2018 [4,9]1 , and our proposed BAB-QA model achieves the state-of-
the-art performance. We also validate the usefulness of different components in
our model.

The contributions of this work are summarized as follows:

– We propose a neural model BAB-QA to address the challenging task of emo-
tion detection in multi-party dialogues, by making full use of the context
information within a sentence and between adjacent sentences.

– We propose an attention network to better capture the contextual information
between words in adjacent sentences, and propose a QA network to better
capture the contextual information between adjacent sentences.

– Our model achieves the state-of-the-art performance on the benchmark Emo-
tionX datasets.

1 SocialNLP2018 Workshop Challenge: http://doraemon.iis.sinica.edu.tw/emotion
lines/challenge.html.

http://doraemon.iis.sinica.edu.tw/emotionlines/challenge.html
http://doraemon.iis.sinica.edu.tw/emotionlines/challenge.html
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2 Related Work

As sentiment or emotional tendency is of great use for decision-making, numer-
ous efforts have been made to obtain better performance in sentiment or emo-
tion classification tasks. A variety of neural networks have been proposed and
designed.

Convolutional neural network (CNN) [13] is used in natural language process-
ing. With several fixed-size windows going through the sentence, the CNN model
can achieve attractive results in emotion classification tasks. The Long Short-
Term Memory (LSTM) [1,6,8,16] is a kind of recurrent neural network which
can capture the temporary features through special gates in cells of the network
Some non-recurrent networks are also proposed [10,12,14,24]. Google proposes a
sequence-to-sequence model called transformer [22] for machine translation task.
Instead of complex recurrent or convolutional neural network, transformer uses
a crucial part called Attention to extract temporal features.

Because of the heat of social media such as twitter, emotion detection and
sentiment analysis in tweets have attracted a lot of attention these years. Con-
sidering tweets usually lack interactions, there is no need to focus on context
relations. Some works apply Emoji embeddings to extract information to deal
with the widely-used Emoji in tweets [5]. The Transfer Learning is also adopted
in this task [20]. And there are works using complex combination of RNN and
Attention [2]. Early machine learning methods are adopted to solve this problem
as well [7,15].

While all the models above focus on ordinary emotion detection, they do
not perform well on the task of emotion detection in dialogues, because sen-
tences in dialogues are more casual, and depend on context to express their
emotional tendency. To achieve good performance in this task, SA-BiLSTM [17]
and CNN-DCNN [11] from the contest have done a lot of work. The SA-BiLSTM
system uses BiLSTM to deal with words relation and attention mechanism to
deal with sentence relation. The CNN-DCNN system uses a CNN encoder and
CNN decoder on fixed number of sentences to solve the task.

However, both models above do not pay enough attention to the relations
between the sentences in the same dialogue. And the relations between sentences
are of great importance to this task. Utterances in our daily conversation are
dependent on their context. That’s why we do a lot work on this part and our
model achieves better performance than the challengers in the contest.

3 Model

The task is to recognize the emotional tendency of each utterance (typically
sentences) in multi-party dialogues. The sentences are arranged in a dialogue,
so the input to our model is a sequence of sentences in the same dialogue:
senti1, senti2, ..., sentim ∈ dialoguei. For each sentence in the dialogue, our
model will predict its emotional tendency through the words in the sentence
and the contextual sentences.
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Fig. 1. The architecture of our model. wi: word in a sentence; ei: word embedding
vector; hi: hidden states of BiLSTM in Sentence Encoding Layer; Hi and Hi+1 are the
hidden states of sentences i and i+1; si: sentence vector; h′

i: hidden states of BiLSTM
in the contextualization and classification network.

Our BAB-QA model is composed of four main components: a word embed-
ding layer, a sentence encoding layer, a contextualization and classification net-
work, and a QA network. In the following sections, they will be discussed in
detail. And the architecture of the model is depicted in Fig. 1.

3.1 Word Embedding Layer

Each sentence in a dialogue is represented in the form of a sequence of words. This
layer maps the words to real-valued vectors, which captures syntactic and seman-
tic word relations. The pre-trained word embedding vectors [18] are adopted in
this study to convert the words into vectors.

For sentence senti = [w1, w2, ..., wn], this layer replaces each word with the
pre-trained vector and makes a matrix out of it: Embi = [e1, e2, ..., en] ∈ R

n×dw

,
where n is the length of the sentence and dw is the dimension of the pre-trained
word embedding vectors. Each row vector of the matrix is the lexical-semantic
representation of the word in the sentence respectively.

3.2 Sentence Encoding Layer

This layer takes each sentence matrix Embi as input and produces a vector
si to represent the sentence senti. The layer consists of two major parts: a
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Bi-directional Long Short-Term Memory network (BiLSTM) and an attention
network (Attention).

In the first part, the row vectors in each sentence matrix are processed by
the BiLSTM network sequentially. As the BiLSTM is a kind of recurrent neural
network dealing with sequential information, it outputs a sequence of hidden
states H = [h1, h2, ..., hn](h ∈ R

dhs

) for a sentence of n words, where the dhs is
the dimension of the hidden states.

−→
hi =

−−−−→
LSTM(

−−→
hi−1, ei) (1)

←−
hi =

←−−−−
LSTM(

←−−
hi+1, ei) (2)

hi = [
−→
hi ;

←−
hi ] (3)

In the second part, we adopt attention network to capture the relation
between words more precisely. Attention network used here is first introduced by
Google researchers [22]. Because sentences in the same dialogue have different
lengths, we pad them to the max length of sentences with zeros. The output is
weighted by summing over all the hidden states. For sentence i in a dialogue, we
let Hi denote the corresponding hidden states obtained in the above way, and
Aself (i) as the output of the self-attention network. We use a subscript with H
and a superscript with hi to differentiate different sentences.

Hi = [hi
1, h

i
2, ..., h

i
n] (4)

Aself (i) = softmax(
HiH

T
i√

dhs
)Hi (5)

where Hi is padded to length n with zeros, and n is the max length of sentences
in the dialogue.

We notice that words in each sentence and its next sentence are related as
well. Another attention network is adopted here. The input to this attention
network is also the hidden states vectors from BiLSTM, but the weight matrix
is calculated by each sentence and its next sentence.

Hi+1 = [hi+1
1 , hi+1

2 , ..., hi+1
n ] (6)

Aadjacent(i) = softmax(
Hi+1H

T
i√

dhs
)Hi (7)

where Hi and Hi+1 are the hidden states of sentences i and i + 1, respectively;
Aadjacent(i) is the output of the attention network with Hi, Hi+1 as input.

We suppose that there is strong connection between each sentence and its
next sentence. From the words in the next sentence, the model can attain better
sentence encoding.

Because the last sentence in the dialogue does not have the next sentence,
we use zero vectors to pad the space.

Then we concatenate the outputs of the two attention networks, and get the
result A.

A(i) = [Aself (i);Aadjacent(i)] for i ∈ [1,m − 1] (8)
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A(m) = [Aself (m);0] (9)

where m is the number of sentences in the dialogue.
Then we conduct max-pooling to the output of the whole attention network

to convert a matrix into a vector.
The final output of this layer is a vector si ∈ R

2dhs

encoding the word
relations within a sentence and also the word relations between a sentence and
its next sentence. This part is shown in Fig. 2.

Fig. 2. The overview of our attention network

3.3 Contextualization and Classification Network

Since the sentences in this task are utterances in people’s daily conversation, the
relation between sentences is important for emotion detection. A same sentence
may express different emotions in different dialogue contexts, so we should make
full use of the sequential relations between sentences in a dialogue.

We adopt a BiLSTM network to refine the sentence representations obtained
in the sentence encoding layer. The BiLSTM takes the sequence of sentence vec-
tors si obtained in the previous layer as input, and acquires new sentence vectors
s′
i by considering contextual information between sentences. The dimension of

the vectors is decided by the parameter of new hidden size (dhs′ = 2dhs), so the
new vectors s′

i ∈ R
dhs′

.
The new sentence vector is used to predict the emotion label of each sentence.

To cater for the 4-classification task, we input the vector into a fully-connected
layer and get probability scores over the four emotion labels.

Pemotion = softmax(relu(Ws′ + b)) (10)

where Pemotion ∈ R
4, and W is weight matrix, b is bias.
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The emotion label of the sentence is that corresponding to the highest prob-
ability score in Pemotion. We calculate the cross entropy loss of the prediction.
We use LossCE to denote it.

3.4 QA Network

As discussed before, the relation between sentences in the same dialogue is very
important, and the BiLSTM is not enough for the task. Enlightened by the
related task about natural language inference [3,23], we suppose each sentence
in a dialogue is related to its next sentence in a similar way, just like a pair
of question and answer. In this study, we propose a QA network to acquire
better sentence representations by modeling adjacent sentences in a dialogue as
question-answer pairs and forcing adjacent sentences to be related with each
other.

For a sentence vector si and the vector of its next sentence si+1, we calculate
|si − si+1|, si � si+1 and concatenate si, si+1, |si − si+1|, si � si+1 together into
the concatenated vector Cat ∈ R

4dhs

. We use the concatenated vector as input
to a fully-connected network and obtain a relatedness score score(i, i + 1) ∈ R

between these two sentences.
For sentence i in dialogue dialoguej , a new loss for each sentence is calculated

by:

LossQA(si) =
∑

sentk∈dialoguej ,k �=i,i+1

1 − score(i, i + 1) + score(i, k)
|dialoguej | − 2

(11)

where |dialoguej | is the number of sentences in dialogue j.

LossQA =
∑

dialoguej∈TrainingSet

∑
senti∈dialoguej

LossQA(si)
|dialoguej |

|TrainingSet| (12)

where |TrainingSet| is the number of dialogues in the training dataset.
The final loss of our model is the sum of LossCE and LossQA.

Loss = LossCE + LossQA (13)

4 Experiments and Results

4.1 Dataset

We evaluate our model on benchmark EmotionX datasets provided by
SocialNLP-2018. There are two evaluation datasets, Friends and EmotionPush,
where each sentence in the conversation is annotated with one label showing its
emotional tendency. The Friends dataset consists of actor’s lines in Friends, a
famous TV series, and the EmotionPush dataset consists of chat logs on Face-
book Messenger.
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Fig. 3. The EmotionX dataset: Friends and EmotionPush

The original datasets have eight categories of emotion, but only four of them
(Neutral, Joy, Sadness, Anger) are considered according to the requirement of
EmotionX. Figure 3 summarizes the statistics of the two datasets. Note that each
dataset has already been split into training, development and test sets.

Because the EmotionPush dataset is from the online chat logs, many words
and phrases in it need to be processed beforehand. More specifically, we trans-
late the emoji symbols to its corresponding meanings and truncate duplicated
symbols. We also replace locations and names to special tokens.

4.2 Training Settings

For both datasets, test performance is assessed on the training epoch with best
validation performance on the development set and the unweighted average accu-
racy (UWA) is reported for comparison, which is the official evaluation metric
adopted by EmotionX.

UWA =
1

|C|
∑

l∈C

accl (14)

where accl is the accuracy of emotion category l, and C is the set of emotion
categories.

The word embeddings are 300-dimensional GloVe embeddings (Global Vec-
tors for Word Representation) [19]. They are trained on large amount of Google
News and not fixed during the training in order to enhance better performance.
Pack padded sequence and pad packed sequence are used to deal with the dif-
ferent lengths of sentences.

BiLSTMs in different layers have 300 hidden units. And the fully-connected
layer in the contextualization and classification network has two hidden layers
with the same size of 128. The fully-connected layer in QA network has a hidden
layer with size of 100.

The model is trained using the Adam optimization method. The learning
rate is initially set as 0.001 and the decay factor is set as 0.99 for every epoch.
To avoid overfitting, we adopt dropout in each layer [21]. The dropout rate is
set as 0.5.
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Table 2. Results on the test set of Friends

Friends UWA Neutral Joy Sadness Anger

SA-BiLSTM [17] 59.6 90.1 68.8 30.6 49.1

CNN-DCNN [11] 60.5 68.4 68.3 48.3 58.8

BiLSTM+BiLSTM (BB) 59.2 73.6 77.6 34.1 51.6

BiLSTM+Attention+BiLSTM (BAB) 60.7 66.7 66.5 35.3 74.5

BiLSTM+Attention+BiLSTM+QA (BAB-QA) 62.8 63.4 79.6 56.5 51.6

Table 3. Results on the test set of EmotionPush

EmotionPush UWA Neutral Joy Sadness Anger

SA-BiLSTM 55.0 94.2 70.5 31.0 24.3

CNN-DCNN 64.9 65.2 75.6 63.2 55.6

BiLSTM+BiLSTM (BB) 62.9 79.9 79.5 43.7 48.7

BiLSTM+Attention+BiLSTM (BAB) 67.9 73.8 74.7 60.9 62.2

BiLSTM+Attention+BiLSTM+QA (BAB-QA) 70.6 78.1 78.2 66.7 59.5

4.3 Results and Discussion

Tables 2, 3 show the results (UWA and the accuracy for each emotion label)
of our model and the published results of top models (SA-BiLSTM and CNN-
DCNN) in the EmotionX Challenge.

There are three versions of our model:

– BiLSTM+BiLSTM(BB): The sentence encoding layer only consists of a
BiLSTM layer and a max-pooling layer. Another BiLSTM is used to capture
contextual information between sentences.

– BiLSTM+Attention+BiLSTM(BAB): The sentence encoding layer con-
sists of a BiLSTM, the Attention network described before, and a max-pooling
layer. Another BiLSTM is used to capture contextual information between
sentences.

– BiLSTM+Attention+BiLSTM+QA(BAB-QA): The sentence encod-
ing layer and contextualization and classification network are the same as
BAB, but the QA network is added.

From Tables 2, 3, we can clearly find out that BAB has already achieved
better performance than the top players attending the EmotionX contest and
our overall BAB-QA model can further improve the UWA score. In summary,
BAB-QA can improve the state-of-the-art performance of CNN-DCNN by 2.3
and 5.7 points on the two datasets, respectively.

Compared with the top two models in the contest, our model can get better
sentence representations for emotion classification, by fully considering the rela-
tions between sentences in a dialogue. The techniques introduced in this paper
enable our model to enhance better performance as well.

More specifically, with the help of pre-trained word embedding, the lexi-
cal semantic information of words is properly extracted and the BiLSTM and
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attention network in the sentence encoding layer can capture the subtle relation
between the words. The word-wise information is thoroughly obtained.

In the part of Contextualization and Classification Network and QA network,
relations between sentences is well modeled and leveraged by the BiLSTM and
QA network.

From the comparison between BB and BAB, we can see the attention network
is useful and it can improve UWA by 1.5 and 5 points on the two datasets,
respectively. It indicates that attention network can better obtain information
about strong emotions like anger. After we examine the dataset, we find out
most sentences tagged as anger are highly dependent to its context. It can be
explained by the Adjacent attention’s ability to catch relations between adjacent
sentences.

Table 4. Sentence example with anger emotion

Speaker Emotion Sentence

. . .

Monica: (neutral) What-what was it you were gonna tell us?

Rachel: (neutral) Yeah. Oh! Was how you invented the cotton gin?!

Ross: (anger) Okay, good bye!

In Table 4, the character Ross expresses his anger emotion in the last sentence.
But BB tags it as sadness, because only the BiLSTM network in BB cannot catch
enough contextual information. With the help of attention network, BAB gives
the right prediction.

The comparison between BAB and BAB-QA shows the improvement more
clearly. The QA network can abstract relations between a sentence and its next
sentence. It predicts the most possible “answer” to each sentence in the dialogue.
In this way, the QA network can figure out the difference of each emotional
tendency and get rid of the interference of unbalanced dataset, so BAB-QA
achieves high results for most categories.

Take the sadness emotion as an example (Table 5).

Table 5. Sentence example with sadness emotion

Speaker Emotion Sentence

. . .

Joey: (non-neutral) Oh, how bad is it?

Phoebe: (sadness) Oh, it’s bad. It’s really bad. The only thing . . .

Chandler: (neutral) How’s your room Rach?

In the Phoebe’s utterance, she uses word “bad” several times. The BAB
just detects this feature, and predicts it as anger. However, BAB-QA considers
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sentences in the dialogue more thoroughly, and gives the right prediction. BAB-
QA finds speakers’ emotion is not that strong. Even if “bad” appears several
times, the Phoebe’s utterance should be tagged as sadness.

Limited by the scale of the datasets, the results of our model are not perfect.
Some sentences in the dialogue are very informal and require other source of
information to make the right judgment. We expect visual and audio information
will be available in the future to enhance better performance on this task.

5 Conclusion

In this work, we propose a neural network model BAB-QA to detect emotional
tendency in multi-party dialogues. We take advantage of unique characteristics
of this task, and try to extract information both word-wise and sentence-wise.
Several kinds of networks, such as BiLSTM and Attention, are combined in this
model to enhance better performance. We also introduce two new attempts in
the emotion detection task: Concatenated Attention and QA Network. Both
attempts turn out to be useful to this task. Our model achieved the state-of-the-
art UWA scores on the EmotionX datasets.

In future work, we will apply our model to other problems related to sequen-
tial emotion recognition. We will also consider visual and audio information in
our model to achieve better performance on this task.
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Abstract. Detecting fraud review is becoming extremely important in
order to provide reliable information in cyberspace, in which, however,
handling cold-start problem is a critical and urgent challenge since the
case of cold-start fraud review rarely provides sufficient information for
further assessing its authenticity. Existing work on detecting cold-start
cases relies on the limited contents of the review posted by the user
and a traditional classifier to make the decision. However, simply model-
ing review is not reliable since reviews can be easily manipulated. Also,
it is hard to obtain high-quality labeled data for training the classi-
fier. In this paper, we tackle cold-start problems by (1) using a user’s
behavior representation rather than review contents to measure authen-
ticity, which further (2) consider user social relations with other existing
users when posting reviews. The method is completely (3) unsupervised.
Comprehensive experiments on Yelp data sets demonstrate our method
significantly outperforms the state-of-the-art methods.

Keywords: Fraud review detection · Cold-start ·
Behavior representation · Unsupervised learning

1 Introduction

With the increasing popularity of E-commerce, a large number of online reviews
are manipulated by fraudsters, who intend to write fraud reviews driven by
strong incentives of profit and reputation. Early in 2013, it has been found that
around 25% of Yelp reviews could be fake1. This situation becomes worse than
ever recently. As reported by Forbes news2 in 2017, Amazon is seeing a lot more
1 https://www.bbc.com/news/technology-24299742.
2 https://www.forbes.com/sites/emmawoollacott/2017/09/09/exclusive-amazons-

fake-review-problem-is-now-worse-than-ever/#501eccb87c0f.
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suspicious reviews than before. As a result, it has become a critical and urgent
task to effectively detecting such fraudsters and fraud reviews.

Recent years have seen significant progress made in fraud detection. Current
efforts mainly focused on extracting linguistic features (n-grams, POS, etc) and
behavioral features [5,27]. However, linguistic features are ineffective when deal-
ing with real-life fraud reviews [19], especially when linguistic features are easy
to be imitated, a.k.a. camouflage [6]. Also, extracting behavior features require a
large number of samples and usually takes months to make observations. When
facing the cold-start problem, i.e. a new user just posted a new review, extract-
ing behavior features becomes even harder because none historical information
is available for a new user [28].

Fig. 1. Example of user behavior space. In this space, similar users will close to each
other, i.e. a normal user will be majorly surrounded by normal users, and vice versa.

Recently, the cold-start problem in fraud review detection has been first
studied by [25]. This method handles the cold-start problem by considering cor-
relations between users, items, and reviews. Later, [28] makes one step further
by incorporating the relations between entities (users, items, and reviews) with
their attributes from different domains. Both of the above methods feed the
embedded review representation into a classifier for cold-start fraud detection.
However, two problems may arise when adopting these methods. (1) Only using
review itself is ineffective as discussed in [19], and is easy to be affected by cam-
ouflage [6]. (2) Also, high-quality labeled data are required in both methods,
which is really hard to obtain in real life.

We address the above problems in current cold-start fraud detection meth-
ods by focusing on user behavior. The rationale is similar users may result in
similar behaviors when posting a review. Specifically, in a behavior representa-
tion space (Fig. 1), if a new user is closer to a group of existing fraudsters, those
fraudsters will be identified as his/her similar users. Then, the new user is likely
to be detected as a fraudster. Thus, the cold-start problem can be transferred
to identifying the existing users who have similar behavior with a new user.
Although limited information is available for a new user, existing fraudsters can
be effectively detected by many methods [6,13,23].
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Motivated by [25,28], we first represent user according to the relations among
entities. Further, we integrate the entities relations with user social relations. The
intuition is that fraud reviews are always manipulated by a group of fraudsters
with close social relations [6,13]. For example, a group of users usually work
together to effectively promote or demote target products. They may even know
one another and copy reviews among themselves [17].

To further strength the discriminate ability of the represented behavior for
fraud detection, we apply the dense subgraph mining [1,6] to generate pseudo-
fraud labels to tune the representation in an iterative way. The foundation is
that an end-to-end supervised training will enable the strong task-specific dis-
criminate ability of the generated representation, as demonstrated in most of
representation learning tasks. In this process, dense subgraph mining generates
high-quality labels in an unsupervised way [6]. In turn, the discriminate repre-
sentation adjusts the weight of each graph link for a more precise dense subgraph
mining.

Based on the above analysis, we propose a socially-aware unsupervised user
behavior representation method for cold-start fraud detection (SUPER-COLD).
Our method jointly captures entities interactions and user social relations to
generate behavior representation with a strong discriminate ability for cold-start
fraud detection. In summary, the main contributions of this work are as follows.

– A user behavior representation model for cold-start fraud detection:
the represented user behavior avoids camouflage and thus is more reliable for
cold-start fraud detection.

– A socially-aware user behavior representation: the reviewing habits
and social relations of a user are jointly embedded in its behavior represen-
tation to provide comprehensive evidence for fraud detection.

– A discriminative unsupervised representation approach for cold-
start user behavior: a dense subgraph-based approach for fraudsters detec-
tion has been involved into the unsupervised representation approach, which
strengths the discriminant of the representation and tackles the problem of
lacking high-quality fraud labels in real life.

Comprehensive experiments on two large real-world data sets show that:
(1) SUPER-COLD effectively detects cold-start fraud reviews without manual
labels (improved up to 150% in terms of F-score compared with the state-of-the-
art supervised detection method); (2) SUPER-COLD enjoys a significant recall
gain (up to 9.23% in terms of F-score) in general review detection tasks from
incorporating entities and social relations; (3) SUPER-COLD generates a user
behavior representation with a strong discriminate ability.

2 Related Work

2.1 Fraud Review Detection

Fraud review detection was initially studied in [8], and has long been an attrac-
tive research topic since then. Later, more efforts were made on exploits linguis-
tics features [7,11,20], analyzing the effectiveness of n-grams, POS, etc. However,
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[19] found that linguistic features are insufficient when dealing with real-life fraud
reviews. Therefore, researchers put more efforts in employing users’ behavior fea-
tures [3,4,10–12]. Also, [18] proved that user’s behavioral features are more effec-
tive than linguistic features for fraud detection. Behavioral features were then
intensively studied by introducing a set of graph-based methods. The intuition
is reviews posted with similar fraud-behavior would be fraud. Wang et al. [24]
first introduce review graph to capture the relationships between entities. Spot-
ting fraudster groups were then explored by network footprints [27], community
discovery with sentiment analysis [2], social interactions for sparse group [26].
In-depth, Hooi et al. [6] proposes an advanced dense subgraph mining for group
fraudsters detection, targeting on detecting camouflage or hijacked accounts who
manipulate their writing to look just like normal users.

2.2 Cold-Start Problem

The cold-start problem in fraud review detection was first studied in [25]. By
considering the correlations between users, items, and reviews (entities relation),
the review posted by a new user can be represented. Motivated by [25], the
method proposed in [28] further leverages both attribute and domain knowledge
for a better review representation. At last, the review representation is fed into
a traditional classification model like SVM to form the fraud review classifier.

Fig. 2. The proposed SUPER-COLD Model

While both the above cold-start fraud review detection methods focus on
user’s review representation, we believe fraud reviews are easy to be manipu-
lated to look like normal reviews [6] and thus may confuse existing methods.
In this paper, we propose a novel user behavior representation model for fraud
detection, where entities relations and user social relations are jointly embed-
ded. In addition, we apply the dense subgraph mining to obtain pseudo-labels for
existing users in an unsupervised way, which also avoids the difficulty to obtain
high-quality labeled data.
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3 Proposed Method

3.1 Behavior Representation Architecture

The behavior representation architecture of SUPER-COLD is shown in Fig. 2.
It consists: entities relation embedding, social relation mining and user behavior
embedding. It also involves a dynamic link re-weighting strategy to enable a
discriminative representation for fraud detection.

SUPER-COLD first embeds the relations among users, items, and reviews
in their representations (entities relation embedding), and leverages the user
social relation by the dense subgraph mining based on a user-item bipartite
graph (social relation mining). Then, it further learns a user behavior represen-
tation by integrating the learned entities relations, which are embedded in the
user representation, and the social relations, which are involved in the pseudo
fraud labels generated by the dense subgraph mining, through a neural network
(user behavior embedding). A dynamic link re-weighting strategy is adopted
to enhance the discriminative ability of the generated behavior representation.
Specifically, after user behavior representation is learned, SUPER-COLD discov-
ers suspicious fraudsters according to the user distribution in the user behavior
representation space, and assigns a higher weight to the links corresponding to
these suspicious fraudsters in the user-item bipartite graph. After re-weighting,
it executes the dense subgraph mining to reveal a more accurate social rela-
tion, which is further integrated with the user representation to generate a new
behavior representation. SUPER-COLD repeats this process until convergence.

3.2 Entities Relation Embedding

SUPER-COLD embeds entities relation following the method in [25]. Let’s note
vu, vo, vr as the representations of u, o, and r, where u refers to a user, o refers
to an item, and r refers to a review wrote by the user u to the item o. We further
denote a tuple of < u, o, r > as ν ∈ S, where S refers to an online review data
set. For a given S, SUPER-COLD embeds the entities relation by the following
objective function:

min
Vu,Vo,ω

∑

ν∈S

∑

ν′∈S

γ max{0, 1 + ‖vu + vo − vr‖2 − ‖vu′ + vo′ − vr′‖2},

s.t. γ =

{
1 u = u′

0 u �= u′,

vr = tω (r),

(1)

where Vu and Vo is a set of the user and item representations, tω (·) refers
to a text embedding neural network with parameters ω, and max{· · · } returns
the maximum in a set. SUPER-COLD implements the text embedding neural
network as a hierarchical bi-directional recurrent neural network.
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3.3 Social Relation Mining

SUPER-COLD models users relations by a user-item bipartite graph. Motivated
by [6,13], it adopts the dense subgraph mining to reveal the fraud behavior based
on user social relation. The basic idea is greedily removing nodes in the bipartite
graph which can maximize the subgraph density per a given density evaluation
(Algorithm 1 line 1–5). The final remained subgraph (Algorithm1 line 6) will
have the largest density and thus can discover the users who may work together
to manipulate reviews.

Given an online review data set S, SUPER-COLD constructs the user-item
bipartite graph as G = (U∪I, E), where U is a set of users, I is a set of items, and
E = {< u, o, r > | < u, o, r >∈ S} is a set of edges, i.e. links from users to items.
Algorithm 1 shows the process of the dense subgraph mining for SUPER-COLD.
Motivated by [6], SUPER-COLD defines the density metric g(·) as follows,

g(S) =
f(S)
|S| , (2)

where
f(S) =

∑

<u,o,r>∈E
wu,o, (3)

for link weight wu,o > 0 between user u to item o. Initially, SUPER-COLD
assigns all link weights as 1. It will further adopt a dynamic re-weighting strategy
to update the link weights in an iterative process.

Algorithm 1. Dense Subgraph Mining for SUPER-COLD.
Input: Bipartite graph G = (U ∪ I, E);
Output: The pseudo-labels set Y ;
1: X0 ← U ∪ I
2: for t = 1, · · · , (nu + no) do
3: i∗ ← argmaxi∈Xt−1 g(Xt−1\{i})
4: Xt ← Xt−1\{i∗}
5: end for
6: X ∗ ← argmaxXi∈{X0,··· ,Xnu+no

} g(Xi);

7: for u = u1, · · · , unu do
8: if u ∈ X ∗ then
9: yi = cf

10: else
11: yi = cn
12: end if
13: end for
14: return Y = {y1, · · · , ynu}

SUPER-COLD assigns pseudo-labels to existing users according to the dense
subgraph mining results. Specifically, it gives the candidate fraudster label (cf )
to the users in the detected dense subgraph, and sets candidate normal user
label (cn) to other users (Algorithm 1 line 7–14). These pseudo-labels inherit the
social relations and will be used in the following behavior representation and
cold-start fraud detection.
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3.4 Integrating Entities and Social Relation for Behavior
Representation

SUPER-COLD further integrates the entities and social relation for behav-
ior representation. Specifically, it adopts a fully connected neural network,
Densep(·), to transform a user representation vu to a user behavior repre-
sentation v∗

u, and minimizes the pseudo-labels prediction loss (defined as the
cross-entropy between the predicted labels and pseudo-labels) based on v∗

u by
updating the parameters p of Densep(·) using a softmax function. The objective
function can be formalized as follows,

min
p,w,b

nu∑

i=1

∑

y={cf ,cn}
1[yi = y] log qi

s.t. qi = softmax(w · Densep(vui
) + b),

(4)

where yi is the pseudo-label of the i-th user assigned by Algorithm 1, nu is the
number of existing users, w and b are the parameters of the softmax function.

3.5 Dynamic Link Re-weighting Strategy

The target of the user behavior representation is detecting fraudsters. To this
end, the discriminative ability of the behavior representation should be strong. In
SUPER-COLD, this discriminative ability is mainly obtained from the pseudo-
labels generated by the dense subgraph mining. However, social relation may
not comprehensively indicate all kinds of fraudsters [23]. As a result, the dis-
criminative ability of behavior representation may not be good if only learning
from the social relation.

To enhance the discriminative ability, SUPER-COLD reinforces the focusing
of the dense subgraph mining on the suspicious users discovered in the behavior
representation space, which reflects both the entities relation and the social
relation. Specifically, SUPER-COLD clusters a set of users into two categories
according to their behavior representations. It then re-weights the link of each
user by the reciprocal of the number of its assigned categories. Formally, the
links weight of a user u is assigned as,

wu,· =
1

|Cu| , (5)

where Cu refers to a set of users with the same category as user u, and | · |
returns the size of the set. The assumption behind this re-weighting is that a user
with less similar users are more suspicious as a fraudster. After re-weighting the
links, SUPER-COLD conducts the dense subgraph mining again to generates
new pseudo-labels, which are further integrated with the entities relation for
the behavior representation. SUPER-COLD repeats this dynamic re-weighting
strategy until convergence. With the dynamic link re-weighting strategy, the
SUPER-COLD behavior representation procedure is summarized in Algorithm2.
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Algorithm 2. SUPER-COLD User Behavior Representation.
Input: Online review set S, convergence threshold ε;
Output: User behavior representation V∗

u;
1: Entities relation embedding by Eq. (1)
2: Generating pseudo-label set Y by Alg. 1
3: Generating behavior representation V∗

u by Eq. (4)
4: Initializing Δ = +∞
5: while Δ > ε do
6: Y ′ ← Y
7: Clustering V∗

u into two categories
8: Re-weighting user-item graph links by Eq. (5)
9: Generating pseudo-label set Y by Alg. 1

10: Generating behavior representation V∗
u by Eq. (4)

11: Δ = 1 −

∑

yi∈Y,y′
i
∈Y ′

1[yi=y′
i]

|Y |
12: end while
13: return V∗

u

3.6 SUPER-COLD Fraud Review Detection

SUPER-COLD detects fraud reviews according to the behavior representation
in an unsupervised way. The SUPER-COLD fraud review detection procedure
is shown in Algorithm 3. For a new review tuple < u∗, o∗, r∗ >, the user behav-
ior representation cannot be directly got from the existing model because u∗

never appears and thus are not in the learned embedding layer. Alternatively,
SUPER-COLD deduces the new user behavior representation by using the enti-
ties relation and the social relation. SUPER-COLD first looks up the learned
item representation vo∗ and generates the review representation vr∗ = tω (r∗) by
the learned text embedding neural network. Then, it calculates an approximate
representation of the user as vu∗ = vr∗ − vo∗ . After that, it uses the learned
fully connected neural network to generate behavior representation of the user as
v∗

u∗ = Densep(vu∗), which integrates the social relation with the approximate
representation. Finally, SUPER-COLD retrieves the k-nearest existing users of
the detecting user, and uses the majority voting to ensemble the retrieved users’
pseudo-labels as the label assigned to the u∗ (Algorithm 3 line 5). If most of the
nearest users are candidate fraudsters, u∗ will be treated as a fraudster and the
r∗ will be assigned as a fraud review (Algorithm 3 line 6–11).

4 Experiments

4.1 Data Sets

Following the literature [25,28] about cold-start fraud detection, our experi-
ments are carried on two Yelp data sets including Yelp-hotel and Yelp-restaurant,
which are also commonly used in previous fraud detection researches [16,19,22].
Tables 1 and 2 display the statistics of the data sets.

We split original data sets into two parts for cold-start fraud detection per-
formance evaluation. The first part includes 90% earliest posted reviews. The
users who posted these reviews are treated as existing users. The second part
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Algorithm 3. SUPER-COLD Fraud Review Detection.
Input: An online review tuple < u∗, o∗, r∗ >, the number of nearest users k;
Output: The fraud detection label y∗;
1: Looking up vo∗
2: Generating vr∗ = tω (r∗)
3: Calculating vu∗ = vr∗ − vo∗
4: Calculating v∗

u∗ = Densep(vu∗ )
5: Retrieving U = argmin

U

∑

u∈U

‖vu − v∗
u‖2 with |U | = k

6: Looking up pseudo-label set |Y | of |U |
7: if |{y|y = cf , y ∈ Y }| > |{y|y = cn, y ∈ Y }| then
8: y∗ = Fraud
9: else

10: y∗ = Normal
11: end if
12: return y∗

is the 10% latest posted reviews. From the second part, we pick up the reviews
which wrote by new users at the first time as cold-start reviews. Besides, we use
the whole data sets to evaluate the general fraud detection performance and do
the ablation study.

4.2 Evaluation Metrics

We evaluate their performance by three metrics - precision, recall, and F-score.
While precision evaluates the fraction of relevant review among detected reviews,
recall reflects the fraction of relevant reviews that have been detected over the
total amount of relevant reviews. The precision and recall should be jointly
considered since fraud detection is an imbalance problem [14], i.e. fraud reviews
are much less than normal reviews. Thus, we use F-score, which balances the
precision and recall, as an averaged indicator. Higher F-score indicates a better
performance for a fraud detection method. We report these three metrics per
ground-truth normal and fraud classes to illustrate the performance for different
categories. We further average them to show an overall performance.

We follow the literature [25] to use the results of the Yelp commercial fake
review filter as the ground-truth for performance evaluation. Although its filtered
(fraud reviews) and unfiltered reviews (normal reviews) are likely to be the
closest to real fraud and normal reviews [19], they are not absolutely accurate
[10]. The inaccuracy exists because it is hard for the commercial filer to have
the same psychological state of mind as that of the users of real fraud reviews
who have real businesses to promote or to demote, especially for the cold-start
problem.

4.3 Parameters Settings

In our experiments, we use a hierarchical bi-directional GRU structure with 100
nodes to embed reviews, in which the pre-trained word embedding by GloVe
algorithm [21] is used3. We train the user/item/review embedding by Adam
3 The pre-trained word embedding can be downloaded from: http://nlp.stanford.edu/

data/glove.6B.zip.

http://nlp.stanford.edu/data/glove.6B.zip
http://nlp.stanford.edu/data/glove.6B.zip
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[9]. We set the word embedding dimension as 100 and training batch size as
32. To integrate the entities relation and the social relation, we adopt a 3-layer
fully connected neural network with 100 nodes in each hidden layer. We train
this fully connected neural network 10 epochs by Adam with batch size 32. All
hidden nodes of the neural network used in the experiments use ReLU as their
activation function. We choose k-means as the clustering method in SUPER-
COLD. When inferring the behavior of a new user, we retrieve the 5 closest
existing users of the user according to the distance in the embedding space. For
the parameters of the compared methods, we take their recommended settings.

4.4 Effectiveness on Cold-Start Fraud Detection

Experimental Settings. SUPER-COLD is compared with the state-of-the-art
method JETB [25]. This method handling the cold-start problem by considering
entities (users, items and reviews) relations to represent reviews. When a new
user posts a new review, this review can be represented by the trained network
and classified by the classifier. JETB is also the first work that exploits the
cold-start problem in review fraud detection.

In [25], support vector machine (SVM) is used as the fraud classifier based on
the JETB generated review features. However, SVM is with a time complexity
O(n3), where n is the number of training samples. It is not suitable for the
problem with a large amount of data. In this experiments, the training data
contains 619, 496 and 709, 623 reviews on Yelp-Hotel and Yelp-Restaurant data
sets, respectively. To make JETB practicable, we use a 5-layer fully connected
neural network instead of SVM as the fraud classifier of JETB.

Findings - SUPER-COLD Significantly Outperforming the State-of-
the-art Cold-Start Fraud Detection Method. Table 1 demonstrates the
SUPER-COLD fraud detection performance, compared to JETB on Yelp-Hotel
and Yelp-Restaurant data sets. SUPER-COLD largely improves the fraud detec-
tion performance, i.e. 150% and 18.07% F-score increase on Yelp-Hotel and Yelp-
Restaurant data sets. This averaged performance improvement is mainly con-
tributed by the increased detection performance of fraud category (550% on

Table 1. Cold-start Fraud Detection: Precision (P), Recall (R) and F-score (F) are
reported.

Data info. SUPER-COLD JETB Improvement

Name Category #Existing #Cold-start P R F P R F P R F

Hotel Normal 376,671 60 0.45 0.15 0.23 0.32 0.90 0.47 40.63% −83.33% −51.06%

Fruad 242,825 122 0.69 0.91 0.78 0.57 0.07 0.12 21.05% 1200.00% 550.00%

Overall 619,496 182 0.61 0.66 0.6 0.49 0.34 0.24 24.49% 94.12% 150.00%

Restaurant Normal 412,435 1,654 0.64 0.84 0.73 0.68 0.74 0.71 −5.88% 13.51% 2.32%

Fruad 297,188 873 0.62 0.68 0.65 0.41 0.34 0.37 51.22% 100.00% 75.30%

Overall 709,623 2,527 0.63 0.78 0.70 0.59 0.60 0.59 7.90% 30.39% 18.07%
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Yelp-Hotel and 75.3% on Yelp-Restaurant). As shown in the results, SUPER-
COLD “decreases” the performance of normal reviews detection. It reflects
SUPER-COLD is more tough for fraud reviews. On one hand, this “decreased”
performance of normal reviews detection does not decrease the averaged fraud
detection performance. On the other hand, this “decreased” performance may
be caused by the noising ground-truth labels of the cold-start fraud reviews that
do not be detected by the Yelp commercial filter.

SUPER-COLD uses the represented user behavior instead of review features
for cold-start fraud detection to avoid the camouflage in reviews. Because of
the more reliable information, SUPER-COLD achieves significant performance
improvement in cold-start fraud detection.

4.5 Effectiveness on General Fraud Detection

Experimental Settings. SUPER-COLD is further compared with three state-
of-the-art competitors: Frauder [6], HoloScope [13], and SPEAGLE [23] in detect-
ing general fraud reviews - all the reviews contained in a data set. These three
competitors have different but relevant mechanisms compared with SUPER-
COLD.

– Fixed weighting dense subgraph mining-based method - FRAUDER [6].
FRAUDER is a fraud detection method by dense subgraph mining. To detect
camouflage and hijacked accounts, it adopts a fixed weighting strategy. Dif-
ferent from FRAUDER, the dense subgraph mining method used in SUPER-
COLD is with a dynamic link weighting strategy to further fuse the entities
relation with the social relation.

– Dynamic weighting dense subsgraph mining-based method - HoloScope [13].
HoloScope uses graph topology and temporal spikes to detect fraudsters
groups, and employs a dynamic weighting approach to enable a more accu-
rately fraud detection. However, the dynamic weighting is only conducted
once according to the user temporal spikes. In contrast, SUPER-COLD inter-
actively updates the dynamic weighting along the user behavior embedding
process.

– Metadata and social relation integration-based method - SPEAGLE [23].
SPEAGLE proposes a unified framework to utilize metadata and the social
relation in Markov Random Field for fraud detection. While SPEAGLE needs
fraud labels, SUPER-COLD is a completely unsupervised method which
jointly considers the entities relation and the social relations for user behavior
representation.

While FRAUDER and HoloScope directly predict fraud reviews, SPEAGLE
gives a probability of a review may be fake. To make a fair comparison, we only
report the averaged precision of SPEAGLE but ignore its the recall and F-score.
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Table 2. General Fraud Detection: Precision (P), Recall (R) and F-score (F) are
reported.

Findings - SUPER-COLD Significantly Improving General Fraud
Detection Performance, Especially Recall. The precision, recall, and F-
score of SUPER-COLD, Frauder, HoloScope, and SPEAGLE are reported in
Table 2. Overall, SUPER-COLD significantly outperforms the competitors. It
improves 20% and 12.07% compared with the best-performing method in terms
of F-score on two data sets.

Unlike FRAUDER and HoloScope that ignore the entities relation when they
perform dense subgraph mining based on the social relation, SUPER-COLD
couples these two independent relations to iteratively refine their performance
by the dynamic link weighting. This enables SUPER-COLD to avoid camouflage
by the social relation and effectively detect personalized fraud by the entities
relation. Consequently, SUPER-COLD obtains up to 76.19% recall improvement
compared with the competitors.

4.6 Quality of Behavior Representation

Experimental Settings. We visualize the behavior representation in a two-
dimensional space trough TSNE [15]. To evaluate the representation quality, we
plot pseudo-labels of each user according to the dense subgraph mining-based
fraud detection results. A high-quality behavior representation will enable a sep-
arate location of users with different pseudo-labels. The behavior representation
generated by SUPER-COLD is compared with that generated by JETB.

Findings - SUPER-COLD Generated Behavior Representation Is with
Strong Discriminate Ability. The behavior representations generated by
SUPER-COLD and JETB are visualized in Fig. 3. In the JETB generated rep-
resentation space, there is a large overlap between users with different pseudo-
labels, especially on Yelp-Hotel data set. In contrast, the SUPER-COLD gener-
ated representation is with a stronger discriminative ability that separates users
with pseudo-labels well. These qualitative illustrations are consistent with the
quantitative results in Table 2 that the improvement brought by SUPER-COLD
on Yelp-Hotel data set is much larger than that on Yelp-Restaurant data set.

Based on the JETB generated user behavior representation, SUPER-COLD
moves one step further. It adopts the pseudo-labels generated by the dense
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subgraph mining-based fraud detection to fine-tune the representation learning
from the entities relation. Since the dense subgraph mining-based fraud detection
involves much more effective patterns (e.g. group manipulation) about fraud-
sters, the fine-tuned representation thus has a stronger discriminative ability for
fraud and normal users.

4.7 Ablation Study

Experimental Settings. We further study the contribution from each SUPER-
COLD components: entities relation learning, social relation learning, dynamic
graph link re-weighting, and behavior-based cold-start fraud detection. This con-
tribution can be analyzed from the Tables 1, 2 and Fig. 3. Here, we assume
FRAUDER reflects the performance of social relation learning, HoloScope
demonstrates the performance of dynamic weighting, SPEAGLE stands for the
performance of combining the entities and social relations, and JETB implies
the performance of review-based cold-start fraud detection.

Fig. 3. User behavior embedding of different methods.

Findings - SUPER-COLD Is Contributed by Learning Entities and
Social-Relation and Dynamically Re-weighting Graph Links, Espe-
cially by Social Relation. As shown in Table 1, SUPER-COLD outperforms
FRAUDER at least 12.07% in terms of F-score. Meanwhile, SPAEGLE also
achieves much better performance compared with FRAUDER. This demon-
strates that incorporating entities relation with social-relation gains a large per-
formance improvement, which reflects the contribution of entities relation.

Social relation also makes a significant contribution, which is much greater
than that made by the entities relation. Compared with JETB (with entities
relation but without social relation), SUPER-COLD (with entities and social
relation) gains 150% F-score improvement on Yelp-Hotel data set because of inte-
grating social relation. In contrast, on that data set, the improvement brought
by entities relation is only 20% according to the comparison of SUPER-COLD
(with entities and social relation) and FRAUDER (with social relation but with-
out entities relation) shown in Table 2.

Dynamically re-weighting graph links make the dynamic weighting strat-
egy more reliable. As shown in Table 2, the performance of HoloScope (with
dynamic weighting) is similar to FRAUDER (without dynamic weighting) on
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Yelp-Hotel data set but slightly lower than FRAUDER on Yelp-Restaurant data
set. However, SUPER-COLD (with dynamic re-weighting) consistently outper-
forms FRAUDER on both data set. The reason may lie in the re-weighting
mechanism that iteratively enhances weighting quality.

5 Conclusion

This paper proposes a socially-aware unsupervised user behavior representa-
tion method to tackle the cold-start problem in fraud review detection. The
proposed unsupervised method integrates both entities and social relations for
user behavior representation, and further strengths the discriminative ability
of the behavior representation by a dynamic link re-weighting strategy. It can
effectively detect fraud reviews with the cold-start problem as demonstrated by
comprehensive experiments.
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Abstract. Analyzing human reactions from text is an important step
towards automated modeling of affective content. The variance in human
perceptions and experiences leads to a lack of uniform, well-labeled,
ground-truth datasets, hence, limiting the scope of neural supervised
learning approaches. Recurrent and convolutional networks are pop-
ular for text classification and generation tasks, specifically, where
large datasets are available; but are inefficient when dealing with unla-
beled corpora. We propose a gated sequence-to-sequence, convolutional-
deconvolutional autoencoding (GCNN-DCNN) framework for affect clas-
sification with limited labeled data. We show that compared to a vanilla
CNN-DCNN network, gated networks improve performance for affect
prediction as well as text reconstruction. We present a regression anal-
ysis comparing outputs of traditional learning models with information
captured by hidden variables in the proposed network. Quantitative eval-
uation with joint, pre-trained networks, augmented with psycholinguistic
features, reports highest accuracies for affect prediction, namely frustra-
tion, formality, and politeness in text.

1 Introduction

Affect refers to the experience of a feeling or emotion [22]. The importance of
affect analysis in human communications and interactions has been well dis-
cussed. The study of human affect from text and other published content is
an important topic in language understanding. Word correlation with social and
psychological processes is discussed by [21]. Personality and psycho-demographic
preferences through social media content have also been studied [23]. Human
communication, especially through language, reflects psychological and emo-
tional states. Examples include the use of opinion and emotion words [8]. The
analysis of affect in interpersonal communication such as emails, chats, and
longer articles is necessary for applications including consumer behavior and psy-
chology, understanding audiences and opinions in computational social science,
and more recently, for dialogue systems and conversational agents. Interpersonal
communication illustrates fine-grained affect categories. Frustration is one such
dominant affect that is expressed in human interactions [1].
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We present a computational approach for affect analysis in text;
namely, Frustration, Formality, and Politeness. Human perceptions on
the same content vary across individuals. This introduces a challenge in creating
and gathering labeled datasets for affect modeling tasks. The lack of labeled
data makes it challenging to build supervised models, and in particular, neural
models for the affect prediction tasks. Semi-supervised or unsupervised models
for affect understanding and modeling are also unexplored.

RNNs are a popular choice for neural language modeling. However, they are
unable to model longer sequences and suffer drawbacks such as exposure bias [30].
Convolutional networks (CNN) on the other hand are good at extracting position
invariant features [25] while RNN trump at modeling units in a sequence. Our
work focuses on affect modeling, which is similar to sentiment classification,
where global cues are important. We leverage an encoder-decoder framework
with a CNN as encoder and a deconvolutional (transposed convolutional) neural
network as decoder proposed by [32] as the base framework for learning language
representations for this work.

Gating mechanisms control the information flow in a network and have been
useful for RNNs. In [6], gating was introduced for a convolutional language mod-
eling setup. In this work, we introduce a Gated CNN-DCNN architecture that
combines the encoder-decoder setup with advantages of the gating mechanism.
The lack of labeled data introduces a need for the network to learn from unla-
beled datasets, if available. Semi-supervised methods such as joint training [29]
and self-learning using pre-training, dropouts, and error forgetting provide tech-
niques for this training. We focus on a large email dataset with limited labeled
subset in this work. We introduce shared embeddings and pre-training in the
network to exploit the availability of the large unlabeled corpus in the proposed
network.

This paper introduces a semi-supervised deep neural network for affect pre-
diction in text by enhancing a gated convolutional architecture with pre-training
and data-relevant psycholinguistic features. The proposed approach outperforms
the vanilla neural networks. We show that pre-training leads to improved perfor-
mance with minimal labeled data. Further, gated networks combined with shared
embeddings (joint-training) out perform standard networks. The key contribu-
tions of this paper include:

– A joint semi-supervised framework with pre-training and psycholin-
guistic features for affect prediction tasks. We present the first deep neural
network built on a Gated CNN-DCNN architecture, for computational
modeling of Frustration in text (email) data. The proposed approach reports
highest accuracies for affect dimensions including Formality and Politeness.

– A Gated CNN-DCNN auto-encoder for text reconstruction. Experiments
show significant improvements over state-of-the-art approaches for standard
datasets.

We also present a regression study to better understand the features captured by
the hidden layers of the network. This analysis leads towards an interpretability
study for this work.
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Paper Structure: The prior work is discussed in Sect. 2 along with the ENRON-
FFP dataset. Our proposed approach is described in Sect. 3. This is followed
by the experiments, a discussion section with error analysis, and finally the
conclusion.

2 Related Work

Encoder-decoder models are used to learn language and sentence represen-
tations [17]. RNN and LSTM-based approaches have gained recent popular-
ity, given their high performance for language related tasks [2]. Other sets of
approaches for similar tasks are built on convolutional networks. An extensive
analysis of the advantage of convolutional methods over LSTMs is presented
in [30]. We leverage the convolutional models in this work. RNNs have benefited
from gating mechanisms to reach state-of-the-art performances. LSTMs use input
and forget gates to solve the vanishing gradient problem. Similar gating mecha-
nisms have been proposed for convolutional modeling of images [18] which were
later extended to language modeling [9]. In contrast to the tanh based mechanism
proposed in [18], a gated linear unit (GLU) is proposed in [6] which outperforms
the former as it allows the gradient to propagate through the linear unit without
scaling as shown by the equation, ∇[X⊗σ(X)] = ∇X⊗σ(X)+X⊗σ′(X)∇X.

While gating mechanisms have shown promise in language modeling and
machine translation, they remain unexplored in an auto-encoder setup. Most
CNN-based architectures contain a single convolution layer followed by a pool-
ing layer which captures n-gram features. More recently, a deep architecture
was proposed [32] to capture higher level linguistic features at every step in
this hierarchy. A deconvolutional decoder is used in the model to overcome the
shortcomings of a RNN-based decoder. This has been shown to improve text
classification and summarization as it accounts for distant dependencies in long
sentences. Our approach is inspired from this work. The availability of large
well-labeled data is not assured, more so for tasks where human perception
plays an important role. Authors in [12] introduce a joint learning framework;
the model is trained using labeled and unlabeled data simultaneously, hence
generating pseudo-labels for the unlabeled training instances. Pre-training was
employed in [4] using two unsupervised learning approaches: language modeling
and auto-encoders. They use pre-trained weights to initialize the model for var-
ious classification tasks in NLP and computer vision domain. We leverage both
joint training and pre-training.

Neural Methods for Affect Analysis. The lack of labeled datasets for affect
prediction in text makes it difficult to build supervised neural models for clas-
sification. A CNN-based model was presented in [16] for personality detection
from essays. They work on a dataset with 3000 text essays and predict the
author personality using a combination of the word embeddings and Mairesse
features [15]. We use a similar feature enhancement technique in this work, but
the proposed architecture focuses on leveraging a combination of large unlabeled
and limited labeled data for text classification and reconstruction tasks. Affects
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such as formality and politeness have been explored using standard machine
learning models [5,20], but neural models for these are absent.

In the related domain of sentiment analysis, works based on deep learning are
prevalent [26]. Most of these methods rely on large labeled datasets. Note that
affect dimensions such as frustration are fine-grained and complex as against
sentiment. To the best of our knowledge, this is the first attempt at a semi-
supervised deep learning approach for fine-grained affect prediction, specifically,
for frustration detection in text.

ENRON-FFP Dataset. We leverage the ENRON-FFP dataset1 [11] which
is a subset of 960 emails from the ENRON-email dataset [3] annotated with
formality, politeness, and frustration scores using a crowd-sourced experiment.
The scores are converted to binary labels for this work. After conversion, we have
418 emails tagged as Formal, 389 as Frustrated and 404 as Polite. This dataset is
referred to as ENRON-FFP, and is used as the limited labeled dataset, while
the complete dataset is addressed as ENRON for rest of this paper.

3 Method

We propose a semi-supervised, joint learning framework for affect prediction,
built on a Gated convolutional encoder (GCNN). Figure 1 shows the network
architecture. Our joint network learns to represent the input text sequence
while simultaneously capturing the affect information from the labeled data
(ENRON–FFP). GCNN with a deconvolutional decoder (DCNN) provides the
mechanism for text reconstruction, i.e. to reproduce the text sequences from
latent representations. The learned encoding, augmented with linguistic fea-
tures, acts as the input feature space for a fully connected classification network,
trained to predict affect labels in text. The lack of large labeled dataset and the
availability of the unlabeled ENRON data enables us to pre-train the network
with the unlabeled samples. The proposed network aims at affect classification
and in turn also learns the reconstruction objective.

Architecture Overview. Consider a text input d. Each word wt
d in d is embed-

ded into a k-dimensional representation, et = E[wt
d] where E is a learned matrix.

The embedding layer is passed through a GCNN to create a fixed-length vector
hL . This latent representation, appended with linguistic features is sent to a
fully connected layer with a softmax classifier. Simultaneously, hL is also fed
to a deconvolutional decoder, which attempts to reconstruct d from the latent
vector. Hence, the final loss function:

αaeLae + (1 − αae)Lc (1)

for the model is defined as the combination of the classification error Lc and
the reconstruction error Lae explained in the following subsections. Here, αae

controls the weight for reconstruction loss Lae. The dearth of labeled data in

1 Link to the annotated ENRON-FFP dataset: https://bit.ly/2IAxPab.

https://bit.ly/2IAxPab
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Fig. 1. Architecture diagram: Gated CNN encoder for affect prediction

the ENRON-FFP dataset, motivates unsupervised pre-training using the
ENRON data (αae = 1) and joint-training with the limited labeled sam-
ples (0 < αae < 1).

Gated Convolutional Autoencoder (GCNN-DCNN). A sequence-to-
sequence 3-layer convolutional encoder followed by a 3-layer deconvolutional
decoder (CNN-DCNN) framework for learning latent representations from text
data was introduced in [32]. Their proposed framework outperforms RNN-based
networks for text reconstruction and semi-supervised classification tasks. We
extend their network in our work.

Gated Convolutional Encoder. A CNN with L layers, inspired from [24] is
used to encode the document into a latent representation vector, hL . The first
L − 1 convolutional layers create a feature map C(L−1) which is fed into a fully-
connected layer implemented as a convolutional layer. This final layer produces
the latent representation hL which acts as a fixed-dimensional summarization
of the document [32].

In order to control the information that propagates through the convolutional
layers, we add output gates to the encoder. The gating function follows from
[6], such that the hidden layers h0, h1..., hL are computed as

hl(X) = (X ∗ Wl + bl) ⊗ σ(X ∗ Wg + bg ) (2)

where X is the input and Wl ,Wg , bl , bg are learned parameters for layer l.
σ(X ∗ Wg + bg ) modulates the information transferred by each element in the
output, X ∗Wl +bl to the next layer. Gates are added only to the encoder layers
as we would like the encoded representation to be self-sufficient for decoding.
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Deconvolutional Decoder. We leverage the deconvolutional decoder intro-
duced by [32] for our model. The reconstruction loss is defined as,

Lae =
∑

d∈D

∑

t

log p(ŵt
d = wt

d), (3)

where D is the set of observed sentences. wt
d and ŵt

d correspond to the words in
the input and output sequences respectively.

Language Features. Using features to enrich neural architectures is a popular
technique in NLP tasks [10,27]. Affective language studies focus on analyzing
various features including lexical, syntactic, and psycho-linguistic features to
detect affect dimensions. We augment the latent vector produced by the GCNN
encoder with these features to capture human reactions.

Let h
′
denote the representation vector for linguistic features extracted from

the input data d. h
′

is normalized and concatenated with hL to derive h
′′

=
hL � h

′
. h

′′
is used as an input to a fully connected network, producing a

probability p corresponding to the positive class with the ground-truth label y.
Here, we use the cross entropy loss for binary classification which is defined as:

Lc = −(y log(p) + (1 − y) log(1 − p)) (4)

Joint Learning. The GCNN-DCNN network learns the text sequences while the
linguistic features augment it with affect information. Joint learning introduces a
mechanism to learn shared representations during the network training for both
text reconstruction and affect prediction. We implement joint learning using
simultaneous optimization for both these tasks. The loss function is hence given
by,

L = αaeLae + (1 − αae)Lc. (5)

where αae is a balancing hyperparameter with 0 ≤ αae ≤ 1. Higher the value of
αae, higher is the importance given to the reconstruction loss Lae while training
and vice versa. While training, given a dataset D of word sequences and αae = 1,
we first pre-train the model for text reconstruction. The model, initialized with
the learned weight parameters, is then jointly-trained using the limited labeled
dataset (ENRON–FFP) for both the prediction and the reconstruction task
simultaneously (0 < αae < 1).

4 Experiments

Three kinds of experiments are presented here:

– Evaluation of the gated CNN architecture, i.e. does introduction of gates to
a CNN-DCNN autoencoder improve the network performance? We present
the performance of GCNN-DCNN for text reconstruction (on Hotel Review
dataset and ENRON) and affect prediction (ENRON).
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Table 1. Text reconstruction using hotel reviews dataset [13].

(a) Reconstruction evaluation on Hotel Reviews
and ENRON. GCNN-DCNN-12 having gates

on first two layers gives best results.

Model BLEU4 ROUGE1 ROUGE2
Hotel Reviews [13]
LSTM-LSTM [13] 24.1 57.1 30.2
Hier. LSTM-LSTM [13] 26.7 59.0 33.0
Hier. + att. LSTM-LSTM [13] 28.5 62.4 35.5
CNN-LSTM [32] 18.3 56.6 28.2
CNN-DCNN [32] 89.7 95.5 91.5
GCNN-DCNN-1 92.7 96.7 93.9
GCNN-DCNN-12 92.8 96.8 94.1
GCNN-DCNN-123 92.8 96.8 94.0
ENRON [3]
CNN-DCNN [32] 88.8 91.8 90.3
GCNN-DCNN-1 90.7 94.6 93.5
GCNN-DCNN-12 90.8 94.6 93.6
GCNN-DCNN-123 90.4 94.4 93.2

(b) Text Reconstruction Example.

Ground-truth: on every visit to nyc , the hotel beacon is the place we love
to stay . so conveniently located to central park , lincoln
center and great local restaurants . the rooms are lovely .
beds so comfortable , a great little kitchen and new wizz
bang coffee maker . the staff are so accommodating and
just love walking across the street to the fairway super-
market with every imaginable goodies to eat .

Hier. LSTM every time in new york , lighthouse hotel is our favorite
place to stay . very convenient , central park , lincoln cen-
ter, and great restaurants . the room is wonderful , very
comfortable bed , a kitchenette and a large explosion of
coffee maker . the staff is so inclusive , just across the
street to walk to the supermarket channel love with all
kinds of what to eat .

CNN-DCNN on every visit to nyc , the hotel beacon is the place we
love to stay . so closely located to central park , lincoln
center and great local restaurants . the rooms are lovely .
beds so comfortable , a great little kitchen and new UNK
james coffee maker . the staff turned so accommodat-
ing and just love walking across the street to the fairway
supermarket with every pasta receptions to eat .

GCNN-
DCNN-12

on every visit to nyc , the hotel beacon is the place we love
to stay . so conveniently located to central park , lincoln
center and great local restaurants . the rooms are lovely .
beds so comfortable , a great little kitchen and new UNK
bang coffee maker . the staff are so accommodating and
just love walking across the street to the fairway super-
market with every flower goodies to eat .

– Evaluation of pre-training and joint learning. We evaluate the effect of intro-
ducing semi-supervised learning to overcome the lack of ground truth data.
Extensive experiments for Frustration, Formality, and Politeness prediction
are discussed.

– Evaluating the use of psycholinguistic features. Experiments showing the
change in network performance with introduction of linguistic features are
discussed.

Experimental Setup. Identifying Predictive Psycholinguistic Features.
A Logistic Regression based analysis on the various language features shows
the significant contribution of the psycholinguistic features for affect prediction.
These features include emotion, personality features, and affect-lexica based fea-
tures. The features identified through this analysis are appended to the encoded
vector as discussed in the Method section when augmenting the network with
language features.

Baselines. We use the experimental setup from [32] to define baselines for the
evaluation of the Gated architecture for reconstruction task. Affect prediction is
modeled as a binary classification task. We compare our approach to a baseline
which directly predicts the majority class as the output. We also build standard
ML models such as Decision Tree, Support Vector Machine (SVM), Random
Forest, and Nearest Neighbors using the language features. These models are
trained on 55 linguistic features including lexical, syntactic, and psycholinguis-
tic features. A vanilla CNN model is defined as another baseline. This model
contains a convolutional layer with 5 filters each with 10X5 size, followed by
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a pooling layer with size 5X5 and stride as 5, and lastly a dense layer of size
50 (dropout rate: 0.2). Rectified Linear Unit (ReLU) is used as the activation
throughout with a cross entropy loss function.

Results: Text Reconstruction. Text reconstruction tasks [32] have gained
popularity along with identification of related topics or sentiments, and abstract-
ing (short) summaries from user generated content [7]. First, an investigation on
the performance of the proposed auto-encoder in terms of learning representa-
tions that can preserve text information is discussed. The evaluation criteria
from [32], i.e. BLEU score [19] and ROUGE score [14] are used to measure the
closeness of the reconstructed text (model output) to the input text. BLEU
and ROUGE scores measure the n-gram recall and precision between the model
outputs and the ground-truth references. We use BLEU-4, ROUGE-1, 2 in our
evaluation, in alignment with [32]. Along with CNN-DCNN and GCNN-DCNN
(our model), a comparison with Hierarchical LSTM encoder [13] and LSTM-
LSTM encoder [32] is also reported. The experimental setup by [32] on the Hotel
Reviews dataset [13] is used for the experiment. Latent representation dimension
is set to h = 500 and training is done for 50 epochs. This dataset consists of
348, 544 training samples and 39, 023 testing samples. Results are also reported
for the ENRON email dataset [3]. The dataset is split into 467, 401 training
and 50, 000 test samples. We compare the CNN-DCNN [32] with variants of our
proposed network GCNN-DCNN (h = 900). Training converges in 20 epochs.

Table 1a shows the performance of text reconstruction. Gates significantly
improve results for both datasets across all metrics. For the Hotel Reviews
dataset, the best performing architecture is with gates added on first and second
encoder layers (GCNN-DCNN-12). The addition of a gate to third layer (GCNN-
DCNN-123) yields no further improvement. Similarly for ENRON, adding a gate
to first and second convolutional layers is sufficient to capture the underlying
complexity of data. Table 1b shows the reconstruction outputs for the example
paragraph from Hotel Reviews dataset used by [13]. GCNN-DCNN-12 corrects
most word-level errors made by vanilla CNN-DCNN architecture. An observation
of the training loss profiles show that the gated versions converge faster.

Results: Affect Prediction. The gated architecture is used to predict Formal-
ity, Frustration, and Politeness on the ENRON-FFP dataset. We use a CNN
encoder and a fully connected network (with one hidden-layer of 300 dimensions)
for binary classification. This corresponds to training the architecture in Fig. 1
using only the labeled ENRON-FFP dataset i.e. setting αae as 0. This app-
roach is termed ‘Supervised’(S). Extending this model, we introduce Gates (G,
on first and second convolutional layers), Joint learning (J), Pre-training (P ),
and the augmentation with Language features (L). These approaches are also
compared against standard ML models trained using various language features.

To pre-train the model, we run the reconstruction task on ENRON.
ENRON-FFP is held out during this training. Hyper-parameters are set to
αae = 1, hidden layer representation h = 900, and a batch size of 32. Empirical
experiments show that convergence is achieved when training both gated and
non-gated networks for 15 epochs. For the labeled data ENRON–FFP, the
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batch size is 16 with 5 epochs. For joint learning, αae = 0.5 reports best results.
We use a 300 dimensional pre-trained word vectors trained on a part of Google
News Dataset2 for this task.

Figure 2a shows accuracy across various network configurations. Figure 2b
shows the change in F1 scores of the minority class (i.e. positive affect class)
across different models. Supervised approaches have moderate accuracy but poor
F1 scores, especially for frustration. The models fail to predict the minority
class given the lack of data. For the non-gated version, combining reconstruc-
tion task with affect prediction using Joint learning and Pretraining, we achieve
an improvement of 4.7, 0.5 and 3.3 in accuracy for formality, frustration and
politeness respectively. For the gated version, these numbers are 2.4, 1.7 and 2.6
respectively.

Introducing gates improves performance over simple CNN-DCNN in most
cases. Combining GCNN-DCNN with pre-training, joint learning, and language
features reports best performance for all three dimensions. The best performing
model beats the traditional SVM, the simplified CNN model and other baselines
by a significant margin for all three affects. Using Joint learning with the super-
vised model performs poorly, but improves when combined with pre-training.
This is because the joint learning objective is difficult to optimize as against the
affect prediction objective, it demands for further training or more data. Pre-
training the model with unlabeled data, helps address this issue and generalizes
better.

Sentiment Analysis. Table 2 shows the performance of our model on Yelp
Review Polarity dataset [31] for the Sentiment analysis task. We follow the
setup defined by [32]. To establish the utility of gates in a semi-supervised setup
(large unlabeled, small labeled dataset), the dataset is split into two partitions:
one simulating the unlabeled corpus and the other corresponding to the limited
labeled dataset. Experiments with different amounts of labeled data (1%, 10%
and 100%), with 100% unlabeled data used for pre-training, are shown. As seen
in the table, the proposed model GCNN-DCNN-12 outperforms the baseline in
the semi-supervised setup for Sentiment classification: 1% and 10%, hence sup-
porting the hypothesis that introducing gates creates a robust model when there
is limited labeled data.

Table 2. Percentage accuracy for Sentiment analysis on the Yelp review dataset.
Results show that the proposed model GCNN-DCNN-12 out performs the baseline

Proportion 1% 10% 100%

CNN-DCNN [32] 88.2 93.3 96.0

GCNN-DCNN-12 88.5 93.5 95.9

2 https://code.google.com/archive/p/word2vec/.

https://code.google.com/archive/p/word2vec/
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Fig. 2. Performance on affect prediction. S: Supervised learning using CNN encoder
trained on labeled data only, J: Joint learning with reconstruction task using DCNN
decoder, P: Pre-training model for reconstruction, G: GCNN encoder with gates on
first and second encoder layer (corresponding to GCNN-DCNN-12 in Table 1a), L:
Linguistic features. αae = 0.5.

Fig. 3. Performance of SGJP (best performing) using linguistic features for Affect pre-
diction. The features are based on Lexical, Syntactic, Derived, and Psycholinguistic
sets.

5 Discussion

An analysis on the contribution of the linguistic features and how it reflects in
the hidden parameters is presented here.

Error Analysis: Model Predictions. The contribution of gates in the archi-
tecture is analyzed by creating a set of emails that are correctly classified by
the Gated architecture but are mis-classified by the non-gated counterpart. Let
that set be Gc. For the emails in Gc, we investigate the distribution of various
lexical, syntactic, psycholinguistic, and derived features. The average feature val-
ues for the set Gc are observed to be higher as compared to averages computed
across all the emails in ENRON-FFP for various structural features such as
Difficult Words, NumChars, TextDensity, and NumSentences, whereas lower for
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FleschReadingEase. These structural differences are consistent across Formality,
Frustration, and Politeness (p-value< 0.01 using Student’s T-test for Formal-
ity), showing that the addition of gates to the architecture allows the model to
correctly classify these structurally more complex inputs, where the non-gated
model fails.

Table 3. Dependency of language features against the ENRON-FFP labels and hidden
features. “***” corresponds to p < 0.001, “**” for p < 0.01, and “*” for p < 0.05.

Features p f p fr p p c f c fr c p g f g fr g p

Derived features

Contractions *** *

NER PERSON * *** *** ***

NER ORG *** *** *** *** *** ***

PersonLength *** *** *** *** *** ***

FleschReadingEase *** *** *** *** *** * * *

Lexical & syntactic features

AvgWordLength *** *** * *** *** *** * * *

NumWords *** *** *** *** *** *** *** *** ***

NumSyllables *** *** *** *** *** *** *** ***

NonAlphaChars * * *** *** *** *** *

PunctuationChars * *** ***

POS N *** *** *** ***

POS A *** *** ***

POS V *** *** *** *** * *

Exclamation *** ***

LowerCase *** *** ***

Psycho-linguistic features

EmolexIntensity sad *** * *** *** *** *** *** ***

EmolexIntensity anger *** * *** *** * *** *

EmolexIntensity joy *** * *** * *** *** * ***

Perma NEG M *** *** *** * ***

Perma NEG R *** *** *** *

Perma NEG P *** *** *** ***

Sentiment *** *** ***

EmolexIntensity fear *** *** *

Emolex surprise *

Emolex anticipation *** *** * *

ANEW dominance *** * ***

Emolex fear *** *** ***
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Figure 3 reports experiments for various combinations of the lan-
guage features. The experiments are reported on the best performing
model (S+G+J+P) from Fig. 2. Augmenting the network with linguistic fea-
tures improves performance in almost all cases. In case of formality and frus-
tration, the best performance is reported with all features, while for politeness,
inclusion of lexical, syntactic, and psycholinguistic features outperforms other
combinations.

Analyzing Hidden Representations. In order to quantify the contribu-
tion of language features, we analyze their linear dependency using a regres-
sion analysis on the hidden representation created by the auto-encoder models.
We follow the experimental setup presented by [28] for this analysis. Table 3
shows the significance of these dependencies (i.e. p-value of regression) over the
ENRON–FFP dataset for a selected set of features. c f (formality), c fr (frus-
tration), and c p (politeness) correspond to the CNN-DCNN architecture i.e.
no gates, and the extreme right columns (g f, g fr, g p) correspond to the pro-
posed GCNN-DCNN-12 architecture. Dependency of language features against
the ENRON-FFP labels is also reported (p f, p fr, and p p). The p-values
indicate that the learned latent vector representation captures most syntactic
and some lexical (e.g. Average Word Length, NumWords, NumNonAlphaChar-
acters) features. Part-of-Speech (POS) features are not captured by either the
gated or the non-gated model. On the other hand, Named entity related features
such as NER PERSON or NER ORGANIZATION are well represented by the
CNN models, especially the gated version, but are less significant for the affect-
prediction task. Note that the psycholinguistic features are not well represented
by the deep learning models. This indicates that the information captured by
hand-engineered psycholinguistic features indeed complements the signals in the
hidden features.

Further, language features (e.g. POS *, EmolexIntensity *, PERMA NEG *
and Sentiment) are in general more dependent on the latent-representation of
the non-gated model than its gated counterpart. This could partly explain as
to why augmenting language features substantially improves accuracy for the
Gated variant (SGJP in Fig. 2a) but not for the non-Gated counterpart (SJP
in Fig. 2a).

6 Conclusion

We propose the first neural model, a Gated CNN autoencoder with joint learning
for affect prediction: predicting frustration, formality, and politeness in email
data. The proposed GCNN-DCNN outperforms the state-of-the-art for text
reconstruction on the Hotel review dataset as well as the ENRON email data.
Introduction of joint learning, with pre-training and data-relevant language fea-
tures improves the performance of the model for affect prediction. We show that
the introduction of gates leads to an improved performance. Our evaluation
shows that subjective tasks such as affect prediction and computational models
for frustration can be addressed using semi-supervised neural approaches. The
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analysis in the Discussion section supports the use of the language features. We
plan to extend this work towards non-parallel text generation.
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Abstract. Recently, a growing number of customers tend to complain about the
services of different enterprises on the Internet to express their dissatisfaction.
The correct classification of complaint texts is fairly important for enterprises to
improve the efficiency of transaction processing. However, the existing literature
lacks research on complaint texts. Most previous approaches of text classifica-
tion fail to take advantage of the information of specific characters and negative
emotions in complaint texts. Besides, some grammatical and semantic errors
caused by violent mood swings of customers are another challenge. To address
the problems, a novel model based on hybrid-attention GRU neural network
(HATT-GRU) is proposed for complaint classification. The model constructs
text vectors at character level, and it is able to extract sentiment features in
complaint texts. Then a hybrid-attention mechanism is proposed to learn the
importance of each character and sentiment feature, so that the model can focus
on the features that contribute more to text classification. Finally, experiments
are conducted on two complaint datasets from different industries. Experiments
show that our model can achieve state-of-the-art results on both Chinese and
English datasets compared to several text classification baselines.

Keywords: Text classification � Recurrent neural network � Attention

1 Introduction

Nowadays, there is a large volume of users complaining about services in various
industries on the Internet to express dissatisfaction, which consequently generates lots
of complaint texts. The classification of complaint texts is helpful for companies to deal
with relevant issues promptly and efficiently according to users’ feedback, thus having
great commercial value.

Text classification is a classic topic in natural language processing (NLP). Recently,
deep learning methods have demonstrated powerful ability for text classification.
Convolutional neural network (CNN) and recurrent neural network (RNN) are the two
most commonly used network structures. CNN uses convolution kernels to extract
local, position-independent features [1], while RNN is to model the whole sequence
and capture long-term dependencies [2]. Two typical variants of RNN are LSTM [3]
and GRU [4].
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Although various texts are well studied such as reviews [5] and questions [6],
analysis on complaint texts is rare in the current literature. For the existing text clas-
sification methods, there are two difficulties in classifying complaint texts:

– Complaint texts usually contain obvious negative emotions, as few users remain
happy when making complaints. Effective use of negative sentiment features can
have a positive impact on classification. However, As opposed to sentiment clas-
sification, the category of each complaint text does not simply rely on sentiment
polarities. Therefore, it is necessary to design an appropriate feature fusion strategy.

– Users are more likely to generate spelling and grammatical errors in complaint texts
due to mood fluctuations, and it leads to poor segmentation results in Chinese.
Besides, people with highly varying backgrounds express their feelings in distinct
ways, which also brings more difficulties to unified modeling.

In response to these challenges, we proposes a novel hybrid-attention GRU neural
network (HATT-GRU) for complaint classification. The model constructs text vectors
based on character level, which works without any knowledge on the syntactic or
semantic structures of a language [7]. Meanwhile, negative sentiment features are
extracted to fully utilize the characteristics of complaint texts. Besides, our model
assigns attention scores for salient character and sentiment features and aggregates those
into a document representation. We summarize our main contributions as follows:

– We propose a method to capture deeper information in complaint texts by extracting
both character features and negative sentiment features, and integrate them to
improve text representation;

– We introduce a novel neural network model which combines hybrid attention of
features, so that the network can focus on features that contribute more to complaint
classification;

– The experimental results on two complaint datasets in different languages show that
our model outperforms several state-of-the-art baselines. HATT-GRU has been
proved to better solve the problem of complaint classification.

2 Related Work

Deep learning was initially applied in computer vision [8] and image analysis [9], and
has since spread to NLP tasks. Sentiment analysis is a widely studied one, and senti-
ment classification on datasets like product reviews and twitter is also common in the
existing literature. Some prior studies have incorporated sentiment features into clas-
sification models [10, 11]. However, unlike review texts, almost all complaint texts
merely have negative emotions, so the classification of complaint texts does not depend
on sentiment orientation. Besides, instead of paying attention to the position infor-
mation or target information of sentiment features, complaint classification attaches
more importance to the different contribution of each sentiment feature.

In recent years, nearly most of deep learning methods are based on CNN or RNN.
Kim et al. [12] first utilized convolutional neural network for sentence-level classifi-
cation task. Xu et al. [13] presented cached long short-term memory neural networks for
document-level sentiment classification. Yang et al. [14] proposed a hierarchical
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attention network to better capture the important information of documents. Zhang et al.
[7] introduced character-level convolutional networks for text classification, which can
be directly applied to texts without the need for semantic knowledge of specific lan-
guages. Conneau et al. [15] proposed very deep convolutional networks using up to 29
convolutional layers. Some researchers have also attempted to combine the advantages
of CNN and RNN. Lai et al. [16] introduced RCNN, which applied RNN to learn word
representation and CNN to get final representation. Zhou et al. [17] utilized CNN to
model phrases and finally fed them to LSTM to obtain the sentence representation.

In terms of applications, the work of Rios et al. [18] showed the great potential of
CNN in the classification of biomedical texts. Seo et al. [19] proved the good effect of
character-level convolutional networks for offensive sentence classification. Shirai et al.
[20] used the naive bi-directional recurrent neural network to classify Thai complaint
texts, but without any adaptive changes to the complaint classification problem.

In fact, research on analyzing complaint texts is still rare in current works. Com-
plaint texts have great commercial value, and companies all need to continuously
improve their services from users’ feedback. Considering the characteristics of com-
plaint texts and the shortcomings of existing methods in dealing with complaint clas-
sification, we propose a complaint classification model based on hybrid-attention GRU
neural network. Experiments on two complaint datasets demonstrate the superior per-
formance of our model over compared baselines on both Chinese and English datasets.

3 Our Approach

In this section, we introduce our HATT-GRU model. We first explain the character
embedding and sentiment embedding strategy, followed by the introduction of hybrid-
attention mechanism. At last, we present the overall network structure of our model.

3.1 Character Embedding

Clients from highly varying backgrounds in general use different words and syntax, and
semantic and grammatical errors caused by negative emotions are also common in
complaint texts. Traditional methods are prone to problems such as sparse features and
unclear semantics, which brings difficulties to text modeling. Therefore, we generate
text representation at character level to avoid grammar restrictions, which directly
models texts of different languages without additional semantic or syntactic knowledge.

The character embedding module is used to convert the raw characters of a text into
encoded character vectors. First, an alphabet of size n is built for the input language.
Specifically, an alphabet with 70 characters is constructed for English dataset, which
covers all English letters, numbers and punctuation marks that may appear in English
texts. For Chinese datasets, the alphabet is created by selecting the top 5000 characters
with the highest frequency. Then, each character in the alphabet is mapped into a multi-
dimensional and continuous vector, thus obtaining a character vector matrixE 2 Rm�|V|,
wherem is the vector dimension of each character, and |V| is the size of the alphabet. That
means each character is converted to an m-dimensional vector ci 2 Rm, and this
encoding is done by Xavier Initialization [21].
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Thus, by searching for a character vector corresponding to each character, the
original input of the characters in a text is transformed to a sequence of such m-sized
vectors with fixed length l:

tj ¼ cj1 � cj2 � cj3 � . . .� cjl ð1Þ

where cjk is the vector of the k-th character in the j-th text. Characters that exceed
length l are ignored, and for character sequences with length less than l, all-zero vectors
are used for padding. In addition, any characters not in the alphabet are also encoded as
all-zero vectors. Hence, due to the character embedding method, the complaint clas-
sification model we proposed can be directly applied to multiple languages.

3.2 Sentiment Embedding

Complaint texts differ from other texts in many aspects, especially in being emotional.
Customers tend to have strong negative emotions while expressing their complaints,
and their judgement on relevant personnel will also be subjective. These emotions and
feelings can reflect the category information to some extent. However, the information
contained in specific sentiment words will be ignored because of the character
embedding mechanism. In order to make up for this deficiency and better learn the
features of complaint texts, we introduce a sentiment embedding method.

We use Hownet sentiment lexicons, including minus feeling lexicon and minus
sentiment lexicon, to identify all negative sentiment words and phrases in Chinese and
English respectively. Some of the words in the Hownet sentiment lexicons are not
commonly used in complaint texts and, therefore, cannot represent the sentiment
characteristics of complaint texts. Hence, top 300 negative sentiment words are selected
according to the word frequency to construct the sentiment dictionary. Similar to
character embedding, each sentiment word is mapped to an m-dimensional vector
si 2 Rm. Since sentiment distribution takes precedence over sentiment polarities in
complaint classification, so sentiment features of a complaint text are incorporated by
forming a sequence of sentiment feature vectors of length p for the input text, according
to the occurrence frequency of the sentiment words in the text:

yj ¼ sj1 � sj2 � sj3 � . . .� sjp ð2Þ

where sjk is the vector of sentiment feature with the k-th frequency in the j-th text.
Equally, sentiment features that exceed length p are ignored, and sequences shorter
than p are filled with all-zero vectors.

Different from sentiment classification, sentiment features do not play a key role in
complaint classification. Therefore, when constructing the input matrix, we make sure
that p < l to prevent the influence of sentiment features from being too large. The
weight coefficient is used for adjustment as well:

xj ¼ ða� tjÞ � ðb� yjÞ ð3Þ

where a and b are weight coefficients, which are 1.2 and 0.8 respectively in the
experiment.
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3.3 Attention Mechanism

Not all features contribute equally to the representation of text meaning. Therefore, we
utilize attention mechanism to learn a weight matrix for each feature, and assign more
attention to the more informative ones. The attention scores of character features and
sentiment features are separately calculated and aggregated to form a text vector.
Specifically, the characters are fed into a bi-directional GRU:

~h
c
i ; h
 c

i ¼ bi GRUðciÞ; i 2 ½1; l� ð4Þ

where~h
c
i and h

 c

i respectively represent the forward and backward hidden states of the i-
th input character vector. The representation of the hidden state is then calculated by a
one-layer MLP:

eci ¼ tanhðWc½~hci ; h
 c

i � þ bcÞ; i 2 ½1; l� ð5Þ

Next, calculate the similarity of eci and a character-level context vector uc to
evaluate the importance of the character, and get the character attention distribution
through a softmax function:

aci ¼
expðecTi ucÞ

Pl
k¼1 expðecTk ucÞ

ð6Þ

where Wc, bc and uc are learnable parameters. Based on the attention scores, the final
representation of character features is calculated by a weight pooling:

vc ¼
Xl

i¼1 ½~h
c
i ; h
 c

i �aci ð7Þ

The representation of sentiment features is formed likewise:

esi ¼ tanhðWs½~hsi ; h
 s

i � þ bsÞ; i 2 ½1; p� ð8Þ

asi ¼
expðesTi usÞPp
k¼1 expðesTk usÞ ð9Þ

vs ¼
Xp

i¼1 ½~h
s
i ; h
 s

i �asi ð10Þ

Finally, a text vector containing all the information is obtained by concatenating the
character vector and the sentiment vector:

v ¼ vc � vs ð11Þ
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Each feature provides different information for the final prediction. Through the
attention mechanism, the model can focus on the most salient features, thus further
improving the text representation.

3.4 Network Structure

In this section, we introduce the network structure of our hybrid-attention GRU neural
network. The overall framework is in Fig. 1.

Feature Extraction and Embedding. We model the characteristics of complaint texts
from two aspects, namely character sequence features and sentiment features. The two
kind of features are converted into multi-dimensional and continuous vectors, which are
concatenated and serve as input to the bi-directional GRU neural network.

GRU Neural Network. In contrast to other deep learning networks, bi-directional
recurrent neural networks can fully capture sequential information with varying lengths
and learn the associations between features. Among them, GRU achieves promising
results in multiple tasks with less computation and performance decay [2], which is
selected as the basic recurrent unit in the proposed model. Besides, we use two hidden
layers to learn deeper information and output the hidden state step by step.

Fig. 1. The overall framework of HATT-GRU
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Attention. The attention module assigns attention scores for character representation
and sentiment representation, and aggregates all the embedding vectors to get the final
text representation. The attention mechanism allows the model to focus on the most
salient features.

Prediction. The prediction module completes the prediction task according to the final
text representation. It consists of a fully connected layer and a softmax layer. The fully
connected layer maps the representation vector into the category space of the sample,
followed by a dropout [22] layer to avoid overfitting. The activation function used for
non-linearity is rectified linear units (ReLUs). Ultimately, the classification result is
determined through the softmax layer.

We uses Adam algorithm [23] to perform optimization through backpropagation,
and cross entropy is selected as the loss function:

loss ¼ �
XM

c¼1 qoclogðpocÞ ð12Þ

where M is the number of categories, qoc is a binary indicator with a value of 0 or 1,
indicating whether category c is the correct label for text o. And poc is the predicted
probability that text o belongs to category c. The implementation is done using ten-
sorflow. The hyperparameter settings of HATT-GRU are shown in Table 1.

4 Experiments

4.1 Evaluation

For the whole dataset, we choose accuracy to evaluate the performance of each model.
And for each class, precision, recall and F1-score are used. F1-score is the harmonic
average of the precision rate and the recall rate. It takes into account the precision and
recall rate of the model. The calculation formula is:

F1� score ¼ 2� Precision� Recall
PrecisionþRecall

ð13Þ

Table 1. Hyperparameters of our model

Hyperparameter Values

Embedding dimension 64
Number of hidden layers 2
Hidden layer dimension 128
Learning rate 1e−3
Dropout rate 0.5
Mini-batch size 32
Epoch size 10
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4.2 Datasets

Our model is evaluated on two complaint datasets from different industries, one in
Chinese and the other in English. The details of each dataset are described as below:

– Express Complaint Dataset. This is a collection of consumer complaints about
express delivery issues and is a Chinese dataset. It consists of 8 categories and
73,458 Chinese samples, but some categories contain only a few hundred texts.
Hence, we select the top 3 classes with the largest number of samples for experi-
ments, including package loss, package delay and delivery service.

– Finance Complaint Dataset. This dataset is a collection of consumer complaints
about financial issues, and is an English dataset. The complete dataset has 11 classes
and 555,958 samples, of which only 66,806 have complaint narratives. For the
experiment, similarly, 3 largest classes are chosen, namely credit reporting, debt
collection and mortgage. This dataset can be obtained from Kaggle1.

For the two datasets, we both use 30,000 samples for training, 3,000 samples for
validation and 6,000 samples for testing.

4.3 Comparison Models

A series of experiments has been conducted to prove the good performance of our
model. Brief descriptions of the classification models are listed as follows:

– Decision Tree. A popular machine learning classification algorithm and we use TF-
IDF method to generate text vectors.

– SVM. TF-IDF is also used as textual features for classification.
– Bi-LSTM. A basic bi-directional LSTM network [3] with one hidden layer;
– Bi-GRU. A basic bi-directional GRU network with one hidden layer based on [4];
– Word-level CNN. A convolutional neural network [12] is used to extract features

based on embedding word vectors.
– Char-level CNN. A character-level convolutional neural network proposed in [7].

Similarly, we use Pinyin to replace Chinese characters in complaint texts as well.
– RCNN. The recurrent convolutional neural network proposed in [16], which uses

bi-directional LSTM to capture context information and then introduces a pooling
layer to extract key features.

– HAN. Based on the hierarchical attention network proposed in [13]. It adopts the bi-
directional GRU model and applies the attention mechanism to the word level and
sentence level respectively.

– FastText. An effective and fast method for generating word vectors for classifi-
cation in [24]. It has 10 hidden units and is evaluated with bigram.

– CATT-GRU. We introduce a comparative experiment based on character-attention
GRU neural network to verify the effect of sentiment features.

– HATT-GRU. The hybrid-attention GRU neural network proposed in this paper.

1 https://www.kaggle.com/dushyantv/consumer_complaints.
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The above models are all based on words in addition to Char-level CNN, CATT-
RNN and HATT-GRU. For Chinese datasets, we use jieba for word segmentation.

4.4 Results and Discussion

We test the performance of each classification models on two complaint datasets.
Table 2 shows the overall classification accuracy of different models on each dataset.

As shown in Table 2, HATT-GRU model has improved the accuracy of complaint
classification greatly on both express complaint dataset and finance complaint dataset.
The results demonstrate the superiority of the proposed architecture.

Two traditional methods, decision tree and support vector machine, do not work
well on the two datasets, especially on the Chinese complaint dataset. Complaint data is
a kind of user-generated data which varies in the degree of how users of different
backgrounds organize their narratives. It can be concluded that deep learning methods
generally perform better on extracting the important features than traditional ones.

Remarkably, HATT-GRU outperforms HAN and CATT-GRU. It also confirms the
effectiveness of character embedding and integrating sentiment features to the network.
And HATT-GRU is superior to models without attention, which shows that hybrid
attention mechanism can indeed help to improve complaint classification results.

In addition, the results of English dataset is better than that of Chinese dataset. One
the one hand, there’s no need of word segmentation for English texts, which avoids the
negative impact of poor segmentation results. On the other hand, Chinese is more
diverse in terms of colloquial expression, and this adds to difficulty of feature
extraction. However, our HATT-GRU has still achieved the best results in both Chi-
nese and English complaint datasets.

To further understand the results, we present details of precision, recall and F1-
score on each class of the two complaint datasets. Tables 3 and 4 illustrate that our

Table 2. The total accuracy rate of different models on each dataset

Model Accuracy
Express Finance

Decision tree 71.10 80.96
SVM 71.38 86.43
Bi-LSTM 84.23 87.12
Bi-GRU 84.65 87.58
Word-level CNN 82.69 87.85
Char-level CNN 85.85 89.28
RCNN 85.78 88.78
HAN 86.92 90.90
FastText 85.17 88.93
CATT-GRU 86.50 91.18
HATT-GRU 87.68 91.80
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model achieves competitive results on every class. For both Chinese and English
datasets, our HATT-GRU works well in classifying complaint texts.

To visualize the effectiveness of the proposed model, we show the relative errors of
F1-score with regard to each comparison model in Fig. 2. Each column is computed by
taking the difference of F1-score between the comparison model and our HATT-GRU.
F1-score is an indicator which comprehensively takes into account precision and recall.
It can be concluded that our model reaches the best result in every class of both Chinese
and English complaint dataset.

Table 3. Details for each class in the Chinese dataset compared with other models. “P” stands
for precision, “R” stands for recall and “F” stands for F1-Score.

Model Package loss Package delay Delivery service
P R F P R F P R F

Decision tree 77.6 75.9 76.7 76.2 70.9 73.4 60.9 66.5 63.5
SVM 78.5 77.0 77.7 71.9 70.4 71.1 64.2 66.7 65.4
Bi-LSTM 87.7 91.2 89.4 84.0 77.3 80.5 80.9 83.1 82.0
Bi-GRU 87.2 91.6 89.3 82.4 79.9 81.1 83.0 81.3 82.1
Word-level CNN 90.0 88.4 89.2 77.8 80.2 79.0 80.5 78.3 79.4
Char-level CNN 90.5 90.7 90.6 84.8 80.6 82.7 82.4 86.2 84.2
RCNN 90.0 91.0 90.5 85.6 79.1 82.2 82.0 87.2 84.6
HAN 88.5 93.1 90.8 90.6 79.2 84.5 82.3 88.3 85.2
FastText 88.0 91.9 89.9 84.9 80.8 82.8 83.8 81.7 82.7
CATT-GRU 90.1 91.5 90.8 86.7 80.4 83.4 82.8 87.5 85.1
HATT-GRU 90.3 92.5 91.4 90.6 82.0 86.1 82.7 88.5 85.5

Table 4. Details for each class in the English dataset compared with other models. “P” stands
for precision, “R” stands for recall and “F” stands for F1-Score.

Model Credit reporting Debt collection Mortgage
P R F P R F P R F

Decision tree 76.5 79.5 77.9 78.6 76.6 77.5 88.0 86.7 87.3
SVM 79.9 88.2 84.0 87.6 80.2 83.7 92.7 90.8 91.7
Bi-LSTM 85.9 85.6 85.8 84.4 84.7 84.6 90.9 90.9 90.9
Bi-GRU 90.5 82.0 86.0 82.6 88.2 85.8 90.2 92.1 91.5
Word-level CNN 87.1 85.6 86.4 85.9 85.5 85.7 90.4 92.3 91.4
Char-level CNN 89.8 86.2 88.0 85.4 89.1 87.2 92.8 92.5 92.7
RCNN 88.9 86.5 87.7 87.4 86.6 87.0 90.0 93.2 91.6
HAN 89.6 90.0 89.8 90.3 87.3 88.8 92.6 95.3 93.9
FastText 88.6 87.7 88.2 87.6 85.9 86.7 90.5 93.1 91.8
CATT-GRU 90.7 89.3 90.0 89.2 89.3 89.3 93.4 94.9 94.2
HATT-GRU 89.0 92.6 90.7 92.3 87.1 89.7 94.3 95.7 95.0
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5 Conclusion

In this paper, we propose a hybrid-attention GRU neural network for complaint clas-
sification. We generate representation vectors at character level, thus avoiding the
negative impact of semantic and syntactic errors. Meanwhile, negative sentiment fea-
tures are integrated to further improve text representation. Hybrid attention is then
incorporated into a bi-directional GRU network to effectively extract the most salient
features in complaint texts. Experiments show that our model outperforms several
state-of-the-art baselines on both Chinese and English complaint datasets.

For future work, we want to explore other more powerful network structure to
encode complaint texts, and extend our model to a wider range of texts in different
fields.

Acknowledgments. This work is supported by the National Key R&D Program of China
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Abstract. Currently, fully stationless bike sharing systems, such as
Mobike and Ofo are becoming increasingly popular in both China and
some big cities in the world. Different from traditional bike sharing sys-
tems that have to build a set of bike stations at different locations of a
city and each station is associated with a fixed number of bike docks,
there are no stations in stationless bike sharing systems. Thus users can
flexibly check-out/return the bikes at arbitrary locations. Such a brand
new bike-sharing mode better meets people’s short travel demand, but
also poses new challenges for performing effective system management
due to the extremely unbalanced bike usage demand in different areas
and time intervals. Therefore, it is crucial to accurately predict the future
bike traffic for helping the service provider rebalance the bikes timely. In
this paper, we propose a Fine-Grained Spatial-Temporal based regres-
sion model named FGST to predict the future bike traffic in a station-
less bike sharing system. We motivate the method via discovering the
spatial-temporal correlation and the localized conservative rules of the
bike check-out and check-in patterns. Our model also makes use of exter-
nal factors like Point-Of-Interest(POI) informations to improve the pre-
diction. Extensive experiments on a large Mobike trip dataset demon-
strate that our approach outperforms baseline methods by a significant
margin.

Keywords: Traffic prediction · Spatial-temporal data · Sharing-bikes

1 Introduction

Bike sharing systems provide an eco-friendly solution for the last-mile problem,
which refers to the gap from the transportation hub to the final destination [13].
Traditional bike sharing systems, such as Citi Bike in New York and Ubike in

c© Springer Nature Switzerland AG 2019
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Taipei, require users to return the bikes to vacant docks of the bike stations
after riding. Currently, stationless bike sharing systems such as Mobike and Ofo
are becoming increasingly popular in China as well as some big cities in the
world, enables users to check out and return the bikes at arbitrary locations,
and thus better meets people’s travel demand. But on the other side of the coin,
it also poses new challenges for efficient system management. As there are no
bike stations, the number of idle bikes at hot spots like subway stations can
increase sharply, causing a severely unbalanced bike distribution problem. This
will lead to negative effects on system resource usage and user experience. Thus,
it is crucially important to predict the future bike traffic flow accurately for
helping the service provider make a reasonable system management strategy in
advance.

Existing works on traffic prediction can be broadly divided into three classes:
time-series learning based methods, statistical learning based methods, and deep
learning based methods. Vogel et al. [11,12] and Yoon et al. [21] adopted time
series analysis methods to predict the bike demand and the available bike sup-
ply for each bike station. Li et al. [3] and Liu et al. [7] used statistical learning
methods and considered the external factors like weather to predict the future
check-in/check-out numbers in each bike station. Recently, there are also some
works using deep models for urban traffic prediction. For example, Ma et al.
[8], Zhang et al. [22,23] and Yao et al. [19,20] considered city-wide traffic as
heat-map images, where the value of each pixel represented the traffic volume
in the corresponding region. However, the assumption of CNN and RNN may
not perfectly model the complex spatial-temporal correlations in traffic predic-
tion problems. In addition, different from previous traffic prediction tasks which
mainly focus on predicting one single traffic volume value, in our study, the bike
check-outs and check-ins are highly correlated and follow the conservative rules.
This also makes the previous deep models challenging to be applied.

Compared with traditional bike sharing systems, forecasting the future bike
traffic in fully station-less bike sharing systems faces the following two major
challenges. First, the destination of a bike trip is more uncertain. In station-
based bike sharing systems, users must return their bikes to a bike station with
vacant docks. While in station-less bike sharing systems, a user can return the
bike just at or very close to the final destination which is more flexible and
reflects the real travel demand of the user. Second, the spatial correlation of the
bike traffic in station-less bike sharing systems is more complex and harder to
capture. For station-based bikes, the spatial correlations among neighbor bike
stations are usually high [3]. However, this may not be the case in the station-less
bike sharing systems. The bike traffic patterns of two neighbor regions may be
quite different due to their different functions reflected by their different Point-
Of-Interest(POI) distributions.

To address the challenges mentioned above, in this paper, we propose a Fine-
Grained Spatial-Temporal based regression model named FGST for traffic pre-
diction in stationless bike sharing systems. First, we build up the basic fine-
grained regression model. For each region and each time slot, the regression
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model aims to learn two projection vectors to project the feature vector to the
corresponding check-in/check-out bike numbers, respectively. Based on the basic
model, we further propose to incorporate the spatial-temporal correlations into
the model by solving a joint optimization problem. The idea is that, for the
regions in some time slots which present similar check-in/check-out patterns,
their corresponding projection vectors should be similar. We also propose to
cluster the regions into localized groups based on the traffic flows among them.
By constraining the check-in bike number should be close to the check-out bike
number in each cluster, the conservation rules are also integrated into our model.
Finally, we propose a regression model to infer the projection vector of the next
time slot, which is used to predict the future traffic.1 Our main contributions
can be summarized as follows:

– To the best of our knowledge, this is the first work that studies the traffic
prediction problem in fully station-less bike sharing systems, which is a more
challenging problem compared with it in traditional bike sharing systems.

– We propose a fine-grained approach to extract and utilize the spatial-temporal
correlations and the conservation rules while considering the region-specific
features.

– The proposed model is evaluated on a large public dataset, and the results
demonstrate its superior performance compared with baseline models.

2 Problem Definition and Framework

2.1 Problem Definition

In this paper, we use calligraphic uppercase characters for high-order tensors (e.g.
A), bold uppercase characters for matrices (e.g. A), bold lowercase characters
for vectors (e.g. a), and lowercase characters for scalars (e.g. a). The i-th row of
matrix A is represented as a i,:, the j-th column of A as a :,j , and the (i, j)-th
entry of A as ai,j .

Definition 1 Regions. We divide a city into a set of equal sized grid regions
as R = {r1, r2, . . . , rN} based on the latitude and longitude of the regions, where
N denotes the total number of the regions.

Definition 2 Feature Tensor. Given regions R and time slots {t1, ...tK}, we
use a 3-dimensional tensor X ∈ R

N×K×M to denote the features of all the regions
in all the time slots. M denotes the dimension of the feature vector. xn,k denotes
the feature vector of region rn in time slot tk. xn,: denotes all the feature vectors
of region rn and x :,k denotes all the feature vectors in time slot tk. Detailed
information is given in Sect. 4.1.

1 The data and code of this work is publicly available at https://github.com/
coderhaohao/FGST.

https://github.com/coderhaohao/FGST.
https://github.com/coderhaohao/FGST.
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Fig. 1. Framework of FGST

Definition 3 Bike Traffic Tensor. We use a 3-dimensional tensor Y ∈
R

N×K×2 to denote the bike traffic data. yin
n,k denotes the check-in number of

region rn at time slot tk, and yout
n,k denotes the check-out number of region rn at

time slot tk.

Definition 4 Projection Tensor. We use two 3-dimensional tensors
Win,Wout ∈ R

N×K×M to denote the projection tensors that project the features
to the prediction of the future bike check-out and check-in respectively. w in

n,k and
wout

n,k denote the projection vectors in region rn and time slot tk. For simplic-
ity, we will use W if there is no confusion, and have W:,k = [w1,k, . . . ,wn,k] ∈
R

M×N , Wn,: = [wn,1, . . . ,wn,K ] ∈ R
M×K .

Problem Definition. Given the feature tensor of the previous K time slots,
and the history bike traffic tensor Y, our goal is to predict the bike check-in and
check-out numbers yin

n,k+1 and yout
n,k+1 for all the regions in the next time slot

K + 1.

2.2 Framework

Figure 1 presents the framework of the proposed approach, which contains three
major steps. We first build up the basic multi-model framework . For each
region and each time slot, there will be two projection vectors that project the
feature vector to the corresponding check-in/check-out bike numbers, respec-
tively. Then we introduce the projection learning step to learn the projection
vectors by solving an optimization problem while preserving the spatial-temporal
correlations and the flow conservation rules. Finally, a projection inference
step is introduced to predict the future traffic by inferring the projection vector
of the next time slot.
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To capture the spatial-temporal correlations, we make the following three
assumptions. First, in the spatial view, if two regions present similar bike traffic
patterns and have similar POI features, their projection vectors should be sim-
ilar. In the temporal view, a region in the same time slot of different weekdays
or weekends should also have similar projection vectors due to the periodic bike
usage patterns. Second, the projection vector should follow the global conserva-
tion rules, which means the total number of check-out bikes should be the same
as the number of check-in bikes. As showed in Fig. 1, we cluster the regions based
on the bike traffic flows among them, and relax the constraint to let the bike
trips in each region cluster follow the localized conservation rules. Third, the
future projection vectors of a region in a future time slot can be inferred from
the history projection vectors of this region.

3 Methodology

In this section, we start with the basic fine-grained regression model. Then we
introduce how to incorporate the spatial-temporal correlation component and
the flow conservation constraints. Finally, we introduce the inference method to
predict the future bike traffic flow for each region.

3.1 The Basic Model

We introduce the basic optimization function to minimize the projection loss for
the projection vectors of each region and each time slot. Given the observed fea-
ture vectors x and the corresponding bike check-in/out number yin and yout, we
first propose to solve the following optimization problem to learn the projection
vectors w in and wout for each region and each time slot,

min
W

K∑

k=1

N∑

n=1

(Lin
n,k + Lout

n,k + θ(‖w in
n,k‖2 + ‖wout

n,k‖2)) (1)

where Lin
n,k and Lout

n,k denote the projection errors which are (Xi,kw
in
i,k − yin

n,k)2

and (Xi,kw
out
i,k − yout

n,k)2, �2-norm is imported to avoid over-fitting, controlled by
a non-negative parameter θ.

3.2 Spatial Correlation

As described in the assumption, we first calculate the spatial similarity dij of
the region ri and rj through the Euclidean distance of the historical bike traffic
flow data and POI distributions of the two regions. Then we capture the spatial
correlation of two regions ri and rj at time slot tk by minimizing the following
formula:

N∑

i=1

N∑

j=1

g(dij)‖w i,k − w j,k‖22 (2)
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where ‖ · ‖22 denotes the 2-norm distance. g(dij) is a non-increase function of
dij . When the distance dij is small, g(dij) is large to make w i,k and w j,k more
similar. We empirically set g(dij) = d−h

ij , where h is set as 1. By using Laplacian
matrix, the spatial correlation over all the time slots can be written as the matrix
form as follows. For simplicity, we also employ an abbreviation by the following
derivation.

K∑

k=1

(
N∑

i=1

N∑

j=1

g(dij)‖w i,k − w j,k‖2) =
K∑

k=1

2tr(W:,kLspW:,k
T ) �

K∑

k=1

2tr(Sk) (3)

where Dsp,Zsp,Lsp ∈ R
N×N . Zsp denotes the spatial correlation matrix with

each entry zsp
i,j = g(dij). Dsp is a diagonal matrix with diagonal entry dsp

i,i =∑
j zsp

i,j . The matrix Lsp = Dsp−Zsp is the Laplacian matrix of the spatial corre-

lation matrix Zsp. Sin
k denotes Win

:,kL
spWin

:,k

T
, and Sout

k denotes Wout
:,k LspWout

:,k
T

for brevity.

3.3 Temporal Correlation

The bike traffic data presents high temporal correlations such as periodicity [19].
That means in the same time slot of different days, the traffic data tend to be
similar. Assume that d denotes the day, h denotes the hour of the day and Δd
denotes the number of days between two time slots. For the same hour of two
different days td∗24+h and t(d+Δd)∗24+h in region rn, we propose to minimize the
following term to capture the periodical temporal correlation in region rn,

f(Δd)‖wn,d∗24+h − wn,(d+Δd)∗24+h‖22 (4)

where f(Δd) is a decay function on Δd. When Δd is small, f(Δd) is large
to make w

(d+Δd)∗24+h
n and wd∗24+h

n similar. f(Δd) tends to be zero while Δd
keeps increasing. For simplicity, we define f(Δd) as follows: f(Δd) = 1 if Δd = 1;
f(Δd) = 0, otherwise. With this definition, only the same hour of two consecutive
days will be taken into consideration. Then the temporal correlation component
of region rn can be rewritten as follows,

24∑

h=1

D−1∑

d=1

‖wn,d∗24+h − wn,(d+1)∗24+h‖22 (5)

where D denotes the total number of days. The temporal correlation over all the
regions can be rewritten as the matrix form with the help of Laplacian matrix
and abbreviated as follows,

N∑

n=1

2tr(Wn,:LspWn,:
T ) �

N∑

n=1

2tr(Tn) (6)

where Dte,Zte,Lte ∈ R
K×K . We use Zte to denote the temporal correlation

matrix and Zte
(d+1)∗24+h,d∗24+h = 1, Zte

d∗24+h,(d+1)∗24+h = 1 for d = 1, · · · ,D − 1.
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Dte is a diagonal matrix with diagonal entries Dte
i,i =

∑
j Zte

i,j . The matrix Lte =
Dte − Zte is the Laplacian matrix of the temporal correlation matrix Zte. Tin

n

denotes Win
n,:L

teWin
n,:

T
, and Tout

n denotes Wout
n,: L

teWout
n,:

T
for brevity.

3.4 Flow Conservation Constraint

Sharing bikes are usually used for short-trip transportation, so there will exist
some region clusters that the inter-cluster flow is small while the intra-cluster
flow is large. Thus the bike usage in each region cluster should be balanced
which means the total check-out bike number should be close to the total check-
in number. To utilize this constraint, we cluster the grid regions into several
groups whose inter-group bike flows will be of a relatively low proportion and
can be neglected compared with the large volume of intra-group bike flows. Thus,
we introduce an agglomerative hierarchical clustering method, and the similarity
between two region clusters is defined as follows,

sim (ci, cj) =
Fci−>cj

Fci−>•
+

Fci−>cj

F•−>cj

+
Fcj−>ci

Fcj−>•
+

Fcj−>ci

F•−>ci

(7)

where ci and cj represent two region clusters, and Fci−>cj denotes the number
of the trips starting from the regions in ci and ending at the regions in cj . •
denotes all the regions, and Fci−>• is the number of the trips starting from the
regions in ci and ending at any regions. F•−>ci denotes the number of the trips
starting from any regions and ending at the regions in ci.

Then for each given cluster Co in time slot tk, we minimize the summation
of the absolute unbalance value between the inflow and outflow in cluster Co at
time slot tk.

|
∑

i∈Co

Xi,k(w in
i,k − wout

i,k )| (8)

We sum over all the time slots and region clusters to get the global flow conser-
vation constraint component.

K∑

k=1

O∑

o=1

|
∑

i∈Co

Xi,k(w in
i,k − wout

i,k )| (9)

3.5 The Unified Optimization Model

By incorporating the temporal correlation, spatial correlation and bike traffic
flow conservation constraint to the basic model, the final objective function can
be written as follows.

min
W

L =
K∑

k=1

N∑

n=1

(Lin
n,k + Lout

n,k + θ(‖w in
n,k‖2 + ‖wout

n,k‖2)) + λ1

K∑

k=1

tr(Sin
k + Sout

k )

+ λ2

N∑

n=1

tr(Tin
n + Tout

n ) + λ3

K∑

k=1

O∑

o=1

|
∑

i∈Co

x i,k(w in
i,k − wout

i,k )|

(10)
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The parameters λ1, λ2, λ3 are used to control the importance of the temporal
correlation, spatial correlation and flow conservation constraint terms, respec-
tively. Formula (10) can be solved by existing optimization methods like ADMM.
More details of the derivation can also be found at my GitHub.

3.6 Projection Inference for Traffic Prediction

After the optimization, we obtain the trained historical projection vectors that
preserve the spatial-temporal correlation. We assume that the future projection
vector wn,k+1 of region rn can be estimated by the linear combination of the
historical projection vectors of rn from tk to tk−g as follows.

wn,k+1 = α1wn,k + · · · + αgwn,k−g (11)

The coefficients α = {α1, · · · , αg} are introduced to control the contributions
of the history projection vectors {wn,k, · · · ,wn,k−g}. Then we can predict the
bike traffic flow of region rn in time slot tk+1 by using wn,k+1.

yn,k+1 = xn,k+1 (α1wn,k + · · · + αgwn,k−g)
= α1xn,k+1wn,k + · · · + αgxn,k+1wn,k−g

(12)

Based on formula (12), we define a regression problem to learn the coefficients
α and then make the prediction. The regression problem can be rewritten as
follows.

{xn,k+1wn,k,xn,k+1wn,k−1, · · · ,xn,k+1wn,k−g} → yn,k+1 (13)

Considering the different bike check-in/out patterns in different hours of a
day, it is necessary to train different coefficient vectors α for different hours. To
reduce the number of parameters and speed up the model training process, we
cluster the regions based on their similarity in POI feature and historical bike
traffic patterns. The regions in the same cluster share the same coefficient vector.
It means that, we only estimate one group of parameters α, for the same region
cluster and the same hour of a day.

4 Experiment

In this section, we first introduce the dataset, baseline methods, and experiment
setup. Then we compare the performance of FGST with baseline methods. We
also compare FGST with its variants to show the impacts of different components
on the model performance. Finally, we give a case study to further concretely
demonstrate the superior performance of FGST.
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4.1 Dataset and Settings

In this paper, we use the publicly available Mobike sharing-bike dataset, released
in 2017 for Mobike Cup, containing 3.2 million bike trip data in Beijing. For
each trip, we extract its start time, end time and check-in/check-out locations.
Then we partition Beijing into 32 × 32 grid regions and count the bike checking
numbers in each region at each time slot. Besides, we also collect the POI data,
which is aggregated and counted by different categories for each region.

The feature tensor contains two parts: historical bike checking data and POI
data. In our evaluation, we set the length of each time slot as one hour. The FGST
framework is first trained on the first two days of the dataset and iteratively
evaluated on the later days. While for baseline models, we use 70% data for
training and the remaining 30% for testing. The values of the λs are set with
both considering the relative sizes of both the loss function and the gradient of
the loss.

4.2 Evaluation Metrics

In our experiment, we use Mean Average Error (MAE) and Rooted Mean Square
Error (RMSE) as the evaluation metrics, which are widely used in previous
literatures [7,19] for traffic prediction. The two metrics are defined as follows:

MAE =
1
N

1
Ks

N∑

n=1

KS∑

k=1

|Yk
n − Ŷ

k

n|;RMSE =

√√√√ 1
N

1
Ks

N∑

n=1

KS∑

k=1

(Yk
n − Ŷ

k

n)2

(14)

where KS denotes the number of time slots for evaluation, Ŷ
k

n denotes the
predicted bike traffic volume of region n at time slot k, and Yk

n denotes the
ground truth value.

4.3 Baseline

We compare FGST with three types of prediction methods: time series based pre-
diction models HA and ARMA, statistical learning based prediction models LR
and RF, and deep learning based prediction models ConvLSTM and DMVST.

– Historical average (HA) uses the historical average traffic flow of a region
in a time slot as the prediction of the future traffic flow of the region in the
same time slot in a day.

– ARMA [9] is a traditional time series data analysis method, which analyzes
and predicts the temporal tendency of the sequence data with moving average
and autoregressive components.

– Linear Regression (LR) [10] is a very regression method, which ignores
the spatial-temporal correlations and the conservation constraint. �1 regular-
ization is used to avoid over-fitting.
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– Random Forest (RF) [4] is an ensemble learning method for classification
and regression, which usually presents stable performance in the prediction
tasks.

– RF-hour is an variation of RF. The difference is that RF-hour builds sepa-
rated models for different hours of a day.

– ConvLSTM [18] extends the LSTM model with convolution structures. Con-
vLSTM extracts the temporal information with LSTM and extracts the spa-
tial information with CNN.

– DMVST [20] is a deep learning based model for taxi demand prediction. The
method consists of three views: temporal view (LSTM structure), spatial view
(CNN structure), and semantic view (graph embedding).

Table 1. Overall performance comparison

MAE (in) MAE (out) RMSE (in) RMSE (out)

HA 8.6195 8.6241 12.2538 14.2175

ARMA 6.2738 6.3166 8.6068 8.6368

LR 9.0145 11.159 13.058 17.734

RF 5.7162 5.6288 8.9739 8.7611

RF-hour 5.5721 5.4617 8.6142 8.2856

ConvLSTM 6.2839 6.4121 9.0726 9.1700

DMVST 5.6134 5.6297 8.1190 8.0202

FGST 4.8591 4.7750 6.9512 6.8322

4.4 Experiment Results

Table 1 shows the experiment result of various methods over the two evaluation
metrics. We show the prediction results for check-out and check-in bikes sep-
arately. The best performance is highlighted with bold font. One can see that
our proposed FGST outperforms all the baselines in all the cases. The tradi-
tional linear regression method LR does not perform well while the time series
based prediction methods like HA and ARMA perform better than LR. This is
mainly because the bike traffic patterns in different regions and different hours
can be quiet different, while LR model cannot distinguish the difference and
thus achieves the worst preference. RF achieves relatively better performance in
general, while RF-hour model also performs rather well and outperforms most
of the other baseline methods including the two deep learning based methods. It
indicates that deep learning methods like DMVST and ConvLSTM cannot get
a good performance on our task. DMVST has a more complex model and per-
forms better than ConvLSTM. Our proposed method significantly outperforms
ConvLSTM and DMVST and other baselines by training individual models for
each region by considering the spatial and temporal correlations dynamically in
a fined-grained manner.
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4.5 Evaluation on Model Components

Model Components Analysis. To evaluate whether each component of FGST
can contribute to a better performance, we compare FGST with the following
four variants.

– FGST-b: It is the basic model. We can derive it by setting λ1, λ2, λ3 = 0.
– FGST-s: This model only uses the spatial correlation and the basic model.

We can derive it by setting λ2, λ3 = 0.
– FGST-t : This model only considers the temporal correlation and the basic

model in the FGST model. We can derive it by setting λ1, λ3 = 0.
– FGST-f : This model is used to evaluate the importance of the flow conserva-

tion constraint. We can derive it by setting λ1, λ2 = 0.

Table 2. Performance comparison under different optimization settings

MAE (in) MAE (out) RMSE (in) RMSE (out)

FGST-b 8.3861 8.3125 12.3024 13.0324

FGST-s 5.2866 5.3894 8.8917 9.0618

FGST-t 5.1013 5.0633 7.5889 7.5284

FGST-f 7.2689 7.1876 11.9924 10.7618

FGST 4.8591 4.7750 6.9512 6.8322

The experimental results are shown in Table 2. One can see than FGST-
b achieves the worst performance, which indicates that the correlations and
constraints play an important role in this model. Moreover, FGST-f gets the
second-worst performance, which indicates the flow conservation constraint is
helpful. However, it does not work well by only considering the flow conser-
vation constraint. The FGST-s and FGST-t outperform FGST-f and FGST-b,
which verifies that the spatial and temporal correlations are both meaningful in
the prediction. FGST outperforms all the other variations which verifies that the
spatial and temporal correlations and the flow conservation constraint are com-
plementary rather than conflicting. Aggregating these components can provide
a better model to predict the future bike traffic.

Different Regression Settings Analysis. As described in the traffic predic-
tion part, we apply a regression method to predict the future traffic flow with the
fitted projection vectors. There are several variations of the regression method,
we list several variations of the regression model below and test the performance
for each variation.

– FGST-equal : This variant treats each region and time slot the same, and
trains the same α for all the regions and time slots.
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– FGST-hour : This variant treats each region the same, and the training set is
divided by the different hours of the day. For each hour of a day, we train a
regression model.

– FGST-cluster : This variant treats each hour the same, and the training set is
divided by the different clusters of regions. For each region cluster, we train
a regression model.

– FGST-h&c: This variant divides the training set by both the different clusters
of regions and the hours. For each region cluster and in each hour of the day,
we train a regression model.

The experimental results are shown in Table 3, one can see that FGST-h&c
achieves the best performance while the FGST-cluster achieves the worst. FGST-
equal performs much better than FGST-cluster. From this result, one can draw
the following conclusion. (1) Different hours of a day have different traffic flow
patterns, and thus the regression parameters should not be shared in different
hours. (2) Training the models for each hour and region cluster separately can
get a better result, but may also lead to over-fitting. When training the model,
one should limit the strength of the regression model to avoid over-fitting. (3)
Ignoring the time information and the regions in a cluster sharing one model
cannot get a desirable performance, which indicates that the time information
is important in bike traffic flow prediction.

Table 3. Performance comparison under different regression settings

MAE (in) MAE (out) RMSE (in) RMSE (out)

FGST-equal 5.2357 5.1650 8.0429 7.7560

FGST-hour 5.1634 5.0257 7.8964 7.4835

FGST-cluster 5.3575 5.2804 8.4179 8.0182

FGST-h& c 4.8591 4.7750 6.9512 6.8322

4.6 Case Study

Figure 2(a) depicts the prediction of the bike check-out numbers of FGST and
RF-hour against the ground truth in two regions of Beijing. The plot on the left
shows the prediction result of a region near to a subway station. At morning,
people ride to the station and check-in bikes, while in the afternoon, people check
out the bikes from the station. The plot in the middle shows the prediction result
of a central business district, whose bike check-out number has a main-peak at
around 8:00 am, and two sub-peaks at around 12:00 am and 6:00 pm. The
prediction result of FGST can accurately fit the ground truth curves (including
the peak and the sub-peak), which demonstrates the effectiveness of FGST. From
the experiment, one can see that the prediction accuracy is highly relative to the
hour of the day. Thus, in Fig. 2(b), we plot the mean average loss at different
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Fig. 2. Prediction Visualization

hours of our model and the best baseline model RF-hour. The MAE value of
FGST is significantly lower than RF-hours at peak hours.

5 Related Work

The studies in system prediction can be classified into three classes of methods:
(1) time series analysis, (2) statistical learning and (3) deep learning. In time
series communities, researchers give the predictions by using ARMA, Kalman
filtering and their variants for each region [6,11,12]. Statistical learning models
provide several ways to predict future situations by extracting features from raw
data. Forehlich et al. [1] and Kaltenbrunner et al. [2] adopted simple statistical
models to predict the available number of bikes and docks for each station. Li
et al. [3] proposed a multi-factor hierarchical prediction model to predict the
future bike demands based on the clusters of stations. Liu et al. [7] proposed a
network-based method to predict the bike pick-up and drop-off demand of each
station. Nowadays, deep learning models show their abilities in several fields.
And they also be used in the prediction of traffic flows. Lin et al. [5] proposed
a deep learning model to predict the station-level hourly demands of sharing
bikes. Zhang et al. [23] and Zhang et al. [22] treated the whole city as image
and constructed three same convolutional structures to capture the trend, period
and closeness information. Besides [14–17] used social media data to enhance the
traffic prediction.

6 Conclusion

In this paper, we studied the bike traffic prediction problem in a fully stationless
bike sharing system. We proposed a Fine-Grained Spatial-Temporal based regres-
sion model prediction framework. Our model extracted the spatial-temporal cor-
relations by minimizing the distance between the projection vectors of similar
regions and periodic time slots. Besides, we also made use of the localized con-
servation rules to enhance our prediction. Moreover, the extensive evaluations
on the Mobike bike sharing dataset of Beijing demonstrated the superiority of
FGST.
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Abstract. Customer Segmentation aims to identify groups of customers
that share similar interest or behaviour. It is an essential tool in market-
ing and can be used to target customer segments with tailored market-
ing strategies. Customer segmentation is often based on clustering tech-
niques. This analysis is typically performed as a snapshot analysis where
segments are identified at a specific point in time. However, this ignores
the fact that customer segments are highly volatile and segments change
over time. Once segments change, the entire analysis needs to be repeated
and strategies adapted. In this paper we explore stream clustering as a
tool to alleviate this problem. We propose a new stream clustering algo-
rithm which allows to identify and track customer segments over time.
The biggest challenge is that customer segmentation often relies on the
transaction history of a customer. Since this data changes over time, it
is necessary to update customers which have already been incorporated
into the clustering. We show how to perform this step incrementally,
without the need for periodic re-computations. As a result, customer
segmentation can be performed continuously, faster and is more scal-
able. We demonstrate the performance of our algorithm using a large
real-life case study.

Keywords: Customer segmentation · Market segmentation ·
Stream clustering · Data streams · Machine learning

1 Introduction

Customer Segmentation is one of the most important tools in marketing. It
divides a market of potential customers into distinct subsets with common char-
acteristics. This allows to select the most attractive and profitable segments and
target them with tailored marketing strategies [13]. Virtually every marketing
department uses some form of customer segmentation, either based on intu-
ition and experience or based on cluster analysis. The biggest drawback of these
methods is that they require that segments are stable over time. Once segments
change, the entire process needs to be repeated. Stream clustering [3,7] is an
extension of traditional clustering which handles a continuous stream of new
c© Springer Nature Switzerland AG 2019
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observations. It updates the underlying clustering over time without the need to
recompute the entire model.

While it seems promising to apply stream clustering for customer segmenta-
tion, there are several challenges that come with it. Most importantly, customer
segmentation often uses aggregated customer data such as the number of pur-
chases or revenue of customers. When processing a stream, these values change
over time, e.g. when a customer makes another purchase. This makes it necessary
to update existing observations and adjust the clustering accordingly, even when
the observation has already been incorporated into the model. In this paper we
show how to apply stream clustering for customer segmentation. Our strategy
first removes the existing observations from the clustering before re-adding it
with the updated values. Neither of these steps requires a recomputation of the
model or repeated analysis of all data points. We term our algorithm userStream
since we apply it for the segmentation of users.

The remainder of this paper is structured as follows: Sect. 2 introduces the
concepts of Customer Segmentation and Stream Clustering. In Sect. 3, we pro-
pose a new stream clustering algorithm which allows to identify and track cus-
tomer segments over time. Section 4 evaluates the proposed algorithm on more
than 1.7 million real-life transactions. Finally, Sect. 5 concludes with a summary
of the results and gives and outlook on future research.

2 Background

2.1 Customer Segmentation

The early days of marketing were characterised by mass-marketing strategies
which use a single marketing strategy to address all customers [13]. However,
this is hardly applicable for today’s businesses who address customers globally
with diverse preferences, values and behaviour. For example, younger customers
are far more susceptible to social media marketing rather than television adver-
tisements. Therefore, it is necessary to acknowledge and identify the different
preferences and sub-markets and cater suitable products to them accordingly.

Customer Segmentation aims to divide a market into distinct groups of cus-
tomers such that individuals within a group share similar behaviour or inter-
est. The acknowledgement of customer segments allows to target each group of
customers individually with distinct marketing and communication strategies,
products, prices, packaging or method of distribution [13]. Nowadays, customer
segmentation exists in virtually every marketing department. At the very least,
it is performed informally and marketers identify segments based on experience
and intuition [4]. More mature marketing departments will rely on data-driven
approaches for better results, often based on clustering techniques, in order to
identify segments.

Desirable segments should have diverse characteristics, be easily identifiable
and have sufficient size [13,14]. In addition, segments are typically required to
be stable:
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Fig. 1. Two-phase grid-based stream clustering approach [5].

‘Stability is necessary, at least for a period long enough for identification of
the segments, implementation of the segmented marketing strategies and
the strategy to produce results’ [5,14].

This is a technical necessity which demonstrates an important problem of
traditional customer segmentation. If the segments change over time, all efforts
and results of the marketing strategy can be rendered unusable. In practice,
however, segments are highly volatile and are bound to change as trends come
and go and preferences change. Throughout the remainder of this paper, we
introduce a more adaptive approach for customer segmentation which handles
changes in segments over time more gracefully.

2.2 Stream Clustering

Clustering is a popular tool for customer segmentation which aims to identify
groups of similar observations. Most clustering algorithms are designed to work
on a fixed dataset which does not change over time. When it does, the entire
model needs to be recomputed. An extension to this are stream clustering algo-
rithms which aim to find and maintain clusters over time in an endless stream of
new observations. These algorithms process data points in real time and avoid
expensive recomputations by incrementally updating the model.

To do so, clusters need to contain enough information to update them with
new information. For example, merely storing the centres of clusters allows to
merge clusters. However, it does not allow to split clusters again if necessary. To
overcome this, stream clustering algorithms usually rely on an online and offline
phase [1]. The online component evaluates the stream in real time and captures
relevant summary statistics. As an example, it is possible to split the data space
into grid-cells and simply count the number of observations per cell as shown in
Fig. 1. This results in a large number of micro-clusters that summarize the data
stream. When desired, an offline component ‘reclusters’ the micro-clusters to
derive a final set of macro-clusters. This step often uses a variant of traditional
clustering algorithm.

A popular concept in stream clustering and most suited for our application
scenario was first proposed by the BIRCH algorithm [16] and has since received
considerable attention [1,10]. The algorithm reduces the information maintained
about a micro-cluster to only a few summary statistics stored in a Clustering
Feature (CF): (n,LS,SS). Here, n is the number of data points in the cluster
and LS, SS are the linear and squared sum of data points for each dimension,
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respectively. This information is sufficient to calculate measures of location and
variance for a CF such as the mean and radius:

μ = LS/n r =
∑

i

SSi/n − (LSi/n)2. (1)

Another important characteristic is that two CFs can be merged by summing
their respective components:

CF1 + CF2 = (n1 + n2, LS1 + LS2, SS1 + SS2). (2)

An important aspect in stream clustering is to identify emerging clusters
while simultaneously forgetting outdated ones. This can be implemented by a
fading function which decays the importance of micro-clusters over time if no
observation is assigned to them [8]. Commonly, a cluster is faded exponentially
by multiplying it with 2−λ in every time step, where λ is a fading factor. In
practice, clusters do not need to be continuously updated but can be faded on
demand using 2−λΔt where Δt is the time since the last update [8]. For CFs,
this strategy requires to store the time of last update alongside every CF:

CF = (n,LS,SS, t). (3)

This allows to fade a CF as follows:

CF = (n · 2−λ(tnow−t), LS · 2−λ(tnow−t), SS · 2−λ(tnow−t), tnow), (4)

where tnow is the time of update. Note that by fading all components, the mean
and variance can still be computed accurately [1,16]. Once the weight n of a clus-
ter, i.e. the number of points, has decayed below a threshold it can be removed
since its information is outdated.

A common problem in clustering is that dimensions are usually of vastly
different range and variance. This is particularly true in the streaming case
where the data cannot be easily normalized beforehand. A lesser known property
of CFs to alleviate this is that they allow to incrementally normalize the different
dimensions [2]. In particular, it is possible to use the standard deviation σi per
dimension i as a scaling factor:

LS′
i = LSi/σi SS′

i = SSi/σ2
i . (5)

Since the standard deviation changes over time, it is necessary to periodically
update this scaling. For this, the current scaling can be removed from the CFs
again in order to re-scale them with the updated standard deviation:

LSi = LS′
i · σi SSi = SS′

i · σ2
i . (6)

This requires to incrementally maintain the standard deviation for each
dimension. Generally, it is possible to use the information contained in the sum
of all CFs for this. However, this approach suffers from numerical instability
which is why we use Welford’s method for computing variance as a more robust
approach [15].
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3 Customer Segmentation Using Stream Clustering

Features in customer segmentation can range from demographic and geographi-
cal attributes (e.g. age or location) to psychological attributes (e.g. personality)
or usage-related characeristics [13,14]. In practice, usage-related segmentation is
widely popular since it is easier to measure and yields more actionable results. As
an example, in the retailing business users can be segmented according to their
number of purchases and return rate of products. The segmentation is therefore
based on the past transactions of customers. It is trivial to use these transactions
as input for a (stream) clustering algorithm, but this can only identify similar
transactions not customers. In order to segment customers, the transactions
need to be aggregated per customer. Therefore, a stream clustering algorithm
for customer segmentation must be able to process new observations but also
update observations which have already been incorporated into the model and
adjust the clustering accordingly. In traditional clustering, this is achieved by
recomputing the entire model periodically. However, this is generally undesir-
able, time consuming and does not allow to track the development of clusters
properly.

In this section we propose a new stream clustering algorithm called
userStream which is applicable to customer segmentation. For our algorithm
we utilize the concept of a time-faded Clustering Feature (CF) as well as the
two-phase clustering approach as described in Sect. 2.2. Therefore, we use an
online-component which summarizes the stream in a large number of micro-
clusters. We then recluster this summary on demand in order to derive the final
macro-clusters.

Generally, the additivity property of CFs already allows to transfer changes
of an observation to its corresponding cluster, i.e. by adding the changes to
the cluster. However, this does not account for changes in the clustering struc-
ture, e.g. because the updated customer does no longer fit to its current cluster.
Instead, the core idea of our algorithm is to remove the existing observation
from the clustering altogether before re-inserting it as a new observation. We
will demonstrate that neither of these steps requires a recomputation of the
entire model and both can be performed incrementally.

Algorithm 1. userStream algorithm
Require: radius threshold T , fading factor λ, minimum fading interval tgap, max

scaling interval m
Initialize: clusters C = ∅, scaling factor σ′

i = 1 per dimension i
1: while stream is active do
2: Read new observation x of user u at time tnow from stream
3: if user u already known then � if user known
4: cf ← previous CF of user
5: removeUser(cf , ·) � see Algorithm 2

6: cf ← (1, x, x2, tnow) � new CF using Eq. (3)
7: insertUser(cf , ·) � see Algorithm 3
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This principle is core to our online component as shown in Algorithm 1. In
a first step, we continuously read new observations from the stream as they
become available (Line 2). For each observation x, we then evaluate whether we
have previously incorporated the same customer into the model (Line 3). If that
is the case, we take the customer’s CF and remove it from its corresponding
cluster, effectively removing the customer from the current model (Lines 4–5).
Finally, we take the new observation x and initialize a new CF with it (Line 6).
The new CF is then inserted into an appropriate cluster, regardless of whether
it describes a new customer or simply updates an existing one (Line 7).

The main challenge of this approach is how to remove observations from the
model. The pseudo-code of our removal strategy is outlined in Algorithm 2. In
a first step, we identify the cluster that the customer is currently assigned to
(Line 3). In order to remove the observation from this cluster, we note that the
idea of the additivity property of CFs is equally applicable when subtracting
CFs [1].

CF1 − CF2 = (n1 − n2, LS1 − LS2, SS1 − SS2, tnow). (7)

As usual, we need to make sure that both CFs are properly faded to the
current time tnow. For this reason, we first fade both CFs (Lines 4–5) before
subtracting the user CF from its cluster (Line 6). This removes the user from
the current clustering but will also cause the cluster to lose some of its weight
since fewer customers are assigned to it. Therefore, we need to evaluate whether
the cluster still as sufficient or whether it can be removed (Line 8). As a threshold
value we use 2−λtgap , where tgap is the minimum time it takes for a cluster to
become obsolete [9]. If we also want to normalize the CFs, we need to do this
first by dividing each dimension i of the CF by the current scaling factor σ′

i

(Line 2).

Algorithm 2. Remove a user from its cluster
1: procedure removeUser(cf , ·)
2: cf ← normalize(cf , σ′) � Using Eq. (5)
3: Ci ← current cluster of user u
4: Fade(Ci ) � Using Eq. (4)
5: Fade(cf ) � Using Eq. (4)
6: Ci ← Ci − cf � Remove using Eq. (7)
7: if weight(Ci ) ≤ 2−λtgap then
8: Remove Ci from C

Once the customer is removed, we can re-insert the updated observation into
the model. The pseudo-code of the insertion strategy is given in Algorithm 3. As
described in Sect. 2.2, we need to periodically adjust the scaling parameters to
account for changes in variance. Since the variance will change more drastically
at the beginning of the stream, we perform this adjustment step in exponen-
tially increasing intervals, i.e. after 21, 22, . . . but at least every 2m observations.
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To adjust the scaling, we retrieve the used scaling factors σ′ and the current
standard deviations σ. The scaling with σ′ is then removed from every cluster
in order to normalize it with the new factor σ instead (Lines 2–7).

Once the adjustment step is finished, the main insertion step begins. Based
on the current scaling factor, we start by scaling the CF that we wish to insert
(Line 8). Afterwards we search for an appropriate cluster to insert the customer
into. If there are currently no clusters, we initialize a new cluster at the location
of the CF (Lines 9–10). Otherwise we select the cluster whose centroid is closest
the customer, e.g. based on the squared Euclidean distance (Line 12). Before
inserting the customer into the cluster, we need to make sure the cluster is not
obsolete. To do so, we fade the cluster and check its weight. If its weight is
below the weight threshold, we remove the cluster and restart the search for the
closest cluster (Lines 13–16). Once we have found a suitable candidate, we check
whether it can absorb the new observation. For this, we test whether the cluster
can absorb it without its radius increasing beyond a threshold T . If the radius
increases beyond the threshold, the customer does not fit into the cluster and
we initialize a new cluster at its location instead. However, if the cluster can
absorb the customer, it is inserted and the cluster updated accordingly. This is
the same strategy as already used in BIRCH [16].

Algorithm 3. Insert a user into its closest cluster
1: procedure insertUser(cf , ·)
2: if t mod {21, . . . , 2m} = 0 then � Periodically adjust scaling
3: σ ← current standard deviation � using Welford’s method
4: for each Ci ∈ C do
5: Ci ← deNormalize(Ci , σ

′) � Using Eq. (6)
6: Ci ← normalize(Ci , σ) � Using Eq. (5)

7: σ′ ← σ � Update scaling factor

8: cf ← normalize(cf , σ′) � Using Eq. (5)
9: if |C | = 0 then � If no clusters

10: append cf to C � Create new cluster
11: else
12: Ci ← closest micro-cluster to cf
13: Fade(Ci ) � Using Eq. (4)
14: if weight(Ci ) ≤ 2−λtgap then � Check candidate cluster
15: Remove Ci from C
16: go to Line 9

17: if radius(Ci + cf ) < T then � Radius from Eq. (1)
18: Ci ← Ci + cf � Merge using Eq. (2)
19: else
20: append cf to C � Create new cluster

The above online component maintains micro-clusters at dense areas in the
stream. In order to derive the final clusters, the centres of these micro-clusters
can be used as virtual points. This allows to apply any traditional clustering
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algorithm in order to recluster the micro-clusters [16]. The result is a final set
of macro-clusters. In our setup we chose to use a (weighted) k-means [11] due
to its simplicity and the possibility to incorporate weights of micro-clusters if
necessary. Note that for reclustering, it is also advisable to scale the range of
values of the micro-clusters, e.g. by subtracting the mean and dividing by the
standard deviation. Alternatively, the sacling factors from the online component
can be used. While the online component is working in real-time, the reclustering
step can be performed on-demand, whenever macro-clusters are requested by the
user.

4 Evaluation

4.1 Experimental Setup

We implemented our algorithm in C++ with interfaces to the statistical program-
ming language R1. For our analysis we use real transactions from a retailer in the
home furnishings and textiles sector. The retailer operates a total of 120 brick-
and-mortar stores as well as an online shop. Additionally, a loyalty program is
available which customers can join for easier access to the online shop, newslet-
ters and discounts. Almost 500, 000 customers joined the loyalty programme and
more than 1.7 Million transactions between June 2014 and December 2017 are
available. The loyalty program assigns a unique identifier to customers which
allows us to aggregate usage-related attributes per customer. Unfortunately, no
information about product prices or order value is available. For our analysis we
derive a handful of usage-related features. In particular we use the number of
purchases, the percentage of returned products, the median order size, the time
since last purchase (recency) as well as the ratio of online purchases.

Evaluating cluster quality is generally difficult since no ground-truth exists.
For this reason, intrinsic properties are often used as quality indicators. As an
example, the Silhouette Width measures how similar an observation i is to its
own cluster, compared to other clusters:

s(i) =
b(i) − a(i)

max{a(i), b(i)} , (8)

where a(i) is the average distance of i to other observations in its cluster and b(i)
is the lowest average distance of i to observations in another cluster. It can take
values between −1 and +1 where larger values indicate a better fit. As a rule-
of-thumb, Average Silhouette Widths larger than 0.7 indicate strong structures
and Widths larger than 0.5 still indicate reasonable structures [12].

Since our algorithm operates on a stream of data, we aim to evaluate the clus-
tering result over time. Therefore, we process the stream in chunks with a horizon
of 10, 000 and calculate the Silhouette Width for each horizon. Throughout our

1 Implementation available at: http://www.matthias-carnein.de/userStream. For
reproducability, we also show how to apply the algorithm on a public dataset.

http://www.matthias-carnein.de/userStream
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Fig. 2. Clustering result along three dimensions at different time steps. Grey points
denote all previous customers, circles mark the centres of micro-clusters and crosses
the centres of macro-clusters. Customers are scaled relative to the recency of their last
purchase and clusters are scaled relative to their size. The colours of micro-clusters
indicate the macro-clusters that they have been assigned to. (Color figure online)

Fig. 3. Average Silhouette Width of new observations over all time horizons. The back-
ground color highlights common thresholds for strong, reasonable and weak clusterings.
The boxplot summarizes the range of values. (Color figure online)

analysis we set the radius threshold to T = 2.5, the number of macro-clusters to
k = 5, choose the decay rate to be λ = 0.01 and set tgap to 30 days. Additionally,
the largest interval to adjust the scaling is set to m = 10.

4.2 Results

As a simple illustration, Fig. 2 visualizes the clustering result for three of our
five features at different times throughout the stream. We can see that the
clusters nicely adapt over time as new customers are added and existing ones
make transactions. The micro-clusters (circles) nicely summarize the observa-
tions (grey points) and the macro-clusters (crosses) use the information from
the micro-clusters to create the final segments. In this example, we can see that
the majority of customers only make few purchases and have no returns or online
purchases. Throughout the entire stream, these one-time buyers form one of the
segments. However, we also observe an increasing number of repeat buyers over
time. Some customers in particular accumulate hundreds of purchases. The algo-
rithm identifies these loyal customers nicely. Additionally, online sales seem to
grow in importance over time and the segments adapt to this trend.
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In order to evaluate the quality of the clustering result, Fig. 3 shows the Aver-
age Silhouette Width of new observations across all horizons. The results show
that the algorithm is able to maintain a very good Silhouette Width of roughly
0.7 throughout the entire stream, indicating reasonable to strong structures.
The quality only seldomly drops below 0.5 and quickly recovers afterwards. For
comparison, we also show the results of a baseline approach. In this baseline
approach, we do not remove customers before insertion but treat each user as
a new customer. It is obvious that the baseline results are consistently worse
because repeat-buyers are not assigned to their appropriate cluster.

After establishing the high quality of the clustering result, we can start pro-
filing the selected segments. To do so, we can look at their common characteris-
tics, i.e. what distinguishes observations in the cluster from other observations.
In the following we analyse the macro-clusters at the end of the stream, i.e.
after n = 1, 700, 000 transactions. Specifically, we compare the divergence of the
within-cluster mean from the global mean as shown in Fig. 4. It is obvious that
Cluster 1 describes loyal customers with frequent purchases. With over 300, 000
customers this is the largest segment and describes the main target group of
the company. Cluster 2 identified online-shoppers where 85% of purchases are
made in the online shop. This is 26 times larger than usual for customers of
the company. Online-shoppers also seem to purchase more items per order. This
segment might be the most accessible for digital marketing strategies and could
be informed about new products in the online shop. Similarly, Cluster 3 also has
an increased online-ratio. However, the return rate is also 13 times higher than
usual and often products are purchased individually. This indicates that these
customers make excessive use of a free shipping and free return policy of the
online shop. It is important to evaluate the profitability for customers of this
segment. Unprofitable customers could loose these free shipping options. Clus-
ter 4 on the other hand represents customers with very traditional behaviour. In
general, purchases are less frequent and the last purchase is further in the past.
In addition, they do not use the online-shop and return products rarely. Despite
this, the cluster represents a large user base of more than 135, 000 customers.
Interestingly, this traditional behaviour does not seem to be related to age, since
customers in this segment are of similar age as in the remaining segments. Clus-
ter 5 represents customers that place very large orders but make purchases less
frequent. It is possible that these customers are commerical resellers with bulk
orders. This cluster is smallest of the identified segments.

All of the above experiments confirm the good performance of userStream.
This performance is largely dependent on the number of micro-clusters that
are summarizing the stream. With more micro-clusters, the stream can also be
represented more accurately. The development of the number of micro-clusters
throughout our analysis is shown in Fig. 5. While we do see some variation, the
number of micro-clusters is relatively stable over time. In our setup, the algo-
rithm requires at most 71 micro-clusters in order to summarize almost 500, 000
customers.
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Fig. 4. Relative difference between within-cluster mean and global mean at n =
1, 700, 000. The absolute values of the global mean and within-cluster mean are shown
at the origin (black) and bars (green/red) respectively. (Color figure online)

Fig. 5. Number of micro-clusters across all time horizons

5 Conclusion

Customer Segmentation is a common tool in marketing which helps to iden-
tify groups of similar customers. This knowledge can help to improve marketing
strategies or product development. Unfortunately, customer segmentation is gen-
erally a slow and static process where segments are only identified at a specific
point in time. In this paper we proposed userStream, a stream clustering algo-
rithm applicable to customer segmentation. The algorithm is able to identify
and track customer segments over time without expensive recalculations.

In particular userStream can handle usage-related features such as the num-
ber of purchases or return rate of products. This kind of information can be easily
extracted from the transaction history. However, the biggest challenge is that the
transaction history changes over time as customers make more purchases. This
makes it necessary to update customers which have already been incorporated
in the clustering model. In order to solve this challenge, we propose to remove
the corresponding customer from its cluster when a new transaction occurs.
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Afterwards, the updated values can be re-inserted into the model as a new obser-
vation in order to adjust the clustering accordingly. By carefully choosing the
underlying data structure, neither of these operations require a recalculation of
the entire model.

Our experiments on a large real-life case have shown that the strategy is
able to identify and track meaningful clusters over time. Specifically, the silhou-
ette width indicates very strong structures throughout most of the data stream.
Additionally, we profiled the segments and gave advice how marketing strategies
could be improved. In future work we will further explore the applicability of
stream clustering to customer segmentation. In particular, we aim to combine
the presented approach with a recently proposed stream clustering algorithm
which makes uses of idle times within a stream ensuring very efficient macro-
cluster generation [6]. Additionally, we only performed little parameter tuning
for the parameters of our algorithm. This is a generally difficult in the context of
stream clustering and automatic and adaptive approaches for choosing threshold
values are desirable.
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Abstract. The proliferation of Internet-enabled smartphones has ush-
ered in an era where events are reported on social media websites such
as Twitter and Facebook. However, the short text nature of social media
posts, combined with a large volume of noise present in such datasets
makes event detection challenging. This problem can be alleviated by
using other sources of information, such as news articles, that employ a
precise and factual vocabulary, and are more descriptive in nature. In this
paper, we propose Spatio-Temporal Event Detection (STED), a proba-
bilistic model to discover events, their associated topics, time of occur-
rence, and the geospatial distribution from multiple data sources, such
as news and Twitter. The joint modeling of news and Twitter enables
our model to distinguish events from other noisy topics present in Twit-
ter data. Furthermore, the presence of geocoordinates and timestamps
in tweets helps find the spatio-temporal distribution of the events. We
evaluate our model on a large corpus of Twitter and news data, and our
experimental results show that STED can effectively discover events, and
outperforms state-of-the-art techniques.

Keywords: Topic modeling · Probabilistic models · Event detection

1 Introduction

Social media platforms such as Twitter and Facebook have become a central
mode of communication in people’s lives. They are regularly used to discuss
and debate current events, ranging from natural calamities such as Hurricane
Harvey, to political incidents like the U.S. Elections. These events span different
locations and time periods. With strong Internet penetration and the ubiquity
of location-enabled smartphones, a large number of social media posts also have
the geographical coordinates of the users. These are rich sources of information,
aiding location-specific event detection and analysis.
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Fig. 1. Tweets and news related to Brexit, originating from different parts of the world,
and containing several aspects of the event.

Event detection aims to discover content describing an important occurrence.
Applications of event detection include the modeling of a disease outbreak, such
as an epidemic of influenza, based on Twitter data [4], and reactions to sport-
ing events [20]. Hence, significant research has been conducted on mining top-
ics from Twitter data [1,19]. However events are not merely topics, and have
aspects of time and location. Researchers have previously defined events with
an approximate geolocation, temporal range and a set of words [18]. However,
these definitions do not account for events that span across multiple regions,
such as Hurricane Harvey, nor do they identify sub-themes of an event, such as
destruction and damage, and help and relief.

In this paper, we propose Spatio Temporal Event Detection (STED), a
probabilistic model that discovers events using information from various data
sources, such as news and Twitter. It combines the location, time, and the text,
from tweets, aided with textual information from news articles, to discover the
various parameters associated with an event. An event is characterized by the
following three attributes:

– The time of occurrence. For instance, most tweets about Rio Olympics occur
in August 2016. Each event, therefore, has a temporal mean and variance.

– A regional distribution describing where the event occurs. Global events such
as Brexit have tweets from several countries, whereas tweets about the Burn-
ing Man Festival are concentrated in Nevada, US. Hence, an event can occur
in one or more regions. Regions are defined by their geographical center and
the corresponding covariance.

– A set of topics describing the event, where each topic is a facet of the event.
U.S. Elections 2016 contain several topics such as the Republican and Demo-
cratic campaigns, as well as the FBI investigation into Russian meddling.

We use timestamp and geolocation information from tweets to estimate the
temporal and regional distributions of events, respectively. We supplement the
vocabulary in tweets with news text to provide larger context about the facts
surrounding the event. This is summarized in Fig. 1. This ensures that noisy
tweets are eliminated and do not contribute to aspects of an event, while news
articles provide more factual information about the event.
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2 Related Work

2.1 Topic Modeling

Topic modeling has been widely studied in the domain of text mining to discover
latent topics. One of the earliest methods to discover topics in text documents
was probabilistic Latent Semantic Indexing (pLSI) [9]. However, since pLSI was
based on the likelihood principle and did not have a generative process, it cannot
assign probabilities to new documents. This was alleviated by Latent Dirichlet
Allocation (LDA) [6], which models each document as a mixture over topics, and
topics as a mixture over words. Inspired by its success, LDA has been extended
and applied to various corpora including microblogs such as tweets [19], as well
as news documents [14].

2.2 Event Extraction from Text

The most common data-driven approach to event extraction uses text clustering.
Within text clustering, the two major paradigms are similarity-based methods
and statistical techniques. Similarity-based efforts generally use cosine similarity
[11]. These techniques are fast and efficient, however they ignore all the statistical
dependencies between variables. Graphical models bring more insight to event
detection by modeling dependencies and hierarchies [5]. Another class of event
detection models uses spikes in activity as an indication of an event. These bursts
change the distribution of the existing data and are detected as new events
[12,13]. These models rely on detecting words that have a sudden increase in
activity, while trying to penalize terms that occur consistently in the data. Thus,
events are defined only by a subset of terms that have increased co-occurrence.

2.3 Geospatial and Temporal Models

With social media platforms like Twitter and Facebook allowing users to embed
their locations in posts, there has been an increase in the availability of data
with geospatial and temporal information. As a result, several researchers have
incorporated this information in event detection systems. [16] built an earth-
quake detection system by correlating Twitter messages during a disaster event
in Japan. A sudden increase in the volume of tweets in a specific region within
a timeframe indicated an event. [7] introduced the Geographical Topic Model
where they aimed to discover variation of different topics in latent regions. How-
ever, it does not assume a dependency between the latent topics and regions.
[2,10] proposed probabilistic models that address the problem of modeling geo-
graphical topical patterns on Twitter. This improved upon prior models that
used predefined region labels instead of actual latitude and longitude. However,
their focus was more on geographical topics, rather than events. The model
proposed in [18] explicitly uses geospatial and temporal information to discover
events. It assumes that every event has a single temporal and regional distribu-
tion. Furthermore, the authors use data only from Twitter. We improve upon
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this approach by allowing an event to be spatially distributed by creating a joint
model for news and social media. While social media provides quick and short
details about an event, the text often contains personal opinion. When com-
bined with news data, event summaries are both factual, and provide views of
the people about an event.

3 The Proposed STED Model

In this section, we introduce STED, a probabilistic graphical model that discov-
ers events, and their aspects, across different geographical regions and temporal
ranges, from a multimodal corpus of geo-tagged microblogs, such as tweets, and
news. Our model is built on the following observations:

– An event refers to an incident that is discussed widely in news and social
media, such as “U.S. Elections 2016” and “Rio Olympics 2016”. Events have
a definite geospatial and temporal distribution. Thus, a particular event is
more likely to be discussed within a specific period of time.

– An event can be discussed in multiple geographical regions. Each region can
be represented using a bivariate Gaussian distribution, with a geographical
center μl

r, and variance determined by a diagonal covariance matrix Σl
r. For

example, “U.S. Elections 2016” is discussed in New York, California, and
Texas – each of which belongs to a different region – but not as much in Asia.

– Similarly, an event has a temporal distribution given by its mean time of
occurrence, μt

e, and variance, σt
e. “Brexit Vote” and “Rio Olympics” may

have similar regional distributions but occurred during different months –
June 2016 and August 2016, respectively.

– News articles and tweets (now with an increased character limit of 280) cover
several topical aspects within an event. “Trump Campaign” and “Clinton
Campaign” form two topics in the event “U.S. Elections 2016”.

Fig. 2. Plate notation for the model.
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Table 1. Notations used in this paper.

Symbol Description Symbol Description Symbol Description
M number of documents cm category of tweet m ψ event-region distribution
Nm number of words in document m α Dirichlet prior for θ γ tweet-category distribution
E number of events β Dirichlet prior for φB , φT φT topic-word distribution
Z number of topics δ Beta prior for γ φB background word distribution
R number of regions λ Dirichlet prior for ψ ne,g number of documents with event e
V vocabulary τ Dirichlet prior for ρ and region g

e event μl
r geographical center of region r pe,k number of words with event e

z topic Σl
r regional variance of region r and topic k

r geographical region μt
e temporal mean of event e sk,v number of times term v is used

lm latitude, longitude of tweet m σt
e temporal variance of event e with topic k

tm time of tweet m θ corpus-event distribution qc,v number of times term v is used
w word ρ event-topic distribution in category c

– Finally, different events can have recurring subthemes – both “Hurricane
Irma” and “Hurricane Harvey” speak about wind speeds, damage, and loss
of life, despite having different geospatial and temporal distributions.

3.1 Problem Statement

Given a set of news articles Dn = {dn
1 , . . . , dn

|Dn|}, a set of tweets Dm =
{dm

1 , . . . , dm
|Dm|}, their geolocations Lm = {lm1 , . . . , lm|Lm|}, their timestamps

Tm = {tm1 , . . . , tm|Tm|}, the goal of STED is to find for each event e, a ranked list
of topics and regions, temporal mean μt

e and variance σt
e, as well as a ranked

list of words for each topic k. For each geographical location r ∈ R, STED also
finds it’s geographical mean μl

r and variance Σl
r (Table 1).

3.2 Model Definition

STED is a generative model that incorporates the key characteristics described
above. It discovers latent events and their corresponding latent topics from a
corpus of long documents, such as news, and short geotagged documents, such
as social media posts. Figure 2 illustrates the plate notation of our model.

– The model assumes there are E events, K topics, and R regions, the values
of which are fixed.

– It models each event e as a mixture of topics and regions, along with a definite
temporal distribution.

– For each news article, an event e is drawn from the corpus event distribution
θ. Subsequently, for each word in the document, a topic z is drawn from the
event topic distribution ρe.

– Since tweets are often noisy, they may or may not be related to an event.
Hence, for every tweet, a category c is sampled from the category distribution.

• If c = 1, an event e is drawn from the corpus event distribution θ, and
the region r, geolocation (latitude, longitude) l, and time t of the tweet
are drawn. Subsequently, for each word, a topic is sampled from the event
topic distribution ρe.



298 A. Ahuja et al.

• If c = 0, the tweet is regarded as a noisy tweet and each word in the
document is sampled from the background word distribution φB.

The detailed generative process of STED is described in Algorithm1.

Algorithm 1. Generative Process of STED.

Draw event distribution θ ∼ Dir(α)
for each event e do

Draw region distribution ψe ∼ Dir(λ)
Draw topic distribution ρe ∼ Dir(τ)

end for
for each topic z do

Draw word distribution φT
z ∼ Dir(β)

end for
Draw background word distribution φB ∼
Dir(β)
for each news article m do

Draw event em ∼ Mult(θ)
for each word n do

Draw topic zm,n ∼ Mult(ρem )

Draw word wm,n ∼ Mult(φT
zm,n

)

end for
end for
For tweets, draw category distribution γ ∼
Beta(δ)

for each tweet m do
Draw category cm ∼ Bin(γ)
if cm = 1 then

Draw event em ∼ Mult(θ)
Draw timestamp tm ∼ N(μt

em
, σt

em
)

Draw region rm ∼ Mult(ψem )

Draw geolocation lm ∼ N(μl
rm

, Σl
rm

)
for each word n do

Draw topic zm,n ∼ Mult(ρem )

Draw word wm,n ∼ Mult(φT
zm,n

)

end for
else if cm = 0 then

for each word n do
draw word wm,n ∼ Mult(φB)

end for
end if

end for

3.3 Model Inference

We use the Gibbs-EM algorithm [3,8] for inference in the STED model. We
first integrate out the model parameters θ, ρ, ψ, γ, φT , and φB using Dirichlet-
Multinomial conjugacy. After this, the latent variables left in the model are e,
r, c, z, μl, Σl, μt, and σt. We sample the latent variables e, z, r, and c in the
E-step of the algorithm using the following equations:

Sampling Event. For a news article m, the event em can be sampled by:

P (em = x|∗) ∝ (n
−m
x,∗ + αx) ×

∏
j∈Zm

∏pmx,j−1

y=0 (p−m
x,j + τx,j + y)

∏Nm−1
y=0 (

∑K
j=1(p

−m
x,j + τx,j) + y)

(1)

For tweets, given the region is g and the timestamp is t,

P (em = x|∗) ∝ (n
−m
x,∗ + αx) ×

n−m
x,g + λg

∑R
i=1 n−m

x,i + λi

×
∏

j∈Zm

∏pmx,j−1

y=0 (p−m
x,j + τx,j + y)

∏Nm−1
y=0 (

∑K
j=1(p

−m
x,j + τx,j) + y)

× N (tm|μt
x, σ

t
x)

(2)

Sampling Topic. For a news article or tweet m, the topic zmn for the word n
with vocabulary index t can be sampled by:

P (zmn = k|e = x) ∝
s−mn
k,t + βt

∑V
r=1 s−mn

k,r + βr

×
p−mn
x,k + τx,k

∑K
j=1 p−mn

x,j + τx,j

(3)
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Sampling Region. Geographical region is sampled only for tweets with cat-
egory c = 1, given their corresponding event is e and geo-coordinates is lm, as
follows:

P (rm = g|∗) ∝ n−m
e,g + λg

∑R
j=1 n−m

e,j + λj

× N (lm|μl
g, Σ

l
g) (4)

Sampling Category. The category (background or event-related) is sampled
only for tweets, using the following equation:

P (cm = d) ∝
q−m
d,∗ + δ

∑1
i=0 q−m

i,∗ + δ
×

∏V
r=1 Γ(q−m

d,r + βr)

Γ(
∑V

r=1 q−m
d,r + βr)

×
∏

r∈Vm

∏Nm−1
y=0 (q−m

d,r + βr + y)
∏Nm−1

y=0 (
∑V

r=1(q
−m
d,r + βr) + y)

(5)

After sampling the latent variables e, z, c, and r, the geographical center μl
r,

and covariance matrix Σl
r, is updated for each region r. The temporal mean μt

e

and variance σt
e, is also updated for each event e.

3.4 Priors for Model Initialization

The STED model uses a bivariate Normal distribution on the location variable
l. The mean μl

r and covariance Σl
r for the regions in R serve as the prior for this

Normal distribution. To initialize these parameters, we run K-means clustering
on the tweet geo-coordinates. The values of the mean and average co-variance
obtained for the clusters are used as the prior μl

r and Σl
r for latent regions.

The latent variables e, z, and c for all the tweets and news articles are randomly
initialized, and all the distribution parameters are set using the initialized values
of variables they use.

4 Experiments

4.1 Dataset Description and Preprocessing

For empirical evaluation of STED, we estimate its performance on a large real-
world data, composed of tweets and news articles from the year 2016.

1. Tweet Data: This dataset consists of tweets with geolocations collected
through 2016 using the Twitter Streaming API for a period of 7 months from
June 2016 to December 2016. The Twitter Streaming API is believed to give
a 1% random sample of tweets streaming on Twitter. We further performed
a random sampling and obtained 1 million tweets from the collected data.
Subsequently, we filtered out all the tweets that had less than 90% English
characters and encoded the remaining tweets with an ASCII codec. This final
dataset contained 715,262 tweets.

2. News Data: We collected news data from the articles published in Washington
Post for the time period mentioned above. This dataset contained 148,769
news articles.
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All the documents in both the datasets were lowercased and preprocessed
to remove common stop words and punctuation marks. Tweets were further
processed to remove all usernames and URLs. However, we retained all hashtags
as they contain valuable information about events.

4.2 Performance Evaluation

For quantitative comparison of STED against baseline techniques, we use the
following two metrics:

– Perplexity: This is a measure of the degree of uncertainty in fitting test docu-
ments to a language model. It is defined as the negative log-likelihood of test
documents using the trained model.

Perp(D) = exp

{
− ∑

d∈D log p(wd)
∑

d∈D Nd

}

(6)

A lower perplexity indicates better predictive performance. p(wd) is the joint
probability of the word wd occurring in an event-related and non-event related
document d, and Nd is the number of words in document d.

– Topic Coherence: It is measured using Pointwise Mutual Information (PMI),
which is a measure of information overlap between two variables. Prior
research indicates that PMI is well correlated with human judgment of topic
coherence [15].

PMI-Score =
1

EZ

E∑

e=1

Z∑

z=1

∑

i<j

log

{
P (wi, wj)

P (wi)P (wj)

}

(7)

where E = number of events, and Z = number of topics. P (wi) indicates
the proportion of documents containing word wi. Consequently, P (wi, wj)
indicates the proportion of documents containing words wi and wj . A higher
PMI score shows better topic coherence.

4.3 Baseline Methods

We compare the aforementioned metrics on the following models:

1. LDA [6]: An implementation of LDA using collapsed Gibbs sampling.
2. GeoFolk [17]: A spatial topic model that aims to discover topics and their

geographical centers.
3. BGM [18]: A Bayesian Graphical Model to discover latent events from Twit-

ter, that models events with geographical and temporal centers, and their
associated variances. We refer to this model as BGM.

4. STED-T: A variant of our model which uses only tweets to discover events.

4.4 Parameter Setting

To initialize STED, the following hyperparameters are required: α, β, τ , λ, and
δ. These hyperparameters serve as priors for each of the distributions. We used
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symmetric values for these hyperparameters, all of which were derived empiri-
cally. Specifically, we set α = 1, β = 0.01, τ = 0.1, δ = 0.1, and λ = 10. The
priors μt

e and σt
e for temporal mean and variance, as well as μl

r, and Σl
r were set

as specified in Sect. 3.4.
We ran our model, its variant, and BGM, for 50 EM iterations, with 10 Gibbs

sampling steps in each E-step of the iteration. We varied both the number of
events and the number of topics. The other baseline models were run for 500
Gibbs sampling iterations.

4.5 Experimental Results

Quantitative Results. In this section, we discuss the quantitative metrics of
the STED model. We compare the perplexity and topic coherence of our model
against baselines, and also show how the addition of news articles improves the
performance of the model. Since our model is hierarchical, we measure these
metrics by first varying the number of events, fixing the number of topics to 50,
and then varying the number of topics, fixing the number of events to 10.

a. Perplexity: We observe that the perplexity of STED is consistently better
than that of all baseline models (Fig. 3(a)). This shows that event detection
is not merely dependent on words in each document, but also on the spatial
and temporal distribution of the documents. We further observe that STED
outperforms STED-T, indicating that the addition of news data improves the
predictive power of the model.

We also notice that even though BGM performs worse than STED, it’s per-
formance is at-par with STED-T. Therefore, for a dataset such as tweets, that
contains geolocation information, it is better to consider latent regions as a mix-
ture of Gaussian distributions, rather than using predefined regions based on the
coordinates. The rise in perplexity beyond e = 10 can be explained by overfitting
of the BGM model. This trend remains the same even when we vary the number
of topics while keeping the number of events constant (Fig. 3(b)).

It is also interesting to see that the perplexity plots are uniformly flat for most
of the baselines, indicating that the dataset was noisy. Despite the noise, the qual-
itative results show that STED correctly identified events of world importance,
that occurred during the timeframe that the dataset was collected.

b. Topic Coherence: As described in Sect. 4.2, we use PMI as an indicator of
topic coherence. We compare the normalized PMI score of our model to those
of LDA, GeoFolk, and BGM, for the top twenty words in each event (or topic).

Figures 3(c) and (d) show that STED has the highest PMI score. GeoFolk and
LDA perform comparably in topic coherence, i.e., the topics are equally inter-
pretable in both of these models. This is expected since GeoFolk only accounts
for geographical topics and does not consider temporal information. Moreover,
it is trained only on tweets, and not news data. For the same reason, STED
outperforms STED-T. This demonstrates that vocabulary from news articles
improves the readability of topics generated from the model. BGM makes the
implicit assumption that events are concentrated in a specific region, which fails
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for events with more distributed geolocations, such as U.S. Elections or Brexit.
The joint modeling makes STED’s PMI score higher than BGM and GeoFolk.
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Fig. 3. Performance comparison of STED with other baseline methods.

Qualitative Results. For qualitative evaluation of our model, we identify two
events, U.S. Elections 2016 and Brexit. We characterize these events across three
features – latent regions in which these events were prevalent, their temporal
distributions, and their topics.

Tweets about U.S. Elections 2016 were largely localized to North America,
while those about Brexit were concentrated in Europe (Fig. 4a). Since we model
temporal distributions as Gaussian (Fig. 4b), we observe that the event U.S.
Elections 2016 was centered at Oct. 31, 2016 (elections were held on Nov. 8,
2016), and Brexit was centered at June 30, 2016 (actual vote happened on June
23, 2016).

In Fig. 5, we show the top two topics for each of these events, generated
from STED. Each topic is described by its corresponding top-ranking words.
The first topic in Fig. 5(a) describes the Republican campaign with references
to Donald Trump, Jeb Bush, and Ted Cruz, while the second topic details the
Democratic campaign focusing on Hillary Clinton, and Bernie Sanders. The first
topic in Fig. 5(b) mentions the Prime Minister of Britain, David Cameron, and
the second topic illustrates the anti-immigration sentiment prevalent at the time
of the vote.
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(a) Geographic regions (b) Temporal variation

Fig. 4. Geographic regions and temporal variation for events Brexit and U.S. Elections
2016.

(a) U.S. Elections 2016 (b) Brexit

Fig. 5. Word clouds representing the top two topics generated from STED.

5 Conclusion

In this paper, we presented STED, a novel probabilistic topic model to extract
latent events, from a heterogenous corpus of documents from multiple data
sources, such as long and short documents. Because of the growing importance
of social media, which also has location and time information, but limited tex-
tual information, we used Twitter data as one of the data sources in STED.
To overcome the sparsity of textual information available in social media data,
we use a much more elaborate form of data, such as news articles, as other
source. This improves the predictive power of the model, by providing relevant
vocabulary, along with spatial and temporal information. Furthermore, the use
of latent regions helps define events more naturally – geospatially distributed,
but temporally centered. The results obtained on Twitter and news data from
2016 show that the model obtains meaningful results and outperforms state-of-
the-art techniques on several quantitative metrics. We hope that STED can be
an important tool in detecting the different aspects of events, such as disasters,
and help government agencies better plan and mitigate such events.
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Abstract. Time series chains discovery is an increasingly popular research area
in time series mining. Previous studies on this topic process fixed-length time
series. In this work, we focus on the issue of all-chain set mining over the
streaming time series, where the all-chain set is a very important kind of the time
series chains. We propose a novel all-chain set mining algorithm about
streaming time series (ASMSTS) to solve this problem. The main idea behind
the ASMSTS is to obtain the mining results at current time-tick based on the
ones at the last one. This makes the method more efficiency in time and space
than the Naïve. Our experiments illustrate that ASMSTS does indeed detect the
all-chain set correctly and can offer dramatic improvements in speed and space
cost over the Naive method.

Keywords: Streaming time series � Time series chains � All-chain set

1 Introduction

Time series motifs are repeated subsequences in a longer time series [1]. While time
series motifs have been in literature for 15 years [2–4], they recently have been a topic
of great interest in the time series data mining community, and have been used as sub-
routine in higher-level analytics, including classification, clustering, visualization [5]
and rule discovery [6]. Moreover, they also have been applied to domains as diverse as
severe weather prediction, medicine [7] and seismology [8]. However, from a
knowledge discovery viewpoint, a more interesting problem is the description on the
evolving of motifs. We call such descriptions time series chains (TSCs) [9–11]. TSCs
are introduced by Zhu et al. in [9] firstly, and defined as the temporally ordered set of
subsequence patterns. TSCs can capture the evolution of systems, and help predict the
future. As such, they potentially have implications for prognostics. In [9], Zhu et al.
show the differences between TSCs and other related researches, including story chain
in text domain [12], periodicity in time series [13], and concept drift [14]. In [10], Zhu
et al. further discuss the issue of uniform scaling time series chain mining.

The current TSCs mining algorithms work in a one-time fashion: mine the current
entire time series and obtain results set, because the length of time series is pre-
determined. However, in many applications, time series arrive continuously, and the
TSCs of time series at each time-tick need to be obtained. The most fundamental
support needed in these applications is to require an efficient TSCs mining mechanism
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to monitor the streaming time series. We can take the current TSCs mining algorithm to
handle the time series at each time-tick to solve this problem. Unfortunately, the time
complexity of this method is high. Thus, the problem of TSCs mining over streaming
time series still remains unsolved.

In this paper, we address the problem of efficiently monitoring the streaming time
series based on the all-chain set mining, where the all-chain set is a very important kind
of the TSCs, and defined as a set of all anchored TSCs within time series that are not
subsumed by another chain in [9–11]. To the best of our knowledge, this is the first
study that investigates all-chain set mining mechanism for monitoring streaming time
series. Intuitively, this problem is equivalent to all-chain set mining in an online
fashion. We design all-chain set mining algorithm about streaming time series
(ASMSTS), by which the all-chain set of streaming time series can be obtained rapidly
and accurately. The ASMSTS is developed from the main idea that obtaining the
mining results at current time-tick based on the ones at last one. Our experiments show
that ASMSTS is more efficiency than the Naive in time and space cost.

The rest of the paper is organized as follows. Related work on the all-chain set is
provided in Sect. 2. Notations and problem definition are provided in Sect. 3. The
detail of ASMSTS algorithm is explained in Sect. 4. Experiments are demonstrated in
Sect. 5. Finally, the conclusion and future work are discussed in Sect. 6.

2 Related Work

Our review of related work is brief. To the best of our knowledge, there are only three
known works [9–11] related to our research. Zhu et al. [9, 11] introduced TSCs for the
first time. They proposed ATSC algorithm to compute the anchored time series, and
ALLC algorithm to compute both the all-chain set and unanchored time series chain.
Zhu et al. also introduced uniform scaling time series chain in [10]. They proposed
UniformScaleChain algorithm to compute the scaling time series chain. However, none
of these works consider the TSCs mining over the streaming time series, including the
all-chain set on-line mining. Thus, all-chain set mining over the streaming time series
problem still remains unsolved.

3 Notations and Problem Definition

3.1 Notations

In this section, we review some related definitions (Definitions 3–12) in [9], and create
some new ones (Definitions 1–2 and 13–16).

Definition 1: A streaming time series X is a discrete sequence of real-valued numbers
xi : X ¼ x1; x2; . . .; xn; . . .; where xn is the most recent value. Notice that n increases
with each new time-tick, and STSC,n is the all-chain set mining results on X of length n.

Definition 2: A new (old) streaming time series at time-tick n is the time series after
(before) the arrival of the xn.
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Definition 3: A subsequence Xi,m of X is a continuous subset of the values from X of
length m starting from position i. Formally, Xi;m ¼ xi; xiþ 1; . . .; xiþm�1, where 1 � i
� n� mþ 1.

Definition 4: A distance profile Di of time series X is a vector of the Euclidean distance
between a given Xi,m and each subsequence in X. Formally, Di ¼ di;1; di;2; . . .;

�

di;n�mþ 1�, where di,j is the distance between Xi,m and Xj,m.

Definition 5: A left distance profile DLi of X is a vector of the Euclidean distances
between a given Xi,m and each subsequence that appears before Xi,m in X. Formally,
DLi ¼ di;1; di;2; . . .; di;i�m=4

� �
.

Definition 6: A right distance profile DRi of time series X is a vector of the Euclidean
distances between a given query subsequence Xi,m and each subsequence that appears
after Xi,m in X. Formally, DRi ¼ di;iþm=4; di;iþm=4þ 1; . . .; di;n�mþ 1

� �
.

Definition 7: A left (or right) nearest neighbor of Xi;m; LNN Xi;m
� �

(or RNN Xi;m
� �

)is a
subsequence that appears before(or after Xi,m) in X, and is most similar to Xi,m. For-
mally, LNN Xi;m

� �
or RNN Xi;m

� �� � ¼ Xj;m if di;j ¼ min DLið Þ ormin DRið Þð Þ.
Definition 8: A left (or right) matrix profile PL of X is a vector of the z-normalized
Euclidean distance between each Xi,m and its left (or right) nearest neighbor in
X. Formally, PL ¼ min DL1ð Þ;min DL2ð Þ; . . .;min DLn�mþ 1ð Þ½ � (or PR ¼ min DR1ð Þ;½
min DR2ð Þ; . . .;min DRn�mþ 1ð Þ�) where DLi (or DRi) is a left (or right) distance profile
of X.

Definition 9: A left (or right) matrix profile index IL of X is a vector of integers:
IL ¼ IL1; IL2; . . .; ILn�mþ 1½ � (or IR ¼ IR1; IR2; . . .; IRn�mþ 1½ �), where ILi or IRið Þ ¼
j if LNN Xi;m

� �
or RNN Xi;m

� �� � ¼ Xj;m.

Definition 10: A time series chain of X is an ordered set of subsequences: TSC ¼
Xc1;m;Xc2;m; . . .;Xck;m

� � ðc1� c2� . . .� ckÞ, such that for any 1� i� k � 1, we have
RNN Xci;m

� � ¼ Xc iþ 1ð Þ;m and LNN Xcðiþ 1Þ;m
� � ¼ Xci;m. We denote k the length of TSC.

Note that for facilitating analysis, the minimum value of k is set to 1 in our work.

Definition 11: An anchored time series chain of X starting from Xj,m is an ordered set
of subsequences: TSCj;m ¼ Xc1;m;Xc2;m; . . .;Xck;m

� � ðc1� c2� . . .� ck; c1 ¼ jÞ, such
that for any 1� i� k � 1, we have RNN Xci;m

� � ¼ Xc iþ 1ð Þ;m, and LNN Xc iþ 1ð Þ;m
� � ¼

Xci;m.

Definition 12: An all-chain set STSC of X of length n is a set of all anchored time series
chains within X that are not subsumed by another chain.

Assume that there are k old subsequences (subsequences of old streaming time
series) whose RNNs change after xn comes, and these subsequences form Stem,n. Given
the i-th element of STSC;n STSC;n ið Þ, the length of STSC;n ið Þ Slenn;i, and starting position of
j-th element of STSC;n ið Þ sp STSC;n i; jð Þ� �

, we have following definitions.
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Definition 13: A pre-result position vector PPVi of X of length n at current time- tick
is used to record starting position of each element of STSC,n(i). Formally, PPVi ¼
sp STSC;n i; 1ð Þ� �

; sp STSC;n i; 2ð Þ� �
; . . .; sp STSC;n i; Slenn;i

� �� �� �
, where sp STSC;n i; jð Þ� �

\sp
ðSTSC;nði; jþ 1ÞÞ.
Definition 14: An update position vector UPV of X of length n at current time-tick is
used to record starting position of each element of Stem,n. Let Stem,n(i) be the i-th
element of Stem;n; STlenn be the number of elements of Stem;n; sp Stem;n ið Þ� �

be the
starting position of the i-th element of Stem,n. Formally, UPV ¼ sp Stem;n 1ð Þ� �

;
�

sp Stem;n 2ð Þ� �
; . . .; sp Stem;n STlennð Þ� ��, where sp Stem;n ið Þ� �

\sp Stem;n iþ 1ð Þ� �
.

Assume that the length of streaming time series X is n at current time-tick.

Definition 15: A temporary vector of PPVi TVPi is a vector of length n−m. We initial
it with all zeros firstly, and then set all elements whose indexes are the values of PPVi

elements to 1.

Definition 16: A temporary vector of UPV TVU is a vector of length n−m. We initial it
with all zeros firstly, and then for the vector, we set all elements whose indexes are the
values of UPV elements to 1.

3.2 Problem Definition

Problem Statement (all-chain set mining over streaming time series). Given a
streaming time series X, where xn is the most recent value, the subsequence length m,
process the new element xn and report all-chain set in the X as early as possible. In other
words, our work is to get all-chain set mining results of current streaming time series
after each new time series element comes.

4 Proposed Method

4.1 Naive Algorithm

For the issue of all-chain set mining over X, the most straightforward solution would be
to apply LRSTROM and ALLC algorithms in [9] to X when new element xn arrives.
Note that after each xn comes, the PL, PR, IL and IR of the new streaming time series
are all needed to be rebuilded in the LRSTROM. We refer to this method as Super-
Naive. Obviously, not only is this method expensive, but it also cannot be extended to
the streaming case. A better solution is after xn comes, we can get the PL, PR, IL and IR
of the new streaming time series by updating the ones of the old streaming time series
incrementally based on DL about Xn−m+1,m firstly, then the ALLC is taken to handle the
new streaming time series. This is because by Definitions 4–9, we have after xn comes,
the PL and IL of old streaming time series remain unchanged. We refer to this method
as Naive. Overall, the Super-Naive and Naive are all extremely expensive, and cannot
be extended to the streaming case.
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4.2 All-Chain Set Mining Algorithm About Streaming Time Series
(ASMSTS)

Basic Idea. The ASMSTS is based on the idea that obtaining mining results at current
time-tick based on the ones at last one. Specifically, we begin by stating some prop-
erties from the analysis for all-chain set mining on the X of length n.

Property 1. Given streaming time series X of length n, subsequence Xi,m, we have that
the RNN(Xi,m) and LNN(Xi,m) are both unique if these two values exist.

Property 2. Given any two anchored time series chains ATSi;ATSj 2 STSC;n; we have
that there no exists any common subsequence in ATSi and ATSj.

Property 3. Given streaming time series X, all-chain set of X STSC,n, subsequence Xi,m,
we have Xi,m exists and only exists in one anchored time series chain of STSC,n.

Theorem 1. Assume that there are k old subsequences whose RNNs change after xn
comes, and these subsequences form Stem,n. We can get STSC,n by following steps:

1. if k = 0, after adding Xn−m+1,m into the STSC,n-1, the STSC,n-1 is exactly the STSC,n.
2. if k > 0, For each subsequence Xq,m of the Stem,n,

Firstly, Searching. Find the anchored time series chain where Xq,m is in the STSC,n-1;
Secondly, Splitting. Split the anchored time series chain into two halves, the first

half ends with Xq,m, while the rest of the anchored time series chain is the second half.
Thirdly, Appending. For the new subsequence Xn−m+1,m which caused by the arrival

of xn, if LNN of it is Xq,m, append Xn−m+1,m at end of the first half after the splitting step.
Finally, Adding. After all elements of Stem,n are handled according to the previous

three steps, if Xn−m+1,m is still not added at end of any subsequence, then add it into the
STSC,n-1. After these four steps above, the STSC,n-1 is exactly the STSC,n.

Theorem 1 can be inferred easily based on Definitions 10–12. Using Theorem 1, we
can obtain the all-chain set mining results of streaming time series at current time-tick
based on the ones at last time-tick.

Optimal Strategy. Theorem 1 needs to scan the STSC,n-1 STlenn times in all at each
time-tick. By Properties 1–3 and Definitions 11–12, we have that for each element of
original STSC,n-1, if we have learned which elements of Stem,n are in it, we just need to
scan STSC,n-1 once to get STSC,n. Theorem 2 shows specific steps.

Theorem 2. After the new streaming time series element xn comes in Theorem 1, if
there exist k (k > 0) elements in Stem,n, a more simple method is as follows:

For each anchored time series chain of the original STSC;n�1; STSC;n�1 ið Þ, assume
that there exist ri subsequences of Stem,n in it,

1. If ri = 0, the STSC,n-1(i) remains unchanged;
2. If 0\ri � k, completing following steps:

Firstly, Splitting. Split the STSC,n-1(i) into ri+ 1 parts. The front ri parts end with
these ri subsequences respectively, while the rest of the STSC,n-1(i) is the last part.
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Secondly, Appending. If LNN of Xn−m+1,m is any one of these ri subsequences, then
add Xn−m+1,m at the end of the subsequence;

Thirdly, Adding. After all elements of the original STSC,n-1 are handled according to
the previous two steps, if Xn−m+1,m is still not added at the end of any subsequence, then
one additional new element Xn−m+1,m should be added into the current STSC,n-1.

After these three steps, the current STSC,n-1 is exactly the original STSC,n.
Theorem 2 starts with the premise that for each STSC,n-1(i), we have learned which

subsequences of Stem,n exist in it. However, it is still a rather time consuming work to
finish this premise. Theorem 3 can be used to facilitate this process.

Theorem 3. Let dot product of TVPi and TVU be RVi. For each element of RVi RVi(j),
if RVi(j) = 1, then in STSC,n-1(i), we can find the subsequence starting with the element
whose index is j in old streaming time series, and the subsequence also exists in Stem,n.
These subsequences are all common elements between STSC,n-1(i) and Stem,n.

Theorem 3 can be inferred easily by Definitions 15–16. We take the example of
Ref. 9 to illustrate the Definitions 13–16 and Theorem 3.

Example 1: Given the snippet of streaming time series: 47, 32, 1, 22, 2, 58, 3, which is
the old one. The new coming element is 36. Figure 1 shows the illustration.

As shown in Fig. 1(a)(b), when 36 comes, the old streaming time series is: 47, 32, 1,
22, 2, 58, 3, and STSC;7 ¼ 47� 58; 32� 22; 1� 2� 3f g. The arrival of 36 changes
RNNs of 32, 22, 58 and 3, so Stem,8 = {32,22,58,3}. Figure 1(c) shows the transformation
from PPV to TVP, and the construction of TVU. Consider 47� 58 of STSC,7, by Defi-
nitions 13 and 15, we have PPV1 = [1, 6], TVP1 = [1,0,0,0,0,1,0]. Similarly, TVP2 and
TVP3 can both be obtained. Consider Stem,8, by Definition 14, we haveUPV = [2, 4, 6, 7].

Fig. 1. Illustration of Definitions 13–16 and Theorem 3.
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Similarly, we can get TVU based onUPV. Figure 1(d) shows Theorem 3. For example, by
RV1, we have 58 is the common subsequence between 47� 58 and Stem,8

all-chain Set Mining Algorithm about Streaming Time Series (ASMSTS)
Architecture and Workflows of the ASMSTS. The ASMSTS algorithm is proposed
based on Theorems 1–3. Figure 2 illustrates the architecture of the ASMSTS.

As shown in Fig. 2, the ASMSTS consists of three components:

1. A judge module that performs different operations based on different conditions.
2. An input pre-processing module that buffers streaming time series, and maintains

PR and Vtem. The PR is right matrix profile on the old streaming time series, and the
Vtem consists of z-normalized Euclidean distance between Xn−m+1,m and each sub-
sequence of new streaming time series.

3. A kernel processing module that consists of the intermediate results unit where
outputs of input pre-processing module are stored, the judge unit which is used to
determine whether the UPV is null, the Theo23Pro unit where Theorem 2 and the
splitting, appending and adding steps of Theorem 3 work, and STSC,n-1.The outputs
of input pre-processing module include UPV, LNN of Xn−m+1,m, and UPR (updated
PR).

Figure 2 also illustrates the procedure of the ASMSTS. Given streaming time series
X, subsequence length m, when new streaming time series element xn arrives:

Step 1: if n < m, Put xn into time series buffer, and move on to xn+1;
Step 2: if m� n\5m=4, Put Xn−m+1,m and xn into STSC,n-1 and the time series buffer
respectively, then move on to xn+1 after outputting contents of current STSC,n-1. Note
that the current STSC,n-1 is exactly the STSC,n;
Step 3: if n� 5m=4, perform Steps 3–11. Put xn into time series buffer firstly, and
then calculate z-normalized Euclidean distance between Xn−m+1,m and all subse-
quence of new streaming time series. These distances form a vector Vtem of length n
−m + 1. Let all elements of Vtemwhose indexes are in the exclusion zone of Xn−m+1,m

be infs [10, 15];

Fig. 2. Architecture and workflows of the ASMSTS
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Step 4: after adding one element whose value is infs at the end of PR which is on
the old streaming time series, the UPR can be obtained by comparing PR with Vtem

as the LRSTROM does. During this progress, Stem,n and the LNN of Xn−m+1,m can
also be obtained. Furthermore, by Definition 14 and Stem,n, the UPV can be
obtained;
Step 5: update PR of the input pre-processing module with the UPR to obtain the
PR of new streaming time series;
Step 6: determine whether the UPV is null;
Step 7: if UPV is an empty vector, after adding a new element Xn−m+1,m into the
STSC,n-1, output contents of the current STSC,n-1 firstly, and then move on to t xn+1.
Steps 8–10: if UPV is not empty, for each element of STSC,n-1, process it by
Theo23Pro firstly, then replace the element with results of Theo23Pro.
Step 11: output contents of the current STSC,n-1, and then move on to the xn+1. Note
that the current STSC,n-1 is exactly the STSC,n.

all-chain Set Mining Algorithm about Streaming Time Series (ASMSTS). The ASMSTS
algorithm is given in Fig. 3.

In lines 2 –6, the length of current streaming time series is less than m, so we just
need to put xn into time series buffer. In lines 7–14, any two subsequences of X at
current time-tick are trivial match, and each subsequence is a time series chain of length
1. All these subsequences form all-chain set of X. We store each subsequence in the
form of vector of length 1, and initialize the vector with starting position of the
subsequence. In lines 15–34, after xk comes, there are subsequences which are not
trivial match with Xn−m+1,m in X, so we can construct a vector of length k-m + 1 Vtem

with z-normalized Euclidean distances between Xn−m+1,m and all subsequences of X;
then, as LRSTROM does, we can get updated PR, UPV, LNNn−m+1,m based on Vtem and
PR; thirdly, deal with each element of STSC,n-1 based on Steps 8–10 of the ASMSTS
workflows (lines 28–33). After these operations, STSC,n-1 is exactly the STSC,n (line 34).

We still take the example of Ref. 9 to illustrate how the ASMSTS works.

Example 2: Given the snippet of streaming time series: 47, 32, 1, 22, when 47 comes,
the streaming time series buffer is {47}, and the STSC,1 is {47}, PR = [inf].

When 32 comes, the time series buffer = {47,32}, initial PR ¼ inf ; inf½ �;Vtem ¼
15; inf½ �. Comparing initial PR with Vtem as LRSTROM does, we have UPR ¼
15; inf½ �;UPV ¼ 1½ �; LNN2;1 ¼ 47. After updating PR with UPR;PR ¼ 15; inf½ �. As
STSC,1 = {47}, so PPV1 = [1]. By Definitions 15–16 and Theorems 2–3, we have
RV1 ¼ TVP1: � TVU ¼ 1½ �, and STSC;2 ¼ f47� 32g. Similarly, when 1 comes, the
time series buffer = {47, 32, 1}, STSC;3 ¼ f47� 32� 1g, and PR = [15, 31, inf].

When 22 comes, the time series buffer = {47, 32, 1, 22}, initial PR ¼ 15; 31;½
inf ; inf �;Vtem ¼ 25; 10; 21; inf½ �. Comparing initial PR with Vtem as LRSTROM does,
we have UPR ¼ 15; 10; 21; inf½ �;UPV ¼ 2; 3½ �; LNN4;1 ¼ 32. After updating PR with
UPR, the PR ¼ 15; 10; 21; inf½ �. As STSC;3 ¼ f47� 32� 1g, PPV1 = [1–3]. By
Definitions 15–16 and Theorems 2–3, we have RV1 ¼ TVP1: � TVU ¼ 0; 1; 1½ �, and
STSC;4 ¼ f47� 32� 22; 1g.
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Fig. 3. ASMSTS algorithm
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Complexity Analysis. For each new xn, the ASMSTS just needs to traverse the STSC,n-1
once, so the time overhead of ASMSTS at each time-tick is 2*O(n), where the first and
second O(n) are time costs of Vtem construction and STSC,n-1 traversing respectively.
The space cost of ASMSTS is 3*O(n), as X, PR and STSC,n-1 are all need to be stored.

5 Experiments

Our experiments were conducted on an Intel i7-4710MQ 2.5 GHz with 4 GB of
memory, running windows 7. The experiments were designed to answer the following
questions: 1. how successful is ASMSTS in detecting all-chain set of streaming time
series? 2. how does ASMSTS scale with the lengths of streaming time series and
subsequence in terms of the computational time and memory space?

5.1 Dataset

Penguinshort and TiltABP are both the data sets of [9]. The Penguinshort is a part of
Penguin dataset collected by attaching a small multi-channel data-logging device to the
Magellanic penguin, and consists of 900 data points. TiltABP is the patient’s arterial
blood pressure that is a response to changes in position induced by a tilt table. The full
data consists of 40000 data points. All these data set are available in [16].

5.2 Discovery of All-Chain Set

The ALLC proposed in [9] can detect all-chain set of time series, so the Super-Naive
can be taken as a criterion. Given any dataset, if ASMSTS has the same results as the
Super-Naive, we have the ASMSTS is effective in discovering all-chain set of
streaming time series. Table 1 shows the details of the experiment results. Given a data
set DS, we define the SR(similarity rate) of the algorithm A relative to algorithm B on
DS as SRA;B ¼ jResultA DSð Þ \ResultB DSð Þ =j jResultA DSð Þj. The ResultA(DS) and
ResultB(DS) are the results of algorithm A and B on DS respectively, and the
ResultA DSð Þj j and ResultB DSð Þj j are the elements number of ResultA(DS) and
ResultB(DS) respectively. Obviously, if SRA,B= SRB,A holds, we have the results of
A and B algorithms on DS are the same. Note that SRAS;SN ; SRSN;AS; SRN;SN , and SRSN,N

of Table 1 are the abbreviated form of SRASMSTS;Super�Naive, SRSuper�Naive;ASMSTS,
SRNaive;Super�Naive and SRSuper�Naive;Naive respectively.

As we can see in Table 1, the results of these three algorithms are all the same. So
we have ASMSTS can discover all-chain set of the streaming time series.

Table 1. Results of all-chain set mining results

Dataset Size of dataset m SRAS,SN SRSN,AS SRN,SN SRSN,N

penguinshort 900 28 1 1 1 1
TiltABP 40000 200 1 1 1 1

Discovering All-Chain Set in Streaming Time Series 315



5.3 Performance

We did experiments to evaluate the efficiency and to verify the complexity of the
ASMSTS. The space cost and wall clock time are the average space cost and pro-
cessing time needed to carry out the algorithm for each time-tick respectively.

Figure 4 compares ASMSTS and other two implementations in terms of compu-
tation time based on TiltABP. The default value of the dataset sizes and m are 40000
and 200 respectively.

From Fig. 4(a), we can observe the time costs of these three methods decrease as
m increases. This is because the larger subsequence length is, the less subsequences
needed to be handled are. In addition, we can observe the running time of ASMSTS is
less than the ones of other two algorithms, which also demonstrates the ASMSTS is
efficiency in terms of execution time. From Fig. 4(b), we can also observe ASMSTS
can identify all-chain set much faster than other two methods, which also demonstrates
the ASMSTS is more efficiency in running time than other two ones.

Figure 5 compares ASMSTS and other implementations in terms of space cost
based on TiltABP. The default value of the dataset sizes and m are 40000 and 200
respectively in this experiment.

(a) Running time VS m (b) Running time VS dataset size

Fig. 4. Performance study based on computation time

(a) Space cost VS m (b) Space cost VS data set size

Fig. 5. Performance study based on space cost
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Figure 5(a) shows the space costs of each algorithm decreases as m increases. This
is because the larger m is, the fewer elements of PL, IL, PR, and IR are. Figure 5(b)
shows the space cost of each algorithm increases monotonically with the sample size
increasing. This is because the larger sample size is, the larger sizes of PL, IL, PR, and
IR are. Figure 5(a)(b) also show the space cost of ASMSTS is less than the ones of
other two ones, which demonstrates ASMSTS is more efficiency in space cost than
them.

6 Conclusion and Future Work

In this paper, we introduced the problem of all-chain set mining over streaming time
series, and proposed ASMSTS, a new fast method to solve this problem. The ASMSTS
outperforms the two Naives by a wide margin in time and space, and guarantees the
same results as the ones of the Naive. The experiments show ASMSTS works as
expected. There are many interesting research problems related to all-chain set mining
over streaming time series that should be pursued further. For example, further
improving the ASMSTS, the all-chain set mining based on the damped window are all
interesting problems for future research.
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Abstract. The impact from past to future is a vital feature in modelling
time series data, which has been described by many point processes, e.g.
the Hawkes process. In classical Hawkes process, the triggering kernel is
assumed to be a deterministic function. However, the triggering kernel
can vary with time due to the system uncertainty in real applications. To
model this kind of variance, we propose a Hawkes process variant with
stochastic triggering kernel, which incorporates the variation of trigger-
ing kernel over time. In this model, the triggering kernel is considered
to be an independent multivariate Gaussian distribution. We derive and
implement a tractable inference algorithm based on variational auto-
encoder. Results from synthetic and real data experiments show that
the underlying mean triggering kernel and variance band can be recov-
ered, and using the stochastic triggering kernel is more accurate than the
vanilla Hawkes process in capacity planning.

Keywords: Hawkes process · Stochastic triggering kernel

1 Introduction

Point process is a common statistical model in describing the pattern of event
occurrence in many real world applications, such as a series of earthquakes and
the order book in finance. Mutual dependence between events is an important
factor in describing the clustering effect in point process. A variety of models
are proposed for the dependence, such as Hawkes process (HP) [10] and correct-
ing model [16]. Among those models, HP is the most extensively used one for
modelling the self-exciting phenomenon where the influence decays over time.

HP has been used to estimate the intensity (rate of event occurrence) by
accumulating the triggering effect from past events. As an intensity estimator,
it has been used widely in social networks [18], crime [14] and financial engi-
neering [8]. The triggering kernel in most HP implementations [8] is modelled as
a deterministic function. In the real world, however, the actual triggering effect
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from each event can vary because of the system uncertainty and the deterministic
triggering kernel is rather limited in capability to model the variation. To model
this phenomenon, we introduce variance into the triggering kernel to enable the
triggering kernel of HP to be stochastic. We visualize it as a band addition to
the triggering kernel (see the example in Fig. 1a).

The importance of the band may be ignored in real applications, because
the learned average triggering kernel usually has the largest likelihood to fit the
observed data. As a result, when we do prediction, the vanilla HP would even-
tually be used. However, as we can see later, this band is meaningful for the
risk-based planning. For example, when capacity planning is performed in the
taxi allocation problem with HP [7], the arriving rate of pickup events is pre-
dicted from historic pickups. Based on the prediction, vehicles can be allocated
to an area to cover the pickup need (i.e. #pickups ≤ #vehicles). If the taxi
company uses the intensity �λ� learned from vanilla HP as the expected rate of
pickups to satisfy, about 50% probability that the pickup need can be satisfied.
To plan for a higher probability, more vehicles need to be sent, e.g. for extra
probability Pm = Poisson(x ≤ M |λ) − Poisson(x ≤ λ|λ), extra m = �M − λ�
vehicles need to be sent. However, in Sect. 6, when there is a significant vari-
ance on the triggering effect, sending m vehicles can only satisfy pickup need
with extra probability less than Pm, which will lead to a decision with insufficient
capacity. Using our stochastic triggering kernel, one can obtain extra information
about the distribution of the triggering effect, so the insufficient capacity could
be compensated. The similar issue could happen in other HP-based capacity
planning applications, as long as there is a significant variance on the triggering
kernel.

We propose a HP variant with stochastic triggering kernel (HP-STK), aimed
at quantifying the variance of triggering kernel so as to overcome the problem
mentioned above. Based on Gaussian white noise, we consider two cases for the
variance: homoscedasticity (i.e. constant variance) and heteroscedasticity (i.e.
time-varying variance). Then we propose a tractable inference method to replace
the original maximum likelihood estimation (MLE) and apply the inference of
both cases to the variational auto-encoder (VAE) [11] framework.

To our best knowledge, no work has been done before to model the variance
of triggering kernel in HP. Specifically, our work makes the following contribu-
tions: (1) we propose a new HP variant named HP-STK, in which the variance
of triggering kernel is incorporated to overcome the underestimation problem
in capacity planning; (2) two special cases are considered: homoscedasticity
and heteroscedasticity; (3) the uniform-trigger-kernel-based MLE is proposed
to replace the original MLE and a VAE-based algorithm is used for inference.

2 Related Work

The model proposed in this paper is motivated by the Cox process [2]. The Cox
process, also known as the doubly stochastic Poisson process, is a stochastic
process which is an extension of a Poisson process where the intensity function
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is itself a stochastic process. It has been widely used in many applications, such
as astronomy [9] and neuroscience [3]. A common version of Cox process is the
Gaussian Cox process [15], where the intensity function is modeled as a Gaussian
process. However, the inference is intractable because of non-conjugacy and inte-
gration over infinite-dimensional random function. Different inference algorithms
based on Markov chain Monte Carlo (MCMC) or Laplace approximation have
been proposed in [1,4]. In Cox process, the randomness is added to the intensity,
but in this paper the randomness is on triggering kernel to reduce dimensions.

There are also HP extensions to model the randomness of triggering kernel.
For example, Dassios [5] proposed a stochastic HP, where jumps in the intensity
function are considered to be independent and identically distributed (i.i.d.)
random variables. Lee [12] extended all jumps to a stochastic process and solved
it using stochastic differential equation. Both works focus on stochastic jumps,
but our proposed model considers the whole triggering kernel as a stochastic
process which is more generalized.

Another related direction is VAE [11]. VAE has a similar architecture with
auto-encoder, but makes an assumption about the distribution of latent vari-
ables. VAE is a generative model, which combines ideas from neural network
with statistical inference. It can be used to learn a low dimensional represen-
tation Z of high dimensional data X. It assumes that the data is generated
by a decoder P (X|Z) and the encoder is learning an approximation Q(Z|X)
to the posterior distribution P (Z|X). It uses the variational method for latent
representation learning, which results in a specific loss function. In this paper
we apply the loss of VAE into our model.

3 Proposed Model

3.1 Hawkes Process

A Hawkes process is a stochastic process, whose realization is a sequence of
timestamps {ti} ∈ [0, T ]. Here, ti stands for the time of occurrence for the
i-th event and T is the observation duration for this process. An important
way to characterize a HP is through the definition of a conditional intensity
function that captures the temporal dynamics. The conditional intensity function
is defined as the probability of event occurring in an infinitesimal time interval
[t, t + dt) given the history:

λ(t) = lim
Δt→0

P (event occurring in [t, t + Δt)|Ht)
Δt

(1)

where Ht = {ti|ti < t} are the historical timestamps before time t. Then the
specific form of intensity for HP is:

λ(t) = μ +
∑

ti<t

γ∗(t − ti) (2)
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where μ > 0 is the baseline intensity which is a constant, and γ∗(·) is the
triggering kernel. In most cases, the triggering kernel is assumed to be an expo-
nential decay function. The summation of triggering kernels explains the nature
of self-excitation, which is the occurrence of events in the past will intensify the
intensity of events occurring in the future. Then the log-likelihood function can
be expressed using the above conditional intensity as:

log L =
n∑

i=1

log λ(ti) −
∫ T

0

λ(t)dt (3)

3.2 HP with Stochastic Triggering Kernel

In HP-STK, we target to introduce variance into the triggering kernel of HP. We
define the HP-STK model and see what is the variance of triggering kernel.

Definition 1. HP-STK is a Hawkes process whose triggering kernel after event
ti can be written as a sample drawn from a stochastic process with Δt ∈ R

+ as:

γi(Δt) = γ̄(Δt|ξ) + εi(Δt), where εi(Δt) ∼ P (ε(Δt)|θ) (4)

where γi(Δt) is the triggering kernel after event ti, γ̄(Δt|ξ) is a deterministic
triggering kernel with parameters ξ, εi(Δt) is a noise function for γi(Δt) and
P (·) is a distribution over function with parameters θ.

Naturally, P (ε(Δt)|θ) can be defined as a Gaussian process. Here for simplic-
ity P (ε(Δt)|θ) is defined as an independent multivariate Gaussian distribution
N(ε(Δt)|0, σ2(Δt) · I) (expressed in finite dimensions) where I is the identity
matrix which means there is no covariance. γ̄(Δt|ξ) and σ2(Δt) are both defined
to be in parametric form. In conclusion, we define γ̄(Δt|ξ) = α exp(−βΔt),
σ2(Δt) = σ2

c in homoscedastic case and σ2(Δt) = (ασ exp(−βσΔt))2 in het-
eroscedastic case. Here we define the σ(Δt) to be an exponential decay function
because in many scenarios it would be common to have a high variance just after
a triggering event and have a lower variance afterwards, but in fact σ(Δt) can be
extended to other cases, e.g. linear decreasing variance or periodic variance. It
can be seen that the homoscedasticity is just a special case of heteroscedasticity
by setting: ασ = σc and βσ = 0.

The intensity of HP-STK can be written as:

λ(t) = μ +
∑

ti<t

(α exp(−β(t − ti)) + εi(t − ti)) (5)

To avoid the superposition of εi(t − ti) to explode, εi(Δt) and γ̄(Δt) are both
defined on the support of [0, Tγ ] and 0 afterwards. In the theory of point process
the intensity has to be positive, so λ(t) is restricted to (λ(t))+ (i.e. λ(t) = 0 if
λ(t) < 0). Because the γi(Δt) is subject to Gaussian distribution: see (4), so
the λ(t) is also subject to Gaussian distribution: see (5) and (λ(t))+ is subject
to a truncated Gaussian distribution. In real applications, the triggering kernel
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variance σ2(Δt) is always small compared with the intensity, so the truncated
Gaussian distribution can be seen as a Gaussian distribution approximately.
As we can see later, using Gaussian to describe γi(Δt) introduces computation
convenience to the inference.

3.3 Stability Condition

The stability condition of Hawkes process has been proposed in [10]: the Hawkes
process Pt is stable if and only if

∫ ∞
0

γ∗(·) < 1.
Because γi(·) is subject to Gaussian distribution in our model, the

∫ ∞
0

γi(·)
is also subject to Gaussian distribution:

∫ ∞

0

γi(·) ∼ N(x|
∫ ∞

0

α exp(−βt)dt,

∫ ∞

0

σ2(t)dt) (6)

where Δt is replaced by t and x is the integral value.

Definition 2. HP-STK is probabilistically stable with P (
∫ ∞
0

γi(·) < 1).

For homoscedasticity, in order to avoid the
∫ ∞
0

σ2
cdt to explode, γi(Δt) is defined

on the support of [0, Tγ ]. Given exp(−βTγ) ≈ 0, we have the stability probability:

Phomo =
∫ 1

−∞
N(x|α

β
, σ2

cTγ)dx (7)

For heteroscedasticity, the stability probability is:

Phetero =
∫ 1

−∞
N(x|α

β
,

α2
σ

2βσ
)dx (8)

The probabilistic stability of homoscedastic HP-STK is constrained by Tγ .
Therefore, when Tγ is undetermined, heteroscedastic HP-STK is recommended.

4 Inference

4.1 Inference with Uniform Triggering Kernel

Given a set of observed data, the goal of inference is to evaluate these parameters:
μ, α, β, σc for homoscedastic case, and μ, α, β, ασ, βσ for the heteroscedastic
case. We use MLE to infer parameters where the log-likelihood is:

log L({ti}n
i=1|μ,Θ)

= log
∫

γn

· · ·
∫

γ2

∫

γ1

L({ti}n
i=1|μ, γ1, γ2, · · · , γn)

P (γ1|Θ)P (γ2|Θ) · · · P (γn|Θ)dγ1dγ2 · · · dγn

(9)

where the Θ stands for θ and ξ in (4). However, this log marginal likelihood is
complicated to work out because of multiple integrals. To solve this problem, an
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intuitive way is to assume γ1 = γ2 = · · · = γn = γ (i.e. the uniform triggering
kernel). Then the log-likelihood can be rewritten as:

log L({ti}|μ,Θ) = log
∫

γ

L({ti}|μ, γ) · P (γ|Θ)dγ (10)

It is worth noting that, given a set of observed data, the estimation with the
uniform triggering kernel is equivalent to the original one. This is proved by (9)
and (10), because we get the same log L({ti}) with respect to μ,Θ.

After transforming (9) to (10), we can directly infer the parameters using
Monte Carlo integration. However, we still need to calculate the likelihood which
is not numerically stable. To solve this problem, we propose an inference method
based on VAE.

4.2 Inference with VAE

In fact, our proposed model can be considered as a VAE to some extent. So the
loss function [11] of VAE can be applied to our model for inference. The loss
function of VAE is the negative log-likelihood with a regularizer:

L = −E[log L({ti}|μ, γ(·))] + κ · DKL[P (γ(·)|Θ)‖Q(γ(·))] (11)

where the first term is the expectation of log-likelihood of {ti} given γ(·). The
expectation is taken with respect to the encoder’s distribution over γ(·). This
term encourages the decoder to learn to construct the observed sequence data.
If the decoder’s output does not fit the data well, it will incur a large cost in
the loss function. The second term is a regularizer with a weight parameter κ.
It is the Kullback-Leibler (KL) divergence between the encoder’s distribution
P (γ(·)|Θ)1 and Q(γ(·)). Q(γ(·)) is a benchmark distribution and it describes a
priori about γ(·). This divergence measures how close P (γ(·)|Θ) is to Q(γ(·)).

In the loss function, the first term can be rewritten as − ∫
γ

log L({ti}|μ, γ) ·
P (γ|Θ)dγ. It is an integral over an infinite-dimensional stochastic function and
it has no analytical solution because of non-conjugacy. To solve these problems,
we use discretization and Monte Carlo integration to transform the integral into
an average of log-likelihood. By putting log into the integration, we avoid the
calculation of likelihood by log-likelihood which is more numerically stable. The
Monte Carlo integration will produce a volatile loss function which is not differ-
entiable because of the sampling process, and we can use the reparameterization
trick [6] in VAE to make it differentiable. The reparameterization trick is as
follows: if we have x ∼ N (m,σ2) and then standaridize it to N (0, 1), we could
revert it back to the original distribution by x = m + x′ · σ where x′ ∼ N (0, 1).
Now the sampling process is outside the loss function, so the gradient of loss
function will not be affected by sampling.

1 Customarily, Q(·) is used for encoder’s distribution in VAE, but here to be consistent
with the previous discussion P (·) is used.
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The second term is a KL divergence. In VAE, a popular choice of Q(·) is
N (0, 1) to express the prior knowledge [6]. In our setting, we select Q(γ(Δt)) =
N (0, I) for the homoscedastic case, and Q(γ(Δt)) = N (0, exp(−φ·Δt)·I) for the
heteroscedastic case, where φ is a constant which can be set manually in exper-
iment. Having Q(γ(Δt)) to be a Gaussian distribution also introduces another
benefit. Because the P (γ(·)|Θ) in our model is also assumed to be Gaussian: see
(4), the KL divergence between P (γ(·)|Θ) and Q(γ(Δt)) could be computed in
closed form. The KL divergence between two Gaussian distributions is:

DKL[N (m1,Σ1)‖N (m2,Σ2)] =
1
2
[log |Σ2| − log |Σ1|

− k + Tr{Σ−1
2 Σ1} + (m2 − m1)TΣ−1

2 (m2 − m1)]
(12)

where k is the dimension of Gaussian, Tr{} is the trace of matrix, | · | is the
determinant. Both Gaussian distributions in our model are assumed to be inde-
pendent which means the covariance Σ1 and Σ2 are both diagonal matrices.
This independence assumption improves the computational efficiency further.

After getting the loss function, we can train the model using the generic
gradient descent method to optimize the loss with respect to the parameters
μ, α, β, σc in homoscedastic case or μ, α, β, ασ, βσ in heteroscedastic case.

5 Synthetic Data Experiment

In synthetic data experiments, we prove that the underlying mean triggering
kernel and the corresponding variance parameters can be recovered.

5.1 Homoscedastic Stochastic Triggering Kernel

Based on the thinning algorithm [17], we generate data by setting μ = 10,
γ̄(Δt) = 1 · exp(−2 · Δt), σc = 0.5 and Tγ = 3. We sampled 10 sets of synthetic
data and each of them is a sequence of timestamps in [0, T ] where T = 20, with
a realization of about 400 events.

We use both of the vanilla HP and the homoscedastic HP-STK to recover the
parameters for each set of the synthetic data. For both models, the evaluation
of parameters is the average of 10 results. For vanilla HP, the final estimations
are μ̂ = 11.04, α̂ = 0.88, β̂ = 2.71; for homoscedastic HP-STK, with the con-
figuration of κ = 0.015, Q(γ(Δt)) = N (0, I) and 300 samples from N (0, I) to
perform Monte Carlo integration, the final estimations are μ̂ = 10.98, α̂ = 0.88,
β̂ = 2.51, σ̂c = 0.36. The learned triggering kernel is shown in Fig. 1a. We
can see that the vanilla HP only gives out a deterministic function, while the
homoscedastic version gives out an additional variance band.

5.2 Heteroscedastic Stochastic Triggering Kernel

Similarly, in heteroscedastic case, we set μ = 2, γ̄(Δt) = 1·exp(−2·Δt), σ(Δt) =
0.5 · exp(−2 · Δt) and Tγ = 3. We generate timestamps in [0, T ] where T = 100,
resulting in a realization of about 400 events. 10 synthetic datasets are generated.
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(a) homoscedastic (b) heteroscedastic

Fig. 1. The triggering kernel from vanilla HP and HP-STK (black and red lines over-
lap), the shade region is the γi(Δt)s of 10 sets of synthetic data. (Color figure online)

We use the similar setting for this experiment, except that homoscedastic
HP-STK is replaced by heteroscedastic HP-STK. For vanilla HP, the final esti-
mations are μ̂ = 2.32, α̂ = 1.05, β̂ = 2.60; for heteroscedastic HP-STK, with the
configuration of κ = 0.015, Q(γ(Δt)) = N (0, exp(−4 · Δt) · I) and 300 samples
from N (0, I) for Monte Carlo integration, the final estimations are μ̂ = 2.33,
α̂ = 1.06, β̂ = 2.60, α̂σ = 0.33, β̂σ = 1.52. The learned triggering kernel is shown
in Fig. 1b. The vanilla HP only gives out a deterministic function, while the
heteroscedastic version gives out an additional time-decreasing variance band.

6 Applications

To evaluate the effectiveness of our model, we conduct experiments on two real
datasets, taxi pickup and crime. We discuss the results and show how HP-STK
outperforms vanilla HP in the application of decision on capacity planning.

6.1 Datasets and Experiment Setting

Green Taxi Pickup in New York City: This dataset includes trip records
from all trips completed in green taxis in New York City from January to June
in 2016. In the experiment, the data from January 1st to 15th is used. We
filter out pick-up dates and times for all long-distance trips (>15 miles), since
the long distance trips usually have different patterns with short ones [13]. In
addition, we pre-process the data by adding a small time interval to separate all
the simultaneous records. As a result, we obtain 6223 pickups for 15 days, and
the observed variance is 50.39 given 1 h as time interval. This means the actual
number of pickups in short periods can be very unstable, so we model it with
the homoscedastic HP-STK.

We apply both of the vanilla HP and homoscedastic HP-STK to model the
triggering effect of pickups. We assume the triggering kernels are independent
for different days. The support of γ(Δt) is [0, 3] and the time unit is 1 h.



Hawkes Process with Stochastic Triggering Kernel 327

The evaluation of parameters is the average of 15 training results. For vanilla
HP, the final estimations are μ̂ = 5.23, α̂ = 0.78, β̂ = 1.09; for homoscedastic
HP-STK, with κ = 0.015, Q(γ(Δt)) = N (0, I) which is consistent with the
synthetic experiment, the final estimations are μ̂ = 5.25, α̂ = 0.78, β̂ = 0.98,
σ̂c = 0.34. The learned γ(·) is shown in Fig. 2a. It can be seen that the mean
γ(·) from homoscedastic version is close to the vanilla result, but it gives out an
additional variance band. The corresponding intensity of January 4th is plotted
in Fig. 3a. The black solid line is the intensity learned from vanilla HP, the gray
band corresponds to the variance band of intensity with ±σλ(t).

(a) Taxi: homoscedasticity (b) Crime: heteroscedasticity

Fig. 2. Trigger kernels learned from two real datasets for vanilla HP and HP-STK.

Theft of Vehicle in Vancouver: The data of crimes in Vancouver comes
from the Vancouver Open Data Catalogue. It is extracted on 2017-07-18 and
it includes all valid felony, misdemeanour and violation crimes from 2003-01-01
to 2017-07-13. We filter out the records of which the crime type is ‘Theft of
Vehicle’ from 2012 to 2016. As a result, we obtain 6320 records for 5 years and
the observed variance is 4.29 given 1 day as the time interval. This is stabler
than taxi pickups, therefore we model it with the heteroscedastic HP-STK.

We apply both the vanilla HP and heteroscedastic HP-STK to model the
triggering effect in crime. We assume the triggering kernels are independent for
different years. The support of γ(Δt) is [0, 3] and the time unit is 1 day.

The evaluation of parameters is the average of 5 training results. For vanilla
HP, the final estimations are μ̂ = 2.80, α̂ = 2.29, β̂ = 12.21; for heteroscedastic
HP-STK, with the configuration of κ = 0.015, Q(γ(Δt)) = N (0, exp(−4 ·Δt) ·I)
which is consistent with the synthetic experiment, the final estimations are μ̂ =
2.95, α̂ = 1.21, β̂ = 8.31, α̂σ = 0.17, β̂σ = 1.25. The learned γ(·) is shown
in Fig. 2b. It can be seen that the mean γ(·) from heteroscedastic version is
close to the vanilla result, but it gives out an additional variance band. The
corresponding intensity of 2016-year crime is plotted in Fig. 3b. The black solid
line is the intensity learned from vanilla HP, the gray band corresponds to the
variance band of intensity with ±σλ(t).
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Fig. 3. (a): MHP1 , MHP2 and MSTK of 4th Jan. in taxi dataset based on vanilla HP
and homoscedastic HP-STK. Blue points are empirically estimated pickup rates in
every 30min. (b): MHP1 , MHP2 and MSTK of 2016 year crime in Vancouver based on
vanilla HP and heteroscedastic HP-STK. Blue points are empirically estimated crime
rates in each day. (Only 30 days are shown). (Color figure online)

6.2 Use Case for HP-STK

We examine the use case based on the variance of triggering kernel for HP-STK.
It is discussed with the comparison with vanilla HP and applied to both datasets.

Decision for Capacity Planning: In the taxi dataset, the taxi company needs
to decide the number (M(t)) of taxis to meet the pickup need on time t. We
omit t in the following discussion for simplicity. If the company uses intensity
λHP learned from vanilla HP, and send MHP1 = λHP (black line in Fig. 3a)
taxis to satisfy the pickup need, about 50% probability2 that all pickups can
be satisfied. To plan for a higher probability, the planner needs to send more
taxis. So if the variance of Poisson distribution is taken into consideration, we
let MHP2 = λHP +

√
λHP (green line in Fig. 3a), then theoretically extra 29.7%

(Poisson(x < λHP +
√

λHP ) − Poisson(x < λHP ) where x is real pickup need)
probability should be added to satisfy the need, given that the average inten-
sity of 15 days is about λHP = 17 pickups per hour. To empirically estimate
this probability, we compute pickup rates in each 0.5 h (blue points in Fig. 3a).
The probability is defined as the number of blue points under the corresponding
intensity line divided by the total number, which is shown in Table 1. However,
in Table 1, only about 23.2% probability has been added using MHP2 compar-
ing with using MHP1 by averaging the probabilities of 15 days. The difference
between theoretical and empirical results means that using vanilla HP underes-
timates the uncertainty while our method can provide more accurate one.

To demonstrate the superiority of our model, here we also show the MSTK

got from homoscedastic HP-STK. After we learn the variance of triggering ker-
nel σc, we can get the variance of intensity σλ (gray band in Fig. 3a) using
(5). Then we sample {λi

STK}100i=1 from the Gaussian distribution N(λSTK , σ2
λ),

2 Based on the Poisson process, the probability could be larger when intensity is low.
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Table 1. The probability of satisfying pickup need for MHP1 , MHP2 and MSTK of
Jan. 1st to 15th taxi pickup in NYC.

Table 2. The probability of satisfying security need for MHP1 , MHP2 and MSTK of
2012 to 2016 crime in Vancouver.

which are samples larger than the mean. We set the expected rate of pickups as
MSTK = 1

100

∑100
i=1(λ

i
STK +

√
λi

STK) (magenta line in Fig. 3a). We also compute
the probability of satisfying pickup need of MSTK which is shown in Table 1.
It can be seen that about 28.7% probability has been added using MSTK com-
paring with using MHP1 by averaging the probabilities of 15 days. This result is
close to the theoretical result 29.7%, which means HP-STK is more accurate.

Similarly, the capacity planning decision task is also performed in crime
dataset using same definition for MHP1 , MHP2 and MSTK (black, green and
magenta lines in Fig. 3b, respectively). In the dataset, λHP = 4, therefore the-
oretically we should observe 26.05% difference between MHP2 and MHP1 . To
empirically estimate this probability, we compute crime occurrence rates in each
day which are shown as blue points in Fig. 3b. The probability result is shown
in Table 2 which shows that the difference between MHP2 and MHP1 is 27.0%
that is close to the theoretical one. This means the variance of triggering kernel
is quite small, which is consistent with the result in Fig. 2b. In such case, the
vanilla HP is good enough for capacity planning and there is no need to use
HP-STK because the magenta line is very close to the green line (see Fig. 3b).

7 Conclusion

We extended HP with stochastic triggering kernel and considered both the
homoscedastic and heteroscedastic cases. Our proposed model can provide the
variance of triggering kernel, so allow us to overcome the underestimation prob-
lem in capacity planning. Along with the model, we also propose a tractable
inference based on VAE loss function. Results from synthetic data show that the
HP-STK model can recover the underlying mean triggering kernel and the cor-
responding variance. The usage of HP-STK in taxi allocation discloses that the
taxi pickup has a highly stochastic triggering kernel. Vanilla HP will underesti-
mate the expected pickup rate. Without misleading the taxi dispatcher, HP-STK
could provide a more accurate rate. Furthermore, another case in crime with a
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stabler triggering kernel is used to test that HP-STK could disclose the data
stability as expected. There is also freedom to maneuver the stochastic trigger-
ing kernel to adapt to other real-life applications or to invent nonparametric
stochastic triggering kernels.
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Abstract. A summary can immensely reduce the time and space com-
plexity of an algorithm. This concept is considered a research hotspot
in the field of data stream mining. Data streams are characterized as
having continuous data arrival, rapid speed, large scale, and cannot be
completely stored in memory simultaneously. A summary is often formed
in the memory to approximate the database query or data mining task.
A sampling technique is a commonly used method for constructing data
stream summaries. Traditional simple random sampling algorithms do
not consider the conceptual drift of data distributions that change over
time. Therefore, a challenging task is sampling the summary of the data
distribution in multi-dimensional data streams of a concept drift. This
study proposes a sampling algorithm that ensures the consistency of
the data distribution with the data streams of the concept drift. First,
probability statistics is used on the data stream cells in the reference
window to obtain data distribution. A probability sampling is performed
on the basis of this distribution. Second, the sliding window is used to
continuously detect whether the data distribution has changed. If the
data distribution does not change, then the original sampling data are
maintained. Otherwise, the data distribution in the statistical window
is restated to form a new sampling probability. The proposed algorithm
ensures that the data distribution in the data profile is continually con-
sistent with the population distribution. We compare our algorithm with
the state-of-the-art algorithms on synthetic and real data sets. Experi-
mental results demonstrate the effectiveness of our algorithm.

Keywords: Data stream clustering · Sampling · Summary

1 Introduction

The rapid development of mobile Internet, e-commerce, Internet of things, com-
munication, and spatial positioning technology has generated extensive stream-
ing data. However, Data streams make storing data completely in a database
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impossible. Therefore, selecting part of the data temporarily stored in the mem-
ory is necessary to form a summary and perform data mining and query analysis
on the summary to obtain an approximate but sufficiently reliable result [1]. One
of the main characteristics of the summary is the capability to reduce the amount
of data. Nonetheless, the data are remain extensive and the approximate data
mining results can be obtained from the compressed data (occasionally identical
to the overall data mining effect).

A research hotspot in data stream mining is the method of designing a sum-
mary that is smaller than the data set size based on a rapid, continuously arriving
data streams to make the data processed in the memory [2]. Sampling is one of
the main methods used to generate a summary [3]. A small percentage of data
from the data set is taken as a sample to represent the entire data set and obtain
data mining or database query results on the basis of the sample set. Simple ran-
dom sampling is a basic sampling technique, in which the sampling probability
of each sample is equal. This method performs well on traditional data but is
unsuitable for streaming data. The streaming data are dynamic (i.e., continu-
ously arrive), while the number of samples is uncertain (i.e., the sample size N
is uncertain). The reservoir sampling algorithm [4] solves the random selection
of K samples from N samples (K � N), where N is large (such that N samples
cannot be placed in memory at the same time) or N is an unknown number.
Reservoir sampling is a generalization of random sampling, which is one of the
classic streaming data sampling schemes, such as adaptive size reservoir [5] and
chain sampling [6]. The existing data stream sampling is generally a simple ran-
dom sampling of discrete attribute data streams. For continuous attribute data
streams, the data obey a Gaussian distribution and sampled on the basis of
this distribution. Simple random sampling cannot describe the population dis-
tribution and easily loses key change data. Data distribution in the data stream
environment changes over time. Moreover, the assumption that the data obey
the Gaussian distribution is impractical and fails to consider the phenomenon
of drift of data stream distribution over time. Hence, the problem to be solved
sampling the summary that is consistent with population distribution in the
multi-dimensional continuous attribute data streams of the concept drift.

A challenging task is to detect whether data distribution has changed in unsu-
pervised data streams without a class label [7]. The existing literature [8] has pro-
posed a change detection framework for data streams. This framework can imme-
diately detect the distribution change over multidimensional data streams by
projecting data into low dimensional space using principal component analysis.
Inspired by this algorithm, we propose a multi-dimensional continuous attribute
data stream sampling algorithm based on consistent distribution. This algorithm
opens a buffer in the memory for storing stream summary. We first divide the
data into cells in a sliding window and compute its distribution. Thereafter, we
apply probability sampling on the data on the basis of the distribution. Lastly,
we observe whether the distribution of the data has been changed by continu-
ously comparing the reference and detected windows. Thus, we can decide if a
reestimation of the distribution is needed to obtain new probability statistics for



Concept Drift Based Multi-dimensional Data Streams Sampling Method 333

the following sampling. Our algorithm consistently ensures that the summary
distribution is consistent with the population distribution. In addition, our algo-
rithm guarantees that the most recent and recently arrived valuable data streams
are stored in the summary by discarding the historical data that first entered
the buffer.

The main contributions of this study are as follows.

– We consider the true distribution of data instead of simple random sampling
and the assumption that data obey the Gaussian distribution. Subsequently,
the summary formed after sampling will continually be consistent with the
population distribution.

– The majority of the existing data stream sampling algorithms are discrete
attribute data stream sampling and rarely consider continuous attribute data
stream sampling. Our algorithm is suitable for sampling continuous data
streams and discrete data stream sampling.

– We consider the drift of the data stream concept. When the data distribution
changes, the algorithm will sample based on the actual data distribution and
the original summary will be maintained when the data distribution does not
change.

We compare our algorithm with random sampling and hypothesis data with
Gaussian distribution sampling. This comparison utilizes the KL divergence
between the summary distribution generated by the three sampling algorithms
to compare the similarities of the data distribution. The original population dis-
tribution is used as the evaluation index. The experimental results show that the
statistical probability sampling based on concept drift outperforms the random
and Gaussian-assumption samplings.

The remainder of this paper is organized as follows. Section 2 presents the
related studies. Sections 3 and 4 present our proposed sampling algorithm for
concept drift data streams and evaluation results, respectively. Lastly, Sect. 5
provides the conclusion.

2 Related Work

As an important step in reducing data size and accelerating data mining tasks,
the summary is a beneficial and effective technique for supporting big data ana-
lytics [9,10] and extensively used in such fields as medical informatics, astronomy
and earth science, and social and sensor networks. Figure 1 shows how the sum-
mary of data streams can reduce the amount of data and accelerate the process
of completing data mining tasks. However, [11–13] indicated that no uniform
definition of a summary is available and its definition or role depends on the
application purpose.

The existing literature [11] has proposed a summary generation method based
on concise and counting sampling for the database query. Concise sampling solves
the problem of inefficient data expression in reservoir sampling. Each sampling
element in the reservoir sampling occupies a single position. Even if the elements
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Fig. 1. The process of knowledge discovery in data streams

have the same value, a storage unit is allocated. To improve storage efficiency,
the concise sampling algorithm is represented by a <value, count> structure for
elements that appear multiple times, where value represents the element code
and count represents the number of elements in the sample set. The counting
sampling method is a variant of the concise sampling method. The difference
between the two is the method of dealing with the sample set overflow.

Certain in-vehicle devices with GPS and other communication technologies
have limited storage capacity. Therefore, a summary should be generated for con-
tinuously arriving data streams. In [12], the infinite marginal vehicle-to-vehicle
(V2V) traffic data streams are sampled to generate the summary to provide users
with rapid traffic information services. Three sampling techniques, namely, slid-
ing window, reservoir, and extended biased, are used for the summary generation
of the V2V traffic data streams to provide real-time data analysis for users.

Feature preserved sampling (FPS) is another sampling technique for data
streams [13]. This method uses a sliding window model and aims to maintain
a similar distribution of attribute values before and after the sampling. FPS
can immediately decide whether to retain or discard the current instance. How-
ever, FPS is only suitable for discrete data stream sampling and unsuitable for
continuous attribute value data streams.

With the exception of the definition and application role, the conceptual
drift phenomenon of a data set should be considered in the summary genera-
tion. However, existing random sampling algorithms [3,14,15] do not consider the
conceptual drift phenomenon of streaming data. Moreover, only a few sampling
algorithms for continuous attribute data streams are available, even though con-
tinuous attribute value data streams are common. The objective of the current
study is to generate a summary that is consistent with the population distribu-
tion by sampling the continuous attribute data streams, in which the summary is
stored in the memory buffer pool for online data mining or database query tasks
at any time. When new data mining tasks or query requirements are requested,
the summary can be used directly to immediately calculate results.

3 Summary for Concept Drift Data Steams

Sampling algorithms based on concept drift should address two key issues. The
first issue is how to estimate the probability density of high-dimensional unclas-
sified data (we can use the closeness of the data distribution to sample after
determining the probability density of the data). The second issue is how to
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determine whether the data distribution has changed (the time point when the
distribution is determined to be changed) and how to sample when the data
distribution changes (in the case of conceptual drift). This section focuses on
the two issues.

3.1 Probability Sampling for Concept Drift Data Streams

The application value of streaming data will decrease rapidly over time. In data
streams, we are concerned with data that have arrived recently because the latest
data are critical to our decision-making. The sliding window model is ideal for
applications that process data in the most recent period. The sliding window on
the data streams refers to an interval set on the data streams, which includes
only the partial data of the data streams. If the size of the window is W , at
any time point tc, then we only consider the W data in the w [tc − w + 1, tc]
sliding window. Moreover, moving the window forward indicates that new data
have arrived and replaced the previous data. The size of window W is often
determined by the actual application problem. Different window sizes may lead
to different results and we need multiple experiments to determine a suitable
window size W .

We use the sampling method of cell division to obtain an accurate sampling.
For the data in the window, we first divide the cells (each cell is composed
of bins in k dimension), count the data stream samples falling in each cell,
and eventually perform probability sampling on the statistics in the cells. The
sampling equation is n

w ∗ p, where W is the window size, n is the statistics
of the cells (i.e., data density), and p is the sampling rate. In each detection
window, we need to detect whether the data distribution has changed. If the data
distribution does not change, then the original sampling data are maintained.
Otherwise, the data distribution in the statistical window is restated to form
a new sampling probability. Figure 2 shows the probability sampling process
based on concept drift. The first reference window data is divided into cells and
probability sampling is performed thereafter. The sampled data are placed in the
first area of the buffer for data summary. In the second window, no distribution
changes are determined. Thus, no samples are taken. Accordingly, the original
summary is maintained. In the third detected window, the algorithm divides the
detection window into cells, probability sampling is performed, and the sampled
data are placed in the second buffer. When the buffer is full, the algorithm moves
the samples of the earliest entry buffer out of the memory and constantly ensures
that the data in the summary are consistent with the most recently arrived data
streams. The size of the buffer can be set on the basis of the size of the memory
and the amount of summary that needs to be retained. Algorithm2 provides the
specific implementation process.

3.2 Change Detection

For distribution change detection, we use the KDE density estimation method
[8]. After receiving the data of the first batch of the W window size in the
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ALGORITHM 1. Change Detection
Parameters: window size w, δ, ζ;
Online flow in: streaming data S = (x1, x2, . . . xt);
Online output: time t when detecting a change;
Procedure:
1. Initialize tc = 0, setp = min (0.05w, 100) ;

2. Initialize
−
Sc, m, M to NULL ;

3. Set reference window S1 = (xtc+1, . . . xtc+w) ;
4. Extract principal components by applying PCA on to obtain Z1, Z2 . . . Zk ;

5. Project S1 on Z1, Z2 . . . Zk to obtain
∧
S1 ;

6. ∀i (1 ≤ i ≤ k) estimate
∧
fi using data of the i − th component of

∧
S1;

7. Clear S1 and
∧
S1;

8. Set test window S2 = (xtc+w+1, . . . xtc+2w);

9. Project S2 on Z1, Z2 . . . Zk to obtain
∧
S2;

10. clear S2;

11. Estimate
∧
gi using data of the i − th component of

∧
S2;

12. while a new sample xt arrives in the stream do;

13. Project xt on Z1, Z2 . . . Zk to obtain
∧
xt ;

14. Remove
∧
xt−w from

∧
S2 ;

15. ∀i (1 ≤ i ≤ k) update
∧
gi using

∧
x
(i)

t and
∧
x
(i)

t−w ;
16. if mod(t, step) = 0 then ;

17. curScore = max
i

(
DMKL

(
∧
gi ‖

∧
fi

))
;

18. if Change (curScore, Sc, m, M, ξ, δ) then ;
19. Report a change at time t and set tc = t ;

20. Clear
∧
S2 and GOTO step 2;

21. Subprocedure: Change (curScore, Sc, m, M, ξ, δ)

22. Update
−
Sc Sc to include the curScore in the average.;

23. new m = m +
−
Sc −curScoure + δ;

24. if |new m| ≥ M then ;
25. new M = new m.;

26. τt = ξ ∗ Sc;
27. if curScore > τt then ;
28. return True;
29. else;
30. M = new M, m = new m;
31. return False;

reference window S1, PCA is performed on the data in the window, while the
first k feature values to satisfy the

∑k
i=1 λi∑d
i=1 λi

≥ 0.999 conditions extracted. The
same operation is performed on the detection window S2, while the data of
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Fig. 2. Example of the sampling process based on concept drift

ALGORITHM 2. Sampling for Concept Drift
Parameters: bins size l, b, k;
Online flow in: streaming data S = (x1, x2, . . . xt);
Online output: sampled data;
Procedure:
1. Initialize Initialize bins size l, b, k ;

2. Cells = lk ;
3. Saved window = 0 ;
4. Save sampled data in summary from first window ;
5. Saved window = Saved window + 1 ;
6. While a new sample xt arrives in the stream do;
7. Change detection;
8. if find change then ;
9. Divide the cells and count the number of samples per cell in windows;
10. Sampling from the cells;
11. if saved window > b then ;
12. Delete the block that first entered the summary;
13. Repeat 9,10;
14. Else;
15. Next;

the two windows S1 and S2 are respectively projected onto the feature vectors
composed of the k principal components. The change scores of the two windows
are compared and recorded. The maximum of the k change values is considered
the change point. [8] proposed a dynamic threshold setting method to change-
score (procedure change lines 21–31). mt is a cumulative variable, which is used
to store the cumulated difference between the mean of the previously observed
values and presently observed values, and defined as follows:

mt =
t∑

t�=1

(−
st� − st� + δ

)
(1)

where s�

t = 1
t�

∑t�

i=1 si, st� is the observed value at time t�, δ is the allowed change’s
magnitude, which is often set near to zero. When the mt > θ (θ is a threshold)
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and the difference between Mt = max {m1, . . . ,mt}, a change is reported. Algo-
rithm1 presents the specific implementation process of the change detection. For
additional details, refer to reference [8,16].

3.3 Complexity Analysis

The probability sampling of cells indicates that the data streams in the window
should be divided into cells and sampled thereafter. The time complexity of the
algorithm is O (bins ∧ k), where bins are the number of cells in one dimension
and k is the largest variance dimension. If statistical sampling is performed every
time a window is swept, then the time complexity increases as the data dimen-
sion increases. The method we propose is to sample when the data distribution
changes, refrain from sampling when the distribution is unchanged, and retain
the original summary. The time complexity of the change detection algorithm is
O

(
qdw log

(
1
v Rc

))
, where Rc is the number of reported changes, v is the mini-

mum cell width, w is the window size, d is the data dimensionality, and q is the
number of bootstrap samples.

4 Experimental Evaluation

The performance of our proposed sampling algorithm is compared with that of
the random sampling and data hypothesis that obeys the Gaussian distribution
sampling on synthetic data and real data sets. The KL divergence measures the
similarity between the raw and sampled data distributions.

4.1 Parameter Settings

The parameters setting for the change detection method follows the settings in
[7,8] with δ = 0.05, and the window size W is set to 104. For concept drift
sampling algorithm, the parameters are set as l = 100, sampling rate p = 0.2,
and buffer length b = 10.

4.2 Experiments on Synthetic Data

We use two-dimensional synthetic data sets, the distribution of which changes
to evaluate our proposed sampling algorithm for the concept drift data streams.
Each data set contains 5 ∗ 106 samples and the data distribution changes once
per 5 ∗ 104 data points. The construction of synthetic data refers to the data
generation method provided by the literature [7,8]. The symbols given to the
data sets indicate the different types of change. (M (Δ) represents the varying
mean value, D (Δ) represents the varying standard deviation, and C (Δ) repre-
sents the varying correlation). At each change point, a set of random numbers
in the interval [−Δ,−Δ/2] ∪ [Δ/2,Δ] is generated and added to the distribu-
tions parameters that will be changed. The parameter Δ controls the degree of
change, in which large values for Δ make changes easy to detect and vice versa.
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Table 1. KL divergence between the population and summary distributions generated
by the three sampling algorithm on synthetic data

Datasets SRS GS CDSS

M(0.01) 0.0716 0.31125 0.0503

M(0.02) 0.0523 0.0998 0.0320

M(0.05) 0.1011 0.2156 0.0839

D(0.01) 0.0965 0.4103 0.0246

D(0.02) 0.0712 0.0913 0.0831

D(0.05) 0.7691 1.2141 0.4415

C(0.01) 0.0062 0.0721 0.0004

C(0.02) 0.0821 0.7131 0.0125

C(0.05) 0.0931 0.0551 0.0021

The generation parameters of the three data sets M(0.01), M(0.02), and
M(0.05) for the first group are μ1, μ2 are changing by θ1, θ2 selected randomly
from the interval [−Δ,−Δ/2] ∪ [Δ/2,Δ]. The standard deviation and correla-
tion coefficient are set to a fixed value of (σ1 = σ2 = 0.2) and (ρ = 0.5), respec-
tively. The three data sets D(0.01), D(0.02), and D(0.05) of the second group
are generated by fixing the correlation coefficient value (ρ = 0.5) and mean value
μ1 = μ2 = 0.5. The standard deviation σ1σ2 in the interval [−Δ,−Δ/2]∪[Δ/2,Δ]
adds random values. In the three data sets C(0.01), C(0.02), and C(0.05) of the
last group, the coefficient ρ makes random walks in the interval (−1, 1) with
random steps selected from [−Δ,−Δ/2] ∪ [Δ/2,Δ]. The standard deviation and
mean values are set to fixed values σ1 = σ2 = 0.2 and μ1 = μ2 = 0.5.

If we suppose that P (x) is the original data probability density, then C (x) is
the probability density of the concept drift sampling, R (x) is the probability den-
sity of the random sampling, and G (x) is the probability density of the Gaussian
distribution sampling. DKL (P ‖ R), DKL (P ‖ G), and DKL (P ‖ C) are used
to calculate the similarity between real data distribution and each sampled data
distribution. Table 1 shows the KL divergence between the distributions of the
population and summary generated by three sampling algorithms. Accordingly,
SRS represents random sampling, GS represents the data obeying Gaussian dis-
tribution sampling, and CDSS represents the probability sampling for concept
drift data streams. The best results are presented in boldface. Table 1 shows that
the probability sampling has the smallest KL divergence value in the majority
of the cases. The distribution of the probability sampling is nearest to the origi-
nal data distribution. Figure 3 is the visualized form of the experimental results
on the M(0.02) data set. Subfigure(b) is most similar to the subfigure(a). In
the experimental results, we note that the value of the KL divergence is near 0
because our synthetic data are a value of between 0 and 1.
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(a) Original Data (b) CDSS Sampling

(c) SRS Sampling (d) GS Sampling

Fig. 3. (a) Original data distribution vs: (b) Probability sampling for concept drift,
(c) Random sampling, (d) Hypothesis data with Gaussian distribution sampling

4.3 Experiments on Real Data

We evaluated our method with the SRS and GS methods on five real data
sets Walking (3D)1, Jogging (3D)2, El Nino (5D)3, Spruce (10D)4, Ascending
Stairs(30D)5 that were obtained from machine learning repositories. The experi-
ments required that the data sets are sufficiently large and have change points at
which concept drifts occur. To comply with the experimental requirements, we
follow the method in [7,8]. First, the data set is extended by interpolation with-
out changing the data distribution until the data set reaches the experiments
required size. Second, we sample a batch of original data every 2∗104 samples and

1 http://www.cis.fordham.edu/wisdm/dataset.php.
2 http://www.cis.fordham.edu/wisdm/dataset.php.
3 http://kdd.ics.uci.edu/databases/el nino/el nino.html.
4 http://kdd.ics.uci.edu/databases/covertype/covertype.html.
5 http://www.pamap.org/demo.html.

http://www.cis.fordham.edu/wisdm/dataset.php
http://www.cis.fordham.edu/wisdm/dataset.php
http://kdd.ics.uci.edu/databases/el_nino/el_nino.html
http://kdd.ics.uci.edu/databases/covertype/covertype.html
http://www.pamap.org/demo.html
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replace the batch with one of the following two techniques to change the distribu-
tion of the data. (1) Scale-1D (S1D): changes the batch of data by multiplying
the random selected dimension to 2. (2) Gauss-1D (GID) changes the batch
of data by randomly selecting one dimension and adding a standard Gaussian
variable. Table 2 shows the experiment results on the real data set. The results
confirm that the probability sampling distribution is considerably similar to the
original data distribution. The experimental results on synthetic and real data
set show that the proposed method is effective.

Table 2. KL divergence between the population and summary distributions generated
by the three sampling algorithm on real data

Datasets SRS GS CDSS

D1: Walking (3D) 0.6768 1.4122 0.4414

D2: Jogging (3D) 0.0965 0.1238 0.0153

D3: El Nino (5D) 2.0468 3.1224 1.5656

D4: Spruce (10D) 2.2214 3.6612 2.2411

D5: Ascending Stairs (30D) 5.0987 5.9753 4.1614

5 Conclusion

This study proposes a novel sampling method for concept drift data streams. Our
method selects representative samples consistent with the population distribu-
tion and chooses k dimensions with the largest variance for statistical sampling.
Unlike continuously random sampling, the concept drift stream sampling algo-
rithm can generate a sample when concept drift occurs (i.e., data distribution
changes) in data streams. However, we do not assume that the data obey any
distribution. Instead, statistical sampling is performed on the basis of the actual
distribution of the data streams. The use of the FIFO queue to eliminate out-
dated data makes our method suitable for data stream applications with limited
memory resources. The experimental results on synthetic and real data show
that the proposed algorithm is feasible and efficient.
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Abstract. Understanding and accurately predicting within-field spa-
tial variability of crop yield play a key role in site-specific management
of crop inputs such as irrigation water and fertilizer for optimized crop
production. However, such a task is challenged by the complex inter-
action between crop growth and environmental and managerial factors,
such as climate, soil conditions, tillage, and irrigation. In this paper,
we present a novel Spatial-temporal Multi-Task Learning algorithm for
within-field crop yield prediction in west Texas from 2001 to 2003. This
algorithm integrates multiple heterogeneous data sources to learn differ-
ent features simultaneously, and to aggregate spatial-temporal features
by introducing a weighted regularizer to the loss functions. Our com-
prehensive experimental results consistently outperform the results of
other conventional methods, and suggest a promising approach, which
improves the landscape of crop prediction research fields.

1 Introduction

Cotton is an important cash crop native to tropical and subtropical regions in
the world. Accurate yield prediction not only provides valuable information to
cotton producers for effective management of the crop for optimized production,
but also is important to policymakers, as well as consumers of agricultural prod-
ucts. However, cotton yield prediction is challenging due to complex interactions
between crop growth and weather factors, soil conditions, as well as management
factors, such as irrigation, tillage, rotation, etc. Moreover, simply applying other
crop yield prediction models on cotton may lead to nothing but disappointment:
a prediction model that works on other crops like wheat, rice, and sugarcane,
however, fails on predicting cotton yield [1].

The existing approaches estimate crop yield based either on the crop sown
areas, crop-cutting experiments or market arrivals show wide variability because
of their inability to capture the indeterminate nature of the crop and its
c© Springer Nature Switzerland AG 2019
Q. Yang et al. (Eds.): PAKDD 2019, LNAI 11439, pp. 343–354, 2019.
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Fig. 1. Data sources in our prediction model. (Color figure online)

response to environmental conditions [2]. One of the attempts is to apply Grey
model [3] on production prediction, utilizing short-term forecasting with expo-
nential growth. The regression-based method such as time series analysis can
also be applied to production prediction [4], but it suffers from great variation
when the external environment is under significant variation. Another frequently
used method for prediction is the differential equation model [5], which demands
the system to be stable and requires extra work to solve the equation.

Conventional yield prediction treats the field uniformly despite inherent vari-
ability. Uniform assumption may result in over- or under-application of resources
in specific locations within a field, which may have a negative impact on the envi-
ronment and profitability [6]. However, consistent and accurate within-field yield
prediction is challenging due to the high accuracy requirement under the com-
plex interactions between yield-influencing factors, such as soil, weather, water,
and spatial correlations.

With the introduction of the global positioning system (GPS), geographic
information systems (GIS), and yield monitors along with other new technolo-
gies, we can quantify spatial variability in soil properties and crop yield in small
areas of a field. As satellite and drone technologies develop, we are able to collect
remote sensing images at fine resolutions to support within-field yield forecast.
Within-field scale crop yield prediction provides valuable information for produc-
ers to site-specifically manages their crop, which can optimize crop production
for maximum profitability. In the within-field prediction procedure, we use a
30-m grid to represent a continuous surface.

The advancement of machine learning offers a different approach compared
with the traditional ways for yield forecasting. The rapid advances in sensing
technologies, the use of fully automated data recording, unmanned systems,
remote sensing through satellites or aircraft, and real-time non-invasive com-
puter vision, are additional boosts for enabling the new yield forecasting model.
Due to the capability of machine learning based systems to process a large num-
ber of inputs and handle non-linear tasks, people have attempted to predict
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county-level soybean yield in the United States [7]. However, using deep learn-
ing for within-field cotton forecast remains as an untouched ground. In our work,
the within-field forecasting is based on each grid for one field in West Texas area
across three years (2001, 2002, 2003) in order to predict the cotton yield before
harvest.

On this account, we propose a Multi-Task learning model to predict within-
field cotton yield. As shown in Fig. 1, this model ingests many sources of data
which contain features for different learning tasks, including soil topographic
attributes (elevation, slope, curvature, etc.), spectral data (Blue, Green, Red,
and NIR bands denoted as BAND1, BAND2, BAND3, and BAND4, respec-
tively), normalized difference vegetation index (NDVI) during the crop seasons;
and weather (temperature, rainfall, etc.) data. These multiple data sources are
aggregated in the shared layer before transferring to task-specific layers. This
type of design in a Multi-Task learning model makes it capable of enhancing
specific learning task by utilizing all sources of information of other related
tasks. In other words, this allows us to take various factors and variables into
consideration to achieve a more accurate yield prediction. On the other hand,
crop yield within a field is typically autocorrelated, meaning yield values close
together are likely more similar than those farther apart. Hence, to incorporate
the spatial relationship, we propose a spatial regularization term to minimize
the yield difference between one region and the weighted average of neighbor-
ing regions. Therefore, we termed this technique as Spatial-temporal Multi-Task
Learning. The main contributions of this paper are summarized as below:

– We design an innovative multi-task learning approach to predict within-field
cotton yield across several years. Different from other machine learning mod-
els, to predict the cotton yield for a specific year is one of the tasks in our
model; each task is enhanced through its access to all available data from
prior years.

– This work provides an entirely new vision for grid-scale crop yield prediction.
To the best of our knowledge, this is among the first attempts to predict fine-
grain cotton yield with the Multi-Task Learning approach, as existing work
focus more on county-level or country level.

– We introduce a spatial weight regularizer to overcome the effects of geograph-
ical distance on yield prediction. Each grid is trained to minimize not only the
difference between the prediction and the actual value, but also the difference
between its yield and its neighbors.

– We perform a comprehensive set of experiments using the real-world dataset
that produced results consistently outperformed other competitive methods,
which could provide guidance for achieving higher crop production.

2 Related Work

Crop Yield Prediction. Crop yield prediction is challenging. Many studies
have been conducted based on NDVI derived from the new moderate resolu-
tion imaging spectroradiometer (MODIS) sensor [8], MODIS two-band Enhanced
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Vegetation Index [9], even future weather variables [10]. Various methodologies
are employed, such as statistical models [11], fuzzy systems and Artificial Neural
Networks [12], deep long short-term memory model [7] and deep neural network
[13]. You et al. [14] provided an end to end soybean yield prediction using remote
sensing images as input. Ji et al. [15] investigated the effectiveness of machine
learning methods and found, unfortunately, most of the academic endeavors cen-
tered on Artificial Neural Networks with one or a few data sources undermine
their predict performance. Most previous studies assume that the crop yield
uniformly distributed over space ignoring the spatial variations.

Multi-Task Learning. Multi-Task learning (MTL) is implemented to predict
spatial events due to its competence to exploit dynamic features and scalabil-
ity [16]. Through learning multiple related tasks simultaneously and treating
prediction at each time point as a single task, MTL captures the progression
trend of Alzheimer’s Disease better [17]. MTL also has outstanding performance
in event forecasting across cities [16] and fine-grain sentiment analysis [18], as
well as in distance speech recognition [19]. Lu et al. [20] proposed a principled
approach for designing compact MTL architecture by starting with a thin net-
work and dynamically widening it in a greedy manner. Xu et al. [21] designed
an online learning framework that can be used to solve online multi-task regres-
sion problems, although it is not a memory-efficient solution for data intensive
application. To the best of our knowledge, usage of MTL in crop yield forecast
in within-field practice is untouched. We propose a Multi-Task Learning model
which targets at predicting each grid in the field for a crop season as an individ-
ual task. Meanwhile, we incorporate the spatial correlations as a regularization
term to minimize the prediction errors.

3 Proposed Model

3.1 Overview

Figure 2 presents the framework of our prediction model. The cotton field is split
into 475 grids for fine-grain prediction. We utilized the Dense and Dropout layers
in the network. A shared Dense layer is used to extract latent features from all
data dimensions, which are aggregated and fed into multiple sub-networks. Each
sub-network represents the architecture of forecasting task in one year for all
the grids. In other words, cotton yield prediction for all grids of each year are
achieved in parallel via the separated sub-networks.

This aggregation is shared among all task-specific sub-networks. Therefore,
it helps the task-specific sub-network to learn features from other tasks and to
enhance its own prediction performance. Dense layer helps receive input from all
the neurons in the previous layer with the intuition that all factors contribute
each layer output neurons. Mathematically, the latent feature p̂t learned after a
fully connected layer is computed as:

p̂t = σ(
N∑

i=1

xi ∗ wi + b), (1)
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Fig. 2. The cotton yield prediction framework.

where N is the number of neurons in a layer, xi represents input feature, wi is a
weight element, b is a bias and σ is the activation function. In our setting, σ(x)
is a Sigmoid function defined as σ(x) = 1/(1+e−x). Moreover, the dropout layer
or dropout regularization is also used to randomly exclude some neurons (20%
in ours) to avoid over-fitting.

3.2 Cotton Yield Prediction

Our feature set is enriched by concatenating the latent features and feeding the
output into a shared Dense layer. Suppose pt1 , pt2 , pt3 and pt4 are features from
our sources, the joint feature vfc is the concatenation (denote as ⊕) of those
features [22]:

vfc = pt1 ⊕ pt2 ⊕ pt3 ⊕ pt4 . (2)

Stacked on the top of the shared Dense layer are three separate sub-networks,
and each is used for one yearly cotton yield forecasting task, as shown in Fig. 2.
After this layer, the latent feature is learned at time j following the equation:
hj = σ(Wj ∗ vfc

j + b). Because cotton is usually planted by the end of May and
harvest at the end of September or early October, we cut cotton’s life cycle into
several pieces, and each piece represents 2 weeks. Instead of taking it as time
series data, we treat it as a couple of separate temporal features and utilize fully
connected Dense layers and Dropout layers behind the shared Dense layer. We
define the regression function for task t as:

ŷt
j = σ(W t

j ∗ ht
j + btj), (3)

where W t
j and btj are learnable parameters, ht

j is the output of the last hidden
layer, and σ is a linear activation function. The model output lies in the interval
[0, 1] after value normalization. We will recover them to the original values when
doing performance evaluation.
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3.3 Spatial Feature in the Loss Function

A loss function is defined as the mean square error between the observation and
the prediction:

L(θ) =
N∑

k=1

(yk − ŷk)2, (4)

where θ means all learnable parameters, N is the number of regions in the field,
yk represents actual yield value, and ŷk represents the predicted yield value. To
train θ by minimizing the loss function may introduce overfitting. Therefore,
for the grid-scale crop forecasting within a field, the spatial correlations depend
heavily on the factor of distance. This drives us to define the spatial influence
via a regularization term that the yield difference between the predicting region
and the weighted average yield of the neighboring regions should be minimized.
In particular, suppose G(k) is the set of neighbors of region k (determined by
all regions whose distance to region k less than a threshold), and w(k, j) is the
inverse distance weight between region k and region j, the loss function now
becomes:

L(θ) =
N∑

k=1

[(yk − ŷk)2 + λ
∑

j∈G(k)

w(k, j)
|G(k)| ∗ |ŷk − yj |2], (5)

where λ is the hyper parameter, d(k, j) is the Euclidean distance between these
regions k �= j. The spatial weight w(k, j) is computed as:

w(k, j) =
1

d(k, j)p
, (6)

where p is the power parameter (which equals to 2 in our experiment).

4 Experiments

4.1 Dataset and Feature Extraction

Our dataset includes weather data, soil properties, spectral data, and NDVI.
Spectral data and NDVI are extracted from Lantsat 5 and Landsat 7 remote
sensing images. The multi-spectral images were collected from 2001 to 2003
of a cotton field in west Texas. The total area is approximately 48 ha. The
sensed images spatial resolution is 30 m. Hence, there are 475 grid cells under
investigation. Figure 3 shows the distribution of some features over the field.

Weather Data. Weather data includes the daily temperature and rainfall level.
For simplicity, we use the average of every two weeks’ weather data as features
to match the sensed images.

Soil Properties. Topographic variation is a common characteristic of large agri-
cultural fields that has effects on spatial variability of soil water and ultimately
on crop yield [23]. Besides, soil electrical conductivity (ECa) is also a reliable
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Fig. 3. (a) to (d) Within-field feature value distributions. Darker colors indicate higher
values. Each feature value is normalized into [0, 1].

Fig. 4. Performance comparison in each year measured in RMSE, using whole dataset
until September.

measurement of field variability. The relationship between ECa and crop yield
depends on climate, crop type and other specific field conditions [24]. The vari-
ables that are considered in this paper include elevation, slope, curvature, the
average electrical conductivity of soil, etc.

Field Spectral Data Before Planting. Field spectrum before planting may
influence the entire crop yield. This data has four spectral bands extracted
from the sensed images with 30-m spatial resolution. Band1, Band2, Band3,
and Band4 represent blue, green, red and near infrared value, respectively.

NDVI Data. NDVI represents Normalized Difference Vegetation Index. It is
typically related to amount or density of vegetation, which is calculated as the
difference between the reflectance in near-infrared (which vegetation strongly
reflects) and red wavelengths divided by the sum of these two. NDVI is com-
puted as: NDV I = NIR−RED

NIR+RED , where NIR represents the spectral reflectance
in near-infrared wavelength and RED is the spectral reflectance in the red wave-
length.
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Fig. 5. Model performance in each month of 2003 measured in RMSE.

4.2 Competing Approaches and Comparison Metrics

Competing Approaches. In our experiment, a list of classical forecasting mod-
els are used for comparison and analysis:

Linear Regression. This is a traditional linear regression model. Its standard
formula is: y =

∑n
i=1 αixi + ε where y is the response variable, xi is the feature

and ε is the deviation.

Random Forest. This model tries to fit a number of regression trees on various
sub-samples of the dataset and uses averaging to improve the predictive accuracy
and control overfitting. Each leaf of the tree contains a distribution for the
continuous output variable.

Support Vector Regression (SVR). SVR is a nonparametric technique that
aims to find a function f(x) that produces output deviated from observed
response values yn by a value no greater than ε for each training point x, and
meanwhile, as flat as possible.

XGBoost. This is an extension of gradient boosting machine (GBM) algorithm
that tries to divide the optimization problem into two parts by first determining
the direction of the step and then optimizing the step length.

Deep Neural Network (DNN). A fully connected deep neural network com-
posed of three Dense layers, connecting to a Dropout and followed by another
Dense layer is developed and used as another baseline for comparison.

Evaluation Metrics. Let N be the number of grids under forecast. We denote
Ai as the actual crop yield and Fi is the forecast yield for grid i. A set of classical
metrics such as Mean square error (MSE), Root mean square error (RMSE),
Mean absolute error (MAE), Mean absolute percentage error (MAPE) and Max
error (ME) are used to elaborate the performance. These measures are computed
as: MSE = 1

N

∑N
i=1(Ai − Fi)2, RMSE =

√
MSE, MAE = 1

N

∑N
i=1 |Ai − Fi|,

MAPE = 100%
N

∑N
i=1

|Ai−Fi|
Ai

and ME = max(|Ai − Fi|) where i = 1, . . . , N .
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Fig. 6. Within-field cotton yield prediction on different algorithms versus ground truth
yield monitor data in 2003.

Fig. 7. Impact of neighborhood size on model performance

4.3 Experimental Results

Average Performance. Figure 4 shows the performance of our proposed model
compared with other baselines in term of RMSE metric. The Multi-Task learning
and our proposed Spatial-Temporal Multi-Task learning model have the least
error in all three years. Figure 6 and Table 1 take yield prediction performance of
2003 as an example. The Multi-Task Learning and our Spatial-Temporal Multi-
Task learning methods show significant superiority than all the other approaches.
With the whole data package, our model achieves the smallest error metrics
(MSE, RMSE, MAE, MAPE, ME) which are 7, 013.5, 83.7, 63.6, 7.55 and 254.4,
respectively. The overall performance of Multi-Task Learning is second and close
to our proposed approach, while Support Vector Regression shows the worst
performance.

Real-Time Prediction Throughout the Year. Considering the life cycle of
cotton in the U.S., we train the model using partially available input features and
predict the cotton yield in each month in an online manner. Figure 5 shows the
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Table 1. Cotton yield prediction performance comparison of year 2003 while combining
all data sources. Bold values represent the best results.

MSE RMSE MAE MAPE Max error

Linear regression 17, 875.6 133.7 109.0 10.96 276.7

Random forest 19, 295.3 138.9 112.0 10.68 321.7

Support vector regression 33, 588.5 183.3 142.2 13.35 475.4

XGBoost 19, 498.4 139.6 111.4 10.05 353.0

Deep neural network 9, 504.8 97.5 77.8 9.96 269.4

Multi-task learning 8, 267.5 90.9 70.5 8.08 256.2

Spatial-temporal M.T.L. 7,013.5 83.7 63.6 7.55 254.4

Table 2. Performance of the spatial-temporal Multi-task Learning model using indi-
vidual source of data.

Input source MSE RMSE MAE MAPE Max Error

Soil properties 15,791.9 125.7 98.2 12.04 372.7

Spectral data 21,292.5 145.9 114.4 13.62 450.1

NDVI 15,134.5 123.0 94.7 11.80 470.4

performance when we try to make a prediction in May, June, July, August and
September, using only the data available up to that point. As more information
is available, most of the models improve. The improvement during the first three
months is less than that of later two months. All models perform better in August
and reach the best in September.

Spatial Correlations: We also vary the neighborhood distance of each region
from 1 to 5 to verify the impact of spatial correlation among regions under
prediction. As shown in Fig. 7, MSE, RMSE and MAE gradually decrease when
the distance increases. This trend stops when neighborhood size equals to 4.
The performance becomes more stable afterwards. Even though we see a random
value in MAPE and ME metrics with respect to the neighborhood distance, there
is also a decreasing trend on MAPE and ME when neighborhood size increases.
Therefore, in our experiment, we set the neighbor distance as 5.

Understanding the Importance of the Features: Since weather data is
shared in all regions under prediction, we do not evaluate its impact. Instead,
we explore the impacts of soil properties, spectral conditions before planting
and NDVI on the cotton yield prediction. We split the data by dimensions and
conduct two experiments: in Table 2, we use one data source at a time to compare
the importance of this single source, in Table 3 we remove one data source and
use the rest input each time to compare the performance.



ST. MTL. for Within-Field Cotton Yield Prediction 353

Table 3. Discover the importance of sources of data by removing one source at a time.

Removed source MSE RMSE MAE MAPE Max error

Soil properties 13,383.0 115.7 88.8 10.79 481.6

Spectral data 13,189.6 114.8 93.0 11.54 276.5

NDVI 15,642.0 125.1 100.3 12.39 330.0

Table 2 shows that NDVI data contributes most significantly to better pre-
cision. It gets MSE and RMSE values at 15, 134.5 and 123.0 while the spectral
data produces the worst results, whose MSE and RMSE are 21, 292.5 and 145.9,
respectively. Table 3 indicates that if we ignore the spectral feature, the model
achieves the best results compared with ignoring the soil properties or NDVI
features. These results demonstrate that the NDVI impacts the prediction the
most, then soil properties, while spectral data before planting has the minimal
impact.

5 Conclusion

This paper proposes a novel Multi-task Learning framework for within-field scale
cotton yield prediction, which ingests multiple heterogeneous data sources, such
as soil type, weather, topographic, and remote sensing, and is capable of pre-
dicting within-field cotton yield throughout the growing season. By aggregating
these multiple data sources in the shared layer before transferring to task-specific
layers, this creative strategy is able to enhance specific learning task by utilizing
sources from other related tasks. To minimize the spatial errors in prediction,
this work introduces a spatial regularization to measure the correlations between
a certain grid and its neighboring grids. The experimental results show the pro-
posed approach consistently outperforms other competing approaches, and has
a promising future in the crop yield prediction research field.
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tion under the Grant CNS-1737634.
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Abstract. Despite the advances in Structural Health Monitoring
(SHM) which provides actionable information on the current and future
states of infrastructures, it is still challenging to fuse data properly from
heterogeneous sources for robust damage identification. To address this
challenge, the sensor data fusion in SHM is formulated as an incremental
tensor learning problem in this paper. A novel method for online data
fusion from heterogeneous sources based on incrementally-coupled tensor
learning has been proposed. When new data are available, decomposed
component matrices from multiple tensors are updated collectively and
incrementally. A case study in SHM has been developed for sensor data
fusion and online damage identification, where the SHM data are formed
as multiple tensors to which the proposed data fusion method is applied,
followed by a one-class support vector machine for damage detection. The
effectiveness of the proposed method has been validated through exper-
iments using synthetic data and data obtained from a real-life bridge.
The results have demonstrated that the proposed fusion method is more
robust to noise, and able to detect, assess and localize damage better
than the use of individual data sources.

Keywords: Data fusion · Incrementally-coupled tensor learning ·
Online learning · Anomaly detection

1 Introduction

Civil infrastructures are critical to our society as they support the flows of people
and goods within cities. Any problem on such a structure from small damage to
catastrophic failures would result in certain economic and potential life losses.
Currently most of structural maintenances are time-based, e.g. visual inspec-
tions at predefined regular schedules. Structural Health Monitoring (SHM) is
a condition-based monitoring using sensing system which provides actionable
information on the current and future states of infrastructures. SHM systems
built on advanced sensing technologies and data analytics allow the shift from
time-based to condition-based maintenance [3].
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In SHM, measured data are often in a multi-way form, i.e. multiple sen-
sors at different locations simultaneously collect data over time. These data are
highly redundant and correlated, which are suitable to be analyzed using tensor
analysis [6,7]. There were efforts to apply tensor CANDECOMP/PARAFAC
(CP) [7] decomposition in SHM for damage identification [5,6,10]. However,
these approaches are confined to a fusion from sensors of the same type to
guarantee the data can be formed in a single tensor. In many SHM systems,
data come from heterogeneous sources due to an availability of different types
of sensors (e.g. accelerometers, strain gauges and thermometers). Additionally,
existing methods for data fusion from heterogeneous sources using tensor anal-
ysis [1,12] mainly work in an offline manner, which is not practical for SHM
applications. In this paper, we propose a method to fuse data online from het-
erogeneous sources based on incremental tensor learning, which is then used for
damage identification in SHM. Our contributions are summarized as follows:

– We propose a method for online data fusion from heterogeneous sources using
incrementally-coupled tensor learning. Specifically, our method collectively
and incrementally updates component matrices for CP decomposition from
multiple tensors when new data arrive.

– We develop a case study used in SHM for sensor data fusion and online
damage identification. In the case study, the SHM data are formed as multiple
tensors to which an incremental tensor fusion is applied, followed by a one-
class support vector machine (OCSVM) for damage detection.

– We demonstrate the effectiveness of the proposed method through experi-
ments using synthetic data and real data obtained from a bridge in Sydney.

In this paper, we represent a tensor as a three-way array, which is a typical
case in SHM. However, all the theories could be generalized for a n-way array.
The remainder of the paper is organized as follows. Section 2 summarizes the
related work. Section 3 describes our novel method to incrementally update com-
ponent matrices from multiple tensors at the same time and its uses for online
damage identification in SHM. Section 4 presents the experimental results. We
conclude our work in Sect. 5.

2 Related Work

Incremental tensor analysis, which is used for online applications, mainly focuses
on Tucker decomposition [8,13] since it makes use an extensive literature of
incremental singular value decomposition (SVD). There are a few works [5,9,15]
on an incremental learning for CP decomposition. Nion and Sidiropoulos [9]
proposed a method to incrementally track the SVD of the unfolded tensor for
CP. However, this technique scales linearly with time, which is impractical to
use for large datasets. Zhou et al. [15] discussed a method to incrementally track
CP decomposition over time. It follows an alternating least square (ALS) style:
update a component matrix while fixing all the others. However, the update
only occurs once instead of an iterative process, which makes the approximation
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sometimes ineffective. Khoa et al. [5] extended this method in a proper ALS
style, resulting in more accurate updated component matrices.

Data fusion using coupled matrix/tensor decomposition has become popular
recently [1,12,14]. Instead of using ALS algorithms, Acar et al. [1] proposed an
all-at-once optimization approach for coupled matrix and tensor factorization.
Sorber et al. [12] presented a framework where the type of tensor decompo-
sition, the coupling between factorizations and the structure imposed on the
factors can all be chosen freely without any changes to the solver. In [14], the
authors proposed a method to learn a clustered low-rank representation for mul-
tiview spectral clustering using structured matrix factorization. However, these
methods all work offline which limits their applications.

3 Online Damage Identification Using Incrementally-
Coupled Tensor Learning

The proposed method to identify damage online using incrementally-coupled
tensor learning is depicted in Fig. 1. In SHM, vibration responses of a structure
are measured over time by different types of sensors (e.g. accelerometers and
strain gauges). The data from each type of sensors when the structure is in a
healthy condition can be considered as a three-way tensor (feature× location×
time). Thus we have tensor X1 for accelerometers and X2 for strain gauges.
Feature is the information extracted from the raw signals; location represents
sensor positions; and time indicates data snapshots at different timestamps. Each
slice along the time axis shown in Fig. 1 is a frontal slice representing all features
across all locations at a particular time.

Training tensors X1 and X2 are jointly decomposed into matrices of differ-
ent modes using coupled tensor-tensor decomposition as described in Sect. 3.1.
When new data arrive, these matrices are jointly updated using our proposed
incremental tensor analysis as in Sect. 3.2. A monitoring of these factor matrices
over time will help identify the damage in the structure (Sect. 3.3).

3.1 Data Fusion Using Coupled Tensor-Tensor Decomposition

Two typical approaches for tensor decomposition are CP decomposition and
Tucker decomposition [7]. After a decomposition of a three-way tensor, three
component matrices can be obtained representing information in each mode. In
the case of SHM data as in Fig. 1, they are associated with feature (matrix A1),
location (matrix B1) and time modes (matrix C) (for tensor X1). We also obtain
component matrices A2, B2 and C (for tensor X2). Note that C is the same for
X1 and X2 since time information is shared between these two types of sensors.

In CP method, the decomposed matrices are unique provided that we per-
mute the rank-one components [7]. Therefore it is easy to interpret the artifact
in each mode separately using its corresponding component matrix. Thus, CP
method is used in this paper for our SHM applications.
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Fig. 1. A flowchart of incremental tensor fusion for online damage identification.

The problem to jointly decompose X1 and X2 using CP can be formulated as

f(A1, B1, C,A2, B2) =
1
2

∥
∥X1 − [A1, B1, C]

∥
∥
2 +

1
2

∥
∥X2 − [A2, B2, C]

∥
∥
2 (1)

where Xi = [Ai, Bi, C] represents the CP decomposition and can be formulated
as Xi(1) = Ai(C � Bi)�, Xi(2) = Bi(C � Ai)� and Xi(3) = C(Bi � Ai)� (Xi(j)

is an unfolding matrix of Xi in mode j and � is the Khatri-Rao product) [7].
Equation 1 can be solved using ALS and it is summarized in Algorithm1. In our
SHM application (as in Sect. 4.2), the time matrix C is used for damage detection
in time mode while location matrix B2 is used for damage localization.

3.2 Incremental Tensor Update

OnlineCP-ALS [5] was proposed to incrementally update the component matri-
ces of a tensor when new data arrive, which was shown to be better than other
incremental CP decomposition methods. Using similar ideas, we propose a tech-
nique to jointly and incrementally update component matrices from different
tensors over time as follows.

Update Temporal ModeC . Due to an arrival of new information (new frontal
slices in time mode), additional rows will be added to component matrix C.



Online Data Fusion 361

Algorithm 1. Coupled Tensor-Tensor Decomposition
Input: Tensors X1, X2, number of components R
Output: Component matrices A1, B1, C, A2 and B2

1: Initialize A1, B1, C, A2 and B2

2: repeat

3: A1 = arg minA1
1
2

∥
∥X1(1) − A1(C � B1)

�∥
∥
2

(fixing B1 and C)

4: B1 = arg minB1
1
2

∥
∥X1(2) − B1(C � A1)

�∥
∥
2

(fixing A1 and C)

5: A2 = arg minA2
1
2

∥
∥X2(1) − A2(C � B2)

�∥
∥
2

(fixing B2 and C)

6: B2 = arg minB2
1
2

∥
∥X2(2) − B2(C � A2)

�∥
∥
2

(fixing A2 and C)

7: C = arg minC
1
2

∥
∥
[
X1(3) X2(3)

] − C
[

(B1 � A1)
� (B2 � A2)

�]∥
∥
2

(fixing A1, B1,
A2 and B2)

8: until convergence

By fixing A1, B1, A2 and B2, we can solve C from Eq. 1 as:

C = arg min
C

1
2

∥
∥
[
X1(3) X2(3)

] − C
[

(B1 � A1)� (B2 � A2)�]∥
∥

= arg min
C

1
2

∥
∥
∥
∥

[ [
X1old(3) X2old(3)

] − Cold

[

(B1 � A1)� (B2 � A2)�]

[
X1new(3) X2new(3)

] − Cnew

[

(B1 � A1)� (B2 � A2)�]

]∥
∥
∥
∥

.

Thus,

C =
[

Cold

Cnew

]

=
[

Cold
[
X1new(3) X2new(3)

] [

(B1 � A1)� (B2 � A2)�]†

]

, (2)

where † is a matrix pseudo-inverse. Therefore, new rows added to C can be
estimated using only new information appending in time mode.

Update Non-temporal Mode A1, B1, A2 and B2. By fixing B1 and C for
updating A1, the Eq. 1 can be written as 1

2

∥
∥X1(1) − A1(C � B1)�∥

∥
2. Using the

approach as in [15], by taking the derivative of this function with regard to A1

and setting it to zero, we have:

A1 =
X1(1)(C � B1)

(C � B1)�(C � B1)
= P1Q

−1
1 ,

where P1 = X1(1)(C � B1) and Q1 = (C � B1)�(C � B1).
Directly calculating P1 and Q1 is costly since (C � B1) is a big matrix. By

representing X1(1) and C with old and new information, we can have P1 =
P1old + X1new(1)(Cnew � B1) and Q1 = Q1old + C�

newCnew ◦ B�
1 B1 (◦ is the

Hadamard product). Therefore, A1 can be computed as:

A1 = P1Q
−1
1 =

P1old + X1new(1)(Cnew � B1)
Q1old + C�

newCnew ◦ B�
1 B1

. (3)
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Similarly we can derive the update for B1 as:

B1 = U1V
−1
1 =

U1old + X1new(2)(Cnew � A1)
V1old + C�

newCnew ◦ A�
1 A1

, (4)

where U1 = X1(2)(C � A1) and V1 = C�C ◦ A�
1 A1 [15].

Likewise, A2 and B2 can be updated as:

A2 = P2Q
−1
2 =

P2old + X2new(1)(Cnew � B2)
Q2old + C�

newCnew ◦ B�
2 B2

; (5)

B2 = U2V
−1
2 =

U2old + X2new(2)(Cnew � A2)
V2old + C�

newCnew ◦ A�
2 A2

. (6)

We can see that by storing information from previous decomposition (i.e. P1,
Q1, U1, V1, P2, Q2, U2 and V2), component matrices A1, B1, A2 and B2 are
updated using only new information arriving in time mode.

OnlineCP-Fusion. For two three-way tensors that grow with time (shared
C mode), a two-staged procedure is proposed to jointly incrementally update
tensor component matrices. The technique, which is called onlineCP-Fusion, is
described in Algorithm 2.

Algorithm 2. Incrementally-Coupled Tensor Update: onlineCP-Fusion
Input: Training tensors X1train and X2train

Output: Component matrices C, A1, B1, A2 and B2 when new data arrive

1: Initialization/training stage:
C, A1, B1, A2 and B2 are obtained using Algorithm 1 on training tensors
P1 = X1train(1)(C � B1) and P2 = X2train(1)(C � B2)
Q1 = C�C ◦ B�

1 B1 and Q2 = C�C ◦ B�
2 B2

U1 = X1train(2)(C � A1) and U2 = X2train(2)(C � A2)
V1 = C�C ◦ A�

1 A1 and V2 = C�C ◦ A�
2 A2

2: Update/test stage: when new data arrive as new slices appended to time mode
Repeat

Update P1, Q1, U1, V1, P2, Q2, U2 and V2 using ‘old ’ information
C is updated using Eq. (2) (fixing A1, B1, A2 and B2)
A1 is updated using Eq. (3) (fixing B1 and C)
B1 is updated using Eq. (4) (fixing A1 and C)
A2 is updated using Eq. (5) (fixing B2 and C)
B2 is updated using Eq. (6) (fixing A2 and C)

Until convergence
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Complexity Analysis. As in [15], the time complexity of onlineCP for a n-way
tensor X1(I1 × ... × In−1 × K) and X2(J1 × ... × Jn−1 × K) are O(nR

∏n−1
i=1 Ii)

and O(nR
∏n−1

i=1 Ji) where Ii and Ji are sizes of non-temporal modes. So it
takes O(nR(

∏n−1
i=1 Ii +

∏n−1
i=1 Ji)t) for onlineCP-Fusion, where t is the number of

iterations for an ALS update. Since in a tensor growing in time mode normally
Ii, Ji � K (the size in time mode) and n,R, t are very small, the complexity for
an update from onlineCP-Fusion can be consider as constant.

3.3 Online Damage Identification

Building a Benchmark Model. In practice, events corresponding to damaged
states of structures are often unavailable for a supervised learning approach. In
this work, we use OCSVM [11] with Gaussian kernel as an anomaly detection
method. The technique in [4] is adopted to tune σ in the kernel.

In this step, C, A1, B1, A2 and B2 are obtained using Algorithm1 on training
tensors. Each row of the component matrix C represents an event in time mode.
We build a benchmark model using healthy training events which are represented
by rows of C by means of OCSVM.

Damage Identification. Due to an arrival of a new time event, an additional
row Cnew is added to the component matrix C, and matrices A1, B1, A2 and B2

are incrementally updated as described in Algorithm2. The new row Cnew will
be checked if it agrees with the benchmark model built at the training stage,
answering the condition of the structure. In the case of OCSVM, a negative
decision value indicates that the new event is likely a damaged event.

Location matrices B1 and B2, where each row captures meaningful informa-
tion for each sensor location, could be used for damage localization. By analyzing
these matrices when each new data instance arrives, it is able to find anomalies,
which correspond to damaged locations. In this work we only use B2 (which rep-
resents sensor locations for one type of sensors) for damage localization due to
the specific sensor instrumentation for the bridge tested in the experiment. An
average distance from a sensing location (a row in B2) to k nearest neighboring
locations (k = 2) is regarded as an anomaly score to localize damage.

To estimate the extent of damage, we analyze the decision values by the
OCSVM model. The rationale is that a structure with a more severe damage (e.g.
a longer crack) will behave more differently from a normal situation. Different
ranges of the decision values may imply different severity levels of damage.

4 Experimental Results

Experiments were conducted using both synthetic data and data collected from
a real bridge in operation. For all experiments, we compare our onlineCP-Fusion
(for fusion X1 and X2) with onlineCP-ALS [5] (as baselines which learn from
X1 and X2 separately). Another baseline called naive-Fusion to fuse data by
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concatenating the features from all strain gauge and cable sensors in each time
instance as a feature vector, followed by random projection (with dimension
size k = 50) to reduce the feature dimension. Then self-tuning OCSVM (with
ν = 5%) was used for anomaly detection on feature spaces obtained by all these
methods. About 80% of healthy data used for training and the rest for testing.
All reported results were averaged over 10 trials.

4.1 Synthetic Data

We generated 5 matrices randomly from standard normal distribution with dif-
ferent means and variances: A1(50×R), B1(20×R), A2(25×R), B2(10×R) and
C(500×R). They were considered as latent factors decomposed from two tensors
as in Fig. 1. Then 5% of data instances in C were replaced with data generated
randomly from a uniform distribution (as damage/anomaly). All the matrices
were then normalized to have unity norm for all their columns. Then a tensor X1

was constructed from A1, B1, C and a tensor X2 was constructed from A2, B2, C
using CP. Next Gaussian noise was randomly added to 35% of data along third
dimension of tensor X1 and to 50% of data along third dimension of tensor X2.
The purpose is to check if a data fusion of two tensors can eliminate the adverse
effects of noise from individual tensors.

R = 5 was selected for tensor construction and decomposition in the exper-
iment. F1-score was adopted to measure the accuracy of OCSVM for anomaly
detection in the learned time matrix C. Factor similarity was used to estimate
the similarity between decomposed latent factors and the real ones we generated
(this is not applicable to naive-Fusion). The similarity score for each column of
each component matrix is computed as |â�

r ar|
‖âr‖‖ar‖ after finding the best matching

permutation of the columns (âr and ar are a real latent factor column and its
decomposed one respectively). The product of all these scores for all columns of
all component matrices represents the final similarity score.

Factor similarities and F1-scores based on different methods are shown in
Table 1, indicating that fusing data from two noisy tensors by means of onlineCP-
Fusion overall yields better result than all other baselines.

Table 1. Factor similarities and F1-scores based on different methods.

Factor similarity F1-score

OnlineCP-ALS for X1 0.86 0.85

OnlineCP-ALS for X2 0.68 0.72

Naive-Fusion N/A 0.54

OnlineCP-Fusion for X1 and X2 0.86 0.87
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Fig. 2. The cable-stayed bridge and the longitudinal and lateral girders under the deck.

4.2 Real Bridge Data

A cable-stayed bridge (Fig. 2a) in Sydney, Australia was considered as a case
study in this work. It has a steel tower with a composite steel-concrete deck.
The deck is supported by four I-beam steel girders, which are internally attached
by a set of equally-spaced cross girders (CG). A dense array of sensing system
has been deployed on the bridge since 2016. All the sensors are timely synchro-
nized and are continuously measuring the dynamic response of the bridge under
normal operation at 600 Hz. Each cable has been instrumented with a full axial
Wheatstone bridge to measure the dynamic strain response of the cables (namely
SA1 to SA8 which are, respectively, installed on cables 1 to 8 as in Fig. 2b. They
are also aligned with CGs 4–7). After a test, it was realised that sensor SA4
was not operational and thus it was eliminated from the analysis. In our work,
we used two sets of sensors for data fusion experiments: a set of 6 strain gauge
sensors mounted to the bridge deck and a set of aforementioned 7 cable sensors.

We emulated damage by locating stationary mass on the bridge at different
locations as real damage was not available. This additional mass can be treated
as a damaged event for evaluation purpose since the increment of mass results
in a similar effect on the bridge dynamic properties as the decrement of stiffness
caused by an actual damage. Two extensive field experiments were conducted on
this bridge which are referred to as Bus Damage Test and Car Damage Test. The
Bus Damage Test was conducted in a way that a 13t three-axle bus was placed at
a stationary location at mid-span of the bridge. Due to the distributed effect of
mass in this case, this dataset is not suitable for damage localization and it will
be solely adopted for detection and assessment of damage. In the Car Damage
Test, a 2.4t car was utilized. In each damage case (i.e. Car Damage 1 to Car
Damage 4), the vehicle was placed in each cross girder (CGs 4–7 respectively,
where the 4 pairs of cable sensors are placed) and the dynamic response of the
bridge was recorded under ambient excitation. The Car Damage Test could be
used to verify whether the proposed method is capable of locating damage.

Feature Extraction. The change in the cable-forces was adopted for damage
identification as any damage in the structure changes the distribution of the
cable-forces. Ambient strain responses from each cable sensor in both healthy
and damaged cases were split into events of 2 s for analysis. Then the following
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steps were applied to extract features for our damage identification. First, the
dynamic strain responses due to the live load effects from each cable (except SA4
due to the sensor issue) were normalized by subtracting the average strain of the
healthy training data from the same cable. Then the absolute normalized strain
was transformed into an unique direction by taking into account the orientation
of each cable. This resulted in seven time series responses for seven cable sensors
(i.e. SA1, SA2, SA3, SA5, SA6, SA7 and SA8). Since each strain response had
1200 samples (2 s at 600 Hz) and there were 7 locations of cable sensors, the data
formed a cable tensor of 1200 features × 7 locations × 187 events where 187
indicates the total number of healthy events and damaged events (including 4
Car Damage cases and 1 Bus Damage case). For 6 strain gauges on the bridge
deck, the feature extraction is the same except their orientations were not used as
in the cable sensors. Similarly, we have a strain gauge tensor of 1200 features×
6 locations × 187 events.

Damage Detection and Severity Assessment. Similar to experiments for
the synthetic data, Gaussian noise was randomly added to 35% of data along
third dimension of strain gauge tensor and to 50% of data along third dimension
of cable tensor. Anomaly detection using self-tuning OCSVM was applied on
the feature spaces learned by onlineCP-Fusion and all baselines. The number of
latent factors R was selected as 2 using core consistency diagnostic technique
(CORCONDIA) [2]. F1-scores of 0.99, 1 and 0.87 were achieved by onlineCP-
ALS for the strain gauge tensor and cable tensor, and naiveFusion, respectively.
Data fusion from two tensors using the proposed onlineCP-Fusion led to an F1-
score of 1, which improved the overall performance from the approach without
tensor data fusion. The results in Fig. 3 (obtained C matrices, R = 2) indicate
the proposed method (Fig. 3c) is not only more capable to distinguish between
healthy and damaged data for damage detection, but also between Bus Damage
and Car Damage cases for severity assessment (i.e. Bus Damage samples were
further away from the healthy data compared to those of Car Damage).
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Fig. 3. Damage detection and severity assessment.
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(a) Car Damage 1: sensor score
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(b) Car Damage 1: sensor score (fusion)
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(c) Car Damage 2: sensor score
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(d) Car Damage 2: sensor score (fusion)
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(e) Car Damage 3: sensor score
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(f) Car Damage 3: sensor score (fusion)
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(g) Car Damage 4: sensor score
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(h) Car Damage 4: sensor score (fusion)

Fig. 4. Results on damage localization.
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Damage Localization. Using the techniques in Sect. 3.2, component matrix
B2new was incrementally updated for every new test event. Sensor scores at
each location were computed as in Sect. 3.3. We used the change of this score
as an indicator to localize damage. Specifically the sensor which has the most
change of this score is likely located near to the damage location. The results
on damage localization for 4 Car Damage cases are shown in Fig. 4. As noticed,
each damage case corresponds to a pair of figures for comparison purpose. Taking
Figs. 4a and b as an example, Fig. 4a measures score changes (the difference or
gap between the average sensor score of the healthy and damaged test data) of
cable sensors when we only considered cable tensor. Figure 4b measures score
changes of cable sensors when a data fusion for cable and strain gauge sensors
was used. It is shown in Figs. 4a and b that the damage location was close to
SA7/SA8 (in CG4), which is true as the car was in CG4 in Car Damage 1. We
achieved similar results for Car Damage 3 (CG6, SA3) and 4 (CG7, SA1/SA2),
except in Car Damage 2 where SA3 was the sensor with the most change. Even
though the use of data fusion achieved similar results with the use of only cable
sensors, the score changes of localized sensors using onlineCP-Fusion are more
pronounced compared with those obtained from only cable sensors.

5 Conclusion

This paper has proposed a novel method for online data fusion from heteroge-
neous sources based on incrementally-coupled tensor learning, where component
matrices from multiple tensors are updated collectively and incrementally when
new data arrive. The method has been applied to a developed case study in SHM
for sensor data fusion and online damage identification. Experiments using syn-
thetic data and data obtained from a real-life bridge have verified the effective-
ness of the proposed method for data fusion. The results show that the proposed
data fusion approach is more robust to noise than the approach using individ-
ual data sources and has a potential for data fusion for damage identification
in SHM.

References

1. Acar, E., Kolda, T.G., Dunlavy, D.M.: All-at-once optimization for coupled matrix
and tensor factorizations. In: Proceedings of Mining and Learning with Graphs,
MLG 2011, August 2011

2. Bro, R., Kiers, H.A.L.: A new efficient method for determining the number of
components in PARAFAC models. J. Chemometr. 17(5), 274–286 (2003)

3. Farrar, C.R., Worden, K.: An introduction to structural health monitoring. Philos.
Trans. Roy. Soc. A: Math. Phys. Eng. Sci. 365(1851), 303–315 (2007)

4. Khazai, S., Homayouni, S., Safari, A., Mojaradi, B.: Anomaly detection in hyper-
spectral images based on an adaptive support vector method. IEEE Geosci. Remote
Sens. Lett. 8(4), 646–650 (2011)



Online Data Fusion 369

5. Khoa, N.L.D., Anaissi, A., Wang, Y.: Smart infrastructure maintenance using
incremental tensor analysis: extended abstract. In: Proceedings of the 2017 ACM
on Conference on Information and Knowledge Management, CIKM 2017, pp. 959–
967. ACM, New York (2017)

6. Khoa, N.L.D., et al.: On damage identification in civil structures using tensor
analysis. In: Cao, T., Lim, E.-P., Zhou, Z.-H., Ho, T.-B., Cheung, D., Motoda,
H. (eds.) PAKDD 2015, Part I. LNCS (LNAI), vol. 9077, pp. 459–471. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-18038-0 36

7. Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev.
51(3), 455–500 (2009)

8. Liu, W., Chan, J., Bailey, J., Leckie, C., Kotagiri, R.: Utilizing common substruc-
tures to speedup tensor factorization for mining dynamic graphs. In: Proceedings
of the 21st ACM International Conference on Information and Knowledge Man-
agement, CIKM 2012, pp. 435–444. ACM, New York (2012)

9. Nion, D., Sidiropoulos, N.D.: Adaptive algorithms to track the PARAFAC decom-
position of a third-order tensor. Trans. Sig. Process. 57(6), 2299–2310 (2009)

10. Prada, M.A., Toivola, J., Kullaa, J., Hollmén, J.: Three-way analysis of structural
health monitoring data. Neurocomputing 80, 119–128 (2012). Special Issue on
Machine Learning for Signal Processing 2010

11. Schölkopf, B., Williamson, R.C., Smola, A.J., Shawe-Taylor, J., Platt, J.C.: Sup-
port vector method for novelty detection. In: NIPS, pp. 582–588 (1999)

12. Sorber, L., Barel, M.V., Lathauwer, L.D.: Structured data fusion. IEEE J. Sel.
Top. Sig. Process. 9(4), 586–600 (2015)

13. Sun, J., Tao, D., Papadimitriou, S., Yu, P.S., Faloutsos, C.: Incremental tensor
analysis: theory and applications. ACM Trans. Knowl. Discov. Data 2(3), 11:1–
11:37 (2008)

14. Wang, Y., Wu, L., Lin, X., Gao, J.: Multiview spectral clustering via structured
low-rank matrix factorization. IEEE Trans. Neural Netw. Learn. Syst. 29(10),
4833–4843 (2018)

15. Zhou, S., Vinh, N.X., Bailey, J., Jia, Y., Davidson, I.: Accelerating online cp decom-
positions for higher order tensors. In: Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD 2016,
pp. 1375–1384. ACM, New York (2016)

https://doi.org/10.1007/978-3-319-18038-0_36


Co-clustering from Tensor Data

Rafika Boutalbi1,2(B), Lazhar Labiod1, and Mohamed Nadif1

1 LIPADE, University of Paris Descartes, 45 rue des Saints Pères, 75006 Paris, France
{rafika.boutalbi,lazhar.labiod,mohamed.nadif}@parisdescartes.com

2 TRINOV, 196 rue Saint Honoré, 75001 Paris, France

Abstract. With the exponential growth of collected data in different
fields like recommender system (user, items), text mining (document,
term), bioinformatics (individual, gene), co-clustering which is a simul-
taneous clustering of both dimensions of a data matrix, has become
a popular technique. Co-clustering aims to obtain homogeneous blocks
leading to an easy simultaneous interpretation of row clusters and col-
umn clusters. Many approaches exist, in this paper we rely on the latent
block model (LBM) which is flexible allowing to model different types
of data matrices. We extend its use to the case of a tensor (3D matrix)
data in proposing a Tensor LBM (TLBM) allowing different relations
between entities. To show the interest of TLBM, we consider continuous
and binary datasets. To estimate the parameters, a variational EM algo-
rithm is developed. Its performances are evaluated on synthetic and real
datasets to highlight different possible applications.

Keywords: Co-clustering · Tensor · Data science

1 Introduction

Co-clustering addresses the problem of simultaneous clustering of both dimen-
sions of a data matrix. Many of the datasets encountered in data science are two-
dimensional in nature and can be represented by a matrix. Classical clustering
procedures seek to construct separately an optimal partition of rows (individ-
uals) or, sometimes (features), of columns. In contrast, co-clustering methods
cluster the rows and the columns simultaneously and organize the data into
homogeneous blocks (after suitable permutations); see for instance [3]. Methods
of this kind have practical importance in a wide variety of applications where
data are typically organized in two-way tables. However, in modern datasets,
instead of collecting data on every individual-feature pair, we may collect sup-
plementary individual or item information leading to tensor representation. This
kind of data has emerged in many fields such as recommender systems where the
data are collected on multiple items rated by multiple users, information about
users and items is also available yielding as a tensor rather than a data matrix.

Despite the great interest for co-clustering and the tensor representation,
few works tackles the co-clustering from tensor data. We mention the work of
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[1] based on Minimum Bregman information (MBI) to find co-clustering of a
tensor. Most recently, in [14] the General Tensor Spectral Co-clustering (GTSC)
method for co-clustering the modes of non-negative tensor has been developed.
In [4] the authors proposed a tensor biclustering algorithm able to compute
a subset of tensor rows and columns whose corresponding trajectories form a
low-dimensional subspace. However, the majority of authors consider the same
entities for the row and columns or do not consider the tensor co-clustering under
a probabilistic approach. To the best of our knowledge, this is the first attempt
to formulate our objective when both sets -row and column- are different and
with model-based co-clustering. To this end, we rely on the latent block model
[8] for its flexibility to consider any type of data matrices.

Fig. 1. Goal of co-clustering for binary tensor data.

In this paper, we propose a co-clustering model for tensor data, where clus-
tering of row and column entities is done not only on principal relation matrix
but on tensor including multiple covariates and/or relations between entities.
The proposed model can also be viewed as multi-way clustering approach where
each slice of the third dimension of the tensor represents a relation or covariate
(see Fig. 1). The goal is to simultaneously discover the row and columns clusters
and the relationship between these clusters for all slices. To achieve this, we pro-
pose to extend Latent block model (LBM) to tensor data referred to as TLBM.
This model is suitable for several applications.

The main contributions of this paper are summarized as follows: (i) we pro-
pose an extension of latent block model for tensor data (TLBM) (ii) we show
its flexibility to be applied with different types of data (iii) we derive a varia-
tional EM for co-clustering. The remainder of this paper is organized as follows.
Section 2 describes classical latent block model and presents its extension TLBM.
Section 3 details the proposed algorithm variational EM for co-clustering of ten-
sor data. Section 4 presents experimental results on the synthetic and real-world
data set and comparisons with several algorithms. Section 5 concludes this paper
and provides some directions for future work.
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2 From Latent Block Model for 2D Data Matrix
to Tensor Data

2.1 Latent Block Model

The latent block model [8] in g × m blocks is defined as follows. Given a matrix
X of size n × d, we assume that there is a couple of partitions (z,w) where z is
partitioned in g clusters on the set of rows I and w is partitioned in m clusters
on the set of columns J , such that each element xij belonging to the block k� is
generated according to a probability distribution, where k represents the class
of the line i, while � represents the class of the column j. The z partition can be
represented by a vector of labels or by z = (zik) of size n × g where zik = 1 if
the line i belongs to the class k, and zik = 0 otherwise. In the same way, the w
partition can be represented by a label vector or by a column classification matrix
w = (wj�) of size d × m where wj� = 1 if the column j belongs to the class �,
and wj� = 0 otherwise. Under the independence assumption p(z,w) = p(z)p(w)
and noting Z and W the sets of all possible partitions z and w, the likelihood
of the observed data can be written as follows:

f(X;Ω) =
∑

(z,w)∈Z×W
∏

i,k πzik

k

∏
j,� ρ

wj�

�

∏
i,j,k,� (Φ(xij ;λk�))

zikwj�

(1)
where Ω = (π,ρ,λ) are the unknown parameters of LBM with π = (π1, . . . , πg)
and ρ = (ρ1, . . . , ρm) where (πk = p(zik = 1), k = 1, . . . , g), (ρ� = p(wj� =
1), � = 1, . . . , m) are the proportions of clusters and λk� represents the parame-
ters of k� block distribution. The classification log-Likelihood takes the following
form:

LC(z,w,Ω) =
∑

i,k

zik log πk +
∑

j,�

wj� log ρ� +
∑

i,j,k,�

zikwj� log(Φ(xij ;λk�)) (2)

2.2 Latent Block Model for Tensor Data (TLBM)

Hereafter, we propose a novel Latent Block model for tensor data (TLBM). Few
studies have addressed the issue of co-clustering for tensor data [4,14]. Unlike
classical LBM which considers data matrix X = [xij ] ∈ R

n×d, TLBM considers
3D data matrix X = [xij ] ∈ R

n×d×v where n is the number of rows, d the number
of columns, and v the number of covariates. Figure 2a presents the data structure
and Fig. 2b the probabilistic graphical model TLBM. The generative process is
described in Algorithm 1; TLBM is flexible and can be used with different types
of data.

Binary Data. In this case, we can consider an extension of the Bernoulli LBM
(Bernoulli TLBM), thereby μk� is a probability vector. Specifically, assuming
the conditional independence (independence per block), Φ is given by Φ(xij ;λk�)
defined as follows

∏v
a=1(μ

a
k�)

xa
ij (1−μa

k�)
1−xa

ij and the classification log-likelihood
can be written as
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Fig. 2. (a) Data structure, (b) Graphical model of TLBM.

LC(z,w,Ω) =
∑

i,k

zik log πk +
∑

j,�

wj� log ρ� +
∑

k�

z.kw.�

∑

a

log(1 − μa
k�)

+
∑

i,j,k,�

zikwj�

(
v∑

a=1

xa
ij log

μa
k�

1 − μa
k�

) (3)

with z.k =
∑

i zik and w.� =
∑

j wj�.

Continuous Data. In this case, we can assume Φ(xij ;λk�) as a multivariate nor-
mal distribution with μk� the v-dimensional mean vector and Σk� its v×v covari-
ance matrix. Hence, the parameter Ω is formed by π, ρ and λ = (λ11, . . . ,λgm)
where λk� = (μk�,Σk�) with μ�

k� = (μ1
k�, . . . , μ

v
k�). Hence, Φ(xij ;λk�) takes the

following form.

Φ(xij ;λk�) = 1
(2π)n/2|Σk�|0.5 exp

{− 1
2 (xij − μk�)�Σ−1

k� (xij − μk�)
}

(4)
and,

LC(z,w,Ω) =
∑

i,k

zik log πk +
∑

j,�

wj� log ρ� − 1
2

∑

k,�

z.kw.� log |Σk�|

− 1
2

∑

i,j,k,�

zikwj�(xij − μk�)
�Σ−1

k� (xij − μk�).
(5)



374 R. Boutalbi et al.

Algorithm 1. Generative process of Tensor LBM model
Input: n, d, g, m, π, ρ, λ

for i ← 1 to n do
Generate the row label zi according to M(π1, . . . , πg)

for j ← 1 to d do
Generate the column label wj according to M(ρ1, . . . , ρm)

for i ← 1 to n and j ← 1 to d do
Generate a vector xij according to the density Φ(xij ;λk�).

return Tensor matrix X, z and w

3 Variational EM Algorithm

To estimate Ω, the EM algorithm [2] is a candidate for this task. It maxi-
mizes the log-likelihood f(X,Ω) w.r. to Ω iteratively by maximizing the con-
ditional expectation of the complete data log-likelihood LC(z,w;Ω) w.r. to
Ω, given a previous current estimate Ω(c) and the observed data x. Unfortu-
nately, difficulties arise owing to the dependence structure among the variables
xij of the model. To solve this problem an approximation using the interpre-
tation of the EM algorithm can be proposed; see, e.g., [6]. More precisely, the
authors rely on the variational approach which consists in approximating the
true likelihood by another expression using the following independence assump-
tion: P (zik = 1, wj� = 1|X) = P (zik = 1|X)P (wj� = 1|X). Hence, the aim is to
maximize the following lower bound of the log-likelihood criterion:

FC(z̃, w̃;Ω) = LC(z̃, w̃,Ω) + H(z̃) + H(w̃) (6)

where H(z̃) = −∑
i,k z̃ik log z̃ik with z̃ik = P (zik = 1|X), H(w̃) = −∑

j,�

w̃j� log w̃j� with w̃j� = P (wj� = 1|X), and LC(z̃, w̃;Ω) is the fuzzy complete
data log-likelihood (up to a constant). With the Bernoulli LBM for tensor data,
LC(z̃, w̃;Ω) is given by

LC(z̃, w̃,Ω) =
∑

i,k

z̃ik log πk +
∑

j,�

w̃j� log ρ� +
∑

k,�

z̃.kw̃.�

∑

a

log(1 − μa
k�)

+
∑

i,j,k,�

z̃ikw̃j�

(
v∑

a=1

xa
ij log

μa
k�

1 − μa
k�

)

,

(7)

where z̃.k =
∑

i z̃ik et w̃.� =
∑

j w̃j�. Similarly, it takes the following form with
the Gaussian TLBM.

LC(z̃, w̃,Ω) =
∑

i,k

z̃ik log πk +
∑

j,�

w̃j� log ρ� − 1
2

∑

k,�

z̃.kw̃.� log |Σk�|

− 1
2

∑

i,j,k,�

z̃ikw̃j�(xij − μk�)
�Σ−1

k� (xij − μk�).
(8)
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The maximization of FC(z̃, w̃,Ω) can be reached by realizing the three
following optimization: update z̃ by arg max

z̃
FC(z̃, w̃,Ω), update w̃ by

arg max
w̃

FC(z̃, w̃,Ω) and update Ω by arg max
Ω

FC(z̃, w̃,Ω). In what follows,

we detail the Expectation (E) and Maximization (M) step of the Variational
EM algorithm for tensor data.

3.1 E-step

The E-step consists in computing, for all i, k, j, � the posterior probabilities
z̃ik and w̃j� maximizing FC(z̃, w̃,Ω) given the estimated parameters Ωk�. It
is easy to show that, the posterior probability z̃ik maximizing FC(z̃, w̃,Ω)
(See AppendixA) is given by: z̃ik ∝ πk exp

(∑
j,� w̃j� log (Φ(xij ;λk�))

)
.

In the same manner, the posterior probability w̃j� is given by: w̃j� ∝
ρ� exp

(∑
i,k z̃ik log (Φ(xij ;λk�))

)
.

3.2 M-step

Given the previously computed posterior probabilities z̃ and w̃, the M-step
consists in updating , ∀k, �, the parameters πk, ρ�, μk� and λk� maximizing
FC(z̃, w̃,Ω). The estimated parameters are defined as follows. First, taking into
account the constraints

∑
k zik = 1 and

∑
� wj� = 1, it is easy to show that

πk =
∑

i z̃ik

n = z̃.k

n and ρ� =
∑

j w̃j�

d = w̃.�

d . Secondly, the update of λk� depends on
the choice of Φ. For Bernoulli TLBM, it easy to show that λk� which is a probabil-
ity vector is given by λk� =

∑
i,j z̃ikw̃j�xij

∑
i,j z̃ikw̃j�

. For Gaussian TLBM, λk� is formed by

(μk�,Σk�) where μk� is the mean vector and Σk� =
∑

i,j z̃ikw̃j�(xij−μk�)(xij−μk�)
�

∑
i,j z̃ikw̃j�

.

The proposed algorithm for tensor data, referred to as VEM-T in Algorithm 2,
alternates the two previously described steps Expectation-Maximization. At the
convergence, a hard co-clustering is deduced from the posterior probabilities.

Algorithm 2. VEM-T
Input: X, g, m.
Initialization (z,w) randomly, compute Ω
repeat

E-Step
– Compute z̃ik using

z̃ik ∝ πk exp
(∑

j,� w̃j� log (Φ(xij ;λk�))
)

– Compute w̃j� using

w̃j� ∝ ρ� exp
(∑

i,k z̃ik log (Φ(xij ;λk�))
)

M-Step
Update Ω

until convergence;
return z, w, Ω
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4 Experimental Results

First we evaluate VEM-T on binary and continuous synthetic datasets in terms of
(Co)-clustering. We compare VEM-T with multiple clustering methods. We retain
two widely used measures to assess the quality of clustering, namely the Nor-
malized Mutual Information (NMI) [12] and the Adjusted Rand Index (ARI)
[11]. Intuitively, NMI quantifies how much the estimated clustering is informa-
tive about the true clustering. The ARI is related to the clustering accuracy
and measures the degree of agreement between an estimated clustering and a
reference clustering. Both NMI and ARI are equal to 1 if the resulting clustering
is identical to the true one. Secondly, we present results on real datasets for two
different areas namely recommender systems and multi-spectral images cluster-
ing. Through this evaluation, we aim to demonstrate the impact of covariate
information on interpretation and improvement of clustering results.

4.1 Synthetic Datasets

We generated tensor data X according to the Bernoulli and Gaussian TLBM
(Algorithm 1) with v = 3. Following each model, we considered two scenarios by
varying the centers μk�’s; an example where the co-clusters are well separated
and another where the co-clusters are not. The size of each tensor, number of
co-clusters and their proportions are reported in Tables 1 and 2. Herein other
characteristics of each tensor dataset. For continuous data we take the same

covariance matrix for all blocks

⎡

⎣
0.2 0 0
0 0.2 0
0 0 0.2

⎤

⎦ for example 3 and

⎡

⎣
1 0.8 0.8

0.8 1 0.8
0.8 0.8 1

⎤

⎦

Example 1 Example 2

Fig. 3. Simulated binary datasets

Example 3 Example 4

Fig. 4. Simulated continuous datasets
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Table 1. Evaluation of co-clustering in terms of NMI and ARI for binary datasets

Table 2. Evaluation of co-clustering in terms of NMI and ARI for continuous datasets

for example 4. All variables (slice) are standardized to have values between zero
and one. In Figs. 4 and 3 are depicted the true simulated tensor data into v = 3
slices.
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4.2 Competitive Methods

In our experiments, we compare VEM-T with K-means, Gaussian Mixture Model
(GMM: EM with the full model, see for instance [5]) and VEM for co-clustering
applied on each slice [7]. The ARI and NMI metrics for rows and columns are
computed by averaging on ten random initialization. Thereby, in Tables 1 and
2 are reported the performances for the three slices obtained by K-means, GMM,
VEM for data matrix and by VEM-T for tensor data. From these comparisons, we
observe that whether the block structure is easy to identify (Examples 1, 3) or
not (Examples 2, 4), the ability of VEM-T to outperform other algorithms that,
it should be recalled, act on each slice separately.

4.3 Recommender System Application

To show the benefits of our approach, we use the binary model on Movielens100K
which is one of the more popular datasets on the recommender system field. The
objective of this study is identifying patterns according to users and movies
characteristics. The Movielens100K1 database consists of 100,000 ratings of 943
users and 1682 movies, where each user has rated at least 20 movies. We convert
the users-movies rating matrix (943 × 1682) to binary matrix by assigning 0 to
the movie without rating and 1 to rated movies. This binary matrix can be con-
sidered as viewing matrix, in fact most users rates movies after watching them.
Furthermore, Movielens includes 22 user covariates including age, gender, and 21
employment status. The age covariate is used to analyze clustering results and
does not take into account in co-clustering. There are also 19 movie covariates
related to movie genres, considering that movie may belong to one or more gen-
res. The data structure can be represented as tensor with size 943 × 1682 × 42.
The objective of this work is not being to select the number of clusters, then
we fixed the number of row clusters g = 2 and the number of column clusters
m = 3, based on the works of [13]. Figures 5 and 6a represent the mean vectors
μk� and co-clustering of rating matrix respectively. We observe two row clusters,
a smaller cluster of 202 users which is more active in reviewing than a second
large cluster. On the other hand, we obtain three movies clusters of different sizes
232, 355 and 1,095 respectively. The first cluster represents the most attractive
movies.

The first row cluster includes three blocks (1, 1), (1, 2) and (1, 3). The two
first ones represent the more active users with a higher proportion of rating. The
MovieLens100K dataset includes 29% of female reviews, an important part of
them (64%) belong to a first row cluster. In addition, we notice that the top 3 of
occupations for users of the first row cluster are a student, educator, and admin-
istrator. Thereby, Fig. 6b shows that 65% of them are quite young and under
31 years of age. However, the two blocks (1, 1) and (1, 2) are distinguished by
movie genres, since the top 3 ones for first and second column clusters are Action-
Thriller-Sci-Fi and Comedy-Drama-Romance respectively. Consequently, we can

1 http://grouplens.org/datasets/movielens/.

http://grouplens.org/datasets/movielens/
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Fig. 5. Distribution of the centers μk� for all co-clusters

identify two profiles of young active users; they are attracted by both categories
of movies namely Action-Thriller-Sci-Fi for the first profile and Comedy-Drama-
Romance for the second. The second row cluster regroups the users of different
ranges of age with almost equal proportions (see Fig. 6b) and different occu-
pations since the top three occupations include engineer, student, and another
employment status. Finally the third column cluster seems representing movies
with different genres Action-Drama-comedy. The block (2, 3) represents the less
attractive movies watched by the less active users.

4.4 Multi-spectral Images Analysis

The used dataset is composed by 37 multispectral images of prostate cells with
16 bands which have size 512×512 pixels. Several studies showed that clustering
accuracy increases according bands number [10]. The four types of multispectral
images cells are: Normal cells (Stroma), Benign Hyperplasia (BHp), Interpithe-
lial Neoplasy (PIN) which is a cancer precursory state, and the Carcinoma (CA)
which corresponds to a cancer of the abnormal tissue proliferation. Figure 7a
presents cell’s types and the example of 16 bands of Stroma cells type are showed
in Fig. 7b. Some elements allow to differentiate the cell’s types, among those
morphological and textural features. In this way, we limited ourselves to textu-
ral characteristics for clustering. Haralick [9] defined several metrics computed
from the gray level co-occurrence matrix (GLCM). The Haralick’s parameters
showed their efficiency in the literature for the textures analysis [9,10]. The 14
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Fig. 6. (a) Co-clustering data matrix, (b) Distribution of Age per row clusters

Haralick’s features are the following: Energy, Correlation, Contrast, Entropy,
Homogeneity, Inverse Difference Moment, Sum Average, Sum Variance, Sum
Entropy, Difference Average, Difference Variance, Difference Entropy and two
Information measure of correlation.

In the most previous studies, the extraction of 14 Haralick’s features from
all bands are performed, and the 14 × 16 features are extracted for each image
involving features selection or dimensionality reduction with popular methods
such as PCA. These operations can provide interesting results but leads to a
loss of information. To overcome this drawback, we propose to construct tensor
data Images × Bands × Features in order to exploit all available data with-
out requiring dimensionality reduction. The objective of this study is improving
clustering results of multispectral images which highly used on biomedical and
geology fields.

As we known the true number of image clusters, we take g = 4 and as we
have no information about column clusters we postulate m = g = 4. As shown
in Fig. 8, the Stroma cells are characterized by higher values of entropy, contrast
and difference variance on the first three column clusters, and low values of
inverse difference moment feature on two first band clusters. The PIN type is
characterized by low values of information measure correlation 1 on bands cluster
2, 3 and 4. The cell type with the closer values of features is BHP. The CA type is
characterized by higher values of information measure correlation 1 on the third

Fig. 7. (a) The four cells type, (b) Example of multispectral image from dataset
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and fourth band clusters and the lower values of information measure correlation
2 on all bands. Finally, BHP cells are characterized by the lowest values of sum
average on two last bands clusters.

Fig. 8. Co-clustering matrix of different slice of features

Table 3. Evaluation of K-means, GMM, VEM and VEM-T in terms of NMI, ARI and ACC

Algorithms NMI ARI ACC

K-means 0.67 0.56 0.78
GMM 0.7 0.59 0.78
VEM 0.61 0.49 0.7
VEM-T 0.9 0.87 0.95

The VEM-T algorithm is compared with K-means, GMM and EM. For this, a
reduced matrix of tensor data by averaging all bands for each feature provides
a Images × Features data matrix used to perform classical clustering. Table 3
summarizes the obtained results. For each algorithm, the best result rather than
100 random initial runs are used. Clearly the proposed algorithm achieves best
results as regards NMI, ARI and ACC (Accuracy).

5 Conclusion

Inspired by the flexibility of the latent block model (LBM) for data matrix, we
proposed to extend it to tensor data (TLBM). This gives rise to new variational
EM algorithm for co-clustering. Empirical results on synthetic and real-world
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datasets –binary and continuous– show that VEM-T for tensor data does a better
job than original VEM applied on each slice of tensor data. More interestingly,
our findings open up good opportunities for future research such as deal with
temporal data or challenges such as the assessing the number of co-clusters.

A Appendix: Update z̃ik and w̃j� ∀i, k, j, �

To obtain the expression of z̃ik, we maximize the above soft criterion FC(z̃, w̃;Ω)
with respect to z̃ik, subject to the constraint

∑
k z̃ik = 1. The corresponding

Lagrangian, up to terms which are not function of z̃ik, is given by:

L(z̃, β) =
∑

i,k

z̃ik log πk +
∑

i,j,k,�

z̃ikw̃jk log(Φ(xij ,λk�))

−
∑

i,k

z̃ik log(z̃ik) + β(1 −
∑

k

z̃ik).

Taking derivatives with respect to z̃ik, we obtain:

∂L(z̃, β)
∂z̃ik

= log πk +
∑

j,�

wj� log(Φ(xij ,λk�)) − log z̃ik − 1 − β.

Setting this derivative to zero yields: z̃ik =
πk exp(

∑
j,� wj� log(Φ(xij ,λk�))

exp(β+1) . Summing
both sides over all k′ yields exp(β + 1) =

∑
k′ πk′ exp(

∑
j,� wj� log(Φ(xij ,λk′�)).

Plugging exp(β) in z̃ik leads to: z̃ik ∝ πk exp(
∑

j,� wj� log(Φ(xij ,λk�)).
In the same way, we can estimate w̃jk maximizing FC(z̃, w̃;Ω) with
respect to w̃j�, subject to the constraint

∑
� w̃j� = 1; we obtain w̃j� ∝

ρk exp(
∑

i,k z̃ik log(Φ(xij ,λk�)).
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Abstract. Accurately predicting unknown quality-of-service (QoS) data based
on historical QoS records is vital in web service recommendation or selection.
Recently, latent factor (LF) model has been widely and successfully applied to
QoS prediction because it is accurate and scalable under many circumstances.
Hence, state-of-the-art methods in QoS prediction are primarily based on LF.
They improve the basic LF-based models by identifying the neighborhoods of
QoS data based on some additional geographical information. However, the
additional geographical information may be difficult to collect in considering
information security, identity privacy, and commercial interests in real-world
applications. Besides, they ignore the reliability of QoS data while unreliable
ones are often mixed in. To address these issues, this paper proposes a data-
aware latent factor (DALF) model to achieve highly accurate QoS prediction,
where ‘data-aware’ means DALF can easily implement the predictions
according to the characteristics of QoS data. The main idea is to incorporate a
density peaks based clustering method into an LF model to discover the
neighborhoods and unreliable ones of QoS data. Experimental results on two
benchmark real-world web service QoS datasets demonstrate that DALF has
better performance than the state-of-the-art models.

1 Introduction

Web services are software components used to exchange data between two software
systems over a network [1]. In this era of the Internet, there are numerous online web
services [2]. How to select optimal ones from a large candidate set and recommend
them to potential users becomes a hot yet thorny issue [3].

Quality-of-Service (QoS) is essential for addressing such an issue because it is a
significant factor to evaluate the performance of web services [1, 2, 4]. Once QoS data
of candidate web services are obtained, reliable ones can be selected and recommended
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to potential users accordingly. Conducting warming-up tests is an important way to
acquire QoS data. However, it is economically expensive [3, 5, 6].

Alternatively, QoS prediction is another widely used way to acquire QoS data [5–
9]. Its principle is to predict unknown QoS data based on historical records and/or other
information. Collaborative filtering (CF), which has been successfully applied to e-
commerce recommendation systems [10, 11], is frequently adopted to implement QoS
prediction [5–9, 12–17]. CF-based QoS prediction is developed based on a user-service
QoS matrix [5–9, 12–17], where each column denotes a specified web service, each
row denotes a specified user, and each entry stands for a historical QoS record pro-
duced by a specified user invoking a specified web service. Such a matrix is sparse [5–
9, 12–17]. Thus, how to accurately predict the missing data of the sparse user-service
QoS matrix based on its known ones is the key to achieve CF-based QoS prediction.

Among CF-based QoS prediction methods, latent factor (LF)-based models are more
widely adopted [8, 9, 12–15, 17]. Originated from matrix factorization (MF) techniques
[3, 10], an LF-based model works by building a low-rank approximation to the given
user-service QoS matrix based on its known data only. It maps both users and services
into the same low-dimensional LF space, trains desired LFs on the known data, and then
predicts the missing data heavily relying on these resultant LFs [18].

Since LF-based model has the powerful ability on QoS prediction, the state-of-the-
art methods in this area are primarily based on LF [8, 9, 12, 17]. They improve the
basic LF-based models by identifying the neighborhoods of QoS data based on his-
torical QoS records plus some additional geographical information. However, these
geography-LF-based models have the following drawbacks:

(a) They adopt a common set on raw QoS data to identify the neighborhoods. Since
the raw user-service QoS matrix can be very sparse, resultant common sets of
users/services are commonly too small to identify the neighborhoods precisely.
For example, Fig. 1 shows that many known data (red entries) are abandoned in
finding the common sets among users, making the resultant neighborhoods lack
reliability.

(b) They ignore the data reliability. Unreliable QoS data or called noises collected
from malicious users (e.g., badmouthing a specific service) are often mixed up
with the reliable ones [15]. Their QoS prediction accuracy would be impaired
instead of being improved if they employ the unreliable QoS data.

(c) Additional geographical information can be difficult to gather in considering
identity privacy, information security, and commercial interest. Moreover, geo-
graphical similarities can be influenced by unexpected factors like information
facilities, routing policies, network throughput, and time of invocation.

To address the above drawbacks, this paper proposes a data-aware latent factor
(DALF) model to achieve highly accurate QoS prediction. The main idea is to incor-
porate a density peaks based clustering method (DPClust) [19] into an LF model to
discover the characteristics of QoS data, which can guide DALF to implement QoS
prediction appropriately. The main contributions of this work include:

(a) We propose a method that can simultaneously identify a neighborhood for a user
or a web service and detect the unreliable QoS data existed in the known ones.
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(b) We theoretically analyze DALF and design its algorithm.
(c) We conduct detailed experiments on two benchmark real-world web service QoS

datasets to evaluate DALF and compare it with the state-of-the-art models.

To the best of our knowledge, this work is never encountered in any previous works
because (i) it can not only identify the neighborhoods but also detect the unreliable QoS
data, (ii) it builds reliable neighborhoods solely based on a given QoS matrix but
considering its full information, and (iii) it does not require any additional information.

2 Preliminaries

2.1 LF Model

The QoS data is a user-service QoS matrix R defined as Definition 1 [9–11].

Definition 1. Given a user set U and a web service set S; let R be a |U| � |S| matrix
where each element ru;s describes a user u’s (u 2 U) experience on a web service s
(s 2 S). RK and RU indicate the known and unknown entry sets of R respectively.
R usually is a sparse matrix with RKj j � RUj j.
Definition 2. Given R, U, S, and f; given a |U| � f matrix P for U and an f � |S|
matrix Q for S; R̂ is R’s rank-f approximation based on RK under the condition of
f � min(|U|, |S|). An LF model is to seek for P and Q to obtain R̂ and errorP
ðu;sÞ2RK ðru;s � r̂u;sÞ2 is minimized. R̂ is given by R̂ ¼ PQ where each element r̂u;s is

the prediction for each ru,s of R, u 2 U and s 2 S. f is the dimension of LF space. P and
Q are the LF matrices for users and web services respectively.

According to Definition 2, the loss function for LF model is [9–11]:

argmin
P;Q

eðP; QÞ ¼ 1
2

X
ðu;sÞ2RK

ru;s �
Xf
k¼1

pu;kqk;s

 !2

: ð1Þ

User: a

Web services
5 1 ? ? ?

2 3 4 1 ?

? ? 4 1 4User: b

5 1 ? ? ?

2 3 4 1 ?

5 1 ? ? ?

? ? 4 1 4
Common set: green entries      Abandoned set: red entries

Target user u

Fig. 1. The dilemma in building neighbor-
hoods based on common sets defined on raw
QoS data. (Color figure online)

(a)

δ

ρ

(b)

Fig. 2. The example of DPClust: (a) data
distribution; (b) decision graph for data in (a);
different colors correspond to different clusters.
(Color figure online)

386 D. Wu et al.



As analyzed in [9, 10, 18], it is important to integrate the Tikhonov regularization
into (1) to improve its generality as follow:

argmin
P;Q

eðP; QÞ ¼ 1
2

X
ðu;sÞ2RK

ru;s �
Xf
k¼1

pu;kqk;s

 !2

þ k
2

X
ðu;sÞ2RK

Xf
k¼1

p2u;k þ
Xf
k¼1

q2k;s

 !
;

ð2Þ

where k is the regularization controlling coefficient. By minimizing (2) with an opti-
mizer, e.g., stochastic gradient descent (SGD), P and Q are extracted from R.

2.2 DPClust Algorithm

DPClust is a clustering algorithm based on the idea that cluster centers are charac-
terized by a higher density than their neighbors and by a relatively large distance from
data points with higher densities [19]. We employ DPClust to develop DALF because
it can not only find the characteristics of data but also spotted the outliers.

Given a dataset X ¼ fx1; x2; . . .; xGg, for each data point xi; i 2 1; 2; . . .;Gf g, its
local density qi is computed via cut-off kernel or Gaussian kernel. Cut-off kernel is as
follow:

qi ¼
XN

j¼1;j 6¼i
Uðdi;j � dcÞ; U tð Þ ¼ 1 t\0

0; others

�
ð3Þ

where di,j is the distance between data points xi and xj and the number of all the di,j is
G � (G−1)/2, and dc is a cutoff distance with a fixed value. Gaussian kernel is as
follow:

qi ¼
XG

j¼1;j6¼i
e�ð

di;j
dc
Þ2 ð4Þ

For a robust computing of qi, dc can be set as [19, 20]:

Vec ¼ sort dij
� �

; dc ¼ Vecð PVec � G� ðG� 1Þ=2b cÞ ð5Þ

where Vec is a vector obtained by sorting all the di,j in ascending order, PVec is a
percentage denoting the average percentage of neighbors of all the data points.
According to [19, 20], PVec is usually set around 1% to 2% as a rule of thumb.

For each data point xi, di is the minimum distance between xi and any other data
point with higher local density:

di ¼ minj:qi\qjðdi;jÞ;
maxjðdijÞ;

others
8j; qi� qj

�
ð6Þ
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Then, cluster centers are recognized as data points for which the value of q and d
are anomalously large.

Figure 2 is a simple example for illustrating DPClust. Figure 2(a) shows 26 data
points embedded in the two-dimensional space. After computing q and d for all the data
points, the decision graph can be drawn in Fig. 2(b). Then, we can easily recognize the
blue and pink solid data points as the cluster centers. Note that the three black hollow
data points are the outliers and have a relatively small q and a large d, which means that
DPClust can also detect the outliers by computing outlier factor ci for each xi as follow:

ci ¼ qi=di: ð7Þ

Formula (7) indicates that an outlier has an anomalously small value of c.

3 The Proposed DALF Model

Figure 3 depicts the flowchart of DALF that has three parts. Part 1 is extracting LF
matrices P for users and Q for services. Part 2 is identifying neighborhoods of QoS data
and detecting unreliable QoS data by employing DPClust algorithm. Concretely, P is
used to identify neighborhoods of users and detect unreliable users, and Q is used to
identify neighborhoods of services and detect unreliable services. Part 3 is predicting
the unknown entries in R based on Part 2. There are four prediction strategies in Part 3.
The characteristics of QoS data will determine which one or more are appropriate to
implement predictions. Next, we give the detailed descriptions on the three parts.

|U|

|S|

R̂

2 ? ? 3 ? ?
? ? ? ? ? 2
? ? ? ? 1 ?
3 ? 4 ? ? ?
? ? ? 5 ? ?
4 ? ? ? ? ?
? ? ? ? 2 ?
? 5 ? ? ? 3
? ? ? 4 ? ?

R

f

f

|S|

QT

P
2 ? ?
? ? ?
? ? ?
3 ? 4
? ? ?
4 ? ?
? ? ?
? 5 ?
? ? ?

3 ? ?
? ? 2
? 1 ?
? ? ?
5 ? ?
? ? ?
? 2 ?
? ? 3
4 ? ?

2 ? ? 3 ?
? ? ? ? ?
? ? ? ? 1
3 ? 4 ? ?
? ? ? 5 ?
4 ? ? ? ?
? ? ? ? 2
? 5 ? ? ?
? ? ? 4 ?

?
2
?
?
?
?
?
3
?

Neighborhoods 
1 and 2(web services)

Reliable/Unrelaibel 
web services

2 ? ? 3 ? ?
? ? ? ? ? 2

? ? ? ? 1 ?
3 ? 4 ? ? ?
? ? ? 5 ? ?
4 ? ? ? ? ?

? ? ? ? 2 ?
? 5 ? ? ? 3
? ? ? 4 ? ?

Neighborhood 1(users)

Neighborhood 2(users)

Neighborhood 3(users)

? 5 ? ? ? 3
? ? ? 4 ? ?

2 ? ? 3 ? ?
? ? ? ? ? 2
? ? ? ? 1 ?
3 ? 4 ? ? ?
? ? ? 5 ? ?
4 ? ? ? ? ?
? ? ? ? 2 ?

Reliable users

Unreliable users

Predicting
based on 

neighborhoods
of users

Predicting
based on 

reliable users

Predicting
based on 

neighborhoods
of web services

Predicting
based on 

reliable web 
services

2 3 2 3 ? ?
2 4 2 4 ? 2
3 5 1 1 1 3
3 2 4 3 3 1
2 2 1 5 1 5
4 2 5 4 2 4
4 5 4 4 2 4
3 5 3 5 4 3
4 3 5 4 5 4

Input Part 1 Part 2 Part 3

Determining
which is best 
for prediction 
according to 

characteristics
of QoS data

Output

|U|

Fig. 3. Flowchart of the proposed DALF
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3.1 Extracting LF Matrices for Users and Services

This part aims to extract LF matrices P for users and Q for services from R based on an
LF model. We apply SGD to (2) to consider instant loss on a single element ru,s:

eu;s ¼ 1
2

ru;s �
Xf
k¼1

pu;kqk;s

 !2

þ k
2

Xf
k¼1

p2u;k þ
Xf
k¼1

q2k;s

 !
ð8Þ

Then, LFs involved in (8) are trained by moving them along the opposite of the
stochastic gradient of (8) with respect to each single LF, i.e., we make

On ru;s; for k ¼ 1� f :

pu;k  pu;k þ gqk;s ru;s �
Xf
k¼1

pu;kqk;s

 !
� kgpu;k;

qk;s  qk;sþ gpu;k ru;s �
Xf
k¼1

pu;kqk;s

 !
� kgqk;s:

8>>>>><
>>>>>:

ð9Þ

After LFs are trained on all the elements in RK by computing (9), P and Q are
extracted. For ease of formulation, we use the function (10) to represent extracting
P and Q from R based on an LF model as follow.

fP;Qg ¼ FLF P; Q Rjð Þ ð10Þ

3.2 Identifying Neighborhoods of QoS Data and Detecting Unreliable
QoS Data

Since LF matrices P and Q respectively reflect the users and services characteristics
hidden in R, we can identify neighborhoods of QoS data and detect unreliable QoS data
based on them. Here, we use parameter a to denote the ratio of unreliable QoS data.

A. With respect to users

This section explains how to identify a neighborhood for a user and detect unre-
liable users based on P. Here P is seen as the dataset of users. For each user u, its local
density qu is computed via cut-off kernel as:

qu ¼
XUj j

u0¼1;u0 6¼u
U du;u0 � dU
� �

; U tð Þ ¼ 1 t\0
0; others

�
ð11Þ

where dU is the cutoff distance with respect to users, u′ denotes another user that is
different from user u, du;u0 denotes the distance between users u and u

0
. Here we

compute du;u0 with Euclidean distance as:
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du;u0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXf
k¼1

pu;k � pu0;k
� �2

vuut ð12Þ

qu also can be computed via Gaussian kernel as:

qu ¼
XUj j

u0¼1;u0 6¼u
e
� du;u0

d
U

� �2

ð13Þ

According to (5), dU is computed as:

Vec ¼ sort du;u0
� �

; dU ¼ Vecð PVec � Uj j � ð Uj j � 1Þ=2b cÞ ð14Þ

Then, the minimum distance du of user u between itself and any other user with
higher local density is computed as:

du ¼ minu0:qu\qu0 ðdu;u0 Þ; others
maxu0 ðdu;u0 Þ; 8u0; qu� qu0

�
ð15Þ

Finally, the outlier factor cu of user u can be computed as:

cu ¼ qu=du ð16Þ

Based on all the qu; du, and cu, we can discover the user dataset P’s clusters and
outliers. Here clusters represent neighborhoods of users, outliers represent unreliable
users. By computing (11)–(16), the original R can be separated into N matrices
fRU

1 ;R
U
2 ; . . .;R

U
Ng, where each matrix RU

n ; n 2 1; 2; . . .;Nf g, denotes a neighborhood of
users; or separated into two matrices fRU

r ;R
U
u g, where RU

r denotes the reliable users and
RU
u denotes the unreliable users. Here the ratio of unreliable QoS data a is computed by:

a ¼ RU
u

�� ��= RU
r

�� ��þ RU
u

�� ��� �
: ð17Þ

B. With respect to services

This section explains how to identify a neighborhood for a service and detect
unreliable services based on Q. Here Q is seen as the dataset of services. For each
service s, its local density qs, minimum distance ds between itself and any other service
with higher local density, and outlier factor cs can be computed by (18)–(23).

qs ¼
XSj j

s0¼1;s0 6¼s
U ds;s0 � dS
� �

; U tð Þ ¼ 1 t\0
0; others

�
ð18Þ
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ds;s0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXf
k¼1

qk;s � qk;s0
� �2

vuut ð19Þ

qs ¼
XSj j

s0¼1;s0 6¼s
e
� ds;s0

d
S

� �2

ð20Þ

Vec ¼ sort ds;s0
� �

; dS ¼ Vecð PVec � Sj j � ð Sj j � 1Þ=2b cÞ ð21Þ

ds ¼ mins0:qs\qs0 ðds;s0 Þ; others
max

s0 ðds;s0 Þ; 8s0; qs� qs0

�
ð22Þ

cs ¼ qs=ds ð23Þ

where s0 is another service that is different from service s; ds;s0 is the distance between
services s and s0, dS is the cutoff distance for services. Similarly, the original R also can
be separated into N matrices fRS

1;R
S
2; . . .;R

S
Ng, where each matrix RS

n; n 2 1; 2; . . .;Nf g,
denotes a neighborhood of services; or separated into two matrices fRS

r ;R
S
ug, where RS

r

and RS
u denote the reliable and unreliable services respectively. Here, a is computed by

a ¼ RS
u

�� ��= RS
r

�� ��þ RS
u

�� ��� �
: ð24Þ

3.3 Prediction

After Sect. 3.2, we can accurately predict the missing data in R by employing the four
matrices sets of fRU

1 ;R
U
2 ; . . .;R

U
Ng, fRU

r ;R
U
u g, fRS

1;R
S
2; . . .;R

S
Ng, and fRS

r ;R
S
ug respec-

tively. Each matrices set can be used to implement the prediction, but which one is the
best? This is determined by the characteristics of QoS data and please refer to Sect. 4.3
to see an example. Next, we respectively explain how to implement the prediction
based on the four matrices sets and formula (10).

First, if matrices set fRU
1 ;R

U
2 ; . . .;R

U
Ng is used to predict, the computing formulas

are

for n ¼ 1�N : fPU
n ; Q

U
n g ¼ FLF PU

n ; Q
U
n RU

n

��� �
; ð25Þ

for n ¼ 1�N : R̂U
n ¼ PU

n Q
U
n ; ð26Þ

R̂ ¼ R̂U
1 [ R̂U

2 [ . . .[ R̂U
N : ð27Þ

Second, if matrices set fRU
r ;R

U
u g is employed to predict, the computing formulas

are
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fPU
r ; Q

U
r g ¼ FLF PU

r ; Q
U
r RU

r

��� �
; ð28Þ

R̂U
r ¼ PU

r Q
U
r ; ð29Þ

R̂ ¼ R̂U
r � PQ rowj : ð30Þ

where R̂U
r � PQ rowj indicates that using R̂U

r to replace the corresponding rows of the
matrix product of PQ.

Third, if matrices set fRS
1;R

S
2; . . .;R

S
Ng is used to predict, the computing formulas

are

for n ¼ 1�N : fPS
n; Q

S
ng ¼ FLF PS

n; Q
S
n RS

n

��� �
; ð31Þ

for n ¼ 1�N : R̂S
n ¼ PS

nQ
S
n; ð32Þ

R̂ ¼ R̂S
1 [ R̂S

2 [ . . .[ R̂S
N : ð33Þ

Fourth, if matrices set fRS
r ;R

S
ug is employed to predict, the computing formulas are

fPS
r ; Q

S
rg ¼ FLF PS

r ; Q
S
r RS

r

��� �
; ð34Þ

R̂S
r ¼ PS

rQ
S
r ; ð35Þ

R̂ ¼ R̂S
r � PQ columnj : ð36Þ

where R̂S
r � PQ columnj indicates that using R̂S

r to replace the corresponding columns of
the matrix product of PQ.

3.4 Algorithm Design and Analysis

DALF relies on four algorithms. Algorithm 1 is extracting LF matrices (ELFM), Algo-
rithm 2 is computing QoS data with respect to users (U-QoS), Algorithm 3 is computing
QoS data with respect to services (S-QoS), and Algorithm 4 is Prediction. Their pseudo
codes and time cost of each step are given in Algorithms 1–4. For Algorithms 1–3, their

computational complexities are H Nmtr � RKj j � fð Þ, H Uj j2�f
� �

, and H Sj j2�f
� �

,

respectively, where Nmtr is the maximum training round. For Algorithm 4, its compu-

tational complexity is H Uj j2þ Sj j2
� �

� f
� �

þH Nmtr � RKj j � fð Þ, which is the total

computational complexity of DALF.
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4 Experimental Results

4.1 Datasets

Two benchmark datasets, which are real-world web service QoS data collected by the
WS-Dream system (https://github.com/wsdream/wsdream-dataset) and frequently used
in prior researches [2, 3, 7–9, 12–15, 17], are selected to conduct the experiments. First
dataset (D1) is the Response Time that contains 1,873,838 records and second dataset
(D2) is the Throughput that contains 1,831,253 records. These records are generated by
339 users on 5,825 web services. For both two datasets, different test cases are designed
to evaluate the performance of DALF. Table 1 summarizes the properties of all the test
cases, where column ‘Density’ denotes the density of the training matrix.

Input: R; Output: P, Q Cost
1 initializing f, λ, η, Nmtr=max-training-round Θ(1)
2 while t≤Nmtr && not converge ×Nmtr

3 for each known entry ru,s in R         // ru,s RK ×|RK|
4 for k=1 to f ×f
5 computing pu,k according to (9) Θ(1)
6 computing qk,s according to (9) Θ(1)
7 end for --
8 end for --
9 t=t+1 Θ(1)

10 end while --
11 return P, Q Θ(1)

Algorithm 1. ELFM 
Input: P, R; Output: {RU

1 , RU
2 , …, RU

N }, { RU
r , RU

u } Cost
1 for u=1 to |U| ×|U|
2 for u′= u+1 to |U| ×(|U|-1)/
3 computing du,u′ according to (12) Θ(f)
4 end for --
5 end for --
6 computing dU according to (14) Θ(|U|2)
7 for u=1 to |U| ×|U|
8 computing ρu according to (11) or (13) Θ(|U|-1
9 end for --

10 for u=1 to |U| ×|U|
11 computing δu according to (15) Θ(|U|)
12 computing γu according to (16) Θ(1)
13 end for --
14 clustering P according to all the ρu and δu Θ(1)
15 separating R into { RU

1 , RU
2 , …, RU

N }according to step 14 Θ(1)
16 detecting unreliable users according to all γu Θ(1)
17 separating R into { RU

r , RU
u }according to step 16 Θ(1)

18 return: {RU
1 , RU

2 , …, RU
N }, {RU

r , RU
u } Θ(1)

Algorithm 2. U-QoS

Input: Q, R; Output: { RS
1 , RS

2 , …, RS
N}, { RS

r , RS
u } Cost

1 for s=1 to |S| ×|S|
2 for s′= s+1 to |S| ×(|S|-1)/2
3 computing ds,s′ according to (19) Θ(f)
4 end for --
5 end for --
6 computing dS according to (21) Θ(|S|2)
7 for s=1 to |S| ×|S|
8 computing ρs according to (18) or (20) Θ(|S|-1)
9 end for --

10 for s=1 to |S| ×|S|
11 computing δs according to (22) Θ(|I|)
12 computing γs according to (23) Θ(1)
13 end for --
14 clustering Q according to all the ρs and δs Θ(1)
15 separating R into { RS

1 , RS
2 , …, RS

N } according to step 14 Θ(1)
16 detecting unreliable users according to all the γs Θ(1)
17 separating R into { RS

r , RS
u } according to step 16 Θ(1)

18 return: { RS
1 , RS

2 , …, RS
N }, { RS

r , RS
u } Θ(1)

Algorithm 3. S-QoS
Input:R; Output: R̂ Cost

1 Calling Algorithm 1 Θ(Nmtr×|RK|×f )
2 Calling Algorithm 2 Θ(|U|2×f)
3 Calling Algorithm 3 Θ(|S|2×f)
4 determining which matrices set is best for prediction Θ(1)
5 if { 1

UR , 2
UR ,…,

U
NR } is best for prediction

Θ(Nmtr×|RK|×f )
6 for n=1 to N
7 computing ˆU

nR according to (25) and (26)
8 end for
9 computing R̂ according to (27)

10 else if { ,U
rR U

uR } is best for prediction
Θ(Nmtr×|RK|×f )

11 computing R̂ according to (28)—(30)
12 else if { 1 ,SR 2 ,SR …,

S
NR } is best for prediction

Θ(Nmtr×|RK|×f )
13 for n=1 to N
14 computing ˆ S

nR according to (31) and (32)
15 end for
16 computing R̂ according to (33)
17 else computing R̂ according to (34)—(36) Θ(Nmtr×|RK|×f )
18 end if
19 return: R̂ Θ(1)

Algorithm 4. Prediction 
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4.2 Evaluation Protocol

To evaluate the prediction quality of DALF, mean absolute error (MAE) is computed

by MAE ¼ P
w;jð Þ2C rw;j � r̂w;j

�� ��
abs

� �
= Cj j, where C denotes the testing set.

4.3 Prediction According to the Characteristics of QoS Data

This section illustrates how to predict the unknown QoS data according to its charac-
teristics. First, extracting LF matrices P for users and Q for services on D1.4 and D2.4
respectively. Then, computing q, d, and c for each user or service. After that, the decision
graphs for D1.4 andD2.4 can be drawn in Figs. 4 and 5.With respect to users, we observe
that there are two cluster centers on D1.4 and three cluster centers on D2.4, which means
that users of D1.4 and D2.4 could be separated into two and three neighborhoods
respectively. With respect to services, there is only one cluster center on both D1.4 and
D2.4, which means that there are no neighborhoods in services. Besides, we can find that
there are many outliers (red rectangles) in both D1.4 and D2.4 with respect to services,
which means that there are many unreliable services. Similar results are obtained on the
other test cases. Thus, we conclude that predicting based on neighborhoods of users or
reliable services is the best strategy for the eight test cases. In addition, we have conducted
some experiments to verify that these two prediction strategies have better performance
than the other two. For saving space, we never show their results.

Table 1. Properties of all the designed test cases.

Dataset No. Density Training data Testing data

D1 D1.1 5% 93,692 1,780,146
D1.2 10% 187,384 1,686,454
D1.3 15% 281,076 1,592,762
D1.4 20% 374,768 1,499,070

D2 D2.1 5% 91,563 1,739,690
D2.2 10% 183,125 1,648,128
D2.3 15% 274,689 1,556,564
D2.4 20% 366,251 1,465,002

Fig. 4. The decision graph for D1.4 with
respect to: (a) users, (b) services. (Color figure
online)

Fig. 5. The decision graph for D2.4 with
respect to: (a) users, (b) services. (Color figure
online)
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4.4 Predicting Based on Neighborhoods of Users

A. Impacts of f

The parameters are set as η = 0.01 for D1, η = 0.0001 for D2, k = 0.01, and
PVec = 2%, uniformly. Figure 6 shows the experimental results when f increases from
10 to 320. Since the higher dimension of LF space has better representation learning
ability, DALF has a lower MAE as f increases. However, as f increases over 80, the
MAE tends to decrease slightly or even increase. One reason is that with f = 80,
DALF’s representation learning ability is strong enough to precisely represent the test
cases. As a result, continuous increase of f after 80 cannot bring significant improve-
ment in prediction accuracy.

B. Impacts of k

This set of experiments sets the parameters as η = 0.01 for D1, η = 0.0001 for D2,
f = 20, and PVec = 2%, uniformly. Figure 7 records the MAE as k increases. We test a
larger range of k on D2 than on D1 because D2 has a much larger range of value than
D1. The MAE decreases at first as k increases in general on all the test cases. However,
it then increases when k grows over the optimal threshold, which means that DALF
may be greatly impacted by the regularization terms.

4.5 Predicting Based on Reliable Services

A. Impacts of a

The parameters are set as k = 0.01, η = 0.01 for D1, η = 0.0001 for D2, f = 20, and
PVec = 2%, uniformly. Figure 8 is the measured MAE as a increases. On D1, the MAE
decreases at first and then increases in general as a increases. The lowest MAE is
obtained when a around to 0.3. On D2, the results are more complicated. Concretely,
DALF has the lowest MAE when a = 0.05 or 0.1. According to these observations, it
seems that more services on D1 are detected as unreliable ones than that on D2.
Overall, these results validate that the prediction accuracy of DALF can be improved
by employing reliable services to train.

Fig. 6. MAE of DALF with different f pre-
dicting based on neighborhoods of users:
(a) D1, (b) D2.

Fig. 7. MAE of DALF as k increases predict-
ing based on neighborhoods of users: (a) D1,
(b) D2.
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B. Impacts of f and k

Since these results are very similar to that in Sects. 4.4(A) and (B), they are not
described in detail for saving space. Please refer to Sects. 4.4(A) and (B).

Table 3. MAE of all the compared models on each test case.

TestCases BLF RSNMF NIMF NAMF GeoMF LMF-PP AutoRec DALF

DALF-1 DALF-2

D1.1 0.5561 0.5438 0.5502 0.5465 0.5305 0.5285 0.5467 0.5457 0.5114
D1.2 0.4944 0.4868 0.4842 0.4976 0.4827 0.4725 0.5055 0.4857 0.451
D1.3 0.4691 0.4492 0.4508 0.4625 0.4495 0.4472 0.4598 0.4642 0.4331
D1.4 0.4531 0.4371 0.4346 0.436 0.4366 0.426 0.4482 0.452 0.4232
D2.1 18.9776 21.4302 17.7153 22.736 24.7465 18.3091 21.3118 17.6576 17.9117
D2.2 16.1924 17.2305 15.5264 17.9148 22.4728 15.9125 17.031 15.3595 15.5734
D2.3 14.9278 14.6879 14.2146 15.9876 17.7908 14.745 15.0156 14.3836 14.1739
D2.4 14.3061 14.3654 13.5638 14.7462 16.2852 14.1033 14.2265 13.6697 13.4772

Fig. 8. MAE of DALF as a increases pre-
dicting based on reliable services: (a) D1,
(b) D2.

Table 2. Descriptions of all the compared
models.

Models Descriptions

BLF Basic LF model proposed in 2009 [18]

RSNMF Improved LF-based model proposed in
2016 [3]

NIMF Improved LF-based model proposed in
2013 [21]

NAMF Geography-LF-based model proposed in
2016 [9]

GeoMF Geography-LF-based model proposed in
2017 [8]

LMF-PP Geography-LF-based model proposed in
2018 [12]

AutoRec The DNN-based model proposed in 2015
[22]

DALF-1 Predicting based on neighborhoods of
users

DALF-2 Predicting based on reliable services

Table 4. Statistical results of prediction accuracy with a significance level of 0.05.

Comparison DALF
vs
BLF

DALF
vs.
RSNMF

DALF
vs.
NIMF

DALF
vs.
NAMF

DALF
vs.
GeoMF

DALF
vs.
LMF-PP

DALF
vs.
AutoRec

p-value 0.0039 0.0039 0.0039 0.0039 0.0039 0.0039 0.0039

Note that the best one between DALF-1 and DALF-2 for each test case is selected to conduct statistical
analysis
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4.6 Comparisons Between DALF and Other Models

We compare DALF with state-of-the-art models on prediction accuracy and compu-
tational complexity. They are three LF-based models, three geography-LF-based
models, and one deep neural network (DNN)-based model, and described in Table 2.

On prediction accuracy, the dimension of LF is set as f = 20 for all models except for
AutoRec (because AutoRec is a DNN-based model) to conduct the fair comparisons.
Besides, all other parameters of the compared models are set according to their original
papers. There are two situations for DALF to conduct the comparisons. They are also
marked in Table 2. Meanwhile, the other parameters for DALF are set as: a = 0.3 and
η = 0.01 for D1, a = 0.05 and η = 0.0001 for D2, k = 0.01, and PVec = 2%, uniformly.

The compared results are shown in Table 3. Besides, the Wilcoxon signed-ranks
test [23], as a nonparametric pairwise comparison procedure, is adopted to conduct
statistical test. The results are recorded in Table 4. From them, we have two findings:

(a) DALF has significantly better prediction accuracy than the other models. For
example, it has around 5.27%–17.15% lower MAE than AutoRec on all test cases.

(b) DALF-1 has much higher MAE than DALF-2 on D1, while they have similar
MAE on D2. Figure 4 shows that neighborhoods of users are not very clear on D1
but clear on D2, and unreliable services can be easily detected on both D1 and D2.
These findings mean that predicting based on neighborhoods of users is better for
D2 than for D1, and predicting based on reliable services are appropriate for both
D1 and D2.

On computational complexity, AutoRec is not compared because it is DNN-based
model with extremely high computational cost [24]. Table 5 concludes the computa-
tional complexities for all the models, where K1 and K2 are the number of nearest
neighbors for a user and for a service respectively. From it, we have two conclusions:

(a) BLF and RSNMF have lowest computational complexity because they are basic
LF-based models and never consider neighborhood or unreliable factors of QoS
data.

(b) DALF’s computational complexity is lower than or at least comparable to that of
the geography-LF-based models because f is much smaller than |U| and |S|.

Table 5. The computational complexities of all the compared models.

Model Complexity

BLF [18] H(Nmtr � |RK| � f)
RSNMF [3] H(Nmtr � |RK| � f)
NIMF [21] H(|U|2 � |S|) + H(Nmtr � |RK| � f � K1

2)
NAMF [9] H(|U|2) + H(Nmtr � |RK| � f)
GeoMF [8] H(|U|2 � |S| + |S|2 � |U|) + H(Nmtr � |RK| � f2 � (K1 + K2))
LMF-PP [12] H(|U|2 � |S| + |S|2 � |U|) + H(Nmtr � |RK| � f)
DALF H((|U|2 + |S|2) � f) + H(Nmtr � |RK| � f)
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5 Conclusions

We propose a data-aware latent-factor (DALF) model to achieve highly accurate QoS
prediction. The main idea is to incorporate a density peaks based clustering method
(DPClust) into a latent factor (LF)-based model to improve the prediction accuracy.
Empirical studies on two benchmark real-world web service QoS datasets demonstrate
that: (i) DALF can discover the characteristics of QoS data only based on the user-
service QoS matrix, (ii) DALF is a data-aware model because it can easily choose the
appropriate strategies to implement prediction according to the characteristics of QoS
data, and (iii) DALF has better performance than state-of-the-art models in QoS pre-
diction. Finally, an open challenge for DALF is how to combine the two respects of
users and services to further improve it. We plan to address this challenge in our future
work.
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Abstract. Keyword extraction is a critical technique in natural lan-
guage processing. For this essential task we present a simple yet effi-
cient architecture involving character-level convolutional neural tensor
networks. The proposed architecture learns the relations between a doc-
ument and each word within the document and treats keyword extrac-
tion as a supervised binary classification problem. In contrast to tradi-
tional supervised approaches, our model learns the distributional vector
representations for both documents and words, which directly embeds
semantic information and background knowledge without the need for
handcrafted features. Most importantly, we model semantics down to the
character level to capture morphological information about words, which
although ignored in related literature effectively mitigates the unknown
word problem in supervised learning approaches for keyword extraction.
In the experiments, we compare the proposed model with several state-of-
the-art supervised and unsupervised approaches for keyword extraction.
Experiments conducted on two datasets attest the effectiveness of the
proposed deep learning framework in significantly outperforming several
baseline methods.

1 Introduction

Keyword extraction is the automatic identification of important, representative
terms which accurately and concisely capture the main topics of a given docu-
ment. Such keywords or keyphrases provide rich information about the content
and help improve the performance of natural language processing (NLP) and
information retrieval (IR) tasks such as text summarization [25] and text cat-
egorization [7]. Due to its importance and its connections to other NLP tasks,
various approaches for keyword or keyphrase extraction have been proposed in
the literature.

Typically, methods for automatic keyword extraction can be divided into two
major categories: supervised and unsupervised learning. Supervised approaches
often treat keyword extraction as a binary classification problem [4,6,20] in
which the terms in a given document are classified into positive and negative
examples of keywords. A feature vector is created to illustrate the instance from
aspects such as statistical information (e.g., term frequency), lexical features, and
c© Springer Nature Switzerland AG 2019
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syntactic patterns; with these handcrafted features, the positive and negative
instances are then trained with learning algorithms including naive Bayes [20],
decision trees [18], and support vector machines [23], in building the classifier.
However, traditional supervised learning methods require an empirical process
of feature engineering driven by intuition, experience, and domain expertise.
Furthermore, since supervised machine learning approaches use a set of labeled
documents to train the model, the problem of unknown words – words in testing
documents that do not appear in the training corpus – is usually not handled
explicitly in traditional supervised learning approaches.

Existing unsupervised learning methods approach the problem using a
wide variety of techniques, including graph-based ranking algorithms [13,16],
clustering-based approaches [1,12], and language modeling [17]. Of these tech-
niques, graph-based approaches are the most popular: they transform the words
in a document into a graph-of-words representation [13] and then rank the impor-
tance of each word recursively using the random walk algorithm [2]. Compared
with state-of-the-art supervised methods that capture only local vertex (word)-
specific information on the candidate terms, graph-based algorithms incorporate
into the model global information from co-occurrence relations between each
word. However, for unsupervised approaches, it is difficult to incorporate deeper
background knowledge extracted from external databases [5] or leverage the
information and relations of other documents and keywords in the given dataset
into their learning phase due to the nature of such unsupervised methods that
in general involve only the given document.

Recently, deep learning approaches have been the focus of much research on
a wide variety of NLP and IR problems. The main feature of these approaches
is that during the learning process, they discover not only the mapping from
representation to output but also the representation itself, which thus removes
the empirical process of manual feature engineering characteristic of tradi-
tional supervised methods, greatly reducing the need to adapt to new tasks
and domains. Moreover, due to the efficiency of convolutional neural networks
(CNNs), many recent studies have demonstrated the superior performance of
word-level CNN-based algorithms in various NLP and IR tasks [8,10,15]. For
example, in [8,10], the authors use word-based CNNs for modeling sentences;
in [15], the authors propose a word-based CNN architecture for reranking pairs
of short texts. However, since such approaches learn the embeddings of words
in the training phase, the unknown word problem becomes critical if the train-
ing data is rather small and there are many words in testing documents that
do not appear in the training corpus. To take this into account, several recent
studies have narrowed down the semantics by incorporating character-level rep-
resentations to deal with several fundamental NLP tasks, such as part-of-speech
tagging [14], text classification [24], and other applications [19].

In this article we treat text as a raw signal at the character level and propose
character-level convolutional neural tensor networks (here after abbreviated as
charCNTN), a simple yet efficient architecture for keyword extraction. To our
best knowledge, this paper is the first to apply convolutional neural networks
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(ConvNets) solely on characters for this essential NLP problem. By following
the widely used TextRank [13] and the state-of-the-art graph degeneracy-based
approach [16], we focus on keyword extraction only and build keyphrases with a
post-processing step. The proposed model consists of two main building blocks:
one word model and one document model based on ConvNets; these two under-
lying models operate in parallel, mapping documents and candidate keywords
to their distributional vector representations. Most importantly, by introducing
a sparse document representation – the document tensor – we model seman-
tics down to the character level to capture morphological information in words,
which can be of great help in mitigating the unknown word problem in many
supervised learning approaches.

In the experiments, we compare the proposed model with several state-of-
the-art supervised and unsupervised approaches for keyword extraction. With
the post-processing step of reconstructing keyphrases from the extracted key-
words [13], we also compare our performance of keyphrase extraction with Tex-
tRank on both datasets. Experiments conducted on two datasets attest the effec-
tiveness of the proposed deep learning framework in providing significantly better
performance than several baseline methods.

2 Keyword Extraction

2.1 Supervised Approaches

Given a set of documents D = {d1, d2, . . . , dn} and a word sequence [w1w2 . . .
w|di|] for each document di, each word w ∈ Wdi

comes with a judgment yw, where
Wdi

denotes the set of all words in di, and words that are keywords are assigned
labels equal to 1 and 0 otherwise. The goal of a supervised task for keyword
extraction is to build a model that generates keywords for each given document
taking into consideration the given document set D and the corresponding labels.
This task can be formally defined as a binary classification problem with model
f as

f(g(di, w)) =
{

1 w is a keyword,
0 otherwise, (1)

where g(·) denotes the function to generate features from the given di and w.
In the literature, several common features are term frequency, term frequency-
inverse document frequency, first occurrence, and part-of-speech tags [20,23].
Support vector machines and logistic regression are commonly adopted to learn
the classifier.

2.2 Unsupervised Approaches

In contrast to the above supervised approaches, unsupervised approaches gener-
ate keywords mainly by learning the structure of the given documents, such as
their word co-occurrences. Among the literature, graph-based ranking methods
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Fig. 1. Document model

such as TextRank [13] and TopicRank [1] are the most widely used unsupervised
methods for keyword extraction. In this type of approach, the keyword extrac-
tion problem is defined as follows. Given a document di with word sequence
[w1w2 . . . w|di|], a graph G = (V,E) is constructed to represent the structure of
document di. For example, in TextRank, vertices are words and the edge between
two words is weighted according to their co-occurrence relation. The goal is to
build a scoring function for each of the vertices on graph G and rank the words
based on the scores.

2.3 Problem Formulation

In this paper, keyword extraction is formulated as a binary classification prob-
lem. However, unlike traditional supervised approaches in which the features for
each document are manually determined, in the proposed deep neural network
approach, the two inputs di and w in Eq. (1) are directly represented as a third-
order tensor and a second-order tensor (a matrix), respectively. Therefore, given
a tensor Tdi

for document di ∈ D and a matrix Mw for word w ∈ Wdi
, Eq. (1)

is rewritten as

f(Tdi
,Mw) =

{
1 w is a keyword,
0 otherwise.

In the next section, we show how documents are represented as tensors and how
words are represented as matrices based on a character-level sparse representa-
tion.

3 Proposed CharCNTN Architecture

3.1 Document Model and Word Model

Shown in Fig. 1 is the architecture of ConvNet for mapping documents to dis-
tributed feature vectors, as inspired by the architecture used in [15] for document
ranking and the idea of the character-level CNN model for text classification [24].
The document model consists of a single narrow convolutional layer followed by
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a non-linearity and simple max pooling. In the following subsections, we briefly
introduce the main parts of our ConvNet: the document tensor, convolution
feature maps, and pooling layers.

Document Tensor. In our model, the input is a document-word pair in which
each document is represented as a third-order tensor and each word is represented
as a second-order tensor (a matrix), as illustrated in Fig. 1. For simplicity, below
we focus on the structure of the third-order tensor for documents; note that the
input for each word is a degenerated version of a document. Each document d is
treated as a word sequence: [w1, .., w|d|], where |d| denotes the document length
of d. As illustrated in the left panel of Fig. 1, each word is represented as a
character-level one-hot encoding matrix.

Let Xj ∈ R
c×kj be the c × kj word matrix corresponding to the j-th word in

the document di, where kj denotes the length of the j-th word (i.e., the number
of characters of this word) and c denotes the size of the character vocabulary set
C. A word w is then converted to the matrix X,1 where the xab ∈ X is set to 1
if the b-th character of w is the a-th element in C and 0 otherwise.

For each input document d, a document tensor Td ∈ R
c×k̄×|d| is constructed

as follows (see the document tensor in Fig. 1): Td = X1 ⊕ X2 ⊕ · · · ⊕ x|d|, where
⊕ is the concatenation operator, Xj denotes the matrix of the j-th word in
document d, and k̄ = max(kj); each matrix Xj is padded with c× (k̄−kj) zeros.

It is worth mentioning that while our model allows for learning the distributed
character embeddings directly for the given task, in this paper we keep the
document tensor parameter static, resulting in much fewer parameters to be
learned during the training process. This characteristic is especially beneficial to
the task of keyword extraction since it is usually hard to obtain a large amount
of label data for such a task. In addition, different from word embedding, there
is no standard procedure or commonly used algorithm to obtain the pre-trained
character embedding for constructing our static input tensor. We empirically find
that using sparse one-hot or a random vector to represent a character obtains
similar performance, but the former one is better in practice since it requires
much less memory usage than the later one.

Convolution Feature Maps. To extract patterns from the input, a narrow
convolution has been used. Given that the inputs of our model are document
tensors Td = (tijk) ∈ R

c×k̄×|d| , a convolution filter is also a tensor of weights,
F = (fijk) ∈ R

c×k̄×m. The filter slides along the third dimension of Td and
results in a vector e ∈ R

|d|−m+1, each component of which is

ei = (Td ∗ F )i =
c∑

x=1

k̄∑
y=1

i+m−1∑
z=i

txyzfxyz + b,

1 Note that for simplicity, we omit the j subscript of each word matrix Xj .
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where ∗ denotes the convolution operator and b ∈ R is the bias added to the result
of the convolution. Note that each ei is the result of calculating an element-wise
product between a slice of tensor Td and the filter tensor F .

Above, we describe the process of computing a convolution between an input
document tensor and a single filter, resulting in a single feature map. In practice,
deep ConvNets apply a set of n filters, each of which works in parallel to generate
multiple feature maps. The resulting filter bank F ∈ R

n×c×k̄×m then yields a
set of feature maps of dimension n × (|d| − m + 1).

Pooling Operation. The output of the convolution layer is then passed
to the pooling layer to gather information and reduce the representa-
tions. After the pooling layer, the resulting representation vectors are e′ =
[pool(α(e1)), · · · , pool(α(en))], where ei denotes the i-th convolutional feature
map (ei ∈ R

|d|−m+1).
There are two conventional choices for the function pool(·): average pool-

ing and max pooling. Both operations map each feature map e to to a single
value: pool(e) : R|d|+m−1 → R, as shown in Fig. 1. In this paper, the simple
max-pooling method is considered, the goal of which is to capture the most
representative feature – that with the highest value – for each feature map; by
nature, this pooling scheme is suitable for documents of varying lengths.

3.2 Learning for Keyword Extraction

In the proposed model, one document model and one word model are built to
map documents and candidate words to their distributional vector representa-
tions. Below, we briefly explain the concatenation layer that joins these inter-
mediate representations in a single representation vector and then introduce the
fully connected layer and the output layer.

Concatenation Layer. Since our architecture comprises two ConvNets, a doc-
ument model, and a word model, two representation vectors xdoc and xword are
produced after the pooling operation; the concatenation layer then joins these
vectors from both models end-to-end. In addition, in this layer, it is natural to
add supplementary features xsup such as the term frequency of the candidate
word to the model; thus we have a single joined vector

x = xdoc � xword � xsup, (2)

where � denotes concatenation between two vectors, i.e., a � b =
(a1, . . . , ak, b1, . . . , b�).

Fully Connected Layer and Output Layer. The resulting joined vector
from the above concatenation layer is then passed through a fully connected
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hidden layer that models the interactions between the components in the vector.
The following transformation is then performed via the fully connected layer:

h = α(wh · x + b), (3)

where wh denotes the weight matrix of the layer, b is the bias term, and α(·) is
a non-linear activation function.

Finally the output layer is then fed to a softmax classification layer, the
output layer. Since our problem is previously defined as a binary classification
problem, the output layer of our classification model contains only two units and
generates the probability distribution over the two class labels:

p(y = �|h) =
eh

ᵀδ�

ehᵀδ0 + ehᵀδ1
, (4)

where � ∈ {0, 1} and δ� denotes the weight vector of the � class. Thus, the two
output units of the network are the probabilities that the given word is a keyword
of the document and that the word is not a keyword of the document.

3.3 Optimization

To recognize the keywords, charCNTN minimizes the objective C by:

C = − log
∏N

i=1
p (yi|di ∈ D,w ∈ Wdi

) = −
N∑

i=1

[yi log qi + (1 − yi) log(1 − qi)] ,

where qi is the output of the softmax function defined in Eq. (4), and N denotes
the number of training examples.

The above parameters can be optimized using stochastic gradient descent
(SGD) with the backpropagation algorithm, by far the most common algorithm
to optimize neural networks, central to many machine learning success stories. In
order to improve the convergence rate of SGD, various efficient stochastic opti-
mization techniques have been proposed, such as AdaGrad [3] and Adadelta [22].
In this paper, Adam [11], an algorithm for first-order gradient-based optimiza-
tion of stochastic objective functions, is adopted to optimize the parameters.

4 Experiments

4.1 Datasets and Preprocessing

To conduct our experiments, we used two standard, publicly available datasets
with different document sizes and types. Inspec [6], the first dataset, is a col-
lection of 2,000 English abstracts of journal papers including their paper titles;
the dataset is partitioned into three subsets: a training set, a validation set,
and a testing set, each of which contains 1,000 abstracts, 500 abstracts, and the
remaining 500 abstracts, respectively. In addition, the dataset provides two sets
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of keyphrases assigned by professional indexers: the controlled keyphrases and
the uncontrolled keyphrases; following many previous studies (e.g., [1,13]), we
treat the uncontrolled keyphrases as our ground truth in the following evalua-
tion. SemEval, the second dataset, was compiled by [9] for the SemEval 2010
keyphrase extraction evaluation campaign. This dataset consists of 284 scientific
articles from the ACM Digital Libraries, including conference and workshop
papers; the total 284 documents are divided into 40 documents for trial, 144 for
training, and the remaining 100 for test. Note that since the labeled keyphrases
in the testing set are in their stemmed forms, for this dataset, we use trial data
instead of the testing data as our testing set. Table 1 shows the statistics of the
two data collections.

Table 1. Datasets

Inspec SemEval

Train Test Train Test

Documents 1,000 500 144 40

Avg. length of documents 150 156 67 69

Unique words 9,258 5,660 2,047 1,047

Unique words (stemmed) 6,804 4,219 1,564 846

Unique keywords 6,377 3,792 1,310 680

Unique keywords (stemmed) 4,954 3,010 1,150 617

Unique keyphrases - 4,913 - 621

Training instances 30,231 - 2,112 -

As the labeled answers of each document in the above two datasets are
keyphrases, we divide the keyphrases into keywords and use these keywords
as our ground truth for keyword extraction. Recall that in this paper, we focus
on keyword extraction only and build keyphrases with a post-processing step.
Furthermore, for both datasets, we use only the abstract parts in our experi-
ments.

It is also worth mentioning that that the performance on these two datasets
varies among many of the previous studies (e.g., [1,5,13,16]) due to the different
text preprocessing steps adopted in their experiments. For fair comparison, all
baselines and our methods preprocess the data per [16]: (1) Stop words from
the SMART information retrieval system are removed;2 (2) Only nouns and
adjectives are kept; (3) The Porter stemmer is applied to both documents and
ground truth keywords. Detailed statistics for the data after preprocessing are
listed in Table 1.

2 http://www.ai.mit.edu/projects/jmlr/papers/volume5/lewis04a/a11-smart-stop-
list/english.stop.

http://www.ai.mit.edu/projects/jmlr/papers/volume5/lewis04a/a11-smart-stop-list/english.stop
http://www.ai.mit.edu/projects/jmlr/papers/volume5/lewis04a/a11-smart-stop-list/english.stop
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4.2 Experimental Setup

Baseline Methods. Due to the commonly occurred “unknown word problem”
in supervised learning methods, unsupervised learning is still considered as the
main stream technique for the task of keyword extraction. As for the selection
of our baseline methods, we consider the unsupervised method proposed by [16]
as the state-of-the-art algorithm, which yields a set of strong baselines (i.e.,
CoreRank, dens, inf). Moreover, in this paper, we focus on CNN-based models
due to its advantages in terms of simplicity and efficiency; therefore, in this stage,
we do not compare our method with RNN-based models in the experiments. In
sum, we compare our results with seven algorithms, including five unsupervised
approaches (1)–(5) and two supervised approaches (6)–(7):

(1) TF-IDF: The first baseline is term frequency-inverse document fre-
quency, which is a numerical statistic that reflects the importance of
a word with respect to a document in a collection. In the experiments,
we compute the TF-IDF of all candidate words, rank them with their
TF-IDF values, and select the top one-third candidate words as our key-
words.

(2) TextRank: This baseline is an unsupervised graph-based ranking
model [13], one of the most commonly adopted keyword extraction meth-
ods. We apply TextRank to a directed, weighted text graph, and use co-
occurrence links to express the relations between two words, which are
created based on the co-occurrence of words within a window of size 2. As
with the setting of the above TF-IDF, the top one-third highest-scoring
candidate words are used as our keywords.

(3)–(5) CoreRank, dens, inf: The three baselines are the state-of-the-art unsu-
pervised graph-based methods proposed by [16]. In this paper, we adopt
as baselines their three best-performing settings: CoreRank, dens, and
inf. And the settings are following the original paper.3

(6) SVM: The supervised approach proposed in [23] is chosen as a baseline
in which keyword extraction is treated as a binary classification problem.
A support vector machines (SVMs) are used to build the binary classifier
with several handcrafted features are used to represent the data: TF-IDF,
position, and first occurrence are global features, and part of speech and
linkage are local features.

(7) CNN: We also compare the proposed charCNTN with a traditional
word-level CNN model with a set of 300-dimensional word embeddings
trained on Google News.4 The convolution network architecture is the
same as the proposed charCNTN except that the input document and
word are represented by a matrix and a vector, respectively, and the size
of the convolution filter is set to 300 × 3.

3 These are the best models among different window sizes; we used the code at https://
github.com/Tixierae/EMNLP 2016 to reproduce the experiments.

4 https://code.google.com/archive/p/word2vec/.

https://github.com/Tixierae/EMNLP_2016
https://github.com/Tixierae/EMNLP_2016
https://code.google.com/archive/p/word2vec/


Keyword Extraction with Character-Level Convolutional Neural Tensor 409

Training Details. The parameters of the proposed charCNTN are listed as
follows. The width of the convolution filters m is set to 3; the characters we
consider are case-insensitive and are from a to z, resulting in c = 26. As the
maximum length of characters in each word in Inspec and SemEval is 48 and
23, respectively; in our experiments, each word is padded to length 15 since
for both datasets.5 On the other hand, the maximum length of documents in
Inspec and SemEval is 254 and 274, respectively, and each document is padded
to length 300. The number of convolutional feature maps n is set to 50, which
yields the best performance resulting from a grid search ranging from n = 2
to n = 60. A simple pooling layer is adopted, after which we apply a ReLU
activation function. The size of the fully connected layer equals that of the
joined vector x in Eq. (2) obtained after concatenating the word and document
representation vectors from the distributional models plus additional features (if
used).

To train the network we use stochastic gradient descent with mini-batches
and a batch size of 64; the Adam algorithm is adopted to optimize the neural
networks. Moreover, we randomly select 10% of the training data as our devel-
opment set and stop early to avoid model overfitting; specifically, the training
process stops when the loss on the development set no longer decreases. Also, to
ensure balanced training data, we randomly select the non-keywords from each
training set to equal the numbers of positive and negative examples. The numbers
of training instances of Inspec and SemEval are 30,231 and 2,112, respectively
(also listed in Table 1).

4.3 Keyphrase Extraction

We follow the method in [13] to reconstruct the keyphrases. All words selected
as keywords using the TextRank algorithm or our charCNTN model are marked
in the document, and sequences of adjacent keywords are collapsed into a multi-
word keyphrase. For example, if both machine and learning are selected as key-
words and the two words are adjacent in the given document, they are combined
as the single keyphrase “machine learning”. Note that in the following exper-
iments, we only compare the results of keyphrase extraction with TextRank
because only the TextRank paper deals with the keyphrase reconstruction; the
CoreRank, dens, inf, and SVM papers all focus solely on keyword extraction.

4.4 Experimental Results

In the following experiments, we first compare the performance of the proposed
charCNTN model with the seven aforementioned baseline algorithms, including
five unsupervised approaches and two supervised approaches. In all experiments,
the standard precision, recall, and F1 measures for each document are computed
and are averaged at the dataset level (macro-averaging). As shown in the table,
the simple TF-IDF method serves as a strong baseline, similar to the results

5 Over 96%–97% words are with less or equal than 15 characters.
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reported in [1]; also, the results of the other four unsupervised baselines are
similar to the results in [16], which attests the validity of the results of the
baselines.

Table 2. Keyword extraction

Unsupervised methods Supervised methods

TD-IDF† TextRank† CoreRank† dens† inf† SVM† CNN† charCNTN charCNTN+

Inspec Precision 43.18 63.45 63.59 48.06 48.18 60.10 54.35 57.32 69.31

Recall 84.90 39.96 39.98 72.29 72.51 56.96 55.21 69.25 68.08

F1-measure 55.45 47.20 47.25 55.35 55.62 56.18 50.12 60.80* 61.45*

SemEval Precision 33.12 50.89 48.86 36.66 37.21 49.61 51.27 41.09 42.63

Recall 50.81 25.21 24.28 43.20 42.41 30.49 28.79 42.27 39.72

F1-measure 38.68 32.75 31.49 37.96 37.72 36.71 33.84 40.02* 39.61*

† denotes baseline methods; * denotes the statistical significance at p < 0.05 with respect to all baselines.

For the proposed charCNTN, we also include the term frequency as a supple-
mentary feature xsup in the proposed model. From Table 2, we observe that the
proposed method both without and with the additional term frequency feature
(denoted as charCNTN and charCNTN+, respectively) outperforms all seven
baseline methods in terms of the F1 metric. A closer look at the table reveals
that our method yields greater improvements on Inspec than SemEval as the
training set of Inspec is much bigger than that of SemEval.

It is also worth mentioning that performing stemming on the corpus and
ground truth indeed makes the problem easier than the original one and thus in
general results in better performance, though this is a commonly adopted app-
roach in the related literature. As our method captures morphological informa-
tion about words without the need for stemming, our model achieves comparable
or even better performance than several baseline approaches with stemming. To
attest this claim, we also conducted experiments on the two datasets without
stemming; the F-measure scores of Inspec and SemEval for the proposed charC-
NTN were 59.02 and 37.34, respectively, which are still superior to most of the
baseline methods with stemming, as shown in Table 2.

Table 3. Performance on unknown words and keyphrase extraction

Unknown words Keyphrase

SVM CNN charCNTN charCNTN+ TextRank charCNTN charCNTN+

Inspec Precision 38.52 35.86 42.78 42.41 30.40 24.43 23.43

Recall 71.24 52.37 78.20 74.67 16.02 35.81 36.01

F1-measure 50.01 42.57 55.29 54.05 19.91 28.03 27.37

SemEval Precision 38.13 31.95 37.05 35.95 19.38 14.25 14.40

Recall 41.22 27.84 71.16 61.31 6.05 17.15 18.77

F1-measure 39.62 29.76 48.62 45.24 8.71 14.94 15.62

Additionally, to demonstrate the ability of our model to better handle
unknown words, we designed an experiment involving only those words that
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appear in the testing documents but not in the training corpus; that is, we keep
only the predicted keywords and target keywords that are unknown words when
calculating the three evaluation metrics. The results listed in Table 3 show that
the character-level information used in our model indeed greatly improves the
F1 performance as compared with the other two supervised methods: SVM and
the word-based CNN model.

Finally, in Table 3 we briefly compare our performance on keyphrase extrac-
tion with TextRank. Observe that our method yields much better performance
than the commonly-adopted TextRank because both charCNTN and charC-
NTN+ retrieve more target keywords than TextRank (higher recall) but with
low precision loss.

Remarks. Before designing the proposed architecture based on character-level
convolutional neural tensor networks, we attempted to tackle the problem of key-
word extraction by adopting an architecture similar to [15], using word embed-
dings to represent a document as an initial input of the networks. However, after
experiments and network tweaking (the results of which are denoted as CNN and
shown in Table 2), we realize that the poor performance of the traditional CNN
method is due to the large number of unknown words in the testing data, many
of which lack word embeddings even in the pretrained dataset. This inspired
us to turn to the character-level based method, which captures morphological
information about words and thus greatly mitigates the unknown word problem
in supervised learning approaches for keyword extraction.

5 Conclusion and Future Work

We present a simple yet efficient supervised deep neural network architecture for
keyword extraction, in which we model semantics down to the character level
to capture morphological information about words; therefore, the proposed app-
roach effectively mitigates the unknown word problem in supervised learning
approaches. The experimental results show that the proposed charCNTN archi-
tecture significantly outperforms both state-of-the-art supervised and unsuper-
vised approaches.

Although in this paper we use CNN rather than the recurrent neural net-
work (RNN) due to its advantages in terms of simplicity and efficiency, there
have been many attempts to adopt RNN models or combine RNN with CNN
models to accomplish several other NLP and IR tasks [21]. In the future, we plan
to investigate how to integrate the proposed charCNTN architecture with RNN
models to better capture word sequence behavior and to incorporate attention
mechanism to analyze for potential changes of word-document tensor interac-
tion. Additionally, how to extend the proposed architecture to directly handle
keyphrase extraction is also a challenging problem. The source codes are avail-
able at https://github.com/cnclabs/CNTN.

https://github.com/cnclabs/CNTN
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Abstract. Probabilistic Matrix Factorization (PMF) is a popular tech-
nique for collaborative filtering (CF) in recommendation systems. The
purpose of PMF is to find the latent factors for users and items by
decomposing a user-item rating matrix. Most methods based on PMF
suffer from data sparsity and result in poor latent representations of
users and items. To alleviate this problem, we propose the neural vari-
ational matrix factorization (NVMF) model, a novel deep generative
model that incorporates side information (features) of both users and
items, to capture better latent representations of users and items for
the task of CF recommendation. Our NVMF consists of two end-to-end
variational autoencoder neural networks, namely user neural network
and item neural network respectively, which are capable of learning com-
plex nonlinear distributed representations of users and items through our
proposed variational inference. We derive a Stochastic Gradient Vari-
ational Bayes (SGVB) algorithm to approximate the intractable pos-
terior distributions. Experiments conducted on three publicly available
datasets show that our NVMF significantly outperforms the state-of-the-
art methods.

Keywords: Collaborative filtering · Neural network ·
Matrix factorization · Deep generative process · Variational inference

1 Introduction

Recommendation system (RS) is of paramount importance in social networks
and e-commerce platforms. RS aims at inferring users’ preferences over items
by utilizing their previous interactions. Traditional methods for RS can be cat-
egorized into two classes [27]: content-based methods and collaborative filtering
(CF) ones. Content-based methods make use of users’ and items’ features and
recommend items that are similar to the items that the users have liked before.
CF methods utilize previous rating information to recommend items to users.
Matrix factorization (MF) is the one of the most successful and popular CF
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approaches that first infers users’ and items’ latent factors from a user-item rat-
ing matrix and then recommends items to users who share similar latent factors
to the items [12]. However, traditional MF suffers from data sparsity problem.
In order to alleviate the data sparsity problems in MF, hybrid methods that
enjoy advantages of different categories of methods for CF have bee proposed.
Some hybrid methods [1,10,18] take the advantages of both content-based and
MF methods, and incorporate side information, such as demographics of a user,
types of a item, etc., into MF. Regardless of their better performance compared
to the traditional MF, we find most of them apply Gaussian or Poisson distri-
butions to model the generative process of users’ ratings, resulting in learning
poor representations of users and items from complex data.

Recently, deep generative model has drawn significant attention and research
efforts since the deep generative model have both non-linearity of neural network,
and can get more robust and subtle latent representations of users and items
due to it’s Bayesian nature. Li et al. [15] proposed Collaborative Variational
Autoencoder (CVAE), which utilizes VAE to extract latent item information
and incorporates it into matrix factorization. Liang et al. [17] proposed VAE-CF
model to the CF task. However, these VAE-based methods don’t consider side
information of both users and items. The choose the same Gaussian priors for
different users and items, which is not unrealistic for different users and items.
Accordingly, we solve the problems existing in the previous hybrid methods by
proposing a novel neural variational matrix factorization (NVMF) for CF. We
model the relationship of latent factor and side information by a novel deep gen-
erative process so as to enable it to effectively alleviate data sparsity problem
and can learn better latent representations. In addition, our proposed model is
a variant variational autoencoder for MF but differs itself from existing neural
network hybrid methods by treating neural network as a full Bayesian proba-
bilistic framework, resulting in the fact that it is able to enjoy the advantages of
both deep learning and probabilistic matrix factorization to capture more subtle
and complex latent representations of users and items. To sum up, our main
contributions are as follows:

(1) We proposed a novel neural variational matrix factorization (NVMF) model
to effectively learn nonlinear latent representations of users and items with
side information for collaborative filtering.

(2) We derived tractable variational evidence lower bounds for our proposed
model and devised a neural network to infer latent factors of users and
items.

(3) We systematically conducted experiments to show that the proposed NVMF
model outperforms state-of-the-art CF methods.

2 Notation and Problem Definition

Similar to recent recommendation methods [15,25], we focus on implicit feedback
in our paper. Let R ∈ {0, 1}M×N be the user-item feedback matrix with M and
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N being the total number of users and items, respectively. F ∈ R
P×M and

G ∈ R
Q×N are the side information matrix of all users and items, respectively,

with P and Q being the dimensions of each user’s and item’s side information,
respectively; U = [u1, . . . uM ] ∈ R

D×M and V = [v1, . . . vN ] ∈ R
D×N are the

two rank matrices serving for users and items, respectively, with D denoting
the dimensions of latent factor space. For convenient discussion, we represent
each user i’s rating scores including the missing/unobserved ones over all items
as su

i = [Ri1, . . . , RiN ] ∈ R
N×1, where Rij is an element in R. Similarly, we

represent each item j’s rating scores from all users including those who do not
provide rating for j as sv

j = [R1j , . . . , RMj ] ∈ R
M×1. We call su

i and sv
j as

the collaborative information of user i and item j, respectively. The problem we
address in this paper is to infer the posterior latent factors of users and items
and predict the missing value in user-item feedback matrix R given R, F and G.

3 Neural Variational Matrix Factorization

3.1 Neural Variational Matrix Factorization

Unlike any other probabilistic matrix factorization that directly utilizes the rat-
ing value Rij in user-item matrix R to infer users’ and items’ latent factors, we
assume the i-th user latent factor ui can be jointly inferred by both the user’s
rating history on all items su

i (the collaborative information of user i ) and the
user’s features fi. Similarly, the j-th item latent factor vj can be jointly inferred
by both all users’ rating history on the item sv

j (the collaborative information
of item j) and its own features gj . Under these assumptions, we first model the
features of users and items through latent variable model. Although we do not
know the real distributions of user features and item features, we know that
any distribution can be generated by mapping the standard Gaussian through
a sufficiently complicated function [5]. Thus for user i, given a standard Gaus-
sian latent variable bi assigned to the user, his features fi are generated from
its latent variable bi through a neural network, which is called “user generative
network” (see Fig. 1), and are governed by the parameter θ in the network such
that we have:

bi ∼ N (0, IKb
), fi ∼ pθ(fi|bi), (1)

where IKb
is the covariance matrix, Kb is the dimension of bi, and the spe-

cific form of the probability of generating fi given bi, pθ(fi|bi), depends on the
type of data. For instance, if fi is binary vector, pθ(fi|bi) can be a multivariate
Bernoulli distribution Ber(Fθ(bi)) with Fθ(·) being the highly no-linear func-
tion parameterized by the parameter θ in the network. Similarly, for item j, it’s
features gj are modeled to be generated from a standard Gaussian latent vari-
able dj through another generation network, which is called “item generative
network” (see Fig. 1), and are governed by a parameter τ in the network such
that we have:

dj ∼ N (0, IKd
), gj ∼ pτ (gj |dj), (2)
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where IKd
is the covariance matrix and Kd is the dimension of dj .

Traditional PMF assumes the prior distributions of user latent factor ui and
item latent factor vj are standard Gaussian distributions and predict rating only
through collaborative information such as the user-item feedback matrix. In our
model, to further enhance the performance, besides the collaborative informa-
tion, we believe the user’ features fi can also positively contribute to the infer-
ence of his latent factor ui. Similarly, for better inferring the j-th item’s latent
factor vj , we also fully utilize user’s features gj . Unlike most MF methods [10,18]
that incorporate side information via linear regression, in order to get more sub-
tle latent relations, we consider the conditional prior p(ui|fi) and p(vj |gj) are
Gaussian distributions such that we have p(ui|fi) = N (μu(fi), Σu(fi)) and
p(vj |gj) = N (μv(gj), Σv(gj)), where

μu(fi) = Fμu
(fi), Σu(fi) = diag(exp(Fδu

(fi))), (3)
μv(gj) = Gμv

(gj), Σv(gj) = diag(exp(Gδv
(gj))), (4)

where Fμu
(·), Fδu

(·), are the two highly non-linear functions parameterized by
μu and δu in the neural network, i.e., the user prior network, serving for all users,
and Gμv

(·) and Gδv
(·) are the two non-linear ones parameterized by μv and δv

in another neural network, i.e., the item prior network, serving for all items,
respectively. For simplicity, note that we set γ = {μu, δu} and ψ = {μv, δv}.

For the collaborative information of user i (su
i ), we assign a standard Gaus-

sian latent variable ai to it and believe user latent factor ui can potentially affect
user collaborative information. Then we consider su

i is generated from both a
standard Gaussian latent variable ai and user latent factor ui, and is governed
by the parameter α in the generative network (see Fig. 1 and the caption in the
figure) such that we have:

ai ∼ N (0, IKa
), su

i ∼ pα(su
i |ai,ui), (5)

where IKa
is the covariance matrix and Ka is the dimension of ai. Similarly,

the j-th item’s collaborative information, sv
j , is generated from it’s standard

Gaussian latent variable cj and item latent factor vj , and is governed by the
parameter β in the generative network such that we have:

cj ∼ N (0, IKc
), sv

j ∼ pβ(sv
j |cj ,vj), (6)

where IKc
is the covariance matrix and Kc is the dimension of cj . Similar to

the form of the probability distribution, pθ(fi|bi), in Eq. 1, the specific forms
of the probability distributions in Eqs. 2, 5 and 6 depend on the type of data.
The rating Rij is drawn from the Gaussian distribution whose mean is the inner
product of the user i and item j latent factor representations such that we have:

p(Rij |ui,vj) = N (u�
i vj , C

−1
ij ). (7)

where C−1
ij is the precision of Gaussian distribution, and similar to the collabo-

rative topic modeling [25], Cij serves as a confidence parameter for rating Rij ,
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which is defined as:

Cij =
{

ϕ1 if Rij �= 0,
ϕ2 if Rij = 0,

(8)

where ϕ1 and ϕ2 are the parameters satisfying ϕ1 > ϕ2 > 0, the basic reason
behind which is that if Rij = 0 it means the user i is not interested in the item
j or the user i is unware of it. According to the generative process of NVMF,
the joint distribution of NVMF can be factorized as:

p(R,F ,G,Z) =
M∏
i=1

N∏
j=1

p(ai)p(bi)p(fi|bi)p(ui|fi)p(su
i |ai,ui)︸ ︷︷ ︸

for users

·

p(cj)p(dj)p(gj |dj)p(vj |gj)p(sv
j |cj ,vj)︸ ︷︷ ︸

for items

p(Rij |ui,vj). (9)

Instead of inferring the joint distribution, i.e., Eq. 9, we are more interested in
approximately inferring its posterior distributions over users’ and items’ factor
matrices, U , V . Let Z = {U ,V ,A,B,C,D} be a set of all latent variables
in Eq. 9 that need to be inferred, and Zij = {ui,vj ,ai, bi, cj ,dj}. However, it
is difficult to infer Z by using traditional mean-field approximation since we
do not have any conjugate probability distribution in our model which requires
by traditional mean-field approachs. Inspired by VAE [11], we use Stochastic
Gradient Variational Bayes (SGVB) estimator to approximate posteriors of the
latent variables related to user (ai, bi, ui) and latent variables related to item (cj ,
dj , vj) by introducing two inference networks, i.e., the user inference network and
the item inference network (see Fig. 1), parameterized by φ and λ, respectively.
To do this, we first decompose the variational distribution q into two categories
of variational distributions used in the two networks in our NVMF model—user
inference network and item inference network (see Fig. 1), qφ and qλ, by assuming
the conditional independence:

q(Zij |Xi,Yj , Rij) = qφ(ui|Xi)qφ(ai|Xi)qφ(bi|Xi)︸ ︷︷ ︸
for users

· qλ(vj |Yj)qλ(cj |Yj)qλ(dj |Yj)︸ ︷︷ ︸
for items

,

(10)

where Xi = (su
i ,fi) represents the set of user observed variables, and Yj =

(sv
j , gj) represents the set of item observed variables.
Like VAE [11], the variation distributions are chosen to be a Gaussian distri-

bution N (μ,Σ), whose mean μ and covariance matrix Σ are the output of the
inference network. Thus, in our NVMF, for latent variables related to the i-th
user, we set:

qφ(ui|Xi) = N (μφui
(Xi),diag(exp(δφui

(Xi)))), (11)

qφ(ai|Xi) = N (μφai
(Xi),diag(exp(δφai

(Xi)))), (12)

qφ(bi|Xi) = N (μφbi
(Xi),diag(exp(δφbi

(Xi)))), (13)
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where the subscripts of μ and δ indicate the parameters in our user inference
network corresponding to ui, ai and bi, respectively. Similarly, for j-th item:

qλ(vj |Yj) = N (μλvj
(Yj),diag(exp(δλvj

(Yj)))), (14)

qλ(cj |Yj) = N (μλcj
(Yj),diag(exp(δλcj

(Yj)))), (15)

qλ(dj |Yj) = N (μλdj
(Yj),diag(exp(δλdj

(Yj)))), (16)

where the subscripts of μ and δ indicate the parameters in item inference network
corresponding to vj , cj and dj , respectively.

Thus, the tractable standard evidence lower bound (ELBO) for the inference
can be computed as follows:

L(q) = Eq[log p(O,Z) − log q(Z|O)]

=
M∑
i=1

N∑
j=1

(Li(qφ) + Lj(qλ) + Eq[log p(Rij |ui,vj)]), (17)

where O = (F ,G,R) is a set of all observed variables. qφ and qλ are user term
and item term in Eq. 10, respectively. For user i and item j, we have:

Li(qφ) = L(φ, α, θ, γ;Xi) = Eqφ(ai,ui|Xi)[log pα(su
i |ai,ui)]

+ Eqφ(bi|Xi)[log pθ(fi|bi)] − KL(qφ(ai|Xi)||p(ai)) (18)

− KL(qφ(bi|Xi)||p(bi)) − ω1 KL(qφ(ui|Xi)||pγ(ui|fi)),

Lj(qλ) = L(λ, β, τ, ψ;Yj) = Eqλ(cj ,vj |Yj)[log pβ(sv
j |cj ,vj)]

+ Eqλ(dj |Yj)[log pτ (gj |dj)] − KL(qλ(cj |Yj)||p(cj)) (19)

− KL(qλ(dj |Yj)||p(dj)) − ω2 KL(qλ(vj |Yj)||pψ(vj |gj)),

where in the standard ELBO, the free parameters ω1 and ω2 are 1, and
KL(qφ(ui|Xi) ||pγ(ui|fi)) is the Kullback-Leibler divergence between the approx-
imate posterior distribution qφ(ui|Xi) and the prior pγ(ui|fi). The variational
distribution qφ(ui|Xi) acts as an approximation to the true posterior p(ui|O)
when maximizing Eq. 18. Similarly, qλ(vj |Yj) acts as an approximation to the
true posterior p(vj |O) when maximizing Eq. 19. Inspired by β-VAE and the pre-
vious work [9,17], we use two free trade-off parameters ω1 and ω2 for the last
terms in Eqs. 18 and 19, respectively, in the ELBO to control the KL regulariza-
tion instead of directly applying ω1 = ω2 = 1 (other KL terms in Eqs. 18 and 19
do not need to apply the trade-off parameters as they are not related to our final
latent factors ui and vj). Since we assume the posterior is Gaussian distribution,
the KL terms in Eqs. (18) and (19) have analytical forms. However, for the expec-
tations terms, we can not to compute them analytically. To handle this problem,
we use Monte Carlo method [20] to approximate the expectations by drawing
samples from the posterior distribution. By using the reparameterization trick
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[20], the ELBO for user network is given:

L(φ, α, θ, γ;Xi) ≈ 1
K

K∑
k=1

(log pα(su
i |ak

i ,uk
i ) + log pθ(fi|bk

i )) (20)

− KL(qφ(ai|Xi)||p(ai)) − KL(qφ(bi|Xi)||p(bi)) − ω1 KL(qφ(ui|Xi)||pγ(ui|fi)),

where K is the size of the samplings, ak
i = μa +δa � εk

a, bk
i = μb +δb � εk

b ,uk
i =

μu + δu � εk
u, � is an element-wise multiplication and εk

a, εk
b , εk

u are samples
drawn from standard multivariate normal distribution. The superscript k denotes
the k-th sample. The ELBO for item network, L(λ, β, τ, ψ;Yj), can be derived
similarly, and thus we omit it here.

Fig. 1. The architecture of NVMF (shaded rectangles indicate observed vectors). The
left part and right part are user network and item network which extract latent factors
for users and items, respectively.

3.2 Optimization

Since minimizing the objection function is equivalent to maximizing the
log likelihood of the observed data. Based on L(φ, α, θ, γ;Xi) in Eq. 21 and
L(λ, β, τ, ψ;Yj), the objective function is:

L = −
M∑
i=1

N∑
j=1

(L(φ, α, θ, γ;Xi) + L(λ, β, τ, ψ;Yj)

+
Cij

2
Eqφ(ui|Xi)qλ(vj |Yj)[(Rij − u�

i vj)2]), (21)

where the expectation term is given by:

Eqφ(ui|Xi)qλ(vj |Yj)[(Rij − u�
i vj)2] = R2

ij − 2RijE[ui]�E[vj ]

+ tr((E[vj ]E[vj ]� + Σv)Σu) + E[ui]�(E[vj ]E[vj ]� + Σv)E[ui], (22)

where tr(·) denotes the trace of a matrix. Since NVMF is a fully end-to-end
neural network, the whole parameters of the model are the weight matrix of
entire network, we can use back-propagation algorithm to optimize the weights
of the user network and the item network.
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3.3 Prediction

After the training is converged, we can get the posterior distributions of ui and
vj through the user and item inference networks, respectively. So the prediction
Rij can be made by:

E[Rij |O] = E[ui|O]�E[vj |O] (23)

4 Experimental Setup

4.1 Dataset

We use three benchmark datasets in our experiments which are commonly used
to previous recommendation algorithms.

MovieLens-100K1 (ML-100K): Similar to [6,14], we extract the features of
users and movies provided by the dataset to construct our side information
matrices F and G respectively. The user’s feature contains user’s id, age, gender,
occupation and zipcode, correspondingly the movie’s feature contains movie’s
title, release data and 18 categories of movie genre.

MovieLens-1M2 (ML-1M): This dataset is also a movie rating dataset. Similar
to ML-100K, we can get side information of users and items.

Bookcrossing3: For this dataset, we also extract the features of users and book
provided by the dataset. We encoded the user and book feature into binary vec-
tor of length 30 and 30 respectively.
Since we will evaluate our model performance on implicit feedback. Thus, fol-
lowing to [6,14], we interpret three datasets above as implicit feedback.

4.2 Baselines and Experimental Settings

For implicit feedback, as demonstrated in [15,26], the hybrid collaborative filter-
ing model incorporating side information outperforms the other method without
side information. So the most baselines we choose are hybrid models. The base-
lines we use to compare our proposed method are listed as follows:

(1) CMF [23]: This model is MF model which decompose the user-item matrix
R, user’s side information matrix F , and item’s side information matrix G
to get the consistent latent factor of user and item.

(2) CDL [26]: This model is a hierarchical Bayesian model for joint learning of
stacked denoising autoencoder and collaborative filtering.

(3) CVAE [15]: This model is a Bayesian probabilistic model which unifies
item feature and collaborative filtering through stochastic deep learning and
probabilistic model.

1 https://grouplens.org/datasets/movielens/100k/.
2 https://grouplens.org/datasets/movielens/1m/.
3 https://grouplens.org/datasets/book-crossing/.

https://grouplens.org/datasets/movielens/100k/
https://grouplens.org/datasets/movielens/1m/
https://grouplens.org/datasets/book-crossing/
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(4) aSDAE [6]: This model is a deep learning model which can integrate the
side information into matrix factorization via additional stack denoising
autoencoder.

(5) NeuMF [8]: This model is a state-of-the-art collaborative filtering method
for implicit feedback.

Since the implicit feedback matrix R ∈ {0, 1}M×N , we set pθ(fi|bi) and pθ(gj |cj)
as multivariate Bernoulli distribution. We set ω1, ω2 and the learning rate η
to 0.05, 0.05 and 0.0001. The value of ϕ1, ϕ2 and λw are set to 1, 0.01 and
0.0001, respectively. The dimensions Ka, Kb, Kc, Kd are all chosen to be 20.
The inference and generative networks are both two-layer network architectures
and the last layer of generative network is a softmax layer. Similar to explicit
feedback, the prior network of user and item are both set to one layer. We also
set the dimensions of use and item latent factor D as 30. We use 80% ratings of
dataset to train each method, the 10% as validation, the rest 10% for testing.
We repeat this procedure five times and report the average performance.

4.3 Evaluation Metrics

For evaluation, we use the Hit Ratio (HR) [16] and the Normalized Discounted
Cumulative Gain (NDCG) [8] as our evaluation as metrics. For each user, we
sort the top-K items based on the predicted ratings. We report the average recall
scores over all users in our experimental analysis.

5 Results and Analysis

Table 1 shows the experiment result that compare CMF, CDL, CVAE, aSDAE
and NeuMF using three datasets. As we can see, our proposed methods NVMF
significantly outperform the compared methods in all cases on both ML-100K,
ML-1M and BookCrossing datasets. Compared with other methods that have
a deep learning structure, CMF achieves the worst performance. This demon-
strates the deep learning structure can learn more subtle and complex represen-
tation than the tradition MF method. We also observe that although CDL and
CVAE both have a deep learning structure, CVAE achieves better performance
than CDL. This is because CDL is based on denoising autoencoder which can
be seen as point estimation, however CVAE is fully deep probabilistic model
which make it hard to overfit the data. From Table 1 We observe the strongest
baseline in our experiment is aSDAE which outperforms than other baselines.
Although aSDAE is no a probabilistic model, it incorporates user’s side infor-
mation (user’s features) into matrix factorization which CDL and CVAE don
not. By incorporating both user’s feature and item’s feature and applying deep
generative model, our model NVMF outperform all the baselines. Specifically,
the average improvements of NVMF over the state-of-the-art method. Com-
pared to other datasets, our model has the greatest performance improvement
on Bookcrossing which is most sparse matrix among three datasets. This shows
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NVMF can more effectively alleviate the sparsity problem on implicit feedback
than aSDAE. Figure 2 shows the contours of NDCG@5 for NVMF on three
dataset. When the parameters equals 1, i.e ω1 = 1 and ω2 = 1, it means we
directly optimize the standard ELBO -which has a degraded performance and
this confirmed in Fig. 2(b). When we decrease ω1 to 0.1 at fixed ω2, we find
NVMF’s performance improves(small ω1 implies we want condense more user’s
collaborative information into user’s latent factor). Similar observation can be
made for varying ω2 at fixed ω1. Moreover, It can be observed that there is a
region of values of ω1 and ω2 (near (0.1,0.1)), around which NVMF provides the
best performance in terms recall. Altogether, Fig. 2 shows treating ω1 and ω2 as
trade-off parameters can yields significant improvement in performance of the
recommendation.

Fig. 2. The NDCG@5 for NVMF by varying ω1 and ω2 on three datasets (ML-100K,
ML-1M and BookCrossing).

Table 1. Recommendation performance comparison between our NVMF and baselines.

Datasets Metrics CMF CDL CVAE aSDAE NeuMF NVMF (ours)

ML-100K HR@5 0.4121 0.4564 0.4721 0.4981 0.4942 0.5083

NDCG@5 0.2124 0.2991 0.3012 0.3156 0.3351 0.3417

HR@10 0.5587 0.6123 0.6421 0.6871 0.6692 0.6982

NDCG@10 0.3387 0.3654 0.3871 0.4231 0.4103 0.4358

ML-1M HR@5 0.4237 0.5011 0.5141 0.5411 0.5211 0.5681

NDCG@5 0.2578 0.3362 0.3621 0.4124 0.4011 0.4325

HR@10 0.5921 0.6557 0.6874 0.7321 0.7202 0.7412

NDCG@10 0.3328 0.3547 0.3864 0.4121 0.4025 0.4205

Bookcrossing HR@5 0.1565 0.1714 0.1921 0.2234 0.2123 0.2354

NDCG@5 0.0523 0.0717 0.0921 0.1121 0.1024 0.1244

HR@10 0.2347 0.2654 0.2876 0.3097 0.3012 0.3142

NDCG@10 0.1024 0.1451 0.1612 0.1911 0.1876 0.2087
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6 Conclusion

In this paper, we study the problem of how to learn subtle and robust latent
factors from feedback matrix with side information for collaborative filtering. We
propose neural variational matrix factorization—a novel deep generative model
to learn the latent factors of users and items. NVMF incorporates features of
users and items into matrix factorization through a novel generative process,
which enables it to effectively handle data sparsity and cold start problems.
To infer our model, we derived a variational lower bound and devised fully
end-to-end network architectures so that back-propagation can be applied for
efficient parameter estimation. Experiments conducted with implicit feedbacks
have demonstrated the effectiveness of the learned latent factors by NVMF.

Acknowledgement. This work is supported by the National Key Research and Devel-
opment Program of China (No. #2017YFB0203201) and Australian Research Council
Discovery Project DP150104871.
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Abstract. In this paper, we propose a Variational Deep Collaborative
Matrix Factorization (VDCMF) algorithm for social recommendation
that infers latent factors more effectively than existing methods by incor-
porating users’ social trust information and items’ content information
into a unified generative framework. Unlike neural network-based algo-
rithms, our model is not only effective in capturing the non-linearity
among correlated variables but also powerful in predicting missing val-
ues under the robust collaborative inference. Specifically, we use varia-
tional auto-encoder to extract the latent representations of content and
then incorporate them into traditional social trust factorization. We pro-
pose an efficient expectation-maximization inference algorithm to learn
the model’s parameters and approximate the posteriors of latent fac-
tors. Experiments on two sparse datasets show that our VDCMF signifi-
cantly outperforms major state-of-the-art CF methods for recommenda-
tion accuracy on common metrics.

Keywords: Recommender System · Matrix Factorization ·
Deep Learning · Generative model

1 Introduction

Recommender System (RS) has been attracting great interests recently. The
most commonly used technology for RS is Collaborative Filtering (CF). The goal
of CF is to learn user preference from historical user-item interactions, which can
be recorded by a user-item feedback matrix. Among CF-based methods, matrix
factorization (MF) [17] is the most commonly used one. The purpose of MF is to
find the latent factors for users and items by decomposing the user-item feedback
matrix. However, the feedback matrix is usually sparse, which would result in the
poor performance of MF. To track this problem, many hybrid methods such as
those in [12,21–24,26], called content MF methods, incorporate auxiliary infor-
mation, e.g., content of items, into MF . The content of items can be their tags
and descriptions etc. These methods all first utilize some models (e.g., Latent
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Dirichlet Allocation (LDA) [1], Stack Denoising AutoEncoders (SDAE) [20] or
marginal Denoising AutoEncoders (mDAE) [3]) to extract items’ content latent
representations and then input them into probabilistic matrix factorization [17]
framework. However, these methods demonstrate a number of major drawbacks:
(a) They assume that users are independent and identically distributed, and
neglect the social information of users, which can be used to improve recom-
mendation performance [15,16]. (b) those methods [21,22] which are based on
LDA only can handle text content information which is very limited in current
multimedia scenario in real world. The learned latent representations by LDA
are often not effective enough especially when the auxiliary information is very
sparse [24] (c) For those methods [12,23,24,26] which utilize SDAE or aSDAE.
The SDAE and mDAE are in fact not probabilistic models, which limits them to
effectively combine probabilistic matrix factorization into a unified framework.
They first corrupt the input content, and then use neural networks to recon-
struct the original input. So those model also need manually choose various
noise (masking noise, Gaussian noise, salt-and-peper noise, etc), which hinders
them to expand to different datasets. Although some hybrid recommendation
methods [2,10,18,25] that consider user social information have been proposed,
they still suffer from problem (b) and (c) mentioned above. Recently, the deep
generative model such Variational AutoEncoder (VAE) [11] has been utilized
to the recommendation task and achieve promising performance due to it’s full
Bayesian nature and non-linearity power. Liang et al. proposed VAE-CF [14]
which directly utilize VAE to the CF task. To incorporate item content infor-
mation into VAE-CF, chen et al. proposed a collective VAE model [4] and Li et
al. proposed Collaborative Variational Autoencoder [13]. However those meth-
ods all don’t consider users’ social information. To tackle the above problems,
we propose a Variational Deep Collaborative Matrix Factorization algorithm
for social recommendation, abbreviated as VDCMF, for social recommendation,
which integrates item contents and user social information into a unified genera-
tive process, and jointly learns latent representations of users and items. Specif-
ically, we first use VAE to extract items’ latent representation and consider
users’ preferences effect by the personal tastes and their friends’ tastes. We then
combine these information into probabilistic matrix factorization framework.
Unlike SDAE based methods, our model needs not to corrupt the input content,
but instead to directly model the content’s generative process. Due to the full
Bayesian nature and non-linearity of deep neural networks, our model can learn
more effective and better latent representations of users and items than LDA-
based and SDAE-based methods and can capture the uncertainty of latent space
[11]. In addition, with both item content and social information, VDCMF can
effectively tackle the matrix sparsity problem. In our VDCMF, to infer latent fac-
tors of users and items, we propose a EM-algorithm to learn model parameters.
To sum up, our main contributions are: (1) We propose a novel recommendation
model called VDCMF for recommendation, which incorporates rich item con-
tent and user social information into MF. VDCMF can effectively learn latent
factors of users and items in matrix sparsity cases. (2) Due to the full Bayesian
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nature and non-linearity of deep neural networks, our VDCMF is able to cap-
ture more effective latent representations of users and items than state-of-the-art
methods and can capture the uncertainty of latent content representation. (3)
We derive an efficient parallel variational EM-style algorithm to infer latent fac-
tors of users and items. (4) Comprehensive experiments conducted on two large
real-world datasets show VDCMF can significantly outperform state-of-the-art
hybrid MF methods for CF.

2 Notations and Problem Definition

Let R ∈ {0, 1}N×M be a user-item matrix, where N and M are the number
of users and items, respectively. Rij = 1 denotes the implicit feedback from
user i over item j is observed and Rij = 0 otherwise. Let G = (U , E) denote
a trust network graph, where the vertex set U represents users and E repre-
sents the relations among them. Let T = {Tik}N×N denote the trust matrix
of a social network graph G. We also use Ni to represent user i’s direct friends
and UNi

as their latent representations. Let X = [x1,x2, . . . ,xM ] ∈ R
L×M

represent item content matrix, where L denotes the dimension of content vec-
tor xj , and xj be the content information of item j. For example, if item j is
a product or a music, the content xj can be bag-of-words of its tags. We use
U = [u1,u2, . . . ,uN ] ∈ R

D×N and V = [v1,v2, . . . ,vM ] ∈ R
D×M to denote

user and item latent matrices, respectively, where D denotes the dimension. ID
represents identity matrix with dimension D.

3 Variational Deep Collaborative Matrix Factorization

In this section, we propose a Variational Deep Collaborative Matrix
Factorization for social recommendation, the goal of which is to infer user latent
matrix U and item latent matrix V given item content matrix X, user trust
matrix T and user-item rating matrix R.

3.1 The Proposed Model

To incorporate users’ social information and item content information in to prob-
abilistic matrix, we consider a users’ feedback or rating on items are a balance
between item content, user’s taste and friend’s taste. For example, users’s rating
on movies is effected by the movie’s content information (e.g., the genre and the
actors) and his friend advices from their tastes. For items’ content information,
since it can be very complex and various, we do not know its real distribution.
However, we know any distribution can be generated by mapping simple Gaus-
sian through a sufficiently complicated function [7]. In our proposed model, we
consider item contents to be generated by their latent content vectors through
a generative network. The generative process of VDCMF is as follows:

1. For each user i, draw user latent vector ui ∼ N (0, λ−1
u )

∏
f∈Ni

N (uf , λ−1
f

T−1
if ID).



Variational Deep Collaborative Matrix Factorization 429

Fig. 1. Graphical model of VDCMF: generative network (left) and inference network
(right), where solid and dashed lines represent generative and inference process, shaded
nodes are observed variables.

2. For each item j:
(a) Draw item content latent vector zj ∼ N (0, ID).
(b) Draw item content vector pθ (xj |zj).
(c) Draw item latent offset kj ∼ N (0, λvID) and set the item latent vector

as vj = zj + kj .
3. For each user-item pair (i, j) in R, draw Rij :

Rij ∼ N (u�
i vj , c

−1
ij ). (1)

In the process, λv, λu and λg are the free parameters, respectively. Similar to
[21,24], cij in Eq. 1 serves as confident parameters for Rij and Sik, respectively:

cij =
{

ϕ1 if Rij = 1,
ϕ2 if Rij = 0,

(2)

where ϕ1 > ϕ2 > 0 is the free parameters. In our model, we follow [18,24] to
set ϕ1 = 1 and ϕ2 = 0.1. pθ (xj |zj) represents item content information and xj

is generated from latent content vector zi through a generative neural network
parameterized by θ. It should be noted that the specific form of the probability
pθ (xj |zj) depends on the type of the item content vector. For instance, if xj is
binary vector, pθ (xj |zj) can be a multivariate Bernoulli distribution Ber(Fθ (zj))
with Fθ (zj) being the highly no-linear function parameterized by θ.

According to the graphic model in Fig. 1, the joint probability of R,X,U ,V ,
Z and T can be represented as:

p(O,Z) =
∏N

i=1

∏M

j=1

∏N

k=1
p(Oijk,Zijk) =

∏N

i=1

∏M

j=1
∏N

k=1
p(zj)p(ui|UNi

,T )pθ (xj |zj)p(vj |zj)p(Rij |ui,vj), (3)

where O = {R,S,X} is the set of all observed variables, Z = {U ,V ,Z} is the
set of all latent variables needed to be inferred, and Oijk = {Rij , Tik,xj} and
Zijk = {ui,vj ,zj} for short.
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3.2 Inference

Previous work [21,24] has shown that using an expectation-maximization (EM)
algorithm enables recommendation methods that integrate them to obtain high-
quality latent vectors (in our case, U and V ). Inspired by these work, in this
section, we derive an EM algorithm called VDCMF from the view of Bayesian
point estimation. The marginal log likelihood can be given by:

log p(O) = log
∫

p(O,Z)dZ ≥
∫

q(Z) log
p(O,Z)
q(Z)

dZ

=
∫

q(Z) log p(O,Z) −
∫

q(Z) log q(Z) ≡ L(q), (4)

where we apply Jensen’s inequality, and q(Z) and F(q) are variational dis-
tribution and the evidence lower bound (ELBO), respectively. For variational
distribution q(Z), we consider variational distributions in it to be matrix-wise
independent:

q(Z) = q(U)q(V )q(Z) (5)

=
∏N

i=1
q(ui)

∏M

j=1
q(vj)

∏M

j=1
q(zj).

For Bayesian point estimation, we assume the variational distribution of ui is:

q(ui) =
∏D

d=1
δ(Uid − Ûid). (6)

q(vj) =
∏D

d=1
δ(Vjd − V̂jd). (7)

where {Ûid}Dd=1 are variational parameters and δ is a Dirac delta function. Vari-
ational distributions of vj and gk are defined similarly. When Uid are discrete,
the entropy of ui is:

H(ui) = −
∫

q(ui) log q(ui) =
∑D

d=1

∑

Uid

δ(Uid − Ûid) log δ(Uid − Ûid) = 0.

(8)

Similarly, H(vj) is 0 when the elements are discrete. Then the evidence lower
bound L(q) (Eq. 4) can be written as:

Lpoint(Û , V̂ ,θ,φ) = 〈log p(U |T ,UNi
)p(V |Z) (9)

p(X|Z)p(R|U ,V )〉q − KL(qφ(Z|X)||p(Z)),

where 〈·〉 is the statistical expectation with respect to the corresponding vari-
ational distribution. Û =

{
Ûid

}
and V̂ =

{
V̂jd

}
are variational parameters

corresponding to the variational distribution q(U) and q(V ), respectively.
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For latent variables Z, However, it is intractable to infer Z by using tradi-
tional mean-field approximation since we do not have any conjugate probability
distribution in our model which requires by traditional mean-field approaches.
To track this problem, we use amortized inference [6,8], it consider a shared
structure for every variational distributions, instead. Consequently, similar to
VAE [11], we also introduce a variational distribution qφ(Z|X) to approximate
the true posterior distribution p(Z|O). qφ(Z|X) is implemented by a inference
neural network parameterized by φ (see Fig. 1). Specifically, for zj we have:

q(zj) = qφ(zj |xj) = N (μj ,diag(δ2
j )), (10)

where the mean μj and variance δj are the outputs of the inference neural
network.

Directly maximizing the ELBO (Eq. 9) involves solving parameters Û , V̂ , θ
and φ, which is intractable. Thus, we derive an iterative variational-EM (VEM)
algorithm to maximize Lpoint(Û , V̂ ,θ,φ) , abbreviated Lpoint.

Variational E-step. We first keep θ and φ fixed, then optimize evidence lower
bound Lpoint with respect to Û and V̂ . We take the gradient of L with respect
to ui and vj and set it to zero. We will get the updating rules of ûi and v̂j :

ûi ← (V CiV
� + λuID + λfTi1IID)−1(λfUT �

i + V CiRi), (11)

v̂j ← (ÛCjÛ
� + λvID)−1(ÛCjRj + λv〈zj〉), (12)

where Ci = diag(ci1, ...ciM ), Ti = diag(Ti1, ...TiM ), Ri = [Ri1, ...RiM ]. IN is a N
dimensional column vector with all elements elements to 1. For item latent vector
vj , Cj and Rjare defined similarly. ûi = [Ûi1, ...ÛiD] and v̂j = [V̂j1, ...V̂jD]. For
zj , its expectation is 〈zj〉 = μj , which is the output of the inference network.

It can be observed that λv governs how much the latent item vector zj

affects item latent vector vj . For example, if λv = ∞, it indicate we direct use
latent item vector to represent item latent vector vj ; if λv = 0, it means we
do not embed any item content information into item latent vector. λf serves
as a balance parameter between social trust matrix and user-item matrix on
user latent vector ui. For example, if λf = ∞, it means we only use the social
network information to model user’s preference; if λf = 0, we only use user-item
matrix and item content information for prediction. So λv and λf are regarded
as collaborative parameters for item content, user-item matrix and social matrix.

Variational M-step. Keep Û and V̂ fixed, we optimize Lpoint w.r.t. φ and θ
(we only focus on terms containing φ and θ).

Lpoint = constant +
∑M

j=1
L(θ,φ;xj ,vj) = constant +

∑M

j=1
(13)

− λv

2
〈(vj − zj)�(vj − zj)〉q(Z)+〈log pθ (xj |zj)〉qφ (zj |xj)−KL(qφ(zj |xj)||p(zj)),

where M is the number of items and the constant term represents terms which
don’t contain θ and φ. For the expectation term 〈pθ (xj |zj)〉qφ (zj |xj), we can not
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solve it analytically. To handle this problem, we approximate it by the Monte
Carlo sampling as follows:

〈log pθ (xj |zj)〉qφ (zj |xj) =
1
L

∑L

l=1
pθ (xj |zl

j), (14)

where L is the size of samplings, and zl
j denotes the l-th sample, which is repa-

rameterized to zl
j = εlj 
 diag(δ2

j ) + μj . Here εlj is drawn from N (0, ID) and

 is an element-wise multiplication. By using this reparameterization trick and
Eq. 10, L(θ,φ;xj ,vj) in Eq. 13 can be estimated by:

L(θ,φ;xj ,vj) � L̃j(θ, φ) = −λv

2
(−2μ�

j v̂j + μ�
j μj

+ tr(diag(δ2
j ))) +

1
L

∑L

l=1
pθ (xj |zl

j) − KL(qφ(zj |xj)||p(zj)) + constant. (15)

We can construct an estimator of Lpoint(φ,θ;X,V ), based on minibatches:

Lpoint(θ,φ) � L̃P (θ,φ) =
M

P

∑P

j=1
L̃j(θ,φ). (16)

As discussed in [11], the number of samplings L per item j can be set to 1 as
long as the minibatch size P is large enough, e.g., P = 128. We can update θ
and φ by using the gradient ∇θ ,φ L̃P (θ,φ).

We iteratively update U ,V ,G,θ, and φ until it converges.

3.3 Prediction

After we get the approximate posteriors of ui and vj . We predict the missing
value Rij in R by using the learned latent features ui and vj :

R∗
ij = 〈Rij〉 = (〈zj〉 + 〈kj〉)�〈ui〉 = 〈vj〉�〈ui〉 (17)

For a new item that is not rated by any other users, the offset εj is zero, and we
can predict Rij by:

R∗
ij = 〈Rij〉 = 〈zj〉�〈ui〉 (18)

4 Experiments

4.1 Experimental Setup

Datasets. In order to evaluate performance of our model, we conduct experi-
ments on two real-world datasets from Lastfm1 (lastfm-2k) and Epinions2 (Epin-
ions) datasets:

1 http://www.lastfm.com.
2 http://www.Epinions.com.

http://www.lastfm.com
http://www.Epinions.com
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Lastfm. This dataset contains user-item, user-user, and user-tag-item relations.
We first transform this dataset as implicit feedback. For Lastfm dataset, we
consider the user-item feedback is 1 if the user has listened to the artist (item);
otherwise, it is 0. Lastfm only contains 0.27% observed feedbacks. We use items
bag-of-word tag representations as their items content information. We direct
use user social matrix as trust matrix.

Epinions. This dataset contains rating , user trust and review information. We
transform this dataset as implicit feedback. For those >3 ratings, we transform
it as ‘1’; otherwise, it is 0. We use item’s review as its content information.
Epinions contains 0.08% observed feedbacks.

Baselines. For fair comparisons, like that in our VDCMF, the baselines we
used also incorporate user social information or item content information into
matrix factorization. (1) PMF. This model [17] is a famous MF method, and
only uses user-item feedback matrix. (2) SoRec. This model [15] jointly decom-
poses user-user social matrix and user-item feedback matrix to learn user and
item latent representations. (3) Collaborative topic regression (CTR). This
model [21] utilizes topic model and matrix factorization to learn latent repre-
sentations of users and items. (4) Collaborative deep learning (CDL). This
model [24] utilizes stack denoising autoencoder to learn latent items’ content
representations, and incorporates them into probabilistic matrix factorization.
(5) CTR-SMF. This model [18] incorporates topic modeling and probabilistic
MF of social networks. (6) PoissonMF-CS. This model [19], jointly models use
social trust, item content and users preference using Poisson matrix factorization
framework. It is a state-of-the-art MF method for Top-N recommendation on the
Lastfm dataset. (7)Neural Matrix Factorization (NeuMF). This model is
a state-of-the-art collaborative filtering method, which utilizes neural network to
model the interaction between user model [9] is a state-of-the-art collaborative
filtering method, which utilizes neural network to model the interaction between
users and items.

Settings. For fair comparisons, We first set the parameters for PMF, SoRec,
CTR, CTR-SMF, CDL, NeuMF via five-fold cross validation. For our model,
we set λu = 0.1, D = 25 for Lastfm and D = 50 for Epinions. Without special
mention, we set λv = 0.1 and λf = 0.1. We will further study the impact of the
key hyper-parameters for the recommendation performance.

Evaluation Metrics. The metrics we used are Recall@K, NDCG@K and
MAP@K [5] which are common metrics for recommendation.

4.2 Experimental Results and Discussions

Overall Performance. To evaluate our model in top-K recommendation task,
we evaluate our model and baselines in two datasets in terms of Recall@20,
Recall@50, ND CG@20 and MAP@20. Table 1 shows the performance of our
VDCMF and the baselines using the two datasets. According to Table 1, we
have following findings: (a) VDCMF outperforms the baselines in terms of all
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Table 1. Recommendation performance of VDCMF and baselines. The best baseline
method is highlighted with underline.

Lastfm dataset Epinions dataset

Recall@20 Recall@50 NDCG@20 MAP@20 Recall@20 Recall@50 NDCG@20 MAP@20

PMF 0.0923 0.1328 0.0703 0.1083 0.4012 0.5121 0.3019 0.3365

SoRec 0.1088 0.1524 0.0721 0.1128 0.4341 0.5547 0.3254 0.3621

CTR 0.1192 0.1624 0.0799 0.1334 0.5024 0.6125 0.3786 0.4197

CTR-SMF 0.1232 0.1832 0.0823 0.1386 0.5213 0.6217 0.3942 0.4437

CDL 0.1346 0.2287 0.0928 0.1553 0.5978 0.6597 0.4502 0.4792

NeuMF 0.1517 0.2584 0.1036 0.1678 0.6043 0.6732 0.4611 0.4987

PoissonMF-CS 0.1482 0.2730 0.1089 0.1621 0.5876 0.6533 0.4628 0.4876

VDCMF (ours) 0.1613 0.3006 0.1114 0.1695 0.6212 0.6875 0.4782 0.5123

Fig. 2. Evaluation of Top-K item recommendation where K ranges from 50 to 250 on
Lastfm

matrices on Lastfm and Epinions, which demonstrates the effectiveness of our
method of inferring the latent factors of users and items, and leading to better
recommendation performance. (b) For more sparse dataset, Epinions, VDCMF
also achieves the best performance, which demonstrates our model can effec-
tively handle matrix sparsity problem. We attribute this improvement to the
incorporated item content and social trust information. (c) We can see meth-
ods which both utilizes content and social information (VDCMF, NeuMF and
PoissonMF-CS) outperform others (CDL,CTR, CTR-SMF, SoRec and PMF),
which demonstrates incorporating content and social information can effectively
alleviate matrix sparse problem. (d) Our VDCMF outperforms the strong base-
line PoissonMF-CS, though they are both Bayesian generative model. The reason
VDCMF is that our VDCMF incorporates neural network into Bayesian gener-
ative model, which makes it have powerful non-linearity to model item content’s
latent representation. To further evaluate our VDCMF robustness, we evalu-
ate the empirical performance of large recommendation list for our VDCMF on
Lastfm and report results in Fig. 2. We can find our VDCMF significantly and
consistently outperforms other baselines. This, again, demonstrates the effective-
ness of our model. All of these findings demonstrates that our VDCMF is robust
and it is able to achieve significant improvements of top-k recommendation over
the state-of-the-art.
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Fig. 3. The effect of λv and λf of the proposed VDCMF with Recall@50 on Lastfm
and Epinions.

Impact of Parameters. In this section, we study the effect of the key hyper-
parameters of the proposed model. We first study the parameters of λf and λv.
We use Recall@50 as an example, the plot the contours on Lastfm and Epin-
ions datasets. Figure 3(a) and (b) show the contour of Recall@50. As we can
see, VDCMF achieves the best recommendation performance when λv = 0.1 and
λf = 0.1 on Lastfm, and λv = 1 and λf = 0.1 on Epinions. From Fig. 3(a) and
(b), we can find our model is sensitive to λv and λf . The reason is that λv can
control how much item content information is incorporated into item latent vec-
tor, λq can control how much social information is incorporated into user latent
vector. Figure 3(a) and (b) show that we can balance the content information
and social information by varying λv and λq, leading to better recommendation
performance.

5 Conclusion

In this paper, we studied the problem of inferring effective latent factors of users
and items for social recommendation. We have proposed a novel Variational Deep
Collaborative Matrix Factorization algorithm, VDCMF, which incorporates rich
item content and user social trust information into a full Bayesian deep gen-
erative framework. Due to the full Bayesian nature and non-linearity of deep
neural networks, our proposed model is able to learn more effective latent rep-
resentations of users and items than those generated by state-of-the-art neural
networks based recommendation algorithms. To effectively infer latent factors
of users and items, we derived an efficient expectation-maximization algorithm.
We have conducted experiments on two publicly available datasets. We evalu-
ated the performance of our VDCMF and baselines methods based on Recall,
NDCG and MAP metrics. Experimental results demonstrate that our VDCMF
can effectively infer latent factors of users and items.
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{jianfei.zhang,shengrui.wang,rongbo.chen}@usherbrooke.ca
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Abstract. Remaining useful life (RUL) prediction has been a topic
of practical interest in many fields involving preventive intervention,
including manufacturing, medicine and healthcare. While most of the
conventional approaches suffer from censored failures arising and sta-
tistically circumscribed assumptions, few attempts have been made to
predict RUL by developing a survival learning machine that explores
the underlying relationship between time-varying prognostic variables
and failure-free survival probability. This requires a purely data-driven
prediction approach, devoid of any a survival model and all statistical
assumptions. To this end, we propose a time-dependent survival neural
network that additively estimates a latent failure risk and performs mul-
tiple binary classifications to generate prognostics of RUL-specific prob-
ability. We train the neural network by a new survival learning criterion
that minimizes the censoring Kullback-Leibler divergence and guarantees
monotonicity of the resulting probability. Experiments on four datasets
demonstrate the great promise of our approach in real applications.

Keywords: RUL prediction · Neural network · Survival learning ·
Failure risk · Time-varying data

1 Introduction

This paper is about RUL predictive analytics. Let’s think about all the in-
service machines we use daily, and organisms under pharmaceutical care, from
an engine-propelled vehicle on the way to work or a lift going up and down,
to an in-patient in the early stages of breast cancer. Imagine that one of these
c© Springer Nature Switzerland AG 2019
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should fail (e.g., break down, worsen, die) every day from now on. What impact
would that have? The truth is that some failures are just an inconvenience or
a financial loss, while others could mean life or death. Therefore, preventive
intervention (e.g., predictive maintenance and health care) to defer failures has
recently been of great practical interest [23]. But how can we find the right
moment for intervention? Providing an answer to this question is the aim of
RUL prediction, which seeks to build models for accurate prognostics of RUL
in engines, patients and other life entities in machine manufacturing, medicine,
epidemiology, economics, etc.

Predicting RUL with great accuracy in the distant future is very challenging
and indeed almost impossible in most practical situations. Rather, we turn our
attention to the easier and more meaningful prognostic of how long and how
probably to remain failure-free (aka survival before failure). RUL prediction here
thus refers exclusively to the prognostic of RUL-specific probability, i.e., failure-
free survival probability at a specific time. By failure, we refer in particular
to a non-recurring, single, adverse incident. With a prediction model in hand,
decision makers can be provided with information about when a mechanical
fault that can lead to whole system failure might take place. For instance, the
probability of fault-free steering in a 15-year-old vehicle engine up to 50,000 km
is 80% but for up to 80,000 km the probability drops to 10%; this knowledge
allows for predictive maintenance (before 50,000 km) which may prolong engine
usage and holds out the promise of considerable cost savings.

In this paper, we propose a time-dependent survival neural network (TSNN)
which additively estimates a latent failure risk and performs multiple classifica-
tions to generate prognostics of RUL-specific probability. We provide a new cen-
soring Kullback-Leibler divergence for evaluating the dissimilarity between the
binary classification probabilities and the actual survival process. A generalized
survival learning approach is developed to minimize such divergence, running
under a constraint that guarantees monotonicity of the resulting probability.
Experimental results on four real-world datasets from the fields of engineering,
medicine and healthcare demonstrate the promise of TSNN in real applications.
The paper makes the following primary contributions: (1) It develops a purely
data-driven prediction approach free of any existing survival model and all statis-
tical assumptions. (2) It transforms prediction into multiple classifications that
potentially relate to each other. (3) It makes full use of time-varying prognostic
variables by exploring latent failure risk in an additive manner. (4) It provides
a learning criterion that allows automatic exploitation of data with censoring.

2 Motivation

To build a model for RUL prediction, training data should allow us to capture
information regarding prognostic variables leading to failure. In the observational
world, however, we need to know whether failure, dropout or study cutoff comes
first. Thus, the outcome of interest in data is not only whether or not a failure
occurred, but also when that failure occurred. Traditional regression methods
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are not able to include both the failure and time aspects as the outcome in the
model, though they are used to perform a time prediction on most time series
data to answer the questions like “How many days are left before failure?”. In
contrast, a considerable number of survival models have long been developed to
utilize the partial information on each entity with censored failure and provide
unbiased survival estimates. They incorporate data from multiple time points
across entities for prediction of failure probability over time and thus can answer
the question like “How does the risk of failure change over time?”.

These statements naturally lead one to consider using survival models for pre-
dicting RUL-specific probability. However, the three prominent survival model-
ing approaches developed primarily for retrospective cohort studies are character-
ized by their inherent disadvantages [20]. (1) Models utilizing the non-parametric
approach, an analysis intended to generate unbiased descriptive statistics, cannot
generally be used to assess the effect of multiple prognostic variables on failure.
(2) The parametric approach suffers from an even more critical weakness, rely-
ing as it does on the assumption that the underlying failure distribution (i.e., how
the probability of failure changes over time) has been correctly specified. (3) The
semi-parametric approach requires an assumption on how the variables influence
the risk of failure, which is often violated in practical use.

The increasing availability of complex lifetime data with time-varying prog-
nostic variables poses more challenges to these approaches and is stimulating
numerous research efforts that use data mining and machine learning methods
in conjunction with survival models. Typical examples include multi-task learn-
ing [9,10,13,19], active learning [18], neural networks [4,7], transfer learning
[11], Bayesian inference [16] and feature engineering [12,24] that extended to the
semi-parametric Cox proportional-hazards model [3], as well as a random forest
technique [6] that employed a non-parametric Nelson-Aalen estimator to predict
the time to censored failures for establishing terminal nodes of forest. These
approaches still suffer from the implausibility of the survival study hypothesis
and prior knowledge and therefore cannot be selected as prediction models for
our desired output. For example, although the feed-forward network proposed
in [4] preserved most of the advantages of a typical Cox proportional-hazards
hypothesis, it was still not the optimal way to model the baseline variations [7].
In addition, these time-to-failure prediction methods are not specifically designed
to handle time-varying prognostic variables. The common approach employed is
to predict the survival probability at a certain time (i.e., RUL-specific probability
in this paper) using only the values of variables at that moment. The historical
values are discarded in prediction but have been proven to latently affect the
survival probability [15,25,26]. These arguments in turn demonstrate a need for
a prediction model that releases priori statistical assumptions, explores latent
risk and makes full use of time-varying prognostic variables.

3 Proposed Approach

Imagine a binary classification performed to predict failure of a machine in a
given t-day time window; i.e., to answer the question “Will a machine remain
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failure-free over the next t days?”. This allows us to transform the original RUL
prediction problem into a series of binary classification problems, as long as each
has an RUL-specific output probability that the actual RUL, say T , is not earlier
than t, denoted Pr(T > t). In this section, we provide a neural network that
allows data to drive the survival learning inference, i.e., devoid of any a survival
model and all statistical assumptions, to perform the binary classifications.

3.1 Time-Dependent Survival Neural Network

Survival Neural Network Classifier Architecture. We concentrate our
attention on a one-hidden-layer neural network, i.e., three-layer networks with
V input neurons, K output neurons and H hidden neurons, as shown in Fig. 1.
The input layer’s role is solely to distribute the inputs to the hidden layer, where
the neuron v = 1, 2, . . . , V takes value xv and the hidden neuron h = 1, 2, . . . ,H
computes a sum of all the inputs weighted by whide

h ∈ R
V , adds a bias bhideh , and

applies an activation function to obtain its output. The outputs of the hidden
layer subsequently become the inputs of the output layer, in which the output
neuron k = 1, 2, . . . , K computes a sum of these inputs weighted by wout

k ∈ R
H ,

adds a bias boutk , and then applies the activation function to obtain Sk(x).

Fig. 1. A survival neural network

Survival neural network, in principle, is a combination of multiple classifiers,
each performing a binary classification on every entity that is or is not still
failure-free. Hence, we interpret Sk(x) ∈ (0, 1) as the classification probability
that the entity with variables x remains failure-free by τk. In doing so, with
the K classification outputs over disjoint time snapshots τ1 < τ2 < · · · < τK in
hand, we are able to estimate an RUL-specific probability curve which depicts
how long and how probably the entity will remain failure-free. Hence, given the
weights Whide ∈ R

H×V , Wout ∈ R
K×H and the biases bhide ∈ R

H , bout ∈ R
K

for computing the hidden and output layers, respectively, we scale the out-
puts S(x) ∈ R

K to the range of the logistic sigmoid function that is applied
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component-wise to the vector, i.e.,

S(x) = sigmoid
(
Wout · sigmoid (

Whide · x + bhide
)

+ bout
)
. (1)

For the time-varying variables, the output is yielded with input values observed
at corresponding time snapshots, that is, Sk(x) = S(x(τk)), where x(τk) consists
of V observational values at τk. Nevertheless, this approach does not take the
historical variable values into account in estimating the failure risk.

TSNN with Latent Failure Risk Estimation. Note that the exponential
component in Eq. 1 can serve as the failure risk, like the conventional cumulative
risk in the Cox [3] and accelerated failure time (AFT) models [21]. Obviously,
the risk is not dependent on any historical values at all. To address this issue,
we propose the form γ(∗, t) to stand for the decay ratio of the failure risk. By
such decay, we can model the amount of the latent risk produced by the values
at time ∗ remaining at time t(≥ ∗). This can be an exponential function of time
in the form γ(∗, t) = exp{G(∗ − t)}. Simply, we make the decay coefficient G
take a positive value and thus 0 < γ ≤ 1. Note that such a positive decay ratio
indicates that the risk will shrink over time but not vanish. Given all historical
values observed at time points j ∈ R(t) before t, we estimate the failure risk in
an additive manner and compute the TSNN output at τk as follows:

Sk(x) =

⎛

⎝1 +
1

|R(τk)|
∑

j∈R(τk)

exp {G(j − t)} exp
{−Woutφ(x(j)) − bout

}
⎞

⎠

−1

φ(x(j)) =

⎛

⎝1 +
1

|R(j)|
∑

u∈R(j)

exp {G(u − t)} exp
{−Whidex(u) − bhide

}
⎞

⎠

−1

.

Our approach can be thought of as a generalization of multi-task classifi-
cation, which enables flexible modeling of RUL-specific probability in parallel.
Each task executes on all training entities but has an individual variable input.
As was discussed in [10], such multi-task transformation will further reduce the
prediction error on each task and hence provide a more accurate estimate than
models which aim at modeling the probabilities at once.

3.2 RUL-Specific Probability Evaluation

Survival Process. Given Ntr training entities, the actual survival process
for entity i can be modulated as εi(τ1) εi(τ2) · · · εi(τK). Each survival sta-
tus εi(τk) indicates whether or not the failure occurs by time τk, taking a
value of 1 up to τk, and 0 thereafter, and -1 for unknown cases. Once εi(t)
becomes “0” it will not turnover to“1”, there are thus K + 1 possible legal
sequences of the form (1, 1, . . . , 0, 0, . . .), including the sequences of all “1”s
and all“0”s. Supposing Kε

i = {k : εi(τk) = εi}, the observed statuses are
greater than or equal to unknown statues if the failure is (right-)censored, i.e.,
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εi(τk) ≥ εi(τk′), ∀k ∈ K1
i and ∀k′ ∈ K−1

i . For an uncensored case, the sur-
vival statuses during lifetime are strictly greater than those after failure, i.e.,
εi(τk) > εi(τk′), ∀k ∈ K1

i and ∀k′ ∈ K0
i .

Censoring Kullback-Leibler Divergence. The TSNN cannot be an effec-
tive prediction model unless it achieves the objective that the predicted RUL-
specific probabilities approach the actual survival process. In order to qualify
such approachability, we define the censoring Kullback-Leibler (KL) divergence,
an alternative to the relative error [17], between the distributions of the RUL-
specific probability Sk ∈ (0, 1) and the survival status ε(τk) ∈ {0, 1}, as follows:

Di(k) = εi(τk) ln
εi(τk)
Sk(xi)

+ (1 − εi(τk)) ln
1 − εi(τk)
1 − Sk(xi)

.

The optimal weights make Sk as close as possible to 1 if i remains failure-free by
τk and to 0 otherwise, while outputs of 1 and 0 are definitely true and definitely
false predictions, respectively. Our learning criterion is then to minimize Di(k)
over time snapshots K{1,0}

i = K0
i ∪ K1

i at which survival statuses are known, for
all Ntr training entities.

3.3 TSNN Learning

It is worth mentioning the known fact that Sk descends from 1 to 0, as time
goes by, from the beginning to the end of life. Hence, the minimization should
be constrained by the monotonicity:

Δi(k, k + 1) = Sk(xi) − Sk+1(xi) > 0,∀k = 1, 2 . . . , K − 1,∀i = 1, 2, . . . , Ntr.

The proven penalty method converts the constrained optimization problem into a
series of unconstrained optimization problems. Accordingly, we utilize the static
penalty [14] that along with its parameter λ incurred for violating the inequality
constraints and minimize the average error computed by

E =
1

Ntr

Ntr∑

i=1

⎛

⎜
⎝

∣
∣
∣K{1,0}

i

∣
∣
∣
−1 ∑

k∈K{1,0}
i

Di(k) +
λ

K − 1

K−1∑

k=1

(
min

{
0,Δi(k, k + 1)

})2

⎞

⎟
⎠ .

We train the neural network using the forward-only Levenberg-Marquardt algo-
rithm presented in [22], which inherits the speed advantage of the Gauss-Newton
algorithm and the stability of the steepest descent method.

4 Experiments

4.1 Data and Pre-processing

Four lifetime datasets were drawn from the prognostics data repository provided
by the PCoE of NASA Ames, the Surveillance, Epidemiology, and End Results



Time-Dependent Survival Neural Network for RUL Prediction 447

(SEER) statistics database, and Canadian Community Health Survey (CCHS)
statistical surveys. In the Engine dataset, 388 engines’ cycles were considered
unobserved, for a 27.4% censoring rate. The objective was to predict the number
of operational cycles remaining until pressure compressor and fan degradation.
The randomized Battery usage dataset employed the first 20 cells, each with
42 galvanostatic voltage curves. Failure was censored for 45.8% of batteries and
10 prognostic variables were extracted from the time series of temperature and
current (mA) every 30 s. For the breast Cancer dataset, RULs were computed by
subtracting the date of diagnosis from the date of last contact (the study cutoff).
The healthy Aging data were acquired directly between Dec 2008 and Nov 2009
from respondents in a survey, which focused on the health of Canadians aged 45
and over by examining the various factors that impact healthy aging. A total of
3,390 valid interviews covering the population living in the ten provinces were
used. Table 1 summarizes the statistics, including data size N , dimensionality V ,
censoring rate C, missing-value percentage M and failure of interest. Categorical
variables were transformed into numerical values by means of the probabilistic
frequency estimator presented in [2]. Afterwards, missing values were filled in
via a linear regression provided by [8]. In order to reduce data redundancy and
improve data integrity, all values were normalized.

Table 1. Statistics of the four lifetime datasets

Dataset (source) N V C M Failure of interest

Engine (NASA) 1,416 21 27.4% 11.3% Compressor and fan degradation

Battery (NASA) 842 10 45.8% 5.9% 30% fade in rated battery capacity

Cancer (SEER) 3,390 18 19.3% 15.7% Breast cancer caused death

Aging (CCHS) 7,611 35 34.5% 26.2% Retirement and disability

4.2 Competitors

We compared TSNN against several state-of-the-art methods. CoxNN [4]
replaces the linear exponent of the Cox hazard by a nonlinear artificial neu-
ral networks output; TD-Cox [5] extends the Cox model to time-varying vari-
ables; AFT [21] assumes a Weibull RUL distribution in our experiments; EN-BJ
[1] extends the least squares estimator to the semi-parametric linear regression
model in which the error distribution is completely unspecified; MTLR [13] mod-
els RUL distribution by combining multi-task logistic regression in a dependent
manner, with the regularization parameter chosen via an additional 10-fold cross
validation (10CV); RSF [6] estimates conditional cumulative failure hazard by
aggregating tree-based Nelson-Aalen estimators.

We also studied TSNN with simplified configurations, yielding three models
as follows. SNN does not estimate the latent risk. Rather, it predicts the output
probabilities using Eq. 1 with the time-varying input x(t); KM-TSNN uses a
Kaplan-Meier (KM) estimator to fill in the RULs for censored cases, according
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to the method introduced in [17]; KM-SNN uses a KM estimator to fill in the
RULs for censored cases in SNN. The parameters for competitors were those
used in the original papers. For TSNN, KM-TSNN, SNN and KM-SNN, we set
the hidden layer to H = 4 neurons. An output layer with K = 20 was used in
analyses of the Engine and Battery datasets, and K = 12 in the Cancer and
Aging datasets. The penalty parameter λ was chosen through an independent
10CV on the training data. The decay coefficient G = 1.5 was used in TSNN
and KM-TSNN.

4.3 Evaluation Metrics

Performance on the Nte test entities was evaluated in terms of three independent
metrics: the failure AUC (FAUC), the concordance index (C-index) and the
censoring Brier score (CBS), redefined as follows (1 is the indicator function)

FAUC =

∑
i:εi(τK)=0

∑
j:εj(τK)=1 1 {SK(xi) < SK(xj)}

|{i : εi(τK) = 0}| × |{j : εj(τK) = 1}|

C-index =

∑
i:εi(τK)=0

∑
j:Ti<Tj

1
{

Smin{K0
i }(xi) < Smin{K0

i }(xj)
}

|{i : εi(τK) = 0}| × |{j : Ti < Tj}|
CBS =

1
Nte

∑Nte

i=1

(
1 − εi(τK) − SK(xi)

)2
.

FAUC provides a probability measure of classification ability at a pre-specified
time snapshot (e.g., at τK in our case). It qualifies the model’s ability to address
the issue “Is i likely to remain failure-free by time t?” C-index serves as a gen-
eralization of the FAUC, giving an estimate of how accurately to answer the
question “Which of i and j is more likely to remain failure-free?” CBS measures
an ensemble prediction error across the test data, i.e., the power of a model to
address the issue “How accurate is the prediction that i will remain failure-free?”.

4.4 Results and Discussion

From the 10CV results on the test data, shown in Table 2, it is evident that TSNN
outperforms all the other models but FAUC yielded by MTLR on the Cancer
dataset. The alternatives SNN and KM-TSNN perform second-best, with the
sole exception of FAUC on the Cancer dataset (second-best results yielded by
TD-Cox) and FAUC on the Aging dataset (by EN-BJ). The superior perfor-
mance of TSNN relative to KM-TSNN, and of SNN relative to KM-SNN, reveal
that our survival learning approach to minimize the censoring KL divergence
can effectively cope with censored data in comparison to the conventional sur-
vival estimator. Comparing TSNN with SNN and KM-TSNN with KM-SNN,
we find that TSNN and KM-TSNN perform much better. This demonstrates
the significance and effectiveness of estimating the latent failure risk. CoxNN
yields even lower accuracies in comparison to TD-Cox, demonstrating that use
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of the risk nonlinearity property alone does not enhance the Cox model [7].
Note that TSNN and SNN take into account potential relationships between
the classifications and therefore achieve a significant performance gain over the
regression method MTLR which performs each prediction task independently
[13]. Note also the extremely low CBS achieved by TSNN on the four datasets
indicates high accuracy in predicting the absolute RUL-specific probability and
high confidence in forecasting failure.

Table 2. Comparison of the 10CV FAUC, C-index and CBS results on the test data, in
the form of mean (standard deviation). The best results are in bold and the second-best
performances are underlined.

FAUC C-index CBS FAUC C-index CBS

Engine Battery

TSNN .744(.017) .753(.028) .163(.018) .810(.022) .761(.014) .212(.029)

SNN .719(.038) .724(.026) .185(.023) .769(.015) .710(.029) .229(.038)

KM-TSNN .731(.024) .678(.040) .248(.011) .695(.032) .733(.015) .261(.034)

KM-SNN .676(.022) .639(.029) .283(.016) .674(.021) .656(.019) .255(.018)

CoxNN .686(.036) .613(.028) .404(.025) .664(.049) .718(.013) .332(.026)

TD-Cox .740(.047) .587(.029) .276(.018) .754(.028) .686(.017) .301(.048)

AFT .682(.014) .636(.053) .241(.042) .625(.030) .674(.020) .274(.022)

EN-BJ .736(.029) .688(.015) .339(.012) .718(.024) .654(.034) .237(.013)

MTLR .708(.051) .683(.023) .215(.043) .726(.020) .670(.015) .364(.019)

RSF .695(.019) .675(.031) .268(.031) .578(.029) .520(.041) .286(.031)

Cancer Aging

TSNN .794(.013) .782(.029) .186(.017) .787(.028) .765(.031) .151(.019)

SNN .785(.034) .756(.017) .217(.008) .706(.020) .722(.018) .221(.015)

KM-TSNN .694(.041) .681(.024) .226(.047) .730(.016) .736(.022) .166(.027)

KM-SNN .663(.032) .639(.018) .322(.014) .707(.010) .645(.029) .224(.011)

CoxNN .733(.038) .674(.019) .235(.034) .721(.022) .717(.016) .301(.032)

TD-Cox .753(.019) .642(.025) .297(.018) .652(.045) .628(.038) .359(.007)

AFT .689(.034) .564(.028) .263(.036) .707(.037) .660(.024) .305(.026)

EN-BJ .767(.023) .745(.033) .279(.014) .742(.044) .720(.022) .235(.018)

MTLR .818(.022) .739(.025) .243(.017) .716(.017) .734(.026) .324(.030)

RSF .732(.017) .673(.037) .272(.053) .722(.035) .684(.025) .336(.027)

The censoring KL divergence based survival learning may enable TSNN (and
SNN) to recommend the right moment for preventive intervention. For this inves-
tigation, we performed a case study on the Engine dataset. The engines that
experienced failure were divided into 6 groups according to their times to fail-
ure. In each sub-figure of Fig. 2, we plotted an RUL curve according to the
average RUL-specific probability predicted by each model on the correspond-
ing group of engine failures. It can be seen from the respective gray areas that
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TSNN (plotted by the salmon dashed curve) yields a significantly lower average
probability over all data (i.e., all engine failures) in comparison to other mod-
els, mainly because latent risk estimation can help in amending the relationship
between latent risk and RUL-specific probability. This means that, using our
TSNN, the equipment crew could be issued a warning much earlier than in the
other models, and offered advice on maintenance intervention in time to stave
off potential failure.

Fig. 2. Change in predicted RUL-specific probability curve for engines. The 6 sub-
figures are plotted for the engines that failed at intervals of 2 month (see each gray
rectangle), from the 1st month to the 12th month. Every curve in each sub-figure is
the average predicted probability of the engines.

In order to provide a deeper insight into the functionality of TSNN, we set a
varying K value of 1, 2, 3, 4, 6, 8, 12 and 24 when it runs on the Aging dataset
(in 2-year study period), with the output time interval becoming 24, 12, 8, 6, 4,
3, 2 and 1 month(s), respectively. (Please keep in mind that K is a user-defined
value and the time interval is not required to be equal.) The FAUC, C-index and
CBS results shown in Fig. 3 change less than 8%, 11% and 9%, respectively; this
demonstrates that users can count on TSNN as reliable, as it won’t fluctuate
enormously with change in the output layer of neural networks.

Figure 4 shows the average results of TSNN with a varying decay coefficient
G, which might lead to an inaccurate risk estimate and therefore a poor predic-
tive ability when it becomes extremely large or small. It can be seen clearly that
TSNN achieves high FAUC and C-index results, and maintains a low CBS when
it takes a value in the range [1,2].
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Fig. 3. Change in TSNN performance on the aging dataset with varying K

Fig. 4. Change in TSNN performance on the aging dataset with varying G

5 Conclusions

In this paper, we proposed a data-driven TSNN model for RUL prediction. TSNN
performs an additive latent failure risk estimation and multiple binary classifi-
cations for predicting RUL-specific probabilities. The new survival learning app-
roach optimizes a neural network by minimizing the censoring KL divergence
between the resulting probabilities and the actual survival process. In addi-
tion, the learning criterion constrains the RUL-specific probability to decrease
as time elapses. Experimental results on four lifetime datasets confirm that our
model outperforms several state-of-the-art models and is therefore a good candi-
date for developing a decision-making assistance system to help with preventive
intervention.
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Abstract. Mitosis count is a critical predictor for invasive breast cancer grading
using the Nottingham grading system. Nowadays mitotic count is mainly per-
formed on high-power fields by pathologists manually under a microscope
which is a highly tedious, time-consuming and subjective task. Therefore, it is
necessary to develop automated mitosis detection methods that can save a large
amount of time for pathologists and enhance the reliability of pathological
examination. This paper proposes a powerful and effective novel framework
named ACNet to count mitosis by aggregating auxiliary handcrafted features
associated with tissue texture into CNN and jointly training neural network in an
end-to-end way. Completed Local Binary Patterns (CLBP) features, Scale
Invariant Feature Transform (SIFT) features and edge features are extracted and
used in the classification task. In the process of network training, we expand the
original training set by utilizing hard example mining, making our network
focus on classification of the most difficult cases. We evaluate our ACNet by
conducting experiments on the public MITOSIS dataset from MICCAI TUPAC
2016 competition and obtain state-of-the-art results.

Keywords: Mitosis detection � Breast histopathology � CLBP � SIFT � Edge

1 Introduction

Digital pathology is one of the important and challenging research areas in modern
medicine. Pathological examination plays a crucial role in the diagnosis process.
Histopathological grading of breast cancer is a quantitative and qualitative assessment
which provides prior knowledge of the patient’s prognosis and helps to develop further
treatment plans. According to the Nottingham Grading System [1], there are three
morphological features for the grading of breast cancer on Hematoxylin and Eosin
(H&E) stained slides, including tubular differentiation, nuclear atypia and mitotic count.
Among them, mitotic count is a critical predictor for breast cancer diagnosis [2].
Nowadays mitotic count is mainly performed on high-power fields (HPFs) by pathol-
ogists manually under a microscope. It is a very tedious, time-consuming and subjective
task due to the large number of cells in the slides and great difference in the appearance
of mitotic figures [3]. Therefore, it is important to develop a method for automatically
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detecting mitosis, which can save a lot of time for pathologists, and also reduce the
subjectivity of diagnosis and improve the reliability of pathological examination.

However, there are many challenges in automatically detecting mitotic figures from
H&E stained slides for the following reasons. First, numerous structures of various
shapes exist in mitotic figures. The development of mitotic cells can be divided into
four main phases: prophase, metaphase, anaphase and telophase (see Fig. 1(a)). During
the four phases, the shape of nucleus appears differently. Second, there are some other
cell types (like apoptotic cells, lymphocytes) whose appearance is very similar to
mitotic cells, resulting in a lot of false positives in the detection process (see Fig. 1(b)
(c)). In addition, mitotic cells are considerably less than non-mitotic cells. The low
probability of their occurrence makes the detection more challenging.

In recent years, some automatic methods have been proposed to detect mitosis in
breast histological images. The existing approaches are generally divided into two
types. Early studies usually employed handcrafted features which capture particular
characteristics of mitotic cells for automatic detection [4, 6, 10, 18, 22]. The hand-
crafted features usually contain morphological (such as shape and nucleus contour),
statistical and textural characteristics of mitosis. Some of methods combine two or
more of these features to improve detection accuracy. Although these handcrafted
features cannot describe the appearance of mitosis well enough as a large variation of
mitotic cells, they still guide us to detect mitotic cells to some extent. The other is based
on the abstract features automatically learned from deep convolutional neural network
[9, 12, 13, 23, 24]. Handcrafted features correspond to what learned from the lower
layers of CNN while features extracted from higher layers of CNN are abstract and
comprehensive [17]. Both handcrafted and abstract features are important for mitosis
detection. One drawback to CNN-based detectors is that although the convolution and
pooling layers produce high-level semantic activation maps, they also obscure the
boundaries between adjacent instances. An intuitive solution is to utilize additional

Fig. 1. Some examples of mitoses and false positives. It can be seen that they are very similar in
appearance.
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low-level apparent features (such as edges) to address location defects by providing
detailed appearance information to detectors. However, aggregating handcrafted fea-
tures which can boost classification task into deep convolutional neural network and
jointly training the network with extra channel features in an end-to-end way are
seldom studied in mitosis detection.

Motivated by previous work which integrated extra features into deep CNN in
generic object detection [14–16], in this paper, we propose an effective novel frame-
work named ACNet—aggregated channels network for automated mitosis detection.
Our method is to concatenate auxiliary feature associated with tissue texture to original
stained normalized image patch in breast histopathology. We choose Completed Local
Binary Patterns (CLBP) [19], Scale Invariant Feature Transform (SIFT) [21] and edge
which are the most favorable textural features to better discriminate mitosis and other
objects. The advantages of these features can be attributed to simple computation as
well as specific statistical patterns.

What’s more, class-imbalance is also a crucial problem affecting detection effect.
The number of non-mitotic cells and the number of true mitosis on a Hematoxylin and
Eosin (H&E) stained slide can reach more than 1000:1 in the mitosis detection task,
which introduces unbalanced samples problem during neural network training. To
tackle this problem, during the training stage, we expand our original training set with
additional hard negative samples and hard positive samples predicted by a preliminary
network in order to make our network to focus on classification of the most difficult
cases. We evaluate our ACNet by conducting experiments on the public MITOSIS
dataset from MICCAI TUPAC 2016 competition and obtain the highest F1-score
exceeding ever records.

2 Related Work

Early studies usually employed handcrafted characteristics in specific fields to describe
the morphological, statistical or textural features of mitosis [4, 6, 10, 18, 22]. They are
designed on the basis of pathologists’ knowledge of mitosis. Most proposed methods
follow a two-step object detection method [11]. The first step is to extract the candidate
objects from the original image and then usually classify it as either mitoses or non-
mitoses by support vector machines (SVM), random forest and Adaboost in the second
step. For instance, Sommer et al. [4] proposed a pixel-wise classifier including com-
prehensive analysis of texture and shape features for mitosis detection in breast his-
tological images. Tashk et al. [18] used completed local binary pattern (CLBP) to
extract texture features robust to rotation and color variation. Irshad et al. [22] extracted
texture, SIFT features and modified biologically inspired model of HMAX respec-
tively, then performed SVM and decision tree classifiers. However, since there are a
large variation of morphologies and textures characteristics of mitoses, these hand-
crafted features are hard to describe all mitoses in a high detection accuracy.

The hierarchical feature that are automatically learned by the deep convolutional
neural network can bring about better detection results for mitotic cells compared with
the handcrafted features [9, 12, 13, 23, 24]. Ciresan et al. [23] adopted a sliding
window way to directly apply the deep neural network to histological image which is
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very computationally intensive so that the method is not suitable for application in the
clinic. Paeng et al. [12] presented a unified framework to predict tumor proliferation
scores based on molecular data and mitotic counts. The framework consists of three
modules. The first module is used to process the whole slide image, the second is a
mitosis detection network based on deep learning, and the third is a proliferation scores
prediction module. Their approach obtained 0.652 F1-score in mitosis detection which
was the first place in the MICCAI TUPAC 2016 competition for mitosis detection task.
Zerhouni et al. [13] applied Wide Residual Networks to detect mitosis in breast his-
tology images and performed a post-processing operation to the network output to help
filter out noise and select true mitosis.

It has been demonstrated that the aggregation of different types of channel features
is useful in many decision-forest-based object detectors [14–16]. Park et al. [15]
incorporate optical flow and temporal difference features into a boosted decision forest
to improve both pedestrian detection and human pose estimation working on video
clips. Yang et al. [16] proposed a method called CCF which uses the low-level features
from pre-trained CNN models on ImageNet as channel features. CCF is proved to be a
great approach to tailor pre-trained CNN models to various tasks by obtaining good
performances in the field of face, pedestrian and edge detection. Mao et al. [14] con-
ducted extensive experiments to explore how CNN-based pedestrian detectors can
benefit from different types of extra channel features including ICF channel, edge
channel, heatmap channel and depth channel. However, aggregating extra features that
facilitate classification tasks into deep convolutional neural network and jointly
learning network with the extra channel features are rarely studied in mitosis detection.
We propose an effective aggregated channels network for automated mitosis detection
and achieve a better detection performance.

3 Methods

The features learned from the lower layers of CNN correspond to general characters
such as edges and textures, and the features from higher layer are more abstract and
class-specific. An overview of the proposed ACNet framework is shown in Fig. 2. We
respectively aggregate the features channel including CLBP, SIFT and edge into
stained normalized image patch before the convolution layer of CNN. The parameters
of the convolutional neural network are presented in Table 1.

3.1 CLBP

Ojala et al. [20] raised to employ Local Binary Pattern (LBP) which is a simple and
effective operator in gray-scale and rotation invariant texture classification. LBP has
been applied in the field of face recognition and shape location. The method we
adopted in this paper to get additional feature map channels was an improved LBP
named completed LBP (CLBP) proposed by Guo et al. [19]. CLBP consisted of three
operators: CLBP_C, CLBP_S and CLBP_M, which respectively code the image local
center gray level, the sign and magnitude features of local difference.
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The CLBP_S operator is equivalent to the original LBP operator. Given a pixel in
the image, calculate a CLBP_S code by comparing it with its neighbors:

CLBP SN;R ¼
XN�1

n¼0

sðgn � gcÞ2n; sðxÞ ¼
1; x� 0

0; x\0

(

ð1Þ

Fig. 2. An overview of the proposed ACNet framework aggregating CLBP features. When
aggregating SIFT or edge features, simply replace their feature map with the CLBP map.

Table 1. Architecture of the ACNet

Layer name Output size Block (kernel size, output channel)

Input 128 � 128 –

Conv1 64 � 64 7 � 7,64, stride = 2
Residual block1 64 � 64 1� 1 conv; 64

3� 3 conv; 64
1� 1 conv; 128

2

4

3

5� 3

Residual block2 32 � 32 1� 1 conv; 64
3� 3 conv; 64
1� 1 conv; 128

2

4

3

5� 3

Residual block3 16 � 16 1� 1 conv; 64
3� 3 conv; 64
1� 1 conv; 128

2

4

3

5� 3

Residual block4 8 � 8 1� 1 conv; 64
3� 3 conv; 64
1� 1 conv; 128

2

4

3

5� 2

Avg_pool 2 � 2 4 � 4 average pool
Conv2 1 � 1 2 � 2, 128, stride = 1
Fc1 160D fully-connected
Fc2 2D fully-connected, softmax

* Note that each “conv” layer corresponds to the sequence BN-ReLU-
Conv.
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where gc represents the gray value of the central pixel, gn represents the value of its
neighboring pixels, R is the radius of the neighborhood and N is all number of
neighboring pixels.

The CLBP_M operator is defined in (2):

CLBP MN;R ¼
XN�1

n¼0

tðmn; cÞ2n; tðx; cÞ ¼
1; x� c

0; x\c

(

ð2Þ

where mn is the magnitude of the difference between gc and gn as described above, c is
the average of mn from the whole image.

And the CLBP_C operator is defined in (3):

CLBP CN;R ¼
XN�1

n¼0

tðgc; aIÞ; tðx; cÞ ¼
1; x� c

0; x\c

(

ð3Þ

where aI represents the average gray value of the whole image.
The whole ACNet framework aggregating CLBP features is shown in Fig. 2. At

first, the original image is represented by the local difference and the center pixel gray
level (C). Then a local difference sign-magnitude transform (LDSMT) is used to
decompose the local difference into two parts, including sign (S) and magnitude
(M) components. After that, applying CLBP_S, CLBP_M and CLBP_C operators to
code the S, M and C features, respectively. These three code maps have the same form
so as to be easily fused into CLBP feature map. Finally, we concatenate the obtained
CLBP map with the original input image and feed it into classification network.

3.2 SIFT

Scale Invariant Feature Transform (SIFT) feature extraction [21] is a widely known
method which converts an image into a large set of local feature vectors. Each local
feature vector is invariant to image scaling, translation and rotation. This is why we
choose the SIFT features to apply in classification of mitosis patch. In SIFT methods, the
difference-of-Gaussian (DoG) function is applied to calculate a series of features in scale
space. After selecting a set of features, Euclidean distance and the full set of matching
are used to compare the features of new images with these candidate regions. The scale-
invariant features can be identified effectively by using a hierarchical filtering method.
Then, a histogram of features is calculated as the image descriptors. The descriptors are
concatenated with original image after performing reshape and normalization.

3.3 Edge

Since chromosomes condensation occurs at the onset of mitosis, the intensity patterns
of mitoses and non-mitoses are usually different [5]. Therefore, in most cases, the
mitotic nucleus appears denser and “darker” than the non-mitotic nucleus. We first filter
the image patch, leaving the regions whose intensity is greater than the mean of the
whole image, and then apply Sobel edge detector to generate edge map.
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3.4 Hard Examples Mining

In the mitosis detection task, the number of non-mitotic cells and the number of
samples of mitotic cells on a Hematoxylin and Eosin (H&E) stained slide have a very
large ratio which can reach more than 1000:1. Therefore, it will introduce a new
challenging problem of unbalanced samples during neural network training. We adopt
hard examples mining method to solve this problem since it always contains a large
number of simple samples and a handful of hard samples in detection datasets. Hard
examples mining can focus the classification power of the network on the most difficult
examples, making the training more effective and efficient.

During the training stage of the network, we first train a preliminary network on the
whole training data until the loss function of neural network almost tends to be stable.
Then we apply the preliminary trained network to make evaluations on all the training
data. This yields a probability of each image patch being a mitosis. We apply a
threshold p and the predicted probability above this threshold would be considered as a
positive sample while others are deemed to negative samples. We choose these hardest
image patches including negative samples predicted by the network as mitoses with the
highest probability and positive samples missed by the network to expand our original
training data set. Then we continue training the network.

4 Experimental Evaluation

We evaluate the proposed method in a public MITOSIS dataset from MICCAI TUPAC
2016 competition for mitosis detection task [8]. The evaluation measurements of
algorithm is F1 score: F1 ¼ 2�R�P

RþP , where R is recall: R ¼ TP
TPþFN and P is precision:

P ¼ TP
TPþFP. TP, FP and FN represent the number of true positives, false positives and

false negatives, respectively. The whole ACNet is implemented based on TensorFlow
deep learning framework using Python. Experiments are carried out on a Linux server
with NVIDIA Tesla P40 24 GB GPU.

4.1 Dataset

TUPAC2016 MITOSIS dataset contains 690 high-power fields (HPFs) at 40X mag-
nification stained with H&E, of which 656 HPFs from 73 patients are used for training
and 34 HPFs from 34 patients are used for testing. The first 23 training images are
consistent with the AMIDA13 challenge dataset [11] collected from the Department of
Pathology at the University Medical Center in Utrecht. The remaining 50 images come
from two different pathology centers in The Netherlands. Images of TUPAC2016 are
produced with Leica SCN400 leading to a spatial resolution of 0.25 lm per pixel. The
size of each HPF is 2000 � 2000 pixels or 5657 � 5657 pixels. Note that the input to
our framework is a cropped 128 � 128 patch. In this dataset, the annotation only
contains the single centroid coordinate of each mitosis. According to evaluation cri-
teria, a correct detection is that the Eucledian distance between the coordinates pro-
vided and the groundtruth is less than 7.5 lm (30 pixels) [11].
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4.2 Implementation Details

Medical diagnosis usually stains slides by Hematoxylin and Eosin (H&E). Nucleic
acids would be selectively dyed to a blue-purple hue with Hematoxylin while proteins
would be dyed to a bright pink color with Eosin. Due to the differences existing in
staining manufacturers, storage times and staining steps, slide preparation varies
widely. The number of false positives may increase when slide is over-stained. So we
employ staining normalization to all the images both in the training datasets and testing
datasets at the first step. We apply the method described in [7] to normalize the staining
of the whole images.

For the positive samples, we extract a 128 � 128-pixel patch from the whole
images after staining normalization centered on the coordinates given in groundtruth.
Since the number of positive samples is quite small and unbalanced relative to the
number of negative samples, we need to augment the positive samples set by trans-
lation and rotation. In our experiments, we increased 30 times as the original number of
positive samples through performing random translations at five times and rotations of
30, 60, 90, 120, 150, 180°.

For the negative samples, we first extend a 64-pixel mirroring border in each
boundary of the whole images. Then, we extract a 128 � 128-pixel patch by applying
a sliding windows on the whole images with a stride of 32. Patches located at more
than 30 pixels away from the center of the mitosis are considered as negative samples.
We do not need to do augmentation for the negative samples.

All the networks are trained with stochastic gradient descent (SGD) with a batch
size of 256. The initial learning rate is set to 0.1 and is reduced to 10 times at epoch 5,
10, 15 and 25. We train all models for total 30 epochs, of which 10 epochs are trained
for the preliminary network and 20 epochs are continued after adding hard examples.
We set weight decay to 10−5 and momentum of MomentumOptimizer to 0.9. We use
dropout rate of 0.5 after convolutional layers to prevent overfitting.

4.3 Experimental Results and Comparison

To validate the entire proposed architecture, we split the dataset into five random and
nearly equal subsets (S1-S5) and perform a 5-fold cross-validation same as the method
used in [5]. We first quantitatively assess the effects of aggregating three different
features (CLBP, SIFT and edge) on one subset (S1). Then a 5-fold cross-validation is
carried out for the best performing features and the average is compared to other
methods evaluated on TUPAC2016 MITOSIS dataset [8].

Usually models integrated with the extra channel features bring out improvement
relative to baseline. So for a fair comparison, we need to add a controlled experiment
where the original image patch is used as an extra channel. The F1 score for different
features is reported in Table 2.
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It can be seen that there is no obvious improvement by taking original image as
extra channel input, confirming that the performance boost is indeed due to channel
feature aggregation. Among three features, CLBP feature contributes the most to
detection performance owing to it can convey so much discriminative information of
local structure. A precision-recall curve (PR curve) of aggregating CLBP feature is
plotted in Fig. 3. The classification threshold p is set to 0.90.

Next, we perform a 5-fold cross validation for aggregating CLBP feature and
compare its average with the top six results participating in MICCAI TUPAC 2016
competition for mitosis detection task [8] from the groups Lunit [12], IBM Research
[13], Contextvison, CUHK, Microsoft Research Asia and Radboud UMC. The details
are shown in Tables 3 and 4. Table 3 shows that F1 scores across different subsets of
dataset remain almost consistent. Our method achieves the highest F1-score and 10%
improvement over the best method available whereas the standard deviation is only
0.0298, demonstrating the effectiveness of the proposed algorithm.

Figure 4 shows some detection results examples by ACNet (+CLBP) on
TUPAC2016 MITOSIS dataset. Despite a few false positives and false negatives still
exist in the final results, most true mitoses could be successfully detected by our
method.

Table 2. F1-score on S1 subset by aggregating different features

Method Precision Recall F1-score

Baseline 0.446 0.909 0.598
ACNet (+original image) 0.452 0.955 0.614
ACNet (+SIFT) 0.770 0.608 0.679
ACNet (+edge) 0.642 0.803 0.713
ACNet (+CLBP) 0.817 0.680 0.742
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Fig. 3. A PR curve of aggregating CLBP feature for TUPAC2016 dataset.
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Table 3. Average F1-score for 5-fold cross validation by ACNet (+CLBP)

Subset of dataset Precision Recall F1-score

S1 0.817 0.680 0.742
S2 0.763 0.752 0.757
S3 0.681 0.667 0.674
S4 0.675 0.723 0.698
S5 0.718 0.712 0.715
Mean 0.731 0.707 0.717
Standard deviation 0.0533 0.0304 0.0298

Table 4. F1 scores of our method with other competing methods for TUPAC2016 MITOSIS
dataset.

Method F1-score

Radboud UMC 0.541
Microsoft Research Asia 0.596
CUHK 0.601
Contextvison 0.616
IBM Research [13] 0.648
Lunit [12] 0.652
ACNet (+CLBP) 0.717

Fig. 4. Some detection results examples by ACNet (+CLBP) on TUPAC2016 MITOSIS
dataset. Yellow, blue and green circles denote true positives, false negatives and false positives,
respectively. The number near the circle represents the predicted probability. (Color figure
online)
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5 Conclusion

In this paper, we propose a novel automated mitosis detection method based on
aggregating different features into deep CNN. Completed Local Binary Patterns
(CLBP), Scale Invariant Feature Transform (SIFT) and edge features are evaluated
through conducting experiments on TUPAC2016 MITOSIS dataset. Results show that
CLBP feature contributes the most to detection performance and our method achieves
significant performance improvement over all other competition methods. In future, we
plan to research model based on more features for continuing improving the results of
mitosis detection.
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Abstract. This paper focuses on labeling phenotypes of patients in
Intensive Care Unit given their records from admission to discharge.
Recent works mainly rely on recurrent neural networks to process such
temporal data. However, such prevalent practice, which leverages the last
hidden state in the network for sequence representation, falls short when
dealing with long sequences. Moreover, the memorizing strategy inside
the recurrent units does not necessarily identify the key health records
for each specific class. In this paper, we propose an attention-based hier-
archical recurrent neural network (AHRNN ) for phenotype classification.
Our intuition is to remember all the past records by a hierarchical struc-
ture and make predictions based on crucial information in the label’s
perspective. To the best of our knowledge, it is the first work of apply-
ing attention-based hierarchical neural networks to clinical time series
prediction. Experimental results show that our model outperforms the
state-of-the-arts in accuracy, time efficiency and model interpretability.

Keywords: Temporal data · Classification · Attention mechanism

1 Introduction

Currently, the broad adoption of Electronic Health Record (EHR) makes it pos-
sible to access unprecedented amount of clinical data. Some relevant applications
have improved the quality of health care and lowered the engendered cost [1,20].

Phenotype classification, also known as “phenotyping”, is a relatively new yet
critical medical informatics problem. The main goal is to classify patients by ana-
lyzing a series of EHRs including heart rate, blood pressure, etc. The clinically
meaningful categories, namely “phenotypes”, are decided based on diagnoses
assigned to patients at discharge. These categories can be acute conditions such
as cerebrovascular disease or chronic conditions like kidney disease. According
to a person’s phenotypes, it is worth ranking hospitalizations and managing care
plans for him. As precision medicine becomes an emerging approach to disease
c© Springer Nature Switzerland AG 2019
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prevention and treatment, patients’ phenotypes also play an important role in
triggering clinical decision support systems and predicting future health resource
utilization [5].

To deal with variable-length clinical sequences, recent researches mainly
leverage recurrent neural networks (RNNs) for phenotype classification. The
recurrent units in the network, e.g., Long Short-Term Memory (LSTM) [8] and
Gated Recurrent Unit (GRU) [4], determine how much of the past memory to
preserve and what to collect from the current data. For example, Lipton et.
al. established a simple RNN with LSTM units for classifying 128 phenotypes
given 13 clinical variables [11]. By analyzing 17 physiologic features, Harutyun-
yan et. al. provided a phenotyping benchmark on 25 labels with a 2-layer LSTM
network.

Although RNNs have achieved better classification results compared with
traditional models, they still have limitations as follows. The first is high time
complexity. The sequential computation in recurrent units makes the time com-
plexity proportional to the length of sequence, which becomes problematic for
long sequences. The second is incapacity to capture long-range dependency.
To represent the whole sequence, RNNs utilize the hidden state at the last time
step. But it has been proved insufficient in domains like machine translation [18]
and speech recognition [3]. The third is no interpretability. As one of the neu-
ral network models, RNNs are black boxes that provide no explicit explanation
of predictions by introspecting model parameters.

To overcome the above limitations, we introduce a novel hierarchical frame-
work with two levels of RNNs for phenotype classification. After splitting the
long sequence of records into small blocks, the first level is fed with individ-
ual block data and generates corresponding vector representations to reveal the
short-term health status. The second level adopts block representations and
develops an awareness of the overall health condition. Since serial computation
is only performed intra-blocks, time complexity of our model is proportional to
the number of records in each block, rather than the total sequence length. More-
over, the hierarchical model obtains a global awareness of the patient’s health
state after collecting local clinical condition information, which is quite a novel
attempt for recognizing long-range dependency.

We have also observed that different phenotypes show different time sensi-
tivities. For example, symptoms of acute respiratory distress syndrome may not
appear until 24–48 h after lung injury, while symptoms of asthma attack may
present shortly after admission but remit over time [11]. To take advantage of
such divergence of temporal attention, the first level of AHRNN utilizes an extra
attention mechanism for better block representation. Specifically, records with
high attention weights to a certain phenotype are identified as key roles in pre-
dicting the chance of having this phenotype. Such easy-to-interpret attention
mechanism makes the classification results more explainable and acceptable.

We evaluate AHRNN on a large-scale EHR dataset and it outperforms previ-
ous models with better prediction performance as well as higher time efficiency.
A case study further shows model interpretability.
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We summarize our main contributions as follows:

• We propose a novel hierarchical recurrent neural network for phenotype clas-
sification, where a global knowledge of the patient’s health state is generated
after analyzing his local clinical conditions. This is the first hierarchical model
to analyze clinical time series.

• To exploit temporal sensitivities of distinct phenotypes, we incorporate the
attention mechanism in the first level of AHRNN to recognize key records.

• We evaluate our model on a large-scale open dataset and it outperforms the
state-of-the-arts with relative low time consumption. Model’s interpretability
owing to the attention module also show clearly.

2 Preliminary

2.1 Problem Statement

In this paper, we aim to predict the likely diseases the patients have suffered
from admission to discharge. Note that phenotyping is a multi-label classification
problem as patients in ICU are typically diagnosed with multiple conditions.
Notations are defined in Table 1 and the problem is defined as follows:

Problem 1. Given records of one patient denoted by X ∈ R
N×k, the goal is to

estimate the binary vector y ∈ R
L, where yi = 1 indicates the patient has the

i-th disease and yi = 0 means no related symptoms to such disease are observed.

2.2 A Basic RNN Solution

Vanilla RNN, LSTM, GRU are the most basic recurrent units in RNNs while
the last two achieve better performance due to their complex internal structures.
We here introduce a toy model equipped with LSTM units for demonstration
while the other two follow the similar way.

LSTM. It is short for long short-term memory and consists of one cell to remem-
ber historical values and three gates to regulate the information flow into and
out of the cell. The three gates are input gate for remembering current input,
forget gate for removing past memory and output gate for selective update,
respectively.

We denote the computation function for updating the LSTM internal state
by ht = LSTM(xt ,ht−1 ), where xt and ht are the input and hidden state at
time t, respectively. Details of this procedure can be found in [8].

Phenotype Classification. Given records X ∈ R
N×k, a RNN model with

a single LSTM layer predicts the probability of having the i-th phenotype as:
y = σg(WphN + bp), where Wp ∈ R

L×d, bp ∈ R
L are trainable variables.

As Fig. 1 shows, the LSTM unit updates its internal state recursively until
the end of the sequence is encountered, which requires O(N) serial computation.
Thus time complexity is O(N ·kd) for the first hidden layer and O(Nd2) for each
following layer if there are more than one recurrent layer.
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Table 1. Notations. Here
‘#’ means ‘the number of’.

Symbol Meaning

k Input dimension

L #phenotypes to
be classified

n #records per
block

N #records
in total

m Dimension of
label embedding

d #units per
RNN layer

Fig. 1. Two models for phenotyping: LSTM (upper) and
AHRNN (lower).

3 Methodology

In this section, we first present our neural network model for phenotype clas-
sification and then describe the learning process. We finally discuss the time
complexity.

3.1 AHRNN Model

Given one patient’s records X ∈ R
N×k and li as the one-hot representation of

the i-th phenotype, the computations performed by AHRNN is shown in Fig. 1
and defined from bottom layer to top layer as:

Emb(li ) = Embedding(li ), (1)
SNLi,b(X ) = Attend(RNNseq({xb,t}t=1,...,n), Emb(li )), (2)
BNLi(X ) = RNNblock({SNLi,b(X )}b=1,...,�N

n �), (3)

yi(X ) = Predictioni(BNLi(X )), (4)

where Eq. 1 lists the implementation of label representation in embedding layer,
Eqs. 2 and 3 present the functionality of sequence neural layer and block neural
layer in the hierarchical structure, Eq. 4 shows how prediction layer works.

In what follows, we elaborate the four equations with detailed network layer
description.

Embedding Layer. Similar to word embedding, we map the i-th label’s one
hot representation li = {li,j | 1 ≤ j ≤ L; li,j = 1 if j = i otherwise 0} into
an embedding vector Emb(li ) ∈ Rm through one layer of multilayer perceptron
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(MLP). This process is expressed by function Embedding in Eq. 1 and can be
formulated as:

Embedding(li ) = We
i · li , (5)

where We
i ∈ R

m×L denotes the weight to learn for the i-th label.
Frequently co-occurred phenotypes could trace back to identical lesion loca-

tions and cause similar symptoms, resulting in coincident temporal sensitivities.
Through this layer, representations for related phenotypes tend to be close in
the embedding space during training and generate similar attention scores for
records at each time step (see details in Sect. 3.1).

Bottom of Hierarchy: Sequence Neural Layer. Similar to the map proce-
dure in MapReduce programs [6,13], we first split the sequential measurements
into small groups containing equal amount of records. The last block, which nor-
mally has fewer records than earlier blocks, is padded with zeros for concurrent
computation during training. The recurrent units update the hidden states until
the last record in the block is encountered. Such serial computation only takes
place inside each block. Thus the independent computation in distinct blocks
can be carried out in parallel.

Attention Module. As shown in Fig. 1, conventional RNNs for sequence mod-
eling normally preserve the last hidden state to represent the whole time series,
which is insufficient for long sequences.

We employ the attention mechanism to alleviate the burden of remembering
the whole input sequence, and let the critical constituent to pay different atten-
tion to inputs at different time steps. Specifically, the phenotype labels determine
the attention score of each record by modeling the correlation between the label
embedding and the hidden state of input. Here we consider two ways to learn
the correlation:

• Map-Attention: the hidden state and the label embedding are multiplied
with the help of a trainable matrix Wmap

i . That is, η(hb,t , Emb(li )) = hb,t
T ·

Wmap
i · Emb(li ),

• Concat-Attention: label embedding is concatenated to the hidden state and
the concatenation is transformed to a scalar with a trainable matrix Wcon

i .
That is, η(hb,t , Emb(li )) = Wcon

i · [hb,t ;Emb(li )],

where hb,t ∈ R
d is the hidden state of the t-th record in block b and η ∈ R is a

scalar denoting the attention weight of xb,t by the i-th label.
According to the attention scores, we leverage the weighted sum of all past

hidden states in a block as a local health condition summary. Attend function
in Eq. 2 can be expressed as:

αi,b,t =
expη(hb, t ,Emb(li ))

∑n
s=1 expη(hb, s ,Emb(li ))

, (6)

SNLi,b(X ) =
n∑

t=1

αi,b,thb,t . (7)
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Top of Hierarchy: Block Neural Layer. A basic recurrent neural layer is
adopted here to acquire global health information by analyzing the input block
vectors as Eq. 3 shows. Different from previous layers where distinct parameter
sets are leveraged for different labels, trainable parameters like weight and bias in
this layer are shared among all the classes. Such parameter sharing is expected to
map the phenotype’s awareness of overall condition with their attentive signals
regardless of the label type and the signal content.

Prediction Layer. After establishing the hierarchical network with label-based
attention, different phenotypes obtain different understandings of the patient’s
overall health condition. We then apply a dense layer denoted by Prediction in
Eq. 4 to project the health condition’s vector representation BNLi(X ) to a final
probability. This function is implemented by one layer of MLP:

Predictioni(BNLi(X )) = σg(w
p
i · BNLi(X ) + bp

i ), (8)

where wp
i ∈ R

d and bp
i ∈ R are the weight and bias, σg is a sigmoid function. The

resulted scalar denotes the probability of this patient attacked by phenotype li .

3.2 Learning

For the multi-label classification task, we optimize the pointwise cross entropy
to force the prediction score yi(X ) to be close to yi(X ):

L =
∑

1≤i≤L,X∈D
−yi(X ) log(yi(X )) − (1 − yi(X )) log(1 − yi(X )), (9)

where D is the record dataset.

3.3 Time Complexity Analysis

AHRNN requires O(n) sequential operations. Thus the time cost is O(Lm) for
label embedding layer, O(nd2) per sequence neural layer, O(�N

n �d2) per block
neural layer. To compute attention scores, it takes O(nL(2d + m)) time for
concat-attention or O(nL(dm + m + d)) for map-attention. If AHRNN is deep
that L and m are much less than d, then time consumption for label embedding
and attention is negligible and the overall time complexity is O((n + �N

n �)d2),
which is much lower than O(Nd2) for plain RNNs as mentioned in Sect. 2.2.

In this paper, computation for prediction layer is not discussed as both mod-
els have this layer. We assume that the intra- and inter-unit computations in each
layer are sequential. Superiority of AHRNN over plain RNN in time efficiency
still exists if they are conducted in parallel.

4 Experimental Evaluation

In this section, we conduct experiments to answer the following questions:

RQ1 How does our model perform as compared to the state-of-the-art methods
for the phenotyping task?
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RQ2 Does the hierarchical framework really help speed up training?
RQ3 Can we interpret the predictions made by AHRNN ?

4.1 Dataset

To analyze time series data in health care domain, most of the studies use
their institutions’ own private datasets, which are not beneficial to reproduc-
ing the reported results [15]. Instead, we use the publicly available MIMIC-III
dataset [9]. It covers 53,423 distinct hospital admissions for adult patients admit-
ted to critical care units between 2001 and 2012. For a fair comparison, we follow
the same way of splitting and preprocessing data as [7]: 17 physiologic variables
and 25 phenotype categories are selected, 70%, 15%, 15% of the total 41, 902
stays are allocated for the training, validation and testing set, respectively. More
data statistics could be found in [7].

4.2 Evaluation Metrics

Similar to [7,16], Area Under the ROC Curve (AUC) is utilized for performance
evaluation. We also adopt F1 score in consideration of data imbalance. Both of
the two metrics have three versions, i.e., micro-, macro- and weighted-average.
F1 metrics require a thresholding strategy, and in experiments we select 0.5 as
the threshold.

4.3 Compared Methods

We compare performance of the following models.

• LR: logistic regression [7].
• LSTM: this 2-layer LSTM was proposed for the single phenotyping task [7].
• SAnD: Simply Attend and Diagnose, this model makes predictions solely

based on self-attention mechanism [16].
• HRNN: hierarchical recurrent neural network without the attention module.
• AHRNN map: HRNN with map-attention.
• AHRNN concat: HRNN with concat-attention.

4.4 Implementation

We use Tensorflow1 for network construction, ADAM [10] optimizer with a 10−4

learning rate, and one TITAN Xp graphics card for all the experiments. There are
two hidden layers prior to prediction layer : one is sequence Neural Layer with
1024 LSTM units and the other is block Neural Layer with 512 LSTM units.
The batch size is 8 for model LSTM and HRNN, 4 for AHRNN due to memory
limitation. The block size n for HRNN, AHRNN map and AHRNN concat are
5, 6 and 6, respectively. The label embedding dimension m for the latter two
1 https://www.tensorflow.org/.

https://www.tensorflow.org/
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Table 2. Performance of different models. The number after ± means standard devi-
ation. Results marked with * are from the original papers while the others are imple-
mented by us. F1 scores for SAnD are ‘-’ since the codes haven’t been published. For
all the measures, the higher the better, the best in boldface.

Model AUC F1 score

Micro Macro Weighted Micro Macro Weighted

LR 0.801* 0.741* 0.732* 0.320± 0.0004 0.240± 0.0003 0.299± 0.0003

LSTM 0.821* 0.771* 0.759* 0.388± 0.026 0.300± 0.026 0.363± 0.027

SAnD 0.816* 0.766* 0.754* - - -

HRNN 0.823± 0.001 0.775± 0.001 0.762± 0.001 0.391± 0.010 0.303± 0.008 0.365± 0.010

AHRNN concat 0.825± 0.002 0.777± 0.003 0.764± 0.002 0.402± 0.010 0.312± 0.010 0.376± 0.010

AHRNN map 0.825± 0.002 0.777± 0.002 0.764± 0.002 0.408± 0.012 0.317± 0.011 0.382± 0.012

AHRNN models are 25, 12, respectively. In our models, the learning rate, batch
size, and network scale are the same as those in the LSTM model [7]. The other
hyperparameters are selected by grid search according to their performance on
the validation set. With different random seeds, all the models are trained and
tested for 10 times. In each turn, the performance are evaluated on the testing
set when the loss on the validation set reaches the lowest during training.

4.5 Main Results

Table 2 shows the average performance of different models evaluated with AUC
and F1 score. To compare four recurrent models, Fig. 2 illustrates their per-
formance on the validation set during training and Table 3 gives some time-
consuming statistics prior to model convergence.

Performance Comparison (RQ1). In Table 2, either the map-attention or
the concat-attention module assists the hierarchical recurrent model to outper-
form the existing state-of-the-arts when measured in AUC. From the view of F1
score, AHRNN map is superior to the others with values 5.2%, 5.7% and 5.2%
higher than the previously proposed recurrent model LSTM in micro-, macro-
and weighted-average, respectively. Meanwhile, HRNN performs competitively
or slightly better than the non-hierarchical LSTM in all the metrics. Figure 2
shows the superiority of model HRNN, HARNN concat and HARNN map than
LSTM in jumpstart and asymptotic performance. With the observations above,
we can safely come to the following main conclusions. Firstly, generating a global
awareness of the patient’s health state on the basis of the local clinical condition
under the hierarchical framework won’t hurt the overall performance. Secondly,
allowing the diverse phenotypes to pay different attention to vital signs at dif-
ferent time steps will improve the accuracy of prediction.

Time Efficiency (RQ2). As listed in Table 3, the three hierarchical models
takes far fewer seconds to accomplish the training for one epoch, e.g., HRNN
spends nearly one fifth of time for LSTM. The two attention-based models con-
sume more seconds than HRNN as extra computation for temporal concen-
tration is executed. Until the end of the 12th epoch where the loss converges,
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Fig. 2. Performance of recurrent models on the
validation set during training. Macro-average
results are shown as they reveal the overall per-
formance. The loss of the models all converges at
12th epoch.

Table 3. Time-consuming statis-
tics during training for recur-
rent models. #params means the
number of trainable variables and
is listed for model comparability.
Epoch time in unit second (s) is
the average training time for each
epoch. Total time in unit hour
(h) is the time the model spends
until convergence (after the 12th
epoch). For the two time measures,
the lower the better, the best in
boldface.

Model Attribute Value

LSTM #params 7.67 M

Epoch time 528 s

Total time 1.9 h

HRNN #params 7.67 M

Epoch time 117 s

Total time 0.42 h

AHRNN concat #params 7.72 M

Epoch time 254 s

Total time 0.91 h

AHRNN map #params 8.32 M

Epoch time 253 s

Total time 0.91 h

models with the hierarchical framework spends fewer than one hour while the
non-hierarchical model consumes almost 2 h. The experimental results coincide
with the theoretical time complexity analysis in Sect. 3.3 that the employment
of the hierarchy structure speeds up training.

4.6 Case Study for Interpretability (RQ3)

We here focus on a sampled patient from the test set to demonstrate the explain-
ability of AHRNN. This patient has 41 records in total and is labeled with two
phenotypes which are frequently co-occur due to lesions in the cardiovascular
system: acute myocardia infraction and coronary atherosclerosis. The probabil-
ities of being diagnosed with these two phenotypes by our best model are 0.91
and 0.89, respectively.

In Fig. 3, the two heat maps reveal that the predictions of cardiovascular-
related phenotypes pay the most attention to the last two records, where a
sudden increase can be observed in blood-pressure-related vital signs, such as
DBP, MBP and SBP. This is quite reasonable since extensive clinical researches
have pointed out that having high blood pressures damages arteries, accelerates
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(a) Acute myocardia infraction (b) Coronary atherosclerosis

Fig. 3. Attention scores of two phenotypes on records from the last block. Each row
represents the record at one time step and each column represents a vital sign. DBP,
HR, MBP, OS, RR, SBP and TEMP are diastolic blood pressure, heart rate, mean blood
pressure, oxygen saturation, respiratory rate, systolic blood pressure and temperature,
respectively. We only show these features as the others are either categorical or invariant
along time.

the buildup of plaque and increases the risk of developing a heart attack [17].
Therefore, the prediction of the previously referred probabilities of two pheno-
types are interpretable, since they are based on observation and analysis of the
critical moments.

5 Related Work

Recent Phenotying Methods. Lipton et. al. were among the first to apply
RNNs to classify ICU patients according to their time series vital signs [11]. Later
on, a few works emerged to provide benchmarks with RNN models for different
clinical tasks including phenotyping [7,14]. An attention-based sequence model-
ing architecture named SAnD was proposed and achieved similar performance
as previous benchmarks [16]. Based on the conventional RNNs, our model utilize
the hierarchical framework for time efficiency and the attention mechanism for
accuracy improvement.

Hierarchical Recurrent Neural Networks. Hierarchical RNNs have been
widely adopted in the natural language processing since a paragraph or a doc-
ument is composed of closely linked sentences and a sentence is a combina-
tion of semantically related words [12,19,21]. Different from the well-organized
text data, there are no apparent temporal boundaries for consecutive medical
records. In our AHRNN model, different boundary settings are tried through the
hyperparameter n for block size. Similarly, no clear shot boundaries exist among
frames for hierarchical video representation. The model in [22] was trained only
on dual-shot samples and the unique boundary for each video was manually
labeled. Hence the proposed model is not practical for multi-shot videos.

(Soft) Attention-based Recurrent Neural Networks. The attention mech-
anism utilizes several variables (hidden states at different time steps in RNN)
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and a context to generate a summary of these variables according to their corre-
lations with the context [2,23]. For instance, relevance between station-oriented
measurements and local urban features [2], between local time-frequency fea-
tures and global sequence trend [23] are considered to compute attention scores
in air quality inference and time series forecasting, respectively.

6 Conclusion

This paper tackles the challenging task of predicting whether a patient in ICU
suffers from several phenotypes, which is important for improving health care and
predicting future resource utilization. We study the limitations of conventional
RNNs, and then address the need of finding the distinguished temporal concen-
tration of different phenotypes, which is overlooked by previous studies. We pro-
pose an attention-based hierarchical recurrent neural network model (AHRNN )
to capture the long-range dependency of phenotype prediction on past measured
physiologic features, and employ an attention module to generate label-oriented
predictions. Experimental results show that our method outperforms the state-
of-the-arts in accuracy, time efficiency and model interpretability.
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Abstract. Human identification according to their mobility patterns is of great
importance for a wide spectrum of spatial-temporal based applications. For
example, detecting drug addicts from normal residents in public security area.
However, extracting and classifying user behaviors in massive amount of moving
records is not trivial because of three challenges: (1) the complex transition
records with noisy data; (2) the heterogeneity and sparsity of spatiotemporal
trajectory features; and (3) extremely imbalanced data distribution of real world
data. In this paper, we propose MST-CNN, a multi-level convolutional neural
network with spatial and temporal features. We first embed the multiple factors
on single trajectory level and then generate a behavior matrix to capture the user’s
mobility patterns. Finally, a CNN module is used to extract various features with
different filters and classify user type. We perform experiments on real-life
mobility datasets provided by public security office, and extensive evaluation
results demonstrate that our method obtains significant improvement perfor-
mance in identification accuracy and outperform all baseline methods.

Keywords: Convolutional neural network � Spatiotemporal embedding �
Human trajectory pattern � Addict identification

1 Introduction

Addiction to drugs among men and women is an acute social problem faced by most of
the countries worldwide. The National Narcotics Control Commission reported that the
number of drug addicts is still slowly growing in China. There were more than 2.5
million drug users in the country by the end of 2016 with 6.8% growth [1], while in
2018 World Drug Report, about 275 million people worldwide, which is roughly 5.6
percent of global population aged 15–64 years, used drugs at least once during 2016
[2]. Drug addict not only deeply affects the individual health but also is thought to be
guilty of crime or offense, who would lead to public safety concerns. The police
department, as one of the most important roles in controlling drug problems, utilize
common detection methods like call records analysis, trade records exploration or
human face recognition. However, the performance of these methods is not promised
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because they are all based on explicit, implicit or inferred relationships between
arrested criminals and suspects, which needs restrict precondition and is limited.

On the other hand, as article [3] reports, drug addicts with low educational level
have trouble in rejoining mainstream society and finding a gainful employment.
A study on drug in Shandong province of China illustrates that around 75 percent of
drug addicts are mobile population, in which most of them are unemployment or self-
employment [4]. Since the addicts are special group of people, their daily life might be
different from common residents, which could be used for identification task. In this
paper, we collect people’s movement trajectories to describe user daily life, because
trajectory pattern mining is becoming increasingly popular with the development of
ubiquitous computing technology and trajectory data contains abundant semantic and
geographic information. For example, police turn to Google to find crime suspects by
seeking data from mobile phones in target areas [5]. Pickpocket suspect identifying
could be leveraged by could be achieved by mining public transit records in Beijing
[6]. However, it is still challenging to detect addicts because moving records is trivial
and massive and trajectory of each user is sparse. Moreover, unlike data of automated
fare collection systems (AFC), people travel in the city do not follow the fixed routed
but wander about freely, their movement behaviors are more complicated. Therefore, it
is critical to propose a smart surveillance and tracking tool for identifying personal
behavior and detecting drug addicts from normal residents.

In this paper, we propose MST-CNN, a multiple level spatial-temporal convolu-
tional neural network model for detecting human identification from lengthy and sparse
trajectories. We give the embedding module that converts sparse moving record fea-
tures (e.g., geographical location, timestamp, number of activity, length of trajectory
user) into dense representations, which are then fed into a convolutional neural network
to classify user behaviors. Better still, the learned weights offer an easy-to-interpret way
to describe the behavior characteristics of drug addicts.

Our contributions can be summarized as follows:

• We propose a spatial-temporal model, MST-CNN, to identify special users from
massive trivial moving records. Our model could describe the factors of each tra-
jectory and extract the implicit movement pattern shared in certain group.

• We design mixed mechanisms that are combine both location information and time
information by two steps. The first is to directly embed location points into inde-
pendent latent vectors and interpret trajectory with timestamp factors; while the
second is to generate user movement characteristics from relevant trajectories by
selection module.

• We evaluate the effectiveness and performance on real-life mobility dataset pro-
vided by police department during three months. To the best of our knowledge,
there is no existing deep learning approach to solve the similar user identification
problem. Compared with the results of traditional classification method and
anomaly detection method, the evaluation results demonstrate that MST-CNN
outperforms all baselines.
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2 Related Work

Spatial-temporal pattern mining has emerged as an active research field, like urban
traffic network analysis, automatic intersection recognition and movement behavior
mining. In this section, we provide a brief review of the related works, including two
categories: movement pattern mining and behavior understanding.

2.1 Movement Patterns Mining

The enormous amount of spatial-temporal data could be used to mine movement
pattern. Gong [7] proposes a methodology to detect five travel models (walk, car, bus,
subway and commuter rail) from amount of data generated by GPS in New York. In
article [8], Pinelli proposes an extension of the sequential pattern mining paradigm to
analyze the trajectories of moving objects. REMO (Relative Motion) [9] method is
based on traditional cartographic approach of comparing snapshots and develops a
comparison method based on motion parameters to reveal the movement patterns.
Article [10] presents a complete and computationally tractable model for estimating
and predicting trajectories based on sparsely sampled, anonymous GPS land-marks that
called GPS snippets. For example, [11] identifies spatiotemporal patterns from GPS
traces of taxis for night bus route planning. [12] tries to reflect the common routing
preference of the past passengers by finding the most frequent path of a certain time
period. [13] discovers and explains movement patterns of a set of moving objects (e.g.
track management, bird migration, disease spreading).

These previous works give some inspiration for representation of a trajectory, and
traditional machine learning approaches proposed in these works will build baselines
for comparison in Sect. 5.

2.2 Behavior Understanding

A number of techniques for understanding user behaviors have also been proposed. For
example, article extracts user features from subway transit records and explores
abnormal traveling behaviors to discovery the pickpocket suspects [6]. Along the line
of location-based anomaly detection, a framework that learns the context of different
functional regions in a city is presented, which provides the basis of our feature
extraction approach [14].

Traditional trajectory-based similarity calculations use the longest common sub-
string to calculate the similarity of user history trajectories [15, 16]. Abul proposes a
W4M (wait for me) method, which uses edit distance to measure the similarity of
different paths [17]. Considering the mobility similarity between user group, Zhang
et al. [18] proposes GMove modeling method to share significant movement regularity.

In recent research, some deep learning methods are applied to encode the trajectory.
ST-ResNet [19] is designed to forecast the flow of crowd. DeepMove [20] model
predicts human mobility with attentional recurrent network, while HST-LSTM [21]
capture location prediction by Spatial-Temporal LSTM.
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Our work refers some ideas to above mentioned embedding techniques and merges
additional temporal factor to encode trajectory. Unlike traditional classification models,
our model encodes the personal behaviors by its relevant trajectory vectors directly and
identify user type by convolutional neural network without the need of effective
features.

3 Preliminaries

In this section, we formulate addict classification problem, and briefly introduce the
convolutional neural network in sequence classification.

3.1 Problem Formulation

Definition 1 (Moving point): A position point with timestamp and MAC (Media
Access Control) which is named as a moving point O ¼ p;m; tð Þ where p is position
information with latitude and longitude, m is a unique mac address and t is timestamp.

Definition 2 (Path): Given a set of moving points O and a special mac a, a path of
certain people could be defined as P ¼ O1;O2; . . .;Onf g where 8Oi mð Þ ¼ a, and
Oi tð Þ\Oj tð Þ when i\j.

Definition 3 (Trajectory): A Trajectory T is a subset of a path with special certain
scenario. We give two criterions to present trajectory. (1) Oi tð Þ � Oi�1 tð Þ\s, where s
is less than 30 min. (2) distinceðOi pð Þ � Oi�1 pð ÞÞ[ d, where d is 0.3 km in our
model.
In this paper, due to the equipment defects and path semantic context, we quantify the
time interval s is 30 min and distance d is 0.3 km.

Problem 1 (Addict identification): Given a user u and its relevant list of trajectories Ti
u

during a period of time, detecting if u is a drug addict or not.

3.2 CNN in Sequence Classification

Unsupervised learning word embedding has achieved tremendous success in such NLP
tasks since word2vec was introduced in [22]. Meanwhile, our problem is similar to
sequence classification tasks such as sentence classification and sentiment analysis in
some degree. To apply CNN in the task of text/sequence classification or sentiment
analysis, words/sentences will first be passed to the embedding layer to generate low-
dimensional representation vectors, then convolutions will be performed over the
embedded word vectors, commonly with multiple filter sizes [23]. With the help of
successful implementation of CNN in sequence classification, we are ready to present
our model.
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4 MST-CNN: Multiple Spatial-Temporal Convolutional
Neural Network

4.1 Motivation and Overview

Here we draw two heat maps in Fig. 1. Figure 1(a) and (b) reflect to related points for
different types of citizen, addicts and residents respectively. However, they cannot be
separated because two maps are similar in macroscopic view, which means those
factors may not be quite defining. Fortunately, compared to the residents’ moving
points, from a micro perspective, addicts visited some unique points, it is mainly
because that those people live in different parts of the city. Thus, the residence address
could not be treated as an effective feature, if we want the model performs robustly,
since transferring a model to other individuals may encounter impasse due to their
different latent characteristics.

Secondly, the behaviors of people in the same group are not as similar as we
expected. People living in a city have their own habits of commuting and lifestyle. In
order to estimate people’s living habits, we collect hundreds of people’s visiting points
in weekdays, then calculate similarity of different days by Jaccard functions.
According to Table 1, for example, person m1 traveled from p1 to p9 regions from
Monday to Friday. The similarity value will be much higher if m1 went to the same
region every day.

dayLoc and weekLoc present the set of region places in weekdays and in a whole
week. We define weekLoc as the union set of dayLoc as weekLoc ¼ Union dayLoc xð Þð Þ;
x 2 Mon; Tus;Wed; Thur;Fri. Then the similarity could be calculated by

J dayLoc;weekLocð Þ ¼ S dayLocð Þ \ S weekLocð Þj j
S dayLocð Þ [ S weekLocð Þj j ð1Þ

The average similarity value similarity of m1 is (0.6 + 0.4 + 0.4 + 0.5 + 0.5)/
5 = 0.48, which means its similarity is actually a little low. Although we only present
one example here, we extract thousands of people’s data to calculate their own

(a) Heat map of addicts (b) Heat map of residents

Fig. 1. Activity heat map of addicts and residents. In each figure, we select top-100 visited
points for either addicts or residents by calculating total number of relevant records.
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similarities. And it turns out that only 20 percent of people have regular activities that
could be predicted as Fig. 2 shows that only 20 percent of people are predictable and
the others’ behavior are irregular.

Finding useful features in user’s movement behaviors is an important but difficult
job. Actually, it would be too narrow to classify the two different kinds of people by
analyzing their moving points or residence, but still some excellent methods could have
a breakthrough towards this problem. As the report states, more than half of addicts are
less education and self-employment or even unemployment, therefore, which means
the activity mode of this special group might be different from normal residents (i.e.,
trajectory scope, activity time, preferred transit tool). Thus, from those aspects, it may
be rather useful and effective to overcome the classified puzzles through mobility
patterns, which are based on the spatiotemporal relations and can provide sufficient
sematic information, which means it plays a significant role when we want to train or
transfer our model. Our extensive experiments in Sect. 5 verify our assumption.

4.2 The MST-CNN Framework

As illustrated in the left part of Fig. 3, we collect moving data from tagged individuals
by Wi-Fi probes. We generate users’ trajectories including values of locations and time
through data cleaning and specific empirical tricks. After owning the trajectories, we
embedding the value of positions and time in each trajectory by the methods we
mention below. Briefly, on the first level, the trajectory data will be sliced according to
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Fig. 2. Distribution of human behavior similarity. We calculate the self-similarity for every
user and put them into corresponding groups. Then group distribution for different types of users
can be generated.

Table 1. The similarity of residents’ transit pattern.

Mac Day GeoLoc sequence Similarity

m1 Monday p1; p2; p3; p4; p6; p7 0.6
m1 Tuesday p2; p3; p5; p8 0.4
m1 Wednesday p2; p4; p9; p10 0.4
m1 Thursday p5; p6; p7; p8; p9 0.5
m1 Friday p1; p3; p4; p7; p9 0.5
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a fixed length, and on the second level, we embed the trajectory segments by location
embedding and time embedding and concatenate them to a trajectory tensor. And then
we generate relevant trajectories, which contains the aforementioned trajectory fea-
tures: location information, the length and shape of trajectory, activity time and pre-
ferred transit tools. Finally, data will be operated by a convolutional neural network to
predict identification tag.

Structure of Trajectory Embedding. Given a trajectory Tn
i ¼ O1;O2; . . .Onð Þ, where

Oi 2 m (m is the WiFi Probe), we would like to maximize the PrðOnjO1;O2; . . .;On�1Þ
over all the training corpus. The similar problem also has been found in the sequence
word2vec, where the input and output have the same resolution [23], thus we do not list
its formulas again here but to illustrate our concept briefly. PointEmb function takes its
input as a large corpus of trajectories and produces a vector space, with each unique
location object Oi in the space corpus assigned a corresponding vector vi in the space
with dimension m. Besides the location information embedding, we need to map the
activity time of each trajectory to a vector. Given trajectory Tn

i ¼ O1;O2; . . .;Onð Þ, the
activity time is Tn

i tð Þ ¼ O1 tð Þ;O2 tð Þ; . . .;On tð Þð Þ which is a series of timestamps.
A high-level view of the human mobility activities could be summarized by transition
during time sections, where each time section might contain multiple transit times-
tamps. In our work, we use t as time section which has 24 dimensions and it presents
people appears in Ox point at p th hour in a day, thus, each item of Tn

i tð Þ can be
represented by tj through its definition.

t ¼ 0. . .1. . .0½ �; Ox tð Þ 2 p th hour p 2 0; 23½ � ð2Þ

Fig. 3. Identification process with MST-CNN Framework. The process is comprised of four
steps from left to right. First, collecting moving data with user tag, then generate trajectories for
each user. After that, embedding user behavior into vector space and extract features through
different filters. Finally classifying identification by a fully connected layer. MST-CNN proposes
a novel embedding method to combine spatiotemporal information and describes user movement
behaviors on trajectory and personal levels.

Identifying Mobility of Drug Addicts 483



The j-th index position in t illustrates the activity behavior at that hour, which
presents the human movements on that time dimension. Since the time sections are
ordered in sequence, we add “positional encodings” by sine and cosine functions of
different indexes [24]:

TimeEmb pos;2ið Þ ¼ sin
pos

1000
2i

dmodel

� �
ð3Þ

TimeEmb pos;2iþ 1ð Þ ¼ cos
pos

1000
2i

dmodel

� �
ð4Þ

where pos is the index of t and i is the dimension. That is, each dimension of the
positional encoding corresponds to a sinusoid. We chose this function because we
assumed that it would learn the information of time and its relative position. The
positional embedding has the same dimension with dmodel, thus the two can be summed.

Algorithm TrajectoryEmbedding consists of two the main components, first a point
embedding generated by PointEmb, and an activity time embedding by TimeEmb, and
second, a padding and refine produce (Fig. 4).
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n x l x d tensor representa on of
user u’s trajectories

Convolu onal layer with various 
kernel size and max-pooling

n x k matrix represents
user u’s mobility pa ern

Convolu onal layer, max-pooling
and fully connected layer

Embedding dim

Fig. 4. Network architecture for MST-CNN. The network is comprised of two convolutional
and max-pooling layers. Elements with various color are presented as different object location,
which could generate factors by diversity filters.
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As Algorithm 1 shows, we first embed the location point to vector with random
path walk, and then, we split a long path into several short paths with equal length
l (line3) in order to keep each trajectory can have the same dimension. Combining
every vector Vp in sequence order and padding vector if the length of path less than
l (line 4) and computing the activity time Vt and merge it into vector V (line 5–6). By
repeating the embedding process, all the trajectories would be embedded to fixed length
matrix vectors.

Structure of Personal Encode. A user u with n trajectories could be presented as
vun ¼ ½vu1; vu2; . . .; vun�, that we concatenate single trajectory embedding to generate the
vector space of user. A convolution operation involves a filter w 2 R

hk, which is
applied to a short segment of h moving objects to produce a new feature. A feature ci is
calculated from a segment vui:iþ h�1 by formula ci ¼ f w � vui:iþ h�1 þ b

� �
, where b 2 R is

a bias term and f is a non-linear function as ReLu. We then apply a max-pooling
function over the feature map and extract the maximum value ĉ ¼ max cf g as the
particular selected feature. We select various filters (with varying segment length) to
generate different features. Finally, a fully connected layer with dropout and softmax
output is given to classify user behavior patterns.

5 Experiments

In this section, we evaluate the effectiveness of our model with traditional classifiers.
All the experimental data is collected from a city in the east of China. There are more
than thirty thousand WiFi Probes installed all over the city, which generate about two
billion records every day.

5.1 Data Set and Experimental Platform

Data Sets. According to the top-10 best-selling and most popular phone in China, we
first select android brands accounted for over 75% market in 2017. By verifying
validity of MAC through MAC API website, we would discard records excluded above
brands. And then, we need to distinguish a given MAC belongs to a resident or a
tourist. In this work, we discard MAC if it contains records in few days during the
month.

Experiment Platform. All the experiments are conducted on two environments. First
one is a Cloudera platform with 24 physical machines, which is used to do pre-process
and generate dataset. The other platform is a Dell server 64-bit system (16 core CPU,
each with 2.6 GHz, GPU GTX 1080ti, 32G main memory). The algorithms and models
in our paper were implemented by Python 3.

5.2 Baselines Setup

Our method is compared with a variety of competing methods grouped into the two
categories: CM and AD. And since the positive instances (addicts) are extremely low in
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our experiment, we use under-sample method on negative instances (residents) to
balance the data in training process. All the methods will repeat 10 times in train and
validate processes with random selected data set and report the averaged results.

Classification Methods (CM). Any supervised machine learning algorithm requires a
set of informative, discriminating and independent features. Since the moving data is
too trivial, we do some preprocess operations to extract features. For each moving
record, we first transfer location information to its related region by GeoHash function,
and then split continuous transit time into 15-min slices. Through these steps, we get
about 400 geo features and 96 time-window features for each trajectory.

After that, the classification methods, including Native Bayes (NB), Radom Forest
(RF), Logistic Regression (LR), Gradient Boosting Decision Tree (GBDT) and k-
Nearest Neighbor (KNN), are fitted with training set and evaluated with test data set.

Anomaly Detection (AD). Anomaly detection method is unsupervised and finding
outliers by measure the deviation of a given data point with its neighbors. In this work,
we use one-class SVM (OCSVM) to identify addicts, which only the negative instances
in the training set.

Neural Network Methods (MST-CNN). As aforementioned, MST-CNN uses tra-
jectory embedding and personal embedding in two levels to extract the information of
moving data and leverage convolutional neural network to identify the positive
instances. We split half data set for training and evaluate in the same test dataset as CM,
AD methods did.

The default training settings for our models are presented as follows: learning rate
1e-3, dropout 0.5, kernel [2–4]. We use precision, recall, and F-measure computed with
test data to evaluate the effectiveness of three models.

5.3 Result Summary

From Table 2, the precisions of traditional classifiers including RF, GBDT, KNN, LR
and NB. The AD method performs somehow better in recall, but still worse in pre-
cision, which means that user movement patterns among residents are not as similar as
we expect. In contrast, our deep learning approach MST-CNN significantly improve
the precision and F score. This observation shows that MST-CNN could reduce the
false-positive effectively and perform better in terms of CM and AD methods.

Table 2. Summarizes the performances of MST-CNN method and the baselines listed above.

Category Classification Precision Recall F1

CM Random forest 0.0280 0.7851 0.0541
GBDT 0.0301 0.8018 0.0580
KNN 0.0369 0.7782 0.0704
Logistic regression 0.0118 0.6843 0.0231
Naïve Bayes 0.0165 0.7675 0.0323

AD One Class SVM 0.0182 0.9123 0.0357
CNN MST-CNN 0.1906 0.6500 0.2948
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5.4 Parameter Sensitivity

In order to evaluate the effectiveness of various parameterization of MST-CNN, we
conduct experiments on classification task with vary the number of latent dimensions
(d), the length of segment (l). Except for the parameter being tested, all the other
parameters assume the default values.

We measure precision and recall as functions of parameters l and d. In Fig. 5(a), we
observe that increase the length of segment cannot improve the performance at the
same rate and set length to 50 is better than other values by considering both precision
and recall, which means longer trajectory does not contain more effective information.
We also examine how the embedding size affect the performance and choose 50 as our
parameter in other experiments.

6 Conclusion

In this paper, we investigated the problem of user identification from massive and sparse
trajectories in the city. We proposed a multiple-level convolutional neural network
MST-CNN with both spatial and temporal factors. Both trajectory and user profile are
embedded and various features extracted by different filters. Extensive experiments
show that our model significantly outperformance all the baselines, including classifi-
cation models and anomaly detection models in real dataset. Meanwhile, our model is
able to effectively capture the identification task in addicts control scenarios.

There are several future directions for our work. First, we only use geographical
information and time information to embed user behaviors. Other information like
region function is not encoded this time. Second, our current work does not consider
the influence of group activities, we detect addicts only based on their personal
behavior. Actually, an addict prefers to travel with other addicts. We plan to add these
features into our model to describe user movement patterns.
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Abstract. Traditional Chinese medicine (TCM) is well-known for its
unique theory and effective treatment for complicated diseases. In TCM
theory, “pathogenesis” is the cause of patient’s disease symptoms and
is the basis for prescribing herbs. However, the essence of pathogene-
sis analysis is not well depicted by current researches. In this paper, we
propose a novel topic model called Multi-Content embedding LDA (MC-
eLDA), aiming to collaboratively capture the relationships of symptom-
pathogenesis-herb triples, relationship between symptom-symptom, and
relationship between herb-herb, which can be used in auxiliary diagnosis
and treatment. By projecting discrete symptom words and herb words
into two continuous semantic spaces respectively, the semantic equiva-
lence can be encoded by exploiting the contiguity of their corresponding
embeddings. Compared with previous models, topic coherence in each
pathogenesis cluster can be promoted. Pathogenesis structures that pre-
vious topic modeling can not capture can be discovered by MC-eLDA.
Then a herb prescription recommendation method is conducted based on
MC-eLDA. Experimental results on two real-world TCM medical cases
datasets demonstrate the effectiveness of the proposed model for ana-
lyzing pathogenesis as well as helping make diagnosis and treatment in
clinical practice.
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1 Introduction

Traditional Chinese medicine (TCM) is an important way for disease treat-
ment in Chinese society and is increasingly adopted as a complementary therapy
around the world. Actually, TCM has been successfully applied to the prevention
and treatment of complicated diseases in western modern medical practice [14].
However, the essence of TCM theory is not well depicted by current researches.
Induction of the key knowledge from clinical data is a vital task for TCM.

In TCM theory, “pathogenesis” is the latent cause of patient’s disease symp-
toms and is the basis for prescribing herbs. Pathogenesis analysis is the key point
for disease diagnosis and treatment. For example, symptoms such as “cough” are
the appearance of inherent pathogenesis“Lung heat” and herbs are treatments
that target at this pathogenesis. Learning how doctors analyze pathogenesis can
be helpful in the diagnosis and treatment of TCM.

A number of models have been proposed for analyzing pathogenesis that
connect symptoms and herbs in TCM [1,3,4,15]. A major shortcoming among
these methods is that semantic similarity of symptoms and similarity of herbs
are not considered in these models. For example, “dark tongue” and “purple
tongue” are two semantic similar symptoms, if they are clustered into the same
pathogenesis then they can be treated by the same herbs. As for herbs, jointly
use similar herbs such as “mirabilite” and “rhubarb” can enhance the curative
effect, which is called mutual promotion in TCM theory. Previous model which
infers topic distributions only by word co-occurrence can not cluster similar
symptoms or similar herbs into the same pathogenesis if they do not appear
together in the same medical case. The relationships among symptoms, herbs
and pathogenesises are not well explored.

Motivated by the aforementioned challenges, in this paper, based on Latent
Dirichlet Allocation(LDA) [12], we propose a Multi-Content embedding LDA
model (MC-eLDA) to analyze pathogenesis that associates symptoms with and
herbs. Instead of discrete word terms, symptoms and herbs are two types of
continuous space embeddings sharing the same topic. Since embeddings have
been shown to be effective at capturing semantic regularities, and Gaussian
distributions capture a notion of centrality in space, our MC-eLDA can encode
the semantic similarity of symptoms and the semantic similarity of herbs. Based
on this model, diagnosis and herb prescription recommendation can be given
according to patient’s symptoms.

Compared with previous models, our model can assign high probability to
a symptom or herb which is similar to an existing topical symptom or herb by
exploiting the similarity in the embedding space. Hence topic coherence in each
pathogenesis cluster can be promoted. Further, completeness and distinctiveness
of pathogenesis clusters are improved. Connections of symptoms and herbs that
previous topic modeling can not captured can be exploited by MC-eLDA. The
relationships among symptoms, herbs and pathogenesises are deeply depicted.
Then diagnosis and herb recommendation based on pathogenesis can be more
accurate. In addition, when there comes a new medical case containing symptoms
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or herbs haven’t seen before, the continuous topic distribution makes it possible
to assign topics to previously unseen symptoms or herbs.

The main contributions of this paper are as follows:

– The relationships of symptom-pathogenesis-herb triples, relationship between
symptom-symptom, and relationship between herb-herb are collaboratively
depicted. Topic coherence is promoted and the ability of topic pattern dis-
covery is improved.

– To the best of our knowledge, we are the first to capture the similarity of
symptoms and the similarity of herbs by projecting discrete symptoms and
herbs into continuous semantic space. Multivariate Gaussian distribution have
been defined to handle the continuous embeddings.

– Based on the MC-eLDA model, herb recommendation with higher accuracy
can be realized to assist doctors make diagnosis and treatment in real clinical
practice.

– We have conducted extensive experiments on two real-world medical case
datasets to evaluate the performance of the proposed method. The results
demonstrate that MC-eLDA as well as its corresponding herb prescription
recommendation method outperforms all the compared methods.

2 Related Work

Recently, discovering and extracting medical knowledge have gained the popular-
ity. Particularly, in TCM researches, a hierarchical clustering model named latent
tree model [2] has been proposed for discovering latent structures of symptoms.
The authors apply this model to establish objective standards for syndrome
differentiation in TCM diagnosis of kidney deficiency syndromes. However, the
pathogenesis is only based on symptoms without considering the corresponding
herbs.

For the task of exploring relationships of symptoms and herbs in TCM medi-
cal cases, in [3], the authors propose a WSSH-MIML model. They formulate the
prescription-symptoms-predicting as a multi-label learning problem. However,
TCM diagnosis is a complicated problem. A herb along with different herbs
to form formula may treat different diseases, and a symptom may be caused
by different diseases. To address this, Wang et al. [4] propose a new asymmetric
multinomial probabilistic model for the joint analysis of symptoms, diseases, and
herbs in patient records to discover and extract latent TCM knowledge. More-
over, a topic model MC-LDA [1] is proposed for modeling relationship between
the symptoms and herbs, which considers pathogenesis as the latent topic that
connect symptoms and herbs. Both of these two models explore the relationships
of symptoms and herbs with latent variables. However, these models find topic
patterns only by word co-occurrence, without considering the semantic similarity
of symptoms or herbs.

Using deep learning to facilitate and enhance medical analysis is a promising
and important area. Several studies have been done to use neural network based
models for feature representation. In [6], Autoencoder is used to extract deep
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features for cancer diagnosis. Followed by Denoising Autoencoder (DAE) [7]
and Stacked Autoencoder (SAE) [8] being applied in feature learning for disease
diagnosis.

3 The Proposed Framework

3.1 Problem Definition

We define our computational problem as follows: the input consists of a set
of medical cases, where each medical case can be defined as a document that
contains a sequence of symptoms and a sequence of corresponding herbs. Then,
each symptom word and herb word is transferred as an embedding, denoted
by D = {s1, s2, ..., sn,h1,h2, ...,hm}, where each embedding si or hj is an
R−dimensional vector. These embeddings are pre-computed from external TCM
corpus. What is important is that similar symptoms or similar herbs in some
appropriate sense (in terms of the semantic of symptoms and efficacy, property,
or channel tropism of herbs) end up having similar embeddings. The output
consists of the pathogenesis distribution of each medical case and the probability
of each symptom and herb under each pathogenesis topic. The relationships
among symptom words, symptom embeddings, herb words, herb embeddings
and pathogenesises can be shown in Fig. 1.

Fig. 1. Relationships of symptom words, symptom embeddings, herb words, herb
embeddings and pathogenesises.

3.2 Multi-Content embedding LDA Model (MC-eLDA)

In this paper, we propose a Multi-Content embedding LDA (MC-eLDA) to take
into account the similarity of symptoms and similarity of symptoms, aiming
to improve the semantic coherence and explore the relationships among symp-
toms, herbs and pathogenesises, which can be used in auxiliary diagnosis and
treatment. First, MC-eLDA contains one latent factor that is associated with
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Fig. 2. Graphical model of MC-eLDA

both symptoms and herbs. Then, rather than assuming a medical case as an
aggregation of sequences of independent item types, MC-eLDA assumes that
medical case consists of a sequence of symptom embeddings and a sequence of
herb embeddings. These embeddings are generated by external TCM data. In
this way, similar symptoms and similar herbs can be captured by the distance
of their corresponding embeddings.

The graphical model of MC-eLDA is shown in Fig. 2. As before, each docu-
ment is generated by drawing a document-specific mixture factor θ over patho-
genesis topic 1, ...,K and the mix θ is drawn from a Dirichlet prior α. To
operate on continuous space of symptom embeddings and herb embeddings,
based on [9], we define a multivariate Gaussian distribution for each patho-
genesis topic k over embeddings, with mean μsk, covariance Σsk for symptom
and mean μhk, covariance Σhk for herb. The mean and variance of each of
these two Gaussian distributions are governed by a Gaussian-Inverse-Wishart
(a.k.a Normal-Inverse-Wishart, NIW) prior, which can be denoted respectively
as (μsk,Σsk) ∼ NIW (μs, κs,Ψs, νs), (μhk,Σhk) ∼ NIW (μh, κh,Ψh, νh), given
by

p(μsk, Σsk|ζs) = N(μsk|μs,
1

κs
Σsk)W −1(Σsk|Ψs, νs), (1)

p(μhk, Σhk|ζh) = N(μhk|μh,
1

κh
Σhk)W −1(Σhk|Ψh, νh), (2)

where parameter set ζs = {μs, κs,Ψs, νs}, and ζh = {μh, κh,Ψh, νh}.
Note that there is an observable binary variable, indicator l, whose value is

either SY MPTOM or HERB. When l = SY MPTOM , a symptom embedding
will be generated. When l = HERB, a herb embedding will be generated.

Thus, the generative process of MC-eLDA can be proceeded as it is shown
in Algorithm 1.

3.3 Parameter Estimation

In MC-eLDA model, symptom embeddings and herb embeddings of patho-
genesis topic k are generated by multivariate Gaussian distributions. Let
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Algorithm 1. Generative process of MC-eLDA
1: for each pathogenesis k ∈ K do
2: Draw symptom pathogenesis covariance Σsk ∼ W −1(Ψs, νs);
3: Draw symptom pathogenesis mean μsk ∼ N(μs,

1
κs

Σsk);

4: Draw herb pathogenesis covariance Σhk ∼ W −1(Ψh, νh);
5: Draw herb pathogenesis mean μhk ∼ N(μh, 1

κh
Σhk);

6: end for
7: for each document dm ∈ D do
8: Draw θm ∼ Dirichlet(α);
9: for each term in dm do

10: Draw pathogenesis zm,i ∼ Disc(θm );
11: if l=SYMPTOM then
12: Draw symptom vector sm,i ∼ N(μszm,i , Σszm,i);
13: end if
14: if l=HERB then
15: Draw herb vector hm,i ∼ N(μhzm,i , Σhzm,i);
16: end if
17: end for
18: end for

S(k) = {s
(k)
1 , s

(k)
2 , ...s

(k)
nsk} be the symptom embedding set, H(k) = {h

(k)
1 ,

h
(k)
2 , ...h

(k)
nhk} be the herb embedding set where the embedding’s topic is assigned

to k in all documents. The likelihood can be written as:

p(S(k), H (k)|μsk, μhk, Σsk, Σhk) =

sk∏

i=1

p(s
(k)
i |μsk, Σsk)

hk∏

i=1

p(h
(k)
i |μhk, Σhk). (3)

The posterior distribution of symptom part also follows NIW distribution,
whose parameters ζ

′
s = {μ

′
s, κ

′
s,Ψ

′
s, ν

′
s} is given by:

κ
′
s = κs + Nsk ν

′
s = νs + Nsk μ

′
s =

κsμs + Nsks̄(k)

κ′
s

Ψ
′
s = Ψs + Csk +

κsNsk

κ′
s

(s̄(k) − μs)(s̄
(k) − μs)

T, (4)

in which

s̄(k) =
1

Nsk

∑

sd

∑

i:zsd,1=k

(sd,i) Csk =
∑

sd

∑

i:zsd,i=k

(sd,i − s̄(k))(sd,i − s̄(k))T, (5)

where Nsk is the count of symptom embeddings whose topics are assigned to k
in all documents, s̄(k) is the sample mean of the symptom vectors and Csk is
the scaled form of sample covariance. The physical meaning of κ

′
s and ν

′
s is the

weight of the mean and covariance of the prior respectively.
Since generating symptom embeddings and herb embeddings are in the same

way. We focus on the detail derivation process of topic-symptom part, the deriva-
tion of topic-herb part is omitted here.
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We observe symptom embeddings and herb embeddings of different medical
cases, aiming to infer the model’s parameters Θ = {θm,μsk,Σsk,μhk,Σhk}.
Under the Bayesian framework, one of the reasonable ways to estimate param-
eters is using the expectation as parameters’ value:

θ̂dk =
N

(k)
sd + N

(k)
hd + αk

∑K
k=1(N

(k)
sd + N

(k)
hd + αk)

μ̂sk =
κsμs + Nsks̄(k)

κ′
s

Σ̂
′
sk =

Ψ
′
s

ν′
s − R + 1

μ̂hk =
κhμh + Nhkh̄(k)

κ
′
h

Σ̂
′
hk =

Ψ
′
h

ν
′
h − R + 1

, (6)

where N
(k)
sd or N

(k)
hd represents the number of symptom or herb embeddings that

are assigned to topic k in symptom or herb part of medical case document d.
R is the dimension of the embeddings. For the symptom part, model’s mean
is estimated from κs observations with sample mean μs, covariance matrix is
estimated from νs observations with sample mean μs and with sum of pairwise
deviation products Ψs = μsΣs. The herb part is similar. With formula (4) and
formula (5), the model’s parameters can be computed.

Then, we adopt the Gibbs sampling algorithm [10] as the learning algorithm.
When l = SY MPTOM , given conditional distribution for the ith symptom
embedding in the dth document, the sampler draws the hidden topic zsd,i as
follows:

p(zsd,i = k|l = SY MPTOM, z�(sd,i), S, H , ζs, ζh, α) ∝
N

(k)
sd,�i + N

(k)
hd + αk

∑K
k=1(N

(k)
sd,�i + N

(k)
hd + αk)

· tν
′
s−R+1(sd,i|μ

′
s,

κ
′
s + 1

κ′
s(ν

′
s − R + 1)

Ψ
′
s).

(7)

When l = HERB, given conditional distribution for the ith herb embedding
in the dth document, the sampler draws the hidden topic zhd,i as follows:

p(zhd,i = k|l = HERB, z�(hd,i), S, H , ζs, ζh, α) ∝
N

(k)
sd + N

(k)
hd,�i + αk

∑K
k=1(N

(k)
sd + N

(k)
hd,�i + αk)

· t
ν

′
h

−R+1
(hd,i|μ

′
h,

κ
′
h + 1

κ
′
h(ν

′
h − R + 1)

Ψ
′
h).

(8)

Here, z�(sd,i) represents the topic assignments of all excluding the ith symp-
tom embedding of document d. The posterior predictive is given by a multivariate
t-distribution.

3.4 Embedding with Prior Knowledge

The feature embeddings used by the MC-eLDA model is pre-computed. In this
work, we generate symptom and herb embeddings respectively based on deep
learning technique.

For symptoms, we use a popular and effective tool called word2vec1 as our
symptom2vec method to generate symptom embeddings from unlabeled corpus.
1 https://code.google.com/archive/p/word2vec/.

https://code.google.com/archive/p/word2vec/
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The corpus is obtained from an online TCM encyclopaedia2 in the form of natural
language statements. Each word is used as an input to a log-linear classifier with
continuous projection layer [13]. In this way, the semantic properties of symptoms
can be captured hence semantically related symptoms can be identified.

As for herbs, on one hand, there are various types of semantic relationship
among herbs. Therefore, it is not reasonable to simply learn the context of herb
words to generate embeddings by word2vec. On the other hand, the semantic
that we focus on for herbs is the structured feature information such as efficacy,
property, channel tropism, which can be used to capture the mutual promotion
relation. To facilitate this and obtain more discriminating features, we propose
a herb2vec method. First, each herb is transformed to a V -dimensional bina-
rized sparse vector, where each dimension represents a feature such as “moisten-
ing lung” efficacy. Then, denoising autoencoder (DAE) [11] is adopted, which is
widely used for unsupervised learning. Compared with traditional feature extrac-
tion methods such as PCA [5], DAE can extract non-linear more complicated
patterns more robustly. By computing the hidden layer representation of DAE,
which contains R units, we can obtain a concise R-dimensional (R � V ) embed-
ding for each herb.

4 Experiments

4.1 Experimental Settings

In this section, we conduct experiments on two real-world TCM datasets. One is
the medical cases from ancient Chinese medicine book for disease of amenorrhea,
which contains 106 cases with 152 symptom terms and 248 herb terms. The
other dataset is a collection of modern medicine clinical records which mainly
focuses on lung cancer disease, provided by a famous TCM hospital in China.
The dataset contains 952 medical cases, with 77 symptom terms and 356 herb
terms.

Our proposed model is compared with the following models:

– LDA [12]. A topic model where symptoms and herbs are treated as the same
type of word.

– MC-LDA [1]. A topic model where symptom words and herb words are treated
as two types of content in a document.

– G-LDA [9]. A topic model where symptoms and herbs are not distinguished.
Besides, each symptom and each herb in the medical case documents is pre-
sented as an embedding rather than a word term.

– User-based collaborative filtering (CF) [16]. A group recommendation method
for recommending herbs for a list of symptoms, which uses the smallest rating
score of group users as the recommendation score.

2 http://www.a-hospital.com/w/.

http://www.a-hospital.com/w/
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(a) Amenorrhea Dataset
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(b) Lung Cancer Dataset

Fig. 3. Pathogenesis evaluation on two datasets.

4.2 Pathogenesis Evaluation

In this section, we evaluate the correspondence of symptoms and herbs under
each pathogenesis cluster. We invite TCM specialists to score each cluster on
a 6-point scale: 5 corresponding to completely reasonable clusters where symp-
toms and herbs can be completely linked by pathogenesises and 0 to completely
unreasonable clusters.

Figure 3 shows the average score of MC-eLDA and comparison models when
number of topics K range from 3 to 6. The result shows that symptoms and herbs
under latent pathogenesises found by MC-eLDA are more reasonable based on
the theory of TCM. For LDA and G-LDA, we make no distinction between
symptoms and herbs. Therefore, in each cluster, the ratio of the number of
symptoms to the number of herbs are not certain. Especially in G-LDA, some
clusters contain only symptom words of herb words, which make no sense to
learn the relationship of symptoms and herbs.

4.3 Topic Coherence Evaluation

Topic coherence measures the degree of semantic similarity between high scoring
words in a topic. In this case, the coherence score of each topic is calculated by
the following equation:

Coherence Score =

∑
s1∈S t

∑
s2∈S t

D(s1, s2) +
∑

h1∈H t

∑
h2∈H t

D(h1, h2)

|S|2 + |H|2 , (9)

where St and Ht are the sets of high scoring symptoms and high scoring herbs
in topic t, D represents the euclidean distance between two vectors.

The mean and variance values of the topic coherence score are shown in
Table 1. It can be observed that MC-eLDA and MC-LDA have better coherence
score compared to the other two models. This result can verify the correctness
and feasibility of multi-content models to analyze pathogenesis that is associated
with both symptoms and herbs in TCM. Further more, MC-eLDA gives the best
performance over all the other models, which demonstrates that considering the
semantic similarity of both symptoms and herbs can improve topic coherence.
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Table 1. Results of the mean and variance values of the coherence scores on two
datasets. ↓ indicates the smaller the value is, the better the performance is.

Models Amenorrhea Lung cancer

Mean ↓ Variance Mean ↓ Variance

LDA 3.1943 0.6052 3.4484 0.2822

G-LDA 3.0680 0.7126 4.0734 0.4388

MC-LDA 2.4064 0.1043 3.4583 0.2663

MC-eLDA 2.3221 0.2230 3.4213 0.2970

4.4 Qualitative Evaluation

We pick up some topics and list the top symptoms and herbs of the topics in
Table 2, sorted by decreasing probability. We do not pick up topics generated
by LDA and G-LDA since they can not distinguish symptoms and herbs as two
types of words.

As we can see, the first topic of these two models both contains “cough”,
“phlegm”, along with other symptoms like “red tongue”, we can indicate that
these two clusters represent lung-related diseases. According to the TCM doc-
tors, the corresponding herbs, such as Rhizoma arisaematis, has the function of
relieving cough and reducing sputum to relieve asthma, and it belongs to “lung
channel”. However, the herb “Fuling” in MC-LDA doesn’t has the efficacy for
lung-related diseases. Futhermore, in the result of MC-eLDA, we can see simi-
lar symptoms, such as “fatigue” and “feeble” are clustered into the same topic.
In the herb part, “Angelica” and “Angelica root”, “Rehmannia glutinosa” and
“Radix rehmanniae”, are in the same topic.

4.5 Herbs Recommendation Accuracy

We follow the hybrid recommendation method in [1] to recommend herbs given
a list of symptoms. Due to the same reason mentioned in the above section that
LDA and G-LDA can’t distinguish symptoms and herbs, they fail in this task.

For each dataset, two-thirds of medical cases are used as training data and the
others as test data. We employ Jaccard Coefficient to measure the performance,
which is defined as:

Jaccard =
1

|U |
∑

u∈U

|R(u) ∩ T (u)|
|R(u) ∪ T (u)| , (10)

where |U | is the number of cases in test set, R(u) is the list of recommended
herbs given the symptoms of a patient and T (u) is the prescription given by
doctor.

Table 3 shows the accuracy of these three methods. Top frequent method
performs worst, since it only recommends the most commonly prescribed herb
for each symptom. MC-eLDA based method outperforms other methods on both
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Table 2. Comparison between top symptoms and herbs of some topics from MC-eLDA
and MC-LDA.

Table 3. Accuracy of herb prescription recommendation

Top frequent CF MC-LDA MC-eLDA

Amenorrhea 0.1465 0.2410 0.2573 0.3437

Lung cancer 0.0741 0.2090 0.4034 0.4811

dataset. This result shows the potential that our model learns from patient record
to assist doctors make diagnosis and treatment in real clinical practice.

5 Conclusion

In this paper, we propose a novel model MC-eLDA to analyze pathogenesises
that connect symptoms and herbs in TCM clinical data. In particular, symptoms
and herbs are projected as two types of continuous space embeddings sharing
the same topic. Therefore, the relationship among symptom-pathogenesis-herb
triples, relationship between symptom-symptom, and relationship between herb-
herb can be collaboratively captured. Experimental results on two real-world
TCM medical cases datasets demonstrate that our model can deeply and ratio-
nally analyze pathogenesises and recommend herb prescription as references for
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patients and doctors. For the future work, we plan to learn the embeddings in
an integrated way by solving an optimization problem with both representation
learning and topic modeling.
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Abstract. The proximity based information retrieval models usually
use the same pre-define density function for all of terms in the col-
lection to estimate their influence distribution. In healthcare domain,
however, different terms in the same document have different influence
distributions, the same term in different documents also has different
influence distributions, and the pre-defined density function may not
completely match the terms’ actual influence distributions. In this paper,
we define a saturated density function to measure the best suitable den-
sity function that fits the given term’s influence distribution, and pro-
pose a self-adaptive approach on saturated density function building for
each term in various circumstance. Particularly, our approach utilizing
Gamma process is an unsupervised model with no requirements for exter-
nal resources. Then, we construct a density based weighting method for
the purpose of evaluating the effectiveness of our approach. Finally, we
conduct our experiment on five standard CLEF and TREC datasets,
and the experimental results show that our approach is promising and
outperforms the pre-defined density functions in healthcare retrieval.

Keywords: Saturated density function · Information retrieval ·
Self-adaptive

1 Introduction

Embedding the context information of queries and documents into retrieval pro-
cess is an effective technique for boosting the overall performance in healthcare
Information Retrieval (IR), which has been drawn a lot of attention in recent
years. Specifically, proximity based approaches considering the influence a query
term acts on its surrounding text show significant improvements over basic prob-
abilistic IR models [12–14,22]. In these models, an occurrence of a term has been
assumed to have an impact towards its neighboring texts, while the influence was
decreasing with the increase of the distance to the place of occurrence. A density
c© Springer Nature Switzerland AG 2019
Q. Yang et al. (Eds.): PAKDD 2019, LNAI 11439, pp. 501–513, 2019.
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function is utilized to estimate this influence distribution. Many different clas-
sical mathematic equations have been selected to serve as the density functions
in the proximity based IR models.

However, many proximity based approaches assume that the terms in the
whole collection share the same influence distribution over multiple documents.
In other words, they use a pre-defined density function to fit every term’s influ-
ence distribution without considering the contextual information within different
documents. This may lead to a low performance in healthcare IR, since different
word influence may mean different disease.

Many previous work [13,18,22] have shown the evidences that different den-
sity functions work in different situations and the pre-defined density functions
are not always effective in retrieval tasks, especially in healthcare domain. Firstly,
a sentence is composed by different sentence constituents, for example subject,
predicate and object, such that different medical words in different sentence con-
stituents have different influence distributions in a healthcare document. Then,
the same medical word has different influence distribution within different doc-
ument in terms of the scenario it has occurrence, such as celebrating plot and
leaving plot. Finally, the existing kernel functions may not match the evolution
of the medical term’s actual influence distribution since authors have differ-
ent writing styles. Those evidences imply that a single density function cannot
completely match each medical term’s actual influence distribution in multiple
healthcare documents at each position in the term’s impact scope. Thus, we are
motivated to build a best suitable density function for each medical term accord-
ing to its characteristics in a document, which ideally results in a self-adaptive
density function building approach.

We propose the definition of Saturated Density Function (SDF) and provided
a self-adaptive approach on constructing the SDF for probabilistic IR system.
The major contribution is that the proposed approach builds completely new and
suitable density function for each term in multiple healthcare documents, which
is distinctly different with the pre-defined density function. The self-adaptive
approach is implemented by maximizing the probability in the Gamma process,
where the shape parameter α is configured as the distance away from the given
term, and the scale parameter β is configured as the quotient of actual influence
and α. Furthermore, our approach do not need any prior data, external resources
or to train the terms in advance. Finally, a density based weighting method is
introduced for the evaluation purpose.

We test our approach in the healthcare domain, where three CLEF eHealth
datasets and two TREC CDS datasets are adopted. The experimental results
show that our self-adaptive approach is promising and significantly outperforms
the pre-defined density functions and the state-of-the-art models in the retrieval.

The remainder of this paper is organized as follows. We first discuss the
related work in Sect. 2. In Sect. 3, we introduce the preliminary knowledge.
Then, we propose the self-adaptive SDF building approach in Sect. 4 and apply
it into probabilistic information retrieval. After that, we set up the experimental



A Self-adaptive Saturated Density Function for Healthcare Retrieval 503

environment in Sect. 5, and analyze the experimental results in Sect. 6. Finally,
the conclusions and future work are presented in Sect. 7.

2 Related Work

Term proximity in information retrieval has been investigated a lot since 1990s [3,
7,9,10]. Keen et al. [9,10] and Clarke et al. [3] introduced the “NEAR” operator
to quantify the proximity of query terms. Then, the term span was first utilized
to measure the proximity in Hawking’s work [7].

In order to describe proximity specifically, many statistics concepts were
adopted, such as the minimum distance, the average of the shortest distance,
etc. In [20], Tao et al. listed and evaluated different proximity measures, then
concluded that the minimum pair-wise distance was the most effective. Cummins
et al. in [4] investigated several term-term proximity measures and developed a
learning approach to combine those proximity measures.

Recently, the proximity-based density functions have been widely adopted to
propagate term influence in the existing retrieval models [2,5,6,11,15,17,18]. In
the early times, Kretser and Moffat [5] applied the tf ·idf score of each query term
to its positions, where the Triangle kernel, the Cosine kernel, the Circle kernel
and the arc contribution functions were also discussed. The document score was
the highest accumulated tf · idf in the influence scope. Similarly, the vector
space model and Boolean model were utilized as density functions respectively
in [2,11].

At present, most state-of-the-art proximity-based information retrieval mod-
els [12–14,16,19,21,22] usually utilized kernel functions to act as the density
functions. Lv and Zhai proposed a positional language model in [13]. They
defined a language model for each position of a document, and scored a doc-
ument based on the scores of its PLMs. The PLM was estimated based on
propagated counts of words within a document through a pre-defined density
function. Zhao et al. defined a cross term as a virtual term in the document
in [22]. A cross term occurred when two query terms appeared close to each
other and their density function had an intersection. Embedding the cross term
information into the BM25 model, they established a CRTER model to rank the
retrieval documents. In this approach, kernel functions were adopted as the den-
sity functions to calculate the weight of cross term. They studied the Gaussian,
Triangle, Cosine and Circle kernel density functions, and suggested Gaussian as
the best candidate.

However, the existing proximity-based IR models usually use the pre-defined
density function for all query terms without considering their characteristics.
Our work is much different, where we design a self-adaptive approach to build
new density functions for a term in different circumstance. Meanwhile, we apply
this self-adaptive approach into a probabilistic weighting model to achieve a
density based retrieval model.



504 Y. Song et al.

3 Preliminaries

In this section, we provide the preliminary knowledge of information content,
kernel density functions and unite influence, for the purpose of introducing the
definition of saturated density function and the self-adaptive approach we pro-
posed in the following sections. Suppose, Q = {q1, q2, ..., qn} is a query and D is
a document, where qi (i = 1, 2, ..., n) is a query term occurring in document D.

3.1 Information Content

In semantic information theory, the information content of a term measures the
expected value of the information contained in this term. Utilizing the Pois-
son process, the information content of term qi in document D can be defined
similarly as [1]:

Infc =(λ +
1

12 · tf
− tf) · log2e + tf · log2

tf

λ

+ 0.5 · log2(2π · tf),
(1)

where λ = F
N , F and N are the document number in the elite set (a set of

documents in which the term t occurs) and in the collection respectively. tf is
the word frequency of term t in document D.

Here log2λ is the inverse document frequency (IDF) of qi. Therefore, Infc is
actually determined by the TF and IDF of term qi.

3.2 Kernel Density Functions and Influence Scope

There are four popular kernel density functions introduced as follows.

1. Gaussian Density: Gaussian(u) = exp(−u2

2σ2 ), u ≤ σ.
2. Cosine Density: Cosine(u) = 1

2 [1 + cos(πu
σ )], u ≤ σ.

3. Circle Density: Circle(u) =
√

1 − (u
σ )2, u ≤ σ.

4. Triangle Density: Triangle(u) = 1 − u
σ , u ≤ σ.

Where u is the distance away from the given query term. The parameter σ
restricts the propagation scope of each term which is defined as the term’s influ-
ence scope. Followed by the previous work [5], we define σ as:

σ = � n

dl
· dl

tf
�, (2)

where n is the number of unique words in the given document, dl is the length
of the document, and tf is the word frequency.
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3.3 Unit Influence

Density functions are to describe the occurrence impact of term qi (i = 1, 2, ..., n)
on its neighboring text. Then, we define the unit influence of qi at the distance
u upon multiple density functions as:

Infu
qi

(fdensity) =
∫ u

u−1

fdensity(x)dx, fdensity ∈ Ω, (3)

where u ≤ σ, and Ω is a density function space which is composed by pre-defined
density functions.

4 Methodology

In this section, we first propose the definition of saturated density function as
an approximating of the actual influence distribution of a given term. Then, we
introduce the self-adaptive approach on automatically building the saturated
density function for each term in multiple circumstance. Finally, we apply a
density based weighting method to evaluate the saturated density function.

4.1 Saturated Density Function

The Saturated Density Function (SDF) is a function that best fits the actual
influence distribution of a term. The SDF is various based on different terms
in multiple documents, which is constructed by utilizing the pre-defined den-
sity functions in a density function space. Here, we present the mathematical
definition of the SDF as follows.

Definition 1. Suppose I(x) is the actual influence distribution of the term qi,
Ω is the space of qi’s density functions. The piecewise function SDFqi

which is
constructed by density functions in Ω, satisfies

SDFqi
= arg min

fdensity∈Ω
|
∫ u

u−1

I(x)dx − Infu
qi

(fdensity)|, (4)

in each unit interval [u−1, u] is called the saturated density function of qi in
Ω, where u ≤ σ is the distance away from qi, and σ is the influence propagation
scope of qi.

The definition implies that the large the density function space is the accurate
the SDF is.

4.2 Self-adaptive SDF Building Approach

Under the above definition of saturated density function, we build the SDF in
the density function space Ω with the Gamma process (Formula 5).
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P (x;α, β) =
1

βαΓ (α)
xα−1e− x

β , x > 0. (5)

The Gamma process expresses the waiting time distribution that an event
utilized to occur α times if this event occurs with a known average rate [8]. Here,
α is called the shape parameter and β is called the scale parameter. In fact, αβ
is the expectation of Gamma process.

Mathematically, if we take the term’s unit influence calculated by the density
function as a random variable, the actual influence of the term in the unit interval
[u−1, u] is exactly the best choice of the variables’ expectation. In the following
section, we will give the definition and the calculation method of the term’s
actual influence.

Here, we integrate the proximity information into Gamma process. Suppose
the distance u away from the given term stands for the times the event occurs
(i.e. α in Formula 5), and the term’s unit influence Infu

qi
(fdensity) in the interval

[u − 1, u] stands for the time consumed when event occurs u time (i.e. x in
Formula 5). At the same time, the actual influence of qi describes the real impact
on its neighboring text. If we deem the unit influence Infu

qi
(fdensity) as the

random variable. Then, the term’s actual influence Iqi
in the interval [u − 1, u]

is theoretically selected as the expected value of the associated random variable
(i.e. αβ). Then, the larger the probability is, the closer the Infu

qi
(fdensity) to

the actual influence is. Therefore, the maximum probability of the SDF in the
interval [u − 1, u] can be:

SDFqi
= arg max

fdensity∈Ω
{ 1
βαΓ (α)

xα−1e− x
β }, (6)

where x = Infu
qi

(fdensity), α = u, β = Iqi

u .

4.3 Actual Influence

The total actual influence of qi, noted as TAIqi
, is the accumulation (or summa-

tion) of qi’s genuine impact towards its neighboring text, i.e. TAIqi
=

∫ σ

0
I(x)dx.

Thus, Iqi
= TAIqi

σ can be seen as the actual influence at each unit interval
[u − 1, u], u ≤ σ.

For sake of obtain the actual influence Iqi
, we should calculate the total

actual influence TAIqi
at first, since Iqi

is derived from TAIqi
. The information

content measures the expected value of the information contained in the term,
which also reveals the term’s total actual influence. Hence, we make the following
assumption.

Assumption 1. For a given term qi, there exists a linear relationship between
its total actual influence and the information content. That is:

TAIqi
= c1Infc + c0, (7)

where c1 = c2
tf . c0, c2 ∈ � are constants, tf is the word frequency of qi.
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For a given term qi, its information content Infc measures the total influence
that qi acts on the whole document D. Then, Infc

tf is qi’s total influence in its
impact scope at the position qi. Infc

tf can be treated as the approximate value
of qi’s total actual influence, since it is derived from the information content.
In order to better satisfy different datasets’ characteristics, we make a linear
transformation on Infc

tf and obtain Formula 7.

4.4 Density Based Weighting Method

In this subsection, a density based weighting method is derived to evaluate the
effectiveness of the proposed SDF in an IR system. In the consideration that
the term’s total influence on the document reflects the value of its information
content, and the classical DFR-PL2 IR model

w(qi,D) = (1 − Prob) · Infc,

the density based weighting method is presented as:

w(qi,D) = (1 − Prob) · tf ·
σ∑

u=1

Infu
qi

(kernel), (8)

where Prob is the probability of occurrence of a term within a document with
respect to its elite set (set of documents that contain the term), 1−Prob measures
the risk of accepting a term as a good descriptor of the document when the
document is compared with the elite set of the term, 1 − Prob is measured by
the Laplace’s law of succession.

Here for 1 − Prob, we refer the definition in [1] as:

1 − Prob =
1

tf + 1
.

Therefore, the final matching function of the relevant documents is

R(Q,D) =
∑

qi∈Q

qtfi · w(qi,D), (9)

where qtfi stands for within-query term frequency.

5 Experiment

5.1 Datasets and Evaluation Metrics

We conduct the experiments on three standard CLEF collections and two TREC
collections. The datasets concentrate on the medical domain. The statistics infor-
mation is presented in Table 1, where “eHealth13”, “eHealth14” and “eHealth15”
denote the CLEF eHealth datasets utilized in the year of 2013, 2014 and 2015.
These collections consist of web pages covering a broad range health topics,
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targeted at both the general public and healthcare professionals. Meanwhile,
“CDS14” and “CDS15” denote the TREC Clinical Decision Support track
datasets utilized in the year of 2014 and 2015. These collections are snapshots
of the open access subset of PubMed Centeral. All of the topics utilized in the
five collections are medical case narratives. For all the datasets, each term is
stemmed by the Porter’s English stemmer, and the standard English stop words
are removed.

We adopt the TREC official evaluation measures in our experiments, namely
the Mean Average Precision (MAP) and Normalized Discounted Cumulative
Gain (NDCG@10). To emphasize the top retrieved documents, we also include
P@10 in the evaluation measures. All statistical tests are based on the Wilcoxon
Matched-pairs Signed-rank test.

Table 1. Overview of datasets

Collection # of Docs Topics # of Topics

eHealth13 1,104,298 qtest1-qtest50 50

eHealth14 1,104,298 qtest2014.1-qtest2014.50 50

eHealth15 1,104,298 clef2015.test.1-clef2015.test.67 67

CDS14 733,138 1–30 30

CDS15 733,138 1–30 30

5.2 Experimental Results

Our experiment mainly investigate the effectiveness of the SDF over the five
medical datasets. Since our density based IR model is derived from the classical
DFR-PL2 model, we adopt the original DFR-PL2 model without incorporating
proximity information as our baseline. At the same time, many start-of-the-art
proximity based IR models suggested that kernel density functions, especially
the Gaussian density function, Triangle density function, Cosine density function
and Circle density function, are the better candidates for the density functions
since they make significant improvements in IR task. Thus, we suppose our
density function space is composed by Gaussian, Triangle, Cosine and Circle
kernel density functions, and the SDF function is built based on this space.
Finally, the relevant parameters in our approach are set as c1 = 1

tf and c0 = 0.
Table 2 presents the performance in terms of MAP, NDCG and P@10 on five

datasets. Gaussian, Triangle, Cosine and Circle stand for the pre-defined density
functions in the density space Ω for all the terms over the multiple documents.
The experimental results show that our proposed SDF makes the significant
achievements over the baseline and all of the pre-defined density functions.
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Table 2. Overall performance: “∗” indicates the significant improvement over DFR-
PL2, and “+” means the significant improvement over the Gaussian density function.

Eval Metric eHealth13 eHealth14 eHealth15 CDS14 CDA15

DFR-PL2
MAP
P@10

NDCG@10

0.2735
0.4080
0.3762

0.2989
0.3414
0.3802

0.2578
0.4000
0.3888

0.1684
0.2967
0.2689

0.1686
0.2967
0.2613

SDF

MAP

P@10

NDCG@10

0.3568∗+

(+30.46%)

0.548∗+

(+34.31%)

0.4722∗+

(+25.52%)

0.4140∗+

(+38.51%)

0.6126∗+

(+32.42%)

0.4968∗+

(+30.67%)

0.2854∗+

(+10.71%)

0.4316∗+

(+7.90%)

0.4299∗+

(+10.57%)

0.1883∗+

(+11.82%)

0.3633∗+

(+22.45%)

0.3329∗+

(+23.80%)

0.1807∗+

(+7.18%)

0.3963∗+

(+33.57%)

0.3217∗+

(+23.12%)

Gaussian

MAP

P@10

NDCG@10

0.3222∗

(+17.81%)
0.4980∗

(+22.06%)
0.4404∗

(+17.07%)

0.3858∗

(+29.07%)
0.4780∗

(+15.46%)
0.4420∗

(+16.25%)

0.2660∗

(+3.18%)
0.4076∗

(+1.90%)
0.4022∗

(+3.45%)

0.1804∗

(+7.13%)
0.3400∗

(+14.59%)
0.3177∗

(+18.15%)

0.1722∗

(+2.14%)
0.3567∗

(+20.22%)
0.3070∗

(+17.49%)

Triangle

MAP

P@10

NDCG@10

0.2971∗

(+8.63%)
0.4600∗

(+12.75%)
0.3981∗

(+5.82%)

0.3052∗

(+2.11%)
0.4340∗

(+4.83%)
0.4188∗

(+10.15%)

0.2496
(-3.18%)
0.3727

(-6.83%)
0.3707

(-4.66%)

0.1795∗

(+6.59%)
0.3400∗

(+14.59%)
0.3168∗

(+17.81%)

0.1715
(+1.72%)
0.3600∗

(+21.33%)
0.3083∗

(+17.99%)

Circle

MAP

P@10

NDCG@10

0.3061∗

(+11.92%)
0.4740∗

(+16.18%)
0.4088∗

(+8.67%)

0.3239∗

(+8.36%)
0.4640∗

(+12.08%)
0.4311∗

(+13.39%)

0.2510
(-2.64%)
0.3833

(-4.18%)
0.3746

(-3.65%)

0.1801∗

(+6.95%)
0.3400∗

(+14.59%)
0.3171∗

(+17.92%)

0.1716
(+1.78%)
0.3567∗

(+20.22%)
0.3047∗

(+16.61%)

Cosine

MAP

P@10

NDCG@10

0.2971∗

(+8.63%)
0.4600∗

(+12.75%)
0.3981∗

(+5.82%)

0.3052∗

(+2.11%)
0.4340∗

(+4.83%)
0.4188∗

(+10.15%)

0.2496
(-3.18%)
0.3727

(-6.83%)
0.3707

(-4.66%)

0.1795∗

(+6.59%)
0.3400∗

(+14.59%)
0.3168∗

(+17.81%)

0.1715
(+1.72%)
0.3600∗

(+21.33%)
0.3083∗

(+17.99%)

6 Analysis

6.1 Influence of Proximity with Density Functions

Table 2 shows that proximity with density function works very well in the health-
care IR system, since we can see that all the density functions, including the SDF,
outperforms the baseline without proximity. At the same time, Gaussian density
function achieves the best performance compared with other density function in
the space Ω. These conclusions are consistent to those proposed by the previous
work [13,22].

According to our statistical numbers, the average length of documents in
eHealth and CDS datasets are 1071 and 3785 respectively, which indicate that
the proximity with density function is promising in improving long text retrieval.

Moreover, experimental results in eHealth15 show that only Gaussian density
function have improvement in the IR system. This evidence indicates that the
per-defined density functions are not always effective in IR task, and different
density functions work in different circumstances.
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6.2 Effectiveness of SDF

Our proposed SDF outperforms all of the pre-defined density functions in the
density function space, especially in eHealth15 data, which implies that the SDF
fuses the advantages of all candidate density functions for the terms. This finding
further proves our motivation that the SDF optimizes the pre-defined density
functions based on the situations of the terms in a document, instead of only
applying a pre-defined kernel over a collection.

In particular, we find that the SDF is more sensitive in eHealth15 data since
Triangle, Cosine and Circle density functions make no improvement. We go fur-
ther into the data and find the main reason that topics of eHealth15 are described
in colloquial language, without containing any standard medical terminology,
while the topics of eHealth13, eHealth14, CDS14 and CDS15 are made of pro-
fessional medical terms. This evidence indicates that the proposed SDF can
better understand queries from patients without any medical backgrounds.

6.3 Triangle vs. Cosine

The experiment results show that the Triangle kernel and the Cosine kernel have
the same performance in the five datasets. In fact, the documents are ranked by
the score R(Q,D) (Formula 9), where the only difference among the pre-defined
kernel functions is the value of unit influence Infu

qi
(fdensity). For Triangle and

Cosine, we have

σ∑

u=1

Infu
qi

(Triangle) =
∫ σ

0

Triangle(u)du =
σ

2
,

and
σ∑

u=1

Infu
qi

(Cosine) =
∫ σ

0

Cosine(u)du =
σ

2
,

Here
∑σ

u=1 Infu
qi

(Triangle) =
∑σ

u=1 Infu
qi

(Cosine), which means that a docu-
ment has the same score with Triangle and Cosine. This explains why Triangle
and Cosine get the same results.

Furthermore, the above conclusion suggests to replace Cosine with Triangle
in the real applications, since Triangle has a lower computation complexity than
Cosine.

6.4 Comparisons with the State-of-the-Art Approaches

Here we compare our proposed SDF with the state-of-the-art models PLM [13]
and CRTER [22], and CLEF eHealth official best results in Table 3 in terms of
MAP on three eHealth datasets. We can see that our SDF leads the best perfor-
mance, where the significant tests have been done on CRTER results. However,
the experimental results show that our SDF model makes higher improvements in
eHalth13 and eHealth15 contrast with eHealth14. Since the eHealth13, eHealth14
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and eHealth15 uses the same collection, we go further into the queries utilized
in these three datasets and find that eHealth13 and eHealth15 tend to have a
longer topics. In fact, queries utilized in eHealth13 and eHealth15 are sentences,
whereas the topics utilized in eHealth14 are composed by seldom keywords. This
evidence implies that our SDF based IR model has outstanding performance in
long queries retrieval.

Table 3. MAP comparison with CRTER and official best results (“∗” indicates signifi-
cant improvement over CRTER, and the percentage indicates the promotion compared
with the official best results.)

eHealth13 eHealth14 eHealth15

PLM 0.2849 0.2918 0.2427

CRTER 0.3141 0.2802 0.2431

Official results 0.3040 0.4016 0.2549

SDF 0.3568∗

(+17.37%)
0.4140∗

(+3.09%)
0.2854∗

(+11.97%)

7 Conclusions and Future Work

In this paper, we proposed a saturated density function based method to pro-
mote the healthcare information retrieval. Firstly, we define a saturated density
function, and propose a self-adaptive approach on saturated density function
building, where the approach provides each term a freedom to build the best
suitable density function at different circumstances, instead of universally uti-
lizing a single pre-defined density function over the whole collection. Then, our
experimental results on five standard CLEF and TREC datasets show that our
proposed SDF makes significant improvement compared with all of the pre-
defined density functions. Furthermore, SDF is effective in understanding queries
with colloquial language. Finally, we suggest that Triangle is computationally a
better candidate than Cosine when they have the same ranking scores.

In the future, we will consider more density functions and more application
circumstances, for instance, taking the positions that query terms have occur-
rence in the sentence or the paragraph into consideration. At the same time, we
will investigate whether the SDF performance is coincident with the increase of
the density function space size.
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Abstract. Cytometry plays an important role in clinical diagnosis and
monitoring of lymphomas, leukaemia, and AIDS. However, analysis of
modern-day cytometric data is challenging. Besides its high-throughput
nature and high dimensionality, these data typically exhibit complex
characteristics such as multimodality, asymmetry, heavy-tailness and
other non-normal characteristics. This paper presents cytoFA, a novel
data mining approach capable of clustering and performing dimension-
ality reduction of high-dimensional cytometry data. Our approach is
also robust against non-normal features including heterogeneity, skew-
ness, and outliers (dead cells) that are typical in flow and mass cytom-
etry data. Based on a statistical approach with well-studied properties,
cytoFA adopts a mixtures of factor analyzers (MFA) to learn latent non-
linear low-dimensional representations of the data and to provide an
automatic segmentation of the data into its comprising cell populations.
We also introduce a double trimming approach to help identify atyp-
ical observations and to reduce computation time. The effectiveness of
our approach is demonstrated on two large mass cytometry data, outper-
forming existing benchmark algorithms. We note that while the approach
is motivated by cytometric data analysis, it is applicable and useful for
modelling data from other fields.

1 Introduction

Flow cytometry enables the study of physical and chemical properties of particles
at the single-cell level, thus rendering it widely useful in many biomedical fields
and is now routinely used in both clinical and research immunology. Modern
cytometers has the ability to detect up to 30 markers simultaneously at a rate
of 10,000 cells per second, thus generating datasets of massive size in a high-
throughput manner. A more recent technology, mass cytometry or cytometry
by time of flight (CyTOF), had the potential to detect up to 100 simultaneous
measurements per cell [1], although at a slower speed than flow cytometer. This
Electronic supplementary material The online version of this chapter (https://
doi.org/10.1007/978-3-030-16148-4 40) contains supplementary material, which is
available to authorized users.
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had surpassed the ability of manual analysis, the current standard procedure
for analysing these data. This process is also subjective, error-prone, and time-
consuming.

An important part of cytometric data analysis is the task of identifying differ-
ent cell populations within the data. Traditionally, this is carried out by analysts
in a manual process known as gating where regions of interests are identified by
visually inspecting a series of bivariate projections of the data. Not only is this
process time-consuming and subjective, but it can be very difficult to detect
higher-dimensional inter-marker relationships in this way. In view of this, com-
putational tools have been developed in recent times to assist or automate the
gating process [2–4]. Many of these proposals adopt a mixture model-based app-
roach. However, traditional mixture models are not well suited for modelling
cytometric data as the symmetric component densities find it challenging to
handle non-normal cluster shapes. This led to recent work on finite mixtures
of skew distributions [5–11]. Although they demonstrated that skew mixture
models are effective in segmenting cytometry data, these papers focused almost
exclusively on small cytometric data sets due to the associated computational
complexity.

In this paper, we propose a new computational tool for analyzing complex
cytometry data sets. It is especially suited for large and high-dimensional data
for which traditional skew mixture models find it challenging to analyse. We
propose to adopt a factor analysis approach to simultaneously perform gating
and dimension reduction of large cytometric data sets. This allows us to achieve
local linear dimensionality reduction as well as global non-linear dimensionality
reduction. Further to this, by adopting latent factors that follow skew distri-
butions, our approach can provide a more realistic model for cytometric cell
populations. Moreover, a double trimming approach is proposed to help discern
atypical and dead cells from normal cells.

The rest of this paper is organised as follows. In Sect. 2, we present a small
example to motivate the adoption of skew factor analysis model. In Sect. 3, we

Fig. 1. Modelling an asymmetric cluster of cells. (a) Fitting a GMM would require two
components to adequately model the cluster. (b) A single skew normal distribution
would suffice for the asymmetric cluster.
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build the cytoFA model by walking through its submodels. This includes a discus-
sion of skew normal models, its mixture variants, their factor analytic variants,
and a novel double trimming approach. In Sect. 4, we briefly outline how the
cytoFA model can be fitted to a data. An ECM algorithm can be implemented
in closed form for this task. Finally, the usefulness of the proposed approach
is demonstrated in Sect. 5 on two large high-dimensional mass cytometry data
containing 24 and 14 major immune cell populations and 13 and 32 markers,
respectively.

2 Motivation

To begin, let us consider a small flow cytometric data derived from a peripheral
blood sample of a Graft vs Host Disease (GvHD) patient. The sample, after
staining with CD8β and CD8, reveals a unimodal and skewed cell population
(Fig. 1). The inadequacy of the traditional Gaussian mixture model in this case
is apparent in Fig. 1(a) where it splits the population into two clusters in order to
accommodate for the asymmetry in the data. While many authors would choose
to merge the two components in this situation, it will lead to unnecessary diffi-
culties in downstream analysis (for example, in interpretation and derivation of
population characteristics), let alone being computationally inefficient. Notably,
a single skew normal distribution would suffice in this case and provides a far
more accurate fit to the data (Fig. 1(b)). Moreover, the fitted skew normal distri-
bution can correctly estimate the mode of the distribution of the cell population,
whereas none of the mode of the components of the GMM coincides with the
empirical mode of the data. This motivated the adoption of skew mixture models
for clustering flow cytometric data in [5]. Their effectiveness have been demon-
strated in a number of subsequent work including [12–14].

As mixture models are highly parametrized models, direct application to
high-dimensional data may become computationally infeasible. This is even more
pronounced for skew mixture models as they involve more parameters than their
symmetric counterparts. It can be shown that the number of parameters, and
hence the computation time, increases quadratically as the dimension of the
data increases. In statistics and related applied fields, factor analysis (FA) model
and mixtures of factor analyzers (MFA) are gaining increasing popularity as a
powerful dimensional reduction technique. These models are implicit dimension
reduction techniques, in contrast to commonly used variable selection approaches
which are explicit. The former had the appealing advantage of simultaneous
clustering and dimension reduction. Although one may carry out clustering sub-
sequent and independently to variable selection, as is common practice in many
applications, the results are often much inferior to implicit approaches; see [15]
for an illustrative example.

As skew mixture models is a relatively new area of research, few authors have
considered factor analytic extensions of these models. Furthermore, while explicit
variable selection have recently been considered in the computational cytometry
literature (such as the DensVM algorithm by [16]), implicit approaches for these
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data have not been explored. In this paper, we propose a new computational tool
for simultaneous clustering and dimension reduction of cytometric data, based
on a skew normal mixture of factor analyzers. By combining with skew normal
component distributions, we extend the MFA model to provide a promising and
more general tool that are robust to asymmetrically distributed clusters. The
effectiveness of our approach will be demonstrated in Sect. 5.

3 The CytoFA Algorithm

The cytoFA model is designed to address five objectives at the same time. These
are (i) to provide an automated method to segment cell populations in the data,
(ii) to perform implicit dimension reduction, (iii) to identify atypical observa-
tions, (iv) be robust to non-normal cluster shapes, and (v) be computationally
efficient. To achieve these, cytoFA adopts a four-in-one approach that combines
mixture modelling with skew models, factor analysis, and double trimming.

3.1 Multivariate Skew Normal Distributions

We begin by defining the multivariate skew normal (MSN) density to be adopted
in this paper. This distribution is employed to model a cell population within
the sample. Let Y be a p-dimensional random vector that follows a skew normal
distribution [17] with p×1 location vector μ, p×p scale matrix Σ, p×1 skewness
vector δ. For cytometric data analysis, Y corresponds to the measurements
of the p markers on a cell. Then its probability density function (pdf) can be
expressed as a product of a multivariate normal density and a (univariate) normal
distribution function, given by

fp(y ;μ,Σ, δ) = 2φp (y ;μ,Ω) Φ (y∗; 0, λ) , (1)

where Ω = Σ + δδT , y∗ = δT Ω−1(y − μ), and λ = 1 − δT Ω−1δ. Here, we let
φp(.;μ,Σ) be the p-dimensional normal distribution with mean vector μ and
covariance matrix Σ, and φ(.;μ,Σ) is the corresponding (cumulative) distribu-
tion function. The notation Y ∼ MSNp(μ,Σ, δ) will be used. Note that when
δ = 0, (1) reduces to the symmetric normal density φp(y ;μ,Σ). Geometrically,
the δ vector specifies the orientation or direction of the skewness of the distribu-
tion [18]. It is noted that various versions of the multivariate skew normal density
exist in the literature. The version adopted here is equivalent to the well-known
version formulated by [17]; see [19] for some discussions on this.

3.2 Finite Mixture Model

As a sample is comprised of multiple heterogeneous cell populations, it can be
effectively modelled by a finite mixture of MSN distributions. Finite mixture
model is a convex linear combination of (a finite number of) component densities.
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In our case, the g-component finite mixture of MSN distributions has density
given by

f (y ;Ψ ) =
g∑

i=1

πifp (y ;μi,Σi, δi) , (2)

where fp (y ;μi,Σi, δi) denotes the ith MSN component of the mixture model
as defined by (1), with location parameter μi, scale matrix Σi, and skewness
parameter δi. In the above, theπi are the mixing proportions or weights and
they satisfy πi ≥ 0 (i = 1, . . . , g) and

∑g
i=1 πi = 1. The vector Ψ contains all the

unknown parameters of the FMMSN model; that is, it consists of π1, . . . , πg−1

and θT
1 , . . . ,θT

g where now θi is the vector of all the unknown parameters of the
ith component density function (which includes μi, δi, and the distinct elements
of Σi).

3.3 Multivariate Skew Normal Factor Analyzers

As the number of markers p increases, the model (2) can quickly become com-
putationally infeasible to fit. We thus consider a commonly used alternative.
A factor analysis (FA) model [20,21] assumes that the data space can be rep-
resented by a lower-dimensional subspace of the original feature space. More
formally, it models the distribution of the data using

y = μ + Bu + e , (3)

where u is a q-dimensional (q < p) random vector of latent variables known
as factors, B is a p × q matrix of factor loadings, and e are independently
distributed error variables. The traditional FA model assumes that U follows a
standard (multivariate) normal distribution, whereas e follows a centered normal
distribution with a diagonal covariance matrix.

To extend the traditional FA model in (3), we let the latent factors u fol-
lows a MSN distribution. The error variables remain independent to u and fol-
lows Np(0,D), where D is a diagonal matrix. In addition, we choose a param-
eterization of the MSN distribution such that the factors have mean being
the zero vector and covariance matrix being the identity matrix, thus preserv-
ing the property of u in the traditional FA model. To achieve this, we let

u ∼ MSNq

(
−cΛ

1
2 , Λ, Λ

1
2 δ

)
, where c = π

2 and Λ =
(
I q + (1 − c2)δδT

)−1

.
It follows that the marginal distribution of y in this case is also a MSN dis-
tribution and is given by y ∼ MSNp

(
μ − cBΛ

1
2 δ, Σ, BΛ

1
2

)
which leads to

y having mean μ and covariance matrix BBT + D , conforming to the case of
the traditional FA model. We shall adopt (3) to model a single population in a
sample.

3.4 Finite Mixtures of Multivariate Skew Normal Factor Analyzers

Let y j (j = 1, . . . , n) denote n random observations of Y , that is, measurements
from n cells in a sample. To model all g cell populations in a sample, we consider
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the mixture version of (3). This leads to a g-component mixture of skew normal
factor analyzers. In this case, the jth observation can be modelled by

y j = μi + B iu ij + e ij , (4)

conditional on y j belonging to the ith component of the mixture model (i =
1, . . . , g). Thus, unconditionally, the density of y j is given by

f(y j ;Ψ ) =
g∑

i=1

πi MSNp

(
μi − cB iΛ

1
2
i δi, Σi, B iΛ

1
2
i

)
. (5)

We shall refer to the above model as the cytoFA model. Note that each compo-
nent of the cytoFA model has its own specific matrix of factor loadings, hence
allowing the latent subspace of each component to be different. The effect is thus
a globally nonlinear and locally linear dimension reduction of the feature space.

3.5 Robust Double Trimming

Trimming refers to the technique of temporarily discarding certain observations
during the model fitting process (to be described in the next Section). This
trimmed likelihood approach [22] is based on the idea that a proportion of
observations that are deemed as unlikely to occur can be temporarily removed
so that they temporarily do not contribute to the model fitting procedure. This
simple but powerful technique has been shown to be quite effective at handling
outliers. It proceeds by first attaching a binary label tj (known as a trimming
label) to each observation y j . We then rank the contribution of each observa-
tion to the mixture model. The observations corresponding to the smallest �nt�
contributions are then trimmed and their trimming label are set to 0, where t
is the trimming proportion. Note that these contributions are updated during
each iteration of the fitting procedure and thus the trimming labels may change
between iterations. When the fitting algorithm terminates, observations that are
trimmed are labeled as ‘outliers’. However, we can still compute a cluster label
for these atypical observations by applying the maximum a posteriori rule to
their estimated posterior probabilities of component membership.

The above technique can be interpreted as single trimming. In our case,
n is typically quite large. To reduce the amount of calculations required, we
introduce a second level of trimming. The idea is that we may temporarily not
update observations that have a high probability τ of belonging to a component
and have not been ‘active’ for the past α iterations. We proceed by monitoring
the posterior probability of membership associated with each observation. If it
satisfies the criterion of non-activity, we skip this observation during the E-step
for the next τ iterations. Thus, it is similar to performing partial E-steps. When
concurrently applying this strategy and the single trimming technique to an EM
algorithm, we refer to it as a double trimming technique. It can be shown that
with double trimming, the EM algorithm still convergences to a local stationary
point of the observed log-likelihood function.



520 S. X. Lee

3.6 The Final Model

Combining the above approaches into one, we obtain a finite mixtures of skew
normal factor analyzers with double trimming. The density of a sample is given
by (5), and the density of a cell population with in the sample is a MSN distri-
bution. When carrying out parameter estimation for the models of the cytoFA
model, the double trimming approach is integrated into the fitting procedure as
described above.

4 Parameter Estimation of the CytoFA Model via an EM
Algorithm

The cytoFA model admits a convenient hierarchical characterization that facil-
itates the computation of the maximum likelihood estimator (MLE) of the
unknown model parameters using the Expectation-Maximization (EM) algo-
rithm [23]; see [24] and [25] for technical details. The implementation of the
EM algorithm requires alternating repeatedly the E- and M-steps until conver-
gence in the case where the changes in the log likelihood values are less than some
specified small value. The E-step calculates the expectation of the complete-data
log likelihood given the observed data y using the current estimate of the param-
eters, known as the Q-function. The M-step then maximizes the Q-function with
respect to the parameters Ψ to obtain updated estimates of the model parame-
ters. For technical details of the E- and M-steps expressions, see the derivations
provided by [24]. However, we need to integrate the double trimming approach
into the EM algorithm, similar to [25], when implementing the cytoFA algorithm.

5 Analysis of High-Dimensional CyTOF Data

To demonstrate the usefulness of the cytoFA model, we consider the gating of
a 13-dimensional and a 32 dimensional mass cytometry data considered in [26].
In [27], these two data were used as a benchmark for the comparison of 13
unsupervised algorithms on this data. This includes some well-known and/or
commonly used algorithms specialized for cytometric data, such as FlowSOM
[28], immunoClust [29], and SWIFT [30]. We will use the results reported in [27]
as a benchmark to compare the performance of cytoFA with these state-of-the-
art algorithms.

Similar to [26], we applied the cytoFA model to the full data (that is, includ-
ing ungated and dead cells) and its performance is assessed on the gated popu-
lations. We calculated the F -measure score as is typically used in evaluating the
performance of cytometric data analysis algorithms. The F -measure is defined
as the harmonic mean of precision and recall. It ranges between 0 and 1, with 1
indicating a perfect match with the true class labels and 0 is the worse match.
In calculating the F -measure, we choose among the possible permutations of the
cluster labels the one that gives the highest value.
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5.1 CyTOF-13 Data

The first data contain measurements on 167,044 cells derived from a sample
donated from a healthy human individual. There are 24 major immune cell pop-
ulations identified by manual analysis in this data, and their relative population
size varies considerably (ranges from 0.006% to 17.1%) This data is difficult to
analyse [27] due to the large span in the abundance of the populations, rang-
ing from the smallest Platelet population of 5 cells to the largest population of
13,964 mature CD4+ T-cells. Our task here is to identify and model all these
cell populations and provide a predicted class label for each cell.

We fitted the cytoFA model to the mass cytometry data using the EM algo-
rithm described in Sect. 4, with double trimming and without double trimming.
The later is denoted by cytoFA∗. It achieved a F -measure of 0.712 for this data
when no trimming is applied and 0.831 when trimming is applied, both out-
performing previous results reported on this data (see [27]). It was observed in
this previous study that all considered methods performed poorly on this data,
achieving very low F -measures. The very low abundance of some cell popula-
tions appears to make this data particularly challenging to model. In [27], the
reported best results was 0.518, obtained by flowMeans [31]. This suggests the
cytoFA models provides a notable improvement in gating performance compared
to these methods for this data.

To pursue this further, we report the F -measure for each individual cell
population in Fig. 2. The heatmap reveals that the cytoFA and cytoFA∗ models
perform quite well across the populations and almost consistently better than
competing methods, especially in the case of low abundance populations where
other models seem to have difficulty with. To gain a better insight into the
relative contribution of the skewing and factor analysis part of the model, we
have experimented with the traditional MFA model and the skew normal mixture
model. They obtained a F -measure of 0.53 and 0.61, respectively, suggesting the
skewness plays a somewhat more important role in improving the performance.
Inspection of the δ parameters of the fitted cytoFA∗ model reveals that skewness
range from −2.70 to 3.08 across the populations (see Supplementary Fig. 1),
with two-thirds of the populations exhibiting a (mean) magnitude above 1.0.
The benefit of adopting skew distributions is also supported by the results from
the other models in the comparison. Many of the competing models are based
on symmetric mixture models (or k-means) combined with techniques such as
merging component (for example, flowMeans, SWIFT, and immunoClust) and
variable transformation (such as flowClust) to cater for asymmetric clusters.
According to the results, their clustering performance is inferior to both the
skew normal mixture model and the MFA model in this data.

In addition, we note that the computation time of our models (30 and 210 s
for the cytoFA and cytoFA∗, respectively) is comparable to many of the above
mentioned methods, which range from 2 s (k-means) to 29469 s (DensVM). The
median and mean computation time is 729 s (PhenoGraph) and 5997.32 s, respec-
tively. Another remark is that when trimming is applied (10% in this case), not
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only does it runs seven times faster, but considerable improvements in F -measure
can be observed across most of the cell populations.

Fig. 2. F -measure (per cell population) of various methods applied to the CyTOF-13
data. The rows are ordered by decreasing abundance.

5.2 CyTOF-32 Data

Finally, we consider the larger CyTOF-32 data, containing measurements of 32
markers on 265,627 cells. There are a total of 14 immune cell populations gated
by manual analysis. The abundance of the cell populations varies between 0.49%
to 25.41%. However, the skewness in this data is relatively smaller compared to
the CyTOF-13 data and hence we do not expect the other methods to be dis-
advantaged. On applying the cytoFA model (with trimming) to this data, we
obtained an overall F -measure of 0.855. This is a notable improvement from the
results reported in [27], in which the best F -measure was 0.78 obtained by flow-
SOM. An inspection of Fig. 3 reveals that cytoFA scores high F -measure across
all the cell populations. For seven of the 14 cell populations, cytoFA achieved
a perfect or near-perfect F -measure of 0.99 to 1.00. Of the remaining cell pop-
ulations, its F -measure is above 0.80 with the exception of two populations.
Looking at the low abundance populations (those with abundance under 1%),
it is of interest to note that cytoFA performs significantly better than its com-
petitors (with a F -measure at least 0.10 higher than the next best algorithm).

Concerning computation time, the fitting of cytoFA completed in 64 s in
our experiment. This places it slightly slower than k-means (13 s) and flowSOM
(41 s), but is significantly faster than the other methods (which ranges from
225 s to 30613 s). Thus, cytoFA compares favourably with these methods when
considering both its clustering performance and computation time. Furthermore,
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Fig. 3. F -measure (per cell population) of various methods applied to the CyTOF-32
data. The rows are ordered by decreasing abundance.

cytoFA has the ability to identify and eliminate atypical observations which
most of the competing methods considered here cannot. For this data, cytoFA
identified a large proportion of cells (approximately 50%) as atypical. This may
have contributed to its fast computation time. Surprisingly, the large proportion
of trimmed observations corresponds well with manual analysis, which concluded
that approximately 60% of the cells do not belong to any of the 14 major immune
populations. Thus, cytoFA is effective at discriminating uninteresting and/or
dead cells.

6 Conclusions

We have presented a new computational tool, cytoFA, for simultaneous cluster-
ing and dimension reduction of large cytometric data. Based on finite mixtures
of skew normal factor analyzers, the approach can effectively accommodate clus-
ters that are asymmetrically distributed. Adopting a factor analytic characteri-
zation of the component densities enables analysis of high-dimensional data to
be performed within very reasonable time. The cytoFA model admits convenient
stochastic representations which facilitates model fitting via the EM algorithm.
An illustration on two large mass cytometry data shows that the cytoFA model
compares favourably to other state-of-the-art specialized algorithms, achieving a
higher F -measure than those reported in other analyses of these data. The com-
putation time of our approach is also well within the reasonable range, being
less than 4% of the mean computation time of the reported state-of-the-art
algorithms. Accurate gating and quantification of cells is crucial for downstream
analysis. The construction of class template and the supervised classification for
new samples, for example, rely on quantitative features derived from these popu-
lation statistics. By employing a more accurate model such as the cytoFA model,
it can bring significant improvements to diagnosis and prognosis in downstream
analysis.



524 S. X. Lee

The promising results in this paper shows that implicit dimension reduction
can be combined with skew mixture models to provide an effective approach for
modelling high-dimensional heterogeneous data that may exhibit distributional
skewness. Future work may consider further improvements to the model such as
the adopting of more flexible component distributions to cater for features such
as heavy tail, outliers, and other non-elliptical shapes. Finally we note that the
approach described in this paper is useful not only for cytometric data, but is
widely applicable to other data from other fields that exhibit similar complicated
distributional features.
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Abstract. Multi-view data clustering is a fundamental task in current
machine learning, known as multi-view clustering. Existing multi-view
clustering methods mostly assume that each data instance is sampled in
all views. However, in real-world applications, it is common that certain
views miss number of data instances, resulting in incomplete multi-view
data. This paper concerns the task of clustering of incomplete multi-view
data. We propose a novel Graph-based Incomplete Multi-view Clustering
(GIMC) to perform this task. GIMC can effectively construct a complete
graph for each view with the help of other view(s), and automatically
weight each constructed graph to learn a consensus graph, which gives the
final clusters. An alternating iterative optimization algorithm is proposed
to optimize the objective function. Experimental results on real-world
datasets show that the proposed method outperforms state-of-the-art
baseline methods markedly.

Keywords: Multi-view clustering · Incomplete views ·
Graph-based clustering

1 Introduction

In many natural scenarios, data are collected from multiple perspectives or
diverse domains. Each of these domains presents a particular view of the data,
where each view may have its own individual properties. Such forms of data
are referred to as multi-view data. This paper makes a focus contribution on
clustering of multi-view data, known as multi-view clustering [1,27]. Most exist-
ing multi-view clustering methods assume that each data instance is sampled
in all views. While, in real-world applications, it is frequently happened that
certain data instances are missing in certain views because of sensor fault or
machine down. That is, the collected multi-view data are incomplete, referred
to as incomplete multi-view data. In this case, traditional multi-view clustering
approaches, such as [12,14,22,24,32,35], perform poorly or even helplessly.

This paper studies clustering of incomplete multi-view data, called incom-
plete multi-view clustering. Recently, several incomplete multi-view clustering
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approaches have been proposed. Existing works such as those in [6,8,21] per-
formed matrix factorization as base technology to tackle incomplete views, and
those in [11,26,29,30] projected incomplete multi-view data into a common sub-
space with the help of complete views. Semi-supervised clustering with the
user-provided constrain information has also been studied in [3,28,31]. How-
ever, matrix factorization technologies and subspace methods depend on their
initialization. Semi-supervised clustering asks the users to provide prior con-
strain information. In this work, we perform our task based on graph clustering.
Graph-based clustering produced several state-of-the-art multi-view clustering
methods, [5,14,16,23,25,34] to name a few. However, it is unclear about how to
model graph method for partitioning incomplete multi-view data.

In this work, we make the first attempt to model a graph method for parti-
tioning incomplete multi-view data. We call the proposed method Graph-based
Incomplete Multi-view Clustering (GIMC). GIMC can not only handle incom-
plete multi-view setting, but also overcome the limitations of existing graph-
based multi-view clustering. For example, existing graph-based multi-view clus-
tering methods (a) do not give sufficient consideration to weights of different
views, e.g., [18], (b) require an additional clustering algorithm to produce the
final clusters, e.g., [5,15], and (c) need to tune parameters, e.g., [16,34]. Our
proposed GIMC can tackle these problems. Specially, GIMC first constructs a
graph for each view (a complete view or incomplete view). Then, GIMC fuses all
constructed graph matrix to generate a unified/consensus graph matrix. The pro-
posed fusion method can automatically weight each constructed graph matrix. A
rank constraint is imposed on the Laplacian matrix of the unified graph matrix.
Comparing with multi-view spectral clustering, thus our method can directly
produce the final clustering results on the unified graph matrix without any
additional clustering algorithms. To the best our knowledge, this is the first
such formulation.

In summary, this paper makes the following contributions. (1) It studies a nat-
ural and general multi-view setting, i.e., incomplete multi-view clustering. (2) It
proposes a novel incomplete multi-view clustering method, named Graph-based
Incomplete Multi-view Clustering (GIMC), which can not only address incom-
plete multi-view setting, but also tackle the limitations in the existing graph-
based multi-view clustering approaches. (3) Extensive experiments show that
the proposed GIMC method makes considerable improvement over the state-of-
the-art baseline methods.

2 Related Work

Our method is clearly related to incomplete multi-view clustering. To our knowl-
edge, there is no existing graph-based incomplete multi-view clustering method.
Existing works on incomplete multi-view clustering are mainly based on matrix
factorization or subspace learning. For example, non-negative matrix factoriza-
tion (NMF) was exploited in incomplete multi-view setting [8], but only for
two-view data. [33] combined this NMF idea and manifold regularization, which
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still works for two-view data. Toward this end, [10] extended this NMF idea to
data with more views. Later on, more advanced methods based on NMF were
studied in [6,21]. Besides, [20] formulated a joint tensor factorization process by
taking into account missing data. Apart from the above-mentioned approaches,
[26,29,30] investigated subspace technologies to address incomplete multi-view
setting. However, both matrix factorization and subspace learning methods rely
on their initialization. In Sect. 5, we will compare with these methods experi-
mentally and show that our method performs robustly. Given the user-provided
constrain information (i.e., must-link and cannot-link), semi-supervised cluster-
ing on incomplete multi-view data has also been studied in [3,27,31]. However,
asking the user(s) to provide these constrain information may be unrealistic in
practice because achieving these constrain information is a laborious work. Our
method is an unsupervised clustering method.

Our work is also related to graph-based clustering as the proposed method
builds upon graph-based clustering. Given a data matrix X ∈ R

d×n in single-
view setting, where d is the dimension of features and n is the number of
data instances, graph-based clustering methods typically partition the n data
instances into c clusters as follows:

Step 1. Construct the data graph matrix G ∈ R
n×n, where each entry gij in G

denotes the similarity between xi and xj ;
Step 2. Compute the graph Laplacian matrix LG = DG − (GT + G)/2, where

DG is a diagonal matrix whose i-th diagonal element is
∑

j(gij +gji)/2;
Step 3. Solve min

G̃∈Rn×n
Tr(ETLGE) with the rank of LG equal to n − c, where E

is an embedding matrix and G̃ is a new data graph matrix;
Step 4. Produce clusters on the resulting G̃.

We note that spectral clustering methods usually perform similar steps. Spec-
tral clustering methods require and perform an additional clustering algorithm
(e.g., K-means) on the embedding matrix E to produce the final clusters. Our
method produces the clustering results on the learned graph matrix (i.e., the
unified graph matrix U, which will be seen shortly) without any additional clus-
tering algorithms.

3 Graph-Based Incomplete Multi-view Clustering

3.1 Graph Construction for Incomplete Multi-view Data

For an incomplete multi-view dataset with m views, let X1, · · · ,Xm be the
data matrices of the m views and Xv = {xv

1, ...,x
v
nv

} ∈ R
dv×nv be the data

matrix of the v-th view, where dv is the dimensionality of the v-th view and nv

is the number of data instances. In such a way, the number of complete data
instances is n = max{n1, ..., nm}. In order to diminish the effect of missing
instances and improve the clustering performance in incomplete multi-view set-
ting, the proposed GIMC is modeled as a joint graph-based multi-view clustering
and meanwhile integrates weighted mechanism. It assigns weights for each data
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sample/instance to reduce the impact of missing instances, and automatically
weights each constructed graph Av ∈ R

n×n which is a symmetric graph matrix
to learn a unified graph U ∈ R

n×n. To handle those missing instances, we define
a binary indicator matrix B ∈ R

m×n, whose v, j-th entry is defined as follows:

bv,j =

{
1, if j-th instance exists in the v-th view
0, otherwise

(1)

where each row (e.g., v) in B denotes the instance sampled in view v. For a
complete view (i.e., no data instance missing), we have

∑n
j=1 Bv,j = n as B is a

matrix with all one. Similarly, for an incomplete view (i.e., some data instances
missing), we have

∑n
j=1 Bv,j < n.

In incomplete multi-view setting, missing instances may mislead information
from each view. In our work, we first fill the missing data instances of each
incomplete view by using the average features of sampled instances in that view
as [6]. Then we introduce a weight mechanism to construct an effective graph
similarity matrix Av, where any entry av

ij denotes the similarity between data
instances xi and xj in v-th view. We compute the graph matrix Av of each view
(e.g., v) by solving the following problem:

min
Av

n∑

i,j=1

||hv,ixv
i − hv,jxv

j ||22 av
ij s.t. av

ii = 0, av
ij ≥ 0,1Tav

i = 1 (2)

where hv,i denotes the weight of i-th instances in the v-th view, denoted as

hv,i =

{
1, if v-th view contains i-th instance, i.e., bv,i = 1
h̃v,i, otherwise

(3)

where h̃v,i is defined as the percentage of the presence instances for v-th view,

shown as h̃v,i =
∑n

j=1 bv,j

n .
Note that Eq. (2) has a trivial solution. The solution is that only the data

instance with the smallest distance to xv
i has the value 1, while all the other data

instances have the value 0. Following [17], we add a prior to Eq. (2), formulated
as below

min
Av

n∑

i,j=1

||hv,ixv
i − hv,jxv

j ||22 av
ij + γ

n∑

i=1

||av
i ||22

s.t. av
ii = 0, av

ij ≥ 0,1Tav
i = 1.

(4)

where the prior can be seen as the similarity value of each data instance to xv
i ,

which is 1
n , if we only use the second term of Eq. (4). Now we can construct a

graph matrix for each view. Next, we present our graph fusion method.

3.2 Graph Fusion

Suppose we have obtained the graph matrix Av (v = 1, 2, ...,m) for each view.
GIMC integrates the information of all views into a unified graph matrix U by
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utilizing the complementary information among all views. We introduce an auto-
weighted fusion technology. We denote the weights as w = [w1, w2, · · · , wv]T .
Here we formulate the problem of graph fusion as follows:

min
U

m∑

v=1

wv||U − Av||2F s.t. uij ≥ 0,1Tui = 1, wv ≥ 0,1Tw = 1. (5)

Then we utilize the Lagrange function of Eq. (5) and get its derivative with
respect to U shown below:

m∑

v=1

wv
∂||U − Av||2F

∂U
+

∂Φ(Λ,U)
∂U

= 0 (6)

where Λ is the Lagrange multiplier, Φ(Λ,U) is a proxy for the constraints uij ≥
0, 1Tui = 1, and wv is determined as

wv =
1

2
√||U − Av||2F

. (7)

Next we impose Laplacian rank constrain on the learned graph matrix U,
which helps directly produce the final clustering results on U without any addi-
tional clustering algorithm. The graph Laplacian matrix LU of matrix U is
denoted as LU = DU − (UT +U)/2, where DU is a diagonal matrix whose i-th
diagonal element is

∑
j(uij + uji)/2. According to [2,13], we have Theorem 1.

Theorem 1. The graph Laplacian matrix LU has the following properties:

1. LU is a symmetric positive semi-definite matrix. Thus all eigenvalues of LU

are real and non-negative, and LU has a full set of n real and orthogonal
eigenvectors.

2. LUe = 0, where e is all ones column vector. Thus 0 is the eigenvalue of LU

and e is the corresponding eigenvector.
3. If U has r connected components, then LU has r eigenvalues that equal 0.

The proof of Theorem 1 is presented in [2]. As a conclusion, if rank(LU ) =
n − c as r = c, we can cluster the corresponding graph matrix U into c groups
directly. Thus, we add a rank constraint on Eq. (5). According to Ky Fan’s
theorem [4], normally, we formulate our objective function as

min
U

m∑

v=1

wv||U − Av||2F + 2βTr(FTLUF)

s.t. av
ii = 0, av

ij ≥ 0,1Tav
i = 1,uij ≥ 0,1Tui = 1,

wv ≥ 0,1Tw = 1,FTF = I.

(8)

4 Optimization Procedure

As introduced in the above section, we propose our GIMC with two parts. Below
we introduce our algorithm for each part.
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4.1 Optimization for Constructing Graph

As can be seen, Eq. (4) is independent for each data instance, so we can compute
av

i separately for each data instance (e.g., i), formulated as

min
av
i

||av
i +

di

2γ
||22, s.t. av

ij ≥ 0,1Tav
i = 1 (9)

where di consists of the entry as dij , and dij = ||hv,ixv
i − hv,jxv

j ||2.
Then the Lagrangian function of Eq. (9) in terms of av

i is written as follows

l(av
i , η, ξ) = ||av

i +
di

2γ
||22 − η(1Tav

i − 1) − ξTav
i (10)

where ξ is a Lagrangian coefficient vector and η is a coefficient scalar.
According to the Karush-Kuhn-Tucker conditions [7], the optimal solution is

learned as follows:

av
ij = (−dij

2γ
+ η)+ s.t. av

ij ≥ 0,1Tav
i = 1. (11)

In practice, we aim to learn av
i with only k nonzero values, where k is the

number of neighbors. Meanwhile, according to the constrain 1Tav
i = 1, we have

η = 1
k + 1

2kγ

∑k
j=1 dij . Thus, the similarity av

ij between xi and xj in v-th view
is obtained by

av
ij =

{
di,k+1−dij

kdi,k+1−∑k
q=1 diq

j ≤ k

0 j > k
(12)

Here we give a summary of the algorithm for graph construction, which is
shown in Algorithm 1.

Algorithm 1. Algorithm for constructing the v-th graph
Input: data matrix Xv; indicator matrix B; the number of neighbors k
Output: graph matrix Av

1: for i=1, 2, ..., n do
2: Computing hv by using Eq. (3);
3: Calculating the Lagrangian function according to Eq. (10);
4: Solving Eq. (11), and sorting di1, · · · , din in ascending order to obtain γ =

k
2
di,k+1 − 1

2

∑
j = 1kdij ;

5: Using Eq. (12) to get the similarity av
ij .

6: end for
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4.2 Optimization for Graph Fusion

Suppose we have obtained the A1,A2, ...,Am by using Algorithm 1, we now
compute the unified graph matrix U by using Eq. (8). Next we propose an
alternating iterative algorithm to solve Eq. (8) as follows:

Solving w with Fixed U and F. When U and F are fixed, solving w using
Eq. (8) is equivalent to solving w using Eq. (5). Thus, wv is updated by wv =

1

2
√

||U−Av||2F
, i.e., Eq. (7).

Solving U with Fixed w and F. Since Tr(FTLUF) = 1
2

∑
i,j ‖fi − fj‖22uij ,

and we denote qij = ||fi − fj ||22 and further denote qi as a vector with the j-th
entry as qij . Therefore Eq. (8) can be rewritten as follows:

min
ui

m∑

v=1

||ui − pv||22 s.t. uij ≥ 0,1Tui = 1. (13)

where pv is a constant when w and F are fixed, and pv = av
i − β

2mwv
qi.

We now take the Lagrange function of the Eq. (13) with respect to ui, shown
as below:

l(ui, ρ,μ) =
1
2

m∑

v=1

||ui − pv||22 − ρ(1Tui − 1) − μTui (14)

where ρ is a scalar and μ is a Lagrangian coefficient vector.
In such a way, we can update U by solving the derivation of Eq. (14).

Solving F with Fixed w and U. Optimizing F is as follows:

min Tr(FTLUF) s.t. FTF = I. (15)

The optimal solution to F is formed by the c eigenvectors of LU corresponding
to the c smallest eigenvalues.

The proposed algorithm to solve Eq. (8) is summarized in Algorithm 2.

Algorithm 2. Algorithm for graph fusion
Input: Similarity matrix A1,A2, ...,Am for each view; the number of clusters c; initial

parameter β (tuned automatically)
Output: The unified matrix U
1: Initialize the weight of each view wv = 1

m
;

2: Initialize U and F by connecting A1, A2,..., Am with w and solving Eq. (15)
3: repeat
4: Fixing F and U, compute wv by using Eq. (7);
5: Fixing w and F, compute U by solving Eq. (14);
6: Fixing w and U, compute F by using Eq. (15);
7: until convergence
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5 Experiments

In this section, we evaluate our GIMC method for incomplete multi-view cluster-
ing on real-world benchmark datasets. Accuracy (ACC) and Normalized Mutual
Information (NMI) are used to measure the clustering performance.

Table 1. Constitutions of datasets in the experiments

Dataset #instances #views #clusters #d1 #d2 #d3 #d4 #d5 #d6

100leavesa 1600 3 100 64 64 64 - - -

Yaleb 165 4 15 256 256 256 256 - -

Mfeatc 2000 6 10 216 76 64 6 240 47

ORLd 400 4 40 256 256 256 256 - -
a https://archive.ics.uci.edu/ml/datasets/One-hundred+plant+species+leaves+data+
set
b www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html
c http://archive.ics.uci.edu/ml/datasets/Multiple+Features
d http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html

Datasets. We perfom evaluation using four real-world datasets. The datasets are
summarized in Table 1. For each dataset, we randomly remove certain instances
from each view with the missing rate increasing from 0.1 to 0.5 with 0.1 intervals
to form incomplete multi-view data by following [21].

Baselines. As same to [6], we compared our GIMC method with the following
algorithm: Multi-NMF [9], PVC [8], IMG [33], MIC [21] and OMVC [19].
We also compared with DAIMC [6].

Settings. Note that Multi-NMF only works on complete view data. Following
[6], we first fill the missing instance(s) with average feature values of that view,
then perform Multi-NMF on the filled data. PVC and IMG only work for two-
view data. We also follow [6] to evaluate PVC and IMG on all the two-views
combinations and report the best result. For all the baselines, we obtained the
original systems from their authors and used its default parameter settings. For
our GIMC method, we empirically set k = 15. The parameter β is set to 1 as an
initial value. Then, we increase it with β = β × 2 or decrease it with β = β/2 if
the connected components of U is smaller or greater than the number of clusters
c, respectively. In our experiments, the missing rates is changed from 0.1 to 0.5
with the interval of 0.1 to demonstrate how the clustering performance can be
improved by our method.

5.1 Experiments on Real-World Data

We run each algorithm 10 times and calculate the means and standard deviations
of the performance measures. The results are shown in Table 2 with missing rate
0.1, 0.2, 0.3, 0.4, and 0.5. The numbers in the parentheses are the standard
deviations. From Table 2, we make the following observations:

https://archive.ics.uci.edu/ml/datasets/One-hundred+plant+species+leaves+data+set
https://archive.ics.uci.edu/ml/datasets/One-hundred+plant+species+leaves+data+set
www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html
http://archive.ics.uci.edu/ml/datasets/Multiple+Features
http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html
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– In most cases, our method GIMC outperforms all baseline algorithms. The
results show that our GIMC method is a promising incomplete multi-view
clustering method.

– All the baseline methods result in a high standard deviation as they are
based on NMF and subspace learning, which depend on the intializations.
Our method results in a very small standard deviation because we give an

Table 2. Clustering performance comparison in terms of ACC and NMI

Method
100leaves Yale Mfeat ORL

ACC(%) NMI(%) ACC(%) NMI(%) ACC(%) NMI(%) ACC(%) NMI(%)

Clustering performance comparison in terms of missing rate 0.1

MultiNMF 41.75 (1.67) 68.16 (0.78) 44.85 (2.68) 49.35 (2.48) 68.83 (1.43) 67.99 (0.65) 33.75 (3.68) 58.87 (1.62)

PVC 22.39 (0.38) 53.27 (0.22) 40.64 (2.83) 44.08 (2.19) 62.53 (3.38) 62.46 (1.61) 60.68 (3.05) 75.76 (1.70)

IMG 68.71 (1.86) 83.99 (2.75) 43.88 (1.15) 48.53 (1.52) 74.63 (0.00) 79.10 (0.00) 60.83 (1.87) 75.32 (1.12)

MIC 56.90 (8.33) 76.65 (10.99) 42.59 (5.06) 51.40 (5.49) 79.45 (3.02) 73.12 (3.60) 55.99 (10.04) 73.95 (9.80)

OMVC 31.62 (0.94) 56.93 (0.81) 44.61 (2.77) 50.75 (2.50) 61.69 (2.25) 56.52 (0.61) 57.80 (2.40) 75.31 (1.39)

DAIMC 64.20 (2.38) 82.41 (0.70) 33.15 (2.57) 41.60 (1.72) 87.27 (4.10) 80.04 (2.57) 57.95 (3.10) 75.35 (1.38)

GIMC 86.00 (0.00) 92.01 (0.00) 49.70 (0.00) 54.98 (0.00) 88.65 (0.00) 91.21 (0.00) 71.75 (0.00) 83.70 (0.00)

Clustering performance comparison in terms of missing rate 0.2

MultiNMF 35.81 (1.30) 63.09 (0.64) 35.15 (3.16) 40.65 (3,43) 67.95 (1.03) 64.12 (0.55) 30.25 (1.67) 54.39 (1.69)

PVC 18.11 (0.45) 51.25 (0.60) 46.36 (2.67) 49.39 (1.95) 60.67 (1.96) 59.55 (2.06) 60.74 (2.64) 75.70 (1.32)

IMG 64.21 (1.86) 80.85 (2.75) 41.76 (1.41) 45.96 (1.27) 66.15 (0.00) 73.23 (0.00) 57.10 (1.77) 71.72 (1.35)

MIC 50.47 (7.34) 71.51 (10.25) 41.93(5.61) 48.24 (5.76) 77.80 (4.16) 69.85 (4.50) 51.37 (9.23) 69.95 (9.36)

OMVC 31.73 (0.99) 58.33 (0.59) 41.79 (2.24) 47.61 (1.65) 60.45 (0.31) 57.44 (0.23) 54.44 (3.19) 73.01 (1.10)

DAIMC 53.78 (1.65) 75.00 (0.57) 32.67 (2.24) 41.27 (1.91) 88.72 (1.08) 80.07 (1.44) 53.90 (4.19) 72.36 (1.82)

GIMC 77.81 (0.00) 86.04 (0.00) 48.48 (0.00) 54.28 (0.00) 88.40 (0.00) 91.15 (0.00) 67.25 (0.00) 81.60 (0.00)

Clustering performance comparison in terms of missing rate 0.3

MultiNMF 31.83 (0.79) 59.89 (0.61) 32.73 (2.46) 38.49 (3.37) 53.10 (0.71) 49.90 (0.58) 28.00 (1.22) 51.41(1.73)

PVC 33.44 (0.65) 64.12 (0.28) 36.21 (2.46) 40.97 (1.67) 53.77 (1.76) 52.92 (1.15) 59.79 (2.17) 75.13 (1.36)

IMG 60.02 (1.86) 78.73 (2.75) 37.76 (1.64) 41.93 (2.19) 65.20 (0.00) 62.37 (0.00) 54.63 (2.04) 70.95 (1.62)

MIC 42.64 (6.19) 66.37 (9.50) 40.94 (4.73) 46.87 (5.09) 71.21 (3.52) 61.12 (4.10) 47.90 (9.03) 67.02 (9.06)

OMVC 29.78 (0.98) 57.15 (0.59) 36.64 (2.44) 41.95 (2.06) 55.26 (3.26) 47.88 (1.55) 47.21 (1.61) 66.24 (1.34)

DAIMC 41.44 (1.35) 67.36 (0.63) 29.03 (2.22) 36.69 (2.64) 86.32 (2.49) 77.41 (1.31) 49.57 (3.15) 69.24 (1.72)

GIMC 68.37 (0.00) 79.66 (0.00) 44.85 (0.00) 49.64 (0.00) 87.55 (0.00) 90.63 (0.00) 64.00 (0.00) 77.69 (0.00)

Clustering performance comparison in terms of missing rate 0.4

MultiNMF 30.06 (0.94) 57.23 (0.76) 33.33 (3.14) 39.19 (2.57) 45.78 (0.82) 46.41 (0.60) 28.50 (1.01) 49.43 (1.49)

PVC 40.99 (0.88) 67.71 (0.32) 42.58 (1.94) 47.31 (1.62) 65.96 (2.62) 62.30 (1.61) 58.26 (2.14) 74.32 (1.16)

IMG 54.96 (1.86) 77.05 (2.75) 36.61 (1.88) 40.63 (1.68) 53.26 (0.28) 60.08 (0.15) 51.93 (1.88) 68.75 (1.50)

MIC 39.92 (5.85) 63.61 (9.13) 36.67 (4.81) 43.95 (5.04) 65.25 (3.72) 56.03 (4.20) 46.45 (8.48) 65.43 (8.74)

OMVC 21.96 (0.64) 48.91 (0.56) 34.67 (2.60) 43.50 (1.98) 45.98 (0.46) 43.52 (0.37) 36.90 (1.86) 58.07 (1.28)

DAIMC 32.14 (1.00) 61.21 (0.38) 28.67 (2.21) 34.70 (2.30) 82.81 (4.09) 72.11 (2.65) 43.35 (2.64) 63.25 (1.68)

GIMC 61.31 (0.00) 74.20 (0.00) 44.85 (0.00) 49.31 (0.00) 85.85 (0.00) 89.55 (0.00) 63.75 (0.00) 75.69 (0.00)

Clustering performance comparison in terms of missing rate 0.5

MultiNMF 24.25 (1.09) 52.60 (0.69) 30.91 (2.83) 38.33 (2.71) 37.22 (0.93) 31.11 (0.61) 25.75 (1.77) 46.90 (2.12)

PVC 43.98 (1.10) 68.01 (0.55) 39.73 (2.36) 46.97 (2.20) 50.13 (2.92) 48.17 (1.25) 56.56 (2.14) 74.18 (1.51)

IMG 12.19 (1.86) 37.38 (2.75) 22.73 (2.25) 27.95 (3.02) 18.45 (1.76) 10.34 (2.12) 18.40 (1.28) 39.04 (2.42)

MIC 35.30 (5.20) 60.31 (8.66) 34.73 (4.23) 41.56 (4.60) 45.01 (3.19) 45.98 (3.30) 41.54 (7.49) 61.15 (8.16)

OMVC 20.85 (0.74) 48.53 (0.63) 35.06 (2.06) 44.59 (1.56) 37.76 (0.36) 34.77 (0.81) 39.39 (1.82) 62.44 (1.10)

DAIMC 26.23 (1.02) 57.63 (0.57) 28.48 (3.00) 34.79 (2.79) 70.26 (5.66) 62.15 (3.41) 36.48 (2.33) 57.56 (1.13)

GIMC 54.25 (0.00) 68.19 (0.00) 41.21 (0.00) 48.54 (0.00) 77.50 (0.00) 86.60 (0.00) 62.00 (0.00) 74.67 (0.00)
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optimized solution for the objective function. This indicates that our method
performs robustly.

– The clustering performance of all algorithms decline with the missing rate
changing from small to large. Our method performs smoothly.

5.2 Complexity and Convergence Study

In this section, we analyze the computational complexity and study how fast the
proposed algorithm can converge. According to the procedure of optimization,
the complexity of constructing graph is O(mn2), and that of graph fusion is
O(Knm) where K is the number of iterations until convergence. Specially, we
conduct experiments with the missing rate of 0.1, 0.2, 0.3, 0.4, and 0.5 respec-
tively on each dataset. The results are shown in Fig. 1. It is noted that the pro-
posed algorithm converges within 10 iterations. The reason is that we provided
an optimized solution for each subproblem.
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Fig. 1. Convergence curve of GIMC over each dataset

6 Conclusions

This paper proposed a novel incomplete multi-view clustering method, called
Graph-based Incomplete Multi-view Clustering (GIMC). GIMC considers the
influence of missing instances and introduces an auto-weighted mechanism to
perform clustering on incomplete multi-view data. After this, GIMC uses graph-
based method as the base approach to construct a graph matrix for each view
first, extract the relationship among views, and then fuse the constructed graph
matrix from each view data to learn a unified graph matrix, which produces the
final clusters. The experimental results on four real-world benchmark datasets
demonstrate the superiority of the proposed GIMC method.

In this work, we fill the missing data instances in the incomplete views using
the average feature values of that view. If the missing rate is very large in prac-
tice, the filled values may decrease the clustering performance. So, our future
work is to study efficient filling methods for the proposed framework.
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Abstract. Given a heatmap for millions of points, what patterns exist
in the distributions of point characteristics, and how can we detect them
and separate anomalies in a way similar to human vision? In this paper,
we propose a vision-guided algorithm, EagleMine, to recognize and sum-
marize point groups in the feature spaces. EagleMine utilizes a water-
level tree to capture group structures according to vision-based intu-
ition at multiple resolutions, and adopts statistical hypothesis tests to
determine the optimal groups along the tree. Moreover, EagleMine can
identify anomalous micro-clusters (i.e., micro-size groups), which exhibit
very similar behavior but deviate away from the majority. Extensive
experiments are conducted for large graph scenario, and show that our
method can recognize intuitive node groups as human vision does, and
achieves the best performance in summarization compared to baselines.
In terms of anomaly detection, EagleMine also outperforms state-of-the-
art graph-based methods by significantly improving accuracy in synthetic
and microblog datasets.

1 Introduction

Given real-world graphs with millions of nodes and connections, the most intu-
itive way to explore the graphs is to construct a correlation plot [25] based on
the features of graph nodes. Usually a heatmap of those scatter points is used
to depict their density, which is a two-dimensional histogram [20]. In the his-
togram, people can visually recognize nodes gathering into disjointed dense areas
separately as groups (see Fig. 1), which help to explore patterns (like commu-
nities, co-author association behaviors) and detect anomalies (e.g., fraudsters,
attackers, fake-reviews, outlier etc.) in an interpretable way [22].

In particular, a graph can represent friendships in Facebook, ratings from
users to items in Amazon, or retweets from users to messages in Twitter, even
they are time-evolving. Numerous correlated features can be extracted from
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Fig. 1. Heatmaps of correlation plots for some feature spaces of two real datasets and
the performance of EagleMine algorithm. The bottom figures focus on the Sina weibo
data. (a) Out-degree vs. Hubness feature space for weibo. (b) EagleMine summarizes
the distribution of graph nodes for (a) with truncated Gaussian distributions. The
ellipses denote the 1.5 and 3 times covariance of corresponding Gaussian. (c) # Triangle
vs. Degree feature space for Tagged. (d) Depicts the recognized node groups for (c).
(e) Highlights some micro-clusters in (b), including a disconnected small network, and
very suspicious ones. A username list on the right side shows the name patterns of bots
in a micro-cluster, where 182x: “best*” means 182 bots share prefix “best”. (f) The
structure of identified anomalous Jellyfish patterns. (g) Shows the AUC performance
for detecting suspicious users and msgs compared with state-of-the-art competitors.

graph, like degree, triangles, spectral vectors, and PageRank etc. and com-
bination of these generate correlation plots. It becomes, even, labor-intensive
to manually monitor and recognize patterns from heatmaps of the snapshots
of temporal graphs. So, this raises the following questions: Given a heatmap
(i.e., histogram) of the scatter points in some feature space, how can we design
an algorithm to automatically recognize and monitor the point groups as
human vision does, summarize the points distribution in the feature space and
identify suspicious micro-clusters?

‘Micro-cluster’ refers to relatively small group of points (like users, items)
with similar behavior in the feature space. Here we demonstrate some possible
feature spaces, namely

i. out-degree vs hubness - Fig. 1a - this can spot nodes with high out-degree,
but low hubness score (i.e., fraudsters, which have many outgoing edges to
non-important nodes, probably, customers, that paid them) [24].

ii. #triangle vs degree - spotting a near-clique group (too many triangles, for
their degree), as well as star-like constellations (too few triangles for such
high degree) [23].
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Table 1. Comparison between algorithms.

Density-based clustering SpokEn GetScoop Fraudar EagleMine

Micro-cluster detection ✓ ✓ ✓ ✓

Micro-cluster suspiciousness ✓ ✓

Linear scalability ? ✓ ✓

In this paper, we propose EagleMine, a novel tree-based mining approach to
recognize and summarize the point groups in the heatmap of scatter plots, and
can also identify anomalous micro-clusters. Experiments show that EagleMine
outperforms baselines and achieves better performance both in quantitative (i.e.,
the code length for compact model description) and qualitative (i.e., consistent
with vision-based judgment) comparisons, detects a micro-cluster of hundreds
of bots in microblog data, Sina weibo1, which presents strong signs of shar-
ing unusual login-name prefixes, e.g., ‘best*’, ‘black*’ and ‘18-year-old*’, and
exhibiting very similar behavior in the feature space (see Fig. 1e).

In summary, the proposed EagleMine has the following advantages:

– Anomaly detection: can spot and explain anomalies on real data by iden-
tifying suspicious micro-clusters. Compared with the graph-based anomaly
detection methods, EagleMine achieves higher accuracy for finding suspicious-
ness in Sina weibo.

– Automated summarization: automatically summarizes a histogram plot
derived from correlated graph features (see Fig. 1b), and recognizes node
groups forming disjonted dense areas as human vision does (see Fig. 3e).

– Effectiveness: detects interpretable groups, and outperforms the baselines
and even those with manually tuned parameters in qualitative experiments
(see Fig. 3).

– Scalability: is scalable with nearly linear time complexity in the number of
graph nodes, and can deal with more correlated features in multi-dimensional
space.

Our code is open-sourced at https://github.com/wenchieh/eaglemine, and
most of the datasets we use are publicly available online. The supplementary
material [1] provides proof, detailed information and additional experiments.

2 Related Work

Supported by human vision theory, including visual saliency, color sensitive,
depth perception and attention of vision system [17], visualization techniques
[5,38] and HCI tools help to get insight into data [2,35]. Scagnostic [6,35]
diagnoses the anomalies from the plots of scattered points. [39] improves the
detection by statistical features derived from graph-theoretic measures. Net-Ray
[22] visualizes and mines adjacency matrices and scatter plots of a large graph,
and discovers some interesting patterns.
1 One of the largest microblog websites in China.

https://github.com/wenchieh/eaglemine
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For graph anomaly detection, [21,30] find communities and suspicious clus-
ters with spectral-subspace plots. SpokEn [30] considers the “eigenspokes” on
EE-plot produced by pairs of eigenvectors, and is later generalized for fraud
detection. As more recent works, dense block detection has been proposed to
identify anomalous patterns and suspicious behaviors [18,26]. Fraudar [18] pro-
posed a densest subgraph-detection method that incorporates the suspiciousness
of nodes and edges during optimization.

Density based methods, like DBSCAN [13] can detect clusters of arbitrary
shape and data distribution, while the clustering performance relies on den-
sity threshold. STING [37] hierarchically merges grids in lower layers to find
clusters with a given density threshold; Clustering algorithms [31] derived from
the watershed transformation [36], treat pixel region between watersheds as one
cluster, and only focus on the final results and ignores the hierarchical structure
of clusters. [7] compared different clustering algorithms and proposed a hierar-
chical clustering method, “HDBSCAN”, while its complexity is prohibitive for
very large dataset (like graphs) and the “outlierness” score is not line with our
expectations. Community detection algorithms [27], modularity-driven cluster-
ing, and cut-based methods [32] usually can’t handle large graphs with million
nodes or fail to provide intuitive and interpretable result when applying to graph
clustering.

A comparison between EagleMine and the majority of the above methods is
summarized in Table 1. Our method EagleMine is the only one that matches all
specifications.

3 Proposed Model

Consider a graph G with node set VVV and edge set EEE. G can be either homoge-
neous, such as friendship/following relations, or bipartite as users rating restau-
rants. In some feature space of graph nodes, our goal is to optimize the consis-
tent node-group assignment with human visual recognition, and the goodness-
of-fit (GoF) of node distribution in groups. So we map the node into a (multi-
dimensional) histogram constructed based on a feature space, which can include
multiple node features. Considering the histogram H with dimension dim(H),
we use h to denote the number of nodes in a bin, and bbb to denote a bin, when
without ambiguity.

Model: To summarize the histogram H in a feature space of graph nodes, we
utilize some statistical distributions as vocabulary to describe the node groups
in H. Therefore, our vocabulary-based summarization model consists of Con-
figurable vocabulary: statistical distributions Y for describing node groups of
H in a feature space; Assignment variables: S = {s1, · · · , sC} for the distri-
bution assignment of C node groups; Model parameters: Θ = {θ1, · · · , θC}
for distributions in each node group, e.g. the mean and variance for normal
distribution. Outliers: unassigned bins O in H for outlier nodes.

In terms of the configurable vocabulary Y, it may include any suitable dis-
tribution, such as Uniform, Gaussian, Laplace, and exponential distributions or
others, which can be tailored to the data and characteristics to be described.
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4 Our Proposed Method

In human vision and cognitive system, connected components can be rapidly
captured [11,28] with a top-to-bottom recognition and hierarchical segmenta-
tion manner [3]. Therefore, this motivates us to identify each node group as an
inter-connected and intra-disjointed dense area in heat map, which guides the
refinement for smoothing, and to organize and explore connected node groups
by a hierarchical structure, as we will do.

Our proposed EagleMine algorithm consists of two steps:

– Build a hierarchical tree T of node groups for H in some feature space with
WaterLevelTree algorithm.

– Search the tree T and get summarization of H with TreeExplore algorithm.

EagleMine hierarchically detects micro-clusters in the H, then computes the
optimal summarization including the model parameters Θ, and the assignment
S for each node group, and outliers indices O in final. We elaborate each step
in the following subsections.

4.1 Water-Level Tree Algorithm

In the histogram H, we imagine an area consisting of jointed positive bins (h > 0)
as an island , and the other bins as water area . Then we can flood the island
areas, making those bins with h < r to be underwater, i.e., setting those h = 0,
where r is a water level. Afterwards, the remaining positive bins form new islands
in condition of water level r.

To organize all the islands in different water levels, we propose a water-level
tree structure, where each node represents an island and each edge represents
the relationship: where a child island at a higher water level comes from a parent
island at a lower water level. Note that increasing r from 0 corresponds to raising
the water level and moving from root to leaves.

The WaterLevelTree algorithm is shown in Algorithm1. We start from
the root, and raise water level r in logarithmic scale from 0 to log hmax with step
ρ, to account for the power-law-like distribution of h, where hmax = max H. We
use the binary opening2 operator (◦) [15] for smoothing each internally jointed
island, which is able to remove small isolated bins (treated as noise), and separate
weakly-connected islands with a specific structure element. Afterwards, we link
each island at current level rcurr to its parent at lower water level rprev of the
tree. The flooding process stops until r reaches the maximum level—log hmax.
Subsequently, we propose following steps to refine the raw tree T (the pictorial
explanation for each step are given in the supplementary [1]):

2 Binary opening is a basic workhorse of morphological noise removal in computer
vision and image processing. Here we use 2 × · · · × 2

︸ ︷︷ ︸

dim(H)

square-shape “probe”.
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Algorithm 1. WaterLevelTree Algorithm
Input: Histogram H.
Output: Water-level tree T .
1: T = {positive bins in H as root}.
2: for r = 0 to log hmax by step ρ do
3: Hr : assign h ∈ H to zero if log h < r.
4: Hr = Hr◦ E. � binary opening to smooth.
5: islands Ar = {jointed bin areas in Hr}.
6: link each island in Ar to its parent in T .
7: end for
8: Contract T : iteratively remove each single-child island and link its children to its

parent.
9: Prune T : heuristically remove noise nodes.

10: Expand islands in T with extra neighbors.
11: return T

Contract: The current tree T may contain many ties, meaning no new islands
separated, which are redundant. Hence we search the tree using depth-first search;
once a single-child node is found, we remove it and link its children to its parent.

Prune: The purpose of pruning is to smooth away noisy peaks on top of each
island, arising from fluctuations of h between neighbor bins. Hence we prune
such child branches (including children’s descendants) based on their total area
size: the ratio of the sum of h in child bins to the sum of h in parent bins, is
no less than 95%.

Expand: We include additional surrounding bins into each island to avoid over-
fitting for learning distribution parameters and to eliminate the possible effect
of uniform step ρ for logarithmic scale. Hence we iteratively augment towards
positive bins around each island by a step of one-bin size until islands touch
each other, or doubling the number of bins as contained in original island.

Comparably in the Watershed formalization [36], the foreground of H
are defined as catchment basins for clustering purpose, and can capture the
boundaries between clusters as segmentation. We will see in experiments

Algorithm 2. TreeExplore Algorithm
Input: WaterLevelTree T
Output: summarization {S, Θ, O}.
1: Θ = ∅.
2: S = decide the distribution type sα from vocabulary for each island in T .
3: Search T with BFS to iteratively conduct following to each node: use

DistributionF it to determine the parameter; apply Hypothesis test to select opti-
mal one; and insert result into Θ and update S.

4: Stitch and replace promising distributions in S, then update Θ.
5: Decide outliers O deviating from the recognized groups.
6: return summarization {S, Θ, O}.
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(Sect. 5.3 and Fig. 3), the segmentation in Watershed approximates the islands
in one level of tree T , with a threshold parameter for background. STING also
selects clusters in the same level, and needs a density threshold; HDBSCAN
extracts hierarchies with MST that can not capture trees with any branches.
However, EagleMine has no tuning parameters, and then searches the water-
level tree to find the best combination of islands, which may come from different
levels (see Sect. 4.2).

4.2 Tree Explore Algorithm

With the water-level tree and describing vocabulary, we can then determine the
optimal node groups and their summarization. The main procedure is described
in Algorithm 2, where we decide the distribution vocabulary sα for each tree
node (island) α, search the tree with BFS, select the optimal islands with some
criteria, and refine the final results using stitching. In addition, we believe the
pictorial illustration in supplement [1] will offer intuitive explanation for the
algorithm.

We now describe our vocabulary Θ. Truncated Gaussian distribution [34] is
a flexible model for capturing clusters of different shapes, like line, circle, and
ellipse, or their truncation in 2D case. Due to the discrete unit bins in H, the
discretized, truncated, multivariate Gaussian distribution (DTM Gaussian for
short) with the mean μμμ and co-variance ΣΣΣ as parameter is used as one of the
vocabulary. Observing the multi-mode distribution of islands (skewed triangle-
like island in Fig. 1a) which exist in many different histogram plots and contains
the majority of graph nodes, we add Mixture of DTM Gaussians as another
vocabulary term to capture these complex structures.

In general, to decide the assignment S of vocabulary to each island, we can
use distribution-free hypothesis test, like Pearson’s χ2 test, or other distribution
specified approaches. Here, we heuristically assign Mixture of DTM Gaussians
to the island containing the largest number of graph nodes at each tree level,
and DTM Gaussian to other islands for simplicity. After vocabulary assignment,
we use the maximum likelihood estimation to learn the parameters θα ∈ Θ for
a island α, which θα = {μμμα,ΣΣΣα, Ñα} and Ñα =

∑
(i1,··· ,iF )∈α log hi1,··· ,iF . Let

DistributionF it(α, sα) denote the step of learning the parameter θα.
Afterwards, we search along the tree T with BFS to select the optimal combi-

nation of clusters. In principle, metrics like AIC and BIC in machine learning and
Pearson’s χ2 test and K-S test in statistics, can be adopted to determine whether
to explore the children of T . Here we utilize statistical hypothesis test to select
models for its better adaptation and performance in experiments, which measure
the statistical significance of the null hypothesis [10,16]. The null hypothesis for
searching the children of island α in T is:

HHH0: the bins of island α come from distribution sα.

If HHH0 is not rejected, we stop searching the island’s children. Otherwise, we
further explore the children of α.
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Specifically, We apply this hypothesis test to an island based on its binary
image, which focuses on whether the island’s shape looks like a truncated Gaus-
sian or mixture. Simply, we project the bin data to some dimensions and apply
the test according to projection pursuit [19] and G-means [16]. We implement
the Quadratic class ‘upper tail’ Anderson-Darling Statistic test3 [9,33] (with 1%
significance level) due to the truncation. And we accept the null hypothesis HHH0

only when the test is true for all dimension projections. If one of them is rejected,
HHH0 will be rejected. Finally, we get the node groups to summarize the histogram
until the BFS stops.

Stitch: some islands from different parents are physically close to each other. In
such case, those islands can probably be summarized by the same distribution.
So we use stitch process in step 4 to merge them by hypothesis test as well. The
stitch process stops until no changes occur. When there are multiple pairs of
islands to be merged at the same time, we choose the pair with the least average
log-likelihood reduction after stitching:

(αi∗ , αj∗) = arg min
i,j

Li + Lj − Lij

#points of αi and αj

where αi and αj are the pairs of islands to be merged, L(·) is log-likelihood of a
island, and Lij is the log-likelihood of the merged island.

Outliers and Suspiciousness Score: The outliers comprise of the bins far
away from any distribution of the identified node groups (i.e. with probability
< 10−4). Intuitively, the majority island containing the most nodes is normal,
so we define the weighted KL-divergence of an island from the majority island
as its suspiciousness score.

Definition 1 (Suspiciousness). Given the parameter θm for the majority
island, the suspiciousness of the island αi described by distribution with param-
eter θi is:

κ(θi) = log d̄i ·
∑

bbb∈αi

Ni · KL (P (bbb | θi) ||P (bbb | θm) )

where P (bbb | θ) is the probability in the bin bbb for the distribution with θ as
parameter, Ni is the number of nodes in the island i, and we use the logarithm
of d̄i, average degree of all graph nodes in the island i, as the weight based on
the domain knowledge that if other features are the same, higher-degree nodes
are more suspicious.

Time Complexity: Given features associated with nodes VVV , generating the
histogram takes O(|VVV |) time. Let nnz(H) be the number of non-empty bins
in H and C be the number of clusters. Assume the number of iterations for
learning parameters in DistributionF it(·) is T , then we have (proofs are in our
supplementary material [1]):

3 This measures the goodness-of-fit of the left-truncated Gaussian distribution.
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Theorem 1. The time complexity of EagleMine is O(
log hmax

ρ
· nnz(H) +

C · T · nnz(H).

Table 2. Dataset statistics summary and synthetic settings.

# of nodes # of edges Content Injected block

BeerAdvocate [29] (33.37K, 65.91K) 1.57M rate 1k× 500, 2k× 1k

Flickr (1.4M, 466K) 1.89M user to group 2k× 2k, 4k× 2k

Amazon (2.14M, 1.23M) 5.84M rate -

Yelp (686K, 85.54K) 2.68M rate -

Tagged (2.73M, 4.65M) 150.8M anonymized Links -

Youtube (3.22M, 3.22M) 9.37M who-follow-who -

Sina weibo (2.75M, 8.08M) 50.1M user-retweet-msg -

5 Experiments

We design the experiments to answer the following questions: [Q1] Anomaly
detection: How does EagleMine’s performance on anomaly detection compare
with the state-of-art methods? How much improvement does the visual-inspired
information bring? [Q2] Summarization: Does EagleMine give significant
improvement in concisely summarizing the graph? Does it accurately identify
micro-clusters that agree with human vision? [Q3] Scalability: Is EagleMine
scalable with regard to the data size?

The dataset4 information used in our experiments is illustrated in Table 2.
The Tagged [14] dataset was collected from Tagged.com social network web-
site. It contains 7 anonymized types of links between users, and here we only
choose the links of type-6, which is a homogeneous graph. The microblog Sina
Weibo dataset was crawled in November 2013 from weibo.com, consisting of
user-retweeting-message (bipartite) graph.

5.1 Q1. Anomaly Detection

To demonstrate EagleMine can effectively detect anomalous, we conduct exper-
iments on both synthetic and real data, and compare the performance with
state-of-the-art fraud detection algorithms GetScoop [21], SpokEn [30], and
Fraudar [18].

4 The public datasets are available at: Amazon: http://konect.uni-koblenz.de/networ
ks/amazon-ratings, Yelp: https://www.yelp.com/dataset challenge, Flickr: https://
www.aminer.cn/data-sna#Flickr-large, Youtube: http://networkrepository.com/
soc-youtube.php, Tagged: https://linqs-data.soe.ucsc.edu/public/social spammer/.

https://tagged.com
https://weibo.com
http://konect.uni-koblenz.de/networks/amazon-ratings
http://konect.uni-koblenz.de/networks/amazon-ratings
https://www.yelp.com/dataset_challenge
https://www.aminer.cn/data-sna#Flickr-large
https://www.aminer.cn/data-sna#Flickr-large
http://networkrepository.com/soc-youtube.php
http://networkrepository.com/soc-youtube.php
https://linqs-data.soe.ucsc.edu/public/social_spammer/
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Fig. 2. EagleMine performance for anomaly detection, summarization, and
scalability. (a) EagleMine achieves best accuracy for detecting injected fraud for Beer-
Advocate (‘Beer’ as the abbr.) and Flickr data. *Note that GetScoop and spokEn are
omitted for failing to catch any injected object. (b) MDL is compared on different
datasets. EagleMine achieves the shortest description code length, which means con-
cise summarization, and outperforms all other baselines (†Watershed clustering method
is omitted due to its MDL results is even much larger than the worst case). (c) blue
curve shows the running time of EagleMine v.s. # of node in graph in log-log scale.
(Color figure online)

In the synthetic case, we inject different size fraud (as a block) with and
without random camouflage into real datasets as Table 2 shows, where the ratio of
camouflage is set to 50%, i.e. randomly selecting different objects as the same size
as the targets. For BeerAdovate, the density of injected fraud is 0.05. For Flickr,
the density of injected fraud are 0.05, 0.1, 0.2. We use F score for nodes on both
sides of injected block to test the detection accuracy, and report the averaged
result over above trials for each dataset in Fig. 2a. GetScoop and SpokEn are
omitted since they fail to catch any injected object. It is obvious that EagleMine
consistently outperforms Fraudar and achieves less variance for the injection
cases with and without camouflages.

To verify that EagleMine accurately detects anomalies in Sina weibo data,
we labeled these nodes, both user and message, from the results of baselines,
and sampled nodes of our suspicious clusters from EagleMine, since that it is
impossible to label all the nodes. Our labels were based on the following rules
(like [18]): (1) deleted user-accounts/messages by the online system5 (2) a lot
of users that share unusual login-names prefixes, and other suspicious signals:
approximately the same sign-up time, friends and followers count. (3) messages
about advertisement or retweeting promotion, and having lots of copy-and-paste
text content. In total, we labeled 5,474 suspicious users and 4,890 suspicious
messages.

The anomaly detection results are reported in Fig. 1g. Using AUC to quantify
the quality of the ordered result from the algorithm, the sampled nodes from
micro-clusters are ranked in descendant order of hubness or authority. The results

5 The status is checked three years later (May 2017) with API provided by Sina weibo
service.
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show that EagleMine achieves more than 10% and about 50% improvement
for anomalous user and msg detection resp., outperforming the baselines. The
anomalous users detected by Fraudar and SpokEn only fall in the micro-cluster
1© in Fig. 3e, since their algorithms can only focus on densest core in a graph.
But EagleMine detects suspicious users by recognizing noteworthy micro-clusters
in the whole feature space. Simply put, EagleMine detects more anomalies than
the baselines, identifying more extra micro-clusters 2©, 3©, and 4©.

5.2 Case Study and Found Patterns

As discussed above, the micro-clusters 3© and 4© in out-degree vs hubness Fig. 3e
contains those users frequently rewtweet non-important messages. Here we study
the behavior patterns of micro-clusters 1© and 2© on the right side of the majority
group. Note that almost half of the users are deleted by system operators, and
many existing users share unusual name prefixes as Fig. 1e shown.

What patterns have we found? The Fig. 1f shows the ‘Jellyfish’ structure
of the subgraph consisting of users from micro-clusters 1© and 2©. The head
of ‘Jellyfish’ is the densest core ( 1©), where the users created unusual dense
connections to a group of messages, showing high hubness. The users (spammers
or bots) aggressively ‘copy-and-paste’ many advertising messages a few times,
which includes ‘new game’, ‘apps in IOS7’, and ‘Xiaomi Phone’, Their structure
looks like ‘Jellyfish’ tail. Thus the bots in 2© shows lower hubness than those in
1©, due to the different spamming strategies, which are overlooked by density-
based detection methods.

5.3 Q2. Summarization Evaluation on Real Data

We select X-means, G-means, DBSCAN and STING as the comparisons, the
setting details are described in supplements. We also include EagleMine (DM)
by using multivariate Gaussian description. We chose the feature spaces as degree
vs pagerank and degree vs triangle for Tagged dataset, and choose in-degree vs
authority and out-degree vs hubness for the rest.

We use Minimum Description Length (MDL) to measure the summarization
as [4] do, by envisioning the problem of clustering as a compression problem. In
short, it follows the assumption that the more we can compress the data, the
more we can learn about its underlying patterns. The best model has the smallest
MDL length. The MDL lengths for the baselines are calculated as [4,8,12]. With
the same principle, the MDL of EagleMine is: L = log∗(C)+LS +LΘ +LO +Lε;
details are listed in the supplementary [1].

The comparison results of MDL are reported in Fig. 2b. We can see that
EagleMine achieves the shortest description length, indicating a concise and good
summarization. Compared with the competitors, EagleMine reduces the MDL
code length more 26.2% at least and even 81.1% than G-means and STING resp.
on average, it also outperforms EagleMine (DM) over 6.4%, benefiting from a
proper vocabulary selection. Therefore, EagleMine summarizes histogram with
recognized groups in the best description length.
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Besides the quantitative evaluation for summarization, we illustrate the
results on 2D histogram for vision-based qualitative comparison. Due the space
limit, here we only exhibit the results for Sina Weibo dataset. As Fig. 3 shows, the
plot features are user’s out-degree and hubness indicating how many important
messages retweeted. Without removing some low-density bins as background,
Watershed algorithm easily identified all the groups into one or two huge ones.
Hence we manually tuned the threshold of background to attain a better result,
which is similar to the groups in a level of our water-level tree. The background
for Watershed is shown with gray color in Fig. 3b. As we can see, Watershed
only recognized a few very dense groups while failing to separate the two groups
on the right and leaving other micro-clusters unidentified. Our EagleMine rec-
ognized groups in a more intuitive way, and identify those micro-clusters missed
by DBSCAN and STING. Note that the user deletion ratio in the missed micro-
clusters 1© and 3© is unusually high, and they were suspended by the system
operators for anti-spam. Besides, those micro-clusters 3© and 4© include the users
have high out-degree but low-hubness, i.e., users retweeting many non-important
messages (e.g., advertisements). Hence, EagleMine identify very useful micro-
clusters automatically as human vision does.

5.4 Q3. Scalability

Figure 2c shows the near-linear scaling of EagleMine’s running time in the num-
bers graph nodes. Here we used Sina weibo dataset, we selected the snapshot
of the graph, i.e., the reduced subgraph, according to the timestamp of edge
creation in first 3, 6, . . . , 30 days. Slope of black dot line indicates linear growth.

(a) G-means

manually tuned THOLD.
treated as 

background

(b) Watershed

micro-clusters
missed

manually tuned para.

(c) DBSCAN

manually tuned para.

micro-clusters
missed

(d) STING (e) EagleMine

Fig. 3. EagleMine visually recognizes better node groups than clustering algorithms
for the feature space in Fig. 1a. Watershed (with a threshold for image background),
DBSCAN, and STING are mannaully tuned to have a relatively better results. The
blue scattering points in (c)–(e) denote individual outliers. Even though DBSCAN and
STING are extensively manually tunned, some micro-clusters of low density are missed.
(Color figure online)

6 Conclusions

We propose a tree-based approach EagleMine to mine and summarize all point
groups in a heatmap of scatter plots. EagleMine finds optimal clusters based
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on a water-level tree and statistical hypothesis tests, and describes them with
a configurable model vocabulary. EagleMine can automatically and effectively
summarize the histogram and node groups, detects explainable anomalies on
synthetic and real data, and can scale up linearly. In general, the algorithm is
applicable to any two/multi-dimensional heatmap.
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Abstract. Most clustering algorithms have been designed only for pure
numerical or pure categorical data sets while nowadays many applica-
tions generate mixed data. It arises the question how to integrate vari-
ous types of attributes so that one could efficiently group objects without
loss of information. It is already well understood that a simple conversion
of categorical attributes into a numerical domain is not sufficient since
relationships between values such as a certain order are artificially intro-
duced. Leveraging the natural conceptual hierarchy among categorical
information, concept trees summarize the categorical attributes. In this
paper we propose the algorithm ClicoT (CLustering mixed-type data
Including COncept Trees) which is based on the Minimum Description
Length (MDL) principle. Profiting of the conceptual hierarchies, ClicoT
integrates categorical and numerical attributes by means of a MDL based
objective function. The result of ClicoT is well interpretable since con-
cept trees provide insights of categorical data. Extensive experiments
on synthetic and real data set illustrate that ClicoT is noise-robust and
yields well interpretable results in a short runtime.

1 Introduction

Clustering mixed-data is a non-trivial task and typically is not achieved by
well-known clustering algorithms designed for a specific type. It is already well-
understood that converting one type to another one is not sufficient since it
might lead to information loss. Moreover, relations among values (e.g. a certain
order) are artificially introduced. Let Fig. 1 show a mixed-type data where three
different clusters are illustrated by different shapes. The data set comprises of
two numerical attributes concerning the position of objects and a categorical
attribute representing the color. We simply converted the color to a numerical
attribute by mapping numbers to various colors. Considering the Normalized
Mutual Information (NMI) [12] as an evaluation measure, Fig. 1 depicts the
inefficiency of applying K-means and DBSCAN, two popular clustering algo-
rithms, on the converted data. Therefore, integrating categorical and numerical
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https://doi.org/10.1007/978-3-030-16148-4_43

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16148-4_43&domain=pdf
https://doi.org/10.1007/978-3-030-16148-4_43


556 S. Behzadi et al.
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Fig. 1. Clustering results after converting categorical attribute Color to numerical.
(Color figure online)

attributes without any conversion is required since it preserves the original for-
mat of any attribute.

Utilizing the MDL principle we regard the clustering task as a data com-
pression problem so that the best clustering is linked to the strongest data set
compression. MDL allows integrative clustering by relating the concepts of like-
lihood and data compression while for any attribute a representative model
is required. Although for solely numerical data sets a Probability Distribution
Function (PDF) represents an approximation of data, finding an appropriate
approximation for categorical attributes is not straight-forward. Considering the
natural hierarchy among categorical values we introduce concept hierarchy to
summarize the categorical information. Back to the running example, consider-
ing pink as a higher-level hierarchy for the objects in the cluster consisting of
rose and purple points with the shape ×, more accurately represents the char-
acteristics of the cluster.

Beyond the clustering approaches, detecting the most relevant attributes
during this process improves the quality of clustering. However, considering a
data set with an unknown distribution where only few subgroups in the data
space are actually relevant to characterize a cluster, it is not trivial to recog-
nize the cluster-specific attributes. Thus, we employ an information-theoretic
greedy approach to specify the most relevant attributes. As a result, our novel
parameter-free CLustering algorithm for mixed-type data Including COncept
Tress, shortly ClicoT, provides a natural interpretation avoiding any conver-
sion which leads to an effective clustering (c.f. Fig. 1). Our approach consists of
several contributions:

– Integration: ClicoT integrates two types of information considering data
compression as an optimization goal. ClicoT flexibly learns the relative impor-
tance of the two different sources of information for clustering without requir-
ing the user to specify input parameters which are usually difficult to estimate.

– Interpretation: In contrast to most clustering algorithms, ClicoT not only
provides information about which objects are assigned to which clusters, but
also gives an answer to the central question why objects are clustered together.
As a result of ClicoT, each cluster is characterized by a signature of cluster-
specific relevant attributes providing appropriate interpretations.
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– Robustness: The compression-based objective function ensures that only the
truly relevant attributes are marked as cluster-specific attributes. Thereby,
we avoid over-fitting, enhance the interpretability and guarantee the validity
of the result.

– Usability: ClicoT is convenient to be used in practice since our algorithm
scales well to large data sets. Moreover, our compression-based approach
avoids difficult estimation of input parameters e.g. the number or the size
of clusters.

2 Clustering Mixed Data Types

To design a mixed-type clustering algorithm we need to address three funda-
mental questions: How to model numerical attributes to properly characterize a
cluster? How to model categorical attributes? And finally how to efficiently inte-
grate heterogeneous attributes when the most relevant attributes are specified?
In principle, a PDF summarizes values by approximating meaningful parame-
ters. However, the idea of using a background PDF for categorical attributes is
not intuitive at first, therefore we employ concept hierarchies.

2.1 Concept Hierarchy

As mentioned, concept hierarchies allow us to express conceptual interchange-
able values by selecting an inner node of a concept hierarchy to describe a cluster.
Concept hierarchies not only capture more relevant categories for each cluster
but also help to interpret the clustering result appropriately. Let DB denote a
database consisting of n objects. An object o comprises m categorical attributes
A = {A1, A2, ..., Am} and d numerical attributes X = {x1, x2, ..., xd}. For a cate-
gorical attribute Ai, we denote different categorical values by Ai

(j). An Element
represents a categorical value or a numerical attribute and we denote the number
of all Elements by E. Considering the natural hierarchy between different cate-
gories, for each categorical attribute Ai a concept hierarchy is already available
as follows:

Definition 1 Concept Hierarchy. Let TAi
= (N, E) be a tree with root Ai

denoting the concept hierarchy corresponding to the categorical attribute Ai with
the following properties:

1. TAi
consists of a set of nodes N = {n1, ..., ns} where any node is correspond-

ing to a categorical concept. E is a set of directed edges E = {e1, ..., es−1},
where nj is a parent of nz if there is an edge el ∈ E so that el = (nj , nz).

2. The level l(nj) of a node nj is the height of the descendant sub-tree. If nj is a
leaf, then l(nj) = 0. In a concept tree leaf nodes are categorical values existing
in the dataset. The root node is the attribute Ai which has the highest level,
also called the height of the concept hierarchy.

3. Each node nj ∈ N is associated with a probability p(nj) which is the frequency
of the corresponding category in a dataset.

4. Each node nj represents a sub-category of its parent therefore all probabilities
of the children sum up to the probability of the parent node.
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2.2 Cluster-Specific Elements

Beside an efficient clustering approach, finding relevant attributes to capture
the best fitting model is important. Usually the clustering result is disturbed
by irrelevant attributes. To make the model for each cluster more precise we
distinguish between relevant and irrelevant attributes. Each cluster c is associ-
ated with a subset of the numerical and categorical relevant elements denoted
by cluster-specific elements. Categorical cluster-specific elements are represented
by a specific concept hierarchy which diverges from the background hierarchy
(i.e. the concept hierarchy of the entire database).

Definition 2 Cluster. A cluster c is described by:

1. A set of objects Oc ⊂ DB.
2. A cluster-specific subspace I = Xc ∪ Ac, where Xc ⊆ X and Ac ⊆ A.
3. For any categorical attribute Ai ∈ Ac, the corresponding cluster-specific con-

cept hierarchy is a tree T c
Ai

= (Nc, Ec) with nodes and edges as specified in
Definition 1. Nc ⊂ N indicates the cluster-specific nodes. For computing the
probabilities associated with the cluster-specific nodes instead of all n objects,
only the objects Oc in cluster c are applied, i.e. p(nj) = |nj |

|Oc| .

2.3 Integrative Objective Function

Given the appropriate model corresponding to any attribute, MDL allows a
unified view on mixed data. The better the model matches major characteristics
of the data, the better the result is. Following the MDL principle [11], we encode
not only the data but also the model itself and minimize the overall description
length. Simultaneously we avoid over-fitting since the MDL principle tends to a
natural trade-off between model complexity and goodness-of-fit.

Definition 3 Objective Function. Considering the cluster c the description
length (DL) corresponding to this cluster defined as:

DL(c) = DLc(X ) + DLc(A) + DL(model(c))

The first two terms represent coding costs concerning numerical and categorical
attributes, respectively while the last term is the model encoding cost. Our pro-
posed objective function minimizes the overall description length of the database
which is defined as:

DL(DB) =
∑

c∈C
DL(c)

Coding Numerical Attributes: Considering Huffman coding scheme, the
description length of a numerical value oi is defined by − log2 PDF(oi). We
assume the same PDF to encode the objects in various clusters and clusters
compete for an object while the description length is computed by means of the
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same PDF for evrey cluster. Therefore any PDF would be applicable and using
a specific model is not a restriction [3]. For simplicity we select Gaussian PDF,
N (μ, σ). Moreover, we distinguish between the cluster-specific attributes in any
cluster c, denoted by Xc, and the remaining attributes X \ Xc (Definition 2).
Let μi and σi denote the mean and variance corresponding to the numerical
attribute xi in cluster c. If xi is a cluster-specific element (xi ∈ Xc), we consider
only cluster points to compute the parameters otherwise (xj ∈ X \Xc) the over-
all data points will be considered. Thus, the coding cost for numerical attributes
in cluster c is provided by:

DLc(X ) =
∑

xi∈X

∑

oi∈Oc

− log2
(
N (μi, σi)

)

Coding Categorical Attributes: Analogously, we employ Huffman coding
scheme for categorical attributes. The associated probability to a category is its
frequency w.r.t. either the specific or the background hierarchy (Definition 1).
Similar to numerical attributes, we assume Ac as the set of cluster-specific cat-
egorical attributes and A \ Ac for the rest. Let oj denote a categorical object
value corresponding to the attribute Aj . We define f(Aj , oj) as a function which
maps oj to a node in either a specific or a background hierarchy depending on
Aj . Thus, the categorical coding cost for a cluster c is given by:

DLc(A) =
∑

Aj∈A

∑

oj∈Oc

− log2
(
p(f(Aj , oj)

)
)

Model Complexity: Without taking the model complexity into account, the
best result will be a clustering consisting of singleton clusters. This result is
completely useless in terms of the interpretation. Focusing on cluster c, the
model complexity is defined as:

DL(model(c)) = idCosts(c) + SpecificIdCosts(c) + paramCosts(c)

The idCosts are required to specify which cluster is assigned to a object while
balancing the size of clusters. Employing the Huffman coding scheme, idCosts
are defined by |Oc| · log2 n

|Oc| where |Oc| denotes the number of objects assigned
to cluster c. Moreover, in order to avoid information loss we need to specify
whether an attribute is a cluster-specific attribute or not. That is, given the
number of specific elements s in cluster c, the coding costs corresponding to
these elements, SpecificIdCosts, is defined as:

SpecificIdCosts(c) = s · log2
E

s
+ (E − s) · log2

E

(E − s)

Following fundamental results from information theory [11], the costs for encod-
ing the model parameters is reliably estimated by:

paramCosts(c) =
numParams(c)

2
· log2 |Oc|
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Fig. 2. Update concept hierarchies considering pink as a cluster-specific node. (Color
figure online)

For any numerical cluster-specific attribute we need to encode its mean and
variance while for a categorical one the probability deviations to the default
concept hierarchy need to be encoded, i.e. numParams(c) = |X |·2+

∑
Ai∈A |Nc|.

Moreover, we need to encode the probabilities associated with the default concept
hierarchy, as well as the default (global) means and variances for all numerical
attributes. However, these costs are summarized to a constant term which does
not influence our subspace selection and clustering technique.

3 Algorithm

Together with the main building blocks of ClicoT, two other steps are required
to achieve an appropriate parameter free clustering: (1) recognizing the cluster-
specific elements and (2) probability adjustments.

Cluster-Specific Elements: Let the specific coding cost denote the cost where
an element is marked as specific and the non-specific coding cost indicate the cost
otherwise. Consulting the idea that cluster-specific elements have the most devi-
ation of specific and non-specific cost and therefore saves more coding costs, we
introduce a greedy method to recognize them. We iteratively sort the elements
according to their deviations and specify the first element as a cluster-specific
element. We continue marking elements until marking more elements does not
pay off in terms of the coding cost. Note that different nodes of a concept hier-
archy have the same opportunity to be specific.

Probability Adjustment: To adjust the probabilities for a numerical cluster-
specific attribute we can safely use mean and variance corresponding to the
cluster. In contrast, learning the cluster-specific concept hierarchy is more chal-
lenging since we need to maintain the integrity of a hierarchy. According to Def-
inition 1 we assure that node probabilities of siblings in each level sum up to the
probability of the parent node. Moreover node probabilities should sum up to one
for each level. we provide a pseudocode concerning this procedure in appendix.
To clarify, let Fig. 2 show the procedure on the concept hierarchy corresponding
to the running example (Fig. 1) where labels denote the frequencies. Moreover,
let pink be a cluster-specific node for the cluster with the shape ×. The adjust-
ment starts with the root node and processes its children. Then it continues
computing the relative probabilities for the specific concept hierarchy rather
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Algorithm 1. ClicoT
input DB
learn background distributions of each attribute
C′ = {C0} with C′

0 = Oi ∈ DB
repeat

// try to split until convergence
C = C′

cost = DL(DB|C) // current cost
C′ = {C′

1 . . . C
′
k−1} split worst Ci ∈ C to {C′

i, C
′
k}

while clustering C′ changes do
C′

i = {Oj : mini DL(Oj |C′
i)} // assign objects

Select cluster-specific elements by a greedy method for each cluster and compute
costs
Update each attribute of C′

i

end while
cost’ = DL(DB|C′) // split cost

until cost > cost’
k = |C|
return C, k

by background probability fraction (Fig. 2a). 80% relative probability should be
distributed between two children, rose and purple, based on the computed prop-
agation factor. During the next step the remaining 20% probability is assigned
level-wise to blue and green to assure that probabilities in each level sum up to
1 (Fig. 2b). Again each parent propagates down its probability (Fig. 2c). The
result is a concept hierarchy best fitting to the objects when the background
distributions are preserved.

ClicoT Algorithm: ClicoT is a top-down parameter-free clustering algorithm.
That is, we start from a cluster consisting of all objects and iteratively split
down the most expensive cluster c in terms of the coding cost to two new clusters
{c′

a, c
′
b}. Then, we apply a k-Means-like strategy and assign every point to clos-

est cluster which is nothing else than the cluster with the lowest increase in the
coding cost. Employing the greedy algorithm, we determine the cluster-specific
elements and finally we compute the compression cost for clustering results in
two cases, before and after splitting (Definition 1). If the compression cost after
splitting, i.e. C′ with |C′| = k + 1, is cheaper than the cost of already accepted
clustering C with |C| = k then we continue splitting the clusters. Otherwise the
termination condition is reached and the algorithm will be stopped.

4 Related Work

Driven by the need of real applications, the topic of clustering mixed-type data
represented by numerical and categorical attributes has attracted attentions,
e.g. CFIKP [13], CAVE [7], CEBMDC [5]. In between, most of the algorithms
are designed based on the algorithmic paradigm of k-Means, K-means-mixed
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(KMM) [1], k-Prototypes [8]. Often in this category not only the number of
clusters k but also the weighting between numerical and categorical attributes
in clustering has to be specified by the user. Among them, KMM avoids weight-
ing parameters by an optimization scheme learning the relative importance of
the single attributes during runtime, although it needs the number of clusters k
as input parameter. Following a mixture of Gaussian distributions, model based
clustering algorithms have been also proposed for mixed-type data. In between,
clustMD [9] is developed using a latent variable model and employing an expec-
tation maximisation (EM) algorithm to estimate the mixture model. However
this algorithm has a certain Gaussian assumption which does not have to be
necessarily fulfilled. Some of the approaches utiliz the unique characteristics of
any data type to avoid the drawbacks of converting a data type to another
one. Profiting of the concept hierarchy, these algorithms introduce an integra-
tive distance measure applicable for both numerical and categorical attributes.
The algorithm DH [6] proposes a hierarchical clustering algorithm using a dis-
tance hierarchy which facilitates expressing the similarity between categorical
and numerical values. As another method, MDBSCAN [2] employs a hierarchi-
cal distance measure to introduce a general integrative framework applicable for
the algorithms which require a distance measure .e.g. DBSCAN. On the other
hand, information-theoretic approaches have been proposed to avoid the diffi-
culty of estimating input parameters. These algorithms regard the clustering as a
data compression problem by hiering the Minimum Description Length (MDL).
The cluster model of these algorithms comprises joint coding schemes support-
ing numerical and categorical data. The MDL principle allows balancing model
complexity and goodness-of-fit. INCONCO [10] and Integrate [4] are two rep-
resentative for mixed-type clustering algorithms in this family. While Integrate
has been designed for general integrative clustering, INCONCO also supports
detecting mixed-type attribute dependency patterns.

5 Evaluation

In this section we assess the performance of ClicoT comparing to other clustering
algorithms in terms of NMI which is a common evaluation measure for clustering
results. NMI numerically evaluates pairwise mutual information between ground
truth and resulted clusters scaling between zero and one. We conducted several
experiments evaluating ClicoT in comparison to KMM [1], INCONCO [10], DH
[6], ClustMD [9], Integrate [4] and MDBSCAN [2]. In order to be fair in any
experiment, we input the corresponding concept hierarchy to the algorithms
which are not designed for dealing with it. That is, we encode the concept hier-
archy as an extra attribute so that categorical values belonging to the same cat-
egory have the same value in this extra attribute. Our algorithm is implemented
in Java and the source code as well as the data sets are publicly available1.

1 https://bit.ly/2FkUB3Q.

https://bit.ly/2FkUB3Q
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Fig. 3. Clustering results on the running example. (Color figure online)

5.1 Mixed-Type Clustering of Synthetic Data

In order to cover all aspects of ClicoT we first consider a synthetic data set.
Then we continue experiments by comparing all algorithms in terms of the noise-
robustness. Finally we will discuss the runtime efficiency.

Clustering Results: In this experiment we evaluate the performance of all the
algorithms on the running example (Fig. 1) while all parametric algorithms are
set up with the right number of clusters. The data has two numerical attributes
concerning the position of any data point and a categorical attribute showing the
color of the points. Figure 3 shows the result of applying the algorithms where
different clusters are illustrated by different colors. As it is explicitly shown in
this figure ClicoT, with NMI 1, appropriately finds the initially sampled three
clusters where green, pink and blue are cluster-specific elements. Setting the cor-
rect number of cluster and trying various Gaussian mixture models, ClustMD
results the next accurate clustering. Although MDBSCAN utilizes the distance
hierarchy, but it is not able to capture the pink and green clusters. KMM can
not distinguish among various colors. Since two clusters pink and green are heav-
ily overlapped, Integrate can not distinguish among them. DH and INCONCO
poorly result on this data set and they found almost only one cluster.
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Noise-Robustness: In this section we benchmark noise-robustness of ClicoT
w.r.t the other algorithms in terms of NMI by increasing the noise factor. To
address this issue we generate a data set with the same structure as the running
example and we add another category, brown, to the categorical attribute color
as noise. Regarding numerical attributes we increase the variance of any cluster.
We start from 5% noise (noise factor = 1) and iteratively increase the noise factor
ranging to 5. Figure 4 clearly illustrates noise-robustness of ClicoT comparing to
others.
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Fig. 4. Comparing noise-robustness of ClicoT to other algorithms.

Scalability: To evaluate the efficiency of ClicoT w.r.t the other algorithms, we
generated a 10 dimensional data set (5 numerical and 5 categorical attributes)
with three Gaussian clusters. Then respectively we increased the number of
objects ranging from 2,000 to 10,000. In the other case we generated different
data sets of various dimensionality ranging from 10 to 50 where the number of
objects is fixed. Figure 5 depicts the efficiency of all algorithms in terms of the
runtime complexity. Regarding the first experiment on the number of objects,
ClicoT is slightly faster than others while increasing the dimensionality Integrate
performs faster. However, the runtime of this algorithm highly depends on the
number of clusters k initialized in the beginning (we set k = 20). That is, this
algorithm tries a rang of k and outputs the best results. Therefore, by increasing
k the runtime is also increasing.

5.2 Real Experiments

Finally, we evaluate clustering quality and interpretability of ClicoT on real
world data sets. We used MPG, Automobile and Adult data sets from the UCI
Repository as well as Airport data set from the public project Open Flights2.

2 http://openflights.org/data.html.

http://openflights.org/data.html
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Fig. 5. Runtime experiment.

MPG: MPG is a slightly modified version of the data set provided in the
StatLib library. The data concerns city-cycle fuel consumption in miles per gal-
lon (MPG) in terms of 3 categorical and 5 numerical attributes consisting of
different characteristics of 397 cars. We consider MPG ranging from 10 to 46.6
as the ground truth and divide the range to 7 intervals of the same length. The
information about the concept hierarchy is provided in the appendix. Compar-
ing ClicoT (NMI = 0.4) to the other algorithms INCONCO(0.17), KMM(0.37),
DH(0.14), MDBSCAN(0.02), ClustMD(0.33) and Integrate(0). ClicoT correctly
finds 7 clusters each of which compatible with one of the MPG groups. Cluster
2, for instance, is compatible with the first group of MPGs since the frequency
of the first group in this cluster is 0.9. In this cluster American cars with the
frequency of 1.0, cars with 8 cylinders with the frequency of 1 and model year
in first group (70–74) with the frequency of 0.88 are selected as cluster-specific
elements.

Automobile: This data set provides 205 instances with 26 categorical and
numerical attributes. The first attribute defining the risk factor of an auto-
mobile has been used as class label. Altogether there are 6 different classes.
Due to many missing values we used only 17 attributes. Comparing the
best NMI captured by every algorithm, ClicoT (NMI = 0.38) outperforms
kMM(0.23), INCONCO(0.20), Integrate(0.17), DH(0.04), ClusterMD(0.16) and
MDBSCAN(0.02). Furthermore, ClicoT gives an insight in the interpretability
of the clusters where Cluster 12, for instance, is characterized mostly by the fuel
system of 2bbl, but also by 1bbl and 4bbl. Also we see that Cluster 26 is consisting
of both mpfi and slightly of mfi, too. Concerning the risk analysis this clustering
serves, ClicoT allows to recognize which fuel systems share the same insurance
risk.
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Fig. 6. Result of ClicoT on Open Flight data set. (Color figure online)

Adult Data Set: Adult data set without missing values, extracted from the
census bureau database, consists of 48,842 instances of 11 attributes. The class
attribute Salary indicates whether the salary is over 50K or lower. Categorical
attributes consist of different information e.g. work-class, education, occupa-
tion. A detailed concept hierarchy is provided in appendix. Although compar-
ing to INCONCO(0.05), ClustMD(0.0003), MDBSCAN(0.004), DH(0) and Inte-
grate(0), our algorithm ClicoT(0.15) outperforms all other algorithms except
KMM(0.16) which is slightly better. But it seems that NMI does not sound a
reasonable evaluation measure for this data set since there are only two classes
in ground truth. ClicoT found 4 clusters in which Cluster 2, the biggest cluster
consisting of almost 56% of objects, specifies Husband as the cluster-specific ele-
ment, since it has the most deviation, but negative. The probability of instances
having Husband as categorical value and the salary ≤ 50K is zero in this cluster.
Therefore along with the negative deviation this means that in Cluster 2 persons
with the role as husband in a family earn more than 50K.

Open Flights Data Set: The public project Open Flights provides world wide
information about airports, flights and airlines. Here we consider instances of
airports in order to carry out a cluster analysis. The data set consists of 8107
instances each of which represents an airport. The numeric attributes show the
longitude and latitude, the sea height in meters and the time zone. Categorical
attributes consist of the country, where the airport is located and the day light
saving time. We constructed the concept hierarchy of the country attribute so
that each country belongs to a continent. Since there is no ground truth provided
for this data set we interpret the result of ClicoT (Fig. 6) and we refer the reader
to the appendix for more results regarding other algorithms.
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Clustering results illustrated in Fig. 6 consists of 15 clusters and shows that
ClicoT appropriately grouped almost geographically similar regions in the clus-
ters. Starting from west to east, North American continent divided into five
clusters. Obviously here the attribute of the time zone was chosen as specific
because the clusters are uniquely made according to this attribute. Moving to
the south, ClicoT pulled a plausible separation between South and North Amer-
ica. Considering South America as cluster-specific element and due to the rather
low remaining airport density of South America ClicoT combined almost all of
the airports to a cluster (red). In Western Europe there are some clusters, which
can be distinguished by their geographic location. Additionally many airports
around and in Germany are be grouped together.

6 Conclusion

To conclude, we have developed and demonstrated that ClicoT is not only able
to cluster mixed-typed data in a noise-robust manner, but also yields most inter-
pretable cluster descriptions. By using data compression as the general principle
ClicoT automatically detects the number of clusters within any data set with-
out any prior knowledge. Moreover, the experiments impressively demonstrated
that clustering can greatly benefit from a concept hierarchy. Therefore, ClicoT
excellently complements the approaches for mining mixed-type data.

Appendix

A Probability Adjustment

To adjust the probabilities for a numerical cluster-specific attribute we can safely
use mean and variance corresponding to the cluster. In contrast, learning the
cluster-specific concept hierarchy is more challenging since we need to maintain
the integrity of a hierarchy. We need to assure that node probabilities of siblings
in each level sum up to the probability of the parent node. Moreover node proba-
bilities should sum up to one for each level. ProcessHierarchy() in Algorithm 2 is
a recursive function to update the concept tree assuming marked cluster-specific
elements. Simultaneously in this function, Propagatedown() tries to preserve the
concept tree properties by propagating down the parents probabilities to their
children.
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Algorithm 2. Concept tree updates
ProcessHierarchy (V ertex V )
ssp := sum of specific probabilities
sup := sum of unspecific probabilities
if V is a leaf then

if V is specific then
return (V.probability, 0)

end if
return (0, V.backgroundProbability)

end if
// now V is not a leaf
(ssp, sup) := (0, 0)
for all C in children(V ) do

(s, u) := processHierarchy(C)
(ssp, sup) := (ssp + s, sup + u)

end for
if V is specific or root then

factor := (V.probability − ssp)/sup
for all C in children(V ) do

propagateDownFactor(C, factor)
end for
return (V.probability, 0)

end if
return (ssp, sup)

Algorithm 3. Down-propagation of the adjustment factor
PropagateDownFactor (Vertex V,double factor)
if V is unspecific then

V.probability := V.probability · factor
if V is not leaf then

for all C ∈ V.children do
PropagateDownFactor(C, factor)

end for
end if

end if

B MPG

MPG is a slightly modified version of the data set provided in the StatLib library.
The data concerns city-cycle fuel consumption in miles per gallon (MPG) in
terms of 3 categorical and 5 numerical attributes consisting of different charac-
teristics of 397 cars. We consider MPG ranging from 10 to 46.6 as the ground
truth and divide the range to 7 intervals of the same length. Considering a con-
cept hierarchy for the name of cars we group all the cars so that we have three
branches: European, American, Japanese cars. Moreover we divide the range
of model year attribute to three intervals: 70–74, 75–80, after 80. We leave the
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third attribute as a flat concept hierarchy since there is no meaningful hierarchy
between variation of cylinders.

C Adult Dataset

Adult data set, extracted from the census bureau database, consists of 48,842
instances of 11 attributes excluding the attributes with missing values (six
numerical and 5 categorical). The class attribute Salary indicates whether the
salary is over 50K or lower. Categorical attributes consist of different informa-
tion e.g. work-class, education, occupation and so on. Figure 7 indicates concept
hierarchies for three selected categorical attributes, including work-class, rela-
tionship and education.
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Fig. 7. Concept tree for 3 categorical attributes of adult dataset.

D Open Flights Dataset

Clustering results applying various algorithms with a better resolution illustrat-
ing is provided here (Figs. 8, 9, 10, 11 and 12).
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Fig. 8. ClicoT.

Fig. 9. KMM.
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Fig. 10. MDBSCAN.

Fig. 11. INCONCO and integrate.
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Fig. 12. DH.
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Abstract. Abnormal event detection is a crucial step towards discover-
ing insider threat in enterprise networks. However, most existing anomaly
detection approaches fail to capture latent correlations between disparate
events in different domains due to the lack of a panoramic view or
the disability of iterative attention. In light of this, this paper presents
DMNAED, a novel framework based on dynamic memory network for
abnormal event detection in enterprise networks. Inspired by question
answering systems in natural language processing, DMNAED considers
the event to be inspected as a question, and a sequence of multi-domain
historical events serve as a context. Through an iterative attention pro-
cess, DMNAED captures the context-question interrelation and aggre-
gates relevant historical events to make more accurate anomaly detec-
tion. The experimental results on the CERT insider threat dataset r4.2
demonstrate that DMNAED exhibits more stable and superior perfor-
mance compared with three baseline methods in identifying aberrant
events in multi-user and multi-domain environments.

Keywords: Abnormal event detection · Dynamic memory network ·
Iterative attention · Relevant historical events

1 Introduction

With the evolution of insider threat, abnormal event detection plays a more and
more significant role in protecting information assets of enterprise networks. Due
to increasing complexities in business intelligence sharing, contractor relation-
ships, and geographical distribution [16], the footprints left by malicious insiders
tend to disperse across different domains. As a result, it is a mounting challenge
to identify stealthy malicious activities from large numbers of multi-domain het-
erogenous event records.

In order to accurately detect abnormal events, analysts need to piece together
fragments of contextual information for an event, and perform iterative reasoning
based on the synthetic context. However, existing approaches [3,4,6,11] mainly
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focus on learning the patterns of user behaviors based on multi-dimensional fea-
tures to identify suspicious events by comparing behaviors of different individuals
or comparing behaviors of the same individual in different time periods. These
approaches have the following two limitations: (1) Lacking a panoramic view
required to capture event correlation patterns across multiple domains because
they typically target a particular domain or specific log data. (2) Lacking the
ability of iterative reasoning over the synthetic contextual information which
is a patchwork of multi-domain heterogeneous event records. Although many
researches have attempted to solve the limitations with various deep learning
techniques, they are still insufficient to provide stable and reliable detection
performance in multi-user and multi-domain environments.

Dynamic memory network (DMN) is a unified neural network that uses some
ideas from neuroscience such as semantic and episodic memories [9]. It is char-
acterized by a recurrent attention mechanism which enables iterative reasoning.
Given an input sequence and a question, DMN can focus on specific input relative
to the question, and form episodic memories for generating the corresponding
answer. Motivated by the excellent performance of DMN in many varied tasks,
this paper proposes DMNAED, a novel DMN-based framework for abnormal
event detection in enterprise networks, which models an event record as a struc-
tured language sentence that consists of a set of fields. Specifically, DMNAED
takes the event to be inspected (referred to as current event) as a question,
and takes a synthetic sequence of multi-domain historical events as a context.
Each event is mapped into a multi-dimensional vector by field-level embedding
and event-level encoding. Through an iterative attention process, DMNAED
iteratively retrieves the historical events conditioned on current event to aggre-
gate meaningful contextual information, thus paving the way for further predic-
tion and anomaly detection. The contributions of this paper are summarized as
follows:

1. We present a novel framework called DMNAED that is able to process multi-
domain heterogeneous event records and detect abnormal events taking into
consideration the interaction between different domains. DMNAED is an
innovative extension of DMN to anomaly detection.

2. We propose a temporary storage mechanism to preserve the indices of related
historical events such that once an anomaly is detected, DMNAED can pro-
vide valuable clues for provenance tracking and forensic analysis.

3. We conduct a series of comparative experiments on the CERT dataset r4.2,
and investigate the parameter sensitivity of DMNAED. The results demon-
strate that DMNAED achieves more stable and superior performance com-
pared with three baseline anomaly detection methods.

2 Related Work

The relevant efforts on abnormal event detection in enterprise networks mainly
encompass three aspects as follows:
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Data pre-processing: Raw logs and event records are always manifested in
various formats. To deal with inconsistent log data from different sources, Yen et
al. [16] employed a security information and event management (SIEM) system,
and developed efficient techniques to remove noise in the logs. Lee et al. [10]
presented a two-stage framework that includes data normalization and graph-
based data fusion for unifying different datasets. Pei et al. [14] leveraged raw
log parsers to extract specific fields from each input entry for log correlation.
To facilitate event correlation analysis, DMNAED follows a similar way to [14]
that utilizes a set of pre-defined fields to capture pivotal information of each
event record, but unlike previous efforts, DMNAED aims at normalizing het-
erogenous event records into a common concise representation for multi-domain
event correlation.

Anomaly detection: A large number of anomaly detection techniques have
been illustrated in [3,4], including classification based models, clustering based
models, and statistical models etc. With the boosting of deep learning in recent
years, deep neural networks, such as long short-term memory (LSTM) net-
works, have been widely used in anomaly detection. For instance, Buda et al. [2]
employed various LSTMs on streaming data, and merged the predictions of
multiple models to detect anomalies. Du et al. [5] proposed a LSTM based deep
neural network that models system logs as natural language sequences for detect-
ing execution path anomalies and parameter value anomalies. Meng et al. [11]
leveraged LSTM to learn the pattern of user behaviors and extract temporal
features. These approaches are meritorious in handling particular time series
which contain strong temporal dependencies. Whereas, the synthetic sequence
of multi-domain event records is equivalent to a hybrid of multiple time series,
in which the dependencies between adjacent events are notably diminished. The
previous approaches become ineffective in this context. DMNAED addresses the
issue by leveraging an iterative attention process which concentrates on relevant
historical events and skips over interfering incidents.

Provenance tracking: Too many uncorrelated alerts may be either deemed
false positives or overlooked by security officers [14]. Thus, it is imperative to pro-
vide enough actionable intelligence or pertinent evidence for provenance tracking.
King et al. [8] built dependency graphs by correlating events to trace the root
causes of intrusions. Hossain et al. [7] developed tag-based techniques for attack
reconstruction, relying on dependency graphs. Besides, workflow construction
has also been studied largely for anomaly diagnosis, such as in [1,5]. However,
whether dependency graphs or workflows, they are both prone to high cost of
overhead and severe delay. DMNAED avoids the pitfall by leveraging a tempo-
rary storage mechanism, which preserves the indices of relevant historical events
during iterative attention process. This allows DMNAED to provide historical
clues about an anomaly to security officers in real time for further investigation.

To the best of our knowledge, applying DMN to anomaly detection has not
been studied yet. The proposed framework DMNAED employs a modified DMN
to detect anomalous events in enterprise networks, which involves the three col-
laborative aspects mentioned above.
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3 DMNAED Framework

Figure 1 shows an overview of the DMNAED framework. Different from the archi-
tecture of original DMN which has four modules (input module, question mod-
ule, episodic memory module and answer module, respectively) [9], DMNAED is
structured hierarchically, which consists of five layers, detailed in the following
subsections:

Field-Level Embedding 

Bi-GRU ( F )

Iterative  Attention Process ( M ) & Temporary Storage 

GRU1+FCL1 

A new event record

Data Preparation
 Layer

Representation 
Layer

Memory Formation 
Layer

Prediction 
Layer

Anomaly Detection 
Layer

Historical events ( S ) Current event ( C )

GRUn+FCLn

Field-Level Embedding 

GRU2+FCL2 

Multi-domain Events Database

Anomaly?
Yes

No

Alert and provide 
relevant clues

parser

Bi-GRU ( Q )

~Predicted event ( Pr ( C | M ) )

Fig. 1. Overview of DMNAED. The flow of execution is indicated by arrows. The
output of each layer except the last layer is shown in the parentheses (i.e. S, C, F , Q,
M , Pr(C̃|M)).

– Data Preparation Layer: This layer preprocesses raw event records and
maintains a multi-domain events database which arranges all the normalized
historical events in chronological order. When a new event record (i.e. current
event) arrives, it is normalized into a set of pre-defined fields, and a window
of the k most recent events are fetched from the database as the context. For
notational convenience, current event and historical events are denoted by C
and S respectively.

– Representation Layer: This layer transforms C and S into multi-
dimensional numeric vectors via field-level embedding and event-level encod-
ing. The event-level encoding is implemented by bi-directional GRUs (Bi-
GRUs). The outputs are represented by Q and F for current event and his-
torical events respectively.
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– Memory Formation Layer: This layer retrieves historical events condi-
tioned on current event to aggregate related facts via an iterative attention
process. Each iteration produces an episode, finally forming a compositive
memory M . During the process, the indices of relevant historical events are
preserved in buffer for later queries once needed.

– Prediction Layer: This layer employs a series of GRUs combined with full
connected layers (FCL) to decode the memory M , and predict the event C̃
that comes right after the given historical sequence. Particularly, a separate
GRUj + FCLj network is built for predicting the jth field of the expected
event C̃.

– Anomaly Detection Layer: This layer determines whether the current
event is abnormal by comparing the observed event C with the predicted event
candidates. If abnormal, DMNAED queries the buffer to provide relevant
clues for provenance tracking and anomaly diagnosis in addition to alerting.
If normal, DMNAED automatically clears the buffer.

3.1 Data Preparation Layer

The data preparation layer is responsible for parsing and normalizing raw event
records using network-specific configuration information. To capture the piv-
otal information of an event, DMNAED parses an event record into several
pre-defined fields as shown in Table 1, where each field is normalized for self-
identifying. For example, subject is normalized as a user identifier. In practice,
these fields can be augmented or rewritten to meet new requirements. In addi-
tion, this layer maintains a multi-domain events database that integrates the
normalized historical event records in chronological order. For concurrent events,
which lead to uncertainty in the ordering of event entities, DMNAED adopts
several customized policies based on principal priority and operation logic [7].

Inspired by question answering in NLP tasks [9], DMNAED considers current
event to be inspected as a question, denoted by C. The corresponding historical
event sequence, which is a window of the T most recent events across multiple
domains, serves as the context, denoted by S.

Table 1. Pre-defined fields for an event

Field Explanation

Subject The initiator of actions (i.e. a user)

Action Operations performed by the subject on the object

Object The receptors of actions (e.g. files, devices, messages, programs)

Device Device where the action took place

Timestamp Time when the action took place
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3.2 Representation Layer

The representation layer maps each event into a multi-dimensional vector by two
phases for exploring the hidden interconnectivity of disparate events.

Phase 1: Field-Level Embedding. Different from traditional NLP tasks, the input
of this layer are structured event records, whose basic elements are fields, rather
than words. Therefore, field-level embedding is imperative. To this end, we pre-
train a recurrent Continuous Bag of Words (CBOW) model using a fraction
of normal event records to compute the embedding vector of each field. The
recurrent CBOW model is able to circularly utilize the hidden states, fusing rich
contextual information in the field embedding [15]. For fields with continuous
value such as timestamp, we partition the value range into several segments such
that a large amount of continuous value is reduced to a smaller set of discrete
intervals.

Phase 2: Event-Level Encoding. We apply event-level encoding to capture more
comprehensive information of event sequence, implemented by Bi-GRU. The
field-level embedding vectors are fed into a Bi-GRU, whose hidden states are
obtained by concatenating the hidden states of the forward and backward GRUs.
We subsample the output of the Bi-GRU, and leverage the hidden unit represen-
tations that correspond to end-of-event markers as the event encoding vectors
for the sequence of historical events, while the event-level encoding for current
event is defined as the final hidden unit representation of the Bi-GRU. We rep-
resent the encoding vectors as F = [f1, f2, · · · , fT ] and Q for historical events
and current event respectively, where ft represents the encoding vector of the
tth historical event.

3.3 Memory Formation Layer

Analogous to the episodic memory module in original DMN [9], the memory for-
mation layer is characterized by an iterative attention process, concentrating on
relevant historical events in regard to current event, and yielding a compositive
memory: M .

We initialize the memory to the encoding vector of current event. i.e.
M0 = Q. For each iteration i, an attention vector Ai = [ai

1, a
i
2, · · · , ai

T ] is calcu-
lated with respect to the given historical events. ai

t is an attention weight which
measures the correlation between a historical event ft and the current event Q
in iteration i. The attention weight is computed using a two-layer feed forward
neural network, which takes as input a pre-generated vector: zt. The equations
are expressed as:

zt =[ft, M i−1, ft ◦ Q, ft ◦ M i−1,

|ft − Q|, |ft − M i−1|, ft
TWQ, ft

TWM i−1],
(1)

ai
t = σ(W2tanh(W1zt + b1) + b2), (2)
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where ◦ is the element-wise product. W,W1,W2, b1, b2 are parameters to be
learned. zt captures the interior connection between a historical event ft, the
previous memory M i−1, and the current event Q.

Given the attention vector, we compute an episode Eatt by running a modified
GRU, denoted by attGRU. The equation to update the hidden states of the
attGRU at time t for iteration i is given as:

hi
t = ai

tGRU(ft, hi
t−1) + (1 − ai

t)h
i
t−1, (3)

where the input parameters include last hidden state hi
t−1, a historical event ft,

and the corresponding attention weight ai
t. The episode is defined as the final

hidden state of the attGRU, i.e. Ei
att = hi

T . At the end of iteration i, the memory
M is updated as:

M i = GRU(Ei
att,M

i−1). (4)

Due to the lack of explicit supervision, we set the maximum number of iter-
ations as r. When the iterations come to end, the final memory is formed, which
summarizes the episodes produced by every iteration.

Temporary storage: The iterative attention process enables the model to
focus on different events during each iteration, which realizes incessant reasoning.
As a matter of fact, this process implicitly encodes the workflow path of the
underlying system, which can provide important clues about the likelihood of
an event being a potential part of a malicious activity. To facilitate provenance
tracking, when the final memory is obtained, DMNAED puts the indices of
relevant facts into a buffer for temporary storage. The relevant facts refer to the
historical events whose attention weights surpass a threshold: λ. In this way, once
an anomaly is detected, DMNAED can query the buffer to obtain the relevant
anterior events, providing valuable contextual information about anomalies in
real time to security officers for forensic analysis. If current event is judged as
normal, DMNAED automatically clears the buffer. Note that the threshold λ
has no impact on the result of anomaly detection. It only affects the number of
anomaly-associated clues provided to security officers.

3.4 Prediction Layer

Considering that for an enterprise network, each field (e.g. subject, object, and
device) has a finite number of optional values, the prediction of a field can be
cast into a multi-class classification problem. We postulate that different fields
are mutually independent, thus the probability of an event can be calculated by
taking the product of the probabilities of its fields.

The prediction layer employs a series of GRUs and fully connected lay-
ers (FCLs) to decode the compositive memory M and predict the subsequent
event C̃ that is expected to occur after the given historical events. Suppose the
pre-defined fields for an event are u1, u2, · · · , un, a separate GRU+FCL net-
work is built for predicting the field uj of the expected event, represented by
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GRUj +FCLj as shown in Fig. 1. The probability distribution for the field uj of
the expected event given the memory M is calculated as:

gjt = GRUj(M, gjt−1), (5)

yj
t = relu(W (1)

j gjt + b
(1)
j ), (6)

Pr(uj |M) = softmax(W (2)
j yj

t + b
(2)
j ), (7)

where gjt is the hidden state of GRUj at time t. W
(1)
j , W

(2)
j , b

(1)
j , and b

(2)
j are the

weights and biases of FCLj . yj
t is the output of the first fully connected layer,

while the conditional probability of uj is obtained at the end of the second fully
connected layer using a softmax function.

Overall, the prediction layer assembles n GRU+FCL models to predict the
expected event C̃, where n is the number of pre-defined fields for an event. The
conditional probability for C̃ is expressed as:

Pr(C̃|M) =
n∏

j=1

Pr(uj |M). (8)

To train these models, we minimize the cross-entropy loss between the pre-
dicted event and the observed event over the training event sequences. Moreover,
we adopt a variety of techniques, such as L2 regularization, dropout, adding gra-
dient noise, to avoid over-fitting.

3.5 Anomaly Detection Layer

As of now, we have obtained the probability distribution of the expected event.
The last step is to determine whether current event is abnormal by compar-
ing the observed event C and the predicted event candidates. First, we need
to set a threshold as the cutoff in the prediction output. In this work, we con-
sider the event as normal if it is among the top k predicted events with high
probabilities, i.e. C ∈ {C̃1, C̃2, · · · , C̃k}. Under the circumstances, DMNAED
clears the buffer, and adds the normalized representation of current event into
multi-domain events database. Otherwise, the current event is flagged as abnor-
mal, in which case DMNAED alerts an alarm immediately, and reads the buffer
to provide relevant historical events as clues to security officers for provenance
tracking, followed by clearing the buffer.

In addition, DMNAED allows the security officers to return feedback for
updating the models as in [5]. If a false positive is reported, DMNAED re-trains
the weights of its model in an online manner to adapt to new patterns.
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4 Experimental Evaluation

In this section, we are dedicated to evaluating the performance of the proposed
framework. All of our experiments have been performed on a machine with an
Intel Xeon E5-1603 2.80 GHz CPU, 12 GB RAM and a Windows 7 Ultimate
64-bit operating system. DMNAED is implemented by Python language with
Tensorflow as the backend.

4.1 Dataset

The CERT dataset1 was published by Carnegie Mellon University for insider
threat detection. We utilized the r4.2 dataset for our evaluation. The dataset
contains various event records (HTTP, logon, device, file, and email) reflect-
ing the behaviors of 1000 employees over a 17-month period. According to the
dataset, the employees, i.e. users, come from 22 departments. A department can
be viewed as a workgroup role, where the users exhibit a specific set of expected
behaviors and potentially interact with a specific pool of resources [13]. Among
the different departments, we select four to conduct experiments. The event
records generated by a department constitute a dataset, denoted by D1, D2, D3,
D4 respectively. Table 2 summarizes the four datasets. Note that the size and
complexity of the datasets are increasing gradually.

Table 2. Dataset statistics

Dataset Department Number of users Total number of events

D1 Payroll 4 150569

D2 Manufacturing engineering 12 425120

D3 Medical 60 2023865

D4 Software management 101 3542668

4.2 Baselines

For a comprehensive evaluation, we experimented with DMNAED as well as
three existing anomaly detection methods as follows:

LSTM-based method: LSTM networks are renowned for their ability to
remember history information in temporal sequence data using memory gates [2].
For the LSTM-based abnormal event detection method, the input is only a
history window w of the h most recent events: w = {ft−h, · · · , ft−2, ft−1}. The
output is a conditional probability distribution of the subsequent expected event:
Pr(ft|w), which is used for anomaly detection as DMNAED does.

SOM-based method: Self-organizing map (SOM) is a fully connected,
single-layer neural network that maps a multi-dimensional data set onto a one
or two-dimensional space [12]. The SOM-based model clusters events by soft
1 https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=508099.

https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=508099
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competition. If the minimum distance between a new event and the neurons of
the trained SOM exceeds a pre-set threshold, the event is labeled as anomalous.

Graph-based method: We built a dependency graph based on interrela-
tionships between subjects and objects as in [7]. Events are represented by edges.
To prioritize our analysis, we leveraged tags to identify subjects and objects.
Finally, the graph properties are computed to feed into isolation forest algo-
rithm to detect anomalous events.

4.3 Results and Discussion

For all the approaches, we explored their parameter space and reported their best
results. We use the standard metrics of precision, recall and F1-score to evaluate
the performance of different anomaly detection methods. Figure 2 shows the
performance of these methods on D1, D2, D3 and D4 respectively.
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Fig. 2. The performance of DMNAED and three baseline methods on D1–D4 datasets

Evidently, DMNAED overwhelms the three baseline methods in various
degree across all the datasets. For example, for the dataset D1 (Fig. 2a), the
precision of DMNAED is 97%, improved by 1%, 11%, and 5%, compared with
the LSTM-based, SOM-based and graph-based methods respectively. The recall
of DMNAED is 98%, improved by 2%, 3%, and 16% in comparison. Besides, we
observe that, for the datasets (D1 and D2) which contain event records of fewer
users, the LSTM-based method exhibits comparable performance to DMNAED.
The SOM-based method manifests a reasonable recall but a pathetic precision.
The graph-based approach shows an acceptable precision but a pitiful recall.
With the expansion of the scale of users (from D1 to D4), the performance of
the LSTM-based method degrades obviously. The reason is easy to understand:
more users bring more various event records and more complex interaction pat-
terns. For a new event to be inspected, the corresponding history window would
contain more irrelevant information, resembling background noise, which causes
interference for capturing truly aberrant traces. Without a selective attention
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mechanism, the LSTM-based method treats the events within the whole his-
tory window as related facts. Hence, its performance tends to fluctuate with the
sophistication of input data. Similarly, the SOM-based method and the graph-
based method are also biased towards particular datasets, but not effective as
a generic anomaly detection method under multi-user and multi-domain envi-
ronments, due to the disability of selective attention and intelligent reasoning
over a hybrid sequence of various event records. In comparison, DMNAED per-
forms more stable and superior on the datasets of different sizes. The F1-score
of DMNAED only declines by 2% from D1 to D4. The slippage reveals that the
performance of DMNAED is also affected by the characteristics of input data,
but the impact is fairly slight. Moreover, it is important to note that, except
the graph-based method, the other methods are all designed for online anomaly
detection in a streaming fashion. The running of SOM is the quickest because of
its simple structure, but its precision is worst. Even though the architecture of
DMNAED is a bit complicated, its actual running is quite smoothly, since the
adoption of GRU greatly reduces the computation cost compared with LSTM.
The detection cost per event record of DMNAED is around 1.2 ms, which is quite
acceptable for the need of real-time anomaly detection.

Furthermore, we investigate the sensitivity of DMNAED to different parame-
ters, including: T , r, k and H. T denotes the window size of historical events. r is
the number of iterations in iterative attention process. k denotes the number of
predicted event candidates considered as normal, and H is the number of hidden
units in attGRU. We conducted experiments on the dataset D2. By default, we
use the following parameter values: T = 60, r = 10, k = 20,H = 192. For each
experiment, we only alter one parameter value and use the default values for the
other parameters. The results are shown in Fig. 3. Intuitively, the performance
of DMNAED is not very sensitive to T , r and k in terms of F1-score. However,
the adjustment of H exerts noticeable impact on the effectiveness of DMNAED.
When H is less than 128, the F1-score of DMNAED is lower than 90% and drops
dramatically. This is because H implicitly determines the memory capacity of
DMNAED. A smaller H value leads to a more narrow space for storing useful
historical information. Therefore, it is crucial to assign a proper value to H in
practice.
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5 Conclusion

This paper presents DMNAED, a novel framework for abnormal event detec-
tion in enterprise networks. DMNAED is an innovative extension of dynamic
memory network, which views the event to be inspected as a question, and a
sequence of multi-domain historical events as a context. DMNAED retrieves the
historical events conditioned on current event to aggregate useful contextual
information for forward prediction and anomaly detection. Once an anomaly is
identified, DMNAED is able to provide relevant clues in real time for forensic
analysis. Extensive experiments have demonstrated the superior performance of
DMNAED compared with three baseline approaches. One of our future work
is to combine DMNAED with distributed architecture, dividing big data into
multiple blocks for parallel processing to improve the executive efficiency of the
framework.
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Abstract. Traditional generalized local outlier detection model
(TraLOD) unifies the abstract methods and steps for classic local outlier
detection approaches that are able to capture local behavior to improve
detection performance compared to global outlier detection techniques.
However, TraLOD still suffers from an inherent limitation for rational
data: it uses traditional (Euclidean) similarity metric to pick out the
context/reference set ignoring the effect of attribute structure. i.e., it is
with the fundamental assumption that attributes and attribute values
are independent and identically distributed (IID). To address the issue
above, this paper introduces a novel Non-IID generalized coupled local
outlier detection model (NeoLOD) and its instance (NeoLOF) for identi-
fying local outliers with strong couplings. Concretely, this paper mainly
includes three aspects: (i) captures the underlying attribute relations
automatically by using the Bayesian network. (ii) proposes a novel Non-
IID similarity metric to capture the intra-coupling and inter-coupling
between attributes and attribute values. (iii) unifies the generalized local
outlier detection model by incorporating the Non-IID similarity metric
and instantiates a novel NeoLOF algorithm. Results obtained from 13
data sets show the proposed similarity metric can utilize the attribute
structure effectively and NeoLOF can improve the performance in local
outlier detection tasks.

Keywords: Local outlier detection · Non-IID · Attribute structure ·
Coupled similarity metric

1 Introduction

Traditional generalized local outlier detection model (TraLOD) provides a for-
malized method to improve understanding of the shared properties and the dif-
ferences of local outlier detection algorithms for rational data in RDBMS1 [1–5].
However, to grasp the meaning of “local” is probably the most difficult part

1 RDBMS refers to the database management system based on the relational model.
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that heavily depends on an effective similarity metric, which plays a pivot role
to pick out the context/reference set of an object. Here, we will scrutinize the
challenges of traditional generalized local outlier detection model in handling
data by combining the classic LOF algorithm [1].

Problem Analysis. In general, TraLOD model [5] is coming with a fundamental
assumption. It is with a IID assumption for all attributes and attribute values.
i.e., the traditional (Euclidean) similarity metric that plays a pivotal role to
indicate “locality” in local outlier detection tasks does not incorporate the inner
attribute structure.

Therefore, the generalized model of Non-IID local outlier detection addressed
in this study is based on the following three objectives:

– Objective 1. To detect the inner structure of attributes automatically rather
than need strong prior domain knowledge to pick it out.

– Objective 2. To design a proper (Non-IID) similarity metric that utilizes
the attribute structure to measure the similarity between objects rather than
treat attributes and attribute values equally.

– Objective 3. To unify the (Non-IID) similarity metric into traditional gen-
eralized local outlier detection model rather than deal with it separately.

Our Design and Contributions. Based on the above analysis, solely relying
on the similarity methods with the IID assumption may not enough to discrim-
inate between outliers and normals in a local outlier detection task. Instead,
exploring an attribute structure and embedding it into a proper similarity mea-
sure may yield better justifying.

This paper first captures the underlying attribute relations automatically by
using the Bayesian network learning method. Secondly, based on the attribute
structure, proposes the Non-IID similarity metric incorporating intra-coupling
and inter-coupling between attributes and attribute values. Finally, unifies
a novel Non-IID gEneralized cOupled based Local Outlier Detection model
(NeoLOD) and its instance NeoLOF algorithm shown in Figs. 1(b) and 2. In
summary, this paper includes the following three major contributions:

– We propose a novel NeoLOD model to abstract the methods in local outlier
detection tasks. In contrast to TraLOD model, our framework is not “(IID)
attributes + local outlier detection algorithm” as previous methods, but three
stages as “Non-IID attribute structure learning + Non-IID coupled similarity
metric + Non-IID local outlier detection algorithm”.

– The performance of our model is verified by well-known methods and demon-
strated with 13 data sets by three criteria: the effectiveness of the similarity
metric, the accuracy in local outlier detection tasks and the stability test.

– The NeoLOD model can flexibly instantiate different classic local outlier
detection algorithms and is easy to implement.

The paper is organized as follows. In Sect. 2, we briefly review the related
work in local outlier detection tasks. Section 3 shows the preliminaries of the
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proposed model. Section 4 describes the details of the proposed method. Next,
we summarize the results of experiments in Sect. 5. Finally, we conclude this
paper in Sect. 6.

2 Related Work

Local outlier detection has been widely studied in literature from a number of
different views [1–3,5]. Many objects can be considered as outliers with respect
to their local neighbors rather than the entire data set. In a rather general
sense, the very nature of local outlier detection requires the comparison of an
object with a set of its neighbors w.r.t. some properties. Breuning et al. proposed
the classic notion of local outlier detection (LOF) [1]. This algorithm assigns a
local outlier factor for each data object to indicate its abnormal degree. LoOP
[3] presented a density-based outlier scoring with a probabilistic, statistically-
oriented approach. Further, Schubert et al. abstracted the notion of locality and
proposed a generalized local outlier detection model [5].

Usually, most of the existing local outlier detection studies focus on finding
outliers that are significantly different from the nearest neighbors of an object.
However, the attribute structure of an object, which provides crucial informa-
tion for outlier analysis, is often missed due to the complexity of capturing the
attribute structure from a data set.

As far as we know, limited studies consider the attribute structure in local
outlier detection, but conditional outlier detection and spatial outlier detection
exhibit the similarity to some extent [6–8]. Wang and Davidson used random
walks to find context and outliers [7]. It identifies a context as a 2-coloring of a
random walk graph. Song et al. proposed the notion of conditional outliers to
model the outliers manifested by a set of behavioral attributes (e.g. temperature)
conditionally depending on a subset of attributes (e.g. longitude and latitude) [6].

While these studies of local outlier detection present two key challenges
according to the scenarios of many real applications. Firstly, these methods
tackle different local outlier detection tasks under the IID assumption and ignore
the relations between attributes and attribute values. Secondly, most of these
methods require prior knowledge to pre-defined the attribute structure. How-
ever, the strong prior knowledge restricts the practicability in many real-world
applications. Therefore, it is a promising work to capture an attribute structure
automatically and make full use of the Non-IID relations to detect the outliers.

More broadly, learning from Non-IID data is a recent topic to address the
intrinsic data complexities, with preliminary work reported such as for metric
similarity [9,10], and outlier detection [11,12]. However, it is seldom exploited
in local outlier detection tasks. In this paper, we intend to explore Non-IID
similarity metric method and embed it into the generalized local outlier detection
model.
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3 Preliminary

In this section, we develop a formal definition of Non-IID local outlier by incorpo-
rating a novel Non-IID similarity metric into local outlier detection tasks, which
avoids the shortcomings presented in the previous section. The main notations
in this paper are listed in Table 1.

Table 1. Summary of definitions and frequently used notions.

Notation Description

T = {A1, A2, ..., An} The base table in RDBMS. An is the nth

attribute in table T

X = {x1, x2, ..., xn} A collection of n objects in table T

vxk
n , v

xq
n Specific values of attribute An for objects

xk, xq

c(xk) Context function: a context set of an
object xk is used for model building

f(xk) Model function: assigns a model to each
object xk ∈ X based on the set c(xk) ⊆ X

deg The threshold of local outlier degree
which is defined to pick out the outliers

Fig. 1. The illustration shows the comparison between traditional generalized local out-
lier detection model (TraLOD) and Non-IID generalized coupled local outlier detection
model (NeoLOD).

Definition 1. Non-IID Local Outlier. Let T be a base table in RDBMS.
Given a local outlier degree threshold deg > 0, and a series of model functions,
context functions and similarity functions [(f1, c1, s1), (f2, c2, s2), ..., (fi, ci, si)],
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the object is an outlier if the outlier degree fi(xk) ≥ deg, where the fi(xk) values
are sorted in descend. i.e., these object xq whose fi(xq) ≥ fi(xk) are called the
Non-IID local outliers w.r.t its attribute structure.

Note that context function ci maps xk to its context set ci(xk, s(xk)) ⊆ X
by using the similarity function si and model function is fi(xk, ci(xk, si(xk))).

4 NeoLOD Model and Instantiation

In this section, we discuss the details of attribute structure learning, Non-IID
coupled similarity metric (NeoDis) and NeoLOD model. Firstly, the attribute
structure learning utilizes Bayesian network to capture the dependency of
attributes and constructs an attribute dependency graph (AG) and attribute-
value dependency triple (AV T ) to represent the inner structure. Then, proposes
a Non-IID similarity metric (NeoDis) incorporating the intra- and inter-coupling
method to measure the similarity between objects by aggregating the attribute
structure. Finally, introduces a novel NeoLOD model by embedding the similar-
ity metric into TraLOD model and instantiates an algorithm, called NeoLOF.

4.1 Attribute Structure Learning

In this subsection, we capture the attribute structure by using the struc-
ture learning method of Bayesian network, whose nodes represent variables
(attributes) and edges represent the direct dependent relationship between vari-
ables (attributes). According to the local Markov property, the probability dis-
tribution P over the variable set A can be factorized as follows:

P (A1, A2, ..., An) =
n∏

i=1

P (Ai|Pa(Ai)) (1)

Note that Pa(Ai) represents the set of parent nodes of a node Ai. Incorporat-
ing the classic MMHC algorithm for discovering the structure information [13],
which first reconstructs the skeleton of a Bayesian network and then performs
a Bayesian-scoring greedy hill-climbing search to orient the edges, we define
of Attributes dependency Graph (AG) and Attribute-Value dependency Triple
(AVT) to represent the attribute structure.

Definition 2. Attributes Dependency Graph (AG). Given a base table and
its Bayesian network structure of attributes, the attributes dependency graph
(AG) is defined as follows:

AG(i, j) =

⎡

⎢⎢⎢⎣

W11 W12 · · · W1n

W21 W22 · · · W2n

...
...

. . .
...

Wn1 Wn2 · · · Wnn

⎤

⎥⎥⎥⎦ (2)
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where Wij is defined to represent the relationship of two attributes as follows:

Wij =

{
1, if Pa(Ai) = Aj

0, otherwise
(3)

Definition 3. Attribute-Value Dependecy Triple (AVT). Given the AG
and an attribute value of an object xk on attribute Ai (denoted vxk

i ), the attribute-
value dependency triple (AVT) is defined as follows:

AV T = {Pa(vxk
i ), δ(vxk

i ), ϕ(vxk
i , Pa(vxk

i ))} (4)

where Pa(vxk
i ) = {vxk

j |Wij = 1, j ∈ (1, 2, ..., n)} is the parent set of attribute
value vxk

i and ϕ(vxk
i , Pa(vxk

i )) = p(vxk
i |Pa(vxk

i )) measures the dependent degree

of attribute values from parent attribute set, δ(vxk
i ) = 1

2 (pi(m)−p(v
xk
i )

pi(m) + 1
pi(m) )

measures the dependent degree of attribute values within single attribute and
pi(m) is the mode of the attribute Ai.

4.2 Neo-Based Coupled Similarity

Attribute Dependency Graph (AG) and Attribute Value Triple (AVT) have been
successfully derived in 4.1. Inspired by [9], we defined a novel Non-IID similarity
metric consisting of intra- and inter-attribute similarity to capture the relation-
ship between attributes and attribute values based on the attribute structure.

Definition 4. Neo-Based Intra-attribute Similarity. Given the AG and
AV T , the Neo-based intra-attribute similarity between two attribute values vxk

i ,
v
xq

i of objects xk and xq on attribute Ai is defined as follows:

Si
Ia(v

xk
i , v

xq

i ) =

⎧
⎨

⎩
1, if vxk

i = v
xq

i
max(Gi

xk
,Gi

xq
)

2·max(Gi
xk

,Gi
xq

)−min(Gi
xk

,Gi
xq

) , otherwise
(5)

Definition 5. Neo-Based Inter-attribute Similarity. Given the AG and
AV T , the inter-attribute similarity between two attribute values vxk

i and v
xq

i of
attribute Ai with its parent attribute values is defined as follows:

Si
Ie(v

xk
i , v

xq

i ) =

⎧
⎨

⎩
1, if vxk

i = v
xq

i
max(Qi

xk
,Qi

xq
)

2·max(Qi
xk

,Qi
xq

)−min(Qi
xk

,Qi
xq

) , otherwise
(6)

Note that Gi
xk

= δ(vxk
i ) and Qi

xk
= ϕ(vxk

i , Pa(vxk
i )). If the attribute values

are identical, the similarity between them should be 1. The otherwise, their
similarity depends on the dependency of attribute values. Further, we define the
Neo-based attribute-value coupled similarity for attribute Ai.

Definition 6. Neo-Based Attribute-Value Coupled Similarity (Neo-
AVS). The Neo-based Attribute-value Coupled Similarity (NeoAVS) between
attribute values vxk

i and v
xq

i of attribute Ai is defined as follows:
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Si(vxk
i , v

xq

i ) =
1

θ · 1
siIa

+ (1 − θ) · 1
siIe

(7)

Note that different θ ∈ [0, 1] values reflect the different proportions of siIa and
siIe in forming the overall object similarity. Finally, we calculate the similarity
between two objects xk and xq defined in Eq. 8.

Definition 7. Neo-Based Coupled Metric Similarity (NeoDis). The
Neo-based coupled metric similarity (NeoDis) between two objects xk and xq

is defined as follows:

NeoDis(xk, xq) =
n∑

i=1

αi · Si(vxk
i , v

xq

i ) (8)

where αi ∈ [0, 1] represents the weight of the coupled metric attribute value
similarity of an attribute Ai and

∑n
i=1 αi = 1.

4.3 NeoLOD Model and Instantiation

Inspired by TraLOD [5], we propose a novel Non-IID generalized coupled local
outlier detection model (NeoLOD) consisting of the above Non-iid similarity met-
ric to capture the inner structure of attributes and pick out neighbors accurately.
Figure 1 shows the overview of TraLOD Model and NeoLOD Model. Though not
every component is actually used or presented in every instance of local outlier
detection methods, many existing methods can be unified using this algorithmic
framework. Further, we show its instance NeoLOF in Fig. 2.

Fig. 2. The illustration of the instance NeoLOF. The proposed method first detects
the attribute structure automatically using the method of MMHC; then defines a novel
Non-IID coupled similarity metric by capturing the intra-coupling and inter-coupling
of attributes and attribute values; final utilizes the NeoDis to derives the kNN sets and
reachability distance and feeds it into a local outlier detection task.
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Definition 8. Non-IID Generalized Coupled Local Outlier Detection
Model (NeoLOD). NeoLOD model is a series of model functions, context func-
tions, and similarity functions as follows:

[(f0, c0, s0), (f1, c1, s1), ..., (fi, ci, si)] (9)

Note that the context function ci is a function ci(xk, si) (such as kNN) and
maps objects xk to their context set based on the similarity metric function
NeoDis(·, ·). the model function fi(xk, ci) computes key properties. Further,
based on the definition of NeoLOD model, its instance NeoLOF shows as follows:

NeoLOF (NeoDis, k) = [(maxdist0,NeoDis, kNNNeoDisk , NeoDis),

(lrd0,1,NeoDis, kNNNeoDisk , NeoDis), (mean2, kNNNeoDisk , NeoDis), (frac3,2, ∅, ∅)]

(10)

Algorithm 1. NeoLOF algorithm
Require: X - Data set, k - The number of neighbors, deg - Outlier threshold
Ensure: AG - Attributes Dependency Graph, AV T - Attribute-Value dependency

Triple, O - Outlier set
1: procedure Neo-Similarity(X)
2: Compute MMHC algorithm and derives the AG ← W (i, j)
3: Compute AV T ← Pa(v

xk
i ), δ(vxk

i ) and ϕ(vxk
i , Pa(vxk

i ))
4: for all xk ∈ X set do
5: for all xq ∈ X \ xk set do
6: for all Ai ∈ A set do
7: Compute Si

Ia(v
xk
i , v

xq

i ) for attribute Ai

8: Compute Si
Ie(v

xk
i , v

xq

i ) for attribute Ai on Pa(Ai)
9: Compute Si(vxk

i , v
xq

i ) combining Si
Ia and Si

Ie

10: end for
11: Compute NeoDis(xk, xq) ← ∑n

i=1 αi · Si(v
xk
i , v

xq

i )
12: end for
13: end for
14: Return the set of all objects NeoDis.
15: end procedure
16: procedure Neo-LocalOutlierDetection(NeoDis, k, deg)
17: for all xk ∈ X set do
18: Compute NeoMaxdist(xk), Neolrd(xk), and NeoLOF (xk)
19: if NeoLOF (xk) > deg then
20: O ← xk

21: end if
22: end for
23: Return the set of outlier O.
24: end procedure

Note that NeoDisk is used to derive the Neo-based k-distance of object
xk. The advantage of using the NeoDis(·, ·) instead of traditional (Euclidean)
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distance is that, if existing underlying attribute structure, the former can capture
the effect of the relationship of attributes. The modified local outlier factor
captures the outlier degree based on the attribute structure of a data set.

Algorithm 1 presents the main process of NeoLOF and includes two proce-
dures: the first one is to derive the Non-IID similarity metric (NeoDis) between
objects according to the definitions in Subsects. 4.1 and 4.2; the second one is to
embed the NeoDis into LOF detection task and returns the set of outliers.

5 Experiments and Evaluation

In this section, we empirically evaluate the proposed NeoLOD model and its
instance NeoLOF w.r.t. the following three criteria:

– The similarity metric performance: whether (Non-IID) similarity metric
(NeoDis) enables a model to obtain better results.

– The outlier detection performance: whether the instance NeoLOF
presents effectiveness in local outlier detection tasks compared to classic local
outlier detection methods.

– The stability performance: whether the NeoLOF performance is stable
under different parameter settings.

5.1 Experiment Environment

NeoLOF and its competitors were implemented in Python. The implementations
of all the competitors are obtained from their authors or the open-source plat-
form. All the experiments are executed on an i7-5600U CPU with 8 GB memory.

5.2 Experiment Design and Evaluation Method

According to the above analysis, we design the three experiments to verify the
above three criteria as follows:

– Similarity Performance. The Non-IID similarity metric (NeoDis) is
embedded into a kNN classification task, which is sensitive to distance mea-
sure and compared it with three distance measures, i.e., NeoDis-enabled Clas-
sification Performance with Euclidean distance, COS [14] and DILCA [15].
To demonstrate the NeoDis-enabled classification performance, we evaluate
the performance by F-score, which is a combination of recall and precision.

– Outlier Detection Accuracy. The instance NeoLOF is evaluated against
two well-known local outlier detection methods LOF [1], and LoOP [3]. We use
the most popular evaluation methods to measure the local outlier detection
performance: the area under ROC curve (AUC), precision at n, i.e., P@n
(where we set n as the number of outliers in a data set), and recall at n, i.e.,
R@n (the fraction of total true anomalies the detected).

– Stability Test. We empirically evaluate the scalability of parameter k, which
plays a pivot role to show the “locality” in local outlier detection tasks.
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5.3 Data Sets

A 3-dimension synthetical data set and 12 public data sets from the UCI repos-
itory and the CMU statlib2 are used to evaluate the detection performance. For
each data set, we discretized the continuous attributes using liner bin if necessary
when capturing the intra-coupling and inter-coupling of attributes and attribute
values.

Before the experiments, several data sets are directly transformed from highly
imbalanced classification data, where the smallest class is treated as outliers and
the largest class is normal. The rest are randomly injected 1–5% objects as
outliers. The cross-validation is taken to partition a data set to training and test
sets in following experiments.

5.4 Results and Analysis

According to the above experiment design and evaluation methods, we report
the empirical evaluation in three experiments as follows:

– Similarity Performance. The effectiveness of the similarity metric
(NeoDis) is shown in Table 2. NeoDis-enabled Classification Performance
obtains the best performance on 3 data sets; On average, it obtains about
8%, 5%, and 2% improvement over EucDis, COS, and DILCA. Note that
without any domain knowledge, it is a promising work to identify and cap-
ture the relations using Non-IID methods.

– Outlier Detection Accuracy. We compare NeoLOF with 2 classic local
outlier detection methods in terms of AUC, P@n, and R@n in Table 3. In
terms of AUC, NeoLOF obtains the best performance on 9 data sets; and
on average, it obtains about 1%, and 5% improvement over LOF, and LoOP,
respectively. NeoLOF outperforms LOF and LoOP in AUC on 5 data sets. In
terms of P@n, NeoLOF performs better than LOF and LoOP in 4 data sets
and obtains more than 2% and 4% improvements on average, respectively. In
terms of R@n, NeoLOF outperforms LOF and LoOP on 5 data sets; and on
average, it obtains about 3% and 5% improvement over LOF, and LoOP,
respectively. Further, we explore the reason why NeoLOF presents error-
detection in the rest data sets. It seemly related to the incorrect attribute
structure which amplifies the impact of structure information.

– Stability Test. We conduct the sensitivity test of the parameter k which is
a parameter that controls the number of nearest-neighbors of a given object
on 5 data sets as shown in Fig. 3. Here we illustrate representative trends in
its AUC and R@n performance w.r.t. a wide range of k on these data sets
due to space limits. NeoLOF shows stable performance in most of these data
sets.

2 They are downloaded from: http://archive.ics.uci.edu/ml/datasets.html; http://lib.
stat.cmu.edu/index.php.

http://archive.ics.uci.edu/ml/datasets.html
http://lib.stat.cmu.edu/index.php
http://lib.stat.cmu.edu/index.php


NeoLOD: A Novel Generalized Coupled Local Outlier Detection 597

Table 2. KNN classification F-score with different distance measures on 4 data sets.
|N | and |A| indicates the number of objects and attributes respectively.

Data sets |N| |A| NeoDis EucDis COS DILCA

Lymphography 148 18 0.77 0.80 0.78 0.84

Prim 339 17 0.33 0.15 0.23 0.27

Monk 432 6 0.39 0.32 0.35 0.35

BalanceScale 625 4 0.28 0.19 0.21 0.21

Avg. 386 11 0.44 0.36 0.39 0.42

Table 3. The results of AUC, P@n and R@n on 9 data sets.

Stats AUC P@n R@n

Data sets |N| |A| |O| LOF LoOP NeoLOF LOF LoOP NeoLOF LOF LoOP NeoLOF

SynExample 505 3 5 0.65 0.69 0.76 0.56 0.60 0.66 0.55 0.60 0.63

Seeds 214 8 5 0.92 0.93 0.94 1.00 1.00 1.00 1.00 1.00 1.00

Bodyfat 262 15 10 0.93 0.91 0.92 1.00 1.00 1.00 0.90 0.90 0.86

Boston 516 14 10 0.89 0.80 0.87 1.00 1.00 1.00 0.45 0.48 0.52

HTRU 563 9 10 0.91 0.89 0.93 0.80 0.78 0.85 0.57 0.60 0.66

Houses 653 9 20 0.72 0.69 0.78 1.00 1.00 1.00 0.50 0.46 0.53

Credit 698 7 8 0.89 0.78 0.87 0.90 0.75 0.88 0.45 0.44 0.47

Energy 778 10 10 0.83 0.76 0.81 0.95 0.95 0.97 1.00 0.89 0.96

ElNino 1081 8 20 0.87 0.86 0.89 0.85 0.85 0.88 1.00 0.85 1.00

Avg. 586 9 11 0.85 0.81 0.86 0.90 0.88 0.92 0.71 0.69 0.74

Fig. 3. Sensitivity Test of parameter k on 5 data sets.

6 Conclusions and Future Work

A local outlier detection task usually handles data with the IID assumption,
which is inconsistent with the fact that attributes often exist an inner structure.
This paper proposes a novel Non-IID similarity metric to capture the attribute
structure and embed it into TraLOD model. The proposed approach includes
three aspects: Firstly, it incorporates a Non-IID method to derive the attribute
structure automatically by using Bayesian Learning method; Then, a novel
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Non-IID similarity measure is proposed by capturing the intra-coupling and
inter-coupling of attributes and attribute values; Finally, unifies a novel general-
ized coupled local detection model (NeoLOD) and its stance NeoLOF. Experi-
ments show the effectiveness of the proposed model in three criteria: the first one
is the performance of the similarity metric; the second one is the performance
of local outlier detection; the final one is the stability under different parameter
settings.

In the future, we are working on how to identify attribute structure on the
larger scale and more complex data sets. One promising choice is to explore the
problem of sequential outlier detection in RDBMS. Besides, we can exploit a
deep structure model to generate the outliers according to a small amount of
labeled data.
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Abstract. Identifying vandal users or attackers hidden in dynamic
online social network data has been shown a challenging problem. In this
work, we develop a dynamic attack/anomaly detection approach using
a novel combination of the graph spectral features and the restricted
Vector Autoregressive (rVAR) model. Our approach utilizes the time
series modeling method on the non-randomness metric derived from the
graph spectral features to capture the abnormal activities and interac-
tions of individuals. Furthermore, we demonstrate how to utilize Granger
causality test on the fitted rVAR model to identify causal relationships of
user activities, which could be further translated to endogenous and/or
exogenous influences for each individual’s anomaly measures. We con-
duct empirical evaluations on the Wikipedia vandal detection dataset to
demonstrate efficacy of our proposed approach.

Keywords: Anomaly detection · Vector autoregression ·
Granger causality · Dynamic graph · Matrix perturbation ·
Spectral graph analysis

1 Introduction

Anomalies and outliers refer to data points that behave differently from prede-
fined normal behaviours. Detecting anomalies in a network under the dynamic
setting belongs to sequential anomaly detection, where detection methods try
to find abnormal observations from sequential data. There have been plenty of
works studying the spectral properties of dynamic network data such as incre-
mental spectral clustering [9], Nystrom low rank approximation [17], and matrix
sketching [8], but there are few works on applying spectral analysis for anomaly
detection on dynamic graphs. In [10], the authors derived a threshold based on
the anomaly metric from the spectral features of the robust Principal Compo-
nent Analysis for classification. Similarly, the authors in the work [4] proposed
a threshold based on the anomaly metric derived from the principal eigenpairs
of the associated adjacency matrix. In another work [11], the authors proposed
using compact matrix decomposition (CMD) to compute the sparse low rank
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approximations of the adjacency matrix. The approximation error of CMD and
the observed matrix was used to quantify the anomaly. However, these works
have two major shortcomings. First, instead of using statistical modeling app-
roach to analyze the underlying structural correlations of the time series data sys-
tematically, each of the works only derived a threshold to evaluate the data points
at each time frame individually. The other drawback is the lack of the ability
to analyze the endogenous and/or exogenous causes for the observed anomalies.
Since most relationship graphs are generated from the interaction information
of the streaming OSN data, such interactions could cause the observed anomaly
metrics to be correlated. Therefore, both endogenous and exogenous influences
in the observed time series data need to be analyzed simultaneously so that the
underlying casual relationships could be identified.

There exist extensive studies on the use of time series analysis methods
such as Autoregressive (AR), Autoregressive Moving Average (ARMA), Vector
Autoregressive (VAR), and Vector Autoregressive Integrated Moving Average
(VARIMA) models in outlier detection [1,12]. However, their applications in
anomaly detection in streaming online social network data have been limited. In
this work, we propose to use the restricted Vector Autoregressive (rVAR) model
to study the interactions and correlations of the observed anomaly measures
of nodes. The fitted model then serves as the input for the subsequent casual-
ity analysis. We adopt Granger causality [3] to analyze the fitted rVAR model
and identify both endogenous and exogenous influences in the observed anomaly
measures for each node.

To summarize, we incorporate the dynamic spectral features from the steam-
ing network data with the rVAR model to develop an automatic fraud/attack
analysis method. We develop a modified anomaly metric based on the node non-
randomness measure derived from the adjacency spectral coordinates [15] to
quantify how randomly nodes link to each other in signed and weighted graphs.
We then propose to use the Granger causality analysis to identify the causal
relationships amongst individuals. Several case studies on a partial WikiSigned
dataset are conducted to demonstrate how the Granger causality analysis could
be used to interpret the fitted rVAR model.

2 Preliminary

2.1 Graph Spectral Projections

v1 vi vK vn

↓

αu →

⎛
⎜⎜⎜⎜⎜⎜⎝

v11 · · · vi1 · · · vK1

...
...

...
v1u · · · viu · · · vKu

...
...

...
v1n · · · vin · · · vKn

· · · vn1

...
· · · vnu

...
· · · vnn

⎞
⎟⎟⎟⎟⎟⎟⎠

(1)
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For a given network, the spectral coordinates of nodes derived from the
adjacency eigenspace are illustrated in Eq. (1). The eigenvalues (λ1, · · · , λn)
of a given adjacency matrix A are assumed to be in descending order when
real. The corresponding eigenvectors (v1, · · · ,vn) are sorted accordingly. The
spectral decomposition of A takes the form A =

∑
i λiviv

′
i. The row vector

αu = (v1u,v2u, · · · ,vKu) is the spectral coordinate used for the projection of
node u. The algebraic properties of the adjacency matrix are closely related to
the underlying graph connectivity. Therefore, when the nodes are projected into
the associated spectral space spanned by the chosen eigenvectors, such proper-
ties could be used to analyze the graph structure related problems. For example,
[7,13] examined the line orthogonality of spectral coordinates formed by nodes
from different clusters in the adjacency eigenspace and developed spectral clus-
tering algorithms for community detection. Spectral coordinates were also used
to detect random link attacks [16] and subtle anomalies [14] in social networks.

2.2 Non-randomness Measure

The node non-randomness is derived from the spectral coordinates to quantify
how random a node is in terms of its connections in an unsigned network [15].
The edge and node non-randomness measures are defined as:

1. The edge non-randomness R(w, u):

R(w, u) = αwα′
u = ‖αw‖2‖αu‖2 cos(αw,αu). (2)

2. The node non-randomness R(w):

Rw =
∑

u∈Γ (w)

R(w, u), (3)

where Γ (w) denotes the set of neighbor nodes of w.

The measure was shown to effectively identify collaborative random link attacks
in the spectral space of static unsigned graphs [16]. In this paper, we adapt the
measure to the signed networks, apply it in the dynamic spectral space, and
detect anomalies in streaming network data.

2.3 Vector Autoregression

Vector Autoregressive model is a time series analysis approach for analyzing
multivariate data. It tires to capture the changes and interferences of multiple
variables over time, where each variable is explained by the lagged values of itself
and those of other variables. Equation (4) shows the general form of a n-variable
VAR model with lag p:

⎛
⎜⎝

x1,t

...
xn,t

⎞
⎟⎠ =

⎛
⎜⎝

c1
...

cn

⎞
⎟⎠ +

∑p
i=1

⎛
⎜⎝

β11,i · · · β1n,i
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. . .
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βn1,i · · · βnn,i

⎞
⎟⎠

⎛
⎜⎝
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⎞
⎟⎠ +

⎛
⎜⎝

ε1,t

...
εn,t

⎞
⎟⎠ . (4)



Dynamic Anomaly Detection Using Vector Autoregressive Model 603

It can be written in a vector form as:

Xt = c +
p∑

i=1

βiXt−i + εt ≡ Π ′Zt + εt, (5)

where Xt = (x1,t, · · · , xn,t)′, εt = (ε1,t, · · · , εn,t)′, c = (c1, · · · , cn)′ is the
vector of constants, βis are the matrices of parameters as shown in Eq. (4),
Z ′

t = (1n×1,X
′
t−1, · · · ,X ′

t−p), and Π ′ = (c,β1, · · · ,βp). The existence of the
estimators of the VAR model parameters requires that np < T , where n is the
number of variables, p is the lag chosen, and T is the observation length.

3 Methodology

3.1 Overview

Formally, we model a dynamic network dataset as a sequence of graphs along
the time dimension as Gt, where t = 1, · · · , T . Each graph could be viewed as a
snapshot of the network at time t. Hence, if we treat each snapshot at time t as
a perturbation from the previous time t−1, the associated adjacency matrix can
be written as At = At−1 +Et, where Et contains the changes between two adja-
cent snapshots of Gt−1 and Gt. There are three challenges involved in identifying
dynamic attacks. The first challenge is to identify the correct snapshot time win-
dows when the suspicious activities occur. The second challenge is to distinguish
anomalies due to attacks and significant changes due to normal activities. The
third challenge is to identify the endogenous and/or endogenous sources of the
causes for the anomalies. Therefore, the task for detecting anomalies could be
achieved by addressing the above challenges.

Dynamic networks focus on cognitive and social processes of users and can
model the addition and removal of relations and interactions in networks. The
dynamic changes of user activities are assumed to follow some particular prob-
abilistic model such as the random walk or preferential attachment. When the
perturbation Et contains changes that deviate from the expected statistics under
the assumed probabilistic model of normal behaviors, such events could be cap-
tured and treated as suspicious. We use the rVAR model to analyze the under-
lying correlations amongst individual’s anomaly measures and make subsequent
casuality inferences.

Algorithm 1 shows our algorithm for applying the rVAR method on streaming
network data. The algorithm takes threes steps to complete the task. Firstly,
the node nonrandomness measures are calculated from the spectral coordinates
at each snapshot of the network. Secondly, for each target node, the chosen
neighbors are incorporated to fit the rVAR(p) model. Johansen cointegration test
from the work [5] is also performed at this step to prevent spurious regression
in case where the associated time series data are integrated. Lastly, stepwise
backward elimination Granger causality analysis is used to perform Granger
casuality analysis of the node nonrandomness time series. For Algorithm 1, in
lines 1–6, we calculate the node nonrandomness for each node at each network
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Algorithm 1. OSN rV AR Granger: Anomaly analysis of the streaming OSN
data using stepwise backward elimination Ganger casuality on the rVAR model
of node nonrandomness measures
Input: (A1, · · · , AT ), n, T, K, p, m
Output: B, B Ind
I/O: The inputs are the adjacency matrices (A1, · · · , AT ), size of the users n,
observation length T , number of the eigenpairs K, lag p, number of the steps of
neighbors m, causality analysis method Arg. The outputs are parameters for fitted
rVAR models B, and causality indicators B Ind

1: for t from 1 to T do
2: Compute eigenvectors (v1, · · · , vK) of At corresponding to the largest K eigen-

values (λ1, · · · , λK);
3: for w from 1 to n do
4: Calculate the node nonrandomness score normalized by its number of connec-

tions Řw,t =
Rw,t∑

u�=w 1[Awu,t �=0]
;

5: end for
6: end for
7: for w from 1 to n do
8: S ← w ∪ Γ (w)m;
9: for u from the m−step neighbor set Γ (w)m do

10: Perform Johansen cointegration test on the time series Řw,· and Řu,·;
11: if not cointegrated then
12: S ← S \ u;
13: end if
14: end for
15: Fit rVAR(p) model on the restricted set of nodes S with their corresponding

time series Řs,·, where s ∈ S;
16: Extract Bw ← (β′

w,1, · · · , β′
w,p);

17: B ← Bw

18: for Each β ∈ Bw do
19: Get Pβ , the p-value for the F-statistic from the Granger causality test;
20: if β is significant then
21: B Indw,β = 1;
22: end if
23: end for
24: B Ind ← B Indw

25: end for
26: Return B, B Ind;

snapshot. In lines 8–14, we remove from the target node’s neighbor set the nodes
that are not cointegrated with the target node. We fit the rVAR model for each
node in line 15 and evaluate its Granger causality in lines 18–24. The significance
of the calculated F-statistic is determined by looking up the F-statistic table,
where it is common to choose 0.05 alpha level.

The final outputs of the algorithm are two cell arrays, B, which contains
the parameters for the rVAR model of all nodes, and B Ind, which contains
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the corresponding indicators based on the causality analysis. Further inferences
could be conducted based on the causality analysis results.

3.2 Adjusted Node Nonrandomness Measure

For signed and weighted graphs, the node nonrandomness measure in Sect. 2.2
may no longer be accurate, since the degree of a node can be negative. In order
for the measure to work, we propose the following adjusted node nonrandomness.

Let w be a node and Γ (w) be its neighbors from a signed graph. The adjusted
node nonrandomness measure is

Řw =

∑
u∈Γ (w) R(w, u)∑
v �=w 1[Aw,v �=0]

, (6)

where R(w, u) is the edge nonrandomness and A is the adjacency matrix.
This modification normalizes the node nonrandomness metric by its number

of connections, since the edge nonrandomness metric holds true for directed
signed and weighted graphs with an error term. If the node nonrandomness
metric is normalized as shown above, the error term will shrink as well. As a
result, the new metric could better approximate the true metric than the old
metric would do.

Under the dynamic OSN setting, the past behaviours of nodes and their
correlated ones could be incorporated in the rVAR model, so the influences
of suspicious activities such as random link attacks could be studied through
multiple snapshots of the network to provide an analysis over the time dimension.
For a given node w, it has a sequence of observed node nonrandomness measures
(Řw,1, · · · , Řw,T ) based on network snapshots. The observed values could change
according to how the node and its neighbors act. By fitting the time series of
any selected set of nodes into the rVAR model, we can identify the causal and
dependency relationships amongst individuals’ suspiciousness measures.

3.3 Variable and Model Selection

Due to the large sizes and long time spans of streaming network data, the
observed time series data tend to cause the VAR model to have a large number
of explanatory variables. Such datasets could cause the model to overfit. Hence,
it is necessary to utilize some variable and model selection methods to obtain
reliable and efficient estimation results. In this subsection, we explore the rVAR
model which uses prior knowledge to regulate the parameters.

The rVAR method could take a binary restriction matrix ṙ and remove vari-
ables corresponding to the zero locations. The vector form of the rVAR(P) model
is:

Xt = Π ′(ṙ � Zt) + εt, (7)

where ṙ′ = (1n×1, r
′
1, · · · , r′

P ).
When analyzing the network data, the restriction matrix could be the con-

catenation of any matrix representing the desired node connectivity such as



606 Y. Li et al.

1-step or 2-step neighbor connectivity matrix at a specific lag. In applications,
At, which is the most recent observed adjacency matrix for a given rVAR model,
could be used as rps for p ∈ (1, · · · , P ). The only drawback is that some pre-
viously unconnected nodes could be included in the model for some certain
lags. However, as long as the number of added variables are small, those extra
variables would not influence the model too much. Therefore, during the rVAR
model estimation process, only the variables representing connected nodes could
have nonzero parameters. As a result, the restricted model based on the network
connectivity could greatly reduce the ambiguities caused by correlated variables
representing disconnected nodes, reduce the number of variables entering the
model, and reduce the risk of having rank deficient data.

3.4 Causal Analysis with Granger Causality

After fitting the rVAR model on each individual and its neighbors, the depen-
dencies and casual relationships of their anomaly measures could be analyzed.
The classical Granger causality test [3] is an F test to validate if by adding an
extra explanatory variable could better explain the current response variable.
That is, for models:

Model 1: yt = αyt−1 + εt (8)
Model 2: yt = αyt−1 + βxt−1 + εt, (9)

the hypothesis H0 : β = 0 and H1 : β �= 0, are tested against each other. Then,
the F-statistics

F =
(RSS1 − RSS2)/(p2 − p1)

RSS2/(T − 1 − p2)
∼ F(p2 − p1, T − 1 − p2),

where RSSi and pi are the residual sum of squares and the number of parameters
of model i respectively, has a F-distribution with (p2 − p1, T − 1 − p2) degrees
of freedom if the null hypothesis holds.

When H1 holds, it simply suggests that Xt−1 “Granger causes” Yt, which
means that it helps forecast Yt, but it does not conclude that Xt−1 causes Yt.
Two adaptations of Granger causality test for multivariate regressions are step-
wise forward selection and stepwise backward elimination of the explanatory
variables. In both cases, each variable’s lagged terms are tested one by one using
the models in Eqs. (8) and (9). Both methods use np tests in total, which are time
consuming but can provide more specific casuality analysis for each individual at
each lag. Based on the causality analysis results, the sources of endogenous and
exogenous causes for each node’s anomaly measures could be identified. There-
fore, we can distinguish whether the node itself is anomalous or it is caused by
adjacent neighbors’s behaviours.

4 Empirical Evaluation

We conduct evaluations using a partial UMDWikipedia dataset from [6]. The
dataset contains 770,040 edits of Wikipedia pages made by both vandal and
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benign users between January 01, 2013 and July 31, 2014. Since we focus on
analyzing the dynamic interactions of the user behaviors, only pages edited by
more than 3 unique users and users editing more than 3 unique pages are kept.
After preprocessing, we have 17,733 edits and 805 users spanning over 10,451
unique event times, where there are 456 benign users and 349 vandal users.

We use this partial dataset to evaluate our dynamic anomaly detection algo-
rithm. We use the rVAR(5), which is the rVAR model of lag 5, on 1-step neigh-
bors for all the case study examples unless further specified. We use 5 time events
as the interval to build the time series data, so we have 2,091 time frames. Due
to space limits, we skip the results of showing the effectiveness of the derived
node nonrandomness metric for signed networks and the efficiency of the use of
the rVAR model. In this section, we focus on several case studies to demonstrate
the effectiveness of using the Granger causality to identify the causes for the
observed anomaly measures.

4.1 Case Study I

The target node is 7 and its 1-step neighbors are 48, 232, 281 and 378. The node
anomaly measure variables are relabeled as X1 to X5 respectively. The adjusted
model using stepwise backward elimination multivariate Granger causality anal-
ysis method is

X1,t = 0.288X1,t−1 + 0.443X1,t−3 − 0.648X1,t−4

+ 0.56X3,t−4 + 0.467X1,t−5 − 0.186X3,t−5,
(10)

where c = 0.00007 is not significant with t-statistic value of 1.1679. The param-
eter vector and the associated significance indicators from Granger casuality
results are shown in Fig. 1(a) and (b). For the parameter vector figures, each
row represents the parameters for all the variables of a certain lag and each
column represents the parameters of all the lags for a certain variable. For the
causality indicators figures, each shaded location suggests that the corresponding
column variable Granger causes the row variable. For example, Fig. 1(b) shows
the exogenous sources of influence towards node 7 (X1) include its early lags
(except lag 2) and the lag 4 and 5 terms of the variable representing node 232
(X3).

We also show the parameter vector for node 232 (X3) in Fig. 1(c). The associ-
ated significance indicator grid is shown in Fig. 1(d). The causality result suggests
that node 7 is also an exogenous source of cause for the anomaly measures of
node 232. Therefore, the anomaly measures of node 7 and node 232 are closely
correlated. By checking the original data, we find that user Jodosma7 co-edited
with user Bnseagreen232 three times on the page titled “Dhani Matang Dev”.
Furthermore, none of the edits made by user 7 and user 232 were reverted. There-
fore, both users are considered normal users who have edited the same page. The
labels for both users are benign.
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Fig. 1. (a) The parameters of all 5 lags for the rVAR model of node 7. (b) The anomaly
measures of node 232 Granger cause those of node 7. (c) The parameters for the rVAR
model of node 232. (d) The anomaly measures of node 7 Granger cause those of node
232.

4.2 Case Study II

The target node is 466 and its 1-step neighbors are 67, 312, 330, 421, 563, 605 and
683. The node anomaly measure variables are relabeled as X1 to X8 respectively.
The adjusted model using stepwise backward elimination multivariate Granger
causality analysis method is

X1,t = 0.562X1,t−1 − 0.396X7,t−1 + 0.603X7,t−2 − 0.572X7,t−3 + 0.517X1,t−4

− 0.231X6,t−4 − 0.387X7,t−4 − 0.229X8,t−4 + 0.119X1,t−5 + 0.014X6,t−5

− 0.114X7,t−5 + 0.083X8,t−5,

(11)

where c = 0.033 is significant with t-statistic value of 2.3034. The parameter vec-
tor and the associated from Granger casuality indicators are shown in Fig. 2(a)
and (b).
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Fig. 2. (a) The parameters of all 5 lags for the rVAR model of node 466. (b) The
anomaly measures of node 605 Granger cause those of node 466. (c) The parameters
for the rVAR model of node 605. (d) The anomaly measures of node 466 Granger cause
those of node 605.
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In this example, both users Grobelaar0811466 (X1) and Bobcalderon605 (X7)
edited the page titled “Sofia Vergara” together. In fact, there were co-edits at
four different times between these two users. The casuality analysis suggests that
the activities of user 563 Granger cause the anomaly measures of user 466.
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Fig. 3. (a) The parameters of all 5 lags for the rVAR model of node 563. (b) Node 466
is an exogenous source of influence to the anomaly measures of node 563.

By looking at the model and Granger Causality results for node 605 in
Fig. 2(c) and (d), we notice that the causal relationship between user 466 and
user 605 is bidirectional and conclude that they have a relatively close relation-
ship. By further checking the edit history of both users, we find that all 7 edits of
user 466 and all 5 edits of user 605 were reverted, which indicate that both users
could be vandals with very high probability. Combining all the observations with
the causality analysis results, we suspect that user 466 and user 605 may have
attacked the page collaboratively. The labels for both users are vandal.

Another neighbor, user Themaxandpeter563 also has similar causality results
with node 466 as node 605 does, ss shown in Fig. 3(a) and (b). Nodes 466 and
563 edited two pages titled “Fulham F.C.” and “Dynamo (magician)” together.
According to the edit history, all of the edits made by user 563 were reverted.
According to all the above results, we suspect that all 3 users 466, 563 and 605
collaborated their attacks on Wikipedia pages.

4.3 Case Study III

In this case study, we examine the rVAR(2) model of node 466 with its 2-step
neighbors. Node 466 has 7 1-step neighbors and 115 2-step neighbors. The mean-
ing for 2-step neighbors in this particular dataset is that those nodes edited some
pages together with the 1-step neighbors of the target node. For any relatively
well connected graph, the number of 2-step neighbors tends to grow very large. As
mentioned before, fitting a rVAR model on a large number of variables requires
high computational power and may have rank deficiency problems. After the
rank test, only 73 neighbors and the target have time series data that are not
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linearly dependent. The Johansen cointegration test suggests that all 73 neigh-
bors’ time series are cointegrated with the target node’s time series.

As more variables entering the model, the causality analysis results become
more complicated. Since the model contains more variables, only a few lags
could be incorporated to make the computational time manageable. The results
indicate that the majority of exogenous causal influences come from the 2-step
neighbors. However, the weights of the influences of any 2-step neighbors should
be significantly lowered to reflect their weaker conductivities (in terms of dis-
tances) with node 466 than those of the 1-step neighbors. An important issue is
that, if the number of variables entering the model increases, the chance for the
model to be overfit will also increase. Therefore, in applications, the number of
variables and the size of the lag need to be chosen carefully to prevent overfitting
a model and to save computational resources.

5 Summary

We have presented a novel approach for dynamic fraud detection by using the
rVAR model. We have introduced a new measure, node nonrandomness for
signed and weighted graphs, to quantify node anomaly. We have also proposed
to use the stepwise backward elimination Granger casuality method to analyze
the casual relationships of node activities from the fitted rVAR model. To our
knowledge, this is the first work to systematically analyze the graph spectrum
based anomaly metric time series data simultaneously using a multivariate sta-
tistical modeling tool. This is also the first work to use a strict statistical infer-
ence method for identifying the endogenous and/or exogenous sources of casual
influence of node interactions in dynamic graphs. As demonstrated in the case
studies, by quantifying the randomness of node activities into the node nonran-
domness measures and analyzing the resulting time series data, the proposed
method could help us identify different activity patterns such as collaborative
attacks, benign users sharing a common interest, and benign users being attacked
by vandals.

For future works, we will explore different anomaly metrics under different
scenarios for a more extensive coverage of anomaly detection. This is feasible
as the method proposed in this paper is modularized where different types of
anomaly metrics could be plug in to analyze different anomaly behaviors. We
will also investigate the conditional Granger causality [2] to analyze the multi-
variable dependencies for dynamic attack detection. We plan to study how to
improve the efficiency of our approach especially for large graphs.

Acknowledgments. This work was supported in part by NSF 1564250 and 1564039.



Dynamic Anomaly Detection Using Vector Autoregressive Model 611

References

1. Bianco, A.M., Garcia Ben, M., Martinez, E., Yohai, V.J.: Outlier detection in
regression models with arima errors using robust estimates. J. Forecast. 20(8),
565–579 (2001)

2. Geweke, J.F.: Measures of conditional linear dependence and feedback between
time series. J. Am. Stat. Assoc. 79(388), 907–915 (1984)

3. Granger, C.W.: Investigating causal relations by econometric models and cross-
spectral methods. Econometrica: J. Econometric Soc. 37(3), 424–438 (1969)

4. Idé, T., Kashima, H.: Eigenspace-based anomaly detection in computer systems. In:
Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 440–449. ACM (2004)

5. Johansen, S.: Estimation and hypothesis testing of cointegration vectors in Gaus-
sian vector autoregressive models. Econometrica: J. Econometric Soc. 59(6), 1551–
1580 (1991)

6. Kumar, S., Spezzano, F., Subrahmanian, V.: VEWS: a Wikipedia vandal early
warning system. In: Proceedings of the 21th ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, pp. 607–616. ACM (2015)

7. Li, Y., Wu, X., Lu, A.: Analysis of spectral space properties of directed graphs using
matrix perturbation theory with application in graph partition. In: Proceedings of
IEEE International Conference on Data Mining, pp. 847–852. IEEE (2015)

8. Liberty, E.: Simple and deterministic matrix sketching. In: Proceedings of the
19th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pp. 581–588. ACM (2013)

9. Ning, H., Xu, W., Chi, Y., Gong, Y., Huang, T.: Incremental spectral clustering
with application to monitoring of evolving blog communities. In: Proceedings of the
2007 SIAM International Conference on Data Mining, pp. 261–272. SIAM (2007)

10. Shyu, M.L., Chen, S.C., Sarinnapakorn, K., Chang, L.: A novel anomaly detec-
tion scheme based on principal component classifier. In: Proceedings of the IEEE
Foundations and New Directions of Data Mining Workshop, pp. 171–179. IEEE
(2003)

11. Sun, J., Xie, Y., Zhang, H., Faloutsos, C.: Less is more: compact matrix representa-
tion of large sparse graphs. In: Proceedings of 7th SIAM International Conference
on Data Mining (2007)

12. Tsay, R.S., Peña, D., Pankratz, A.E.: Outliers in multivariate time series.
Biometrika 87(4), 789–804 (2000)

13. Wu, L., Ying, X., Wu, X., Zhou, Z.H.: Line orthogonality in adjacency eigenspace
with application to community partition. In: Proceedings of the 22nd International
Joint Conference on Artificial Intelligence, pp. 2349–2354 (2011)

14. Wu, L., Wu, X., Lu, A., Zhou, Z.H.: A spectral approach to detecting subtle anoma-
lies in graphs. J. Intell. Inf. Syst. 41(2), 313–337 (2013)

15. Ying, X., Wu, X.: On randomness measures for social networks. In: Proceedings of
9th SIAM International Conference on Data Mining (2009)
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Abstract. Preserving differential privacy (DP) for the iterative cluster-
ing algorithms has been extensively studied in the interactive and the
non-interactive settings. However, existing interactive differentially pri-
vate clustering algorithms suffer from a non-convergence problem, i.e.,
these algorithms may not terminate without a predefined number of iter-
ations. This problem severely impacts the clustering quality and the effi-
ciency of the algorithm. To resolve this problem, we propose a novel iter-
ative approach in the interactive settings which controls the orientation
of the centroids movement over the iterations to ensure the convergence
by injecting DP noise in a selected area. We prove that, in the expected
case, our approach converges to the same centroids as Lloyd’s algorithm
in at most twice the iterations of Lloyd’s algorithm. We perform exper-
imental evaluations on real-world datasets to show that our algorithm
outperforms the state-of-the-art of the interactive differentially private
clustering algorithms with a guaranteed convergence and better cluster-
ing quality to meet the same DP requirement.

Keywords: Differential privacy · Adversarial machine learning ·
k-means clustering

1 Introduction

Clustering algorithms help us to learn the insights behind the data. Nevertheless,
the privacy releasing risk thwarts people’s willingness to contribute personal data
to the clustering algorithms. Assume there is an adversary who knows n − 1 out
of n items of a dataset, and a set of centroids at any arbitrary iteration, it
is easy to infer the missing item with such information. To prevent such an
adversary, differential privacy (DP) [4] has been applied in iterative clustering
algorithm (i.e., Lloyd’s algorithm [11]) in both the interactive and the non-
interactive settings. In this paper, we consider the differentially private k-means
clustering in the interactive settings [17] whereby random differential privacy
(DP) noises were injected into each iteration when running Lloyd’s algorithm.

In a nutshell, there are a long line of works [2,5,14,16–18] guarantee DP while
achieve acceptable clustering quality in the interactive settings via three DP
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mechanisms: the sample and aggregation framework of DP [15], the exponential
mechanism of DP (ExpDP) [13], and the Laplace mechanism of DP (LapDP) [6].
We observed two weaknesses from existing work. Particularly, the work [14], with
the sample and aggregation framework, showed unsatisfactory clustering quality
due to its large amount of noises injection in both sampling and aggregation
stage. The works [2,5,16–18] applied the ExpDP or the LapDP suffered from a
non-convergence problem. That is, a predefined iteration number was required
to terminate the clustering. This problem severely impacts the clustering quality
(as the clustering result would have a large distance to the true centroids) and the
efficiency of the algorithm (as it takes a large computational cost to determine
this predefined parameter).

Therefore, to fill the gaps, the research challenge is to guarantee convergence
and better clustering quality with the same DP requirement as existing work in
the interactive settings of the k-means problem (take Lloyd’s algorithm as the
base clustering algorithm). In summary, our main contributions are:

– To the best of our knowledge, this is the first work to explore the conver-
gence of a differentially private k-means clustering algorithm in the interactive
settings.

– We propose a novel approach to inject DP noise into the iterations by apply-
ing the ExpDP. Our framework addresses the non-convergence problem in
existing work by controlling the orientation of the convergence while keeping
DP for each iteration.

– We mathematically evaluate the key properties of our differentially private
k-means algorithm, i.e., the convergence, the convergence rate, the clustering
quality, and the bound of DP.

– We experimentally evaluate the performance of clustering quality across var-
ious experimental settings on six real-world datasets. With the same DP
guarantee, our approach achieves better clustering quality than the state-of-
the-art differentially private k-means algorithms.

2 Related Work

In this section, we briefly summarise the long line of works on the differentially
private k-means clustering [2,5,14,16–18] in the interactive settings. To sum up,
these works guaranteed DP with three major mechanisms of DP: the Laplace
mechanism (LapDP) [6], the sample and aggregation framework [15], and the
exponential mechanism (ExpDP) [13].

There is a group of works [2,5,17] injected Laplace noise to the iterations
of Lloyd’s algorithm directly to ensure DP. The difference among these works
is the way to allocate privacy budget to each iteration. Blum et al. [2] split
the overall privacy budget uniformly to each iteration, prior to that, a total
number of iterations was determined empirically. In spite of its simplicity, this
scheme requires significant computational resources as it has to repeatedly run
the algorithm on the target dataset to have a suitable number of iterations. Su
et al. [17] improved the weaknesses of [2] by allocating the privacy budget with
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a theoretically guaranteed optimal allocation method. However, this optimal
allocation scheme may not fit all real-world datasets, as it assumes that all the
clusters always have the same size. Dwork [5] allocated the privacy budget with a
decreasing exponential distribution, that is, assigned 1/2i of the overall privacy
budget at iteration i until using up the overall privacy budget. Unfortunately,
this scheme results in unsatisfactory clustering quality since the injected noises
keep increasing when the allocated privacy budget is decreasing.

The sample and aggregation framework and the ExpDP were also used to
ensure DP for an interactive k-means algorithm. Mohan et al. [14] proposed
GUPT applied the sample and aggregation framework of DP with Lloyd’s algo-
rithm. Briefly, GUPT uniformly samples items from an input dataset to different
buckets, where local clustering result of each bucket is generated by Lloyd’s algo-
rithm. The final clustering result is the mean of those local ones with Laplace
noise. Although GUPT is convergent, the clustering quality is unsatisfactory
due to its large amount of noises involved in both sampling and aggregation
steps. Zhang et al. [18] proposed a genetic algorithm (GA) based differentially
private k-means algorithm, PrivGene. Unlike the traditional GA, PrivGene ran-
domly sampled the candidates for the next iteration with the ExpDP rather
than selecting the top-quality ones. PrivGene achieves fair clustering quality if
the input dataset is relatively small because in this case, it produces global opti-
mal clustering result with high probability. However, similar to [2], PrivGene
also requires a predefined iteration number to terminate the algorithm. So effi-
ciency would be a major problem to it. Differing from the above algorithms, Park
et al. [16] achieved (ε, δ)-DP, rather than ε-DP, with given assumption on the
distribution of the input dataset which narrows its applicability in the real-world
scenarios.

3 Preliminaries

3.1 Lloyd’s k-Means Algorithm

The k-means clustering aims to split a dataset with N items into k clusters
where each item is allocated into a cluster with the nearest cluster centroid to
itself. The formal cost function of the k-means problem is:

arg min
C

J =
k∑

i=1

∑

x∈Ci

||x − Si||2, (1)

where C = {C1, C2, . . . , Ck} is the set of k clusters, x is an item in the dataset
X = {x1, x2, . . . , xN}, Si is the centroid of Ci. Equation 1 calculates the total
cost of a set of centroids.

The most well known k-means algorithm is an iterative refinement algorithm
called Lloyd’s k-means algorithm [11]. In brief, Lloyd’s algorithm improves the
quality of centroids by iteratively running a re-assignment step and a re-centroid
step. In the re-assignment step, it assigns each item to its nearest centroid
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to build the k clusters. In the re-centroid step, it re-calculates the centroid
(mean) for each cluster. This new/updated k centroids are used for the next re-
assignment step. Lloyd’s algorithm terminates itself when the k centroids keep
the same in two neighbouring iterations. Namely, this algorithm is guaranteed
to converge within finite iterations.

3.2 Differential Privacy

Differential privacy (DP) is a famous notion of privacy in the current privacy-
preserving research field [9,12], which was first introduced and defined by Dwork
et al. [6]. It guarantees the presence or absence of any item in a dataset is
concealed to the adversary.

Definition 1 (ε-DP [6]). A randomised mechanism T is ε-differentially private
if for all neighbouring datasets X and X ′, and for an arbitrary answer s ∈
Range(T ), T satisfies:

Pr[T (X) = s] ≤ exp(ε) · Pr[T (X ′) = s]

where ε is the privacy budget.

Two parameters are essential to DP: the privacy budget ε and the local function
sensitivity Δf , i.e. Δf(X), where f is the query function to the dataset X. The
reason why we use local sensitivity is that it offers better utility to respond query
f when guaranteeing DP. Δf is calculated by the following equation,

Δf(X) = max
∀X′

|f(X) − f(X ′)|.

In this paper, we mainly use two main mechanisms of DP: the LapDP and
the ExpDP. In general, the LapDP adds random noise with Laplace distribution
for the numeric computation to satisfy Definition 1. While for the non-numeric
computation, the ExpDP introduces a scoring function q(X,x) which reflects
how appealing the pair (X,x) is, where X denotes a dataset and x is the random
response to a query function on the dataset X. Technically, the ExpDP is a
process of weighted sampling, where the scoring function assigns weights to the
sample space.

Definition 2 (ExpDP [13]). Given a scoring function of a dataset X, q(X,x),
which reflects the quality of query respond x. The exponential mechanism T
provides ε-DP, if T (X) = {Pr[x] ∝ exp( ε·q(X,x)

2Δq )}, where Δq is the sensitivity of
q(X,x), ε is the privacy budget.

4 Algorithm and Analysis

4.1 Approach Overview

Figure 1 illustrates the overview of our approach. In C
(t)
i (cluster i at iteration

t), we use an Ŝ
(t)
i (the differentially private centroid of C

(t)
i ) to replace the S

(t)
i
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(the real centroid (mean) of C
(t)
i ) as the result of re-centroid. Differing from the

existing work where the Ŝ
(t)
i was arbitrarily produced by a DP mechanism, the

key idea of our approach is that we bound a sampling zone to sample the Ŝ
(t)
i

for the sake of convergence. To have a good convergence rate, we further control
the orientation when sampling the Ŝ

(t)
i from the sampling zone. Specifically, the

sampled Ŝ
(t)
i orients to an S

(t+rt)
i as close as possible, where rt is the orientation

controller at iteration t, the S
(t+rt)
i is produced by running Lloyd’s algorithm

for rt times from the S
(t−1)
i (which is actually the Ŝ

(t−1)
i ). The challenge in

our approach to fill the research gap is designing a suitable sampling zone to
guarantee the convergence and better clustering quality while meeting the same
DP requirement in the interactive settings as existing work.

Cluster i at Iteration t (C(t)
i )

Orientation

sampling zone

rt: orientation
controller

Ŝ
(t−1)
i → S

(t−1)
i S

(t)
i

Ŝ
(t)
i

S
(t+1)
i

S
(t+rt)
i

Fig. 1. Overview of orientation controlling.

4.2 Preliminary Analysis

In this section, we provide the preliminary analysis which help us to build up
the our algorithm in the next section. We first study the convergence for a
randomised iterative clustering algorithm in Lemma 1.

Lemma 1. A randomised iterative clustering algorithm is convergent if, in C
(t)
i ,

the sampled Ŝ
(t)
i satisfies ||Ŝ(t)

i − S
(t)
i || < ||S(t)

i − S
(t−1)
i || in Euclidean distance,

∀ t, i.

Proof. In Lloyd’s algorithm, after re-assignment, prior to re-centroid, we build
C

(t)
i and have J (S

(t−1)
i ) =

∑
x∈C

(t)
i

||x − S
(t−1)
i ||2, where S

(t−1)
i is the mean of

C
(t−1)
i which is used for the re-assignment to generate C

(t)
i . Similarly, after re-

centroid (members in C
(t)
i did not change), we have J (S

(t)
i ) =

∑
x∈C

(t)
i

||x−S
(t)
i ||2.

Assume the Euclidean distance between S
(t−1)
i and S

(t)
i is a

(t)
i = ||S(t−1)

i −
S
(t)
i ||, then we have J (S

(t−1)
i ) − J (S

(t)
i ) = ||C(t)

i || × (a(t)
i )2, where ||C(t)

i || is the
number of items in C

(t)
i . Note that, in Lloyd’s algorithm, J (S

(t)
i ) is the minimum

cost in C
(t)
i . If we pick a random node Ŝ

(t)
i from C

(t)
i as the centroid for C

(t)
i
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which satisfies ||Ŝ(t)
i − S

(t)
i || = δ

(t)
i a

(t)
i < ||S(t−1)

i − S
(t)
i || = a

(t)
i (0 < δ

(t)
i < 1),

then we have J (S
(t−1)
i ) − J (Ŝ

(t)
i ) = ||C(t)

i || × (1 − (δ(t)i )2) × (a(t)
i )2 > 0.

So by updating the centroids to this set Ŝ(t) = {Ŝ
(t)
1 , Ŝ

(t)
2 , . . . , Ŝ

(t)
k } (rather

than the mean of clusters, S(t)), the value of every item
∑

x∈Ci
||x − Si||2 can

be further decreased, then the value of the cost function (Eq. 1) can be further
decreased.

In addition, since we have a finite set of all possible clustering solutions (at
most kN ), and we decrease the cost in each iteration of a randomised itera-
tive algorithm, the algorithm satisfies the properties from the above proof must
converge (not approach) to a fixed value of the cost function. ��

According to Lemma 1, in this paper, we have a convergent zone = {Node S :
||S − S

(t)
i || < ||S(t−1)

i − S
(t)
i ||}, where S

(t)
i is the mean of C

(t)
i , and a sampling

zone is a subset of the convergent zone.
Next, we shall study the convergence and the convergence rate for a special

case of Ŝ
(t)
i in Lemmas 2 and 3, respectively. This special Ŝ

(t)
i is in the line

segment of S(t−1)S(t), where ||Ŝ(t)
i − S

(t)
i || = δ

(t)
i × ||S(t−1)

i − S
(t)
i ||, δ

(t)
i < 1.

These two lemmas assist us to prove Theorems 1 and 2 in the next section.

Lemma 2. An algorithm ALG, randomly selects an Ŝ
(t)
i in the line segment

of S(t−1)S(t) in C
(t)
i , and Lloyd’s algorithm are convergent to the same set of

centroids, if they both use the same initial set of centroids.

Proof. We know that the k-means problem has a set of local optimal solu-
tions, S = {S1,S2, · · · ,Sn}, where Si is one local optimum (the one that
Lloyd’s algorithm converges to) contains k centroids of the clusters, Si =
{Si,1, Si,2, · · · , Si,k}. According to Lemma 1, assume ALG is convergent to
Ŝ = {Ŝ1, Ŝ2, · · · , Ŝk} /∈ S. Then we must have room to further reduce the cost
by either the re-assignment or the re-centroid. Therefore, Ŝ is not the set of
centroids which makes ALG convergent, unless Ŝ ∈ S. So ALG is convergent to,
at least, one local optimum of the k-means problem.

We say a set of k nodes (each cluster contributes one node) belongs to a local
optimum, Si, if Lloyd’s algorithm converges to Si by taking such a set of nodes
as the initial set of centroids. Because the two ends of the line segment S(t−1)S(t)

belong to the same local optimum, then it is guaranteed that S(t−1), S(t), and
Ŝ(t) always belong to the same local optimum, for all iterations. Therefore, this
lemma holds. ��

Lemma 3. The algorithm ALG in Lemma 2 has at most 1
1−δ2 times iterations

of Lloyd’s algorithm in the expected case, where δ is the expectation of δ
(t)
i ,

δ ∈ (0, 1).

Proof. Based on Lemma 2, the overall value difference of Eq. 1 from the first
iteration to the last iteration, J =

∑k
i=1 JS

(0)
i −

∑k
i=1 JS

(I)
i , is the same in both

ALG and Lloyd’s algorithm, where I is the total iterations. In each iteration,
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the cost is decreased by two steps: re-assignment and re-centroid. Then, without
loss of generality, we have J =

∑I
t=1(Δ

(ra)
t + Δ

(rc)
t ) for Lloyd’s algorithm, and

J =
∑Î

t=1(Δ̂
(ra)
t +Δ̂

(rc)
t ) for ALG. Because of the properties of Lloyd’s algorithm,

we know that Δt =
∑k

i=1 Δ
(t)
i for all clusters at iteration t. According to Lemma

1, when re-assignment, we have Δ̂
(t)
i = (1 − δ2) × Δ

(t)
i , where δ = E(δ(t)i ). So

Δ̂
(ra)
t =

∑k
i=1[(1−δ2)×Δ

(t)
i ] ∈ [mink

i=1{1−(δ(t)i )2},maxk
i=1{1−(δ(t)i )2}]×Δ

(ra)
t .

In the expected case, Δ̂
(ra)
t = (1 − δ2) × Δ

(ra)
t , δ = E(δ(t)i ). In the worst case,

Î < 1

mini,t{1−(δ
(t)
i )2} × I. As Δ̂

(rc)
t > Δ

(rc)
i , we have

J =(Δ(ra) + Δ(rc)) × I = (Δ̂(ra) + Δ̂(rc)) × Î > [(1 − δ2)Δ(ra) + Δ(rc)] × Î

>(1 − δ2) × (Δ(ra) + Δ(rc)) × Î .

Therefore, Î < 1
1−δ2 × I in the expected case. ��

4.3 Our Approach and Its Analysis

In this section, we firstly show how we build our sampling zone, then describe
how we sample the Ŝ

(t)
i from such a sampling zone, finally provide our approach

in Algorithm 1 and its analysis.
Ideally, in our convergent zone, when applying LapDP, the probability of a

node S as the Ŝ
(t)
i need follow a monotonous decreasing function of the distance

between S and S
(t)
i . However, a truncated LapDP [1] will result in an unsatisfac-

tory utility problem as the nodes in the border of the convergent zone may have
a higher probability (sum of the probabilities of the nodes outside the convergent
zone) than the ones more close to the S

(t)
i . Therefore, in this paper, we apply

the ExpDP in the sampling zone for the Ŝ
(t)
i .

When designing a sampling zone, we should have the following conditions.
Firstly, there should be a single sampling zone in C

(t)
i for all parties: the trusted

data curator and the adversaries. Otherwise the differences among the sampling
zones in different parties will result in significant gap among their clustering
results, which could be used for privacy inference. Secondly, the single sampling
zone should not have an explicit relationship to the S

(t)
i , the real mean of C

(t)
i .

Thirdly, to control the convergence orientation, S
(t+rt)
i should be involved when

building the sampling zone. In this paper, considering the computational cost
and privacy disclosure risk, we choose the orientation controller rt = 1.

Lines 7 to 9 in Algorithm 1 show how we build the sampling zone. In our
implementation, the centre of the sampling zone P

(t)
i is determined by a random

number λ
(t)
i ∈ (1/2, 1) which is the off-set in S

(t)
i S

(t+1)
i . Because a larger sam-

pling zone provides more choices for the Ŝ
(t)
i , we use the following probability

function for sampling λ
(t)
i as Pr[P (t)

i ] = Pr[λ(t)
i = r] ∝ exp(2 − 2r) = p, r ∈

(1/2, 1).
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Once having the sampling zone, each party samples their own Ŝ
(t)
i from this

sampling zone with the ExpDP. In the implementation, we sample the Ŝ
(t)
i by

sampling a pair (δ(t)i = ||S(t)
i −Ŝ

(t)
i ||

||S(t)
i −S

(t+1)
i || , α

(t)
i = ∠Ŝ

(t)
i S

(t)
i S

(t+1)
i ), where δ

(t)
i ∈ (0, 1),

α
(t)
i ∈ (−π/2, π/2). Because an Ŝ

(t)
i , that is close to the S

(t)
i , has better clustering

quality for iterations in the interactive settings, that is, the scoring function
should be monotonous decreasing to both δ

(t)
i and α

(t)
i . In this paper, we use

the following scoring function for the pair (δ(t)i , α
(t)
i ) because of its simplicity:

q(δ(t)i , α
(t)
i ) = (1 − δ

(t)
i ) + (1 − 2|α(t)

i |/π). It is easy to have the local sensitivity
of the scoring function is 2, i.e. Δq = 2.

Finally, when the clusters converge (to a real local optimum as Lloyd’s algo-
rithm), we apply the LapDP to inject noise to the final clustering result. Specif-
ically, to have good clustering quality, we inject the Laplace noise to the counts
when calculating the mean of each cluster (Line 15 in Algorithm 1). The local
sensitivity of this counting function is 1. Algorithm 1 shows how our approach
works. Figure 2 depicts the key idea of Algorithm 1.

convergent zone

sampling zone

αδ
(t)
i b

(t)
i

λ
(t)
i b

(t)
i

b
(t)
i

S
(t−1)
i

S
(t)
i

S
(t+1)
i

P
(t)
i

M
(t)
i

Ŝ
(t)
i

Fig. 2. The key idea of Algorithm 1: centroids updating.

According to Lemmas 1, 2, and 3, we have Theorems 1 and 2 to study the
convergence and the convergence rate of Algorithm 1, respectively. Theorem 3
studies the privacy bound of Algorithm 1.

Theorem 1. Algorithm 1 and Lloyd’s algorithm are convergent to the same set
of centroids with high probability if they both use the same initial set of centroids.

Theorem 2. Algorithm 1 is convergent with at most 2
−δ2+2δ cosα+1 ∈ (1, 2)

times iterations of Lloyd’s algorithm in the expected case, where δ and α are
the expectations of δ

(t)
i and α

(t)
i .
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Algorithm 1. A Convergent Differentially Private k-Means Clustering
Algorithm.

Input : X = {x1, x2, . . . , xN}: dataset in size N .
k: number of clusters (< N).

ε
(t)
i : privacy budget for Cluster i at Iteration t, C

(t)
i .

ε0: privacy budget for the final output.

Pr[P
(t)
i ]: probability to generate SamplingZone

(t)
i for C

(t)
i .

q: scoring function for the ExpDP when sampling the Ŝ
(t)
i .

Output: S: set of the final k centroids.

1 Initialisation: Uniformly sample k initial centroids S(0) = (S
(0)
1 , S

(0)
2 , . . . , S

(0)
k ) from X;

2 while clusters do not converge do
3 for each Cluster i at Iteration t do

4 C
(t)
i ← assign each xj to its closest centroid S

(t−1)
i ;

5 S
(t)
i ← mean of C

(t)
i ;

6 S
(t+1)
i ← mean of C

(t+1)
i based on C

(t)
i (by running Lloyd’s algorithm);

7 M
(t)
i ← midpoint of the line segment S

(t)
i S

(t+1)
i ;

8 P
(t)
i ← sample from the line segment M

(t)
i S

(t+1)
i by Pr[P

(t)
i ];

9 SamplingZone
(t)
i ← centre: P

(t)
i , radius: r

(t)
i = ||S(t+1)

i − P
(t)
i ||;

10 Ŝ
(t)
i ← sample from SamplingZone

(t)
i by the ExpDP with q and ε

(t)
i ;

11 S
(t)
i ← Ŝ

(t)
i ;

12 Publish: SamplingZone
(t)
i , q, ε

(t)
i , S

(t)
i (optional);

13 end

14 end

15 S ← add noise to S(t) by the LapDP with ε0, publish ε0.

Theorem 3. Algorithm 1 is ε-differentially private, where ε = ε0+
∑Î

t=1 maxk
i=1

{ε
(t)
i }, Î is its total iterations to converge.

5 Experimental Evaluation

5.1 Datasets and Configuration

Table 1 illustrates the key features of the real-world datasets we used to evaluate
the clustering quality and the convergence rate of Algorithm 1. We use these
datasets with two reasons. Firstly, they are used for the clustering experiments
in several research papers, e.g., [18] and [17]. Secondly, their sizes are in different
orders of magnitude, which help us to show the performance stability and the
scalability of an algorithm over different datasets.

We compare the clustering quality of Algorithm 1 with that of the state-of-
the-art ε-differentially private k-means algorithms and the non-private Lloyd’s
algorithm. The clustering quality is measured by the difference/gap of the cost
(Eq. 1) at the final iteration between a differentially private k-means algorithm
and Lloyd’s algorithm. A smaller gap indicates better clustering quality. In the
experiments, we implement and name them as ThisWork (Algorithm 1), SU [17],
PrivGene [18], GUPT [14], DWORK [5], BLUM [2], and LLOYD [11].

Because the six algorithms achieve ε-DP are randomised, we report their
expected clustering quality. According to the law of large numbers, we run all
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Table 1. Descriptions of datasets.

Dataset #Records #Dims #Clusters

Iris [3] 150 4 3

House [8] 1837 3 3

S1 [7] 5000 2 15

Birch2 [19] 12000 2 5

Image [8] 34112 3 3

Lifesci [10] 26733 10 3

the seven algorithms 300 times and take the average results as the expectations.
The initial set of centroids is randomly selected for all methods in each run. For
those relying on a predefined iteration number, we take the corresponding value
(or function) from the original papers. In addition, we normalise the data in all
the datasets to [0, 1]. Furthermore, we normalise the final cost for all involved
algorithms, i.e., the final cost of Lloyd’s algorithm is always one.

Note that calculating the overall privacy budget depends on whether a
method converges. ThisWork and GUPT calculate the overall privacy budget
bottom-up. That is, once it terminates, we sum all the privacy budgets used
in each iteration to have the overall privacy budget. SU, PrivGene, DWORK,
and BLUM calculate it top-down. Namely, the given overall privacy budget is
split to each iteration (the overall number of iterations were predefined) at the
initialisation step. Therefore, in the experiments, we first allocate the same pri-
vacy budget to each atom step for ThisWork and GUPT, then calculate their
overall privacy budgets. Next we take the overall privacy budget of ThisWork as
the overall privacy budget for the methods cannot converge. In the experiments,
local sensitivity is applied for all DP algorithms.

5.2 Experimental Results

Figure 3 reports the expected clustering quality of each algorithm, where the
cost gap is in log scale, the privacy budget is varied in [0.1, 1.0]. Generally,
Algorithm 1 shows a better clustering quality with the same DP requirement in
the six datasets. Additionally, the performance gap between Algorithm 1 and the
existing algorithms increases when increasing ε, which indicates the better trade-
off between privacy and utility with our algorithm. Furthermore, Algorithm 1
performs much better than other algorithms in the larger datasets (e.g., Image
and Lifesci), which reflects the potentially good scalability of our algorithm.

Figure 4 shows the iteration ratio of Algorithm 1 and Lloyd’s algorithm to
converge, which confirms the theoretical analysis in Theorem 2. Note that, in
the experiments, the privacy budget does not impacts the number of iterations
significantly because the experimental performance of the ExpDP is not as good
as its theoretical guarantee with a relatively small sampling zone.
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Fig. 3. Clustering quality comparisons.
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(a) Iteration Ratio over ε.

Iris House S1 Birch2 Image Lifesci
ThisWork 8.2 21.4 23.9 20.7 19.8 36.6
LLOYD 6.1 17.3 18.0 15.6 14.1 29.9
Ratio 1.34 1.24 1.33 1.33 1.40 1.22

(b) Average Iterations to Convergence.

Fig. 4. Iterations to convergence.

6 Conclusion

To address the non-convergence problem in the existing differentially private
k-means algorithms in the interactive settings, in this paper, we proposed a
novel centroids updating approach by applying the exponential mechanism of
differential privacy in a selected area. The novelty of our approach is the ori-
entation controlling for the sake of convergence. Both mathematical and exper-
imental evaluations support that with the same DP guarantee, our algorithm
achieves better clustering quality than the state-of-the-art differentially private
algorithms in the interactive settings.
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