
Graph Compression with Stars

Faming Li1, Zhaonian Zou1(B), Jianzhong Li1, and Yingshu Li2

1 Harbin Institute of Technology, Harbin, China
{lifaming2016,znzou,lijzh}@hit.edu.cn
2 Georgia State University, Atlanta, USA

yili@gsu.edu

Abstract. Making massive graph data easily understandable by people
is a demanding task in a variety of real applications. Graph compres-
sion is an effective approach to reducing the size of graph data as well
as its complexity in structures. This paper proposes a simple yet effec-
tive graph compression method called the star-based graph compression.
This method compresses a graph by shrinking a collection of disjoint
subgraphs called stars. Compressing a graph into the optimal star-based
compressed graph with the highest compression ratio is shown to be NP-
complete. We propose a greedy compression algorithm called StarZip.
We experimentally verify that StarZip achieves compression ratios of 3.8–
45.7 and 2.9–241.6 in terms of vertex count and edge count, respectively.
Besides, we study the shortest path queries on compressed graphs. On the
real graphs, the StarSSSP algorithm for processing shortest path queries
on compressed graphs is 4X–20X faster than Dijkstra’s algorithm running
on original graphs. The average absolute error between the query results
of StarSSSP and the exact shortest distances is about 1. On the synthetic
graphs, StarSSSP is up to 313X faster than Dijkstra’s algorithm, and the
average absolute error is also about 1.

Keywords: Graph compression · Star · Shortest path

1 Introduction

In recent years, graphs have been extensively used to model complex relation-
ships between entities in a wide variety of applications. For example, the Web
graph represents hyperlinks between Web pages in the World Wide Web. Social
networks represent social relationships between people in general or specific
domains. So far, massive amount of data represented by graphs, known as graph
data, has been accumulated in numerous applications. For example, the Web
graph consists of at least 4.62 billion vertices (Web pages) in 20171. The total
number of monthly active Facebook users has reached 1.754 billion in Octo-
ber 20172. The volume of graph data continues increasing in even faster speed.
Currently, graph data has evolved to be a typical class of big data.
1 http://www.worldwidewebsize.com.
2 http://www.statisticbrain.com/facebook-statistics/.

c© Springer Nature Switzerland AG 2019
Q. Yang et al. (Eds.): PAKDD 2019, LNAI 11440, pp. 449–461, 2019.
https://doi.org/10.1007/978-3-030-16145-3_35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16145-3_35&domain=pdf
http://www.worldwidewebsize.com
http://www.statisticbrain.com/facebook-statistics/
https://doi.org/10.1007/978-3-030-16145-3_35

450 F. Li et al.

Massive graphs are too large and too complex to be easily understood by
people. Recently, numerous studies have been carried out on graph query pro-
cessing and graph mining. The goal is to develop advanced tools for understand-
ing, querying and mining massive graph data. For a graph analysis problem Q
on a large graph G, traditional studies on graph algorithms mostly focus on
reducing the time complexity of algorithms to solve Q on G. However, this kind
of approaches often do not scale to very large graphs. In recent years, scale-down
approaches to graph analytics have attracted considerable research attentions.
The main idea of scale-down approaches is to reduce the size of the graph G and
(approximately) solve the problem Q on the reduced graph of G. Two typical
ways to reduce the size of G are graph sampling and graph compression. Graph
sampling [1] randomly selects a subgraph of G that can preserve the character-
istics of G. Graph compression merges multiple similar vertices into one vertex,
so it reduces the size of G.

We focus on graph compression method in this paper. The concept of graph
compression is similar to the notion in [2] and [3]. The graph G∗, which is
constructed by super vertices and super edges, is a compression of an original
graph G and has the following properties:

– G∗ is a graph with |E∗| edges, where |E∗| is smaller than the number of edges
in G;

– It is computationally easy to convert G into G∗.

The main contributions of this paper are listed as follows.

– We propose a simple yet effective graph compression method called StarZip,
which can compress big graph efficiently.

– Besides the impressive compression ratios that the star-based graph com-
pression can achieve, this graph compression method can also support query
processing on compressed graphs, such as shortest path queries.

– We conducted comprehensive experiments on the performance of the star-
based graph compression and the efficiency and the accuracy of query pro-
cessing on star-based compressed graphs.

The rest of this paper is organized as follows. Section 2 gives a formal def-
inition of the star-based graph compression and proposes the star-based graph
compression algorithm StarZip. Section 3 studies shortest path queries on star-
based compressed graphs. Experimental results are reported in Sect. 4. Section 5
reviews the related work. Finally, we conclude the paper in Sect. 6.

2 The Star-Based Graph Compression

This section gives a formal definition of the star-based graph compression and
proposes a star-based graph compression algorithm. A graph is a pair (V,E),
where V is a set of vertices, and E is a set of edges. A graph is undirected if
(u, v) and (v, u) refer to the same edge. In this paper, we consider undirected
graphs. Let V (G) and E(G) denote the vertex set and the edge set of a graph
G, respectively.

Graph Compression with Stars 451

2.1 Star-Based Compressed Graphs

First, we introduce some basic concepts used in the definition of the star-based
graph compression.

Definition 1. A graph S is a star if there is a vertex s ∈ V (S) such that
E(S) = {(s, v)|v ∈ V (S) \ {s}}. The vertex s is called the center of the star S.
The vertices in V (S) \ {s} are called the border vertices of S.

In the graph shown Fig. 1(a), the subgraph formed by the edges (v3, v0),
(v3, v1), (v3, v2), (v3, v4), and (v3, v10) is a star, where v3 is the center vertex,
and v0, v1, v2, v4, v10 are the border vertices.

v0 v2 v5 v6

v10 v3 v8

v1 v4 v7 v9

v11 v12

(a)

S1 S2

S3

{v3, v0, v1, v2, v4, v10} {v8, v5, v6, v7, v9}

{v11, v12}

(b)

Fig. 1. A sample graph.

Definition 2. Let G be a graph and Φ = {V1, V2, . . . , Vn} be a partition of V (G),
that is, V (G) = V1 ∪ V2 ∪ · · · ∪ Vn and Vi ∩ Vj = ∅ for i �= j. Let H be a graph
such that

– V (H) = Φ, and
– (Vi, Vj) ∈ E(H) if and only if there exist u ∈ Vi and v ∈ Vj such that

(u, v) ∈ E(G).

We call H the compressed graph of G with respect to the vertex partition Φ. The
vertices in H are called super-vertices, and the edges in H are called super-edges.

Consider the graph G shown in Fig. 1(a). Let

Φ = {{v3, v0, v1, v2, v4, v10}, {v8, v5, v6, v7, v9}, {v11, v12}}.

Then, Φ is a partition of V (G). The compressed graph of G with respect to Φ
is shown in Fig. 1(b). This compressed graph consists of 3 super-vertices and 2
super-edges.

Graph compression is the process of creating a compressed graph by grouping
vertices with similar structural contexts into super-vertices. In this paper, we
propose the star-based graph compression, which is described as follows.

452 F. Li et al.

Definition 3. Let G be a graph. The star cover of G is a set {S1, S2, . . . , Sn}
of stars in G such that

– V (G) = V (S1) ∪ V (S2) ∪ · · · ∪ V (Sn), and
– V (Si) ∩ V (Sj) = ∅ for i �= j.

Given a star cover {S1, S2, . . . , Sn} of a graph G, {V (S1), V (S2), . . . , V (Sn)}
is a partition of V (G). The compressed graph of G with respect to {V (S1), V (S2),
. . . , V (Sn)} is called the star-based compressed graph of G with respect to the
star cover {S1, S2, . . . , Sn}. In the star-based graph compression, each star in
the star cover is compressed into a super-vertex in the compressed graph.

Consider the graph G shown in Fig. 1(a). The stars S1, S2 and S3 consti-
tute a star cover of G. The star-based compressed graph of G with respect to
{S1, S2, S3} is shown in Fig. 1(b), where the stars are compressed into the super-
vertices.

2.2 Star-Based Graph Compression Algorithm

Let G be a graph. For any star cover of G, we have a corresponding star-based
compressed graph. The optimal star-based compressed graph should be the one
with the highest compression ratio, that is, it contains the minimum number of
super-vertices. Note that each super-vertex uniquely corresponds to a star in the
star cover. The optimal star-based compressed graph is therefore determined by
the minimum star cover, that is, the star cover with the minimum number of
stars.

The minimum star cover of G is closely related to the minimum dominating
set of G. The dominating set of G is a vertex subset C ⊆ V (G) such that
every vertex in V (G) \ C is adjacent to at least one vertex in C. The minimum
dominating set is the one of the minimum cardinality.

Lemma 1. Let {S1, S2, . . . , Sn} be a star cover of a graph G. For i = 1, 2, . . . , n,
let si be the center of Si. Then, {S1, S2, . . . , Sn} is the minimum star cover of
G if and only if {s1, s2, . . . , sn} is the minimum dominating set of G.

Proof. First, we prove the sufficiency. Assume that {S′
1, S

′
2, . . . , S

′
m} is the min-

imum star cover of G, where m < n. For i = 1, 2, . . . ,m, let s′
i be the center of

S′
i. By the definition of stars, s′

i dominates all the border vertices in S′
i. Thus,

{s1, s2, . . . , sn} is not the minimum dominating set of G, which is a contradiction.
Hence, {S1, S2, . . . , Sn} is the minimum star cover of G.

Next, we prove the necessity. Assume that {s′
1, s

′
2, . . . , s

′
m} is the minimum

dominating set of G, where m < n. Now, we construct a star cover of G based
on {s′

1, s
′
2, . . . , s

′
m}. For i = 1, 2, . . . ,m, let s′

i be a center vertex of a star S′
i. For

all v ∈ V (G)\{s′
1, s

′
2, . . . , s

′
m}, we assign v to a star Si if (si, v) ∈ E(G). Clearly,

{S′
1, S

′
2, . . . , S

′
m} is a star cover of G. Thus, {S1, S2, . . . , Sn} is not the minimum

star cover of G, which is a contradiction. Hence, {s1, s2, . . . , sn} is the minimum
dominating set of G.

Thus, the lemma holds. �	

Graph Compression with Stars 453

Algorithm 1. MSC
Input: a graph G
Output: a star cover of G
1: C ← ∅
2: while V (G) �= ∅ do
3: s ← the vertex of the maximum degree
4: S ← the star composed by s and all its neighbors in G, where s is the center
5: C ← C ∪ {S}
6: delete s and all its neighbors from G
7: return C

Algorithm 2. StarZip
Input: a graph G
Output: a compressed graph of G
1: V ← MSC(G)
2: E ← ∅
3: for all S, S′ ∈ V and S �= S′ do
4: if there exist v ∈ S and v′ ∈ S′ such that (v, v′) ∈ E(G) then
5: E ← E ∪ {(S, S′)}
6: return (V,E)

By Lemma 1, we immediately have the following theorem.

Theorem 1. Finding the minimum star cover of a graph is NP-hard.

Proof. The minimum dominating set problem, that is, finding the minimum
dominating set of a graph, is NP-hard [4]. By the proof of Lemma 1, the minimum
dominating set can be constructed from the minimum star cover in polynomial
time. Thus, the theorem holds. �	

Since it is infeasible to exactly find the minimum star cover in polynomial
time, we propose an approximation algorithm called MSC to find the minimum
star cover. The MSC algorithm is developed based on the greedy heuristic min-
imum dominating set algorithm [5]. The pseudocode of the MSC algorithm is
shown in Algorithm1.

Theorem 2. The MSC algorithm is (ln Δ+2)-approximate, where Δ is maximal
degree of the vertices in G.

Proof. The minimum dominating set of a graph can be approximated within
ln Δ + 2 [5]. By Lemma 1, the minimum star cover has the same cardinality as
the minimum dominating set. Thus, the theorem holds. �	

Based on the MSC algorithm, we propose our star-based graph compression
algorithm called StarZip. The pseudocode of the StarZip algorithm is shown in
Algorithm 2. The StarZip algorithm runs in O(|V (G)|+|E(G)| log Δ) time, where
Δ is the maximum vertex degree of G.

3 Query Processing on Star-Based Compressed Graphs

In this section, we show that the star-based graph compression is capable of sup-
porting efficient query processing. Particularly, we study single-source shortest
path queries on star-based compressed graphs.

454 F. Li et al.

3.1 Single-Source Shortest Path Queries

Now, we study how to process single-source shortest path (SSSP) queries on star-
based compressed graphs. Let G be a graph and G∗ be the star-based compressed
graph of G computed by the StarZip algorithm. Given a vertex s in G as a source,
the single-source shortest path query from s computes the length of the shortest
paths from s to all the other vertices in G. Dijkstra’s algorithm can process an
SSSP query on G in O(|E(G)| + |V (G)| log |V (G)|) time, where |V (G)| is the
number of vertices in G, and |E(G)| is the number of edges in G. Since the star-
based compressed graph G∗ is significantly smaller than the original graph G,
we try to process an SSSP query directly on G∗ to save query processing time.

To support SSSP queries on the star-based compressed graph G∗, we asso-
ciate every super-edge e in G∗ with three bits denoted by b1(e), b2(e) and b3(e),
respectively. Let u and v be the endpoints of e. The super-vertex u represents a
star Su in G, and the super-vertex v represents a star Sv in G. We assign the
bits b1(e), b2(e) and b3(e) as follows.

– b1(e) = 1 if the center vertex of Su is adjacent to a border vertex in Sv;
otherwise, b1(e) = 0;

– b2(e) = 1 if the center vertex of Sv is adjacent to a border vertex in Su;
otherwise, b2(e) = 0;

– b3(e) = 1 if a border vertex in Su is adjacent to a border vertex in Sv;
otherwise, b3(e) = 0.

Notably, it is impossible that the center vertices of Su and Sv are adjacent
because the StarZip algorithm must have identified one of them as a border
vertex in the other star.

Given an SSSP query starting from a source vertex s in the original graph
G, the SSSP query can be processed on the star-based compressed graph G∗ by
the StarSSSP algorithm given in Algorithm 3.

For all super-vertices w in G∗ that are adjacent to v, we need to update d[w].
We propose three strategies to update d[w].

Strategy 1: Update d[w] to min(d[w], d[v] + 1).
Strategy 2: Update d[w] to min(d[w], d[v] + 2).
Strategy 3: Let e = (u, v).

– If b1(e) = 1 or b2(e) = 1, update d[w] to min(d[w], d[u] + 2);
– Otherwise, update d[w] to min(d[w], d[u] + 3).

The time complexity of the StarSSSP algorithm is O(|E(G∗)| +
|V (G∗)| log |V (G∗)|) since Dijkstra’s algorithm runs on the compressed graph
G∗ in O(|E(G∗)| + |V (G∗)| log |V (G∗)|) time, and our adaption to Dijkstra’s
algorithm in StarSSSP only adds O(1) cost to each of the |E(G∗)| iterations.

4 Experiments

In this section, we experimentally evaluate the star-based graph compression as
well as the query processing algorithms on star-based compressed graphs.

Graph Compression with Stars 455

Algorithm 3. StarSSSP
Input: a star-based compressed graph G∗ of a graph G and a source vertex s
Output: the shortest distances d∗(s, v) from s to all the other vertices v in G
1: s∗ ← the super-vertex in G∗ containing s
2: initialize d[s∗]
3: Q ← V (G∗)
4: while Q �= ∅ do
5: v ← extract min(Q)
6: for all vertices u adjacent to v in G∗ do
7: update d[u] by strategy 1, 2 or 3
8: for all w ∈ V (G∗) do
9: for all vertices w′ in the super-vertex w do
10: if w′ is center then
11: d∗(s, w′) ← d[w]
12: else
13: d∗(s, w′) ← d[w] + 1
14: return d∗(s, v) for all v ∈ V (G)

Table 1. Statistics of the graph datasets.

Dataset Type # vertices # edges Average degree Diameter

Youtube Social network 1,134,890 2,987,624 5.265 20

DBLP Collaboration network 317,080 1,049,866 6.622 21

Skitter Autonomous system 1,696,415 11,095,298 13.081 25

LiveJournal Social network 3,997,962 34,681,189 17.349 17

Road-PA Road network 1,088,092 1,541,898 2.834 786

Orkut Social network 3,072,441 117,185,083 76.281 9

R-MAT-16384 Synthetic 16,384 850,000 103.760 8

R-MAT-65536 Synthetic 65,536 10,000,000 305.176 7

R-MAT-32768 Synthetic 32,768 15,000,000 915.527 5

4.1 Experimental Setting

We implemented the star-based graph compression algorithm StarZip and the
query processing algorithm StarSSSP in C++ and compiled them with g++. All
the experiments were carried out on a machine with 2 GHz Intel Core 2 CPU
and 22 GB of RAM running Ubuntu 14.04.

4.2 Datasets

We carried out the experiments on six real datasets obtained from the Stanford
SNAP datasets [6]. In order to control the volume and the density of graphs, we
generated some synthetic graph datasets using the R-MAT model [7], a scale-
free graph generation model. The characteristics of the real datasets and the
synthetic datasets are described in Table 1.

4.3 Performance of the Star-Based Graph Compression

First, we evaluated the performance of the star-based graph compression. Par-
ticularly, we examined the compression ratios and the degree distributions of the
compressed graphs.

456 F. Li et al.

Table 2. Sizes and compression ratios of the star-based compressed graphs.

Dataset |V (G∗)| |E(G∗)| |V (G)|
|V (G∗)|

|E(G)|
|E(G∗)|

Youtube 160,660 595,909 7.064 5.014

DBLP 60,191 207,906 5.227 5.050

Skitter 338,713 1,288,202 5.008 8.613

LiveJournal 868,088 9,246,980 4.605 3.751

Road-PA 289,769 531,716 3.755 2.900

Orkut 418,300 24,933,610 7.345 4.700

R-MAT-16384 1,431 77,105 11.449 11.108

R-MAT-65536 3,077 374,996 21.299 28.898

R-MAT-32768 717 61,823 45.701 241.588

(a) Youtbube. (b) DBLP. (c) Skitter. (d) Orkut.

(e) Compressed
Youtube.

(f) Compressed
DBLP.

(g) Compressed Skit-
ter.

(h) Compressed
Orkut.

Fig. 2. Degree distributions of the real graphs and their star-based compressed graphs.

Compression Ratios. Let G be a graph and G∗ be the star-based compressed
graph of G produced by the StarZip algorithm. The compression ratio is defined
as the ratio of the size of G to the size of G∗. Specifically, if the graph size is
measured by the number of vertices, we have the vertex compression ratio, that
is, |V (G)|/|V (G∗)|; if the graph size is measured by the number of edges, we have
the edge compression ratio, that is, |E(G)|/|E(G∗)|. Table 2 gives the number
of vertices, the number of edges, the vertex compression ratio and the edge
compression ratio of each star-based compressed graph returned by the StarZip
algorithm. On real graphs, the vertex compression ratio varies from 3.8 to 7.3,
and the edge compression ratio varies from 2.9 to 8.6. On synthetic graphs, the
vertex compression ratio varies from 11.4 to 45.7, and the edge compression ratio
varies from 11.1 to 241.6.

Graph Compression with Stars 457

The correlation coefficient [8] between the vertex compression ratio and the
average vertex degree of the input graph is 0.994, and the correlation coefficient
between the edge compression ratio and the average degree is 0.973. Thus, the
compression ratio is positively correlated with the average degree of the input
graph. The denser a graph is, the higher the compression ratio is.

Degree Distributions. A large number of graphs in the real worlds have been
shown to be power-law graphs, that is, the vertex degrees in a graph follows a
power-law distribution. All the real graphs used in our experiments are power-
law graphs.

Figure 2 plots the degree distributions of the real graphs before and after
compression. The points are plotted in log-log scale. We can see that both the
original graph and the star-based compressed graphs follow power-law degree
distributions. In Fig. 2, we also give the power law exponents. We can see that
the power law exponents of the original graph and the compressed graph are
very close.

4.4 Query Processing Performance on Star-Based Compressed
Graphs

After examining the performance of the star-based graph compression itself, we
evaluated the performance of the query processing algorithms on the star-based
compressed graphs.

Efficiency of Shortest Path Query Processing. To evaluate the improve-
ment in query processing efficiency, we use Dijkstra’s algorithm running on G as
the baseline. For all experimented graphs G, we select |V (G)|/10 source vertices
uniformly at random and compose |V (G)|/10 shortest path queries. For each
query, we ran Dijkstra’s algorithm on G and ran the StarSSSP algorithm with
distance updating strategy 2 on the compressed graph G∗.

Table 3 shows the speedup ratio, that is, the ratio of the average execution
time of Dijkstra’s algorithm to that of the StarSSSP algorithm. We can see that
the StarSSSP is 4–20 times faster than Dijkstra’s algorithm on the real graphs
and is 22–313 times faster on synthetic graphs. It verifies that the StarSSSP algo-
rithm is much more efficient than Dijkstra’s algorithm running on the original
graphs. Besides, the denser the original graph is, the more efficient StarSSSP is.

Accuracy of Shortest Path Query Processing. The StarSSSP algorithm is
an approximate query processing algorithm. Depending on the strategy that the
StarSSSP algorithm uses to update distances, the StarSSSP algorithm is able to
return lower bounds or upper bounds of the shortest distances from the source
vertex to all the other vertices.

To evaluate the accuracy of the StarSSSP algorithm, we measure the accuracy
rate, the average absolute error and the average relative error of the query

458 F. Li et al.

Table 3. Executing time (s) and Speedup ratios of the StarSSSP algorithm against
Dijkstra’s algorithm and accuracy rate (A.R.), average absolute error (A.A.E.) and
average relative error (A.R.E.) of query results.

Dataset Dijkstra StarSSSP Speedup A.R. A.A.E. A.R.E.

Youtube 2.554 0.124 20.630 0.169 1.424 0.289

DBLP 0.661 0.040 16.408 0.265 1.064 0.164

Skitter 4.495 0.349 12.871 0.290 1.044 0.229

LiveJournal 13.476 3.121 4.318 0.209 1.021 0.207

Road-PA 1.599 0.090 17.774 0.134 18.122 0.081

Orkut 22.097 4.084 5.412 0.302 0.919 0.274

R-MAT-16384 0.104 0.005 22.882 0.365 0.738 0.336

R-MAT-65536 1.248 0.021 58.878 0.238 0.934 0.374

R-MAT-32768 1.601 0.005 313.922 0.540 1.016 0.516

results. Let G be a graph and G∗ be the star-based compressed graph of G
computed by the StarZip algorithm. For two vertices s and t in G, let d(s, t)
be the shortest distance from s to t in G, and let d∗(s, t) be the approximate
shortest distance from s to t computed on G∗ by the StarSSSP algorithm using
distance updating strategy 2. The absolute error between d(s, t) and d∗(s, t) is
|d(s, t) − d∗(s, t)|, and the relative error between d(s, t) and d∗(s, t) is |d(s, t) −
d∗(s, t)|/d(s, t).

Table 3 shows the accuracy rate, the average absolute error and the average
relative error of the query results obtained on all experimented graphs. As we
can see, the accuracy rate varies from 13.4% to 54%, the average absolute errors
are all about 1 except the one on the Road-PA dataset, and the average relative
error varies from 8.1% to 49.5%. Note that Road-PA is a road network, which is
very sparse. The diameter of Road-PA is 786, and the shortest distances between
vertices are generally large. Although the average absolute error on the Road-PA
dataset is 18.122, the average relative error is just 8.1%. The experimental results
verify that the StarSSSP algorithm is accurate enough in processing shortest path
queries.

5 Related Work

Graph compression has been studied for about four decades. Considerable graph
compression algorithms have been proposed to compress graphs collected in a
variety of applications. Here, we list some related works based on the literal
conceptions similar to the graph compression in our paper.

Graph Aggregation and Graph Summarization. Graph aggregation and
summarization produce small and informative summarization of the original

Graph Compression with Stars 459

graph to help understand the underlying characteristics of large graphs. k-
SNAP [9,10] produce summary graph based on the vertex attributes and rela-
tionships. It puts some vertices into a vertex with rules that users select or are
defined in advance. Navlakha et al. [11] summary unlabelled graphs using Rissa-
nen’s Minimum Description Length (MDL) principle. It defines the quality of a
graph summary G∗ by cost(G∗). This method finds the optimal graph represen-
tation by minimizing cost(G∗). But, it becomes difficult when somebody wants
to do some queries or operations like the shortest path between two nodes, the
cut vertices of graph, etc. In essence, these graph aggregation and summariza-
tion algorithms are similar to graph clustering algorithms. They are unable to
support queries on compressed graphs without decompression.

Graph Simplification. Ruan et al. [12] simplify a graph by using the con-
cept “gate graph” to preserve the distance of original graph. Then the shortest-
path distance between any “non-local” pair can be recovered by consecutive
“local” walks through the gate vertices in the gate graph. As we test, the time
of compressing a graph with 15,000 edges is more than 2 h, while StarZip only
needs 1105 s to compress a graph with 117 million edges. Besides, the accuracy
of approximate distance computed through gate graph can not be guaranteed.
Bonchi et al. [13] simplify a graph by selecting a subset of arcs in the graphs to
maximize the number of nodes reachable in all directed acyclic graphs through
some specified root vertices. This method preserves the property of activity of
the graph while the graph it gets doesn’t support any queries.

Graph Compaction and Graph Partition. The graph compaction here is
same to the concept of graph compression in our paper which reduces the scale
of graphs and the compact(compressed) graphs can support many operations
on graphs. The graph partition is always used in parallel graph processing sys-
tem [14,15]. It breaks the graph into some small parts to distribute them on dif-
ferent machines to minimize the communication cost between different machines.

Graph Compression. The graph compression method can be applied in several
fields. Boldi and Vigna [16] stores the Web graph in adjacency lists. They use
multiple lists to copy one list by leveraging locality and similarity. The multiple
lists record the list they copy by 0 and 1 sequence. Alder and Mitzenmacher [17]
construct the minimum spanning tree to compress the randomly generated Web
graph. Different from the studies above, Apostolico and Drovandi [18] make no
use of locality and similarity. They compress the Web graph by breath-first search
(BFS). To facilitate graph decompression, type labels are used to remember the
types of the compressed blocks. In summary, the Web graph compression algo-
rithms in [16] do not apply to graphs in other applications because those graphs
usually do not have the locality or the similarity characteristics. Besides, some
Web compression algorithms [16,18] just encode the adjacency list to reduce stor-
age space without supporting any queries without decompression. Fan et al. [19]
proposes two compression methods on labelled directed graph based on reach-
ability and graph pattern queries. They can get results quickly on compressed

460 F. Li et al.

graph. But all the methods above aim at weight graph, which are useless when
graph is unlabelled.

6 Conclusions

This paper gives a formal definition of the star-based graph compression. We
show that finding the optimal star-based compressed graph is an NP-complete
problem. The StarZip algorithm uses a greedy compression strategy and achieves
an approximation ratio of lnΔ + 2, where Δ is the maximum vertex degree. In
practice, StarZip also achieves impressive compression ratios, which are positively
correlated with average vertex degrees. Star-based compressed graphs preserve
the distributions of vertex degrees of original graphs. The query results returned
by the StarSSSP algorithm on star-based compressed graphs well approximate
the exact query results on original graphs. StarSSSP is 4X–313X faster than
Dijkstra’s algorithm running on original graphs.

Acknowledgements. This work was partially supported by the National Natural
Science Foundation of China (No. 61532015, No. 61672189, No. 61732003 and No.
61872106) and the National Science Foundation of USA (No. 1741277 and No. 1829674).

References

1. Leskovec, J., Faloutsos, C.: Sampling from large graphs. In: KDD, pp. 631–636
(2006)

2. Feder, T., Motwani, R.: Clique partitions, graph compression and speeding-up
algorithms. J. Comput. Syst. Sci. 51(2), 261–272 (1995)

3. Toivonen, H., Zhou, F., Hartikainen, A., Hinkka, A.: Compression of weighted
graphs. In: KDD, pp. 965–973 (2011)

4. Chvatal, V.: A greedy heuristic for the set-covering problem. Math. Oper. Res.
4(3), 233–235 (1979)

5. Ruan, L., Du, H., Jia, X., Wu, W., Li, Y., Ko, K.I.: A greedy approximation for
minimum connected dominating sets. Theoret. Comput. Sci. 329(1–3), 325–330
(2004)

6. Leskovec, J., Krevl, A.: SNAP datasets: Stanford large network dataset collection,
June 2014. http://snap.stanford.edu/data

7. Chakrabarti, D., Zhan, Y., Faloutsos, C.: R-MAT: a recursive model for graph
mining. In: SDM, vol. 4, pp. 442–446 (2004)

8. Li, L.: A concordance correlation coefficient to evaluate reproducibility. Biometrics
45(1), 255–268 (1989)

9. Tian, Y., Hankins, R.A., Patel, J.M.: Efficient aggregation for graph summariza-
tion. In: SIGMOD, pp. 567–580 (2008)

10. Zhang, N., Tian, Y., Patel, J.M.: Discovery-driven graph summarization. In: ICDE,
pp. 880–891 (2010)

11. Navlakha, S., Rastogi, R., Shrivastava, N.: Graph summarization with bounded
error. In: SIGMOD, pp. 419–432 (2008)

12. Ruan, N., Jin, R., Huang, Y.: Distance preserving graph simplification. In: ICDM,
pp. 1200–1205 (2011)

http://snap.stanford.edu/data

Graph Compression with Stars 461

13. Bonchi, F., Morales, G.D.F., Gionis, A., Ukkonen, A.: Activity preserving graph
simplification. Data Min. Knowl. Disc. 27(3), 321–343 (2013)

14. Gonzalez, J.E., Low, Y., Gu, H., Bickson, D., Guestrin, C.: PowerGraph: dis-
tributed graph-parallel computation on natural graphs. In: OSDI, pp. 17–30 (2012)

15. Shao, Y., Cui, B., Ma, L.: PAGE: a partition aware engine for parallel graph
computation. IEEE Trans. Knowl. Data Eng. 27(2), 518–530 (2015)

16. Boldi, P., Vigna, S.: The webgraph framework I: compression techniques. In:
WWW, pp. 595–601 (2004)

17. Adler, M., Mitzenmacher, M.: Towards compressing web graphs. In: DCC, pp.
203–212 (2001)

18. Apostolico, A., Drovandi, G.: Graph compression by BFS. Algorithms 2(3), 1031–
1044 (2009)

19. Fan, W., Li, J., Wang, X., Wu, Y.: Query preserving graph compression. In: SIG-
MOD, pp. 157–168 (2012)

	Graph Compression with Stars
	1 Introduction
	2 The Star-Based Graph Compression
	2.1 Star-Based Compressed Graphs
	2.2 Star-Based Graph Compression Algorithm

	3 Query Processing on Star-Based Compressed Graphs
	3.1 Single-Source Shortest Path Queries

	4 Experiments
	4.1 Experimental Setting
	4.2 Datasets
	4.3 Performance of the Star-Based Graph Compression
	4.4 Query Processing Performance on Star-Based Compressed Graphs

	5 Related Work
	6 Conclusions
	References

