
Qiang Yang · Zhi-Hua Zhou ·
Zhiguo Gong · Min-Ling Zhang ·
Sheng-Jun Huang (Eds.)

 123

LN
AI

 1
14

40

23rd Pacific-Asia Conference, PAKDD 2019
Macau, China, April 14–17, 2019
Proceedings, Part II

Advances in
Knowledge Discovery
and Data Mining

Lecture Notes in Artificial Intelligence 11440

Subseries of Lecture Notes in Computer Science

Series Editors

Randy Goebel
University of Alberta, Edmonton, Canada

Yuzuru Tanaka
Hokkaido University, Sapporo, Japan

Wolfgang Wahlster
DFKI and Saarland University, Saarbrücken, Germany

Founding Editor

Jörg Siekmann
DFKI and Saarland University, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/1244

http://www.springer.com/series/1244

Qiang Yang • Zhi-Hua Zhou •

Zhiguo Gong • Min-Ling Zhang •

Sheng-Jun Huang (Eds.)

Advances in
Knowledge Discovery
and Data Mining
23rd Pacific-Asia Conference, PAKDD 2019
Macau, China, April 14–17, 2019
Proceedings, Part II

123

Editors
Qiang Yang
Hong Kong University of Science
and Technology
Hong Kong, China

Zhi-Hua Zhou
Nanjing University
Nanjing, China

Zhiguo Gong
University of Macau
Taipa, Macau, China

Min-Ling Zhang
Southeast University
Nanjing, China

Sheng-Jun Huang
Nanjing University of Aeronautics
and Astronautics
Nanjing, China

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Artificial Intelligence
ISBN 978-3-030-16144-6 ISBN 978-3-030-16145-3 (eBook)
https://doi.org/10.1007/978-3-030-16145-3

Library of Congress Control Number: 2019934768

LNCS Sublibrary: SL7 – Artificial Intelligence

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-16145-3

PC Chairs’ Preface

It is our great pleasure to introduce the proceedings of the 23rd Pacific-Asia Conference
on Knowledge Discovery and Data Mining (PAKDD 2019). The conference provides
an international forum for researchers and industry practitioners to share their new
ideas, original research results, and practical development experiences from all
KDD-related areas, including data mining, data warehousing, machine learning, arti-
ficial intelligence, databases, statistics, knowledge engineering, visualization,
decision-making systems, and the emerging applications.

We received 567 submissions to PAKDD 2019 from 46 countries and regions all
over the world, noticeably with submissions from North America, South America,
Europe, and Africa. The large number of submissions and high diversity of submission
demographics witness the significant influence and reputation of PAKDD. A rigorous
double-blind reviewing procedure was ensured via the joint efforts of the entire
Program Committee consisting of 55 Senior Program Committee (SPC) members and
379 Program Committee (PC) members.

The PC Co-Chairs performed an initial screening of all the submissions, among
which 25 submissions were desk rejected due to the violation of submission guidelines.
For submissions entering the double-blind review process, each one received at least
three quality reviews from PC members or in a few cases from external reviewers (with
78.5% of them receiving four or more reviews). Furthermore, each valid submission
received one meta-review from the assigned SPC member who also led the discussion
with the PC members. The PC Co-Chairs then considered the recommendations and
meta-reviews from SPC members, and looked into each submission as well as its
reviews and PC discussions to make the final decision. For borderline papers, addi-
tional reviews were further requested and thorough discussions were conducted before
final decisions.

As a result, 137 out of 567 submissions were accepted, yielding an acceptance rate
of 24.1%. We aim to be strict with the acceptance rate, and all the accepted papers are
presented in a total of 20 technical sessions. Each paper was allocated 15 minutes for
oral presentation and 2 minutes for Q/A. The conference program also featured three
keynote speeches from distinguished data mining researchers, five cutting-edge
workshops, six comprehensive tutorials, and one dedicated data mining contest session.

We wish to sincerely thank all SPC members, PC members and externel reviewers
for their invaluable efforts in ensuring a timely, fair, and highly effective paper review
and selection procedure. We hope that readers of the proceedings will find that the
PAKDD 2019 technical program was both interesting and rewarding.

February 2019 Zhiguo Gong
Min-Ling Zhang

General Chairs’ Preface

On behalf of the Organizing Committee, it is our great pleasure to welcome you to
Macau, China for the 23rd Pacific-Asia Conference on Knowledge Discovery and Data
Mining (PAKDD 2019). Since its first edition in 1997, PAKDD has well established as
one of the leading international conferences in the areas of data mining and knowledge
discovery. This year, after its four previous editions in Beijing (1999), Hong Kong
(2001), Nanjing (2007), and Shenzhen (2011), PAKDD was held in China for the fifth
time in the fascinating city of Macau, during April 14–17, 2019.

First of all, we are very grateful to the many authors who submitted their work to the
PAKDD 2019 main conference, satellite workshops, and data mining contest. We were
delighted to feature three outstanding keynote speakers: Dr. Jennifer Neville from
Purdue University, Professor Hui Xiong from Baidu Inc., and Professor Josep
Domingo-Ferrer from Universitat Rovira i Virgili. The conference program was further
enriched with six high-quality tutorials, five workshops on cutting-edge topics, and one
data mining contest on AutoML for lifelong machine learning.

We would like to express our gratitude to the contributions of the SPC members,
PC members, and external reviewers, led by the PC Co-Chairs, Zhiguo Gong and
Min-Ling Zhang. We are also very thankful to the other Organizing Committee
members: Workshop Co-Chairs, Hady W. Lauw and Leong Hou U, Tutorial
Co-Chairs, Bob Durrant and Yang Yu, Contest Co-Chairs, Hugo Jair Escalante and
Wei-Wei Tu, Publicity Co-Chairs, Yi Cai, Xiangnan Kong, Gang Li, and Yasuo Tabei,
Proceedings Chair, Sheng-Jun Huang, and Local Arrangements Chair, Andrew Jiang.
We wish to extend our special thanks to Honorary Co-Chairs, Hiroshi Motoda and
Lionel M. Ni, for their enlightening support and advice throughout the conference
organization.

We appreciate the hosting organization University of Macau, and our sponsors
Macao Convention & Exhibition Association, Intel, Baidu, for their institutional and
financial support of PAKDD 2019. We also appreciate the Fourth Paradigm Inc.,
ChaLearn, Microsoft, and Amazon for sponsoring the PAKDD 2019 data mining
contest. We feel indebted to the PAKDD Steering Committee for its continuing
guidance and sponsorship of the paper award and student travel awards.

Last but not least, our sincere thanks go to all the participants and volunteers of
PAKDD 2019—there would be no conference without you. We hope you enjoy
PAKDD 2019 and your time in Macau, China.

February 2019 Qiang Yang
Zhi-Hua Zhou

Organization

Organizing Committee

Honorary Co-chairs

Hiroshi Motoda Osaka University, Japan
Lionel M. Ni University of Macau, SAR China

General Co-chairs

Qiang Yang Hong Kong University of Science and Technology,
SAR China

Zhi-Hua Zhou Nanjing University, China

Program Committee Co-chairs

Zhiguo Gong University of Macau, China
Min-Ling Zhang Southeast University, China

Workshop Co-chairs

Hady W. Lauw Singapore Management University, Singapore
Leong Hou U University of Macau, China

Tutorial Co-chairs

Bob Durrant University of Waikato, New Zealand
Yang Yu Nanjing University, China

Contest Co-chairs

Hugo Jair Escalante INAOE, Mexico
Wei-Wei Tu The Fourth Paradigm Inc., China

Publicity Co-chairs

Yi Cai South China University of Technology, China
Xiangnan Kong Worcester Polytechnic Institute, USA
Gang Li Deakin University, Australia
Yasuo Tabei RIKEN, Japan

Proceedings Chair

Sheng-Jun Huang Nanjing University of Aeronautics and Astronautics,
China

Local Arrangements Chair

Andrew Jiang Macao Convention & Exhibition Association, China

Steering Committee

Co-chairs

Ee-Peng Lim Singapore Management University, Singapore
Takashi Washio Institute of Scientific and Industrial Research,

Osaka University, Japan

Treasurer

Longbing Cao Advanced Analytics Institute, University
of Technology, Sydney, Australia

Members

Dinh Phung Monash University, Australia (Member since 2018)
Geoff Webb Monash University, Australia (Member since 2018)
Jae-Gil Lee Korea Advanced Institute of Science & Technology,

Korea (Member since 2018)
Longbing Cao Advanced Analytics Institute,

University of Technology, Sydney, Australia
(Member since 2013, Treasurer since 2018)

Jian Pei School of Computing Science,
Simon Fraser University (Member since 2013)

Vincent S. Tseng National Cheng Kung University,
Taiwan (Member since 2014)

Gill Dobbie University of Auckland,
New Zealand (Member since 2016)

Kyuseok Shim Seoul National University, Korea (Member since 2017)

Life Members

P. Krishna Reddy International Institute of Information Technology,
Hyderabad (IIIT-H), India (Member since 2010,
Life Member since 2018)

Joshua Z. Huang Shenzhen University, China (Member since 2011,
Life Member since 2018)

Ee-Peng Lim Singapore Management University, Singapore
(Member since 2006, Life Member since 2014,
Co-chair 2015–2017, Chair 2018–2020)

Hiroshi Motoda AFOSR/AOARD and Osaka University, Japan
(Member since 1997, Co-chair 2001–2003,
Chair 2004–2006, Life Member since 2006)

x Organization

Rao Kotagiri University of Melbourne, Australia (Member since
1997, Co-chair 2006–2008, Chair 2009–2011,
Life Member since 2007, Co-sign since 2006)

Huan Liu Arizona State University, USA (Member since 1998,
Treasurer 1998–2000, Life Member since 2012)

Ning Zhong Maebashi Institute of Technology,
Japan (Member since 1999, Life Member
since 2008)

Masaru Kitsuregawa Tokyo University, Japan (Member since 2000,
Life Member since 2008)

David Cheung University of Hong Kong, SAR China (Member since
2001, Treasurer 2005–2006, Chair 2006–2008,
Life Member since 2009)

Graham Williams Australian National University, Australia
(Member since 2001, Treasurer 2006–2017, Co-sign
since 2006, Co-chair 2009–2011, Chair 2012–2014,
Life Member since 2009)

Ming-Syan Chen National Taiwan University, Taiwan (Member since
2002, Life Member since 2010)

Kyu-Young Whang Korea Advanced Institute of Science & Technology,
Korea (Member since 2003, Life Member
since 2011)

Chengqi Zhang University of Technology Sydney, Australia
(Member since 2004, Life Member since 2012)

Tu Bao Ho Japan Advanced Institute of Science and Technology,
Japan (Member since 2005, Co-chair 2012–2014,
Chair 2015–2017, Life Member since 2013)

Zhi-Hua Zhou Nanjing University, China (Member since 2007,
Life Member since 2015)

Jaideep Srivastava University of Minnesota, USA (Member since 2006,
Life Member since 2015)

Takashi Washio Institute of Scientific and Industrial Research, Osaka
University (Member since 2008, Life Member since
2016, Co-chair 2018–2020)

Thanaruk Theeramunkong Thammasat University, Thailand (Member since 2009,
Life Member since 2017)

Past Members

Hongjun Lu Hong Kong University of Science and Technology,
SAR China (Member 1997–2005)

Arbee L. P. Chen National Chengchi University,
Taiwan (Member 2002–2009)

Takao Terano Tokyo Institute of Technology,
Japan (Member 2000–2009)

Organization xi

Tru Hoang Cao Ho Chi Minh City University of Technology,
Vietnam (Member 2015–2017)

Myra Spiliopoulou Information Systems, Otto-von-Guericke-University
Magdeburg (Member 2013–2019)

Senior Program Committee

James Bailey University of Melbourne, Australia
Albert Bifet Telecom ParisTech, France
Longbin Cao University of Technology Sydney, Australia
Tru Cao Ho Chi Minh City University of Technology, Vietnam
Peter Christen Australian National University, Australia
Peng Cui Tsinghua University, China
Guozhu Dong Wright State University, USA
Benjamin C. M. Fung McGill University, Canada
Bart Goethals University of Antwerp, Belgium
Geoff Holmes University of Waikato, New Zealand
Qinghua Hu Tianjin University, China
Xia Hu Texas A&M University, USA
Sheng-Jun Huang Nanjing University of Aeronautics and Astronautics,

China
Shuiwang Ji Texas A&M University, USA
Kamalakar Karlapalem IIIT Hyderabad, India
George Karypis University of Minnesota, USA
Latifur Khan University of Texas at Dallas, USA
Byung S. Lee University of Vermont, USA
Jae-Gil Lee KAIST, Korea
Gang Li Deakin University, Australia
Jiuyong Li University of South Australia, Australia
Ming Li Nanjing University, China
Yu-Feng Li Nanjing University, China
Shou-De Lin National Taiwan University, Taiwan
Qi Liu University of Science and Technology of China, China
Weiwei Liu University of New South Wales, Australia
Nikos Mamoulis University of Ioannina, Greece
Wee Keong Ng Nanyang Technological University, Singapore
Sinno Pan Nanyang Technological University, Singapore
Jian Pei Simon Fraser University, Canada
Wen-Chih Peng National Chiao Tung University, Taiwan
Rajeev Raman University of Leicester, UK
Chandan K. Reddy Virginia Tech, USA
Krishna P. Reddy IIIT Hyderabad, India
Kyuseok Shim Seoul National University, Korea
Myra Spiliopoulou Otto-von-Guericke-University Magdeburg, Germany
Masashi Sugiyama RIKEN/The University of Tokyo, Japan
Jiliang Tang Michigan State University, USA

xii Organization

Kai Ming Ting Federation University, Australia
Hanghang Tong Arizona State University, USA
Vincent S. Tseng National Chiao Tung University, Taiwan
Fei Wang Cornell University, USA
Jianyong Wang Tsinghua University, China
Jie Wang University of Science and Technology of China, China
Wei Wang University of California at Los Angeles, USA
Takashi Washio Osaka University, Japan
Jia Wu Macquarie University, Australia
Xindong Wu Mininglamp Software Systems, China
Xintao Wu University of Arkansas, USA
Xing Xie Microsoft Research Asia, China
Jeffrey Xu Yu Chinese University of Hong Kong, SAR China
Osmar R. Zaiane University of Alberta, Canada
Zhao Zhang Soochow University, China
Feida Zhu Singapore Management University, Singapore
Fuzhen Zhuang Institute of Computing Technology, CAS, China

Program Committee

Saurav Acharya University of Vermont, USA
Swati Agarwal BITS Pilani Goa, India
David Albrecht Monash University, Australia
David Anastasiu San Jose State University, USA
Luiza Antonie University of Guelph, Canada
Xiang Ao Institute of Computing Technology, CAS, China
Sunil Aryal Deakin University, Australia
Elena Baralis Politecnico di Torino, Italy
Jean Paul Barddal Pontifícia Universidade Católica do Paraná, Brazil
Arnab Basu Indian Institute of Management Bangalore, India
Gustavo Batista Universidade de São Paulo, Brazil
Bettina Berendt KU Leuven, Belgium
Raj K. Bhatnagar University of Cincinnati, USA
Arnab Bhattacharya Indian Institute of Technology, Kanpur, India
Kevin Bouchard Université du Quebec a Chicoutimi, Canada
Krisztian Buza Eotvos Lorand University, Hungary
Lei Cai Washington State University, USA
Rui Camacho Universidade do Porto, Portugal
K. Selcuk Candan Arizona State University, USA
Tanmoy Chakraborty Indraprastha Institute of Information Technology Delhi,

India
Shama Chakravarthy University of Texas at Arlington, USA
Keith Chan Hong Kong Polytechnic University, SAR China
Chia Hui Chang National Central University, Taiwan
Bo Chen Monash University, Australia
Chun-Hao Chen Tamkang University, Taiwan

Organization xiii

Lei Chen Nanjing University of Posts and Telecommunications,
China

Meng Chang Chen Academia Sinica, Taiwan
Rui Chen Samsung Research America, USA
Shu-Ching Chen Florida International University, USA
Songcan Chen Nanjing University of Aeronautics and Astronautics,

China
Yi-Ping Phoebe Chen La Trobe University, Australia
Yi-Shin Chen National Tsing Hua University, Taiwan
Zhiyuan Chen University of Maryland Baltimore County, USA
Jiefeng Cheng Tencent Cloud Security Lab, China
Yiu-ming Cheung Hong Kong Baptist University, SAR China
Silvia Chiusano Politecnico di Torino, Italy
Jaegul Choo Korea University, Korea
Kun-Ta Chuang National Cheng Kung University, Taiwan
Bruno Cremilleux Université de Caen Normandie, France
Chaoran Cui Shandong University of Finance and Economics, China
Lin Cui Nanjing University of Aeronautics and Astronautics,

China
Boris Cule University of Antwerp, Belgium
Bing Tian Dai Singapore Management University, Singapore
Dao-Qing Dai Sun Yat-Sen University, China
Wang-Zhou Dai Nanjing University, China
Xuan-Hong Dang IBM T.J. Watson Research Center, USA
Jeremiah Deng University of Otago, New Zealand
Zhaohong Deng Jiangnan University, China
Lipika Dey Tata Consultancy Services, India
Bolin Ding Data Analytics and Intelligence Lab, Alibaba Group,

China
Steven H. H. Ding McGill University, Canada
Trong Dinh Thac Do University of Technology Sydney, Australia
Gillian Dobbie University of Auckland, New Zealand
Xiangjun Dong Qilu University of Technology, China
Dejing Dou University of Oregon, USA
Bo Du Wuhan University, China
Boxin Du Arizona State University, USA
Lei Duan Sichuan University, China
Sarah Erfani University of Melbourne, Australia
Vladimir Estivill-Castro Griffith University, Australia
Xuhui Fan University of Technology Sydney, Australia
Rizal Fathony University of Illinois at Chicago, USA
Philippe Fournier-Viger Harbin Institute of Technology (Shenzhen), China
Yanjie Fu Missouri University of Science and Technology, USA
Dragan Gamberger Rudjer Boskovic Institute, Croatia
Niloy Ganguly Indian Institute of Technology Kharagpur, India
Junbin Gao University of Sydney, Australia

xiv Organization

Wei Gao Nanjing University, China
Xiaoying Gao Victoria University of Wellington, New Zealand
Angelo Genovese Università degli Studi di Milano, Italy
Arnaud Giacometti University Francois Rabelais of Tours, France
Heitor M. Gomes Telecom ParisTech, France
Chen Gong Nanjing University of Science and Technology, China
Maciej Grzenda Warsaw University of Technology, Poland
Lei Gu Nanjing University of Posts and Telecommunications,

China
Yong Guan Iowa State University, USA
Himanshu Gupta IBM Research, India
Sunil Gupta Deakin University, Australia
Michael Hahsler Southern Methodist University, USA
Yahong Han Tianjin University, China
Satoshi Hara Osaka University, Japan
Choochart Haruechaiyasak National Electronics and Computer Technology Center,

Thailand
Jingrui He Arizona State University, USA
Shoji Hirano Shimane University, Japan
Tuan-Anh Hoang Leibniz University of Hanover, Germany
Jaakko Hollmén Aalto University, Finland
Tzung-Pei Hong National University of Kaohsiung, Taiwan
Chenping Hou National University of Defense Technology, China
Michael E. Houle National Institute of Informatics, Japan
Hsun-Ping Hsieh National Cheng Kung University, Taiwan
En-Liang Hu Yunnan Normal University, China
Juhua Hu University of Washington Tacoma, USA
Liang Hu University of Technology Sydney, Australia
Wenbin Hu Wuhan University, China
Chao Huang University of Notre Dame, USA
David Tse Jung Huang University of Auckland, New Zealand
Jen-Wei Huang National Cheng Kung University, Taiwan
Nam Huynh Japan Advanced Institute of Science and Technology,

Japan
Akihiro Inokuchi Kwansei Gakuin University, Japan
Divyesh Jadav IBM Research, USA
Sanjay Jain National University of Singapore, Singapore
Szymon Jaroszewicz Polish Academy of Sciences, Poland
Songlei Jian University of Technology Sydney, Australia
Meng Jiang University of Notre Dame, USA
Bo Jin Dalian University of Technology, China
Toshihiro Kamishima National Institute of Advanced Industrial Science

and Technology, Japan
Wei Kang University of South Australia, Australia
Murat Kantarcioglu University of Texas at Dallas, USA
Hung-Yu Kao National Cheng Kung University, Taiwan

Organization xv

Shanika Karunasekera University of Melbourne, Australia
Makoto P. Kato Kyoto University, Japan
Chulyun Kim Sookmyung Women University, Korea
Jungeun Kim Korea Advanced Institute of Science and Technology,

Korea
Kyoung-Sook Kim Artificial Intelligence Research Center, Japan
Yun Sing Koh University of Auckland, New Zealand
Xiangnan Kong Worcester Polytechnic Institute, USA
Irena Koprinska University of Sydney, Australia
Ravi Kothari Ashoka University, India
P. Radha Krishna National Institute of Technology, Warangal, India
Raghu Krishnapuram Indian Institute of Science Bangalore, India
Marzena Kryszkiewicz Warsaw University of Technology, Poland
Chao Lan University of Wyoming, USA
Hady Lauw Singapore Management University, Singapore
Thuc Duy Le University of South Australia, Australia
Ickjai J. Lee James Cook University, Australia
Jongwuk Lee Sungkyunkwan University, Korea
Ki Yong Lee Sookmyung Women’s University, Korea
Ki-Hoon Lee Kwangwoon University, Korea
Sael Lee Seoul National University, Korea
Sangkeun Lee Korea University, Korea
Sunhwan Lee IBM Research, USA
Vincent C. S. Lee Monash University, Australia
Wang-Chien Lee Pennsylvania State University, USA
Yue-Shi Lee Ming Chuan University, Taiwan
Zhang Lei Anhui University, China
Carson K. Leung University of Manitoba, Canada
Bohan Li Nanjing University of Aeronautics and Astronautics,

China
Jianmin Li Tsinghua University, China
Jianxin Li Deakin University, Australia
Jundong Li Arizona State University, USA
Nan Li Alibaba, China
Peipei Li Hefei University of Technology, China
Qian Li University of Technology Sydney, Australia
Rong-Hua Li Beijing Institute of Technology, China
Shao-Yuan Li Nanjing University, China
Sheng Li University of Georgia, USA
Wenyuan Li University of California, Los Angeles, USA
Wu-Jun Li Nanjing University, China
Xiaoli Li Institute for Infocomm Research, A*STAR, Singapore
Xue Li University of Queensland, Australia
Yidong Li Beijing Jiaotong University, China
Zhixu Li Soochow University, China

xvi Organization

Defu Lian University of Electronic Science and Technology
of China, China

Sungsu Lim Chungnam National University, Korea
Chunbin Lin Amazon AWS, USA
Hsuan-Tien Lin National Taiwan University, Taiwan
Jerry Chun-Wei Lin Western Norway University of Applied Sciences,

Norway
Anqi Liu California Institute of Technology, USA
Bin Liu IBM Research, USA
Jiajun Liu Renmin University of China, China
Jiamou Liu University of Auckland, New Zealand
Jie Liu Nankai University, China
Lin Liu University of South Australia, Australia
Liping Liu Tufts University, USA
Shaowu Liu University of Technology Sydney, Australia
Zheng Liu Nanjing University of Posts and Telecommunications,

China
Wenpeng Lu Qilu University of Technology, China
Jun Luo Machine Intelligence Lab, Lenovo Group Limited,

China
Wei Luo Deakin University, Australia
Huifang Ma Northwest Normal University, China
Marco Maggini University of Siena, Italy
Giuseppe Manco ICAR-CNR, Italy
Silviu Maniu Universite Paris-Sud, France
Naresh Manwani International Institute of Information Technology,

Hyderabad, India
Florent Masseglia Inria, France
Tomoko Matsui Institute of Statistical Mathematics, Japan
Michael Mayo The University of Waikato, New Zealand
Stephen McCloskey The University of Sydney, Australia
Ernestina Menasalvas Universidad Politécnica de Madrid, Spain
Xiangfu Meng Liaoning Technical University, China
Xiaofeng Meng Renmin University of China, China
Jun-Ki Min Korea University of Technology and Education, Korea
Nguyen Le Minh Japan Advanced Institute of Science and Technology,

Japan
Leandro Minku The University of Birmingham, UK
Pabitra Mitra Indian Institute of Technology Kharagpur, India
Anirban Mondal Ashoka University, India
Taesup Moon Sungkyunkwan University, Korea
Yang-Sae Moon Kangwon National University, Korea
Yasuhiko Morimoto Hiroshima University, Japan
Animesh Mukherjee Indian Institute of Technology Kharagpur, India
Miyuki Nakano Advanced Institute of Industrial Technology, Japan
Mirco Nanni ISTI-CNR, Italy

Organization xvii

Richi Nayak Queensland University of Technology, Australia
Raymond Ng University of British Columbia, Canada
Wilfred Ng Hong Kong University of Science and Technology,

SAR China
Cam-Tu Nguyen Nanjing University, China
Hao Canh Nguyen Kyoto University, Japan
Ngoc-Thanh Nguyen Wroclaw University of Science and Technology,

Poland
Quoc Viet Hung Nguyen Griffith University, Australia
Arun Reddy Nelakurthi Arizona State University, USA
Thanh Nguyen Deakin University, Australia
Thin Nguyen Deakin University, Australia
Athanasios Nikolakopoulos University of Minnesota, USA
Tadashi Nomoto National Institute of Japanese Literature, Japan
Eirini Ntoutsi Leibniz University of Hanover, Germany
Kouzou Ohara Aoyama Gakuin University, Japan
Kok-Leong Ong La Trobe University, Australia
Shirui Pan University of Technology Sydney, Australia
Yuangang Pan University of Technology Sydney, Australia
Guansong Pang University of Adelaide, Australia
Dhaval Patel IBM T.J. Watson Research Center, USA
Francois Petitjean Monash University, Australia
Hai Nhat Phan New Jersey Institute of Technology, USA
Xuan-Hieu Phan University of Engineering and Technology, VNUHN,

Vietnam
Vincenzo Piuri Università degli Studi di Milano, Italy
Vikram Pudi International Institute of Information Technology,

Hyderabad, India
Chao Qian University of Science and Technology of China, China
Qi Qian Alibaba Group, China
Tang Qiang Luxembourg Institute of Science and Technology,

Luxembourg
Biao Qin Renmin University of China, China
Jie Qin Eidgenössische Technische Hochschule Zürich,

Switzerland
Tho Quan Ho Chi Minh City University of Technology, Vietnam
Uday Kiran Rage University of Tokyo, Japan
Chedy Raissi Inria, France
Vaibhav Rajan National University of Singapore, Singapore
Santu Rana Deakin University, Australia
Thilina N. Ranbaduge Australian National University, Australia
Patricia Riddle University of Auckland, New Zealand
Hiroshi Sakamoto Kyushu Institute of Technology, Japan
Yücel Saygin Sabanci University, Turkey
Mohit Sharma Walmart Labs, USA
Hong Shen Adelaide University, Australia

xviii Organization

Wei Shen Nankai University, China
Xiaobo Shen Nanjing University of Science and Technology, China
Victor S. Sheng University of Central Arkansas, USA
Chuan Shi Beijing University of Posts and Telecommunications,

China
Motoki Shiga Gifu University, Japan
Hiroaki Shiokawa University of Tsukuba, Japan
Moumita Sinha Adobe, USA
Andrzej Skowron University of Warsaw, Poland
Yang Song University of New South Wales, Australia
Arnaud Soulet University of Tours, France
Srinath Srinivasa International Institute of Information Technology,

Bangalore, India
Fabio Stella University of Milan-Bicocca, Italy
Paul Suganthan University of Wisconsin-Madison, USA
Mahito Sugiyama National Institute of Informatics, Japan
Guangzhong Sun University of Science and Technology of China, China
Yuqing Sun Shandong University, China
Ichigaku Takigawa Hokkaido University, Japan
Mingkui Tan South China University of Technology, China
Ming Tang Institute of Automation, CAS, China
Qiang Tang Luxembourg Institute of Science and Technology,

Luxembourg
David Taniar Monash University, Australia
Xiaohui (Daniel) Tao University of Southern Queensland, Australia
Vahid Taslimitehrani PhysioSigns Inc., USA
Maguelonne Teisseire Irstea, France
Khoat Than Hanoi University of Science and Technology, Vietnam
Lini Thomas International Institute of Information Technology,

Hyderabad, India
Hiroyuki Toda NTT Corporation, Japan
Son Tran New Mexico State University, USA
Allan Tucker Brunel University London, UK
Jeffrey Ullman Stanford University, USA
Dinusha Vatsalan Data61, CSIRO, Australia
Ranga Vatsavai North Carolina State University, USA
Joao Vinagre LIAAD—INESC TEC, Portugal
Bay Vo Ho Chi Minh City University of Technology, Vietnam
Kitsana Waiyamai Kasetsart University, Thailand
Can Wang Griffith University, Australia
Chih-Yu Wang Academia Sinica, Taiwan
Hongtao Wang North China Electric Power University, China
Jason T. L. Wang New Jersey Institute of Technology, USA
Lizhen Wang Yunnan University, China
Peng Wang Southeast University, China
Qing Wang Australian National University, Australia

Organization xix

Shoujin Wang Macquarie University, Australia
Sibo Wang Chinese University of Hong Kong, SAR China
Suhang Wang Pennsylvania State University, USA
Wei Wang University of New South Wales, Australia
Wei Wang Nanjing University, China
Weiqing Wang Monash University, Australia
Wendy Hui Wang Stevens Institute of Technology, USA
Wenya Wang Nanyang Technological University, Singapore
Xiao Wang Beijing University of Posts and Telecommunications,

China
Xiaoyang Wang Zhejiang Gongshang University, China
Xin Wang University of Calgary, Canada
Xiting Wang Microsoft Research Asia, China
Yang Wang Dalian University of Technology, China
Yue Wang AcuSys, USA
Zhengyang Wang Texas A&M University, USA
Zhichao Wang University of Technology Sydney, Australia
Lijie Wen Tsinghua University, China
Jorg Wicker University of Auckland, New Zealand
Kishan Wimalawarne Kyoto University, Japan
Raymond Chi-Wing Wong Hong Kong University of Science and Technology,

SAR China
Brendon J. Woodford University of Otago, New Zealand
Fangzhao Wu Microsoft Research Asia, China
Huifeng Wu Hangzhou Dianzi University, China
Le Wu Hefei University of Technology, China
Liang Wu Arizona State University, USA
Lin Wu University of Queensland, Australia
Ou Wu Tianjin University, China
Qingyao Wu South China University of Technology, China
Shu Wu Institute of Automation, CAS, China
Yongkai Wu University of Arkansas, USA
Yuni Xia Indiana University—Purdue University Indianapolis

(IUPUI), USA
Congfu Xu Zhejiang University, China
Guandong Xu University of Technology Sydney, Australia
Jingwei Xu Nanjing University, China
Linli Xu University of Science and Technology China, China
Miao Xu RIKEN, Japan
Tong Xu University of Science and Technology of China, China
Bing Xue Victoria University of Wellington, New Zealand
Hui Xue Southeast University, China
Shan Xue University of Technology Sydney, Australia
Pranjul Yadav Criteo, France
Takehisa Yairi University of Tokyo, Japan
Takehiro Yamamoto Kyoto University, Japan

xx Organization

Chun-Pai Yang National Taiwan University, Taiwan
De-Nian Yang Academia Sinica, Taiwan
Guolei Yang Facebook, USA
Jingyuan Yang George Mason University, USA
Liu Yang Tianjin University, China
Ming Yang Nanjing Normal University, China
Shiyu Yang East China Normal University, China
Yiyang Yang Guangdong University of Technology, China
Lina Yao University of New South Wales, Australia
Yuan Yao Nanjing University, China
Zijun Yao IBM Research, USA
Mi-Yen Yeh Academia Sinica, Taiwan
feng Yi Institute of Information Engineering, CAS, China
Hongzhi Yin University of Queensland, Australia
Jianhua Yin Shandong University, China
Minghao Yin Northeast Normal University, China
Tetsuya Yoshida Nara Women’s University, Japan
Guoxian Yu Southwest University, China
Kui Yu Hefei University of Technology, China
Yang Yu Nanjing University, China
Long Yuan University of New South Wales, Australia
Shuhan Yuan University of Arkansas, USA
Xiaodong Yue Shanghai University, China
Reza Zafarani Syracuse University, USA
Nayyar Zaidi Monash University, Australia
Yifeng Zeng Teesside University, UK
De-Chuan Zhan Nanjing University, China
Daoqiang Zhang Nanjing University of Aeronautics and Astronautics,

China
Du Zhang California State University, Sacramento, USA
Haijun Zhang Harbin Institute of Technology (Shenzhen), China
Jing Zhang Nanjing University of Science and Technology, China
Lu Zhang University of Arkansas, USA
Mengjie Zhang Victoria University of Wellington, New Zealand
Quangui Zhang Liaoning Technical University, China
Si Zhang Arizona State University, USA
Wei Emma Zhang Macquarie University, Australia
Wei Zhang East China Normal University, China
Wenjie Zhang University of New South Wales, Australia
Xiangliang Zhang King Abdullah University of Science and Technology,

Saudi Arabia
Xiuzhen Zhang RMIT University, Australia
Yudong Zhang University of Leicester, UK
Zheng Zhang University of Queensland, Australia
Zili Zhang Southwest University, China
Mingbo Zhao Donghua University, China

Organization xxi

Peixiang Zhao Florida State University, USA
Pengpeng Zhao Soochow University, China
Yanchang Zhao CSIRO, Australia
Zhongying Zhao Shandong University of Science and Technology,

China
Zhou Zhao Zhejiang University, China
Huiyu Zhou University of Leicester, UK
Shuigeng Zhou Fudan University, China
Xiangmin Zhou RMIT University, Australia
Yao Zhou Arizona State University, USA
Chengzhang Zhu University of Technology Sydney, Australia
Huafei Zhu Nanyang Technological University, Singapore
Pengfei Zhu Tianjin University, China
Tianqing Zhu University of Technology Sydney, Australia
Xingquan Zhu Florida Atlantic University, USA
Ye Zhu Deakin University, Australia
Yuanyuan Zhu Wuhan University, China
Arthur Zimek University of Southern Denmark, Denmark
Albrecht Zimmermann Université de Caen Normandie, France

External Reviewers

Ji Feng
Xuan Huo
Bin-Bin Jia
Zhi-Yu Shen
Yanping Sun
Xuan Wu

Zheng-Fan Wu
Yafu Xiao
Yang Yang
Meimei Yang
Han-Jia Ye
Peng Zhao

xxii Organization

Sponsoring Organizations

University of Macau

Macao Convention & Exhibition Association

Intel

Baidu Inc.

Organization xxiii

Contents – Part II

Deep Learning Models and Applications

Semi-interactive Attention Network for Answer Understanding
in Reverse-QA . 3

Qing Yin, Guan Luo, Xiaodong Zhu, Qinghua Hu, and Ou Wu

Neural Network Based Popularity Prediction by Linking Online Content
with Knowledge Bases. 16

Wayne Xin Zhao, Hongjian Dou, Yuanpei Zhao, Daxiang Dong,
and Ji-Rong Wen

Passenger Demand Forecasting with Multi-Task Convolutional Recurrent
Neural Networks . 29

Lei Bai, Lina Yao, Salil S. Kanhere, Zheng Yang, Jing Chu,
and Xianzhi Wang

Accurate Identification of Electrical Equipment from Power Load Profiles . . . 43
Ziyi Wang, Chun Li, and Lin Shang

Similarity-Aware Deep Attentive Model for Clickbait Detection 56
Manqing Dong, Lina Yao, Xianzhi Wang, Boualem Benatallah,
and Chaoran Huang

Topic Attentional Neural Network for Abstractive
Document Summarization . 70

Hao Liu, Hai-Tao Zheng, and Wei Wang

Parameter Transfer Unit for Deep Neural Networks 82
Yinghua Zhang, Yu Zhang, and Qiang Yang

EFCNN: A Restricted Convolutional Neural Network for Expert Finding. . . . 96
Yifeng Zhao, Jie Tang, and Zhengxiao Du

CRESA: A Deep Learning Approach to Competing Risks, Recurrent Event
Survival Analysis . 108

Garima Gupta, Vishal Sunder, Ranjitha Prasad, and Gautam Shroff

Long-Term Traffic Time Prediction Using Deep Learning with Integration
of Weather Effect . 123

Chih-Hsin Chou, Yu Huang, Chian-Yun Huang, and Vincent S. Tseng

Arrhythmias Classification by Integrating Stacked Bidirectional LSTM
and Two-Dimensional CNN . 136

Fan Liu, Xingshe Zhou, Jinli Cao, Zhu Wang, Hua Wang,
and Yanchun Zhang

An Efficient and Resource-Aware Hashtag Recommendation Using Deep
Neural Networks . 150

David Kao, Kuan-Ting Lai, and Ming-Syan Chen

Dynamic Student Classiffication on Memory Networks
for Knowledge Tracing . 163

Sein Minn, Michel C. Desmarais, Feida Zhu, Jing Xiao,
and Jianzong Wang

Targeted Knowledge Transfer for Learning Traffic Signal Plans 175
Nan Xu, Guanjie Zheng, Kai Xu, Yanmin Zhu, and Zhenhui Li

Sequential Pattern Mining

Efficiently Finding High Utility-Frequent Itemsets Using Cutoff
and Suffix Utility . 191

R. Uday Kiran, T. Yashwanth Reddy, Philippe Fournier-Viger,
Masashi Toyoda, P. Krishna Reddy, and Masaru Kitsuregawa

How Much Can A Retailer Sell? Sales Forecasting on Tmall 204
Chaochao Chen, Ziqi Liu, Jun Zhou, Xiaolong Li, Yuan Qi, Yujing Jiao,
and Xingyu Zhong

Hierarchical LSTM: Modeling Temporal Dynamics and Taxonomy
in Location-Based Mobile Check-Ins . 217

Chun-Hao Liu, Da-Cheng Juan, Xuan-An Tseng, Wei Wei,
Yu-Ting Chen, Jia-Yu Pan, and Shih-Chieh Chang

Recovering DTW Distance Between Noise Superposed NHPP 229
Yongzhe Chang, Zhidong Li, Bang Zhang, Ling Luo, Arcot Sowmya,
Yang Wang, and Fang Chen

ATNet: Answering Cloze-Style Questions via Intra-attention
and Inter-attention . 242

Chengzhen Fu, Yuntao Li, and Yan Zhang

Parallel Mining of Top-k High Utility Itemsets in Spark In-Memory
Computing Architecture . 253

Chun-Han Lin, Cheng-Wei Wu, JianTao Huang, and Vincent S. Tseng

xxvi Contents – Part II

Weakly Supervised Learning

Robust Semi-supervised Multi-label Learning by Triple
Low-Rank Regularization. 269

Lijuan Sun, Songhe Feng, Gengyu Lyu, and Congyan Lang

Multi-class Semi-supervised Logistic I-RELIEF Feature Selection
Based on Nearest Neighbor . 281

Baige Tang and Li Zhang

Effort-Aware Tri-Training for Semi-supervised Just-in-Time
Defect Prediction . 293

Wenzhou Zhang, Weiwei Li, and Xiuyi Jia

One Shot Learning with Margin . 305
Xianchao Zhang, Jinlong Nie, Linlin Zong, Hong Yu, and Wenxin Liang

DeepReview: Automatic Code Review Using Deep
Multi-instance Learning . 318

Heng-Yi Li, Shu-Ting Shi, Ferdian Thung, Xuan Huo, Bowen Xu,
Ming Li, and David Lo

Multi-label Active Learning with Error Correcting Output Codes 331
Ningzhao Sun, Jincheng Shan, and Chenping Hou

Dynamically Weighted Multi-View Semi-Supervised Learning
for CAPTCHA . 343

Congqing He, Li Peng, Yuquan Le, and Jiawei He

Recommender System

A Novel Top-N Recommendation Approach Based on Conditional
Variational Auto-Encoder . 357

Bo Pang, Min Yang, and Chongjun Wang

Jaccard Coefficient-Based Bi-clustering and Fusion Recommender System
for Solving Data Sparsity . 369

Jiangfei Cheng and Li Zhang

A Novel KNN Approach for Session-Based Recommendation 381
Huifeng Guo, Ruiming Tang, Yunming Ye, Feng Liu, and Yuzhou Zhang

A Contextual Bandit Approach to Personalized Online Recommendation
via Sparse Interactions . 394

Chenyu Zhang, Hao Wang, Shangdong Yang, and Yang Gao

Heterogeneous Item Recommendation for the Air Travel Industry 407
Zhicheng He, Jie Liu, Guanghui Xu, and Yalou Huang

Contents – Part II xxvii

A Minimax Game for Generative and Discriminative Sample Models
for Recommendation . 420

Zongwei Wang, Min Gao, Xinyi Wang, Junliang Yu, Junhao Wen,
and Qingyu Xiong

RNE: A Scalable Network Embedding for Billion-Scale Recommendation . . . 432
Jianbin Lin, Daixin Wang, Lu Guan, Yin Zhao, Binqiang Zhao,
Jun Zhou, Xiaolong Li, and Yuan Qi

Social Network and Graph Mining

Graph Compression with Stars . 449
Faming Li, Zhaonian Zou, Jianzhong Li, and Yingshu Li

Neighbor-Based Link Prediction with Edge Uncertainty 462
Chi Zhang and Osmar R. Zaïane

Inferring Social Bridges that Diffuse Information Across Communities 475
Pei Zhang, Ke-Jia Chen, and Tong Wu

Learning Pretopological Spaces to Extract Ego-Centered Communities. 488
Gaëtan Caillaut, Guillaume Cleuziou, and Nicolas Dugué

EigenPulse: Detecting Surges in Large Streaming Graphs
with Row Augmentation . 501

Jiabao Zhang, Shenghua Liu, Wenjian Yu, Wenjie Feng,
and Xueqi Cheng

TPLP: Two-Phase Selection Link Prediction for Vertex in Graph Streams . . . 514
Yang Xiao, Hong Huang, Feng Zhao, and Hai Jin

Robust Temporal Graph Clustering for Group Record Linkage 526
Charini Nanayakkara, Peter Christen, and Thilina Ranbaduge

Data Pre-processing and Feature Selection

Learning Diversified Features for Object Detection via Multi-region
Occlusion Example Generating . 541

Junsheng Liang, Zhiqiang Li, and Hongchen Guo

HATDC: A Holistic Approach for Time Series Data Repairing 553
Xiaojie Liu, Guangxuan Song, and Xiaoling Wang

Double Weighted Low-Rank Representation
and Its Efficient Implementation . 565

Jianwei Zheng, Kechen Lou, Ping Yang, Wanjun Chen,
and Wanliang Wang

xxviii Contents – Part II

Exploring Dual-Triangular Structure for Efficient R-Initiated Tall-Skinny
QR on GPGPU. 578

Nai-Yun Cheng and Ming-Syan Chen

Efficient Autotuning of Hyperparameters in Approximate Nearest
Neighbor Search . 590

Elias Jääsaari, Ville Hyvönen, and Teemu Roos

An Accelerator of Feature Selection Applying a General Fuzzy
Rough Model . 603

Peng Ni, Suyun Zhao, Hong Chen, and Cuiping Li

Text Feature Extraction and Selection Based on Attention Mechanism. 615
Longxuan Ma and Lei Zhang

Author Index . 629

Contents – Part II xxix

Deep Learning Models and Applications

Semi-interactive Attention Network
for Answer Understanding in Reverse-QA

Qing Yin1, Guan Luo2, Xiaodong Zhu3, Qinghua Hu1, and Ou Wu1(B)

1 Tianjin University, Tianjin 300110, China
{qingyin,huqinghua,wuou}@tju.edu.cn

2 NLPR, Chinese Academy of Sciences, Beijing, China
gluo@nlpr.ia.ac.cn

3 University of Shanghai for Science, Shanghai, China
zhuxd81@gmail.com

Abstract. Question answering (QA) is an important natural language
processing (NLP) task and has received much attention in academic
research and industry communities. Existing QA studies assume that
questions are raised by humans and answers are generated by machines.
Nevertheless, in many real applications, machines are also required to
determine human needs or perceive human states. In such scenarios,
machines may proactively raise questions and humans supply answers.
Subsequently, machines should attempt to understand the true mean-
ing of these answers. This new QA approach is called reverse-QA (rQA)
throughout this paper. In this work, the human answer understanding
problem is investigated and solved by classifying the answers into prede-
fined answer-label categories (e.g., True, False, Uncertain). To explore
the relationships between questions and answers, we use the interactive
attention network (IAN) model and propose an improved structure called
semi-interactive attention network (Semi-IAN). Two Chinese data sets
for rQA are compiled. We evaluate several conventional text classification
models for comparison, and experimental results indicate the promising
performance of our proposed models.

Keywords: Question answering · Reverse-QA · Attention · LSTM

1 Introduction

Question answering (QA) is applied in many real applications, such as robots
and intelligent customer service. The goal of QA is to provide a satisfactory
answer depending on users’ question [1]. QA can provide a more natural way for
humans to acquire information than traditional search engines [2].

In nearly all existing QA studies and applications, the questions are raised
by humans and the answers are generated by machines. In other words, in exist-
ing QA, humans are the questioners and machines are the answerers. Therefore,
selecting a satisfactory answer from candidate answer corpora, which are also

c© Springer Nature Switzerland AG 2019
Q. Yang et al. (Eds.): PAKDD 2019, LNAI 11440, pp. 3–15, 2019.
https://doi.org/10.1007/978-3-030-16145-3_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16145-3_1&domain=pdf
https://doi.org/10.1007/978-3-030-16145-3_1

4 Q. Yin et al.

known as answer selection, is the key problem in QA [3]. In addition to meet-
ing users’ information requirements, machines in some real applications, such
as telephone survey [15], are also required to actively acquire the exact needs
or feedbacks of users. Accordingly, machines may choose to proactively raise
questions to users and then analyze their answers. In other words, machines are
the questioners and humans are the answerers. This process is a reverse of the
conventional QA process and is called reverse-QA (rQA) in this paper. Figure 1
shows the conventional QA and rQA processes.

In conventional QA, the key problem is understanding users’ questions. On
the contrary, the key problem in rQA is understanding users’ answers. In the
present study, two types of machine-launched questions are considered, namely,
true-or-false (T/F) and multiple-choice (MC) questions. Table 1 shows two illus-
trative examples for T/F and MC questions. Some human answers in Table 1
are easy to analyze. For example, the “Yes” and “No” answers to the first ques-
tion can clearly distinguish the category. However, other answers are vague and
difficult to process for their exact meanings. For example, the answer “I was
a teacher last year” for the second question is a ‘false’ response, but it is eas-
ily classified as a ‘true’ response. Hence, understanding users’ answers is not a
trivial task.

Fig. 1. Difference between conventional QA (a) and reverse-QA (b).

Table 1. Illustrative examples of the T/F and the MC questions.

Type Question (Possible) answers by human

T/F Do you like running? Yes/A little/No/Sometimes

T/F Are you a teacher? Sometimes/I’m not sure/You guess/ I was a
teacher last year

MC Would you like coffee or tea? Coffee/Tea/No, thanks/Either is ok

MC Are you usually walking,
cycling, or driving to work?

Walk/Except cycling/I lost my job/By
train/It all depends

As far as we know, it is the first to focus on the rQA procedure and corre-
sponding answer understanding. Considering that no public data set is available
for this work, two data sets1 are compiled to construct and test the models for
1 These two data sets have been uploaded to Github and the URL is provided after

anonymous review.

Semi-interactive Attention Network for Answer Understanding 5

rQA. We simply take the answer understanding in rQA as a classification task
and use several common text classification techniques. These classification algo-
rithms ignore the relationships between a (machine) question and an (human)
answer. To this end, two new models based on deep neural network (DNN) are
proposed. The first model is based on the interactive attention network (IAN)
[18]. The second model is a simplified but a more effective version of IAN and is
called semi-interactive attention network (Semi-IAN). The experimental results
suggest the potential of the proposed models. The contributions of this work are
summarized as follows:

• We investigate a new QA procedure called rQA. Moreover, a new problem
called answer understanding for rQA is proposed. Two data sets are collected
and labeled depending on two common question types, namely, T/F and MC.
The two data sets can be used to construct and evaluate new models.

• Two new models are proposed to capture the semantic relationships between
questions and answers. The proposed IAN model is based on the raw IAN
[18], which is initially designed for opinion mining. The proposed Semi-IAN
model, which considers questions as background, achieves highest accuracy
throughout the experiments.

2 Related Work

2.1 QA

QA is a crucial NLP task that depends on natural language understanding and
domain knowledge [4]. Given a question from users, QA returns an answer via
answer selection or generation based on a knowledge base. In most existing
QA studies, the answer selection is implemented by the matching between a
question and candidate answers or documents. The answer that has the highest
match score is usually selected and returned to users. According to the matching
procedure, most existing QA methods can be divided into two categories:

• Hard-crafted feature-based methods. This category of methods extracts lex-
ical features to represent questions and candidate answers [5,6]. Chen et al.
[7] proposed a feature fusion strategy for various features, including carefully
crafted lexical, syntactic, and word order features.

• Deep feature-based methods. This category of methods extracts deep features
via a CNN or long-short time memory network (LSTM) [8]. Kadlec et al. [9]
presented a pointer-style attention mechanism for text feature representation
in QA.

Some other works have focused on questions [10] and visual QA [11] .

2.2 Text Classification

Text classification aims to predict the category of an input text sample. The
category can be semantic (e.g., political and economic) or sentimental (e.g.,

6 Q. Yin et al.

positive and negative) [19]. Besides some rule-based methods [12], most existing
methods are based on machine learning theories. Nearly all classical (shallow)
classifiers have been used in text classification, such as support vector machine
(SVM) [13], KNN [14], and logistic regression (LR), etc.

In recent years, the emergence of deep learning as a powerful technique for
nearly all NLP tasks has facilitated the adoption of classical DNNs (e.g., CNN
[16] and Recurrent Neural Network (RNN) [17]) for these tasks.

3 Methodology

Answer understanding in rQA can be formulated into a text classification prob-
lem as follows. By considering a machine-question and human-answer pair (q, s)
and a predefined answer-label A, we aim to predict the category c (c ε A) for s.

In this study, two common types of questions are considered, namely, T/F
and MC. The two types of questions correspond to two scenarios, namely, T/F
and MC rQA. The primary difference between T/F and MC rQA lies in the
definitions of the answer-label set A.

In the T/F rQA, the answer-label set A can be set as {True, False,
Uncertain} regardless of the question. In the MC rQA, we assume that the
option set is I, and the answer-label set A is the union of all the subsets of I
plus the Uncertain element. For example, if I is {opt1, opt2, opt3}, then the
set A is {{opt1}, {opt2}, {opt3}, {opt1, opt2}, {opt2, opt3}, {opt1, opt3}, {opt1,
opt2, opt3}, Null, Uncertain}.

The following part introduces how the answer category c is inferred in the
two rQA scenarios above.

3.1 Answer Understanding for T/F rQA

In T/F rQA, we aim to classify the human answer s into one element (category)
of the predefined answer-label set {True, False, Uncertain}. Intuitively, most
existing classification methods can be used.

3.1.1 Text Classification-Based Methods
If s or the simple concatenation of q and s is taken as a piece of input texts,
then three typical methods are obtained and listed below:

• Rule-based method: This method relies on some key words, such as ‘ok’,
‘yes’, ‘not’. These key words directly indicate a ‘true’ or ‘false’ answer.

• Bag-of-words: This method firstly extracts a bag-of-word (BOW) feature
vector for the input text and then classifies the texts using conventional shal-
low classifiers such as SVM [13], LR.

• DNN-based method: This method first extracts a deep feature vector for
the input text and then classifies it on the basis of the softmax layer of the
involved DNN.

Semi-interactive Attention Network for Answer Understanding 7

3.1.2 The Proposed Models
The above-mentioned text classification-based methods independently extract
the feature vectors of the question and the answer or extract one feature vector
from the texts by simply concatenating the question and the answer. These two
strategies simply ignore the semantic relationship between the question and the
answer. Intuitively, the question and answer texts can facilitate the analysis of
their counterpart. Alternatively, their feature extraction procedures should not
be independent.

In opinion mining, Ma et al. [18] proposed an IAN to extract features for
target and contextual texts. In IAN, the target information is used in feature
extraction for contextual texts, and the latter is also used in feature extraction
for the former. This network is used with a slight modification to utilize the
relationship between a pair of question and answer. The overall architecture is
shown in Fig. 2(a).

Fig. 2. (a) IAN for answer understanding in rQA. (b) Structure of the Semi-IAN. (In
question modeling part of MC, the additional embedding is option embedding.)

We let wt
q and wt

s denote the tth words in the question q and the answer s,
respectively. The embeddings of wt

q and wt
s consist of two parts. The first part

is word embedding, and the second part is lexical embedding. The word embed-
ding is implemented by the standard word2vec algorithm. The lexical embedding
relies on a ρ-hot encoding [22] on a pre-compiled dictionary of several key words.
In this study, our dictionary contains six classes of key words: affirmative, pri-
vative, suspicious, positive, negative, supposed.

The two input embedding sequences are then fed into a bi-directional LSTM
to infer the hidden representation of each word in a sentence. In our model, the
forward LSTM at the tth input word is as follows:

8 Q. Yin et al.

it = σ(Wi[ct−1, ht−1, xt, lt] + bi)
ft = σ(Wf [ct−1, ht−1, xt, lt] + bf)
ot = σ(Wo[ct, ht−1, xt, lt] + bo)
dt = σ(Wd[ct−1, ht−1, xt, lt] + bd)
ct = it ⊗ dt + ft ⊗ dt−1

ht = ot ⊗ tanh(ct)

(1)

where xt and lt are the word and lexical embedding for the tth word, respectively;
it and dt are the input vectors of the input unit and the input gate, respectively,
for the tth word; ot and ht are the output and hidden vectors, respectively; ft
is the output of the forget gate; ct is the internal state of the memory cell in a
LSTM unit; σ is the sigmoid active function. The backward LSTM is very similar
to the forward one except that the input sequence is fed in a reversed way. The
output of the bi-LSTM and the lexical embedding of words are concentrated.

After the hidden vectors for each input word are obtained, two pooling vectors
qavg and savg are produced for q and s, respectively. These two pooling vectors
are used to calculate the interactive attention weights. Let h = [h1

s, h
2
s, · · · , hn

s]
be the hidden vectors for the answer s. Following the definition in [18], the
attention weight for the tth hidden vector ht

s is calculated as follows:

αt =
exp(γ(ht

s, qavg))∑
k exp(γ(hk

s , qavg))
(2)

where γ is a score function and defined as follows:

γ(ht
s, qavg) = tanh(ht

s · W · qTavg + b) (3)

where W and b are the parameters to be learnt. Similarly, Eq. (2) indicates the
attention weight for the tth hidden vector in the question modeling part when
ht
s is changed to ht

q and qavg is changed to savg.
Once the attention weights for the hidden vectors for q and s are obtained,

the weighted representations recorded as qr and sr can be subsequently obtained.
The final feature vector qs is the concatenation of qr and sr, i.e., qs = [qTr , sTr]T .

The proposed model is based the original IAN proposed by Ma et al. [18] with
slight modifications. Intuitively, the answer is the focus and the question is the
background. Nevertheless, the answer and the question are symmetric and equal
in the model shown in Fig. 2. To this end, an improved model is proposed and
shown in Fig. 2(b). Because this model only used partial interactive information,
it is called semi-interactive attention network (Semi-IAN).

In the Fig. 2(b) model, the final feature vector qs does not contain the feature
representation qr of the question part. Alternatively, the question is only used
as a background text in answer understanding. The experimental results show
that this Semi-IAN model outperforms the raw IAN.

3.2 Answer Understanding for MC rQA

In MC rQA, the size of the answer-label set A depends on the number of candi-
date options for selection. In other words, the number of categories varies depend-

Semi-interactive Attention Network for Answer Understanding 9

ing on the concrete question. Conventional classification technique is inappropri-
ate for the scenario with varied number of categories. Consequently, the original
answer classification in MC rQA should be transformed into a new classification
problem with a fixed number of categories. In this work, the transformation is
implemented as follows. Without loss of generality, let the option set I of one
MC question be {option1, option2, option3}. The raw answer classification is
transformed into three new classification subtasks. The first sub-task is about
option1; the second is about option2; the third is about option3. Each subtask
infers an answer category from the set True, False, Uncertain for the corre-
sponding option. With the above transformation, the new classification problem
is with a fixed number (i.e., three) categories.

The model for the transformed MC question is same as the model intro-
duced in Sect. 3.1.2 with only one difference that lexical embedding in question
modeling part is replaced with option embedding. The option embedding is also
based on the ρ-hot encoding to indicate the current option to be considered, as
shown in Fig. 2. Therefore, if k options exist, the model should be run k times to
infer the category for each option depending on the input question and human
answers. For example, if the predicted categories for the three options are Ture,
False, True, then the final output category c is {option1, option3}.

4 Experimental Data Construction

Existing QA and text classification benchmark data sets are inappropriate for
training and evaluating rQA models. Therefore, two data sets are compiled with
a standard labeling process. The two data sets are named rQAData1 and rQA-
data2 for the T/F rQA and MC rQA, respectively. The type of MC questions
we studied is limited in the type that the options appear in the question, which
we call option-contained MC questions.

For the two data sets, the questions are constructed as follows. First, seven
domains are selected, namely, encyclopedia, insurance, personal, purchases,
leisure interests, medical health, and exercise. Ten graduate students, specifi-
cally six males and four females, were invited to participate in the data compiling
using Email advertising from our experimental laboratory. All the participants
are Chinese and in the age of [22], [30]. Considering that the question and answer
generations are not difficult to understand, we did not give special instructions
to the participants. Each participant was allowed to construct 50 to 60 questions.
We obtain 20 insurance questions, 30 encyclopedia questions, and 40 questions
in each of the remaining areas for T/F rQA; for MC rQA, we obtain 20 ques-
tions in the insurance field and 40 questions in each of the remaining categories.
Finally, 503 questions are obtained after deleting some invalid questions. Among
that, the numbers of questions in rQAData1 and rQAData2 are 250 and 253,
respectively.

The answers are constructed as follows. The 503 questions are equally
assigned to the 10 participants, and each question is given 18 to 22 answers.
The participants also labeled their answers.

10 Q. Yin et al.

For the rQAData1, the types of answers are roughly divided into affirma-
tive, negative, uncertain, and unrelated. Given that the uncertain and unrelated
answers are similar in function to the next question, we classify them as the same
class. In this way, each answer is tagged with ‘1’ for true, ‘0’ for false, and ‘2’
for uncertain or unrelated. Each sample consists of three components: question,
answer, and label. The numbers of training and testing samples are 4,080 and
1,000, respectively.

For the rQAData2, the number of options for each MC question are different
and cannot be categorized uniformly. Thus, we add the option information to
the MC questions and get a series of transformed MC questions as described in
Sect. 3.2. Therefore, the same answer to the same question will have different
labels for dissimilar options. Similarly, ‘1’ indicates that the answer is an ‘true’
answer to the current option, ‘0’ implies that the answer is a ‘false’ answer to
the current option, and ‘2’ denotes that the answer is ‘uncertain’ answers to
the current option or the answer is meaningless to this question. Each sample
consists of four components: question, option, answer, and label. There are 12,923
transformed MC questions, and the numbers of training and testing samples are
9,074 and 3,876, respectively. Table 2 presents the brief summary.

Table 2. Statistics of our rQA datasets.

Data sets Train samples Test samples False/True/Uncertain

rQAData1 4,047 1,000 2,153/2,266/628

rQAData2 9,047 3,876 6,257/4,872/1,814

5 Experiment

5.1 Comparative Methods

To demonstrate the validity of our models, the following methods are considered
in the experimental comparison.

• Rule-based method: This method is introduced in Sect. 3.1.1.
• BOW+: The main idea of BOW is to extract features with a BOW model

and send them to a classifier [20] In the subsequent experiments, we use LR
and SVM as the classification algorithms.

• CNN/LSTM/Bi-LSTM (A): The CNN/LSTM/Bi-LSTM (A) network is
used to extract deep features from answers only. The features are then fed to
the softmax classification layer to obtain the possible results of the category.

• CNN/LSTM/Bi-LSTM (A+Q): Unlike CNN/LSTM/Bi-LSTM (A),
these methods extract deep features from the concatenation of answers and
questions.

Semi-interactive Attention Network for Answer Understanding 11

Table 3. Classification accuracies on different training set settings.

Model rQAData1(A) rQAData1(A+Q) rQAData2(A) rQAData2(A+Q)

Ruled-Based 0.438 / 0.298 /

BOW+LR 0.486 0.473 0.318 0.314

BOW+SVM 0.649 0.612 0.503 0.532

CNN 0.673 0.615 0.521 0.530

LSTM 0.685 0.652 0.532 0.534

Bi-LSTM 0.708 0.669 0.534 0.530

IAN+ / 0.720 / 0.578

Semi-IAN / 0.735 / 0.585

Our proposed methods are listed as follows:
• IAN+: This method is introduced in Sect. 3.1.2. It is similar to the raw IAN

model with a slight modification.
• Semi-IAN: The network structure of this method is shown in Fig. 2(b).

5.2 Training Settings

All the DNN models are trained by applying Keras that is equipped with Ten-
sorflow. Both our data sets use accuracy as the metric. The division of training
and test data is shown in Table 2. The specific training settings used in our
experiment are listed as follows:

• In BOW, we put words that appear more than twice into the dictionary.
• For SVM, parameters C and g are searched via five-fold cross validations from

{0.1, 1, 5, 10, 100} and {0.01, 0.1, 1, 5, 10}, respectively. For LR, the codes
in MATLAB are used, and all the parameters are set to default.

• For deep models, the word embedding dimension is set to 300 by GloVe [21].
• In both IAN+ and Semi-IAN, the ρ-hot encoding [22] is used in the lexical

and option embeddings. In ρ-hot encoding, the size k is searched in [1, 2, 4,
· · · , 16]; the parameter ρ is searched in [0.1, 0.2, · · · , 1].

5.3 Overall Competing Results

Table 3 shows the classification accuracies for all competing methods. Among
these methods, the rule-based method has the worst effect. The two BOW
methods achieve better accuracies than the rule-based method. Although the
SVM-based method is 0.2% higher than some deep network methods, the over-
all method based on deep learning has a better effect. On both data sets, the
accuracies of the LSTM-based method are considerably higher than those of the
CNN-based method. This finding illustrates that LSTM is more suitable for the
problem investigated in this study than CNN. The underlying reason is that

12 Q. Yin et al.

LSTM can effectively extract the semantic expression of text information with
complex time correlation and different lengths.

On rQAData1, Bi-LSTM outperforms LSTM over 1% and 3%. On rQAData2,
the accuracies of Bi-LSTM-based and LSTM-based approaches are same, basi-
cally.

In general, the performance of most CNN/LSTM/Bi-LSTM (A+Q) is worse
than that of CNN/LSTM/Bi-LSTM (A) on our data sets. The reason is that
although the adding of the questions is definitely useful, simple concatenation
of answers and questions is not conducive to the judgment of answers. It is
necessary to propose new methods of introducing questions.

Compared with the Bi-LSTM (A+Q) model, IAN+ improves the performance
by approximately 5.1% and 4.8% on the rQAData1 and rQAData2, respectively.
We can see that Semi-IAN achieves the best performance. The main reason may
be that the IAN+ and Semi-IAN provide a more effective way to combine the
answer and question texts than the simple way that discards question texts or
directly concatenates answer and question texts. Furthermore, the Semi-IAN
model highlights the answer texts compared with IAN+.

In Table 3, the accuracies on rQAData2 are lower than those on rQAData1.
The classification problem investigated on rQAData2 contains additional infor-
mation, that is, the options. Additional information also brings more challenges,
so the classification for rQAData2 is more difficult than that for rQAData1. The
main reason is the understanding for MC answers requires more domain knowl-
edge. In our feature work, we will introduce knowledge graph for the involved
domains into our models.

5.4 Discussion on the Key Modules in Our Models

The input embedding and attention modules are crucial for a deep model. The
lexical and option embeddings used in our input layer incorporate domain knowl-
edge into the network. We first evaluate this embedding strategy.

Table 4 shows the results of the Bi-LSTM, IAN+ and Semi-IAN with or with-
out additional embedding containing lexical and option embeddings on the two
data sets. In the six groups of comparison, four groups showed the effectiveness
of additional coding. In particular, there was 1% improvement in our semi-INA
model, indicating that the proposed lexical and option embedding are useful.

Three important parameters are involved in our lexical and option, namely,
size k, ρ in lexical embedding, and ρ in option embedding. We record the classifi-
cation performance with different values of these parameters in the experiments.
The green curves in Fig. 3(a) and (b) show the accuracy variations in terms of
different ρ values in lexical embedding. The blue curve in Fig. 3(b) shows the
accuracy variations in terms of different ρ values in option embedding. The three
curves indicate that the tuning of the ρ value in lexical embedding is useful. In
Fig. 3(c) and (d), the accuracies when k = 14 for rQData1 and k = 8 for rQData2
are larger than those when k = 1 for both sets. The tuning for k is also useful.

Semi-interactive Attention Network for Answer Understanding 13

Table 4. Results of with or without lexical and option embedding.

Model W/O rQAData1 rQAData2

Bi-LSTM (A+Q) W 0.665 0.495

Bi-LSTM (A+Q) O 0.669 0.491

IAN+ W 0.720 0.578

IAN+ O 0.728 0.546

Semi-IAN W 0.735 0.585

Semi-IAN O 0.726 0.575

Fig. 3. Results of accuracy under different parameter values. (Color figure online)

Next, we investigate the effectiveness of a new attention mechanism, namely,
CRF attention [23], which is proven useful in text sentiment analysis. Table 5
shows the results of IAN+ and Semi-IAN with and without the CRF attention
layer. On both data sets, the accuracies of Semi-IAN with CRF attention mech-
anism have different degrees of reduction. Although the IAN+ with CRF atten-
tion exhibits a certain improvement compared with the model without additional
attention, its accuracy remains lower than that of our Semi-IAN. In summary,
the CRF attention does not exhibit an outstanding performance in the experi-
ment. The partial reason may lie in that the lengths of answers are usually short,
whereas CRF attention is suitable for texts with moderate lengths. In our future
work, we will investigate more attention mechanisms to solve this problem.

14 Q. Yin et al.

Table 5. Results of models with or without the CRF attention layer.

Model W/O CRF attention rQAData1 rQAData2

IAN+ W 0.722 0.548

IAN+ O 0.720 0.578

Semi-IAN W 0.716 0.583

Semi-IAN O 0.735 0.585

6 Conclusion

We have investigated a new QA approach called rQA, in which machine is the
questioner and human is the answerer. Human answer understanding is the key
problem in rQA and is transformed into a classification problem in the present
study. Two most common question types, namely, T/F and MC, are consid-
ered. Conventional text classification techniques are used to solve the answer
understanding (or answer classification) in rQA. To elaborate the semantic rela-
tionships between questions and answers, IAN+ is leveraged and an improved
model called Semi-IAN is proposed. Semi-IAN considers the questions as the
background and applies it into the deep feature representation for answers. Fur-
thermore, two benchmark data sets are carefully constructed and made public.
The experimental results indicate the initial success of the proposed models.
Semi-IAN outperforms IAN+ and methods based on conventional text classifi-
cation techniques. As rQA and its answer understanding are initially explored,
there remains a number of challenges. Our future work will design more effective
networks and introduce more domain knowledge.

Acknowledgments. This work is partially supported by NSFC (61673377 and
61732011), and Tianjin AI Funding (17ZXRGGX00150).

References

1. Kumar, A., et al.: Ask me anything: dynamic memory networks for natural lan-
guage processing. In: ICML, pp. 1378–1387 (2016)

2. Hixon, B., Clark, P., Hajishirzi, H.: Learning knowledge graphs for question answer-
ing through conversational dialog. In: NAACL-HLT 2015, pp. 851–861 (2015)

3. Tan, M., Santos, C., Xiang, B., Zhou, B.: LSTM-based deep learning models for
non-factoid answer selection. arXiv preprint arXiv:1511.04108 (2015)

4. Xiong, C., Zhong, V., Socher, R.: Dynamic coattention networks for question
answering. In: ICLR (2017)

5. Richardson, M., Burges, C.J.C., Renshaw, E.: MCTest: a challenge dataset for the
open-domain machine comprehension of text. In: EMNLP, pp. 1532–1543 (2014)

6. Wang, H., Bansal, M., Gimpel, K., Mcallester, D.: Machine comprehension with
syntax, frames, and semantics. In: ACL& IJNLP, pp. 700–706 (2015)

7. Chen, D., Bolton, J., Manning, C.D.: A thorough examination of the CNN/Daily
mail reading comprehension task. In: ACL (2016)

http://arxiv.org/abs/1511.04108

Semi-interactive Attention Network for Answer Understanding 15

8. Hill, F., Bordes, A., Chopra, S., Weston, J.: The Goldilocks principle: reading
children’s books with explicit memory representations. In: ICLR (2016)

9. Kadlec, R., Schmid, M., Bajgar, O., Kleindienst, J.: Text understanding with the
attention sum reader network. arXiv preprint arXiv:1603.01547 (2016)

10. Bao, J., Duan, N., Yan, Z., Zhou, M., Zhao, T.: Constraint-based question answer-
ing with knowledge graph. In: COLING, pp. 2503–2514 (2016)

11. Malinowski, M., Rohrbach, M., Fritz, M.: Ask your neurons: a neural-based app-
roach to answering questions about images. In: ICCV, pp. 1–9 (2015)

12. Sasaki, M., Kita, K.: Rule-based text categorization using hierarchical categories.
In: IEEE International Conference on SMC, pp. 2827–2830 (1998)

13. Kiritchenko, S., Zhu, X., Cherry, C., Mohammad, S.M.: NRC-Canada-2014: detect-
ing aspects and sentiment in customer reviews. In: SemEval, pp. 437–442 (2014)

14. Deng, Z., Zhu, X., Cheng, D., Zong, M., Zhang, S.: Efficient kNN classification
algorithm for big data. Neurocomputing 195(26), 143–148 (2016)

15. Lipps, O., Pekari, N., Roberts, C.: Undercoverage and nonresponse in a list-sampled
telephone election survey. J. Eur. Surv. Res. Assoc. 9(2), 71–82 (2015)

16. Zhang, X., Zhao, J., Cun, Y.L.: Character-level convolutional networks for text
classification. In: NIPS, pp. 649–657 (2015)

17. Tang, D., Qin, B., Liu, T.: Document modeling with gated recurrent neural network
for sentiment classication. In: EMNLP 2015, pp. 1422–1432 (2015)

18. Ma, D., Li, S., Zhang, X., Wang, H.: Interactive attention networks for aspect-level
sentiment classification. In: IJCAI, pp. 4068–4074 (2017)

19. Zhang, L., Wang, S, Liu, B.: Deep learning for sentiment analysis: a survey. WIREs:
Data Min. Knowl. Disc., 25 (2018)

20. Mullen, T., Collier, N.: Sentiment analysis using support vector machines with
diverse information sources. In: EMNLP, pp. 412–418 (2004)

21. Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word repre-
sentation. In: EMNLP, pp. 1532–1543 (2014)

22. Wu, O., Yang, T., Yang, M., Li, M.: ρ-hot lexical embedding-based two-level LSTM
for sentiment analysis. arXiv preprint arXiv: 1803.07771 (2018)

23. Wang, B., Lu, W.: Learning latent opinions for aspect-level sentiment classification.
In: AAAI (2018)

http://arxiv.org/abs/1603.01547
http://arxiv.org/abs/1803.07771

Neural Network Based Popularity
Prediction by Linking Online Content

with Knowledge Bases

Wayne Xin Zhao1(B), Hongjian Dou1, Yuanpei Zhao1, Daxiang Dong2,
and Ji-Rong Wen1

1 School of Information, Renmin University of China, Beijing, China
batmanfly@gmail.com, {hongjiandou,YuanpeiZhao,jrwen}@ruc.edu.cn

2 Baidu Inc., Beijing, China
dongdaxiang@baidu.com

Abstract. Predicting the popularity of online items has been an impor-
tant task to understand and model online popularity dynamics. Feature-
based methods are one of the mainstream approaches to tackle this task.
However, most of the existing studies focus on some specific kind of aux-
iliary data, which is usually platform- or domain- dependent. In existing
works, the incorporation of auxiliary data has put limits on the applica-
bility of the prediction model itself. These methods may not be applicable
to multiple domains or platforms. To address these issues, we propose to
link online items with existing knowledge base (KB) entities, and lever-
age KB information as the context for improving popularity prediction.
We represent the KB entity by a latent vector, encoding the related KB
information in a compact way. We further propose a novel prediction
model based on LSTM networks, adaptively incorporating KB embed-
ding of the target entity and popularity dynamics from items with similar
entity information. Extensive experiments on three real-world datasets
demonstrate the effectiveness of the proposed model.

Keywords: Deep learning · Popularity prediction · Knowledge base

1 Introduction

With the rapid development of Web platforms, various online items (a.k.a.,
online content), such as Amazon e-books and YouTube videos, are available to
users. The increasing of online items has intensified the competition for users’
attention [24], since only a small number of items become popular. In order to
better understand and model online popularity dynamics, the task of predicting
the popularity of web content [16,23] has become very important and attracted
much attention from the research community.

H. Dou—Co-first author.

c© Springer Nature Switzerland AG 2019
Q. Yang et al. (Eds.): PAKDD 2019, LNAI 11440, pp. 16–28, 2019.
https://doi.org/10.1007/978-3-030-16145-3_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16145-3_2&domain=pdf
https://doi.org/10.1007/978-3-030-16145-3_2

Neural Network Based Popularity Prediction by Linking Content with KBs 17

Traditional methods try to build prediction models (e.g., regression models)
on time series data of historical popularity statistics [23]. Since web content
is usually associated with rich auxiliary data, many studies further leverage
different kinds of feature information for improving the prediction performance,
including content features [19], user features [27] and spatial features [8]. These
feature-based approaches utilize both time series and auxiliary data in order
to learn a better prediction model. However, most of the existing studies focus
on some specific kind of auxiliary data, which is usually platform- or domain-
dependent. In existing works, the incorporation of auxiliary data has put limits
on the applicability of the prediction model itself. These methods may not be
applicable to multiple domains or platforms. For example, it is difficult to directly
apply an image-based prediction model to a prediction task which takes text data
as auxiliary input. There is a need to develop a more general way to characterize
and utilize auxiliary data for the task of popularity prediction.

To address these difficulties, in this paper, we propose to leverage knowledge
bases (KBs) for improving the prediction of the popularity of online items. KBs
store entity information in triples of the form (head entity, relation, tail
entity), typically corresponding to attribute information of entities. Compared
with other less-structured data forms, KBs provide a general way to flexibly
characterize context information of entities from various domains, and emphasize
the interconnection of data. Many large-scale KBs have been released for public
usage, such as Freebase [7] and Yago [22]. For utilizing the KB information,
we use a heuristic data linkage method to associate Freebase entities with
online contents. With such a linkage, we are able to utilize rich KB information
of online items from a variety of domains. We hypothesize KBs are of useful
information to improve popularity prediction of online content. Following [2],
we propose to learn vectorized representations (a.k.a., embedding) for entities
and relations in a latent space. In this way, we encode related KB information
of an online item into a compact embedding vector. Inspired by recent works
on deep learning for popularity prediction [12,14], we propose a novel LSTM-
based neural network for using KB data for popularity prediction. The proposed
model not only utilizes the associated KB information of an online item, but also
improves the performance using related KB entities, called KB neighbors. It is
able to adaptively utilize the KB information and automatically extract useful
data characteristics.

To evaluate our model, we construct extensive experiments on three real-
world datasets, and the results demonstrate the effectiveness of the proposed
model compared with several competitive baselines. To our knowledge, it is the
first time KB data is utilized in popularity prediction, and our approach provides
a general way to utilize useful auxiliary data for different domains.

2 Related Work

A classic approach to popularity prediction is to build regression or classification
prediction models [16,23] by taking as input the previous popularity statistics.

18 W. X. Zhao et al.

They make the predictions by characterizing temporal dependence or correla-
tion patterns in the time series data. Since simple prediction models may not
be effective to capture complex temporal characteristics, follow-up studies have
introduced a series of more powerful prediction models, such as reinforced Pois-
son process [20], multi-dimensional time-series model [17], lifetime-aware regres-
sion model [15] and transfer autoregressive model [4]. With rich context data on
the Web, many studies propose to leverage these auxiliary features for improv-
ing popularity prediction [5], including content features [19], user features [27],
structural features [11] and spatial features [8].

Recently, deep learning has become a popular technique to address various
complicated tasks. A typical deep learning approach to popularity prediction is
to utilize Recurrent Neural Networks (RNN) to capture temporal dependencies
and build better predictors [12,18,21,25,28]. They mainly rely on the excellence
of RNN in modeling sequence data. Furthermore, several studies also adopt
neural networks as a mapping mechanism to leverage various feature information
for popularity prediction, including event signal [6], cascade [3,14] and multi-
modality data [26].

Our work is closely related to the above works but has a different focus, i.e.,
how to leverage KB information for improving popularity prediction. Although
auxiliary data has been explored to some extent, to our knowledge, no work has
utilized KB data for popularity prediction. As will be shown in the model and
experiment parts, it is not trivial to integrate and model KB information into
the prediction model. We have made the initiative attempt on this direction.

3 Problem Definition

Let I denote a set of items on an online platform, e.g., an Amazon ebook or
a Last.fm music. Assume that an observation window [1, n] of n time steps
(a.k.a., intervals) is given1. At the t-th time step, each individual item i receives
a value measuring its popularity within the current step, denoted by vi

t. Popu-
larity values reflect the received online attention for an item, e.g., the number of
reviews or clicks. By sorting these values by time ascendingly, we can form a time
series of popularity values for item i, namely {vi

1, · · · vi
t, · · · vi

n}, called popularity
time series. We are often interested in future popularity. Let vi

n,m denote the
incremental popularity in the m steps after time n, so we have vi

n,m =
∑n+m

t=n+1 vi
t.

Besides popularity time series, we assume that a knowledge base (KB) is also
available as the input. A KB is defined over an entity set V and a relation set
R, containing a set of KB triples. A KB triple 〈e1, r, e2〉 denotes there exists
relation r from R between two entities e1 and e2 from V, stating a fact stored
in KB. For example, a KB triple (China, hasCapitalCity, Beijing) describes
that Beijing is the capital city of China. Since we assume it is possible to link
online items with KB entities, item set I can be considered as a subset of KB

1 Note we use 1 to n to indicate a relative time span. Not all the items share the same
absolute time span (i.e., lifespan).

Neural Network Based Popularity Prediction by Linking Content with KBs 19

entity set V, so we have I ⊂ V. By linking an online item with a KB entity, we
can obtain all its related KB information.

Knowledge-based popularity prediction is to predict the incremental popular-
ity value vi

n,m for an item i after m time steps given previous n popularity values
and its KB information. Following [3], we predict the incremental popularity to
avoid data dependency. Our definition is general in that we parameterize the
task setting with two numbers n and m. When m = 1, the task becomes the
next-step popularity prediction; when m = +∞, the task becomes final popu-
larity prediction. Also, the granularity of time steps (e.g., day, month or year)
and the scale of popularity values (e.g., absolute or normalized values) can be
set accordingly for different tasks. We will specify the details in Sect. 5.

4 The Proposed Model

In this section, we present the proposed model for the task of knowledge-based
popularity prediction. We start with a base model which adopts the standard
LSTM architecture, and then extend the model by incorporating KB information
in two aspects, namely KB embedding and KB neighbors.

4.1 A LSTM-Based Popularity Prediction Model

Recurrent Neural Networks (RNN) have been shown effective to capture the tem-
poral dependencies in sequence data, especially the Long Short Term Memory
(LSTM) networks [9]. Similar to RNN, the LSTM network generates the current
hidden state vector ht conditioned on previous hidden state vector ht−1 and
current input vector xt, so we have ht = LSTM(ht−1,xt;Θ), where LSTM(·) is
the LSTM unit and Θ denotes all the related parameters. We adopt the LSTM
network as the main architecture to build the prediction model.

For our task, the input at each time t is the observed popularity value vi
t.

In this case, xt degenerates into a scalar value. Our task is specified by two
numbers n and m. For item i, when LSTM receives n input values, it makes the
prediction of m-step incremental value v̂i

n,m using a function g(·) conditioned on
the n-th hidden state vector hi

n ∈ R
L of item i. Formally, we have v̂i

n,m = g(hi
n),

where the superscript of i indicates item i and g(·) is set to a linear function.

4.2 Enhancing the Prediction with KB Embeddings

The above prediction model mainly captures the temporal correlation or depen-
dence in time series data. In our setting, we also have KB data available, which
contains potentially useful information for popularity prediction. Next, we study
how to integrate KB information into the prediction model.

Knowledge Base Embedding. Given an online item i, let ei denote its corre-
sponding entity in KB. Since KB is originally framed as a set of triples, we can
obtain a set of related triples where ei plays the head or tail entity. Using the

20 W. X. Zhao et al.

related triples, the first solution is to represent each ei by a one-hot relation-based
vector. However, such a feature vector has a large dimension size and is usually
sparse. For effectively encoding KB information for ei, we propose to learn a
distributed vector ei ∈ R

D. To learn KB embedding, we use the commonly used
model TransE [2] to minimize the loss of the triples

∑
{〈e1,r,e2〉} ‖ e1 +r−e2 ‖.

We train the TransE model using all the triples in KB instead of using only
those related to linked entities. The learned KB embedding provides a general
and compact representation for KB information, which is more flexible to use
and integrate.

Adaptive Integration of KB Embeddings. Now, we study how to integrate
KB embedding into the LSTM-based prediction model. For popularity predic-
tion, KB embedding is likely to contain both useful and irrelevant information,
even noise. It may not work well to directly incorporate the KB embedding into
the prediction model. To leverage KB embedding ei, we first transform it into a
vector that is more suitable for the current task

ẽi = MLP(ei), (1)

where MLP(·) is a standard Multi-layer Perceptron containing two hidden layers
and using relu as the activation function in our work.

For item i, we have both the hidden state vector hi
n learned from time series

data and the transformed embedding ẽi learned from KB data. We need to
consider how to effectively combine these two vectors. Instead of setting a fixed
weight, the model should be able to adaptively tune the combination weight
based on the current state. To achieve this, we adopt the gate mechanism to
combine the transformed KB embedding ẽi and hidden state vector hi

n

zi
n = sigmoid(W E ẽi + UEhi

n), (2)
h̃i

n = zi
n · ẽi + (1 − zi

n) · hi
n, (3)

where zin ∈ (0, 1) is the adaptive combination weight, WE and UE are param-
eter matrices, and h̃i

n is the KB-enhanced representation of item i at the n-th
time step. In our model, we first adopt nonlinear transformation to learn suit-
able representations of KB embedding for popularity prediction. Then, the gate
mechanism tries to balance the two factors conditioned on the current hidden
state. A benefit of the gate-based combination method is that even for the same
item we can have different combination weights at varying time steps, adaptively
integrating KB information.

4.3 Enhancing the Prediction with KB Neighbors

Two items with similar KB information are likely to have similar or correlated
popularity dynamics. Hence, we further incorporate the popularity dynamics of
related items with similar entity information to improve popularity prediction.

Neural Network Based Popularity Prediction by Linking Content with KBs 21

For convenience, we call the two items in the same domain with similar KB infor-
mation KB neighbors. Now, our problems become how to identify KB neighbors
and integrate the information of KB neighbors for popularity prediction.

KB Neighbor Identification. To measure the relatedness (or similarity)
between two items using KB data, an intuitive idea is to compute the path
reachability over the KB graph. However, the KB graph is usually very huge,
and it is item-consuming to run graph search algorithms for each individual
entity. Based on the learned KB embedding, we propose to compute the dis-
tance between entity embeddings for measuring item relatedness. Formally, given
two entities e1 and e2, we compute the KB embedding distance via a distance
function f(e1,e2), where f(·) can be flexibly set to any distance function for
vectors, e.g., cosine and L1 norm. In this way, we can rank the candidate items
ascendingly by their KB embedding distance with the target item. Our idea is
similar to that in [16]. They select the neighbors based on historical popularity
trends, highly relying on the training set; while we select the neighbors using
KB information, independent of historical popularity trends. In order to reduce
data dependency, we further remove all the candidate items which has a pro-
longing lifetime with the target entity. For efficiency consideration, we keep top
K related entities (with the same entity type) as KB neighbors.

Attentive Integration of KB Neighbors. With the identified KB neighbors,
we next describe how to utilize the information of KB neighbors for improving
the prediction performance. Given a target item, for each neighbor k, we still
use the LSTM network to encode their popularity dynamics up to the n-th time
step into a hidden vector

hk
n = LSTM({vk

1 , · · · , vk
n}; Θ′), (4)

where we use a different configuration Θ′ for the LSTM network compared with
the one for encoding the target item, because hk

ns are mainly used to improve the
prediction for item i instead of item k itself. To integrate multiple hidden vectors
of KB neighbors, we adopt the attention mechanism [1] to set the summation
weights {αi

k} conditioned on item i. Formally, αi
k is defined as follows

αi
k =

exp(w(hi
n, ẽk))

∑K
k′=1(exp(w(hi

n, ẽk′))
, (5)

where hi
n is the derived hidden state vector of item i using only time series data,

ẽk is the transformed KB embedding of item k, and w(hi
n, ẽk) is set using the

following function

w(hi
n, ẽk) = a�tanh(W Nhi

n + UN ẽk), (6)

where WN and UN are the parameter matrices, and a is the parameter vector.
With the obtained attentive weights, we can encode the information from the K
KB neighbors into a unique vector ȟi

n:

22 W. X. Zhao et al.

ȟi
n =

K∑

k=1

αi
k · hk

n. (7)

Similar to the gate mechanism in Sect. 4.2, our model adaptively sets the
attention weights conditioned on the current hidden state. It is able to alleviate
the problem that two items have different correlation patterns at varying time
steps. The attention mechanism can be viewed as a key-value retrieval procedure,
where the query hi

n is the time series representation of the target item, and the
keys {ẽk}Kk=1 are the transformed KB embeddings of KB neighbors. The derived
result is the attentive combination of time series representations of KB neighbors
{hk

n}Kk=1. Finally, our item representation sin for popularity prediction is a vector
concatenation of h̃i

n and ȟi
n,

si
n = h̃i

n ⊕ ȟi
n, (8)

where h̃i
n is the representation learned using only the information from the item

itself (including both time series and KB data) defined in Eq. 3 and ȟi
n is the

representation learned using K KB neighbors defined in Eq. 7. We define the
loss over the training set as follows

L =
∑

i∈D

∑

t∈[1,n]

�(vi
t,m, v̂t

t,m), (9)

where D is the item set, vi
t,m and v̂t

t,m are the ground-truth or predicted incre-
mental popularity value for item i in the time span (t, t+m), and �(·) is the loss
function, which is set to Mean Absolution Error. We learn our model parameters
by using mini-batch gradient descent with the Adam optimizer.

Fig. 1. The overall schematic diagram of the proposed model.

We present the overall schematic diagram of the proposed model in Fig. 1. It
is clear to see that the model consists of two parts: one utilizes the information of
the target item itself, and the other utilizes the information of its KB neighbors.
KB information is used in both aspects. First, it is transformed as a direct signal
to enhance the prediction; second, it is used as the keys of the attention module.

Neural Network Based Popularity Prediction by Linking Content with KBs 23

By using non-linear query-key matching mechanism in Eq. 6, our model is more
capable of inferring the usefulness of each KB neighbor for the target item. Since
we filter out neighbors with a prolonging lifetime, our model will not use any
information after the observed window. After obtaining sin, we still adopt the
linear function g(sin) to generate the final prediction. We call the proposed model
KB-enhanced Popularity Prediction Network (KB-PPN).

5 Experiments and Analysis

This section present the experiment setup and result analysis.

5.1 Experimental Setup

Construction of the Datasets. In our task, we need to prepare both KB and
popularity time series data. We adopt the linked KB4Rec dataset shared in [10,
29] for our evaluation. KB4Rec dataset has linked the public KB Freebase with
three popular recommender system datasets in three domains, namely music,
movie and book. The detailed linkage process and statistics can be found in [29].
For each linked item, we can obtain both its popularity and KB information. To
measure the popularity value, for the music dataset, we use the listening count,
while for the other two datasets, we use the number of received ratings. It is
uninteresting to predict the popularity of items with either a small popularity
value or a short lifespan. We rank the items by its total popularity, and then
select top items covering at least 40% of the entire time span of the dataset. To
train TransE, we start with linked entities as seeds and expand the graph with
one-step search. In order to exclude temporal evidence from KB, we remove all
the triples related to a temporal relation (e.g., releaseDate) together with the
entities in the triples. For the music dataset, we use a month as a time step; while
the other datasets are much more sparse, we use a year as a time step. Following
[16], we construct the ten-fold cross validation for evaluation. The final results
are averaged from ten runs. We summarize the detailed statistics of the three
linked datasets in Table 1.

Table 1. Statistics of our datasets after the preprocessing procedure. APPS denotes the
average popularity value per step, and #extended and #relations denote the numbers
of entities and relations in the extended graph for training TransE.

Datasets #selected #linked #extended #relations Time span (yr.) APPS

Music 37,000 23,120 214,524 19 2006–2014 577

Movie 12,000 9,260 1,125,100 91 1995–2014 277

Book 4,000 2,228 313,956 49 1997–2015 41

Evaluation Metrics. Following [16], we adopt three standard measurements
as evaluation metrics: (1) Mean Absolute Percentage Error (MAPE) measures

24 W. X. Zhao et al.

the average derivation between the predicted and observed popularity, defined
as MAPE = 1

N

∑N
i=1 | v̂−v

v |; (2) Accuracy (ACC) measures the fraction of items
correctly predicted for a given error tolerance ε, defined as ACC = 1

N |{∀i :
| v̂−v

v | < ε}|, where the threshold ε is set to 0.15 in this paper; and (3) Mean Rel-
ative Squared Error (MRSE) measures the relative error between the predicted
and observed popularity, defined as MRSE = 1

N

∑N
i=1

(
v̂
v − 1

)2.

Comparison Methods. The comparison methods are as follows.

– Multivariate Linear Regression (MLR) [16]: it predicts the popularity of an
item using a linear combination of previous popularity values.

– MRBF [16]: it is an extension of the basic MLR model by considering the
similarity between the item and known examples from training set.

– Support Vector Regression (SVR) [13]: Khosla et al. adopt SVR model using
linear kernel to predict popularity with time series data as features.

– Random Forest (RF): We use the tree-based ensemble approach to capturing
complex data characteristics for popularity prediction.

– Long Short-Term Memory (LSTM): LSTM improves RNN with a better
capacity of encoding long sequences.

– The State Frequency Memory (SFM) [28]: it is the extension of the basic
LSTM model by capturing multi-frequency time series patterns, which is a
recently published work on popularity prediction.

– Our model: we prepare three variants of our model: (1) only using KB embed-
ding in Eq. 3, denoted by KB-PPN+E , (2) using both KB embedding in Eq. 3
and KB neighbors in Eq. 4 without attention, denoted by KB-PPN+E+N , and
(3) our full model in Eq. 8, denoted by KB-PPNfull.

For MLR, SVR and LSTM, we also implement the corresponding variants
by directly integrating KB embedding as features, denoted by MLR+E , SVR+E

and LSTM+E (using simple concatenation).

Parameter Setting. All the models have some parameters to tune. We either
follow the reported optimal parameter settings or optimize each model separately
using 10-fold cross validation. For all the neural network models, following [14],
we vary the hidden layer size L in {32, 64, · · · , 512}, the number of hidden layers
in {1, 2, 3}, the activation function in {relu, tanh, sigmoid}, the batch size in
{64, 128, · · · , 1024}, and the initial learning rate in {0.02, 0.01, · · · , 10−4}. The
embedding size of TransE D is selected from {50, 100, · · · , 300}, and the number
of neighbors K is selected from {1, 2, 3, 4, 5}. In order to avoid over-fitting, the
dropout rate is chosen from {0.2, 0.3, ..., 0.8}.

5.2 Results and Analysis

We present the main comparison results of different methods for popularity
prediction in Table 2. Since different datasets have varying time spans and pop-
ularity scales, we set different values for n and m, where n is the number of
previous steps (seen) and m is the number of future steps (predicted). For ease

Neural Network Based Popularity Prediction by Linking Content with KBs 25

Table 2. Performance comparisons of different methods on popularity prediction. “ ↓
/ ↑′′ indicate smaller is better or worse. �% denotes the improvement of our model
over the best performance of all the baselines.

Datasets Music (n = 3,m = 9) Movie (n = 2,m = 4) Book (n = 2,m = 4)

Models MAPE (↓) ACC (↑)MRSE (↓)MAPE (↓) ACC (↑)MRSE (↓)MAPE (↓) ACC (↑)MRSE (↓)
MLR 0.212 0.450 0.079 0.222 0.427 0.080 0.288 0.324 0.130

MLR+E 0.211 0.456 0.078 0.222 0.427 0.080 0.273 0.344 0.119

MRBF 0.210 0.461 0.079 0.212 0.452 0.075 0.272 0.341 0.115

SVR 0.209 0.461 0.078 0.206 0.460 0.070 0.269 0.337 0.111

SVR+E 0.204 0.471 0.074 0.204 0.463 0.068 0.257 0.361 0.105

RF 0.206 0.466 0.076 0.211 0.460 0.078 0.261 0.367 0.112

RF+E 0.206 0.468 0.075 0.209 0.460 0.077 0.257 0.360 0.106

LSTM 0.208 0.458 0.076 0.196 0.488 0.064 0.261 0.348 0.104

SFM 0.206 0.469 0.075 0.195 0.482 0.063 0.256 0.355 0.101

LSTM+E 0.205 0.469 0.075 0.192 0.495 0.062 0.246 0.374 0.096

KB-PPN+E 0.196 0.488 0.068 0.188 0.499 0.058 0.242 0.386 0.094

KB-PPN+E+N 0.193 0.494 0.066 0.189 0.491 0.059 0.238 0.391 0.090

KB-PPNfull 0.189 0.501 0.062 0.182 0.505 0.054 0.232 0.397 0.085

�% 7.35% 6.37% 16.22% 5.21% 2.02% 12.90% 5.59% 6.15% 11.46%

of result analysis, we categorize the comparison methods into two groups, namely
traditional methods and neural network methods.

Among all the traditional baselines, SVR and RF perform better than the
others, since they adopt more powerful modeling mechanisms (i.e., margin-based
optimization or tree-based non-linear transformation) and are likely to yield
better performance. Another interesting observation is that the improvement of
KB embedding using MLR is smaller than that of using SVR and RF. It indicates
that the learned embedding may not be directly useful using linear models.

For neural network models, SFM achieves a better performance than LSTM,
since it is able to capture multi-frequency time series patterns. Next, we examine
the effect of different ways to integrate KB embeddings of the target item. It is
clear to see that KB-PPN+E is substantially better than LSTM+E . The major
difference is that our model KB-PPN+E adopts an adaptive way to integrate KB
embedding, while LSTM+E simply adopts a vector concatenation, which is less
effective to utilize the information of KB embedding. By additionally integrating
the information of KB neighbors, KB-PPN+E+N and KB-PPNfull perform bet-
ter than all the other comparison methods, which indicates the usefulness of KB
neighbors. While, KB-PPNfull further improves over KB-PPN+E+N due to the
use of attention mechanisms. The above findings show that the KB information
is useful to improve popularity prediction. In particular, the integration way of
these information is important to the final performance.

Our task is parameterized with two setting parameters of n and m. A good
prediction model should be able to work well in various cases of n and m. To
examine the performance stability of our model, we vary n and m alternatively,
and compare our method with baselines. As shown in Fig. 2, we can see that
our model is consistently better than the selected baselines in various cases,
indicating the robustness of the proposed model. Our model KB-PPNfull has

26 W. X. Zhao et al.

 0.12
 0.14
 0.16
 0.18
 0.2

 0.22
 0.24

2 3 4 5 6
M

A
PE

n

SVR+E
SFM

KB-PPN+E
KB-PPNfull

(a) Varying n (m = 6).

 0.06
 0.08
 0.1

 0.12
 0.14
 0.16
 0.18
 0.2

 0.22

1 2 3 4 5 6 7 8 9

M
A

PE

m

SVR+E
SFM

KB-PPN+E
KB-PPNfull

(b) Varying m (n = 3).

Fig. 2. Varying the number of previous steps n and the number of future steps m.

 0.18

 0.19

 0.2

 0.21

 0 50 100 150 200 250 300

M
A

PE

dimension

SVR+E
SFM

KB-PPN+E
KB-PPNfull

(a) Varying D (L = 128).

 0.18

 0.19

 0.2

 0.21

32 64 128 256 512
M

A
PE

hidden layer size

SVR+E
SFM

KB-PPN+E
KB-PPNfull

(b) Varying L (D = 100).

Fig. 3. Performance tuning for the KB embedding size D and the hidden layer size L.

several parameters to tune, including the number of KB neighbors K, the KB
embedding size D and the hidden layer size L. We find the number of KB
neighbors should be set to a small value. In our experiments K = 3 yields the
best performance. We next tune the parameters of D and L. As Fig. 3 shows,
D = 100 and L = 128 gives the best performance. Overall, the performance of
our model is relatively stable and consistently better than the baselines.

6 Conclusion

In this paper, we proposed to heuristically link online items with existing KB
entities, and leverage KB data for improving popularity prediction. Experiment
results showed that both KB embedding of the target item and popularity
dynamics of its KB neighbors are useful for our task. As future work, we will
test the proposed approach in more domains. Since not all the entities can find
corresponding KB entries, it will be interesting to study how to enhance the pre-
diction performance of non-linked items with KBs. We will also consider using
more complicated sequence neural networks such as SFM [28].

Acknowledgements. This work was partially supported by National Natural Science
Foundation of China under the grant numbers 61872369 and 61832017, and the Science
and Technology Project of Beijing (Z181100003518001).

Neural Network Based Popularity Prediction by Linking Content with KBs 27

References

1. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning
to align and translate. Computer Science (2014)

2. Bordes, A., Usunier, N., Garćıa-Durán, A., Weston, J., Yakhnenko, O.: Translating
embeddings for modeling multi-relational data. In: NIPS, pp. 2787–2795 (2013)

3. Cao, Q., Shen, H., Cen, K., Ouyang, W., Cheng, X.: Deephawkes: bridging the
gap between prediction and understanding of information cascades. In: CIKM, pp.
1149–1158 (2017)

4. Chang, B., Zhu, H., Ge, Y., Chen, E., Xiong, H., Tan, C.: Predicting the popularity
of online serials with autoregressive models. In: CIKM, pp. 1339–1348 (2014)

5. Cheng, J., Adamic, L., Dow, P.A., Kleinberg, J.M., Leskovec, J.: Can cascades be
predicted? In: WWW, pp. 925–936 (2014)

6. Ding, X., Zhang, Y., Liu, T., Duan, J.: Deep learning for event-driven stock pre-
diction. In: IJCAI, pp. 2327–2333 (2015)

7. Google: Freebase data dumps (2016). https://developers.google.com/freebase/data
8. Grover, A., Kapoor, A., Horvitz, E.: A deep hybrid model for weather forecasting.

In: SIGKDD, pp. 379–386 (2015)
9. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),

1735–1780 (1997)
10. Huang, J., Zhao, W.X., Dou, H., Wen, J.R., Chang, E.Y.: Improving sequen-

tial recommendation with knowledge-enhanced memory networks. In: The 41st
International ACM SIGIR Conference on Research & Development in Information
Retrieval, pp. 505–514. ACM (2018)

11. Imamori, D., Tajima, K.: Predicting popularity of twitter accounts through the
discovery of link-propagating early adopters. In: CIKM, pp. 639–648 (2016)

12. Jia, X., et al.: Incremental dual-memory LSTM in land cover prediction. In:
SIGKDD (2017)

13. Khosla, A., Sarma, A.D., Hamid, R.: What makes an image popular? In: WWW,
pp. 867–876 (2014)

14. Li, C., Ma, J., Guo, X., Mei, Q.: Deepcas: an end-to-end predictor of information
cascades. In: WWW, pp. 577–586 (2017)

15. Ma, C., Yan, Z., Chen, C.W.: LARM: a lifetime aware regression model for pre-
dicting youtube video popularity. In: CIKM, pp. 467–476 (2017)

16. Pinto, H., Almeida, J.M.: Using early view patterns to predict the popularity of
youtube videos. In: WSDM, pp. 365–374 (2013)

17. Proskurnia, J., Grabowicz, P.A., Kobayashi, R., Castillo, C., Cudré-Mauroux, P.,
Aberer, K.: Predicting the success of online petitions leveraging multidimensional
time-series. In: WWW, pp. 755–764 (2017)

18. Qin, Y., Song, D., Chen, H., Cheng, W., Jiang, G., Cottrell, G.: A dual-stage
attention-based recurrent neural network for time series prediction. In: IJCAI, pp.
2627–2633 (2017)

19. Roy, S.D., Mei, T., Zeng, W., Li, S.: Towards cross-domain learning for social video
popularity prediction. IEEE Trans. Multimed. 15(6), 1255–1267 (2013)

20. Shen, H.W., Wang, D., Song, C., Barabsi, A.: Modeling and predicting popularity
dynamics via reinforced poisson processes. In: AAAI, pp. 291–297 (2014)

21. Shi, X., et al.: Deep learning for precipitation nowcasting: a benchmark and a new
model (2017)

22. Suchanek, F.M., Kasneci, G., Weikum, G.: YAGO: a core of semantic knowledge.
In: WWW, pp. 697–706 (2007)

https://developers.google.com/freebase/data

28 W. X. Zhao et al.

23. Szabo, G., Huberman, B.A.: Predicting the popularity of online content. Commun.
ACM 53(8), 80–88 (2008)

24. Tatar, A., de Amorim, M.D., Fdida, S., Antoniadis, P.: A survey on predicting the
popularity of web content. J. Internet Serv. Appl. 5(1), 8:1–8:20 (2014)

25. Wang, Y., Liu, S., Shen, H., Gao, J., Cheng, X.: Marked temporal dynamics mod-
eling based on recurrent neural network. In: Kim, J., Shim, K., Cao, L., Lee, J.-G.,
Lin, X., Moon, Y.-S. (eds.) PAKDD 2017. LNCS (LNAI), vol. 10234, pp. 786–798.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57454-7 61

26. Wu, B., Cheng, W., Zhang, Y., Huang, Q., Li, J., Mei, T.: Sequential prediction
of social media popularity with deep temporal context networks. In: IJCAI, pp.
3062–3068 (2017)

27. Wu, B., Mei, T., Cheng, W.H., Zhang, Y.: Unfolding temporal dynamics: predicting
social media popularity using multi-scale temporal decomposition. In: AAAI, pp.
272–278 (2016)

28. Zhang, L., Aggarwal, C., Qi, G.J.: Stock price prediction via discovering multi-
frequency trading patterns. In: SIGKDD (2017)

29. Zhao, W.X., He, G., Dou, H., Huang, J., Ouyang, S., Wen, J.R.: Kb4rec: a
dataset for linking knowledge bases with recommender systems. arXiv preprint
arXiv:1807.11141 (2018)

https://doi.org/10.1007/978-3-319-57454-7_61
http://arxiv.org/abs/1807.11141

Passenger Demand Forecasting
with Multi-Task Convolutional Recurrent

Neural Networks

Lei Bai1(B), Lina Yao1, Salil S. Kanhere1, Zheng Yang2, Jing Chu2,
and Xianzhi Wang3

1 School of Computer Science and Engineering, University of New South Wales,
Sydney, Australia

baisanshi@gmail.com, {lina.yao,salil.kanhere}@unsw.edu.au
2 School of Software, Tsinghua University, Beijing, China
hmilyyz@gmail.com, j-zhu16@mails.tsinghua.edu.au

3 School of Software, University of Technology Sydney, Sydney, Australia
sandyawang@gmail.com

Abstract. Accurate prediction of passenger demands for taxis is vital
for reducing the waiting time of passengers and drivers in large cities as
we move towards smart transportation systems. However, existing works
are limited in fully utilizing multi-modal features. First, these models
either include excessive data from weakly correlated regions or neglect
the correlations with similar but spatially distant regions. Second, they
incorporate the influence of external factors (e.g., weather, holidays) in
a simplistic manner by directly mapping external features to demands
through fully-connected layers and thus result in substantial bias as the
influence of external factors is not unified. To tackle these problems,
we propose an end-to-end multi-task deep learning model for passenger
demand prediction. First, we select similar regions for each target region
based on their Point-of-Interest (PoI) information or historical demand
and utilize Convolutional Neural Networks (CNN) to extract their spatial
correlations. Second, we map external factors to future demand levels as
part of the multi-task learning framework to further boost prediction
accuracy. We conduct experiments on a large-scale real-world dataset
collected from a city in China with a population of 1.5 million. The
results demonstrate that our model significantly outperforms the state-
of-the-art and a set of baseline methods.

Keywords: Demand prediction · Muti-task learning ·
Spatial-temporal correlations · Convolutional recurrent neural networks

1 Introduction

Taxis are an integral mode of transportation in cities and serve a large num-
ber of passengers on a daily basis. However, traditional taxi services are slow in

c© Springer Nature Switzerland AG 2019
Q. Yang et al. (Eds.): PAKDD 2019, LNAI 11440, pp. 29–42, 2019.
https://doi.org/10.1007/978-3-030-16145-3_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16145-3_3&domain=pdf
https://doi.org/10.1007/978-3-030-16145-3_3

30 L. Bai et al.

adopting Information and Communication technologies (ICT) to improve their
efficiency and provide better services to commuters. In recent years, many online
peer-to-peer ridesharing services such as Uber and Didi have successfully filled
this void. These services allow customers to book a ride through their mobile
apps. Drivers are then matched with customers based on their proximity. These
services often employ dynamic pricing models and have significantly impacted
the taxi markets in most countries. Despite the sophisticated ICT technologies
adopted, these ride-sharing solutions have still not cracked the code on the rela-
tionship between passenger demand and ride supply. On the one hand, drivers
often have to drive a long way before they can find passengers due to low demand
volumes in their locations [5]; on the other hand, passengers may experience
long delays in obtaining a ride due to the high demand in their locations. This
imbalance between the demand and supply incurs excessive delays and energy
consumption, thus calling for an effective passenger demand prediction method
for efficient scheduling of taxis and shared cars.

A variety of techniques have been proposed to address this problem in the
literature. Traditional methods [6,7] utilize time series models such as Auto-
Regressive Integrated Moving Average (ARIMA) and its variants to predict traf-
fic. These methods only consider temporal correlation. However, recent studies
[2,3,8] have revealed that a region’s passenger demand is also related to other
regions demand and thus utilizing the spatial relationship between regions could
positively help predict future passenger demand. There are two ways of uti-
lizing the spatial relationships in literature: (1) Treating the whole city as an
image (a two-dimensional matrix) and applying CNN [2,12] or Convolutional
Long-Short Term Memory (ConvLSTM) [1,13] directly to this image to cap-
ture relationships among all regions. Although this method can find all possible
relationships, it may also introduce weak or negative correlations. As a result,
this method may adversely impact the prediction outcomes. Also, processing the
data in this manner for a large city requires several CNN layers, which consumes
significant resources. (2) The second focuses on discovering local relationships
[3]. This method treats the target region, and it’s surrounding regions as an
image. The foundation of this method is that “near things are more related
than distant things”. However, it neglects the fact that remote regions could
also share strong similarities in passenger demand patterns if they have simi-
lar properties (for example they have similar PoIs such as schools or hospitals).
Besides, both of these two approaches can only be applied if the city is par-
titioned by a grid-based method. Furthermore, the integration of ubiquitous
technologies makes it possible to collect a vast amount of multi-modal data from
urban spaces (e.g., historical crowd flow, weather, holidays), many of which may
influence taxi demand and thus promote better prediction. However, previous
works either don’t take these external features into account [6,8] or directly map
external features to future passenger demand [1,4,13], which can lead to large
biases because the influence of external factors is not uniform to all regions.

In this work, we propose an end-to-end unified deep learning framework to
predict passenger demand. Our model readily scales to large urban areas and

Passenger Demand Forecasting 31

also incorporates insights from urban data sources of different types. More specif-
ically, the model takes historical passenger demand, historical crowd outflow
data, PoI information, weather data, air quality data and time meta (time of
day, day of week, and holidays) as inputs for predicting the passenger demand
in future for all regions. We first select similar regions for each target region
by their PoI information or historical demand, then utilize CNN and LSTM to
extract their spatial-temporal relationships. Our method is more flexible than
the two approaches listed above which either consider all regions or co-located
regions, as it can both filter weakly-related adjacent regions and find similar
remote regions. Moreover, our method operates without knowledge of how the
city is partitioned, i.e., either using road networks or relying on grids. Besides,
to better utilize external features, we design an auxiliary task under the multi-
task learning framework which predicts the demand level (e.g., high, medium
or low) for each region in next time interval to further improve the passenger
demand prediction task. Besides, our framework does not need hand-crafted fea-
tures and is extensible to other datasets. The contributions of our work include
the following:

– We propose a multi-task deep learning based framework for passenger
demand prediction to solve the supply-demand imbalance problem in urban
transportation systems. The framework takes features from multiple urban
datasets into consideration and incorporates their joint influence on future
passenger demands.

– We propose a similarity-based CNN model to capture the spatial similar-
ity exclusively with similar regions. Our model emphasizes highly correlated
regions, while simultaneously filtering out the influence of weakly related
regions.

– We propose to predict and classify future passenger demand level as an auxil-
iary task under the multi-task learning framework to better utilize the power
of external features and enhance the prediction accuracy of passenger demand
value. None of the above aspects have been examined thoroughly in previous
works.

– We conduct extensive experiments on a large-scale real-world dataset col-
lected from a major city in China covering 1.5 million people, and demon-
strate that our method outperforms a series of baselines and state-of-the-art
methods.

2 Proposed Approach

2.1 Problem Formulation

In this section, we will first give some notations and definitions used to formalize
the passenger demand prediction problem.

Notation 1: Region. We utilize the road networks based partition [4] to divide
the entire city into blocks as it is more flexible and can integrate semantic mean-
ings into regions. The entire city is divided into N regions, represented as a set:
{r1, r2, ..., ri, ...rN}.

32 L. Bai et al.

Notation 2: External Features. These represent the following information:
weather data, air quality data, PoI information and time meta (e.g., time of day,
day of week, holidays).

Definition 1: Passenger Demand. The passenger demand of region ri(i ∈
[1, N]) in a given period t is defined as the number of taxi requests originating
in this region during this time period, which can be represented as Dt(ri).

Definition 2: Crowd Outflow [11]. We use PT (ri) to denote the set of people
in region ri at time T. The crowd outflow of region ri during time interval t can
be defined as Ct(ri) = PT (ri) \ PT+ΔT (ri).

Passenger Demand Prediction. Let St(ri) denotes all the historically
observed data (passenger demand, crowd outflow) for region ri in time period t,
Et+1(ri) denotes all external features in time interval t+1 (since the weather in
time interval t + 1 is unknown, we can use the predicted weather or the weather
in time t), passenger demand prediction aims to predict:

Dt+1(ri) = F(St(ri), St−1(ri), St−2(ri), ..., St−h(ri), Et+1(ri))

where Dt+1(ri) is the passenger demand for region ri in time interval t + 1, h is
the historical window of time that is used for prediction. We define our prediction
function F(·) on all regions and previous time period up to t − h.

Fig. 1. Multi-Task Convolutional Recurrent Neural Networks (MT-CRNN)

Passenger Demand Forecasting 33

2.2 Multi-Task CRNN (MT-CRNN) Framework

We design a multi-task deep learning framework (shown in Fig. 1) that contains
two tasks: (1) The main task involves predicting the precise passenger demand
in the next time interval by capturing the spatial-temporal relationships within
historical observed data from selected regions; (2) The auxiliary task is to predict
and classify the level of passenger demand (e.g., whether it is high, low or medium
in the next time interval) to get a better representation of external features for
the main task.

Auxiliary Task: Predict Future Passenger Demand Level. For passen-
ger demand prediction and related tasks (such as crowd prediction, air quality
prediction, rainfall prediction and so on), it is not apparent how external fea-
tures can be used. External features from different domains may have different
attributes, i.e., they may vary from dynamic to static and from continuous to
categorical. Misusing external features may adversely impact the accuracy of
the final prediction. The state-of-the-art methods [1,4,13] usually map exter-
nal features to the value of the passenger demand directly, which can result in
significant errors and thus doesn’t make the best use of external features. Our
intuition is that external features have a closer relationship with a more granular
measure of the passenger demand rather than the precise value. Mapping exter-
nal features to passenger demand level could lead to a better representation of
external features. Here, we use categorical values to denote levels. For example,
level 0, 1 and 2 map to low, medium and high passenger demand respectively.

Table 1. Passenger demand level generation

Level Condition Label

Extreme Dt+1(ri) ≥ 3 ∗ Ari 3

High 2 ∗ Ari ≤ Dt+1(ri) < 3 ∗ Ari 2

Medium 1 ∗ Ari ≤ Dt+1(ri) < 2 ∗ Ari 1

Low Dt+1(ri) < Ari 0

Label Generation. Predicting passenger demand level of the next time interval
is a classification task. Given the external features as input, the classifier outputs
the label of the corresponding passenger demand level. To train a classifier, we
organize external features as a vector. We use Et+1(ri) to represent the vector
of region ri in time interval t+1 and then label Et+1(ri) by comparing Dt+1(ri)
with the average passenger demand of region ri in a day. In this paper, labels are
generated according to Table 1, where Ari

is the average passenger demand of
region ri in the corresponding day. Considering the high imbalance of passenger
demand in large cities, region-specific average demands are more meaningful
than a comprehensive average demand for the entire city. We emphasize that
predicting demand level would not involve unavailable data because we only

34 L. Bai et al.

need to generate demand level when training the model. We do not need to
generate demand level in the predicting phase. While some external features
(such as weather) of the next time interval are also not obtainable in testing, we
can use the predicted value or the value in the last period.

Classification. As shown in Fig. 1, the classification portion of the auxiliary
task is composed of an auto-encoder and two fully-connected layers. Et+1(ri)
is fed into an auto-encoder at first to fuse features from different domains
together while keeping most of the useful information. The encoding and decod-
ing processes are implemented with two-layer fully-connected neural networks:
Ht+1(ri) = encoder(Et+1(ri)) and Êt+1(ri) = decoder(Ht+1(ri)). Then the hid-
den representation Ht+1(ri) is fed into two fully connected layers for classifica-
tion.

Main Task: Predicting Future Passenger Demand. As introduced in
Sect. 1, previous works are inapplicable to non-grid based city partition datasets.
When applied to grid-based datasets, they either introduce excessive data from
weakly correlated regions or miss out on exploiting correlations from spatially
distant but similar regions. To overcome these problems, we propose to extract
spatial correlations only from regions that are similar to the target region. We
propose two strategies to measure similarities between different regions.

Measuring by Historical Order Sequence. A direct way to measure the
similarity between different regions is to calculate the correlations (e.g., Pear-
son Coefficient) with historical demand. Let D0∼t(ri) represent historical order
sequence of region ri from time 0 to t in the training data. Then the similarity
of region ri and rj can be defined as:

Similarityri,rj
= Pearson(D0∼t(ri),D0∼t(rj)) (1)

Measuring by PoI Similarity. PoI information can also be used to measure
the region similarity. Our motivation is that the existence of certain PoIs in
a region can directly influence the passenger demand patterns in that region.
For example, if a region has many shopping malls, then passenger demand of
that region would significantly increase on weekends and holidays. PoI data can
thus be used to characterize a region, analyze the region’s passenger demand
patterns and find regions that have similar characteristics. Consequently, regions
with similar categories of PoI are likely to share similar patterns of passenger
demand. Considering that different regions are of different size, we normalize the
PoI information of each region with the area of that region. For region ri and
region rj , similarity between ri and rj is:

Similarityri,rj
= ‖ poiri

Areari

− poirj

Arearj

‖1 (2)

where Areari
and Arearj

represent the area of region ri and region rj respec-
tively, ‖ · ‖1 represents the L1 norm.

Passenger Demand Forecasting 35

After obtaining the pairwise similarities between all regions, we select the m
most similar regions for region ri, represented as ri s1, ri s2, ..., ri sm. We organize
their passenger demand and crowd outflow data of the same time interval as a
vector separately. The main task (predicting precise passenger demand) treats
the passenger demand and crowd outflow data in the previous h time intervals
of the target region and m similar regions as input to model the spatial and
temporal correlations.

Convolutional Neural Networks. As shown in Fig. 1, historical passenger
demand and crowd outflow are fed into two CNN networks separately to extract
spatial relationships. In the following, we will omit the descriptions for crowd
outflow data transformation as they are the same with processing passenger
demand data. For each time interval in the previous h time intervals, we only
use demand data during this period. Consider region ri as the target region, we
have the most similar m regions ri s1, ri s2, ..., ri sm of ri. At time interval t, we
treat and mix these 1 + m region’s passenger demand as a 1 × (2 ∗ m) image
respectively, represented as:

Dt(ri, ri s1, ri s2, ..., ri sm) = (Dt(ri),Dt(ri s1),Dt(ri),Dt(ri s2),
...,Dt(ri),Dt(ri sm))

(3)

For time interval t in the previous h time intervals, the CNN takes
Dt(ri, ri s1, ri s2, ..., ri s3) as input and feeds it into a convolutional layer. After
the convolutional operation, a flatten layer is used to transfer the output of the
convolutional layer into a vector. Next we use a fully-connected layer to lower
the dimension and get Rt

d(ri). Using the same approach, we can also get Rt
c(ri)

for crowd outflow in time t of region ri. Before feeding these two representations
into the LSTM layer, we concatenate them together:

Rt
dc(ri) = Rt

d(ri) + Rt
c(ri) (4)

LSTM Layer. The representations extracted from the CNN are fed into an
LSTM layer to capture the temporal relationships between future passenger
demand and previous h time interval’s passenger demand and crowd outflow.
Notice that we use previous h time intervals’ passenger demand and crowd out-
flow as input to CNN and extract representations for each time interval sepa-
rately, so we get h representations. We only save the output of the last LSTM
cell for further processing:

Qt
t−h+1(ri) = lstm(Rt−h+1

dc (ri), Rt−h+2
dc (ri), ..., Rt

dc(ri)) (5)

where lstm represents the transformation of all cells in LSTM layer, Qt
t−h+1(ri)

is the output of the last LSTM cell, it represents the captured spatial-temporal
information of region ri and corresponding top m most similar regions from time
interval t − h + 1 to t.

36 L. Bai et al.

Combination and Prediction. To fuse the information from spatial, temporal
and external part together, we concatenate Qt

t−h+1(ri) with Ĥt+1(ri) together
to form Ut+1(ri):

Ut+1(ri) = Qt
t−h+1(ri) + Ĥt+1(ri) (6)

Finally Ut+1(ri) is fed into three fully-connected layers to get the final predicted
passenger demand D̂t+1(ri). Up to this point, the objective function of the pro-
posed network is composed of three parts: (1) Constraint of auto-encoder in
auxiliary task part L1; (2) Loss of passenger demand level prediction in auxil-
iary task part L2; (3) Loss of final passenger demand prediction in main task
part L3:

L1 = MSE(Êt+1(ri) − Et+1(ri)) (7)

L2 = Cross entropy(L̂t+1(ri) − Lt+1(ri)) (8)

L3 = MSE(D̂t+1(ri) − Dt+1(ri)) (9)

where MSE is the mean square error, Cross entropy is the cross entropy loss,
and Lt+1(ri) is the true label of passenger demand level for region ri in t + 1.
Then the overall loss is:

L(θ) = L1 + L2 + L3 (10)

where θ represents all learnable parameters in the network. It is obtained via
back-propagation and Adadelta optimizer.

3 Experiments

3.1 Dataset

We use real-world collected datasets to evaluate our method. There are five
datasets collected from Dec 5th, 2016 to Feb 4th, 2017 in Shenyang, a big city
in China [11]:

– Passenger Demand Data: This dataset contains taxi request data of Didi
Chuxing. Each item contains the time and location (latitude and longitude)
of a request. We pre-process this dataset to map requests to related regions
and time intervals. In our experiment, we set the time interval to 1 h.

– Crowd Outflow Data: This data is extracted from the cellular networks of
the same city which covers more than 1.5 × 106 mobile users. They are also
mapped to related regions and time intervals, with the time interval set to
1 h.

– Meteorological Data: The meteorological dataset contains information
about weather and air quality, including temperature, wind speed, visibil-
ity, weather, and air quality level. Temperature, wind speed, and visibility
readings are continuous and updated every one hour. Weather and air qual-
ity level are categorical data.

Passenger Demand Forecasting 37

– PoI data: We collected PoI data of 12 categories, including offices, entertain-
ment facilities, hotels, shopping malls, residences (i.e., apartments), schools,
banks, restaurants, government facilities, bus stations, tourist attractions, and
hospitals. Each PoI item contains name and location (latitude and longitude).
We pre-process this dataset to map PoI data to related regions.

– Time Meta: Time meta includes hour of day, day of week, and holiday
information.

3.2 Experiment Settings

The model is implemented in TensorFlow 1.8. Due to the page limitations, we
have excluded the discussion on parameter tuning. In our experiments, the length
of the time interval used is 1 h. We set the number of the most similar regions m
to 3 and the historical time window h to 8, which means previous 8 h passenger
demand and crowd outflow of the most similar three regions are used to predict
the passenger demand in next hour. We use 32 kernels with size 1 × 3 in CNN,
and the stride is 1 × 1. The output dimension of CNN is re-scaled to 32 by FC
layer. The hidden layer of auto-encoder is 24 dimensions. We set the learning
rate to 0.02, batch size to 140, and use previous 80% of the data for training and
the rest 20% for testing. To evaluate the model, we use Root Mean Square Error

RMSE =
√

1
ε

∑
i(D̂t+1(ri) − Dt+1(ri))2 and Mean Absolute Error MAE =

1
ε

∑
i ‖D̂t+1(ri)−Dt+1(ri)‖ of all regions to evaluate our model, where ε is the

number of total time intervals in testing data.

3.3 Experimental Results

Overall Comparison. To validate our model, we compare it with the following
methods.

– HA: The historical average model predicts future passenger demand by cal-
culating the average value of previous passenger demand in the same related
time interval in the same region.

– ARIMA: The Auto-Regressive Integrated Moving Average model is a widely
used time series prediction model which is a generalization of Auto-Regressive
Moving Average (ARMA) model.

– SARIMA: The Seasonal Auto-Regressive Integrated Moving Average model
is a variance of the ARIMA model, which can capture the seasonality in a
time series data.

– OLSR: The Ordinary Least Square Regression model is a kind of linear regres-
sion model, it can estimate the relationship between multiple variables.

– MLP: The Multiple Layer perceptron is a typical class of feed-forward neural
network. It has multiple layers and non-linear activation function.

– LSTM: As introduced in Sect. 4, LSTM is a variation of recurrent neural
networks, which is prominent in sequence data processing.

38 L. Bai et al.

– XGBoost [14]: XGBoost is a boosting tree-based machine learning method,
which is used to achieve state-of-the-art results on many data mining chal-
lenges.

– DMVST-Net [2]: DMVST-Net is a state-of-the-art method for predict passen-
ger demand. It is a deep learning based method which considers both spatial
and temporal correlations.

Table 2. Overall comparison with different methods

Index Method RMSE MAE

1 HA 25.028 95.573

2 ARIMA 23.702 93.829

3 SARIMA 23.293 91.682

4 OSLR 22.003 87.348

5 MLP 21.889 85.265

6 LSTM 21.799 88.049

7 XGBoost [14] 20.497 79.489

8 DMVST-Net [2] 20.231 80.753

9 MT-CRNN (PoI) 19.602 76.469

10 MT-CRNN (Order) 19.467 74.438

HA only considers the historical demand as input, while all other aforemen-
tioned models employ all features to predict future passenger demand. MLP con-
tains four fully connected layers, while LSTM only has one layer. As described in
Sect. 1, DMVST-Net [2] can only be used when the city is partitioned to grids. In
order to compare with DMVST-Net, we fed inputs of our model to DMVST-Net.

We show the experimental results in Table 2. From the table, we can observe
that the performance of simple neural networks such as MLP and LSTM is
not good. They don’t show much improvement over traditional methods such
as SARIMA and OSLR. In contrast, state-of-the-art methods XGBoost and
DMVST-Net achieve 18.17% and 19.57% improvement in RMSE over HA,
respectively. However, our model produces the lowest RMSE (19.602 when mea-
suring similarity by PoI and 19.467 when measuring similarity by historical order
sequence) among all the methods. Furthermore, our method achieves 3.80%
(RMSE) and 7.82% (MAE) relative improvement over DMVST-Net.

Component Analysis. We also evaluated some variations of our MT-CRNN
model to study the effect of different components and our auxiliary task setting,
including:

– ST-D: This model only performs the main task of the MT-CRNN model
and uses historical demand data as input. Similar region selection, CNN and
LSTM layers are the same with MT-CRNN. The loss function is L1.

Passenger Demand Forecasting 39

– ST-DC: Similar to ST-D, ST-DC further integrates crowd flow data as addi-
tional input.

– ST-DE: ST-DE is a single task model with the same design as MT-CRNN,
but it doesn’t take crowd flow data as input. The loss function is L1 + L3.

– ST-DCE: In this model, the final loss function is L1 + L3, which transforms
MT-CRNN to a single task model.

– MT-DE: MT-DE is a multi-task model with the same design as MT-CRNN,
but it doesn’t utilize crowd outflow data.

– MT-FC: In this model, the final loss function is L2 + L3, which means the
decoder part of the auto-encoder is not trained. Thus, the auto-encoder is
transformed into a two-layer fully-connected neural network.

– MT-GA: Instead of labeling the passenger demand level by the target region’s
average demand, this model labels the passenger demand with the entire
region’s average demand.

Fig. 2. Component analysis Fig. 3. Prediction with different corre-
lated regions

From Fig. 2, we can observe that MT-CRNN outperforms ST-DCE and MT-
DE outperforms ST-DE, which justify the importance of our multi-task set-
ting. Secondly, ST-DC outperforms ST-D, ST-DCE outperforms ST-DE and
MT-CRNN outperforms MT-DE, which shows that prediction accuracy is bet-
ter when crowd outflow data is included in addition to historical passenger
demand data. Besides, ST-DCE performs worse than ST-DC and ST-DE per-
forms worse than ST-D, which demonstrates that the improper use of external
features adversely impacts prediction accuracy. Thirdly, the results for MT-FC
shows that an auto-encoder is better than fully-connected neural networks in
extracting hidden features from external data. Finally, by comparing MT-GA
with MT-CRNN, we can show that considering region-specific average demand
is better than average demand over the entire city.

40 L. Bai et al.

Spatial Correlation Analysis. We also evaluated the performance of our
model with data from different regions to analyze spatial correlations. As shown
in Fig. 3, we included the following:

– Singular: Only consider the target region’s historical data;
– Random: Randomly select correlated regions for the target region. We ran-

domly select regions five times and present the average prediction results.
– Nearest: Similar with DMVST-Net, it only considers spatially nearby regions

to capture their spatial correlations;
– PoI: Select correlated regions by PoI similarity;
– Order: Select correlated regions by historical demand series similarity;
– All: Similar with DeepST [12], it captures the spatial correlations within the

whole city.

We can observe that predicting only with selected similar region’s data is better
than all other strategies, which shows the advantages of our similarity-based
CNN in capturing spatial correlations. Moreover, all strategies are better than
One, which demonstrate the importance of spatial correlations in predicting
passenger demand.

4 Related Works

One traditional method for passenger demand prediction is to consider passenger
demand as time series data and applying time series models. Moreira-Matias et
al. [6] combined three time-series forecasting techniques (Time-Varying Poisson
Model, Weighted Time-Varying Poisson Model, ARIMA model) to arrive at a
prediction. Li et al. [7] proposed an improved ARIMA model to forecast the
spatial-temporal variation of passengers in hotspots. These early works rely on
GPS trajectories data from a subset of the entire taxis, which may not necessar-
ily reveal the actual passenger demand. In recent years, some researchers have
applied deep learning methods in smart transportation systems [10]. Yu et al.
[9] proposed to use Long-Short Term Memory (LSTM) network to capture the
temporal relationship in historical observations and used auto-encoder to pro-
cess static features. However, they didn’t consider spatial correlations. Wang et
al. [5] presented a neural network framework based on fully-connected layers and
residual network to predict the gap between passenger demand and supply. Their
approach cannot accurately capture the sequential relationship. Another way to
capture the spatial correlation is treating the city as an image (a two-dimensional
matrix) and applying CNN to it. Zhang et al. [3] propose a spatial-temporal
model to predict citywide crowd flow. They represent city-wide crowd flow as
a multi-dimensional image and use CNN and residual network to extract spa-
tial relationships. Yao et al. [2] further designed “local CNN” to extract spatial
relationship within surrounding regions and construct a weighted graph to rep-
resent similarity among regions. A positive aspect is that all these deep learning
based methods take external features (weather, holiday, time meta) into consid-
eration. However, they transform external features using fully-connected layers
or auto-encoder, which are incapable of fully realising their potential.

Passenger Demand Forecasting 41

5 Conclusions

In this paper, we proposed a Multi-Task Convolutional Recurrent Neural Net-
work (MT-CRNN) framework to forecast the passenger demand with multiple
features from different domains. We captured the spatial-temporal correlations of
historical passenger demand by the convolutional recurrent neural network based
on the historical demand of selected similar regions. To better utilize external
features, we designed an auxiliary task for predicting passenger demand level
under the guideline of multi-task learning. Experimental results show that our
model significantly outperforms a series of baselines and gains 3.8% improvement
(RMSE) over state-of-the-art methods and that the auxiliary task can improve
the final passenger demand prediction accuracy.

References

1. Ke, J., et al.: Short-term forecasting of passenger demand under on-demand ride
services: a spatio-temporal deep learning approach. Transp. Res. Part C: Emerg.
Technol. 85, 591–608 (2017)

2. Yao, H., et al.: Deep multi-view spatial-temporal network for taxi demand predic-
tion. In: AAAI (2018)

3. Zhang, J., et al.: Deep spatio-temporal residual networks for citywide crowd flows
prediction. In: AAAI (2017)

4. Deng, D., et al.: Latent space model for road networks to predict time-varying
traffic. In: Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. ACM (2016)

5. Wang, D., et al.: DeepSD: supply-demand prediction for online car-hailing services
using deep neural networks. In: 2017 IEEE 33rd International Conference on Data
Engineering (ICDE). IEEE (2017)

6. Moreira-Matias, L., et al.: Predicting taxi-passenger demand using streaming data.
IEEE Trans. Intell. Transp. Syst. 14(3), 1393–1402 (2013)

7. Li, X., et al.: Prediction of urban human mobility using large-scale taxi traces and
its applications. Front. Comput. Sci. 6(1), 111–121 (2012)

8. Li, Y., et al.: Taxi booking mobile app order demand prediction based on short-
term traffic forecasting. Transp. Res. Rec.: J. Transp. Res. Board 2634, 57–68
(2017)

9. Yu, R., et al.: Deep learning: a generic approach for extreme condition traffic
forecasting. In: Proceedings of the 2017 SIAM International Conference on Data
Mining. Society for Industrial and Applied Mathematics (2017)

10. Zheng, Y., et al.: Urban computing: concepts, methodologies, and applications.
ACM Trans. Intell. Syst. Technol. (TIST) 5(3), 38 (2014)

11. Chu, J., et al.: Passenger demand prediction with cellular footprints. In: 2018 15th
Annual IEEE International Conference on Sensing, Communication, and Network-
ing (SECON). IEEE (2018)

12. Zhang, J., et al.: DNN-based prediction model for spatio-temporal data. In: Pro-
ceedings of the 24th ACM SIGSPATIAL International Conference on Advances in
Geographic Information Systems. ACM (2016)

42 L. Bai et al.

13. Xingjian, S.H.I., et al.: Convolutional LSTM network: a machine learning app-
roach for precipitation nowcasting. In: Advances in Neural Information Processing
Systems (2015)

14. Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining. ACM (2016)

Accurate Identification of Electrical
Equipment from Power Load Profiles

Ziyi Wang, Chun Li, and Lin Shang(B)

National Key Laboratory for Novel Software Technology,
Nanjing University, Nanjing 210023, China

{zywang,lichun}@smail.nju.edu.cn, shanglin@nju.edu.cn

Abstract. It is essential for the power industries to identify the running
electrical equipment automatically. For power monitoring, the load pro-
file data vary with the equipment’s types. Proceeding from the fundamen-
tal features of load time series, we propose a method to identify electrical
equipment from power load profiles accurately. Aiming to improve the
classification accuracy and generalization performance of convolutional
neural network (CNN), we combine the training process of generative
adversarial networks (GANs) with CNN, which employs the generated
samples to enhance the classification accuracy. The CNN and discrimina-
tor in our approach share the first convolution layer for extracting richer
features. We evaluate our method on UCR data sets comparing with
12 existing methods. Furthermore, we compare our model with LSTM,
GRU and CNN on the electrical equipment load data, which is from
industries in certain area. The final results show that our model has a
higher equipment identification accuracy than other deep learning mod-
els.

Keywords: Power load profiles · CNN · GAN · Time series

1 Introduction

In power industries, equipment monitoring system adopts a variety of technolo-
gies to analyze the data generated from electrical equipments or power load data.
Most electrical equipments are sophisticated and expensive, and the cost is high
to maintain them. With the load shifting or electrical equipment variation, it
is necessary to ensure the safety of the equipment. Apart from inspecting these
electrical equipments manually, there are some common methods, such as param-
eter determination and image recognition [1,2]. But in some cases, the exception
occurred will only lead to the load shift, with the normal equipment state, which
will be potentially dangerous. If the machine learning methods can be used to
identify equipment from the load profile, it can carry out more analysis and
management.

The load profile is essentially a class of time series data. Most existing Time
Series Classification (TSC) approaches fall into two categories [3]: distance-based
c© Springer Nature Switzerland AG 2019
Q. Yang et al. (Eds.): PAKDD 2019, LNAI 11440, pp. 43–55, 2019.
https://doi.org/10.1007/978-3-030-16145-3_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16145-3_4&domain=pdf
https://doi.org/10.1007/978-3-030-16145-3_4

44 Z. Wang et al.

methods and feature-based methods. For distance-based methods, the key idea
is to compute the similarity between any given two time series. Such as K-
nearest neighbors (KNN) or support vector machines (SVMs). The most remark-
able distance-based method is dynamic time warping (DTW). For feature-based
methods, the key part is to get a good representations of time series. Shapelet
[4] is a relatively successful feature-based method, which are time series subse-
quences in some sense maximally representative of a class. Also a new symbolic
representation for time series was proposed in [5]. In addition to these traditional
methods, CNN model has recently been introduced into time series classification.
Although the CNN model has been prevailing in the field of time series classifi-
cation, the powerful learning ability of CNN could lead to over-fitting in insuf-
ficient and constrained data. We must carefully set the parameters to achieve a
better generalization performance. There exist some very effective tricks hacks
to prevent CNN from over-fitting. However the most effective way to prevent
over-fitting is to increase the amount of training data.

Recently, unsupervised learning has attracted significant interest in the field
of machine learning, among which generative modelling is significantly. The most
prominent generative models are the variational autoencoder (VAE) [6] and the
generative adversarial network (GAN) [7]. More and more GAN researchers aim
to learn the distribution of raw data. When GAN is trained well, generator can
generate new samples of high quality [8].

In the industrial work, it is constrained to obtain the required data and
the CNN may be over-fitting in such training set. To improve the accuracy of
electrical equipment identification, in this paper we propose a method of elec-
trical equipment identification by combining the training process of GAN and
CNN. We add the CNN into the original discriminative model for the classifica-
tion, so that CNN and discriminator will share the first convolution layer. In our
model, generator will continually generate ‘fake samples’ during training process.
These ‘fake samples’ are also used for features extraction in the first convolution
layer. If the generated ‘fake samples’ are of high quality, which means the gen-
erated samples are realistic, then the first convolution layer can extract richer
features. As is known, the discriminator updates the parameters according to
d loss. In this paper, we set a factor for d loss and we define it as d loss factor
(0 ≤ d loss factor ≤ 1). The d loss factor is used to control the effect of d loss
on the first convolution layer.

The main contribution of our paper is to propose a new deep learning model,
which can not only improve the accuracy of equipment identification, but also can
generate some samples of high quality. We also conduct comprehensive exper-
iments and compare with 12 existing time series classification methods. The
results show that our model achieve the highest accuracy on 8 UCR datasets.
Moreover, our model has higher equipment identification accuracy than the CNN
and the generalization error of our model is smaller than CNN.

Accurate Identification of Electrical Equipment from Power Load Profiles 45

2 Our Approach and Model Architecture

In this section, we will introduce our approach and model architecture. Figure 1
shows the framewok of our model.

Fig. 1. The framework of our model

As shown in Fig. 1, our model is composed of generator network and discrimi-
nator network. When the generator generates some ‘fake samples’, we send these
samples to the discriminator network together with the raw samples for feature
extraction in the first convolution layer. ‘Fake samples’ do not enter CNN model
because they have not class labels. CNN and discriminator update their network
parameters individually through loss function, but update the parameters of the
first convolution layer at the same time.

GANs have been known to be unstable to train, often resulting in generators
that produce nonsensical outputs. In this paper, we design our experiments based
on existing techniques introduced by DCGAN [9].

2.1 Generative Model

The architecture of the generator is shown in Fig. 2.
The generative model learn to capture the data distribution [7]. A n dimen-

sional uniform distribution noise z is projected to a convolutional representation
with a features. A series convolutions (since we did not use pooling in the dis-
criminator, we did not use the fractionally-strided convolutions in the generator.)
then convert the features into the generated samples. The generator updates the
parameters according to the loss function of generator.

In most cases, the length of the time series data is different, so the dimension
of the input noise is not fixed.

46 Z. Wang et al.

Fig. 2. n represents the dimension of the input noise, a represents the time series
length, b1 and b2 represent the number of convolution kernels.

2.2 Discriminative Model

The architecture of the discriminative model is shown in Fig. 3.
As shown in Fig. 3, we add the CNN model into the original discriminative

model for the purpose of classification, we define it as C, so that C and discrimi-
nator will share the first convolution layer. We consider that the discriminator is
essentially a two-class classifier, and C is a multi-class CNN classifier. Regardless
the two-class classifier or the multi-class classifier, the first convolution layer is
used to extract the basic features. Not only the ‘raw samples’ from the train-
ing set, but also the ‘fake samples’ generated by the generator are included in
the samples through the discriminator. When the generated ‘fake samples’ are
of high quality, the first convolution layer can extract richer features. In this
case, the CNN will have a better generalization performance. When the gen-
erated ‘fake samples’ are not of high quality, we inevitably introduce a lot of
noise. In this case, the CNN will have a worse generalization performance. So
we set a factor for d loss, defined as d loss factor (0 ≤ d loss factor ≤ 1). The
d loss factor is used to control the effect of d loss on the first convolution layer,
and the d loss factor is a hyper parameter in our model and we give a better
initialization value for d loss factor in Sect. 3.3.

Our model can be considered as a kind of multitask learning [10] model, which
improve generalization by pooling the examples arising out of two tasks. In the
same way that additional training examples put more pressure on the parameters
of the model toward values that generalize well, when part of a model is shared
across tasks, that part of the model is more constrained toward good values
(assuming the sharing is justified), often yielding better generalization [11].

2.3 Loss Function

We define the loss function of generator as G loss:

G loss = Ez∼pz(z)log[1 − D(G(z(i)))] (1)

Accurate Identification of Electrical Equipment from Power Load Profiles 47

Fig. 3. The CONV1 represents the public part, the upper part is the discriminator
network, the lower part is the time series classification network.

We train generative model to minimize Ez∼pz(z)log[1 − D(G(z(i)))], that
means we hope that the discriminative model can discriminate the generated
samples as real samples as far as possible.

The loss function of the discriminative model consists of two components,
one is the loss of discriminator, another is the loss of CNN. So we define the loss
function of discriminative model as D loss:

D loss = Ez∼pz(z),(x,y)∼pdata(x,y)[[d loss factor(

−log(D(x(i))) − log(1 − D(G(z(i)))))] + C(x(i), y(i))]
(2)

C = − 1
N

[
N∑

i=1

k∑

j=1

I(y(i) = j)logp(i)j] (3)

C represents the loss function of the CNN model, N represents the number
of samples and k represents that the samples have k different classes.

We train discriminative model to minimize the −log(D(x(i))) − log(1 −
D(G(z(i)))) of assigning the correct label to both training examples and sam-
ples from generative model. Meanwhile, we minimize the C(x(i), y(i)) so that the
CNN model has a higher classification accuracy.

The d loss factor (0 ≤ d loss factor ≤ 1) is used to control the effect
of d loss on the first convolution layer. When d loss factor = 0, D loss =
Ez∼pz(z),(x,y)∼pdata(x,y) [C(x(i), y(i))]. In this case, the D loss represents the loss
function of CNN model and the accuracy of our model is equal to the CNN
model. When d loss factor is set to a small value (i.e. d loss factor = 0.1),
the discriminator loss has a weak influence on the first convolution layer. In the
experiment, we can adjust the value of d loss factor according to the quality of
the generated samples.

48 Z. Wang et al.

3 Experiments: Validate the Competition of Our Model

In this section, we compare our model with 12 TSC methods on UCR [12]
datasets. To facilitate comparison with other methods, we do not list all the
data sets in the UCR.

3.1 Baseline Methods

As the baselines introduced in [13], we evaluate a classical baseline method 1-
NN DTW [14]. We also select 10 existing methods with state-of-the-art results
published within the recent years, including: Fast Shapelet (FS) [15], SAX with
vector space model (SV) [16], Bag-of-SFA-Symbols (BOSS) [5], Shotgun Classi-
fier (SC) [17], time series based on a bag-offeatures (TSBF) [18], Elastic Ensem-
ble (PROP) [19], 1-NN Bag-Of-SFA-Symbols in Vector Space (BOSSVS) [20],
Learn Shapelets Model(LTS) [21], and the Shapelet Ensemble (SE) model [22].
For reference, we also list the results of flat-COTE (COTE), an ensemble model
proposed by Bagnall et al. [22], which uses the weighted votes over 35 different
classifiers.

In addition to the above methods, we also compare with MCNN and GAN-
CNN. MCNN is a successful deep learning model currently for time series classi-
fication. GAN-CNN trains GAN using different labels of data to generate ‘fake
samples’ of the corresponding label and then put the ‘fake samples’ in the raw
data set. GAN-CNN uses this new data set to train CNN. GAN-CNN model is
simple, but the training cost of this model is too large. If a training data set has
k different classes, we need to train k different GAN models, and then use them
to generate the samples of the corresponding labels. GAN-CNN is essentially a
serial training of GAN and CNN. Our model can train GAN and CNN at the
same time.

3.2 Datasets

We evaluate all methods thoroughly on the UCR [12] datasets. The UCR datasets
contain some of the time series data extracted from various real-world domains.
Although most of the datasets in the UCR archive are not large enough, we use
these training sets directly to train our model, but do not use window slicing
to increasing the size of the training size. We selected 23 datasets from more
than 80 UCR datasets to verify the competitiveness of our model. We did not
experiment on all more than 80 data sets because our model is not a general
time series classification model. When the dimensions of the time series are too
high and the number of training samples are limited, which will lead to GAN to
be hard to train.

3.3 Hyper Parameters

In order to compare the generalization performance of our model with CNN
and GAN-CNN, we test the CNN and GAN-CNN with the same architecture

Accurate Identification of Electrical Equipment from Power Load Profiles 49

and number of parameters as our model. The hyper parameters of the CNN
model include the number of kernels in each convolution layer and the number
of channels in fully connected layer. For the data set in the experiment, we
randomly select 20% training samples as the validation set to select the hyper
parameters. Our model and GAN-CNN use the same hyper parameters as CNN.
Because the samples generated by the generator may contain a lot of noise, so
we set a d loss factor to control the effect of the generated samples on the CNN
training process. By default, we set d loss factor = 0.1.

3.4 Experimental Results on UCR Datasets

We show the testing errors in the Table 1. The experimental results of the first
12 baselines come from [13]. All data sets of UCR are divided into training sets
and testing sets, so these results can be directly compared. We can see that our
model is very competitive, achieving the highest accuracy on 8 datasets as well
as our model has a better generalization performance than CNN. The BOSS is
a ensemble classifier and also achieves the highest accuracy on 8 datasets, but
the average rank of Boss is 6.7, the average rank of our model is 5.08.

The GAN-CNN also has a good performance and achieves the highest accu-
racy on 6 datasets. But as mentioned before, GAN-CNN has an unacceptable
time complexity and it cannot control the effect of the generated samples on the
CNN training process. Once the generated samples contain a lot of noise, the
final performance of GAN-CNN is badly than CNN.

In the experiment, we have observed the effect of d loss factor on the clas-
sification accuracy of our model, and we suggest that d loss factor be set as a
relatively small value. In general, when d loss factor = 0.1, our model has a
better generalization performance.

4 Electrical Equipment Identification from Power
Load Profiles

In this section, we conduct the identification procedure on five different
scale load training sets and test on the same testing set. We compare our
model (d loss factor = 0.1) with CNN, Long Short-Term Memory (LSTM),
and Gated Recurrent Units (GRUs). LSTM is well-suited to classify, process
and predict time series given time lags of unknown size and duration between
important events. Compared with LSTM, GRUs have been shown to exhibit
better performance on smaller datasets [23].

4.1 Dataset

Dataset is obtained and randomly selected from one district load power of
one province, which contains the load data for ten different electrical equip-
ments. Each power load profile contains the 96-load values and we use the pre-
and post-value to fill the missing values. All data have been normalized before
classification.

50 Z. Wang et al.

Table 1. Testing error for 23 UCR time series datasets

Dataset DTW SV BOSS SE1 TSBF TSF BOSSVS PROP LS SE COTE MCNN CNN GAN-CNN Our Model

Adiac 0.396 0.417 0.22 0.373 0.245 0.261 0.302 0.353 0.437 0.435 0.233 0.231 0.225 0.3 0.2148
Beef 0.367 0.467 0.2 0.133 0.287 0.3 0.267 0.367 0.24 0.167 0.133 0.367 0.0677 0.0677 0.0677
CBF 0.003 0.007 0 0.01 0.009 0.039 0.001 0.002 0.006 0.003 0.001 0.002 0.112 0.069 0.033

ChlorineCon 0.352 0.334 0.34 0.312 0.336 0.26 0.345 0.36 0.349 0.3 0.314 0.203 0.17 0.15 0.17

CinCECGTorso 0.349 0.344 0.125 0.021 0.262 0.069 0.13 0.062 0.167 0.154 0.064 0.058 0.069 0.039 0.0348

Coffee 0 0 0 0 0.004 0.071 0.036 0 0 0 0 0.036 0 0 0
CricketX 0.246 0.308 0.259 0.297 0.278 0.287 0.346 0.203 0.209 0.218 0.154 0.182 0 0 0
ECGFiveDays 0.232 0.003 0 0.055 0.183 0.07 0 0.178 0 0.001 0 0 0.055 0.033 0.042

FaceAll 0.192 0.244 0.21 0.247 0.234 0.231 0.241 0.152 0.217 0.263 0.105 0.235 0.084 0.128 0.0835
FaceFour 0.17 0.114 0 0.034 0.051 0.034 0.034 0.091 0.048 0.057 0.091 0 0 0.091 0
GunPoint 0.093 0.013 0 0.06 0.011 0.047 0 0.007 0 0.02 0.007 0 0.047 0.047 0.0267

ItalyPower 0.05 0.089 0.053 0.053 0.096 0.033 0.086 0.039 0.03 0.048 0.036 0.03 0.04 0.027 0.0253
Lighting2 0.131 0.23 0.148 0.098 0.257 0.18 0.262 0.115 0.177 0.344 0.164 0.164 0.279 0.246 0.246

Lighting7 0.274 0.342 0.342 0.274 0.262 0.263 0.288 0.233 0.197 0.26 0.247 0.219 0.3 0.3 0.3

MedicalImage 0.263 0.516 0.288 0.305 0.269 0.232 0.474 0.245 0.27 0.396 0.258 0.26 0.295 0.28 0.234

MoteStrain 0.165 0.117 0.073 0.113 0.135 0.118 0.115 0.114 0.087 0.109 0.085 0.079 0.143 0.128 0.13

OliveOil 0.167 0.133 0.1 0.133 0.09 0.1 0.133 0.133 0.56 0.1 0.1 0.133 0.067 0.067 0.067
SonyAIBORobot 0.275 0.306 0.321 0.238 0.175 0.235 0.265 0.293 0.103 0.067 0.146 0.23 0.14 0.065 0.099

SonyAIBORobotII 0.169 0.126 0.098 0.066 0.196 0.177 0.188 0.124 0.082 0.115 0.076 0.07 0.175 0.121 0.142

SyntheticControl 0.007 0.013 0.03 0.033 0.008 0.023 0.04 0.01 0.007 0.017 0 0.003 0.003 0.013 0.003

Trace 0 0 0 0.05 0.02 0 0 0.01 0 0.02 0.01 0 0.02 0.02 0.01

TwoLeadECG 0 0.004 0.004 0.029 0.001 0.112 0.015 0 0.003 0.004 0.015 0.001 0.076 0.082 0.0088

wafer 0.02 0.002 0.001 0.002 0.004 0.047 0.001 0.003 0.004 0.002 0.001 0.002 0.003 0.003 0.003

#best 3 2 8 4 0 2 4 2 5 1 4 4 5 6 8

Table 2. Load profile of three types of electrical equipment

Equipment
name

Equipment Power Load
Profile

Recycling air
blower motor

Sanders

Refined rubber
machine

Table 2 shows examples for three different electrical equipments and their
power load profiles We can see that the load curves of some electrical equipments
have obvious characteristics, for example the Sanders, which has an obvious
low load Valley. Our model can well identify the abnormal power load profiles.
The load curves of some electrical equipments have not regular pattern, such as
Recycling air blower motor and Refined rubber machine, which are worth our
attention when they are maintained.

Accurate Identification of Electrical Equipment from Power Load Profiles 51

4.2 Experimental Results

Table 3 shows the testing accuracy for load profiles of 5 different training sets. For
example, the 500 means the training set contain about 500 samples. We can see
that, the LSTM and GRU have not achieved a good performance on this data set.
As is known to all, LSTM or GRU is widely used in Natural Language Processing
(NLP), because there is a strong dependency between words. However, there
is no obvious dependency between the previous moment value and the next
moment value in the power load profiles mentioned in this paper, although it
belongs to time series data. The value of each moment largely depends on the
external factors, such as the current working state of each electrical equipment.
In addition, the dimensions of some kind of time series data are often too high
(i.e. 1000+), which will significantly cause the vanishing gradient problem or
the exploding gradient problem. The test results show that our model achieves
highly competitive performance.

Table 3. Testing accuracy for load profiles of 5 different training sets

NetWork 500 1000 1500 2000 2500

CNN 61.3 64.2 67 81.3 83.7

LSTM 47.6 47.7 48.1 53.3 57.9

GRU 40.9 44.6 46.4 47.2 50.0

Our model 63.2 66.15 69.42 83.7 84.9

Figure 4 shows the trend of accuracy of CNN and our model on testing set
when the model trained on five training sets of different size. We can see that
when the training set is small, the accuracy of CNN and our model are not
high. With the increase of the number of training samples, the generalization
performance will be greatly improved. When the number of training samples is
increased to a certain extent, the speed of generalization performance improve-
ment will be slowed down.

Fig. 4. The trend of the accuracy on testing set

52 Z. Wang et al.

We use our model to identify electrical equipment on the testing set. Figure 5
shows the identification accuracy of ten types of electrical equipments when the
size of the training set is 2500. We can see that some electrical equipments, such
as 1 and 2, have higher identification accuracy. We believe that these electri-
cal equipments have stable load characteristic. Once the load profiles of these
equipments are mistakenly identified, we are confident that the equipment may
be out of order or there exist some potentially dangerous. Some equipments,
which have an unstable load profile. It is not easy to estimate the operation
state through the load profiles and we must check the equipment carefully. So if
we have trained such a classifier, we can monitor the operation of the electrical
equipments in real time and give the corresponding warning so that the cost of
manual maintenance is greatly reduced.

Fig. 5. Identification accuracy of ten types of electrical equipments.(equipment cate-
gories 1: ‘4524RTC’, 2: ‘CT3 High-pressure oxygen generation’, 3: ‘Sanders’, 4: ‘Molding
equipment II’, 5: ‘Mixer III’, 6: ‘CT3-EB1 and EB2’, 7: ‘Recycling air blower motor’,
8: ‘4443RTC’, 9: ‘4435RTC’, 10: ‘Refined rubber machine’)

4.3 Training Process Analysis

In this section, we demonstrate the training process of CNN and our model on
the load data.

From Fig. 6 we can see that, CNN can quickly converge on the training set,
our model takes more time to train the CNN and DCGAN. In general, set-
ting a small d loss factor can speed up the convergence of training process of
our model. The reason why the training process of CNN is more stable than
our model is that the generator of our model constantly generate new samples
and these samples are also used to update the parameters of first convolution
layer. Due to our model can extract more features in the training process, which
results in sometimes the accuracy of our model on testing set exceeds that on
training set. The gap of training accuracy and testing accuracy of our model
is significantly smaller than CNN under the same hyper-parameters that means
our model has high potential for improvement.

Accurate Identification of Electrical Equipment from Power Load Profiles 53

(a) The training process of our model (b) The training process of CNN model

Fig. 6. The training process of two models

5 Discussion and Conclusions

For electrical equipment identification from power data profiles, we propose a
new deep learning model, which can improve the generalization performance
and significantly reduce the generalization error of CNN model through the
new samples generated by GAN. It is not acceptable on time complexity to use
different labels of data to train GAN to generate samples of corresponding labels.
In our model, CNN and the discriminator share the first convolution layer and
both the CNN and GAN are trained at the same time. We test the validity of
our model on 23 UCR datasets compared with 12 existing methods and achieve
the highest accuracy on 8 datasets. Note that when the training data is too
small, DCGAN cannot learn the true distribution of the data and the generated
samples lack diversity, we use d loss factor to control the effect of d loss on the
first convolution layer. We compare our model with CNN, LSTM and GRU on
power load data, the final results show that our model has a higher equipment
identification accuracy than other deep learning models.

Acknowledgment. We would like to thank Keith for his help and suggestions in
writing this paper. This work is supported by the National Natural Science Foun-
dation of China (No. 61672276) and Natural Science Foundation of Jiangsu, China
(BK20161406).

References

1. Qiu, J., Wang, H., Lin, D., He, B.: Nonparametric regression-based failure rate
model for electric power equipment using lifecycle data. IEEE Trans. Smart Grid
6(2), 955–964 (2015)

2. Warnier, M., Dulman, S., Koç, Y., Pauwels, E.: Distributed monitoring for the
prevention of cascading failures in operational power grids. Int. J. Crit. Infrastruct.
Prot. 17(3), 245–251 (2015)

3. Xing, Z., Pei, J., Keogh, E.J.: A brief survey on sequence classification. SIGKDD
Explor. 12(1), 40–48 (2010)

54 Z. Wang et al.

4. Ye, L., Keogh, E.J.: Time series shapelets: a new primitive for data mining. In:
Proceedings of the 15th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, Paris, France, 28 June - 1 July 2009, pp. 947–956
(2009)

5. Schäfer, P.: The BOSS is concerned with time series classification in the presence
of noise. Data Min. Knowl. Discov. 29(6), 1505–1530 (2015)

6. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. CoRR abs/1312.6114
(2013)

7. Goodfellow, I.J., et al.: Generative adversarial nets. In: Advances in Neural Infor-
mation Processing Systems 27: Annual Conference on Neural Information Process-
ing Systems 2014, Montreal, Quebec, Canada, 8–13 December 2014, pp. 2672–2680
(2014)

8. Denton, E.L., Chintala, S., Szlam, A., Fergus, R.: Deep generative image models
using a Laplacian pyramid of adversarial networks. In: Advances in Neural Informa-
tion Processing Systems 28: Annual Conference on Neural Information Processing
Systems 2015, Montreal, Quebec, Canada, 7–12 December 2015, pp. 1486–1494
(2015)

9. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with
deep convolutional generative adversarial networks. CoRR abs/1511.06434 (2015)

10. Caruana, R.A.: Multitask connectionist learning. In: Connectionist Models Sum-
mer School, pp. 372–379 (1993)

11. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016). http://
www.deeplearningbook.org

12. Chen, Y., et al.: The UCR time series classification archive, July 2015. www.cs.
ucr.edu/∼eamonn/time series data/

13. Cui, Z., Chen, W., Chen, Y.: Multi-scale convolutional neural networks for time
series classification. CoRR abs/1603.06995 (2016)

14. Berndt, D.J., Clifford, J.: Using dynamic time warping to find patterns in time
series. In: Knowledge Discovery in Databases: Papers from the 1994 AAAI Work-
shop, Seattle, Washington, July 1994. Technical report WS-94-03, pp. 359–370
(1994)

15. Keogh, E.J., Rakthanmanon, T.: Fast shapelets: a scalable algorithm for discover-
ing time series shapelets. In: Proceedings of the 13th SIAM International Confer-
ence on Data Mining, Austin, Texas, USA, 2–4 May 2013, pp. 668–676 (2013)

16. Senin, P., Malinchik, S.: SAX-VSM: interpretable time series classification using
SAX and vector space model. In: 2013 IEEE 13th International Conference on
Data Mining, Dallas, TX, USA, 7–10 December 2013, pp. 1175–1180 (2013)

17. Schäfer, P.: Towards time series classification without human preprocessing. In:
Perner, P. (ed.) MLDM 2014. LNCS (LNAI), vol. 8556, pp. 228–242. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-08979-9 18

18. Baydogan, M.G., Runger, G.C., Tuv, E.: A bag-of-features framework to classify
time series. IEEE Trans. Pattern Anal. Mach. Intell. 35(11), 2796–2802 (2013)

19. Lines, J., Bagnall, A.: Ensembles of elastic distance measures for time series clas-
sification. In: Proceedings of the 2014 SIAM International Conference on Data
Mining, Philadelphia, Pennsylvania, USA, 24–26 April 2014, pp. 524–532 (2014)

20. Schäfer, P.: Scalable time series classification. Data Min. Knowl. Discov. 30(5),
1273–1298 (2016)

21. Grabocka, J., Schilling, N., Wistuba, M., Schmidt-Thieme, L.: Learning time-series
shapelets. In: The 20th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD 2014, New York, NY, USA, 24–27 August 2014,
pp. 392–401 (2014)

http://www.deeplearningbook.org
http://www.deeplearningbook.org
www.cs.ucr.edu/~eamonn/time_series_data/
www.cs.ucr.edu/~eamonn/time_series_data/
https://doi.org/10.1007/978-3-319-08979-9_18

Accurate Identification of Electrical Equipment from Power Load Profiles 55

22. Bagnall, A., Lines, J., Hills, J., Bostrom, A.: Time-series classification with COTE:
the collective of transformation-based ensembles. In: 32nd IEEE International Con-
ference on Data Engineering, ICDE 2016, Helsinki, Finland, 16–20 May 2016, pp.
1548–1549 (2016)

23. Chung, J., Gülçehre, Ç., Cho, K., Bengio, Y.: Empirical evaluation of gated recur-
rent neural networks on sequence modeling. CoRR abs/1412.3555 (2014)

Similarity-Aware Deep Attentive Model
for Clickbait Detection

Manqing Dong1(B), Lina Yao1, Xianzhi Wang2, Boualem Benatallah1,
and Chaoran Huang1

1 Department of Computer Science, University of New South Wales,
Sydney, Australia

manqing.dong@unsw.edu.au
2 School of Software, University of Technology Sydney, Sydney, Australia

Abstract. Clickbait is a type of web content advertisements designed
to entice readers into clicking accompanying links. Usually, such links
will lead to articles that are either misleading or non-informative, mak-
ing the detection of clickbait essential for our daily lives. Automated
clickbait detection is a relatively new research topic. Most recent work
handles the clickbait detection problem with deep learning approaches
to extract features from the meta-data of content. However, little atten-
tion has been paid to the relationship between the misleading titles and
the target content, which we found to be an important clue for enhanc-
ing clickbait detection. In this work, we propose a deep similarity-aware
attentive model to capture and represent such similarities with better
expressiveness. In particular, we present the ways of either using similar-
ity only or integrating it with other available quality features for the click-
bait detection. We evaluate our model on two benchmark datasets, and
the experimental results demonstrate the effectiveness of our approach
by outperforming a series of competitive state-of-the-arts and baseline
methods.

1 Introduction

Clickbait is a type of web links designed to entice users to enter specific web-pages
or videos1. Clickbait titles are generally written in an exaggerated or ambigu-
ous way to attract curious readers to the hyper-linked content. For example,
“You will never believe what happened when...” and “This is the biggest mistake
you can make...” are two representative titles of clickbait2. Most clickbaits are
created for financial purposes. For example, Web publishers regard clickbait as
a useful tool to draw attention to their websites and make money from adver-
tisements. However, clickbaits are often malicious to the readers despite the
potential benefit to the advertiser, as they are mostly misleading or meaningless

1 https://en.wikipedia.org/wiki/Clickbait.
2 https://www.thedailybeast.com/saving-us-from-ourselves-the-anti-clickbait-move

ment.

c© Springer Nature Switzerland AG 2019
Q. Yang et al. (Eds.): PAKDD 2019, LNAI 11440, pp. 56–69, 2019.
https://doi.org/10.1007/978-3-030-16145-3_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16145-3_5&domain=pdf
https://en.wikipedia.org/wiki/Clickbait
https://www.thedailybeast.com/saving-us-from-ourselves-the-anti-clickbait-movement
https://www.thedailybeast.com/saving-us-from-ourselves-the-anti-clickbait-movement
https://doi.org/10.1007/978-3-030-16145-3_5

Similarity-Aware Deep Attentive Model 57

articles. For most of the time, the content of such articles is not even related to
the title, making the detection of clickbait not only necessary but also highly
significant.

Research on clickbait detection has been active in recent years. Potthast [12]
made one of the first few early attempts. They consider the features from both
titles and the linked web page, including linguistic information (e.g., the mean
word length and sentiment polarity) and side information (e.g., the writer of the
titles). They feed the features into traditional classifiers such as logistic regres-
sion, Naive Bayes, and random forest [10] and attain the accuracy of around
80%. Later, deep learning methods [5,20] are increasingly studied owing to their
advantages in dealing with high-dimensional data and extracting non-linear rela-
tionship among features [8]. Most of the top teams in 2017’s Clickbait Challenge3

use deep learning based methods. Zhou’s classifier [20], which won the first place,
is a is a Recurrent Neural Network [8] based framework that considers the con-
text of words, more specifically, a hybrid of bidirectional Gated Recurrent Unit
(GRU) and attention model [18]. Another work worth mentioning is conducted
by Maria et al. [5], which takes both image and the text representations into
consideration and different deep learning methods, like Convolutional Neural
Network (CNN) and Long Short Term Memory (LSTM) [8], are tried for the
prediction.

Until now, few works have investigated the similarities between the mislead-
ing titles and the linked web contents for clickbait detection. Clickbaits are not
necessarily spams, instead, they may actually contain genuine information but
with rather low quality (e.g., unmatched contents and titles). This makes it pos-
sible to improve the performance of clickbait detection. In a recent work, Biyani
et al. [2] utilize similarities between the title and the top five sentences in the
bodies as features blended with traditional texture information for detecting
clickbaits. Another work by Kumal et al. [7] used Siamese Networks for measur-
ing the text and visual similarities and combined the similarities as the input
of several fully connected layers. Yet existing studies have several limitations:
(i) they consider the similarity as features in a linear manner and therefore lack
the expressiveness when compared to non-linear methods; (ii) current efforts on
leveraging such similarities typically use the partial/local information, such as
quantifying the similarity between the titles and the top five sentences of con-
tent; on the other hand, they overlooking the hidden global information in the
entire content. To overcome these challenges, we propose a deep attentive simi-
larity model for capturing the discriminative information from local and global
similarities. This way, we provide a way of untangling the non-linear connections
between content and titles for the further prediction. The global similarity in this
work measures the similarities over the pair of inputs. Specially, to alleviate the
impact of noise, we propose using attentive local similarities to select the most
useful similarity information for the final prediction. In a nutshell, we make the
following contributions:

3 https://www.clickbait-challenge.org/.

https://www.clickbait-challenge.org/

58 M. Dong et al.

– We propose a deep attentive similarity model which is capable of capturing
both global and local similarities of the pair of inputs. The model represents
local similarities as vectors to combine them with other features for the future
prediction easily.

– We introduce the ways of either using only similarity information or combin-
ing the similarity with other features to detect clickbait. We further employ an
attention-based bidirectional Gated Recurrent Units (GRU) model to obtain
robust representations of textual inputs.

– We evaluate our framework on two benchmark datasets of clickbait detection.
The experimental results demonstrate its effectiveness in detecting clickbait
and its competitive performance against the baselines.

The rest of this paper is organized as follows. Section 2 describes the related
work of deep semantic similarity model. Section 3 defines the relevant operators,
the target problem, and the framework of our model. Section 4 describes the
real-world dataset and corresponding experimental results. Section 5 gives the
concluding remarks.

2 Related Work

2.1 Clickbait Detection

As an arguably new research topic, first attempts on this problem extract latent
features [12,17]. For example, Chen et al. [3] considered both content cues and
non-text cues. Specifically, they extract features from lexical and semantic levels
for content cues and features like user behavior, information about figures for
non-text cues. Those features are then used over various classifiers (e.g. Naive
Bayes classifier, SVM classifier) for the prediction tasks.

Instead of extracting features manually, some recent works utilize word vec-
tors [13] for representing the textual information in order to take advantages
of deep learning methods [4]. For example, Zheng et al. [19] transformed the
titles into word embeddings and then used text-Convolutional Neural Networks
as classifier. Also, Recurrent Neural Network (RNN) based methods are widely
used in detecting the clickbaits, due to the efficiency in dealing with sequential
data. In fact, RNN was used by all the top five teams in the aforementioned
Clickbait Challenge. On the basis of RNN, Glenski et al. [5] used LSTM, and
Zhou [20] used attentive bi-GRU for learning the textual inputs.

However, limited works exploited the similarity information for detecting the
clickbait, although this can directly indicate the matching level between titles
and contents. In early works Biyani et al. [2] made the few attempts that used the
similarities information with several features, including n-grams and metrics for
evaluating the informality. They then fed those features into a gradient boost
decision tree (GBDT) classifier. Kumal et al. [7] used Siamese Networks for
measuring the text similarity between titles and bodies, and image similarity
between figures and descriptions. They then concatenated the similarities for
the final prediction.

Similarity-Aware Deep Attentive Model 59

2.2 Deep Semantic Similarity Model

The Deep Semantic Similarity Model (DSSM) [6] was originally designed for
web search ranking, which is a latent semantic model with a deep structure
that projects queries Q and documents D into a common low-dimensional space
to calculate the semantic similarity. DSSM differs from the traditional latent
semantic models in the use of deep neural networks that learn the latent rep-
resentations. In particular, DSSM first maps the input features x to the latent
semantic space l by:

layer1 = W1x (1)
layeri = f(Wilayeri−1 + bi), i = 2, . . . , N − 1 (2)

l = f(WN layerN−1 + bN) (3)

where layeri is the ith intermediate hidden layer, Wi is the ith weight matrix,
bi is the ith bias matrix, and f is the activation function, e.g., sigmoid function.
Then, the semantic relevance score between a query Q and a document D is
measured:

R(Q,D) = cosine(lQ, lD) =
lTQlD

‖ lQ ‖‖ lD ‖ (4)

Learning the DSSM is equivalent to maximizing the fraction of the similarity
between queries Q and matching documents D+ in the entire collection of either
matching and mismatching documents. A typical improvement of DSSM is to
change the way of learning the latent representations, e.g., by changing the deep
neural networks with convolutional neural networks (CDSSM) [14] or with long
short term memory (LSTM-DSSM) [11]. In this work, we follow the idea of DSSM
to calculate the similarities in the latent space, but the latent space is produced
in different ways for different types of inputs. Since the similarity in DSSM is
a constant, we regard this similarity value as the global similarity and learn a
local similarities vector from it for the further prediction. The next section gives
the details.

3 Methodology

In this paper, we define a piece of information as clickbait when the title does
not match the content. Given a set of titles H = {h1, h2, . . . , hN}, and their
bodies B = {b1, b2, . . . , bN}, the goal is to predict a label Y = {y1, y2, . . . , yN}
of these pairs, where yi = 1 if headline i is a clickbait. Our framework includes
three parts: learning latent representations, learning the similarities, and using
the similarity for the further predictions. Figure 1 illustrates the last two parts.

3.1 Learn Latent Representations

Here we consider transform the titles H and bodies B into the latent representa-
tions: LH and LB , where LH , LB ∈ R

M . We first preprocess the text information,

60 M. Dong et al.

Headlines

Bodies

Word
to Vector

Attention-based Bi-GRU

Global
Similarity

Local
Similarities

Att

Att

Att
y

(a)

Headlines

Bodies

Word
to Vector

Attention-based Bi-GRU

Att

Att

y

Fully
Connected

Layer

Shared Parameters

S
im

ila
rit

y
V

ec
to

r

Att

(b)

Fig. 1. The illustration of our proposed model. The left (a) shows the learning of the
global similarity and local similarities. The words will first be transformed to vectors
and go through the attention based bidirectional GRU models. The global similarity is
then learned from the label which minimize the distance between matching titles and
bodies. And the local similarity is calculated accordingly. And the right one (b) shows
the combined method for doing the further prediction.

where we remove all the punctuation and stop words, make the sentence in a
lower form, and do word lemmatization [15]. And we then transform the cleaned
inputs as word vectors [13].

We apply the attention-based bidirectional GRU [18], one of the most pop-
ular RNN based models, to obtain hidden representations, which have shown
effectiveness in dealing with natural languages tasks in recent years, by using a
gating mechanism to track the state of sequences without using separate memory
cells [1]. Given a bi, i ∈ [1, N], we first get a set of word embedding vectors wi,t,
where t ∈ [1, Ti], Ti is the number of words in body i. Then, we use the bidirec-
tional GRU to get annotations of words by summarizing information from both
directions of a word. The bidirectional GRU contains a forward

−−−→
GRU , which

reads the sentence from wi1 to wiTi
, and a backward

←−−−
GRU , which reads the

sentence from wiTi
to wi1:

−→
w′

it =
−−−→
GRU(wit), t ∈ [1, Ti] (5)

←−
w′

it =
←−−−
GRU(wit), t ∈ [Ti, 1] (6)

Then, we get the hidden representation w′
it by concatenating the forward hidden

state
−→
w′

it and backward hidden state
←−
w′

it: w′
it = [

−→
w′

it,
←−
w′

it]. And an attention
mechanism is used to extract words that are important to the sentence and
aggregate the representation of those words to get the latent representation Lbi :

ut = tanh(Www′
it + bw) (7)

at =
exp(uT

t uw)
Σtexp(uT

t uw)
(8)

Lbi = Σtatw
′
it (9)

Similarity-Aware Deep Attentive Model 61

Finally, we get the latent representation of the bodies LB . In a similar way, we
can obtain the hidden representation LH .

3.2 Learn the Similarities

For getting the global similarity, similar to DSSM, we calculate it as the cosine
similarity between the LH and LB :

r(H,B) = cosine(LH , LB) =
LT

HLB

‖ LH ‖‖ LB ‖ (10)

This similarity r(H,B) is a constant within [0, 1] (if the input space is in a
positive space), a higher value of which stands for a higher level of consistency
between the titles and bodies. Intuitively, we want to maximize this similarity
score between the matching titles and minimize the similarity score between the
mismatching pairs. For using only global similarity to predict the clickbait, we
use R(H,B) = softmax[r(H,B), (1−r(H,B))] as the balance value of the global
similarities. Thus, the prediction for the matching is ŷ = argmaxy(P (y|h, b)),
where P (Y |H,B) = R(H,B). We use cross entropy for measuring the loss,
which is:

L = −ΣY =0,1Y log P (Y |H,B) (11)

Then the optimization goal is to minimize this loss:

argmin
Θ

L + λ ‖ Θ ‖2 (12)

where the L is the loss function of Eq. 11 and the right norm is for the regular-
ization of the parameters, λ is the hyperparameter. And we take Adam as our
optimization method [8]. This way, maximizing the global similarity between
matching titles and bodies also helps us update the matching latent representa-
tions accordingly. That means the corresponding latent representations for titles
and bodies will be as close as possible. Plus the global matching similarity is
usually sensitive to some noise like partial occlusion [16]. We learn the local
similarities for a better matching representation. Recall that we have latent rep-
resentations LH , LB ∈ R

M , we set the local block size as μ, μ < M , and we
move from left to right with ν, ν < (M −μ) strides to the next local block. Then
we have K = [M−μ

ν] local blocks, that is, the latent LH can be represented as
LH = [LT

H,1, L
T
H,2, . . . , L

T
H,K]T and so as the LB . Thus, the local similarities are

then calculated by

LS(H,B) = (r(LH,1, LB,1), ..., r(LH,K , LB,K))T (13)

We use an attentive mechanism to select the most useful similarities, i.e., the
local similarities LS(H,B), for the final prediction. More specifically, we apply
the self-attention mechanism [9] for getting the attention values (which serve as
self-learned weight values),

A = softmax(Va tanh(WaLS(H,B)T)) (14)

62 M. Dong et al.

where Wa ∈ R
K and Va ∈ R

K×K are two weight matrices, and A is the attention
matrix for the local similarity. Then let

P = softmax(WP (A × LS(H,B)) + bP) (15)

we get the prediction for the clickbait as ŷ = argmaxyP , where WP and bP

are weights and biases. Similarity, for using only local similarities to predict the
clickbaits, we choose the combination of cross entropy and regularization as the
loss function and optimize it using Adam optimization method.

3.3 Learn for Prediction

So far, we introduced how global similarities and local similarities are learned
and how to utilize only attentive local similarities to the detection. Here, we
will introduce the classification method which combines the features with the
similarities.

Learning from raw textual information could help mine clickbait indicators
such as the writing style and quality, and learning the similarity can lead to
the matching degrees. To combine these two useful clues, we adopt an attentive
way for the final prediction, which is shown in Fig. 1(b). We first use fully con-
nected layers to map the hidden representations LH and LB into layers with K
dimension.

L′
H = f(WHLH + bH) (16)

L′
B = f(WBLB + bB) (17)

Denote LS(H,B) as L′
LS , then we get a concatenation layer L′ = [L′

H , L′
LS , L′

B].
Similar to Eqs. 14 to 15, we calculate the self attention values AL′ and use them
get the combination layer L′′. The combination layer is then fed into multilayer
perceptrons and we get the P = softmax(WP L′′ + bP). Then the prediction is
ŷ = argmaxyP . Similarly, we set the loss as the combination of cross entropy
and L2-norm of the parameters, and we learn the parameters with Adam opti-
mization.

4 Experiments

In this section, we will test our model on two benchmark datasets. We will first
give some details about these two datasets, and then present the comparison
results of our method and several related works. Furthermore, we conduct the
sensitivity analysis of the proposed method with different parameter settings.

Similarity-Aware Deep Attentive Model 63

4.1 Dataset Description

Here we use two datasets for evaluating the model.

– Clickbait Challenge4 is a benchmark dataset for the clickbait detection
that released in 2017. The dataset contains over 20,000 labelled pairs of posts
for training and validation. There are five judges, each giving a clickbait
score (from 0 to 1) to label the post. And a higher score stands for the higher
probability of a post being clickbait. Then we regard the post with the mean
score over 0.5 as clickbait.

– FNC dataset5 is from the Fake News Challenge in 2017. The data describe
pairs of titles and bodies and are labeled as ‘agree’, ‘disagree’, ‘discuss’ and
‘unrelated’. We regard data with label ‘unrelated’ as clickbait. The dataset
contains 49,972 pairs of titles and bodies for training and 25,413 pairs for the
testing.

As mentioned in the latent representation learning part, we first preprocess
the texts by removing the stop words and lemmatization. The processed Click-
bait Challenge dataset has an average of 10 words in the titles and 50 words in
the bodies, while the FNC dataset has an average of 8 and 200 words accordingly.
We further vectorize the data using word-embedding techniques [13], which can
be conducted unsupervised. Given that some titles only contain one word and
this word is unique among the corpus, we train the word vectors with the “Min
Word Count” set to 1.

4.2 Comparison Methods

We have compared our LSDA model with a series of baseline models and state-
of-the-arts. Where the first two are latent semantic similarity based models and
the other four are the most current works for clickbait detection.

– Huang et al. [6]: propose a deep semantic similarity model (DSSM) that
uses deep neural networks, to get the latent representations of the inputs
and calculate the similarity in the latent representation space. They then
use the calculated similarities as introduced in learning global similarity for
the prediction. The difference is they use N-gram to preprocess the textual
features.6

– Shen et al. [14]: propose a similar structure to DSSM, yet they use convolu-
tional neural networks for latent representations.

– Kumar et al. [7]: propose a hybrid method for detecting the clickbait. They
first use attentive bidirectional RNN based methods for learning the inputs,
and then concatenate the latent inputs with the relationship information that
learned with Siamese Net for the final prediction.

4 https://www.clickbait-challenge.org/.
5 http://www.fakenewschallenge.org/.
6 https://en.wikipedia.org/wiki/N-gram.

https://www.clickbait-challenge.org/
http://www.fakenewschallenge.org/
https://en.wikipedia.org/wiki/N-gram

64 M. Dong et al.

– Zheng et al. [19]: only consider using characteristics from titles to detect
the clickbait. They first transform the titles into word vectors and then use
text-CNN for predicting the labels.

– Glenski et al. [5]: consider information from both titles and bodies. They also
learn from the textual information by firstly vectorizing them and learn for
the predictions with using LSTM networks.

– Zhou et al. [20]: use attentive bi-GRU model for learning the hidden repre-
sentations of titles and bodies. Then, the two learned hidden representations
are concatenated and fed into fully connected layers for the prediction.

Different settings are considered in terms of evaluation. We denote the com-
bination of the local similarities and the raw input features as LSDA, and the
variant of our method that considers deep local similarity but not the attention
by LSD, as shown in Fig. 1(b). For our experimental setting, we initialize the
weight and bias parameters with random variables. Besides, we set the word
embedding dimension as 100 and the hidden size M as 100. The comparison
results are shown in Table 1.

Table 1. Comparison results

Methods Clickbait Challenge FNC dataset

Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score

Huang et al. [6] 0.817 0.655 0.661 0.658 0.747 0.894 0.740 0.811

Shen et al. [14] 0.833 0.683 0.643 0.662 0.756 0.959 0.762 0.853

Kumar et al. [7] 0.826 0.699 0.474 0.565 0.859 0.920 0.877 0.907

Zheng et al. [19] 0.844 0.654 0.653 0.653 0.789 0.852 0.845 0.857

Glenski et al. [5] 0.827 0.642 0.621 0.631 0.868 0.925 0.884 0.913

Zhou et al. [20] 0.856 0.719 0.650 0.683 0.879 0.924 0.897 0.919

LSD 0.847 0.697 0.675 0.686 0.885 0.928 0.901 0.923

LSDA 0.860 0.722 0.699 0.710 0.894 0.933 0.912 0.928

The evaluation is conducted with four commonly used metrics: accuracy,
recall, precision, and F1 score7. Generally, the comparison results show the
effectiveness of our proposed method for detecting the clickbait detection. We
observed that both the CNN- and RNN-based models perform better than tra-
ditional deep neural networks. This may largely resort to the capability of CNN
and RNN in capturing the location information. The attention-based bidirec-
tional GRU shows superior performance in dealing with textual information.
Besides the superiority of the bi-AttGRU itself, which we use for learning latent
representations, both the similarity information and the attention mechanism
help with the final prediction.

7 https://en.wikipedia.org/wiki/Precision and recall.

https://en.wikipedia.org/wiki/Precision_and_recall

Similarity-Aware Deep Attentive Model 65

4.3 Sensitivity Analysis

In this part, we test the model’s sensitivity to different parameter settings on
Clickbait Challenge dataset. Similar results can also be found using the FNC
dataset. As mentioned above, we mainly have parameters related to the latent
representation learning part and the similarity learning part, as well as some
hyper-parameters to indicate the learning rate. As the default setting, we sepa-
rate the training dataset with a ratio of 80%, set the dimensions of word vectors
to 50, and pad each sentence to the same length for the input of attentive Bi-
GRU model. We also set size of hidden units in Bi-GRU to 50, the local similarity
block size to 50 and the default learning rate for Adam optimizer to 0.001.

5 10 15 20

0.
76

0.
78

0.
80

0.
82

0.
84

0.
86

0.
88

Number of Epoch

A
cc

ur
ac

y

Block Size
20
50
100

Embedding Size
20
50
100

(a)

5 10 15 20

0.
70

0.
75

0.
80

0.
85

Number of Epoch

A
cc

ur
ac

y

Latent Size
20
50
100

(b)

5 10 15 20

0.
76

0.
78

0.
80

0.
82

0.
84

0.
86

0.
88

Number of Epoch

A
cc

ur
ac

y

Block Size
20
50
100

(c)

5 10 15 20

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Number of Epoch

A
cc

ur
ac

y

Learning Rate
0.1
0.01
0.001

(d)

Fig. 2. Sensitivity towards different parameter settings: (a) word embedding size, (b)
dimension of latent representations, (c) local similarity block size, and (d) learning
rate.

In particular, we compare the following parameters settings: the word embed-
ding size, the latent representation size, the local similarity block size, and the
optimizer learning rate. Figure 2 presents the comparison results, where the hor-
izontal axis shows the learning epochs and the vertical axis stands for accuracy.

66 M. Dong et al.

We can tell that model with smaller word embedding size have lower accuracy
in predicting the clickbait, which can be the result of the inadequate grasping
of the content information in low dimensional word space. On the other hand,
the model with large word embedding size requires more time to learn for a
decent result. And it can be observed that the dimension of the latent feature
representations do affect the results, where larger latent size helps with higher
predicting performance. Noted that the average length of bodies of the FNC
dataset is 200, thus for training a dataset with word embedding 100, each sample
will be sized 200 × 100, which ends up with latent representations with higher
dimensions, and contain relatively more information. For the block size of the
local similarities, it can be claimed that a smaller block size performs better
than bigger ones. Figure 3 gives an example of the local similarities that with
block size 25 and stride 25, thus we have four similarity scores of matching pairs,
where the bottom 50 rows are for clickbaits. We can see that for some instances of
clickbaits, the subsets of the input are not significantly unrelated. And compared
with FNC dataset, the patterns of similarities in Clickbait Challenge dataset
are naturally more considerable. Thus it is quite important to automatically
weighting the similarity blocks where we used attention mechanism for solving
this problem. As for the learning rate, we can observe that larger learning rates
make it difficult for the optimization of the models.

Fig. 3. Example of local similarities of correctly predicted instances with block size
25 and stride 25 on (a) Clickbait Challenge dataset and (b) FNC dataset. The top 50
rows are for genuine clicks and the bottom 50 are for clickbaits.

We also consider the impact of different settings for the model to find which
part help more with the final prediction. In particular, we consider the following:
whether local similarity performs better than global ones; whether adding the
latent representations is helpful; and the efficiency of adding the attention. We
give five variants of the models, and Fig. 4 shows the results. GS represents
the model that considers using only the global similarity for the prediction; LS
stands for the model using only local similarities, and similarly, LSA stands

Similarity-Aware Deep Attentive Model 67

1FccA

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

GS
LS

LSA
LSD

LSDA

0.837 0.842
0.853 0.847

0.86

0.602

0.641

0.699
0.686

0.71

(a)

1FccA

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

GS
LS

LSA
LSD

LSDA

0.817

0.833
0.845

0.885
0.894

0.878
0.888

0.897

0.923 0.928

(b)

Fig. 4. Ablation studies on variants of models on (a) Clickbait Challenge dataset and
(b) FNC dataset.

for the model that adds attentions to local similarities, LSD combining latent
representations with local similarities, and LSDA is for a combination method
shown in Fig. 1(b).

First, we can see that models with concerning local similarities perform bet-
ter than a model that only considers the global similarity, which might reasons
from the sensitiveness of the global similarity to the data noises. Besides, we
can observe that concatenating the raw features with the similarity information
do help with the prediction, especially on the FNC dataset. While raw features
can be used to extract some text patterns like content quality, we can say that
these patterns are helpful for detecting the clickbaits. And comparing LSA with
LS, and LSDA with LSD, it can be observed that adding the attention mech-
anism helps to improve the results. Generally, those results indicate the model
is effective for extracting essential information in different settings, and further
demonstrate the superiority of the attentive similarity in encoding the features.

5 Conclusions

In this paper, we solve the problem of clickbait detection from the similarity
perspective, as opposed to the traditional feature engineering which lack the
properties in representing the matching information between titles and targeted
bodies. We have presented a local similarity-aware deep attentive model that
learns both local similarities and raw input features to make predictions in an
attentive manner. To the best of our knowledge, the model is novel in the area
of clickbait detection and yields competitive results among a series of baseline
and state-of-the-arts methods on two real world datasets. Noted that we have
not considered other features like image information in this work, which may
also be found on those clickbait web-pages. This will be included in our future
investigations.

68 M. Dong et al.

References

1. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning
to align and translate. arXiv preprint arXiv:1409.0473 (2014)

2. Biyani, P., Tsioutsiouliklis, K., Blackmer, J.: 8 amazing secrets for getting more
clicks: detecting clickbaits in news streams using article informality. In: AAAI, pp.
94–100 (2016)

3. Chen, Y., Conroy, N.J., Rubin, V.L.: Misleading online content: recognizing click-
bait as false news. In: Proceedings of the 2015 ACM on Workshop on Multimodal
Deception Detection, pp. 15–19. ACM (2015)

4. Dong, M., Yao, L., Wang, X., Benatallah, B., Sheng, Q.Z., Huang, H.: DUAL:
a deep unified attention model with latent relation representations for fake news
detection. In: Hacid, H., Cellary, W., Wang, H., Paik, H.-Y., Zhou, R. (eds.) WISE
2018. LNCS, vol. 11233, pp. 199–209. Springer, Cham (2018). https://doi.org/10.
1007/978-3-030-02922-7 14

5. Glenski, M., Ayton, E., Arendt, D., Volkova, S.: Fishing for clickbaits in social
images and texts with linguistically-infused neural network models. arXiv preprint
arXiv:1710.06390 (2017)

6. Huang, P.S., He, X., Gao, J., Deng, L., Acero, A., Heck, L.: Learning deep
structured semantic models for web search using clickthrough data. In: Interna-
tional Conference on Information & Knowledge Management, pp. 2333–2338. ACM
(2013)

7. Kumar, V., Khattar, D., Gairola, S., Kumar Lal, Y., Varma, V.: Identifying click-
bait: a multi-strategy approach using neural networks. In: The 41st International
ACM SIGIR Conference on Research & Development in Information Retrieval, pp.
1225–1228. ACM (2018)

8. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436 (2015)
9. Lin, Z., et al.: A structured self-attentive sentence embedding. arXiv preprint

arXiv:1703.03130 (2017)
10. Nasrabadi, N.M.: Pattern recognition and machine learning. J. Electron. Imaging

16(4), 049901 (2007)
11. Palangi, H., et al.: Deep sentence embedding using long short-term memory net-

works: analysis and application to information retrieval. IEEE/ACM Trans. Audio
Speech Lang. Process. (TASLP) 24(4), 694–707 (2016)

12. Potthast, M., Köpsel, S., Stein, B., Hagen, M.: Clickbait detection. In: Ferro, N.,
et al. (eds.) ECIR 2016. LNCS, vol. 9626, pp. 810–817. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-30671-1 72

13. Řeh̊uřek, R., Sojka, P.: Software framework for topic modelling with large cor-
pora. In: Proceedings of the LREC 2010 Workshop on New Challenges for NLP
Frameworks, pp. 45–50. ELRA, Valletta, May 2010

14. Shen, Y., He, X., Gao, J., Deng, L., Mesnil, G.: A latent semantic model with
convolutional-pooling structure for information retrieval. In: ACM International
Conference on Conference on Information and Knowledge Management, pp. 101–
110. ACM (2014)

15. Turney, P.D., Pantel, P.: From frequency to meaning: vector space models of seman-
tics. J. Artif. Intell. Res. 37, 141–188 (2010)

16. Wang, D., Lu, H., Bo, C.: Visual tracking via weighted local cosine similarity. IEEE
Trans. Cybern. 45(9), 1838–1850 (2015)

17. Wang, X., et al.: Truth discovery via exploiting implications from multi-source
data. In: Conference on Information and Knowledge Management, pp. 861–870.
ACM (2016)

http://arxiv.org/abs/1409.0473
https://doi.org/10.1007/978-3-030-02922-7_14
https://doi.org/10.1007/978-3-030-02922-7_14
http://arxiv.org/abs/1710.06390
http://arxiv.org/abs/1703.03130
https://doi.org/10.1007/978-3-319-30671-1_72

Similarity-Aware Deep Attentive Model 69

18. Yang, Z., Yang, D., Dyer, C., He, X., Smola, A., Hovy, E.: Hierarchical attention
networks for document classification. In: Proceedings of the 2016 Conference of
the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, pp. 1480–1489 (2016)

19. Zheng, H.T., Chen, J.Y., Yao, X., Sangaiah, A.K., Jiang, Y., Zhao, C.Z.: Clickbait
convolutional neural network. Symmetry 10(5), 138 (2018)

20. Zhou, Y.: Clickbait detection in tweets using self-attentive network. arXiv preprint
arXiv:1710.05364 (2017)

http://arxiv.org/abs/1710.05364

Topic Attentional Neural Network for
Abstractive Document Summarization

Hao Liu, Hai-Tao Zheng(B), and Wei Wang

Tsinghua-Southampton Web Science Laboratory, Graduate School at Shenzhen,
Tsinghua University, Shenzhen, China

{liuhao17,w-w16}@mails.tsinghua.edu.cn, zheng.haitao@sz.tsinghua.edu.cn

Abstract. Abstractive summarization is a renewed and challenging task
of document summarization. Recently, neural networks, especially atten-
tional encoder-docoder architecture, have achieved impressive progress
in abstractive document summarization. However, the saliency of sum-
mary, which is one of the key factors for document summarization, still
needs improvement. In this paper, we propose Topic Attentional Neural
Network (TANN) which incorporates topic information into neural net-
works to tackle this issue. Our model is based on attentional sequence-to-
sequence structure but has paired encoders and paired attention mecha-
nisms to deal with original document and topic information in parallel.
Moreover, we propose a novel selection method called topic selection.
This method uses topic information to improve the standard selection
method of beam search and chooses a better candidate as the final sum-
mary. We conduct experiments on the CNN/Daily Mail dataset. The
results show our model obtains higher ROUGE scores and achieves a
competitive performance compared with the state-of-the-art abstractive
and extractive models. Human evaluation also demonstrates our model
is capable of generating summaries with more informativeness and read-
ability.

Keywords: Abstractive summarization · Neural network ·
Topic information · Attention mechanism

1 Introduction

Document summarization is a task to produce a concise and condensed summary
which covers the core information of the original document. Automatic summa-
rization models can be divided into two categories: extractive and abstractive.
Extractive approaches select important segments from the original document
and rearrange them to construct a summary. Totally different from extractive,
abstractive approaches potentially generate new phrases or sentences. Requir-
ing deeper understanding of natural language, abstractive approaches are more
difficult and face great challenges, such as saliency, coherence and readability.

Recently, the models based on attentional sequence-to-sequence (seq2seq)
framework have demonstrated great advantages for abstractive document sum-
marization [12,15,17]. However, the saliency of summary, which plays a vital role
c© Springer Nature Switzerland AG 2019
Q. Yang et al. (Eds.): PAKDD 2019, LNAI 11440, pp. 70–81, 2019.
https://doi.org/10.1007/978-3-030-16145-3_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16145-3_6&domain=pdf
https://doi.org/10.1007/978-3-030-16145-3_6

Topic Attentional Neural Network for Abstractive Document Summarization 71

in document summarization, is still not satisfactory and needs improvement.
Meanwhile, topic information, which is one of the most important features of
original document, can also help to identify the key information but has not
been paid enough attention yet.

In this paper, to increase the saliency of summaries and make generated
summaries cover more core information, we propose Topic Attentional Neural
Network (TANN) for abstractive document summarization. Our model expands
attentional seq2seq structure by using paired encoders and paired attention
mechanisms to deal with original document and topic information in parallel. To
obtain topic information, we employ two classic topic-extracted methods: Latent
Dirichlet Allocation (LDA) [1] and TF-IDF. Then, we use these two types of topic
information to train our model respectively.

Moreover, we also utilize topic information to improve the selection method
of beam search. Beam search algorithm is widely used for generating outputs in
neural networks [3,12,17]. It can generate several sequences as candidates and
chooses one of them as the final output. In summarization task, the standard
selection method chooses the candidate with the highest conditional probability
as final summary. However, the conditional probability of language model is
based on the whole training dataset, which take no specific features of source
document into account. To solve the problem, we propose a selection method
called topic selection. Our method utilizes topic information to calculate a score
for each candidate and choose the one with the highest score. The experimental
results show that topic selection help to produce more informative summaries.
Our main contributions can be listed as follows:

– TANN introduces topic information into neural networks to produce sum-
maries with more salient information. As far as we know, it is the first time
that topic information is used to improve document-level abstractive summa-
rization.

– We propose a novel selection method topic selection which further utilizes
topic information to improve the standard selection method of beam search.
With the help of topic information, our selection method helps to improve
the informativeness of summary.

– Experiment on the CNN/Daily Mail dataset demonstrate that our model
achieves competitive results compared with state-of-the-art abstractive and
extractive models. Human evaluation also demonstrates our model produces
informative summaries with high readability.

This paper is organized as follows. Section 2 introduces related work about
abstractive summarization. Section 3 describes our model. Section 4 describes
the experiment and gives discussion. In Sect. 5, we conclude this paper.

2 Related Work

While a large number of past works for document summarization are extractive
approaches [2,10,13], abstractive approaches generate summaries by understand-
ing the source document, which are closer to the way human writes summaries.

72 H. Liu et al.

Recently, neural networks applied in abstractive approaches have been inten-
sively studied. Rush et al. are the first to introduce neural network for abstractive
text summarization [15]. Their model is based on convolutional encoder-decoder
architecture and shows a promising path of applying seq2seq in abstractive sum-
marization. Chopra et al. [3] and Nallapati et al. [12] extend this work by using
RNN in place of CNN. However, because of the fixed vocabulary of these models,
the generated summaries tend to cause the out-of-vocabulary (OOV) problem.
To overcome this issue, Gu et al. propose CopyNet [6] and Gulcehre et al. pro-
pose pointer network [7], which both extend seq2seq structure by copying OOV
words directly from the source text.

Due to the lack of large document-level dataset, most past works are sentence-
level summarization models [3,15], which summarize a document to one sentence.
Nallapati et al. address this issue by introducing the CNN/Daily Mail dataset
which consists of news from CNN and Daily Mail website [12]. Then, Paulus et
al. propose the intra-attention networks with reinforcement learning [14]. See et
al. introduce the coverage mechanism into summarization system to address the
repetition on the CNN/Daily Mail dataset [17].

So far, few works have considered about using external information to
improve abstractive summarization. Nallapati et al. use feature-rich word embed-
ding as the input of model [12]. This embedding expands original word embed-
ding with some linguistic information such as POS tags and named-entities. Li
et al. use keyword representation as the extra input for attention to guide the
summarization [9]. In this paper, we use topic information as one of the external
information and utilizes it to produce more salient summaries.

Fig. 1. TANN model with paired encoders and paired attention mechanisms.

Topic Attentional Neural Network for Abstractive Document Summarization 73

3 Our Model

3.1 Overview

We build our model based on attentional encoder-decoder framework. In par-
ticular, our model has paired encoder and paired attention mechanisms. We
use copying mechanism and coverage mechanism to avoid the OOV and repeti-
tion. We show the structure of our model in Fig. 1. In encoding step, the inputs
are original document x = {x1, x2, ..., xn} and pre-extracted topic information
k = {k1, k2, ..., km}. Then, the text context vector cxt and topic context vector ckt
are calculated by the respective attention mechanisms. Next, these two context
vectors are both used to compute vocabulary distribution in the decoder. Spe-
cially, we use a learnable parameter weight to make model learn the importance
of topic information. Finally, we use beam search algorithm to generate candi-
date sequences and apply topic selection method to choose the final summary.

3.2 Paired Encoder

The input of our model consists of original document text x and topic words k.
The text encoder and topic encoder both use a bidirectional LSTM [16]. For the
text encoder, it uses the source word x as input and produces two LSTM states
as forword state and backward state:

−→
hx
i ,

←−
hx
i = biLSTM (x) (1)

Then, we combine these two states into the final hidden state hx
i as:

hx
i = relu

(
W

[−→
hx
i ,

←−
hx
i

]
+ b

)
(2)

where W and b are learnable. Using all the words x = {x1, x2, ..., xn} as input,
text encoder produces a sequence of hidden states {hx

1 , h
x
2 , ..., hx

n}. Similarly, the
topic encoder reads m topic words k = {k1, k2, ..., km} and builds

{
hk
1 , h

k
2 , ..., h

k
m

}
as the representation of topic information.

3.3 Paired-Attentional Decoder

We adopt the decoder with paired attention mechanisms to deal with text infor-
mation and topic information respectively. For text attention, the text context
vector cxt at step t is calculated based on the encoder hidden state hx

i and the
decoder hidden state st:

ext,i = vT tanh (linear (hx
i , st)) (3)

ax
t,i = softmax (ext) (4)

cxt =
∑
i

ax
t,ih

x
i (5)

74 H. Liu et al.

where v is learned vector. Likewise, topic attention mechanism also computes
the topic context vector ckt in the similar way.

Specially, a learnable parameter weight is computed as:

weight = σ
(
Wtc

x
t + Wkc

k
t + b

)
(6)

where Wt, Wk, b are learnable. The weight is regarded as a parameter that
indicates how much topic context vector is involved in the generation of words.
Then, the vocabulary distribution is calculated as:

Pvocab = softmax
(
V ′ (V [

st, c
x
t , weight · ckt

]
+ b

)
+ b′) (7)

where V ′, V , b, b′ are learnable, st is decoder hidden state. Finally, the training
loss is defined as:

lossm = − 1
T

T∑
t=0

logPvocab (yt) (8)

3.4 Copying and Coverage

Copying Mechanism. A number of works for sequence generation tasks have
solved the problem of OOV words by copying corresponding words directly from
original document [6,17,18]. Following these works, we employ copying mecha-
nism in our model. We use a variable gate as a switch to choose whether gener-
ating a word from the fixed vocabulary (gate = 1), or copying from the source
(gate = 0). The gate at step t is computed as:

gate = σ (linear (cxt , st, xt)) (9)

Then, the next word yt is predicted by:

P (yt) =
{

Pvocab (yt) , gate = 1∑
i:xi=yt

ax
i,t, gate = 0 (10)

where ax
i,t is the text attention distribution of xi.

Coverage Mechanism. As for the task of producing long summary, repetition
is a common problem and impairs the quality of summaries. Following See et al.
[17], we use the coverage mechanism to address this issue. Specially, at each step
t, our model keep a coverage vector which sums the text attention distribution
ax

∗,i before t:

covt =
t−1∑
j=0

ax
j,i (11)

The vector covt indicates how much attention has the model paid for the input
word xi before step t. Then, We use coverage vector as an additional input for
text attention mechanism and change the calculation of ext,i in Eq. (3) as:

ext,i = vT tanh
(
linear

(
hx
i , st, cov

t
))

(12)

Topic Attentional Neural Network for Abstractive Document Summarization 75

We define the loss of coverage mechanism as:

losscov =
t∑

i=1

min
(
ax
i , cov

t
)

(13)

Then, the final loss of our model is defined as:

lossfinal = lossm + losscov (14)

3.5 Topic Selection

Beam search algorithm, which is used for generating sequence, produces words
step by step in decoder. For each decoding step, the beam search keeps top
K sequences with high conditional probability, where K is a hyper-parameter
called beam size. Therefore, at the end of beam search, the algorithm produces
K sequences which are viewed as candidates for summary. The standard selection
method selects the one with the highest conditional probability as the summary.
Taking the concrete topic information into account, we propose a brand selection
method topic selection. We firstly obtain the candidate sequences by using beam
search algorithm and sort them by conditional probability. Then, for each of the
sequence, we calculate a feature value for every word xi as:

feature (xi) =
{∑

t ak
t,i, xi ∈ topic word

0, xi /∈ topic word
(15)

where ak
t,i is the topic attention distribution at timestep t. This distribution

vector can stand for the degree of participation of each topic word, and it can
be used for measuring the importance of the word. Next, we calculate the score
of each candidate sequence s by suming the feature value of every word:

Score (s) =
∑
xi∈s

feature (xi) (16)

Finally, we resort the candidates and choose the one with the highest Score as
final summary. If the Score of candidates are equal, we choose the one with higher
conditional probability, which makes our method consider not only conditional
probability but topic information.

4 Experiments

4.1 Dataset

We conducted experiments on the CNN/Daily Mail dataset1 which consists of
news stories in CNN and Daily Mail website [8,12]. The corpora has 312,085 arti-
cles paired with human-written multi-sentence summaries. This dataset has two
version: non-anonymized and anonymized. Following See et al. [17], we obtain
the non-anonymized version by same processing steps2, which divide the dataset
into 287,226 training pairs, 13,368 validation pairs and 11,490 test pairs.
1 https://cs.nyu.edu/∼kcho/DMQA/.
2 https://github.com/abisee/cnn-dailymail.

https://cs.nyu.edu/~kcho/DMQA/
https://github.com/abisee/cnn-dailymail

76 H. Liu et al.

4.2 Topic Information Acquisition

We extract topic words of each document by using two classic topic models: TF-
IDF and LDA. These two models are both trained on the full CNN/Daily Mail
dataset. For TF-IDF, we firstly build individual vocabulary for each document
and calculate TF and IDF for each word. Next, we select top 50 percent of
words in the document vocabulary as the topic words. Finally, we rearrange
topic words following the order of their appearance in the original document.
As for LDA, we obtain topic information by GibbsLDA++3 which using Gibbs
sampling for parameter estimation and inference. We set the hyperparameters
of LDA as α = 0.04 and β = 0.01. For each document, we pick top 25 topics and
each topic has 16 topic words as the final topic information.

4.3 Implementation

We train our model with 128-dimensional word embeddings. In particular, we
train word embeddings directly from scratch. We use bi-LSTM for both text
encoder and topic encoder. For each encoder, we use the hidden state dimension
as 256. We select 50k most frequently used words from both source documents
and human-written summaries, then put them together as the vocabulary. Our
model is trained using Adagrad optimizer [4] with learning rate 0.15 and the
initial accumulator value is set to 0.1. We use mini-batches of size 16 and the
encoder size is set to 400. For decoding time, we set the decoder size as 100 for
training and 120 for testing. Beam size is fixed as 4 during beam search.

4.4 Results and Discussion

In this section, we firstly report and analysis the results of ROUGE scores. Then,
we give discussion on the performance of two types of topic information (TF-IDF
and LDA) and topic selection. Finally, we report the result of human evaluation.

Quantitative Analysis. We evaluate our model with ROUGE [5] scores which
are widely used in summarization task. We compare our models with some state-
of-the-art extractive models (lead-3 [12] and SummaRuNNer [11]) and abstrac-
tive models. The overall performance evaluation is demonstrated in Table 1. Due
to the different topic-words acquisition methods, we use several notations (m1 to
m8) to represent our models. From the Table 1, we can see that our basic model
m1 and m5 both outperform baseline PG model (the sixth row in Table 1) on
all ROUGE scores, which shows the effectiveness of topic attention. After using
topic selection to choose the final summaries, m2 and m6 obtain ROUGE scores
improvement, indicating topic selection method helps to differentiate the can-
didate sequences. With coverage mechanism employed, m7 model has shown
a competitive performance in abstractive models. Moreover, it is observed that
m8 achieves best performance on non-anonyized dataset and even exceeds strong
3 http://gibbslda.sourceforge.net/.

http://gibbslda.sourceforge.net/

Topic Attentional Neural Network for Abstractive Document Summarization 77

Table 1. The results is full-length F1 scores for ROUGE-1, ROUGE-2 and ROUGE-L
on the CNN/daily mail test set. All ROUGE scores have a 95% confidence interval of
at most ±0.25. Models with subscript ∗ were trained and tested on the anonymized
version dataset. Best results on non-anonymized dataset are bolded.

Model ROUGE-1 ROUGE-2 ROUGE-L

Lead-3 [12] 40.34 17.70 36.57

SummaRuNNer [11]∗ 39.60 16.20 35.30

Abstractive model [12]∗ 35.46 13.30 32.65

DeepRL, ML [14]∗ 39.87 15.82 36.90

DeepRL, Intra-attn [14]∗ 41.16 15.75 39.08

PG [17] 36.44 15.66 33.42

PG, coverage [17] 39.53 17.28 36.38

TANN, LDA (m1) 37.48 16.46 35.13

TANN, LDA, topic selection (m2) 38.32 16.96 35.45

TANN, LDA, coverage (m3) 39.75 17.45 36.62

TANN, LDA, coverage, topic selection (m4) 40.09 17.78 36.92

TANN, TF-IDF, (m5) 37.78 16.56 35.34

TANN, TF-IDF, topic selection (m6) 38.82 17.16 35.48

TANN, TF-IDF, coverage (m7) 40.29 17.89 36.92

TANN, TF-IDF, coverage, topic selection (m8) 40.56 18.01 37.15

extractive baseline lead-3. Besides, though different version of dataset may cause
some deviations in the comparison of ROUGE, m8 still achieves best ROUGE-2
score.

To illustrate the effectiveness of our models, we show an example in Fig. 2.
Compared to human summary, it can be seen that with the help of topic infor-
mation (green font), m4 and m8 both capture the important information (bold
font) which Pointer-generator misses. Moreover, our model may identify the core
information accurately and generate less unnecessary information (red font).

LDA or TF-IDF. It can be observed that our models with TF-IDF yield higher
ROUGE scores than the models with LDA (such as the result of m8 and m4).
Meanwhile, the final value of parameter weight also supports this result. We
show the learning curve of weight in Fig. 3. As we can see, the initial value of
weight is about 0.5 for both m4 and m8. After the training, the weight of m8
stabilizes around to 0.65 and that of m4 finally drops to about 0.45. It indicates
that the topic information acquired by TF-IDF may be more involved in the
generation process. This result in part because TF-IDF method extracts topic
words directly from original document which may represent more important
details. Moreover, we observe that these two learning curves both quickly increase

78 H. Liu et al.

Fig. 2. Typical comparison. m4 and m8 both capture the most important information
(bold font) which Pointer-generator misses. With the guidance of topics (green font),
our models tend to generate less unnecessary information (red font). (Color figure
online)

Fig. 3. Learning curve of weight. Fig. 4. Copying rate of n-grams.

and peak at early iterations of training. It may because without pre-trained word-
embedding, topic context vector is more informative than text context vector at
the beginning of training.

We also study whether it has a link between topic-extracted methods and how
abstractive the models are. For our two final models m4 and m8, we compare the
copying rate of n-grams which computes n-grams that both appear in the source
document and generated summary. The result is shown in Fig. 4. For 1-gram and
2-grams, our two models have similar performance. However, for sentence-level
output, m4 has lower copying rate (about 33%) than that of m8 (about 41%),
showing m4 is more abstractive and tends to generate diverse summaries. The
reason for this result may be that LDA method can generate some novel words,
which enrich the topic information.

Topic Attentional Neural Network for Abstractive Document Summarization 79

Topic Selection. The results show that topic selection method helps the model
to achieve better performance on all ROUGE scores, indicating that topic words
directly help to identify the key information. As an example shown in Fig. 5,
the candidate sequences are similar but still contain different information (bold
font). With the guidance of topic words “fitness-enthusiast” and “sign”, our topic
selection select the best candidate sequence Candidate-2 as the final summary,
even though Candidate-1 has the highest conditional probability and is selected
by standard selection method.

Fig. 5. An example to show effectiveness of topic selection. All generated summaries
is produced by m8. The topic words is green font. The important information missed
by standard selection method is bold font. (Color figure online)

Human Evaluation. We also perform human evaluation to further evaluate
our model. We use the following as evaluation criteria: (1) Informativeness, the
main ideas and important details of article are shared; (2) Coherence, ideas are
expressed clearly without repetition; (3) Readability, the generated summaries
are fluent and grammatical.

We compare two final models m4 and m8 with lead-3 baseline [17] and
PG with coverage [17]. For the process of human evaluation, we randomly pick
100 different samples from the test set. We show the original articles and four
generated summaries to the human judges. The judges evaluate each summary
by scoring 1–5 point according to each criterion described above. The 5-point
means “best”, while 1-point means“worst”. Each sample is evaluated by 3 judges.
The score of each criterion is averaged across all human judges.

80 H. Liu et al.

Table 2. Human evaluation result. Best results are bolded

Model Informativeness Coherence Readability

Lead-3 3.45 3.40 3.46

PGC 3.35 3.48 3.38

m4 3.52 3.56 3.52

m8 3.56 3.50 3.60

We invite 10 graduate students as our judges. The results are shown in
Table 2. Both m4 and m8 outperform state-of-the-art abstractive pointer-
generator and lead-3 extractive baseline. Compared to pointer-generator, it is
observed that our models show competitive performance on informativeness and
readability, indicating our models may provide more key information. Compar-
ing the results of m4 and m8, while being inferior to the other two criteria, m4
shows advantage on Coherence. It indicates the richer topic information pro-
duced by LDA can help to improve the diversity of summaries in some extent.

5 Conclusion

In this paper, we propose topic attentional neural network (TANN) to utilize
topic information for abstractive document summarization. We also propose a
novel selection method named topic selection to improve the selection method
of beam search. Experiments on the CNN/Daily Mail dataset demonstrate that,
with the help of topic information, our model achieves a competitive performance
with state-of-the-art abstractive and extractive methods and is able to produce
summaries with more salient information. Human evaluation also demonstrates
our model generates summaries with high informativeness and readability. In
the future, we plan to extend our model with Generative Adversarial Network
to generate more diverse summaries.

Acknowledgements. This research is supported by National Natural Science Foun-
dation of China (Grant No. 61773229), Basic Scientific Research Program of Shenzhen
City (Grant No. JCYJ20160331184440545), and Overseas Cooperation Research Fund
of Graduate School at Shenzhen, Tsinghua University (Grant No. HW2018002).

References

1. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. J. Mach. Learn.
Res. Arch. 3, 993–1022 (2003)

2. Cheng, J., Lapata, M.: Neural summarization by extracting sentences and words.
In: Meeting of the Association for Computational Linguistics, pp. 484–494 (2016)

3. Chopra, S., Auli, M., Rush, A.M.: Abstractive sentence summarization with atten-
tive recurrent neural networks. In: Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, pp.
93–98 (2016)

Topic Attentional Neural Network for Abstractive Document Summarization 81

4. Duchi, J.C., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learn-
ing and stochastic optimization. J. Mach. Learn. Res. 12, 2121–2159 (2011)

5. Flick, C.: Rouge: a package for automatic evaluation of summaries. In: The Work-
shop on Text Summarization Branches Out, p. 10 (2004)

6. Gu, J., Lu, Z., Li, H., Li, V.O.K.: Incorporating copying mechanism in sequence-
to-sequence learning. Meeting of the Association for Computational Linguistics,
pp. 1631–1640 (2016)

7. Gulcehre, C., Ahn, S., Nallapati, R., Zhou, B., Bengio, Y.: Pointing the unknown
words. Meeting of the Association for Computational Linguistics, pp. 140–149
(2016)

8. Hermann, K.M., et al.: Teaching machines to read and comprehend. In: Neural
Information Processing Systems, pp. 1693–1701 (2015)

9. Li, C., Xu, W., Li, S., Gao, S.: Guiding generation for abstractive text summa-
rization based on key information guide network. In: Proceedings of the 2018
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 55–60.
Association for Computational Linguistics (2018). http://aclweb.org/anthology/
N18-2009

10. McDonald, R.: A study of global inference algorithms in multi-document sum-
marization. In: Amati, G., Carpineto, C., Romano, G. (eds.) ECIR 2007. LNCS,
vol. 4425, pp. 557–564. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-71496-5 51

11. Nallapati, R., Zhai, F., Zhou, B.: SummaRuNNer: a recurrent neural network based
sequence model for extractive summarization of documents. In: National Confer-
ence on Artificial Intelligence, pp. 3075–3081 (2017)

12. Nallapati, R., Zhou, B., Santos, C.N.D., Gulcehre, C., Xiang, B.: Abstractive text
summarization using sequence-to-sequence RNNs and beyond. In: Conference on
Computational Natural Language Learning, pp. 280–290 (2016)

13. Nishikawa, H., Arita, K., Tanaka, K., Hirao, T., Makino, T., Matsuo, Y.: Learn-
ing to generate coherent summary with discriminative hidden semi-Markov model.
In: Proceedings of COLING 2014, the 25th International Conference on Com-
putational Linguistics: Technical Papers, pp. 1648–1659. Dublin City University
and Association for Computational Linguistics (2014). http://www.aclweb.org/
anthology/C14-1156

14. Romain Paulus, C.X., Socher, R.: A deep reinforced model for abstractive sum-
marization. In: The 2018 International Conference on Learning Representations
(Submitted for Publication)

15. Rush, A.M., Chopra, S., Weston, J.: A neural attention model for abstractive
sentence summarization. Empirical Methods in Natural Language Processing, pp.
379–389 (2015)

16. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

17. See, A., Liu, P.J., Manning, C.D.: Get to the point: summarization with pointer-
generator networks. In: Proceedings of the 55th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pp. 1073–1083. Associa-
tion for Computational Linguistics (2017). https://doi.org/10.18653/v1/P17-1099,
http://www.aclweb.org/anthology/P17-1099

18. Vinyals, O., Fortunato, M., Jaitly, N.: Pointer networks. Neural Information Pro-
cessing Systems, pp. 2692–2700 (2015)

http://aclweb.org/anthology/N18-2009
http://aclweb.org/anthology/N18-2009
https://doi.org/10.1007/978-3-540-71496-5_51
https://doi.org/10.1007/978-3-540-71496-5_51
http://www.aclweb.org/anthology/C14-1156
http://www.aclweb.org/anthology/C14-1156
https://doi.org/10.18653/v1/P17-1099
http://www.aclweb.org/anthology/P17-1099

Parameter Transfer Unit for Deep
Neural Networks

Yinghua Zhang(B), Yu Zhang, and Qiang Yang

Department of Computer Science and Engineering,
Hong Kong University of Science and Technology, Kowloon, Hong Kong

{yzhangdx,yuzhangcse,qyang}@cse.ust.hk

Abstract. Parameters in deep neural networks which are trained on
large-scale databases can generalize across multiple domains, which is
referred as “transferability”. Unfortunately, the transferability is usually
defined as discrete states and it differs with domains and network archi-
tectures. Existing works usually heuristically apply parameter-sharing
or fine-tuning, and there is no principled approach to learn a parameter
transfer strategy. To address the gap, a Parameter Transfer Unit (PTU)
is proposed in this paper. PTU learns a fine-grained nonlinear combina-
tion of activations from both the source domain network and the target
domain network, and subsumes hand-crafted discrete transfer states. In
the PTU, the transferability is controlled by two gates which are artificial
neurons and can be learned from data. The PTU is a general and flexi-
ble module which can be used in both CNNs and RNNs. It can be also
integrated with other transfer learning methods in a plug-and-play man-
ner. Experiments are conducted with various network architectures and
multiple transfer domain pairs. Results demonstrate the effectiveness of
the PTU as it outperforms heuristic parameter-sharing and fine-tuning
in most settings.

Keywords: Transfer learning · Deep neural networks

1 Introduction

Deep Neural Networks (DNNs) are able to model complex functional mappings
between inputs and outputs, and they produce competitive results in a wide
range of areas, including speech recognition, computer vision, natural language
processing, etc. Yet most successful DNNs belong to the supervised learning
paradigm, and they require large-scale labeled data for training. Otherwise, they
are likely to suffer from over-fitting. The data-hungry nature makes it prohibitive
to use DNNs in low-resource domains where labeled data are scarce. There is a
gap between the lack of training data in real-world scenarios and the data-hungry
nature of DNNs.

c© Springer Nature Switzerland AG 2019
Q. Yang et al. (Eds.): PAKDD 2019, LNAI 11440, pp. 82–95, 2019.
https://doi.org/10.1007/978-3-030-16145-3_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16145-3_7&domain=pdf
https://doi.org/10.1007/978-3-030-16145-3_7

Parameter Transfer Unit for Deep Neural Networks 83

The aforementioned dilemma can be addressed by transfer learning, which
boosts learning in a low-resource target domain by leveraging one or more data-
abundant source domain(s) [12,18]. It is found that parameters in a DNN are
transferable, i.e., they are general and suitable for multiple domains [10,20,21].
The generalization ability of parameters is referred as “transferability”. Two
popular parameter-based transfer learning methods are parameter-sharing and
fine-tuning. Parameter-sharing assumes that the parameters are highly trans-
ferable. The parameters in the source domain network are directly copied to
the target domain network and they are kept“frozen”. The fine-tuning method
assumes that the parameters in the source domain network are useful, but they
need to be trained with target domain data to better adapt to the target domain.
One typical example is Domain Adaptation Network (DAN) [8] which applies
both techniques. The first three convolutional layers in the DAN are shared, and
the next two layers are fine-tuned.

Though parameter-based transfer learning is effective, it suffers from two
limitations. Firstly, the parameter transferability is manually defined as discrete
states, usually “random”,“fine-tune”, and “frozen” [10,20,21]. But the transfer-
ability at a fine-grained scale has not been considered. A block of parameters,
for example, all the filters of a convolutional layer, are treated as a whole. If
they are regarded as transferable, all the parameters are retained, though some
of them are irrelevant or even introduce noises to the target domain; if they
are considered as not transferable, they are completely discarded and the baby
is thrown out with the bathwater. The second limitation is that the parameter
transferability differs with domains and network architectures and there is no
principled approach to learn the optimal transfer strategy. A parameter transfer
strategy is obtained by assigning transfer states to different blocks of parame-
ters. To find an optimal strategy, one straightforward solution is the hold-out
method, where a part of the training data is reserved as a validation set and the
network is decomposed into multiple parts and each part is assigned a transfer
state. In the hold-out method, the optimal strategy can be found by choosing
the one with the smallest validation error. By denoting by M and L the number
of transfer states and the number of parts in the network, the number of possible
strategies is ML. The hold-out method is rather inefficient because it involves
long training time and tremendous computational costs.

To tackle the two limitations of existing parameter-based transfer methods,
we propose a Parameter Transfer Unit (PTU). Transfer learning with PTUs
involves an already trained source domain network and a target domain network,
and the two networks are connected by the PTU(s). A PTU produces a weighted
sum of the activations from both networks. There are two gates in a PTU,
a fine-tune gate and an update gate. The fine-tune gate adapts source domain
activations to the target domain, and the update gate decides whether to transfer
from the source domain. The two gates control the parameter transferability at
a fine-grained scale and can be learned from data.

84 Y. Zhang et al.

The contributions of the proposed method are two folds.

1. A principled parameter transfer method. We propose a novel parameter trans-
fer unit, which subsumes hand-crafted discrete transfer states and allows
parameter transfer at a fine-grained scale. The PTU is learned in an end-
to-end approach.

2. Plug-and-play usage. The PTU can be used in both Convolutional Neural
Networks (CNNs) and Recurrent Neural Networks (RNNs). It is a general
and flexible transfer method as it can be easily integrated with almost all the
existing models which intuitively apply the parameter-sharing or fine-tuning
techniques. Experimental results show that transfer learning with the PTU
outperforms the heuristic parameter transfer methods.

2 Related Works

Though deep learning models have been extensively studied, there are limited
research works addressing transfer learning for DNNs. The most popular trans-
fer method for DNNs is parameter-based transfer. It is shown that parameters
of the low-level layers in a CNN are transferable [20]. For natural language pro-
cessing tasks, Zoph et al. and Mou et al. study the parameter transferability
in machine translation [21] and sentence classification tasks [10]. These works
define parameter transferability as discrete states and conduct empirical studies.
However, the conclusions drawn from these studies can hardly generalize to a
new domain or a new network architecture. On the contrary, the proposed PTU
defines the transferability at a fine-grained scale and learns the transferability
in a principled approach.

Another line of research works use parameter-sharing and fine-tuning in joint
with other transfer learning methods, for example, feature-based transfer learn-
ing [2,8,17]. These works heuristically apply the conclusions from the empirical
studies, and proposing principled parameter-based transfer learning methods is
not their main focus. We show that integrating the PTU with these models can
further improve their performance.

The most relevant work to the proposed method is the cross-stitch network
[9]. Instead of assigning blocks of parameters as “transferable” or“not transfer-
able”, a soft parameter-based transfer method is adopted. Knowledge sharing
between networks in two tasks is achieved with a “cross-stitch” unit. It learns a
linear combination of activations from different networks. The proposed PTU is
different from the cross-stitch network in the following three aspects. First, the
transferability is controlled by linear combination coefficients in the cross-stitch
unit, while the PTU learns a non-linear combination which is more expressive.
Secondly, the cross-stitch unit is proposed for multi-task learning while the PTU
is designed for transfer learning where the target domain performance is the main
focus. If the cross-stitch network is applied in the transfer learning setting, it
becomes a degenerated case of the PTU. Thirdly, the PTU is applied and eval-
uated with both CNNs and RNNs while the cross-stitch unit is only evaluated
with CNNs.

Parameter Transfer Unit for Deep Neural Networks 85

3 Parameter Transfer Unit (PTU)

In this section, we present the proposed PTU. First, three hand-crafted discrete
transfer states are introduced as background knowledge. Then we introduce the
use of the proposed PTU in CNNs and RNNs. Finally, we discuss several exten-
sions of PTU to handle the scalability issue.

Random Fine-tune Frozen

Fig. 1. Three hand-crafted discrete transfer states

3.1 Three Transfer States

There are usually three states for parameter transfer, sorted in an ascending
order of the transferability, as shown in Fig. 1.

1. Random: the parameters are randomly initialized and learned with the target
domain data only;

2. Fine-tune: the parameters are initialized with those from the source domain
network, and then fine-tuned with the target domain data;

3. Frozen: the parameters are initialized with those from the source domain net-
work, and keep unchanged during the training process in the target domain.
When parameter-sharing is applied to a convolution layer (or a RNN cell),
the parameters of that layer are frozen.

3.2 PTU for CNNs

An overview of transfer learning with PTUs in a CNN is shown in Fig. 2. The
whole network, denoted by PTU-CNN, is composed of three parts, a source
domain network, a target domain network and a few PTUs, which are denoted
by blue blocks, green blocks and red circles in Fig. 2. We focus on the setting
where there are limited labeled samples in the target domain. A labeled target
domain data sample is denoted by (xT , yT).

Let L denote the number of layers in the target domain network, and the
target domain network shares an identical architecture to the source domain
network from the first layer to the (L−1)-th layer. This allows parameter transfer
between different tasks or heterogeneous domains where label spaces differ. The
parameters in the source domain network are frozen, and the parameters in the
target domain network are randomly initialized and learned with target domain
data only. PTUs are placed between the two networks in a layer-wise manner to
combine activations from both domains. In the training phase, only the target

86 Y. Zhang et al.

xT . . .

. . . yT

source domain network

target domain network

Fig. 2. An overview of the PTU-
CNN. In the training phase, the source
domain network is frozen, and the
target domain network together with
the PTUs are optimized. (Color figure
online)

xl−1

. . .

xl xL

. . .

Fig. 3. Unrolled PTU-RNN. The
source/target domain RNN cell is
denoted by blue/green blocks. The
connections from the inputs to the
RNN cells are denoted by dashed gray
arrows. (Color figure online)

domain network and the PTUs are optimized. Domain-specific knowledge can
be encoded by the target domain network, and the PTUs learn how to transfer
from the source domain network. In the inference phase, a target domain sample
is fed into both networks, following the flows shown by the arrows in Fig. 2, and
finally a predicted label is produced by the output layer of the target domain
network.

Let l denote the l-th layer in the target domain network (l = 1, . . . , L−1), and
hS
l /hT

l denote the output of the l-th layer in the source/target domain network,
respectively. Given hS

l and hT
l , a PTU learns a nonlinear combination, denoted

by h̃T
l , and feeds h̃T

l to the (l + 1)-th layer of the target domain network.
There are two gates in a PTU, a fine-tune gate rl and an update gate zl, as

defined in Eq. (1):

rl = σ(Wr
l [h

S
l ,hT

l]), zl = σ(Wz
l [h

S
l ,hT

l]), (1)

where [·] denotes a concatenation operation and σ denotes the sigmoid function.
The gates are artificial neurons whose parameters are denoted by Wr

l and Wz
l ,

respectively. They take the activations hS
l and hT

l as inputs, and output a value
between 0 and 1 for each element in the activations. Then the outputs of the
gates mask the hidden activations and yield the combined activation h̃T

l , as
defined in Eq. (2):

hf
l = (1 − rl) ∗ hS

l + rl ∗ φ(Wh
l h

S
l),

h̃T
l = (1 − zl) ∗ hT

l + zl ∗ hf
l ,

(2)

where ∗ denotes the Hadamard product, φ denotes an activation function, usually
the hyperbolic tangent function or the Rectified Linear Unit (ReLU), and there is
a linear transformation characterized by Wh

l , which adapts the source domain
activations to the target domain. The nonlinear transformation φ(Wh

l h
S
l) is

Parameter Transfer Unit for Deep Neural Networks 87

equivalent to fine-tuning. The fine-tune gate produces a weighted sum of the
source domain activations with and without fine-tuning, denoted by hf

l . The
update gate determines how to combine the target domain activations with the
transformed source domain activations. Details of the PTU are shown in Fig. 4.

Fig. 4. Details of the PTU

Relationship with the Hand-Crafted Discrete Transfer States. In
extreme cases, the PTU degenerates to the hand-crafted discrete transfer states.
That is, when the update gate zl equals 0, the fine-tune gate rl is ignored and the
activations completely come from the target domain; otherwise, it takes source
domain information into consideration. When the fine-tune gate rl equals 0, the
source domain activations hS

l are highly transferable and they can be directly
copied to the target domain. Otherwise, transformed source domain activations
are used. Thus the PTU subsumes the three discrete transfer states. In most
cases, the output of the PTU is a fine-grained combination of the activations
from both networks.

Relationship with the Cross-Stitch Network. If the cross-stitch network
is applied in the transfer learning setting, it becomes a degenerated case of the
PTU-CNN. This is because the information flow from the target domain network
to the source domain network is blocked, and the non-linear transformation of
the PTU subsumes the linear combination in the cross-stitch network.

3.3 PTU for RNNs

We mainly focus on the PTU in CNNs so far, and here we extend the PTU
for RNNs, denoted by PTU-RNN. As shown in Fig. 3, a sequence xT with L
steps is inputted where xT = {xT

1 , . . . ,xT
L}. A RNN can be unrolled into a full

network where the parameters in the RNN cell are shared across all time steps.
Thus the RNN is able to tackle sequences of arbitrary lengths. The time step l
in a RNN can be regarded as the l-th layer in a CNN. Similarly, hS

l /hT
l denotes

the internal hidden state at the l-th time step in the source/target RNN cell,
respectively. By building the relationships of the notations in CNNs and RNNs,
the PTU can be readily extended to RNNs.

88 Y. Zhang et al.

3.4 Scalability

As each PTU introduces three parameters Wr, Wz and Wh, scalability becomes
a challenge. This is because additional parameters take up more computational
resources, e.g., GPU memory. In addition, more free parameters require more
training data, otherwise, over-fitting is likely to occur. To reduce the computa-
tional cost, Wr, Wz and Wh are shared across all time steps in the PTU-RNN.
But this cannot be applied in the PTU-CNN because the dimensions of the PTU
parameters in different layers do not agree. In the PTU-CNN, depth-wise sepa-
rable convolutions [4,15] are used instead of standard convolutions. To address
the over-fitting issue, regularization techniques are necessary. Traditional regu-
larizers, such as �1 and �2 regularization, together with structured sparsity [19]
are applied. These techniques allow the PTU to scale up to very deep CNNs, for
example, the 28-layer MobileNets [4].

Depth-Wise Separable Convolution. The depth-wise separable convolution
is initially proposed in [15], and it can greatly reduce computational costs with
a slightly degraded performance [4]. The depth-wise separable convolution fac-
torizes a standard convolution into two steps, a depth-wise convolution and a
1 × 1 point-wise convolution. In the depth-wise convolution step, a single filter
is shared across all the channels. And then the point-wise convolution applies a
1×1 convolution to the output of the depth-wise convolution. For a convolution
layer with N filters whose filter size is K × K, the reduction in computational
cost is 1

N + 1
K2 .

Structured Sparsity. As Wr, Wz and Wh are high-dimensional tensors,
structured sparsity learning is imposed to penalizing unimportant weights and
improve computation efficiency [19]. Filter-wise and channel-wise group Lasso
regularization are applied to the parameters in the PTU.

4 Experimental Results

We evaluate the PTU with both CNNs and RNNs on classification tasks. Classi-
fication accuracy is adopted as the evaluation metric. All the neural networks are
implemented with Tensorflow [1]. Hyper-parameters are selected via the hold-out
method.

4.1 Experiments on CNNs

We first describe the experimental setup, and then report numerical results. We
also provide an interpretation of the output values of the gates in the PTU.

Parameter Transfer Unit for Deep Neural Networks 89

Experimental Setup. Various network architectures are evaluated on multiple
transfer domain pairs. Three transfer settings are composed from four natural
image classification datasets and three network architectures, as described below:

1. S1: CIFAR-10 → CIFAR-100 [5] where a LeNet-like 5-layer network is
employed.

2. S2: ILSVRC-2012 [14] → Caltech-256 [3] where a VGG-16 network [16] is
employed.

3. S3: ILSVRC-2012 → Caltech-256 where a MobilenetV1 network [4] is
employed.

Two baseline models are considered:

1. No transfer (NoTL). The parameters are learned from scratch in the target
domain.

2. Layer-wise fine-tuning (FT). For a CNN with L layers, if a layer has two pos-
sible transfer state, “fine-tune” and“frozen”, there are 2L transfer strategies,
which generates prohibitive computation costs. To improve the efficiency, we
adopt a strategy that layers are incrementally frozen as the parameter trans-
ferability drops when moving from low-level layers to high-level layers in a
CNN [20]. That is, there are L fine-tuning strategies, and FT-l denotes a
strategy that freezes the first l layers and fine-tunes the remaining layers.

(a) S1 (b) S2 (c) S3

Fig. 5. Image classification accuracy of CNN models

Results. The results of the three methods are depicted in Fig. 5. As there are
L fine-tuning models, only the highest test accuracy is summarized in Table 1.
The optimal test accuracy of a setting is highlighted with bold face. Δ denotes
the relative improvement of the PTU model over the FT model.

As shown in Fig. 5, the parameter transferability differs with domains and
architectures. For S1, the parameters in low-level layers are more transfer-
able than those in high-level layers, and the parameter transferability decreases
monotonously, which is generally consistent with the conclusions in [20]. But the
conclusion does not generalize to S2 and S3. For example, in S3, freezing the first

90 Y. Zhang et al.

Table 1. Classification accuracy
on CNNs

Models Settings

S1 S2 S3

NoTL 53.92 36.21 42.90

FT 54.28 79.09 74.50

PTU 56.12 78.68 76.86

Δ(%) 3.39 −0.52 3.17

Table 2. Classification accuracy of MNIST →
Omniglot

Models Domains

G L K JP-H JP-K

K-NN 40.28 38.46 32.50 44.23 34.04

NoTL 38.89 41.03 31.67 35.90 26.24

FT 45.83 56.41 48.33 46.79 34.04

PTU 51.39 67.95 55.00 50.00 46.10

Δ (%) 12.13 20.46 13.80 6.86 35.43

13 layers achieves a higher accuracy than fine-tuning the whole network. These
results indicate that the heuristic layer-wise fine-tuning method might not yield
the optimal parameter transfer strategy.

Low-resource target domains benefit from parameter-based transfer learning,
as both the FT model and the PTU model outperform the NoTL model. Further-
more, the PTU model achieves a comparable performance with the FT model
in S2, and obtains the optimal test accuracies in the other 2 settings with a
relative improvement around 3%. These results demonstrate the effectiveness of
the PTU in various domains and with different network architectures. Unlike the
layer-wise fine-tuning which involves L training processes, a reasonable param-
eter transfer strategy can be learned in one pass with the PTU.

Quantify Parameter Transferability by Gate Outputs. The two gates
in the PTU control the parameter transferability, which provides an approach
to quantify the parameter transferability. The average output values of the two
gates in different layers are shown in Fig. 6. The classification accuracy of the
FT model which is an indicator of the parameter transferability is also included.
For the update gate z, it controls how much knowledge is flowed from the source
domain to the target domain. A larger z indicates more knowledge transfer. For
example, in Fig. 6(a), the FT-1 achieves the optimal test accuracy, and z1 is also
the highest value among all the 4 values. In addition to the update gate, the
fine-tune gate r characterizes how many activations are copied from the source
domain, and how many activations need to be transformed before applying to
the target domain, which has not been considered by existing works.

Here we quantify the parameter transferability as the average output values
of gates which are scalars. A more fine-grained visualization analysis can be per-
formed. For example, a large z value of a filter might help us identify important
patterns that are shared between domains. This might demystify DNNs which
are considered as a black-box process. Since understanding the neural network
via visualization analysis is not the main focus of this paper, it will be left as
future works.

Parameter Transfer Unit for Deep Neural Networks 91

(a) S1 (b) S2 (c) S3

Fig. 6. Parameter transferability of different layers in CNNs

4.2 Experiments on RNNs

The experimental setup is first introduced, and then numerical results are pre-
sented.

Experimental Setup. The PTU for RNNs is evaluated with two handwritten
character recognition datasets, MNIST [7] as the source domain and Omniglot
[6] as the target domain. There are 50 alphabets in the Omniglot dataset, and
5 alphabets are randomly selected and used as target domains. The 5 alphabets
are Greek (G), Latin (L), Korean (K), Japanese hiragana (JP-H) and Japanese
katakana (JP-K). At each time step, a row of an image is fed into the RNN.
A single-layer RNN with 128 hidden units is used as a feature extractor. The
hidden state of the last time step is used as the feature and it is fed to a fully-
connected layer for classification. The network achieves a classification accuracy
at 96% in the source domain. Since the label spaces of the two domains do not
agree, the only transferable parameters are those in the RNN cell, and hence
there is only one FT strategy. In addition to the NoTL and FT models, a K-
Nearest Neighbor (K-NN) classifier are included as well. The K-NN classifier is
implemented with scikit-learn [13].

Results. The classification accuracies are listed in Table 2. Since there are only
around 1, 000 labeled training data in each target domain, the NoTL model
performs even worse than a simple K-NN classifier in 4 out of 5 domains. Similar
conclusions to the CNN experiments can be drawn. The classification accuracy
is improved when a parameter-based transfer learning method is applied, and
the proposed PTU further improves over the FT model with a large margin
where the relative improvement Δ ranges from 6.86% to 35.43%. The reason
that the PTU outperforms heuristic parameter-sharing and fine-tuning might
be two folds.

1. The PTU subsumes hand-crafted transfer states by introducing learnable
gates. It is more expressive in terms of model capacity.

92 Y. Zhang et al.

(a) Training loss of S3 (b) Validation accuracy of S3

(c) Training loss of Greek (d) Validation accuracy of Greek

Fig. 7. Learning curves of two transfer settings

2. In PTU, source domain knowledge is retained as frozen parameters, and the
domain-specific knowledge is encoded in the target domain network. On the
other hand, the parameters in the FT model are changed during training in
the target domain, which might impair the useful knowledge from the source
domain.

4.3 Convergence Performance

We investigate the convergence performance of different models by learning
curves. The learning curves of two transfer settings, S3 in the CNN experi-
ments and the Greek alphabet as the target domain in the RNN experiments,
are shown in Fig. 7. The training loss and validation accuracy as a function of the
number of steps are plotted for each setting with the learning rate that yields
the optimal test classification accuracy. At each step, the model is optimized
with a mini-batch.

For the S3 setting, the NoTL model converges slowly though a large learning
rate is used. The validation accuracy is almost 0 in the first 10, 000 steps. The
optimization efficiency is significantly improved by parameter transfer. The FT
model converges at a similar rate to the NoTL model while its learning rate is
100-times smaller. For the PTU model, the training loss drops quickly, and the
validation accuracy saturates. The PTU is rather resistant to over-fitting since
its validation accuracy does not deteriorate as the training process continues.

Parameter Transfer Unit for Deep Neural Networks 93

For the Greek setting, the NoTL model gets stuck with a bad local optimum
as the training loss decreases while the validation accuracy converges to around
0.5. The FT model starts with the largest training loss and converges the fastest
while it suffers from over-fitting. The PTU model uses a learning rate that is
10 times larger than the other two baseline models, as it introduces additional
parameters. The PTU model has a better generalization ability as it achieves
the highest accuracy on the validation set.

4.4 Integrate PTU with Feature-Based Transfer Learning Method

As a general and flexible module for transfer learning, the PTU can be easily
integrated with other transfer learning methods and further improves their per-
formance. The performance of the PTU with a feature-based transfer learning
method is evaluated in this section.

The experiment is conducted on an unsupervised domain adaptation task,
MNIST → MNIST-M. The source domain is labeled while the target domain is
unlabeled. The target domain, MNIST-M, is a variation of MNIST [2]. Domain-
invariant representations can learned by minimizing the Maximum Mean Dis-
crepancy (MMD) [8,11,17]. Similar to the experimental setup in Sect. 4.2, a
single-layer RNN with 128 hidden units is used as the feature extractor, and
then follows a fully-connected classification layer. Three models are evaluated:

1. Source-only (S-only). The model is trained with the labeled source data only,
and is directly evaluated on the target domain without any adaptation.

2. MMD with fine-tuning (FT-MMD). The model initializes the parameters with
those from the S-only model and fine-tunes them by minimizing the MMD.
A linear combination of 19 RBF kernels is used for computing the MMD.

3. MMD with PTU (PTU-MMD). The model replaces the heuristic fine-tuning
in the FT-MMD with the PTU.

Table 3. Classification accuracy of MNIST → MNIST-M

S-only FT-MMD PTU-MMD Δ (%)

45.83 49.46 51.29 3.68

The results are summarized in Table 3. Both feature-based transfer learning mod-
els, FT-MMD and PTU-MMD, outperform the S-only model, which demon-
strates the efficacy of feature-based transfer learning. Moreover, a relative
improvement of 3.68% is achieved by replacing heuristic parameter fine-tuning
with the PTU. The results show that the PTU can be successfully applied
together with other transfer learning methods to further boost their perfor-
mance.

94 Y. Zhang et al.

5 Conclusion

A principled approach to learn parameter transfer strategy is proposed in this
paper. A novel parameter transfer unit (PTU) is designed. The parameter trans-
ferability is controlled at a fine-grained scale by two gates in the PTU which can
be learned from data. Experimental results demonstrate the effectiveness of the
PTU with both CNNs and RNNs in multiple transfer settings where it outper-
forms heuristic parameter-sharing and fine-tuning. In the future, we will apply
the PTU to more challenging settings, for example, image captioning which
involves multi-modality data.

References

1. Abadi, M., et al.: TensorFlow: a system for large-scale machine learning. OSDI 16,
265–283 (2016)

2. Ganin, Y., et al.: Domain-adversarial training of neural networks. J. Mach. Learn.
Res. 17, 591–5935 (2016)

3. Griffin, G., Holub, A., Perona, P.: Caltech-256 object category dataset (2007)
4. Howard, A.G., et al.: MobileNets: efficient convolutional neural networks for mobile

vision applications. arXiv preprint arXiv:1704.04861 (2017)
5. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images

(2009)
6. Lake, B.M., Salakhutdinov, R., Tenenbaum, J.B.: Human-level concept learning

through probabilistic program induction. Science 350(6266), 1332–1338 (2015)
7. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to

document recognition. Proc. IEEE 86(11), 2278–2324 (1998)
8. Long, M., Cao, Y., Wang, J., Jordan, M.: Learning transferable features with deep

adaptation networks. In: International Conference on Machine Learning, pp. 97–
105 (2015)

9. Misra, I., Shrivastava, A., Gupta, A., Hebert, M.: Cross-stitch networks for multi-
task learning. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 3994–4003 (2016)

10. Mou, L., et al.: How transferable are neural networks in NLP applications? In:
Proceedings of the 2016 Conference on Empirical Methods in Natural Language
Processing, pp. 479–489 (2016)

11. Pan, S.J., Tsang, I.W., Kwok, J.T., Yang, Q.: Domain adaptation via transfer
component analysis. IEEE Trans. Neural Netw. 22(2), 199–210 (2011)

12. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng.
22(10), 1345–1359 (2010)

13. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn.
Res. 12, 2825–2830 (2011)

14. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J.
Comput. Vis. 115(3), 211–252 (2015)

15. Sifre, L., Mallat, P.: Rigid-motion scattering for image classification. Ph.D. thesis,
Citeseer (2014)

16. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556 (2014)

17. Tzeng, E., Hoffman, J., Zhang, N., Saenko, K., Darrell, T.: Deep domain confusion:
maximizing for domain invariance. arXiv preprint arXiv:1412.3474 (2014)

http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1412.3474

Parameter Transfer Unit for Deep Neural Networks 95

18. Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning. J. Big
Data 3(1), 9 (2016)

19. Wen, W., Wu, C., Wang, Y., Chen, Y., Li, H.: Learning structured sparsity in
deep neural networks. In: Advances in Neural Information Processing Systems, pp.
2074–2082 (2016)

20. Yosinski, J., Clune, J., Bengio, Y., Lipson, H.: How transferable are features in
deep neural networks? In: Advances in Neural Information Processing Systems,
pp. 3320–3328 (2014)

21. Zoph, B., Yuret, D., May, J., Knight, K.: Transfer learning for low-resource neural
machine translation. In: Proceedings of the 2016 Conference on Empirical Methods
in Natural Language Processing, pp. 1568–1575 (2016)

EFCNN: A Restricted Convolutional
Neural Network for Expert Finding

Yifeng Zhao(B), Jie Tang, and Zhengxiao Du

Department of Computer Science and Technology, Tsinghua University,
Beijing, China

{zhao-yf16,duzx16}@mails.tsinghua.edu.cn, jietang@tsinghua.edu.cn

Abstract. Expert finding, aiming at identifying experts for given top-
ics (queries) from expert-related corpora, has been widely studied in
different contexts, but still heavily suffers from low matching quality
due to inefficient representations for experts and topics (queries). In this
paper, we present an interesting model, referred to as EFCNN, based
on restricted convolution to address the problem. Different from tradi-
tional models for expert finding, EFCNN offers an end-to-end solution to
estimate the similarity score between experts and queries. A similarity
matrix is constructed using experts’ document and the query. However,
such a matrix ignores word specificity, consists of detached areas, and is
very sparse. In EFCNN, term weighting is naturally incorporated into
the similarity matrix for word specificity and a restricted convolution is
proposed to ease the sparsity. We compare EFCNN with a number of
baseline models for expert finding including the traditional model and
the neural model. Our EFCNN clearly achieves better performance than
the comparison methods on three datasets.

Keywords: Expert finding · Convolution neural network ·
Similarity matrix

1 Introduction

Online question-and-answer (QA) has become a more popular way for users
to share their experiences and to ask questions on the Internet. For example,
Quora.com and Zhihu.com, the most popular websites for sharing and acquiring
knowledge, attract users to answer millions of questions per day; Toutiao QA,
an up-and-coming mobile social platform, has accumulated 580 million Toutiao
users and 300 thousand professional writers (authors). The competitive advan-
tage of the online QA platforms is that they provide high-quality answers for
users and offers a new direction for professional knowledge sharing. However, at
the same time, it also poses new challenges. One central challenge is finding a
way to assign those new questions (queries) to potential experts, referred to as
expert finding.

Expert finding has been studied by researchers from different communities.
Several different methods have been proposed. These include keyword-based
c© Springer Nature Switzerland AG 2019
Q. Yang et al. (Eds.): PAKDD 2019, LNAI 11440, pp. 96–107, 2019.
https://doi.org/10.1007/978-3-030-16145-3_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16145-3_8&domain=pdf
https://doi.org/10.1007/978-3-030-16145-3_8

EFCNN: A Restricted Convolutional Neural Network for Expert Finding 97

modeling [2], language modeling [1,3,18], latent semantic indexing [6], and topic
modeling [11,15]. Most of these methods represent every expert as a document
and cast the problem as a document matching problem. In language models,
each document is represented by words with their term frequency-inverse doc-
ument frequency (TF-IDF) [20] score. Latent semantic indexing learns a low-
dimensional representation by decomposing the word feature space, and topic
models such as Latent Dirichlet Allocation probabilistically group similar words
into topics, and represent documents as distributions over these topics. Obvi-
ously, these existing methods mainly represent documents by the frequency or
co-frequency of words, but ignore semantic information at the phrase and sen-
tence level. Thus, how to capture and utilize semantic information at the word,
phrase, and sentence level of documents remains a challenging problem.

Given a query paper and a candidate expert pool, we represent each expert as
a set of documents he/she has written. As a result, how to estimate the similarity
score between these documents and the query paper becomes the central issue.
Inspired by the success of convolutional neural networks (CNN) [13] in image
recognition, we cast this task as an “image recognition” and present a method
based on restricted convolution. Specifically, the similarity between any word
pair of two documents is calculated to generate a similarity matrix. However,
this similarity matrix not only ignores the word specificity, but is also very sparse
and position-related. Therefore we introduce IDF into the similarity matrix for
word specificity and propose a restricted convolution layer to ease the problem
of the sparse and position-related matrix. The experiments on three datasets
show that our work performs better than the baselines.

Contributions. In this paper, we define the problem of expert finding and pro-
pose a framework based on a restricted convolutional neural network. Based on
the similarity matrix, we propose restricted convolution. Compared to a stan-
dard convolution, restricted convolution considers the importance of position,
and penalizes for similarity far from the center of filters. For taking word speci-
ficity into accounts, we further construct a new similarity matrix by combining
original similarity matrix and IDF. We prove that the proposed framework can
capture and utilize semantic information from word-level to document-level. We
compare our framework with several state-of-the-art approaches on three differ-
ent datasets and experimental results show the effectiveness of our framework.

2 Problem Formulation

Let S = {(vi, di)}N
i=1 denote the set of experts and his/her documents, where vi is

a candidate expert, di is the set of support documents authored by (or associated
with) expert vi and N is the expert size. The input of our problem also includes
a query dq, which can be also viewed as a document. There can be various kinds
of documents in different applications. For example, in an academic network,
the documents could be papers published by researchers, while in a Quora-like
website, the documents could be the questions (or answers) that users have asked
(or answered). Given this, we can formally define the expert finding problem as
follows (Fig. 1):

98 Y. Zhao et al.

Fig. 1. An example of expert finding: each expert has a set of documents; each docu-
ment has a similarity score with respect to query. Intuitively, expert A is more relevant
than expert B regarding the query.

Definition 1 Expert Finding. Given a set S and a query dq, the objective
here is to learn a function f using documents di in each expert vi and the query
dq, in order to predict a ranked list R(vi, di) ⊂ S with |R| = k, which is the top-k
relevant experts in S with respect to dq.

One challenge here is that experts and query documents are two different
kinds of entities. This means that they cannot be represented in a common space
and the relevance between an expert and query documents cannot be measured
directly. An alternative method is to measure the relevance based on expert vi’s
documents di, where experts with a more relevant document to the query should
be ranked higher. The central problem is how to model the representations for
documents and queries so that the similarity score can be easily estimated. In
this paper, we propose a model based on the similarity matrix and restricted
convolution to address this problem.

3 Our Model

The basic idea of our model is to cast this problem as an “image recognition”
problem. Our model first constructs a similarity matrix using the embedding of
words contained in the document and the query. Viewing the similarity matrix
as an image, a restricted convolutional neural network is employed to learn the
representations and also predict the relevance score of a candidate to the query.

EFCNN: A Restricted Convolutional Neural Network for Expert Finding 99

Fig. 2. The overall architecture of EFCNN

3.1 Word Embedding and Similarity Matrix

Word Embedding. It is easy to understand that both the query dq and can-
didate document di can be represented as word sequences. In order to construct
a similarity matrix, a variety of methods can be used to compute the similarity
between words. For example, the similarity can be simply defined as 1 or 0 to
indicate whether two words are identical; however, that ignores the semantic
information between two similar words. Considering the semantic information,
we use the word embedding technology, i.e., the Word2Vec model [14], to repre-
sent each word as a multi-dimensional vector, and then compute the similarity.

For completeness, we give a brief introduction to the Word2Vec model.
Word2Vec employs a neural network to learn word embedding for each word.
The neural network architecture (the skip-gram model) consists of an input
layer, a projection layer, and an output layer. The objective is to maximize the
probability of surrounding words for an input word in the corpus. Therefore, the
objective can be written as:

1
T

T∑

t=1

∑

wj∈nb(wt)

log p(wj |wt)

where T is the size of the corpus, nb(wt) is the set of surrounding words of wt, and
|nb(wt)| is determined by the window size in training. The probability p(wj |wt)
is the hierarchical softmax of the word embedding of wj and wt. The authors
demonstrate that semantic relationships are often preserved in vector operations
on word embeddings, e.g., vec(“King”) − vec(“Man”) + vec(“Woman”) results
in a vector that is closest to the vector representation of the word “Queen.′′ Due
to its high quality and low computational cost, we use Word2Vec embedding as
our preferred embedding (Fig. 3).

100 Y. Zhao et al.

S1： Chinese people like to spend the spring festival with their family and friends.

S2： Chinese people enjoy the spring festival with their friends and family.

Fig. 3. An illustration of two similar sentences.

Similarity Matrix Based on Embedding. Given word embeddings, there are
many measures to obtain the similarity score, such as euclidean distance, cosine
metric and dot product. In this paper, cosine metric is adopted to compute the
similarity score between two embeddings. Therefore, the similarity matrix M
can be written as:

Mi,j =
vec(wi)T vec(w′

j)
‖vec(wi)‖ · ‖vec(w′

j)‖ (1)

where wi is the i-th word in query dq, w′
j is the j-th word in document di, vec(w)

is the Word2Vec embedding of the word w, and ‖ · ‖ is the norm of Word2Vec
embedding.

In this way, similarity matrix M can provide meaningful matching informa-
tion between query and document at word, phrase, and sentence level. Take two
sentences in Fig. 2 as an example, we find that these two sentences are simi-
lar at all three mentioned levels. At the word level, these sentences not only
have identical word pairs, e.g., “Chinese-Chinese,” but also have similar word
pairs, e.g., “like-enjoy.” At the phrase level, sentences can be broken down into
three matching phrase pairs, e.g., “(Chinese people like)-(Chinese people enjoy).”
These three mentioned phrase pairs roughly construct sentences, which indicates
the similarity at the sentence level.

Similarity Matrix with IDF. Similarity matrix mainly focuses on the word
similarity of two documents, ignoring how specific and distinctive a word is. Take
two sentences in Fig. 2 as an example again, “chinese” and “festival” are always
more specific than “people” and “enjoy” and should be given more attention.
TF-IDF is the most common measurement for scoring word specificity. In this
paper, similarity matrix already contains the whole words in the document, so
only the IDF needs to be taken into account. IDF is the logarithmically scaled
inverse fraction of the documents that contains the word. There are a whole
family of inverse functions, and here we choose the smooth IDF:

IDF (w) = log(1 +
N

nw
)

where nw is the number of documents containing the word w and N is the total
number of documents.

Similarity matrix with IDF can be regarded as the supplementary of simi-
larity matrix for word-specific information, but it cannot completely replace the
similarity matrix, which is discussed in Sect. 4.2. Formally, it can be written as:

EFCNN: A Restricted Convolutional Neural Network for Expert Finding 101

M IDF
i,j = Mi,j ∗ IDF (wi) ∗ IDF (w′

j)

where the smooth IDF will not change the sign of word similarity.

3.2 EFCNN: Expert Finding with Restricted CNN

Restricted Convolution. Inspired by the great success of the CNN in image
recognition, [17] views the similarity matrices as images, which can be the input
for CNN. However, as shown in Fig. 4, the similarity matrix is slightly different
from the traditional image, with its sparse value and regional discontinuity.

To ease this problem, we adopt an intuitive method named restricted con-
volution to edit the convolution structure to produce position-based filters for
each layer. Specifically, the closer a position is to the central axis, the higher
its weight is. In this paper, we use two decay functions, including linear and
exponential decay.

Linear decay is a common decay function. If the weight attenuation follows
linear decay, the weights w(1,k) ∈ Rm×n of k-th filter in the l-th restricted
convolutional layer can be written as:

w
(l,k)
i,j = (α +

|�n
2 � − j|
�n
2 � ∗ (1 − α)) ∗ w

(l,k)
i,�n

2 � (2)

where α is the decency coefficient of linear decay.
Exponential decay considers the smooth of decay. If the weight attenuation

follows exponential decay, the weights are computed as following:

w
(l,k)
i,j = e−β|j−�n

2 �| ∗ w
(l,k)
i,�n

2 � (3)

where β is the decency coefficient of exponential decay. Obviously, comparing to
standard convolutional layer, each filter in restricted convolution only has one
column variable in central axis, which will accelerate the training process. In
addition, the restricted convolution can also be transposed as shown in Fig. 2.

Forward Network. Same with standard convolution, the k-th filter in restricted
convolutional layer is used to compute dot product between its weights w(l,k)

and regions in the input z(l−1). An element-wise activation function δ is applied
to obtain a non-linear feature map z(l,k). Formally, we have:

z(0) = M ⊕ M IDF

z(l,k)x,y = δ(
c(l−1)−1∑

t=0

mt−1∑

i=0

nt−1∑

j=0

w
(l,k)
i,j · z

(l−1,k)
x+i,y+j + b(l,k))

(4)

where mt, nt denotes the size of t-th filter, c(l) denotes the number of filters in
the l-th layer and b(l,k) is a bias term.

In addition to reducing the spatial size of the feature maps, max-pooling
layers also operate independently on every output of convolutional layers and

102 Y. Zhao et al.

resize them spatially. Therefore, the output z(l,k) of the max-pooling layer can
be written as:

z(l,k)x,y = max
0≤i<rk

max
0≤j<rk

z
(l−1,k)
x·rk+i,y·rk+j (5)

where rk denotes the size of the k-th pooling filter, which is set to 2 in our model.
The final feature maps are then turned into a vector and passed through an

MLP with several hidden layers. In this paper, we use only two fully-connected
layers. For the final output, a single unit is connected to all units of the last
hidden layer:

s = W2δ(W1 · z + b1) + b2 (6)

where W1 and W2 are the weights of fully-connected layers with b1 and b2 are
the bias terms.

Optimization and Model Training. As the task is formalized as a ranking
problem, we can utilize pairwise ranking loss such as hinge loss for training.
Given a triple (dq, d+, d−), where document d+ is ranked higher than document
d− with respect to query document dq, the loss function is defined as:

Loss(dq, d+, d−) = max(0, 1 − s(dq, d+) + s(dq, d−))

where s(dq, d+) and s(dq, d−) are the corresponding predicted similarity scores.
Since the size of expert-finding datasets we use is relatively small, for exper-

iments on these datasets we train our model on a task called citation prediction.
Given the abstracts of three documents, the model needs to give higher rank to
the document that has citation relationship with the query. Obviously, to com-
plete the task, the model also needs to compute the relevance of two documents.
The training dataset of our model is collected from an academic search system
Aminer [21].

Training is done through stochastic gradient descent over mini-batches, with
the Adagrad update rule [5]. It achieves good performance with a learning rate
of 0.001. For regularization, we employ dropout [7] on the penultimate layer,
which prevents co-adaptation of hidden units by randomly dropping out, i.e.,
set to zero. To avoid over-fitting, we apply an early-stop strategy [19].

4 Experiments

4.1 Experimental Setup

To evaluate the proposed model, we conduct the experiments of expert finding
problem on three datasets.

Datasets. As the paper-reviewer assignment is private and interest-related,
there is no publicly labeled dataset. It is difficult to create one as well. Therefore,
for the purpose of evaluation, we collect three datasets from an online system
and human judgments.

EFCNN: A Restricted Convolutional Neural Network for Expert Finding 103

Paper-Reviewer: This dataset comes from an online system which connects
journal editors with qualified journal reviewers. The system recommends journal
submissions that are posted by journal editors to qualified reviewers who are
willing to review. It includes 540 papers submitted to ten journals and 2,359
experts’ invitation responses. Among these responses, 953 are “agree”, while
the rest are viewed as “decline” (including “unavailable” and “no response”).
Basically, we consider “agree” as relevant and “decline” as irrelevant.

Topic-Expert: This dataset is based on papers from Aminer [21]. It consists of
86 papers with 20 candidate experts for each query. In this dataset, we follow a
traditional expertise matching setting such as [4,22].

Patent-Relevance: This dataset is based on documents of patents, which comes
from the Patent Full-Text Datasets of the United States Patent and Trademark
Office. It consists of 67 patent queries with 20 candidate patents for each query.

In Topic-Expert and Patent-Relevance, we gather relevance judgments from
college students and experts on patent analysis as the ground truth. The rele-
vance is simply expressed as binary: relevant or irrelevant. In these three datasets,
only the first 64 words are chosen for the abstracts of the papers or the patent
documents.

Comparison Methods. We compare the following methods in the experiment:

– BM25: The relevance score between query q and document d is measured by
the BM25 score, where each word in query q is considered as a keyword. The
relevance score is defined as:

BM25(q, d) =
∑

w∈q

IDF(w) · N w
d · (k1 + 1)

N w
d + k1 · (1 − b + b · Nd

λ)

where IDF(·) is inverse document frequency, N w
d is word w’s frequency in

document d, and Nd is the length of d. We set k = 2, b = 0.75, and λ as the
average document length;

– MixMod [22]: While another setting is the same as BM25, the relevance
score between query q and expert e is defined as:

P (q|e) =
∑

dj∈Di

k∑

m=1

∏

ti∈q

P (ti|θm)P (θm|dj)P (dj |e)

where P (ti|θm) denotes the probability of generating a term given a theme θm

and P (θm|dj) denotes the probability of generating a theme given a document
dj ;

– Doc2Vec [12]: We represent each document via Paragraph Vector model.
The similarity score between two documents is produced by the cosine metric
of their representations;

– WMD [10]: We apply the Word Mover’s Distance (WMD) to measure the
similarity between two documents. The WMD is the minimum distance
required to transport the words from one document to another based on
word embeddings;

104 Y. Zhao et al.

Table 1. Results of relevance assignment(%). NG is the simplify of NDCG.

Paper-reviewer Topic-expert Patent-relevance

Method NG@1 NG@3 NG@5 NG@3 NG@5 NG@10 NG@3 NG@5 NG@10

BM25 36.9 40.4 41.6 64.2 63.7 66.2 49.8 57.7 62.4

MixMod 35.3 39.9 42.5 57.6 58.2 58.0 45.6 51.3 56.5

Doc2Vec 34.5 41.3 43.4 60.9 63.8 66.2 44.2 48.0 54.7

WMD 41.2 47.7 49.8 62.5 64.5 66.8 57.4 58.5 61.9

LSTM-RNN 34.1 38.6 42.1 58.6 60.5 63.7 58.3 58.1 65.0

MatchPyramid 40.0 47.8 48.8 66.3 66.0 68.7 57.6 59.4 62.9

EFCNN 43.4 49.6 52.3 67.7 67.1 70.8 59.8 61.4 65.8

– LSTM-RNN [16]: [16] adopts an LSTM to construct sentence representa-
tions and uses cosine similarity to output the similarity score;

– MatchPyramid [17]: The MatchPyramid is a standard CNN built on the
standard similarity matrix to get the similarity score.

As for neural models, we can see that Doc2Vec and LSTM-RNN are all
sentence representation models, while WMD, MatchPyramid and EFCNN are
the interaction-based model.

Parameter Settings. In our model, there are two restricted convolutional lay-
ers, both having 64 filters. All filters are set to 3 × 7 and Batch Normalization
[8] is adding to all restricted convolutional layers. The number of hidden units
of the fully-connected layer is set to 256. And the hyperparameters α and β are
set to 0.2 and 2.0 respectively, which is discussed in Sect. 4.2.

The Word2Vec embedding is learned on AMiner data [21]. The embedding
is trained using the Skip-gram architecture [14]. For a fair comparison, word
embedding of all comparison models is the same as that of the proposed model
and the dimension number of word embedding is set to 150.

Evaluation Metric. Formalized as a ranking problem, the output is a ranked
list of experts, where the order depends on the maximum similarity score of
their documents regarding the query. The goal is to rank the positive one higher
than the negative ones. Therefore, we use NDCG@n [9] as an evaluation metric.
Formally, we have:

NDCG@n =

∑n
i=1

2ri−1
log2 (i+1)

∑|R|
i=1

2Ri−1
log2 (i+1)

where ri is the relevance of i-th expert in the output and R represents the list
of experts (ordered by their relevant) in the length of n.

EFCNN: A Restricted Convolutional Neural Network for Expert Finding 105

4.2 Results and Discussion

Performance Analysis. We compare the performance of all methods on three
datasets. Table 1 shows the ranking accuracy of different methods in terms of
NDCG, where measures are averaged for all queries on each dataset. Roughly
speaking, the neural methods (such as WMD and EFCNN) outperform the tradi-
tional methods in most cases. Only taking the exact word matching into account,
traditional methods will lose important information easily, while neural meth-
ods based on word embedding can learn better representations and deal with
the mismatch problem effectively. As for neural models, we can see that inter-
action based models, such as WMD and MatchPyramid, perform better than
representation based models. This is mainly because these model can capture
more detailed information from the interaction of documents.

On Paper-Review and Topic-Expert, we also see that our model achieves sig-
nificant improvement compared to all the baselines. On Paper-Reviewer, EFCNN
clearly outperforms the comparison methods in all by 2.2% and 1.9% (p−value
	 0.01 in both cases by t-test) in terms of NDCG@1 and NDCG@5 respectively.
It indicates that restricted convolution deals with sparse but position-depended
signals effectively.

Fig. 4. The visualization result of two matrices based on a document pair. The brighter
the pixel is, the larger value it has. The document pair is as follows: D1: Privacy is an
enormous problem in online social networking sites. D2: While online social networks
encourage sharing information, they raise privacy issues.

How the Similarity Matrix with IDF Works. To have a better under-
standing of how the similarity matrix with IDF works, we show the pixel images
of matrices without/with IDF in Fig. 4. From the pixel image, we can see that
similarity matrix focuses more on word similarity. While the similarity matrix
with IDF focuses more on details, it will only show the significant result when
two words are similar and when both of them are important to the document.

106 Y. Zhao et al.

These two matrices support each other, and we will lose some information if we
drop any one of them.

Table 2. The effect of hyperparameters α and β on Topic-Expert.

NG@3 NG@10

EFCNN-Lin(α = 0.2) 67.7 70.8

EFCNN-Lin(α = 0.5) 66.2 68.7

EFCNN-Lin(α = 1.0) 64.5 66.4

EFCNN-Exp(β = 1.0) 66.3 68.7

EFCNN-Exp(β = 1.5) 66.5 68.0

EFCNN-Exp(β = 2.0) 67.3 69.5

Sensitivity Analysis of Hyperparameters. Since there are two different
decay functions, our model has two versions, denoted as EFCNN-Lin and
EFCNN-Exp. There are two hyperparameters α and β in EFCNN-Lin and
EFCNN-Exp, respectively. We further study the effect of different choices of
α and β. The experimental result is listed in Table 2. The results indicate that
the best model setting is always encouraging weight decay. Therefore, the con-
sideration of weight decay along with positions in convolution is necessary.

5 Conclusions

In this paper, we study the problem of expert finding. We formalize the problem
and propose a deep learning model based on restricted convolutional neural net-
works. We prove that the proposed model can capture the relevant information
between two documents. Compared to several state-of-the-art models, our model
can significantly improve the performance of expert finding.

The problem of expert finding represents an interesting and important
research direction. In future work, it would be intriguing to investigate a deep
architecture to learn expert representations directly. It would also be interesting
to study how to incorporate both network information and content information
together to better learn the expert representations.

References

1. Balog, K., Azzopardi, L., De Rijke, M.: Formal models for expert finding in enter-
prise corpora. In: Proceedings of the 29th Annual International ACM SIGIR Con-
ference on Research and Development in Information Retrieval, pp. 43–50. ACM
(2006)

2. Basu, C., Hirsh, H., Cohen, W.W., Nevill-Manning, C.: Recommending papers by
mining the web (1999)

EFCNN: A Restricted Convolutional Neural Network for Expert Finding 107

3. Cao, Y., Liu, J., Bao, S., Li, H.: Research on expert search at enterprise track of
TREC 2005. In: TREC (2005)

4. Deng, H., King, I., Lyu, M.R.: Formal models for expert finding on DBLP bibli-
ography data. In: ICDM 2008, pp. 163–172 (2008)

5. Duchi, J.C., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learn-
ing and stochastic optimization. J. Mach. Learn. Res. 12, 2121–2159 (2011)

6. Dumais, S.T., Nielsen, J.: Automating the assignment of submitted manuscripts to
reviewers. In: Proceedings of the 15th Annual International ACM SIGIR Confer-
ence on Research and Development in Information Retrieval, pp. 233–244. ACM
(1992)

7. Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.:
Improving neural networks by preventing co-adaptation of feature detectors. arXiv
preprint arXiv:1207.0580 (2012)

8. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by
reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)

9. Järvelin, K., Kekäläinen, J.: Cumulated gain-based evaluation of IR techniques.
ACM Trans. Inf. Syst. (TOIS) 20(4), 422–446 (2002)

10. J. Kusner, M., Sun, Y., I.Kolkin, N., Q.Weinberger, K.: From word embeddings
to document distances. In: International Conference on Machine Learning, vol. 15,
pp. 957–966 (2015)

11. Karimzadehgan, M., Zhai, C., Belford, G.: Multi-aspect expertise matching for
review assignment. In: Proceedings of the 17th ACM Conference on Information
and Knowledge Management, pp. 1113–1122. ACM (2008)

12. Le, Q., Mikolov, T.: Distributed representations of sentences and documents. In:
International Conference on Machine Learning, pp. 1188–1196 (2014)

13. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

14. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space. arXiv preprint arXiv:1301.3781 (2013)

15. Mimno, D., McCallum, A.: Expertise modeling for matching papers with reviewers.
In: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 500–509. ACM (2007)

16. Palangi, H., et al.: Deep sentence embedding using long short-term memory net-
works: analysis and application to information retrieval. IEEE/ACM Trans. Audio
Speech Lang. Process. (TASLP) 24(4), 694–707 (2016)

17. Pang, L., Lan, Y., Guo, J., Xu, J., Wan, S., Cheng, X.: Text matching as image
recognition. In: AAAI, pp. 2793–2799 (2016)

18. Petkova, D., Croft, W.B.: Hierarchical language models for expert finding in enter-
prise corpora. Int. J. Artif. Intell. Tools 17(01), 5–18 (2008)

19. Prechelt, L.: Automatic early stopping using cross validation: quantifying the cri-
teria. Neural Netw. 11(4), 761–767 (1998)

20. Salton, G., Buckley, C.: Term-weighting approaches in automatic text retrieval.
Inf. Process. Manag. 24(5), 513–523 (1988)

21. Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: ArnetMiner: extraction and
mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pp. 990–998.
ACM (2008)

22. Zhang, J., Tang, J., Liu, L., Li, J.: A mixture model for expert finding. In: PAKDD
2008, pp. 466–478 (2008)

http://arxiv.org/abs/1207.0580
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1301.3781

CRESA: A Deep Learning Approach
to Competing Risks, Recurrent Event

Survival Analysis

Garima Gupta(B), Vishal Sunder, Ranjitha Prasad, and Gautam Shroff

TCS Research Lab, New Delhi, India
{gupta.garima1,s.vishal3,ranjitha.prasad,gautam.shroff}@tcs.com

Abstract. Survival analysis refers to a gamut of statistical techniques
developed to infer the survival time from time-to-event data. In particu-
lar, we are interested in recurrent event survival analysis in the presence
of one or more competing risks in each recurrent time-step, in order to
obtain the probabilistic relationship between the input covariates and the
distribution of event times. Since traditional survival analysis techniques
suffer from drawbacks due to strong parametric model constraints and
constant hazard based assumptions, we propose a modern deep learn-
ing based flexible probabilistic framework for cause-specific recurrent
survival analysis. In single-risk scenarios, we propose an LSTM-based
model where the time-steps represent the recurrent events for each par-
ticipant whose covariates may be static or time-varying. To cater to
multi-risk scenarios, we build on the single-risk LSTM model and intro-
duce a cumulative incidence curve approach to handle the multiple com-
peting risks using a joint distribution over the event times and each
of the competing risks over multiple time-steps and term the proposed
novel architecture as CRESA. We use the concordance index per risk
and the maximum absolute error in every time-step as the metrics of
performance. We demonstrate a superior predictive performance of the
proposed approach (single and multiple risk scenarios) as compared to
traditional model-based approaches, and deep learning based approaches
for synthetic and state-of-the-art public datasets.

Keywords: Recurrent neural networks · Competing risks ·
Hazard function · Deep learning · LSTM · Cox models · Frailty

1 Introduction

In the broad field of study of temporal data, survival analysis is a well-known
statistical technique for the study of temporal events. Classic applications of
survival analysis has been in the field of reliability engineering especially for
equipments under stress, where accurately measuring the uncertainty associated
with events related to the critical parameters of an individual or equipment is
paramount. With the advent of data collection technologies, survival analysis has
c© Springer Nature Switzerland AG 2019
Q. Yang et al. (Eds.): PAKDD 2019, LNAI 11440, pp. 108–122, 2019.
https://doi.org/10.1007/978-3-030-16145-3_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16145-3_9&domain=pdf
https://doi.org/10.1007/978-3-030-16145-3_9

CRESA: A Deep Learning Approach to Competing Risks 109

been widely used in the field of medical statistics for patient monitoring, treat-
ment plans etc. Typically in survival analysis, time-to-an-event data is modeled
using a parametric probabilistic function of some observed, or partially observed
covariates. The fundamental issue with most time-to-event data is the presence
of censored observations, i.e., the observations pertaining to those participants
whose event of interest is not observed as it was the end of observation period or
due to participants dropping out in the observation period. Note that neglecting
censored data can introduce a bias in the inference process, and hence, ana-
lyzing such time-to-event data necessitates significantly different statistical and
machine learning techniques. One of the popular naive non-parametric tech-
nique for obtaining the empirical estimate of the survival function is by using
the Kaplan-Meier (KM) method [11]. The drawback of this technique is that it
does not incorporate the available covariates in the data. The most popular semi-
parametric technique for survival analysis is the Cox proportional hazards (CPH)
model [3], which incorporates the available covariates using an exponential prob-
abilistic framework along with strong assumptions regarding the proportionality
of hazards in the underlying stochastic process. Several other semi-parametric
models explore specific forms of the underlying stochastic process such as a
Weiner or a Markov process [4,15,17].

Fig. 1. Typical scenarios encountered in cause-specific recurrent survival analysis
depicted on 5 participants, P1, . . . , P5. P1 and P2 report events in all the time-steps,
however the cause of event is not necessarily same in all time-steps. P3, P4 and P5 are
censored after a few time-steps.

Recent advances in deep learning have transformed clinical practices espe-
cially in the field of machine-learning based diagnostic applications, health-care
applications, etc. Although the first paper incorporating neural networks for
survival data modeling was two decades ago [5], a renewed interest in survival
analysis has emerged since the advent of such modern approaches. Typically, a
deep learning architecture is employed to learn the parameters of a general CPH
model. For instance, [27] replaces the exponential component of a CPH model
with a deep convolutional network. In [12] and [19], the authors train the neural

110 G. Gupta et al.

network based on a loss function pertaining to a CPH model to learn the first
hitting-time of the event of interest. Further, in [16], the authors propose an
LSTM-based feature extractor in conjunction with a conventional CPH model
to predict assets’ health. In spite of incorporating powerful deep learning based
techniques, such approaches necessitate the assumption of a constant hazard
rate.

Often, survival analysis data comprises of competing risks, where there are at
least two possible causes for an event, but only one such event type can actually
occur at the time of the event. A typical cause-specific approach for analyz-
ing such data is to infer for each event type separately, considering the data
reporting alternate events as censored observations. However such approaches
may be biased and inaccurate since these competing risks may not be indepen-
dent. Furthermore, fitting the KM-based survival curve obtained for each event
type is also inaccurate [13]. An alternative to the cause censoring approach is
the Cumulative Incidence Curve (CIC) approach, which estimates the marginal
probability of an event. In [7] and [6], the authors model the hazard function by
using the cumulative incidence function (CIF). In [20], the authors proposed to
fit a single CPH model rather than separate models for each event-type, thus
eliminating the need for censoring different event causes. However, all the above
models make strong assumptions about the structure of the underlying stochas-
tic processes and the hazard function. This has led to the advent of non-model
based approaches to handle the competing risks scenario. In [1] and [22], the
authors propose a non-CPH type, deep multi-task Gaussian process and deep
exponential family based models to capture the interactions between the data
covariates and cause-specific survival times. More recently, the DeepHit [14] app-
roach was proposed where a deep learning model is incorporated to learn the
joint distribution of cause-specific survival times and events of interest directly,
without relying on any constant-hazard rate assumption.

Typically, survival data consists of instances where the event experienced
by the participant is not necessarily death or disappearance from the study,
and participants experience events multiple times in the same observation time
period. For example, in the reliability domain, an engine may report a failure
due to valve-related issues, and another failure due to piston-related issues in
an observation window, as depicted in Fig. 1. Such a scenario where, for a given
participant, cause-specific events are reported more than once are referred to
as recurrent events with competing risks [13]. KM-type non-parametric estima-
tors have been proposed for non-cause specific recurrent event survival analysis
[24]. Typically, to handle scenarios where the recurring events for each partici-
pant are identical, the semi-parametric counting process algorithm [2] has been
employed, where multiple time-intervals are considered as independent and a
semi-parametric stratified Cox based approach has been used [13,25,26]. Note
that very few papers handle scenarios which consider cause-specific recurring
events in survival analysis. Multistage models with competing risks have been
known to handle such scenarios with limited success [21].

CRESA: A Deep Learning Approach to Competing Risks 111

Fig. 2. Prediction hierarchy: at each time-step t, predict the cause of the event (kt)
and the cause-specific time-to-event(st) for t = 1, . . . T .

Contributions: In this work, we propose a general deep learning architecture
which we call as CRESA for handling recurrence in the context of cause-specific
survival analysis. Our approach consists of designing a deep neural network that
directly learns the distributions of time-to-event and competing events. Our pro-
posed technique does not suffer from the drawbacks related to conventional CPH
models since we do not assume any underlying stochastic process or proportion-
ality of hazards. Our loss-function can be split into two components, where the
first component caters to the log-likelihood of the cause-specific recurrent event
survival data, taking into account the censoring of the data and the second com-
ponent considers the cause-specific ranking loss based on concordance [14]. The
features of CRESA are as follows:

– In scenarios consisting of a single-risk (C = 1), CRESA is an LSTM-based
deep neural network for recurrent event prediction for T time-steps, for sce-
narios where the covariates remain static or vary across time steps.

– In scenarios consisting of multiple risks (C > 1), CRESA is an LSTM-based
deep neural network based architecture consisting of C cause specific sub-
networks in order to handle C competing risks at each time-step. Hence, our
neural network architecture is capable of predicting the time of the event and
the cause of event at every time-step, as depicted in Fig. 2.

To the best of authors’ knowledge, this is the first instance where recurrent
neural network based cause-specific models are proposed in the context of sur-
vival analysis. Since no assumptions are made on the underlying time-varying
stochastic process governing the covariates and hitting times, this is one of the
most flexible frameworks that handles most of the complex events that occur in
a typical survival-analysis scenario. We use the concordance index (CI) per risk,
and mean absolute error (MAE) at every time-step as the metric of performance.
We demonstrate the efficacy of the proposed approach by comparing its predic-
tive performance with traditional CPH model, Random survival forest (RSF)
[9] and frailty based recurrent approaches [23]. We also compare the proposed
approach with the more recent deep learning based DeepHit [14] and DeepSurv
[12] approaches. We test the different approaches on two real-life datasets and a
synthetic dataset and demonstrate that the proposed technique performs better
than traditional and modern approaches.

112 G. Gupta et al.

2 Cause-Specific Recurrent Event Survival Analysis

In this section, we describe the cause-specific recurrent survival data, the neural
network model which we develop for handling recurrent events, as well as the
loss function that we use to train and test the model.

2.1 Survival Data

Typically, survival data for each participant is characterized by the individuals’
covariates, time of event and censoring information. However, in the context of
cause-specific recurrent event survival data, each participant is characterized by
the following:

– Observed covariates in the given time-step.
– Time elapsed since the previous event or start of time.
– A label indicating the type of event in the given time-step.
– A label indicating the cause of the event in the given time-step.

We assume that the survival time is discrete and finite, i.e., the survival time
takes values in a set M = {1, . . . , M}, defined for a maximum time horizon M .
We assume that a participant may experience more than one type of competing
risk, such that the corresponding label takes values from C = {1, . . . , C}. The
fundamental difference between other temporal data and recurrent event survival
data is the presence of censored observations in some or all time-steps. For
example, in the context of reliability data, it is possible that a failure (considered
as an event) occurs twice in the observation time period, leading to two same
or different recurrent events experienced by the same participant. However, the
participant may still be in the observation time period and report no further
failures after the second time-step, which implies that the instance is censored
beyond the second time-step. Handling such time-dependent and cause-specific
censored data is a crucial aspect of this work.

Each instance is therefore a triple (xt, st, dt, kt) where xt ∈ Xt, denotes the
set of covariates in the time-step t. Here, st ∈ M the time at which the event
has occurred, dt ∈ {0, 1} denotes whether the i-th participant is censored or not,
and kt ∈ C denotes the label on the cause due to which an event is reported at
time step t. We are given a dataset D = (x(i)

t , s
(i)
t , d

(i)
t , k

(i)
t), where i = 1, . . . , N

denotes the number of participants. In the sequel, we describe the neural network
model and the loss function we use to train the model using the above described
dataset.

2.2 Model Description

Conventional approaches to survival analysis such as KM plots and the vanilla
Cox models fail to provide meaningful insights into the cause-specific survival
analysis based prediction tasks. This has led to alternative approaches such as the
CIC approach which uses the marginal probabilities of an event in the presence

CRESA: A Deep Learning Approach to Competing Risks 113

of competing events, and does not require the assumption that these risks are
independent. The corresponding cause-specific cumulative incidence function is
given by [6]

Fk(s∗|x∗) = P (S ≤ s∗,K = k∗|X = x∗) =
s∗∑

s=0

P (S = s,K = k∗|X = x∗), (1)

i.e., the CIF gives the probability that a particular cause k∗ occurs on or before
time s∗ given the covariates x∗. However, the scenarios that we consider in this
paper involves predicting the recurrent hitting times, and hence we define the
recurrent CIF (RCIF), which is the probability that a given event occurs on or
before time s∗

t for different time steps t, given the time-dependent covariates x∗
t ,

given as

Fk(s
∗
t |x∗

t) = P (St ≤ s
∗
t , Kt = k

∗
t |St−1 = s

∗
t−1, . . . , S1 = s

∗
1 , Kt−1 = k

∗
t−1, . . . , K1 = k

∗
1 ,Xt = x

∗
t)

=

s∗
t∑

st=0

P (St = st, Kt = k
∗
t |St−1 = s

∗
t−1, . . . , S1 = s

∗
1 , Kt−1 = k

∗
t−1, . . . , K1 = k

∗
1 ,Xt = x

∗
t). (2)

Here, the function P (X = x) represents the pdf of the random variable X
evaluated at its realization x. Note that the true RCIF is not known, and it is not
possible to directly compute it from the dataset. Hence, in order to quantitatively
measure how models discriminate across cause-specific risks among participants,
it is essential to design the neural network model that computes an approximate
RCIF, which is subsequently incorporated into the loss function.

Fig. 3. CRESA consists of LSTM layer, cause-specific sub-networks and a single soft-
max activation layer.

114 G. Gupta et al.

Accordingly, in order to compute the estimates of the RCIF, we propose
the following model, as illustrated in Fig. 3. We encode all real-valued covari-
ates, xt

real using a single fully connected layer with ReLU activation, denoted
as MLP(·), and the categorical covariates, xt

cat using an embedding lookup,
denoted as Lookup(·). Using the concatenation operation denoted as

⊕
, the

dense representation, rt of the covariates is computed as follows:

rt = MLP
(
xt

real
) ⊕

Lookup
(
xt

cat
)
. (3)

At each time step t, rt is given as an input to the 2-layer LSTM [8] in order
to obtain the hidden representation ht ∈ Rn, where n is the number of hidden
units in the LSTM, as follows:

ht = LSTM(rt,ht−1). (4)

The hidden state ht is used to obtain C cause-specific representations by
incorporating C single layer MLPs, represented as MLPk(·). For brevity and
purposes of this work we limit ourselves to cases where C = 2 but the model is
easily generalizable. Thus, we obtain a final representation ot as

ot = MLP1(ht)
⊕

MLP2(ht). (5)

Finally, ot undergoes a softmax transform, which results in the final proba-
bility distribution function yt = [yt,1,1, ..., yt,1,M , yt,2,1, ..., yt,2,M] is given by

yt = Softmax(ot). (6)

Note that we consider the censored cases as a separate class in itself, i.e,
the last class M accounts for the censored event. Hence, given a partici-
pant with covariates xt, an element yt,st,kt

gives an estimate of P (St =
st,Kt = kt|st−1, . . . , s1, kt−1, . . . , k1,xt), i.e., yt,st,kt

= P̂ (St = st,Kt =
kt|st−1, . . . , s1, kt−1, . . . , k1,xt). This architecture is independent of any model-
based assumptions, and allows us to learn potentially non-linear relationships
between covariates and risks, without any assumptions on the proportionality of
hazards as in the Cox-based models [3].

2.3 Loss Function

A necessary component of the loss function is the log-likelihood of cause-specific
recurrent event survival data, where the probabilistic information of the uncen-
sored and censored observations are obtained from the failure density and the
cumulative hazard function, respectively [13]. The loss function corresponding
to the log-likelihood of data given by:

L1 =
T∑

t=1

N∑

i=1

1
(d

(i)
t =1)

log
(

y
(i)

t(i),s
(i)
t ,k

(i)
t

)
+ 1

(d
(i)
t =0)

log

(
1 −

K∑

k=1

F̂k

(
s
(i)
t |x(i)

t

))
.

(7)

CRESA: A Deep Learning Approach to Competing Risks 115

Here F̂k

(
s
(i)
t |x(i)

t

)
represents the estimate of the risk, computed using (2) by

substituting the true RCIF by their estimates. In addition to the log-likelihood,
it has been observed that it is essential to penalize the cost function based on
relative risks of uncensored participants. The central idea is from concordance
[14] which states that at a given time-step t, a participant that experiences a
time-to-event st should have a higher risk at st than a patient who survived
longer than st. The risk-based penalty denoted by L2, is as follows:

L2 =
T∑

t=1

αk,t

∑

i�=j

A
(k,i,j)
t η

[
F̂k

(
s
(i)
t |x(i)

t

)
, F̂k

(
s
(i)
t |x(j)

t

)]
, (8)

where αk,t is a parameter that trades off between the log-likelihood and the
concordance based loss for the k-th cause in the t-th time-step. Further, η[x, y]
is any convex loss function. Note that, A

(k,i,j)
t indicates if participant i and j are

both uncensored, with i experiencing the cause specific risk k, and hence can be
compared for relative risks in a given time-step, i.e.,

A
(k,i,j)
t = 1

(
k
(i)
t = kt, s

(i)
t < s

(j)
t

)
. (9)

Hence, the overall cost function is given by L = L1 +L2. Time complexity of L1

is a linear function of N while time complexity for L2 is O(N2T).

3 Experiments

In this section, we first describe the datasets we employed, followed by a descrip-
tion of the baselines we used for comparison. We then elaborate on the training
details followed by the results and discussion. We provide results for both single-
risk and multi-risk cases.

3.1 Dataset I: MIMIC III Clinical Dataset

MIMIC-III (Medical Information Mart for Intensive Care) is a large, freely avail-
able clinical dataset developed by the MIT Lab for Computational Physiology
[10]. It comprises of more than 40, 000 patient instances with information relating
to patients admitted to critical care units at a hospital. This dataset contains
multiple instances of the same patient being admitted due to a cause-specific
risk, and discharged from ICU. We are interested in predicting the length of
stay at ICU for recurrent admissions due to same or different competing risk.
In a survival framework, we consider discharge of a patient from the ICU as
the event of interest, and the observations are censored in the event of patients’
death. We consider time-varying real-valued features (xt

real) such as blood pres-
sure, glucose, heart rate, oxygen saturation, respiratory rate, temperature, pH,
and categorical features (xt

cat) such as weight, height, ethnicity, gender, Glascow
coma scale eye opening, Glascow coma scale motor response, Glascow coma scale

116 G. Gupta et al.

verbal response as input covariates for LSTM. We use this dataset for single-risk
and multi-risk survival recurrent analysis.

Single-risk Dataset: Single-risk dataset consists of 13021 instances of
patients who are admitted into ICU recurrently, due to a single risk. These
patients are admitted to the ICU recurrently for a maximum of T = 5 number
of time-steps, and the time-to-event is one of M = 101 target classes.

Multi-risk Dataset: We consider C = 2 competing risks for predicting
M = 43 number of classes (time-of-event occurrences) for each risk, recurring
for T = 5 number of time steps.

3.2 Dataset II: Engine Failures Dataset

The engine failures dataset is a proprietary dataset which consists of instances
of engines whose failures and months in service have been recorded for insurance
related investigations. In this dataset, engine failure refers to the failure of a
specific part of the engine, and the engine does not stop running after a failure.
Cause-specific recurrent failures of the different parts have been reported which
allows us to perform multi and single-risk, recurrent event survival analysis on
this dataset.

We use real-valued features (xt
real) such as the number of miles covered,

time duration since the build of engine and time since the engine is in-service,
and categorical features (xt

cat) such as engine type, horse power, rotations per
minute, application of engine, design configuration, equipment manufacturer,
model name, etc. For this dataset the covariates do not change across time steps,
and we expect that the hidden state of the LSTM will be the key differentiator
while making predictions for different time steps.

Single-risk Dataset: Single-risk dataset consists of 18221 instances of
engines which fail recurrently due to single risk over time. These engines expe-
rience a maximum of T = 3 recurrences (time-steps) of the risk, and their time-
to-event is one of M = 27 classes.

Multi-risk Dataset: Multi-risk dataset consists of 31948 instances of
engines with C = 2. The number of time steps is chosen as T = 3 and M = 27
represents the number of classes per part failure.

Engines which report failure for less than T = 3 are considered as censored
for remaining time-steps.

3.3 Dataset III: Synthetic Dataset

We create a synthetic dataset with C = 2, T = 7, and M = 7 per risk, in
order to demonstrate the time-tracking efficacy of the proposed framework. We
constructed two stochastic processes over T time-steps with parameters and the
hitting times inspired by the synthetic dataset proposed in [14]. The covariates
for the participant i at time-step t are sampled as x(i)

1, t,x
(i)
2, t,x

(i)
3, t ∼ N (0, I4).

Further, the hitting times for a given time-step t are obtained as

s
(i)
1, t ∼ exp((γT

3 x
(i)
3, t)

2 + (γT
1 x

(i)
1, t)), s

(i)
2, t ∼ exp((γT

3 x
(i)
3, t)

2 + (γT
2 x

(i)
2, t)). (10)

CRESA: A Deep Learning Approach to Competing Risks 117

In order to account for the recurrence of events, the hitting-times are varied over
the time-steps using an autoregressive model given by

s
(i)
k, t = ρks

(i)
k,(t−1) +

√
1 − ρ2kz

(i)
k, t, (11)

where z
(i)
k,t ∼ N (0, I) and the correlation co-efficient is chosen as ρ1 = ρ2 =

0.6. For convenience, we set γ1 = γ2 = γ3 = 0.4, s
(i)
t = min[s(i)1, t, s

(i)
2, t] and

participants with s
(i)
t ≥ 21 are considered as censored events.

All datasets are divided into training, validation and test sets in the ratio
3 : 1 : 1. Statistics of censored and uncensored participants across time steps is
mentioned in Table 1.

Table 1. Number of censored and uncensored participants across time steps for each
competing risks in 3 datasets

t1 t2 t3 t4 t5 t6 t7

Synthetic Risk-1 Censored 597 1093 1562 2000 2452 2914 3280

Uncensored 24322 23874 23443 23000 22508 22199 21635

Risk-2 Censored 639 1082 1525 1999 2440 2850 3282

Uncensored 24442 23951 23470 23001 22600 22037 21803

MIMIC Risk-1 Censored 0 297 371 389 402 - -

Uncensored 2259 2045 1986 1973 1962 - -

Risk-2 Censored 0 888 970 989 990 - -

Uncensored 9408 1016 224 87 36 - -

Engine Risk-1 Censored 0 11455 14321 - - - -

Uncensored 15376 3443 887 - - - -

Risk-2 Censored 0 13099 15622 - - - -

Uncensored 16572 3951 1118 - - - -

3.4 Training Details

The model described in Sect. 2.2 is trained via backpropagation using an SGD
optimizer with momentum and Nesterov. We also use cosine annealing of the
learning rate with warm restarts as in [18] using T0 = 1 and Tmul = 2, with
minimum and maximum learning rates of 0.005 and 0.5 respectively. Embedding
sizes and all neural network hidden states have dimension 64 and dropout is used
for regularization. We consider time independent value for αk,t, i.e., αk = αk,t,
for t = 1, . . . , T . The values of α1, α2 and dropout are determined using grid-
search. Similar to [14], for L2, we use η[x, y] = exp(−(x− y)/σ) is where σ is set
to 1.

118 G. Gupta et al.

3.5 Baselines

We use the following baselines for the single-risk scenario:

1. DeepSurv: DeepSurv model1 is proposed in [12]. Post training, we run this
model separately for T time steps and report results for each.

2. DeepHit: We simulate T DeepHit units [14] with C = 1. The hyperparameter
setting is the same as in [14].

3. Shared Frailty model: We fit a shared Gamma frailty model [13,23] and
predict the marginal probability for the T time steps for each participant.

We use the following baselines for the multiple risk scenario:

1. CRESAα (α1 = 0, α2 = 0): We fix the values of α1 and α2 as 0 for our
proposed model and compare results to investigate the effect that L2 has on
the results.

2. DeepHit: We simulate T DeepHit units [14] to obtain different distributions
for T time steps, with C > 1. The hyperparameter setting is the same as in
[14].

3. Random Survival Forest (RSF): RSF [9] is trained for all time-steps
using competing risks data, and post-training it is tested separately on each
time-step.

3.6 Performance Metrics and Results

In this subsection we describe the performance metric used to evaluate the neural
network model proposed in Sect. 2.2. We use concordance index per time-step as
one of the performance metrics given by:

CIt = P
(
F̂

(
s
(i)
t |x(i)

t

)
> F̂

(
s
(i)
t |x(j)

t

)
|s(i)t < s

(j)
t

)

≈
∑

i�=j A
(k,i,j)
t 1

(
F̂

(
s
(i)
t |x(i)

t

)
> F̂

(
s
(i)
t |x(j)

t

))

∑
i�=j A

(k,i,j)
t

(12)

The other performance metric that we use is MAE, which is defined as follows:

MAEt =
1
N

N∑

i=1

d
(i)
t |y(i)

t − s
(i)
t |, (13)

where d
(i)
t is zero if instance i is censored, and hence, the absolute error between

the predicted label class is compared to the true label class only for instances
which experience events.

We perform comprehensive evaluation of CRESA, and compare it with deep
and non-deep baselines mentioned in the previous subsection using concordance
index per risk per time-step, and MAE per time-step as performance metrics.
1 https://github.com/jaredleekatzman/DeepSurv.

https://github.com/jaredleekatzman/DeepSurv

CRESA: A Deep Learning Approach to Competing Risks 119

Table 2. Concordance indices for single-risk, recurrent survival analysis

Model used CI1 CI2 CI3 CI4 CI5

MIMIC III clinical dataset

CRESA 0.671 0.910 0.896 0.878 0.866

DeepHit 0.678 0.808 0.723 0.665 0.633

DeepSurv 0.586 0.775 0.715 0.681 0.660

Shared frailty 0.3386 0.489 0.534 0.5105 0.521

Engine failures dataset

CRESA 0.792 0.931 0.959 - -

DeepHit 0.765 0.759 0.849 - -

DeepSurv 0.509 0.503 0.560 - -

Shared frailty 0.459 0.482 0.496 - -

The concordance index results for the single-risk CRESA are given in Table 2.
For the MIMIC III dataset, we observe that DeepHit does slightly better than
CRESA for the first time-step. For the subsequent time-steps, the CRESA out-
performs both baselines by a huge margin. However, CRESA does better for
all the time-steps in the case of engine failures dataset. The results clearly show
that the temporal information is an important aspect for recurrent event survival
analysis which is captured in our model by the LSTM, and hence, the LSTM-
based CRESA model performs better than DeepHit which, by its nature, does
not exploit any temporal information. The performance of DeepHit and CRESA
is similar for the first time-step since CRESA does not have access to any time
dependent hidden state. As expected, the proposed approach performs better as
compared to traditional, model-based shared frailty approach by a huge margin
in all the time-steps.

The concordance index results for the multi-risk CRESA are given in Table 3.
First, we note that CRESA performs better compared to CRESAα across
datasets, from which we infer that L2 indeed has an impact on the final values
of concordance index. Even in the presence of multiple risks, CRESA performs
better compared to the baseline schemes such as DeepHit and RSF except in the
first time-step and hence, CRESA continues to gain from the backbone LSTM
architecture in the time-steps other than the first time-step, as in the single-
risk scenario. From the results pertaining to synthetic dataset, we infer that the
advantages that we obtain by using LSTM based architecture carries over to
several time-steps.

In Table 4, we present the MAE performance of CRESA as compared to
DeepHit. First, we notice that the MAE performance of both the schemes are
poor in the first time-step as compared to the subsequent time-steps, in the case
of real-life datasets. However, the MAE results are uniform across all time-steps
for the synthetic dataset. Note that real-life datasets have large number of classes
as compared to the synthetic counterpart. In the first time-step, the true label

120 G. Gupta et al.

Table 3. Concordance indices for multi-risk, recurrent survival analysis

Risk-1 Risk-2

CI1 CI2 CI3 CI4 CI5 CI6 CI7 CI1 CI2 CI3 CI4 CI5 CI6 CI7

MIMIC III

CRESA 0.680 0.844 0.779 0.759 0.735 - - 0.646 0.855 0.802 0.780 0.768 - -

CRESAα 0.704 0.761 0.667 0.631 0.602 - - 0.650 0.778 0.684 0.654 0.632 - -

DeepHit 0.658 0.686 0.620 0.595 0.578 - - 0.629 0.773 0.673 0.643 0.621 - -

RSF 0.474 0.494 0.518 0.521 0.546 - - 0.77 0.74 0.77 0.77 0.746 - -

Engine failures dataset

CRESA 0.801 0.874 0.907 - - - - 0.864 0.912 0.909 - - - -

CRESAα 0.643 0.692 0.633 - - - - 0.750 0.735 0.650 - - - -

DeepHit 0.726 0.827 0.890 - - - - 0.813 0.882 0.944 - - - -

RSF 0.81 0.77 0.78 - - - - 0.81 0.792 0.797 - - - -

Synthetic dataset

CRESA 0.762 0.754 0.747 0.729 0.728 0.715 0.715 0.774 0.759 0.737 0.736 0.73 0.715 0.72

CRESAα 0.704 0.698 0.751 0.720 0.712 0.736 0.701 0.761 0.761 0.710 0.713 0.723 0.712 0.69

DeepHit 0.579 0.583 0.568 0.582 0.562 0.554 0.558 0.587 0.581 0.571 0.563 0.56 0.554 0.56

RSF 0.509 0.495 0.517 0.502 0.509 0.498 0.512 0.514 0.517 0.505 0.497 0.513 0.51 0.51

Table 4. Mean absolute error (MAE) for multi-risk, recurrent survival analysis

Model used MAE1 MAE2 MAE3 MAE4 MAE5 MAE6 MAE7

MIMIC III clinical dataset

CRESA 0.7152 0.3475 0.3049 0.307 0.3042 - -

DeepHit 0.734 0.3544 0.3136 0.3099 0.3066 - -

Engine failures dataset

CRESA 0.8998 0.441 0.3526 - - - -

DeepHit 0.989 0.5275 0.4161 - - - -

Synthetic dataset

CRESA 0.5833 0.5987 0.6078 0.6146 0.6396 0.6503 0.658

DeepHit 0.6598 0.6708 0.6832 0.6927 0.7141 0.718 0.723

distribution across the classes are close to being uniform in the real-life datasets,
and hence, CRESA faces difficulty in learning the true distribution. However,
in the subsequent time-steps, this distribution across the classes is skewed, and
hence learning becomes easier. We suspect that a larger dataset and a more
complex model will improve the MAE results. Although synthetic datasets have
fewer classes, the true label distribution is uniform across time-steps, and hence,
uniform trend the MAE results is observed over all the time-steps.

4 Conclusions

In this paper, we proposed CRESA, a novel deep learning architecture for com-
peting risk, recurrent event survival analysis. CRESA employed an LSTM based

CRESA: A Deep Learning Approach to Competing Risks 121

backbone recurrent neural network to estimate the RCIF, which is the joint dis-
tribution of the time-to-event and competing risks, as a function of the covariates
in the data. For the single-risk scenario, the CRESA architecture reduces to an
LSTM-based deep neural network for recurrent event prediction for T time-steps.
We used a loss function that exploited the CIC-based probabilistic information
from uncensored and right-censored participants and also penalized incorrect
ordering of relative risks in every time-step. We compared the performance of
CRESA with the performance of traditional approaches such as frailty-based
CPH model and RSF, and modern deep learning approaches such as DeepHit
and DeepSurv. We demonstrated that CRESA has a superior performance in
terms of both, concordance index and MAE. We also noted that MAE has a
strong dependence on the nature of the dataset, such as the number of classes
and the distribution of true labels across the classes. Overall, CRESA lends
itself as a flexible, non-model based approach to survival analysis for datasets
that involve complex events such as recurrence of events and competing risks.
In future, we would extend architecture and loss function of CRESA to handle
interval and left censoring events as well.

References

1. Alaa, A.M., van der Schaar, M.: Deep multi-task Gaussian processes for survival
analysis with competing risks. In: 30th Conference on Neural Information Process-
ing Systems (2017)

2. Andersen, P.K., Gill, R.D.: Cox’s regression model for counting processes: a large
sample study. Ann. Stat. 10, 1100–1120 (1982)

3. Cox, D.R.: Analysis of Survival Data. Routledge, London (2018)
4. Doksum, K.A., Hbyland, A.: Models for variable-stress accelerated life testing

experiments based on wener processes and the inverse gaussian distribution. Tech-
nometrics 34(1), 74–82 (1992)

5. Faraggi, D., Simon, R.: A neural network model for survival data. Stat. Med. 14(1),
73–82 (1995)

6. Fine, J.P., Gray, R.J.: A proportional hazards model for the subdistribution of a
competing risk. J. Am. Stat. Assoc. 94(446), 496–509 (1999)

7. Gray, R.J.: A class of K-sample tests for comparing the cumulative incidence of a
competing risk. Ann. Stat. 16, 1141–1154 (1988)

8. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

9. Ishwaran, H., Kogalur, U.B., Blackstone, E.H., Lauer, M.S., et al.: Random survival
forests. Ann. Appl. Stat. 2(3), 841–860 (2008)

10. Johnson, A.E., et al.: MIMIC-III, a freely accessible critical care database. Sci.
Data 3, 160035 (2016)

11. Kaplan, E.L., Meier, P.: Nonparametric estimation from incomplete observations.
J. Am. Stat. Assoc. 53, 457–481 (1958)

12. Katzman, J.L., Shaham, U., Cloninger, A., et al.: DeepSurv: personalized treat-
ment recommender system using a cox proportional hazards deep neural network.
BMC Med. Res. Methodol. 18(1), 24 (2018)

13. Kleinbaum, D.G., Klein, M.: Survival Analysis, vol. 3. Springer, New York (2010).
https://doi.org/10.1007/978-1-4419-6646-9

https://doi.org/10.1007/978-1-4419-6646-9

122 G. Gupta et al.

14. Lee, C., Zame, W.R., Yoon, J., van der Schaar, M.: Deephit: a deep learning
approach to survival analysis with competing risks (2018)

15. Lee, M.L.T., Whitmore, G.: Proportional hazards and threshold regression: their
theoretical and practical connections. Lifetime Data Anal. 16(2), 196–214 (2010)

16. Liao, L., Ahn, H.i.: Combining deep learning and survival analysis for asset health
management. Int. J. Prognostics Health Manage. (2016)

17. Longini, I.M., Clark, W.S., Byers, R.H., Ward, J.W., Darrow, W.W., et al.: Sta-
tistical analysis of the stages of HIV infection using a Markov model. Stat. Med.
8, 831–843 (1989)

18. Loshchilov, I., Hutter, F.: SGDR: stochastic gradient descent with warm restarts
(2016)

19. Luck, M., Sylvain, T., Cardinal, H., Lodi, A., Bengio, Y.: Deep learning for patient-
specific kidney graft survival analysis. arXiv preprint arXiv:1705.10245 (2017)

20. Lunn, M., McNeil, D.: Applying cox regression to competing risks. Biometrics 51,
524–532 (1995)

21. Meira-Machado, L., de Uña-Álvarez, J., Cadarso-Suárez, C., Andersen, P.K.: Multi-
state models for the analysis of time-to-event data. Stat. Methods Med. Res. 18(2),
195–222 (2009)

22. Ranganath, R., Perotte, A., Elhadad, N., Blei, D.: Deep survival analysis. arXiv
preprint arXiv:1608.02158 (2016)

23. Rondeau, V., Mazroui, Y., Gonzalez, J.R.: Frailtypack: an R package for the anal-
ysis of correlated survival data with frailty models using penalized likelihood esti-
mation or parametrical estimation. J. Stat. Softw. 47(4), 1–28 (2012)

24. Wang, M.C., Chang, S.H.: Nonparametric estimation of a recurrent survival func-
tion. J. Am. Stat. Assoc. 94(445), 146–153 (1999)

25. Wang, P., Li, Y., Reddy, C.K.: Machine learning for survival analysis: a survey.
arXiv preprint arXiv:1708.04649 (2017)

26. Wei, L.J., Lin, D.Y., Weissfeld, L.: Regression analysis of multivariate incomplete
failure time data by modeling marginal distributions. J. Am. Stat. Assoc. 84,
1065–1073 (1989)

27. Zhu, X., Yao, J., Huang, J.: Deep convolutional neural network for survival analysis
with pathological images. In: Bioinformatics and Biomedicine (BIBM), pp. 544–
547. IEEE (2016)

http://arxiv.org/abs/1705.10245
http://arxiv.org/abs/1608.02158
http://arxiv.org/abs/1708.04649

Long-Term Traffic Time Prediction Using
Deep Learning with Integration

of Weather Effect

Chih-Hsin Chou, Yu Huang, Chian-Yun Huang, and Vincent S. Tseng(B)

Department of Computer Science, National Chiao Tung University,
Hsinchu, Taiwan, Republic of China

vtseng@cs.nctu.edu.tw

Abstract. Traffic time prediction is a classical problem in intelligent
transportation domain, which has attracted lots of attention from the
research community in last three decades. The existing relevant works
have been focused on how to predict the short-term traffic time for paths
and roads. In fact, users may have the demand to know the future traffic
time in advance as for making personal or commercial schedule. Long-
term traffic time prediction is thus an emerging challenging task as there
exist many complicated factors that may affect traffic situations, such as
weather and congestion conditions. In this paper, we propose a novel deep
learning-based framework named Deep Ensemble Stacked Long Short
Term Memory (DE-SLSTM), which aims to solve the prediction bias
during traffic congestion. To improve the model performance, we inte-
grate the weather effect into the DE-SLSTM for predicting the long-term
traffic time. Through a series of experiments, the proposed DE-SLSTM
framework is verified to demonstrate excellent performance in terms of
effectiveness. To the best of our knowledge, this is the first work on long-
term traffic time prediction that considers deep learning techniques.

Keywords: Long-term prediction · Traffic time prediction ·
Weather effect · Ensemble model

1 Introduction

In the era of population explosion, the number of vehicles around the world
increases and the traffic congestion happens more frequently in urban cities.
With advanced technology, government is able to collect real-time dynamic traffic
data, such as traffic speed and traffic time, and implement policies to alleviate
traffic. Hence, a well-designed system called intelligent transportation system
(ITS) containing these information has been developed. However, for the most
drivers, arriving at the destinations on time is the most important demand. The
ability to predict a credible future traffic time is helpful for drivers to plan the
trips conveniently in advance. Besides, it also brings benefits for logistics services
and provides assistance to the government in controlling the traffic congestion
and improving the quality of road traffic. As a result, predicting the future traffic
time given these historical road dynamic data is increasingly in the spotlight.
c© Springer Nature Switzerland AG 2019
Q. Yang et al. (Eds.): PAKDD 2019, LNAI 11440, pp. 123–135, 2019.
https://doi.org/10.1007/978-3-030-16145-3_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16145-3_10&domain=pdf
https://doi.org/10.1007/978-3-030-16145-3_10

124 C.-H. Chou et al.

However, most of the existing works that address the traffic time estimation
problem are limited by short-term or real-time prediction. This is an emerging
challenging task as there are many complex factors that affect the traffic situa-
tions when conducting long-term traffic time prediction. In real-world situations,
users may need to get the future traffic time; for example, an user want to get to
the other city in near future, then he/she could plan when to depart and how to
go if the future traffic time is predicted. Moreover, foul weather will cause traffic
congestion and the traffic time will be affected. Hence, considering weather effect
in long-term traffic prediction is a requirement of real-world applications.

Predicting the long-term traffic time is a challenging task. In long-term traffic
prediction problem, the future traffic time not only depends on the current traffic
situation but also has some relationship with the historically periodical traffic
patterns. Then, how to catch these useful patterns and combine to the current
traffic situation is a critical issue. Moreover, in our daily life, the occurrence of
rush hour is extremely less than the normal traffic. It is difficult to leverage the
predicting traffic time between both situations. To conquer the above challenges,
in this paper, we propose a deep learning-based framework with integration of
the weather effect for predicting the long-term traffic time, called deep ensemble
stacked Long Short Term Memory (DE-SLSTM).

The main contributions of this paper can be summarized as follows:

– We propose a framework, called deep ensemble stacked Long Short Term
Memory (DE-SLSTM). To best of our knowledge, this is the first deep learning
framework on long-term traffic time prediction problem.

– we integrate the weather effect into our DE-SLSTM framework and make a
comparison between the results of our method with weather effect and the
results of our method without weather effect to demonstrate its effectiveness.

– For the difficulty of predicting the traffic time during the congestion, we
adopts the concept of cost sensitive into our proposed framework to improve
the predicting accuracy when rush hour occurs.

2 Related Work

Traffic time prediction has been widely studied in the past three decades; it can
be divided into three categories in terms of predicted time points, which are
real-time prediction, short-term prediction and long-term prediction [13].

2.1 Real-Time and Short-Term Traffic Time Prediction

For the real-time and short-term traffic time prediction, several studies had
focused on this topic. Among these studies, we can classify them into two cate-
gories, which are shallow learning based method and deep learning based method.

In 2003, Wu et al. [15] used the support vector regression (SVR) model to
predict the traffic time, but it did not consider the historically periodical traffic
patterns. Billings and Yang [2] used historical traffic time to fit the autoregressive

Long-Term Traffic Time Prediction Using Deep Learning 125

integrated moving average (ARIMA) model and performed one-step-ahead traffic
time prediction. K-nearest neighbors (KNN) model is one of the most widely
used nonparametric models, which can get great result if there are sufficient and
creditable historical data [8]. Bajwa [1], Ul et al. [12] presented a KNN prediction
model and a genetic algorithm generating adaptive parameters. Furthermore,
Qiao et al. [9] incorporated the trend adjustment feature into the traditional
KNN model called KNN-T.

Deep learning based method has shown its power in cases of time series
prediction. Duan et al. [3] first explored a deep learning model, the Long Short-
Term Memory (LSTM) neural network model, for traffic time prediction, leading
the topic on traffic time prediction to a new aspect. Siripanpornchana et al.
[10] proposed a deep learning architecture based on a concept of Deep Belief
Networks (DBN) [4] which utilizes a stack of Restricted Boltzmann Machines
(RBM) to automatically learn generic traffic features. Wang et al. [14] further
combined convolutional neural network (CNN) and LSTM to capture spatial
and temporal dependencies of each local path and takes some factors affecting
the traffic time into consideration. Zhang et al. [18] used bidirectional LSTM
(BiLSTM) to capture more features for each grids in the path and design a
special dual interval loss to enhance the strength of BiLSTM.

2.2 Long-Term Traffic Time Prediction

Recently, deep learning technique has been adopted to many urban computing
problems, such as air quality prediction [17], crime prediction [5], and crowd
flow prediction [16]. However, long-term traffic time prediction is a topic with
less researchers studying on. Klunder et al. [6] adopted KNN combining with
weather effect to performing the long-term traffic time predicting. Li et al. [7]
used Evolving Fuzzy Neural Network (EFuNN) to predict long-term traffic time.
EFuNN perform the fuzzification of the input variables at first. Second, it trains
lots of fuzzy rules for the fuzzed input vectors to transform to fuzzed outputs,
and the outputs get through the defuzzification layer to get the final predicting
results. It encodes the weather effect into the model, but it does not consider
the effect in traffic conditions as well.

3 Proposed Framework

Before introducing our proposed framework, we first address the problem defi-
nition. Given a set of historical traffic data, road network and the correspond-
ing weather data, the aim is to predict long-term traffic time of a road seg-
ment ri ∈ R, i ∈ [1, 2, ..., n]. Specifically, given the historical data at time
t − 1, t − 2, ..., t, and weather data at time t + k; the goal is to predict the
traffic time of long-term target at time t + k, where k ≥ 6.

Figure 1 shows our proposed framework, called Deep Ensemble Stacked Long
Short Term Memory (DE-SLSTM). The inputs include road network, weather
and traffic data. As for the process part, it consists of two main components:

126 C.-H. Chou et al.

Road Network

Meteorology Traffic Data

Data Preprocessing

Probability
Distribution

Peak Predictor Non-Peak Predictor

Ensemble

Input Process

Fig. 1. Our proposed framework

the data pre-processing part and the training part. The output is the predicted
traffic time of the road segment with a specific time point.

3.1 Dataset Pre-processing

Missing Data Filling. For filling the missing data, we define the threshold ε,
and filter the data that the length of the time interval between two adjacent data
points is less than the threshold ε. Further, We fill the missing data by doing the
interpolation of the two continuous data; Otherwise, we search the value of the
same time point on the last week or next week to fill the missing data. Finally,
we use the average value of the whole data to fill the remaining missing data.

Temporal Attribute Extraction. More extra information may help the pre-
dictor to get the accurate result. Table 1 shows the number of dimension
and description of the temporal attributes. Five temporal attributes, including
month, day of week, time slot, holiday, and peak, are extracted.

Table 1. Temporal attributes

Attribute # of dimension Description

Month 12 January to december

Day of week 7 Monday to sunday

Holiday 3 Weekday, weekend, national holiday

Time slot 288 288 time slots in one day (one time slot = five minutes)

Peak 4 Non-peak, morning peak, noon peak, night peak

Data Combination. After filling the missing data and extracting the temporal
attributes, we have to combine the traffic data with temporal attributes and
weather data at each time point so that it can be fed into deep learning model.

3.2 Model Training

Before training our deep learning model, we first define what is peak traffic
time and non-peak traffic time. In fact, peak traffic and non-peak traffic show
different features, and the peak traffic time is hard to predict. First of all, We set

Long-Term Traffic Time Prediction Using Deep Learning 127

a threshold (δ) to decide whether the moment of specific road is peak traffic time
or non-peak traffic time. For example, if the least limit speed of expressway is
60 km/hr, the threshold would set to be 60 km/hr. Then, we design two predictors
in our framework called non-peak predictor and peak predictor to separately deal
with the non-peak traffic time and peak traffic time. Finally, We combine the
results from both of them to make the final prediction.

Fig. 2. Traffic time predictor

Non-peak Predictor. Figure 2 shows the architecture of the non-peak traffic
time predictor. Processed Data means the output of data from the pre-processing
module. To fully utilize the historical data, we consider not only short-term
dependency and long short-term dependency but also long-term dependency
and weather data with temporal attributes at time point of prediction. Note that
the long-term dependency here means the historical dependency of all the input
instances. We adopt Long Short Term Memory Network (LSTM) as the core
algorithm for catching the short-term dependency and long short-term depen-
dency. For the long-term dependency, we use the K-Nearest Neighbor Regression
(KNR) as the core, as it can search the whole historical data.

In detail, we show an input example of non-peak predictor in Fig. 3. For the
short-term dependency (green part), we extract all the traffic data with temporal
attributes from an hour ago to current time and feed them into a LSTM. As for
the long short-term dependency (orange parts), we search the same predicted
time point of previous 7 days. Next, we extract all the traffic data with temporal
attributes from an hour before the predicted time point to the predicted time
point and feed them into a LSTM for each day.

Fig. 3. Input example of traffic time predictor (Color figure online)

To get the prediction result, we concatenate the output of LSTM for short-
term dependency with the output of LSTM for long short-term dependency and

128 C.-H. Chou et al.

feed them into another LSTM, which aims to learn higher level temporal features.
Last, we concatenate the output of stacked LSTM with the weather data and
feed them into fully connected layers to output the final prediction result (Yp).

For updating the weights in stacked LSTM and optimizing the predictor,
We define a custom loss function as shown in Eq. 1. We consider not only the
mean squared error (MSE) between the final prediction result (Yp) and true
value (Yt), but also the error between the final prediction result (Yp) and the
prediction result of KNR (Yk). α is a tunable parameter to control the degree of
influence of KNR. That means the larger α is, the larger the degree of influence
of KNR is. Finally, our model will minimize the custom loss function L and
update the model.

L = (1 − α) ∗ MSE(Yp, Yt) + α ∗ MSE(Yp, Yk) (1)

MSE(Ya, Yb) =
1
n

n∑

i=1

(Yai − Ybi)2 (2)

Peak Predictor. Indeed, the non-peak predictor still cannot predict well while
there is a peak traffic time, as the occurrence of peak traffic is extremely less
than the normal traffic. Hence, we adopt the a mechanism called cost sensitive
to deal with this issue.

Cost sensitive is one of the effective methods for solving classification of
imbalanced data problem [11]. Generally speaking, cost sensitive means to assign
a higher weight to multiply by loss function for the minority class. In the traffic
time prediction problem, we view the peak traffic time as minority class and give
a higher weight multiplied by loss function.

Recall to the Fig. 2, the work-flow of peak predictor is almost the same as the
framework of non-peak predictor. The only difference of them is adding a cost
sensitive weight function into our custom loss function, which shows in Eq. 3.
This design is in order to enhance peak predictor’s prediction ability of peak
traffic time; On the contrary, it will reduce peak predictor’s prediction ability of
non-peak traffic time.

L = CS((1 − α) ∗ MSE(Yp, Yt) + α ∗ MSE(Yp, Yk)) (3)

Ensemble Model. Algorithm 1 depicts our probability distribution algorithm.
We consider the peak occurrence in the training data in the same time slot as
the peak probability for the ensemble mechanism. Note that we treat national
holiday as different time slot from the normal weekday. On the other hand, the
non-peak probability is computed by subtracting peak probability from 1.

We combine the predictors by the probability distribution as an ensemble
model. Equation 4 shows the output of ensemble model (Yp), which is also the
output of our model. Ynpp means the prediction result of non-peak predictor and
Ypp means the prediction result of peak predictor. Pnp, which is called non-peak
probability, is the probability of non-peak probability and Pp, which is called

Long-Term Traffic Time Prediction Using Deep Learning 129

Algorithm 1. ProbabilityDistribution
Input : D: Training data, R: road section of the prediction, T : time point of the prediction
Output: Probability distribution of R at T

1 Initialize nh day = check nh day(T), speeds ← Ø;
2 if nh day(T) then
3 foreach d in D do
4 if check nh day(d.time point) & get time(d.time point) == get time(T) then
5 speeds ← speeds ∪ d.speed;
6 end

7 end

8 else
9 foreach d in D do

10 if get weekday(d.time point) == get weekday(T) &
11 get time(d.time point) == get time(T) then
12 speeds ← speeds ∪ d.speed;
13 end

14 end

15 end
16 number peak = get number peak(speeds);
17 peak probability = number peak/len(speeds);
18 nonpeak probability = 1 - peak probability;
19 return peak probability, nonpeak probability

peak probability, is the probability of traffic peak time. Therefore, the next step
is to design a method to generate the probability distribution Pnp and Pp.

Yp = Ynpp ∗ Pnp + Ypp ∗ Pp (4)

4 Experiment Evaluation

4.1 Data Description

Taiwan expressway dataset and Taiwan weather dataset are used in our exper-
iments. Taiwan expressway dataset contains time-stamp, traffic time data, and
traffic speed data in Taiwan, while Taiwan weather dataset contains time-stamp,
pressure, temperature, relative humidity, wind speed, and precipitation for each
weather station in Taiwan. There are totally 322 road segments in Taiwan
expressway dataset and 29 weather stations in Taiwan weather dataset. The
time interval of Taiwan expressway dataset is 5 min while the time interval of
Taiwan weather dataset is 1 h. As for the experiment, we use one-year period
from October 2016 to October 2017 as our training data and five-month period
from December 2017 to April 2018 as our testing data.

4.2 Evaluation Metrics

In order to assess the performance of our DE-SLSTM framework from different
aspects, we use three kinds of evaluation metrics, mean absolute percentage error
(MAPE), mean absolute error (MAE), and root mean square error (RMSE). The
formulas of these evaluation metrics as shown below:

MAPE(%) =

∑n
i=1

|yi−ŷi|
yi

n
(5)

130 C.-H. Chou et al.

Table 2. Details of parameters

Notation Description Default

ω Cost sensitive weight 30

α The degree of influencing KNR 0.1

t Predicted time point 1 h

δ Peak threshold 60 km/h

r Road segment Zhubei interchange to Hsinchu interchange

MAE =
∑n

i=1 |yi − ŷi|
n

(6)

RMSE =

√∑n
i=1(yi − ŷi)2

n
(7)

4.3 Experimental Results

In this section, we first show all the parameters of our DE-SLSTM framework and
the default values in Table 2. Next, we show all the experiments and divide the
experiments into two categories, internal experiments and external experiments,
according to the purpose of each experiment.

Internal Experiments. As for the internal experiments, we first vary some
internal parameters in the proposed method to find the best parameters. Note
that for each sub-experiment, all the control parameters are set to default values.
Next, we determine whether adding weather effect can improve the performance.

Varying Cost Sensitive Weight. Figure 4a shows the results of different cost
sensitive weights. Since what we concern for is the peak traffic time, we search
for the lowest MAPE in Fig. 4a and observe that the lowest MAPE occurs when
the cost sensitive weight is 30. Therefore, we set cost sensitive to 30.

Varying α Value. Figure 4b shows the results of varying α. Since we care more
about the peak traffic time, we search the lowest MAPE in Fig. 4b and observe
that MAPE is the lowest when the α value is 0.1 and 0.2 separately. Moreover,
we set α value to 0.1 because the larger the α value, the K-Nearest Neighbor
Regression (KNR) would influence the final result more. And it is better to let
our framework be less influenced by KNR.

Long-Term Traffic Time Prediction Using Deep Learning 131

0 20 40
19

20

21

22

Cost Sensitive Weight

M
A
P
E

(a) Cost Sensitive Weight

0 0.2 0.4 0.6 0.8 1
0

10

20

30

α

M
A
P
E

(b) α Value

Fig. 4. Varying parameters (peak traffic time testing data)

Table 3. Number of road segments in each region

Region Number of road segments

Northern 66

Central 48

Southern 54

Weather Effect. As for the experiment of weather, we choose some road seg-
ments and try to clarify that whether our model can perform better with weather
effect on these road segments. For the different road segments, National High-
way can be divided into three regions, including the northern region, the central
region and the southern region. Table 3 shows the number of road segments in
each region. We then select fifteen road segments from each region such that
there are road segments in equal length in each region; therefore, we totally get
forty-five road segments. Table 4 shows that the proposed model performs better
when including weather effect for different approaches.

Table 4. Result of weather effect

With weather effect Without weather effect

Metrics All Peak Non-peak All Peak Non-peak

MAPE 5.32% 28.50% 4.87% 5.39% 28.60% 4.97%

MAE 12.36s 128.19s 9.69s 12.60s 129.13s 9.96s

RMSE 29.56s 164.75s 19.43s 29.54s 165.86s 19.33s

External Experiments

Comparing with Different Methods. In the external experiments, we com-
pare our method with other methods on different approaches. The first method
is historical average (HA), which predicts the travel time by the average value
of the corresponding time periods. The second method is K-Nearest Neighbor

132 C.-H. Chou et al.

20 40
5

6

7

8

Predicted Time

M
A
P
E

HA

KNR

LSTM

Our Method (w/o Weather)
Our Method

(a) All

20 40

30

35

Predicted Time

M
A
P
E

(b) Peak

20 40

5

6

7

Predicted Time
M
A
P
E

(c) Non-Peak

Fig. 5. Three regions combined (MAPE for traffic time tesing data)

Regression (KNR) and the third method is Long Short-Term Memory (LSTM)
which uses only a single LSTM layer to do the prediction. And last, the fourth
one is our method (w/o KNR & CS), which has the KNR and the cost sensitive
ensemble mechanism removed in the proposed framework.

We divide the testing data into two group, peak traffic time and non-peak
traffic time testing group. We then compare our method and other methods
under three approaches, only peak traffic time, only non-peak traffic time, and all
the testing data. In addition, we choose the road segments used in the “Weather
Effect” experiment. Hence, we totally have forty-five road segments.

In this experiment, parameters of the proposed method are set to default val-
ues except for the predicted time point and the road segment. Figure 5 shows the
MAPE of the results of long-term traffic time prediction. We calculate the mean
of MAPE of the forty-five road segments we select. Figure 5b shows that our
method outperforms other methods on peak traffic time testing data. Nonethe-
less, Figs. 5a and c show that our method does not outperform other methods
with non-peak traffic time testing data. The main reason is the trade-off between
the cost sensitive and the performance, as our method focuses on peak traffic
time prediction; indeed, it is closer to the daily demand. On the other hand, we
can observe that our method (w/o KNR & CS) performs better than LSTM and
draw a conclusion that the architecture of stacked LSTM is effective.

Long-Term Traffic Time Prediction Using Deep Learning 133

Table 5. Selected long roads in each region

Region Road

Northern Yuanshan interchange to Hsinchu system interchange

Central Houli interchange to Beidou interchange

Southern Hsinying interchange to Kaohsiung terminal

20 40
3
4
5
6

Predicted Time Point

M
A
P
E

Google

OurMethod

(a) Northern Region - All

20 40
1
2
3
4
5

Predicted Time Point

M
A
P
E

(b) Central Region - All

20 40
0
1
2
3
4

Predicted Time Point

M
A
P
E

(c) Southern Region - All

20 40

10

20

Predicted Time Point

M
A
P
E

(d) Northern Region - Peak

20 40
4
6
8

10
12
14

Predicted Time Point

M
A
P
E

(e) Central Region - Peak

20 40
2

4

6

Predicted Time Point

M
A
P
E

(f) Southern Region-Peak

Fig. 6. Compare with Google - northern region

Comparing with Google Map on Long Road. In the final experiment, we
compare our method with Google Map on long roads on one-week data which is
from 2018/08/01 to 2018/08/08. Table 5 shows the roads we select in each region.
As for the Google Map approach, we use Google Map Distance Matrix API and
choose the most definite prediction result. As for our method, we combine the
road segments that are in the same weather region to form a long road; then,
accumulate the prediction results of these long roads as the final prediction.

Figure 6 shows the results of long-term traffic time prediction in different
regions comparing with Google Map. It shows that the proposed method out-
performs Google Map on all regions except for the southern region on peak
traffic time testing data. Since the average peak traffic time ratio in the south-
ern region is lower than other regions, the proposed framework which focuses on
the peak traffic time prediction could not get better performance on the metrics.
Figure 7 shows the results of the proposed method fit the ground truth better
than Google map. In summary, our method is more applicable in long-term
traffic time prediction problem.

134 C.-H. Chou et al.

(a) Predict time: 1 Hour (b) Predict time: 24 Hour

Fig. 7. Example of the prediction output

5 Conclusions

We have proposed a long-term traffic time prediction framework called DE-
SLSTM for long-term traffic time prediction, which consider not only short-term,
long short-term dependency, but also long-term dependency. In addition, we inte-
grate weather effect into our DE-SLSTM framework and conduct the weather
effect experiment to demonstrate the effectiveness. To deal with the imbalanced
data problem, we integrate the cost sensitive method in to the proposed frame-
work to enhance the capability of peak traffic time prediction. Through a series of
experimental evaluations, we demonstrated that our proposed framework deliv-
ered excellent performance. To the best of our knowledge, this is the first work
that considers deep learning technique on long-term traffic time prediction.

Acknowledgement. This research was partially supported by Ministry of Science
and Technology, Taiwan, under grant no. 107-2218-E-009-050.

References

1. Bajwa, S.: An adaptive travel time prediction model based on pattern matching.
In: World Congress on ITS 2004 in Nagoya (2004)

2. Billings, D., Yang, J.: Application of the ARIMA models to urban roadway travel
time prediction - a case study. In: 2006 IEEE International Conference on Systems,
Man and Cybernetics, vol. 3, pp. 2529–2534, October 2006

3. Duan, Y., Lv, Y., Wang, F.-Y.: Travel time prediction with LSTM neural network.
In: 2016 IEEE 19th International Conference on Intelligent Transportation Systems
(ITSC), pp. 1053–1058, November 2016

4. Hinton, G.E., Osindero, S., Teh, Y.-W.: A fast learning algorithm for deep belief
nets. Neural Comput. 18(7), 1527–1554 (2006)

5. Huang, C., Zhang, J., Zheng, Y., Chawla, N.V.: DeepCrime: attentive hierarchical
recurrent networks for crime prediction. In: Proceedings of the 27th ACM Inter-
national Conference on Information and Knowledge Management, pp. 1423–1432.
ACM (2018)

6. Klunder, G., Baas, P., op de Beek, F.: A long-term travel time prediction algo-
rithm using historical data. In: Proceedings of 14th World Congress Intelligent
Transportation Systems, pp. 1191–1198 (2007)

Long-Term Traffic Time Prediction Using Deep Learning 135

7. Li, R., Rose, G., Chen, H., Shen, J.: Effective long-term travel time prediction with
fuzzy rules for tollway. Neural Comput. Appl., 1–13 (2017)

8. Myung, J., Kim, D.-K., Kho, S.-Y., Park, C.-H.: Travel time prediction using k
nearest neighbor method with combined data from vehicle detector system and
automatic toll collection system. Transp. Res. Rec. 2256(1), 51–59 (2011)

9. Qiao, W., Haghani, A., Hamedi, M.: Short-term travel time prediction considering
the effects of weather. Transp. Res. Rec. 2308(1), 61–72 (2012)

10. Siripanpornchana, C., Panichpapiboon, S., Chaovalit, P.: Travel-time prediction
with deep learning. In: 2016 IEEE Region 10 Conference (TENCON), pp. 1859–
1862. IEEE (2016)

11. Thai-Nghe, N., Gantner, Z., Schmidt-Thieme, L.: Cost-sensitive learning meth-
ods for imbalanced data. In: The 2010 International Joint Conference on Neural
Networks (IJCNN), pp. 1–8. IEEE (2010)

12. Ul, S., Bajwa, I., Kuwahara, M.: A travel time prediction method based on pattern
matching technique. Publication of, ARRB Transport Research, Limited (2003)

13. van Lint, H.: Reliable travel time prediction for freeways. Netherlands TRAIL
Research School (2004)

14. Wang, D., Zhang, J., Cao, W., Li, J., Zheng, Y.: When will you arrive? Estimating
travel time based on deep neural networks. In: AAAI (2018)

15. Wu, C.-H., Wei, C.-C., Su, D.-C., Chang, M.-H., Ho, J.-M.: Travel time prediction
with support vector regression. In: Proceedings of 2003 IEEE Intelligent Trans-
portation Systems, vol. 2, pp. 1438–1442. IEEE (2003)

16. Yao, H., Tang, X., Wei, H., Zheng, G., Yu, Y., Li, Z.: Modeling spatial-temporal
dynamics for traffic prediction. CoRR, abs/1803.01254 (2018)

17. Yi, X., Zhang, J., Wang, Z., Li, T., Zheng, Y.: Deep distributed fusion network
for air quality prediction. In: Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining

18. Zhang, H., Wu, H., Sun, W., Zheng, B.: DeepTravel: a neural network based travel
time estimation model with auxiliary supervision. arXiv preprint arXiv:1802.02147
(2018)

http://arxiv.org/abs/1802.02147

Arrhythmias Classification by Integrating
Stacked Bidirectional LSTM
and Two-Dimensional CNN

Fan Liu1,3(&), Xingshe Zhou1, Jinli Cao2, Zhu Wang1, Hua Wang3,
and Yanchun Zhang3

1 School of Computer Science, Northwestern Polytechnical University,
Xi’an, China

liufant800@mail.nwpu.edu.cn
2 Department of Computer Science and Information Technology,

La Trobe University, Melbourne, Australia
3 College of Engineering and Science, Victoria University, Melbourne, Australia

Abstract. Classifying different types of arrhythmias based on ECG signal is an
important research topic in healthcare. Traditional methods focus on extracting
varieties of features from ECG and using them to build a classifier. However,
ECG usually presents high inter- and intra-subjects variability both in mor-
phology and timing, hence, it’s difficult for predesigned features to accurately
depict the fluctuation patterns of each heartbeat. To this end, we propose a novel
arrhythmias classification model by integrating stacked bidirectional long short-
term memory network (SB-LSTM) and two-dimensional convolutional neural
network (TD-CNN). Particularly, SB-LSTM mines the long-term dependencies
contained in ECG from both directions to depict the overall variation trend of
ECG, while TD-CNN exploits local characteristics of ECG to characterize the
short-term fluctuation patterns of ECG. Moreover, we design a discrete wavelet
transform (DWT) based ECG decomposition layer and a Sum Rule based
intermediate classification result fusion layer, by which ECG can be analyzed
from multiple time-frequency resolutions, and the classification results of our
model can be more accurate. Experimental results based on MIT-BIH arrhyth-
mia database shows that our model outperforms 3 baseline methods, achieving
99.5% of accuracy, 99.9% of sensitivity and 98.2% specificity, respectively.

Keywords: Arrhythmias classification � Stacked bidirectional LSTM �
Convolutional neural network � Wavelet decomposition �
Classification result fusion

1 Introduction

Arrhythmias are cardiac conditions caused by the abnormal electrical activities of the
heart [1]. During an arrhythmia, the heart can’t pump enough blood to the body. Lack
of blood flow can damage the brain, heart, and other organs, which usually results in
anxiety, dizziness, chest pain, etc. [2]. Without timely treatment, it can lead to serious
complications, such as stroke, heart failure, sudden cardiac death (SCD) [3],

© Springer Nature Switzerland AG 2019
Q. Yang et al. (Eds.): PAKDD 2019, LNAI 11440, pp. 136–149, 2019.
https://doi.org/10.1007/978-3-030-16145-3_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16145-3_11&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16145-3_11&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16145-3_11&domain=pdf
https://doi.org/10.1007/978-3-030-16145-3_11

cardiovascular diseases (CVDs) [1], etc. It is reported that about 2200000 people in the
US and 4500000 people in EU annually die from arrhythmias, which exceeds the
mortality of all cancers combined [4]. The Association for the Advancement of Medical
Instrumentation (AAMI) classifies the arrhythmias into 5 categories: non-ectopic (N),
ventricular ectopic (V), supraventricular ectopic (S), fusion (F), and unknown (Q) [5].
Each of them shows different symptoms and needs different treatments, therefore,
classifying arrhythmias accurately is the prerequisite for effective treatments [6].

Electrocardiogram (ECG), as an easy accessible and non-invasive tool, is the most
commonly used physiological signal for arrhythmias diagnosis [22]. By carefully
analyzing ECG morphology, different types of heartbeats usually can be distinguished.
However, ECG is a kind of non-stationary signal, that is, its morphology changes with
respect to time, and these variations present not only between different subjects but also
within the same subjects [7], which makes it difficult for physicians to accurately
diagnose arrhythmias via visual assessment. In particular, it’s reported that licensed
general practitioners can only achieve 92% of specificity and 80% of sensitivity when
distinguishing atrial fibrillation from a healthy heartbeat [8].

To tackle the drawbacks of visual assessment of ECG, lots of computer-aided
methods were proposed [7, 9–16]. They are mainly based on three steps, i.e., feature
extraction, feature selection and classification. After removing various kinds of signal
noise, several hand-crafted features containing crucial information regarding to the
status of the heart are extracted from ECG. Generally, the most commonly used feature
extraction techniques include spectral analysis [9, 15], time-frequency analysis [12],
hidden Markov model (HMM) [10], higher order statistics (HOS) [11], morphology
analysis [7], etc. Then, feature selection techniques such as independent component
analysis (ICA) [11, 12, 30], principal component analysis (PCA) [12, 29, 31], and
linear discriminant analysis (LDA) [29] are deployed to reduce the dimensionality of
the extracted features. Finally, based on these features, classifiers are trained to dif-
ferentiate different arrhythmia types, for example, support vector machine (SVM) [15],
random forest [16], neural networks (NN) [18], ensemble classifiers [19], cluster
analysis [20], etc. These methods have notably improved the arrhythmias classification
performance, however, it’s quite difficult for them to further boost the performance in
practice, which is mainly because (1) the noise of ECG signal such as baseline wan-
ders, muscle contraction, power line interference, etc., always distort the ECG wave-
forms, hence it is difficult to ensure the validity of the values of the extracted features
[7]; (2) ECG usually presents high inter- and intra-subjects variability both in mor-
phology and timing, therefore, the predesigned features may not be able to accurately
characterize every heartbeat [7].

Compared with the above methods, deep learning is end-to-end method where
feature extraction, feature selection and classification are fused together with no need to
explicitly extract hand-crafted features [1]. Furthermore, it usually has simpler logical
structure but achieves better fitting ability [23]. The long short-term memory (LSTM)
network [17] and the convolutional neural network (CNN) [23] are two most promising
deep neural network models, and have been successfully applied to many areas such as
disease prediction [9–16], face recognition [25], image classification [24] and object
recognition [26]. Particularly, LSTM can fully exploit the long dependencies of time

Arrhythmias Classification by Integrating Stacked Bidirectional LSTM 137

series data, while CNN can effectively mine local characteristics of the data [23].
Although LSTM and CNN have been separately used to classify arrhythmias [1, 17],
the performance still need to be improved as they only benefit from just one model.

To achieve better classification performance, we propose a novel arrhythmias
classification model by combining LSTM and CNN. It not only can extract more
hidden information to accurately model the fluctuation pattern of ECG, but also can
obtain more accurate and robust classification results. Our contributions are three-folds:

First, to model the fluctuation pattern of ECG signal more accurately, we propose a
novel neural network architecture consisting of a stacked bidirectional LSTM (SB-
LSTM) layer and a two-dimensional CNN (TD-CNN) layer, where the outputs of SB-
LSTM are fed into TD-CNN as input. In particular, SB-LSTM aims to mine the long-
term dependencies of ECG in both directions, by which the overall variation trend of
ECG during each heartbeat can be captured. While TD-CNN is especially suitable for
extracting short-term characteristics existing in each ECG wave components.

Second, inspired by the benefit of bagging classifiers, we design a DWT-based
wavelet layer and a Sum Rule based fusion layer. The former decompose ECG into
multiple time-frequency resolutions via DWT, by which more hidden information of
ECG can be mined and utilized. Particularly, each ECG resolution is processed by SB-
LSTM and TD-CNN sequentially, and gets a classification result separately. The latter
resembles traditional voting-based ensemble methods, and is used to assemble the
intermediate classification results of each ECG resolution into a final result with the
Sum Rule used as fusion strategy. Experimental results show that the utilization of
these two layers significantly improves the arrhythmias classification performance.

Third, experimental results based on public MIT-BIH arrhythmia dataset show that
our model outperforms three state-of-the-art methods and its accuracy, sensitivity and
specificity are 99.5%, 99.9% and 98.2%, respectively. Furthermore, we also compare it
with 15 similar network structures, whose results indicate that the structure of our
model is the optimal one, and it can give unbiased classification results for each class.

The rest of this paper is organized as follows. Section 2 elaborates the details of our
arrhythmias classification model, followed by the experiments and evaluation results in
Sect. 3. Finally, we conclude the paper and discuss the future work in Sect. 4.

…
…

…
…

…
…

Fig. 1. The proposed arrhythmias classification model framework.

138 F. Liu et al.

2 Method

2.1 The Arrhythmias Classification Model Framework

As shown in Fig. 1, the proposed model mainly consists of 4 layers, i.e., Wavelet layer
(WL), SB-LSTM layer, TD-CNN layer and Fusion layer (FL). WL contains a wavelet
basis and is different from standard deep learning layers. It can decompose ECG into
multiple time-frequency resolutions (i.e., wavelet sublayers), which are separately
processed by SB-LSTM layer and TD-CNN layer in parallel. SB-LSTM layer is a
stacked bidirectional RNN network with LSTM used as cells, which is used to capture
the overall variation trend of ECG from both directions, while TD-CNN is used to
model the local features of ECG. Due to SB-LSTM and TD-CNN, the long-term and
short-term fluctuation pattern of ECG can be fully mined and utilized, besides, each
wavelet sublayer obtains a temporary classification result, which is further fused into a
final classification result via FL, with the Sum Rule used as fusion strategy.

2.2 The Wavelet Layer (WL)

Inspired by bagging classifiers, in this section we design a special WL to decompose
ECG into sublayers via DWT which is a signal processing method often used to extract
useful features from non-stationary timing signal [29]. It has two benefits: (1) DWT
offers multi-resolution analysis in both time and frequency domains, by which more
hidden information of ECG can be mined and utilized; (2) the generated sublayers can
be classified separately, and the results are then fused via FL, which takes the
advantages of bagging classifiers and hence obtain better classification performance.

Firstly, the ECG signal is decomposed into approximation and detail components at
the first level, which is implemented by passing it through a pair of high-pass (HP) and
low-pass (LP) filters as follows:

Detail nð Þ ¼
X1

k¼�1 x kð Þuh 2n� kð Þ ð1Þ

Approximation nð Þ ¼
X1

k¼�1 x kð Þug 2n� kð Þ ð2Þ

where x kð Þ denotes ECG, uh and ul are HP and LP filters, respectively. The output of
HP and LP filters respectively includes the detail coefficients and approximate coeffi-
cients of ECG. The popular Daubechies D6 (‘db6’) [27] is used as wavelet basis.
Afterwards, the above process is iteratively applied to the approximation component at
each level until a specified level is reached. Given the frequency of the preprocessed
ECG (90 Hz), it is decomposed up to six levels, where the frequency band of the 6th

level approximation is 0–1.406 Hz which is mainly the baseline wander and has no
useful information. Finally, the ECG is reconstructed into 7 sublayers as follows. The
detail coefficients of the 1st, 2nd, 3rd, 4th, 5th, and 6th level are separately reconstructed
into a sublayer, with other sub-band coefficients replaced with zeroes. Then, all the
detail coefficients in each level are merged together to compose the noise-free ECG

Arrhythmias Classification by Integrating Stacked Bidirectional LSTM 139

sublayer, with the approximate coefficients of the 6th level set to zeroes. The obtained 7
sublayers are then separately processed and classified by SB-LSTM and TD-CNN.

2.3 The Stacked Bidirectional LSTM (SB-LSTM) Layer

Medically, each heartbeat will produce P, Q, R, S, T waves sequentially in ECG [9]. As
a continuous signal, apparently, the amplitude of one wave component is related to that
of the former one. Particularly, as shown in the Fig. 1 of [1], although same wave
components derived from different types of arrhythmias are not that different from each
other, the waveform of the whole heartbeat is quite different from each other from an
overall perspective. Based on this finding, we use LSTM to model the long-term
fluctuation pattern of ECG, in order to improve the classification performance.

LSTM is a sub-type of recurrent neural network (RNN) but it solves the vanishing
gradient problem of RNN, which is suitable for processing time series signal [7]. In a
LSTM cell, three gates, i.e., forget gate, input gate and output gate are used to control
the update of the cell’s state and the cell’s output [17]. Specifically, forget gate is used
to discard useless information contained in the cell’s past state, input gate determines
what information should be added to the cell’s current state, and output gate decides
what information should be output. Benefiting from these three gates, previous useful
information can be held and transferred for a long time. For a given input vector xt at
time t, the cell’s output ht and cell’s state ct can be calculated as follows:

ft ¼ r Wf � ht�1; xt½ � þ bf
� � ð3Þ

it ¼ r Wi � ht�1; xt½ � þ bið Þ ð4Þ

ot ¼ r Wo � ht�1; xt½ � þ boð Þ ð5Þ

ct ¼ ft � ct�1 þ it � tanh Wc � ht�1; xt½ � þ bcð Þ ð6Þ

ht ¼ ot � tanh ctð Þ ð7Þ

Fig. 2. The structure of the proposed stacked bidirectional LSTM layer.

140 F. Liu et al.

where [] concatenates two matrixes, W and b represent weight and bias of the model
respectively, r is activation function and � is element-wise multiplication.

To fully characterize the long-term fluctuation pattern of ECG signal, a stacked
bidirectional LSTM network (SB-LSTM) is designed in this study. As shown in Fig. 2,
SB-LSTM consists of three LSTM layers where the output of non-last layers is fed into
the next layer. Meanwhile, each layer includes 2 LSTM cells with opposite direction,
which are used to capture the forward dependency and backward dependency,
respectively. Particularly, the number of neurons in LSTM cell is set to 32 after
comparing the experimental results where it is set to 16, 32, 64 and 128, respectively.
Given a ECG sublayer generated by WL x ¼ x1; x2; . . .; xN , where N is the length of the
sublayer, SB-LSTM produce two sets of outputs, i.e., forward results and backward
results. Both of them are organized in matrix form (size = N * 32), where the ith row
corresponds the outputs at time i, and the jth column represents the outputs of the jth

neuron in LSTM cell. Finally, the forward results and backward results are concate-
nated along the first dimension, and then fed into TD-CNN.

2.4 The Two-Dimensional CNN (TD-CNN) Layer

Besides the overall fluctuation trend of the ECG, the short-term fluctuation patterns
contained in local wave component is also useful for distinguishing different types of
arrhythmias [1, 23]. Recently, CNN has shown powerful ability to extract local spatial-
time features and obtained great success in image recognition field. Therefore, we
utilize CNN to extract short-term fluctuation features of ECG in this paper.

Typical CNN structure can be formed as Input ! Convolutional layer½ � � N !½
Pooling layer� �M ! Fully connected layer½ � � K, which is shown in Fig. 3. The
neurons in convolutional layers and pooling layers are usually organized as matrices
(called filters), which sequentially execute convolution or pooling operations by
shifting itself in feature map along the vertical and horizontal directions. The convo-
lution operations performed by same filter are like extracting a specific feature from
each part of the feature map. Moreover, the extracted features are of shift invariance,
that is, the spatial structure relationship contained in the feature map can be reserved,
which is helpful for extracting the local characteristics of ECG signal.

Fig. 3. The structure of the proposed TD-CNN layer.

Arrhythmias Classification by Integrating Stacked Bidirectional LSTM 141

As shown in Fig. 3, the proposed TD-CNN consists of 2 convolutional layers, 1
max-pooling layer, 1 average-pooling layer and 2 fully-connected layers, which is
determined by lots of preliminary experiments conducted on our dataset. In detail, we
first perform convolution operations on the input signal by using 32 filters whose size
are 4� 4 with a stride of 2. Then, the outputs of the first convolutional layer are fed
into a max-pooling layer whose receptive field size and stride are set to 4� 4 and 4
respectively. Afterwards, a second convolutional layer that is same as the first one but
has 64 filters is deployed to obtain higher level representation, followed by an average-
pooling layer which has same receptive field size and stride as the former max-pooling
layer. The two pooling layers reduce the dimensionality of the feature maps generated
by the convolutional layers and hence enable the network to learn higher-level features
from wider input windows without enlarging the size of the filters. In particular, the
former only retain the most notable feature for each feature map, while the latter
averagely reserve the effects of each feature. Finally, the pooled outputs are flattened
and concatenated into a one-dimensional vector, and is further fed into two successive
fully connected layers, which contains 32 and 5 neurons respectively. Note that the 5
neurons contained in the latter corresponds to 5 arrhythmias types respectively, hence,
its outputs can be regarded as the classification results of each sublayer.

2.5 The Fusion Layer (FL)

In our model, the ECG segment corresponding to each heartbeat is decomposed into
several sublayers, and each of them is processed by SB-LSTM and then TD-CNN in
parallel. That is, each sublayer can obtain an independent prediction result, however,
these results may be different from each other. To obtain more robust and accurate
prediction result, we design a special fusion layer based on the Sum Rule [7], which
resembles traditional voting-based ensemble methods. To be specific, given a sublayer
xl l¼1;2;...;Nð Þ, where N is the number of wavelet sublayers obtained from ECG,
PðxijxlÞ i¼1;2;3;4;5ð Þ denotes the possibility that xl belongs to class xi, where x1, x2, x3,
x4 and x5 represent five different arrhythmias types respectively. Using the Sum Rule
as fusion strategy, the final classification result can be determined as follows:

Result ¼ argmax
xi

Pl¼N
l¼1 PðxijxlÞPi¼5

i¼1

Pl¼N
l¼1 PðxijxlÞ

 !
: ð8Þ

Note that a softmax [17] layer is added to each sublayer before fusing their pre-
diction results, so as to convert them into probability distribution, i.e., the range of [0, 1].

142 F. Liu et al.

3 Experiment Evaluation

3.1 Dataset Description and Data Preprocessing

The MIT-BIH arrhythmia dataset was used in this study [21], which consists of 48 half-
four excerpts of ECG recordings sampled at 360 Hz. 23 of them were collected from
inpatients and contain many normal heartbeats while the others include less common
but clinically significant arrhythmias. Based on the ANSI/AAMI EC57:2012 standard
[3], each record was annotated by at least two cardiologists independently, and the
disagreements were solved by using computer-readable reference annotations.

First, we utilized Pan-Tompkins algorithm to detect R-peaks [1, 7], then the 256
samples centered around the detected R-peak ([−127, 128]) were used to represent each
heartbeat [1]. To decrease computational burden, each heartbeat was further subsam-
pled at a frequency of 90 Hz, that is, each heartbeat contains 64 samples. Then, we
discarded the first and the last heartbeat of each ECG record since they may lose
necessary ECG wave components, and the heartbeats that don’t meet the above length
requirement. Finally, we extracted a total of 106505 heartbeats, whose details are
shown in Table 1. Apparently, it’s a quite imbalanced dataset that will inevitably
reduce the generalization ability of the model. To this end, we use the Synthetic
Minority Over-sampling Technique (SMOTE) [28] to synthesize new heartbeats for the
class with fewer instances. Finally, the number of heartbeats of the four minority
classes are the same as that of class N (88680), resulting in 443400 beats in total.

Table 1. A summary of the obtained heartbeats dataset.

AAMI classes Subclasses Num Total

Non-ectopic (N) Normal 73214 88680
Left bundle branch block 8021
Right bundle branch block 7215
Atrial escape 15
Nodal escape 215

Ventricular ectopic (V) Aberrated atrial premature 132 2649
Atrial premature 2434
Nodal premature 81
Supra-ventricular premature 2

Supraventricular ectopic (S) Premature ventricular contraction 6311 6417
Ventricular escape 106

Fusion (F) Fusion of ventricular and normal 776 776
Unknown (Q) Fusion of paced and normal 956 7983

Paced 7000
Unclassifiable 27

Arrhythmias Classification by Integrating Stacked Bidirectional LSTM 143

3.2 Experimental Setup

The class labels were encoded into one-hot representation, and the loss of the network
was computed by employing the categorical cross-entropy function as follows:

L ¼ 1eNXeN
i¼1

ðyi log byið Þþ 1� yið Þlog 1� byið ÞÞ; ð9Þ

where eN is the number of heartbeat in a batch, while yi and byi are the true label and
predicted label of the ith heartbeat, respectively. In addition, to avoid shielding negative
outputs, the LeakyRelu function [1] was used to activate neurons which enables the
utilization of more useful information. Moreover, the weights and biases of our model
were initialized to random values, and updated in each iteration by using Adam
optimizer [17] with default parameter configuration adopted. Particularly, to avoid
over-fitting, a dropout layer with a keep rate of 0.95 was appended after the average-
pooling layers. Besides, we decayed the learning rate (initialized as 0.002) exponen-
tially every 1000 iterations by a decay factor of 0.9. Last, we applied L-2 regularization
to all layers, with the regularization strength was set to 10�4. When training our model,
the balanced dataset was randomly divided into training set, validation set and test set
by a ratio of 0.7:0.1:0.2. Intermediate model snapshots were taken every 100 iterations
with a mini-batch size of 128, and the snapshot that performed best on validation test
was selected as the final model. The dataset was trained 5 times in total.

Accuracy (ACC), sensitivity (SEN) and specificity (SPE) were used to evaluate the
proposed model. Specifically, ACC represents the overall performance of our model in
correctly classifying heartbeats. SEN measures the ability of our model to not miss
abnormal heartbeats, while SPE assesses how good our model is at not misjudging
normal heartbeats.

3.3 Evaluation Results

In this section, we first compare the performance of our model with that of some similar
network structures, to demonstrate the superiority of our network structure. We then
analyze the effect of different network layers on the overall performance. Last, we
compare our model with 3 state-of-the-art arrhythmias classification methods.

Comparison with Similar Network Structures. By changing the implementation of
each network layer, some similar network structures were created. Specifically, besides
SB-LSTM, three other LSTM layers were designed, i.e., unstacked directional LSTM
(UD-LSTM), unstacked bidirectional LSTM (UB-LSTM) and stacked directional
LSTM (SD-LSTM). Besides TD-CNN, we also designed a one-dimensional CNN layer
(OD-CNN). Since the input of OD-CNN should be a one-dimensional vector, only the
output of LSTM layer that corresponds to the last timestamp was fed into the OD-CNN.
It’s notable that only the number of LSTM cell layers, the direction of LSTM and the
dimension of the filters contained in CNN were changed when creating these new
layers. Especially, we also considered the network structures with or without the
wavelet (W) layer and the fusion (F) layer, denoted as with-WF and without-WF,
respectively. In total, we got 16 combinations of the wavelet layer, LSTM layer, CNN
layer and fusion layer, whose performance is summarized in Table 2.

144 F. Liu et al.

It’s obviously that our model obtains the best performance compared with the
similar network structures. Concretely, under fixed LSTM layer and CNN layer, the
utilization of wavelet layer and fusion layer can significantly improve the classification
performance, which may be due to the fact that (1) the wavelet layer can decompose the
ECG into multiple time-frequency resolutions, hence, more hidden information can be
extracted for classification; (2) the fusion layer can effectively eliminate the bias of each
intermediate classification result, so that it can obtain more robust results. In addition,
among four kinds of LSTM layer, SBLSTM and UDLSTM achieve the best and worst
performance respectively. It is because that UD-LSTM can only extract simple long-
term dependencies of ECG from just one direction, while SB-LSTM can mine complex
long-term dependencies in both directions, and transform them into higher-level forms,
which is conducive to depicting the overall variation trend of ECG more accurately.
Moreover, compared with OD-CNN, TD-CNN usually yields better performance,

Table 2. The performance of combinations of different layers.

Network structures ACC (%) SEN (%) SPE (%)

With-WF UD-LSTM OD-CNN 91.0 90.9 91.1
TD-CNN 94.6 94.1 96.6

UB-LSTM OD-CNN 93.7 94.0 92.7
TD-CNN 97.7 98.3 95.6

SU-LSTM OD-CNN 95.3 95.4 94.8
TD-CNN 98.0 98.2 97.3

SB-LSTM OD-CNN 96.4 96.6 95.4
TD-CNN 99.5 99.9 98.2

Without-WF UD-LSTM OD-CNN 89.5 88.7 92.7
TD-CNN 92.0 93.1 87.9

UB-LSTM OD-CNN 91.4 92.0 89.0
TD-CNN 93.8 94.0 93.4

SU-LSTM OD-CNN 92.8 93.3 91.0
TD-CNN 93.3 93.0 94.5

SB-LSTM OD-CNN 92.4 91.7 95.4
TD-CNN 94.8 94.6 95.7

Table 3. The confusion matrix of heartbeats for the balanced dataset.

Balanced
dataset

Predicted label ACC (%) SEN (%) SPE (%)
N S V F Q

True label N 17412 163 3 104 14 99.5 98.2 99.9
S 56 17667 8 3 2 99.7 99.6 99.7
V 35 18 17534 141 8 99.7 98.7 99.9
F 6 1 19 17705 5 99.7 99.8 99.6
Q 9 9 3 3 17712 99.9 99.9 100

Arrhythmias Classification by Integrating Stacked Bidirectional LSTM 145

which is probably because that the input of TD-CNN is made up of the outputs of
LSTM layer at each moment, therefore, the local temporal relationship of ECG can be
exploited to characterize each ECG wave component more accurately.

The confusion matrix of our model is shown in Table 3, which shows that more
than 99.2% of the ECG heartbeats are correctly classified. Additionally, all the criteria
of each class exceed 99.0%, excepting for the SEN of class N and class V (98.2% and
98.7%), which means that our model is unbiased for each class. Particularly, class N
and class Q respectively achieve the worst and the best classification performance
among the five classes, which may be explained as follows: as shown in Table 1, class
N contains five heartbeat subclasses and three of them (i.e., normal beat, left bundle
branch block beat and right bundle branch block beat) have many instances, which
makes the characteristics of class N not that typical. However, class Q includes three
heartbeat subclasses but two of them (i.e., paced beat and unclassifiable beat) have very
few instances, which makes the characteristics of the other subtype dominant, and
hence can be identified more easily.

Contribution of Each Network Layer. To investigate the performance growth
contributed by each network layer, we set up different combinations of network layers
as shown in Table 4, from which three observations are obtained. First, the perfor-
mance of SB-LSTM layer is similar to that of TD-CNN layer, which means that mining
long-term and short-term fluctuation patterns of ECG is equally important for classi-
fying arrhythmias. Second, by integrating SB-LSTM layer and TD-CNN layer toge-
ther, about 4%–5% performance improvement is obtained, which indicates that more
hidden information can be utilized when using this network structure. Third, the

Table 4. The performance of different combinations of network layers.

Combinations of layers ACC (%) SEN (%) SPE (%)

SB-LSTM 91.0 90.7 92.2
TD-CNN 90.0 89.2 92.9
SB-LSTM + TD-CNN 94.8 94.6 95.7
WL + SB-LSTM + TD-CNN + FL 99.5 99.9 98.2

99.5%

94.7%
96.3% 96.7%

99.9%

95.0%
96.7% 97.1%98.2%

93.6%
94.5% 95.1%

80.0%

85.0%

90.0%

95.0%

100.0%

Our Method Elhaj et al. [12] Acharya et al. [1] Yildirim et al. [17]
ACC SEN SPE

Fig. 4. The performance of the proposed model and baseline methods.

146 F. Liu et al.

utilization of WL and FL further increases the ACC, SEN and SPE to 99.5%, 99.9%
and 98.2% respectively, which indicates the effectiveness of the DWT-based ECG
decomposition layer and the Sum Rule-based intermediate results fusion layer.

Comparison with State-of-the-Art Model. To evaluate the overall performance of
our model, we compare it with three baseline methods proposed in [1, 12] and [17]. In
[12], the wavelet sub-band coefficients of ECG and the HOS cumulants were extracted
as linear and non-linear features, whose dimensionality were reduced by using PCA
and ICA, respectively, based on which a SVM-RBF classifier was built. Acharya et al.
[1] developed a 9-layer CNN consisting of 3 one-dimensional convolutional layers, 3
max-pooling layers and 3 fully connected layers, where the ECG segments were
directly fed into the network as input. In [17], a model named DBLSTM-WS was
designed, which combined wavelet sequences and a deep bidirectional LSTM together,
where different wavelet sequences derived from same ECG segment are fused into one
feature vector and then fed into the DBLSTM. Note that these three methods were
recurred using the balanced dataset created in this study with the best parameter
combinations were adopted, to avoid the unfairness caused by the dataset and
parameters. As shown in Fig. 4, our model obtains the highest performance, and
outperforms the method in [12] by 4.8%, 4.9% and 4.6% in terms of ACC, SEN and
SPE, respectively. Furthermore, although both the CNN-based method [1] and the
LSTM-based method [17] obtain good results, they are still weaker than our model,
which means that extracting only long-term or short-term fluctuation patterns of ECG
cannot characterize the ECG signal comprehensively. Moreover, we find that all three
deep learning based models are superior to the feature extraction based method, which
indicates that deep learning has stronger information extraction and fitting ability.

4 Conclusion and Future Work

In this paper, a novel arrhythmias classification model is proposed based on SB-LSTM
and TD-CNN. It’s an end-to-end method that doesn’t require complex feature
extraction and feature selection procedures. Particularly, by combining SB-LSTM and
TD-CNN, the long-term and short-term fluctuation patterns of ECG can be charac-
terized more comprehensively, which brings about 4% * 5% performance growth.
Moreover, the decomposition of ECG and the fusion of intermediate classification
results of each ECG sublayer are proved to be useful for mining more hidden infor-
mation and obtaining more robust classification results. Experimental results shows that
our model is the optimal one compared with 15 similar network structures, and yield
unbiased classification results for each class. Furthermore, it obtains 99.5% of accu-
racy, 99.9% of sensitivity and 98.2% of specificity respectively, which outperforms 3
state-of-the-art methods. In the future, we will design a network structure that is simpler
than the one proposed in this study but achieves higher classification performance.

Acknowledgements. This work was partially supported by the National Natural Science
Foundation of China (No. 61332013, No. 61672161), the National Key Research and Devel-
opment Program of China (No. 2016YFB1001400), and the China Scholarship Council
(No. 201706290110).

Arrhythmias Classification by Integrating Stacked Bidirectional LSTM 147

References

1. Acharya, U.R., Oh, S.L., Hagiwara, Y., et al.: A deep convolutional neural network model to
classify heartbeats. Comput. Biol. Med. 89, 389–396 (2017)

2. Xiong, Q., Proietti, M., Senoo, K., Lip, G.Y.H.: Asymptomatic versus symptomatic atrial
fibrillation: a systematic review of age/gender differences and cardiovascular outcomes. Int.
J. Cardiol. 191, 172–177 (2015)

3. Huikuri, H.V., Castellanos, A., Myerburg, R.J.: Sudden death due to cardiac arrhythmias.
New Engl. J. Med. 345(20), 1473–1482 (2001)

4. Fuster, V., Ryden, L.E., Cannom, D.S., et al.: 2011 ACCF/AHA/HRS focused updates
incorporated into the ACC/AHA/ESC 2006 guidelines for the management of patients with
atrial fibrillation. J. Am. Coll. Cardiol. 57(11), e269–e367 (2011)

5. ANSI/AAMI EC57: Testing and Reporting Performance Results of Cardiac Rhythm and ST
Segment Measure Algorithms (2012)

6. Martis, R.J., Acharya, U.R., Adeli, H.: Current methods in electrocardiogram characteri-
zation. Comput. Biol. Med. 48, 133–149 (2014)

7. Zhou, F.Y., Jin, L.P., Dong, J.: Premature ventricular contraction detection combining deep
neural networks and rules inference. Artif. Intell. Med. 79, 42–51 (2017)

8. Mant, J., Fitzmaurice, D.A., et al.: Accuracy of diagnosing atrial fibrillation on
electrocardiogram by primary care practitioners and interpretative diagnostic software:
analysis of data from screening for atrial fibrillation in the elderly (SAFE) trial. BMJ 7616,
335–380 (2007)

9. Javadi, M., Arani, S.A.A.A., Sajedin, A., Ebrahimpour, R.: Classification of ECG
arrhythmia by a modular neural network based on mixture of experts and negatively
correlated learning. Biomed. Signal Process. Control 8(3), 289–296 (2013)

10. Chang, P.C., Lin, J.J., Hsieh, J.C., Weng, J.: Myocardial infarction classification with multi-
lead ECG using hidden Markov models and Gaussian mixture models. Appl. Soft Comput.
12(10), 3165–3175 (2012)

11. Kutlu, Y., Kuntalp, D.: Feature extraction for ECG heartbeats using higher order statistics of
WPD coefficients. Comput. Methods Program Biomed. 105(3), 257–267 (2012)

12. Elhaj, F.A., Salim, N., Harris, A.R., Swee, T.T., Ahmed, T.: Arrhythmia recognition and
classification using combined linear and nonlinear features of ECG signals. Comput.
Methods Program Biomed. 127, 52–63 (2016)

13. Jiang, H., Zhou, R., Zhang, L., Wang, H., Zhang Y.: Sentence level topic models for
associated topics extraction. World Wide Web. https://doi.org/10.1007/s11280-018-0639-1

14. Peng, M., Zeng, G., Sun, Z., Huang, J., Wang, H., Tian, G.: Personalized app
recommendation based on app permissions. World Wide Web 21(1), 89–104 (2018)

15. Khalaf, A.F., Owis, M.I., Yassine, I.A.: A novel technique for cardiac arrhythmia
classification using spectral correlation and support vector machines. Expert Syst. Appl. 42
(21), 8361–8368 (2015)

16. Liu, F., Zhou, X., Wang, Z., Wang, T., Ni, H., Yang, J.: Identifying obstructive sleep apnea
by exploiting fine-grained BCG features based on event phase segmentation. In: IEEE BIBE,
pp. 293–300 (2016)

17. Yildirim, Ö.: A novel wavelet sequence based on deep bidirectional LSTM network model
for ECG signal classification. Comput. Biol. Med. 96, 189–202 (2018)

18. Liu, F., Zhou, X., Wang, Z., Ni, H., Wang, T.: OSA-weigher: an automated computational
framework for identifying obstructive sleep apnea based on event phase segmentation.
J. Ambient Intell. Hum. Comput. (2018). https://doi.org/10.1007/s12652-018-0787-2

148 F. Liu et al.

http://dx.doi.org/10.1007/s11280-018-0639-1
http://dx.doi.org/10.1007/s12652-018-0787-2

19. Liu, F., Zhou, X., Wang, Z., Wang, T., Zhang, Y.: Identification of hypertension by mining
class association rules from multi-dimensional features. In: ICPR 2018, pp. 3114–3119
(2018)

20. Yeh, Y.C., Chiou, C.W., Lin, H.J.: Analyzing ECG for cardiac arrhythmia using cluster
analysis. Expert Syst. Appl. 39(1), 1000–1010 (2012)

21. Goldberger, A.L., Amaral, L.A.N., Glass, L., et al.: PhysioBank, PhysioToolkit, and
PhysioNet: components of a new research resource for complex physiologic signals.
Circulation 101(23), e215–e220 (2000)

22. Liu, F., Zhou, X., Wang, Z., et al.: A light-weight data preprocessing and integrative
scheduling framework for health monitoring. In: IEEE-EMBS BHI, pp. 192–195 (2016)

23. Andreotti, F., Carr, O., Pimentel, M.A.F., Mahdi, A., Vos, M.D.: Comparing feature-based
classifiers and convolutional neural networks to detect arrhythmia from short segments of
ECG. Comput. Cardiol. 44, 1 (2017)

24. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional
neural networks. In: NIPS, pp. 1097–1105 (2012)

25. Coşkun, M., Uçar, A., Yıldırım, Ö., et al.: Face recognition based on convolutional neural
network. In: IEEE MEES, pp. 376–379 (2017)

26. Ren, S., He, K., Girshick, R., Zhang, X., Sun, J.: Object detection networks on convolutional
feature maps. IEEE Trans. Pattern Anal. Mach. Intell. 39(7), 1476–1481 (2017)

27. Singh, B.N., Tiwari, A.K.: Optimal selection of wavelet basis function applied to ECG signal
denoising. Digit. Signal Process. 16(3), 275–287 (2006)

28. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic minority
over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)

29. Martis, R.J., Acharya, U.R., Min, L.C.: ECG beat classification using PCA, LDA, ICA and
discrete wavelet transform. Biomed. Signal Process. Control 8(5), 437–448 (2013)

30. Wang, Z., Zhou, X., Zhao, W., Liu, F., Ni, H., Yu, Z.: Assessing the severity of sleep apnea
syndrome based on ballistocardiogram. PLoS ONE 12(4), e0175351 (2017)

31. Xie, J., Wang, Z., Yu, Z., Guo, B.: Enabling efficient stroke prediction by exploring sleep
related features. In: IEEE UIC, pp. 452–461 (2018)

Arrhythmias Classification by Integrating Stacked Bidirectional LSTM 149

An Efficient and Resource-Aware Hashtag
Recommendation Using Deep Neural Networks

David Kao1, Kuan-Ting Lai2(&), and Ming-Syan Chen1

1 National Taiwan University, Taipei 10617, Taiwan
dkao@arbor.ee.ntu.edu.tw, mschen@ntu.edu.tw

2 National Taipei University of Technology, Taipei 10608, Taiwan
ktlai@ntut.edu.tw

Abstract. The goal of this research is to design a system that can predict and
recommend hashtags to users when new images are uploaded. The proposed
hashtag recommendation system is called HAZEL (HAshtag ZEro-shot Learn-
ing). Selecting right hashtags can increase exposure and attract more fans on a
social media platform. With the help of the state-of-the-art deep learning tech-
nologies such as Convolutional Neural Network (CNN), the recognition accu-
racy has improved significantly. However, hashtag prediction is still an open
problem due to the large amount of media contents and hashtag categories.
Using single machine learning method will not be sufficient. To address this
issue, we combine image classification and semantic embedding models to
achieve the expansion of recommended hashtags. In this research, we show that
not all hashtags are equally meaningful, and some are not suitable in recom-
mendation. In addition, by periodically updating semantic embedding model, we
ensure that the hashtags being recommended follow the latest trends. Since the
recommended hashtags have not received any training examples in the first
place, it fulfills the concept of Zero-shot learning. We demonstrate that our
system HAZEL can successfully recommend hashtags that are the most relevant
to each image input by applying our design to a larger scale of image-hashtag
pairs on Instagram.

Keywords: Hashtag recommendation � Zero-shot learning � Deep learning

1 Introduction

There are many different kinds of social media platforms such as Facebook, Instagram,
Twitter, and Tumblr, and each of them serves a different function and usage. Some
promote text communication, and some encourage media content exchanging. Insta-
gram is one of the most popular social media platforms that provides users the ability to
share images and videos easily. Instagram has gained over 800 million active users
monthly as of 2017. It already has over 20 billion images in the cloud and is still
growing. As a result, one of the most important tasks is to organize these images into
coherent categories. Fortunately, the system of hashtagging was developed early on,
and many users have adopted the habit of hashtagging their media contents. Any word
starting with a “#” symbol in the description area is a hashtag. Hashtags organize media

© Springer Nature Switzerland AG 2019
Q. Yang et al. (Eds.): PAKDD 2019, LNAI 11440, pp. 150–162, 2019.
https://doi.org/10.1007/978-3-030-16145-3_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16145-3_12&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16145-3_12&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16145-3_12&domain=pdf
https://doi.org/10.1007/978-3-030-16145-3_12

contents using keywords that facilitate browsing through relevance. It is possible to
have multiple hashtags on a single content.

Unlike major information sharing platforms such as Facebook, Instagram supports
only the sharing of images with hashtags and brief descriptions. In our experiments,
except that image-hashtag pairs are used as our datasets, there is no additional metadata
(e.g. user’s information) included. Also, to achieve the goal of this research, we have to
first answer the following questions: How can we learn and differentiate new hashtags?
How do we recommend reasonable hashtags to users based on their new media content
input? How do we ensure the suggested hashtags are popular and current? Since new
hashtags are created based on trends that directly depends on the time of year and
internet buzzwords, the temporal effects apply to the use of hashtags.

While it is possible to train every hashtag with their associated images, it is highly
inefficient due to the constantly evolving nature of social platforms like Instagram.
Especially training billions of hashtags with associated images probably requires a
supercomputer to execute the task; it is not feasible to train a gigantic machine learning
model in a standard laboratory with limited resources. This research aims to address all
these limitations and recommend a system that can function using a model trained from
defined samples and limited hardware resource.

In this research, we explore a way to recommend hashtags to users using deep
neural networks. We downloaded more than 140,000 raw images from the top 100
hashtag categories from Instagram for training and testing. We also collected more than
400,000 corpora (3 million) hashtags. We then utilized three CNN imaging recognition
models (ImageNet, Places, and PASCAL VOC) to extract features for the later use of
SVM model building. After that, a trained Word2Vec (Skip-gram) model is used to
expand the vocabulary options of hashtags. The expansion of hashtag terms fits the
concept of zero-shot learning due to not receiving any training examples in the first
place. In addition, 60,000 additional images are downloaded based on the recom-
mended hashtags for further verification. We wanted to ensure that the recommended
hashtags were relevant to the image contents.

More specifically, to solve the challenging problems mentioned before, our solu-
tions are outlined as follows: (i) Utilize more than one CNN models to abstract more
features from the datasets and to gain uniqueness for each class. (ii) Create a semantic
embedding space to locate highly probably and its neighboring hashtags. (iii) Update
the semantic embedding space periodically in order to recommend hashtags that meet
the social networking trends. With these compositions, we are able to recommend
relevant hashtags to users for their newly input media contents.

To summarize, our main contribution is a novel idea to recommend multiple
hashtags that follow the latest trends to users. The proposed system HAZEL seeks to
bridge the gap between users and the hashtagging scenario that changes and evolves
constantly. HAZEL saves the hassle of the hashtagging process, and hashtags that are
recommended will be popular and up to date. With a snap of a finger, users are ready to
upload their media contents with bountiful hashtags to choose from. More importantly,
the back-end architecture of HAZEL is an approach to resource-aware hashtag rec-
ommendation system. The experimental results are encouraging and with the help of
HAZEL, hashtagging will become a user-friendly practice.

An Efficient and Resource-Aware Hashtag Recommendation 151

2 Preliminaries

2.1 Related Work

Although accessing a large amount of data is easier and cheaper nowadays, it is still
difficult to train a multi-million-categories object recognition system. Many researchers
are experimenting new ways and leveraging existing technologies in their object
recognition projects. Models like zero-shot learning [1–3] and semantic embedding
methods [24] can predict the categories that were unseen at the training stage.

Facebook leveraged CNN image classification and embedding models on their
hashtag prediction project for Facebook [4]. They fused users’ metadata (age, gender,
etc.) in their predicting process. Google also conducted a research on visual recognition
system that incorporated textual information. Their motivation is to increase the
classifying outcomes without training a large scaled imaging model. They showed that
their model DeViSE (Deep Visual-Semantic Embedding model) can make predictions
about tens of thousands of image labels that are not observed during model training
[5, 6].

2.2 Convolutional Neural Network

Neural Network has been used widely in recent years, especially in the fields of
artificial intelligent and machine learning. Computer vision becomes one of the popular
researching topics, and convolutional neural network is particularly beneficial in rec-
ognizing objects and segmentation of images [12–14]. The concept of CNN is to learn
informational parameters along the layers from the input. The grid-like topology and
matrix multiplication using convolutional dot product is how CNN find its parameters.
Another important feature of CNN is called pooling. Pooling allows the reduction of
the actual spatial size. It prevents the effect of overfitting and preserves important
information only. Common pooling methods include max pooling, average pooling,
and L2 norm pooling. Usually pooling layers can be found between two convolutional
layers [8, 9]. Generally, millions of parameters are calculated in training a CNN. Two
of the popular CNN networks, Residual Network [10, 11] and ZF Net [7], are used in
our experiment. CNN trained models ImageNet [15–17], Places [18–21], and
PASCAL VOC [22] are used in imaging feature extraction in our research as well.

2.3 Semantic Embedding Model

Semantic or word embedding modeling is a technique to represent words in vector
forms. Often, it involves mathematical embedding transformation from one space to the
other. For example, textual transformation is a process of mapping from a space with
one dimension per word to a lower continuous vector space. Practices like neural
networks, dimensional reduction, and probabilistic modeling can be used as ways of
mapping [23]. Researchers can utilize these methods in their Natural Language Pro-
cessing (NLP) work. The most successful method is Word2Vec [24].

152 D. Kao et al.

There are two types of algorithms in Word2Vec. The first type is called the
Continuous Bag-of-Words Model, which it trains each word with its surrounding
neighbors in a sentence to construct a model. It can be used to predict the targeted
vocabulary when seeing the similar structure of sentences as in the training stage. The
second algorithm is called the Skip-gram Model, which the trained model can be used
in finding neighboring words to a specific input. In this research, we utilized the Skip-
gram model to train our hashtags and it gave us a promising result.

3 Model Architecture

Our proposed model HAZEL utilized a visual-semantic embedding framework similar
to [3, 4, 6]. The framework is listed below. Given a visual conceptual embedding
function UI(x) and label embedding function UL(y), the hashtag prediction model is of
the form:

fðx; yÞ ¼ UIðxÞ0ULðyÞ ð1Þ

Instead of learning two embedding functions jointly as [6], we choose to use semantic
concepts as our embedding space. There are two benefits of using predefined concepts.
First, we only need to learn label embedding function, so the learning time is faster than
joint learning; second, the embedding function is human interpretable, so we can
analyze the content of each hashtag. For the label embedding ULðyÞ, a simple linear
function W is used. The prediction model can be rewritten as:

f x; yð Þ ¼ W 0UIðxÞ ð2Þ

To solve the equation, we use the large-margin framework and use the hinge loss:

min:
1
n

Xn

i¼1

fi þ k wk k2

s:b:t 1� yi w
0UIðxÞ � bð Þ� fi ð3Þ

where fi � 0 for all i. Once we got the predicted hashtag, in the next step we can
expand the hashtags using the Word2Vec model.

hw2v f x; yð Þð Þ ð4Þ

Basically hw2v can be any search algorithm. In our experiment, the k-nearest neighbor is
applied to search syntax hashtags. And the cosine distance (cosine similarity) is cal-
culated to rank the relevant hashtags as shown below:

s j; kð Þ ¼ j � k
jk k kk k

An Efficient and Resource-Aware Hashtag Recommendation 153

s j; k1ð Þ[s j; k2ð Þ[� � � [s j; kn�1ð Þ[s j; knð Þ ð5Þ

A predicted hashtag word vector jwill have neighboring hashtags k1; k2; � � � kn. By
ranking the cosine distance s j; kð Þ, we get the top nthe most relevant hashtags to the
hashtag jword vector.

The overall architecture of HAZEL is shown in Fig. 1. To recommend multiple
hashtags to users automatically from a single image input, we utilize neural networks to
achieve the goal. The recognition and feature extraction of images is done by the
convolutional neural networks. We implement three CNN pre-trained models with
different networks in extracting features from images. ImageNet1000 model can rec-
ognize 1,000 different objects from the images. Places365 model can recognize 365
different scenes or environments of the images, and PASCAL model can recognize 20
different objects and one of them is ‘person’ or ‘human’. Three different pre-trained
CNN models are used (ImageNet, Places, and PASCAL) to increase differentiation
between hashtags. The total available number of features can be recognized coming
from these models are 1,000 + 365 + 20 = 1,385. One thing to take notice of is that
each CNN recognition process is done individually. We use ResNet50 trained model
for the ImageNet and Places, and ZF Net trained model for the PASCAL. Keras is used
for the ImageNet image processing. PyTorch is used for the Places image processing.
And Caffe is used for the PASCAL image processing.

Next, we construct an SVM machine learning model that is learned from the
extracted features. The Semantic embedding modeling for the vocabularies (hashtags)
expansion is done by the Word2Vec Skip-gram model. Our approach shows that with
minimal amount of trained image-hashtag pairs is still feasible to suggest great amount
of comparable hashtags to users.

4 Data

Two types of datasets will be needed and collected separately in our experiment. That
include the image dataset and hashtag dataset. Image features will be used in training
an SVM model, and hashtags will be used in training a semantic embedding model.
Data will be downloaded in a chronological order from Instagram.

Fig. 1. Overall architecture of the hashtag recommendation system HAZEL.

154 D. Kao et al.

4.1 Image Dataset

To begin our collection of images, we first investigate what hashtags are popular
according to their image counts on Instagram. We start off by downloading more than
140,000 raw images from Instagram within top 100 ranked hashtags. The most used
hashtag is #love with over 11 billion image counts. Followed by #instagood and
#photooftheday. Specifically, Table 1 shows the top 100 hashtags being used on
Instagram. We limited the image counts to around 1,400 per hashtag category in the
dataset. The image dataset is downloaded through Python-syntax operation with
assigned hashtags on Linux environment. We downloaded 140,000 + or 70 + giga-
bytes of images. We understand that there may be multiple hashtags assigned to an
image by users. So we only pick the ones with only one hashtag labeled to prevent
overlapping content in our dataset.

Hashtags that express feelings or abstract ideas are difficult for us to perceive its
associating images. Since hashtagging can be a lenient gateway on expressing feelings,
ideas, and even long paragraphs for users, it is certainly not so definite like labels of
specific objects. However, we should not rely on our perception of the hashtag too
quickly. Maybe there would be certain characteristics underlying any of the hashtags.
Therefore, the role of feature extraction during model construction becomes crucial in
revealing what each hashtag is holding.

Table 1. Top 100 Hashtags being used on Instagram and its ROC.

#instago (0.63)
#bestfriend (0.71)
#winter (0.69)
#green (0.75)
#tbt (0.56)
#red (0.67)
#like4like (0.56)
#party (0.77)
#throwbackthursday
(0.57)
#tattoo (0.80)
#instacollage (0.60)
#swag (0.62)
#fashion (0.70)
#family (0.65)
#birthday (0.72)
#eyes (0.73)
#black (0.68)
#fun (0.58)
#coffee (0.84)
#lol (0.68)
#yummy (0.90)
#cat (0.90)
#beach (0.80)
#health (0.72)
#vintage (0.74)

#girl (0.65)
#work (0.62)
#bored (0.69)
#throwback (0.65)
#photooftheday
(0.54)
#2012 (0.71)
#likeforlike (0.57)
#white (0.63)
#webstagram (0.53)
#sky (0.82)
#happy (0.57)
#landscape (0.83)
#fit (0.72)
#boy (0.67)
#selfie (0.72)
#iphoneonly (0.58)
#style (0.68)
#animals (0.84)
#best (0.57)
#nofilter (0.63)
#dress (0.84)
#summer (0.62)
#picstitch (0.57)
#foodporn (0.88)
#blue (0.66)

#cool (0.58)
#pink (0.71)
#smile (0.63)
#i (0.58)
#food (0.81)
#hair (0.75)
#flowers (0.81)
#instagramhub (0.54)
#awesome (0.53)
#instalove (0.55)
#friends (0.67)
#architecture (0.88)
#photo (0.58)
#love (0.51)
#baby (0.79)
#textgram (0.76)
#memories (0.62)
#beautiful (0.57)
#clouds (0.85)
#harrystyles (0.82)
#onedirection (0.72)
#weekend (0.58)
#night (0.70)
#music (0.73)
#tagsforlikes (0.53)

#sunset (0.83)
#fitness (0.75)
#igaddict (0.55)
#shoes (0.84)
#gym (0.78)
#breakfast (0.89)
#travel (0.72)
#nature (0.78)
#dog (0.88)
#school (0.70)
#vscocam (0.59)
#nice (0.54)
#funny (0.70)
#my (0.59)
#motivation (0.71)
#hot (0.64)
#sun (0.73)
#instagood (0.50)
#blessed (0.62)
#christmas (0.79)
#followme (0.56)
#sweet (0.70)
#cute (0.62)
#followback (0.54)
#art (0.72)

An Efficient and Resource-Aware Hashtag Recommendation 155

4.2 Hashtag Dataset

After downloading images, hashtag preparation will be the next step in the research.
Hashtag crawling is what we called in the process. This time, we are not interested in
images that only have one hashtag associate to it. Instead, we hope to download
relating hashtags to any given hashtag terms. When the target hashtag is assigned, it
tries to download the relevant hashtags of the images on the same web page.

For example, when we are browsing on the webpage www.instagram.com/explore/
tags/dog/, it is targeting the #dog hashtag and it brings out all the related images having
the tag #dog. At the same time, hashtags that relate to #dog like #puppies, #lovedog,
#pet, and more will be shown on the same page. And this is how we can discover its
relevant hashtags. In the next iteration, the program can start off with #puppies as a
seeding word and start crawling more relevant hashtags by it. We set the iterating
process with the top ranked 100 hashtags as seeding words to collect hashtags “corpus”
from Instagram. We wrote a Python-syntax code to crawl hashtags corpus on Instagram
automatically. The crawling process were left on for over two weeks, and the amount
of collection is more than 400,000 corpora. That in total is around 3 million hashtags.

5 Experiments and Results

We recorded the softmax values at the last layer of the CNN networks. Thus, to process
feature extraction of 140,000+ images, we obtained a matrix with 140,878 rows
1385 columns when each row represents an image.

At first, we trained an SVM model directly on these features of all images with their
hashtags as ground truths. The results were not ideal because the average accuracy is
only around 10% and precisions were low. Soon, we realized that image contents
within each hashtag do not always have similar features. Hashtags like #tbt, #2012, and
#lol have mixtures of all features that would be hard to classify reasonably. That
scenario is expected as mentioned in Sect. 4.1.

We also concluded that certain hashtag categories are not ideal in SVM models
training because it would depreciate the overall predicted accuracies. In addition,
hashtags that are obscure or loosely defined for the media contents are not suitable to
use as recommended hashtags. Thus, we limited the hashtag categories to ones that
were more definite by measuring their area under the curve (AUC) of receiver oper-
ating characteristic (ROC) curve.

5.1 Sampling of Image-Hashtag Pairs

To show that the AUC of the ROC can be an indicator of the consistency of the image-
hashtag pairs, we manually selected some hashtag categories for training an SVM
model. These hashtags include #birthday, #coffee, #cat, #beach, #landscape, #selfie,
#flowers, #architecture, #shoes, and #dog. The average classifying accuracy is around
60% when data split is 7:3 (training : testing). The overall accuracy is not too high due

156 D. Kao et al.

http://www.instagram.com/explore/tags/dog/
http://www.instagram.com/explore/tags/dog/

to similar features are shown in these categories. For example, a person can take a
picture with their dog, and it will be difficult to define whether it should be tagged as
#dog or #selfie. Or perhaps the dog is running in a garden, and it will be difficult to
define whether it should be tagged as #dog or #flowers. Therefore, measuring the
accuracies of predictions might not be applicable as there are several ways of tagging
the same images. However, the averaged AUC for these selected categories are around
88%. Meaning that images in each hashtag category are sharing similar features con-
sistently, and this is what we hope to see. The ROC results can be seen in Fig. 2.

In contrast, we did an experiment on the obscure hashtags with SVM. These
hashtags include #lol, #photooftheday, #2012, #cool, #love, #funny, #hot, #instagood,
#blessed, and #cute. The overall accuracy is only 20% when data split is 7:3 (training:
testing). And the averaged AUC is around 60% as shown in Fig. 3.

Fig. 3. ROC curve for 10 obscure classes. The averaged AUC is about 60%.

Fig. 2. ROC curve for 10 classes. The averaged AUC is about 88%.

An Efficient and Resource-Aware Hashtag Recommendation 157

As we can see, the obscure hashtags give a lower performance on ROC as expected.
However, these experimental results gave us an idea of determining which hashtags
would be good to use for recommended tags. Each hashtag’s media content on
Instagram could be sampled and tested for their ROCs. If the ones with good ROC
performance are found, it could be used as recommended tags. The ROC’s AUC could
be set as a desired threshold value to eliminate unwanted hashtags. We performed the
ROC on the top 100 hashtags on Instagram to justify which hashtags could be used as
recommended hashtags. Hashtag with the AUC of 80% or above is highlighted, and the
result is shown in Table 1.

5.2 Predicting and Recommending Hashtags

Based on Table 1, we trained our SVM model with selected hashtags that were 70% or
above of their ROC’s. These hashtag categories include: #bestfriend, #party, #tattoo,
#fashion, #birthday, #coffee, #yummy, #cat, #beach, #health, #sky, #landscape, #fit,
#selfie, #animals, #dress, #foodporn, #food, #flowers, #architecture, #baby, #clouds,
#harrystyles, #night, #music, #sunset, #fitness, #shoes, #gym, #breakfast, #travel,
#nature, #dog, #christmas, and #art. When the input image is classified by the SVM
model as one of the hashtag categories, it will turn the word into a vector representation
for the use of Skip-gram model. To recommend corresponsive hashtags, the semantic
knowledge based model has to be trained. That is, the Skip-gram model has to be
trained in advance based on the hashtags corpus. We trained the Skip-gram model with
over 400,000+ corpus (about 3 million hashtags). After computing the most frequent
words (hashtags), we constructed a dictionary with 150,000 unique hashtags. Sur-
prisingly, many frequent words in the dictionary did match the ones shown in the top
100 most frequent used hashtags.

The recommended hashtags would be suggested in the k-NN algorithm manner.
The Skip-gram model is trained by Tensorflow toolsets. The window size of the Skip-
gram model is set to 32. Diagram like t-SNE can be constructed. In t-SNE diagram, we
could easily see neighboring hashtags in a vector space. Hashtags with similar meaning
or quality are indeed closer to each other. And the closeness of neighboring words can
be measured by the cosine distance. It is also good to know that the semantic
knowledge can be updated easily and they do not always stay the same. The trends of
the use of hashtags is changing periodically. For example, we found that during
December, the use of #winter and #christmas increases, and that they become neigh-
boring hashtags.

As can be seen in Table 2, randomly selected image-hashtag pairs are undergoing a
hashtag recommending process. Most of those input images have obscure hashtags that
did not get selected for training. Through the SVM predicted process, it is possible to
assign more relevant hashtags to the image. For example, we see that an input image
with a pink flower showing is having a hashtag #pink originally, but then the SVM

158 D. Kao et al.

model is able to suggest #flowers and #nature. Or the #sweet one is an image of bread
and a knife, and the SVM model is able to predict #breakfast and #yummy accurately.

In addition, we found that the probability with the value 40% or higher is con-
sidered a reasonable prediction. Thus, the predicted hashtags with 40% or higher is
used as the targeting hashtags for its relevant hashtags. The more predicted hashtags
that it had collected, the more hashtags it could recommend to users in the end. Users
now have more recommended hashtags options to select from for their image sharing.

5.3 Verification and Inspection

To ensure that users were getting relevant recommended hashtags for their input
contents, we inspected images behind these hashtags. We downloaded 300 images for
each of the 10 recommended hashtags. The top 20 AUC’s hashtag categories in
Table 1 were selected for the hashtags recommendation expansion. Therefore,
300 � 10 � 20 = 60,000 additional images were downloaded for verification. We
used the original trained SVM model to test these newly downloaded images. For
example, the relevant recommended hashtags for #architecture are #architecturepho-
tography, #architecture, #architecturelovers, #archilove, #building, #archilovers, #ar-
chitecturehunter, #arch_daily, #architectural, and #architectlife. Images behind these
recommended hashtags do indeed share common features with predicted hashtags most
of the time. Experimental results are shown in Fig. 4.

Fig. 4. ROCs of recommended hashtags. The averaged AUC is about 90%.

An Efficient and Resource-Aware Hashtag Recommendation 159

6 Conclusion

The system HAZEL that can predict and recommend hashtags to users when they
upload new images on Instagram is achieved in this research. While combining image
classification and semantic embedding models, we gain the expansion of recommended
hashtags. We also show that not all hashtags are equally meaningful. By evaluating the
ROC of the hashtag categories, we can justify the ones that should be kept or elimi-
nated in the hashtag recommendation pool. In addition, by crawling and updating
hashtags corpus for training the semantic embedding model periodically, we can ensure
that recommended hashtags are popular and in the latest trends. Although the

Table 2. Examples of hashtags recommendation.

Original Image Input Predicted Hashtags Hashtags Recommendation

#pink

#flowers
#nature
#clouds
#health

#art

0.634
0.407
0.374
0.363
0.361

#flower, #flowerpop, #flowerpicture, #flowery,
#flowering, #natureflower, #prettyflower,

#flowersmagic, #purpleflower, #fishingdog, #nature,
#naturebeautiful, #naturephotography,

#natuurliefhebber, #naturelovers, #natur_perfection

#blue

#travel
#architecture

#clouds
#bestfriend

#music

0.471
0.462
0.457
0.435
0.397

#traveling, #internationaltravel, #traveller,
#travelblogger, #travelphotography,

#architecturephotography, #architechture,
#architecturelovers, #archilove, #building, #cloudssky,
#cloud, #cloudappreciationsociety, #sky , #cloudporn,

#bestfriends, #buddy, #bestie

#tbt

#gym
#fit

#fitness
#health

#harrystyles

0.447
0.447
0.427
0.390
0.365

#gymrats, #gymfit, #gymworkout, #gymlove, #gymlife,
#gymtime, #gymislife, #backworkout, #crosstraining,

#fitness, #machdichwahr, #fitinspiration, #bcaa,
#fitmen, #fit, #crosstraining, #whey, #bcaa,

#bodyweight, #regime

#bestfriend

#dog
#animals

#christmas
#bestfriend

#baby

0.560
0.436
0.410
0.392
0.382

#dogs, #lifeofdogs, #puppy, #mixdogs, #pupylove,
#dogporn, #dogbreeds, #animal, #minizoo,

#animallovers, #happyanimal, #animalpost, #catvsdog,
#excelent_dogs, #amazingpet, #christmastree, #xmas,

#christmastime, #merrychristmas,
#christmasdecorations, #festive

#selfie

#selfie
#night
#dress
#shoes

#fit

0.416
0.395
0.390
0.382
0.380

#loveselfie, #selfies, #selfiestick, #selfielover,

#selfietime, #instaselfies, #selfienation, #selfiegram,

#selfiemania, #selfielove, #selfination, #myface,

#selfiequeen, #selfiesunday, #selca, #selfiemode,

#myselfie, #selfiemood, #mirrorselfie, #selfiegirl

#cloud, #cloudappreciationsociety, #sky

☁

160 D. Kao et al.

improvement of imaging feature extraction in CNN models can always be made in
constructing a better predicting model, our state-of-the-art system HAZEL is highly
scalable and could be applied to other social media platforms in recommending rele-
vant hashtags to users automatically.

References

1. Wang, X., et al.: Zero-shot image classification based on deep feature extraction. IEEE
Trans. Cogn. Dev. Syst. 10, 432–444 (2016)

2. Changpinyo, S., et al.: Synthesized classifiers for zero-shot learning. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (2016)

3. Xian, Y., Schiele, B., Akata, Z.: Zero-shot learning-the good, the bad and the ugly. arXiv
preprint arXiv:1703.04394 (2017)

4. Denton, E., et al.: User conditional hashtag prediction for images. In: Proceedings of the 21th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM
(2015)

5. Weston, J., Bengio, S., Usunier, N.: WSABIE: scaling up to large vocabulary image
annotation. In: IJCAI, vol. 11 (2011)

6. Frome, A., et al.: DeViSE: a deep visual-semantic embedding model. In: Advances in Neural
Information Processing Systems (2013)

7. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet,
D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 818–833.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_53

8. Stutz, D.: Understanding convolutional neural networks. In: Seminar Report, Fakultät für
Mathematik, Informatik und Naturwissenschaften Lehr-und Forschungsgebiet Infor-
matik VIII Computer Vision (2014)

9. He, K., Sun, J.: Convolutional neural networks at constrained time cost. In: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition (2015)

10. He, K., et al.: Deep residual learning for image recognition. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (2016)

11. Targ, S., Almeida, D., Lyman, K.: Resnet in resnet: generalizing residual architectures. arXiv
preprint arXiv:1603.08029 (2016)

12. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556 (2014)

13. Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (2015)

14. He, K., et al.: Delving deep into rectifiers: surpassing human-level performance on ImageNet
classification. In: Proceedings of the IEEE International Conference on Computer Vision
(2015)

15. Deng, J., et al.: ImageNet: a large-scale hierarchical image database. In: IEEE Conference on
Computer Vision and Pattern Recognition, CVPR 2009. IEEE (2009)

16. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput.
Vis. 115(3), 211–252 (2015)

17. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional
neural networks. In: Advances in Neural Information Processing Systems (2012)

18. Zhou, B., et al.: Places: a 10 million image database for scene recognition. IEEE Trans.
Pattern Anal. Mach. Intell. 40, 1452–1464 (2017)

An Efficient and Resource-Aware Hashtag Recommendation 161

http://arxiv.org/abs/1703.04394
http://dx.doi.org/10.1007/978-3-319-10590-1_53
http://arxiv.org/abs/1603.08029
http://arxiv.org/abs/1409.1556

19. Zhou, B., et al.: Places: an image database for deep scene understanding. arXiv preprint
arXiv:1610.02055 (2016)

20. Zhou, B., et al.: Learning deep features for scene recognition using places database. In:
Advances in Neural Information Processing Systems (2014)

21. Xiao, J., et al.: SUN database: large-scale scene recognition from abbey to zoo. In: 2010
IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE (2010)

22. Everingham, M., et al.: The PASCAL visual object classes challenge: a retrospective. Int.
J. Comput. Vis. 111(1), 98–136 (2015)

23. Girshick, R., et al.: Rich feature hierarchies for accurate object detection and semantic
segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (2014)

24. Mikolov, T., et al.: Efficient estimation of word representations in vector space. In: arXiv
preprint arXiv:1301.3781 (2013)

162 D. Kao et al.

http://arxiv.org/abs/1610.02055
http://arxiv.org/abs/1301.3781

Dynamic Student Classiffication on
Memory Networks for Knowledge Tracing

Sein Minn1(B), Michel C. Desmarais1, Feida Zhu2, Jing Xiao3,
and Jianzong Wang3

1 Polytechnique Montreal, Montreal, Canada
{sein.minn,michel.desmarais}@polymtl.ca

2 Singapore Management University, Singapore, Singapore
fdzhu@smu.edu.sg

3 Ping An Technology (Shenzhen) Co., Ltd., Shenzhen, China
{xiaojing661,wangjianzong347}@pingan.com.cn

Abstract. Knowledge Tracing (KT) is the assessment of student’s
knowledge state and predicting whether that student may or may not
answer the next problem correctly based on a number of previous prac-
tices and outcomes in their learning process. KT leverages machine learn-
ing and data mining techniques to provide better assessment, supportive
learning feedback and adaptive instructions. In this paper, we propose a
novel model called Dynamic Student Classification on Memory Networks
(DSCMN) for knowledge tracing that enhances existing KT approaches
by capturing temporal learning ability at each time interval in student’s
long-term learning process. Experimental results confirm that the pro-
posed model is significantly better at predicting student performance
than well known state-of-the-art KT modelling techniques.

Keywords: Massive open online courses · Knowledge tracing ·
Key-value memory networks · Student clustering · LSTMs

1 Introduction

Guiding human for solving problems efficiently and effectively is a recurring
topic in educational research. Knowledge tracing (KT) gained credibility in this
research community to provide appropriate and adaptive guidance in the learn-
ing process. KT aims to assess skills that are mastered or not, and use this
information to tailor learning experience, whether in MOOCs, in a tutoring sys-
tem or in web, results to name a few example for applications. For example,
when a problem such as “1+2×3.5 =?” is given to a student, she has to master
the skills of addition and multiplication for solving that problem. The probabil-
ity of getting a correct answer mainly depends on the mastery level of these two

This work was supported by NSERC Canada, Discovery grant program and Pinnacle
lab for analytics at Singapore Management University.

c© Springer Nature Switzerland AG 2019
Q. Yang et al. (Eds.): PAKDD 2019, LNAI 11440, pp. 163–174, 2019.
https://doi.org/10.1007/978-3-030-16145-3_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16145-3_13&domain=pdf
https://doi.org/10.1007/978-3-030-16145-3_13

164 S. Minn et al.

skills behind that problem. Mastering a skill can be achieved by doing practices
on that skill. The goal of knowledge tracing is to track the knowledge state of
students based on observed outcomes on their previous practices [5]. This task is
also known as student modelling. Research on KT can be traced back to the late
1970s and a wide array of Artificial Intelligence and Knowledge Representation
techniques have been explored [3,14]. In environments where the student learns
as she interacts with the system, which is specifically the case for learning envi-
ronments such as MOOCs, modeling student skill mastery involves a temporal
dimension. For instance, a sequence problems involving the same skills set may
be failed at first, but succeeded later on because the student’s skill mastery has
increased. Yet, other factors can influence the success outcome, such as the two
problem’s difficulty level, forgetting, guessing and slipping, and an array of other
factors that induce noise if they are not accounted for [11,12].

The dynamic nature of KT in learning environments leads to approaches
that have the capacity to model temporal or sequential data. In this paper we
propose a novel model for knowledge tracing, Dynamic Student Classified Mem-
ory Networks (DSCMN). The model can capture temporal learning ability in
student’s long-term memory and assess mastery of knowledge state simultane-
ously. Temporal learning ability refers to the rate of learning of specific skills.
It can be tied to phenomena like wheel spinning, where a student fails to learn
a skill even after numerous attempts [17]. It relies on an RNN architecture to
improve performance prediction. The hypothesis we make is that learning ability
can change in time and tracing this factor can help predict future performance.

The rest of this paper is organized as follow. Section 2 reviews the related
work on the student modelling techniques for predicting student’s performance
from data. Section 3 presents the proposed DSCMN model. Section 4 mentioned
experimental datasets used. Experimental results are described in Sect. 5 and
finally Sect. 6 concludes this work and discusses future avenues of research.

2 Knowledge Tracing

Successful learning environments such as the Cognitive tutors series and the
ASSISTments platform rely on some form of KT [6]. In these systems, each
problem is labeled with underlying skills required to correctly answer that prob-
lem. KT can be seen as the task of supervised sequential learning problem where
the model is given student past interactions with the system that includes: skills
S = {s1, s2, . . . , st} along with response outcomes R = {r1, r2, . . . , rt}. KT pre-
dict the probability of getting a correct answer to the next problem, which
mainly depends on mastery of corresponding skill s associated with problems
P = {p1, p2, . . . , pt}. So we can define the probability of getting correct answer
as p(rt = 1|st,X) where X = {x1, x2, . . . , xt−1} and xt−1 = (st−1, rt−1) is a
tuple containing response outcomes r to skill s at time t − 1. Then, we review
here four of the best known state-of-the-art KT modelling methods for estimat-
ing student’s performance.

Dynamic Student Classification on Memory Networks for Knowledge Tracing 165

2.1 Bayesian Knowledge Tracing (BKT)

BKT is arguably the first model to relax the assumption on static knowledge
states. Earlier approaches such as IRT would assume the student does not learn
between answers, which is a reasonable assumption for testing, but not for learn-
ing environments. BKT was introduced for knowledge tracing within a learning
environment [5]. In its original form, it also assumes a single skill is tested per
item, but this assumption is relaxed in later work. The data are partitioned by
skill and learning a model on each dataset leads to a specific model for each skill
s. The standard BKT model is comprised of 4 parameters which are typically
learned from the data while building a model for each skill. The model’s inferred
probability mainly depends on those parameters which are used to predict how
a student masters a skill given that student’s chronological sequence of incorrect
and correct attempts to questions of that skill thus far [1]. To estimate the prob-
ability that a student knows the skill given his performance history, BKT needs
to have four probabilities: P (L0), initial probability of mastery of skill L0; P (T),
transition probability from a state of non mastery to mastery; and P (S), slip-
ping, the probability of a wrong answer in spite of mastery, and P (G), guessing,
the probability of a correct answer in spite of non mastery.

P (Ln|Correct) =
P (Ln−1)(1 − P (S))

P (Ln−1)(1 − P (S)) + (1 − P (Ln−1))P (G)
(1)

P (Ln|Incorrect) =
P (Ln−1)P (S)

P (Ln−1)P (S) + (1 − P (Ln−1))(1 − P (G))
(2)

P (Ln) = P (Ln−1|Outcome) + (1 − P (Ln−1|Outcome))P (T) (3)

2.2 Deep Knowledge Tracing (DKT)

Similar to BKT, Deep Knowledge Tracing (DKT) [13] works on the skill sequence
of attempts but the author leveraged the advantages of neural networks and
break the restriction of skill separation and binary state assumption. It takes the
previous history of attempts by students and transforms each attempt into one-
hot encoded feature vector. Then, those features are fed into a neural network as
input and pass information through the hidden layers of the network and onto
the output layer. The output layer provides the predicted probability that the
student would answer that particular problem correctly in the system.

DKT uses Long Short-Term Memory (LSTM) [8] to represent the latent
knowledge space of students along with the number of practices dynamically.
The increase in student’s knowledge through an assignment can be inferred by
utilizing the history of student’s previous performance. DKT summarizes a stu-
dent’s knowledge state of all skills in one hidden state in hidden layer. A student’s
skill mastery state at certain time stamp is defined by the following equations:

ht = tanh(Whxxt−1 + Whhht−1 + bh), (4)

p(st) ∈ yt = σ(Wyhht + by), (5)

166 S. Minn et al.

In DKT, both tanh and the sigmoid function are applied element wise and
parameterized by an input weight matrix Whx, recurrent weight matrix Whh,
initial state h0, and readout weight matrix Wyh. Biases for latent and readout
units are represented by bh and by.

2.3 Dynamic Key-Value Memory Network (DKVMN)

DKVMN was proposed an enhancement to DKT that utilizes a neural network
module called external memory slots to encode the knowledge state of students
and use as key and value components to encode the knowledge state of stu-
dents [19]. Learning or forgetting of a particular skill are stored in those two
components and controlled by read and write operations through additional
attention mechanisms. Learning or forgetting of a particular skill is stored in
those two components and controlled by read and write operations through addi-
tional attention mechanisms.

Unlike DKT, DKVMN performs reading and writing operations to perform
local state transitions by avoiding global and unstructured state-to-state trans-
formation in hidden layer. Knowledge state of a student is traced by reading and
writing to the value memory slots using correlation weight computed from input
skills and the key memory slots. It is comprised of three main steps:

Correlation: The correlation weight of input skill st is computed by utilizing
the softmax activation of the inner product between kt and key memory slot
Mk(i):

wt = Softmax(kT
t Mk(i)) (6)

where kt is the continuous embedding vector of st and Softmax(zi) =
ezi/

∑
j ezj id differentiable. Correlation weight wt is used in both reading and

writing process in later.

Reading: The mastery mt of st is retrieved by weighted sum of values in value
memory slots by using wt:

mt =
N∑

i=1

(wt(i)Mv
t (i)) (7)

Prediction: The probability of answering the problem with underlying skill
p(st) is calculated by using mastery level mt:

ft = tanh(WT
1 [mt, kt] + b1) (8)

p(st) = σ(WT
2 ft + b2) (9)

Where tanh(zi) = (ezi − e−zi)/(ezi + e−zi) and σ(zi) = 1/1 + e−zi .

Dynamic Student Classification on Memory Networks for Knowledge Tracing 167

Writing: After the student answers the problem, the model will update the
value memory according to response (rt) of student. A joint embedding of xt =
(st, rt) is converted into embedding values vt and written to the value memory
with same correlation weight wt used in read process. Erasing is performed before
adding new information by using:

et = σ(ET vt + be), (10)

M̃v
t (i) = Mv

t−1(i)[1 − wt(i)et], (11)

where 1 is a row-vector of all 1-s. If both the weight at the location and the
erase element are 1, the elements of a memory location are reset to zero. No
changes are performed in the case of either erase signal or the weight is zero.
After erasing previous memory, at is used to update each memory slots in value
memory.

at = tanh(DT vt + ba)T , (12)

Mv
t (i) = Mv

t−1(i) + wt(i)at, (13)

where E and D are the transformation matrix with shape of dv × dv. This erase-
followed-by-add mechanism allows forgetting and strengthening knowledge states
of student learning process [19] which is not able in other RNN based models.

2.4 Deep Knowledge Tracing with Dynamic Student Classification
(DKT-DSC)

DKT-DSC was introduced to overcome the problem of short-term learning ability
of student when applied to the KT task [10]. During the evaluation of student
learning ability, DKT-DSC encodes student’s past performance by using the
following equation:

Correct(sj)1:z =
Z∑

z=1

(sj = 1)
|Nj | , (14)

Incorrect(sj)1:z =
Z∑

z=1

(sj = 0)
|Nj | , (15)

R(sj)1:z = Correct(sj)1:z − Incorrect(sj)1:z, (16)

di1:z = (R(s1)1:z, R(s2)1:z, . . . , R(sn)1:z). (17)

in which Correct(sj)1:z represents the ratio of skill sj being correctly answered
and Incorrect(sj)1:z for the ratio of incorrectly answered. di1:z is the vector of
skills mastery for student i on n skills and for time interval 1 to z. |Nj | is the
total number of attempts that student i has done on each skill sj . Evaluating
temporal learning ability by assigning students into a group with similar ability
cz at each time interval z by using k-means clustering on encoded data di1:z−1

[2,9,10] and then the model invokes an RNN to trace her knowledge according
to her learning ability cz at each time interval.

ht = tanh(Whx[xt−1, st, vt] + Whhht−1 + bh), (18)

168 S. Minn et al.

p(sczt) ∈ yt = σ(Wyhht + by), (19)

where vt contains success and failure levels of skill st until time t − 1 thus
far.The probability of p(sczt) ∈ yt represents the probability of getting correctness
of problem with associated skill st for the student with her temporal learning
ability cz in that time interval z while other models ignore the long-term learning
ability in student learning process. DKT-DSC applies temporal value of student’s
learning ability at each time interval to improve the individualization in long-
term knowledge tracing process.

3 Dynamic Student Classification on Memory Networks
(DSCMN)

Despite a better accuracy to assess the mastery of skills than DKT, each of the
above models has deficiencies for dealing with the KT task. In both DKT and
DKVMN, temporal student’s long-term learning ability is ignored. So the model
cannot evaluate which level of learning ability the student achieved for a given
time interval in a long term learning process. In DKT and DKT-DSC, LSTM
uses single state vector to encode the temporal information of student knowledge
state with corresponding learning ability in a single hidden layer.

To model learning ability, we propose a novel model called Dynamic Student
Classification on Memory Networks (DSCMN) that builds upon the advantages
of DKVMN and DKT-DSC. DSCMN predicts student performance based on
both of evaluated temporal student’s long-term ability and assessed mastery of
skills simultaneously at each time interval.

Evaluating Temporal Student’s Learning Ability: Learning is a process
that involves practice: students become proficient through practice. Besides,
learning is also affected by the individual’s ability to learn, or to become profi-
cient with more or less practice [10].

To detect the regularities and changes of temporal learning ability of a stu-
dent over series of time intervals in long-term learning process, we need to encode
student past performance for predicting her learning ability in the current time
interval with DKT-DSC’s Eq. 17. The encoded vector of student’s past perfor-
mance is updated after each time interval. The K-means algorithm [9] is used to
evaluate the temporal long-term learning ability of students in both training and
testing at each time interval z by measuring the Euclidean distance between cen-
troids achieved after training the DKT-DSC process [10] and assigning a nearest
cluster label cz as the long-term learning ability of a student at time z. Evalu-
ation is started after the first 20 attempts and updated after each 20 attempts
have been made by a student. For first time interval, every student is assigned
with initial learning ability 1 as described in Fig. 1.

Dynamic Student Classification on Memory Networks for Knowledge Tracing 169

Fig. 1. Evaluation process of student’s learning ability (Left) and Evolution of temporal
learning ability in long-term learning process of random 56 students in ASSISTments
2009 dataset (Right)

Calculating Problem Difficulty: We measure problem difficulty as one of 10
levels [11,12]. Note that, in this study, the difficulty is associated with problems,
not with skills themselves. The difficulty of a problem, pj ∈ D, is determined as:

pd(pj) =

{
δ(pj , pd), if |Nj |≥ 4
pd, else

(20)

where:

δ(pj , pd) =
∑|Nj |

i |{pij == 0}|
|Nj | · pd (21)

and where Nj is the set of students who attempted problem pj , and pij is the
outcome of the first attempt from student i, to problem pj . An outcome of 0 is
a failure. Constant pd is the problem difficulty (levels) that we wish to retain.
It is described in function δ(pj , pd) as shown in Eq. (20). Essentially, δ(pj , pd)
is a function that maps the average success rate of problem pj onto (10) levels.
For problems those do not have responses from at least 4 different students,
problems with |Nj |< 4 in the dataset, we apply pdt = 5 corresponding to 0.5
difficulty for those problems.

3.1 Assessing Student’s Mastery of Skill

To assess the mastery of skill according to temporal learning ability, we use
read and write process into two key and value memory slots as like in DKVMN.
DSCMN also assess the mastery of skills using the correlation weight computed
from the input skill and the key memory. In DSCMN, instead of using embedding
values, one-hot encoded inputs are directly fed into memory networks by using
Eqs. (6) and (7). Mastery mt of skill st is obtained from reading process before
writing xt to value memory. Then the model writes xt into value memory by using
Eqs. (10) and (12) after the student answered the problem at time t (Fig. 2).

170 S. Minn et al.

Fig. 2. Architecture of DSCMN

Prediction: The probability of answering the problem with underlying skill
p(st) of student in temporal learning ability c at time interval z is estimated
by feeding previous response and mastery of skill in temporal learning ability of
student into additional hidden layer and prediction is performed as follows:

ht = tanh(Wh[xt−1,mt, pdt] + Whhht−1 + bh), (22)

p(sczt) ∈ yt = σ(Wyhht + by), (23)

Where cz is the temporal learning ability of that student at time interval t ∈ z
and [xt−1,mt, pdt] encoded xt−1 previous response of skill st−1 and mastery of
skill st with skill id st and associated problem difficulty pdt in temporal learning
ability of student i at time interval z. DSCMN possess the ability to assess
the mastery of skill based on temporal ong-term learning ability. Prediction is
performed by using these factors and stored it in hidden state ht.

Optimization: To improve the predictive performance of RNN based models,
we trained with the cross-entropy loss l between pt and actual response rt for
all RNN based models as follows:

l =
∑

t

(rt log pt + (1 − rt) log(1 − pt)), (24)

4 Datasets

In order to validate the proposed model, we tested it on four public datasets
from two distinct tutoring scenarios in which students interact with a computer-

Dynamic Student Classification on Memory Networks for Knowledge Tracing 171

based learning system in the educational settings: (1) ASSISTments1: an online
tutoring system that was first created in 2004 which engages middle and high-
school students with scaffolded hints in their math problem. If students working
on ASSISTments answer a problem correctly, they are given a new problem.
If they answer it incorrectly, they are provided with a small tutoring session
where they must answer a few questions that break the problem down into
steps. Datasets are as follows: ASSISTments 2009–2010 (skill builder), ASSIST-
ments 2012–2013, ASSISTments 2014–2015. (2) Cognitive Tutor. Algebra 2005–
2006 [4]2: is a development dataset released in KDD Cup 2010 competition
from Carnegie Learning of PSLC DataShop. For all datasets, only first correct
attempts to original problems are considered in our experiment. We remove
data with missing values for skills and problems with duplicate records. To the
best of our knowledge, these are the largest publicly available knowledge tracing
datasets (Table 1).

Table 1. Overview of datasets

Dataset Number of Description

Skills Problems Students Records

Cognitive Tutor 437 15663 574 808,775 KDD Cup 2010 [4]

ASSISTments 123 13002 4,163 278,607 2009–2010 [15]

198 41918 28,834 2,506,769 2012–2013 [7]

100 NA 19,840 683,801 2014–2015 [18]

5 Experimental Study

In this experiment, we assume every 20 attempts made by a student is a time
interval. The total number of temporal values for student’s learning ability used
in our experiment is 8 (7 clusters and 1 for initial ability before evaluation
in initial time interval for all students) for DKT-DSC and DSCMN. Five fold
cross-validations are used to make predictions on all datasets. Each fold involves
randomly splitting each dataset into 80% training students and 20% test students
of the each datasets. For the input of DKVMN, initial values in both key and
value memory are learned in training process. For other models, one hot encoding
is applied. Initial values in value memory represents the initial knowledge state
as prior difficulty for each skill and is fixed in the testing process.

We implement the all models with Tensorflow and DKT, DKT-DSC and
DSCMN share same structure of fully-connected hidden nodes for LSTM hidden
layer with the size of 200 for DKT, 200 for DKT-DSC and output size of memory

1 https://sites.google.com/site/assistmentsdata/.
2 https://pslcdatashop.web.cmu.edu/KDDCup/downloads.jsp.

https://sites.google.com/site/assistmentsdata/
https://pslcdatashop.web.cmu.edu/KDDCup/downloads.jsp

172 S. Minn et al.

networks for DSCMN. For speeding up the training process, mini-batch stochas-
tic gradient descent is used to minimize the loss function. The batch size for our
implementation is 32, corresponding 32 to split sequences from each student. We
train the model with a learning rate 0.01 and dropout is also applied to avoid
over-fitting [16]. We set the number of epochs to 100. All models are trained and
tested on the same sets of training and testing students.

For BKT, we use the Expectation Maximization (EM) algorithm and limit
the number of iterations to 200. We learn models for each skill and make pre-
dictions separately. The results for each skill are averaged.

Table 2. AUC result for all tested datasets. Note that the results of DKT-DSC are
slightly different than [10] after fixing bugs in the original code.

Datasets Model

BKT DKT DKVMN DKT-DSC DSCMN

Cognitive Tutor 64.2± 1.0 78.4± 0.6 78.0± 0.0 79.2± 0.5 86.0± 0.5

ASSISTments09 65.1± 1.0 72.1± 0.5 71.0± 0.5 73.5± 0.6 81.2± 0.4

ASSISTments12 62.3± 0.0 71.3± 0.0 70.7± 0.1 72.1± 0.1 78.5± 0.1

ASSISTments14 61.1± 1.0 70.7± 0.4 70.0± 0.1 71.6± 0.2 71.0± 0.01

In Table 2, DSCMN performs significantly better than state-of-the-art models
in three datasets. On the Cognitive Tutor dataset, compared with the standard
DKT which has an maximum test AUC of 78.4, 79.2 in DKT-DSC and only
78.0 in DKVMN. The DSCMN model can achieve AUC = 86.0, with a notable
gain of 10% over the original DKT and DKVMN, and 8% over DKT-DSC.
For the ASSISTments09 dataset, DSCMN also achieves about a 10% gain with
AUC = 81.2, above DKT-DSC= 78.5, and well above the original DKT, with
AUC = 71.3, and DKVMN with AUC = 70.7. On the ASSISTments12 dataset,
DSCMN only achieved AUC = 0.71. In the latest ASSISTments14 dataset (which
contains more students and less data compared to other three datasets and lacks
problem information) DSCNM has AUC slightly lower than DKT-DSC.

Table 3. RMSE result for all tested datasets

Datasets Model

BKT DKT DKVMN DKT-DSC DSCMN

Cognitive Tutor 0.44± 0.00 0.38± 0.01 0.38± 0.00 0.37± 0.03 0.35± 0.00

ASSISTments09 0.47± 0.01 0.45± 0.00 0.45± 0.01 0.43± 0.00 0.40± 0.00

ASSISTments12 0.51± 0.00 0.43± 0.00 0.43± 0.00 0.43± 0.00 0.40± 0.00

ASSISTments14 0.51± 0.00 0.42± 0.00 0.42± 0.00 0.42± 0.00 0.42± 0.00

Dynamic Student Classification on Memory Networks for Knowledge Tracing 173

In Table 3, when we compare the models in term of RMSE, BKT is lowest
at 0.46 for ASSISTments09, 0.51 for ASSISTments12 and ASSISTments14, and
0.44 for Cognitive Tutor. RMSE results in all dataset is lowest for DSCMN, with
0.40, while all other models are no over 0.43 (except DKT in the Cognitive Tutor
dataset and DSCMN in ASSISTments14). According to these results, DSCMN
shows better performance than DKT-DSC and significantly better than other
models in Cognitive Tutor, ASSISTments09, ASSISTments12 but a little lower
than DKT-DSC in ASSISTments14.

6 Conclusion and Future Work

In this paper, we propose a new model, DSCMN, which can predict the student
performance by gathering information from skills, problems and student: mastery
level of skills of student on various problems at each time step, along with student
learning ability at each time interval.

Experiments with four datasets show that the proposed model performs bet-
ter in predictive performance than state-of-the-art KT models. Dynamic evalu-
ation of student’s temporal learning ability at each time interval plays a critical
role and helps DSCMN capture more variance in the data, leading to more accu-
rate predictions.

In our future work, we plan to adapt this model to problems associated with
multiple skills and apply it in the recommendation of related problems.

References

1. d Baker, R.S.J., Corbett, A.T., Aleven, V.: More accurate student modeling
through contextual estimation of slip and guess probabilities in Bayesian knowl-
edge tracing. In: Woolf, B.P., Aı̈meur, E., Nkambou, R., Lajoie, S. (eds.) ITS
2008. LNCS, vol. 5091, pp. 406–415. Springer, Heidelberg (2008). https://doi.org/
10.1007/978-3-540-69132-7 44

2. Ball, G., Hall Dj, I.: A novel method of data analysis and pattern classification.
Isodata, a novel method of data analysis and pattern classification. Technical report
5ri, project 5533 (1965)

3. Brown, J.S., Burton, R.R.: Diagnostic models for procedural bugs in basic math-
ematical skills. Cogn. Sci. 2(2), 155–192 (1978)

4. Corbett, A.: Cognitive computer tutors: solving the two-sigma problem. User
Model. 2001, 137–147 (2001)

5. Corbett, A.T., Anderson, J.R.: Knowledge tracing: modeling the acquisition of
procedural knowledge. User Model. User-Adapt. Interact. 4(4), 253–278 (1994)

6. Desmarais, M.C., Baker, R.S.: A review of recent advances in learner and skill
modeling in intelligent learning environments. User Model. User-Adapt. Interact.
22(1–2), 9–38 (2012)

7. Feng, M., Heffernan, N., Koedinger, K.: Addressing the assessment challenge with
an online system that tutors as it assesses. User Model. User-Adapt. Interact.
19(3), 243–266 (2009)

8. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

https://doi.org/10.1007/978-3-540-69132-7_44
https://doi.org/10.1007/978-3-540-69132-7_44

174 S. Minn et al.

9. MacQueen, J., et al.: Some methods for classification and analysis of multivariate
observations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical
Statistics and Probability, Oakland, CA, USA, vol. 1, pp. 281–297 (1967)

10. Minn, S., Yu, Y., Desmarais, M.C., Zhu, F., Vie, J.J.: Deep knowledge tracing
and dynamic student classification for knowledge tracing. In: IEEE International
Conference on Data Mining (2018)

11. Minn, S., Zhu, F., Desmarais, M.C.: Improving knowledge tracing model by inte-
grating problem difficulty. In: IEEE International Conference on Data Mining,
Ph.D. Forum (2018)

12. Pardos, Z.A., Heffernan, N.T.: KT-IDEM: introducing item difficulty to the knowl-
edge tracing model. In: Konstan, J.A., Conejo, R., Marzo, J.L., Oliver, N. (eds.)
UMAP 2011. LNCS, vol. 6787, pp. 243–254. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-22362-4 21

13. Piech, C., et al.: Deep knowledge tracing. In: Advances in Neural Information
Processing Systems, pp. 505–513 (2015)

14. Polson, M.C., Richardson, J.J.: Foundations of Intelligent Tutoring Systems. Psy-
chology Press, London (2013)

15. Razzaq, L., et al.: The assistment project: blending assessment and assisting. In:
Proceedings of the 12th Annual Conference on Artificial Intelligence in Education,
pp. 555–562 (2005)

16. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn.
Res. 15(1), 1929–1958 (2014)

17. Wan, H., Beck, J.B.: Considering the influence of prerequisite performance on wheel
spinning. In: International Educational Data Mining Society (2015)

18. Xiong, X., Zhao, S., Van Inwegen, E., Beck, J.: Going deeper with deep knowledge
tracing. In: EDM, pp. 545–550 (2016)

19. Zhang, J., Shi, X., King, I., Yeung, D.Y.: Dynamic key-value memory networks
for knowledge tracing. In: Proceedings of the 26th International Conference on
World Wide Web, pp. 765–774. International World Wide Web Conferences Steer-
ing Committee (2017)

https://doi.org/10.1007/978-3-642-22362-4_21
https://doi.org/10.1007/978-3-642-22362-4_21

Targeted Knowledge Transfer
for Learning Traffic Signal Plans

Nan Xu1, Guanjie Zheng2, Kai Xu3, Yanmin Zhu1(B), and Zhenhui Li2

1 Shanghai Jiao Tong University, Shanghai, China
{xunannancy,yzhu}@sjtu.edu.cn

2 Pennsylvania State University, University Park, USA
{gjz5038,jessieli}@psu.edu

3 Shanghai Tianrang Intelligent Technology Co., Ltd, Shanghai, China
kai.xu@tianrang-inc.com

Abstract. Traffic signal control in cities today is not well optimized
according to the feedback received from the real world. And such an
inefficiency in traffic signal control results in people’s waste of time in
commuting, road rage in the traffic jam, and high cost for city operation.
Recently, deep reinforcement learning (DRL) approaches shed lights to
better optimize traffic signal plans according to the feedback received
from the environment. Most of these methods are evaluated in a sim-
ulated environment, but can not be applied to intersections in the real
world directly, as the training of DRL relies on a great amount of sam-
ples and takes a long time to converge. In this paper, we propose a batch
learning framework where the targeted transfer reinforcement learning
(TTRL-B) is introduced to speed up learning. Specifically, a separate
unsupervised method is designed to measure the similarities of traffic
conditions to select the suitable source intersection for transfer. The
proposed framework allows batch learning and this is the first work to
consider the impact of slow learning in RL on real-world applications.
Experiments on real traffic data demonstrate that our model accelerates
learning with good performance.

Keywords: Deep reinforcement learning · Transfer learning ·
Traffic signal control

1 Introduction

Traffic congestion is one of the most severe issues in cities today. Part of the
reason is that the current traffic signal system is not efficient. Current traffic
signal control systems such as SCATS [9] and SCOOT [7] adjust traffic sig-
nals locally according the loop sensor data at the intersection and they do not
optimize globally based on the feedback received from the real world. Recent

N. Xu—Work done during an internship at Tianrang.

c© Springer Nature Switzerland AG 2019
Q. Yang et al. (Eds.): PAKDD 2019, LNAI 11440, pp. 175–187, 2019.
https://doi.org/10.1007/978-3-030-16145-3_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16145-3_14&domain=pdf
https://doi.org/10.1007/978-3-030-16145-3_14

176 N. Xu et al.

attempts using Deep Reinforcement Learning (DRL) have shown more effec-
tive results [4,13,24,25]. Compared with traditional transportation approaches,
DRL approaches can learn and adjust traffic signal policy based on the feedback
received from the environment.

However, if we directly apply DRL to traffic signal control problem, we face
two key challenges: (1) the training of a DRL model usually requires millions of
samples [12], but we usually have very limited data on a new real-world intersec-
tion; (2) the principle of RL is trial-and-error and such error may cause severe
implications in the real world. Therefore, we ask a critical question: how can we
transfer the knowledge learnt from other intersections to this new intersection
so we can try to reduce the error and speed up the learning process?

Transfer learning [14,19] and meta-learning [21,22] have been widely used to
transfer knowledge from similar tasks to speed up the learning of target tasks.
Recently, researchers apply this idea in DRL to play games [15,18,20]. In these
problems, agents learning from different games separately will act as teachers
to distill knowledge in various ways, e.g., policy regression [15,18] and high-
level feature representation regression [15]. A student model may take over these
knowledge and adapt itself while interacting with the new environment. How-
ever, such a useful approach has never been investigated in traffic signal control
scenario.

In this paper, we propose a transfer learning model for traffic signal control
on a series of intersections. Our model is an organic combination of three steps:
(1) source task selection; (2) model and sample transfer; (3) a batch learning
framework.

We first select proper source tasks for target using the similarity of embed-
dings of traffic volume variation. This can effectively avoid the negative trans-
fer [15]. Previous methods either use domain knowledge [3] or rely on a joint
learning model with a task classifier and a RL agent [20]. In our problem set-
ting, using traffic data to measure the similarity is more accurate than using
domain knowledge. We also find training a joint model requires much more data
samples and it is significantly slow. Second, we transfer the model and samples
to the target intersection: besides employing the model which mimics the teach-
ers’ actions as the pretrained model for the new intersection, we further refer
to the teachers’ samples to regulate the parameter update when applied to new
intersections. Third, we adopt a batch learning framework to further improve the
knowledge distillation. In each round, well-tuned transfer models are saved in
a teacher pool. In the next round, these transferred models will also play the
role of teachers. This will keep on distillating the knowledge to its most concise
representation.

Our contributions can be summarized as follows:

– This is the first work to consider the effective transfer of RL algorithms trained
on simulated traffic to the real-world traffic. This is essential to reduce the
mistakes to be made in the real world.

– We propose an elegant transfer learning framework with unsupervised teacher
selection and batch learning.

Targeted Knowledge Transfer for Learning Traffic Signal Plans 177

– We conduct comprehensive experiments on the real-world traffic datasets from
Hangzhou, China. We show that our proposed method outperforms the base-
lines and each component of the proposed method makes its own contribution.

2 Related Work

2.1 Approaches for Traffic Signal Control

Traditional Transportation Approaches. The current road traffic is mainly
managed by systems with two kinds of control: fixed-time [11,23] or vehicle-
actuated signals [2,23]. Fixed-time control gives a fixed cycle and green ratio
split, while vehicle-actuated determines the time to change signals according
to a specific rule (e.g., whether the number of vehicles on the red direction is
larger than a threshold). Some other transportation practice [17] also suggests
to use the historical traffic volume to compute the cycle and green ratio split, in
order to minimize the total travel time under certain traffic volume assumptions.
However, those methods all depend heavily on either manually crafted rules
or unrealistic assumptions. The policy that achieves good performance on one
intersection cannot be applied to another efficiently, either.

Reinforcement Learning Approaches. RL approaches have been proved
to achieve better performance in traffic signal control in recent studies. Early
studies [1,25] used tabular methods to compute the reward for discrete state-
action pairs. Unfortunately, continuous traffic attributes or high-dimensional
features were never fully exploited. Recent deep reinforcement learning meth-
ods [4,8,13,24] further utilize the continuous traffic features to solve the problem.
However, all these methods treat intersections as individuals, in which model
parameters are learned from scratch. As a result, experience accumulated on
previous intersections can not be utilized to speed up the learning on new inter-
sections. This will result in slow learning and economic loss in real practice.

2.2 Methods for Knowledge Transfer

Transfer learning [14,19] and meta learning [21,22] are methodologies that people
proposed to share the knowledge among tasks to boost the performance or speed
up the learning. With transfer algorithms as key components in both methods,
meta learning concentrates more on a continual stream of tasks while trans-
fer learning may reasonably focus on a single pair of related tasks. Recently,
they have been proved to benefit RL learning practices in many game tasks,
e.g., Atari [15,18], Minecraft [20], etc. However, little efforts have been made to
transfer the learning of traffic signal control problems to mitigate the real traffic
congestion problem. Compared to the other transfer learning problems, learning
to control traffic signals is cost-sensitive so that the transfer source and target
need to be more carefully selected and the transferred knowledge needs to be
better represented to avoid negative transfer [3,15,20]. Therefore, we need to
develop a new transfer learning framework in this paper.

178 N. Xu et al.

3 Problem Definition

In a single intersection with four-way traffic, there is a signal to direct the traffic.
There are two kinds of traffic light settings and we call them phases, i.e., Green-
Horizon (green light on the horizontal direction and red light on the vertical
direction), Red-Horizon (red light on the horizontal direction and green light on
the vertical direction).

Projecting the situation to the RL definitions, the traffic condition on this
intersection, such as the position and speed of each vehicle, is treated as the
environment. An agent is trained to decide whether to change the signal to the
next phase (action is 1) or keep the current phase (action is 0). In each time slot,
the agent takes an action, and receives a reward from the environment. Then,
the agent updates the model after a certain period.

Problem 1. The goals of this paper are:

– Design a RL algorithm to control the traffic signal to minimize the total travel
time of vehicles.

– Transfer the knowledge accumulated in learned intersections to the target
intersections to speed up agent learning.

4 Method

Our model is a transfer learning solution to speed up learning in target tasks with
experience accumulated in source tasks. In this section, we will first introduce
a non-transfer RL method IntelliLight for signal control. Then we show the
transfer properties of our model in three aspects: (1) source task selection; (2)
model and sample transfer; (3) the batch learning transfer framework.

4.1 Non-transfer Reinforcement Learning Solution

Our signal control model TTRL-B follows the agent design and the network
structure of model IntelliLight [24]. This non-transfer model is a DQN [12] solu-
tion and has two additional techniques, i.e., Memory Palace and Phase Gate,
to enhance model performance. The agent takes the action with the maximum
long-term reward and updates at the i-th iteration according to the following
loss function:

L(θi) = E(st,at,rt,st+1)∼U(D)

[(
r + γ max

at+1
Q(st+1, at+1; θ

−
i) − Q(st, at; θi)

)2
]

, (1)

in which γ is the discount factor, θi, θ−
i are the parameters of the Q-network

at i-th iteration for action prediction and for target computation, respectively,
D is the pool of stored samples.

Targeted Knowledge Transfer for Learning Traffic Signal Plans 179

4.2 TTRL-B: Targeted Transfer Reinforcement Learning in a Batch
Learning Framework

To control the signal for a target traffic flow, the proposed model first looks for
the most similar flows by analyzing their distance from the target in the embed-
ding space. Then the model for the target task is built with weights initialized
via model guidance and keeps on updating with sample guidance. To control
signals on a set of intersections, TTRL-B will create batches of target tasks to
form a batch learning framework.

Source Task Selection Based on Traffic Embedding. One policy, that suc-
cessfully eases a congested intersection, plays a instruction role for controlling
another high-traffic intersection. Given historical traffic condition of an intersec-
tion without deterministic labels, we treat targeted source selection as an unsu-
pervised task where traffic similarities are measured by their distance from each
other in an embedding space. Traffic flows are time series data with the num-
ber of passing vehicles over a certain time interval in each direction periodically
recorded. To represent flow data of an arbitrary length by a fixed-dimensional
vector, we build a long short-term memory (LSTM) [6] autoencoder to produce
a dense representation that captures the road volume variation along time. In
particular, the autoencoder consists of one encoder that first maps the sequence
input to a fixed-dimensional vector, followed by one decoder that inversely recon-
structs the original sequence. The reconstruction loss between the original and
the generated sequence is minimized and we finally extract the state vector of
the encoder at the final time step as the traffic representation. Note that the
flow information on the intersection to be controlled is unknown, we replace it
with the historical traffic data on this intersection from the same time period in
the identical workday (or weekday) to represent the upcoming traffic condition.

As the euclidean distance among vectors is widely adopted for their similarity
calculation [10,26], we calculate such distance between the target flow represen-
tation with that of the candidate source flows, each of which is controlled by an
agent with a rich accumulation of samples and experience. k among the source
candidates, which are closest to the target in the embedding space, are selected
and their respective agents will transfer knowledge to the target agent.

Transfer Reinforcement Learning

Model Guidance. Given a set of source flows F1, . . . , Fk, the first step is to train
a single network that can control signals of the source flows under the supervision
of a set of DQN agents A1, . . . , Ak, which were once responsible for the source
tasks. Agent Ai has a sample pool DS

i = {(st, QS(st, a)}, where the sample
from the t-th time step consists of the current state st, and a vector Q(st, a) of
unnormalized Q-values with one value per action. The target network is trained
with a mean-squared-error loss (MSE) that would match Q-values between the

180 N. Xu et al.

source and target network:

LMSE(θ) =
i=k∑

i=1

∑

(st,QS(st,a))∈DS
i

∥∥QS(st, a) − QT (st, a)
∥∥2

2
, (2)

where QS(st, a) is sampled from {DS
i |1 ≤ i ≤ k} to represent the Q-value

predicted by the source network, QT (st, a) is the Q-value predicted by the target
network parameterized by θ.

For knowledge transfer from the source tasks to the target task, it is possible
to replace MSE with other frequently adopted loss functions, e.g., negative log
likelihood loss (NLL) [18], cross-entropy loss [15], Kullback-Leibler divergence
(KL) [5,18], etc.

As the traffic signal control tasks have the identical state and action space,
we directly use the weights of the previously trained target network as an instan-
tiation for a new DQN model that will be trained on the target task. We call such
supervised training of the target network as model guidance. Since the source
and target flows are very close to each other in traffic embedding, model guidance
from source agents will be effective in signal control on the target intersection.

Sample Guidance. Previous Experiments show that knowledge transfer from
source tasks via model initialization does not always have significant positive
effects on the target task [15]. Meanwhile, it has been pointed out when DQN
algorithm was first proposed, that deep reinforcement learning tends to be unsta-
ble or even diverge for several causes: one is the correlations in the sequence
of observations, another is the fact that small updates to Q may significantly
change the policy and the data distribution [12]. Applying model guidance alone
is likely to cause the same instability problem to DRL in the very beginning of
the training, where samples accumulated from the new task are consecutive, lim-
ited and biased. One of the approaches for DQN to removing correlations in the
observation sequence is to randomize over the data through experience replay.
However, sample accumulation for replay memory needs plenty of time followed
with great cost in signal control domain. Hence realizing experience replay based
on samples from the target task does not benefit the model learning at the very
beginning.

We introduce another transfer method called sample guidance, where the
replay memory is filled with sufficient samples collected from the source agents’
learning process prior to training on target tasks. Through sample guidance,
the participation of source networks on the target network is not limited to the
parameter initialization, but extended to every subsequent update. Based on the
basic DQN update listed in Eq. 1, we define the parameter update for TTRL-B
at the i-th iteration with sample guidance as follows.

L(θi) = E(st, at, rt, st+1) ∼ U(DT ,DS) (3)
[(

r + γ max
at+1

QT (st+1, at+1; θ−
i) − QT (st, at; θi)

)2]
,

Targeted Knowledge Transfer for Learning Traffic Signal Plans 181

where samples are drawn uniformly at random from both the source and target
sample pools, i.e., DS = {DS

i |1 ≤ i ≤ k} and DT , respectively.

A Batch Learning Framework. For a city with all the signals on roads
controlled by traditional transportation systems, there is no experience in signal
control by RL agents for transfer learning. To resolve such a cold-start problem,
we accumulate experience in mediating synthetic flows for fast adaption of RL
models to real-world traffic flows.

We believe that knowledge transfer from synthetic to real-world data is better
than non-transfer but not the optimal. Synthetic data can hardly mimic every
transportation characteristics, while two real flows can have a lot in common,
e.g., similar volume trend in daytime, north-east arterial roads, etc. Knowledge
transfer between the most similar real-world flows should always be advocated
and realized.

Instead of transferring experience of signal control in synthetic flows to all of
the real-world intersections, the target intersections are batch selected so that the
current batch of roads has an unprecedented amount of source flow candidates
than those in the previous batches. In particular, we utilize the Gaussian Mixture
Model (GMM) [16] to group all the target flows in C clusters according to their
traffic data embedding. Every time we pick the centroid traffic flow in each cluster
as one of the target task in the current batch. After determining the source tasks
for each target task, TTRL-B extracts samples from the source sample pools to
learn a DQN model in a supervised way. Learning as well as evaluating on the
target traffic flows is conducted with the initial model guidance and the sample
guidance in each network update. After the end of each batch, the number of
source flow candidates as well as their accumulated experience expands for the
next batch of target flows.

5 Experiments

We conduct experiments on a simulation platform SUMO (Simulation of Urban
MObility)1. All the compared algorithms are employed to control the traffic
signal on isolated four-way intersections.

5.1 Datasets

Synthetic Data. Vehicles arrive at the approach at uniform rate in the four
directions. We utilize 13 different arrival rates which range from 25 to 550 vehi-
cles/hour/lane.

1 http://sumo.dlr.de/index.html.

http://sumo.dlr.de/index.html

182 N. Xu et al.

Table 1. Performance evaluated by 2 transfer measures: 1st hour and overall average
travel time (in seconds).

Model Off-peak Hours Peak Hours

1st hour Overall 1st hour Overall

IntelliLight 70.52 52.92 49.59 75.35

TTRL-B 35.68 32.14 34.31 70.72

Real-World Data. We collect the traffic volume data from loop sensors during
04/01/2018-04/30/2018, in Hangzhou, China. There are 48 intersections in total,
22 of which have most sensor undamaged. As the number of vehicles passing one
intersection varies dramatically throughout day, evaluation from each passen-
ger’s standpoint over a 24-h time span is not fair for models with good perfor-
mance on low-density traffic. Therefore, we extract two 5-h segments from the
whole-day traffic, i.e., Off-peak Hours and Peak Hours, and treat them as two
separate datasets for a comprehensive model evaluation. Specifically, Off-peak
Hours contains continuous traffic flows during which the maximum hourly vol-
ume is smaller than 350, while Peak Hours covers those above 350. The average
hourly traffic per lane for Off-peak Hours and Peak Hours hours after division
is 110.5 and 393.4 respectively.

5.2 Compared Methods

We compare the following models to illustrate the benefits of the proposed batch
learning framework for targeted transfer. All hyperparameters of the baselines
are carefully tuned.

– IntelliLight [24]: a recent solution for signaling on the basis of DQN, but with
a phase-gated structure to enhance performance.

– TTRL-B: our batchwise targeted transfer reinforcement learning based on
IntelliLight, it maintains an expanding source pool where experience of con-
trolling both synthetic and real-world traffic is accumulated in each batch.

5.3 Evaluation Metric

Average Travel Time (Duration). Travel time for a vehicle is defined as the
time that one car spends from entering the approaching lane until leaving the
intersection. We use the average travel time to evaluate different methods.

Transfer Evaluation. To measure the effects of transfer, we follow the two met-
rics suggested in [19]: jumpstart and transfer reward. Under this scenario, these
measurements correspond to 1st hour performance and overall performance.

Targeted Knowledge Transfer for Learning Traffic Signal Plans 183

(a) Hourly volume of the intersection and
duration of the passing vehicles.

(b) Validation loss during training non-
transfer and transfer learners.

Fig. 1. Case study of non-transfer and transfer models in Off-peak Hours on Mogan-
shan Road and Wenyi Road in Hangzhou on April 2nd, 2018. We use this sampled
intersection throughout this paper for case study.

5.4 Overall Performance

The results on real-world data are shown in Table 1. As expected, IntelliLight
with randomly initialized parameters results in long travel time in the 1st hour
and the performance gradually improves after 5-h training. In contrast, TTRL-B
shows quick adaptivity, with a lower travel time obtained in the 1st hour and in
the whole testing process as well. To better demonstrate the fast convergence and
adaptability of the proposed model, we show the travel time of vehicles and the
validation loss along time for the non-transfer and transfer RL models in Fig. 1a.
Compared to the non-transfer model IntelliLight, TTRL-B always mediates the
traffic better from the very start to the end with extremely low loss.

5.5 Variants of Our Model

To test effectiveness of the components in our model, we conduct experiments
with the following variational models of TTRL-B:

– RTRL-B: a non-targeted transfer learner, which selects the source tasks ran-
domly regardless of their similarity with the target.

– TTRL-{sample}: a targeted transfer learner in which sample guidance is
removed deliberately.

– TTRL-{model}: a targeted transfer learner that lacks model guidance in
knowledge transfer.

– TTRL: a targeted transfer learner without the batch learning framework, so
that each target task only has a fixed number of source candidates whose
experience is limited in synthetic traffic.

As shown in Table 2, none of the four variants can achieve comparable per-
formance as TTRL-B. RTRL-B shows inferior performance as the experience
from random source flows is not necessarily beneficial to the target. Model guid-
ance alone (TTRL-{sample}) works fine only in Off-peak Hours (compared to
IntelliLight in Table 1), while TTRL-{sample} gets trapped in serious negative

184 N. Xu et al.

Table 2. Overall performance of four variants of TTRL-B.

Model Off-peak Hours Peak Hours

RTRL-B 39.47 77.82

TTRL-{sample} 34.50 76.64

TTRL-{model} 50.04 82.63

TTRL 33.27 73.42

TTRL-B 32.14 70.72

(a) Performance in Off-peak Hours. (b) Performance in Peak Hours.

Fig. 2. Parameter sensitivity of model TTRL-B in the number of source tasks.

transfer in both off-peak and peak hours. It has been proved that sample guid-
ance and model guidance should be combined. Without the batch learning struc-
ture, TTRL also shows inferior results than TTRL-B, due to the never-expanded,
experience-limited source pool.

5.6 Parameter Sensitivity

As shown in Fig. 2, our method achieves the best performance when experience
from 7 source tasks are used to train the model. But generally, it is not sensitive
to the number of source tasks as the travel time on intersections controlled by
TTRL-B is always far below that of the non-transfer model IntelliLight.

5.7 Case Study of the Batch Learning Framework

To show the efficiency of knowledge transfer in the batchwise way in detail, we
compare TTRL-B with the plain targeted transfer learner TTRL, which only
has experience guidance from synthetic flows. In Fig. 3, we show the comparison
of TTRL-B andTTRL in three aspects: traffic embedding, volume trends and
periodical performance.

To visualize the relationships between flows, we map the high-dimensional
traffic embedding in a 2-dimensional space. Figure 3a shows that both of two
targeted transfer learners select source tasks that deal with traffic flows in a rel-
ative small euclidean distance to the target’s flow. TTRL-B differs from TTRL
as the former retains the most similar synthetic sources selected by TTRL and
adds some close real-world ones. Based on the volume trend of source flows

Targeted Knowledge Transfer for Learning Traffic Signal Plans 185

(a) Visualization of traffic embeddings. The tar-
get is at the origin while each source is located
at a random position of a circle with the tar-
get location as center and the distance from the
target in the embedding space as radius.

(b) Volume trends of selected flows.

(c) Hourly volume of the intersec-
tion and duration of the passing vehi-
cles with signals controlled by different
models.

Fig. 3. Case study to analyze benefits of the batch learning framework on one real-
world intersection.

along time in Fig. 3b, real-world sources selected by TTRL-B seem more rea-
sonable than synthetic ones, as they have many transportation characteristics
in common, which can be captured by embeddings, e.g., the tendency of traffic
load, the number of vehicles in the same time interval, etc. In Fig. 3c, select-
ing source tasks in the batchwise way further proves effective when controlling
signals according to their guidance: TTRL-B shows an obvious advantage over
TTRL in the jumpstart and overall performance in our sampled intersection.

6 Conclusion

In this paper, we solve the problem of using RL to do the traffic signal control on
new intersections. Compared with traditional methods, we propose a batchwise
targeted transfer framework, which can significantly speed up the convergence
and achieve lower vehicles’ travel time with much fewer training samples from
the new intersection. This will avoid the high cost of traffic jam when directly
applying RL algorithms in real world intersections. Our extensive experiments
have shown that our method outperforms the baselines and each component
makes contribution to the performance boost. We are going to extend our work
to more real scenarios by considering multi-phase (e.g., turning vehicles) and
multi-intersection traffic signal control for the future work.

186 N. Xu et al.

References

1. Bakker, B., Whiteson, S., Kester, L., Groen, F.C.: Traffic light control by multia-
gent reinforcement learning systems. In: Babuška, R., Groen, F.C.A. (eds.) Inter-
active Collaborative Information Systems. SCI, vol. 281, pp. 475–510. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-11688-9 18

2. Cools, S.B., Gershenson, C., D’Hooghe, B.: Self-organizing traffic lights: a realistic
simulation. In: Prokopenko, M. (ed.) Advances in Applied Self-Organizing Systems.
AI&KP, pp. 45–55. Springer, London (2013). https://doi.org/10.1007/978-1-4471-
5113-5 3

3. Du, Y., Gabriel, V., Irwin, J., Taylor, M.E.: Initial progress in transfer for deep
reinforcement learning algorithms. In: Proceedings of Deep Reinforcement Learn-
ing: Frontiers and Challenges Workshop, New York City, NY, USA (2016)

4. Gao, J., Shen, Y., Liu, J., Ito, M., Shiratori, N.: Adaptive traffic signal control:
deep reinforcement learning algorithm with experience replay and target network.
arXiv preprint arXiv:1705.02755 (2017)

5. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531 (2015)

6. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

7. Hunt, P., Robertson, D., Bretherton, R., Winton, R.: Scoot - a traffic responsive
method of coordinating signals. Technical report (1981)

8. Liu, M., Deng, J., Xu, M., Zhang, X., Wang, W.: Cooperative deep reinforcement
learning for traffic signal control (2017)

9. Lowrie, P.: SCATS, Sydney co-ordinated adaptive traffic system: a traffic respon-
sive method of controlling urban traffic (1990)

10. Lu, W., Hou, J., Yan, Y., Zhang, M., Du, X., Moscibroda, T.: MSQL: efficient
similarity search in metric spaces using SQL. The VLDB J.-Int. J. Very Large
Data Bases 26(6), 829–854 (2017)

11. Miller, A.J.: Settings for fixed-cycle traffic signals. J. Oper. Res. Soc. 14(4), 373–
386 (1963)

12. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature
518(7540), 529 (2015)

13. Mousavi, S.S., Schukat, M., Howley, E.: Traffic light control using deep policy-
gradient and value-function-based reinforcement learning. Intell. Transp. Syst.
(ITS) 11(7), 417–423 (2017)

14. Pan, S.J., Yang, Q., et al.: A survey on transfer learning. IEEE Trans. Knowl. Data
Eng. 22(10), 1345–1359 (2010)

15. Parisotto, E., Ba, J.L., Salakhutdinov, R.: Actor-mimic: deep multitask and trans-
fer reinforcement learning. arXiv preprint arXiv:1511.06342 (2015)

16. Reynolds, D.: Gaussian mixture models. In: Li, S.Z., Jain, A. (eds.) Encyclopedia
of Biometrics, pp. 827–832. Springer, Boston (2015). https://doi.org/10.1007/978-
0-387-73003-5 196

17. Roess, R.P., Prassas, E.S., McShane, W.R.: Traffic Engineering. Pearson/Prentice
Hall, Upper Saddle River (2004)

18. Rusu, A.A., et al.: Policy distillation. arXiv preprint arXiv:1511.06295 (2015)
19. Taylor, M.E., Stone, P.: Transfer learning for reinforcement learning domains: a

survey. J. Mach. Learn. Res. 10(July), 1633–1685 (2009)
20. Tessler, C., Givony, S., Zahavy, T., Mankowitz, D.J., Mannor, S.: A deep hierar-

chical approach to lifelong learning in minecraft. In: AAAI, vol. 3, p. 6 (2017)

https://doi.org/10.1007/978-3-642-11688-9_18
https://doi.org/10.1007/978-1-4471-5113-5_3
https://doi.org/10.1007/978-1-4471-5113-5_3
http://arxiv.org/abs/1705.02755
http://arxiv.org/abs/1503.02531
http://arxiv.org/abs/1511.06342
https://doi.org/10.1007/978-0-387-73003-5_196
https://doi.org/10.1007/978-0-387-73003-5_196
http://arxiv.org/abs/1511.06295

Targeted Knowledge Transfer for Learning Traffic Signal Plans 187

21. Thrun, S., Pratt, L.: Learning to Learn. Springer, New York (2012). https://doi.
org/10.1007/978-1-4615-5529-2

22. Wang, J.X., et al.: Learning to reinforcement learn. arXiv preprint
arXiv:1611.05763 (2016)

23. Webster, F.V.: Traffic signal settings. Technical report (1958)
24. Wei, H., Zheng, G., Yao, H., Li, Z.: IntelliLight: a reinforcement learning approach

for intelligent traffic light control. In: ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining (KDD), pp. 2496–2505 (2018)

25. Wiering, M.: Multi-agent reinforcement learning for traffic light control. In:
Machine Learning: Proceedings of the Seventeenth International Conference (ICML
2000), pp. 1151–1158 (2000)

26. Zhang, Z., Huang, K., Tan, T.: Comparison of similarity measures for trajectory
clustering in outdoor surveillance scenes. In: 18th International Conference on Pat-
tern Recognition, ICPR 2006, vol. 3, pp. 1135–1138. IEEE (2006)

https://doi.org/10.1007/978-1-4615-5529-2
https://doi.org/10.1007/978-1-4615-5529-2
http://arxiv.org/abs/1611.05763

Sequential Pattern Mining

Efficiently Finding High Utility-Frequent
Itemsets Using Cutoff and Suffix Utility

R. Uday Kiran1,2(B), T. Yashwanth Reddy3, Philippe Fournier-Viger4,
Masashi Toyoda2, P. Krishna Reddy3, and Masaru Kitsuregawa2,5

1 National Institute of Information and Communications Technology, Tokyo, Japan
2 The University of Tokyo, Tokyo, Japan

{uday rage,toyoda,kitsure}@tkl.iis.u-tokyo.ac.jp
3 International Institute of Information Technology-Hyderabad, Hyderabad, India

yashwanth.t@research.iiit.ac.in, pkreddy@iiit.ac.in
4 Harbin Institute of Technology (Shenzhen), Shenzhen, China

philfv8@yahoo.com
5 National Institute of Informatics, Tokyo, Japan

Abstract. High utility itemset mining is an important model with many
real-world applications. But the popular adoption and successful indus-
trial application of this model has been hindered by the following two
limitations: (i) computational expensiveness of the model and (ii) infre-
quent itemsets may be output as high utility itemsets. This paper makes
an effort to address these two limitations. A generic high utility-frequent
itemset model is introduced to find all itemsets in the data that satisfy
user-specified minimum support and minimum utility constraints. Two
new pruning measures, named cutoff utility and suffix utility, are intro-
duced to reduce the computational cost of finding the desired itemsets. A
single phase fast algorithm, called High Utility Frequent Itemset Miner
(HU-FIMi), is introduced to discover the itemsets efficiently. Experimen-
tal results demonstrate that the proposed algorithm is efficient.

Keywords: Data mining · Itemset mining · Utility itemset

1 Introduction

High Utility Itemset Model (HUIM) is an important knowledge discovery tech-
nique in data mining. It aims to discover all interesting itemsets whose utility in a
transactional database is no less than a user-specified minimum utility (minUtil)
constraint. The utility of an itemset is the summation of its utilities in all the
transactions. The classic application of HUIM is market-basket analysis. It con-
sists of analyzing which sets of items purchased by customers generate a suffi-
cient revenue for a retailer. An example of utility itemset generated in the Yahoo!
JAPAN retail data1 is:

{Nintendo3Ds game, P laystation4 game} [utility = 604, 231 Y].
1 More details of this dataset are presented in latter parts of this paper.

c© Springer Nature Switzerland AG 2019
Q. Yang et al. (Eds.): PAKDD 2019, LNAI 11440, pp. 191–203, 2019.
https://doi.org/10.1007/978-3-030-16145-3_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16145-3_15&domain=pdf
https://doi.org/10.1007/978-3-030-16145-3_15

192 R. Uday Kiran et al.

The above utility itemset says that the income (or utility) generated from
the simultaneous purchases of ‘nintendo3Ds game’ and ‘playstation4 game’ is
604,231 Y. This information may be useful to the retailer, because it disproves
the general assumption of expecting little revenue from customers purchasing
games for competing products simultaneously. HUIM has many other applica-
tions, such as website click stream analysis, cross-marketing and bio-medical
applications [2].

The popular adoption and successful industrial application of HUIM has been
hindered by the following two obstacles:

1. High computational cost of the model: The itemsets generated by utility
measure do not satisfy the convertible anti-monotone, convertible monotone,
or convertible succinct properties [5]. To reduce the search space in the item-
set lattice, most algorithms [2] initially find secondary items by pruning all
items that have a local utility2 less than minUtil. The local utility is a convert-
ible anti-monotonic measure, which represents an upper bound on the utility
of itemsets. Next, primary items are generated by ordering the secondary
items in ascending order of their local utility. Finally, all high utility itemsets
are generated by recursively mining the projected databases of each primary
item. Since the construction of projected databases requires a database scan,
the computational cost of an high utility itemset mining algorithm depends
primarily on the number of primary items. We have observed that finding pri-
mary items based on the local utility order is inefficient (or computationally
expensive), because such an order often generate a large number of primary
items, thereby increasing the number of database scans. More importantly,
finding high utility itemsets using the local utility order makes the model
impracticable in many real-world sparse databases.

2. Infrequent itemsets may be generated as the utility itemsets: Since
HUIM determines the interestingness of an itemset without taking into
account its support within the data, uninteresting itemsets with very low
support may be generated as the utility itemsets. In our empirical study, we
have observed that a significant portion of high utility itemsets generated
by HUIM appeared seldomly in the data. It is because the utility measure
is sensitive to items with high external utility values. Additionally, directly
pushing the minimum support constraint into existing HUIM algorithms [2] is
not an effective solution to this problem. It is because such algorithms cannot
exploit the relationship between the support and utility measures to reduce
the search space effectively.

This paper makes an effort to address these two problems. We propose a generic
High Utility-Frequent Itemset Model (HU-FIM) to find all high utility-frequent
itemsets in the data that satisfy a user-specified minimum support (minSup)
and minUtil values. Using minSup facilitates pruning uninteresting itemsets
having low support in the data. The itemsets generated by the proposed model

2 Since the local utility measure generalizes the TWU measure by taking into account
itemsets, we use the former measure throughout this paper for brevity.

Efficient Discovery of High Utility-Frequent Itemsets 193

do not satisfy the convertible anti-monotonic property, convertible monotonic
property, or convertible succinct property. Two new pruning measures, “cutoff
utility” (CU) and “suffix utility” (SU), have been introduced to reduce the
search space and the computational cost of HU-FIM. The CU measure tries
to reduce the search space by exploiting the relationship between the minSup
and external utility of an item. It states that if the utility of an item is less
than the product of its external utility and minSup, then neither the item nor
its supersets will be high utility-frequent itemsets. Given a list of items in
utility descending order, the SU of an item represents the sum of utilities of
remaining items. This measure states that if the sum of utility and SU of an item
in the utility ordered list is less than minUtil, then the mining algorithm can be
terminated as no more high utility-frequent itemsets will be generated from the
data. Thus, SU can be used to reduce the search space of the model effectively. A
single phase algorithm, called High Utility-Frequent Itemset Miner (HU-FIMi),
is proposed to find high utility-frequent itemsets efficiently. HU-FIMi is based
on EFIM [9]. Experimental results demonstrate that HU-FIMi can discover the
desired itemsets efficiently in sparse databases.

The rest of the paper is organized as follows. Related work is presented in
Sect. 2. Section 3 introduces HU-FIM. Section 4 briefly describes EFIM. Section 5
introduces the proposed algorithm. Experimental results are reported in Sect. 6.
Section 7 concludes the paper with future research directions.

2 Related Work

FIM is an important model in data mining. The main limitation of this model
is that it ignores the crucial information regarding the importance of items and
their occurrence frequency in every transaction. Yao et al. [7] introduced HUIM
by taking into account the importance of items and their occurrence frequency
in every transaction. To circumvent the fact that the utility is not anti-monotonic
and to find all high utility itemsets, several HUIM algorithms (e.g. Two-Phase
[4] and UP-Growth+ [6]) have employed local utility to reduce the search space.

Recently, single phase algorithms (e.g. d2HUP [3] and EFIM [9]) to mine high
utility itemsets were developed to avoid the problem of candidate generation.
These algorithms use upper bounds that are tighter than the local utility to
prune the search space and can immediately obtain the exact utility of any
itemset to decide if it should be output. Zhang et al. [8] conducted an empirical
study on various HUIM algorithms and concluded that EFIM has consistently
shown better performance over other algorithms. In this paper, we push the
proposed pruning measures into EFIM to efficiently find the desired itemsets.

3 Proposed Model: High Utility-Frequent Itemset

Let I = {i1, i2, · · · , im}, m ≥ 1, be a set of items. Each item ij ∈ I is associated
with a positive number p(ij) known as external utility. The external utility of
an item represents its relative importance to the user. The utility database,

194 R. Uday Kiran et al.

UD, is a set of all items in I and their respective external utility values. That is,
UD = {(i1, p(i1)), (i2, p(i2), · · · , (im, p(im))}. A transactional database is a
set of transactions D = {T1, T2, · · · , Tn} such that for each Tc ∈ D, Tc ⊆ I and
Tc has a unique identifier c ∈ Z

+ called its transaction-identifier (or tid). Every
item ij ∈ Tc has a positive number q(ij , Tc), called its internal utility. The
internal utility of an item generally represents its frequency in a transaction.

Table 1. Market-basket database

tid Items tid Items
1 (a, 2), (b, 3), (f, 2) 5 (a, 1), (b, 2), (c, 1)
2 (a, 2), (c, 1), (d, 3), (e, 2) (d, 4), (g, 2)
3 (a, 3), (b, 1), (h, 2) 6 (c, 3), (d, 2), (f, 3),
4 (c, 2), (d, 3), (e, 1) (e, 1)

7 (b, 3), (d, 4)

Table 2. Price of items

Item price Item price

a 200 e 200

b 300 f 500

c 200 g 200

d 400 h 300

Example 1. Consider the market-basket (or transactional) database shown in
Table 1. The set of all items in the database, i.e. I = {a, b, c, d, e, f, g, h}. The
prices (or external utilities) for all items in Table 1 are shown in Table 2. Let the
unit for these prices be Japanese Yen. The first transaction in Table 1 indicates
that a customer has purchased 2 quantities of item a, 3 quantities of item b,
and 2 quantities of item f . These quantities represent the internal utilities of the
items appearing in the first transaction.

Definition 1 (Utility of an item in a transaction). The utility of an item
ij in a transaction Tc, is denoted as u(ij , Tc), represents the product of its inter-
nal and external utility values. That is, u(ij , Tc) = p(ij) × q(ij , Tc).

Example 2. Continuing with the previous example, the utility (or income) of an
item a in the first transaction, i.e., u(a, T1) = p(a)× q(a, T1) = 2× 200 = 400 Y.

Definition 2 (Utility of an itemset in a transaction). Let X ⊆ I be an
itemset. An itemset is a k-itemset if it contains k items. The utility of an itemset
X in a transaction Tc, denoted as u(X,Tc) = Σij∈Xu(ij , Tc) if X ⊆ Tc.

Example 3. The set of items ‘a’ and ‘b’, i.e., {a, b} (or ‘ab’ in short) is an itemset.
This is a 2-itemset. The utility (or income) of ab in T1, u(ab, T1) = u(a, T1) +
u(b, T1) = 400 + 900 = 1300 Y.

Definition 3 (Utility of an itemset in a database). The utility of an item-
set X in the database D, denoted as u(X) = ΣTc∈g(X)u(X,Tc), where g(X) is
the set of transactions containing X.

Efficient Discovery of High Utility-Frequent Itemsets 195

Example 4. In Table 1, ab has appeared in T1, T3 and T5. Therefore, g(x) =
{T1, T3, T5}. The utility (or income) of ab in each of these transactions is
u(ab, T1) = 1300 Y, u(ab, T3) = 900 Y and u(ab, T5) = 800 Y. Therefore, the
utility (or income) of ab in the database is u(ab) = 1300 + 900 + 800 = 3000 Y.

Definition 4 (Frequent itemset). The support of an itemset X in D, denoted
as s(X) = |g(X)|, where |g(X)| represents the total number of transactions
containing X in D. An itemset X is said to be frequent if s(X) ≥ minSup,
where minSup represents the user-specified minimum support.

Example 5. The support of ab in Table 1, i.e., s(ab) = |g(ab)| = |{T1, T3, T5}| =
3. If minSup = 3, then ab is a frequent itemset because s(ab) ≥ minSup.

Definition 5 (High utility-frequent itemset). A frequent itemset X is a
high utility-frequent itemset if its u(X) ≥ minUtil, where minUtil represents
the user-specified minimum utility value. A high utility-frequent itemset X is
expressed as X [support = s(X), utility = u(X)].

Example 6. If the user-specified minUtil = 2600, then the frequent itemset
ab is a high utility-frequent itemset because u(ab) ≥ minUtil. This itemset
is expressed as ab [support = 3, utility = 3, 000 Y].

Definition 6 (Problem definition). Given a transactional database D and a
utility database UD, the problem of HU-FIM is to find all itemsets in D that
have support ≥ minSup and utility ≥ minUtil. The support of an itemset can
be expressed in percentage of |D|. It is interesting to note that HUIM is a special
case of the problem HU-FIM when minSup = 0.

4 EFIM and Its Limitations

Fournier-Viger et al. [9] introduced EFIM to find high utility itemsets. Since
the proposed algorithm extends EFIM to find high utility-frequent itemsets,
we briefly describe the steps of the latter algorithm. First, EFIM scans the
database and calculates the local utility (see Definition 9) for all items. Next,
secondary items are generated by pruning all items that have a local utility
less than minUtil. These secondary items are later sorted in local utility
ascending order. Let � denote this sorted list of secondary items. Next, the
sub-tree utility (see Definition 10) for all secondary items is determined by per-
forming another scan on the database. Next, items with sub-tree utility no less
than minUtil are considered as primary items. Finally, for each primary item,
a projected database consisting of primary and secondary items is constructed
and mined recursively to find all high utility itemsets.

Definition 7 (Items that can extend an itemset). Let α be an itemset. Let
E(α) denote the set of all items that can be used to extend α according to the
depth-first search, that is E(α) = {z, z ∈ I∧ z � x, ∀ x ∈ α}.

196 R. Uday Kiran et al.

Example 7. Consider the database from Table 1. Let � be the alphabetical order
and α = {a}. Then E(α) = {b, c, d, e, f, g, h}.

Definition 8 (Remaining utility). The remaining utility of X in a trans-
action Tc is defined as re(X,Tc) = Σi∈Tc∧i�x∀x∈Xu(i, Tc).

Example 8. Remaining utility of ac in T5 is re(ac, T5) = 4×400+2×200 = 2000.

Definition 9 (local utility). For an itemset α and item z ∈ E(α), the
LocalUtilty of z with respect to α is lu(α, z) = ΣT∈g(α,{z})[u(α, T) + re(α, T)].

Definition 10 (Sub-tree utility). For an itemset α and item z that can
extend α according to the depth-first search (z ∈ E(α), the Sub-tree utility
of z with respect to α is stu(α, z) = ΣT∈g(α ∪ {z})[u(α, T) + u(z, T) +
Σi∈T∧i∈E(α ∪ {z})u(i, T)].

Example 9. Continuing with the previous example, let α = a and c be an item
that can extend α in depth-first. The sub-tree utility of c with respect to α is
stu(α, c) = (((2 × 200) + (1 × 200) + (3 × 400 + 2 × 200)) + ((1 × 200) + (1 ×
200) + (4 × 400 + 2 × 200))) = 4600.

The limitations of EFIM are as follows (i) EFIM finds high utility itemsets
without taking into account their support. As a result, itemsets with low fre-
quency can be identified as high utility itemsets. (ii) Since creating a projected
database for a primary item requires scanning the data, the computational cost
of EFIM mostly depends on the number of primary items. We have observed that
EFIM is computationally expensive (or impractical on very large databases). It
is because the local utility order of items generates too many primary items, thus
increasing the number of database scans.

5 Proposed Algorithm

HU-FIMi is a single phase algorithm that extends EFIM [9] to find high utility-
frequent itemsets in a transactional database. To achieve better performance
over EFIM, HU-FIMi exploits different ordering of items and introduces two new
pruning measures to reduce the computational cost of finding the desired item-
sets. The algorithm HU-FIMi is presented in Algorithms 1 and 2. The algorithm
has the following steps: (i) finding secondary items, i.e., items whose supersets
can be high utility-frequent itemsets, (ii) finding candidate items from secondary
items and (iii) finding primary items from candidate items, and (iv) finding all
high utility-frequent itemsets by recursively mining all primary items. We briefly
explain each of these steps along with the pruning measures.

5.1 Finding Secondary Items

Since the utility measure is neither an monotonic nor anti-monotonic function,
high utility-frequent itemsets generated by the proposed model do not satisfy the

Efficient Discovery of High Utility-Frequent Itemsets 197

Algorithm 1. HU-FIMi
1: input : D: a transaction database, minUtil: a user-specified threshold, minSup:

a user-specified threshold
2: output : the set of high utility-frequent itemsets
3: Let α denote an itemset that needs to be extended. Initially, set α = φ;
4: Scan the database D to determine the TWU , support and utility for every item

ij ∈ I. Bin-arrays [9] can be used to efficiently calculate the TWU , support and
utility of items.

5: Secondary(α) = {i|i ∈ I ∧ lu(α, i) ≥ minUtil ∧ s(i) ≥ minSup ∧ u(i) ≥ cu(i)};
6: Let � be the total order of utility descending values on Secondary(α);
7: Scan D to remove each item i /∈ Secondary(α) from the transactions, sort items

in each transaction according to �, and delete empty transactions;
8: Sort transactions in D according to �T ;
9: Calculate suffix utility for each item i ∈ Secondary(α).

10: Let pi(β) denote the set of all items in Secondary(α) that have u(i) + su(i) ≥
minUtil;

11: Calculate sub-tree utility for all items in pi(β) by scanning the database D once
using utility-bin array;

12: Primary(α)={z ∈ pi(β)|stu(α, z) ≥ minUtil};
13: RecursiveSearch(α, D, Primary(α), Secondary(α), minUtil, minSup);

anti-monotonic property. To reduce the search space, we initially find secondary
items consisting of all items whose supersets may be high utility-frequent item-
sets. The secondary items (see Definition 12) are identified by calculating each
items’ local utility (see Definition 9), cutoff utility (see Definition 11) and support.
Since cutoff utility is a new pruning measure, we define this measure.

Definition 11. The cutoff utility of an item ij, denoted as cu(ij), is the product
of its external utility and minSup. That is, cu(ij) = p(ij) × minSup.

Example 10. Consider the item ‘g’ in Table 1. The external utility of ‘g,’ is p(g) =
200. If the user-specified minSup = 3, then ‘g’ should appear at least in three
transactions with internal utility of 1. Therefore, the cutoff utility that item ‘g’
must have to be a high utility-frequent itemset is 600 (= p(g) × minSup).

The pruning of items using cutoff utility is given in Property 1.

Property 1. For an item ij , if u(ij) < cu(ij), then neither ij nor its supersets
can be high utility-frequent itemsets.

Example 11. The utility of g in Table 1 is u(g) = 400. Since u(g) < cu(g), ‘g’
and its supersets cannot be utility-frequent itemsets.

Definition 12 (Secondary item). An item ij ∈ I is a secondary item if
lu(ij) ≥ minUtil, u(ij) ≥ cu(ij) and s(ij) ≥ minSup.

Example 12. All secondary items generated from Table 1 are a, b, c, d and e. The
items f , g and h are not secondary items because s(f) < minSup, u(g) < cu(g)
and lu(h) < minUtil, respectively.

198 R. Uday Kiran et al.

Algorithm 2. RecursiveSearch
1: input : α: an itemset, α − D; the α projected database, Primary(α): the primary

items of α, Secondary(α): the secondary items of α, the minutil threshold, the
minSup threshold

2: output: the set of high utility-frequent itemsets that are extensions of α
3: for each item i ∈ Primary(α) do
4: β = α ∪ {i};
5: Scan α-D to calculate u(β), s(β) and create β-D; //uses transaction merging

from EFIM
6: if u(β) ≥ minutil && s(β) ≥ minSup then
7: output β
8: end if
9: if s(β) ≥ minSup then

10: Calculate stu(β, z) and lu(β, z) for all item z ∈ Secondary(α) by scanning
β-D once, using two utility-bin array;

11: Primary(β) = {z ∈ Secondary(α)|stu(β, z) ≥ minutil};
12: Secondary(β) = {z ∈ Secondary(α)|lu(β, z) ≥ minutil};
13: Search(β, β-D, Primary(β), Secondary(α), minutil, minSup);
14: end if
15: end for

5.2 Finding Candidate Items

The secondary items generated in the above step constitute both high utility-
frequent items and uninteresting items. To reduce the computational cost of
finding the desired itemsets, we need to identify those secondary items whose
depth-first search in the itemset lattice (or projected databases) will result in
finding all high utility-frequent itemsets. To find such items, we introduce a new
pruning measure, called suffix utility (see Definition 13), by exploiting items’
utility descending order. The suffix utility facilitates defining a novel termi-
nating condition, which does not exist in any of the previous utility itemset
mining algorithms. That is, if the sum of utility and suffix utility of an item
is less than minUtil, then the mining process can be terminated as no further
desired itemsets will be generated (see Lemma 1).

The suffix utility of an item ij is su(ij) = u(ij+1)+ su(ij+2). If ij+2 repre-
sents the last time in the sorted list, then su(ij+2) = 0. Thus, the time complexity
of the suffix utility measure is O(1). Definition 14 defines candidate items
generated using both utility and suffix utility measures.

Property 2 (Additive property). The utility of an itemset X will always be
less than or equal to sum of utility of its items. That is, u(X) ≤ ∑

ij∈X u(ij).

Definition 13 (Suffix utility). Let S = {i1, i2, · · · , ik} ⊆ I be an ordered list
of secondary items such that u(i1) ≥ u(i2) ≥ · · · ≥ u(ik). The suffix utility of
an item ij ∈ S, denoted as su(ij), is the sum of utilities of remaining items in
the list. That is, su(ij) =

∑|S|
p=j+1 u(ip). For the last item in S, su(ik) = 0.

Efficient Discovery of High Utility-Frequent Itemsets 199

Example 13. The secondary items in utility descending order are d, b, a, c and
e. The suffix utility of d is su(d) = u(b) + u(a) + u(c) + u(e) = 6500 Y.

Property 3. If u(ij)+su(ij) < minUtil, ij ∈ S, then neither ij nor the supersets
generated from its projected database will be high utility-frequent itemsets.

Property 4. The suffix utility is a monotonically decreasing function. That is,
su(ij) ≥ su(ik), where j < k and ij , ik ∈ S.

Lemma 1. Let S = {i1, i2, · · · , ik} ⊆ I be an ordered list of secondary items in
utility descending order, i.e., u(i1) ≥ u(i2) ≥ · · · ≥ u(ik). For an item ij ∈ S,
if u(ij) + su(ij) < minUtil, then no more highly utility-frequent itemsets will be
generated from the projected databases of the remaining items in S.

Proof. According to Property 3, if u(ij)+su(ij) < minUtil, then no more highly
utility-frequent itemsets will be generated from the projected database of ij . Now
let us consider another item ik, 1 ≤ j < k ≤ |S|. Since S is in utility descending
order, u(ik) ≤ u(ij) and su(ik) ≤ su(ij) (see Property 4). Thus, u(ik)+su(ik) ≤
u(ij) + su(ij) < minutil. Thus, neither ik nor the itemsets generated from its
projected database will be high utility-frequent itemsets. Hence proved.

Definition 14 (candidate item). A secondary item ij ∈ S is a candidate item
if u(ij) + su(ij) ≥ minUtil.

5.3 Finding Primary Items

In most cases, the candidate items generated in the previous step form the
primary items. However, in a few cases, especially when mining itemsets at low
minUtil values, suffix utility is inadequate. It is because most secondary items
will be generated as candidate items. To handle such cases, we generate primary
items by calculating the sub-tree utility for candidate items. The calculation of
sub-tree utility is a computationally expensive step because it needs a database
scan. We recommend eliminating this step when finding high utility-frequent
itemsets at high minUtil values. In this paper, we are providing this step for
completeness. (Please note that the primary items generated by EFIM
and HI-FIMi algorithms can be different as both algorithms employ
different ordering of secondary items.)

Definition 15 (Primary item). Let C denote the set of candidate items. A
candidate item ij ∈ C is a primary item if stu(ij) ≥ minUtil.

5.4 Recursive Mining of Primary Items

For each primary item, construct its projected database, and recursively mine
the projected database until the projected database is empty.

200 R. Uday Kiran et al.

6 Experimental Results

In this section, we first show that HU-FIMi performs better than EFIM. Later
we evaluate only the performance of HU-FIMi as there exists no algorithm to
find high utility-frequent itemsets. Both algorithms were written in C++ and
executed on a machine with 1.5 GHz processor and 4 GB RAM. The experiments
have been conducted using synthetic (T10I4D100K and Retail) and real-
world (Yahoo) databases. The T10I4D100K database was generated using
the SPMF toolkit [1]. This database contains 870 items and 100,000 transac-
tions. The minimum and maximum transaction lengths of this database are 1
and 29, respectively. The Retail database was also provided by SPMF toolkit.
The internal and external utilities of the items are synthetically generated by
SPMF toolkit. This database contains 16,470 items and 88,162 transactions.
The minimum and maximum transaction lengths are 1 and 76, respectively. The
Yahoo database represents a portion of retail data generated by Yahoo! JAPAN.
It contains 7,290 items and 93,113 transactions. The minimum and maximum
transaction lengths are 1 and 24, respectively.

To evaluate the EFIM and HU-FIMi algorithms, we find high utility-frequent
itemsets by setting minSup = 0. Due to page limitation, we present the exper-
imental results only for Yahoo database. Fig. 1(a) show the number of primary
items generated by EFIM and HU-FIMi algorithms. It can be observed that
HU-FIMi has generated less primary items for any given minUtil value (less is
preferable as each primary item requires a database scan). Figure 1(b) show the
number of nodes explored in the itemset lattice to find the desired itemsets. It
can be observed that the proposed algorithm has explored relatively few nodes
compared to EFIM. Figure 1(c) shows the total runtime of EFIM and HU-FIMi
algorithms to find all high utility itemsets. It can be observed that HU-FIMi’s
runtime is shorter than EFIM. The performance improvement of HU-FIMi over
EFIM is mainly due to the suffix utility, which facilitates finding all high
utility itemsets with relatively few primary items. Figure 1(d) shows the mem-
ory consumed by EFIM and HU-FIMi on the Yahoo database. It is observed
that HU-FIMi has consumed slightly more memory than EFIM. It is because
HU-FIMi has to additionally store the support of each itemset.

Figures 2(a)–(c) show the number of primary items generated in various
databases at different minSup and minUtil values. It can be observed that
increase in minSup and/or minUtil results in decrease of primary items, because
many items have failed to satisfy the increased minUtil or minSup values.

Figures 3(a)–(c) show the number of high utility-frequent itemsets generated
by HU-FIMi in various databases at different minUtil and minSup values. It can
be observed that an increase in minSup and/or minUtil results in a decrease
of high utility-frequent itemsets. It is because many itemsets fail to satisfy the
increased minUtil or minSup constraints. Another important observation in
these figures (especially in Yahoo database) is that when minSup is slightly
increased from 0 to 0.01 (%), their is a significant drop in the number of high
utility-frequent itemsets. It is because items with high external utility values
were generating too many high utility itemsets when combined with other items

Efficient Discovery of High Utility-Frequent Itemsets 201

for minSup = 0. Table 3 presents some of the interesting high utility-frequent
itemsets generated in Yahoo database.

Figures 4(a)–(c) show the runtime requirements of HU-FIMi in various
databases for different minUtil and minSup values. It can be observed that
an increase in minUtil and/or minSup results in a decrease in runtime. It is
because of the number of primary items is reduced, which significantly influences
the runtime requirements of HU-FIMi. (Memory requirements of HU-FIMi also
showed similar affect as the runtime. Due to page limitation, we are unable to
present these results.)

Table 3. A few interesting itemsets found in the Yahoo database

Itemset Utility (Y)

{face care:essences, face care:skin lotions} 389,476

{ladies:long sleeve, ladies:knit sweater:other} 105,994

{ladies:skirt pants:other, ladies:tops:other} 150,970

Fig. 1. Performance evaluation of EFIM and HUFIM algorithms on Yahoo database

Fig. 2. Primary items generated at different minSup and minUtil values

202 R. Uday Kiran et al.

Fig. 3. Itemsets generated at different minSup and minUtil values

Fig. 4. Runtime of HU-FIMi at different minSup and minUtil values

7 Conclusions and Future Work

This paper exploited the utility order of items and proposed two pruning mea-
sures, cutoff utility and suffix utility, to reduce the computational cost of finding
the high utility-frequent itemsets. A fast single phase algorithm has also been
proposed to find all high utility-frequent itemsets in the data. Experimental
results shows that HU-FIMi outperforms EFIM in most cases and is able to
prune infrequent high utility itemsets using minSup.

In the literature, HUIM was studied in incremental databases, data streams
and uncertain databases. It is interesting to investigate how to extend the pro-
posed pruning measures to discover the desired itemsets in such databases. The
proposed pruning measures consider items’ external utility values as positive
real numbers. In future work, we would like to generalize the proposed prun-
ing measures by taking into account both positive and negative external utility
values.

Acknowledgements. We would like to thank Yahoo Japan Corporation for providing
the retail transaction data.

Efficient Discovery of High Utility-Frequent Itemsets 203

References

1. Fournier-Viger, P., Gomariz, A., Gueniche, T., Soltani, A., Wu, C.W., Tseng, V.S.:
SPMF: a Java open-source pattern mining library. J. Mach. Learn. Res. 15(1),
3389–3393 (2014)

2. Gan, W., Lin, J.C.W., Fournier-Viger, P., Chao, H.C., Hong, T.P., Fujita, H.: A
survey of incremental high-utility itemset mining. Wiley Interdiscip. Rev.: Data
Min. Knowl. Discov. 8(2), e1242 (2018)

3. Liu, J., Wang, K., Fung, B.C.: Direct discovery of high utility itemsets without
candidate generation. In: ICDM, pp. 984–989. IEEE (2012)

4. Liu, Y., Liao, W., Choudhary, A.: A two-phase algorithm for fast discovery of high
utility itemsets. In: Ho, T.B., Cheung, D., Liu, H. (eds.) PAKDD 2005. LNCS
(LNAI), vol. 3518, pp. 689–695. Springer, Heidelberg (2005). https://doi.org/10.
1007/11430919 79

5. Pei, J., Han, J., Wang, W.: Constraint-based sequential pattern mining: the pattern-
growth methods. J. Intell. Inf. Syst. 28(2), 133–160 (2007)

6. Tseng, V.S., Shie, B.E., Wu, C.W., Yu, P.S.: Efficient algorithms for mining high
utility itemsets from transactional databases. IEEE Trans. Knowl. Data Eng. 25(8),
1772–1786 (2013)

7. Yao, H., Hamilton, H.J., Butz, C.J.: A foundational approach to mining itemset
utilities from databases. In: SIAM, pp. 482–486 (2004)

8. Zhang, C., Almpanidis, G., Wang, W., Liu, C.: An empirical evaluation of high
utility itemset mining algorithms. Expert Syst. with Appl. 101, 91–115 (2018)

9. Zida, S., Fournier-Viger, P., Lin, J.C.W., Wu, C.W., Tseng, V.S.: EFIM: a fast and
memory efficient algorithm for high-utility itemset mining. Knowl. Inf. Syst. 51(2),
595–625 (2017)

https://doi.org/10.1007/11430919_79
https://doi.org/10.1007/11430919_79

How Much Can A Retailer Sell? Sales
Forecasting on Tmall

Chaochao Chen(B), Ziqi Liu, Jun Zhou, Xiaolong Li, Yuan Qi, Yujing Jiao,
and Xingyu Zhong

Ant Financial Services Group, Hangzhou 310099, China
{chaochao.ccc,ziqiliu,jun.zhoujun,xl.li,yuan.qi,yujing.jyj,

xingyu.zxy}@antfin.com

Abstract. Time-series forecasting is an important task in both aca-
demic and industry, which can be applied to solve many real forecasting
problems like stock, water-supply, and sales predictions. In this paper,
we study the case of retailers’ sales forecasting on Tmall—the world’s
leading online B2C platform. By analyzing the data, we have two main
observations, i.e., sales seasonality after we group different groups of
retails and a Tweedie distribution after we transform the sales (target
to forecast). Based on our observations, we design two mechanisms for
sales forecasting, i.e., seasonality extraction and distribution transfor-
mation. First, we adopt Fourier decomposition to automatically extract
the seasonalities for different categories of retailers, which can further be
used as additional features for any established regression algorithms. Sec-
ond, we propose to optimize the Tweedie loss of sales after logarithmic
transformations. We apply these two mechanisms to classic regression
models, i.e., neural network and Gradient Boosting Decision Tree, and
the experimental results on Tmall dataset show that both mechanisms
can significantly improve the forecasting results.

Keywords: Sales forecasting · Tweedie distribution ·
Distribution transform · Seasonality extraction

1 Introduction

Time-series forecasting is an important task in both academic [4] and industry
[16], which can be applied to solve many real forecasting problems including
stock, water-supply, and sales predictions. In this paper, we study the fore-
casts of retailers’ future sales at Tmall.com1, one of the world’s leading online
business-to-customer (B2C) platform operated by Alibaba Group. The prob-
lem is essentially important because accurate estimation of future sales for each
retailer can help evaluate and assess the potential values of small businesses, and
help discover potentials for further investment.
1 https://en.wikipedia.org/wiki/Tmall.

C. Chen and Z. Liu—Equal contribution.

c© Springer Nature Switzerland AG 2019
Q. Yang et al. (Eds.): PAKDD 2019, LNAI 11440, pp. 204–216, 2019.
https://doi.org/10.1007/978-3-030-16145-3_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16145-3_16&domain=pdf
https://en.wikipedia.org/wiki/Tmall
https://doi.org/10.1007/978-3-030-16145-3_16

How Much Can A Retailer Sell? Sales Forecasting on Tmall 205

However, accurately estimating each retailer’s future sales on Tmall could be
way challenging in several reasons. First of all, naturally different goods or prod-
ucts are sold with strong seasonal properties. For example, most of fans are sold
in summer, while most of heaters are sold in winter, i.e. we can observe strong
seasonal properties on different groups of retailers. Secondly, the distribution
of sales among all retailers demonstrates an over-tail power law distribution ,
i.e., the retailers’ sales spread a lot. Naively ignore such issues could make the
performance much worse.

In this paper, we analyze and summarize the characteristics of the sales data
at Tmall.com, and propose two mechanisms to improve forecasting performance.
On one hand, we propose to extract seasonalities from groups of retailers. Specif-
ically, we characterize the seasonal evolutions of sales by first clustering retailers
into groups and then study the seasonal series as decompositions from a series
of Fourier basis functions. The results of our approach can be utilized as fea-
tures, and simply added to the feature space of any established machine learn-
ing toolkits, e.g., linear regression, neural network, and tree-based model. On
the other hand, we place distribution transformations on the original retailers’
sales. Specifically, we observe that the distribution over retailers’ sales follows a
Tweedie distribution after we transform retailers’ sales by logarithmic. Thus, we
propose to optimize Tweedie loss for regression on the logarithmic transformed
sales data instead of other losses on the original ones. Empirically, we show that
the proposed two mechanisms can significantly improve the performance of pre-
dicting retailers’ future sales by applying them into both neural networks and
tree based ensemble models.

We summarize our main contributions as follows:

– By analyzing the Tmall data, we obtain two observations, i.e., sales seasonal-
ity after we group different categories of retailers and a Tweedie distribution
after we transform the original sales.

– Based on our observations, we design two general mechanisms, i.e., seasonality
extraction and distribution transform, for sales forecasting. Both mechanisms
can be applied to most existing regression models.

– We apply the proposed two mechanisms into two popular existing regression
models, i.e., neural network and Gradient Boosting Decision Tree (GBDT),
and the experimental results on Tmall dataset demonstrate that both mech-
anisms can significantly improve the forecasting results.

2 Data Analysis and Problem Definition

In this section, we first describe the sales data and features on Tmall. We then
analyze the seasonality and distribution of sales data. Finally, we give the sales
forecasting problem a formal definition.

2.1 Sales Data and Feature Description

Tmall.com is nowadays one of the largest business-to-customer (B2C) E-
commerce platform. It has more than 180,000 retailers. Among of those retailers,

206 C. Chen et al.

Month
Jan Feb Mar Apr May June July Aug Sep Oct Nov Dec Jan Feb Mar Apr May June July Aug Sep Oct Nov Dec

Sa
le
s

2.5

3

3.5

4

4.5

5

5.5

6

Fig. 1. GMV on Tmall. The horizontal axis denotes the months between Jan. 2015 to
Dec. 2016, and the vertical axis denotes the GMV on Tmall where we omit the scale.

there could be giant retailers like Apple.com, Prada, and together with small
businesses. The platform is selling hundreds of thousands products in diverse
categories, e.g., ‘furniture’, ‘snack’, and ‘entertainment’.

Besides category information, the other features of retailers on Tmall can be
mainly divided into three types: (1) The basic features that are able to reflect
the marketing and selling capability of each retailer. For example, the amount of
advertisement investment, the number of buyers, the rating/review given by the
buyers, and so on. (2) The high-level features that are generated from historical
sales and basic feature data. Suppose a retailer i generates a series of sales data,
e.g., yi,t−2, yi,t−1, yi,t, yi,t+1. We are currently at time t and want to forecast
yi,t+1. Then yi,t can be taken as a feature which indicates the sale amount of
previous period, yi,t−yi,t−1 is a feature that indicates the increasing speed of the
sales, and (yi,t−yi,t−1)−(yi,t−1−yi,t−2) is a feature that denotes the accelerated
speed of the sales. Similarly, we can generate other high-level features, e.g.,
the number of buyers, using the basic features available. (3) The seasonality
features that are generated by using other machine learning techniques, which
aim to capture the seasonal property of different retailers. We will present how
to generate these features in Sect. 3.1.

2.2 Seasonality Analysis

The retailers’ sales tend to have different seasonality due to the seasonal items
they sell. Take vegetables for example, tomatoes and cucumbers are usually sold
more in summer, while celery cabbage is likely sold more in winter. Although
the GMV demonstrate seasonal properties, as is shown in Fig. 1, the analysis of
the seasonality related to the gross merchandise volume is relative meaningless
for the prediction on each retailer. In contrast, the seasonality analysis on each
single retailer makes the analysis cannot generalize well in the future. Instead,
we further investigate the seasonalities in different groups of retailers.

By analyzing the sales data on Tmall, we observe different seasonal patterns
on different categories of retailers. Figure 2 shows the sales of four different cate-
gories of retailers, i.e., ‘Women’s Wearing’, ‘Men’s Wearing’, ‘Snack’, and ‘Meat’,
where we use two year’s sales data from January 2015 to December 2016. We
can observe that, ‘Women’s Wearing’ and ‘Men’s Wearing’ show quite similar

How Much Can A Retailer Sell? Sales Forecasting on Tmall 207

Jan Feb Mar Apr May June July Aug Sep Oct Nov Dec Jan Feb Mar Apr May June July Aug Sep Oct Nov Dec
2.5

3

3.5

4

4.5

5

5.5

6

(a) category=‘Women’s Wearing’

Jan Feb Mar Apr May June July Aug Sep Oct Nov Dec Jan Feb Mar Apr May June July Aug Sep Oct Nov Dec
1.5

2

2.5

3

3.5

4

(b) category=‘Men’s Wearing’

Jan Feb Mar Apr May June July Aug Sep Oct Nov Dec Jan Feb Mar Apr May June July Aug Sep Oct Nov Dec
1

1.5

2

2.5

3

3.5

4

4.5

(c) category=‘Snack’

Jan Feb Mar Apr May June July Aug Sep Oct Nov Dec Jan Feb Mar Apr May June July Aug Sep Oct Nov Dec
1.5

2

2.5

3

3.5

4

4.5

(d) category=‘Meat’

Fig. 2. Sales seasonality of different categories on Tmall. The horizontal axis denotes
the months between Jan. 2015 to Dec. 2016, and the vertical axis denotes the total sale
among of retailers in each category where we omit the scale.

seasonal patterns, i.e., they both reach peak in summer (July or August) and
decline to nadir in winter (January). On the contrary, ‘Snack’ and ‘Meat’ show
different seasonal patterns. In summary, the seasonalities under different cate-
gories could differ quite a lot. Thus if we can somehow partition the retailers into
appropriate groups, the shared seasonality among retailers in one group could
be statistically useful for characterizing each retailer in the group. Given a group
of retailers, how can we characterize the seasonality for the group remains to be
solved. We will discuss our approaches in Sect. 3.1.

2.3 Sale Amount Analysis

The sales of each retailer over time-series could be much challenging. To illustrate
this, we show the histograms over sales in Fig. 3 (left). It shows that the sales
could be much diverse across over all the retailers. In practice, this is very hard
to formalize as a trivial regression problem because the errors on those sales
from giant retailers could dominate the loss, e.g. least squared loss.

Instead, after we do a logarithmic transformation on the sales of each retailer,
we found that the histogram appears to be a clear Tweedie distribution, i.e. Fig. 3
(right), which will be further described in details in Sect. 3.2. As a result, such
transformation on the dependent variables makes our forecasting much easier.
Note that, there are always some retailers’ sale around zero. This is because
some shops on Tmall will close or forced to be closed by Tmall due to some
reason from time to time, and correspondingly, some shop will be newly opened
or reopen. Consequently, some retailers’ sales are around zero.

208 C. Chen et al.

Fig. 3. Sales on Tmall obey Tweedie distribution after logarithmic transformation. We
order the sales among retailers in an increasing order, partition the sales into 100 bins
with equal frequency binning (x-axis), and show the retailer counts in each bin (y-axis).

2.4 Problem Definition

Assuming any retailer in Tmall.com as i, at month t, We formalize the sales
forecasts problem as a regression problem, i.e. given the features of each retailer
xi,<t ∈ R

d, where d is the feature dimensionality and < t denotes the months
before t, and the known sales of each retailer yi,<t+1, we want to learn a function:
f : xi,t �→ yi,t+1, where xi,t denotes the features of retailers i at month t and
yi,t+1 denotes its sales at month t + 1. That is, give the features of any retailer
at month t, we want to predict their corresponding sales at month t + 1.

3 Model Design and Implementation

In this section, we will present our designed two mechanisms, i.e., seasonality
extraction and distribution transform, for sales forecasting.

3.1 Seasonality over Groups of Retailers

As we reported in Sect. 2.2, the seasonalities under different categories could dif-
fer quite a lot, therefore, the remaining problem is that how should we partition
the retailers into appropriate groups. Instead of manually partition retailers, we
adopt clustering methods for time-series data [14] to do so. Specifically, we group
the retailers by using the basic and high-level features described in Sect. 2.1, so
that retailers that have similar features are grouped together.

After we partition retailers into groups, we adopt discrete Fourier transform
to automatically extract the seasonality for retailers in different groups. For-
mally, assuming a group of sellers with expected amount of sales annotated as
ỹ(t) at time t, thus results into a series of expected sales as observations, i.e.

How Much Can A Retailer Sell? Sales Forecasting on Tmall 209

Fig. 4. Seasonality extraction results for two groups of retailers. The left one is mainly
the group of retailers who sell purses, and the right one is mainly the group of retailers
who sell accessories. In both figures, we use the first 15months data to learn the
parameters in Eq. (1), and further use them to predict the seasonality of all the months’
data (note that we also omit the scale of the sale amount).

{ỹ(0), . . . , ỹ(t), . . . , ỹ(T)}. Each periodic function ỹ(·) can be expanded by the
Fourier series, which is a linear combination of infinite sines and cosines,

ỹ(t) = a0 +
∞∑

n=1

ancos(nt)
∞∑

n=1

bnsin(nt), (1)

where
{
ai, bi|i ∈ {0, . . . , n, . . . ,∞}} are parameters to be optimized. As a result,

the function ỹ(·) can be represented by a Fourier basis.
We now show the results of extracted seasonalities on different groups of

retailers. We randomly select two groups of retailers and show their seasonalities
and estimates for sales in Fig. 4, where we find the two groups of retailers mainly
sell purses and accessaries, respectively. In Fig. 4, we use the first 15 months’ data
to learn the parameters in Eq. (1), and further use them to predict the seasonality
of all the months’ data. It is obvious that our extracted seasonality is very close
to the real one in both groups. Similarly, we can extract seasonality for other
features, e.g., the number of buyers and the among of advertisement investment,
by using the same method.

In practice, we use two types of features extracted from such seasonal pat-
terns: (1) the seasonal values of the target we want the extract, e.g., sales and
the number of buyers, in a window of 12 months centered around the month
t. (2) the variation, i.e. the difference among those seasonal values. Hopefully,
such seasonality or trend measures for each group of sellers can be fed into any
classifiers, so as to characterize the seasonal patterns for each seller. We will
empirically study the effectiveness of these seasonality features in experiments.

3.2 Tweedie Loss for Regression

As we described in Sect. 2.3, based on our observation, the sales on Tmall will
clearly obey Tweedie distribution after a logarithmic transformation. From Fig. 3
(right), we see that the sales after logarithmic transformation is a combination of

210 C. Chen et al.

Poisson distribution and Gamma distribution, which is a special case of Tweedie
distribution, i.e., a compound Poisson-Gamma distribution. That is, we assume
that (1) the status of retailers, i.e., closed or not, are independent identically
distributed and they obey Poisson distribution; (2) the sales of retailers are also
independent identically distributed and they obey Gamma distribution. The
Tweedie distribution was first proposed in [22], and then officially named by
Bent Jorgensen in [9], which belongs to the class of exponential dispersion.

Tweedie distribution has been popularly used in insurance scenarios [23].
We now formally describe Tweedie distribution in sale forecasting scenario.
Suppose Let N be a Poisson random variable denoted by Pois(λ), and let
Zi, i = 0, 1, 2, . . . , N be independent identically distributed gamma random vari-
ables denoted by Gamma(α, γ) with mean αγ and variance αγ2. We also assume
that N is s independent of Zi. Define a random variable Z by

Z =

{
0, if N = 0,

Z1 + Z2 + . . . + ZN , if N > 0.
(2)

We can see from Eq. (2) that Z is the Poisson sum of independent Gamma
random variables, which is also called compound Poisson-Gamma distribution.
In sales forecasting scenarios, Z can be viewed as the total number of retailers,
N as the opened retailers, and Zi as the sale amount of retailers i. Note that
the distribution of Z has a probability mass at zero, i.e., Pr(Z = 0) = exp(−λ).
The existing research has proven that, if we reparametrize (λ, α, γ) by

λ =
1
φ

μ2−p

2 − p
, α =

2 − p

1 − p
, γ = φ(ρ − 1)μρ−1,

Eq.(2) then becomes the form of a Tweedie model Tw(μ, φ, ρ) with 1 < ρ < 2
and μ > 0. Here, the boundary cases ρ → 1 and ρ → 2 correspond to the Pois-
son and the gamma distributions, respectively. The compound Poisson-Gamma
distribution with 1 < ρ < 2 can be seen as a bridge between the Poisson and the
Gamma distributions.

The log-likelihood of this Tweedie model for the sale y of a retailer is

L(y|μ, φ, ρ) =
1
φ

(
y

1
φ

μ1−p

1 − p
− 1

φ

μ2−p

2 − p

)
+ log(a(y, φ, ρ)), (3)

where the normalizing function a(·) can be written as

a(y, φ, ρ) =

{
1
y

∑
t Wt(y, φ, ρ), for y > 0,

1, for y = 0,

and
∑

t Wt is an example of Wright’s generalized Bessel function [22].
After that, given the parameter ρ for Tweedie model, the other parameters

can be efficiently solved by using maximum log-likelihood approach [23]. The
Tweedie model can be naturally combined with most existing regression models,
e.g., NN and GBDT. That is, we can train a Tweedie loss NN model or GBDT

How Much Can A Retailer Sell? Sales Forecasting on Tmall 211

model instead of the models with other losses, e.g., square loss [23]. Obviously,
the results of Tweedie loss regression are much better than those of other loss
regression, e.g., square loss, as will be shown in experiments. This is because
Tweedie loss fits the real sales distribution after logarithmic transformation of
sales, as is shown in Fig. 3 (right).

4 Empirical Study

In this section, we first describe the dataset and the experimental settings. Then
we report the experimental result by comparing with various state-of-the-art
sales forecasting techniques. We finally analyze the effect of Tweedie distribution
parameter (ρ) on model performance.

4.1 Dataset

Features. As we described in Sect. 2, the features of retailers mainly contain
three types, i.e., the basic features, high-level features that are generated from
historical sales and basic feature data, and the seasonality features that are gen-
erated by using other machine learning techniques. This includes 189 features
in total, where there are 79 basic features, 102 high-level features, and 8 season-
ality features as we discussed in Sect. 3.1.

Samples. We choose the samples (retailers) during Jan. 2015 and Dec. 2016 on
Tmall. Note that we only focus on forecasting the relative small retailers whose
monthly sale amount is under a certain range (300,000). Because, in practice, the
sales of big retailers are very stable, and it is meaningless to forecast their sales.
After that, we have 783,340 samples. We use the samples in 2015 as training
data, the samples from Jan. 2016 to June 2016 as validation, and the samples
from July 2016 to Dec. 2016 as test data.

4.2 Experimental Settings

Evaluation Metric. Most existing research use error-based metric, e.g., Mean
Average Error (MAE) and Root Mean Square Error (RSME), to evaluate the
performance in time-series forecasting [1,6]. However, these metrics are way sen-
sitive to those retailers whose sales are large. As we can see in Fig. 1, the sales
on Tmall spread a lot. In practice, the forecasting precision of the retailers with
small sales counts the same as the ones with big sales. Therefore, we propose to
use Relative Precision (RP) for sales forecasting on Tmall, which is defined as

RP@p =

∑N
i=1 1

(
|yi−ŷi|

yi
< p

)

N
, (4)

where N is the total number of retailers, yi as the real sale and ŷi as the forecasted
sale, p ∈ [0, 1], and 1(·) is the indicator function that equals to 1 if the expression
in it is true and 0 otherwise.

212 C. Chen et al.

Table 1. Comparison result on test data.

Model NN NN-S NN-T NN-ST GBDT GBDT-S GBDT-T GBDT-ST

RP@0.1 0.1693 0.1723 0.3236 0.3338 0.1719 0.1859 0.3159 0.3263

RP@0.2 0.1933 0.1987 0.3484 0.3534 0.2095 0.2242 0.3394 0.3520

RP@0.3 0.2603 0.2657 0.3950 0.3956 0.2681 0.2816 0.3821 0.3966

As we can see from Eq. (4), RP is actually the percentage of the retailers
whose forecasting error is in a certain range p. Intuitively, the smaller p is,
the smaller RP will be. Because one has higher demanding for the forecasting
performance when p is smaller.

Comparison Methods. Our proposed mechanisms, i.e., seasonality extrac-
tion and distribution transform, has the ability to generalize to most existing
regression algorithms. To prove this, we apply the mechanisms into two popular
regression models, i.e., Neural Network (NN) and Gradient Boosting Decision
Tree (GBDT). We summarize all the methods, including ours, as follow:

– NN has been used to do time-series forecasting and proven effective where
we use square loss [1,20].

– NN-S uses extra our proposed seasonal feature in Sect. 3.1 for NN, and its
comparison with NN will prove the effectiveness of seasonality extraction.

– NN-T uses our proposed Tweedie-loss in Sect. 3.2 for NN, and its comparison
with NN will prove the effectiveness of our proposed Tweedie-loss regression
after sale distribution transform.

– NN-ST extra uses our proposed seasonal feature in Sect. 3.1 for NN-T, which
is the application of our proposed two mechanisms in NN.

– GBDT is developed for additive expansions based on any fitting criterion,
which belongs to a general gradient-descent ‘boosting’ paradigm and suits
for regression tasks with many types of loss functions, e.g., least-square loss,
Huber loss, and Tweedie loss [7]. Specifically, we use the GBDT algorithms
implemented on Kunpeng [26]—a distributed learning system that is popu-
larly used in Alibaba and Ant Financial, where we also use square loss.

– GBDT-S uses extra seasonal feature for GBDT, similar as NN-S.
– GBDT-T uses Tweedie-loss for GBDT, similar as NN-T.
– GBDT-ST uses extra seasonal feature for GBDT-T, similar as NN-ST.

Parameter Setting. For NN, we use a three-layer network, with Rectified
Linear Unit (ReLU) as active functions, and optimized with Adam [12] (learning
rate as 0.1). For GBDT, we set tree number as 120, learning rate as 0.3, and
regularizer of �2 norm as 0.5. We will study the effect of parameter ρ of Tweedie
regression in Sect. 4.4.

4.3 Comparison Results

We summarize the comparison results in Table 1, and have the following com-
ments.

How Much Can A Retailer Sell? Sales Forecasting on Tmall 213

P
1.1 1.3 1.5 1.7 1.9

R
P
@

0.
3

0.386

0.388

0.39

0.392

0.394

0.396

0.398

Fig. 5. Effect of Tweedie distribution parameter (ρ) on GBDT-ST on validate data.

(1) The forecasting performance of NN and GBDT are close, and the per-
formance of GBDT is slightly higher than NN. This is because GBDT can nat-
urally consider the complicate relationship, e.g., cross feature, between features.
(2) Our proposed seasonality extraction mechanism can clearly improve the fore-
casting performance of both NN and GBDT. For example, GBDT-S improves the
forecasting performance of GBDT by 8.14% in terms of RP@0.1, and GBDT-
ST further improves the forecasting performance of GBDT-T by 3.29%. (3)
Our proposed distribution transform mechanism can significantly improve the
forecasting performance of both NN and GBDT. For example, NN-T improves
the forecasting performance of NN by 91.14% in terms of RP@0.1, and NN-ST
improves the forecasting performance of NN-S by 93.73% in terms of RP@0.1 (4)
In summary, our proposed two mechanisms consistently improve the forecasting
performances of both NN and GBDT models. Specifically, NN-ST improves the
forecasting performance of NN by 97.14%, 82.82%, 51.98% in terms of RP@0.1,
RP@0.2, and RP@0.3 respectively. And, GBDT-ST improves the forecasting per-
formance of GBDT by 89.82%, 68.10%, 47.93% in terms of RP@0.1, RP@0.2,
and RP@0.3 respectively. The results not only demonstrate the effectiveness of
our proposed mechanisms, but also indicate the generalizability of them.

4.4 Effect of Tweedie Distribution Parameter (ρ)

As described in Sect. 3.2, the Tweedie distribution parameter (ρ) bridges the
Poisson and the Gamma distributions, and the boundary cases ρ → 1 and ρ → 2
correspond to the Poisson and the Gamma distributions, respectively. The effect
of Tweedie distribution parameter (ρ) on GBDT-ST is shown in Fig. 5, where
we use the validate data. From it, we find that GBDT-ST achieves the best
performance when ρ = 1.3. This indicates that the real sales data on Tmall fit
the Tweedie distribution when ρ = 1.3.

5 Related Works

In this section, we will review literatures on time-series forecasting, which are
mainly in two types, i.e., linear model and non-liner model.

214 C. Chen et al.

5.1 Linear Model

The most popular linear models for time-series forecasting are linear regression
and Autoregressive Integrated Moving Average model (ARIMA) [8]. Due to their
efficiency and stability, they have been applied to many forecasting problems,
e.g., wind speed [10], traffic [21], air pollution index [13], electricity price [3],
and Inflation [19]. However, since it is difficult for them to consider complicate
relations between features, e.g., cross feature, their performance are limited.

5.2 Non-linear Model

Non-linear models are also adopted for time-series forecasting. The most pop-
ular ones are Support Vector Machine (SVM), neural network, and tree-based
ensemble models. For example, SVM are applied to financial forecasting [11] and
wind speed forecasting [15]. Neural network are also used in financial marketing
forecasting [2] and electric load forecasting [18]. Recently, Gradient Boosting
Decision Tree (GBDT) are also adopted to forecast traffic flow [24].

Moreover, model ensemble is also popular for time-series forecasting. For
example, ARIMA and SVM were combined to forecast stock price [17]. Hybrid
ARIMA and NN models were also used for time-series forecasting [5,25].

In this paper, we do not focus on the choices of regression models. Instead,
based on our observation, we focus on extracting seasonality information and
transforming label for better forecasting performance. Our proposed seasonality
extraction and label distribution transform can be applied into most forecasting
models, including NN and GBDT.

6 Conclusions

In this paper, we studied the case of retailers’ sales forecasting on Tmall—the
world’s leading online B2C platform. We first observed sales seasonality after we
group different categories of retailers and Tweedie distribution after we trans-
form the sales. We then designed two mechanisms, i.e., seasonality extraction
and distribution transform, for sales forecasting. For seasonality extraction, we
first adopted clustering method to group the retailers so that each group of retail-
ers have similar features, and then applied Fourier transform to automatically
extract the seasonality for retailers in different groups. For distribution trans-
form mechanism, we used Tweedie loss for regression instead of other losses that
do not fit the real sale distribution. Our proposed two mechanisms can be used
as add-ons to classic regression models, and the experimental results showed that
both mechanisms can significantly improve the forecasting results.

How Much Can A Retailer Sell? Sales Forecasting on Tmall 215

References

1. Ahmed, N.K., Atiya, A.F., Gayar, N.E., El-Shishiny, H.: An empirical comparison
of machine learning models for time series forecasting. Econometr. Rev. 29(5–6),
594–621 (2010)

2. Azoff, E.M.: Neural Network Time Series Forecasting of Financial Markets. Wiley,
Hoboken (1994)

3. Bianco, V., Manca, O., Nardini, S.: Electricity consumption forecasting in italy
using linear regression models. Energy 34(9), 1413–1421 (2009)

4. Box, G.E., Jenkins, G.M., Reinsel, G.C., Ljung, G.M.: Time Series Analysis: Fore-
casting and Control. Wiley, Hoboken (2015)

5. Cadenas, E., Rivera, W.: Wind speed forecasting in three different regions of Mex-
ico, using a hybrid ARIMA-ANN model. Renew. Energy 35(12), 2732–2738 (2010)

6. Carbonneau, R., Laframboise, K., Vahidov, R.: Application of machine learning
techniques for supply chain demand forecasting. Eur. J. Oper. Res. 184(3), 1140–
1154 (2008)

7. Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann.
Stat. 1189–1232 (2001)

8. Hannan, E.J.: Multiple Time Series, vol. 38. Wiley, Hoboken (2009)
9. Jorgensen, B.: Exponential dispersion models. J. Roy. Stat. Soc. Ser. B (Methodol.)

49, 127–162 (1987)
10. Kavasseri, R.G., Seetharaman, K.: Day-ahead wind speed forecasting using f-

ARIMA models. Renew. Energy 34(5), 1388–1393 (2009)
11. Kim, K.J.: Financial time series forecasting using support vector machines. Neu-

rocomputing 55(1–2), 307–319 (2003)
12. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint

arXiv:1412.6980 (2014)
13. Lee, M.H., Rahman, N.H.A., Latif, M.T., Nor, M.E., Kamisan, N.A.B., et al.:

Seasonal ARIMA for forecasting air pollution index: a case study. Am. J. Appl.
Sci. 9(4), 570–578 (2012)

14. Liao, T.W.: Clustering of time series data—a survey. Pattern Recogn. 38(11),
1857–1874 (2005)

15. Liu, D., Niu, D., Wang, H., Fan, L.: Short-term wind speed forecasting using
wavelet transform and support vector machines optimized by genetic algorithm.
Renew. Energy 62, 592–597 (2014)

16. Makridakis, S., Hibon, M.: The M3-competition: results, conclusions and implica-
tions. Int. J. Forecast. 16(4), 451–476 (2000)

17. Pai, P.F., Lin, C.S.: A hybrid ARIMA and support vector machines model in stock
price forecasting. Omega 33(6), 497–505 (2005)

18. Park, D.C., El-Sharkawi, M., Marks, R., Atlas, L., Damborg, M.: Electric load
forecasting using an artificial neural network. IEEE Trans. Pow. Syst. 6(2), 442–
449 (1991)

19. Pufnik, A., Kunovac, D., et al.: Short-term forecasting of inflation in Croatia with
seasonal ARIMA processes. Technical report (2006)

20. Qi, M., Zhang, G.P.: Trend time-series modeling and forecasting with neural net-
works. IEEE Trans. Neural Netw. 19(5), 808–816 (2008)

21. Sun, H., Liu, H., Xiao, H., He, R., Ran, B.: Use of local linear regression model
for short-term traffic forecasting. Transp. Res. Rec.: J. Transp. Res. Board 1836,
143–150 (2003)

http://arxiv.org/abs/1412.6980

216 C. Chen et al.

22. Tweedie, M.: An index which distinguishes between some important exponential
families. In: Statistics: Applications and New Directions: Proceedings of Indian
Statistical Institute Golden Jubilee International Conference, pp. 579–604 (1984)

23. Yang, Y., Qian, W., Zou, H.: Insurance premium prediction via gradient tree-
boosted Tweedie compound Poisson models. J. Bus. Econ. Stat. 36, 1–15 (2018)

24. Yinga, X., Jungangb, C.: Traffic flow forecasting method based on gradient boost-
ing decision tree (2017)

25. Zhang, G.P.: Time series forecasting using a hybrid arima and neural network
model. Neurocomputing 50, 159–175 (2003)

26. Zhou, J., et al.: KunPeng: parameter server based distributed learning systems and
its applications in Alibaba and ant financial. In: SIGKDD, pp. 1693–1702 (2017)

Hierarchical LSTM: Modeling Temporal
Dynamics and Taxonomy in

Location-Based Mobile Check-Ins

Chun-Hao Liu1(B), Da-Cheng Juan2, Xuan-An Tseng1, Wei Wei2,
Yu-Ting Chen3, Jia-Yu Pan2, and Shih-Chieh Chang1,4

1 National Tsing Hua University, Hsinchu, Taiwan
newgod1992@gapp.nthu.edu.tw, killerjack003@gmail.com,

scchang@cs.nthu.edu.tw
2 Carnegie Mellon University, Pittsburgh, USA
x@dacheng.info, {wewei,jypan}@cs.cmu.edu

3 University of California, Los Angeles, Los Angeles, USA
ytchen@cs.ucla.edu

4 Electronic and Optoelectronic System Research Laboratories, ITRI,
Hsinchu, Taiwan

Abstract. “Is there any pattern in location-based, mobile check-in
activities?” “If yes, is it possible to accurately predict the intention of
a user’s next check-in, given his/her check-in history?” To answer these
questions, we study and analyze probably the largest mobile check-in
datasets, containing 20 millions check-in activities from 0.4 million users.
We provide two observations: “work-n-relax” and “diurnal-n-nocturnal”
showing that the intentions of users’ check-ins are strongly associated
with time. Furthermore, the category of each check-in venue, which
reveals users’ intentions, has structure and forms taxonomy. In this
paper, we propose Hierarchical LSTM that takes both (a) check-in
time and (b) taxonomy structure of venues from check-in sequences into
consideration, providing accurate predictions on the category of a user’s
next check-in location. Hierarchical LSTM also projects each category
into an embedding space, providing a new representation with stronger
semantic meanings. Experimental results are poised to demonstrate the
effectiveness of the proposed Hierarchical LSTM: (a) Hierarchical LSTM
improves Accuracy@5 by 4.22% on average, and (b) Hierarchical LSTM
learns a better taxonomy embedding for clustering categories, which
improves Silhouette Coefficient by 1.5X.

Keywords: Long Short-Term Memory ·
Location-Based Social Network · Point of Interest · Behavior model

D.-C. Juan, W. Wei, Y.-T. Chen and J.-Y. Pan—Recently working at Google, Mountain
View, CA, USA.

c© Springer Nature Switzerland AG 2019
Q. Yang et al. (Eds.): PAKDD 2019, LNAI 11440, pp. 217–228, 2019.
https://doi.org/10.1007/978-3-030-16145-3_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16145-3_17&domain=pdf
https://doi.org/10.1007/978-3-030-16145-3_17

218 C.-H. Liu et al.

Fig. 1. Example taxonomy of hierarchical category in Foursquare and Jiepang datasets.
One parent category in a taxonomy contains several child categories. Similarly, one child
category contains several grandchild categories.

1 Introduction

“Is there any pattern in location-based, mobile check-in activities?” “If yes, is it
possible to accurately predict the intention of a user’s next check-in, given his/her
check-in history?” These questions serve as the motivations for this work.

Location-Based Social Networks (LBSN) are rising due to the ubiquity of
GPS-equipped smart phones. In a LBSN, users bridge the gap between the phys-
ical world and the online social networks by checking in their footprints on the
visited venues, referred as Point Of Interests (POIs). The category of a POI is
often associated with certain activities related to a user’s intention [4,6,9,12].
Furthermore, a user’s next intention and activity can be modeled and even pre-
dicted by analyzing these temporal check-in sequences on POIs. For example, if
a person checks in at the office during the daytime, after work he/she may check
in at a bar or a restaurant, and eventually checks in at home. Understanding and
modeling these temporal dynamics of users’ intentions or behaviors enable many
useful applications, such as recommendation systems which are widely deployed
in many products [14].

To better understand users’ intentions and preferences, we study the public
check-in logs from Foursquare and Jiepang [1] containing 20 million check-in
activities from 0.4 million users in total. The categories of venues from these
datasets are hierarchical and form a taxonomy shown in Fig. 1. For example, par-
ent category “College & University” includes child categories “Academic Build-
ing” and “Stadium” while child category “Academic Building” also includes
grandchild categories “History Building” and “Math Building”.

One challenge here is how to model both the taxonomy and long sequences of
LBSN data at the same time. For modeling sequences, one popular and effective
approach is Long Short-Term Memory (LSTM) [3]—famous for its superior abil-
ity to preserve sequence information over time. The order of check-in sequences
is the key to modeling some subtle intention from a user; for example, a per-
son takes metro to company in the morning, eats lunch at a restaurant, has
a teatime in a coffee shop, and chats with friends at a bar after work; there-
fore, the expansion of these logs is exactly fitting to LSTM’s characteristic of
sequence modeling. We aim at predicting the next category of POI which a user
is interested in by expanding user check-in logs as input sequences of LSTM to
model users’ activity preferences. Furthermore, LSTM networks have been suc-

Modeling Temporal Dynamics and Taxonomy in Mobile Check-Ins 219

cessfully applied to predict the semantic relatedness [2] and capture syntactic
structure over the sentence [10]. Similarly, we use LSTM to capture the rela-
tionship between parent category and child category in taxonomy structure and
project each category into an embedding space, providing a new representation
with stronger semantic meanings.

This paper brings the following contributions:

– We analyze two large-scale Location-Based Social Networks datasets from
Foursquare and Jiepang, and provide two observations: “work-n-relax” and
“diurnal-n-nocturnal” showing that the intentions of users’ check-ins are
strongly associated with time.

– We propose a novel and effective model: Hierarchical LSTM that accu-
rately predicts the next POI category. Hierarchical LSTM also captures the
hierarchical structure of POI categories.

– Experimental results show that, on average, Hierarchical LSTM outperforms
state-of-the-art approaches by 4.22% on Accuracy@5 metric.

– Furthermore, Hierarchical LSTM learns a more effective taxonomy embedding
as a vector representation for clustering categories. Experimental results show
that Hierarchical LSTM improves Silhouette Coefficient by 1.5X, compared
with the embedding learned by vanilla LSTM.

2 Problem Definition

2.1 Datasets: Foursquare and Jiepang

We analyze the public check-in posts from the Foursquare and Jiepang websites.
The specifications of both datasets are as follows: Foursquare dataset contains
over 11 million check-in activities at 560 thousand venues collected from 56 thou-
sand users in the United States from February 2010 to January 2011; Jiepang
dataset contains over 8 million check-in activities at 87 thousand venues collected
from 382 thousand users in China from December 2010 to March 2013.

The venues in the datasets are marked with hierarchical categories, as illus-
trated in Fig. 1. There are 312 child categories within 12 parent categories in
the Foursquare dataset and 51 child categories within 7 parent categories in the
Jiepang dataset. In this paper, we only use two levels of the taxonomy structure
(parent and child categories) in the Hierarchical LSTM, because some informa-
tion of the grandchild categories are incomplete.

2.2 Observations

User activities have been found to have “Temporal Correlation”. For example,
D. Yang et al. [11] observed that people usually go to a coffee shop or a burger
joint between 13:00 to 14:00 on a weekday, stay at a bar between 21:00 to 22:00
on Friday and go to the gym or outdoor places between 16:00 and 17:00 on the
weekend. We analyzed the correlation of the check-in time and category, and
also found two observations of Temporal Correlation.

220 C.-H. Liu et al.

Fig. 2. Percentage of each parent category in a week after we normalize the actual
check-in count in Foursquare dataset. The percentage of category associated with
“work” in weekdays is larger than the ones on weekends. On the contrary, the per-
centage of category associated with “relax” on weekends is larger than the ones in
weekdays. For example, on weekdays, the percentage of the categories “College & Uni-
versity” is much larger than they are on weekends. And On weekends, the percentage
of the categories “Great Outdoors” is much larger than they are on weekdays

Observation 1. “Work-n-relax” pattern: weekday check-ins are associated
more with “work”, and check-ins on weekend are relatively more related to
“entertainment & relax” (see Fig. 2).

Observation 2. “Diurnal-n-nocturnal” pattern: check-in venues during the day
can be very different from the ones during the night (see Fig. 3).

2.3 Problem Formulation

The problem formulation can be described as: “Given a user’s check-in sequence,
predict the child category of the POI of his/her next check-in.”

Specifically, given a sequence of τ check-ins, we want to predict the child
category of POIs in the next check-in, i.e., the (τ + 1)th check-in as label y.
Mathematically, this prediction problem can be expressed as:

y = f({xP,j , xC,j , xT,j}j=1...τ), (1)

where xP,j , xC,j , and xT,j are denoted as the parent category, the child category,
and the check-in time respectively.

The goal here is to find a function f that takes xP,j , xC,j and xT,j (j = 1 to
τ) as inputs to predict y. Note that we predict the child category instead of the
parent category. As Sect. 2.1 mentioned, there are much more child categories
than parent categories. Predicting a child category provides the “fine-grained”
intention or preference of a user, which is very important when designing a recom-
mendation system. For example, predicting the next POI category as “Chinese
Food Restaurant” reveals more intention or preference of a user, compared to its
parent category “Food.”

Modeling Temporal Dynamics and Taxonomy in Mobile Check-Ins 221

Fig. 3. Pie charts of the parent categories at time intervals 3:00 to 3:59, 10:00 to
10:59 and 20:00 to 20:59, which have a strong contrasting pattern to each other in
Foursquare dataset. The percentage of the checked-in categories by “diurnal” users in
daytime is larger than the ones at night, and vice versa. For example, during 3:00 to
3:59, most people enjoy their nightlife with the category “Nightlife Spot” accounts for
over 23%, which is much larger than during the daytime. At 10 a.m., commuters take
transportations to work place or school so the check-in counts of category “Travel &
Transport” and “Home, Work, Others” increase.

Fig. 4. One user check-in sequence is partitioned into several instances. Each instance
is with length of τ : instance 1 contains the 1st to the τ th check-in, instance 2 is the
2nd to (τ + 1)th check-in, and so on. Given an instance, the goal is to predict the child
category of POI in the next check-in—for example, given instance 1, the goal is to
predict the child category of POI in the (τ + 1)th check-in.

2.4 Data Preprocessing

We model the prediction problem from Eq. (1) as a multi-class classification and
construct the training and testing datasets accordingly.

For each user’s check-in sequence, we partition it into several instances of
length τ , e.g., instance 1 contains the 1st to the τ th check-ins, instance 2 is the
2nd to the (τ + 1)th check-ins, and more generally, instance i is ith to (i + τ − 1)th

check-ins. Figure 4 illustrates this partitioning procedure.
Each instance from the partitioning procedure also has a label y, which is

an index value corresponding to the child category of (τ + 1)th check-in. For
example, in the Foursquare data set, we use the numbers between 0 to 311 to
represent the 312 child categories. Similarly, the values of the predictive fea-
tures xP,j and xC,j are index values representing the parent category and child
category, respectively. The feature xT,j is the check-in time in Eq. (1) which
represents the weekday in a week and the hour in a day.

222 C.-H. Liu et al.

Fig. 5. The structure of Hierarchical LSTM. Two LSTM layers are used in this model:
Inner LSTM and Outer LSTM. Inner LSTM outputs taxonomy embedding hγ,j as the
input of Outer LSTM.

When preprocessing the data, we require that the time period between two
consecutive check-ins is no longer than 24 h to ensure the tight relation between
each check-in. This also filters out inactive users who seldom check in during a
week.

Instance Length τ . Although LSTM (and Recurrent Neural Networks in gen-
eral) are suited to handle variable length sequences, we partition an input
sequence into several instances to produce more training samples (e.g. if the
length of an input sequence is l, it can be partitioned into l − τ + 1 instances).
We note that, since Hierarchical LSTM is based on LSTM, it is also suitable for
arbitrary length of input sequences.

Now, the question is: How to choose the sequence length τ to get accurate
prediction? When τ is small, we get shorter instances from both active and
inactive users, and we can extract more training samples. When τ is large, we
only get longer instances from active users, but we extract fewer training samples.
Therefore, the selection of τ is the first important question we need to face. We
provide the best experimental results in Sect. 4.3 for the value of τ we selected.
Overall, an instance has 3 kinds of features (xP,j , xC,j and xT,j) × τ (sequence
length per instance) = 3τ predictive features.

3 Methodology

3.1 Hierarchical LSTM

We illustrate the details of Hierarchical LSTM with Fig. 5. First, we extract
input features (xP,j , xC,j , xT,j) where j = 1 to τ and the label y from each
instance, as described in Sect. 2.4.

Then, we feed xP,j , xC,j and xT,j into different embedding layers (Eq. (2)),
and turn indexes of category and check-in time into dense vectors of fixed size,
to produce the embedding vectors eP,j , eC,j , and eT,j .

eP,j = Emb(xP,j); eC,j = Emb(xC,j); eT,j = Emb(xT,j) (2)

Modeling Temporal Dynamics and Taxonomy in Mobile Check-Ins 223

Next, the embedding vectors eP,j and eC,j are sequentially fed into the Inner
LSTM to output a taxonomy embedding hγ,j which represents the hierarchical
relationship from parent category to child category (Eq. (3)). The Inner LSTM
is proposed to capture the semantic relation between the parent and the child
categories. We do not include the check-in time in the Inner LSTM because it
doesn’t have semantic dependency with the categories.

hγ,j = LSTM(eP,j → eC,j) (3)

Then, the taxonomy embedding hγ,j and the embedding vector eT,j are con-
catenated and fed into Outer LSTM to capture the sequence information and
get the last output as the internal vector ho (Eq. (4)). Outer LSTM feeds the
internal vector ho to a softmax layer to make the final decision of the next POI
form the N child categories.

ho = LSTM(hγ,j , eT,j), where j = 1 to τ (4)

The output of the softmax layer can be used to represent a probability dis-
tribution over N different possible outcomes. Eq. (5) is the predicted probability
for the ith child category given an internal vector ho in Eq. (4) and the weight
matrix Wi where i = 1 to N .

P (y = i|ho) =
exp(Wiho)

∑N
l=1 exp(Wlho)

(5)

We pick the output of the softmax layer with the highest probability for
Accuracy@1 and top k probabilities for Accuracy@k. Note that, at each time
step, Inner LSTM takes one sequence of {eP,j , eC,j} as input and calculates a
taxonomy embedding hγ,j , which is then passed to the Outer LSTM. Overall, the
Outer LSTM takes τ sequences of {hγ,j , eT,j} as input and eventually calculates
the internal vector ho. Algorithm 1 shows the pseudo code of making a prediction
using the Hierarchical LSTM.

4 Experimental Result

4.1 Experimental Setup

In this work, when training and testing models, Cross Entropy is used to measure
the difference between the truth class y (represented as an one-hot vector of
length N) and the distribution of predicted classes ŷ.

To best train the proposed Hierarchical LSTM and other state-of-the-art
approaches, we search for the best hyperparameters by using 10-fold cross vali-
dation. Then we evaluate the performance of each model on the test set. After
the data preprocessing (Sect. 2.4), there are 297938 venues, 26692 users in the
Foursquare data set and 15645 venues, 1141 users in the Jiepang data set. We
split the data for training and testing, and divide the training samples for 10-
fold cross validation. At the end, we train on 422184 samples, validate on 52773

224 C.-H. Liu et al.

Algorithm 1. Prediction using Hierarchical LSTM.
Input: {xP,j , xC,j , xT,j }, where j = 1...τ
Output: The Next Check-In Child Category Of A User

1 for j ← 1 to τ do
2 eP,j ← Emb(xP,j);
3 eC,j ← Emb(xC,j);
4 eT,j ← Emb(xT,j);
5 for each level l in taxonomy do
6 InnerLSTM(el,j);

7 /*parent category is the 1th level, so e1,j = eP,j*/

8 /*child category is the 2nd level, so e2,j = eC,j*/

9 hγ,j ← InnerLSTM ;
10 OuterLSTM(Concatenate(hγ,j , eT,j));

11 ho ← OuterLSTM ;
12 ŷ ← Softmax(ho);
13 return ŷ;

samples and test on 52773 samples from the Foursquare data set. Similarly, we
train on 38536 samples, validate on 4817 samples and test on 4817 samples from
the Jiepang data set.

For the evaluation metrics, we report Accuracy@1 and Accuracy@5 to pro-
vide a comprehensive study on the performance evaluation of different models.

4.2 Models Compared and Previous Work

We compare the performance of Hierarchical LSTM with some state-of-the-art
approaches, which are variants of the basic LSTM model as follows:

– SCP-RNN [13] is a framework for click prediction based on Recurrent Neu-
ral Networks. We adopt SCP-RNN to our application by replacing the user
behavior sequences with the child category xC,j to achieve the goal of pre-
dicting users’ next POIs. We re-implement SCP-RNN by a single layer LSTM
with embedding vectors the eC,j of xC,j (Eq. (2)) as input.

– ST-RNN [5] considers not only temporal but also spatial dependency in
user’s behavior sequences into prediction. We adopt this work to our applica-
tion by replacing these temporal and spatial sequences with xT,j and child cat-
egory xC,j to achieve the goal of predicting users’ next POIs. We re-implement
ST-RNN by a single layer LSTM and concatenating the embedding vectors
eC,j and eT,j of xC,j and xT,j (Eq. (2)) as input.

– ST-RNN+P is an extension of ST-RNN, which we proposed as an enhanced
baseline. This model improves on the original ST-RNN model that, beside
using the spatial sequences xC,j as input, we additionally add parent category
xP,j as an input feature to improve the accuracy. Figure 6 illustrates the
proposed ST-RNN+P. We implement ST-RNN+P by a single-layer LSTM

Modeling Temporal Dynamics and Taxonomy in Mobile Check-Ins 225

Fig. 6. ST-RNN+P is a single layer LSTM with the concatenation of the embedding
vectors eC,j , eP,j and eT,j (i.e. output of embedding layer when feeding xC,j , xP,j

and xT,j) as input. The only difference compared with Hierarchical LSTM is that ST-
RNN+P doesn’t use Inner LSTM to capture the relation between parent category xP,j

and child category xC,j .

Table 1. Experimental results on both Foursquare and Jiepang datasets with the
selected τ values. Notice that the proposed Hierarchical LSTM consistently outperforms
the previous state-of-the-art approaches over the τ values.

Foursquare τ = 35

Model Accuracy@1 Accuracy@5

SCP-RNN [13] 20.62% (baseline) 46.33% (baseline)

ST-RNN [5] 21.02% (+1.94%) 46.33% (+0.00%)

ST-RNN+P 20.97% (+1.70%) 46.93% (+1.30%)

Hierarchical LSTM 21.87% (+6.06%) 48.06% (+3.73%)

Jiepang τ = 45

Model Accuracy@1 Accuracy@5

SCP-RNN [7] 36.09% (baseline) 65.25% (baseline)

ST-RNN [5] 36.00% (−0.25%) 65.38% (+0.02%)

ST-RNN+P 36.28% (+0.53%) 66.29% (+1.59%)

Hierarchical LSTM 37.99% (+5.27%) 68.20% (+4.52%)

that takes the concatenation of the embedding vectors eC,j , eP,j and eT,j

of xC,j , xP,j and xT,j (Eq. (2)) as input. The only difference compared with
Hierarchical LSTM is that ST-RNN+P doesn’t use Inner LSTM to capture
the relation between parent category xP,j and child category xC,j .

We optimize the baseline models above to the best of our knowledge. These
models also are trained via 10-fold cross validation and grid-search to find the
best hyperparameters.

4.3 Result Summary

Table 1 shows the best experimental results from different state-of-the-art models
and Hierarchical LSTM with the selected τ values. For a comprehensive compari-
son, we calculate Accuracy@1, Accuracy@5 and the improvement from baseline.

226 C.-H. Liu et al.

The results demonstrate that Hierarchical LSTM outperforms state-of-the-art
models on both Foursquare and Jiepang datasets. We observe that SCP-RNN
(the only approach here without using the check-in time) has the worst per-
formance, indicating that check-in time is an informative feature which should
always be included for behavior and intention modeling. When using the same
set of input features, Hierarchical LSTM outperforms ST-RNN+P in every eval-
uation metric.

4.4 Taxonomy Embedding Analysis

To get some insights about the better performance of Hierarchical LSTM, we
analyze the difference between the taxonomy embedding hγ,j of Hierarchical
LSTM and the embedding vectors eC,j of ST-RNN+P, which both represent
the child categories. Figure 7 shows the t-SNE [8] projection of the hγ,j and
eC,j vectors onto X-axis and Y-axis. The dots with the same color in the t-SNE
graph indicate the different child categories from the same parent category in
Foursquare dataset. Figure 7(a) is messy and Fig. 7(b) is organized according to
the colors (i.e., the parent categories). Inner LSTM performs well on matching
the hierarchical relationship of the taxonomy path from the parent category to
the child category.

Cluster Metrics. In addition, we provide an evaluation metrics: Silhouette
Coefficient [8]. The vectors from Hierarchical LSTM and ST-RNN+P are nor-
malized before the calculation. Silhouette Coefficient is calculated by considering
the mean of the intra-cluster distance α and the mean of the nearest-cluster dis-
tance β for each sample; mathematically: β−α

max(α,β) .
The value of Silhouette Coefficient is in [−1; 1]. A value closer to 1 indicates

better clustering. Silhouette Coefficient of Hierarchical LSTM is 0.034 while ST-
RNN+P is only −0.065, which means Inner LSTM is better in clustering child
categories.

(a) T-SNE for ST-RNN+P with the Sil-
houette Coefficient of -0.065 (project to
original embedding space).

(b) T-SNE for Hierarchical LSTMwith the
Silhouette Coefficient of 0.034 (project to
original embedding space).

Fig. 7. T-SNE graphs for embedding vectors eC,j of ST-RNN+P and taxonomy embed-
ding hγ,j of Hierarchical LSTM from Foursquare dataset. The dots with the same color
in the graphs indicate the child categories from the same parent category. (Color figure
online)

Modeling Temporal Dynamics and Taxonomy in Mobile Check-Ins 227

Meaningful Embedding. In Fig. 8(a), we labeled the projected taxonomy
embedding hγ,j (the same plot as shown in Fig. 7(b)) with their corresponding
child category names. We observed that the embedding vectors obtained from
the proposed Hierarchical LSTM model successfully captures the semantics of
the categories. In particular, child categories of POIs with similar semantics will
have similar embedding vectors, even if these child categories belong to different
parent categories as specified in the given data.

For example, in the Foursquare dataset, the child category “Library” has
an embedding vector similar to that of the child category “College Library”
(Fig. 8(b)), even though one belongs to the parent category “Home, Work, Oth-
ers” and the other belongs to the parent category “College & University”. The
proposed Nested LSTM model is able to handle the imperfect/redundant human
categorization in the real-world dataset and generate meaningful embedding vec-
tors to the categories.

(a) T-SNE graph for taxonomy embedding hγ,j of
Hierarchical LSTM from Foursquare dataset and la-
beled the name of child category.

(b) Child categories “Li-
brary” and “College Li-
brary”.

Fig. 8. Hierarchical LSTM generates meaningful embedding vectors of POIs. The colors
of the dots represent the parent categories (please refer to the legends in Fig. 7(b)).
(Color figure online)

5 Conclusion

In this paper, we first analyze two large LBSN datasets and provide two observa-
tions: “work-n-relax” and “diurnal-n-nocturnal.” Then we propose Hierarchical
LSTM to predict the category of the next POI where a user will check in. Thanks
to Hierarchical LSTM, we now can answer the two motivational questions: “Is
there any pattern in location-based, mobile check-in activities?” “If yes, is it
possible to accurately predict a user’s next check-in intention, given his/her
check-in history?” Experimental results show that, Hierarchical LSTM achieves
Accuracy@5 48.96% and 68.20% on the Foursquare and Jiepang datasets, respec-
tively. The taxonomy embedding learned by Hierarchical LSTM achieves Silhou-
ette Coefficient of 0.034 which outperforms other state-of-the-art approaches.

228 C.-H. Liu et al.

The Inner LSTM captures the hierarchical relationship of categories on taxon-
omy (parent category—child category), and has the capability of better cluster-
ing child category.

References

1. Jiepang Website (2018). https://jiepang.com/
2. Bjerva, J., Bos, J., Van der Goot, R., Nissim, M.: The meaning factory: formal

semantics for recognizing textual entailment and determining semantic similar-
ity. In: Proceedings of the 8th International Workshop on Semantic Evaluation
(SemEval 2014), pp. 642–646 (2014)

3. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

4. Lian, D., Xie, X.: Collaborative activity recognition via check-in history. In: Pro-
ceedings of the 3rd ACM SIGSPATIAL International Workshop on Location-Based
Social Networks, pp. 45–48. ACM (2011)

5. Liu, Q., Wu, S., Wang, L., Tan, T.: Predicting the next location: a recurrent
model with spatial and temporal contexts. In: Proceedings of the Thirtieth AAAI
Conference on Artificial Intelligence, AAAI 2016, pp. 194–200. AAAI Press (2016)

6. Noulas, A., Mascolo, C., Frias-Martinez, E.: Exploiting foursquare and cellular
data to infer user activity in urban environments. In: 2013 IEEE 14th International
Conference on Mobile Data Management (MDM), vol. 1, pp. 167–176. IEEE (2013)

7. Palangi, H., et al.: Deep sentence embedding using long short-term memory net-
works: analysis and application to information retrieval. IEEE/ACM Trans. Audio
Speech Lang. Process. 24(4), 694–707 (2016)

8. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn.
Res. 12, 2825–2830 (2011)

9. Pianese, F., An, X., Kawsar, F., Ishizuka, H.: Discovering and predicting user rou-
tines by differential analysis of social network traces. In: 2013 IEEE 14th Interna-
tional Symposium and Workshops on a World of Wireless, Mobile and Multimedia
Networks (WoWMoM), pp. 1–9. IEEE (2013)

10. Socher, R., Lin, C.C., Manning, C., Ng, A.Y.: Parsing natural scenes and natural
language with recursive neural networks. In: Proceedings of the 28th International
Conference on Machine Learning (ICML-2011), pp. 129–136 (2011)

11. Yang, D., Zhang, D., Zheng, V.W., Yu, Z.: Modeling user activity preference by
leveraging user spatial temporal characteristics in LBSNs. IEEE Trans. Syst. Man
Cybern.: Syst. 45(1), 129–142 (2015)

12. Ye, J., Zhu, Z., Cheng, H.: What’s your next move: user activity prediction in
location-based social networks. In: Proceedings of the 2013 SIAM International
Conference on Data Mining, pp. 171–179. SIAM (2013)

13. Zhang, Y., et al.: Sequential click prediction for sponsored search with recurrent
neural networks. In: AAAI 2014, pp. 1369–1375 (2014)

14. Zhao, S., King, I., Lyu, M.R.: A survey of point-of-interest recommendation in
location-based social networks. CoRR abs/1607.00647 (2016). http://arxiv.org/
abs/1607.00647

https://jiepang.com/
http://arxiv.org/abs/1607.00647
http://arxiv.org/abs/1607.00647

Recovering DTW Distance Between Noise
Superposed NHPP

Yongzhe Chang1,2(B), Zhidong Li1,3, Bang Zhang1, Ling Luo1,3,
Arcot Sowmya2, Yang Wang1,3, and Fang Chen1,3

1 Data 61 CSIRO, Sydney, Australia
{yongzhe.chang,zhidong.li,bang.zhang,ling.luo,yang.wang,

fang.chen}@data61.csiro.au
2 University of New South Wales, Sydney, Australia

{yongzhe.chang,arcot.sowmya}@unsw.edu.au
3 University of Technology Sydney, Sydney, Australia

{zhidong.li,ling.luo,yang.wang,fang.chen}@uts.edu.au

Abstract. Unmarked event data is increasingly popular in temporal
modeling, containing only the timestamp of each event occurrence with-
out specifying the class or description of the events. A sequence of event
is usually modeled as the realization from a latent intensity series. When
the intensity varies, the events follow the Non-Homogeneous Poisson Pro-
cess (NHPP). To analyze a sequence of such kind of events, an important
task is to measure the similarity between two sequences based on their
intensities. To avoid the difficulties of estimating the latent intensities,
we measure the similarity using timestamps by Dynamic Time Warping
(DTW), which can also resolve the issue that observations between two
sequences are not aligned in time. Furthermore, real event data always
has superposed noise, e.g. when comparing the purchase behaviour of
two customers, we can be mislead if one customer visits market more
often because of some occasional shopping events. We shall recover the
DTW distance between two noise-superposed NHPP sequences to evalu-
ate the similarity between them. We proposed two strategies, which are
removing noise events on all possibilities before calculating the DTW
distance, and integrating the noise removal into the DTW calculation
in dynamic programming. We compare empirical performance of all the
methods and quantitatively show that the proposed methods can recover
the DTW distance effectively and efficiently.

Keywords: Dynamic Time Warping ·
Non-Homogeneous Poisson Process · Noise · Dynamic programming ·
Bayesian prior

1 Introduction

The temporal event sequence is an increasingly popular data type that records
event occurrences in time domain. In studies of stochastic processes, a sequence
c© Springer Nature Switzerland AG 2019
Q. Yang et al. (Eds.): PAKDD 2019, LNAI 11440, pp. 229–241, 2019.
https://doi.org/10.1007/978-3-030-16145-3_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16145-3_18&domain=pdf
https://doi.org/10.1007/978-3-030-16145-3_18

230 Y. Chang et al.

is a realization of a Poisson Process (PP) based on an intensity function. As
one of the most important tasks when analyzing PP, measuring the similarity
between two sequences of events has been widely applied in many applications
including financial portfolios [6,12], hospital treatments [16], and asset failure
prediction [9]. However, traditional distance measurements based on time to
time alignment (i.e. data at time t in one sequence is compared with data at
the same time in the other sequence) is infeasible because of the randomness of
event intervals. Smoothing is a solution but it leads to information loss in finer
resolution. To obtain the distance in finer resolution, Dynamic Time Warping
(DTW) algorithm can be used to measure the distance between two unaligned
sequences of events.

DTW algorithm is designed to find the minimum distance between sequences
without the restriction of time to time alignment. It is well known that the choice
of representation of the time series is important when using DTW [8,14]. The
ideal representation for temporal event sequences is to use the intensity. However,
the intensity for Non-Homogeneous Poisson Process (NHPP) is latent if para-
metric model is not assumed [15]. Therefore, it may suffer from the model selec-
tion problem. There are three alternatives to represent sequences realized from
NHPP: first we use binary label on the time slot, recording an event occurred or
not, then applying DTW to this representation will align all ‘0’ to ‘0’ and ‘1’ to
‘1’ but the output distance may be largely underestimated. Second, we can use
the event count in the given time window. However, the variance of the count
increases with the length of the sequence. To avoid these issues, in this paper,
we use the third representation, which is the timestamp of each event.

The observed sequences can be superposed by stochastic noise, which means
that except for the original NHPP (referred as the clean sequence), there also
exists a PP that stochastically generates events as noise. This common phe-
nomenon has been observed in many applications. For example, when compar-
ing two patients’ records of hospital visits to check whether they have a similar
disease, it can be misleading if one patient visits more often because of another
concurrent disease. The current DTW algorithm does not consider the existence
of noise, instead, all events in the sequence are used to measure the distance. As
a result, the DTW distance between noise superposed NHPP cannot represent
the actual DTW distance. In our solution, we try to recover the DTW distance
between clean sequences given the superposition of a noise sequence. It is worth
noting that the proposed method can be used to recover the distance for any
NHPP with arbitrary unknown intensity function. The noise is from reasonably
known homogeneous Poisson process (HPP) with commonly used noise setting,
that is, the events are generated according to an intensity of HPP. However, we
cannot know the exact values of the intensity, so we assume that the intensity
is generated from a random distribution as a Bayesian prior. Such noise can be
seen from many real applications, for example, acoustic engineering, telecommu-
nications, and statistical forecasting [2,4].

The key challenge of recovering DTW distance from noise-superposed NHPP
is to identify which event is noise. The key idea is to consider the probability of

Recovering DTW Distance Between Noise Superposed NHPP 231

an event being noise or not and utilize it to obtain a practical and probabilis-
tically sound DTW distance measure. To solve this issue, two strategies can be
considered. One is to remove noise events from the whole sequence with certain
probability and then calculate the DTW distance. For this strategy, we discuss
three methods, including (1) traversing over all possible subsets of noise and
calculating the probability; (2) only traversing the average case based on noise
parameters; (3)using a sampling method to approximate the traverse and prob-
ability. However, the computational costs of these methods are high. The other
strategy, which we have adopted in this paper, is to embed a noise removal step
into the DTW calculation in an efficient way using dynamic programming.

In summary, the novelties in this paper are three folds: (1) We can recover
the DTW distance between noise superposed NHPP without estimating the arbi-
trary intensity function for the NHPP sequences. (2) We combine a probability
based method with DTW distance computation. (3) We propose a more efficient
method to recover the DTW distance based on dynamic programming.

2 Related Work

Distance between sequences of events has wide applications with clustering as
an example. [9] and [5] have proposed to use Bayesian nonparametric prior and
Hawkes process to cluster event sequences by the likelihood of timestamps, where
more similar sequences have larger likelihood to have the same parameter so that
they are in the same cluster. The covariance between sequences of four types of
events (stock price up and down, volume up and down) has been measured [1].
There are two main drawbacks in these methods. First, they have to assume the
intensity function, which is not required in our solutions. Second, when applying
to the real data, noise is the major concern that may largely influence the final
clustering result. Our methods can recover the distance even with noise.

There are other methods to obtain the distance between multiple dimensional
data, a more general data type that includes time series, but cannot be directly
applied to solving in our problem. For example, Kernel methods [11] and covari-
ance based methods such as connectedness [6] that can measure the relation
between sequences of extreme events in stock market. These methods are based
on a time (or dimension) aligned comparison while distance comparison of DTW
is based on the optimized alignment.

DTW is a popular distance measure defined for time series [13] by measur-
ing the similarity between two temporal sequences that vary in frequency and
length. In relation to our method, stochastic DTW [10] has been proposed to use
probability to select the path in DTW, where, to our knowledge, using DTW on
intensity-unknown NHPP that is superposed with noise has not been discussed
before.

3 Methods

In the beginning we shall show how to apply DTW to sequences of times stamps.
Then we will consider two strategies to recover DTW from noise superposed

232 Y. Chang et al.

sequences. The first strategy is by calculating the DTW after removing noise
points and the second is to integrate the probability to remove noise into the
recursion of DTW.

3.1 DTW Distance on Sequences of Timestamps

Given two sequences of timestamps x = (xi; i = 1 . . . n) and y = (yj ; j = 1 . . . m),
our aim is to calculate the distance between x and y.

Then given a cost matrix (e.g. |xi − yj |) Δn×m := δ(xi, yj) that stores the
distance values between each pair of points in two sequences, and an alignment
matrix A ∈ An,m, where A = ai,j ∈ {0, 1} that shows all the possible alignments
in matching two sequences, the final distance can be defined as the inner product
of DA = 〈A,Δ〉. Among all the distance values, the DTW distance is the mini-
mum DA given all paths. In defining a path, we have:

∑
β,γ∈{0,1} ai−β,j−γ ≥ 2

if ai,j = 1, and a1,1 = an,m = 1.
Since the recursion algorithm based on dynamic programming can solve the

optimization problem, we write dtw(xi, yj) as the DTW distance between two
sequences with lengths i and j. In Fig. 1(b), the recursion algorithm can be
written as:

dtw(xi, yj) = δ(xi, yj)+ min(dtw(xi, yj−1),dtw(xi−1, yj−1),dtw(xi−1, yj)). (1)

In our problem, the noise is also a sequence of points with timestamps that
are mixed into the clean sequences x and y, following the NHPP with latent
intensity μx and μy. When dealing with one sequence, we write it as μ for
simplicity. There is no mark on noise so we do not know which point is the
noise. Then the objective is to recover the possible DTW distance between two
clean sequences, given two sequences x and y with noise.

3.2 Remove Noise Before DTW Calculation

Recovering DTW distance means to get the true DTW distance by eliminating
the influence of noise points. To achieve this, before performing DTW, we need
to remove the noise events. We use a vector zx = (zi ∈ {0, 1}) to indicate
whether the event i is noise or not. Here zx has the same length as x. We omit
x for simplicity since we only discuss one sequence. We then denote s =

∑
i zi.

Since we do not know which point is the real noise, we assume that any point
can be noise with a probability, which leads to multiple realizations of z. Given
each realization of z, a clean sequence x∗ ∈ R

1×(n−s) can be obtained by x∗ =
(xi|zi = 1), then a DTW distance can be retrieved based on x∗ and y∗. Here the
multiple realizations of z lead to possible variants of the recovered DTW distance.
To obtain the varying DTW distance and the corresponding probability, we
introduce four methods, including traversing method, averaging method,
sampling method and the dynamic DTW method.

To recover DTW distance, an intuitive method is to remove noise first. In
this case the noise points are selected from n points so all the possible selections

Recovering DTW Distance Between Noise Superposed NHPP 233

of z are limited to 2n. In the traversing method, we traverse all selections and
calculate the DTW distance for each realization of z. Each selection has a prob-
ability and it is used as the weight to combine the obtained DTW distances. The
probability of selecting a z is:

P (z;μT) =
∫

P (z|s)Poisson(s|μ, T)ds =
∫

1
g
Poisson(s|μ, T)ds, (2)

where g =
(
n
s

)
, and T is the length of a sequence. Since the noise intensity μ

is latent, we select a distribution for μ as a Bayesian prior (usually a gamma
distribution is chosen), which derives the selection probability:

P (z; θ, λ) =
∫

P (z;μ, T)Gamma(μ; θ, λ)dμ, (3)

where θ and λ are the hyperparameters, θ is the shape parameter and λ is the
scale parameter. Moreover, it can be seen that the only part related to z is P (z|s)
(the likelihood term P (s|μ, T) = μs

xe−μxT does not include event location), so
the probability of all selections given s are the same. From the equation above,
it is easy to find out that P (z|α, β) are all the same for different realisations, so
the weights can be ignored.

Although this method can help us obtain the true distribution of DTW dis-
tance, it cannot be applied when the sequence is long (usually infeasible when
n > 20) due to the expensive calculation cost.

Then, a simplified approximation of the traverse method is to use the average
case of s as the approximation, then consider all the selections of z by fixing s
using the average as E(s) = θλ. The prior distribution is assumed to be a
gamma distribution: Gamma(θ, λ). Then all the DTW distances based on E(s)
are traversed to obtain the distribution of DTW distance. In this method, only(

n
E(s)T

)
DTW distances need to be calculated and averaged. We denote this

method as Averaging.
The two methods mentioned above are either infeasible or over simplified, so

we will then introduce a balanced method, in which we sample each point of z to
approximate the distribution of z. This method is based on sequential sampling.
Given that zi is sampled as the last noise point, we can sample whether the
point xi+q is noise (that is, zi+q = 1) or not, using the cumulative probability.
The compound probability of exponential distribution and gamma distribution
is exactly the Lomax distribution [7]. Therefore, the cumulative probability is:
zi+q ∼ Ber (Lomaxcdf (xi+q − xi; θ, λ)), and we denote this method as Sam-
pling.

3.3 Integrating Noise Removal Probability to DTW

The previous methods link noise removal and DTW algorithms by directly
inputting a clean sequence into DTW. We propose a method to integrate noise
removal and optimization with recursion. In the original DTW recursion, to cal-
culate the value of dtw(xi, yj), three DTW distances from previous calculations
are used, as it is shown in Fig. 1(b).

234 Y. Chang et al.

Moreover, we consider the probability that all the consecutive c = 0 . . . C
points in the precedent are noise. That is, given c, with certain probability, all
the points xi−c . . . xi−1 are noise but xi−c−1 is not noise. We use 5 points (i = 5)
as an example in Fig. 1(a). We can see that all combinations of selected noise
points are included by setting c from 0 to 3 (without loss of generality, the first
point is assumed to be not a noise).

Fig. 1. (a) All possible situations of noise points given 5 points, where the first and last
points are not noise. All green points are noise, and yellow points are not noise. (b) The
original DTW path determination when calculating DTW for the grid. (c) Grids for
previous DTWs (d1 − d9), the middle row and column can contain cx, cy grids. (Color
figure online)

We explain how to calculate dtw(xi, yj) in the example in Fig. 1(b) by fixing
cx and cy for sequences x and y respectively. In the example, we use xi−1,...,i−cx

to represent that all the consecutive cx points could be noise on sequence x.
That is, whether

∑
k=i−1,...,i−cx

zk = 0 or cx the corresponding probability is
P (cx) = P (

∑
k=i−1,...,i−cx

zk = cx). Similarly, consecutive cy points could be
noise on sequence y with probability P (cy). Then we consider the DTW with
the given cx and cy as:

dtw|cx,cy (xi, yj) = δ(xi, yj) + Dm, (4)

where Dm = min(d1, d7, d9) in the example of Fig. 1(c). It is noticeable that the
equations still hold for the special case of cx = 0, where Dm = min(d1, d4, d6). In
this case, xi−cx−1 = xi−1 so that we have d4 = d7 and d6 = d9. Similarly, when
cy = 0, we have Dm = min(d2 = d1, d8 = d7, d9). If both cx = 0 and cy = 0,
then Dm = min(d2 = d1, d5 = d7, d6 = d9) and it becomes the original DTW
recursion without noise. To generalize the results, we can write Dm as:

Dm = min(dtw(xi, yj−cy−1),
dtw(xi−cx−1, yj−cy−1),dtw(xi−cx−1, yj)).

(5)

In this case Dm can be represented by a function of cx, cy and it can be written
into Dm(cx, cy).

Recovering DTW Distance Between Noise Superposed NHPP 235

Then we consider multiple values for cx and cy instead of fixed values, so (4)
can be written as:

dtw(xi, yj) = Ecx,cy (dtwcx,cy (xi, yj))

= δ(xi, yj) +
Cx∑

cx=0

P (cx)
Cy∑

cy=0

(P (cy)Dm(cx, cy))
(6)

Probability of P (cx): Let us see how to obtain the probabilities in equa-
tion (6), using P (cx) as an example. For consecutive cx noise points, the proba-
bility can be calculated by:

P (cx) = (1 − Pi−cx−1)
i−1∏

k=i−cx

Pk, (7)

where Pk denotes the probability that point xk is noise. Since the clean sequence
is non-homogeneous, the probability is changing through time.

Pk can be written into P (zk = 1|N(τ), λ, θ), where N(τ) is the number of
points observed in given time τ before the point k (between the time [xk−τ, xk)).
Simplify N(τ) as N , the points are indexed by m where m = 1···N . First,
the probability that m ≤ N noise events is P (m|u,N) = Poisson(m;u)

B where
B =

∑N
i=0 Poisson(i;u). Here u is the total intensity in τ that can be written as

u = μτ . Given m points, there are
(
N
m

)
ways of different combinations of noise

points. To fix one point as noise, there are
(
N−1
m−1

)
combinations. Then we have

the likelihood probability that one point can be noise as:

P (zk = 1|μτ,N) =
N∑

m=1

P (m|u,N)

(
N−1
m−1

)

(
N
m

) . (8)

Given the gamma prior, we have:

Pk = P (zk = 1|N,λ, θ) =
N∑

m=1

∫

P (zk = 1|μτ,N)Gamma(μ|λ, θ)dμ. (9)

It is difficult to get the analytic form for the integral in (9) so we used Monte
Carlo (MC) integral to estimate, by randomly sampling μ. The MC method is
slow and not suitable to be used in our dynamic programming otherwise we need
to conduct MC for the DTW calculation on each pair of the points. However,
given a fixed τ , we can take (9) as a function of N (Pk = F (N)), so that we can
learn the pre-estimate of F (N) and use it to look up the results in the dynamic
optimization. The function of N , which is a gamma distribution given λ and θ
is shown in Fig. 2.

Selecting C : We will determine C for x by setting Cx = C∗
x. Generally, the

value C∗
x is up to i − 2 for xi, when all points (except x1) before i are noise

points. However, i − 2 can be large when the sequence is long. It is unnecessary

236 Y. Chang et al.

Fig. 2. The value of Pk with different gamma hyperparameters θ and λ.

to use i−2 so we need to determine C∗
x. As we have shown in equation (6), when

we increase Cx by 1, the newly added component is:

F (Cx + 1) = dtw|Cx+1(xi, yj) − dtw|Cx
(xi, yj)

= P (Cx + 1)
∑

cy

(P (cy)Dm(Cx + 1, cy)). (10)

Here if we only consider the weight for the newly added component we have:

F (Cx + 1)
F (Cx)

≈ P (Cx + 1)
P (Cx)

=
(1 − Pi−Cx−2)Pi−Cx−1

1 − Pi−Cx−1
. (11)

The ratio is Pk if we consider the average case that all the probabilities are the
same, by setting τ = xn − x1. The total weights of using C∗

x is 1 − Pk(C∗
x + 1).

Therefore, given an acceptable rate α to approximate Cx = i − 2, C∗
x can be

selected based on:

C∗
x = min(i − 2, 	logPk

(1 − α) − 1
). (12)

Normally Pk is less than 0.5. In this case, the computational cost is still low as
C∗

x is generally less than 6 when α = 99%.

4 Experiments

In this section, we present the results of the proposed methods on both synthetic
data and real data, and compare the results on different settings to demonstrate
the general applicability of the proposed method.

4.1 Synthetic Data

In synthetic data experiments, we empirically test whether the proposed methods
can recover DTW distance from noise superposed NHPP sequences.

Data Preparation: First we generate a function, by creating a random number
from 0 to 10 in each 10 time units. Then using two such time series as the

Recovering DTW Distance Between Noise Superposed NHPP 237

intensity of two sequences. These two sequences are regarded as clean sequences.
Using DTW, we can calculate the distance (DP) between them as the baseline.
Then two HPP sequences are generated with intensity μ = μx = μy. They are
superposed to the clean sequences by some offsets to make sure that the first
event is from the clean sequence. After superposition, two sequences (x and y)
are obtained. We can calculate DTW distance (DN) between x and y with length
T . Then all our proposed methods are applied to x and y. The corresponding
distances are denoted as Averaging: DA, Sampling: DS , Dynamic: DD.

Experiment Setup: The recovered DTW distance by all methods are shown.
The purpose is to show that DTW distances from our methods can be shorter
than the baseline DP , comparing with DN . Experiments are carried out to test
how the performance changes when μ is altered. For μ = 0.1, 0.2, 0.3, 0.4, we
set the hyperparameter (θ, λ) as (0.5, 0.2), (0.5, 0.4), (1, 0.3), (2, 1). When
μ = 0.5, the number of noise roughly equals to the number of points in the clean
sequences. We also tested the performance by altering the length of sequence.

Quantitative Results: The results are shown in Table 1. The different settings
of μ disclosed that when the noise ratio is high, our methods are more useful,
comparing with directly applying the DTW on noise superposed NHPP. In the
test, by altering the length we found that DD is more stable than other methods
when the sequence is short.

Table 1. Recovered DTW distance for different T and μ. μ = 0.2 when altering T ,
and T = 100 when altering μ.

T μ

20 30 40 60 80 0.1 0.2 0.3 0.4

DP 9 25 28 52 121 191 193 187 176

DN 10 19.2 20.5 48.3 129 192 220 251 310

DA 13 20.2 18.8 58.3 113 207 210 201 186

DS 15 23.3 21.5 55.6 125 214 212 206 194

DD 9 23.2 27.7 59.2 114 209 215 192 196

4.2 Classification on Real Data

Data Preparation: In order to test whether the recovered DTW distance is
useful in a real application, we apply it on the classification task. The dataset
was obtained based on [3], which was designed to test most DTW algorithms.
Because of the page limitation, we shall show the results on part of the whole
dataset. The names of all datasets are shown in the first column of Table 2.
However, the sequences in the dataset are continuous time series rather than
PP. We modify the sequences by using them as the intensities (I) to generate
events. All values in the sequences are uniformly normalized to the range 0.2 to
0.8 using the maximum and minimum. Then the normalized sequence is used

238 Y. Chang et al.

as the intensity of a NHPP to generate the events, after which the sequences of
events are superposed with noise with a random intensity. The average number
of events and noise events are shown in Table 2 as NP and NN , and the length
of each sequence is T .

Experiment Setup: The classification task is performed by supervised 1-NN,
using the provided training set and test set. Based on the recovered DTW dis-
tance, we find the sequence in the training set that is closest to a test sequence.
Then the label is determined by the sequence found. We evaluate 7 DTW dis-
tances, and presented their accuracies in Table 2. Specifically, the results include
5 distances used in Sect. 4.1 and 2 additional distances by using DTW on I
(DI) and on empirical intensity (DE). For DI , we assume the actual intensity
I is given and compute DTW on I. As to DE , this is designed to demonstrate
that our methods are better than using a guessed intensity. We use the window-
wise estimation, in which the window size is 3 time units, to obtain the empir-
ical intensity. Then the empirical intensity is used to obtain DTW (DE). It is
worth nothing that both DP and DI are obtained on sequences from the original
dataset without superposed noise, so their accuracies can be considered as ideal
cases for reference.

Quantitative Results: Unsurprisingly, the true intensity is the best represen-
tation for DTW distance, where the accuracies of DI are the highest. However,
using the intensity is sensitive when it is latent, as an example, the accuracy of
using the empirical intensity DE is significantly lower than others. It should be
noticed that our methods should be compared to DP since we may lose infor-
mation when generating events from the obtained intensity. As we expected,
DA, DS , and DD can achieve higher accuracies. On average, DS has the best
performance which is about 1% higher than DD. However, DS requires a large
number of samplings to gain the performance, which is much slower than DD.

4.3 Case Study for Customer Behaviour Segmentation

Customers’ behaviour is important in business data research, so we used our
methods to segment different types of customers (households) based on their
shopping behaviours (transactions in super markets). The data comes from
Dunnhumby1 which is the world’s first customer data science platform. We will
mainly use four fields in our experiment: unique household id, transactions from
different households, time of transactions and store number. We use 802 house-
holds with complete demographic data and their transactions in 1 year in our
experiment and use 1 day as a time unit. We treat the transactions for each
household as a NHPP. In these transactions, however, we can image some of
them may not reflect the life style as people can go to supermarket just because
of promotion. This may cause a great deviation in similarity learning on cus-
tomer behaviour pattern. To get a more accurate result, we treat this kind of
event as noise (but still keep them as latent) by using our methods for similarity
calculation and behaviour segmentation.

1 https://www.dunnhumby.com/.

https://www.dunnhumby.com/

Recovering DTW Distance Between Noise Superposed NHPP 239

Table 2. Dataset description and classification accuracy using different DTW dis-
tances.

Description Accuracy

NP NN T DP DI DA DS DD DN DE

Beef 81 26 471 .85 .93 .80 .76 .70 .63 .13

Plane 69 30 144 .81 .96 .73 .74 .68 .56 .10

Coffee 286 54 286 .91 1 .68 .78 .68 .36 .07

50Words 126 35 271 .82 .93 .81 .83 .83 .49 .09

Adiac 152 66 177 .79 .96 .83 .81 .82 .59 .05

Arrowhead 95 25 252 .89 .95 .72 .80 .81 .58 .08

BeetleFly 306 131 513 .85 .96 .79 .85 .82 .6 .11

Cartrain 158 57 578 .85 .91 .72 .80 .81 .26 .11

CBF 129 41 129 .84 .91 .52 .71 .77 .35 .11

Computers 433 169 721 .92 .90 .59 .75 .79 .38 .15

CricketX 201 42 301 .90 .93 .69 .73 .72 .45 .19

DiatomSizeReduction 117 22 346 .90 .94 .66 .79 .76 .59 .11

DistalPhalanxTW 40 11 81 .88 .89 .67 .70 .75 .26 .05

Earthquakes 168 63 513 .81 .89 .79 .81 .79 .49 .09

ECG200 87 15 97 .82 .87 .68 .79 .80 .33 .01

FaceAll 108 29 131 .80 .93 .71 .76 .72 .54 .15

Fish 343 141 464 .88 .93 .77 .80 .77 .43 .12

FordA 298 55 501 .92 .92 .73 .79 .80 .44 .19

Average accuracy .857 .929 .717 .776 .762 .463 .111

For the segmentation, we consider that households who have similar shopping
habits are more likely to have similar demographic information. We use annual
income, household composition and the number of the family as the features to
cluster different households into 12 clusters and set the clustering results as the
ground truth.

In our study, we compare the clustering results using the three methods we
proposed (DA,DS ,DD) to the clustering results using the original transactions
without considering the noise (DP). Before this, we used grid search and 10-
fold cross-validation to obtain the optimal hyperparameters (θ = 3, λ = 2.0),
though which we found that when the value of hyperparameters approaches to
the optimal one, the clustering accuracy does not change much. The result of each
method is obtained and organised into a confusion matrix, then is aggregated
as Accuracy = (TruePositives + TrueNegatives)/TotalCases, in Fig. 3. The
accuracy rate from confusion matrix shows that our model has a much higher
clustering accuracy comparing to customers’ background. The results show that
the transaction records contain noise and it may degrade the clustering result.

240 Y. Chang et al.

Our methods can largely improve the results by considering the noise in NHPP
with the assumption for learning intensities.

Fig. 3. Clustering accuracy for customer behaviour segmentation calculated by confu-
sion matrix.

5 Conclusion

In this paper, we discussed the solutions to measure the DTW distance between
noise superposed NHPP, including removing noise before DTW and integrating
the probability of noise removal into DTW. The traversing method is infeasible
for long sequences, so we implement the approximated methods. The averaging
method can largely reduce computational cost when the distribution is narrow,
but its performance is not superior. The Sampling method is restricted by the
iteration of sampling itself, more iterations can improve the performance but it
needs more resource. Therefore, we recommend to apply the dynamic method,
although there are more approximation steps, it is much more efficient and stable
in performance.

References

1. Bacry, E., Muzy, J.F.: First-and second-order statistics characterization of Hawkes
processes and non-parametric estimation. IEEE Trans. Inf. Theory 62(4), 2184–
2202 (2016)

2. Bokhari, S., Geltner, D., van de Minne, A.: A Bayesian structural time series
approach to constructing rent indexes: an application to Indian office markets
(2017)

3. Chen, Y., et al.: The UCR time series classification archive. www.cs.ucr.edu/
∼eamonn/time series data (2015)

4. Del Giudice, V., De Paola, P., Forte, F., Manganelli, B.: Real estate appraisals with
bayesian approach and Markov chain hybrid Monte Carlo method: an application
to a central urban area of Naples. Sustainability 9(11), 2138 (2017)

5. Du, N., Farajtabar, M., Ahmed, A., Smola, A.J., Song, L.: Dirichlet-Hawkes pro-
cesses with applications to clustering continuous-time document streams. In: Pro-
ceedings of the 21th ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, pp. 219–228. ACM (2015)

www.cs.ucr.edu/~eamonn/time_series_data
www.cs.ucr.edu/~eamonn/time_series_data

Recovering DTW Distance Between Noise Superposed NHPP 241

6. Ganeshapillai, G., Guttag, J., Lo, A.: Learning connections in financial time series.
In: International Conference on Machine Learning, pp. 109–117 (2013)

7. Ghitany, M., Al-Awadhi, F., Alkhalfan, L.: Marshall-Olkin extended Lomax dis-
tribution and its application to censored data. Commun. Stat.-Theory Methods
36(10), 1855–1866 (2007)

8. Guan, X., Huang, C., Liu, G., Meng, X., Liu, Q.: Mapping rice cropping systems in
Vietnam using an NDVI-based time-series similarity measurement based on DTW
distance. Remote Sens. 8(1), 19 (2016)

9. Lin, P., Zhang, B., Guo, T., Wang, Y., Chen, F.: Interaction point processes via
infinite branching model. In: AAAI, pp. 1853–1859 (2016)

10. Nakagawa, S., Nakanishi, H.: Speaker-independent English consonant and Japanese
word recognition by a stochastic dynamic time warping method. IETE J. Res.
34(1), 87–95 (1988)

11. Nasrabadi, N.M.: Pattern recognition and machine learning. J. Electron. Imaging
16(4), 049901 (2007)

12. Rakthanmanon, T., et al.: Searching and mining trillions of time series subse-
quences under dynamic time warping. In: Proceedings of the 18th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pp. 262–270.
ACM (2012)

13. Sakoe, H., Chiba, S.: Dynamic programming algorithm optimization for spoken
word recognition. IEEE Trans. Acoust. Speech Sig. Process. 26(1), 43–49 (1978)

14. Wang, X., Mueen, A., Ding, H., Trajcevski, G., Scheuermann, P., Keogh, E.: Exper-
imental comparison of representation methods and distance measures for time
series data. Data Min. Knowl. Discov. 26(2), 275–309 (2013)

15. Wu, J.: Reliability analysis for small wind turbines using Bayesian hierarchical
modelling (2017)

16. Xu, H., Luo, D., Zha, H.: Learning Hawkes processes from short doubly-censored
event sequences. arXiv preprint arXiv:1702.07013 (2017)

http://arxiv.org/abs/1702.07013

ATNet: Answering Cloze-Style Questions
via Intra-attention and Inter-attention

Chengzhen Fu(B), Yuntao Li(B), and Yan Zhang(B)

Department of Machine Intelligence, Peking University, Beijing, China
{fuchengzhen,liyuntao,zhy.cis}@pku.edu.cn

Abstract. This paper proposes a novel framework, named ATNet,
for answering cloze-style questions over documents. Our model, in the
encoder phase, projects all contextual embeddings into multiple latent
semantic spaces, with representations of each space attending to a specific
aspect of semantics. Long-term dependencies among the whole document
are captured via the intra-attention module. A gate is produced to con-
trol the degree to which the retrieved dependency information is fused
and the previous token embedding is exposed. Then, in the interaction
phase, the context is aligned with the query across different semantic
spaces to achieve the information aggregation. Specifically, we compute
inter-attention based on a sophisticated feature set. Experiments and
ablation studies demonstrate the effectiveness of ATNet.

Keywords: Question answering · Intra-attention · Inter-attention

1 Introduction

Benefiting from the rapid development of deep learning techniques, researchers
have achieved promising results on cloze-style question answering tasks.
Although significant progress has been made in cloze-style question answering,
much remains to be done to solve several critical problems.

In the encoder phase, previous models, such as Deep LSTM Reader [7],
apply the recurrent neural networks to gain some dependency between adjacent
words. However, long-term dependencies are still very hard to preserve even
using the advanced memory cell structures like long short-term memory net-
work (LSTM) [9] or gated recurrent units (GRU) [4]. In the interaction phase,
attention mechanisms, borrowed from the machine translation literature, are
introduced to guide the extraction of information relevant to the query. A major
downside for existing attention scoring functions is that, importance scores are
mostly computed based on the individual representations for query and docu-
ment, with no interactive terms being considered.

In this paper, we propose an end-to-end attention based network structure,
named ATNet, which deals with the above challenges in the following aspects.

First, in the encoder phase, self-attention mechanism, also called intra-
attention, is performed on top of LSTM or GRU. It provides complementary
c© Springer Nature Switzerland AG 2019
Q. Yang et al. (Eds.): PAKDD 2019, LNAI 11440, pp. 242–252, 2019.
https://doi.org/10.1007/978-3-030-16145-3_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16145-3_19&domain=pdf
https://doi.org/10.1007/978-3-030-16145-3_19

ATNet: Answering Cloze-Style Questions 243

information to the distance-aware dependencies, thus relives some long-term
memorization burden from sequential structures. Besides, we equip it with a
novel gating operation. Unlike existing models [3,23], we do not simply use the
weighted summation as outputs, but instead evolve token representations via a
fusion gate. The gate is applied to control the degree to which the previous token
embedding is exposed and the retrieved dependency information is fused.

Second, in the interaction phase, ATNet offers the following improvements to
the previously popular inter-attention paradigms. On the one hand, given that
the QA task consists of heterogeneous queries and various document topics, we
project encoded embeddings for the query and the document into multiple latent
spaces respectively. We hypothesize that the representation for each space will
attend to a specific aspect of the semantics. On the other hand, we propose a
fine-grained feature set to compute inter-attention. It is performed on each of
these projected versions of query and document representations in parallel.

To summarize, our main contributions are three folds:

(1) the inter-attention part is equipped with an multi-space attention scoring
function, which is defined by a sophisticated feature set.

(2) the intra-attention part uses a gate to dynamically choose how much of the
dependency information needs to be reserved to evolve the token represen-
tations;

(3) Both extensive experiments and ablation studies show the effectiveness of
model.

2 Related Work

2.1 LSTM with Attention

These models aim at computing a joint document-query representation,
which is used to rank the candidate answers. This includes the DeepLSTM
Reader [7] which processes the concatenated (document, query) pair by employ-
ing a Deep LSTM cell with skip connections to obtain the joint representation;
the Attentive Reader [2,7] which computes the query-aware document vector
as the weighted sum of the token embeddings based on aligning scores calcu-
lated by the attention scoring function; and the Impatient Reader [7] which
allows the model to recurrently accumulate information from the document as
it sees each query token, ultimately outputting a final joint document query
representation for the answer prediction.

2.2 Pointer-Style Attention Sum

Unlike previous works that using a joint representation to estimate the answer,
AS reader [10] directly pick the answer from the document, which is motivated
by the Pointer Network [24]. An attention over the document is obtained by com-
puting dot products between the query embeddings and contextual embeddings,
and successively normalizing the weight matrix using the softmax function.

244 C. Fu et al.

Then, an aggregation scheme named pointer-sum attention is further applied
to sum the word’s attention across all the occurrences. Inspired by AS reader,
the Attention-over-Attention (AoA) Reader [5] exploit mutual informa-
tion between the document and query based on query-to-document attention
and document-to-query attention.

2.3 Self-attention

Besides, some models propose to use self-attention aligning on top of the
above mentioned sequential structures. It allows modeling dependencies with-
out regard to distance, which has been successfully applied in a variety of
tasks including reading comprehension, abstractive summarization, learning
task-independent sentence representations, machine translation and language
understanding [3,13,15,18,23].

Our model tightly integrates previous ideas related to self-attention. More-
over, we equip it with a novel gating operation, which controls the dependency
information that flows into or out of original representations, acting as a flexible
information filter.

2.4 Multi-hop Architecture

All the above mentioned models use a single-hop architecture. The effective-
ness of multi-hop reasoning and attentions have also been explored so far in the
literature. Many extensions of Memory Networks [1,12,21] shows a multi-
hop architecture with an explicit memory and a recurrent attention mechanism
for reading the memory can achieve good performance on QA tasks. Neural
Semantic Encoders (NSE) [14] extends MemNets by introducing a write
operation which can evolve the memory over time during the course of reading.
The GA Reader [6] allows the query to directly interact with each dimen-
sion of the token embeddings at the semantic-level, and is applied layer-wise as
information filters during the multi-hop process.

3 ATNet

3.1 Contextual Encoding Representations

We obtain xc
1, . . . , x

c
m ∈ R

d for the context document and xq
1, . . . , x

q
n ∈ R

d for
the query via an embedding matrix E ∈ R

d×|V |. Then, a bidirectional GRU is
applied to encode the context,

�

hi =
−−−→
GRU(

�

hi−1, x
c
i), i = 1, . . . ,m

�

hi =
←−−−
GRU(

�

hi−1, x
c
i), i = m, . . . , 1

(1)

Finally, we obtain two contextual encoded representations: C =
{
ci = [

�

hi;
�

hi]
}m

i=1

∈ R
2h×m for the context and q = qn ∈ R

2h for the query.

ATNet: Answering Cloze-Style Questions 245

3.2 Intra-attention Aligner

We further apply intra-attention to align C with itself, which relates words from
different positions without regard to their distance.

Figure 1 provides an overview of intra-attention. A self-coattention matrix
B ∈ R

m×m for the document is defined as,

Bi,j =
{

cTi cj , i �= j
−∞, otherwise (2)

Fig. 1. Intra-attention.

where Bi,j indicates the relevance between the i-th word and the j-th word. Note
that, we disable the attention of each token to itself in case of the word being
aligned with itself. We then compute an attended vector c̄i ∈ R

2h for i-th word
as follows,

bi = softmax(Bi,:)

c̄i = C · bTi , ∀i ∈ [1, . . . ,m]
(3)

Gated Connection (GC). To efficiently fuse attended information c̄i into
original word ci, we propose a simple gating operation to complete information
integration. The fusion gate is computed as

gi = sigmoid(Wg [c̄i; ci] + bg) (4)

We use gi and 1−gi as the gated weights to assemble c̄i and ci. The integrated
information is computed by a weighted sum as:

di = gi � c̄i + (1 − gi) � ci (5)

246 C. Fu et al.

Hence, D =
{
di

}m

i=1
∈ R

2h×m represents obtained self-aware document rep-
resentations after intra-attention.

3.3 Inter-attention Aligner

Figure 2 provides an overview of inter-attention. The projected embeddings in
each space are represented as:

Dl = F l
d(D)

ql = F l
q(q)

(6)

Fig. 2. Inter-attention.

where F l
d and F l

q are two projection functions for the document and query in the
l-th space respectively, which are set to be a single-layer perceptron with relu as
the activation function.

Note that, Dl =
{
dli

}m

i=1
∈ R

pl×m and ql ∈ R
pl

, where pl denotes the
size of vectors in the l-th space. To control the model complexity, we
constrain that the dimension for each space is the same and the total
dimensions of all spaces equivalent to that of original embeddings, i.e.,
p1 = . . . = pL = 2h/L, where L denotes the number of spaces.

extAdditive Attention. Formally, the attention score vector in the l-th space
is defined as al. Traditional attention scoring functions take a feature set as input
and produces a scalar score as weight. Previous attention mechanisms have one
characteristic that, the feature set only includes the individual representations

ATNet: Answering Cloze-Style Questions 247

for query and document, but no interactive terms are incorporated. For instance,
additive attention is associated with

ali = (wl)T tanh(Wl
d dli + Wl

q ql) (7)

where wl is a weight vector.
In this paper, we explore some novel strategies to compute ali from the intu-

ition that if the i-th word in the document has a low contribution to the overall
semantic, it will gather less dependency information in the self-attention phase.
The dependency information can be denoted as the difference between dli and ci
approximately. Therefore, we compute a feature as follows:

f l
atti = |dli − Wl

c ci| � ql (8)

On the one hand, if the difference is small or even close to zero, the impor-
tance of corresponding word should be small. On the other hand, if the difference
(a vector) is not similar to the representation of ql, the corresponding word is
probably of less importance in measuring semantic similarity between queries
and documents. From these two points, we think f l

atti is a good feature to mea-
sure word importance.

We first define a large feature set that captures a variety of similarities
between documents and queries,

s(dli, q
l) = [dli � ql, |dli − ql|, f l

atti , d
l
i, q

l] (9)

Then scoring function is defined in form of additive attention. Thus, we named
it extAdditive attention.

ali = (wl)T tanh(Wl
s s(dli, q

l) + bl) (10)

We then obtain a normalized weight vector ãl ∈ R
m.

ãl = softmax(al) (11)

Let ol denotes the corresponding summarized context vector in the l-th space.
The computation is defined in Eq.(12),

ol = D · ãl (12)

We refine the final query-aware context representation as

o = Wo(concat(1)(o1, . . . , oL)) (13)

where Wo is a feed-forward network with one hidden layer, ensuring that o
keeps the same shape (2h-dimensional) as the input. L indicates the number of
subspaces.

248 C. Fu et al.

3.4 Answer Prediction Module

The system adds a softmax function on top of the final query-aware context
vector and adopts a negative log-likelihood objective for training.

p = softmax(Wao), (14)

The entity with maximum probability which appear in the passage is the answer.

4 Experiments

4.1 Experimental Setups

Word Embedding Layer. All tokens are initialized with the 300-dimensional
pre-trained GloVe word embeddings [16]. and updated during training. Tokens
that are not covered by GloVe are replaced with a randomly initialized UNK
embedding.

Contextual Encoding Layer. We use hidden size h = 256 for CNN, CBT-NE
and 384 for Daily Mail, CBT-CN. The number of latent semantic subspaces L
is 4.

Training. We adopt Adam for optimization [11], with an initial learning rate of
0.001 and mini-batches of 32. We set GRU-dropout probability to 0.1 [20] and
the gradient clipping threshold to 5.

Datasets. CNN and Daily Mail datasets1 are constructed with web-crawled
CNN and Daily Mail news data [7]. The next two datasets are formed from two
different subsets of the Children’s Book Test2 (CBT) [8].

4.2 Overall Results

Since we have reviewed all the baseline models in Sect. 2, we do not further
discuss them in detail in this section. Notably, for baseline models, we report
results presented in previously published works. Compared with prior works as
shown in Table 1, ATNet brings nearly 0.8% absolute improvements over the
best previous single model GA Reader on the CNN and Daily Mail testsets.
ATNet also stays on par with the second-best baseline (AoA Reader with the
assistance of the reranking strategy) when evaluated on the CBT-NE datasets.
Moreover, on the CBT-CN test sets, it leads to an improvement of 1.4% over
the most competitive model AoA Reader, which demonstrates its effectiveness.

1 http://cs.nyu.edu/∼kcho/DMQA/.
2 http://www.thespermwhale.com/jaseweston/babi/CBTest.tgz.

http://cs.nyu.edu/~kcho/DMQA/
http://www.thespermwhale.com/jaseweston/babi/CBTest.tgz

ATNet: Answering Cloze-Style Questions 249

Table 1. Performance comparison on four benchmark datasets.

Model Acc (%)

CNN Daily Mail CBT-NE CBT-CN

Valid Test Valid Test Valid Test Valid Test

Deep LSTM Reader [7] 55.0 57.0 63.3 62.2 - - - -

Attentive Reader [7] 61.6 63.0 70.5 69.0 - - - -

Impatient Reader [7] 61.8 63.8 69.0 68.0 - - - -

MemNets [8] 63.4 66.8 - - 70.4 66.6 64.2 63.0

AS Reader [10] 68.6 69.5 75.0 73.9 73.8 68.6 68.8 63.4

Stanford AR [2] 72.4 72.4 - - - - - -

Iterative Attention [19] 72.6 73.3 - - 75.2 68.6 72.1 69.2

EpiReader [22] 73.4 74.0 - - 75.3 69.7 71.5 67.4

BiDAF [17] 76.3 76.9 80.3 79.6 - - - -

AoA Reader [5] 73.1 74.4 - - 77.8 72.0 72.2 69.4

AoA Reader + Reranking [5] - - - - 79.6 74.4 75.7 73.1

NSE [14] - - - - 78.2 73.2 74.3 71.9

GA Reader (+ feature, fix L(w)) [6] 76.7 77.4 80.0 79.3 78.5 74.9 74.4 70.7

GA Reader (update L(w)) [6] 77.9 77.9 81.5 80.9 76.7 70.1 69.8 67.3

ATNet 78.4 78.7 82.3 81.7 77.7 74.2 75.9 74.5

5 Ablation Study

5.1 Effectiveness of Self-attention Module

Table 2 shows the accuracy on CNN and CBT-CN by removing self-attention
aligning. Applying self-attention to ATNet improves the results by a remark-
able margin of nearly 1.4%. In contrast to RNN which models the document in
sequential manner, self-attention mechanism captures inner interactions regard-
less of the distance. Thus, long-range dependency information is fully incorpo-
rated into representations. It can be observed that, removing the gate operation
leads to a reduction of about 0.6% and 0.8% on the CNN and CBT-NE test-
sets. The fusion gate function is responsible for storing and filtering information
dynamically.

Table 2. Results with and w/o self-attention.

Attention Acc on Testsets (%)

CNN CBT-CN

W/o self-attention 77.4 73.1

ATNet (w/o gate) 78.1 73.7

ATNet 78.7 74.5

250 C. Fu et al.

Table 3. Results with three attentions.

Attention Acc on Testsets (%)

CNN CBT-CN

Additive 77.9 73.7

Multiplicative 77.5 73.5

extAdditive 78.7 74.5

5.2 Effectiveness of extAttention

Next we look at the question of how to compute the alignment scores in the
interactive phase. We compare three variants of operations, including additive,
multiplicative and extAdditive. Results in Table 3 empirically demonstrate that
the extAdditive attention does significantly better than the other two. It justifies
our motivation to allow the query to interact with each token embedding based
on a fine-grained feature set.

6 Case Study

We use the bilinear scoring function to visualize self-attention weight dis-
tribution over the context tokens with a heat map. For simplicity, we use the
average values across multiple spaces to represent the self-coattention matrix.

Fig. 3. A visualized example of self-attention.

ATNet: Answering Cloze-Style Questions 251

We have several observations3 in Fig. 3. First, several semantically similar
phrases have been successfully aligned with each other, e.g., Captain America
actor Chris Evans (@entity1 actor @entity0) and Guardians of the Galaxy star
Chris Pratt (@entity6 star @entity5), both of which are highly related phases.
Second, we observe that the self-attention attends to a distant dependency of
the verb met, completing the phrase @entity1 met...with...@entity5. Attentions
shown for the word visit also demonstrate that the self-attention aligning enables
the model to capture the dependency between visit (indicating the event) with
@entity1, @entity5 (indicating two participants’names), which provides crucial
clues to answer the query.

7 Conclusion

In this paper, we propose Attention-Net, which completes the cloze-style ques-
tion answering via intra-attention and inter-attention. We demonstrate that both
gated intra-attention and multi-space based inter-attention are integral parts of
ATNet by ablation studies. We also show empirically that the proposed extad-
ditive attention is superior to both additive and multiplicative attention. In the
future, we will extend ATNet to the multi-hop architecture.

Acknowledgments. The authors would like to thank the anonymous reviewers for
their valuable comments and helpful suggestions. This work is supported by NSFC under
Grant No. 61532001, and MOE-ChinaMobile program under Grant No. MCM20170503.

References

1. Bordes, A., Usunier, N., Chopra, S., Weston, J.: Large-scale simple question
answering with memory networks. arXiv preprint arXiv:1506.02075 (2015)

2. Chen, D., Bolton, J., Manning, C.D.: A thorough examination of the CNN/daily
mail reading comprehension task. In: Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), vol. 1,
pp. 2358–2367 (2016)

3. Cheng, J., Dong, L., Lapata, M.: Long short-term memory-networks for machine
reading. In: Proceedings of the 2016 Conference on Empirical Methods in Natural
Language Processing, pp. 551–561 (2016)

4. Chung, J., Gulcehre, C., Cho, K., Bengio, Y.: Empirical evaluation of gated recur-
rent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555 (2014)

5. Cui, Y., Chen, Z., Wei, S., Wang, S., Liu, T., Hu, G.: Attention-over-attention
neural networks for reading comprehension. In: Proceedings of the 55th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
vol. 1, pp. 593–602 (2017)

6. Dhingra, B., Liu, H., Yang, Z., Cohen, W., Salakhutdinov, R.: Gated-attention
readers for text comprehension. In: Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), vol. 1, pp.
1832–1846 (2017)

3 Meanings for entities: entity1: Captain America; entity0: Chris Evans; entity3:
Seattle Children’s Hospital; entity6: Guardians of the Galaxy; entity 5: Chris
Pratt.

http://arxiv.org/abs/1506.02075
http://arxiv.org/abs/1412.3555

252 C. Fu et al.

7. Hermann, K.M., et al.: Teaching machines to read and comprehend. In: Cortes,
C., Lawrence, N.D., Lee, D.D., Sugiyama, M., Garnett, R. (eds.) Advances in
Neural Information Processing Systems, vol. 28, pp. 1693–1701. Curran Asso-
ciates Inc. (2015). http://papers.nips.cc/paper/5945-teaching-machines-to-read-
and-comprehend.pdf

8. Hill, F., Bordes, A., Chopra, S., Weston, J.: The goldilocks principle: read-
ing children’s books with explicit memory representations. arXiv preprint
arXiv:1511.02301 (2015)

9. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

10. Kadlec, R., Schmid, M., Bajgar, O., Kleindienst, J.: Text understanding with the
attention sum reader network. In: Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), vol. 1, pp.
908–918 (2016)

11. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

12. Kumar, A., et al.: Ask me anything: dynamic memory networks for natural lan-
guage processing. In: International Conference on Machine Learning, pp. 1378–1387
(2016)

13. Lin, Z., et al.: A structured self-attentive sentence embedding. arXiv preprint
arXiv:1703.03130 (2017)

14. Munkhdalai, T., Yu, H.: Neural semantic encoders. In: Proceedings of the Confer-
ence Association for Computational Linguistics Meeting, vol. 1, p. 397. NIH Public
Access (2017)

15. Paulus, R., Xiong, C., Socher, R.: A deep reinforced model for abstractive summa-
rization. arXiv preprint arXiv:1705.04304 (2017)

16. Pennington, J., Socher, R., Manning, C.: Glove: global vectors for word represen-
tation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pp. 1532–1543 (2014)

17. Seo, M., Kembhavi, A., Farhadi, A., Hajishirzi, H.: Bidirectional attention flow for
machine comprehension. arXiv preprint arXiv:1611.01603 (2016)

18. Shen, Y., Huang, P.S., Gao, J., Chen, W.: Reasonet: learning to stop reading in
machine comprehension. In: Proceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 1047–1055. ACM (2017)

19. Sordoni, A., Bachman, P., Trischler, A., Bengio, Y.: Iterative alternating neural
attention for machine reading. arXiv preprint arXiv:1606.02245 (2016)

20. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn.
Res. 15(1), 1929–1958 (2014)

21. Sukhbaatar, S., Weston, J., Fergus, R., et al.: End-to-end memory networks. In:
Advances in Neural Information Processing Systems, pp. 2440–2448 (2015)

22. Trischler, A., Ye, Z., Yuan, X., Bachman, P., Sordoni, A., Suleman, K.: Natural
language comprehension with the epireader. In: Proceedings of the 2016 Conference
on Empirical Methods in Natural Language Processing, pp. 128–137 (2016)

23. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information
Processing Systems, pp. 6000–6010 (2017)

24. Vinyals, O., Fortunato, M., Jaitly, N.: Pointer networks. In: Advances in Neural
Information Processing Systems, pp. 2692–2700 (2015)

http://papers.nips.cc/paper/5945-teaching-machines-to-read-and-comprehend.pdf
http://papers.nips.cc/paper/5945-teaching-machines-to-read-and-comprehend.pdf
http://arxiv.org/abs/1511.02301
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1703.03130
http://arxiv.org/abs/1705.04304
http://arxiv.org/abs/1611.01603
http://arxiv.org/abs/1606.02245

Parallel Mining of Top-k High Utility Itemsets
in Spark In-Memory Computing Architecture

Chun-Han Lin1, Cheng-Wei Wu2, JianTao Huang2,
and Vincent S. Tseng3(&)

1 Department of Computer Science and Information Engineering,
National Cheng Kung University, Tainan, Taiwan, ROC

2 Department of Computer Science and Information Engineering,
National Ilan University, Yilan, Taiwan, ROC

3 Department of Computer Science, National Chiao Tung University,
Hsinchu, Taiwan, ROC

vtseng@cs.nctu.edu.tw

Abstract. Top-k high utility itemset (abbr. Top-k HUI)mining aims at efficiently
mining k itemsets having the highest utility without setting the minimum utility
thresholds. Although some studies have been conducted on top-k HUI mining
recently, they mainly focus on centralized databases and are not scalable for big
data environments. To address the above issues, this paper proposes a novel
framework for parallel mining of top-k high utility itemsets in big data. Besides, a
new algorithm called PKU (Parallel Top-K High Utility Itemset Mining) is
proposed for parallel mining of top-k HUIs on Spark in-memory platform. It
adopts MapReduce architecture to divide the whole mining task into several
independent subtasks, and takes good use of Spark in-memory computing
technology for efficiently processing data in parallel. Moreover, several novel
strategies are also proposed for pruning the redundant candidates such that the
execution time and memory usage in the mining process are reduced greatly. The
proposed PKU algorithm inherits several advantages of Spark, including low
communication cost, fault tolerance, and high scalability. Experimental results on
both real and synthetic datasets show that PKU has good scalability and per-
formance on large datasets with outperforming several benchmarking algorithms.

Keywords: Top-k high utility itemset � In-memory computing � Big data �
MapReduce � Spark platform

1 Introduction

High utility itemset (abbr. HUI) mining is an important technology in various fields.
However, a critical problem of HUI mining is that it is not easy for users to set
appropriate minimum utility thresholds. In HUI mining, users need to set a minimum
utility threshold before performing the mining algorithms. Nevertheless, users cannot
precisely predict or control the number of extracted itemsets by the threshold. For
example, if the threshold is set too high, it is likely that only few HUIs or no HUI may
be found, and it is hard for users to utilize the mining results due to insufficient
information. On the contrary, if the threshold is set too low, an explosive number of

© Springer Nature Switzerland AG 2019
Q. Yang et al. (Eds.): PAKDD 2019, LNAI 11440, pp. 253–265, 2019.
https://doi.org/10.1007/978-3-030-16145-3_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16145-3_20&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16145-3_20&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16145-3_20&domain=pdf
https://doi.org/10.1007/978-3-030-16145-3_20

HUIs will be found, and it may lead the mining algorithms to suffer from very high
computational costs and very large search space.

To address the issues mentioned above, the concept of top-k high utility itemset mining
[11] was introduced, where k is a user-specified parameter that used to control the number
of patterns to be discovered. In the scenario of top-k HUI mining, the users just need to set
a parameter k and execute the top-k HUI mining algorithm once. Due to flexibility of top-
k HUI mining in many real-life applications, various algorithms [6, 9, 11] are proposed.
Although these algorithms are pioneers for top-k HUI mining, they are developed for
running on a single machine and may not scalable enough for handling big data.

To efficiently process big data, Apache Software Foundation [12] proposes a
parallel computing framework called Hadoop [13], which is composed of storage
section and processing section. The storage section of Hadoop is called HDFS (Hadoop
Distributed File System). It is a scalable distributed file system that replicates the data
across multiple nodes for reaching high reliability. The processing section of Hadoop
refers to the MapReduce framework. The algorithms developed based on MapReduce
framework can take the nice property of key-value pairs to distribute the mining tasks
among multiple computers. However, Hadoop is a disk-based architecture and it may
spend a lot of time on I/O, which degrades the overall performance for processing.

In view of this, another parallel computing platform called Spark [15] was pro-
posed. A novel data structure called RDD (Resilient Distributed Dataset) was applied
to manage the in-memory data distributed among the nodes in cluster. If a part of RDD
is lost during the mining process, the lost part can be reconstructed by using the
previous RDD, and thereby the fault tolerance can be ensured. On the contrary, Hadoop
relies on the replication of data in disk. During the progress of MapReduce iterations,
Hadoop will write the intermediate data into disk, and read them back afterwards.
However, for Spark, it can directly keep these data in memory, leading to large
reduction of I/O costs. The several advantages of Spark motivate us to design a new
framework for parallel mining of top-k HUIs on Spark platform.

To the best of our knowledge, the concept of top-k HUI mining has not yet been
incorporated with Spark in-memory computing architecture. In view of this, this paper
proposes a novel framework for parallel mining of top-k high utility itemsets in Spark
in-memory computing architecture. This work is the first work that incorporates the
top-k HUI mining with Spark in-memory computing architecture. We propose an
efficient algorithm named PKU (Parallel Top-K High Utility Itemset Mining) for
efficiently discovering the complete top-k HUIs using Spark in-memory computing
architecture. During the mining process of the algorithm, several dynamic threshold
raising strategies are proposed for effectively raising the border minimum utility
thresholds. Besides, we address the issue of large search space problem by proposing
two novel strategies, named DLUP (Discarding Local Unpromising Items in Parallel)
and MCTP (Merge Conditional Transactions in Parallel) respectively. They can
effectively reduce the size of conditional databases, leading to less required computing
resources in each MapReduce pass. Moreover, the algorithm is implemented with
Spark RDD structures for largely reducing the I/O costs on disks. Finally, extensive
experiments on both real and synthetic datasets are conducted to evaluate the perfor-
mance of PKU. Experiments show that PKU has good scalability on large datasets and
outperforms several benchmarking algorithms [4, 5, 11].

254 C.-H. Lin et al.

2 Preliminary

Given a finite set of distinct items I� ¼ I1; I2. . .; IMf g. Each item Ii 2 I�ð1 � i�MÞ
has a positive number EU(Ii), called its external utility (e.g., unit profit). A database
D = {T1, T2, …, TN} is a set of transactions, where each transaction Tj 1 � j�Nð Þ is a
subset of I* and has a unique identifier, call its TID. An itemset X of length L is a set of
L distinct items, which is also called L-itemset. Besides, each item I in the transaction
Tj 1 � j�Nð Þ has a positive integer called its internal utility (e.g., quantity), which is
denoted as IU(Ii, Tj).

Definition 1 (Contain). An itemset X is said to be contained in a transaction T (or
T contains X), iff X is a subset of T, denoted by X�T The set of all the transactions
containing X is denoted as Ts(X).

Definition 2 (The utility of an item in a transaction). The utility of an item I 2 I� in
a transaction T 2 D is defined as u(I, T) = EU(I) � IU(I, T).

Definition 3 (The utility of an itemset in a transaction). The utility of an itemset X in
a transaction T is defined as u X; Tð Þ ¼ P

I2X EU Ið Þ � IU I; Tð Þ.
Definition 4 (The utility of an itemset in a database). The utility of an itemset X in a
database D is defined as u Xð Þ ¼ P

T2TS Xð Þ
u X; Tð Þ.

Definition 5 (Transaction utility and total utility). The transaction utility of a
transaction T is defined as TU Tð Þ ¼ P

I2T u I; Tð Þ. The total utility of a database D is
defined as g Dð Þ ¼ P

T2D TU Tð Þ.
Definition 6 (The relative utility of an itemset in a database). The relative utility of
an itemset X in a database D is defined as ru Xð Þ ¼ u Xð Þ =g Dð Þ.
Definition 7 (The complete set of high utility itemsets). Given a user-specified
minimum utility threshold d. The complete set of HUIs in D is denoted as fH(D, d).

Definition 8 (Top-k high utility itemset). An itemset X is called top-k high utility
itemset (abbr. top-k HUI) in a database D iff there are less than k itemsets having a
utility greater than u(X) in fH(D, 0).

Definition 9 (Optimal minimum utility threshold). Let H be the complete set of top-
k HUIs in D. A minimum utility threshold d* is called optimal minimum utility
threshold iff there does not exist another threshold d such that d � d* and
fH D; dð Þj j � k. If |H| � k, then d� ¼ minfu Xð ÞjX 2 Hg [11].

3 Related Work

3.1 High Utility Itemset Mining

In general, HUI mining algorithms can be categorized into two types: two-phase and
one-phase. The main idea of the two-phase algorithms is that they attempt to generate
candidates of HUIs in phase I, and then perform an additional database scan in phase II

Parallel Mining of Top-k High Utility Itemsets 255

to calculate exact utility of each candidate generated in phase I. After that, all the HUIs
can be identified from the generated candidates in phase I. During the mining process
of HUI mining algorithms, transaction-weighted downward closure (abbreviated as
TWDC) property [3] is usually used to effectively prune the search space. Many HUI
mining algorithms are two-phase algorithms, including Two-Phase [3], IHUP [1] and
UP-Growth [8]. HUI-Miner [4] is a typical one-phase algorithm. A special data
structure called utility-list is developed to store the utility information of items. All the
HUIs and their utilities can be directly obtained through the utility-list structure. The
performance evaluation in [4] also shows that the efficiency of HUI-Miner is generally
better than UP-Growth. However, the above mentioned algorithms are designed for
HUI mining, instead of top-k HUI mining.

3.2 Top-K High Utility Itemset Mining

TKU [11] is a two-phase algorithm for mining top-k HUIs. In the scenario of top-k HUI
mining, users do not need to set minimum utility thresholds. Instead, only a parameter
k is used to control the number of patterns to be discovered. The TKU algorithm
generally consists of two phases. In phase I, TKU incorporates four novel strategies
PE, NU, MD and MC to raise the minimum utility thresholds. In phase II, all the top-
k HUIs are identified from the candidates generated in phase I by the SE strategy.
Afterwards, the REPT [6] algorithm is proposed, which incorporates several new
strategies to reduce the computational costs for mining top-k HUIs. Although REPT
achieves better performance than TKU on some types of datasets, it is still a two-phase
algorithm and may generate too many candidates on large-scale datasets. Recently, a
novel algorithm named TKO [9] is proposed to mine top-k HUIs in only one phase. It is
the first algorithm that incorporates the concept of utility-list [4] for top-k HUI mining.
The experiments in [9] show that the performance of TKO is generally better than
REPT and TKU.

3.3 Parallel Mining of High Utility Patterns

Although many studies have focused on mining high utility patterns in centralized
databases, they may not be salable enough for big data environments, where multiple
machines are required. DTWU-Mining [10] and FUM-D [7] algorithms are proposed
for parallel mining HUIs from distributed databases. Although they are parallel mining
algorithms, they do not support fault tolerance and fault recovery mechanisms in the
mining process. If one of the cluster nodes suddenly crashes, they may fail to complete
the whole mining task and produce incorrect mining results.

To overcome the issues mentioned above, PHUI-Growth [5], a MapReduce-based
algorithm, is first proposed to parallel mine HUIs from distributed databases. It is
implemented based on the Hadoop platform. PHUI-Growth generally consists of three
phases: (1) mining phase, (2) database transformation phase and (3) mining phase. In
mining phase, TWUs [3] of items in the database are calculated by a MapReduce pass.
In database transformation phase, TWDC property is applied to remove unpromising

256 C.-H. Lin et al.

items [3] from the transactions. Remaining promising items in transactions are sorted in
ascending order of TWU. In mining phase, several MapReduce passes are performed to
discover HUIs from the transformed transactions. Although PHUI-Growth is the first
algorithm for mining HUIs in parallel based on Hadoop, it is not developed for top-
k HUI mining. Besides, when several MapReduce passes are performed, it may involve
expensive disk I/O costs, and consequently degrading the overall mining performance.
As surveyed above, no study has been proposed for mining top-k HUIs in parallel
based on Spark platform [15].

4 The Proposed Method

This section introduces the proposed PKU (Parallel Top-K High Utility Itemset Min-
ing) algorithm for parallel discovering top-k HUIs in Spark in-memory computing
architecture [15]. The input of PKU includes a database D with external and internal
utilities, a user-specified desired number of itemsets k. Notice that, in this framework,
there is no need for users to provide the minimum utility threshold. In HUI mining,
algorithms can use the minimum utility threshold to largely prune the search space.
However, in top-k HUI mining, the minimum utility threshold is not given in advance.
Therefore, PKU adopts a dynamically adjusted internal variable called border minimum
utility threshold, denoted as h, for search space pruning. The value of h is initialized to
0, and it will be gradually raised during the mining process. To parallel discover top-
k HUIs, there are three main stages designed in PKU: (1) Pre-Evaluation in Parallel
(abbr. PEP), (2) Reorganize Transactions in Parallel (abbr. RTP), and (3) Mining
Patterns in Parallel (abbr. MPP). After the mining process, PKU outputs the complete
set of top-k HUIs in D.

4.1 Pre-evaluation in Parallel

The PEP stage includes three steps. In the first step, it performs the FindOneItems
function to find all the items and their utilities through a MapReduce pass. The Fin-
dOneItems function works as follows. In Map phase, each transaction T in D is pro-
cessed by a Mapper. For each transaction T received by the Mapper, the algorithm
visits each item in T. For each visited item I in T, the algorithm outputs a key-value pair
I; u I; Tð Þh i. In Reduce phase, all the key-value pairs having the same key are fed into
the same Reducer. Let K; SetValue ¼ v1; v2; v3; . . .½ �h i be the data received by a
Reducer, where the key K is an item and SetValue stores a set of values having the
same key as K. Then, the algorithm calculates the utility of the item K by summing up
all the values in SetValue into a variable ItemUtility, and outputs a key-value pair
K; ItemUtilityh i. The results of each Reducer are outputted and collected into the set
Set1. Figure 1(a) shows an example for the process of FindOneItems. In Map phase, as
for the transaction T1, the algorithm outputs three key-value pairs A; 4h i; B; 15h i; and
C; 4h i (Table 2).

Parallel Mining of Top-k High Utility Itemsets 257

In Reduce phase, as for the key A, the summation of all the values in SetValue of
key A is (4 + 4 + 2) = 10, and then the algorithm outputs a key-value pair A; 10h i in
Set1.

In the second step of PEP, the FindItemPairs function is called. It performs a
MapReduce pass to find some 2-itemsets and their partial utilities. In Map phase, each
transaction T in D is processed by a Mapper. For each transaction T received by the
Mapper, the algorithm finds the item I having the highest utility in T. Then, the
algorithm visits each of other items in T. For each visited item J in T (J 6¼ I), the
algorithm outputs a key-value pair K;Vh i, where K ¼ I [J and V = u(I, T) + u(J, T). In
Reduce phase, all the key-value pairs having the same key are fed into the same
Reducer. Let K; SetValue ¼ v1; v2; v3; . . .½ �h i be the data received by the Reducer,
where the key K is an 2-itemset and SetValue stores a set of values having the same key
as K. Then, the algorithm calculates the utility of the item K by summing up all the
values in SetValue into a variable PairUtility, and outputs a key-value pair
K;PairUtilityh i. The results of each Reducer are outputted and collected into the set
Set2. Figure 1(b) shows an example for the process of FindItemPairs. In Map phase, as
for the transaction T1, the algorithm outputs two key-value pairs BAf g; 4h i and
BCf g; 15h i. In Reduce phase, as for the key {BA}, the summation of all the values in

SetValue of the key {BA} is (19 + 10) = 29, and then the algorithm outputs BAf g; 29h i
and puts it into Set2.

Table 1. An example database.

Tid Transaction

T1 (A, 2) (B, 5) (C, 2)
T2 (A, 2) (B, 2) (C, 2) (E, 1) (G, 1)
T3 (A, 1) (D, 3) (E, 3) (F, 3)
T4 (B, 1) (D, 3) (F, 2)

Table 2. A profit table for the database of Table 1.

Item A B C D E F G

Unit Profit 2 3 2 3 4 1 2

(a) Illustration of FindOneItems. (b) Illustration of FindItemPairs.

Fig. 1. An example of the PEP strategy.

258 C.-H. Lin et al.

Let the set Set3 be Set1 [Set2, in the third step of PEP, the algorithm sorts
itemsets in Set3 in descending order of their utilities by using SortByKey function
supported by Spark. Then, if the total number of itemsets in Set3 is higher than k, the
threshold h is raised to the utility of the k-th itemset in Set3.

Figure 1 shows an example for the process of the PEP strategy when k = 3. As
shown in Fig. 1, there are 7 and 9 itemsets in Set1 and Set2, respectively. After sorting
itemsets in Set3 = Set1 [Set2, since |Set3| is larger than k. the threshold h is raised to
the utility of the third itemset in Set3, which is 24.

4.2 Reorganize Transactions in Parallel

The RTP stage includes two steps. In the first step, it performs the FindItemTWU
function to find all the items with their TWUs through a MapReduce pass. The Fin-
dItemTWU function works as follows. In Map phase, each transaction T in D is handled
by a Mapper. For each transaction T received by the Mapper, the algorithm visits each
item in T. For each visited item I in T, the algorithm outputs a key-value pair
I; TU Tð Þh i, where TU(T) is the transaction utility of T. In Reduce phase, all the key-
value pairs having the same key as I are fed into the same Reducer. Let
K; SetValue ¼ v1; v2; v3; . . .½ �h i be the data received by the Reducer, where K is an
item and SetValue is s set of values having the same key as K. Then, the algorithm
calculates the TWU of the item K by summing up all the values in SetValue into a
variable ItemTWU, and outputs a key-value pair K; ItemTWUh i. The results of
Reducers are collected into ItemTWUSet, and the FindItemTWU function outputs
ItemTWUSet.

In the second step of RTP, the algorithm applies the transaction-weighted down-
ward closure property [9, 11] to remove items having a TWU less than h from the
transactions. These items are called unpromising items since they are unpromising to be
a part of any top-k HUIs.

Property 1 (Transaction-weighted Downward Closure Property) [9, 11]. For any
itemset X, if TWU(X) is smaller than the current border minimum utility threshold h,
X and all its supersets are not top-k HUIs.

After removing unpromising items for each transaction, the remaining items in each
transaction are sorted in TWU ascending order. Figure 2 gives an example for Fin-
dItemTWU. Since the current threshold h is 24, and TWU(G) = 20. By Property 1, G is

Fig. 2. Illustration of FindItemTWU. Fig. 3. Example of conditional transactions.

Parallel Mining of Top-k High Utility Itemsets 259

an unpromising item and can be removed from the transactions. The transactions after
the above reorganization process are called recognized transactions. For each reor-
ganized transaction T’, each item I in T’ is attached with its utility in the original
transaction T. The example is shown in Fig. 3.

Then, the algorithm transforms each reorganized transaction into a special form
called conditional transaction. A conditional transaction C is of the form P;Q : Rh i,
where P is an itemset and called prefix, Q is a value called prefix utility, and R is called
element list and stores a set of elements. Each element in R consists of an item and a
utility value. Then, each reorganized transaction T’ is transformed to a conditional
transaction C by the following way. First, the prefix and prefix utility of C are set to £
and 0, respectively. Then, the element list is set to T’. Figure 3 shows an example for
the transformation process.

4.3 Mining Patterns in Parallel

The MPP stage mainly consists of three steps. In the first step, it adopts a pattern-growth
approach to discover top-k HUIs using MapReduce iterations. In the L-th MapReduce
iteration, it will generate potential top-k HUIs (abbr. PKHUIs) of length L and
new conditional transactions. Each iteration works as follows. In Map phase, each
conditional transaction is handled by a Mapper. For each conditional transaction a ¼
X;V : ð I1; u1½ �; I2; u2½ �; . . .; ð In; un½ �h i received by the Mapper, the algorithm visits each
element in its utility-list structure. For the i-th visited element [Ii, ui], the algorithm
outputs a new conditional transaction b ¼ X [Ii;V þ ui : Iiþ 1; uiþ 1½ �; Iiþ 2; uiþ 2½ �; . . .;ðh
Iiþ n; uiþ n½ �Þi. For example, considering the first conditional transaction C1 ¼
£; 0 : C; 4½ �; B; 15½ �; A; 4½ �ð Þh i in Fig. 3. In Map phase, the algorithm will generate
three new conditional transactions for it, which are fC[£g; 0þ 4ð Þ :h
B; 15½ �; A; 4½ �ð Þi; fB[£g 0þ 15ð Þ : A; 4½ �ð Þh i, and fA[£g; 0þ 4ð Þ : ð£Þh i.
The prefix of each generated conditional transaction is treated as a key, and its

prefix utility and element list form the value. In Reduce phase, all the key-value pairs
having the same key are collected into the same Reducer. For all the key-value pairs
having the same key X, their prefix utilities are summed up. The result is the utility of
X in the database D. Figure 4 shows an example for the above process. After the
calculation, if the utility of X is higher than the current threshold h, X is put into a list
called PKL (PKHUI List).

Fig. 4. Generation of PKHUIs in MPP. Fig. 5. Examples for DLUP and MCTP.

260 C.-H. Lin et al.

In the second step of MPP, the algorithms sorts all the itemsets in PKL in
descending order of their utilities. If the number of itemsets in PKL is higher than k and
the utility of the k-th itemset in PKL is higher than h, then h is raised to the utility of the
k-th itemset in PKL. After raising the threshold, all the itemsets having a utility less
than h are removed from PKL.

Then, we propose two strategies for further enhancing the performance of PKU.
The two proposed strategies are applied during the process of Reduce phase. The first
strategy is called DLUP (Discarding Local Unpromising Items in Parallel), which
works as follows. The algorithm calculates the local transaction utility for each con-
ditional transaction. The local transaction utility of a conditional transaction C ¼
X;V : ð I1; u1½ �; I2; u2½ �; . . .; ð In; un½ �h i is defined as LTUðCÞ ¼ V þ Pn

i¼1 ui. Let I be an
item, we use the notation I 2 C to represent that I appears in the element list of
C. Besides, let CT(X) be the set of all the conditional transactions having the same
prefix X, then the local TWU of the item I is defined as

P
i2C^C2CT Xð Þ TU Cð Þ. If the

TWU of an item I in CT(X) is less than the current threshold h, it can be removed from
the conditional transactions. The second proposed strategy is called MCPT (Merge
Conditional Transactions in Parallel). For any two conditional transactions having the
same prefix, if all the items in their element lists are the same, then the two utility lists
can be merged into one. Figure 5 shows the examples for DLUP and MCPT. After
applying the DLUP and MCPT strategies, the algorithm outputs the newly generated
conditional transactions as the input of the next iteration of MapReduce process. The
algorithm completes until no PKHUIs are generated. When the algorithm completes, all
the top-k HUIs are discovered and maintained in PKL.

5 Experimental Results

In this section, we evaluate the performance of the proposed algorithm PKU.
Because PKU is the first algorithm designed for parallel mining of top-k HUIs, we
compare it with TKU [11], HUI-Miner [4], and PHUI-Growth [5]. The characteristics
of these algorithms are shown in Table 3. In order to compare these algorithms, we
consider the optimal parameters for HUI mining and discovering the same amount of
patterns as PKU.

All of the compared algorithms are implemented in Java. The experiments of PKU
and PHUI-Growth are conducted on a master computer with a 3.40 GHz Intel Core
Processor and 32 GB memory, running Ubuntu 14.04, and ten slave computers with a
2.7 GHz Intel Celeron Processor and 8 GB memory, running Ubuntu 14.04. The
version of Hadoop is 2.6.0, and the version of Spark is 1.5.0. The experiments of TKU
and HUI-Miner are conducted on a computer with a 3.40 GHz Intel Core Processor and
32 GB memory, running Ubuntu 14.04. Four real-life datasets and one synthetic
dataset are used to evaluation the performance of the algorithms.

Parallel Mining of Top-k High Utility Itemsets 261

The four real-life datasets used in the experiments are Mushrooms [2], Chainstore
[2] and a larger dataset Chainstore5x where all the transactions in Chainstore are
duplicated five times to form. Similarly, we also duplicated all the transaction in
Mushrooms twenty times to form a large and dense dataset named Mushrooms20x. The
synthetic dataset T12I10N10 K|D|1,000 K was generated from IBM data generator
[14] where T is the average length of transactions, I is the average of maximal potential
frequent itemsets, N is the number of distinct items and |D| is the number of trans-
actions. The characteristics of all the datasets are shown in Table 4.

Table 3. The characteristics of the algorithms.

Mining Task Algorithm Parallel Hadoop Spark

HUI mining HUI-Miner � � �
PHUI-Growth

p p �
Top-k HUI
mining

TKU � � �
PKU

p � p

Table 4. The characteristics of all the datasets.

Dataset |D| N T Type

Mushrooms 8,124 118 23.0 Dense
Chainstore 1,112,949 46,086 7.2 Large
Chainstore5x 5,565,015 46,086 7.2 Large
Mushrooms20x 162,480 118 23.0 Large
T12I10N10 K|D|1,000 K 1,000,000 10,000 10.0 Synthetic

(a) Execution time on Mushrooms (b) Execution time on Chainstore5x

(c) Execution time on Mushrooms20x (d) Execution time on
T12I10N10K|D|1,000K

Fig. 6. Execution time on different datasets of the algorithm.

262 C.-H. Lin et al.

Figure 6(a) shows the experiments on the Mushrooms dataset. When the parameter
k is less than 100, we observe that TKU is faster than PKU because of the additional
communication costs among nodes. However, when the parameter k increases, the
overheads of the algorithms start to increase, and the advantages of parallel framework
reduce the influence of the increasing overheads. In general, the performance of PKU is
worse than that of HUI-Miner and TKU on small datasets, especially when parameter
k is small. However, PKU always outperforms the optimal case of PHUI-Growth.

On the other hand, PKU possesses the ability to handle dense datasets and achieve a
good performance. On the Chainstore5x dataset as shown in Fig. 6(b), when the value
of k is small, we can observe that HUI-Miner can reach a better performance. However,
when the parameter k increases, the execution times of HUI-Miner is much longer than
other algorithms. Besides, when k = 10,000, both TKU and HUI-Miner are unable to
complete. On the contrary, parallel algorithms (i.e., PHUI-Growth and PKU) can
achieve better performance. Moreover, PKU is more efficient than PHUI-Growth.
Figure 6(c) shows that the execution time of PKU slightly increases when the
parameter k increases. When the parameter k is no less than 1,000, PKU has the best
performance. Moreover, when k = 10,000, PKU is over 50 times faster than TKU.
Finally, we utilize T12I10N10 K|D|1,000 K, a synthetic dataset with 1 million trans-
actions, to evaluation the performance of PKU as shown in Fig. 6(d). In Fig. 6(d), it
can be seen that HUI-Miner shows the best performance when the parameter k is equal
to 1. However, when the parameter k is larger than 10, PKU possesses the best per-
formance. In general, the experimental results show that PKU outperforms other
algorithms on large datasets.

Figure 7(a) shows the execution times of PKU with MCTP and PKU without
MCTP on Mushrooms20x dataset. It can be seen that PKU with MCTP outperforms
PKU without MCTP substantially. When the parameter k is set to 1,000, the execution
time of PKU with MCTP (i.e. 55.089 s) is about 90 times fewer than PKU without
MCTP (i.e. 5016.044 s) to complete the mining process. Figure 7(b) shows the
experiment of PKU which |D| (i.e., number of transactions) varies from 1,000,000 to
2,500,000. From the figure, we can observe that the execution time is approximately
proportional to the |D|. Even when the number of transactions reaches 2,500,000, PKU
still has a good performance. Moreover, the execution time of PKU is from 4 to 5 faster
than that of PHUI-Growth.

(a) Effectiveness of MCTP on
Mushrooms20x

(b) Execution time under varied number
of transactions

Fig. 7. Execution time for varied pruning strategies and under varied |D|.

Parallel Mining of Top-k High Utility Itemsets 263

6 Conclusion

In this paper, we have proposed a new framework for parallel mining of top-k high
utility itemsets in Spark in-memory computing architecture, where k is the desired
number of high utility itemsets to be mined. A novel algorithm PKU is proposed for
efficiently parallel mining top-k high utility itemsets across multiple commodity
computers. It is implemented on Spark in-memory computing platform and thus
inherits several nice properties of Spark, including high scalability, fault recovery and
low communication overheads. Two novel strategies called DLUP and MCPT are
proposed to reduce the search space and greatly improve the performance of PKU.
Empirical evaluations on both real-life and synthetic datasets show that the perfor-
mance of PKU outperforms several benchmarking algorithms [4, 5, 11] in utility
mining fields. For example, on the Chainstore5x dataset, when k is set to 10,000, both
TKU [11] and HUI-Miner [4] are unable to complete, while the proposed PKU still has
good performance. Moreover, PKU possesses better performance than PHUI-Growth
[5] with optimal minimum utility thresholds. To the best of our knowledge, this is the
first work that explores the new research topic on parallel mining of top-k high utility
itemsets on Spark.

Acknowledgement. This work is supported in part by Ministry of Science and Technology,
Taiwan, ROC under grant no. 104-2221-E-009-128-MY3, 107-2218-E-009-050 and 107-2218-
E-197-002.

References

1. Ahmed, C.F., Tanbeer, S.K., Jeong, B., Lee, Y.: Efficient tree structures for high utility
pattern mining in incremental databases. IEEE Trans. Knowl. Data Eng. 21, 1708–1721
(2009)

2. Fournier-Viger, P., Gomariz, A., Gueniche, T., Soltani, A., Wu, C., Tseng, V.S.: SPMF: a
java open-source pattern mining library. J. Mach. Learn. Res. 15, 3389–3393 (2014)

3. Liu, Y., Liao, W., Choudhary, A.: A fast high utility itemsets mining algorithm. In:
Proceedings of the 1st International Workshop on Utility-Based Data Mining, pp. 90–99
(2005)

4. Liu, M., Qu, J.: Mining high utility itemsets without candidate generation. In: Proceedings of
the 21st ACM International Conference on Information and Knowledge Management,
pp. 55–64 (2012)

5. Lin, Y., Wu, C., Tseng, V.S.: Mining high utility itemsets in big data. In: Proceedings of the
Pacific-Asia Conference on Knowledge Discovery and Data Mining, pp. 649–661 (2015)

6. Ryang, H., Yun, U.: Top-k high utility pattern mining with effective threshold raising
strategies. Knowl.-Based Syst. 76, 109–126 (2015)

7. Subramanian, K., Kandhasamy, P., Subramanian, S.: A novel approach to extract high utility
itemsets from distributed databases. Comput. Inform. 31, 1597–1615 (2012)

8. Tseng, V.S., Shie, B., Wu, C., Yu, P.S.: Efficient algorithms for mining high utility itemsets
from transactional databases. IEEE Trans. Knowl. Data Eng. 25, 1772–1786 (2013)

9. Tseng, V.S., Wu, C., Fournier-Viger, P., Yu, P.S.: Efficient algorithms for mining top-k high
utility itemsets. IEEE Trans. Knowl. Data Eng. 28, 54–67 (2016)

264 C.-H. Lin et al.

10. Vo, B., Nguyen, H., Ho, T.B., Le, B.: Parallel method for mining high utility itemsets from
vertically partitioned distributed databases. In: Proceedings of the 13th International
Conference on Knowledge-Based and Intelligent Information and Engineering Systems,
pp. 251–260 (2009)

11. Wu, C., Shie, B., Tseng, V.S., Yu, P.S.: Mining top-k high utility itemsets. In: Proceedings
of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pp. 78–86 (2012)

12. Apache Software Foundation. http://www.apache.org/
13. Hadoop. http://hadoop.apache.org/
14. IBM Quest Data Mining Project, Quest Synthetic Data Generation Code. (https://

sourceforge.net/projects/ibmquestdatagen/)
15. Spark. http://spark.apache.org/

Parallel Mining of Top-k High Utility Itemsets 265

http://www.apache.org/
http://hadoop.apache.org/
https://sourceforge.net/projects/ibmquestdatagen/
https://sourceforge.net/projects/ibmquestdatagen/
http://spark.apache.org/

Weakly Supervised Learning

Robust Semi-supervised Multi-label
Learning by Triple Low-Rank

Regularization

Lijuan Sun, Songhe Feng(B), Gengyu Lyu, and Congyan Lang

School of Computer and Information Technology, Beijing Jiaotong University,
Beijing, China

{17112082,shfeng,18112030,cylang}@bjtu.edu.cn

Abstract. Multi-Label Learning (MLL) deals with the problem when
one instance is associated with multiple labels simultaneously. Previ-
ous methods have shown promising performance by effectively exploiting
the semantic correlations among different labels. However, most of the
existing methods may not be robust to the situation when the training
instances are labeled with noisy or incomplete labels, which are common
in reality. In this paper, we propose Robust Semi-Supervised Multi-Label
Learning by Triple Low-Rank Regularization approach to address this
problem. Specifically, a linear self-representative model is firstly intro-
duced to recover the possibly noisy label matrix by exploiting the label
correlations. Then, our method develops a low-rank pairwise similarity
matrix to capture the global relationships among labeled and unlabeled
samples by taking advantage of Low-Rank Representation (LRR). In
addition, by utilizing the pairwise similarity matrix defined above, we
construct the graph Laplacian regularization to acquire geometric struc-
tural information from both labeled and unlabeled samples. Moreover,
the proposed method concatenate the prediction models for different
labels into a matrix, and introduces the matrix trace norm to capture
the correlations and control the model complexity. Experimental stud-
ies across a wide range of benchmark datasets show that our method
achieves highly competitive performance against other state-of-the-art
approaches.

Keywords: Multi-label learning · Triple low-rank regularization ·
Semi-supervised learning · Graph Laplacian regularization

1 Introduction

Traditional supervised learning often assumes that each instance is associated
with a single label. In reality, one object usually has multiple labels simultane-
ously. For example, in document topic analysis, a document may belong to multi-
ple topics. Conventional supervised learning is out of its capability to cope with
this problem, and Multi-Label Learning (MLL) [18] that deals with instances
c© Springer Nature Switzerland AG 2019
Q. Yang et al. (Eds.): PAKDD 2019, LNAI 11440, pp. 269–280, 2019.
https://doi.org/10.1007/978-3-030-16145-3_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16145-3_21&domain=pdf
https://doi.org/10.1007/978-3-030-16145-3_21

270 L. Sun et al.

associated with a set of labels could address this problem. Current studies on
MLL always assume that each training sample is associated with a complete
label assignment. However, many training samples may only be labeled with a
partial set of labels, or the labels can be randomly corrupted in practice [19].
In addition, how to capture the inherent correlations correctly between different
labels by making use of the finite labeled data is still under investigation.

To effectively deal with this problem, we present a novel algorithm called
Robust Semi-Supervised Multi-Label Learning by Triple Low-Rank Regulariza-
tion. Specifically, given the fact that the training labels which always contain
noisy labels or missing labels [12], our method provides a linear self-recovery
model on label matrix by introducing a low rank constrained label coefficient
matrix. Then, we develop a low-rank pairwise similarity matrix to capture the
global relationships among samples by taking advantage of Low-Rank Represen-
tation(LRR). Furthermore, by utilizing the pairwise similarity matrix that we
got earlier, we construct the graph Laplacian regularization that is a smooth
operator to maintain a local geometric structure on both labeled and unlabeled
samples. Meanwhile, our method concatenates prediction models for different
labels into a matrix, and introduces the low-rank constrained matrix to capture
the correlations among different labels. What is noteworthy is that the work
of [5] takes the low-rank property of feature mapping matrix, graph Laplacian
and missing labels into account as well. However, our method adopts a more
sophisticated approach to recover the noisy label matrix during the training
stage as compared with [5]. Extensive experimental results on real-world data
sets validate the effectiveness of our model against other competitive algorithms.

2 Related Work

In this section, we briefly review the related work on exploiting label correla-
tions. Existing approaches can be roughly grouped into three major categories
based on the order of correlations being considered. First-order approaches tackle
MLL problem by decomposing it into a series of independent binary classifica-
tion problems such as SVM [1] or Naive Bayes [17]. Despite their conceptual
simplicity, these approaches could be less effective due to their regardless of
label coincidence. Second-order approaches tackle MLL problem by exploiting
pairwise relationships between the labels. Representatives include ranking based
approaches [7] which consider correlations between pairs of labels and work by
transforming the task into a ranking problem to order the relevant labels in front
of irrelevant labels. Nevertheless, label correlations might be much more complex
than second-order in reality. High-order approaches try to discover high-order
relationships among the labels to address multi-label learning problem. One
straightforward approach is to model interactions among all class labels by con-
sidering influences of all other labels on each label. Representative approaches
include assuming linear combination [3], nonlinear mapping [11], or shared sub-
space [8] over the whole label space. There is no doubt that high-order approaches
have stronger correlation-modeling capabilities than the first-order and second-

Robust Semi-supervised Multi-label Learning 271

order counterparts. However, these approaches would be more computationally
expensive and less scalable.

3 Problem Formulation

In this section, we first describe the concept that will be used throughout the
paper. Then, we introduce the proposed method in detail. In the rest of this
section, we discuss how to solve the optimization problem by an iterative opti-
mization algorithm.

3.1 Notations

Let X� = [x1,x2, . . . ,xn] ∈ R
d×n denote the labeled feature matrix, where

d is the dimension of the feature vector and n is the number of the
labeled samples. And we define the matrix of unlabeled samples as Xu =
[xn+1,xn+2, . . . ,xn+m] ∈ R

d×m, where m is the number of the unlabeled
samples. We assume m � n without loss of generality. Subsequently, we use
X = [X�,Xu] ∈ R

d×(n+m) to represent the whole training set. Accordingly, we
use Y� = [y1,y2, . . . ,yn] ∈ {0, 1}k×n to represent the label assignments for the
corresponding labeled samples.

3.2 The Regularization Framework

Our goal is to use the samples in X to train a new MLL approach and to predict
the labels of these unlabeled samples. For the i-th label, the goal is to learn a
linear function fi where wi is the model parameter for the i-th label. Here we
restrict the prediction function fi to linear function for simplicity, i.e., fi(X) =
w�

i X. Define W = [w1,w2, . . . ,wk] ∈ R
d×k denote the model parameters for

all labels. We first employ the loss function L(X�,Y�;W) given only the labeled
training data as:

L(X�,Y�;W) =
1
2
‖Y� − W�X�‖2F

Intuitively, the target is to seek a matrix W for minimizing the loss function
L(X�,Y�;W). Nevertheless, we have to think over the model complexity and
overfitting problem. In many real-world problems, labels are relevant among dif-
ferent class labels. We assume that the prediction functions in W are linearly
dependent to effectively capture the correlation. Formally, we formulate mini-
mizing the loss function problem as low-rank pursuit on the matrix W and the
optimization problem is defined as:

min
W

1
2
‖Y� − W�X�‖2F + λ‖W‖∗ (1)

Here, ‖.‖∗ denotes the nuclear norm of a matrix, i.e., the sum of the singular
values of the matrix.

272 L. Sun et al.

Unfortunately, errors often caused by noisy training label matrix Y� in typical
community-contributed images applications. Therefore, these noisy labels must
be refined for achieving satisfactory multi-label learning performance if we use
them as training labels. We reconstruct Y� by employing a linear self-recovery
model. Ω ∈ R

m×m is a coefficient matrix, and the similarity between the i-
th label and j-th label was indicated by the element which locates in the i-th
row and j-th column. In order to narrow down the solution for the matrix Ω,
we ponder the following criteria. Firstly, the new matrix Y� that refined by
the coefficient matrix Ω should be similar to the observed noisy matrix Y�.
We add this constraint by penalizing the difference between Y� and ΩY� with
a Frobenius Norm, and we prefer the solution Ω with small ‖ΩY� − Y�‖2F .
Secondly, ΩY� should have the ability to keep the intrinsic structure among
feature vectors. Formally, we formulate the proposed approach as follows:

min
Ω

β

2
‖ΩY� − Y�‖2F + γ‖Ω‖∗

s.t.Ω ≥ 0, diag (Ω) = 0
(2)

Here, we assume the coefficient matrix Ω be low rank which again enforces the
similarity between different labels implicitly. Subsequently, we got the following
optimization problem:

min
W,Ω

1
2
‖ΩY� − W�X�‖2F + λ ‖ W‖∗

+
β

2
‖ΩY� − Y�‖2F + γ‖Ω‖∗

s.t.Ω ≥ 0, diag (Ω) = 0

(3)

However, existing methods always ignore the situation that there are a large
number of unlabeled samples in the training sets. Consequently, we utilize graph
Laplacian based manifold regularization [15] into the learning process be able to
acquire geometric structural information from unlabeled samples. We construct
the graph Laplacian regularization by taking advantage of Low-Rank Represen-
tation(LRR). In order to capture the global relationships among samples, we
introduce the pairwise similarity matrix S and the similarity between the i-th
label and j-th label was indicated by the element which locates in the i-th row
and j-th column. Unlike [13] simply uses a k-nearest neighbor graph to model the
local geometry structure in the feature space, we take advantage of LRR to con-
struct a pairwise similarity matrix S in the first stage. Given that X ∈ R

d×(n+m)

represents the feature space of both labeled and unlabeled samples, where each
column corresponds to an sample, each sample can be viewed as a linear com-
bination of basis from a dictionary A = [a1,a2, . . . ,aM] ∈ R

d×M . LRR encodes
each sample by a linear combination of the basis in A as follow:

X = AZ

Robust Semi-supervised Multi-label Learning 273

where Z ∈ R
(n+m)×(n+m) is the coefficient matrix with each Z(., i) ∈ R

(n+m)

being the representation coefficient vector for sample xi with respect to n + m
samples. Here, we set A = X in this paper. LRR enforces Z to be low rank and
solves the following optimization problem:

min
Z

1
2
‖XZ − X‖2F + η‖Z‖∗

Since LRR jointly finds the low-rank coefficient matrix Z for all samples in
X, we adapt Z to define a feature-based graph whose weighted adjacent matrix
is S, where S = (|Z| +

∣
∣Z�∣

∣)/2.
In the second stage, we utilize the pairwise similarity matrix S to acquire the

graph Laplacian regularization. Intuitively, if two samples xi and xj are close in
the feature space, then (i.e. W�xi and W�xj) are also close to each other in
the label space. Therefore, we minimize the correlation of two samples by using
the constraint as follows:

1
2

n+m∑

i=1

n+m∑

j=1

Sij‖W�xi√
Eii

− W�xj√
Ejj

‖22

= Tr
[

W�X
(

E− 1
2 (E − S)E− 1

2

)

X�W
]

= Tr
[

W�XLX�W
]

(4)

where L = E− 1
2 (E − S)E− 1

2 is the graph Laplacian matrix and E is a diagonal
matrix with Eii =

∑n+m
j=1 Sij .

Combining the above criteria, the final formulation of the proposed method
is defined as:

min
W,Ω,Z

1
2
‖ΩY� − W�X�‖2F + λ‖W‖∗

+
β

2
‖ΩY� − Y�‖2F + γ‖Ω‖∗ + αTr

[

W�XLX�W
]

+
1
2
‖XZ − X‖2F + η‖Z‖∗

s.t.Ω ≥ 0, diag (Ω) = 0, L = E− 1
2 (E − S)E− 1

2 ,

Eii =
n+m∑

j=1

Sij , S = (|Z| +
∣
∣Z�∣

∣)/2

(5)

where α, β, γ, η and λ are trade-off parameters, Ω is the low rank coefficient
matrix for label matrix Y� ∈ {0, 1}k×n , Z is the low rank constrained matrix for
the sample matrix X ∈ R

d×(n+m) and W is the low rank feature mapping matrix.
The framework will be more robust to noises and outliers. At the same time, it

274 L. Sun et al.

can preserve the local and global structural consistency. Moreover, this is our
superiority by using triple trace norm regularization for robust semi-supervised
multi-label learning.

3.3 Optimization

The optimization problem in (5) is convex and involves the trace norm which is
non-smooth that cannot have a closed form solution. Firstly, we used an Aug-
mented Lagrange Multiplier (ALM) to get Z, and then we adopt an Accelerated
Proximal Gradient algorithm(APG) [9] by iteratively updating W and Ω. In the
following, we introduce the proposed update rules in detail.

Update Ω When Fixed W. Next, with fixed W = Wt at the t-th iteration,
the subproblem that minimizes (5) over Ω can be written as:

min
Ω

1
2
‖ΩY� − W�X�‖2F +

β

2
‖ΩY� − Y�‖2F + γ‖Ω‖∗ (6)

We can further simplify the above optimization problem as the following problem
equivalently:

G (Ω) = g (Ω) + γ‖Ω‖∗ (7)

where
g (Ω) =

1
2
‖ΩY� − W�X�‖2F +

β

2
‖ΩY� − Y�‖2F (8)

Accordingly, we adopt the APG algorithm to solve it as follows:

Ωt = arg min
Ω

1
2θt

‖Ω − Ωt‖2F + γ‖Ω‖∗ (9)

where
Ω

′
t = Ωt−1 − θt∇g (Ωt−1) (10)

with θt is the step size. Firstly, we compute the singular value decomposi-
tion (SVD) of θ

′
t, and then utilize soft-thresholding in the singular value of

θ
′
t. Thenceforth we get the optimal solution as follows: Ωt = U

∑

ηθt
V �, where

Ω
′
t = U

∑
V � is the SVD of Ω

′
t.

∑

ηθt
is a diagonal matrix and its diagonal

elements can be obtained according to
(
∑

ηθt

)

ii
= max {0,

∑

ii −ηθt}. Notice

that the gradient of θ
′
t can be computed as following equation shows:

∇g (Ω) = (1 + β)ΩY�Y�
� − W�

t X�Y�
� − βY�Y�

� (11)

Update W When Fixed Ω . When we fix Ω = Ωt, discard the entries which
are not relevant to W, and then W will be decided by solving the following
problem:

min
W

1
2
‖ΩtY� − W�Y�‖2F + λ‖W‖∗ + αTr

[

W�XLX�W
]

(12)

Robust Semi-supervised Multi-label Learning 275

We first convert (12) to the following equivalent problem:

min
W

F (W) = f (W) + λ‖W‖∗ (13)

where
f (W) =

1
2
‖ΩtY� − W�X�‖2F + αTr

[

W�XLX�W
]

(14)

which is also a convex and smooth function. Equation(9) should be converted as
following:

Wt = arg min
W

1
2ξt

‖W − W
′
t‖2F + λ‖W‖∗ (15)

where
W

′
t = Wt−1 − ξt∇f (Wt−1) (16)

and ξt is step size. We get the definition of the diagonal matrix
∑

λξt
on the

basis of (
∑

λξt
)ii = max {0,

∑

ii −λξt}, when we compute the singular value
decomposition of W.

∇f (W) = −X�Y�
� Ω�

t + X�X�
� W + 2αXLX�W (17)

The entire optimization procedure will be terminated when both W and Ω
obtain the optimal solution. Despite the algorithm does not guarantee a global
optimum, we found it perform well in our experiments.

4 Experiments

In this part, we conduct extensive experiments to validate the effectiveness of
the proposed algorithm. To step further, we compare our method against state-
of-the-art multi-label learning approaches on four datasets. We also perform
our method by using training samples with missing labels to ensure that the
performance of the proposed approach is statistically significant. In addition,
we conduct experiments to study the sensitivity of the proposed algorithm to
parameter α, β, γ and λ. Meanwhile, we also execute the experiment to study
the influence of limited number of training samples on IAPRTC-12 dataset. Due
to page limit, we cannot report all results.

Table 1. Statistics summary for the experimental datasets. The bottom two rows are
given in the format mean/maximum.

ESPGame IAPRTC-12 PASCAL VOC2007 NUS-WIDE

No.of images 20,770 19,627 9,963 31,570

Vocabulary size 268 291 399 430

Tags per image 4.69/15 5.72/23 4.2/35 12.53/114

Image per tag 363/5,059 386/5,534 53/2,095 920/8,397

276 L. Sun et al.

4.1 Datasets

To examine the performance of the proposed approach, we perform extensive
experiments on four data sets, including ESPGame [10], IAPRTC-12 [6], PAS-
CAL VOC2007 [5] and NUS-WIDE [4]. The first three datasets are directly
acquired from [4] and the last dataset is gathered by Lab for Media Search in
the National University of Singapore [4]. Table 1 summarizes the statistics of
the datasets in detail. ESPGame and IAPRTC-12 image datasets are two bag-
of-words models with 1000 visual words, which represent the visual content of
images by using based on densely sampled SIFT descriptors. We extract three
types of image features from PASCAL VOC2007 dataset. We use six types of
low-level visual features to represent each image for the NUS-WIDE dataset.

4.2 Evaluation Criteria

In the experiments, we exploit the Average Precision (AP@K) and Average
Recall (AR@K) scores to evaluate the performance of multi-label learning
method in this paper. The evaluation metrics are defined as follows:

AP@K =
1
nt

nt∑

i=1

Nc (i)
K

(18)

AR@K =
1
nt

nt∑

i=1

Nc (i)
Ng (i)

(19)

where K is the number of truncated tags, nt is the number of test instances,
Nc (i) is the number of correctly annotated tags for the i-th test instance, Ng (i)
is the number of tags assigned to the i-th instance.

4.3 Comparison with the State-of-the-art Algorithms

Five competing algorithms are involved as a comparison, namely Binary Refer-
ence Model based on RBF Kernel (BR-R)[1], Multi-Label k-Nearest Neighbor
(ML-KNN) [17], Matrix Completion using Side Information (MAXIDE) [14],
Multi-Label Learning with Label Specific Features (LIFT) [16], and Efficient
Multi-Label Ranking Method (MLR) [2].

On each dataset in Table 1, we randomly sample 50% of the dataset as
training data X, of which 20% instances are selected as labeled data X� and
80%instances are unlabeled data Xμ, respectively. The remaining 50% of the
dataset are used as testing data T. Each experiment is repeated for 5 times on a
different splitting of training and testing data, and we report the average result.
All the above methods are implemented in Matlab and run on Windows with
16G memory and 3.6 GHz CPU.

Robust Semi-supervised Multi-label Learning 277

K=1 K=4 K=7 K=10
0

5

10

15

20

25

30

35

40
ESPGame Image Dataset with 50% training data

Top K Annotated Tags

Av
er

ag
e

Pr
ec

isi
on

@
K(

%
)

BR−R
ML−KNN
MAXIDE
LIFT
MLR
Proposed

K=1 K=4 K=7 K=10
0

10

20

30

40

50

60
IAPRTC−12 Image Dataset with 50% training data

Top K Annotated Tags

Av
er

ag
e

Pr
ec

is
io

n@
K(

%
)

BR−R
ML−KNN
MAXIDE
LIFT
MLR
Proposed

K=1 K=4 K=7 K=10
0

10

20

30

40

50

60
PASCAL VOC2007 Image Dataset with 50% training data

Top K Annotated Tags

Av
era

ge
 Pr

ec
isio

n@
K(%

)

BR−R
ML−KNN
MAXIDE
LIFT
MLR
Proposed

K=1 K=4 K=7 K=10
0

5

10

15

20

25

30

35

40
NUS−WIDE Image Dataset with 50% training data

Top K Annotated Tags

Av
er

ag
e

Pr
ec

isi
on

@
K(

%
)

BR−R
ML−KNN
MAXIDE
LIFT
MLR
Proposed

Fig. 1. Experimental result of the Average precision for proposed method on
ESPGame, IAPRTC-12, PASCAL VOC2007 and NUS-WIDE datasets.

Fig. 2. Examples of test images from the NUS-WIDE dataset with top 10 annotations
generated by different methods. The correct tags are highlighted by blue bold font
whereas the incorrect ones are highlighted by italic font. (Color figure online)

278 L. Sun et al.

We first show the average precision for top 10 returned tags for four datasets
in Fig. 1. The detailed experimental results are shown in two images, which
indicate that our method outperforms all the compared methods. Specifically,
we can learn that average precision declines while average recall improves with
the number of returned tags are increasing. We observe that our method signifi-
cantly outperforms ML-KNN on the given datasets because of the performance of
nearest-neighbor based methods largely rely on the number of training samples.
In addition, the proposed method also outperforms BR-R and LIFT algorithms,
two classification based approaches, and MLR, a multi-label ranking approach.
More surprisingly, our method also outperforms MAXIDE, which is based on
matrix recovery method and also utilizes trace norm regularization to capture
label correlations. Figure 2 provides examples of annotations generated by differ-
ent approach for the NUS-WIDE dataset, which further confirms the advantage
of using our approach for multi-label learning with application to automatic
image annotation.

4.4 Multi-label Learning with Incomplete Labels

We conduct experiments on PASCAL VOC2007 dataset to verify the effective-
ness of our method for incomplete labels. So we randomly select only 20%, 40%,
and 60% of the assigned labels for training examples. Figure 3 respectively show
the average precision results of different multi-label learning algorithms on PAS-
CAL VOC2007.

K=1 K=4 K=7 K=10
5

10

15

20

25

30

35

40

45

50

55
20% Tags Reserved for Each Training Image

Top K Annotated Tags

A
ve

ra
g
e
 P

re
ci

si
o
n
@

K
(%

)

BR−R
ML−KNN
MAXIDE
LIFT
MLR
Proposed

K=1 K=4 K=7 K=10
5

10

15

20

25

30

35

40

45

50

55
40% Tags Reserved for Each Training Image

Top K Annotated Tags

A
ve

ra
g
e
 P

re
ci

si
o
n
@

K
(%

)

BR−R
ML−KNN
MAXIDE
LIFT
MLR
Proposed

K=1 K=4 K=7 K=10
5

10

15

20

25

30

35

40

45

50

55
60% Tags Reserved for Each Training Image

Top K Annotated Tags

A
ve

ra
g
e
 P

re
ci

si
o
n
@

K
(%

)

BR−R
ML−KNN
MAXIDE
LIFT
MLR
Proposed

Fig. 3. Performance of the proposed method on the PASCAL VOC2007 dataset with
incomplete image tags, where the number of observed tags is varied from 20%, 40% to
60%.

Apparently, our method is more resilient to the missing labels in all methods
on both the two datasets: on the PASCAL VOC2007 dataset, it only experiences
a 2.03% drop in average precision when the number of observed labels decreases
from 60% to 20%, while the other four baseline methods suffer from 4% to 8%
loss for AP@4. Clearly, we can learn that the missing labels could greatly affect
the annotation performance due to all methods drops as the number of observed
annotations decreases. Although Fig. 3 reports and reflects that the proposed
method is more effective in multi-label learning with incomplete labels.

Robust Semi-supervised Multi-label Learning 279

4.5 Parameters Sensitivity Analysis

We study the influences of the four parameters α, β, γ and λ for the proposed
method on the ESPGame dataset. Before the experiment, we first initialize λ
as 0.1. For the rest parameters, we fix one parameter and then vary the other
two parameters from 0.001 to 10, respectively. The experimental results are
shown in Fig. 4 which are measured by average precision. It can be seen that
the performance of our algorithm varies when the parameters (α, β, γ) change.
Therefore we should safely set them in a wide range of practice. From this figure,
we can notice that better performances are gained when α = 0.01, β = 1, λ =
0.1 and γ = 0.01.

0

0.1

0.001

A
v
e

ra
g

e
 P

re
c
is

io
n

0.2

0.01

0.3

 Average precision of the proposed method on the ESPGame dataset with varied and

100.1 11 0.1
10 0.01

0.001

0

0.1

0.001

A
v
e

ra
g

e
 P

re
c
is

io
n

0.2

0.01

0.3

 Average precision of the proposed method on the ESPGame dataset with varied and

100.1 11 0.1
10 0.01

0.001

0

0.1

0.001

A
v
e

ra
g

e
 P

re
c
is

io
n

0.2

0.01

0.3

 Average precision of the proposed method on the ESPGame dataset with varied and

100.1 11 0.1
10 0.01

0.001

Fig. 4. Average precision of the proposed method on ESPGame dataset with varied
parameters.

5 Conclusion

In this paper, we present a novel approach to address the drawbacks of existing
MLL methods in a principled manner. The proposed algorithm concatenates
prediction models for different tags into a matrix, and introduces the low rank
constrained matrix to capture correlations between different labels and control
the model complexity. Our approach also utilizes graph Laplacian regularization
to maintain a local geometric structure on both labeled and unlabeled samples.
Meanwhile, our method introduces a low rank constrained sample coefficient
matrix to capture the relationships between samples. Moreover, our algorithm
exploits a low rank constrained label coefficient matrix again to build a linear self-
recovery model for labels are incomplete or noisy. Finally, we conduct extensive
experiments to validate the effectiveness of our algorithm. For future work, we
would like to extend the framework by explicitly taking the limited number of
training samples into consideration.

Acknowledgements. This work was supported in part by the National Natural Sci-
ence Foundation of China (Nos. 61872032), in part by the Fundamental Research Funds
for the Central universities (2018YJS038, 2017JBZ108).

280 L. Sun et al.

References

1. Boutell, M., Luo, J., Shen, X., Brown, C.: Learning multi-label scene classification.
Pattern Recogn. 37(9), 1757–1771 (2004)

2. Bucak, S., Jin, R., Jain, A.: Multi-label learning with incomplete class assignments.
In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2801–2808
(2011)

3. Cheng, W., Hullermeier, E.: Combining instance-based learning and logistic regres-
sion for multilabel classification. Mach. Learn. 76(2), 211–225 (2009)

4. Chua, T., Tang, J., Hong, R., Li, H., Luo, Z., Zheng, Y.: NUS-WIDE: a real-world
web image database from National University of Singapore. In: ACM International
Conference on Image and Video Retrieval, p. 48 (2009)

5. Feng, S., Lang, C.: Graph regularized low-rank feature mapping for multi-label
learning with application to image annotation. Multidimension. Syst. Sig. Process.
11, 1–22 (2017)

6. Feng, Z., Jin, R., Anil, J.: Large-scale image annotation by efficient and robust
Kernel metric learning. In: IEEE International Conference on Computer Vision,
pp. 1609–1616 (2013)

7. Furnkranz, J., Hullermeier, E., Mencia, E., Brinker, K.: Multilabel classification
via calibrated label ranking. Mach. Learn. 73(2), 133–153 (2008)

8. Ji, S., Tang, L., Yu, S., Ye, J.: Extracting shared subspace for multi-label classifi-
cation. In: ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 381–389 (2008)

9. Ji, S., Ye, J.: An accelerated gradient method for trace norm minimization. In:
Proceedings of Annual International Conference on Machine Learning, pp. 457–
464 (2009)

10. Matthieu, G., Thomas, M., Jakob, V., Cordelia, S.: Tagprop: discriminative metric
learning in nearest neighbor models for image auto-annotation. In: IEEE Interna-
tional Conference on Computer Vision, pp. 309–316 (2009)

11. Montanes, E., Senge, R., Barranquero, J., Quevedo, J., Coz, J., Hullermeier, E.:
Dependent binary relevance models for multi-label classification. Pattern Recogn.
47(3), 1494–1508 (2014)

12. Sheng, L., Yun, F.: Robust multi-label semi-supervised classification. In: IEEE
International Conference on Big Data, pp. 27–36 (2017)

13. Wang, X., Feng, S., Lang, C.: Semi-supervised dual low-rank feature mapping for
multi-label image annotation. Multimed. Tools Appl. 8, 1–20 (2018)

14. Xu, M., Jin, R., Zhou, Z.: Speedup matrix completion with side information: appli-
cation to multi-label learning. In: Advances in Neural Information Processing Sys-
tems, pp. 2301–2309 (2013)

15. Yin, M., Gao, J., Lin, Z.: Laplacian regularized low-rank representation and its
applications. IEEE Trans. Pattern Anal. Mach. Intell. 38(3), 504–517 (2016)

16. Zhang, M., Wu, L.: Lift: multi-label learning with label-specific features. IEEE
Trans. Pattern Anal. Mach. Intell. 37(1), 107–120 (2015)

17. Zhang, M., Zhou, Z.: ML-KNN: a lazy learning approach to multi-label learning.
Pattern Recogn. 40(7), 2038–2048 (2007)

18. Zhang, M., Zhou, Z.: A review on multi-label learning algorithms. IEEE Trans.
Knowl. Data Eng. 26(8), 1819–1837 (2014)

19. Zhang, Y., Zhang, Z., Qin, J., Zhang, L., Li, B., Li, F.: Semi-supervised local multi-
manifold isomap by linear embedding for feature extraction. Pattern Recogn. 76,
662–678 (2018)

Multi-class Semi-supervised Logistic
I-RELIEF Feature Selection Based

on Nearest Neighbor

Baige Tang1 and Li Zhang1,2(B)

1 School of Computer Science and Technology,
Joint International Research Laboratory of Machine Learning

and Neuromorphic Computing, Soochow University, Suzhou 215006, Jiangsu, China
bgtang@stu.suda.edu.cn

2 Provincial Key Laboratory for Computer Information Processing Technology,
Soochow University, Suzhou 215006, Jiangsu, China

zhangliml@suda.edu.cn

Abstract. The multi-class semi-supervised logistic I-RELEIF (MSLIR)
algorithm has been proposed and showed its feature selection ability
using both labeled and unlabeled samples. Unfortunately, MSLIR is
poor when predicting labels for unlabeled samples. To solve this issue,
this paper presents a novel multi-class semi-supervised logistic I-RELEIF
based on nearest neighbor (MSLIR-NN) for multi-class feature selection
tasks. To generate better margin vectors for unlabeled samples, MSLIR-
NN uses the nearest neighbor scheme to first predict the labels of unla-
beled samples and then calculates their margin vectors according to these
estimated labels. Experimental results demonstrate that MSLIR-NN can
improve the prediction accuracy of unlabeled data.

Keywords: Logistic I-RELIEF · Feature selection ·
Multi-class classification · Semi-supervised · Nearest neighbor

1 Introduction

In many fields such as data mining and machine learning, we usually need to
deal with high-dimensional data which may contain a large number of irrelevant
and redundant features. These features would lead to the sparsity of data dis-
tribution in the feature space and be a hindrance to data analysis tasks. The
rapid growth of data dimension not only increases the computational cost and
memory consumption, but also affects the classification performance of classi-
fiers. In order to improve learning performance, a variety of data dimensionality
reduction methods have been produced, among which feature selection is one of
the most effective techniques for processing high-dimensional data [1,2].

The main goal of feature selection is to select an optimal feature subset, which
contains most useful information in original features and has the greatest corre-
lation with classification tasks. Based on the optimal feature subset, the training
c© Springer Nature Switzerland AG 2019
Q. Yang et al. (Eds.): PAKDD 2019, LNAI 11440, pp. 281–292, 2019.
https://doi.org/10.1007/978-3-030-16145-3_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16145-3_22&domain=pdf
https://doi.org/10.1007/978-3-030-16145-3_22

282 B. Tang and L. Zhang

time of classifiers can be effectively shorten, and the learning performance could
be enhanced further [3–5]. In recent years, the technology of feature selection is
of diversity. A lot of feature methods have been proposed [9–11,15,17,18]. Here,
we consider RELIEF-based methods.

Kira and Rendell proposed the famous Relief algorithm in 1992, which uses
the Euclidean distance as a metric to select features with great weights [6].
In 1994, Kononenko presented the extended algorithm RELIEF-F to solve the
problem of multi-class classification [7]. On the basis of RELIEF, Sun et al. pro-
posed an iterative RELEIF (I-RELIEF) algorithm to alleviate the deficiencies of
RELEIF by exploring the framework of the expectation-maximization algorithm
[8]. In order to better estimate feature weights, Sun et al. also proposed a logistic
I-RELIEF (LIR) algorithm, which optimizes I-RELIEF in the form of logistic
regression [16]. All of the above RELIEF-based algorithms are supervised fea-
ture selection ones, which can only use data with class labels. However, these
methods cannot have a good performance when there exist few labeled data
and a large number of unlabeled data. To remedy it, a semi-supervised logistic
I-RELEIF (SLIR) method was presented [16]. In SLIR, both labeled and unla-
beled data are used to calculate margin vectors of samples. However, SLIR was
designed only for binary classification tasks. Tang et al. developed a multi-class
semi-supervised logistic I-RELIEF (MSLIR) algorithm [19]. MSLIR designs a
novel scheme to find margin vectors of unlabeled samples by calculating all pos-
sible candidate margin vectors and picking an optimal one under the condition
of current feature weights. However, although MSLIR can implement multi-class
feature selection in semi-supervised learning and get better classification perfor-
mance than LIR, the supervised learning method, the prediction performance of
unlabeled samples is unsatisfactory.

In order to solve the above issue, we propose a multi-class semi-supervised
logistic I-RELEIF based on nearest neighbor (MSLIR-NN) for multi-class fea-
ture selection. In MSLIR-NN, the nearest neighbor scheme is adopted to assign
pseudo labels to unlabeled samples according to labeled data in each iteration.
In this case, unlabeled samples with pseudo labels could be treated as labeled
ones. Thus, the margin vectors of labeled and unlabeled samples could be cal-
culated easily. MSLIR-NN has a smaller computational complexity than MSLIR
when calculating margin vectors of unlabeled samples. In experiments, support
vector machine (SVM) and nearest neighbor (NN) classifiers are used to ensure
the fairness of the classification results, respectively. Experimental results show
that MSLIR-NN greatly improves the prediction performance of unlabeled data
and enhances the performance of classifiers.

The rest part of this paper is organized as follows. The proposed method is
described in detail in Sect. 2. The connections of MSLIR-NN to other related
work are also discussed. Section 3 gives and analyzes experimental results.
Section 4 concludes this paper.

Multi-class Semi-supervised Logistic I-RELIEF Feature Selection 283

2 Proposed Method: MSLIR-NN

In this section, we design a novel multi-class semi-supervised feature selection
method, MSLIR-NN which adopts the nearest neighbor scheme to assign pseudo
labels to unlabeled samples in each iteration. In doing so, unlabeled samples
with pseudo labels could be treated as labeled ones. Thus, the margin vectors
of labeled and unlabeled samples could be calculated easily. In the following, we
describe MSLIR-NN in detail and discuss its connections to MSLIR and SLIR.

2.1 Margin Vectors

Assume that there is a labeled sample set Dl = {(xl
i, y

l
i)}Li=1 and an unlabeled

sample set Du = {xu
i }Ui=1, where xl

i ∈ R
I , yl

i ∈ {1, 2, . . . , c}), xu
i ∈ R

I , I is the
number of original features, c is the class number, L and U represent the number
of labeled and unlabeled samples, respectively. Generally, L � U .

It is well known that one of main differences of RELIEF-based methods is
the way of calculating margin vectors of samples. Without loss of generality, let
zli and zui be margin vectors of the labeled sample xl

i and the unlabeled sample
xu
i , respectively. It is easy to generate the margin vectors of labeled samples

in semi-supervised RELIEF-based methods. Similar to MSRIL [19], the margin
vector zli of the labeled sample xl

i can be expressed as follows:

zli =
∑

xl
k∈Mi

P(xl
k = NM(xl

i)|w)|xl
i − xl

k|

−
∑

xl
k∈Hi

P(xl
k = NH(xl

i)|w)|xl
i − xl

k| (1)

where w is the feature weight vector, the set Mi = {xl
k|(xl

k, y
l
k) ∈ Dl, y

l
i �= yl

k, k =
1, · · · , L, yl

k ∈ {1, · · · , c}} contains all labeled samples that have different labels
from xl

i, the set Hi = {xl
k|(xl

k, y
l
k) ∈ Dl, y

l
i = yl

k, k = 1, · · · , L, yl
k ∈ {1, · · · , c}}

contains all labeled samples that have the same label as xl
i, P(xl

k = NM(xl
i)|w)

and P(xl
k = NH(xl

i)|w) are the probabilities that the sample xl
k is the nearest

miss and the nearest hit of xl
i, respectively, NM(xl

i) represents the nearest miss
(the nearest neighbor of sample xl

i from a different class) of xl
i, and NH(xl

i) the
nearest hit (the nearest neighbor of sample xl

i from the same class) of xl
i.

For semi-supervised RELIEF-based methods, it is the key and difficulty that
how to define the margin vectors of unlabeled samples. Before calculating them,
we first predict the pseudo labels of unlabeled data. According to the information
contained in the labeled set Dl, we use the nearest neighbor scheme to predict
the pseudo labels of unlabeled data in the set Du. Note that w changes as iter-
ations. For any unlabeled sample, its neighborhood is metabolic under different
weight conditions. In other words, w has an effect on the procedure of searching
nearest neighbors. Thus, we search nearest neighbors of unlabeled samples in
the weighted feature space instead of the original input space. Then, we extend

284 B. Tang and L. Zhang

Du to the set D̂u = {(xu
i , ŷu

i)}Ui=1 with pseudo labels ŷu
i for xu

i . Similar to (1),
we define the margin vector zui of the unlabeled sample xu

i :

zui =
∑

xl
k∈M′

i

P(xl
k = NM(xu

i)|w)|xu
i − xl

k|

−
∑

xl
k∈H′

i

P(xl
k = NH(xu

i)|w)|xu
i − xl

k| (2)

where the set M′
i = {xl

k|(xl
k, y

l
k) ∈ Dl, ŷ

u
i �= yl

k, k = 1, · · · , L, yl
k ∈ {1, · · · , c}}

contains all labeled samples that have different labels from xu
i , and the set H′

i =
{xl

k|(xl
k, y

l
k) ∈ Dl, ŷ

u
i = yl

k, k = 1, · · · , L, yl
k ∈ {1, · · · , c}} contains all labeled

samples that have the same label as xu
i .

2.2 Optimization Problem

After obtaining margin vectors of all samples, the optimization of MSLIR-NN
can be described as:

min
w

‖w‖1 + α

L∑

i=1

log(1 + exp(−wT zli)) + β

U∑

i=1

log(1 + exp(−wT zui)) (3)

s.t. w ≥ 0

where ‖·‖1 is the 1-norm, the regularization parameters α ≥ 0 and β ≥ 0 control
the importance of labeled and unlabeled samples, respectively.

To eliminate the constraint of w ≥ 0, let w = [v2
1 , · · · , v2

I]
T and v =

[v1, · · · , vI]. Substituting v into (3), we can make it to an unconstraint opti-
mization problem and have

min
v

J = ‖v‖22 + α

L∑

i=1

log(1 + exp(−
I∑

d=1

v2
dz

l
id))

+ β
U∑

i=1

log(1 + exp(−
I∑

d=1

v2
dz

u
id)) (4)

where zli = [zli1, · · · , zliI] and zui = [zui1, · · · , zuiI]. (4) can be solved by using the
gradient descent method. The derivation of J to v can be written as follows:

∂J

∂vk
= 2vk − α

L∑

i=1

exp(−∑I
d=1 v2

dz
l
id)(2vkz

l
ik)

1 + exp(−∑I
d=1 v2

dz
l
id)

− β
U∑

i=1

exp(−∑I
d=1 v2

dz
u
id)(2vkz

u
ik)

1 + exp(−∑I
d=1 v2

dz
u
id)

(5)

Let

Q = α

L∑

i=1

exp(−∑I
d=1 v2

dz
l
id)(vkz

l
ik)

1 + exp(−∑I
d=1 v2

dz
l
id)

+ β

U∑

i=1

exp(−∑I
d=1 v2

dz
u
id)(vkz

u
ik)

1 + exp(−∑I
d=1 v2

dz
u
id)

Multi-class Semi-supervised Logistic I-RELIEF Feature Selection 285

Then we can update vk by

vk ← vk − η(vk − Q) (6)

where η > 0 is the learning rate.

2.3 Algorithm and Complexity Analysis

The algorithm description of MSLIR-NN is shown in Algorithm 1. Given a
labeled dataset Dl and an unlabeled dataset Du, the weight vector w is updated
iteratively. Note that the weight vector in the t-th iteration is denoted as w(t−1).
First, under the current feature weights, MSLIR-NN computes the weighted
labeled samples xl∗ and unlabeled xu∗, that is: xl∗=xl ◦ w(t) and xu∗ =
xu ◦w(t−1), where ◦ denotes the element-by-element multiplication. The pseudo
labels of unlabeled samples are determined in the weighted sample space using
the NN scheme. Then, the margin vectors of xl and xu are calculated by (1) and
(2), respectively. Finally, w is obtained by solving (3). MSLIR-NN alternatively
modifies the weight vector until convergence.

The computational complexity of MSLIR-NN mainly includes three parts:
the calculation of margin vectors for labeled samples, the calculation of margin
vectors for unlabeled samples, and the solution to the optimization problem (3).
The computational complexity of calculating margin vectors for labeled samples
is identical to that of MSLIR and SLIR, which is O(dL2) without considering
the calculation of probability terms, where d is the dimension of samples, and L
is the number of labeled samples. For calculating of margin vectors for unlabeled
samples, the computational complexity in MSLIR-NN is about O(dUL), where
U is the number of unlabeled samples. For the last part, MSLIR-NN has the
same computational complexity as MSLIR and SLIR.

2.4 Connections to Related Work

Four RELEIF-based methods, LIR, SLIR, MSLIR and MSLIR-NN use the logis-
tic regression formulation to optimize the feature weight vector w. We discuss
the connections of MSLIR-NN to LIR, SLIR, MSLIR in the following.

MSLIR-NN is a semi-supervised learning method as well as SLIR and MSLIR,
LIR is designed for supervised learning. Base on LIR, SLIR introduces a term
about unlabelled samples into the objective function. MSLIR changes the objec-
tive function of SLIR, which makes a balance calculation between labeled and
unlabeled samples. Although MSLIR-NN has the same optimization function as
MSLIR, MSLIR-NN has a different way for computing margin vectors of unla-
belled samples.

SLIR, MSLIR and MSLIR-NN all adopt the way of calculating margin vectors
of labeled samples in LIR. It is intuitive for SLIR to get margin vectors of
unlabeled samples since SLIR deals with only binary classification tasks. For
a given unlabeled sample, MSLIR first calculates all possible candidate margin
vectors and takes an optimal one in the weighted feature space as its margin

286 B. Tang and L. Zhang

Algorithm 1. MSLIR-NN
Input: Labeled dataset Dl = {(xl

i, y
l
i)}L

i=1 ⊂ RI × {1, 2, . . . , c}; unlabeled
dataset Du = {xu

i }U
i=1 ⊂ RI , regularization parameters α and β, the

iteration number T , and the stop criterion θ.
Output: Feature weight w.

1 begin
2 Initialization: Set w(0) = [1, 1, . . . , 1]T , t = 1, and ρ = 1 + θ;
3 while t ≤ T && ρ > θ do

4 Compute the weighted samples xl∗
i and xu∗

i : xl∗
i =xl

i ◦ w(t−1) and
xu∗
i =xu

i ◦ w(t−1), where ◦ denotes the element-by-element
multiplication;

5 Predict pseudo labels of unlabeled samples xu∗
i by using weighted data,

i = 1, · · · , U ;

6 Compute zli by (1) and zui by (2);
7 Solve the optimization problem (3) using the gradient descent method

to find v;

8 Compute w(t) = [v2
1 , . . . , v2

I]
T ;

9 Let ρ = ‖w(t) − w(t−1)‖;
10 t = t + 1;

11 end
12 w = w(t);
13 Return w.

14 end

vector. The computational complexity of MSLIR is O(cdLU) when calculating
margin vectors of unlabel samples. MSLIR-NN first assigns a pseudo label for the
unlabeled sample and then directly calculate its margin vector as label samples.
Compared to MSLIR, MSLIR-NN has a lower complexity, or O(dLU), which is
independent of the class number c and identical to SLIR.

3 Experiments

We conduct extensive experiments to demonstrate the efficiency and effectiveness
of MSLIR-NN. Ten UCI datasets [20] including Pendigits, Satimage, Waveform,
Wine, Vehicle, Iris, Breast, Heart, Wdbc and Pima are adopted, where the first
six datasets are multi-class, and the rest four ones are binary. All datasets are
randomly divided into training and test subsets, and the training subsets contain
labeled and unlabeled samples. A brief description of datasets is listed in Table 1,
where “#Training” and “#Test” represent the number of training and test sam-
ples, respectively, “#Labeled” and “#Unlabeled” are the number of labeled and
unlabeled samples in a training set, “#Feature” represents the dimension of
samples, and “#Class” indicates the number of categories in datasets. For each
dataset, we add 100 additional noise features which are independently Gaussian
distributed. We normalize all features with the original data.

Multi-class Semi-supervised Logistic I-RELIEF Feature Selection 287

Table 1. Description of ten UCI datasets.

Data sets #Training #Test #Feature #Class

#Labeled #Unlabeled

Pendigits 20 7474 3498 16(+100) 10

Satimage 30 4405 2000 36(+100) 6

Waveform 30 470 4500 21(+100) 3

Wine 10 40 128 13(+100) 3

Vehicle 20 180 646 18(+100) 4

Iris 10 40 100 4(+100) 3

Breast 20 179 500 9(+100) 2

Heart 40 130 133 13(+100) 2

Wdbc 20 149 400 30(+100) 2

Pima 30 158 580 8(+100) 2

In our experiments, the compared methods include RELIEF-F, LIR, SLIR,
MSLIR and MSLIR-NN. Both RELIEF-F and LIR use only labeled data, while
SLIR, MSLIR and MSLIR-NN use both labeled and unlabeled data. The classifi-
cation performance is tested on the same test subsets. In LIR, the regularization
parameter λ and learning rate η are 10 and 0.03, respectively. In MSLIR-NN,
MSLIR and SLIR, the parameters α and β are 10 and 0.1, respectively, and the
learning rate is the same as that of LIR.

To eliminate the effect of statistical error, each algorithm runs 10 times for
each dataset, and takes the average result as the final one. In order to ensure the
reliability of experimental results, the nearest neighbor (NN) and support vector
machine (SVM) classifiers are used in experiments. Here the Gaussian kernel and
regularization parameters in SVM are selected by the grid search method, where
both vary from 2−10 to 210.

3.1 Experiments on Multi-class Datasets

For multi-classification tasks, we compare the proposed algorithm with other
three methods MSLIR, LIR and RELIEF-F. Experiments are implemented on
the Pendigits, Satimage, Waveform, Wine, Vehicle and Iris datasets. The per-
formance of these feature selection algorithms are evaluated by the classification
accuracy with selected features, and the final experimental results obtained by
SVM are shown in Fig. 1. From Fig. 1, we can observe that the classification
accuracy of MSLIR-NN is the best among compared methods, which indicates
that features selected by MSLIR-NN have a greater correlation with the label
information. In Figs. 1(a) and (c), it can be observed that the classification accu-
racy of the four algorithms increases as increasing the number of features, which
demonstrates that the chosen features are all useful features for classification and
the noisy features are excluded. In Figs. 1(b), (d), (e) and (f), the classification

288 B. Tang and L. Zhang

accuracy tends to be steady or decreasing, which indicates that feature selection
is useful. In other words, not all original features are related to classification
tasks. For example, in the Wine dataset, when the number of selected features
is eight, MSLIR-NN achieves the highest classification accuracy of 98%, and the
last four selected features are likely to be irrelevant features.

The performance curves obtained by NN are shown in Fig. 2. From these
figures, we can have similar conclusions as those from Fig. 1. We give the best
average accuracies and the corresponding standard deviations of four methods in
Table 2, where the best results are bolded. Compared with the other three meth-
ods, MSLIR-NN has a higher classification accuracy and smaller standard devi-
ation, reflecting that our method has better stability than the previous MSLIR.

2 4 6 8 10 12 14 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of feature

A
cc

ur
ac

y

MSLIR−NN
MSLIR
LIR
RELIEF−F

(a) Pendigits
5 10 15 20 25 30 35

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Number of feature

A
cc

ur
ac

y

MSLIR−NN
MSLIR
LIR
RELIEF−F

(b) Satimage
2 4 6 8 10 12 14 16 18 20

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Number of feature

A
cc

ur
ac

y

MSLIR−NN
MSLIR
LIR
RELIEF−F

(c) Waveform

2 4 6 8 10 12
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Number of feature

A
cc

ur
ac

y

MSLIR−NN
MSLIR
LIR
RELIEF−F

(d) Wine
2 4 6 8 10 12 14 16 18

0.3

0.35

0.4

0.45

0.5

0.55

Number of feature

A
cc

ur
ac

y

MSLIR−NN
MSLIR
LIR
RELIEF−F

(e) Vehicle
1 1.5 2 2.5 3 3.5 4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of feature

A
cc

ur
ac

y

MSLIR−NN
MSLIR
LIR
RELIEF−F

(f) Iris

Fig. 1. Classification accuracy of SVM using four feature selection methods on multi-
class datasets: (a) Pendigits, (b) Satimage, (c) Waveform, (d) Wine, (e) Vehicle and
(f) Iris.

Table 2. Classification accuracy and standard deviations (%) of NN using four feature
selection methods on multi-class datasets

Data sets MSLIR-NN MSLIR LIR RELIEF-F

Pendigits 97.74± 0.10 92.22 ± 17.45 90.05 ± 6.13 89.49 ± 4.92

Satimage 88.55± 0.00 79.18 ± 4.23 83.07 ± 1.82 84.21 ± 1.25

Waveform 70.85± 2.90 68.38 ± 2.81 67.17 ± 4.65 69.74 ± 3.26

Wine 87.11± 3.85 85.23 ± 5.37 79.92 ± 8.92 82.97 ± 9.21

Vehicle 51.35± 6.93 48.98 ± 7.41 45.74 ± 8.93 47.77 ± 6.99

Iris 92.30± 5.23 86.10 ± 19.91 79.70 ± 25.79 81.20 ± 23.88

Multi-class Semi-supervised Logistic I-RELIEF Feature Selection 289

2 4 6 8 10 12 14 16
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of feature

A
cc

ur
ac

y

MSLIR−NN
MSLIR
LIR
RELIEF−F

(a) Pendigits
5 10 15 20 25 30 35

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Number of feature

A
cc

ur
ac

y

MSLIR−NN
MSLIR
LIR
RELIEF−F

(b) Satimage
2 4 6 8 10 12 14 16 18 20

0.5

0.55

0.6

0.65

0.7

0.75

Number of feature

A
cc

ur
ac

y

MSLIR−NN
MSLIR
LIR
RELIEF−F

(c) Waveform

2 4 6 8 10 12
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Number of feature

A
cc

ur
ac

y

MSLIR−NN
MSLIR
LIR
RELIEF−F

(d) Wine
2 4 6 8 10 12 14 16 18

0.3

0.35

0.4

0.45

0.5

0.55

Number of feature

A
cc

ur
ac

y

MSLIR−NN
MSLIR
LIR
RELIEF−F

(e) Vehicle
1 1.5 2 2.5 3 3.5 4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of feature

A
cc

ur
ac

y

MSLIR−NN
MSLIR
LIR
RELIEF−F

(f) Iris

Fig. 2. Classification accuracy of NN using four feature selection methods on multi-
class datasets: (a) Pendigits, (b) Satimage, (c) Waveform, (d) Wine, (e) Vehicle and
(f) Iris.

3.2 Experiments on Binary Datasets

Similar to MSLIR, MSLIR-NN can also be applied to binary classification tasks.
Since SLIR is only applicable to binary classification tasks, we compare MSLIR-
NN and MSLIR with it on Breast, Heart, Wdbc and Pima datasets.

The experimental results obtained by SVM are given in Fig. 3. We can see
that MSLIR-NN is much better than both MSLIR and SLIR, especially in
Figs. 3(a), (c) and (d).

The performance curves obtained by NN are shown in Fig. 4. MSLIR-NN still
has an advantage over other two methods. We list the best average classification
accuracies and corresponding standard deviations in Table 3. Obviously, MSLIR-
NN has the best performance among three methods on four binary datasets, fol-
lowed by MSLIR. Compared to MSLIR, MSLIR-NN is improved 2.03% accuracy
on Heart and 5.73% the accuracy on Pima, respectively.

Table 3. Classification accuracy and standard deviations (%) of NN using three feature
selection methods on binary datasets

Data sets MSLIR-NN MSLIR SLIR

Breast 94.74± 1.12 93.86 ± 1.88 93.00 ± 3.48

Heart 74.51± 4.48 72.48 ± 4.12 69.02 ± 6.70

Wdbc 87.43± 3.65 87.18 ± 2.58 84.30 ± 7.34

Pima 67.20± 3.37 61.47 ± 3.72 60.81 ± 5.24

290 B. Tang and L. Zhang

1 2 3 4 5 6 7 8 9
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

Number of feature

A
cc

ur
ac

y
MSLIR−NN
MSLIR
SLIR

(a) Breast

2 4 6 8 10 12
0.6

0.65

0.7

0.75

0.8

Number of feature

A
cc

ur
ac

y

MSLIR−NN
MSLIR
SLIR

(b) Heart

5 10 15 20 25 30
0.6

0.65

0.7

0.75

0.8

0.85

Number of feature

A
cc

ur
ac

y

MSLIR−NN
MSLIR
SLIR

(c) Wdbc

1 2 3 4 5 6 7 8
0.6

0.65

0.7

Number of feature

A
cc

ur
ac

y

MSLIR−NN
MSLIR
SLIR

(d) Pima

Fig. 3. Classification accuracy of SVM using four feature selection methods on binary
datasets: (a) Breast, (b) Heart, (c) Wdbc, (d) Pima.

1 2 3 4 5 6 7 8 9
0.7

0.75

0.8

0.85

0.9

0.95

Number of feature

A
cc

ur
ac

y

MSLIR−NN
MSLIR
SLIR

(a) Breast

2 4 6 8 10 12
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Number of feature

A
cc

ur
ac

y

MSLIR−NN
MSLIR
SLIR

(b) Heart

5 10 15 20 25 30
0.65

0.7

0.75

0.8

0.85

0.9

Number of feature

A
cc

ur
ac

y

MSLIR−NN
MSLIR
SLIR

(c) Wdbc

1 2 3 4 5 6 7 8
0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Number of feature

A
cc

ur
ac

y

MSLIR−NN
MSLIR
SLIR

(d) Pima

Fig. 4. Classification accuracy of NN using four feature selection methods on binary
datasets: (a) Breast, (b) Heart, (c) Wdbc, (d) Pima.

3.3 Comparison of MSLIR-NN and MSLIR

MSLIR-NN and MSLIR have the same objective function, and different ways
for constructing margin vectors of unlabeled samples. Here, we compare them in
two aspects, the prediction ability on unlabeled samples in training subsets and
the running time of feature selection.

Table 4 lists the accuracy on unlabeled samples and running time of feature
selection for two methods. We can see that MSLIR-NN is significantly better than
MSLIR on the prediction performance, which indicates that our new proposed

Multi-class Semi-supervised Logistic I-RELIEF Feature Selection 291

Table 4. Comparison of MSLIR-NN and MSLIR algorithms

Data sets Accuracy (%) Running time (sec.)

MSLIR-NN MSLIR MSLIR-NN MSLIR

Pendigits 30.33 2.98 55.26 64.00

Satimage 48.57 2.77 9.86 31.70

Waveform 63.15 6.00 63.01 59.93

Wine 62.00 5.00 2.87 2.48

Vehicle 35.78 18.00 18.93 10.78

Iris 84.25 6.00 0.84 5.99

Breast 90.61 64.75 1.75 14.68

Heart 67.31 46.08 49.59 53.12

Wdbc 83.22 63.75 1.48 19.42

Pima 57.53 35.70 0.78 44.78

algorithm can use a few labeled data to predict the label of unlabeled data.
Thus we can calculate the margin vectors of unlabeled samples more accurately,
which can improve the stability of algorithm. The computational complexity of
algorithms can be reflected by the running time of feature selection. Obviously,
MSLIR-NN is much faster than MSLIR on all ten datasets, which supports our
analysis about computational complexity in Sect. 2.3.

4 Conclusions

In this paper, we propose MSLIR-NN based on MSLIR for multi-class semi-
supervised feature selection by introducing the nearest neighbor scheme. MSLIR-
NN has a less complexity than MSLIR, and can improve the accuracy of label
prediction for unlabeled data which contributes to the calculation way of margin
vectors of unlabeled samples. Extensive experiments are performed on binary
and multi-class classification tasks. Two classical classifiers NN and SVM are
used to implement classification after feature selection has finished. On multi-
class datasets, MSLIR-NN is superior to supervised methods LIR and RELEIF-
F, and the semi-supervised method MSLIR. On the binary datasets, MSLIR-
NN performs the best among three semi-supervised methods. In experiments of
comparison with MSLIR, MSLIR-NN unfolds its ability in predicting labels of
unlabeled samples and speedability. In general, MSLIR-NN can extract useful
features and achieve better performance.

Acknowledgements. This work was supported in part by the National Natural Sci-
ence Foundation of China under Grant No. 61373093, by the Soochow Scholar Project
of Soochow University, and by the Six Talent Peak Project of Jiangsu Province of
China.

292 B. Tang and L. Zhang

References

1. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. J. Mach.
Learn. Res. 3(6), 1157–1182 (2003)

2. Zhao, Z., Wang, L., Liu, H., Ye, J.: On similarity preserving feature selection. IEEE
Trans. Knowl. Data Eng. 25(3), 619–632 (2013)

3. Benabdeslem, K., Hindawi, M.: Efficient semi-supervised feature selection: con-
straint, relevance, and redundancy. IEEE Trans. Knowl. Data Eng. 26(5), 1131–
114326 (2014)

4. Zhang, D., Chen, S., Zhou, Z.H.: Constraint score: a new filter method for feature
selection with pairwise constraints. Pattern Recogn. 41(5), 1440–1451 (2008)

5. Sheikhpour, R., Sarram, M.A., Gharaghani, S., et al.: A survey on semi-supervised
feature selection methods. Pattern Recogn. 64(C), 141–158 (2016)

6. Kira, K., Rendell, L.A.: The feature selection problem: traditional methods and a
new algorithm. In: Tenth National Conference on Artificial Intelligence, pp. 129–
134 (1992)

7. Kononenko, I.: Estimating attributes: analysis and extensions of RELIEF. In: Euro-
pean Conference on Machine Learning on Machine Learning, pp. 171–182 (1994)

8. Sun, Y.: Iterative RELIEF for feature weighting: algorithms, theories, and appli-
cations. IEEE Trans. Pattern Anal. Mach. Intell. 29, 1035–1051 (2007)

9. Cheng, Z.D., Zhang, Y.J., Fan, X., Zhu, B.: Study on discriminant matrices of
commonly used fisher discriminant functions. Acta Autom. Sinica 36(10), 1361–
1370 (2010)

10. Chen, L.F., Liao, H.Y.M., Ko, M.T., Lin, J.C., Yu, G.J.: A new LDA based face
recognition system which can solve the small sample size problem. Pattern Recogn.
33(10), 1713–1726 (2000)

11. Peng, H., Long, F., Ding, C.: Feature selection based on mutual information: crite-
ria of max-dependency, max-relevance, and min-redundancy. IEEE Comput. Soc.
27(8), 1226 (2005)

12. Mitra, P., Murthy, C.A., Pal, S.K.: Unsupervised feature selection using feature
similarity. IEEE Trans. Pattern Anal. Mach. Intell. 24(3), 301–312 (2002)

13. He, X., Cai, D., Niyogi, P.: Laplacian score for feature selection. In: International
Conference on Neural Information Processing Systems, vol. 18, pp. 507–514 (2005)

14. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, New York
(2006)

15. Zeng, Z., Wang, X.D., Zhang, J., Wu, Q.: Semi-supervised feature selection based
on local discriminative information. Neurocomputing 173(P1), 102–109 (2016)

16. Cheng, Y., Cai, Y., Sun, Y., Li, J.: Semi-supervised feature selection under the
Logistic I-RELIEF framework. In: International Conference on Pattern Recogni-
tion, pp. 1–4 (2008)

17. Zhao, Z., Liu, H.: Semi-supervised feature selection via spectral analysis. In: SIAM
International Conference on Data Mining, SIAM 2007, pp. 641–646. SIAM, Min-
neapolis (2007)

18. Xu, J., Tang, B., He, H., Man, H.: Semi-supervised feature selection based on
relevance and redundancy criteria. IEEE Trans. Neural Netw. Learn. Syst. 28(9),
1974–1984 (2016)

19. Tang, B., Zhang, L.: Semi-supervised feature selection based on logistic I-RELIEF
for multi-classification. In: Geng, X., Kang, B.-H. (eds.) PRICAI 2018. LNCS
(LNAI), vol. 11012, pp. 719–731. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-97304-3 55

20. UCI Machine Learning Repository. http://archive.ics.uci.edu/ml/datasets.html

https://doi.org/10.1007/978-3-319-97304-3_55
https://doi.org/10.1007/978-3-319-97304-3_55
http://archive.ics.uci.edu/ml/datasets.html

Effort-Aware Tri-Training
for Semi-supervised Just-in-Time Defect

Prediction

Wenzhou Zhang1, Weiwei Li2, and Xiuyi Jia1,3(B)

1 School of Computer Science and Engineering,
Nanjing University of Science and Technology, Nanjing 210094, China

jiaxy@njust.edu.cn
2 College of Astronautics, Nanjing University of Aeronautics and Astronautics,

Nanjing 210016, China
3 State Key Laboratory for Novel Software Technology, Nanjing University,

Nanjing 210023, China

Abstract. In recent years, just-in-time (JIT) defect prediction has
gained considerable interest as it enables developers to identify risky
changes at check-in time. Previous studies tried to conduct research from
both supervised and unsupervised perspectives. Since the label of change
is hard to acquire, it would be more desirable for applications if a pre-
diction model doesn’t highly rely on the label information. However,
the performance of the unsupervised models proposed by previous work
isn’t good in terms of precision and F1 due to the lack of supervised
information. To overcome this weakness, we try to study the JIT defect
prediction from the semi-supervised perspective, which only requires a
few labeled data for training. In this paper, we propose an Effort-Aware
Tri-Training (EATT) semi-supervised model for JIT defect prediction
based on sample selection. We compare EATT with the state-of-the-art
supervised and unsupervised models with respect to different labeled
rates. The experimental results on six open-source projects demonstrate
that EATT performs better than existing supervised and unsupervised
models for effort-aware JIT defect prediction.

Keywords: Defect prediction · Just-in-time · Tri-training ·
Effort-aware

1 Introduction

In order to produce software of high quality, developers have to spend a lot of
effort testing and debugging the software. Software defect prediction [15] can
infer code segments that may contain defects, which can help developers effec-
tively save testing time and reduce the cost of software development. Most defect
prediction studies focused on predicting the defect at coarse granularity level,
such as file, package, or module [7,14,20]. In recent years, there is an increasing
c© Springer Nature Switzerland AG 2019
Q. Yang et al. (Eds.): PAKDD 2019, LNAI 11440, pp. 293–304, 2019.
https://doi.org/10.1007/978-3-030-16145-3_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16145-3_23&domain=pdf
https://doi.org/10.1007/978-3-030-16145-3_23

294 W. Zhang et al.

interest in defect prediction at change level. Such prediction was first proposed
by Mockus and Weiss [19], and referred as just-in-time (JIT) defect prediction by
Kamei et al. [12]. JIT defect prediction tries to identify defect-prone (“risky”)
software changes, whose data is collected by combining information extracted
from the version archive (such as Git) with bug reports. Compared with tra-
ditional software defect prediction, such prediction has many advantages. As
stated in Ref. [12], they can be summarized as the following three points: (1)
Predictions are made at a fine granularity. (2) Predictions can be associated with
the developers. (3) Predictions are made earlier. Furthermore, different changes
require different amount of effort to review. Kamei et al. [12] proposed effort-
aware JIT defect prediction using lines of code (LOC) to indicate the amount of
effort required to review changes. This kind of work is more practical as it could
help find more defect-inducing changes with the same inspection cost.

Previous JIT defect prediction studies mainly carried out based on supervised
or unsupervised models. Many supervised strategies have been proposed to pre-
dict the defect-prone changes, such as linear regression [12], logistic regression [8],
ensemble learning [21] and other approaches [5,6]. These supervised-based stud-
ies have achieved significant high performance for JIT defect prediction. How-
ever, the acquisition of labeled data (i.e., whether a change will induce defect
or not) is usually quiet expensive and time-consuming. For many new projects,
developers have spent a lot of time and effort testing unlabeled changes when the
supervised models are capable of predicting new change and the trained model
doesn’t make the best use of its value. In previous work, many studies [21,23]
have leveraged unsupervised model for effort-aware JIT defect prediction and
found that many unsupervised models could outperform supervised model in
terms of ACC1 and Popt

2. But there are many drawbacks in these works. As
stated in Ref. [8], many highly ranked changes are false alarms and they don’t
outperform supervised model when the F1 − score is considered. Different from
unsupervised models, semi-supervised methods attempt to exploit the intrinsic
data distribution information disclosed by the unlabeled data and the informa-
tion is usually considered to be helpful for learning [4,27]. Many studies have
been carried out for the semi-supervised defect prediction at coarser granular-
ity [2,10,13,17,18,24], which shows that the performance of defect prediction
can be improved by using unlabeled data. To verify whether unlabeled data is
still helpful for JIT defect prediction, we leverage tri-training [25] method to
exploit unlabeled data and propose an effort-aware tri-training (EATT) method
for semi-supervised JIT defect prediction. Specifically, (1) EATT uses an effort-
aware indicator to produce the final hypothesis. (2) Instead of subsampling the
unlabeled data randomly, EATT takes the predicted confidence as well as the
review budget into account. (3) EATT employs a greedy strategy to rank changes

1 ACC denotes the recall of defect-inducing changes when using 20% of the entire
effort to inspect the top ranked changes.

2 Popt is the normalized version of the effort-aware performance indicator based on
the concept of the “code-churn-based” Alberg diagram. More details could be found
in Sect. 4.5.

Effort-Aware Tri-Training 295

according to their tendency to be defect-prone of unit effort. To the best of our
knowledge, this is the first time to leverage semi-supervised method for effort-
aware JIT defect prediction.

The main contributions of this paper are as follows:

(1) We investigate the predictive effectiveness of sample-based semi-supervised
models in effort-aware JIT defect prediction and propose an effort-aware
tri-training method for semi-supervised JIT defect prediction.

(2) We perform an in-depth evaluation on existing supervised and unsupervised
models with cross-validation under different labeled rates.

(3) We compare EATT with several supervised, unsupervised and semi-
supervised methods under different evaluation indicators. The experimental
results show that EATT can significantly improve the performance of effort-
aware JIT defect prediction.

The rest of this paper is organized as follows. Section 2 introduces the related
work on defect prediction. Section 3 describes the over-all framework of our
method and presents the detail of our approach. Section 4 provides the experi-
mental setup and the research questions in our study. Section 5 gives the answers
of these questions and reports the experimental results in detail. Section 6 con-
cludes this paper.

2 Related Work

In this section, we will introduce the related work on JIT defect prediction and
some semi-supervised learning applications in traditional defect prediction.

2.1 Just-in-Time Defect Prediction

JIT defect prediction is proposed by Kamei et al. [12], they performed a large-
scale empirical study on six open source projects and five commercial projects.
Their results showed that they can predict defect-inducing changes with 68%
accuracy and 64% recall. Kamei et al. [11] explored cross-project models in the
context of JIT prediction, but the JIT models rarely performed well in a cross-
project context. Yang et al. [23] found that simple unsupervised models could
achieve higher recall than supervised models. Fu et al. [6] improved the related
unsupervised models by pruning weaker predictors away. Huang et al. [8] found
the unsupervised model required developers to inspect numerous changes and
then proposed an improved supervised model. Furthermore, Yang et al. [21,
22] leveraged deep learning techniques and ensemble learning to predict defect-
prone changes. Liu et al. [16] found that code churn is a neglected metric and
built unsupervised model based on it. Chen et al. [5] proposed a multi-objective
optimization based supervised method MULTI.

296 W. Zhang et al.

2.2 Semi-supervised Learning in Traditional Defect Prediction

Semi-supervised model is a machine learning technique trained by utiliz-
ing a few labeled and abundant unlabeled data. Semi-supervised approach
for software defect prediction has attracted considerable researchers’ interest
and many approaches have been proposed recently. There are many kinds of
methods such as constraint-based semi-supervised clustering [2], sample-based
approaches [10,13,17], labeled propagation approach [24], and preprocessing
strategies [10,18]. These studies show that semi-supervised methods can improve
the performance of the model in traditional defect prediction. To this end, we
investigate whether semi-supervised models are still effective when it comes to
effort-aware JIT defect prediction. From previous studies [3,25], the unlabeled
data could be helpful if they are exploited properly. Many strategies [26] have
been proposed to exploit the disagreements among the learners during the semi-
supervised learning process. All these studies show that the sample-based semi-
supervised methods are capable for effort-aware JIT defect prediction. Since the
semi-supervised methods only need a few labeled data, it will be more desirable
for application if they still have good performances.

3 Effort-Aware Tri-Training

JIT defect prediction tries to predict whether a committed change is defect-
prone or not. Based on the previous study [12], the JIT datasets are relatively
imbalanced and most change measures are highly skewed. We adopt the same
method as Ref. [12] to deal with these problems.

The tri-training method was proposed by Zhou and Li [25], which attempts
to exploit unlabeled data using three classifiers. Although good performance
could be obtained by using traditional semi-supervised methods, they are not
suitable for effort-aware JIT defect prediction as such methods are designed for
classification tasks and do not generalize to effort-aware ranking tasks. For JIT
defect prediction, the effort is measured with the size of change (i.e., the total
number of modified lines) [12]. In our work, we follow the previous work [5,12,23]
only use 12 metrics (excluding LA and LD) to build semi-supervised model, and
the LA (lines of code added) and LD (lines of code deleted) will be combined
to make up the effort value in predicting the risk value of changes. We propose
an effort-aware tri-training (EATT) method for JIT defect prediction and the
overall framework is presented in Fig. 1.

3.1 Problem Formulation

Let L denote the labeled software changes (i.e., whether these changes will induce
defect or not are already known) and U denote the unlabeled software changes.
Let X denote the new changes whose labels we try to predict and the function
Effort(x) denote the amount of effort required by the change x (x ∈ X), i.e.,
the number of modified lines. Assume there are three classifier h1, h2 and h3,
EATT tries to exploit the unlabeled data by employing these classifiers and
taking the inspect effort into account.

Effort-Aware Tri-Training 297

3.2 Model Evaluation

In order to discover more defect-inducing changes under given inspection budget,
the recall of defect-inducing changes with a fixed effort is used to produce the
final hypothesis in our work. Although the classification accuracy may decrease,
EATT could find more defect-inducing changes by ranking the changes according
to their defect density.

Classification results:

..

Defect-inducing

Defect-free

Rank list:

..

high low

Defect-proneness

JIT dataset
Training

data
Testing

data

Version
archive

Bug
reports

Link

Effort-
aware

indicator

Sampling
strategy

Risk
calculator

Model
evaluation

Sample
selection

Result
prediction

Classifiers
training

Fig. 1. Illustration of EATT for JIT defect prediction. (1) The JIT dataset is extracted
from the combination of version archive and bug reports. (2) Then our semi-supervised
model is trained by utilizing the EATT method. (3) Finally, the model outputs classi-
fication or ranking results.

3.3 Sample Selection

Let et and |Lt| denote the classification error rate and the number of changes
introduced into the labeled data in the t-th round. L′ ⊆ U represents the
set of changes on which two classifiers have same prediction results. From the
study of [1,25], as long as the number of samples introduced per round satisfies
|Lt| < et−1|Lt−1|/et, the negative impact of introducing noise can be compen-
sated by the newly sufficient labeled examples. In the actual learning process,
|L′| is usually larger than the et−1|Lt−1|/et. We prefer to select the changes
that have higher confidence and extremism effort rather than randomly as pre-
vious studies [16,23] show that “smaller” changes tend to be more proportionally
defect-prone.

3.4 Result Prediction

For a new change x, the label (i.e., defect-inducing or defect-free) is predicted
by majority voting. When it comes to the effort-aware JIT defect prediction, the
risk value R(x) is predicted as follows:

R(x) =
∑

i pi(x)
Effort(x)

. (1)

298 W. Zhang et al.

Where pi(x) denotes the probability to be defect-inducing predicted by hi. By
adding the probabilities to be defect-inducing predicted by three classifiers, the
confidence of all three classifiers can be reflected on the rank list.

The pseudo-code of the EATT is shown in Algorithm 1.

Algorithm 1. Effort-Aware Tri-Training for JIT Defect Prediction
Input: Training set of labeled changes L = {xi, yi}l

i=1; Training set of
unlabeled changes U = {xi}u

i=1; Testing set of new changes
X = {xi}n

i=1; Effort required to inspect all these changes
E = {Effort(xi)}l+u+n

i=1 ; Three classifiers h1, h2, h3;
Output: Rank list sorted by the risk value of each change x ∈ X.

1 Train {h1, h2, h3} on labeled training set L;
2 Initialize the recall with a fix effort ACC; the classification error e; the number

of selected changes l;
3 while any of {h1, h2, h3} changes do
4 Choose one combination of any two classifiers.
5 Compute e and ACC by evaluating the performance on the set of changes

where two classifiers make the same prediction on L;
6 if ACC is greater than that in the last round then
7 Get the set of changes L′ where the corresponding two classifiers make

the same prediction on U ;
8 Compute the number of changes to be selected;
9 Subsample the L′ by selecting high confident changes;

10 end
11 Update ACC, e and l;
12 Retrain the remaining classifier on the new labeled data L

⋃
L′;

13 end
14 Compute the risk value R(x) of each change x ∈ X by Eq.(1).

4 Experiment Setup

In this section, we first describe the statistics of datasets used in our experi-
ments. Then, we introduce the baseline models in our study. Next, we present
the evaluation methods used to analyze datasets. After that, we describe the
performance indicators used to evaluate the performance of defect prediction
models. Finally, the research questions are presented.

4.1 Datasets

In this work, we conduct semi-supervised learning experiments on six large open
source projects. These projects include Bugzilla (BUG), Columba (COL), Eclipse
JDT (JDT), Eclipse Platform (PLA), Mozilla (MOZ) and PostgreSQL (POS),
which are shared by Kamei et al. [12]. Table 1 summarizes the statistics of the
studied projects, including the total number of changes, the period of the project
and the percent of defect-inducing changes.

Effort-Aware Tri-Training 299

Table 1. Statistics of the studied projects.

Project Period #Changes %Defect

BUG 1998/08/26–2006/12/16 4620 36%

COL 2002/11/25–2006/07/27 4455 30%

JDT 2001/05/02–2007/12/31 35386 14%

PLA 2001/05/02–2007/12/31 64250 14%

MOZ 2000/01/01–2006/12/17 98275 5%

POS 1996/07/09–2010/05/15 20431 25%

4.2 Baseline Models

In this study, we compare EATT against the state-of-the-art supervised mod-
els and unsupervised models. The supervised model including EALR [12],
TLEL [21], CBS [8], OneWay (OW) [6], MULTI [5], and the unsupervised model
including LT [23] and CCUM [16]. EALR is a linear regression based effort-aware
JIT defect prediction model. TLEL applies tow-layer ensemble strategy to build
JIT defect prediction model. CBS is a supervised model by sorting changes
after classifying. OneWay is a supervised model based on the simple unsuper-
vised learners. MULTI is a supervised JIT defect prediction model based on
multi-objective optimization. The LT model is an unsupervised model by rank-
ing changes according to the measure LT . CCUM is built by ranking changes
according to code churn (i.e., LA+LD). In addition, we also compare EATT
against other sample-based semi-supervised methods in traditional defect pre-
diction including CoForest (CF) [13] and FTF [17]. CoForest labels changes
based on the random forest method and produce the final hypothesis. FTF is a
semi-supervised learner based on self-training.

4.3 Classifiers Selection

In our experiment, three different classifiers are selected as our base models. They
are logistic regression, support vector machine and random forest classifier. The
reasons for selecting these classifiers are three-fold. First, they are popular and
mature classification techniques and easy to be implemented. Second, there is a
large disagreement between these classifiers while their performance are compa-
rable, which is considered beneficial for learning [26]. Third, these classifiers are
also widely used in previous JIT defect prediction researches [5,8,12,21,22]. Our
implementation3 is based on python. All the parameters of the classifiers use the
default values provided by sklearn package. In order to make a fair comparison,
the parameters of classifiers adopted by other baseline models are the same.

3 The data and code used in this paper are available at https://github.com/NJUST-
IDAM/EATT.

https://github.com/NJUST-IDAM/EATT
https://github.com/NJUST-IDAM/EATT

300 W. Zhang et al.

4.4 Evaluation Strategy

In our experiment, we use the 10 times 10-fold cross-validation, which is also
used in previous works [5,16,23]. As we try to apply semi-supervised method for
JIT defect prediction, the training data is a little different from previous work by
removing the label of training data randomly. In particular, for 10 times 10-fold
cross-validation, the training data is created by selecting a small rate of samples
as labeled data while the other as unlabeled data. After re-sampling the training
data, we select samples under labeled rates at 0.1 and 0.2, which are also adopted
in traditional semi-supervised defect prediction [2,24]. Note that the number of
labeled positive samples (i.e., defect-inducing changes) is the same as that of
labeled negative samples (i.e., defect-free changes). After that, the training data
consists of a few labeled data and abundant unlabeled data.

4.5 Performance Indicators

Five performance indicators are used to evaluate the performance of effort-aware
JIT defect prediction models. They are precision, recall, F1, ACC and Popt.

The precision, recall and F1 are commonly-used indicators to evaluate clas-
sification performance and also used by many previous studies [12,16,21,22]. The
ACC and Popt are used to evaluate ranking performance by taking the effort into
account [5,6,12,16,23]. ACC denotes the recall of defect-inducing changes when
using 20% of the entire effort to inspect the top ranked changes. Popt is defined
as 1−Δopt, where Δopt is the area between the effort-based cumulative lift chart
of the optimal model and the prediction model.

4.6 Research Questions

To evaluate the effectiveness of our semi-supervised method EATT, we investi-
gate the following three research questions.

– RQ1: Could the performance of supervised model be improved with the help
of unlabeled data?

– RQ2: How about the performance of EATT when compared to the unsuper-
vised method?

– RQ3: Does EATT perform better than other sample-based semi-supervised
approaches?

5 Experimental Results and Analysis

In this section, we answer our research questions and report the experimental
results.

RQ1: Could the performance of supervised model be improved with
the help of unlabeled data?

To answer this question, we compare EATT with five state-of-the-art super-
vised methods under different evaluation strategies as described in Sect. 4.4.

Effort-Aware Tri-Training 301

Tables 2, 3 show the comparison results of different methods. The number in
gray cell indicates that the corresponding model has an obvious advantage over
EATT method with respect to corresponding evaluation indicator according to
the Cliff’s δ [9], where |δ| ≥ 0.147. All the supervised and semi-supervised models
are trained based on the same labeled data and the semi-supervised models also
utilize the unlabeled data.

Table 2. The performance of the compared semi-supervised models and some super-
vised models

Indicator Project

0.1 labeled rate 0.2 labeled rate

supervised semi supervised semi

CBS TLEL OW CF FTF EATT CBS TLEL OW CF FTF EATT

Precision

BUG .5143 .5162 .3556 .5045 .5761 .5330 .5226 .5319 .3522 .5075 .6037 .5424
COL .4804 .4582 .2663 .4326 .5221 .4893 .4828 .4684 .2657 .4434 .5254 .4947
JDT .2569 .2436 .1155 .2123 .2871 .2707 .2531 .2501 .1153 .2168 .2980 .2726
MOZ .1299 .1275 .0319 .1080 .1711 .1436 .1331 .1321 .0330 .1073 .1751 .1483
PLA .2563 .2644 .1172 .2343 .3186 .2702 .2578 .2714 .1157 .2409 .3296 .2716
POS .4831 .4502 .1889 .4141 .5409 .4953 .4892 .4575 .1830 .4304 .5534 .5026
AVG .3535 .3433 .1792 .3176 .4027 .3670 .3564 .3519 .1775 .3244 .4142 .3720

Recall

BUG .6465 .6219 .4231 .4602 .4320 .6232 .6566 .6447 .4197 .4987 .4667 .6436
COL .6252 .6498 .6398 .4591 .4823 .5905 .6193 .6610 .6523 .5077 .5032 .6016
JDT .6442 .6579 .5372 .4840 .4735 .6201 .6435 .6665 .5407 .5027 .4849 .6279
MOZ .6211 .6880 .2711 .5292 .5470 .6263 .6204 .6984 .3043 .5535 .5636 .6331
PLA .7012 .6952 .5010 .5104 .5098 .6951 .6959 .6988 .5049 .5262 .5136 .7018
POS .6262 .6574 .4970 .5140 .5220 .6150 .6223 .6679 .5245 .5085 .5347 .6193
AVG .6441 .6617 .4782 .4928 .4944 .6284 .6430 .6729 .4911 .5162 .5111 .6379

F1

BUG .5717 .5625 .3744 .4775 .4905 .5718 .5811 .5816 .3725 .5015 .5242 .5870
COL .5414 .5362 .3743 .4429 .4973 .5319 .5410 .5470 .3756 .4714 .5111 .5410
JDT .3669 .3553 .1892 .2945 .3563 .3764 .3631 .3635 .1878 .3026 .3686 .3798
MOZ .2147 .2150 .0567 .1784 .2600 .2335 .2190 .2222 .0592 .1791 .2669 .2402
PLA .3753 .3830 .1892 .3207 .3913 .3890 .3761 .3908 .1877 .3300 .4011 .3915
POS .5445 .5339 .2704 .4542 .5297 .5477 .5470 .5427 .2702 .4573 .5430 .5543
AVG .4358 .4310 .2424 .3614 .4208 .4417 .4379 .4413 .2422 .3736 .4358 .4490

ACC

BUG .5436 .5006 .4231 .5794 .5727 .7632 .5484 .5164 .4197 .6157 .6330 .7594
COL .5215 .5217 .6398 .6192 .5867 .7986 .5217 .5386 .6523 .6649 .6594 .8058
JDT .5450 .5351 .5372 .6084 .5860 .7449 .5469 .5522 .5407 .6466 .6447 .7540
MOZ .4441 .4986 .2711 .5333 .5242 .6239 .4454 .5120 .3043 .5602 .5639 .6265
PLA .6144 .5961 .5010 .6449 .6463 .7840 .6121 .6059 .5049 .6783 .6929 .7856
POS .4975 .4976 .4970 .5786 .5621 .7175 .4953 .5079 .5245 .6097 .6104 .7239
AVG .5277 .5250 .4782 .5940 .5796 .7387 .5283 .5388 .4911 .6292 .6340 .7425

Popt

BUG .7120 .5953 .7444 .7023 .7077 .9242 .7302 .6183 .7419 .7569 .7819 .9247
COL .6219 .5984 .8361 .7182 .6863 .9336 .6194 .6121 .8495 .7706 .7626 .9349
JDT .6547 .6156 .7831 .7239 .6945 .8847 .6525 .6271 .7837 .7608 .7486 .8881
MOZ .6216 .6165 .6396 .6897 .6751 .8212 .6221 .6283 .6485 .7269 .7211 .8228
PLA .7043 .6588 .7691 .7394 .7277 .8993 .7022 .6664 .7715 .7758 .7793 .9005
POS .6310 .6018 .7870 .7201 .6934 .9035 .6250 .6122 .8017 .7588 .7531 .9057
AVG .6576 .6144 .7599 .7156 .6974 .8944 .6586 .6274 .7661 .7583 .7578 .8961

From the results showed in Tables 2, 3, CBS and TLEL have a good perfor-
mance over EATT with respect to recall, but when considering the harmonic
mean of precision and recall (i.e., F1), they have no obvious advantage any-
more. When it comes to effort-aware JIT defect prediction, EATT outperforms
all the supervised models on six datasets in terms of ACC and Popt.

302 W. Zhang et al.

Table 3. The performance of the compared unsupervised models and other supervised
models

Indicator Project 0.1 labeled rate 0.2 labeled rate

Supervised Unsupervised Semi Supervised Unsupervised Semi

EALR MULTI LT CCUM EATT EALR MULTI LT CCUM EATT

ACC BUG .3870 .6960 .4788 .7516 .7632 .3905 .6960 .4744 .7465 .7594

COL .3897 .6960 .6036 .7982 .7986 .4031 .6960 .6043 .8048 .8058

JDT .1953 .6260 .5583 .7302 .7449 .2167 .6260 .5724 .7404 .7540

MOZ .1534 .5110 .3587 .5883 .6239 .1570 .5110 .3649 .5914 .6265

PLA .2998 .6840 .5150 .7606 .7840 .2951 .6840 .5150 .7601 .7856

POS .2698 .6130 .5231 .6985 .7175 .2749 .6130 .5304 .7044 .7239

AVG .2825 .6380 .5063 .7212 .7387 .2896 .6380 .5102 .7246 .7425

Popt BUG .6986 .8830 .7516 .9154 .9242 .7139 .8830 .7494 .9140 .9247

COL .6003 .8800 .8275 .9339 .9336 .6035 .8800 .8283 .9346 .9349

JDT .4918 .8290 .7905 .8781 .8847 .4959 .8290 .7943 .8807 .8881

MOZ .4662 .7570 .6559 .8044 .8212 .4680 .7570 .6584 .8051 .8228

PLA .5557 .8530 .7735 .8897 .8993 .5538 .8530 .7741 .8900 .9005

POS .5126 .8430 .8003 .8950 .9035 .5204 .8430 .8039 .8964 .9057

AVG .5542 .8410 .7665 .8861 .8944 .5593 .8410 .7681 .8868 .8961

Therefore, we can conclude that with the help of unlabeled data, EATT is
comparable with the supervised models for predicting defect-inducing changes
and significantly outperforms than almost all the supervised models for effort-
aware JIT defect prediction.

RQ2: How about the performance of EATT when compared to the
unsupervised method?

To answer this question, we compare EATT with two unsupervised models,
including LT and CCUM. Since the two unsupervised models are not specifically
trained for predicting binary results, we haven’t compared them on indicators
precision, recall and F1.

Table 3 shows the performance of LT and CCUM against EATT. As can be
seen, EATT can further improve the performance by using a few labeled data.
Furthermore, it is worth noting that although EATT only slightly increases the
performance under ACC and Popt, it is still comparable to supervised models
when the truly effort isn’t available, while CCUM heavily relies on the predefined
effort (i.e., LOC) as foundation for sorting, which may not be the same in the
real world.

Overall, the above analysis shows that EATT are more capable for practi-
cal application when predicting either defect-inducing changes or risk value of
changes.

RQ3: Does EATT perform better than other sample-based semi-
supervised approaches?

To answer this question, we compare EATT with CoForest and FTF, which
are sample-based semi-supervised models for traditional defect prediction. We
use the similar strategy to predict the risk value of defect-inducing changes, that
is, dividing the predicted probability to be defect-inducing by the effort required
to inspect this change.

Effort-Aware Tri-Training 303

From the results shown in Table 2, FTF is significantly better than EATT in
terms of precision according to cliff’s δ. But EATT has a better average score
over six projects in terms of F1 as FTF performs not so good with respect to
recall.

When it comes to effort-aware JIT defect prediction, CoForest and FTF all
have great improvement as the labeled rate increased, but EATT can achieve
high performance even though the labeled data is insufficient. In addition, EATT
always significantly outperforms CoForest and FTF under ACC and Popt by
applying different evaluation strategies according to cliff’s δ.

Overall, the above observations show that EATT still has better performance
when compared with other sample-based semi-supervised models.

6 Conclusion

In this paper, we investigate the predictive effectiveness of semi-supervised learn-
ing for effort-aware JIT defect prediction. Based on tri-training, we propose an
effort-aware tri-training (EATT) method for JIT defect prediction. Several com-
parison experiments are conducted to demonstrate the effectiveness of our pro-
posed method. The experimental results on six projects show that EATT has
a great advantage over supervised and unsupervised models. On the one hand,
EATT can significantly improve the ability of detecting defect-inducing changes
while ensuring high prediction accuracy. It outperforms almost all supervised
and unsupervised models in terms of ACC and Popt. On the other hand, EATT
still has the advantage as unsupervised models do, requiring only a few labeled
data for training. Therefore, semi-supervised learning is more desirable for prac-
tical applications since it can effectively combine the advantages of supervised
learning and unsupervised learning.

Acknowledgment. This paper is supported by the National Natural Science Foun-
dations of China (Grant Nos. 61773208, 71671086), the Natural Science Foundation of
Jiangsu Province (Grant No. BK20170809) and the China Postdoctoral Science Foun-
dation (Grant No. 2018YFB1003902).

References

1. Angluin, D., Laird, P.D.: Learning from noisy examples. Mach. Learn. 2(4), 343–
370 (1987)

2. Arshad, A., Riaz, S., Jiao, L., Murthy, A.: Semi-supervised deep fuzzy c-mean
clustering for software fault prediction. IEEE Access 6, 25675–25685 (2018)

3. Blum, A., Mitchell, T.M.: Combining labeled and unlabeled data with co-training.
In: Proceedings of COLT, pp. 92–100 (1998)

4. Chapelle, O., Scholkopf, B., Zien, A.: Semi-supervised learning. IEEE Trans. Neural
Netw. 20(3), 542–542 (2006)

5. Chen, X., Zhao, Y., Wang, Q., Yuan, Z.: MULTI: multi-objective effort-aware just-
in-time software defect prediction. Inf. Softw. Tech. 93, 1–13 (2018)

304 W. Zhang et al.

6. Fu, W., Menzies, T.: Revisiting unsupervised learning for defect prediction. In:
ESEC/FSE, pp. 72–83 (2017)

7. Hata, H., Mizuno, O., Kikuno, T.: Bug prediction based on fine-grained module
histories. In: ICSE, pp. 200–210 (2012)

8. Huang, Q., Xia, X., Lo, D.: Supervised vs unsupervised models: a holistic look at
effort-aware just-in-time defect prediction. In: ICSME, pp. 159–170 (2017)

9. Romano, J., Kromrey, J.D., Coraggio, J., Skowronek, J., Devine, L.: Exploring
methods for evaluating group differences on the NSSE and other surveys: are the
t-test and Cohen’s d indices the most appropriate choices. In: Annual Meeting of
the Southern Association for Institutional Research (2006)

10. Jiang, Y., Li, M., Zhou, Z.: Software defect detection with rocus. J. Comput. Sci.
Technol. 26(2), 328–342 (2011)

11. Kamei, Y., Fukushima, T., McIntosh, S., Yamashita, K., Ubayashi, N., Hassan,
A.E.: Studying just-in-time defect prediction using cross-project models. Empir.
Softw. Eng. 21(5), 2072–2106 (2016)

12. Kamei, Y., et al.: A large-scale empirical study of just-in-time quality assurance.
IEEE Trans. Softw. Eng. 39(6), 757–773 (2013)

13. Li, M., Zhang, H., Wu, R., Zhou, Z.: Sample-based software defect prediction with
active and semi-supervised learning. Autom. Softw. Eng. 19(2), 201–230 (2012)

14. Li, W., Huang, Z., Li, Q.: Three-way decisions based software defect prediction.
Knowl.-Based Syst. 91, 263–274 (2016)

15. Li, Z., Jing, X., Zhu, X.: Progress on approaches to software defect prediction. IET
Softw. 12(3), 161–175 (2018)

16. Liu, J., Zhou, Y., Yang, Y., Lu, H., Xu, B.: Code churn: a neglected metric in
effort-aware just-in-time defect prediction. In: ESEM, pp. 11–19 (2017)

17. Lu, H., Cukic, B., Culp, M.V.: An iterative semi-supervised approach to software
fault prediction. In: PROMISE, pp. 15:1–15:10 (2011)

18. Lu, H., Cukic, B., Culp, M.V.: Software defect prediction using semi-supervised
learning with dimension reduction. In: ASE, pp. 314–317 (2012)

19. Mockus, A., Weiss, D.M.: Predicting risk of software changes. Bell Labs Tech. J.
5(2), 169–180 (2000)

20. Song, Q., Jia, Z., Shepperd, M.J., Ying, S., Liu, J.: A general software defect-
proneness prediction framework. IEEE Trans. Softw. Eng. 37(3), 356–370 (2011)

21. Yang, X., Lo, D., Xia, X., Sun, J.: TLEL: a two-layer ensemble learning approach
for just-in-time defect prediction. Inf. Softw. Tech. 87, 206–220 (2017)

22. Yang, X., Lo, D., Xia, X., Zhang, Y., Sun, J.: Deep learning for just-in-time defect
prediction. In: QRS, pp. 17–26 (2015)

23. Yang, Y., et al.: Effort-aware just-in-time defect prediction: simple unsupervised
models could be better than supervised models. In: FSE, pp. 157–168 (2016)

24. Zhang, Z., Jing, X., Wang, T.: Label propagation based semi-supervised learning
for software defect prediction. Autom. Softw. Eng. 24(1), 47–69 (2017)

25. Zhou, Z., Li, M.: Tri-training: exploiting unlabeled data using three classifiers.
IEEE Trans. Knowl. Data Eng. 17(11), 1529–1541 (2005)

26. Zhou, Z., Li, M.: Semi-supervised learning by disagreement. Knowl. Inf. Syst.
24(3), 415–439 (2010)

27. Zhu, X.: Semi-supervised learning. In: Encyclopedia of Machine Learning and Data
Mining, pp. 1142–1147 (2017)

One Shot Learning with Margin

Xianchao Zhang1,2, Jinlong Nie1,2, Linlin Zong1,2, Hong Yu1,2,
and Wenxin Liang3(B)

1 School of Software, Dalian University of Technology, Dalian 116620, China
2 Key Laboratory for Ubiquitous Network and Service Software of Liaoning Province,

Dalian 116024, China
3 School of Software Engineering,

Chongqing University of Posts and Telecommunications,
Chongqing 400065, China
wxliang@cqupt.edu.cn

Abstract. One shot learning is a task of learning from a few examples,
which poses a great challenge for current machine learning algorithms.
One of the most effective approaches for one shot learning is metric
learning. But metric-based approaches suffer from data shortage prob-
lem in one shot scenario. To alleviate this problem, we propose one shot
learning with margin. The margin is beneficial to learn a more discrimi-
native metric space. We integrate the margin into two representative one
shot learning models, prototypical networks and matching networks, to
enhance their generalization ability. Experimental results on benchmark
datasets show that margin effectively boosts the performance of one shot
learning models.

Keywords: One shot learning · Metric learning · Meta learning

1 Introduction

One shot learning [14,31] is a task that algorithms are able to learn new classes
with only a few examples, and it is an ability that human beings naturally
have. For instance, human can recognize “elephant” by providing only one exam-
ple. Whereas current machine learning algorithms require at least hundreds of
examples to learn a new concept. One shot learning is proposed to investigate
algorithms with such kind of ability. In recent years, a large number of stud-
ies [3,14,19,20,22,23,26,28,30,31] have been proposed on the one shot learning
problem. Among these studies, metric-based approaches, such as matching net-
works [31] and prototypical networks [28], show outperforming results.

The goal of metric-based approaches is to learn a mapping function. The
function maps examples into a low dimensional space. In the space, examples

Supported by National Science Foundation of China (No. 61632019; No. 61876028;
No. 61806034) and Foundation of Department of Education of Liaoning Province (No.
L2015001).

c© Springer Nature Switzerland AG 2019
Q. Yang et al. (Eds.): PAKDD 2019, LNAI 11440, pp. 305–317, 2019.
https://doi.org/10.1007/978-3-030-16145-3_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16145-3_24&domain=pdf
https://doi.org/10.1007/978-3-030-16145-3_24

306 X. Zhang et al.

in the same class cluster around each other, while examples belong to differ-
ent classes distribute far away. The quality of learned mapping determines the
effectiveness of metric learning algorithms.

However, due to the shortage of examples in one shot learning, learning a
high-quality mapping is rather hard. A few examples cannot describe a class
accurately. Based on that, we suggest improving the low dimensional represen-
tation of examples benefits one shot learning. A series of literature on metric
learning [6,16,17,27,32] imply that margin-based loss often learns metric spaces
with more distinct cluster structure. Moreover, the margin can enhance the gen-
eralization ability of the classifier from the training set to the testing set [2].
Inspired by these ideas, we propose one shot learning with margin. By introduc-
ing the margin, we expect that one shot learning models learn a more discrimi-
native metric space. Thus the generalization error is reduced.

In this paper, we propose a margin-based loss function for one shot learning
called multi-way contrastive loss. The loss explores the relationship between an
example and multiple examples. The loss minimizes the inner-class distance and
maximizes the intra-class distance. We further integrate the proposed multi-way
contrastive loss into two representative one shot learning models, prototypi-
cal networks and matching networks. Experiments validate that the proposed
margin-based loss effectively boosts the performance of prototypical networks
and matching networks.

2 One Shot Learning with Margin

2.1 One Shot Learning

One shot learning is a task in which a classifier must accommodate new classes
not appeared in training, given only a few examples of each of these classes.
Simply re-train the model on new data would severely overfit. The basic idea of
current solutions is to train a meta-classifier which can adapt to new classes with
a few examples. One shot learning consists of two stages: training and evaluating.
Training dataset and evaluating dataset share no common labels, to ensure the
one shot constraint is strictly satisfied.

Training. A widely adopted training scheme for one shot learning is episode
training strategy [31]. The episode training strategy consists of many episodes.
For each episode, a support set is sampled from training dataset. The support
set contains N labeled examples S = {(x1, y1), . . . , (xN , yN)}. xi ∈ R

D denotes
an example of D-dimension, and yi ∈ {1, . . . , K} is the respective label. Given
a query example x̂, one shot learning models predict the right label of x̂. If the
support set contains k examples from each of n classes, i.e., N = k ×n, the task
is called n-way k-shot task. Typically, k is a small number such as 1 or 5.

Specifically, metric-based approaches attack n-way k-shot task by learning
an embedding. The learning process can be summarized to two steps. Firstly, all

One Shot Learning with Margin 307

examples are mapped to a new space. Neural networks are a good choice for map-
ping function because of its strong expression power. Secondly, a non-parametric
method is conducted on the results of the mapping function to classify query
examples. In the above two steps, learning proceeds by updating the param-
eters in the mapping function. Therefore, the quality of the learned mapping
determines the effectiveness of one shot learning algorithm.

Evaluating. Evaluating adopts the same form as episode training, except that
the data is sampled from evaluating dataset. Specifically, a support set and a
query set are both sampled from evaluating dataset. One shot learning models
need to infer the labels of the examples in the query set based on the examples
in the support set.

Analysis. Due to the lack of examples in one shot scenario, a few examples lead
to poor class estimation. For instance, in prototypical networks, a single example
may produce a poor estimation of class prototype. To alleviate this problem, we
propose to learn a discriminative metric space. In other words, we enforce the
representation of examples to be discriminative. Examples in the same class are
close, while the distance of examples in the different class is large.

2.2 One Shot Learning with Margin

A series of literature on metric learning [6,16,17,27,32] imply that margin-based
loss often learns a more discriminative metric space. Moreover, the margin in
loss function can enhance the generalization ability of the classifier [2]. Inspired
by these ideas, we propose one shot learning with margin. However, existing
margin-based loss cannot be directly applied to one shot learning. Therefore, we
design a novel loss for one shot learning scenario, which is multi-way contrastive
loss.

The proposed multi-way contrastive loss is derived from contrastive loss
[6]. Multi-way contrastive loss recruits multiple examples as reference for each
update. In this case, an input example is being compared against multiple exam-
ples from multiple classes. And the input example should be distinguishable from
examples with different labels, while being close to examples with the same label.

In short, the proposed loss explores the relationship between an example
(query example) and a set of examples (examples in the support set). To be
specific, let x̂ denote the query example, S = {x1, . . . , xN} denotes the examples
in the support set. 1 is an indicator of N dimension, the i-th element is defined
as follows,

1i =
{

1 if x̂ and xi belong to the same class,
0 otherwise. (1)

Multi-way contrastive loss consists of two terms, the one acts to pull examples
in the same class together, and the other which acts to push differently labeled
examples further apart. These two terms have competing effects, since the first

308 X. Zhang et al.

Fig. 1. Illustration of an update of multi-way contrastive loss. Solid objects of different
shape indicate examples of different class. Red object in center denotes the query
example, blue objects are examples in the support set. Arrows indicate the pull and
push force generated by optimizing the cost function. (Color figure online)

is reduced by shrinking the distances between examples while the second is
generally reduced by magnifying them. The pulling force tries to minimize the
distance between the query example x̂ and support examples S in the same class,

Lpull =
N∑

i=1

1id
2
θ(x̂, xi), (2)

where dθ(·, ·) refers to the distance between two examples, and θ denotes the
parameters of distance metric.

The pushing force constrains the distance between the query example x̂ and
support examples S in different classes to be larger than a margin,

Lpush =
N∑

i=1

(1 − 1i)
[
m − dθ(x̂, xi)

]2
+
, (3)

where m is a margin parameter imposing the distance between examples from
different classes to be larger than m, and [x]+ denotes the operation of max(x, 0).
dθ(·, ·) ≥ m leads to Lpush = 0, otherwise Lpush > 0 and loss will backpropagate
to enlarge their distance, through updating θ.

The multi-way contrastive loss function is a weighted combination of Lpull

and Lpush,

LMCL =
1
N

(
α

N∑
i=1

1id
2
θ(x̂, xi) + (1 − α)

N∑
i=1

(1 − 1i)
[
m − dθ(x̂, xi)

]2
+

)
, (4)

where α is a weighting parameter to balance pulling force and pushing force, and
it is tuned via cross validation. The gradient of the first summation term in our
loss generates a pulling force on support examples with the same label as the
query example, while the second summation term imposes a margin between
examples labeled differently with the query example. Figure 1 illustrates the
update of multi-way contrastive loss. The proposed multi-way contrastive loss
can be easily integrated into one shot learning models. Two cases are provided
in Sect. 3.

One Shot Learning with Margin 309

Fig. 2. Structure of prototypical networks. Prototypes ck are the mean of embedded
examples in the support set for each class, and a query example x̂ is classified via a
softmax over distances to class prototypes: pθ(ŷ = k|x̂) ∝ exp(−d(fθ(x̂), ck)).

3 Case Study

In this section, we briefly introduce two representative one shot learning mod-
els, prototypical networks and matching networks. And we present solutions to
integrate the proposed margin-based loss into them.

3.1 Prototypical Networks

Model. Prototypical networks [28] are newly proposed frameworks for one shot
learning. They are composed by an embedding module and a classification mod-
ule. The embedding module is a simple convolution network. The classification
module represents each class in the support set by a prototype. And the query
example is labeled as the nearest prototype. Figure 2 shows the structure of
prototypical networks.

Let fθ : RD → R
M denotes the embedding network with parameters θ. fθ

maps all examples into an M -dimensional space, and θ is the parameters to be
optimized. Each prototype ck is the mean vector of the embedded examples in
the support set belonging to its class,

ck =
1

|Sk|
∑

(xi,yi)∈Sk

fθ(xi), (5)

where Sk denotes the set of support examples labeled with class k, |Sk| is the
size of Sk. Given a distance function d : R

M × R
M → [0,+∞), prototypical

networks produce a distribution over classes for a query example x̂ based on a
softmax over distances to the prototypes in the embedding space,

pθ(ŷ = k|x̂) =
exp (−d(fθ(x̂), ck))∑
k′ exp (−d(fθ(x̂), ck′))

. (6)

Learning proceeds by minimizing the cross entropy loss LPN =
− log pθ(ŷ = k|x̂) of the true class k via stochastic gradient descent. When pre-
dicting, a query example x̂ is labeled as the class of the nearest prototype, that is,

ŷ = arg min
k

d(fθ(x̂), ck). (7)

310 X. Zhang et al.

Prototypical Networks with Margin. To integrate multi-way contrastive
loss into prototypical networks, we propose to optimize the distance between the
query example and the multiple prototypes in the support set. In other words,
multi-way contrastive loss minimizes the distance between the query example
and the prototype representing its right class, and constrain the distance between
the query example and the prototype representing other classes to be larger than
a margin at the same time.

Let {c1, . . . , cK} denotes the prototypes of the support set. x̂ is the query
example. 1 is an indicator of K dimension, the i-th element is defined as follows,

1i =
{

1 if x̂ and ci belong to the same class,
0 otherwise. (8)

By investigating the relationship between the query example and the prototypes,
we formulate prototypical networks with margin as follows,

LPN-M =
1
K

(
α

K∑
i=1

1id
2(fθ(x̂), ci)+(1−α)

K∑
i=1

(1−1i)
[
m−d(fθ(x̂), ci)

]2
+

)
. (9)

The loss in (9) is used for training. When predicting, a query example x̂ is labeled
according to (7).

3.2 Matching Networks

Model. Matching networks [31] use attention mechanism [1] to infer the label of
the query example. The attention mechanism takes two examples as input, and
return a scaler as attention output. The output scaler denotes the similarity of
input examples. Then, matching networks classify query examples by similarity
weighting method. For a query example x̂, the attention is a softmax over the
distance, i.e.,

a(x̂, xi) =
exp (−d(fθ(x̂), fθ(xi)))∑

xi∈S exp (−d(fθ(x̂), fθ(xi)))
, (10)

where S is the support set, fθ is an embedding function.
Then the label of the query example x̂ computes as follows,

ŷ = arg max
k

∑
(xi,yi)∈Sk

a(x̂, xi). (11)

Matching Networks with Margin. To integrate multi-way contrastive loss
into matching networks, we revise the training loss of matching networks as
follows,

LMN-M =
1
N

(
α

N∑
i=1

1id
2(fθ(x̂), fθ(xi))

+ (1 − α)
N∑

i=1

(1 − 1i)
[
m − d(fθ(x̂), fθ(xi))

]2
+

)
.

(12)

One Shot Learning with Margin 311

where 1i is 1 when x̂ and xi belong to the same class, otherwise 0. The loss in (12)
learns to impose a margin between the query example and support examples in
different class. In evaluating, a query example is labeled according to (11).

4 Experiments

4.1 Settings

In one shot learning, we split training dataset and evaluating dataset according to
example labels. Let C denotes the set of classes in dataset D. Training set labels
Ctrain and evaluating set labels Ceval are two subsets of C, and Ctrain ∪Ceval =
C, Ctrain∩Ceval = ∅. Then training dataset Dtrain contains examples which have
labels c ∈ Ctrain, and evaluating dataset Deval contains examples which have
labels c ∈ Ceval. Algorithms learns to transfer knowledge from training dataset to
evaluating dataset [21,34,35]. If validation is required, the whole dataset should
be split into three non-intersect subsets, for training, validation, and evaluation
respectively.

To evaluate our algorithm, we perform one shot learning experiments on
two datasets, Omniglot [13] and miniImageNet [31]. Both are specially pro-
posed for one shot scenario. We compared a number of alternative models,
including siamese networks [11], neural statistician [3], MAML [4], meta-learner
LSTM [22], matching networks (MN) [31], matching networks with margin (MN-
M), prototypical networks (PN) [28], and prototypical networks with margin
(PN-M).

4.2 Results on Omniglot

Omniglot [13] comprises of 1623 characters collected from 50 alphabets. Each
character has 20 images drawn by different people. We follow the procedure of
Vinyals et al. [31] by resizing the grayscale images to 28 × 28. Our embedding
architecture mirrors that used by Vinyals et al. [31] and is composed of four
convolutional blocks. Each block comprises of a 64-filter 3×3 convolution, a batch
normalization layer [8] with decay rate 0.99, a ReLU nonlinearity and a 2×2 max-
pooling layer. When applied to the 28 × 28 Omniglot images this architecture
results in a 64-dimensional output space. Our models are trained with Adam
[9]. The initial learning rate is set as 0.001, and we cut it into half every 2000
episodes. No regularization is used other than batch normalization. To evaluate
models on the 5-way task and the 20-way task, we train it with the 20-way 1-
shot task and the 60-way 5-shot task respectively. We split Omniglot dataset
into three parts randomly, 1000 classes for training, 200 classes for validation,
and the remaining for evaluation.

Results on Omniglot are shown in Table 1. Under all conditions including 5-
way and 20-way as well as 1-shot and 5-shot, prototypical networks with margin
(PN-M) outperforms all the others. By introducing margin, PN-M outperforms
original prototypical networks (PN), and matching networks with margin (MN-
M) outperforms original matching networks (MN). These results confirm that the

312 X. Zhang et al.

Table 1. One shot classification accuracies on Omniglot. †Results reported by Snell
et al. [28]. ‡Results reported by Finn et al. [4].

Model 5-way accuracy 20-way accuracy

1-shot 5-shot 1-shot 5-shot

SIAMESE NETWORKS‡ [11] 97.3% 98.4% 88.2% 97.0%

NEURAL STATISTICIAN† [3] 98.1% 99.5% 93.2% 98.1%

MAML‡ [4] 98.7% 99.9% 95.8% 98.9%

MN† [31] 98.1% 98.9% 93.8% 98.5%

MN-M 99.1± 0.2% 99.3± 0.2% 96.2± 0.2% 98.9± 0.1%

PN† [28] 98.8% 99.7% 96.0% 98.9%

PN-M 99.5± 0.1% 99.9± 0.1% 97.5± 0.3% 99.3± 0.2%

(a) PN (b) PN-M

Fig. 3. The t-SNE visualization of the embedding learned by the respective model. A
subset of Tengwar script (an alphabet in evaluation set of Omniglot dataset) is shown,
different color indicates different class. Best viewed in color. (Color figure online)

margin improved the generalization of one shot learning models. In particular,
PN-M achieves near-perfect performance on 5-way 1-shot task, 5-way 5-shot
task, and 20-way 5-shot task.

In addition, we compared the embedding learned by PN and PN-M. We
choose a subset of characters in evaluation set of Omniglot, and embed them
to 64-dimensional vectors with the trained embedding network in the respective
model. Then we visualize the vectors using t-SNE [18]. The results are reported
in Fig. 3. It is evident that the margin helps to learn a more distinct cluster
structure. The embedding learned by PN-M shows compact intra-class variations
and separable inter-class differences.

4.3 Results on miniImageNet

The miniImageNet dataset, originally proposed by Vinyals et al. [31], is derived
from the larger ILSVRC-12 dataset [24]. 60,000 color images of size 84 × 84 are
contained in miniImageNet, including 100 classes and 600 images for each class.

We use the same four convolutional blocks in our Omniglot experiments as
our embedding network, but it results in a 1600-dimensional output space due
to the increased size of the input images. No learning rate decay is adopted here.
We rely on the class split used by Ravi and Larochelle [22]. These splits use 64
classes for training, 16 for validation, and 20 for evaluation. To evaluate model
on 5-way 1-shot task and 5-way 5-shot task, we train it with 20-way 5-shot task.

One Shot Learning with Margin 313

Table 2. One shot classification accuracies on miniImageNet. The ± shows 95% con-
fidence intervals over tasks. †Results reported by Snell et al. [28]. ‡Results reported by
Finn et al. [4].

Model 5-way accuracy

1-shot 5-shot

META-LEARNER LSTM† [22] 43.44 ± 0.77% 60.60 ± 0.71%

MAML‡ [4] 48.70 ± 1.84% 63.11 ± 0.92%

MN† [31] 43.56 ± 0.84% 55.31 ± 0.73%

MN-M 47.52 ± 0.92% 63.72 ± 1.03%

PN† [28] 49.42 ± 0.78% 68.20 ± 0.66%

PN-M 51.62 ± 0.76% 70.24 ± 0.81%

Table 3. One shot classification accuracies of PN-M on Omniglot with varying α and
margin m.

α = 0.01 α = 0.1 α = 0.2 α = 0.5

m = 0.1 95.28% 96.56% 96.66% 95.69%

m = 0.2 96.28% 96.91% 96.38% 95.31%

m = 0.5 96.88% 97.31% 96.31% 95.47%

m = 1.0 86.31% 93.25% 94.09% 93.06%

Results on miniImageNet are given in Table 2. In general, the performance of
prototypical networks with margin (PN-M) surpasses all the others. Specifically,
PN-M outperforms prototypical networks (PN) by 2% in terms of accuracy. Simi-
larly, matching networks with margin (MN-M) gains more than 4% improvement
over matching networks (MN). Overall, the results demonstrate that models with
margin have superior generalization on one shot learning tasks.

4.4 Parameter Study

The proposed margin-based loss contains two hyperparameters, the margin
parameter m and the weighting parameter α. To study the influence of the
hyperparameters, we perform the grid search strategy on these 2 hyperparame-
ters. For the weighting parameter α ∈ [0, 1], we evaluate α ∈ {0.01, 0.1, 0.2, 0.5}.
For the margin parameter m, since we normalized the learned embedding by
l2 normalization, we check m ∈ {0.1, 0.2, 0.5, 1.0}. We analyze both hyperpa-
rameters on Omniglot and miniImageNet. The learning rate is fixed at 0.001.
For Omniglot, the model is trained and evaluated with 20-way 1-shot task. For
miniImageNet, the model is trained with 20-way 5-shot task and evaluated with
5-way 1-shot task. Results on Omniglot and miniImageNet are shown in Tables 3
and 4 respectively.

314 X. Zhang et al.

Table 4. One shot classification accuracies of PN-M on miniImageNet with varying α
and margin m.

α = 0.01 α = 0.1 α = 0.2 α = 0.5

m = 0.1 31.58% 42.66% 42.54% 47.20%

m = 0.2 38.40% 49.34% 50.02% 50.80%

m = 0.5 38.24% 50.30% 51.52% 51.10%

m = 1.0 38.10% 49.20% 50.56% 51.46%

From Tables 3 and 4, we can see that our model achieves stably good perfor-
mance with a wide range of both hyperparameters. The margin m = 0.5 works
well on Omniglot and miniImageNet. As for weighting parameter α, the best α
is the one balanced pulling force and pushing force. According to experiments,
we recommend to search around α = 2l

m , where l denotes the number of examples
in the support set sharing the same label as the query example, and m indicates
the number of examples in the support set labeled differently as the query one.

5 Related Work

5.1 One Shot Learning

One shot learning deals with the problem of learning from a few examples, and
our work shares some similarity with those studies. Prototypical networks [28]
and matching networks [31] are two representative one shot learning models.
We evaluate the effectiveness of one shot learning with margin in these two
networks. Ren et al. [23] proposed semi-supervised prototypical networks for
few-shot learning, which makes use of unlabeled examples to improve estimation
of class prototypes in prototypical networks. Triantafillou and Zemel [30] defined
a training objective aimed to optimize overall relative orderings of the query
points simultaneously. For a query example, support examples in the same class
must rank ahead of support examples in other classes.

There are many other meta-learning based methods related to our work. Ravi
and Larochelle [22] attacked one shot learning through optimization. An LSTM-
based [7] meta-learner model is proposed to learn the optimization algorithm
which is used to train another learner classifier. The neural statistician [3] uses
an extension of variational autoencoder [10] to learn representations of datasets.
The model produces a representation for each class. And the right label of the
query example is the class whose representation has minimal KL-divergence
with the representation of the query example. Finn et al. [4] introduced a meta-
learning method trains for a representation that can be quickly adapted to a
new task, via a few gradient steps.

One Shot Learning with Margin 315

5.2 Metric Learning

Metric learning [12,15,33] is to learn a distance metric that preserves the distance
relationship among the data. N-pair loss [29] use multiple negative examples to
achieve better convergence. But only one positive example is contained in the
query set of N-pair loss. Triplet loss [27] is calculated on triplets, which consists of
three examples with two different labels. However, our multi-way contrastive loss
is calculated on an arbitrary number of examples. Large margin nearest neighbor
(LMNN) [32] classification considers both pulling force and pushing force as the
final loss. The push term of LMNN uses triplet loss of all triplets in the dataset.
Neighborhood Components Analysis (NCA) [5] learns a Mahalanobis distance
to maximize K-nearest-neighbour’s leave-one-out accuracy. Salakhutdinov and
Hinton [25] extended NCA by replacing learnable Mahalanobis distance with a
neural network, to endow the algorithm with stronger learning ability.

6 Conclusion

In this paper, we analyze the bottleneck of metric-based one shot learning. To
improve the generalization of these models, we introduce margin in one shot
learning. And we proposed a novel margin-based loss called multi-way contrastive
loss. The proposed loss effectively learns to push away inter-class examples, while
pulling intra-class examples together. Meanwhile, we have described the methods
to integrate multi-way contrastive loss into prototypical networks and matching
networks. The one shot learning models with margin can learn an embedding
with more appropriate cluster structure than the original models do. Extensive
experiment results on several benchmark datasets show that the margin boosts
the generalization of one shot learning models on data scarcity tasks.

References

1. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning
to align and translate. arXiv preprint arXiv:1409.0473 (2014)

2. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297
(1995)

3. Edwards, H., Storkey, A.: Towards a neural statistician. In: International Confer-
ence on Learning Representations (ICLR) (2017)

4. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation
of deep networks. In: International Conference on Machine Learning (ICML), pp.
1126–1135 (2017)

5. Goldberger, J., Hinton, G.E., Roweis, S.T., Salakhutdinov, R.R.: Neighbourhood
components analysis. In: Advances in Neural Information Processing Systems
(NIPS), pp. 513–520 (2005)

6. Hadsell, R., Chopra, S., LeCun, Y.: Dimensionality reduction by learning an invari-
ant mapping. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), vol. 2, pp. 1735–1742. IEEE (2006)

7. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

http://arxiv.org/abs/1409.0473

316 X. Zhang et al.

8. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by
reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)

9. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

10. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114 (2013)

11. Koch, G., Zemel, R., Salakhutdinov, R.: Siamese neural networks for one-shot
image recognition. In: ICML Deep Learning Workshop, vol. 2 (2015)

12. Kulis, B., et al.: Metric learning: a survey. Found. Trends® Mach. Learn. 5(4),
287–364 (2013)

13. Lake, B., Salakhutdinov, R., Gross, J., Tenenbaum, J.: One shot learning of simple
visual concepts. In: Proceedings of the Annual Meeting of the Cognitive Science
Society, vol. 33 (2011)

14. Lake, B.M., Salakhutdinov, R., Tenenbaum, J.B.: Human-level concept learning
through probabilistic program induction. Science 350(6266), 1332–1338 (2015)

15. Liu, H., Zhang, X., Zhang, X., Cui, Y.: Self-adapted mixture distance measure for
clustering uncertain data. Knowl.-Based Syst. 126, 33–47 (2017)

16. Liu, W., Wen, Y., Yu, Z., Li, M., Raj, B., Song, L.: SphereFace: deep hypersphere
embedding for face recognition. In: Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), vol. 1 (2017)

17. Liu, W., Wen, Y., Yu, Z., Yang, M.: Large-margin softmax loss for convolutional
neural networks. In: International Conference on Machine Learning (ICML), pp.
507–516 (2016)

18. van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn.
Res. 9(Nov), 2579–2605 (2008)

19. Mishra, N., Rohaninejad, M., Chen, X., Abbeel, P.: A simple neural attentive
meta-learner. In: International Conference on Learning Representations (ICLR)
(2018)

20. Nichol, A., Achiam, J., Schulman, J.: On first-order meta-learning algorithms.
arXiv preprint arXiv:1803.02999 (2018)

21. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng.
22(10), 1345–1359 (2010)

22. Ravi, S., Larochelle, H.: Optimization as a model for few-shot learning. In: Inter-
national Conference on Learning Representations (ICLR) (2017)

23. Ren, M., et al.: Meta-learning for semi-supervised few-shot classification. In: Inter-
national Conference on Learning Representations (ICLR) (2018)

24. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J.
Comput. Vis. 115(3), 211–252 (2015)

25. Salakhutdinov, R., Hinton, G.: Learning a nonlinear embedding by preserving
class neighbourhood structure. In: Artificial Intelligence and Statistics, pp. 412–419
(2007)

26. Santoro, A., Bartunov, S., Botvinick, M., Wierstra, D., Lillicrap, T.: Meta-learning
with memory-augmented neural networks. In: International Conference on Machine
Learning (ICML), pp. 1842–1850 (2016)

27. Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: a unified embedding for face
recognition and clustering. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 815–823 (2015)

28. Snell, J., Swersky, K., Zemel, R.: Prototypical networks for few-shot learning. In:
Advances in Neural Information Processing Systems (NIPS), pp. 4080–4090 (2017)

29. Sohn, K.: Improved deep metric learning with multi-class N-pair loss objective. In:
Advances in Neural Information Processing Systems (NIPS), pp. 1857–1865 (2016)

http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1803.02999

One Shot Learning with Margin 317

30. Triantafillou, E., Zemel, R., Urtasun, R.: Few-shot learning through an information
retrieval lens. In: Advances in Neural Information Processing Systems (NIPS), pp.
2252–2262 (2017)

31. Vinyals, O., Blundell, C., Lillicrap, T., Wierstra, D., et al.: Matching networks for
one shot learning. In: Advances in Neural Information Processing Systems (NIPS),
pp. 3630–3638 (2016)

32. Weinberger, K.Q., Saul, L.K.: Distance metric learning for large margin nearest
neighbor classification. J. Mach. Learn. Res. 10(Feb), 207–244 (2009)

33. Yang, L., Jin, R.: Distance metric learning: a comprehensive survey. Mich. State
Univ. 2(2), 4 (2006)

34. Zhang, X., Zhang, X., Liu, H.: Self-adapted multi-task clustering. In: IJCAI, pp.
2357–2363 (2016)

35. Zhang, X., Zhang, X., Liu, H., Liu, X.: Multi-task clustering through instances
transfer. Neurocomputing 251, 145–155 (2017)

DeepReview: Automatic Code Review
Using Deep Multi-instance Learning

Heng-Yi Li1, Shu-Ting Shi1, Ferdian Thung2, Xuan Huo1, Bowen Xu2,
Ming Li1(B), and David Lo2

1 National Key Laboratory for Novel Software Technology, Nanjing University,
Nanjing 210023, China

{lihy,shist,huox,lim}@lamda.nju.edu.cn
2 School of Information Systems, Singapore Management University,

Singapore, Singapore
{ferdiant.2013,bowenxu.2017}@phdis.smu.edu.sg, davidlo@smu.edu.sg

Abstract. Code review, an inspection of code changes in order to iden-
tify and fix defects before integration, is essential in Software Qual-
ity Assurance (SQA). Code review is a time-consuming task since the
reviewers need to understand, analysis and provide comments manu-
ally. To alleviate the burden of reviewers, automatic code review is
needed. However, this task has not been well studied before. To bridge
this research gap, in this paper, we formalize automatic code review
as a multi-instance learning task that each change consisting of mul-
tiple hunks is regarded as a bag, and each hunk is described as an
instance. We propose a novel deep learning model named DeepReview
based on Convolutional Neural Network (CNN), which is an end-to-end
model that learns feature representation to predict whether one change is
approved or rejected. Experimental results on open source projects show
that DeepReview is effective in automatic code review tasks. In terms of
F1 score and AUC, DeepReview outperforms the performance of tradi-
tional single-instance based model TFIDF-SVM and the state-of-the-art
deep feature based model Deeper.

Keywords: Software mining · Machine learning ·
Multi-instance learning · Automatic code review

1 Introduction

Software Quality Assurance (SQA) is essential in software development. Soft-
ware code review [16] is an important inspection of code changes written by
an independent third-party developer in order to identify and fix defects before
integration. Effective code review can largely improve the software quality.

However, code review is a very time-consuming task that the reviewer needs
to spend much time to understand, analyze and provide comments for the code
review request. Additionally, with the rapid growth of software, the number of

c© Springer Nature Switzerland AG 2019
Q. Yang et al. (Eds.): PAKDD 2019, LNAI 11440, pp. 318–330, 2019.
https://doi.org/10.1007/978-3-030-16145-3_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16145-3_25&domain=pdf
https://doi.org/10.1007/978-3-030-16145-3_25

DeepReview: Automatic Code Review Using Deep Multi-instance Learning 319

(Rejected) changed hunk

(Approved) changed hunk

Fig. 1. An example of rejected change JdbcRepository.java of review request 26657
from Apache. This change contains four hunks and only one hunk is rejected.

review requests are growing, which leads to a heavier burden on code review-
ers. Therefore, automatic code review is important to alleviate the burden of
reviewers.

Recently, some studies have been proposed to improve the effectiveness of
code review [1,16]. Thongtanunam et al. [16] revealed that 4%–30% of reviews
have code-reviewer assignment problems. They proposed a code reviewer rec-
ommendation approach named REVFINDER to solve it by leveraging the file
location information. Ebert et al. [1] proposed to identify the factors that confuse
reviewers and understand how confusion impacts the efficiency of code reviewers.
However, the task of automatic code review has not been well studied previously.

Considering the above issues, an automated approach is needed, which is
able to help reviewers to review the code submitted by developers. Usually, a
review request submitted by developers contains some changes of source code
in the form of diff files and textual descriptions indicating the intention of
the change. Notice that each change may contain multiple change hunks and
each hunk corresponds to a set of continuous lines of code. For example, Fig. 1
shows the change in the file JdbcRepository.java of review request 26657 from
Apache project. This change contains four hunks. One of the most common ways
to analyze this change is to combine all hunks together and generate a unified
feature to represent the change. However, this method may lead to two problems.
First, the hunks appearing in each change may be discontinuous and unrelated
to one another. Directly combining the hunks together may generate mislead-
ing feature representations, leading to a poor prediction performance. Second,
when the change is rejected, not every hunk in the change is rejected. Some hunks
have no issues and can be approved by reviewers. So the approved hunks and the
rejected hunks should not be processed together for feature extraction. There-
fore, separately generating features from each individual hunk in automatic code

320 H.-Y. Li et al.

review is needed. If the label (referring to approved or rejected) of each hunk is
available, we can directly build classification models on hunk data. However, in
code review tasks, the label of each hunk is hard to be obtained while the label
of each change can be extracted. A question arises here, can we build a model
to generate hunk-level feature representations for automatic code review based
on change-level labels?

To solve this problem, we formulate the automatic code review as a binary
classification task in the multi-instance learning setting. Instead of regard-
ing each change as an individual instance following traditional machine learn-
ing method, multi-instance learning method regards each change as a bag of
instances while each hunk of the change is described as an instance. The basic
assumption in multi-instance learning is that if one instance is positive then
the bag is also positive, which is consistent with code review task whereas if
one hunk is rejected then the change is also rejected. In our paper, we propose a
deep learning model named DeepReview based on Convolutional Neural Network
(CNN) via multi-instance learning, which is able to automatically learn seman-
tic features from each hunk and predict if one change is approved or rejected.
Additionally, in order to obtain the features that capture the difference of code
changes, DeepReview firstly recovers the code before change (old source code)
and after change (new source code) according to the diff markers. These snip-
pers are then fed in to the deep model to generate feature presentation, based
on which the label of each change is predicted. We conduct experiments on large
datasets collected from open source Apache projects for evaluation. The results
in terms of widely-used metrics AUC and F1 score indicate that DeepReview
is effective in automatic code review and outperforms previous state-of-the-art
feature representation methods previously used for related software engineering
tasks.

The contributions of our work are several folds:

– We are the first to study automatic code review task as multi-instance learn-
ing task. One change always contains multiple hunks, where each hunk is
described as an instance and the change can be represented by a set of
instances. Experiment results on five large datasets show that the proposed
multi-instance model is effective in automatic code review tasks.

– We propose a novel deep learning model named DeepReview based on Convo-
lutional Neural Network (CNN), which learns semantic feature representation
from source code change and change descriptions, to predict if one change is
approved or rejected.

2 The DeepReview Approach

In this section, we introduce the details of applying DeepReview for automatic
code review. The goal of this task is to predict if one code change of review
request submitted by developers is approved or rejected. The general process of
automatic code review based on machine learning model is illustrated in Fig. 2.

DeepReview: Automatic Code Review Using Deep Multi-instance Learning 321

Prediction:
Rejected or Approved

Code review archives Different changes Instances Classifier

(1) Collecting and
processing data.

(2) Extracting
features to generate
training instances

(3) Building a
prediction model

(4) Predicting new change

New change submission

+
-
-

Fig. 2. The general automatic code review process based on machine learning model.

The automatic code review prediction process mainly contains several parts:

– Collecting data from code review systems and processing data.
– Generating feature representations of the input data.
– Training a classifier based on the generated features and labels.
– Predicting if a new change is approved or rejected.

In the following subsections, we first introduce the general framework of
DeepReview in Subsect. 2.1, and the data processing is reported in Subsect. 2.2.
The core parts of DeepReview is elaborated in Subsects. 2.3 and 2.4.

2.1 The Framework of DeepReview

We introduce some notations of our framework. Let Co = {co1, c
o
2, . . . , c

o
N} and

Cn = {cn1 , cn2 , . . . , cnN} denotes the collection of old code and new code. Let D =
{d1, d2, . . . , dN} denotes the collection of change descriptions, where N is the
number of changes. In this paper, we formalize the code review as a learning task,
which attempts to learn a prediction function f : X �→ Y. xi ∈ X = (coi , c

n
i , di)

denotes each change, where coi and cni denotes the i-th old code (before changed)
and new code (after changed) respectively. Here coi = {ho

i1, h
o
i2, . . . , h

o
im} and

coi = {hn
i1, h

n
i2, . . . , h

n
im} contains multiple hunks and m is the number of hunks.

di denotes the text description of i-th change. yi ∈ Y = {1, 0} indicates whether
the change is approved or rejected.

We instantiate the code review prediction model by constructing a multi-
instance learning based deep neural network named DeepReview. The general
framework of DeepReview is illustrated in Fig. 3. The DeepReview model con-
tains three parts: input layers, instance feature generation layers and multi-
instance based prediction layers.

In the DeepReview model, each hunk of source code change is regarded as an
instance. In the input layers, the source code and text description of each instance
is encoded as feature vectors and then are fed into the neural network for pro-
cessing. The details of data processing in the input layers will be discussed in
Subsect. 2.2. Then the encoded data of each instance is fed into instance feature
generation layers. In these layers, DeepReview utilizes different convolutional
neural networks (CNN) to extract features from the source code input and the
textual description input. The convolutional neural networks for programming

322 H.-Y. Li et al.

code
changes

CNN for program-
ming language

Fully-connected layers for feature fusion

…

…... ...

old source code
text description…

…... ...

new source code

encoding

CNN for program-
ming language

CNN for natural
language

encoding encoding

Input layer

Instance feature
generation layer

Multi-instance based
prediction layer

Fully-connected layers for prediction

Output

Fig. 3. The general framework of DeepReview for automatic code review prediction.
The DeepReview model contains three parts: input layer, instance feature generation
layer, multi-instance based prediction layer.

language processing (called PCNN) is carefully designed respecting to the char-
acteristics of source code, which is similar to the network structure in [4]. The
convolutional neural networks for textual description processing (called NCNN)
is a standard way in [6]. Then the generated middle-level features of old code,
new code and textual descriptions of each instance are fused to learn a unified
feature representation via fully-connected networks mapping. Finally, after gen-
erating unified feature representations, the DeepReview model make a prediction
for each change via the multi-instance learning way in the multi-instance based
prediction layers.

2.2 Data Processing

The datasets used for automatic code review is the changed source code sub-
mitted by developers, which always appears in form of diffs and contains both
source code and diff markers (e.g., + stands for adding a line, - stands for
deleting a line). The main features in code changes are the difference between
the code before changed and after changed. So in data preprocessing shown in

DeepReview: Automatic Code Review Using Deep Multi-instance Learning 323

.
NCNN

.
PCNN

.
PCNN

.
PCNN

.
PCNN

Instance Feature Generation Layers

Weight
Sharing

Input Layers

Description

hunk1

hink1

hink2

prediction

M
ax pooling layers

Old code New code

Multi-instance Based
Prediction Layers

hunk2

hunk1

hunk2

Weight
Sharing

Weight
Sharing

Fusion layers

Fusion layers

Fusion layers

Fusion layers

Fig. 4. Automatic code review by DeepReview. When a change is processed for pre-
diction, three parts of the change (old code, new code and text descriptions) are firstly
encoded as feature vectors to feed into deep model. Then three parts of convolutional
neural networks are followed to extracte semantic features for source code and text
description separately. After that a fully-connected network is used to get fusion fea-
ture for hunks. Finally, another fully-connected network and a max-pooling layer is
connected to generate a prediction indicating approved or rejected of the change.

the left part of Fig. 4, we extract both old code (before changed) and new code
(after changed) from diffs as input. We also use the change descriptions since
they contain the goal of this change and are helpful to improve the prediction
performance.

After splitting diff files into old code, new code and text description, a
pre-trained word2vec [10] technique is used to encode every token as vector rep-
resentations (e.g., a 300 dimension vector), which has been shown effective in
processing textual data and widely used in text processing tasks [6,10]. In a simi-
lar way, we split descriptions as words and encode them as vector representations
too. All these vector representations are sent into the deep neural network to
learn the semantic features.

2.3 Instance Feature Generation Layer

DeepReview takes old source code (before change) and new source code (after
change) along with the text descriptions as inputs. Noticing that the source
code and text descriptions are with different structures. Therefore we use PCNN
network for code and NCNN network for text to extract feature, respectively.

As aforementioned, each change will contain multiple hunks and different
hunks are individual instance, therefore the instance features should be extracted
separately by the same neural network. In other words, the weight of PCNN is
shared for all code hunks. In this way, we can get unbiased feature representations
for each hunk with both old code and new code.

324 H.-Y. Li et al.

Suppose one change contains m modified hunks. Let (zoi1, z
o
i2, . . . , z

o
im)

denotes the middle-level vectors of old source code coi , (zni1, z
n
i2, . . . , z

n
im) denotes

the middle-level vectors of new source code cni and zti denotes the middle-level
vectors of text description di. In the instance feature generation layers, DeepRe-
view first concatenates this three part for each instance as following:

zhij = zoij � znij � zti (1)

where � is the concatenating operation and the generated zhij represents the
features of the j-th hunk of the i-th change (referring to one instance).

To capture the difference between new code and old code as well as the
relation between code change and change description, this concatenated features
are then fed into fully-connected networks for feature fusion.

2.4 Multi-instance Based Prediction Layer

In the prediction layers, we first make a prediction for each hunk (also called
instance) using fully-connected networks following a sigmoid layer based on the
generated hunk representations. Similarly, all the fully-connected networks are
shared weights to each hunk so that the generated prediction does not have bias.
The output prediction of each hunk pi = (pi1, pi2, . . . , pim) is generated.

In the multi-instance setting, if any instance is positive (rejected), the bag is
also positive (rejected). So the maximum value of predictions for hunks is used
for predicting the label of each change. Then, a max-pooling layer is employed
to get the final prediction for the change, that is p̂i = max{p}.

Specifically, the parameters of the convolutional neural networks layers can
be denoted as Θ = {θ1, θ2, . . . , θl} and the parameters of the fully-connected
networks layers can be denoted as W = {w1,w2, . . . ,w3}. Therefore, the loss
function implied in DeepReview is:

L(Θ,W) = −
N∑

i=1

(cayi log p̂i + cr(1 − yi) log(1 − p̂i)) + λΩ(f) (2)

where L is a cross-entropy loss, Ω(f) is the regularization term which imposes
regularization (e.g., L2 regularization) on the weights of model, and λ is the
trade-off parameter balancing these two terms. ca denotes the cost of incorrectly
predicting a rejected change as approved and cr denote the cost of incorrectly
predicting a approved change as rejected. This objective function can be effec-
tively optimized by SGD (Stochastic gradient descent) algorithm.

3 Experiments

To evaluate the effectiveness of DeepReview, we conduct experiments on thou-
sands of code reviews from open source software projects and compare with
several state-of-the-art code review methods.

DeepReview: Automatic Code Review Using Deep Multi-instance Learning 325

3.1 Experiment Settings

The datasets used in our experiment are from Apache1 Code Review Board,
which are also analyzed by prior studies on code reviews [13,14]. We down-
loaded all reviews on October 2017 and selected only code reviews in which the
reviewers highlighted the line numbers that they have issues with, totally 1,011
code reviews. We further extracted five repositories with the largest number of
involved files in the collected code reviews – the different datasets and their
statistics are shown in Table 1. For each repository, we have more than 1,000
involved files and at least 3,500 hunks.

Table 1. Statistics of our data sets.

Datasets #changes #hunks #rejected

cloudstack-git 1,682 6,171 128

aurora 1,161 6,762 168

drill-git 1,015 3,575 43

accumulo 1,011 5,798 152

hbase-git 1,009 6,702 140

As indicated by Table 1, the number of rejected hunks is only a small part of
all hunks and the datasets are very imbalanced. Therefore, we use F1 to evalu-
ate the performance; F1 has been widely used in imbalanced learning settings.
Additionally, we record the AUC, which is a non-parametric method to evaluate
model performance and is unaffected by class imbalance. The evaluation met-
rics used in our experiments were adopted to evaluate many approaches that
automate various software engineering tasks [4,5,9,12,17].

We compare the proposed model DeepReview with following baseline meth-
ods and some of its variants:

– TFIDF-LR [2], which uses Term Frequency-Inverse Document Frequency
(TFIDF) feature to represent source code changes and Logistic Regression
(LR) for classification.

– TFIDF-SVM, which uses TFIDF features to represent source code changes
and Support Vector Machine (SVM) for classification.

– Deeper [20], one of the state-of-the-art deep learning models on software engi-
neering, which extracts deep features from changes with DBN models and
then apply Logistic Regression (LR) for classification.

– Deeper-SVM, a slight variant of Deeper, which uses DBN model for feature
extraction and then apply Support Vector Machine for classification.

– DeepReview-SingleInstance, one variant of DeepReview, which does not con-
sider the multi-instance setting and concatenate the all hunks together as one
instance for input.

1 https://reviews.apache.org/r/.

https://reviews.apache.org/r/

326 H.-Y. Li et al.

– DeepReview-diff, one variant of DeepReview, which does not separate the
code change and taking diff marks and diff code as input.

The settings of DeepReview and its variants are introduced here: in the con-
volution layers, we use activation function σ(x) = max(x, 0). Also, we set the
size of convolution windows as 2 and 3 with 100 feature maps each.

3.2 Experiment Results

For each dataset, 10-fold cross validation is repeated 5 times and we report the
average value of all compared methods in order to reduce the evaluation bias. We
also apply the statistic test to evaluate the significance of DeepReview. Pairwise
t-test at 95% confidence level is conducted.

We firstly compare our proposed model DeepReview with several traditional
non-multi instance models. One of the most common methods is to employ
Vector Space Model (VSM) to represent the changes. In addition, we compare
DeepReview with latest deep learning based models Deeper [20] on software
engineering, which applies Deep Believe Network for semantic feature extraction.
The results are shown in Tables 2 and 3. The highest results of each repository is
highlighted in bold. The compared methods that are significantly inferior than
our approach will be marked with “◦” and significantly better than our approach
be marked with “•”.

Table 2. The performance comparison in terms of F1 on all methods.

Datasets TFIDF-LR TFIDF-SVM Deeper Deeper-SVM DeepReview

accumulo 0.219◦ 0.231◦ 0.208◦ 0.199◦ 0.444

aurora 0.202◦ 0.214◦ 0.352◦ 0.298◦ 0.436

cloudstack-git 0.252◦ 0.276◦ 0.392◦ 0.257◦ 0.497

drill-git 0.213◦ 0.235◦ 0.277◦ 0.226◦ 0.414

hbase-git 0.235◦ 0.257◦ 0.182◦ 0.142◦ 0.463

Avg. 0.224◦ 0.243◦ 0.282◦ 0.224◦ 0.451

Table 3. The performance comparison in terms of AUC on all methods.

Datasets TFIDF-LR TFIDF-SVM Deeper Deeper-SVM DeepReview

accumulo 0.635◦ 0.678◦ 0.697◦ 0.705◦ 0.746

aurora 0.577◦ 0.629◦ 0.687◦ 0.566◦ 0.758

cloudstack-git 0.755◦ 0.827◦ 0.825◦ 0.637◦ 0.870

drill-git 0.676◦ 0.725◦ 0.639◦ 0.571◦ 0.761

hbase-git 0.685◦ 0.751 0.597◦ 0.547◦ 0.758

Avg. 0.666◦ 0.722◦ 0.689◦ 0.605◦ 0.779

DeepReview: Automatic Code Review Using Deep Multi-instance Learning 327

0.300
0.320
0.340
0.360
0.380
0.400
0.420
0.440
0.460
0.480
0.500

accumulo aurora cloudstack-git drill-git hbase-git

DeepReview-SingleInstance DeepReview

(a) F1.

0.600

0.650

0.700

0.750

0.800

0.850

0.900

accumulo aurora cloudstack-git drill-git hbase-git

DeepReview-SingleInstance DeepReview

(b) AUC

Fig. 5. F1 and AUC of the compared methods on five datasets.

0.300

0.350

0.400

0.450

0.500

accumulo aurora cloudstack-git drill-git hbase-git

DeepReview-diff DeepReview

(a) F1.

0.600

0.650

0.700

0.750

0.800

0.850

0.900

accumulo aurora cloudstack-git drill-git hbase-git

DeepReview-diff DeepReview

(b) AUC.

Fig. 6. F1 and AUC of the compared methods on five datasets.

As indicated in Tables 2 and 3, DeepReview achieves the best performance on
all datasets in terms of F1 score. On average, DeepReview can lead to AUC value
0.779, which is significant better than the value achieves by TFIDF-LR (0.666),
TFIDF-SVM (0.722). When compared with Deeper and its variant Deeper-SVM,
it can be easily find that DeepReview achieves the best F1 score and AUC value.
On average, the superiority of DeepReview to other deep feature based methods
is statistically significant. In conclusion, the proposed DeepReview is effective in
automatic code review prediction, which indicates that DeepReview can learn
better features than traditional hand-crafted features or previous deep learning
based features.

To evaluate the effectiveness of applying multi-instance learning strategy
for code review, we compare our model to traditional single-instance learning
model, named DeepReview-SingleInstance. Figure 5a and b show the perfor-
mance comparison of DeepReview and a variant DeepReview-SingleInstance.
It can be observed that DeepReview achieves higher AUC value and F1 score
than DeepReview-SingleInstance on all datasets, indicating that multi-instance
learning approach is effective in code review task.

To evaluate the effectiveness of applying both source code before and after
changes to model the difference features of change, we compare another vari-
ant of DeepReview, named DeepReview-diff. We use the same network structure
to extract the features of code in diffs and fuse it with the features of corre-

328 H.-Y. Li et al.

sponding change description as the final representations. Figure 6a and b show
the performance comparison of DeepReview and its variant DeepReview-diff.
Compared to DeepReview-diff, it is clear that DeepReview outperforms it by
improving 4.2% in terms of F1 score and 4.7% in terms of AUC on average.

4 Related Work

Many empirical studies aim to help researchers and practitioners to understand
code review practice from different perspectives [7,13,15]. To characterize and
understand the differences between a diverse set of software projects, Rigby et
al. [13] found that many characteristics of code review have independently con-
verged to similar values which indicates general principles of code review, e.g.,
reviewers prefer discussion and fixing code over reporting defects, the number
of involved developers can vary. Kononenko et al. [7] investigated a set of fac-
tors that might affect the quality of code review based on a large open-source
project Mozilla, and focused on the relationship between human factors (e.g.,
personal characteristics of developers, team participation and involvement) and
code review quality. Tao et al. [15] investigated the reasons behind 300 rejected
Eclipse and Mozilla patches by surveying 246 developers. They concluded that
the poor quality of the solution, the large size of the involvement of unnecessary
changes, the ambiguous documentation of a patch and inefficient communica-
tion. Moreover, Thongtanunam et al. [16] revealed that 4%–30% of reviews have
code-reviewer assignment problem. Thus, they proposed a code-reviewer recom-
mendation approach REVFINDER to solve the problem by leveraging the file
location information. The intuition is that files that are located in similar file
paths would be managed and reviewed by experienced code-reviewers. Zanjani
et al. [21] also studied on code reviewer recommendation problem and they pro-
posed an approach cHRev by leveraging the specific information in previously
completed reviews (i.e., quantification of review comments and their recency).

Recently, deep learning has been applied in software engineering. For exam-
ple, Yang et al. applied Deep Belief Network (DBN) to learn higher-level features
from a set of basic features extracted from commits (e.g., lines of code added,
lines of code deleted, etc.) to predict buggy commits [20]. Xu et al. applied word
embedding and convolutional neural network (CNN) to predict semantic links
between knowledge units in Stack Overflow (i.e., questions and answers) to help
developers better navigate and search the popular knowledge base [19]. Lee et al.
applied word embedding and CNN to identify developers that should be assigned
to fix a bug report [8]. Mou et al. [11] applied tree based CNN on abstract syntax
tree to detect code snippets of certain patterns. Huo et al. [3,4] applied learned
unified semantic feature based on bug reports in natural language and source
code in programming language for bug localization tasks. Wei et al. [18] proposed
deep feature learning framework AST-based LSTM network for functional clone
detection, which exploits the lexical and syntactical information.

DeepReview: Automatic Code Review Using Deep Multi-instance Learning 329

5 Conclusion

In this paper, we are the first to formulate code review as a multi-instance learn-
ing task. We propose a novel deep learning model named DeepReview for auto-
matic code review, which takes raw data of a changed code containing multiple
hunks along with the textual descriptions as inputs and predicts if one change
is approved or rejected. Experimental results on five open source datasets show
that DeepReview is effective and outperforms the state-of-the-art models previ-
ously proposed for other automated software engineering tasks.

Acknowledgment. This research was supported by National Key Research and
Development Program (2017YFB1001903) and NSFC (61751306).

References

1. Ebert, F., Castor, F., Novielli, N., Serebrenik, A.: Confusion detection in code
reviews. In: ICSME, pp. 549–553 (2017)

2. Gay, G., Haiduc, S., Marcus, A., Menzies, T.: On the use of relevance feedback in
IR-based concept location. In: ICSM, pp. 351–360 (2009)

3. Huo, X., Li, M.: Enhancing the unified features to locate buggy files by exploiting
the sequential nature of source code. In: IJCAI, pp. 1909–1915 (2017)

4. Huo, X., Li, M., Zhou, Z.H.: Learning unified features from natural and program-
ming languages for locating buggy source code. In: IJCAI, pp. 1606–1612 (2016)

5. Jiang, T., Tan, L., Kim, S.: Personalized defect prediction. In: ASE, pp. 279–289
(2013)

6. Kim, Y.: Convolutional neural networks for sentence classification. In: EMNLP,
pp. 1746–1751 (2014)

7. Kononenko, O., Baysal, O., Guerrouj, L., Cao, Y., Godfrey, M.W.: Investigating
code review quality: do people and participation matter? In: ICSME, pp. 111–120
(2015)

8. Lee, S., Heo, M., Lee, C., Kim, M., Jeong, G.: Applying deep learning based auto-
matic bug triager to industrial projects. In: ESEC/FSE, pp. 926–931 (2017)

9. Menzies, T., Greenwald, J., Frank, A.: Data mining static code attributes to learn
defect predictors. IEEE TSE 33(1), 2–13 (2007)

10. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed represen-
tations of words and phrases and their compositionality. In: NIPS, pp. 3111–3119
(2013)

11. Mou, L., Li, G., Zhang, L., Wang, T., Jin, Z.: Convolutional neural networks over
tree structures for programming language processing. In: AAAI, pp. 1287–1293
(2016)

12. Nam, J., Pan, S.J., Kim, S.: Transfer defect learning. In: ICSE, pp. 382–391 (2013)
13. Rigby, P.C., Bird, C.: Convergent contemporary software peer review practices. In:

FSE, pp. 202–212 (2013)
14. Rigby, P.C., German, D.M., Storey, M.A.: Open source software peer review prac-

tices: a case study of the apache server. In: ICSE, pp. 541–550 (2008)
15. Tao, Y., Han, D., Kim, S.: Writing acceptable patches: an empirical study of open

source project patches. In: ICSME, pp. 271–280 (2014)

330 H.-Y. Li et al.

16. Thongtanunam, P., Tantithamthavorn, C., Kula, R.G., Yoshida, N., Iida, H., Mat-
sumoto, K.I.: Who should review my code? A file location-based code-reviewer rec-
ommendation approach for modern code review. In: SANER, pp. 141–150 (2015)

17. Wang, S., Liu, T., Tan, L.: Automatically learning semantic features for defect
prediction. In: ICSE, pp. 297–308 (2016)

18. Wei, H.H., Li, M.: Supervised deep features for software functional clone detection
by exploiting lexical and syntactical information in source code. In: IJCAI, pp.
3034–3040 (2017)

19. Xu, B., Ye, D., Xing, Z., Xia, X., Chen, G., Li, S.: Predicting semantically linkable
knowledge in developer online forums via convolutional neural network. In: ASE,
pp. 51–62 (2016)

20. Yang, X., Lo, D., Xia, X., Zhang, Y., Sun, J.: Deep learning for just-in-time defect
prediction. In: QRS, pp. 17–26 (2015)

21. Zanjani, M.B., Kagdi, H., Bird, C.: Automatically recommending peer reviewers
in modern code review. IEEE TSE 42(6), 530–543 (2016)

Multi-label Active Learning with Error
Correcting Output Codes

Ningzhao Sun, Jincheng Shan, and Chenping Hou(B)

National University of Defense Technology, Changsha, China
nz.sun@hotmail.com, njusjc@sina.cn, hcpnudt@hotmail.com

Abstract. Due to the demand of practical problems, multi-label learn-
ing has become an important research where each instance belongs to
multiple classes. Compared with single-label problem, the labeling cost
for multi-label one is rather expensive because of the diversity and non-
uniqueness of the labels. Therefore, the active learning which reduces
the cost by selecting the most valuable data to query the labels attracts
a lot of interests. Although several multi-label active learning (MLAL)
methods were proposed, they often identify the label merely through a
classifier via one-versus-all (OVA) strategy for each class, which makes
the classification model very fragile, thus having a serious impact on
the later selection criteria. In this paper, we utilize a new multi-label
Error Correcting Output Codes (ECOC) method which determines the
label of an instance on each class by combining multiple classifiers. This
makes our classification model has a good ability of error-correcting and
thus ensures the effectiveness of evaluation information in the selection
process. Then we combine two effective selection strategies, the mar-
gin prediction uncertainty and label cardinality inconsistency, to com-
plement each other and select the most informative instance. Based on
this combination, we propose a novel MLAL framework, termed Multi-
label Active Learning with Error Correcting Output Codes (MAOC).
Experiments on multiple benchmark multi-label datasets demonstrate
the efficacy of the combination in proposed approach.

Keywords: Active learning · Multi-label classification ·
Error Correcting Output Codes

1 Introduction

In a learning system, we usually need enough examples to train a high perfor-
mance strong model. Nevertheless, in many real word scenarios, there are a small
amount of labeled data but a large amount of unlabeled data. While labeling
is usually expensive especially for multi-label data that a sample may belong
to multiple labels at the same time. For example, an image can be labeled as
“boat” and “water” simultaneously if it contains both objects. In the text cate-
gory, press documents about the presidential election can cover both politics and

c© Springer Nature Switzerland AG 2019
Q. Yang et al. (Eds.): PAKDD 2019, LNAI 11440, pp. 331–342, 2019.
https://doi.org/10.1007/978-3-030-16145-3_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16145-3_26&domain=pdf
https://doi.org/10.1007/978-3-030-16145-3_26

332 N. Sun et al.

economics. This makes it harder to label the multi-label data than traditional
single-label data. Thus, using a small amount of labeled data to train an accu-
rate model becomes a significant challenge. Active learning is aimed at selective
instance marking and reducing the marking of well-trained predictive models, so
it is particularly important for multi-label classification.

In multi-label active learning, the main concern is how to select effective data.
Two common strategies are often used to measure the unified informativeness
of unlabeled instances, the max-margin prediction uncertainty strategy and the
label cardinality inconsistency strategy, which exploit uncertainty and diversity
in the instance space, respectively [1]. However, both the strategies have their
pros and cons, so we need to combine these two strategies in order to play to
their strengths at the same time.

Meanwhile, in traditional active learning, multi-label SVM classification was
widely utilized. However, the robustness of traditional SVM algorithm is not
very good, as it identifies the label of each class by just a classifier. To this
problem, the ECOC method utilized in this paper transforms the multi-label
problem into a collection of multi-label random selections, is a good solution.

In this paper, we combine the active learning and an effective ECOC frame-
work. We use ECOC to obtain soft labels for each data, which can either classify
the data directly through a threshold label or rank all the labels for each data.
Based on the soft labels after classification, we get the uncertainty and diversity
of each data, respectively. Eventually we can get the selection information of
each data and select the most valuable instance to query. In fact, it is the high
performance of the new ECOC method that makes the active selection strat-
egy we use more reliable. Because the sample selected through a more robust
classifier will have more accurate information. After each query, we update the
multi-label model step by step on the basis of new labeled data.

The rest of this paper is organized as follows. Section 2 briefly introduces some
related works. Section 3 presents the new ECOC classification model. Section 4
presents the multi-label active selection strategy. Section 5 shows the experimen-
tal set-up and discusses the results, followed by the conclusion in Sect. 6.

2 Related Work

Active learning is a machine learning framework making full use of enough unla-
beled data, which aims to reduce the labeling effort and cost required for training
high-quality predictive models. Useful supervised information is queried itera-
tively from the oracle. The key of it is to develop an effective query strategy.
Over the past decades, a number of active selection criteria have been devel-
oped. In [2], The sample was selected by maximizing the likelihood of labeled
and selected samples while the uncertainty of unlabeled samples was minimized.
For the multi-class problem, the method proposed in [3] adopted entropy to
evaluate the uncertainty of unlabeled samples, and applied diversity criteria to
make information selection diversity as much as possible. However, these meth-
ods cannot be applied directly to multi-label learning tasks.

Multi-label Active Learning with Error Correcting Output Codes 333

In most cases, multi-label active learning algorithms decompose the task into
a set of binary classification problems. For example, in [4], the uncertainty of
each label is measured, and then combined to form the uncertainty measurement
of each sample. In addition, a SVM classifier is trained for each label, and the
sample that results in the maximum reduction of expected loss is selected. Sim-
ilarly, in [5], the expected loss reduction of SVM based on independent training
was used as the selection criteria by introducing additional regression models
to predict the number of labels to be assigned to each sample. In [1], the infor-
mation of a sample was proposed by combining the inconsistency of the label
cardinality and the separation boundary with the trade-off parameter.

Most active learning algorithms are designed to query all the label assign-
ments of the selected instances, Huang et al. proposed a two-dimensional app-
roach in [6] that queries instance-label pairs based on a label ranking model; in
other words, it selects one label c and an instance x, and queries the oracle if
x should be assigned to label c. While most of the existing multi-label active
learning methods use multi-label SVM classification, which leads to the similar-
ity between sub-classifiers and thus difficult to achieve good results. The active
learning model used in this paper is extended from [1] which combines the label
cardinality inconsistency and the separation margin and uses the SVM classifi-
cation. However, we have made some improvements in classifier and parameter
selection.

3 Revisiting ECOC via Multi-label SVM Classification

In the traditional multi-label active learning, most people use the multi-label
SVM classification to obtain the model. It is a conceptually simple and com-
putationally efficient solution. However, the similarity between classifiers has
a serious impact on the SVM model, especially a large label set exists. In this
paper, we employ a new method, Revisiting ECOC for Multi-Label Classification
(RECOC), which can be regarded as an extension of the traditional multi-label
SVM classification. To be specific, we employ the OVA encoding on a number
of small-sized random selection.

Let {(x1,y1), (x2,y2), · · · , (xnl
,ynl

),xnl+1, · · · ,xn} be the training data set,
where L = {(xi,yi)}nl

i=1 is a small set of labeled instances and U = {xi}n
i=nu

is
a large pool of unlabeled instances. Each instance xi is a q-dimensional feature
vector. Suppose there are m possible labels in all, yi = [yi1, yi2, · · · , yim]� ∈
{−1,+1}m is the class label of xi. The instance xi is assigned into j-th label if
yij = +1, otherwise, the instance does not belong to the j-th label.

Firstly, let’s review the multi-label SVM classification which transforms a
multi-label classification problem into a set of independent binary classification
problems via the OVA strategy. For the j-th class of a m labels SVM classifica-
tion, the binary SVM training is a standard quadratic optimization problem:

min
wj ,bj ,{ξij}

1
2

‖ wj ‖ +C
n∑

i=1

ξij

subject to yij(w
�
j xi) ≥ 1 − ξij , ξij ≥ 0, ∀i

(1)

334 N. Sun et al.

In the RECOC method, we turn the original problem into a series of multi-
label random selections with k(k ≤ m) classes. Specifically, we will randomly
select k classes from the all m classes. We denote all possible random selections
as Rk, and we can get a total of |Rk| = Ck

m random selections. Then we choose
d random selections from Rk denoted as Φ = {φi}d

i=1. For each random selection
φi, we will train a multi-label SVM classification via OVA scheme thus we can get
k × d binary SVM classifiers. In φi, we do not select all instances when training
the SVM classification because of not all instances falling into any of the selected
classes. These samples are not much useful in training the classification in φi.
We only select the instances that belong to at least one of the k classes.

Next, let’s think about how do we get the predictive labels for unlabeled
instances. The vector we get above is not the prediction label because there are
repeating classes. In a nutshell, we obtain the soft label of the sample in each
class by using the method of proportion of positive label in all the prediction
results that contain this class. Due to the unavoidable error, different classifiers
may have different results for the prediction of the same sample on the same
label. But intuitively, the more classifiers predict this sample as a positive class,
the more likely it is to be a positive one.

In particular, for an unlabeled instance x, we suppose there are pi classifiers
that predict it as positive sample on i-th class and qi classifiers which need to
treat i-th class as positive for training. Then we can get the soft label of the
sample in i-th class: ỹi = pi/qi. Let’s denote the set of the random selections
that contain the i-th class as Φi, the result can be expressed as:

ỹi =

∑
hi∈Φi

I[hi(x) = 1]
|Φi| (2)

And ỹ = (ỹ1, ỹ2, · · · , ỹm) is the soft label vector of the instance x. In the last,
we can select a threshold value ỹ0, when the soft label value is greater than
or equal to the threshold value, it is marked as positive, otherwise marked as
negative. In this paper, we fix the threshold value ỹ0 = 0.5. Let fi(x) = ỹi − ỹ0

and f(x) = (f1(x), f2(x), · · · , fm(x)). Finally, the prediction label for instance
x is the form of ŷ = sign(f(x)).

If we set the parameters k = m and d = 1, we will find that the RECOC
classifier degrades to a multi-label SVM classifier via OVA strategy, so we say
the former is a promotion of the latter. However, compared with the tradi-
tional multi-label SVM classifier, we only utilize a few classes when each binary
SVM classifier is trained in the RECOC method which allows for differentiation
between different classifiers so there will be some error-correcting function.

4 The Algorithm

In this section, we review two pool-based selection strategies: max-margin uncer-
tainty sampling and label cardinality inconsistency [1], which consider the per-
spective of label forecasting and label statistics respectively. We aim to label the
most informative instance from the unlabeled pool U iteratively, then move it

Multi-label Active Learning with Error Correcting Output Codes 335

to the labeled set L and retrain the classification model on the incremental L.
Same as Sect. 3, we set the label vector yi ∈ {1,−1}m.

4.1 Max-Margin Uncertainty Sampling

Perhaps the uncertainty sampling is the simplest and most commonly used active
query framework. The central idea of this framework is that the active learner
queries the instance about which it is least certain how to label [7]. In single
label problem, the instance closest to the classification boundary is regarded as
the most uncertain instance for binary SVM classification. For multi-label SVM
classification, this strategy can be applied directly to each binary classification,
and then taking the minimum [8] or average [9] over all classes.

Specifically, for an unlabeled instance xi, we get the soft labels f(xi) =
(f1(xi), f2(xi), · · · , fm(xi)) with the RECOC classification. Denote the set of
predicted positive labels as ŷ+

i and the set of predicted negative labels as ŷ−
i .

We define the separation margin over instance xi as:

sep margin(xi) = min
s∈ŷ+

i

fs(xi) − max
t∈ŷ−

i

ft(xi) = min
s∈ŷ+

i

|fs(xi)| + min
t∈ŷ−

i

|ft(xi)| (3)

Then we define the margin prediction uncertainty as the inverse separation mar-
gin [1]:

u(x) =
1

sep margin(x)
(4)

Intuitively, a good SVM classification model should keep the positive and neg-
ative samples as far from the interface as possible. Thus the most uncertain
instance is going to get the minimum value of separation margin, i.e. the maxi-
mum margin. Similarly, we apply this idea to the RECOC classification predic-
tion uncertainty.

4.2 Label Cardinality Inconsistency

As we defined above, the separation margin is an effective uncertainty sampling.
However, it is defined based on the predicted labels only, not existing ones.
Under normal circumstances, the unlabeled and labeled samples are all drawn
from the same underlying distribution so that their label cardinality are not too
different. While, in practice, the results of our training will inevitably be biased,
which may lead to a large difference of label cardinality between the unlabeled
and labeled samples, that is, too many or too few positive tags are obtained.
Figure 1 demonstrates such a toy example with five classes. For predicted results,
the separation margin of the example instance x is large so that the uncertainty
of x is not large, but it is opposite actually. This suggests that there is a large
error in the mere use of margin prediction uncertainty.

Consider that the unlabeled and labeled samples come from the same dis-
tribution we mentioned above, we introduce the label cardinality inconsistency
to measure the prediction uncertainty over an unlabeled instance from the label

336 N. Sun et al.

space perspective. For an unlabeled instance x, it is defined as the Euclidean
distance between the predicted positive label and the label cardinality of labeled
instances D [1]:

c(x) =

∥∥∥∥∥∥

m∑

j=1

I[ŷj > 0] − 1
nl

nl∑

k=1

m∑

j=1

I[ykj > 0]

∥∥∥∥∥∥
2

(5)

Fig. 1. The ordered prediction values across five classes over instance x. The predicted
separation line between positive and negative labels is marked as red line and the true
separation line between positive and negative labels is marked as blue line. (Color figure
online)

Obviously,the larger value of the label cardinality inconsistency, the more
likely the sample is to be incorrectly marked.

4.3 Active Selection

In many cases, the two active learning strategies we reviewed above are com-
plementary. So we use a weighted form to combine the advantages of these two
strategies:

q(x, β) = u(x)β · c(x)1−β (6)

where β is a trade-off parameter which balances the relative importance of the
two measures.

Finally the instance selection on U can be conducted by

x∗ = arg max
x∈U

q(x, β) (7)

In [1], the author set a parameter set B, and adaptively select the best
parameter in each iteration of the active learning. However, it requires training
the classification for each β ∈ B, which is very time consuming for the RECOC
classification. In addition, we find in the experiment that for a specific dataset,
there is little difference between using a fixed optimal parameter and adaptive
selection the best parameter. We thus chose the previous method on each dataset.
The overall active learning procedure is described in Algorithm1.

Multi-label Active Learning with Error Correcting Output Codes 337

Algorithm 1. The MAOC algorithm
Input:

labeled set L, unlabeled set U , the parameter k and d in the RECOC classifier
and the trade-off parameter β.

Repeat:
Train RECOC classifier F 0 on L.
for each xi ∈ U do

Compute u(xi) and c(xi).
end for
Select instance x∗ = arg maxx∈U q(x, β).
Query the label vector y∗ for x∗.
Update L and U : L → L ∪ (x∗,y∗), U → U\x∗.
Retrain F with all instances in L.
until enough instances are queried.

5 Experiments

5.1 Experiments Setup

We evaluate empirical performance of the proposed algorithm in the following six
benchmark datasets: corel5k [10], image [11], medical [12], scene [13], tmc2007
[14] and yeast [15]. These datasets cover a number of areas and most of them
are available at MULAN project1. Detailed characteristics of these datasets are
summarized in Table 1, including associated domains, number of instances, num-
ber of labels, feature space dimensionality and label cardinality (LC), where LC
is the average number of labels per instance.

Table 1. Statistics on datasets

Dataset Domin Instance Label Feature LC

Corel5k Image 5000 374 499 3.52

Image Image 2000 5 294 1.24

Medical Text 978 45 1499 1.25

Scene Image 2407 6 294 1.07

Tmc2007 Text 28596 22 500 2.16

Yeast Biology 2417 14 103 4.23

For each experiment, we first randomly partitioned the data into two parts
with equal size, one part is taken as test set and the other part as the unla-
beled pool for active selection. Because of an initial model required before active
learning, we randomly sample 10% instances from the unlabeled pool as initial
labeled data on the datasets corel5k, image, scene and yeast while 20% on the
1 http://mulan.sourceforge.net/datasets.html.

http://mulan.sourceforge.net/datasets.html

338 N. Sun et al.

dataset medical (Because the label/sample of the data set is relatively large).
In experiments, the parameters k and d affect the performance and speed of the
algorithm, we fix k = 3 and d equals the minimum of 3 m and Ck

m. We find that
this parameter pair is the minimum to ensure the performance of the algorithm.
We repeated the random data partition for 20 times, and average results over
the 20 repeats are reported.

In the experiments, we will compare the proposed approach with four multi-
label active learning approaches:

– Random: the baseline which randomly selects query instances.
– Adaptive: the method proposed in [1], which considers both the max-margin

prediction uncertainty and the label cardinality inconsistency.
– AUDI: the method proposed in [6], which considers uncertainty and diversity

when selecting instance-label pairs.
– QUIER: the method proposed in [16], which selects instance-label pairs

based on informativeness and representativeness.
– MAOC: the method proposed in this paper.

We use one-versus-all linear SVM (implemented with LIBLINEAR [17]) as
the classification model for evaluating the compared approaches Random, Adap-
tive, AUDI and QUIER. For the MAOC, we use the LIBLINEAR software to
learn base binary classifiers. And we set C = 10 as default for all the approaches.
At each iteration of active learning, we select one instance or one instance-label
pair in each the active learning methods based on their own strategy, and then
add it into the labeled data. After one instance (for AUDI and QUIER, m
instance-label pairs) queried, a new classification model on the labeled data will
be trained and evaluated the performance on the test data.

We evaluate the performances of the trained classifiers on the multi-label
data set with the macro-F1 and micro-F1 score, which are commonly used in
multi-label learning. [1,6,16], Both of them locate in [18].

– Macro-F1

Micro-F1 =
1
n

n∑

i=1

m∑
k=1

I[yik] = 1 · I[ŷik] = 1

m∑
k=1

(I[yik] = 1 + I[ŷik] = 1)
. (8)

– Micro-F1

Micro-F1 =

n∑
i=1

m∑
k=1

I[yik] = 1 · I[ŷik] = 1

n∑
i=1

m∑
k=1

(I[yik] = 1 + I[ŷik] = 1)
. (9)

Where yik and ŷik are the true and predicted label of the ith instance on the
kth class respectively, and I[·] is the indicator function.

Multi-label Active Learning with Error Correcting Output Codes 339

0 200 400 600 800
Number of selected data

0.43

0.44

0.45

0.46

0.47

0.48

0.49

m
ac

ro
F

M
ea

su
re

MAOC
QUIER
AUDI
Adaptive
Random

(a) Yeast

0 100 200 300 400 500 600 700 800
Number of selected data

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

m
ac

ro
F

M
ea

su
re

(b) Tmc2007

0 50 100 150 200 250 300
Number of selected data

0.5

0.52

0.54

0.56

0.58

0.6

0.62

m
ac

ro
F

M
ea

su
re

(c) Scene

0 100 200 300 400 500
Number of selected data

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

m
ac

ro
F

M
ea

su
re

(d) Image

0 100 200 300 400 500
Number of selected data

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

m
ac

ro
FM

ea
su

re

(e) Corel5k

0 50 100 150 200 250 300 350
Number of selected data

0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

m
ac

ro
F

M
ea

su
re

(f) Medical

Fig. 2. Comparison result on Macro-F1.

0 100 200 300 400 500 600 700 800
Number of selected data

0.43

0.44

0.45

0.46

0.47

0.48

0.49

0.5

m
ic

ro
F

M
ea

su
re

MAOC
QUIER
AUDI
Adaptive
Random

(a) Yeast

0 100 200 300 400 500 600 700 800
Number of selected data

0.44

0.46

0.48

0.5

0.52

0.54

0.56

m
ic

ro
F

M
ea

su
re

(b) Tmc2007

0 50 100 150 200 250 300
Number of selected data

0.56

0.57

0.58

0.59

0.6

0.61

0.62

m
ic

ro
F

M
ea

su
re

(c) Scene

0 100 200 300 400 500
Number of selected data

0.47

0.48

0.49

0.5

0.51

0.52

0.53

0.54

0.55

m
ic

ro
F

M
ea

su
re

(d) Image

0 100 200 300 400 500
Number of selected data

0.3

0.35

0.4

0.45

m
ic

ro
F

M
ea

su
re

(e) Corel5k

0 50 100 150 200 250 300 350
Number of selected data

0.68

0.7

0.72

0.74

0.76

0.78

0.8

0.82

m
ic

ro
F

M
ea

su
re

(f) Medical

Fig. 3. Comparison result on Micro-F1.

The Macro-F1 and Micro-F1 utilize predictions of all instances on the whole
label set simultaneously. Obviously, for both the metrics, the larger the value,
the better model we obtain.

340 N. Sun et al.

5.2 Comparison Results

We plot the curves of the two measures on all datasets with the number of queried
instances increasing in Figs. 2 and 3. As shown in the figures, we can see that the
baseline method Random obviously demonstrates inferior performance, and the
method Adaptive performs well on most datasets. This shows that our active
selection principle based on uncertainty and diversity is effective. In addition,
the methods AUDI and QUIER perform worse than baseline on some datasets
which is partly perhaps because we select the SVM parameters in the method
Adaptive, and partly because the label correlation is lost when a limited label
is queried.

Generally speaking, our method demonstrates the superiority on most
datasets compared with other active learning approaches, no matter querying
instance-label pairs or instances only. Especially, on the Corel5k and Image
datasets, our method always achieves the best performance. To put it in nutshell,
the proposed method merging the uncertainty and diversity with RECOC can
solve the problems in multi-label active learning effectively.

Table 2. Comparison of different parameters on Image and Scene datasets.

Data Selected
instances

macroF measure microF measure

0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9

Scene 25 0.5831 0.5832 0.5838 0.5817 0.5810 0.5874 0.5862 0.5826 0.5810 0.5809

50 0.5890 0.5887 0.5889 0.5845 0.5856 0.5934 0.5924 0.5868 0.5834 0.5843

100 0.5984 0.5960 0.5963 0.5935 0.5901 0.6040 0.5963 0.5919 0.5890 0.5870

200 0.6008 0.6035 0.6042 0.6003 0.6004 0.6077 0.6004 0.5988 0.5949 0.5951

300 0.6060 0.6063 0.6073 0.6022 0.6015 0.6115 0.6019 0.6005 0.5969 0.5959

Image 50 0.5106 0.504 0.5067 0.5077 / 0.5277 0.5172 0.5194 0.5203 /

100 0.5117 0.5124 0.5172 0.5175 / 0.5254 0.5260 0.5280 0.5284 /

200 0.5255 0.5262 0.5324 0.5297 / 0.5374 0.5383 0.5401 0.5376 /

300 0.5262 0.5323 0.5381 0.5331 / 0.5390 0.5425 0.5454 0.5406 /

500 0.5329 0.5433 0.5395 0.5409 / 0.5441 0.5507 0.5470 0.5469 /

5.3 Influence Analysis of Parameter

In the proposed method, the trade-off parameter β is very important which
balances the relative significance of the uncertainty and diversity. To discover
the influence of the trade-off parameter, we evaluated the trade-off parameter for
MAOC on the Scene and Image datasets. We selected the range of parameters as
{0.1, 0.3, 0.5, 0.7, 0.9}. The other settings are same to the previous experiments.
The phenomenon to notice is that the difference is so slight when β equals 0.7
and 0.9 on the image dataset that we ignore the situation where β = 0.9.

Table 2 shows the average results in 20 runs of macro-F1 and micro-F1 val-
ues, with different percent of unlabeled data used as queries. We can observe

Multi-label Active Learning with Error Correcting Output Codes 341

that different parameters are selected as the best option for different datasets.
For example, the smaller the parameter β, the better results that the proposed
method obtains on the Scene dataset, which indicates the uncertainty plays a
crucial role. While it is not on another dataset.

5.4 Compared with Traditional ECOC Method

To further elucidate the motivation of our proposed method, we replaced the
RECOC classification with traditional multi-label ECOC classification, which is
usually adopted in the state-of-the-art methods. The results obtained by RECOC
and traditional ECOC are shown in some different percent of selected data in
Fig. 4. Tr-ECOC in the figure denotes the traditional ECOC method.

0 50 100 200 300 500
Number of selected data

0.4

0.45

0.5

0.55

m
ac

ro
FM

ea
su

re

RECOC
Tr-ECOC

0 50 100 200 300 500
Number of selected data

0.45

0.5

0.55

m
ic

ro
FM

ea
su

re

(a) Image

0 25 50 100 200 300
Number of selected data

0.5

0.52

0.54

0.56

0.58

0.6

0.62

m
ac

ro
FM

ea
su

re

RECOC
Tr-ECOC

0 25 50 100 200 300
Number of selected data

0.55

0.56

0.57

0.58

0.59

0.6

0.61

0.62

m
ic

ro
FM

ea
su

re

(b) Scene

Fig. 4. Comparison with traditional ECOC on two datasets.

We can observe that the RECOC classification performs better than tradi-
tional ECOC classification based on the same active selection. Because RECOC
classification is more capable of dealing with class imbalance problems. In a
word, the method based on RECOC may get a better classification model so
that our active learning approach can perform well.

6 Conclusion

A successful active learning approach needs both the effective classification model
and the good selection criterion. In this paper, we proposed a novel multi-label
active learning method, combining a new ECOC classification with a traditional
active learning strategy which utilizes the max-margin prediction uncertainty
and the label cardinality diversity. The experiments on multiple multi-label
classification datasets from different application areas shows that the proposed
multi-label active learning method outperforms state-of- the-art methods in most
cases. In our future work, we plan to more efficiently select the trade-off between
uncertainty and diversity. In addition, we plan to combine the RECOC classifi-
cation with other active selection criterion.

Acknowledgments. This work was supported by the National Natural Science Foun-
dation of China (No. 61473302, 61503396). Chenping Hou is the corresponding author
of this paper.

342 N. Sun et al.

References

1. Li, X., Guo, Y.: Active learning with multi-label SVM classification. In: Proceed-
ings of the 23rd International Joint Conference on Artificial Intelligence, pp. 1479–
1485 (2013)

2. Guo, Y., Schuurmans, D.: Discriminative batch mode active learning. In: Proceed-
ings of Advances in Neural Information Processing Systems, pp. 593–600 (2008)

3. Yang, Y., Ma, Z., Nie, F., Chang, X., Hauptmann, A.G.: Multi-class active learning
by uncertainty sampling with diversity maximization. Int. J. Comput. Vis. 113(2),
113–127 (2014)

4. Li, X., Wang, L., Sung, E.: Multi-label SVM active learning for image classification.
In: International Conference on Image Processing, pp. 2207–2210 (2004)

5. Yang, B., Sun, J., Wang, T., Chen, Z.: Effective multi-label active learning for text
classification. In: Proceedings of the 15th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pp. 917–926 (2009)

6. Huang, S., Zhou, Z.: Active query driven by uncertainty and diversity for incremen-
tal multi-label learning. In: Proceedings of the 13th IEEE International Conference
on Data Mining, pp. 1079–1084 (2013)

7. Lewis, D., Catlett, J.: Heterogeneous uncertainty sampling for supervised learning.
In: Proceedings of the International Conference on Machine Learning, pp. 148–156
(1994)

8. Brinker, K.: On active learning in multi-label classification. In: Spiliopoulou, M.,
Kruse, R., Borgelt, C., Nürnberger, A., Gaul, W. (eds.) From Data and Information
Analysis to Knowledge Engineering. STUDIES CLASS, pp. 206–213. Springer,
Heidelberg (2006). https://doi.org/10.1007/3-540-31314-1 24

9. Singh, M., Curran, E., Cunningham, P.: Active learning for multi-label image anno-
tation. In: Proceedings of the 19th Irish Conference on Artificial Intelligence and
Cognitive Science, pp. 173–182 (2009)

10. Duygulu, P., Barnard, K., de Freitas, J.F.G., Forsyth, D.A.: Object recognition as
machine translation: learning a lexicon for a fixed image vocabulary. In: Heyden,
A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2353, pp.
97–112. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-47979-1 7

11. Zhang, M., Zhou, Z.: ML-KNN: a lazy learning approach to multi-label learning.
In: Pattern Recognition, pp. 2038–2048 (2007)

12. Pestian, J.P., et al.: A shared task involving multi-label classification of clinical free
text. In: Proceedings of the Workshop on BioNLP 2007: Biological, Translational,
and Clinical Language Processing, pp. 97–104 (2007)

13. Boutell, M., Luo, J., Shen, X., Brown, C.: Learning multi-label scene classification.
Pattern Recogn. 37, 1757–1771 (2004)

14. Srivastava, A., Zane-Ulman, B.: Discovering recurring anomalies in text reports
regarding complex space systems. In: IEEE Aerospace Conference (2005)

15. Elisseeff, A., Weston, J.: A kernel method for multi-labelled classification. In:
Advances in Neural Information Processing Systems, pp. 681–687 (2001)

16. Huang, S., Jin, R., Zhou, Z.: Active learning by querying informative and repre-
sentative examples. IEEE Trans. Pattern Anal. Mach. Intell. 36(10), 1936–1949
(2014)

17. Fan, R., Chang, K., Hsieh, C., Wang, X., Lin, C.: LIBLINEAR: a library for large
linear classification. J. Mach. Learn. Res. 9, 1871–1874 (2008)

18. Zhang, M., Zhou, Z.: A review on multi-label learning algorithms. IEEE Trans.
Knowl. Data Eng. 26(8), 1819–1837 (2014)

https://doi.org/10.1007/3-540-31314-1_24
https://doi.org/10.1007/3-540-47979-1_7

Dynamically Weighted Multi-View
Semi-Supervised Learning for CAPTCHA

Congqing He, Li Peng(B), Yuquan Le, and Jiawei He

College of Computer Science and Electronic Engineering, Hunan University,
Changsha, China

{hecongqing,rj lpeng,leyuquan,hejiawei}@hnu.edu.cn

Abstract. With the development of Optical Character Recognition and
artificial intelligence technologies, the security of Behavioral Completely
Automated Public Turing test to tell Computers and Humans Apart
(CAPTCHA) has become an increasingly difficult task. In order to pre-
vent malicious attacks and maintain network security, most existing
works on CAPTCHA are to construct a fine binary classifier model but
are not yet capable of detecting new attack means during confronta-
tion. This motivates us to propose a Dynamically Weighted Multi-View
Semi-Supervised Learning, dubbed as DWMVSSL method, to relieve this
problem. More specifically, our proposed method extracts hidden pat-
terns from multiple perspectives and updates the view weighting dynam-
ically which can constantly detect new attack means. In addition, due
to existing some redundant feature in views, we design a Filter Artifi-
cial Bee Colony method, named as FABC for feature selection which can
efficiently reduce the impact of high dimensional features. The experi-
mental results show that, compared the existing representative baseline
methods, our DWMVSSL method can effectively detecting new attacks
on confrontation.

Keywords: CAPTCHA · Semi-supervised learning · Multi-view ·
Feature selection

1 Introduction

CAPTCHA is a widely used security defense mechanism which is utilized by
service providers to determine whether the entity interacting with their sys-
tem is human or robot [1]. Generally, it can be divided into two types: Random
CAPTCHA and Behavioral CAPTCHA. With the development of Optical Char-
acter Recognition (OCR) and the emergence of artificial intelligence technologies,
the security of Random CAPTCHA based on character (number, letter) recogni-
tion is declining and easy to get hacked. However, Behavioral CAPTCHA makes
lots of analysis on human behaviors and then recognizes human or machine by
algorithms. Therefore, Behavioral CAPTCHA is less vulnerable to attack com-
pared with Random CAPTCHA. Behavioral CAPTCHA has recently received
loads of attention because of its maneuverability and simplicity.
c© Springer Nature Switzerland AG 2019
Q. Yang et al. (Eds.): PAKDD 2019, LNAI 11440, pp. 343–354, 2019.
https://doi.org/10.1007/978-3-030-16145-3_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16145-3_27&domain=pdf
https://doi.org/10.1007/978-3-030-16145-3_27

344 C. He et al.

With the development of machine learning and deep learning, many methods
have been successfully applied for CAPTCHA and have achieved good perfor-
mance. In this paper, we mainly divide them into three categories, supervised
learning, unsupervised learning and semi-supervised learning. Many supervised
learning methods, such as Decision Tree [2] and Boosting [3] have been wildly
used to recognize human or robot. However, these methods need mountains of
label dataset and take lots of time to mark unlabeled dataset. What’smore, sim-
ple labeled dataset is considered as obsolete, and the accuracy of supervised
learning drops dramatically for new type of attacks. Unsupervised learning is
another technique used to improve the detection rate of the CAPTCHA. How-
ever, unsupervised learning depends on manual assignment of cluster numbers,
which leads to lower accuracy in prediction. Many new attacks have been devel-
oped during the confrontation, and a small number of labeled dataset with a
large number of unlabeled dataset could make semi-supervised learning [4] to
be the better choices for improving the accuracy of CAPTCHA. Existing semi-
supervised learning such as Co-Training [10], Tri-Training [11], Co-Forest [12]
are representative methods. Nevertheless, these methods cannot be solved well
in detecting new attacks during confrontation due to they not consider collect-
ing information from multiple perspectives, which have been proved beneficial by
prior works [13]. However, multiple perspectives bring noise information in each
iteration of semi-supervised learning, which lead to reduce the effect of views.

Inspired by the above observations, in this paper we propose a Dynamically
Weighted Multi-View Semi-Supervised Learning method. In each iteration, the
method can absorb the information from multiple perspectives as much as pos-
sible by enduing different weights to each perspective, which can relieve the
perspective absorbing error information during iterations. In addition, our pro-
posed method extracts hidden patterns from multiple perspectives and updates
the view weights dynamically which can constantly detect new attack means.

To summarize, the main contributions of this paper are:

• We propose a Dynamically Weighted Multi-View Semi-Supervised Learning
(DWMVSSL) method that not only handles CAPTCHA problems better, but
also detects new attacks on confrontation.

• Due to the fact that each perspective has some redundant information and
traditional feature selection methods take high computational cost or can-
not obtain optimal subset in Behavioral CAPTCHA. Inspired by this, our
proposed Filter Artificial Bee Colony (FABC) method for feature selection,
which can shorten the time to find the best subsets.

• Comparing with the representative baselines on a real-world dataset, the
experimental results show that our model have state-of-the-art performance
and strong generalization ability in CAPTCHA.

2 Related Work

With the development of CAPTCHA, many methods have been successfully
applied in the field of CAPTCHA and have achieved good performance. In

Dynamically Weighted Multi-View Semi-Supervised Learning for CAPTCHA 345

this paper, we mainly divide them into three categories, supervised learning,
unsupervised learning and semi-supervised learning. Many supervised learning
methods, such as Decision Tree [2] and Boosting [3] have been wildly used to rec-
ognize human or robot. However, these methods need mountains of label dataset
and take lots of time to mark unlabeled dataset manually. What’smore, simple
labeled dataset is considered as obsolete, and the accuracy of supervised learning
technologies drop dramatically for new types of attacks. Unsupervised learning is
another technique, which is used to improve the detection rate of the CAPTCHA.
However, unsupervised learning depends on manual assignment of cluster num-
bers, which leads to lower accuracy in prediction. Many new attacks have been
developed during the confrontation, and a small number of labeled dataset with
a large number of unlabeled dataset could make semi-supervised learning tech-
niques [4] to be the better choices for improving the accuracy of CAPTCHA.
Existing semi-supervised learning such as Co-Training [10], Tri-Training [11],
Co-Forest [12] are representative methods. Co-Training, which assumes that the
data set has two sufficient and redundant views. However, this method is hard
to satisfy the sufficient and redundant views. In order to relax the constraints
of Co-Training, Zhou et al. [11] propose a Tri-Training algorithm that doesn’t
require sufficient and redundant views, and doesn’t require the use of different
types of classifiers. Hereafter, Li et al. [12] extend the Tri-Training and propose
a Co-Forest algorithm that could play a better role in ensemble learning. Our
proposed method belongs to semi-supervised learning.

Compared to these semi-supervised learning methods, our proposed method
shares several common features with theirs: (1) We are all semi-supervised learn-
ing approaches and (2) we are all iterating unlabeled dataset. Nevertheless, our
work is different from theirs in several features at least: (1) Most of these works
are not considered from multiple perspectives and (2) our proposed method
achieves better performance in CAPTCHA task. In the existing works, the most
relevant works to us is Sindhwani et al. [14]. Compared to these multi-view
semi-supervised learning methods, our proposed method shares several com-
mon features with theirs: Our work also use multi-view semi-supervised learning
framework. Nevertheless, our work is different from theirs in several features at
least: (1) We weight the perspective by its representational ability during the
iterations and (2) our proposed method detects new attacks in CAPTCHA task.

3 Method

In this section, we first describe our proposed Filter Artificial Bee Colony method
to reduce the impact of high dimensional features, and then propose a Dynam-
ically Weighted Multi-View Semi-Supervised Learning method to detect new
attack means for CAPTCHA.

3.1 Filter Artificial Bee Colony Method

Due to the fact that our proposed DWMVSSL method has some redundant fea-
tures in each perspective, we explore a feature selection method for CAPTCHA.

346 C. He et al.

Artificial Bee Colony (ABC) algorithm [7] is an optimization algorithm based on
the intelligent behaviour of honey bee swarm which has capability for exploring
optimal subset, and has been wildly used for feature selection. The ABC algo-
rithm includes four phases: initialization phase, employed bees phase, onlooker
bees phase and scout bees phase. In addition, the employed bees phase describes
the employed bees behaviour for finding a better food source within the neigh-
bourhood of the food source in their minds which is critical for explore the best
solution.

Standard ABC [7] algorithm has strong capability for exploration but poor
at exploitation, especially both exploration and exploitation are necessary for a
population-based optimization algorithm. Simultaneously, the Fast Correlation-
Based Filter (FCBF) [5,8] algorithm is a filter method for feature selection which
is hard to obtain optimal subset. Based on previous works, we combine FCBF
with ABC algorithm, and then propose a novel Filter Artificial Bee Colony
(FABC) algorithm for feature selection. The proposed method modifies the for-
mula Eq. (2) of employed bees phase and proposes a novel formula which is
adapted for feature selection. Specifically, our proposed FABC method employs
FCBF to generate the approximate optimal solution Sbest at first. In order to
improve the exploitation, we then use Eq. (1) to generate a subset S

′
list, and

this subset chooses relevant features from the candidate solutions xi which can
guide the search of candidate direction. We modify the solution search equation
described by Eq. (3). The formulas are shown as follows:

SU(X,Y) = 2
[

IG(X|Y)
H(X) + H(Y)

]
(1)

vi = xi,j + φi,j ∗ (xk,j − xi,j) (2)

vi = α ∗ S
′
list + (1 − α) ∗ Sbest + φi,j ∗ (xk,j − xi,j). (3)

where X and Y represent features variables and labels variables respectively.
H(X) is the entropy of a variable X, IG(X|Y) is called information gain, and
SU(X,Y) is symmetrical uncertainty. α is uniformly distributed vectors within
the range [0, 1]. φi,j is a random number within the range [−1, 1]. xk is the
neighbor of xi, then the formula produce the new candidate solution vi.

3.2 Dynamically Weighted Multi-View Semi-Supervised Learning

The architectural overview of the proposed DWMVSSL method is introduced
in this section. As shown in Fig. 1, our proposed method first extracts features
from multiple views, this will be introduced in Sect. 4, and then employs FABC
algorithm for feature selection. Afterwards, our proposed DWMVSSL method
trains the model from multiple views and predicts the unlabeled dataset. Fur-
thermore, we cluster the probabilities of unlabeled dataset and add the highest
confident dataset to training dataset for each iteration.

For a given unlabeled dataset X = {xt|xt ∈ �D, i = 1, · · · , t, · · · , T} and
number of views V . Y(T×V) is the predicted probability of X by classifier from

Dynamically Weighted Multi-View Semi-Supervised Learning for CAPTCHA 347

testtrain unlabel

unlabel

train

test

Input

LightGBM/LR

Prediction

iteration

Preprocessing:
Extract feature
Feature selection

Fig. 1. The architectural overview of our proposed method.

V views, where Y v = {yv
1 , · · · , yv

t , · · · , yv
T |yv

t ∈ (0, 1)} denotes the prediction for
unlabeled dataset from the v-th view. In order to choose unlabeled dataset with
highest confidence, we categorize unlabeled dataset into three groups, Ylow is the
samples which clustering center is closest to 0, and Yhigh is the samples which
clustering center is closest to 1, otherwise, Ymid.

In order to choose unlabeled dataset with highest confidence, we design an
objective function as follows:

F (μ, c, ω) =
K∑

k=1

T∑
t=1

μp
kt

V∑
v=1

ωq
v||cv

k − yv
t ||2. (4)

Where k, t, v satisfy ∀t,
K∑

k=1

μkt = 1; ∀k, 0 <
T∑

t=1
μkt < T ; ∀v,

V∑
v=1

ωv = 1, ωv ≥ 0

respectively. K, T , V represent number of cluster centers K, number of dataset
T , number of views V respectively. μkt is a membership matrix which represents
yt belongs to membership of class k probability. ωv denote the weight of dataset
from the v-th view. ‖cv

k − yv
t ‖2 is the Euclidean distance.

The goal of the Eq. (4) is to find the optimal ω, μ, c, so the objective function
should be minimized as show follows:

min
{ω}V

v=1,{μk}T
t=1,{cv}K

k=1

F (μ, c, ω) (5)

We design an EM-like iteration, which contains two stages, in the first stage,
we update the view weight ω by fixing the membership matrix μ and the clus-
tering center c. In the second stage, we update the membership matrix μ and
the clustering center c by fixing the view weight ω.

Updating the View Weighting ω: In this stage, to search for the optimal
the view weight, we design a Lagrangian formula based the constraint of the
extremum

∑V
v=1 ωv = 1 to update the view weight vector ω as follows.

L(ω) = F (ω) + β(
V∑

v=1

ωv − 1) (6)

348 C. He et al.

When q > 1, take the derivative to ω, and the formula is described as follows.

∂L(ω)
∂ωv

=
∂F (ω)
∂ωv

+ β =⇒ wv =
1

V∑
v̂=1

(Gv

Gv̂
)

1
q−1

, q > 1 (7)

In the above formulas, the parameter q can help the view weighting ω to
adjust the sparsity and can improve the result in a certain range. We can find a
better value if we get some priori knowledge of the input data.

Updating Membership Matrix μ and Clustering Center c: In this stage,
to search for the optimal membership matrix μ and clustering center c. Similar
to the updating of the view weighting, we design a Lagrangian formula based
the constraint of the extremum

∑K
k=1 μkt = 1 to update the membership vector

μ and clustering center c as follows.

L(μ, λ, c) = F (μ, c) +
T∑

t=1

λt(
K∑

k=1

μkt − 1) (8)

When p > 1, take the derivative to μ, and we can get the formula as follows.

∂L(μ, λ, c)
∂μkt

=
∂F (μ, ω, c)

∂μkt
+ λt =⇒ μkt =

1
K∑

k̂=1

(Wkt

Wk̂t
)

1
p−1

(9)

Where the parameter p represents the fuzzy coefficient of FCM [15] and can
affect the accuracy of classification.

Then we update the clustering center c according to in the above formulas.
take the derivative to c, and then setting ∂L(μ,c)

∂ck
= 0, we can get the formula as

follows.
∂L(μ, c)

∂ck
=

T∑
t=1

μp
kt

V∑
v=1

ωq
v[−2A(yv

t − cv
k)] = 0 (10)

cv
k =

T∑
t=1

μp
kt

V∑
v=1

ωq
vyv

t

T∑
t=1

μp
kt

V∑
v=1

ωq
v

(11)

3.3 The Complete Algorithm

Our proposed method is described in Algorithm1. The algorithm first extracts
features from each view, and then select optimal subset features by FABC.
Secondly, the probability matrix Y(T×V) is obtained by using base learner to
predict dataset probability from multiple views, and initialize the weights for
each view. Afterwards, our proposed DWMVSSL method clusters the probabil-
ity matrix Y(T×V), and categorizes the unlabeled dataset into three groups, i.e.,
when ‖ck‖ < ε, the dataset Tlow belong to label 0, when ‖ck −1‖ < ε, the dataset
Thigh belong to label 1, otherwise, the dataset Tmid. We add highest confidence
dataset Tlow and Thigh to training dataset.

Dynamically Weighted Multi-View Semi-Supervised Learning for CAPTCHA 349

Algorithm 1. Framework of DWMVSSL method
Input:

Tr: Labeled dataset(xi, yi|1 ≤ i ≤ N); Ts: Unlabeled dataset(xt|1 ≤ t ≤ T);
V: Number of views; Predefined thresholds: ε, γ;

Output:
The F1-score of test dataset.

1: Extract features from multi-view, and employ FABC for feature selection;
2: repeat
3: Obtain probability matrix Y(T×V) by classifier Tr;
4: Initialize weighted multi-view ωv = 1

V
;

5: Generate cluster F (Y(T×V));
6: repeat
7: Update the view weight ωv;
8: Update the subjection vector μ and center of cluster c ;
9: until Lk − Lk−1 ≤ γ.

10: Tlow = Ts‖ck‖<ε, Thigh = Ts‖ck−1‖<ε,otherwise,Tmid;
11: Trnew = Tr + Tlow + Thigh;
12: until Convergence or (TloworThigh = �).

4 Experiments

In this section, we empirically evaluate the efficiency of our proposed method. In
Sect. 4.1, we describe data specification which includes dataset introduction and
feature extraction. In Sect. 4.2, we describe several baselines for feature selec-
tion and several representative semi-supervised learning baselines. Then com-
pare our proposed FABC method with baselines of feature selection in Sect. 4.3.
In Sect. 4.4, we compare our proposed DWMVSSL method with representative
baseline methods.

4.1 Data Specification

Since there are no publicly available datasets in previous works for Behavioral
CAPTCHA task, we collect dataset published by a Behavioral CAPTCHA prod-
uct1. We construct two datasets with different attacks, denoted as part-one,
part-two. The part-one suffers simple attack means and the part-two confronts
with more complex attack means. The training dataset is imbalanced which
includes 400 robot’s samples and 2600 human’s samples. The positive and nega-
tive ratio of unlabeled dataset and test dataset is similar as the training dataset.
In addition, we design F1-score to measure the performance. The statistics of
our datasets are reported in Table 1.

Specifically, given a dataset consists of N instances, where move trajectory
mn = (xn, yn, tn) represents the coordinates and move time of the mouse during
the movement, and target trajectory Tn = (x(n,last), y(n,last)) means that the

1 https://drive.google.com/open?id=1snepgqYUMBoTXWIPwPmumiieLqJKYPM .

https://drive.google.com/open?id=1snepgqYUMBoTXWIPwPmumiieLqJKYPM_

350 C. He et al.

Table 1. The statistics of different datasets

Datasets Train dataset Unlabeled dataset Test dataset

part-one 3,000 100,000 5,000

part-two 3,000 100,000 5,000

end point of the target, label is 0 and 1 which represent robot trajectory and
human trajectory respectively.

In this paper, we extract features from x − t, y − t, xy − t views such as
speeds, accelerations, angles, speed deviation, time interval, angles deviation,
distance, location. Taking an example of xy − t view, the x, y Euclidean step
sizes are represented as Δx = ‖xn+1 − xn‖, Δy = ‖yn+1 − yn‖ respectively, and
the time interval is computed by Δt = tn+1 − tn. What’smore, a speed Δv is
calculated by Δx

Δt , an acceleration Δa is calculated by Δv
Δt , an angle θt is the

angle between Δy
Δx , a speed deviation is calculated by Δvn+1/vn, the Euclidean

distance is computed by
√

Δy2 + Δx2.

4.2 Baselines

We first compare the proposed FABC method with several classic baselines for
feature selection: Artificial Bee Colony (ABC) algorithm is an optimization algo-
rithm which can be efficiently employed to solve engineering problems with high
dimensionality. Binary particle swarm optimisation (BPSO) [6,9] is another opti-
mization algorithm which chooses a small number of features and achieves high
classification accuracy. Fast Correlation-Based Filter (FCBF) is an algorithm
which decouples relevance analysis and redundancy analysis.

Furthermore, we compare the proposed DWMVSSL method with several
representative semi-supervised learning baselines: Self-Training is a simple semi-
supervised algorithm which augmenst the original training set with a set of
automatic predictions. Tri-Training generates three classifiers from the original
labeled example set, and these classifiers are then refined using unlabeled exam-
ples. Co-Forest is a semi-supervised learning method that could play a better
role in ensemble learning.

4.3 Result and Discussions on Feature Selection

In order to explore the performance of our proposed FABC method, we compare
it with several baselines for feature selection. The experimental parameters are
set as follows: For BPSO, the number of particles is set to 20, dimensionality of
particle is equal to number of features in each view, and the maximum iterations
is set to 30. For ABC, the population size is set to 20, and the maximum iteration
number is set to 100. For FCBF, we set the selection of threshold λ = 0. For the
proposed FABC method, the parameter α is set to 0.4.

Dynamically Weighted Multi-View Semi-Supervised Learning for CAPTCHA 351

As shown in Table 2, we compare these methods (in seconds) from running
times and selecting number of features. We can observe that FABC is simul-
taneously faster than ABC and BPSO, these can attribute as follows: FABC
employs FCBF to generate the approximate optimal solution, and uses Eq. (1)
to generate a subset which can improve the time of decide the optimal direction.
What’smore, compared with ABC and BPSO, FABC can obtain similar number
of features. ABC, BPSO and the proposed FABC method are all learning algo-
rithms and can search best feature subsets towards the right direction, which is
different from FCBF. FCBF not only runs less time, but also has fewer features.
The reason is that FCBF is a filter method of feature selection.

Table 2. Running time (in second) and number of features for each view

Test data (set 1) Running time (seconds) Number of feature selection

FABC ABC BPSO FCBF Full set FABC ABC BPSO FCBF

V iew1 11.43 17.61 15.27 0.18 106 56 58 53 28

V iew2 9.68 14.80 13.22 0.15 81 39 40 40 16

V iew3 7.23 10.85 10.05 0.07 56 28 30 33 8

Table 3 shows the F1-score of all the methods from three views. In order
to evaluate the performance of the full set, BPSO, ABC, FCBF and FABC,
we employ Light Gradient Boosting Machine (LightGBM) as our base learner.
Compared with the full set, all feature selection methods can obtain better per-
formance except FCBF, and the F1-score of FCBF is not even better than the
full set. These can attribute as follows: BPSO, ABC and FABC are all learning
methods and can search best feature subsets. These methods remove redundant
features and improve the performance. However, FCBF selects a small number
of features and removes useful features which is critical for detecting attacks.
Furthermore, FABC can achieve similar performance as ABC, and outperforms
BPSO with a significant margin on three views from different test dataset. the
reason is that the FABC and the ABC are flexible and robust optimization
algorithms, can be used efficiently in the confrontation process.

4.4 Result and Discussions on DWMVSSL

In order to evaluate the performance of the proposed DWMVSSL method on
Behavioral CAPTCHA task, we choose two kinds of unlabeled datasets to train-
ing our model, and then predict test dataset respectively. We compare our pro-
posed DWMVSSL method with representative semi-supervised learning (self-
training, Tri-training, Co-forest). These baselines are trained from multiple views
and choose the best view as our result. For a fair comparison, these baselines are
set the total iterations to 30 in our experiments, which is same as the proposed
DWMVSSL method’s setting. What’smore, all methods are employed LightGBM
and Logistic regression (LR) as base learner.

352 C. He et al.

Table 3. F1-score of feature selection algorithm for each view

Test dataset View Full set FABC ABC BPSO FCBF

part-one view1 82.91 88.14 88.04 87.73 87.48

view2 82.63 86.32 86.35 86.35 75.97

view3 77.04 83.28 81.28 81.03 73.25

part-two view1 73.29 86.23 85.16 85.08 70.32

view2 75.34 84.30 84.44 83.92 70.93

view3 70.58 77.30 78.50 75.24 70.07

In the part-one dataset’s scenario, as shown in Fig. 2, all the methods are
employed LR as base learner. We can observe that all the methods have an
improvement of the performance when adding more and more iterations. How-
ever, our proposed method still outperforms other baselines at the beginning of
iteration, the reason is that our proposed method can obtain highest confident
unlabeled dataset more quickly. Finally, our proposed method and other base-
lines can obtain similar performance, the main reason is that all the methods
can learn the correct unlabeled dataset during the iteration when suffer simple
attack means. Correspondingly, as shown in Fig. 3, all the methods are employed
LightGBM as base learner. We can find that our proposed method outperforms
other baselines with a significant margin when adding more and more iterations,
and has a higher peak value than other baselines. These can attribute as fol-
lows: LightGBM is an ensemble learning model which can cooperate with our
proposed method obtaining an improve performance.

Figure 4 shown the part-two dataset’s scenario and all the methods are
employed LR as base learner. The F1-score of the our proposed method increases
more quickly and then keeps stable at about 91.8%. What’smore, the Tri-
Training can obtain better performance than our proposed method when the
iterations is increased to 20, the reason can attribute as follows: our proposed
method has a higher peak value when the iteration is set to 9, and unlabeled
dataset is not sufficient. In addition, Fig. 5 shown the part-two dataset’s scenario
and all the methods are employed LightGBM as base learner. The F1-score of
our proposed method outperforms other baselines with a significant margin when
adding more and more iterations, and has a higher peak value than other base-
lines. Because of LightGBM is an ensemble learning model which can cooperate
with our proposed method obtaining an improve performance. In general, our
proposed method outperforms than other baselines when confronted with more
complex attack means which illustrates that our proposed method can obtain
competitive performance and detect new attacks means on confrontation.

Dynamically Weighted Multi-View Semi-Supervised Learning for CAPTCHA 353

0 2 4 6 8 10 12 14 16 18 20
84

86

88

90

92

94

96
F1

-S
co

re
(%

)

Number of iterations

Self-Training
 Tri-Training
 Co-Forest
 DWMVSSL

Fig. 2. Performance on the part-one
test dataset (with LR as base learner).

0 2 4 6 8 10 12 14 16 18 20
84

86

88

90

92

94

96

F1
-S

co
re

(%
)

Number of iterations

Self-Training
 Tri-Training
 Co-Forest
 DWMVSSL

Fig. 3. Performance on the part-one
test dataset (with LightGBM as base
learner).

0 2 4 6 8 10 12 14 16 18 20
80

82

84

86

88

90

92

94

F1
-S

co
re

(%
)

Number of iterations

Self-Training
 Tri-Training
 Co-Forest
 DWMVSSL

Fig. 4. Performance on the part-two
test dataset (with LR as base learner).

0 2 4 6 8 10 12 14 16 18 20
80

82

84

86

88

90

92

94

F1
-S

co
re

(%
)

Number of iterations

Self-Training
 Tri-Training
 Co-Forest
 DWMVSSL

Fig. 5. Performance on the part-two
test dataset (with LightGBM as base
learner).

5 Conclusion

In this paper, we explore the method of detecting new attack means during
confrontation for CAPTCHA. To alleviate the problem, we introduce Dynam-
ically Weighted Multi-View Semi-Supervised Learning method. In particular,
our proposed method extracts hidden patterns from multiple perspectives and
dynamically updates the view weighting which can constantly detect new attack
means. Experiments on the real-world datasets show that our method can achieve
competitive performance.

In the future, we only utilize several uncomplicated attacks, while there exist
more complex attacks. We plan to research on the possibility of applying on
more complex dataset by our proposed DWMVSSL method.

354 C. He et al.

References

1. Belk, M., Fidas, C., Germanakos, P., et al.: Do human cognitive differences in
information processing affect preference and performance of CAPTCHA? Int. J.
Hum.-Comput. Stud. 84, 1–18 (2015)

2. Kwak, N.J., Song, T.S.: Android-based human action recognition alarm service
using action recognition parameter and decision tree. Int. J. Secur. Appl. 7(4),
277–286 (2013)

3. Mazaar, H., Emary, E., Onsi, H.: Ensemble based-feature selection on human activ-
ity recognition. In: International Conference on Informatics and Systems, pp. 81–
87. ACM (2016)

4. Ashfaq, R.A.R., Wang, X.Z., Huang, J.Z., et al.: Fuzziness based semi-supervised
learning approach for intrusion detection system. Inf. Sci. Int. J. 378(C), 484–497
(2017)

5. Yu, L., Liu, H.: Eficient feature selection via analysis of relevance and redundancy.
J. Mach. Learn. Res. 5(12), 1205–1224 (2004)

6. Chuang, L.Y., Chang, H.W., Tu, C.J., et al.: Improved binary PSO for feature
selection using gene expression data. Comput. Biol. Chem. 32(1), 29–38 (2008)

7. Karaboga, D., Basturk, B.: A powerful and efficient algorithm for numerical func-
tion optimization: artificial bee colony (ABC) algorithm. J. Global Optim. 39(3),
459–471 (2007)

8. Yu, L., Liu, H.: Feature selection for high-dimensional data: a fast correlation-based
filter solution. In: Proceedings of the 20th International Conference on Machine
Learning (ICML-03), pp. 856–863 (2003)

9. Xue, B., Zhang, M., Browne, W.N.: Particle swarm optimization for feature selec-
tion in classification: a multi-objective approach. IEEE Trans. Cybern. 43(6), 1656
(2013)

10. Nigam, K., Ghani, R.: Analyzing the effectiveness and applicability of co-training.
In: International Conference on Information and Knowledge Management, pp. 86–
93. ACM (2000)

11. Zhou, Z.H., Li, M., et al.: Tri-training: exploiting unlabeled data using three clas-
sifiers. IEEE Trans. Knowl. Data Eng. 17(11), 1529–1541 (2005)

12. Li, M., Zhou, Z.H.: Improve Computer-Aided Diagnosis With Machine Learning
Techniques Using Undiagnosed Samples. IEEE Press (2007)

13. Zhu, S., Sun, X., Jin, D.: Multi-view semi-supervised learning for image classifica-
tion. Neurocomputing 208, 136–142 (2016)

14. Sindhwani, V., Niyogi, P., Belkin, M.: A co-regularization approach to semi-
supervised learning with multiple views. In: Proceedings of ICML Workshop on
Learning with Multiple Views, pp. 74–79. Citeseer (2005)

15. Bezdek, J.C., Ehrlich, R., Full, W.: FCM: the fuzzy c-means clustering algorithm.
Comput. Geosci. 10(2–3), 191–203 (1984)

Recommender System

A Novel Top-N Recommendation
Approach Based on Conditional

Variational Auto-Encoder

Bo Pang1, Min Yang2, and Chongjun Wang1(B)

1 State Key Laboratory for Novel Software Technology, Nanjing University,
Nanjing, China

bpang@smail.nju.edu.cn, chjwang@nju.edu.cn
2 Software Institute, Jilin University, Jilin, China

yangmin5516@mails.jlu.edu.cn

Abstract. Personalized recommendation has continuously received
attention due to its great commercial value in business. Recently varia-
tional auto-encoder is employed in top-N recommendation for its effec-
tiveness in deep collaborative filtering. The key challenge of model-based
collaborative filtering is to develop effective latent factors representations
with user-item interaction records. In this paper, we present a new class
of conditional variational auto-encoders (CVAEs) that utilizes the fact of
similar users tending to associate with each other on purchasing prefer-
ence. This type of conditional variational auto-encoder concentrates on
learning with label verification signals to ensure an exclusive latent mean
factor for users with the same labels. Moreover, to handle complex multi-
label combinations, we extend the model with a split-merge framework
by learning labels of different conditional attributes separately and then
merge the results from multiple prediction pools. Extensive experiments
are conducted on two real-life datasets to simulate both user-based and
item-based recommendation scenarios. Experimental results are favor-
able when comparing with the state-of-art methods.

Keywords: Recommender systems · Collaborative filtering ·
Variational auto-encoder

1 Introduction

In the era of information explosion, recommendation systems are of significantly
importance in our daily life. Different from search engines, these systems provide
users with information and content automatically according to their respective
characteristics [18]. To be more specific, given the observed user-item interaction
records, these systems try to figure out the user behavior patterns behind and
make a personalized item recommendation list to each user. As the items grow in
size rapidly these years, top-N recommendation task [2,14,15,19] plays a more
important role than traditional rating prediction in helping users interact with
larger amounts of interested items directly and efficiently.
c© Springer Nature Switzerland AG 2019
Q. Yang et al. (Eds.): PAKDD 2019, LNAI 11440, pp. 357–368, 2019.
https://doi.org/10.1007/978-3-030-16145-3_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16145-3_28&domain=pdf
https://doi.org/10.1007/978-3-030-16145-3_28

358 B. Pang et al.

Collaborative filtering is then a widely investigated approach both in scien-
tific researches and industrial applications. Its intuition is simple but effective,
which based on a fact that if users show similarity tastes on a set of items,
then they are more likely to give similar ratings on another set of items. The
model-based methods [3,5,20], which exploits the low-dimensional subspace rep-
resentations of the users and items, have largely dominated the collaborative
filtering researches due to their simplicity and effectiveness when compared with
the neighbourhood-based methods [6,16]. Among several deep learning models,
variational auto-encoders have been shown to be superior for the top-N recom-
mendation [10–12]. Typically, variational auto-encoder based methods receive a
user’s preference on all items as input and reconstruction them in the output
ending at one time. It is clear that a preference probability representation on all
items for each specific user is acquired efficiently and thus well-suited for model-
ing this problem. Besides, VAE generates new data by modeling the underlying
probability distribution of input data so that the diversity of recommendations
can be controlled by sampling multiple results from that distribution.

Despite their state-of-the-art performances, the further improvements of rec-
ommendation quality have been largely limited by the utilizing method of side
information. A powerful representation learning ability results in meaningful
latent factors and helps to improve the recommendation accuracy in model-
based collaborative filtering. However, lots of literatures have simply resorted to
stacking network layers or more complicated structures to blend the side infor-
mation into model. Therefore, we exploit the possibilities of leveraging these
auxiliary labels as a learning signal in this work. Through label verification,
the model is guided to be proactive about mining the latent relationships both
between user-item and user-label. Another challenge is the complex multi-label
combinations in real-world scenarios. Actually, personalized recommendation is
a sparsity data mining task due to the user-item interaction records is relatively
small comparing to the whole pool [7]. With the aggregation of conditional labels,
the dimension of this feature grows high and thus introduces another sparsity
data problem. It results in a less or even never appeared combinations in both
training and testing stage, so that roughly aggregating labels interferes model
learning and damage recommendation performance.

To address the first problem, we propose a novel class of CVAE [8] for output
representation learning and label verification. In other words, the distribution
of high dimensional output space is modeled as a generative part conditioned
on the input observation, while label verification forces our model to distinguish
and cluster similar users in the latent mean subspace. In addition, a split-merge
framework is proposed to alleviate the second problem, where we utilize the gen-
erating property of CVAE and the idea of bagging. We firstly separate condition
labels by attributes and train multiple models. Each sub model understands the
task from different perspectives but all of them can generate predictions with
roughly equivalent accuracy. Then we randomly pick results from the predictions
pool and merge for further improvement.

The contributions of this paper are summarized as follows:

A Novel Top-N Recommendation Approach 359

– We propose a novel solution in learning a CVAE by introducing label ver-
ification, where the projection of the latent mean factor shows our model
successfully learn close representations for users with same labels.

– We demonstrate the effectiveness of our split-merge framework in handling
complex condition combinations by further performance improvements.

– We simulate user-based and item-based recommendation by two real-life
datasets and evaluate on them.

2 Preliminary

2.1 Variational Auto-encoder

Variational auto-encoder [9] consists of two parts: a recognition model and a
generative model. The recognition model, known as an encoder, encodes input
data X to latent representations z. The generative model then decodes the latent
representations z to generate meaningful outputs. The optimization objective is
the sum of the reconstruction loss of input data and the KL-divergence between
the variational posterior and the prior:

log P (X) − DKL[Q(z|X)‖P (z|X)] = E[log P (X|z)] − DKL[Q(z|X)‖P (z)] (1)

In other words, the inputs X are described by log P (X) under some error
DKL[Q(z|X)‖P (z|X)]. Considering the intractability of finding the exact distri-
bution, a more practical method is to estimate the lower bound instead. Then
the model could be established by maximizing likelihood estimation on the map-
pings from latent variable to data log P (X|z) and minimizing the differences
between the predefined simple distribution Q(z|X) and the true latent distribu-
tion log P (Z):

log P (X) ≥ E[log P (X|z)] − DKL[Q(z|X)‖P (z)] = Lrecon + Lμ,σ2 (2)

2.2 Problem Description

Supposed there are users U = {1, . . . ,M} and items I = {1, . . . , N}, let matrix
RM×N denotes the user-item interaction records matrix. While referring to
implicit feedback, matrix R is filled with binarized value instead of ratings, where
Rmn = 1 denoting user m has click or view history on item n while Rmn = 0
denoting not.

Taking user-based recommendation as an example, each user m ∈ U can be
represented by a vector on its interactions over all items xm = (Rm1, . . . , Rmn).
Full users set U is then divided into three subsets, known as training set Utrain,
validation set Uval and test set Utest. The variational auto-encoder based collab-
orative filtering receives entire Utrain as training data and tunes model hyper-
parameters through Uval. To test and evaluate, each xte ∈ Utest is taken part of
click histories deliberately as held-out set. The model use remaining click his-
tories to learn a necessary user-level representation and reconstruct each user’s
full click history as output. Then the model is evaluated by examining how well
it ranks those held-out records.

360 B. Pang et al.

3 Proposed Method

This section presents the details of how to perform label verification in repre-
sentation learning and handle complex condition combinations.

3.1 CVAE Model

Whereas variational auto-encoder essentially models latent variables and data
directly, conditional variational auto-encoder models latent factors conditioned
to some given attributes. Input X is then encoded to a distribution Q(z|X, c)
owning zero mean and unit variance, which prevents noise from being zero and
ensure the model is capable of generation simultaneously. Also, reconstruction
outputs X ′ can be generated by sampling from that Gaussian distribution. This
procedure is commonly known as amortized inference [1] in the variational auto-
encoder. In terms of the existing of condition c, the original evidence lower bound
can be rewritten as follows:

log P (X|c) = E[log P (X|z, c)] − DKL[Q(z|X, c)‖P (z)] (3)

As we mentioned above, we expect entities with the same condition label c
can own their unique latent mean factor. Taking user-based recommendation as
an example, if age information is acquired as an argument condition, then our
model try to learn exclusive mean factor for children and adults’ groups, where
latent variance factor remains unit. In other words, recommendation results are
then sampled and reconstructed from two different distributions that conditioned
on age information. To achieve this goal, side information C should be encoded
in our network as a vector the same with users’ representations. Figure 1 is an
illustration of our model.

Fig. 1. An overview of the proposed CVAE model. A unidirectional arrow denotes
input-output relationships between modules and a bidirectional arrow denotes the opti-
mization objective.

We introduce label verification process by applying three changes to the
optimization objective. Firstly, KL divergence loss is integrated with encoded

A Novel Top-N Recommendation Approach 361

side information to force the model to distinguish entities with different condition
labels:

Lμ,σ2 =
1
2

k∑

i=1

[(
μi − μXc

)2 + σ2
i − log σ2

i − 1
]

(4)

where k is the dimension of latent sampled factor, μi and σi are the latent mean
and unit variance of the approximate posterior. Meanwhile μXc

is the new latent
mean factor for entities with a specific condition label c, and this value can be
learned automatically.

Secondly, we employ the softmax as the activation function of the output
layer and categorical cross-entropy as the reconstruction loss of input data:

Lrecon =
n∑

i=1

y(i) log hθ(xi) + (1 − yi) log(1 − hθ(xi)) (5)

where n is number of the entire items, hθ(xi) = exi/
∑n

i=1 exi is the softmax
function. The outputs of softmax are actually the probabilities of each possible
classification labels, where each output probability is greater than or equal to 0
and the sum is up to 1. It is quite suitable in modeling the top-N recommendation
task since each probability can be recognized as the degree of preference on all
items for each specific user. Through applying a categorical cross-entropy, the
model can allocate a larger probability value to items that a user may pay more
attention to and meanwhile reduce the probability value on other uninterested
items. Another benefit is the probabilistic outputs are more stable to fit our
proposed split-merge framework in combing prediction results.

Thirdly, β-VAE [4] proves that using a single hyper parameter β to bal-
ance latent channel capacity and independence constraints with reconstruction
accuracy works well in image generation tasks. Similarly, we employ a hyper
parameter β in our optimization objective to balance reconstruction loss of the
inputs X and the KL-divergence loss between the variational posterior and the
prior:

log P (X) = Lrecon + β · Lμ,σ2 (6)

where we empirically set an initial value at 0.01 for β and then anneal it to 1.

– Learning CVAE: We adopt stochastic gradient descent to train the net-
work. While the loss on validation set decreases, we repeat feeding batches of
data and update parameters by computing their gradients. Besides, we apply
the reparametrization trick to isolate the sampling process, thus make the
gradient can be back-propagated.

3.2 The Split-Merge Framework for Multiple Conditions

Since our CVAE is designed for the simplest case, this method soon encounter
a bottleneck when users or items are labeled with multiple times in practical.

Supposed we have n conditions c = c1, c2, . . . , cn, where ci can be expressed
by a one-hot vector with m dimension. This side information feature vector is

362 B. Pang et al.

then expanded to a complex combination of all labels. While there exists m ∗ n
conditions combinations in total, actually only a small part of the combinations
will appear. In the training stage, this cause our data inputs more unbalanced.
As for the testing stage, model generalization ability is then reduced by some
less or even never appeared combinations. Therefore, a split-merge framework
is proposed to address this problem. The core idea of this method is learning
conditions separately based on their attributes. Besides, we also utilize the gen-
erating property of CVAEs and the idea of bagging to increase the diversity
of prediction results and recommendation performance. This framework is then
described in Algorithm 1.

Algorithm 1. The Split-Merge Framework for Multiple Conditions (User-based)
Input: The training user set Utrain, the validation user set Uval, the test user set Utest,

the condition number n, the conditions C = {c1, . . . , cn}, user-item interaction
matrix RM×N

Output: Recommend K items for each user in Utest

1: Split RM×N by rows with three user subset Utrain, Uval and Utest

2: Randomly select part of item-click history of each user in Utest to hidden as
hold-out testing

3: Y = []
4: for all attribute ci in Conditions C do
5: Transform ci to an one-hot feature vector Ai

6: Train CVAE on Utrain with Ai

7: Evaluate on Uval and get a validation score wi

8: Make predictions on Utest and append to Y
9: end for

10: Combine probability predictions from different CVAE with
∑n

i=1 wiYi/n
11: return K items with top-K highest probability

As shown in Line 1–2, input user-item interaction matrix is firstly divided into
training, validating and testing sets. After data preparation, condition labels are
split by attributes and then used for training multiple models. In Line 3–9, each
model generates a set of prediction lists respectively by repeated sampling, which
stands for users’ tastes on items varies according to their current state. Noted
that in line 7 we evaluate these models and record their performances as weights
for further merging. In Line 10, prediction results are selected from each sub
model and combined in a linear way. At last, a final top-K recommendation list on
the whole items is obtained after ranking the aggregated preference probability
of each item.

4 Experiments

– Datasets: We select two widely-used datasets to evaluate our method. As
shown in Table 1, plenty of user and item information can be regarded as

A Novel Top-N Recommendation Approach 363

condition labels. We transform the explicit data to implicit form as [12], where
each record is marked as 0 or 1 to indicate whether the user has rated the item.
We use the first dataset to simulate user-based recommendation and divide
users into an 80/10/10 split. Different from the item-based recommendation,
we provide users with items instead of recommending potential buyers for
each item. As for the second dataset, we split training and testing samples
based on items.

Table 1. Statistics of our datasets.

Datasets MovieLens-1M MovieLens-2k

Rating# 1,000,209 855,598

User# 6040 2113

Item# 3706 10197

Density 4.7% 3.9%

User Information Age, Gender, Occupation Tag

Item Information Title, Genre Genre, Country

– Metrics: In Top-k recommendation, hit ratio is a commonly used indicator
to measure the recall rate. Formally, w(i) denotes the item ranking at i, and
Iu denotes the set of held-out items that user u has clicked on. Its calculation
formula for each user u is as follows:

Recall@(u,K) =
∑K

i=1 ‖w(i) ∈ Iu‖
min(K, ‖Iu‖)

(7)

Discounted cumulative gain (DCG) for each user u can also be calculated,
where I [·] is the scoring function. To make DCG comparable across users,
we normalize the gain to a number between 0.0 and 1.0. The normalization
is accomplished by dividing each user’s DCG with the so-called Ideal DCG,
which is the best DCG results among all the users.

DCG@(u,K) =
K∑

i=1

I [w(i) ∈ Iu]
log2(i + 1)

(8)

– Implementation Details: In encoder, we set the dimension of the interme-
diate layer to 64 and both latent mean and variance layer to 32. In decoder,
the dimension of sampling layer is 32 while the intermediate layer is 64. We
apply relu activation for all the intermediate layers and softmax activation for
the output layer. As for the optimizer, we use Adam with a reducing learning
rate begin at 0.01 and with a dropping factor at 0.1. The batch size is set to
151 in ML-1m dataset and 202 in ML-2k dataset.

364 B. Pang et al.

4.1 The Projection of Latent Feature

In this section, we aim to demonstrate that the condition information is indeed
encoded in the latent mean factor after our training procedure. To this end, we
perform t-SNE [13] visualizations on the mean factor obtained with and without
label verification. To be more specific, we project the latent mean factor of each
user to a point onto a two-dimensional plane and label them with corresponding
colors so that we can visualize the result easily. We take a CVAE with Age
labels as an example. There are seven colors in figures that correspond to the
seven values of this type of condition labels. Figure 2(a) shows the distribution of
points remain out of order after training. We can hardly find the trend that users
with same condition label are grouped together through augmenting variational
auto-encoders on network structures. In contrast, from Fig. 2(b) we can clearly
observe that points of similar users get closer and have a tendency to be clustered.
Such rearrangements are exposed among most of users while some still remain
disperse. It is normal because there always exists someone who behave different
with others in the group but show similar behavior patterns to people from
other groups. From this point of view, we can draw the conclusion that our label
verification is effective.

(a) without label verification (b) with label verification

Fig. 2. t-SNE visualizations of latent mean vector on Dataset ML-1M. (Color figure
online)

4.2 The Impact of Side Information

After the t-SNE visualization test, it is curious to see whether stacking much
more condition labels in one model is beneficial to the recommendation per-
formance. For this purpose, we firstly test our CVAE without any labels and
gradually blend different types of side information in model to investigate their
impacts. The results are summarized in Tables 2 and 3. From this test, we learn
that the performance improvement through mining information from the con-
dition labels varies, which implies labels of different attributes differ in helping

A Novel Top-N Recommendation Approach 365

model learn to distinguish users. Another observation is loading multiple labels
one time degrades the model performance. We then compare the results under
the usage of our split-merge framework, where all the recommendation indica-
tors have increased significantly. We attribute this improvement mainly to our
split-merge framework, which emphasizes the importance of the recommenda-
tion diversity. Each sub model is forced to concentrate on learning only a small
aspect of the full features. This leads to multiple models with competitive perfor-
mance but actually understanding the task from different point of views. When
we combine the prediction results, it performs better without doubts.

Table 2. Test performance in terms of multiple condition on dataset ML-1M.

Model Recall@10 Recall@25 Recall@50 NDCG@50

VAE 0.3178 0.3409 0.4211 0.2269

CVAE with Sex 0.3151 0.3470 0.4277 0.2719

CVAE with Age 0.3238 0.3531 0.4332 0.2798

CVAE with Occupation 0.3172 0.3437 0.4222 0.2803

CVAE with Sex, Age, Occupation 0.3132 0.3425 0.4273 0.2839

Split-Merge CVAE 0.3470 0.3750 0.4500 0.2843

Table 3. Test performance in terms of multiple condition on dataset ML-2k.

Model Recall@10 Recall@25 Recall@50 NDCG@50

VAE 0.2699 0.3561 0.4603 0.1425

CVAE with Genre 0.2801 0.3588 0.4674 0.1570

CVAE with Country 0.2763 0.3608 0.4600 0.1431

CVAE with Genre, Country 0.2758 0.3584 0.4656 0.1435

Split-Merge CVAE 0.3025 0.3773 0.4808 0.1597

4.3 Performance Comparison

To make a further comparison, we select four state-of-art collaborative filtering
methods that targets top-N preference recommendation:

– CDAE [19]: A denoising auto-encoder which is augmented by feeding an
user-item preference vector to the input.

– MULT-VAE [12]: A variational auto-encoder with multinomial likelihood
and use Bayesian inference for parameter estimation.

– CVAE-CF/JVAE-CF [10]: It augments the variational auto-encoder by
applying variant architectures to tackle collaborative filtering. We implement
CVAE-CF and JVAE-CF by adding additional latent variable to extract high-
level features associated with auxiliary information as the paper describes. All
baseline parameters are build and set according to the respective papers, and
the other parts of the experiment settings are kept the same.

366 B. Pang et al.

Table 4. Performance comparison on dataset ML-1M.

Model Recall@10 Recall@25 Recall@50 NDCG@10 NDCG@25 NDCG@50

CDAE 0.3180 0.3361 0.4105 0.3176 0.2669 0.2183

MULT-VAE 0.3178 0.3409 0.4211 0.3181 0.2701 0.2269

CVAE-CF 0.3282 0.3483 0.4253 0.3317 0.2891 0.2665

JVAE-CF 0.3194 0.3423 0.4256 0.3396 0.2963 0.2794

Split-Merge CVAE 0.3470 0.3750 0.4500 0.3478 0.2905 0.2543

Table 5. Performance comparison on dataset ML-2k.

Model Recall@10 Recall@25 Recall@50 NDCG@10 NDCG@25 NDCG@50

CDAE 0.2694 0.3536 0.4512 0.2031 0.1713 0.1346

MULT-VAE 0.2699 0.3561 0.4603 0.2038 0.1736 0.1425

CVAE-CF 0.2876 0.3679 0.4672 0.2110 0.1898 0.1554

JVAE-CF 0.2881 0.3623 0.4617 0.2109 0.1768 0.1546

Split-Merge CVAE 0.3025 0.3773 0.4808 0.2211 0.1922 0.1597

Tables 4 and 5 summarize the results of our proposed methods and three
state-of-art methods on two datasets. These two datasets simulate two recom-
mended scenarios of user-based and item-based respectively. In both cases, our
method outperforms the related methods on recall and normalized discounted
cumulative gain metrics across different truncate value K. Combined with previ-
ous analysis, this numeric evaluation result aligns our expectation. Interestingly,
we also observe that normalized discounted cumulative gain is declining as the K
increases and the advantage of the proposed method is very limited or even worse
when arriving 50, which implies the different sizes of held-out set may disturb
the measurement. For some inactive users or items, the discounted cumulative
gain is relatively at a low level not because of the poor prediction but the lack
of interaction records.

5 Related Works

Traditional works for recommender systems focus on explicit feedback and rating
predictions. Along with the development of personalized recommendation tech-
nology, researchers gradually recognize the importance of implicit feedback data
and top-N recommendation for their applicability in practice [2,15,19]. Increas-
ingly works [3,20] apply deep neural networks to model the latent non-linearity
of the data, where brings a marked switch from hand-crafted features to directly
learn from raw inputs. Auto-encoder is then a type of neural network for unsu-
pervised learning in efficient data representation. [17] stems from the successes
of auto-encoder in vision and speech tasks and apply it to collaborative filtering
in recommendation. Later [19] extends the work by denoising auto-encoder and

A Novel Top-N Recommendation Approach 367

measure their performances based on the top-N results. [21] expands the auto-
encoder framework for movie recommendation by blending side information in
and show significant improvements over traditional methods.

Variational auto-encoder can be regarded as a variation of auto-encoder,
which makes strong assumptions on the distribution of latent variables. [10–12]
are collaborative filtering methods based on variational auto-encoder and also the
most relevant studies to ours. [11] considers the influence of both explicit ratings
and content in multimedia scenarios. Inspired by this work, we notice that vari-
ational auto-encoder can be extended in recommendation and side information
may help improve recommendation quality. Then [10] presents multiple varia-
tional approaches for collaborative filtering to deal with auxiliary information.
However, it mainly concentrates on how to encompass variational auto-encoder
through augmenting structures, while failing to consider auxiliary information
could be utilized in a more elegant way. [12] concentrates on likelihood functions
chosen and the regularization hyper-parameter tuning study. Although it is the
state-of-art work on variational auto-encoder for top-N recommendation with
implicit feedback, it still leaves investigation on conditional variational auto-
encoder models as future works.

6 Conclusion

This paper proposes an expanded variational auto-encoder recommendation
framework based on multiple condition labels. Side information is firstly blended
into the conditional variational auto-encoder and then a split-merge framework is
adopted to further improve the recommendation performance. Instead of simply
stacking network layers, we leverage those condition labels as a part of optimiza-
tion objective to help model distinguish and cluster users and items in latent
subspace. Experimental results on two public datasets indicate the effectiveness.
In future, we are to investigate joint training to reduce time consuming.

Acknowledgements. This paper is supported by the National Key Research and
Development Program of China (Grant No. 2016YF- B1001102), the National Natu-
ral Science Foundation of China (Grant Nos. 61502227, 61876080), the Collaborative
Innovation Center of Novel Software Technology and Industrialization at Nanjing Uni-
versity.

References

1. Blei, D.M., Kucukelbir, A., McAuliffe, J.D.: Variational inference: a review for
statisticians. J. Am. Stat. Assoc. 112(518), 859–877 (2017)

2. He, X., Chua, T.S., He, Z., Liu, Z., Song, J., Jiang, Y.G.: NAIS: neural attentive
item similarity model for recommendation. IEEE Trans. Knowl. Data Eng. 22(1),
1 (2018)

3. He, X., Liao, L., Zhang, H., Nie, L., Hu, X., Chua, T.S.: Neural collaborative
filtering. In: WWW 2017, pp. 173–182 (2017)

368 B. Pang et al.

4. Higgins, I., et al.: β-VAE: learning basic visual concepts with a constrained varia-
tional framework. In: ICLR 2017 (2017)

5. Hu, Y., Koren, Y., Volinsky, C.: Collaborative filtering for implicit feedback
datasets. In: ICDM 2008, pp. 263–272 (2008)

6. Karypis, G., Deshpande, M.: Item-based top-n recommendation algorithms. ACM
Trans. Inf. Syst. 22(1), 143–177 (2004)

7. Karypis, G., Riedl, J., Konstan, J.A., Sarwar, B.M.: Analysis of recommendation
algorithms for e-commerce. In: ECRA 2000, pp. 158–167 (2000)

8. Kingma, D.P., Mohamed, S., Rezende, D.J., Welling, M.: Semi-supervised learning
with deep generative models. In: NIPS 2014, pp. 3581–3589 (2014)

9. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. In: ICLR 2014 (2014)
10. Lee, W., Song, K., Moon, I.C.: Augmented variational autoencoders for collabora-

tive filtering with auxiliary information. In: CIKM 2017, pp. 1139–1148 (2017)
11. Li, X., She, J.: Collaborative variational autoencoder for recommender systems.

In: SIGKDD 2017, pp. 305–314 (2017)
12. Liang, D., Krishnan, R.G., Hoffman, M.D., Jebara, T.: Variational autoencoders

for collaborative filtering. In: WWW 2018, pp. 689–698 (2018)
13. van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn.

Res. 9(2605), 2579–2605 (2008)
14. Ning, X., Karypis, G.: SLIM: sparse linear methods for top-n recommender sys-

tems. In: ICDM 2011, pp. 497–506 (2011)
15. de Rijke, M., Zhao, X., Chen, Y.: Top-N recommendation with high-dimensional

side information via locality preserving projection. In: SIGIR 2017, pp. 985–988
(2017)

16. Sarwar, B.M., Karypis, G., Konstan, J.A., Riedl, J.: Item-based collaborative fil-
tering recommendation algorithms. In: WWW 2001, pp. 285–295 (2001)

17. Sedhain, S., Menon, A.K., Sanner, S., Xie, L.: AutoRec: autoencoders meet col-
laborative filtering. In: WWW 2015, pp. 111–112 (2015)

18. Wu, D., Lu, J., Zhang, G., Mao, M., Wang, W.: Recommender system application
developments: a survey. Decis. Support Syst. 74(C), 12–32 (2015)

19. Wu, Y., DuBois, C., Zheng, A.X., Ester, M.: Collaborative denoising auto-encoders
for top-n recommender systems. In: WSDM 2016, pp. 153–162 (2016)

20. Xue, H.J., Dai, X., Zhang, J., Huang, S., Chen, J.: Deep matrix factorization
models for recommender systems. In: IJCAI 2017, pp. 3203–3209 (2017)

21. Yi, B., Shen, X., Zhang, Z., Shu, J., Liu, H.: Expanded autoencoder recommen-
dation framework and its application in movie recommendation. In: SKIMA 2016,
pp. 298–303 (2016)

Jaccard Coefficient-Based Bi-clustering
and Fusion Recommender System

for Solving Data Sparsity

Jiangfei Cheng1 and Li Zhang1,2(B)

1 Department of Computer Science and Technology, Soochow University,
Suzhou, China

20165227039@stu.suda.edu.cn
2 Provincial Key Laboratory for Computer Information Processing Technology,

Soochow University, Suzhou, China
zhangliml@suda.edu.cn

Abstract. Recommender systems have been very common and useful
nowadays, which recommend suitable items to users by predicting rat-
ings for items. The most used collaborative filtering recommender system
suffers from the sparsity issue due to insufficient data. To cope with this
issue, we propose a Jaccard Coefficient-based Bi-clustering and Fusion
(JC-BiFu) method for Recommender system. JC-BiFu uses density peak
clustering for both users and items, and then makes estimations for miss-
ing values in the user-item rating matrix when finding the similar users.
Finally, we utilize both users and items to generate the final predictions.
Experimental analysis shows that our approach can improve the per-
formance of user recommendations at the extreme levels of sparsity in
user-item rating matrix.

Keywords: Collaborative filtering · Recommender system ·
Jaccard coefficient · Cluster · Data sparsity

1 Introduction

The rapid and fast expansion of Internet has significantly changed people’s tra-
ditional perspective on shopping, reading and entertainment by providing huge
amounts of information and bringing huge convenience. However, as information
in internet has dramatically increased, it is difficulty to filter the information that
people really desired. Recommender systems (RSs), which can play an expert
role in assisting us to find the information comforting to our interests. In partic-
ular, given the user purchased or rating profiles, recommender systems provide
a ranked list of items that we may be interested in.

Generally speaking, there are two kinds of approaches for RSs: content-
based and collaborative filtering-based (CF) approaches [1,2]. Recently, CF-
based methods have become popular and widely used in lots of domains, such

c© Springer Nature Switzerland AG 2019
Q. Yang et al. (Eds.): PAKDD 2019, LNAI 11440, pp. 369–380, 2019.
https://doi.org/10.1007/978-3-030-16145-3_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16145-3_29&domain=pdf
https://doi.org/10.1007/978-3-030-16145-3_29

370 J. Cheng and L. Zhang

as movies [3], music [4], and news [5]. The CF-based methods in RSs make a
recommendation list according to the similar users or items with the target user
or item. A widely accepted taxonomy divides CF-based methods into model-
based and memory-based method [6]. Model-based methods use the information
in RS to construct a model that generates the recommendations. However, the
memory-based methods calculate the similarity between users or items and then
select several similar users or items known as the neighbors to generate the rec-
ommendations [7]. To generate more accuracy predictions, many new similarity
measures for CF have been proposed [9–11]. The traditional Pearson correlation
coefficient-based method [8] does not consider the size of common users. To solve
this problem, a weighted Pearson correlation coefficient method has been pro-
posed [9], which captures the user confidence. The confidence of two users would
be greater and greater with the increase number of common rated items. Jamali
and Ester introduced a similarity measure based on the sigmoid function and
proposed the TrustWalker model [10]. This model can weaken the similarity of
small common items among users. The adjusted cosine similarity measure [11]
was proposed to make up the shortage of traditional cosine similarity, however,
it dose not consider the preference of user ratings.

As we know, memory-based method can give a considerable recommend accu-
racy. Since the scale of data in internet is becoming larger and larger, the data
sparsity and cold start issues in CF are getting more and more severe. The data
sparsity issue is a situation that the size of the user-item matrix is extremely high
and there are lots of missing values in the user-item matrix. In other words, users
only rated few items and even had no ratings on all items. The cold start issue is
a particular case of data sparsity. In that situation, it can be very hard to make
reliable recommendations, which seriously reduces the performance of RSs. To
solve the data sparsity issue, some techniques have been successfully applied to
RSs, such as dimensionality reduction methods [12–14]. RS can also use cluster-
ing techniques to improve the prediction quality and reduce sparsity issue. This
paper focuses on the clustering-based methods which are typical to form clusters
of items, users or both [15–18]. In [15], Ji et al. proposed a method combined
co-clustering and Radial Basis Function network to predict the missing value in
the rating matrix. In [16], Zhu et al. analyze the scalable CF using clustering
technology. In [17], George et al. proposed a method that involved simultane-
ous clustering of users and items. In [18], Zhang et al. proposed a bi-clustering
and fusion method called BiFu. The missing values in the rating matrix can be
smoothed by the user or item clusters to eliminate the data sparsity. But BiFu
only considers the user or item information to predict the missing values, and
ignores the rating diversity.

To remedy this, we propose a Jaccard Coefficient-based Bi-clustering and
fusion (JC-BiFu) method for CF to solve the data sparsity issue. JC-BiFu intro-
duces the item popularity using Jaccard coefficients. First, we cluster both users
and items using the density peak method according to the user-item rating
matrix. Then we select the most similar cluster for both the target user and
item, so we can make estimations for the unrated entries in the rating matrix

Jaccard Coefficient-Based Bi-clustering and Fusion Recommender System 371

to solve the sparsity issue. Finally, we can make prediction for the target user
according to the similar neighbors.

The remaining of this paper is organized as follows. Section 2 introduces our
proposed method JC-BiFu in detail. Section 3 reports experiment settings and
results. Section 4 concludes our work with future directions.

2 Jaccard Coefficient-Based Bi-clustering and Fusion

In this section, we introduce our motivation by giving an example and then
illustrate our proposed method JC-BiFu in detail.

2.1 Motivation

In memory-based approaches, the implicit (click, view times and purchased) and
explicit (ratings) feedback are the basis to make recommendations by estimating
ratings for items that have not been rated by users [19]. The feedback information
shows the preference of users for items, which is stored in the user-item rating
matrix. Let n be the number of users and m be the number of items. An n × m
user-item rating matrix represents all the users’ preference for items, where the
(i, j)-th entry of this matrix R stands for the i-th user’s rating for the j-th item.
If the user has not rated the item yet, the rating value would be 0.

Various rating-based methods have been used to compute the similarity
sim(u, u′) between two users u and u′ in RSs. The two most popular meth-
ods [20] are cosine and Pearson correlation coefficient (PCC), which are defined
as follows:

simc(u, u′) =
∑

i ru,iru′,i
√∑

i r2u,i

√∑
i r2u′,i

(1)

simp(u, u′) =
∑

i(ru,i − r̄u)(ru′,i − r̄u′)
√∑

i(ru,i − r̄u)2
√∑

i(ru,i − r̄u′)2
(2)

where simp(u, u′) and simc(u, u′) represent the Pearson similarity and cosine
similarity between users u and u′, respectively, ru,i denotes the rating of user u
on item i, r̄u is the average rating of user u, i ∈ Iu ∩ Iu′ that is the common items
both rated by users u and u′ and Iu is the set of items rated by user u. From
(1) and (2) we can see that when calculating the similarity between two users,
we need find the common items both rated by the two users. However, we can
hardly find the common items since the user-item matrix is very sparse. Without
adequate and sufficient data, the similarity cannot reflect the correlation between
users, which would be illustrated by an example in Table 1 where are 3 users and
the corresponding rating on 7 items. If we use PCC (2) to measure the similarity
between users, we can have simp(u1, u2) = 1 and simp(u1, u3) = 0.5. Obviously,
the similarity between user u1 and u2 is greater than that between u1 and u3.
There is only one common rating item that users u1 and u2 have, while we take
a set {i1, i3, i6, i7} to calculate sim(u1, u3). The latter could better reflect the

372 J. Cheng and L. Zhang

Table 1. The user-item rating matrix.

i1 i2 i3 i4 i5 i6 i7

u1 2 * 3 3 1 1 4

u2 * 2 * 5 * * *

u3 5 * 3 * * 3 3

* represents the user did not
rate the item.

similarity between users. We cannot get good recommendations when we cannot
find good neighbors. In a word, data sparsity has a terrible influence in CF
recommender systems.

2.2 JC-BiFu

To solve the data sparsity issue, we propose a Jaccard Coefficient-based Bi-
clustering and Fusion method. We introduce it in detail.

Clustering. Cluster analysis aims at classifying data points into categories on
the basis of their similarity. BiFu [18] takes k-means to cluster users and items.
It is well known that k-means is an unstable method and cannot automatically
find the correct number of cluster centroids. In [21], a fast clustering method
based on density peak (we call it CDP) have been proposed, which is able to
automatically find the correct number of cluster centroids. In this way, it can
avoid the parameter issue to improve the clustering accuracy. If we use CDP to
cluster users or items to find similar neighbors for the target user or item, we
can find better neighbors and get better recommendations.

CDP has a basis assumption that cluster centers have a relatively large local
density and are surrounded by neighbors with a lower local density. For each
user u, we need to compute two quantities: its local density ρu, and its distance
δu from user u′ with a higher density. Both these quantities depend only on the
distances duu′ between users. The local density ρu of user u is defined as:

ρu =
∑

u′
f(duu′ − dc) (3)

where dc is a cutoff distance determined empirically, and f(x) =

{
0, if x <0
1, otherwise

.

The distance δu is measured by computing the minimum distance between the
user u and any other users u′ with higher density:

δu = min
u:ρu′ >ρu

(duu′) (4)

For the user u with the highest density, we conventionally take δu = maxu′ (duu′).

Jaccard Coefficient-Based Bi-clustering and Fusion Recommender System 373

For the user set U = {u1, u2, · · · , un}, and item set I = {i1, i2, · · · , im},
JC-BiFu uses CDP with cosine similarity and partitions both U and I to get ku

user clusters U1, U2, · · · , Uku
and ki item clusters I1, I2, · · · , Iki

, respectively, if
the value of cosine is less than 0, let it be the absolute value.

Estimating Missing Values. In the user-item rating matrix, lots of values
are missing owing to data sparsity in the cold-start settings [18]. We can hardly
find co-rating items for two users when calculating the similarity between them
because of the data sparsity issue. To alleviate the influence of data sparsity,
the missing values in the user-item rating matrix need to be estimated. Some
estimation methods have been proposed in [18,19,22].

In [18], BiFu predicts the missing values based on users information with-
out considering the rating diversity. To consider the user and item information
simultaneously, we adopt the estimated method in [19] and apply the Jaccard
coefficeient [23] to measure the similarity between two items. For items i and j,
the Jaccard coefficient can be defined as:

J(i, j) =
|Ui ∩ Uj |
|Ui ∪ Uj | (5)

where Ui is the set of users that have rated item i, and | · | is the cardinal number
of a set ·. The numerator of (5) is the number of users that have co-rated both
item i and j while the denominator is the number of users that have rated
item i or j. If Ui ∩ Uj = ∅, J(i, j) = 0; J(i, j) = 1 when Ui = Uj . Obviously,
0 � J(i, j) � 1. The larger J(i, j) is, the more similar the two items is. If the user
u has not rated the item i, the estimation of missing value r̃u,i can be computed
by:

r̃u,i = r̄u +

∑
i,j∈Ik

J(i, j)(ru,j − r̄u)
λ +

∑
i,j∈Ik

J(i, j)
(6)

where Ik is the item cluster that contains item i and j and λ > 0 is a parameter
to smooth the prediction and can avoid the denominator to be 0. Intuitively,
ratings with larger J will contribute more to the prediction. So far, we can
obtain a new user-item rating matrix R̃ with each entry r̃u,i > 0.

Evaluation. In this phase, we mainly aim to calculate the final rating of the
target user ut on the target item it. First of all, we need to look for the most
similar user and item clusters for the target user ut and item it, and then we
need to find several similar users and items for ut and it in the selected clus-
ters, respectively. Finally, we calculate the final prediction. In the following, we
describe the evaluation procedure in detail.

The similarity between the target user ut and a user cluster is defined as:

sim(ut, Uk) =

∑
j∈Mp

(r̃ut,j − ¯̃rut
)(

∑
u′∈Uk

r̃u′,j−¯̃ru′
|Uk|)

√∑
j∈Mp

(r̃ut,j − ¯̃rut
)2

√
∑

j∈Mp
(
∑

u′∈Uk

r̃u′,j−¯̃ru′
|Uk|)2

(7)

374 J. Cheng and L. Zhang

where Mp is the set of items which have been co-rated by user ut and users in
the cluster Uk, r̃ut,j is the rating the target user ut on item j, and ¯̃rut

is the
average rating of user j after estimation. After all the similarity between the
target user and user clusters are calculated, we need to select the most similar
user cluster Uk∗ from all the clusters:

Uk∗ = arg max
k=1,...,ku

sim(ut, Uk). (8)

where ku is the number of the user cluster. Once the most similar user cluster
Uk∗ is confirmed, we need to extract a certain number of the target user’s most
similar users Sut

from the most similar user cluster Uk∗ .
And the similarity between item and item cluster is defined as:

sim(it, Ik) =

∑
v∈Np

(r̃v,it − ¯̃rit)(
∑

i′∈Ik

r̃v,i′ −¯̃ri′
|Ik|)

√∑
v∈Np

(r̃v,it − ¯̃rit)2
√

∑
v∈Up

(
∑

i′∈Ik

r̃v,i′−¯̃ri′
|Ik|)2

(9)

where Np is the user set that users co-rated the item i and items in cluster Ik

and ¯̃rit is the average rating of the target item it after estimation. After all the
similarity between the target item and item clusters are calculated, we need to
select the most similar item cluster Ik∗ from all the clusters:

Ik∗ = arg max
k=1,...,ki

sim(it, Ik). (10)

where ki is the number of item cluster. After confirming the most similar item
cluster Ik∗ , we need to extract a certain number of the target item’s most similar
items Sit from the most similar item cluster Ik∗ .

When predicting the rating that target user ut on the target item it, JC-BiFu
utilizes user-based approach by using the similar users and items simultaneously
to make the predictions more precise. Each rating is weighted by the correspond-
ing similarity sim(u, v).

r̂ut,it = ¯̃rut
+ γ ·

∑
u∈Sut

∑
i∈Sit

sim(ut, u)(r̃u,i − ¯̃ru)
∑

u sim(ut, u)
(11)

where γ is the weight during the computation for user-based approach. The
similarity between the target user and similar user sim(ut, u) is calculated by
Pearson correlation coefficient and cosine respectively. Algorithm 1 shows the
procedure of JC-BiFu.

3 Experiments

In this section, the evaluation metrics and the datasets used are described to
verify the accuracy and efficiency of JC-BiFu. Then, the experimental results
will be given. All experiments are conducted in MATLAB R2014b on a PC with
an Intel Core i7 processor with 16 GB RAM.

Jaccard Coefficient-Based Bi-clustering and Fusion Recommender System 375

Algorithm 1. JC-BiFu.
Input: User-item rating matrix R
Output: Predictions r̂ut,it of the target user on the target item
1: Clustering for both users and items
2: Calculating the distance matrices for users and items, respectively
3: Using CDP based on the distance matrices
4: Estimating the missing values
5: Calculating the Jaccard coefficient matrix J of items
6: Making estimations based on the Jaccard coefficient matrix J
7: Evaluation
8: Calculating the similarity between the target user and each user cluster accord-

ing to (7)
9: Calculating the similarity between the target item and each item cluster

according to (9)
10: Selecting the most similar user cluster Uk∗ and item cluster Ik∗ according to

(8) and (10), respectively
11: Making final predictions according to (11)

3.1 Datasets

In our experiments, we evaluate our algorithm on three datasets MovieLens-
100k, MovieLens-1M and FilmTrust [26]. MovieLens-100k and MovieLens-1M
consist of 100,000 ratings of 943 users on 1,682 movies and 1,000,209 ratings of
6,040 users on 3,952 movies, respectively, and each user has rated at least 20
movies. Every rating of the two datasets is a positive integer on a 5-star scale.
FilmTrust consists of 1,058 users and 2,071 movies. In this dataset every rating is
a positive float value on the range of 0.5 to 4. In experiments, we only utilize the
user-item rating information and ignore the redundant information (e.g., users’
personality, items’ features). Table 2 shows the statistical characteristics of these
datasets, where the sparsity level of these datasets is calculated by the method
in [24]:

Sparsity level = 1 − #Rated entries

#Total entries
(12)

Table 2. Statistical of all dataset

Datasets FilmTrust MovieLens-100K MovieLens-1M

Number of users 1,508 943 6,040

Number of items 2,071 1,682 3,952

Number of ratings 35,497 100,000 1,000,209

Total Mean rating 3.0027 3.59299 3.5816

Sparsity level 1.14% 6.3% 4.47%

376 J. Cheng and L. Zhang

3.2 Evaluation Metrices

We utilize mean absolute error (MAE) and root mean square error (RMSE)
to measure the recommendation accuracy, which is frequently used for measur-
ing the differences between predicted ratings and users’ real ratings. MAE and
RMSE are defined as:

MAE =
1

Np

∑

u,i

|r̂u,i − ru,i| (13)

RMSE =
√

1
Np

∑

u,i

(r̂u,i − ru,i)2 (14)

where Np denotes the number of predictions. The smaller the MAE and RMSE
are, the better the recommendation accuracy.

3.3 Parameters Analysis

In the experiment, we use 70% of the whole dataset for training and the remain-
ing for testing. JC-BiFu makes use of parameters λ to make estimation of the
missing values in the user-item matrix R and γ to generate the final predic-
tions. Thus, we design experiments on MovieLens-100K to check how much the
parameters affect the performance of JC-BiFu when using PCC and cosine as the
similarity measure which is defined as (1) and (2), respectively. The parameter
of λ varies in the set {10, 20, · · · , 100} and γ varies in the set {0.1, 0.2, · · · , 1}.

Figure 1 shows the results of JC-BiFu with PCC. When the value of λ
increases, JC-BiFu can get a better accuracy and becomes stable as shown in
Fig. 1(a). While with the increasement of γ, JC-BiFu becomes worse as shown
in Fig. 1(b).

Figure 2 gives the results of JC-BiFu with the cosine similarity. From
Fig. 2(a), we can have the same conclusion as Fig. 1(a). In Fig. 2(b), JC-BiFu
has a better performance and becomes stale with the increasement of γ which
is different from Fig. 1(b).

10 20 30 40 50 60 70 80 90 100
0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

MAE
RMSE

(a)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

MAE
RMSE

(b)

Fig. 1. MAE and RMSE for sensitivity of parameters λ and γ in MovieLens-100k with
PCC.

Jaccard Coefficient-Based Bi-clustering and Fusion Recommender System 377

10 20 30 40 50 60 70 80 90 100
0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

MAE
RMSE

(a)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

MAE
RMSE

(b)

Fig. 2. MAE and RMSE for sensitivity of parameters λ and γ in MovieLens-100k with
cosine.

3.4 Performance

In the phase, we compare JC-BiFu with other related methods on three com-
monly used RS datasets listed in Table 2.

According to the results mentioned above, JC-BiFu can have a better perfor-
mance when using PCC with λ = 100 and γ = 0.1. The other compared methods
are described as follows:

– Traditional Pearson CF: User-based CF with Pearson correlation coefficient
for user similarity.

– Traditional Cosine CF: User-based CF with cosine for user similarity.
– JAC [25]: A method with a Jaccard-based similarity to improve performance

in RS.
– RBRA [19]: A rating-based algorithm to solve the sparsity issue in RS which

uses triple to represent user or item.
– BiFu [18]: A bi-clustering method with k-means by Pearson correlation for

user similarity.

Table 3 shows MAE and RMSE of all six methods on the FilmTrust dataset.
We can see that JC-BiFu can achieve the best performance among the six meth-
ods. For MAE, JC-BiFu is the best (0.7931), followed by RBRA (0.8264) and
BiFu method (0.8354). Compared to the second best BiFu, RMSE of JC-BiFu
increases by 5.5%.

Tables 4 and 5 show the performance of all six methods on the MovieLens-
100K and MovieLens-1M datasets, respectively. Similar to Table 3, JC-BiFu has
the best performance compared to the other methods. On MovieLens-100K,
the MAE and RMSE of JC-BiFu increase by 12.2% and 8.0%, respectively. On
MovieLens-1M, the MAE and RMSE of JC-BiFu increase by 6.0% and 6.5%.

From the results all above, we can see that our JC-BiFu can have the best
performance with the lowest MAE and RMSE.

378 J. Cheng and L. Zhang

Table 3. MAE and RMSE on FilmTrust.

Methods MAE RMSE

Traditional-Pearson 0.8911 1.0271

Traditional-Cosine 0.8491 1.0729

BiFu 0.8354 0.9885

RBRA 0.8264 1.0340

JAC 0.8807 1.0223

JC-BiFu 0.7931 0.9363

Table 4. MAE and RMSE on Movielens-100K.

Methods MAE RMSE

Traditional-Pearson 0.8823 1.0909

Traditional-Cosine 0.8724 1.0860

BiFu 0.8359 1.0196

RBRA 0.8479 1.0387

JAC 0.8538 1.0734

JC-BiFu 0.7452 0.9431

Table 5. MAE and RMSE on Movielens-1M.

Methods MAE RMSE

Traditional-Pearson 0.8917 1.0955

Traditional-Cosine 0.9090 1.1318

BiFu 0.8835 1.0242

RBRA 0.8754 1.0704

JAC 0.8946 1.1683

JC-BiFu 0.8262 0.9613

4 Conclusion

In this paper, we propose an efficient rating-based recommender algorithm, JC-
BiFu which uses the density peak clustering method to cluster the user-item
rating matrix, and estimates the missing values for sparsity data to cope with
the sparsity problem in cold-start settings. We conduct our experiments on
three common used recommender datasets MovieLen-100K, MovieLens-1M and
FilmTrust. Experimentally, the recommendation quality in terms of RMSE and
MAE shows that JC-BiFu generates more accurate recommendations with less
prediction error compare with other methods.

However, JC-BiFu can be further improved. If there exists a brand new user
that have not rate any items, or a brand new item that has not been rated by

Jaccard Coefficient-Based Bi-clustering and Fusion Recommender System 379

any users, JC-BiFu cannot make good recommendations. We plan to improve
our method to handle this situation.

Acknowledgement. This work was supported in part by the National Natural Sci-
ence Foundation of China under Grant No. 61373093, by the Soochow Scholar Project,
by the Six Talent Peak Project of Jiangsu Province of China, and by the Collaborative
Innovation Center of Novel Software Technology and Industrialization.

References

1. Burke, R.: Hybrid recommender systems: survey and experiments. User Model.
User-Adapt. Interact. 12(4), 331–370 (2002)

2. Tuzhilin, A.: Towards the next generation of recommender systems. In: ICEBI-10
(2010)

3. Odić, A., Tkalčič, M., Tasič, J.F., Košir, A.: Predicting and detecting the relevant
contextual information in a movie-recommender system. Interact. Comput. 25(1),
74–90 (2013)

4. Benzi, K., Kalofolias, V., Bresson, X., Vandergheynst, P.: Song recommendation
with non-negative matrix factorization and graph total variation. In: IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing, pp. 2439–2443
(2016)

5. Beam, M.: Automating the news: how personalized news recommender system
design choices impact news reception. Commun. Res. 41(8), 1019–1041 (2013)

6. Bobadilla, J., Ortega, F., Hernando, A.: Recommender systems survey. Knowl.-
Based Syst. 46(1), 109–132 (2013)

7. Thorat, P.B., Goudar, R.M., Barve, S.: Survey on collaborative filtering, content-
based filtering and hybrid recommendation system. Int. J. Comput. Appl. 110(4),
31–36 (2015)

8. Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., Riedl, J.: GroupLens: an
open architecture for collaborative filtering of netnews. In: ACM Conference on
Computer Supported Cooperative Work, pp. 175–186 (1994)

9. Herlocker, J.L., Konstan, J.A., Borchers, A., Riedl, J.: An algorithmic framework
for performing collaborative filtering. ACM SIGIR Forum 51(2), 227–234 (1999)

10. Jamali, M., Ester, M.: TrustWalker: a random walk model for combining trust-
based and item-based recommendation. In: ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, pp. 397–406 (2009)

11. Ahn, H.J.: A new similarity measure for collaborative filtering to alleviate the new
user cold-starting problem. Inf. Sci. 178(1), 37–51 (2008)

12. Sarwar, B.: Application of dimensionality reduction in recommender systems - a
case study (2000)

13. Zhang, Z.: Sparsity, robustness, and diversification of recommender systems. Dis-
sertations and Thesis - Gradworks (2014)

14. Ranjbar, M., Moradi, P., Azami, M., Jalili, M.: An imputation-based matrix fac-
torization method for improving accuracy of collaborative filtering systems. Eng.
Appl. Artif. Intell. 46(PA), 58–66 (2015)

15. Ji, Y., Hong, W., Qi, J.: Missing value prediction using co-clustering and RBF for
collaborative filtering. In: International Conference on Cloud Computing and Big
Data, pp. 350–353 (2016)

380 J. Cheng and L. Zhang

16. Zhu, R.L., Gong, S.J.: Analyzing of collaborative filtering using clustering technol-
ogy. In: ISECS International Colloquium on Computing, communication, control,
and Management Proceedings, pp. 57–59 (2009)

17. George, T., Merugu, S.: A scalable collaborative filtering framework based on co-
clustering. In: IEEE International Conference on Data Mining, p. 4 (2005)

18. Zhang, D., Hsu, C.H., Chen, M., Chen, Q., Xiong, N., Lloret, J.: Cold-start rec-
ommendation using bi-clustering and fusion for large-scale social recommender
systems. IEEE Trans. Emerg. Top. Comput. 2(2), 239–250 (2014)

19. Xie, F., Xu, M., Chen, Z.: RBRA: a simple and efficient rating-based recommender
algorithm to cope with sparsity in recommender systems. In: International Con-
ference on Advanced Information NETWORKING and Applications Workshops,
pp. 306–311 (2012)

20. Ricci, F., Rokach, L., Shapira, B., Kantor, P.B.: Recommender Systems Handbook.
Springer, US (2011). https://doi.org/10.1007/978-0-387-85820-3

21. Rodriguez, A., Laio, A.: Clustering by fast search and find of density peaks. Science
344(6191), 1492 (2014)

22. Lemire, D., Maclachlan, A.: Slope one predictors for online rating-based collabo-
rative filtering. In: Computer Science, pp. 21–23 (2007)

23. Anand, D., Bharadwaj, K.K.: Utilizing various sparsity measures for enhancing
accuracy of collaborative recommender systems based on local and global similar-
ities. Expert Syst. Appl. 38(5), 5101–5109 (2011)

24. Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Analysis of recommendation algo-
rithms for e-commerce. In: ACM Conference on Electronic Commerce, pp. 158–167
(2000)

25. Ayub, M., Ghazanfar, M.A., Maqsood, M., Saleem, A.: A Jaccard base similarity
measure to improve performance of CF based recommender systems. In: Interna-
tional Conference on Information NETWORKING, pp. 1–6 (2018)

26. Guo, G., Zhang, J., Yorke-Smith, N.: A novel Bayesian similarity measure for
recommender systems. In: Proceedings of the 23rd International Joint Conference
on Artificial Intelligence (IJCAI), pp. 2619–2625 (2013)

https://doi.org/10.1007/978-0-387-85820-3

A Novel KNN Approach
for Session-Based Recommendation

Huifeng Guo2, Ruiming Tang2, Yunming Ye1,3(B), Feng Liu1,3,
and Yuzhou Zhang2

1 Harbin Institute of Technology, Shenzhen, China
yeyunming@hit.edu.cn, liufeng@stmail.hitsz.edu.cn

2 Noah’s Ark Lab, Huawei, China
{huifeng.guo,tangruiming,zhangyuzhou3}@huawei.com

3 Shenzhen Key Laboratory of Internet Information Collaboration, Shenzhen, China

Abstract. The KNN approach, which is widely used in recommender
systems because of its efficiency, robustness and interpretability, is pro-
posed for session-based recommendation recently and outperforms recur-
rent neural network algorithms. It captures the most recent co-occurrence
information of items by considering the interaction time. However, it
neglects the co-occurrence information of items in the historical behav-
ior which is interacted earlier than others and cannot discriminate the
impact of vertices with different popularity. Due to these observations,
this paper presents a novel KNN approach to address these issues for
session-based recommendation. Specifically, a diffusion-based similarity
method is proposed for incorporating the popularity of items, and the
candidate selection method is proposed to capture more co-occurrence
information of items in the same session efficiently. Comprehensive exper-
iments are conducted to demonstrate the effectiveness of our KNN app-
roach over the state-of-the-art KNN approach for session-based recom-
mendation on three benchmark datasets.

Keywords: Diffusion model · Session-based recommendation ·
Nearest neighbor

1 Introduction

With the development of Internet, there have been many web applications. How-
ever, the recommender systems of many applications, particularly those of small
retailers, do not track the visit information of all users over a period of time.
Moreover, the cookies are also unavailable due to the technology reliability and
privacy concerns [5,9]. Even if the visit information of users can be tracked, the
number of sessions for a specific user in a small application site is limited and
the behavior of users mostly shows session-based traits. Therefore, session-based

Work done while Huifeng Guo at Harbin Institute of Technology.

c© Springer Nature Switzerland AG 2019
Q. Yang et al. (Eds.): PAKDD 2019, LNAI 11440, pp. 381–393, 2019.
https://doi.org/10.1007/978-3-030-16145-3_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16145-3_30&domain=pdf
https://doi.org/10.1007/978-3-030-16145-3_30

382 H. Guo et al.

Table 1. The session data example.

Session id i i i i j j k k k l l

Item id α1 α2 α3 α6 α3 α4 α2 α3 α4 α3 α5

Time 0 1 2 3 4 5 6 7 8 9 10

recommendation, where the task is predicting the next action of a user given the
action sequence in the current session, is critical for recommender systems.

Session-based recommendation is a special case of sequential learning, such
as basket prediction [11] and music playlist generation [1]. Traditional recom-
mendation methods [3,4,8] are not well suited for sequential learning. Therefore,
several approaches [7,10] are proposed to capture both sequential and person-
alized information. However, these methods all require long-term user history
behavior and usually lead to poor performance when these information is unavail-
able. In order to address this limitation, a recurrent neural network, named as
GRU4Rec [5], is used for session-based recommendation. Nevertheless, it suffers
from several limitations: (1) Limited ability of capturing co-occurrence informa-
tion of items: (2) Tremendous parameters that to be trained.

Compared with other methods, the KNN approach is widely used in rec-
ommender systems because of its efficiency, robustness and interpretability [1,9].
Recently, a contextual KNN approach (CKNN) is proposed for session-based rec-
ommendation and outperforms GRU4Rec [5] on benchmark datasets according
to the reported result [6]. Although CKNN works well in session-based recom-
mendation, it still has two limitations: (1) Lacking the ability to distinguish the
influence of items with different popularity. (2) CKNN cannot guarantee the
ratio of relevant sessions of different items clicked in current session, especially
the last action, in the relevant session set of current session.

In order to address these limitations in CKNN approach for session-based
recommendation, we propose a novel CKNN approach in this paper. Specifically,
a diffusion-based similarity method is proposed for incorporating graph structure
information and two candidate selection strategies are designed to guarantee the
ratio of relevant sessions related to last click of current session in the relevant
session set of current session and the ratio of relevant sessions related different
items clicked in current session.

2 Our Approach

In order to illustrate the procedure of session-based recommendation,
Table 1 presents an example data. This example includes 11 session-item inter-
actions, which is consisting of Session id, Item id and time, respectively.

The session-item interactions presented in Table 1 are able to be represented
as a session-item bipartite network G = {S, I, E}, which consists of a session
set S, an item set I and an interaction set E . The number of sessions and items
are denoted as m and n, the cardinality of E is l. The adjacency matrix of G can

A Novel KNN Approach for Session-Based Recommendation 383

Table 2. The map from session id to the pair of item id and interaction time.

Session id (Item id, interaction time)

i (α1, 00), (α2, 01), (α3, 02), (α6, 03)

j (α3, 04), (α4, 05)

k (α2, 06), (α3, 07), (α4, 08)

l (α3, 09), (α5, 10)

Table 3. The map from item id to the pair of session id and interaction time.

Item id (Session id, interaction time)

α1 (i, 00)

α2 (i, 01), (k, 06)

α3 (i, 02), (j, 04), (k, 07), (l, 09)

α4 (j, 05), (k, 08)

α5 (l, 10)

α6 (i, 03)

be denoted as A ∈ Rm×n, where axi = 1 if (x, i) ∈ E and 0 otherwise. Moreover,
we define the degree of session x and item i as dx and di, respectively.

In the rest of this section, the procedure of the contextual KNN (CKNN for
short) approach for session-based recommendation is presented.

2.1 Contextual KNN Approach

Before staring, we need construct two dictionaries, namely MapS2I and MapI2S .
Specifically, MapS2I is a map from session to the pairs of item and interaction
time, MapI2S is another map from item to the pairs of session and interaction
time. The MapS2I and MapI2S of the example data that introduced in Table 1
are presented in Tables 2 and 3, respectively. The pipeline of CKNN approach is
described as follows (which is also presented in the bottom of Fig. 1):

– At step 0, a session-based recommendation is triggered when a user clicks
some item. At step 1, we need to find RL(x), which is the relevant session
set related to items in the current session x. For example in Fig. 1, the relevant
session set related to the current session x = {α4, α1} is {j, k, i} (session j, k
are related to item α4 and session i is related to item α1).

– At step 2, we select the most recent krecent sessions from the relevant session
set as the recent session set RC(x), because focusing on the most recent
events has shown to be effective in the domains of e-commerce and news
recommendations [2]. For example in Fig. 1, krecent = 2 recent sessions are
chosen and the recent session set of current session x is {j, k}.

384 H. Guo et al.

i

j

k

l

α1

α2

α3

α4

α5

α6

Session_id Item_id & �me.
i {α1:00;α2:01;α3:02;α6:03;}
j {α3:04;α4:05;}
k {α2:06;α3:07;α4:08;}
l {α3:09;α5:10;}

Item_id Session_id & �me.
α1 {i:00;}
α2 {i:01;k:06;}
α3 {i:02;j:04;k:07;l:09;}
α4 {j:05;k:08;}
α5 {l:10}
α6 {i:03;}

MapS2I MapI2S

0. Current session
x: {α4, α1}. What
is the next?

1. Finding relevant
sessions from MapI2S:
{j:05; k:08;} for α4,
{i:00;} for α1.

α1

α2

α3

α4

α6

i:00

j:05

k:08

2. Selec�ng the most
recent krecent=2
sessions: {i:00; k:08;} .

α1

α2

α3

α4

α6

i:00

j:05

3. Calcula�ng similarity: simDSM(x,k)=0.41,
simDSM(x,i)=0.5.
4. Selec�ng the most similar ktop=1 sessions,
which is session i.

α1

α2

α3

α6

i:00

5. Calcula�ng the item
similari�es by Equa�on
(1) and return the most
similar k items.

α1:0.5;α2:0.5;α3:0.5;α6:0.5.

Fig. 1. Examples for bipartite network construction and our session-based KNN algo-
rithm. Note that, MapS2I (or MapI2S) is a map, where the key is session id (or item
id) and the value is the set of item id (or session id)-timestamp pairs. Specifically, the
smaller the timestamp, the earlier the interaction time is (03 is more recent than 00).

– At step 3, the similarity score sim(x, j) between the current session x and
each session j in RC(x) (selected by step 2) is calculated. After that, the most
similar ktop sessions are selected as the nearest neighbor session set, denoted
as NN(x), for current session x.

– Finally at step 4, based on the nearest neighbor session set NN(x), and
the similarities with the current session x, the score of a recommendable item
α for the current session x is

scoreKNN (α, x) =
∑

j∈NN(x)

sim(x, j) × 1j(α), (1)

where 1j(α) = 1 represents session j containing item α and 0 otherwise. Then
the most similar k items resultx are returned.

2.2 Candidate Selection

Focusing on the most recent events has shown to be effective in the domains of
e-commerce and news recommendation [2]. Therefore, [6] proposes an algorithm,
denoted as Original for distinction, to select the most krecent recent relevant
sessions from the related session set RL(x) of current session x. However, this
algorithm still suffers following limitations: (1) Last click: The sessions con-
taining the last items may not be included because the interaction time of such
sessions may be earlier than the others. So it is not guaranteed to include the rel-
evant sessions of last click. (2) Other clicks: Same as Last click, the relevant
sessions for other clicks will be excluded when the interaction time are earlier.

A Novel KNN Approach for Session-Based Recommendation 385

Focusing on the Last Click. In order to focus on the last click item, we
propose a strategy to guarantee the ratio of last item’s recent relevant sessions
in the recent session set RC. The basic idea of our strategy is to find the recent
session set from two sources: (1) Recent relevant sessions for last click:
Assuming i is the last item, we select the most recent [krecent × pi]1 sessions
from RLi as RCi, where pi is the ratio of RCi in RC(x) according to different
strategies. (2) Recent relevant sessions for other clicks: Selecting the most
recent [krecent × (1 − pi)] sessions of x \ i (other items in current session) as
RC(x \ i) from RL(x \ i), which has already been found previously. Finally:
Merging the recent session set of last item and of the other items in current
session x as the recent session set of x: RC(x) = RCi ∪ RC(x \ i).

Assuming the influence of items with different popularity is same, we propose
Equal Probability Candidate Selection (EPCS for short). So pi = [krecent

|x|],
where |x| is the number of elements in current session x.

To make it easier to understand, we take an example to illustrate the differ-
ence between the Original algorithm proposed by [6] and the EPCS algorithm
in this paper. Recall the items of current session x are {α4, α1}, where α1 is
the last interacted item. Therefore, the RL(x) is {j : 05, k : 08, i : 00} (where
RLα4 = {j, k} and RLα1 = {i}). If we set krecent = 2, session i will be excluded
because the interaction time of {i : 00} is in the third place. Therefore, there
is no session relevant to last item α1 in the recent session set. On the contrary,
EPCS guarantees the ratio of RCi

2 in RC(x).

Focusing on All Clicks. In fact, not only the last click is important, but also
the co-occurrence of other clicks is helpful for recommendation. To guarantee the
ratio of every item’s recent relevant sessions in RC(x), we can select the recent
session set for each item that contained in current session, then aggregate these
sets together as the recent session set of current session x. However, selecting the
recent session set for each item is very expensive in terms of time cost, because
querying and sorting are required every time. Recall the candidate selection
algorithm introduced in Sect. 2.2, the recent session set of other clicks (x \ i)
is selected at previous step. So we can select [krecent × (1 − pi)] elements from
(x \ i) randomly. This approach has two advantages: (1) Random selection
is efficient; (2) Random selection guarantees the ratio of every item’s relevant
sessions in RC(x). Based on the random selection strategy and EPCS, we
propose another strategy and name it as EPCSR.

2.3 Diffusion-Based Similarity

In addition to candidate selection, similarity calculation is also important for
the performance of CKNN approach. In CKNN algorithm, some interactions
are discarded when constructing the recent session set of current session. So

1 [] indicates rounding.
2 RCi is the set of recent sessions related to item i.

386 H. Guo et al.

the degree of items in recent session set is smaller than their real degree in
the original network G. As a result, using items’ original degree will over-affect
the similarity metric. To address this limitation, we propose a Diffusion-based
Similarity Method (noted as DSM for short). In DSM, we adopt an exponential
function of items’ degree to control the impact of items’ popularity for similarity
calculation. Specifically, the importance of item i is denoted as dβ

i , where β
is a hyper-parameter and the importance of item degree is increasing when β
becomes larger. The DSM similarity between current session x and target session
j is denoted as:

SimDSM (x, j, λ, β) =
1

dλ
x × d1−λ

j

n∑

i=0

axi · aji

di
β

. (2)

It’s easy to find that DSM is a similarity framework which is a generalization
of several existing similarity methods. For instance, DSM is Mass Diffusion [12]
when λ = 1, β = 1, and is cosine when λ = 0.5, β = 0, etc.

3 Experiment

In this section, we conduct experiments to answer the following research ques-
tions: RQ1: Does the candidate selection strategies improve the performance
of session-based recommendation? RQ2: How do the hyper-parameters λ and
β in DSM influence the session-based recommendation? RQ3: How does our
approach perform, compared to other KNN approaches for session-based recom-
mendation?

3.1 Experiment Setting

Datasets. The effectiveness of our proposed approach is evaluated on three
datasets, including RSC, RSCW and Atom. The recommendation task is to
predict the kth item knowing the previous k − 1 items in a session with length
n, where k ∈ [2, n].

Particularly, Atom is a dataset containing music playlists from
artofthemix.org. The playlists in Atom dataset have no timestamp information
therefore the authors of [6] assigns each playlist with a timestamp uniformly at
random, under the assumption that the whole dataset is of 31 consecutive days.
The training set of Atom is the first 30 days’ data while the last day’s data is
the test set.

RSC and RSCW are 2 variants of the ACM RecSys 2015 Challenge dataset
(RSC15) as used in [6]. RSC15 contains the sessions of items in 182 consecutive
days. Note that, all of the session-item interactions in RSC and RSCW are
associated with timestamps. In RSC, the first 181 days’ data is identified as
training set, while the last day’s data is left as test set. And the RSCW dataset
is constructed by selecting five subsets of 91 consecutive days’ data from the
original RSC15. In each of such subsets, the first 90 days’ data is the training set,

A Novel KNN Approach for Session-Based Recommendation 387

Table 4. Dataset characteristics.

RSC RSCW Atom

Sessions 8M 4M 82K

Avg. length 3.97 3.92 11.48

Items 37K 34K 54K

With timestamp Yes Yes No

while the last day’s data is the test set. Hence, RSCW dataset contains five sub-
datasets, in each of which the recommendation problem is set as in RSC dataset.
The performance on RSCW is averaged on the five sub-datasets, to minimize
the risk that the obtained results are sensitive to the splitting strategy.

The statistic information of the three datasets are shown in Table 4. The
statistics of RSCW is averaged on its five sub-datasets.

Metrics. In our experiments, we adopt three evaluation metrics: Hit Rate
(HR), Mean Reciprocal Rank (MRR) and Coverage. In the following, the
test dataset is denoted as Test, the cardinality of the test dataset is denoted as
|Test|, Ri@L is the recommendation list at length L = 20 for current session i,
I is the item set and its cardinality is denoted as |I|.

HR@L =
1

|Test|
∑

i∈Test

hiti, (3)

where hiti = 1 when the ground truth item of current session i is recommended
in Ri@L.

MRR@L =
1

|Test| (
∑

j∈Test

1
rankj

), (4)

where rankj indicates the rank of item which is interacted in sample j. MRR
is a widely used metric in information retrieval, where the rank of the ground
truth item in Ri@L is valued.

Coverage@L =
1
|I| |

⋃

j∈Test

Rj@L|. (5)

The coverage describes the percentage of recommended items in Top-L places of
all the samples’ recommendation lists over all the candidate items.

Baselines. We conduct experiments to compare the following approaches:

– IKNN [5] proceeds in an item-centric manner. In IKNN, the most similar
items of current item are selected through an item-item similarity matrix,
which has been established based on session-item records.

388 H. Guo et al.

– CKNN-cosine-Original [6] proceeds in an session-centric manner. Specifi-
cally, it adopts cosine as the similarity metric and Original as the candidate
selection method. It is the state-of-the-art KNN approach for session-based
recommendation.

– CKNN-{MD, HC, MDHC, DSM}-Original: To compare the perfor-
mance of different diffusion-based similarity methods, we conduct the exper-
iments of CKNN approaches equipped with MD, HC, MDHC and DSM sim-
ilarity metrics, and the Original candidate selection method.

– CKNN-{cosine, DSM}-{EPCS, EPCSR}: To compare different candi-
date selection strategies, we conduct the experiments of CKNN approaches
equipped with EPCS and EPCSR under both cosine and DSM.

For the approaches of CKNN, we set the number of the most recent sessions
krecent = 1000 and the number of the most similar sessions ktop = 500 according
to the parameters which achieve the best performance in [6].

3.2 The Performance of Candidate Selection Strategy

In this section, we present two experiments to evaluate the effectiveness and
efficiency of the different candidate selection strategies respectively. Noted that,
both λ and β in DSM are set as 0.5.

The Effectiveness of Candidate Selection Strategy. Figure 2 shows the
performance of CKNN-DSM(0.5, 0.5) and CKNN-cosine under different candi-
date selection strategies in terms of HR@20, MRR@20 and Coverage@20 on RSC
dataset. Because EPCS guarantees the ratio of relevant sessions containing the
last item in the recent relevant session set, the items co-occurred with the last
item are captured. As a result, the accuracy and diversity of both DSM(0.5, 0.5)
and CKNN are improved on RSC dataset when we adopt EPCS. In addition,
EPCSR is able to focus on all clicks in current session x and guarantee the
ratio of every click’s recent relevant sessions in RC(x). Therefore, on the basis
of EPCS, EPCSR achieves the best results on RSC dataset.

The Efficiency of Candidate Selection Strategy. The EPCS and EPCSR
is more efficient than the Original approach [6]. The reasons are as follows: (1)
The recent relevant session set of the other items in current session has been
found previously, only a little more calculation is needed; (2) Selecting the recent
session set of a single item (i.e., the last item in the session) is much easier and
requires less computation than finding that of a set of items. As a result, the
efficiency of these three strategies is ranked as follows: EPCSR>EPCS>Original.

3.3 The Study of λ and β in DSM

In this section, we conduct experiments to study the impact of hyper-parameter λ
and β in DSM on RSC dataset, where both hyper-parameters are ranged in [0, 1].

A Novel KNN Approach for Session-Based Recommendation 389

Fig. 2. The performance of different candidate selection strategies. Note: the red solid
circle and blue × represent the result of CKNN algorithm when using DSM(0.5, 0.5)
and cosine respectively. (Color figure online)

Fig. 3. The running time comparison.

Figures 4, 5 and 6 present the impact of λ, β and both of λ and β respectively.
In these figures, from left to right are HR@20, MRR@20 and Coverage@20. The
observations are summarized as follows (Fig. 3):

390 H. Guo et al.

Fig. 4. The impact of hyper-parameter λ when β = 1.

Fig. 5. The impact of hyper-parameter β when λ = 0.5.

Fig. 6. The impact of hyper-parameters λ and β.

– As shown in Fig. 4, fixing β = 1, the values of HR@20, MRR@20 and Cover-
age@20 are all decreased when we increase λ. Specifically, these metrics drop
rapidly when λ is larger than 0.5. The reason is that the impact of current
session’s length becomes larger when increasing λ, while that of compared
session’s length becomes less. However, the length of current session makes
no sense, which leads to a trivial result.

– If the value of β is moderate, DSM leads to higher HR@20 and MRR@20.
As shown in Fig. 5, the values of HR@20 and MRR@20 are increasing as β
becomes larger from 0, while declining when β is greater than 0.5. In addition,
the impact of item’s popularity becomes greater as β increases, as a result,
the coverage@20 increases.

– Figure 6 presents that DSM achieves the highest value in terms of HR@20
and MRR@20 when β and λ are all around 0.5. Under the same setting,
DSM reaches a relative high value in terms of Coverage@20. Although DSM
is able to obtain the highest value in terms of Coverage@20 when β = 1,

A Novel KNN Approach for Session-Based Recommendation 391

Table 5. The performance on all datasets.

Datasets Algorithms HR@20 MRR@20 Coverage@20

RSC IKNN 0.5129 0.2051 0.6267

CKNN-cosine-Original 0.6411 0.2504 0.3976

CKNN-HC-Original 0.6422 0.2513 0.4263

CKNN-MD-Original 0.6301 0.2469 0.3999

CKNN-MDHC-Original 0.6393 0.2497 0.4229

CKNN-DSM(0.5, 0.5)-Original 0.6444 0.2515 0.4099

CKNN-cosine-EPCSR 0.6854 0.2815 0.4563

CKNN-DSM(0.5, 0.5)-EPCSR 0.6888 0.2834 0.4678

RSCW IKNN 0.4736 0.1975 0.7590

CKNN-cosine-Original 0.6234 0.2679 0.5810

CKNN-HC-Original 0.6289 0.2674 0.6151

CKNN-MD-Original 0.6238 0.2645 0.5884

CKNN-MDHC-Original 0.6296 0.2665 0.6077

CKNN-DSM(0.5, 0.5)-Original 0.6329 0.2688 0.5939

CKNN-cosine-EPCSR 0.6641 0.2900 0.6089

CKNN-DSM(0.5, 0.5)-EPCSR 0.6678 0.2915 0.6131

Atom IKNN 0.0260 0.0066 0.6065

CKNN-cosine-Original 0.0568 0.0068 0.1509

CKNN-HC-Original 0.0520 0.0065 0.2357

CKNN-MD-Original 0.0546 0.0069 0.1767

CKNN-MDHC-Original 0.0534 0.0067 0.2319

CKNN-DSM(0.5, 0.5)-Original 0.0620 0.0070 0.2006

CKNN-cosine-EPCSR 0.0572 0.0070 0.1546

CKNN-DSM(0.5, 0.5)-EPCSR 0.0628 0.0072 0.2061

other metrics are poor. Therefore, we set β = 0.5 and λ = 0.5 in the following
experiments to obtain both high accuracy and good diversity.

3.4 Overall Performance

According to the results of different approaches on the three datasets in Table 5,
the following conclusions are observed:

– Due to ignoring the contextual information, IKNN achieves the worse per-
formance in terms of HR@20 and MRR@20 on three datasets. Because the
limited accuracy of IKNN, the best result in terms of Coverage@20 does
not matter to the recommendation task.

392 H. Guo et al.

– Compared with the CKNN algorithms equipped with other similarity metrics
and Original candidate selection method, CKNN-DSM-Original achieves
better accuracy (i.e., HR@20 and MRR@20) when we set λ = 0.5 and β =
0.5. It is because DSM(0.5, 0.5) incorporates reasonable graph information
when calculating the session similarities.

– Compared with Original strategy, the proposed EPCSR improves the per-
formance on all three metrics. Specifically, CKNN-DSM(0.5, 0.5)-EPCSR out-
performs CKNN-cosine-Original (which is the state-of-the-art KNN app-
roach [6]) by 7.4%, 7.1% and 10.6% in terms of HR@20 (13.2%, 8.8% and
5.9% in terms of MRR@20, 17.7%, 5.5% and 36.6% in terms of Coverage@20)
on RSC, RSCW and Atom datasets.

4 Conclusions

In this paper, we introduced a new contextual KNN approach for session-
based recommendation, which incorporates the power of diffusion-based simi-
larity method DSM and candidate selection method EPCSR. It gains perfor-
mance improvement from these advantages: (1) By adopting DSM, the session-
item graph structure is utilized in the procedure of similarity calculation. (2)
Through guaranteeing the ratio of different clicks’ recent relevant sessions in the
recent session set of current session, EPCSR is able to capture the items that
co-occurred with different historical clicked items in the same session efficiently.
We conducted extensive experiments on three benchmark datasets to compare
the effectiveness of our approach and the state-of-the-art KNN approaches for
session-based recommendation. Our experimental results demonstrate that our
approach obtains better performance.

Acknowledgement. This research was supported in part by NSFC under Grant
No. U1836107, and National Key R&D Program of China under Grant No.
2018YFB0504905.

References

1. Bonnin, G., Jannach, D.: Automated generation of music playlists: survey and
experiments. ACM Comput. Surv. 47(2), 26:1–26:35 (2014)

2. Covington, P., Jay, A., Sargin, E.: Deep neural networks for Youtube recommen-
dations. In: ACM RecSys, pp. 191–198 (2016)

3. Guo, H., Tang, R., Ye, Y., Li, Z., He, X.: DeepFM: a factorization-machine based
neural network for CTR prediction. In: IJCAI, pp. 1725–1731 (2017)

4. Guo, H., Tang, R., Ye, Y., Li, Z., He, X.: A graph-based push service platform. In:
Candan, S., Chen, L., Pedersen, T.B., Chang, L., Hua, W. (eds.) DASFAA 2017.
LNCS, vol. 10178, pp. 636–648. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-55699-4 40

5. Hidasi, B., Karatzoglou, A., Baltrunas, L., Tikk, D.: Session-based recommenda-
tions with recurrent neural networks. CoRR abs/1511.06939 (2015)

https://doi.org/10.1007/978-3-319-55699-4_40
https://doi.org/10.1007/978-3-319-55699-4_40

A Novel KNN Approach for Session-Based Recommendation 393

6. Jannach, D., Ludewig, M.: When recurrent neural networks meet the neighborhood
for session-based recommendation. In: ACM RecSys, pp. 306–310 (2017)

7. Kabbur, S., Ning, X., Karypis, G.: FISM: factored item similarity models for top-n
recommender systems. In: SIGKDD, pp. 659–667 (2013)

8. Koren, Y., Bell, R.M., Volinsky, C.: Matrix factorization techniques for recom-
mender systems. IEEE Comput. J. 42(8), 30–37 (2009)

9. Ludewig, M., Jannach, D.: Evaluation of session-based recommendation algorithms.
User Model. User-Adapt. Interact. 28(4–5), 331–390 (2018)

10. Rendle, S., Freudenthaler, C., Schmidt-Thieme, L.: Factorizing personalized
Markov chains for next-basket recommendation. In: WWW, pp. 811–820 (2010)

11. Yap, G., Li, X., Yu, P.S.: Effective next-items recommendation via personalized
sequential pattern mining. In: DASFAA, pp. 48–64 (2012)

12. Zhou, T., Ren, J., Medo, M., Zhang, Y.: Bipartite network projection and personal
recommendation. Phys. Rev. E 76(2), 046115 (2007)

A Contextual Bandit Approach
to Personalized Online Recommendation

via Sparse Interactions

Chenyu Zhang1, Hao Wang2(B), Shangdong Yang1, and Yang Gao1

1 State Key Laboratory for Novel Software Technology, Nanjing University,
Nanjing 210023, China

zhangcy@smail.nju.edu.cn, shangdong007@gmail.com, gaoy@nju.edu.cn
2 Inception Institute of Artificial Intelligence, Abu Dhabi, UAE

hao.wang@inceptioniai.org

Abstract. Online recommendation is an important feature in many
applications. In practice, the interaction between the users and the rec-
ommender system might be sparse, i.e., the users are not always inter-
acting with the recommender system. For example, some users prefer
to sweep around the recommendation instead of clicking into the details.
Therefore, a response of 0 may not necessarily be a negative response, but
a non-response. It comes worse to distinguish these two situations when
only one item is recommended to the user each time and few further infor-
mation is reachable. Most existing recommendation strategies ignore the
difference between non-responses and negative responses. In this paper,
we propose a novel approach, named SAOR, to make online recommenda-
tions via sparse interactions. SAOR uses positive and negative responses
to build the user preference model, ignoring all non-responses. Regret
analysis of SAOR is provided, experiments on both real and synthetic
datasets also show that SAOR outperforms competing methods.

Keywords: Online recommendation · Sparse interaction ·
Contextual bandit

1 Introduction

Recently, online recommendation has become a key feature in many practical
applications such as e-commerce services, news services, and streaming ser-
vices, etc. [16]. When using such applications, users are essentially, and probably
unknowingly, interacting with recommender systems. Online recommendation
problems have some unique characteristics.

1. Continual interaction. The user continually interacts with the recommender
system, generating an endless stream of interaction data.

H. Wang—This work was done when this author was an assistant professor at Nanjing
University.

c© Springer Nature Switzerland AG 2019
Q. Yang et al. (Eds.): PAKDD 2019, LNAI 11440, pp. 394–406, 2019.
https://doi.org/10.1007/978-3-030-16145-3_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16145-3_31&domain=pdf
https://doi.org/10.1007/978-3-030-16145-3_31

SAOR 395

2. Implicit interaction. The user does not directly indicate how much s/he likes
or dislikes a recommended item.

3. Sparse interaction. It is impractical to assume that the user is always interact-
ing with the recommender system. That means, to the recommender system,
a non-response does not necessarily mean a negative response. We argue that
such discrimination is crucial in computing recommendations.

In particular, a non-response is used to update the recommender system as if
it is a negative response, since the recommended item is believed to be unattractive
to the target user. However, as explained earlier, sparse interaction is overlooked
in the field of recommender systems. Some users used to ignore the recommender
system very often, even if the recommended items are in fact of much interest.
In this case, it is unfair to blame the recommender system for making a bad rec-
ommendation. Any update (penalty) introduced into the learning process could
potentially be misleading. In addition, computational resources (time, memory,
etc.) used to implement the update are probably wasted.

In this paper, we propose a novel approach, SAOR (sparsity-aware online
recommender), taking consideration of continual, implicit and sparse interac-
tions. SAOR makes probabilistic estimations on whether the user is interacting
or not, by reasonably assuming that similar items are similarly attractive. Based
on such estimations, SAOR uses positive and negative responses to build the
user preference model, ignoring all non-responses.

The main contributions made in this work include:

– We propose SAOR, a novel online recommendation algorithm, as a solution to
the problem. SAOR is able to distinguish between non-responses and negative
responses. By ignoring non-responses, SAOR realizes a more accurate and
efficient learning.

– The regret analysis of SAOR is provided. Besides, experiments on both real
and synthetic datasets show that SAOR outperforms competing methods.

The rest of this paper is organized as follows. Section 2 gives the problem
formulation. Section 3 describes our approach in detail. Then, a regret analy-
sis is presented in Sect. 4. Extensive experimental results are shown in Sect. 5.
Section 6 reviews the related work, and finally Sect. 7 concludes the paper.

2 Problem Formulation and Methodology

The entire recommender service consists of two independent modules, a content
provider and a recommender system. The content provider refreshes the pool
of candidate items at a certain frequency. At time t, for an active user u, the
recommender system presents to her one item xt out of the pool of K items,
Ct = {x1,t, x2,t, · · · , xK,t}, in the hope that s/he might be interested in that
recommended item. The recommender system then observes the user’s response
towards the recommended item xt. The user’s response yt is either click the item
(yt = 1) or not (yt = 0). This 0/1 response may be used by the recommender

396 C. Zhang et al.

system to update its internal models. This process then continues for time t+1.
The goal of the recommender system is to make a good sequential decision
〈x1, x2, · · · , xt, · · · 〉. If x∗

t is an optimal choice at time t, then the recommender
system aims at minimizing the regret up to time T ,

RT = E

[
T∑

t=1

yt(x∗
t)

]
− E

[
T∑

t=1

yt(xt)

]
.

To establish a computational model, we consider the content of an item xj,t

as an n-dimensional feature vector xj,t ∈ [0, 1]n. A user u is considered as a
pair u = (π,θ). The preference θ ∈ [0, 1]n is an n-dimensional weighting vector.
The attention π is an arbitrary mapping from T , the time domain, to {0, 1}.
πt = π(t) indicates whether the user is interacting with the recommender system
at time t, which may not necessarily depend on the preference θ or any item
content x. When being recommended an item x, the user u is assumed to click
x with probability π · x�θ. That is, when the user is inattentive (i.e., π = 0),
s/he will simply ignore x; otherwise (i.e., π = 1), the probability of clicking is
linearly determined by the item content x and the user preference θ.

Methodology. The key to a good sequential decision 〈x1,x2, · · · ,xt, · · · 〉 is
clearly a good user model û = (π̂, θ̂) for choosing item xt from the candidate
set Ct. Given an oracle attention model π̂ (i.e., suppose that the recommender
system knows when the user is interacting and when is not), one may ignore
all non-responses and θ̂ can be effectively learned from positive and negative
responses using existing techniques (e.g., [3,12]). To obtain a good attention
model π̂, the key insight of our approach is two-fold:

1. If a recommended item xt is sufficiently attractive but not positively
responded, then it is likely that the user is inattentive; and

2. If a recommended item xt is similar to some item a that has recently been
positively responded, then it is likely that xt is sufficiently attractive.1

In this way, we may estimate a good π̂ by estimating the probability of π = 0
conditioned on the item contents and the user’s recent history. This can then
help to distinguish true negative responses from non-responses. After filtering
out non-responses, rest of the data can be used to learn a more accurate user
preference model θ̂.

3 Our Approach

As explained earlier in Sect. 2, for a user u with attention π and preference θ,
the key in our methodology is to obtain a good estimation π̂ of π and θ̂ of θ.
1 The reason why we consider a recent, instead of the entire, history is that a user’s

interests may change with time in general but remain focused in a short period [10].
This assumption is in fact a basis of many item-based recommendation algorithms
(see, for example, [17]).

SAOR 397

In the following, Sects. 3.1 and 3.2 present the technical details of estimating
π̂ and learning θ̂, respectively. Finally, Sect. 3.3 presents SAOR, our proposed
algorithm.

3.1 Estimating the User Attention

For a user u, we consider the temporal list of items that s/he has ever clicked,
i.e., his/her click history H = 〈x1,x2, · · · ,xt〉, assuming that there are t such
items in total. For each xj in the list H, we compute the minimum Euclidean
distance between xj and the m items directly prior to xj , i.e., we compute

dj = min
i=1,2,··· ,m

‖xj − xj−i‖2 , (j > m) (1)

where m is the recency parameter. Although the actual π of a user u may be
complicated, it can be estimated as Pr {d ≥ dt+1 |d ∼ Dt,m }, where Dt,m is the
distribution of all small values in the time series St,m = 〈dm+1, dm+2, · · · , dt〉.

Since interest drifts are unforeseeable in nature, they should be considered as
outliers and excluded from the distribution model Dt,m. To that end, we use the
standard technique of Fourier transform.2 Noise reduction can be implemented
by ignoring component waves of high frequencies.

After noise reduction, the multiset St,m contains only those distance values
that are “small” enough and should observe a unimodal distribution over the
range [0, 1].3 We thus fit the data into a beta distribution, which has a probability
density function of the form f(x|α, β) = 1

B(α,β)x
α−1(1−x)β−1, where B(α, β) =∫ 1

0
vα−1(1 − v)β−1dv. If μ̂ and σ̂ are the sample mean and sample standard

deviation of St,m, respectively, then the beta distribution is determined by{
α̂ = −μ̂(σ̂2 + μ2 − μ)/σ̂2,

β̂ = (μ̂ − 1)(σ̂2 + μ̂2 − μ̂)/σ̂2.
(2)

Using the estimated beta distribution, we calculate

Pr {d ≥ dt+1 |d ∼ Dt,m } =

∫ 1

dt+1
vα−1(1 − v)β−1dv∫ 1

0
vα−1(1 − v)β−1dv

. (3)

Algorithm 1 summarizes the discussion of this section. Lines 1–3 are the pro-
cess of Fourier fitlering. We use standard fast Fourier transform (FFT) and
inverse fast Fourier transform (IFFT) for time-efficiency considerations [7]. Lines
4–5 are to compute Pr {πt+1 = 0 |dt+1 }.

2 See, for example, https://en.wikipedia.org/wiki/Fourier transform.
3 Here and hereafter, we may assume that the maximum possible distance dmax = 1,

without loss of generality. This is because, when dmax > 1, a simple rescaling can
transform all the data into [0, 1].

https://en.wikipedia.org/wiki/Fourier_transform

398 C. Zhang et al.

Algorithm 1. EstimateAttention(S, d)
Input: Distance time series S; distance d
Output: π̂

1 Do fast Fourier transform F ← FFT(S)
2 F ← F with high frequencies filtered
3 Do inverse fast Fourier transform S ← IFFT(F)
4 Estimate beta distribution D from S using Eq. 2
5 Compute p ← Pr {z ≥ d |z ∼ D} using Eq. 3
6 return 0 w.p. p or 1 w.p. 1 − p

3.2 Learning the User Preference

Now during the entire history 〈(x1, y1), (x2, y2), · · · , (xt, yt)〉, suppose without
loss of generality that we have π̂j = 1, j = 1, 2, · · · , t. Recall that, in this case, the
user’s decision on whether clicking an item x is determined by x�θ (see Sect. 2).
At time t, it suffices to solve the equation X�

t θ̂t = yt for an estimated preference
θ̂t, where Xt = (x1,x2, · · · ,xt) is an n × t matrix and yt = (y1, y2, · · · , yt)

�.
Ridge regression can be applied as

θ̂t = A−1
t Xtyt, (4)

where At
def= XtX

�
t + In and In is the n-dimensional identity matrix.

Lemma 1 (Lemma 1 of [5]). For a total number of T time steps, for any xt+1

of the K candidate items, the inequality∣∣∣x�
t+1θ̂t − E [yt+1(xt+1)]

∣∣∣ ≤ (1 + α)
√

x�
t+1A

−1
t xt+1 (5)

holds w.p. at least 1 − δ
T , where α =

√
1
2 ln 2TK

δ . �

Lemma 1 means that, with a sufficiently large t (i.e., with sufficient training
data), θ̂t can be a good model for generating recommendations.

Online Update. If a new offer-response record (xt+1, yt+1) is to be included
to compute an updated preference model θ̂t+1, the following online update rule
can be used: ⎧⎨

⎩
At+1 ← At + xt+1x

�
t+1,

bt+1 ← bt + yt+1 · xt+1,

θ̂t+1 ← A−1
t+1bt+1,

(6)

where bt
def= Xtyt.

SAOR 399

3.3 Putting Everything Together

There is a so-called exploration-exploitation tradeoff when choosing xt+1. Let
xmax ∈ Ct+1 be the item that maximizes x�θ̂t. The upper confidence bound
(UCB) is a way to implement the exploration-exploitation tradeoff [4]. Specifi-
cally, the UCB strategy predicts the user’s response to item xj,t+1 by

ŷj,t+1 = x�
j,t+1θ̂t + α

√
x�

j,t+1A
−1
t xj,t+1. (7)

Then the item that maximizes ŷj,t+1 is recommended.
Putting all the above discussions together, Algorithm 2 gives an overview of

our approach. Lines 1–3 initialize the algorithm. A small warm-start parameter
k is used to guarantee that any statistical tool is applied with sufficient data.
In practice, the recommender system may simply recommend random or most
popular items until there are k clicks. The endless loop of Lines 5–19 is the
online process. Lines 6–9 generates a recommendation using the UCB strategy.
Lines 10–19 update the current model(s). In particular, a response of 0 is simply
ignored if EstimateAttention (Algorithm 1) believes that the user is likely
noninteractive.

Algorithm 2. SAOR
Input: exploration factor α; recency parameter m; warm-start parameter k

1 Set t ← k
2 Ht ← the temporal list of clicked items up to time t
3 St,m ← the time series from Ht using recency m
4 Construct At and bt, and compute θt using Eq. 4
5 while true do
6 Observe candidates x1,t+1, x2,t+1, · · · , xK,t+1

7 for each xj,t+1 do
8 Calculate ŷj,t+1 using Eq. 7 with α

9 Recommend xt+1 that has the maximum ŷj,t+1

10 Compute dt+1 using Eq. 1 with xt+1 and St,m

11 Observe the user’s response yt+1

12 if yt+1 = 0 then
13 π̂ ← EstimateAttention(St,m, dt+1)
14 if π̂ = 0 then continue

15 else
16 Ht+1 ← Append xt+1 to Ht

17 St+1,m ← Append dt+1 to St,m

18 Compute At+1, bt+1, and θ̂t+1 using Eq. 6
19 t ← t + 1

400 C. Zhang et al.

4 Regret Analysis

This section analyzes the regret bound of SAOR. We can see clearly from Algo-
rithm2, that regrets may due to either a suboptimal recommendation xt+1 (Line
9) or a mistakenly estimated π̂ when yt+1 = 0 (Line 13). Specifically, we distin-
guish the following two types of regrets.

1. The Type-I regret is the regret from the time steps t when yt = 1, or π̂t = πt

when yt = 0;4 and
2. The Type-II regret is the regret from the time steps t when yt = 0 and π̂t
= πt.

We shall first bound the two types of regret in each time step, respectively,
and then prove an overall regret bound by combining the results.

Theorem 1 (Bound of single-step type-I regret). Let t be a time step on
which yt = 1 or π̂t = πt. Assume that there are in total T time steps and at
each time step there are K candidate items, then the type-I regret at time t is
bounded by

RI
t ≤ (1 + α)

√
x�

t A−1
t xt,

w.p. at least 1 − δ
T , where α =

√
1
2 ln 2TK

δ .

Proof. When yt = 1 or π̂t = πt, the module EstimateAttention (Algorithm 1)
correctly recognizes positive and negative responses, and ignores non-responses
also. This reduces to the case where every record (xt, yt) is either positive or
negative, which has already been studied by, for example, SupLinUCB [5]. Let θ∗

t

be the true preference at time t. Then, RI
t =

∣∣∣x�
t θ̂t − x�

t θ∗
∣∣∣. Directly applying

Lemma 1 completes this proof. �
To obtain a bound for single-step type-II regret, we need the following lemma.

Lemma 2 (Lemma 12 of [1]). Let A, B and C be positive semi-definite matri-
ces such that A = B + C. Then,

sup
x�=0

x�Ax

x�Bx
≤ det(A)

det(B)
.

Now we give the bound of type-II regret.

Theorem 2 (Bound of single-step type-II regret). Let t be a time step on
which yt = 0 and π̂t
= πt. Assume that there are in total T time steps and at
each time step there are K candidate items, then the type-II regret at time t is
bounded by

RII
t ≤ 2(1 + α)

√
x�

t A−1
t xt,

w.p. at least 1 − δ
T , where α =

√
1
2 ln 2TK

δ .

4 We do not consider the case where the user mistakenly clicks some item.

SAOR 401

Proof. When yt = 0 and π̂t
= πt, there are two cases: (1) SAOR mistakenly
ignores (xt, yt) while it is in fact a negative response, and (2) SAOR mistakenly
updates using (xt, yt) while it is in fact a non-response. In this proof we only
consider the first case, since the other case can be similarly analyzed.

Consider the matrix At, and let Aτ (τ < t) be the latest version of the
matrix before time t. As the effect of one single feature vector to At is limited,
there exists a 0 < γ < 1 such that det(At) ≤ (1 + γ) det(Aτ).

Then,

RII
t =

∣∣x�
t θτ − x�

t θ∗∣∣ ≤ (1 + α)
√

x�
t A−1

τ xt < 2(1 + α)
√

x�
t A−1

t xt.

�

Next, we use Theorems 1 and 2 to derive the overall regret bound of SAOR.
We shall use the following technical lemma.

Lemma 3 (Lemma 3 of [5]). Let st,xt

def=
√

x�
t A−1

T xt. Assume that all the
records in a total number of T time steps, {(x1, y1), (x2, y2), · · · , (xT , yT), }, can
be divided into ln T sets of independent samples, Ψ1, Ψ2, · · · , ΨlnT , where each Ψj

contains at least 2 records. Then, for any Ψj we have

∑
t∈Ψj

st,xt
≤

√
n · |Ψj | · ln |Ψj |,

where n is dimensionality of item feature vectors. �

The following theorem gives the overall regret bound of SAOR.

Theorem 3 (Regret bound of SAOR). For any small constant δ > 0, the
regret of SAOR up to time T is bounded by

RT = O

(√
nT ln3 KT lnT

δ

)

with probability at least 1 − δ
T .

Proof. As the regret of single-step type-I (Theorem 1) and single-step type-II
(Theorem 2) are of the same asymptotic order, the total regret of SAOR can be
calculated as

RT ≤
∑

Rt
I +

∑
RII

t ≤
T∑

t=1

2(1 + α)st,xt
=

lnT∑
j=1

∑
t∈Ψj

2(1 + α)st,xt
.

Applying Lemma 3 with α =
√

1
2 ln 2TK

δ , we get an overall regret bound of

O

(√
nT ln3 KT lnT

δ

)
. �

402 C. Zhang et al.

5 Experiments

In this section, the proposed SAOR algorithm is evaluated in several ways. First,
our algorithm is compared with some other typical contextual bandit algorithms
in effectiveness. Then, the algorithm’s sensitivity of parameters is also studied.

Dataset and Evaluation Method. To verify the performance of our algorithm
in real applications, we use the real data set Yahoo! R6A5. The data set is filtered
to get 420,0230 records from 200 users. An unbiased offline evaluation method
[13] is used to compare bandit algorithms in a reliable way, that is, if an algorithm
chooses item xi,t and the randomly chosen item in the data set is xt, the RoC
of each algorithm in T rounds can be evaluated as

RoC(T) =
∑T

i=0 1(xi,t = xt and rt,xt
= 1)∑T

i=0 1(xi,t = xt)
.

Also, we use synthetic data to further verify the performance of our algorithm.
In synthetic data, the preference θu is constructed for each user, so that we can
know the optimal item x∗

t at round t. Then if an algorithm chooses item xi,t at
round t, the accuracy of each algorithm in T rounds can be evaluated as

Accuracy(T) =
∑T

i=0 1(xi,t = x∗
t)

T
.

(a) (b)

Fig. 1. (a) Cumulative rewards along with the number of rounds; (b) RoC along with
parameter m.

Competing Algorithms. We are aware of several recent studies on online CF.
However, instead of regret minimization, the term online there is about system-
level supports for real-time responses. Their problem settings and focuses are
clearly different from ours, thus the results are not directly comparable. Our
work follows the line of contextual bandit research; hence we compare our method
with the state-of-the-art bandit solutions. The following algorithms are compared
with our algorithm:

– LinUCB [12]: The original LinUCB is applied as a baseline in the experi-
ment, every record is used to update the model at each round.

5 https://webscope.sandbox.yahoo.com/.

https://webscope.sandbox.yahoo.com/

SAOR 403

(a) (b) (c) (d)

Fig. 2. (a) Accuracy along with the recommending times (α = 1.7); (b) Accuracy along
with the percentage of “good users” (α = 1.3); (c) Analysis of the effect of parameter
α (T = 200); (d) Analysis of the effect of parameter α (Percentage = 50%).

– LinRel [3]: LinRel is similar to LinUCBin problem setting but different in
the form of regularization.

– OFUL and its variant [1]: The OFUL algorithm maintains a confidence set
for θ. A rarely switching OFUL algorithm was also proposed to update peri-
odically for saving computation.

– TS [2]: Thompson Sampling for contextual bandits uses Thompson Sampling
to sample θ from Gaussian distribution.

Experiment Analysis. Each algorithm compared in this paper, including our
SAOR, requires parameters. To compare all algorithms fairly, we choose the opti-
mal parameter for each algorithm. The growth of cumulative rewards along with
the number of rounds is plotted in Fig. 1. It’s obvious that SAOR outperforms
all the other compared algorithms. It should be noted that we cannot really
expect RoCs to be high in a practical online recommender system. Low RoCs
are normal, and they create regrets. That’s why the lines in Fig. 1 all look more
linear than logarithmic. Nonetheless, comparisons between different methods are
fair, and the results show the usefulness of our method.

The recency parameter m in the variable Hm is unique in SAOR, i.e, the
size of the latest clicked item set. The general RoC along with m is displayed in
Fig. 1(b). If the size is too small, the performance is not so good as just using one
or two latest items cannot cover user’s whole preferences. If the size becomes too
large, it will also affect the performance as it will include old records in the set
and users interests may drift over time. In addition, if the size is too large, it will
put much pressure on the calculation as the current item should be compared
with each item in the set Hm.

We also do experiments to verify our model on user attention. Here, we choose
LinUCB for comparing as it’s the baseline and it’s fair to verify the assumption.
First, the learning speed is analyzed and the recommending accuracy along with
recommending times is shown in Fig. 2(a). Though the accuracies of these two
algorithms get closer when recommending times get larger, SAOR outperforms
LinUCB clearly in the early period. The reason is that SAOR takes record
validity into consideration and reduce the bad effect of noisy records. Second, as
we make the assumption on the relation between the probability that an item
is attractive and its distance with the user’s recent clicked items, the effect of

404 C. Zhang et al.

the percentage of users that obey our assumption on the algorithm is analyzed.
The results are shown in Fig. 2(b). We define the kind of users that obey the
assumption as “good users”. Both of the two algorithms are fluctuation trends,
but the general trends are still straight increased. In general, the more percentage
of users obey the assumption, the recommending accuracy is higher and our
algorithm performs better throughout.

In perspective of parameter sensitivity, we also analyze the influence of explo-
ration factor α on performance, the results are shown in Fig. 2(c) and (d).
The length of recommendation sequences and percentage of users obeying the
assumption are fixed respectively and we plot the accuracy along with the value
of α. The performance of SAOR is stabler than LinUCB, and the value of α
has an obvious effect on LinUCB. It can be inferred that our algorithm is more
robust.

6 Related Work

In this section, the developing process of contextual bandit algorithms and their
shortcomings will be given. In addition, some existing click models and ways
to pick negative samples from unlabeled ones are given, the reasons why they
cannot be used to solve the problem in our setting are also listed.

Auer first proposed two contextual bandit algorithms, LinRel and SupLin-
Rel, which assume that users’ decisions depend linearly on item feature vec-
tors [3]. Both algorithms use upper confidence bound (UCB) to implement
exploration-exploitation tradeoffs [4] and solve linear equations by singular value
decomposition. However, both of them require solving SVD of a symmetric
matrix during modeling at each round. Then, Li et al. proposed LinUCB for
news article recommendation [12], employing ridge regression for solving linear
equations to reduce computational cost. Abbasi-Yadkori et al. proposed OFUL
[1], which maintains a confidence set to implement exploration-exploitation
tradeoffs. Thompson sampling based contextual bandit [2] was proposed, sam-
pling the linear model from Gaussian distribution. All the four algorithms men-
tioned try to solve the problem of uncertainty and use different solutions respec-
tively. More recently, beyond linear decision models, Li et al. studied generalized
linear models, which is a general framework covering linear models, logistical
models, etc. [14]. Two algorithms, UCB-GLM and SupCB-GLM, are proposed.
Clustering bandits [9,15] are proposed recently which combines clustering tech-
nique and exploration-exploitation strategies to solve cold start and dynamic
recommendation. All the algorithms above never took the quality of data records
and user interaction into consideration.

Click models [6] are commonly used to model user behavior in web-searching
scenarios where a search engine displays a list of items in response to a user
query. The cascade model is one of the popular click models [8,11]. In this
setting, several items are recommended to the user and the user may click one or
none of the items, so it’s necessary for the system to recognize between negative
feedback and no feedback. In the cascade model, the items displayed before the

SAOR 405

clicked one are treated as negative feedbacks because the user examines them
but do not click, the items displayed after the clicked one are considered as no
feedbacks as they are unobserved. Those models rely on the relative positioning
of items within the list to describe users’ behaviors. It’s comparatively simple
to distinguish negative feedback due to the front and back information of the
sequence. However, each time only one item, instead of a list of items, is presented
to the user, thus those web-searching click models are not applicable.

7 Conclusions

This paper proposes a novel contextual bandit algorithm SAOR for online rec-
ommendation, considering the sparsity of interactions between the users and
the recommender system. We have developed techniques to distinguish non-
responses and true negative responses, of which are handled differently in our
algorithm SAOR. We have provided the regret analysis of our algorithm. Experi-
mental results on both real and synthetic datasets show that SAOR outperforms
the existing methods on both effectiveness and efficiency.

Acknowledgments. This work was supported by the National Key R&D Program of
China (2017YFB0702600, 2017YFB0702601) and the National Natural Science Foun-
dation of China (61432008, U1435214, 61503178).

References

1. Abbasi-Yadkori, Y., Pál, D., Szepesvári, C.: Improved algorithms for linear stochas-
tic bandits. In: Advances in Neural Information Processing Systems, pp. 2312–2320
(2011)

2. Agrawal, S., Goyal, N.: Thompson sampling for contextual bandits with linear
payoffs. In: Proceedings 30th International Conference on Machine Learning (ICML
2013), pp. 127–135 (2013)

3. Auer, P.: Using confidence bounds for exploitation-exploration trade-offs. J. Mach.
Learn. Res. 3(Nov), 397–422 (2002)

4. Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the multiarmed
bandit problem. Mach. Learn. 47(2–3), 235–256 (2002)

5. Chu, W., Li, L., Reyzin, L., Schapire, R.E.: Contextual bandits with linear payoff
functions. In: Proceedings 14th International Conference on Artificial Intelligence
and Statistics (AISTTS 2011), pp. 208–214 (2011)

6. Chuklin, A., Markov, I., Rijke, M.d.: Click models for web search. In: Synthesis
Lectures on Information Concepts, Retrieval, and Services, vol. 7, no. 3, pp. 1–115
(2015)

7. Cooley, J.W., Tukey, J.W.: An algorithm for the machine calculation of complex
Fourier series. Math. Comput. 19(90), 297–301 (1965)

8. Craswell, N., Zoeter, O., Taylor, M.J., Ramsey, B.: An experimental comparison
of click position-bias models. In: Proceedings of International Conference on Web
Search Data Min (WSDM 2008), pp. 87–94 (2008)

9. Gentile, C., Li, S., Kar, P., Karatzoglou, A., Zappella, G., Etrue, E.: On context-
dependent clustering of bandits. In: Proceedings of 34th International Conference
on Machine Learning (ICML 2013), pp. 1253–1262 (2017)

406 C. Zhang et al.

10. Koren, Y.: Collaborative filtering with temporal dynamics. ACM Commun. 53(4),
89–97 (2010)

11. Kveton, B., Szepesvari, C., Wen, Z., Ashkan, A.: Cascading bandits: learning to
rank in the cascade model. In: Proceedings of 32nd International Conference on
Machine Learning (ICML 2015), pp. 767–776 (2015)

12. Li, L., Chu, W., Langford, J., Schapire, R.E.: A contextual-bandit approach to
personalized news article recommendation. In: Proceedings of 19th International
Conference on World Wide Web (WWW 2010), pp. 661–670 (2010)

13. Li, L., Chu, W., Langford, J., Wang, X.: Unbiased offline evaluation of contextual-
bandit-based news article recommendation algorithms. In: Proceedings of 4th ACM
International Conference on Web Search Data Mining (WSDM 2011), pp. 297–306.
ACM (2011)

14. Li, L., Lu, Y., Zhou, D.: Provable optimal algorithms for generalized linear con-
textual bandits. arXiv preprint arXiv:1703.00048 (2017)

15. Li, S., Karatzoglou, A., Gentile, C.: Collaborative filtering bandits. In: Proceedings
of 39th International ACM SIGIR Conference on Research and Development in
Information Retrieval, pp. 539–548. ACM (2016)

16. Liu, J., Dolan, P., Pedersen, E.R.: Personalized news recommendation based on
click behavior. In: Proceedings of 15th International Conference on Intelligent User
Interfaces (IUI 2010), pp. 31–40 (2010)

17. Ren, L., Gu, J., Xia, W.: A temporal item-based collaborative filtering approach.
In: Signal Processing, Image Processing and Pattern Recognition (SIP 2011), pp.
414–421 (2011)

http://arxiv.org/abs/1703.00048

Heterogeneous Item Recommendation
for the Air Travel Industry

Zhicheng He1, Jie Liu2(B), Guanghui Xu1, and Yalou Huang3

1 College of Computer Science, Nankai University, Tianjin, China
{hezhicheng,xugh}@mail.nankai.edu.cn

2 College of Artificial Intelligence, Nankai University, Tianjin, China
jliu@nankai.edu.cn

3 College of Software, Nankai University, Tianjin, China
ylhuang@nankai.edu.cn

Abstract. Analyzing the travel behaviors and patterns of air passengers
have always been of great significance to the air travel industry. Under-
standing the demands and interests of passengers behind their behaviors
is a crucial and fundamental task for many applications. However, this
task is challenging due to the lack of customer information, data sparsity,
and the long-tail distribution. In this paper, we investigate the problem of
heterogeneous item recommendation by learning representations of items
and passengers in a shared latent space. Specifically, we first establish
a heterogeneous information network (HIN) through statistical analysis,
where the edges represent the interactions between different nodes. Each
node also contains some auxiliary attribute information that describes
its travel behavior or that of its passenger groups. Then we devise a
joint matrix factorization model to learn node representations based on
the HIN, where both the heterogeneous edges and the node attributes
are incorporated into the learning process. Moreover, a weighting strat-
egy is further utilized to deal with the long-tail distribution of passen-
ger behaviors based on the implicit feedback information. Experimental
results conducted on a real-world passenger name record (PNR) dataset
demonstrate the effectiveness of the proposed method.

Keywords: Air travel data analysis · Matrix factorization ·
Air route recommendation · Airline recommendation

1 Introduction

In modern lives, air transportation has always been one of the most important
ways for long-distance travels. The huge travel demand promotes the growth
and prosperity of the civil aviation industry. According to a bulletin from the
Civil Aviation Administration of China (CAAC), the entire industry of China
completed a passenger transportation volume of 551.56 million in 2017 achieving
an annual growth rate of 13.0% [3]. Among the huge number of passengers,
quite a lot of them book tickets through online agents. Thus there is a need for
c© Springer Nature Switzerland AG 2019
Q. Yang et al. (Eds.): PAKDD 2019, LNAI 11440, pp. 407–419, 2019.
https://doi.org/10.1007/978-3-030-16145-3_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16145-3_32&domain=pdf
https://doi.org/10.1007/978-3-030-16145-3_32

408 Z. He et al.

recommendation services that can understand passengers’ travel demands and
give suggestions about flights and airline carriers accordingly.

Inspired by the ubiquitous applications of recommender systems in online
retail markets [15] and driven by the potential market and research value, com-
panies and researchers have been devoted to airline customer analysis and ser-
vice recommendation [2,4,5,14,17]. However, the personalized travel air route
and airline predictions still remain challenging. Reasons behind this are three-
fold. First, there lack enough profiling features that reflect passengers’ travel
demands or preferences. For security and privacy concerns, detailed customer
information like demographics, job titles, or social accounts are strictly confi-
dential to researchers, which creates obstacles for accurate passenger profiling.
Second, the passenger behavior data is usually sparse. Due to the high prices of
flight tickets, traveling by air is usually to fulfill some specific needs like busi-
ness or vacations rather than a daily way of traveling for most people. So it is
also difficult to fully understand passengers’ travel demands from their behavior
data. Finally, both the travel frequency and the demands on different routes
show a long-tail distribution with respect to the number of passengers, as illus-
trated in Fig. 1. Therefore, the behavior data of most passengers are submerged
by low-frequency travelers and cannot be well modeled.

(a) (b)

Fig. 1. Travel behavior analysis on a two-year PNR data. (a) The long-tail distribution
of travel frequencies; (b) The long-tail distribution of the demands on routes.

In this paper, to deal with the problems mentioned above, we propose a Joint
Weighted Non-negative Matrix Factorization (JWNMF) model to learn latent
representations of heterogeneous passengers, air routes and airlines in shared
semantic space. Specifically, we first establish a heterogeneous information net-
work (HIN) from the Passenger Name Record (PNR) data. Individual nodes
can be extracted through statistical analysis, where each of them represents an
instance of passengers, routes, or airlines. And the edges between different nodes
describe their interactions. For example, a passenger-route edge describes how
many times the passenger has taken flights on that route. In the meanwhile, we

Heterogeneous Item Recommendation for the Air Travel Industry 409

also extract some auxiliary attributes to depict nodes’ characteristics from the
perspective of travel behaviors. Attributes of a passenger reflect how he travels,
while attributes of a route or airline describe what kind of passenger groups
tend to take it. On the basis of the air travel HIN, we further devise a joint
matrix factorization framework to learn node representations by integrating the
heterogeneous interactions and node attributes, which alleviates the data spar-
sity problem. Finally, to deal with the long-tail distribution of data, we utilize
a weighting strategy based on the analysis of the implicit feedback contained
in passenger behavior data. The influence of imbalanced edge weights can be
solved, and the performances are improved. Heterogeneous recommendations
are conducted in the shared latent space.

To summarize, in this paper, we make the following contributions:

– We analyze the characteristics of PNR data and formulate the air route and
airline recommendation problem under a HIN analysis framework that inte-
grates both the interactions and the attributes of different nodes.

– For information integration purpose, a joint factorization model is proposed
to simultaneously learn the latent representations of passengers, routes, and
airlines based on the HIN.

– Based on the analysis of the implicit feedback information, a weighting strat-
egy is also devised to deal with the imbalanced edge weights caused by the
long-tail distribution.

– We conduct experiments to evaluate our proposed framework on the hetero-
geneous recommendation task with a real-world PNR dataset. Experimental
results demonstrate the superiority of our model.

The remainder of this paper is organized as follows. Section 2 highlights
related work. In Sect. 3, we formulate the problem and give the technical details
of the proposed model. We evaluate the proposed model and analyze the exper-
imental results in Sect. 4. Finally, we conclude our work in Sect. 5.

2 Related Work

With the development of the air travel industry, large quantities of complex
and rapidly changing data are being created every second. Air travel data min-
ing has attracted a lot of researchers’ attention [1,18], and research results have
been achieved on hot issues like security and safety [10,22], intelligent marketing
[7,18], customer choice modeling and relation management [16,17], and person-
alized recommendation [4,5,14], etc. In this paper, we focus on the personalized
recommendation problem.

Inspired by the success of recommender systems in online retailing and other
industries [2,15], recommendations of flights, air routes, airlines, and auxiliary
services are studied to improve the service quality and customer satisfaction.
Cao et al. proposed a personalized flight recommendation approach based on
the maximization of user’s choice utility over flight tickets through a paired-
choice analysis of historical orders [5]. To overcome the problem of insufficient

410 Z. He et al.

historical data, air route recommendation is modeled as a cross-domain recom-
mendation problem in which the cross-domain data is integrated [4]. The com-
binations of user choice models and recommender systems are also explored for
airline itinerary suggestion [17]. Other than flights, routes, or airlines, auxiliary
services like in-flight music can also be recommended to enhance user experiences
[13]. In this paper, we focus on the fundamental air route and airline company
recommendation task and propose a matrix factorization framework.

Matrix factorization models are popular in recommender systems [8,12,19,
20], especially the Non-negative Matrix Factorization (NMF) model [11]. Gu
et al. proposed a weighted NMF model to incorporate the attributes and rela-
tions of users and items into the factorization of user-item rating matrix [8].
Lian et al. incorporated the spatial clustering information of human mobility
behavior into the factorization process for POI recommendation [12]. A deep
matrix factorization model is also proposed to make use of both explicit rat-
ings and implicit feedback with the help of deep neural networks [20]. And the
joint matrix factorization models are popular as they help incorporate various
auxiliary information into the factorization process [19,21].

3 Approach

In this section, we first introduce how the air travel HIN is constructed from
PNR datasets, followed by the details of the proposed model. The joint factor-
ization model incorporates both the heterogeneous interactions and attribute
information to overcome data sparsity. And the weighting strategy further deals
with the imbalanced connection weights caused by the long-tail distribution.

3.1 The Air Travel HIN

The PNR datasets are made up of the flight records of passengers. Each entry
usually contains brief passenger information such as ID number, age, and gender,
and the flight-specific information such as the air route and the airline company.
We focus on learning representations from such PNR datasets. A HIN G = {V, E}
is first constructed based on the extracted entities and their relations. We focus
on the most important three kinds of entities, i.e., passengers, air routes, and
airline companies. Thus we have V = U ∪ R ∪ C, where U , R, and C denote the
set of passengers, routes, and airline companies respectively.

Usually, when a passenger needs to take a flight, he has a departure airport
and an arrival airport in mind and just needs to figure out which flight of which
airline suits him best. Based on this intuitive understanding, two kinds of rela-
tions are extracted, i.e., the passenger-route interaction Eur ∈ U × R and the
passenger-airline interaction Euc ∈ U × C, thus we have E = Eur ∪ Euc.

Apart from the relation information, there also exist some factors that influ-
ence passengers’ choices over routes and airlines such as passengers’ age, gender,
total travel mileage, and travel seasons. Therefore, we conduct statistical anal-
ysis on how these factors affect passengers’ travel behaviors by calculating the

Heterogeneous Item Recommendation for the Air Travel Industry 411

percentage of flight records generated by passengers with that attribute or in
that season. Results are shown in Fig. 2 where the age and mileage are seg-
mented into groups by maximizing the information gain [6], and the seasons
are separated according to the Chinese lunar calendar. It can be observed that
passengers have different travel frequency distributions over these factors, which
illustrates the necessity to take them into account when modeling passengers’
behaviors. Therefore, the passenger attribute matrix Au is built where each row
describes the corresponding passenger’s age group, gender, travel mileage, and
travel preference on different seasons. And the route attribute matrix Ar and
airline attribute matrix Ac are also built by calculating the average attribute
values of their passenger groups. In addition, customer loyalty and market share
are also considered.

(a) Age (b) Gender

(c) Mileage (d) Season

Fig. 2. Distribution of flight records on different factors. (a) Passengers’ age; (b) Pas-
sengers’ gender; (c) Total travel mileage of passengers; (d) Travel season.

3.2 The Joint Factorization Model

Through the above analysis, interactions between nodes and their attributes are
extracted. We use matrices to denote them, i.e., the passenger-route interaction
matrix Eur ∈ R

|U|×|R|
+ , the passenger-airline interaction matrix Euc ∈ R

|U|×|C|
+ ,

412 Z. He et al.

the passenger attribute matrix Au ∈ R
|U|×du

+ , the route attribute matrix Ar ∈
R

|R|×dr

+ , and the airline attribute matrix Ac ∈ R
|C|×dc

+ , where all theses matrices
are non-negative and du, dr, and dc are the dimensions of passenger attributes,
route attributes, and airline attributes respectively.

For information integration purpose, we devise a joint non-negative matrix
factorization model to learn node representations. Use U, R, C, Hu, Hr, and Hc

to denote the latent representation matrices of passengers, routes, airlines, and
their attributes respectively, the model learns them through the reconstruction
of the interaction and attribute matrices. Specifically, we aim to minimize the
reconstruction loss in Eq. (1), where the conventional squared Euclidean distance
[11] is used to measure the reconstruction loss. The non-negative λ1, λ2, λ3, and
λ4 tune the weights of different parts, and K, du, dr, and dc are the latent
dimensions. By minimizing the objective function, the interaction and attribute
information can be integrated and the latent representations of heterogeneous
nodes can be learned.

D(Eur,Euc,Au,Ar,Ac|U,R,C,Hu,Hr,Hc)

=
∑

eur
ij >0

(eurij − uir�
j)2 + λ1

∑

euc
ij >0

(eucij − uic�
j)2 + λ2

∑

i,j

(au
ij − uihu

j
�)2

+ λ3

∑

i,j

(ar
ij − rihr

j
�)2 + λ4

∑

i,j

(ac
ij − cihc

j
�)2,

s.t. U ∈ R
|U|×K
+ ,R ∈ R

|R|×K
+ ,C ∈ R

|C|×K
+ ,Hu ∈ R

K×du

+ ,Hr ∈ R
K×dr

+ ,

Hc ∈ R
K×dc

+ .

(1)

3.3 The Weighting Strategy

The joint factorization model in Eq. (1) focuses on the reconstruction loss of
positive edges and node attributes in the air travel HIN. However, there are only
positive examples in Eur and Euc that implicitly describe passengers’ demands
and preferences on the corresponding route and airlines without any negative
information about what routes or airlines the passengers do not need or dislike.
What is worse, due to the sparsity and long-tail distribution of travel behaviors,
there exists an imbalance problem in the edge weights. Although the integration
of attribute information can help to overcome this problem to some extent, it is
still difficult to fit the imbalanced edge weights. Therefore, we adopt a weighting
strategy that reduces the imbalance of edge weights by taking advantage of the
implicit feedback information [9].

First, passengers’ preferences on the routes and airlines are extracted from
Eur and Euc by binarizing the edge weights:

purij =
{

1 eurij > 0
0 eurij = 0 , pucij =

{
1 eucij > 0
0 eucij = 0 . (2)

In other words, if a passenger has taken flights on a route (eurij > 0) or from an
airline company (eucij > 0), it implicates his preferences on them. Otherwise, no

Heterogeneous Item Recommendation for the Air Travel Industry 413

preferences are assumed. The binary preference strategy effectively reduces the
gap between frequent and infrequent interactions and makes the fitting process
easier. However, it loses the indication about which routes or airlines attract
the passengers more. So a linear weighting strategy is utilized to assign different
confidence scores to the preferences according to the edge weights:

wur
ij = αeurij + 1, wuc

ij = αeucij + 1, (3)

where α is a non-negative hyperparameter that controls the increase rate of the
confidence scores. With such a weighting strategy, when there is no interaction
between passenger i and route j (eurij = 0), a minimum confidence score wur

ij = 1
is assigned, which means that it is uncertain whether the passenger has interest
in the route or not. However, with the growth of eurij , there is a larger confidence
that the route meets the passenger’s needs. And it is the same for passenger-
airline pairs.

Together, the binary preferences and the linear confidences solve the imbal-
ance problem caused by data sparsity and the long-tail distributions. So the
objective function can be updated as in Eq. (4), where both the observed and
unobserved passenger-route and passenger-airline interactions are fitted with dif-
ferent confidences. In this way, there exists no gap between the fitting targets of
frequent and infrequent passenger-route or passenger-airline interactions, which
makes the learning process easier. However, the valuable frequency information
is not abandoned but used to decide how much weight JWNMF should put on
each fitting target.

D(Eur,Euc,Au,Ar,Ac|U,R,C,Hu,Hr,Hc)

=
∑

i,j

wur
ij (purij − uir�

j)2 + λ1

∑

i,j

wuc
ij (pucij − uic�

j)2

+ λ2

∑

i,j

(au
ij − uihu

j
�)2 + λ3

∑

i,j

(ar
ij − rihr

j
�)2

+ λ4

∑

i,j

(ac
ij − cihc

j
�)2,

(4)

3.4 Model Optimization

By optimizing the objective function in Eq. (4), the interaction and attribute
information can be effectively integrated thus latent representations can be
learned. Here we present the details of the optimization process. The deriva-
tives of the objective function D with respect to the latent variables are:

414 Z. He et al.

∂D
∂U

= − 2(Wur ⊗ (Pur − UR�))R − 2λ1(Wuc ⊗ (Puc − UC�))C

− 2λ2(Au − UHu�)Hu,

∂D
∂R

= − 2(Wur ⊗ (Pur − UR�))�U − 2λ3(Ar − RHr�)Hr,

∂D
∂C

= − 2λ1(Wuc ⊗ (Puc − UC�))�U − 2λ4(Ac − CHc�)Hc,

∂D
∂Hu = − 2λ2(Au� − HuU�)U,

∂D
∂Hr = −2λ3(Ar� − HrR�)R,

∂D
∂Hc = − 2λ4(Ac� − HcC�)C.

(5)

With the gradients given in Eq. (5), the objective function can be optimized
with any gradient-descent based methods. In this work, we adopt the popular
multiplicative update method [11] which is guaranteed to converge to at least a
locally optimal solution.

Table 1. Statistics of the datasets.

Datasets #Passengers #Records #Routes #Airlines Density of Eur/Euc

Top100K 100,000 13,074,626 2728 22 0.017/0.414

Rand100K 100,000 3,983,497 2728 22 0.007/0.304

4 Experiments

To investigate the effectiveness of JWNMF in learning latent representations for
nodes in the air travel HIN, we evaluate our proposed method on a real-world
PNR dataset. The learned representations are evaluated according to the route
and airline recommendation performances. And the experimental results prove
our points.

4.1 Dataset

We use a two-year anonymized PNR dataset which contains 2,956,088 pas-
sengers, 2728 routes, and 22 airline companies. To comprehensively analyze
JWNMF’s performs on both frequent flyers and normal passengers, two sub-
datasets are extracted. The first subset is extracted by selecting the top 100,000
passengers and their records according to the travel frequencies, we denote it as
Top100K. While the second subset contains randomly selected 100,000 passen-
gers and their records denoted as Rand100K. Details about the two sub-datasets
are demonstrated in Table 1. It can be observed from the number of records and
data density that frequent flyers behave differently from normal passengers. And
models should perform well on both the valuable frequent flyers and the huge
group of normal passengers.

Heterogeneous Item Recommendation for the Air Travel Industry 415

4.2 Baselines

To achieve comprehensive and comparative analysis of our approach, we compare
it with three kinds of baselines: the trivial methods, the collaborative filtering
methods, and the matrix factorization methods.

– Random. Random guess (Random) is a trivial method in recommender sys-
tems. For each passenger, N routes and airlines are randomly selected from
the candidate sets and recommended.

– ItemPop. Item popularity (ItemPop) is another trivial method. The routes
and airlines are sorted according to the frequencies they appear in the records.
And the top N routes and airlines are recommended to all passengers

– UCF. User-based collaborative filtering (UCF) is widely used in a lot of appli-
cations. The passenger-item (route or airline) relevance score UCF(i, j) is cal-
culated as a weighted sum of the passenger’s similarity to all passengers that
have consumed the item. We adopt the cosine similarity between passengers’
flight records and attributes with a parameter 0 ≤ β1 ≤ 1 tuning the weight.
After that, the top N items are recommended according to UCF(i, j).

– ICF. Item-based collaborative filtering (ICF) is also widely used in various
applications. The passenger-item (route or airline) relevance score ICF(i, j) is
calculated as a weighted sum of the item’s cosine similarity to all items that
the passenger has consumed. We adopt the cosine similarity between flight
records and attributes with a parameter 0 ≤ β2 ≤ 1 tuning the weight. After
that, the top N items are recommended according to ICF(i, j).

– NMF. NMF is the most popular matrix factorization method in recommen-
dations and is also the basic model of our JWNMF. Latent representations
are learned by independently factorizing the passenger-route matrix Eur or
passenger-airline matrix Euc. And the routes and airlines are recommended
according to their similarity to passengers in the latent space.

– JNMF. To evaluate the performances of the integration of the heterogeneous
edges and node attributes, the joint NMF (JNMF) model in Eq. (1) is used in
the experiments. JNMF simultaneously learns the representations of passen-
gers, routs, and airlines in the shared latent space in which the recommenda-
tions are conducted.

– WNMF. The weighting strategy is also independently evaluated by compari-
son of a weighted NMF (WNMF). The binary preference strategy in Eq. (2)
and the linear weights in Eq. (3) are applied to Eur or Euc. A preference
matrix is factorized with the aid of the corresponding weight matrix, and
recommendations are conducted accordingly.

– JWNMF. JWNMF combines the advantages of both JNMF and WNMF as
shown in Eq. (4). And recommendations are conducted in the shared latent
representation space.

4.3 Experimental Settings

For both the Top100K and Rand100K datasets, 10% of the entries in Eur and
Euc are randomly sampled for test purpose. For both CF models, the hyperpa-
rameters β1 and β2 are tuned in the range of 0 to 1 with stepsize 0.1 where 0 and

416 Z. He et al.

Table 2. Recommendation performances on the Top100K dataset.

Methods Route recommendation Airline recommendation

P@5 R@5 F1@5 P@10 R@10 F1@10 P@5 R@5 F1@5 P@10 R@10 F1@10

Random 0.002 0.002 0.002 0.002 0.003 0.002 0.042 0.229 0.071 0.042 0.455 0.076

ItemPop 0.077 0.084 0.080 0.057 0.124 0.078 0.165 0.903 0.279 0.090 0.992 0.166

UCF 0.145 0.158 0.151 0.100 0.219 0.138 0.166 0.908 0.280 0.090 0.992 0.166

ICF 0.252 0.274 0.262 0.164 0.356 0.224 0.163 0.892 0.275 0.090 0.985 0.165

NMF 0.181 0.197 0.189 0.123 0.268 0.169 0.137 0.752 0.232 0.087 0.946 0.159

JNMF 0.223 0.243 0.232 0.148 0.322 0.203 0.164 0.901 0.278 0.091 0.990 0.166

WNMF 0.261 0.284 0.272 0.177 0.385 0.243 0.161 0.880 0.272 0.090 0.977 0.164

JWNMF 0.266 0.289 0.277 0.178 0.387 0.244 0.174 0.954 0.294 0.091 0.997 0.167

Table 3. Recommendation performances on the Rand100K dataset.

Methods Route recommendation Airline recommendation

P@5 R@5 F1@5 P@10 R@10 F1@10 P@5 R@5 F1@5 P@10 R@10 F1@10

Random 0.001 0.002 0.001 0.001 0.004 0.001 0.031 0.230 0.054 0.030 0.452 0.057

ItemPop 0.025 0.066 0.036 0.018 0.097 0.031 0.117 0.872 0.206 0.065 0.973 0.122

UCF 0.090 0.238 0.130 0.060 0.318 0.101 0.117 0.876 0.207 0.065 0.979 0.123

ICF 0.122 0.325 0.178 0.072 0.382 0.121 0.117 0.876 0.207 0.065 0.979 0.123

NMF 0.113 0.301 0.165 0.070 0.373 0.118 0.108 0.809 0.191 0.063 0.944 0.118

JNMF 0.134 0.356 0.195 0.084 0.447 0.141 0.123 0.921 0.217 0.066 0.987 0.124

WNMF 0.113 0.301 0.165 0.071 0.377 0.120 0.114 0.853 0.201 0.064 0.961 0.120

JWNMF 0.150 0.397 0.217 0.097 0.514 0.163 0.127 0.950 0.224 0.067 0.996 0.125

1 means the attribute-only and record-only similarity measures respectively. The
latent dimension K in all factorization models are tuned in the range of 50 to 500
with stepsize 50, and the maximum iteration number is set to 200. Finally, both
the linear parameters α in Eq. (3) and the weight parameters λs are tuned in the
range of 10−3 to 103, multiplied by 10 at each step. After the representations
are learned, the top N = 5 and N = 10 routes and airlines are recommended to
each passenger according to their relevance scores in the latent space. And the
performances are evaluated with the micro-averaged precision (P), recall (R),
and F1 scores.

4.4 Experimental Results

Tables 2 and 3 show the results on the Top100K and Rand100K datasets respec-
tively, where the best results are boldfaced. From these results, we have the
following observations and analysis:

– JWNMF achieves the best performances on both datasets and all six evalua-
tion measures, which proves the superiority of the proposed model. On both
datasets, both JNMF and WNMF perform better than NMF. What is more,
by combining both the joint factorization and weighting strategy, JWNMF

Heterogeneous Item Recommendation for the Air Travel Industry 417

consistently performs better than all of them. Therefore, both of the proposed
modifications are effective and necessary.

– JNMF performs better than WNMF on the Rand100K dataset. The reason
is that the Rand100K dataset is more sparse than the Top100K dataset,
as demonstrated in Table 1. Because the joint factorization technique is pro-
posed to deal with the data sparsity problem, JNMF achieves more significant
improvements than the weighting strategy.

– On the other side, WNMF performs better than JNMF on the route recom-
mendation task on the Top100K dataset. Because frequent flyers often inter-
act frequently with specific routes that differ from each other, the passenger-
route interactions are denser and have bigger value differences. Thus WNMF
achieves more significant improvements by narrowing the gap between fitting
targets while keeping the frequency information.

– Due to the fact that the travel demands and behavior patterns of frequent
flyers are more clearly reflected by the dense flight records, performances on
the Top100K dataset are generally better than on the Rand100K dataset.
However, our JWNMF demonstrates its robustness by achieving the best
performances on both datasets.

(a) (b) (c)

Fig. 3. Analysis of the linear weight parameter α and the balancing parameter λ1 on
the Top100K dataset. (a) The F1@5 scores of route recommendation when α varies;
(b) The F1@5 scores of route recommendation when λ1 varies; (c) The F1@5 scores of
airline recommendation when λ1 varies.

4.5 Parameter Analysis

There are two types of important parameters in JWNMF, the linear weight
α in the weighting strategy and the balancing parameters λ1, λ2, λ3, λ4 in
the objective function. Other parameters like the latent dimension K and the
iteration number also matter. However, for space limitation, we only analysis
how α and λ1 affect the performances in this subsection as illustrated in Fig. 3.

With the increase of both parameters, all curves rise first and then decline.
Because the entries in Eur and Euc are integer frequencies, a small α (<1) fails to
recognize the relevance information contained in high frequencies, while a large

418 Z. He et al.

α (>1) makes the model concentrate too much on high frequencies and overfit.
Therefor, we set α = 1 in experiments. On the other hand, λ1 = 0.1 achieves
the best performances on route recommendation, but it is λ1 = 1 on airline
recommendation, which demonstrates the trade-off between two tasks. Taking
full account of the overall performances, we set λ1 = 0.1 in the experiments.

5 Conclusion

In this paper, we introduced a heterogeneous item recommendation framework
JWNMF which incorporates heterogeneous information from the air travel HIN
derived from the PNR dataset. The proposed JWNMF leverages both the inter-
action information between entities and their attributes, which effectively mod-
els passengers’ travel demands and behavior patterns. Through a joint weighted
factorization framework, representations of multiple kinds of entities are simulta-
neously learned and mutually enhanced. Experiments conducted on a real-world
PNR dataset demonstrated the effectiveness and superiority of JWNMF on air
route and airline recommendation tasks.

Acknowledgements. This research is supported by the National Natural Science
Foundation of China under grant No. U1633103, Natural Science Foundation of Tianjin
under grant No. 18JCYBJC15800, and the Open Project Foundation of Information
Technology Research Base of Civil Aviation Administration of China under grant No.
CAAC-ITRB-201701.

References

1. Akerkar, R.: Analytics on big aviation data: Turning data into insights. IJCSA
11(3), 116–127 (2014)

2. Borràs, J., Moreno, A., Valls, A.: Intelligent tourism recommender systems: a sur-
vey. Expert Syst. Appl. 41(16), 7370–7389 (2014)

3. CAAC: Bulletin of the civil aviation industry development statistics in 2017. CAAC
Bulletin, pp. 1–19 (2018)

4. Cao, J., Xu, Y., Ou, H., Tan, Y., Xiao, Q.: PFS: a personalized flight recommenda-
tion service via cross-domain triadic factorization. In: ICWS, pp. 249–256 (2018)

5. Cao, J., Yang, F., Xu, Y., Tan, Y., Xiao, Q.: Personalized flight recommendations
via paired choice modeling. In: BigData, pp. 1265–1270 (2017)

6. Carmel, D., Farchi, E., Petruschka, Y., Soffer, A.: Automatic query refinement
using lexical affinities with maximal information gain. In: SIGIR, pp. 283–290
(2002)

7. Chiang, W.: Identifying high-value airlines customers for strategies of online mar-
keting systems: an empirical case in Taiwan. Kybernetes 47(3), 525–538 (2018)

8. Gu, Q., Zhou, J., Ding, C.H.Q.: Collaborative filtering: weighted nonnegative
matrix factorization incorporating user and item graphs. In: SDM, pp. 199–210
(2010)

9. Hu, Y., Koren, Y., Volinsky, C.: Collaborative filtering for implicit feedback
datasets. In: ICDM, pp. 263–272 (2008)

Heterogeneous Item Recommendation for the Air Travel Industry 419

10. Lee, A.J., Jacobson, S.H.: Addressing passenger risk uncertainty for aviation secu-
rity screening. Transp. Sci. 46(2), 189–203 (2012)

11. Lee, D.D., Seung, H.S.: Algorithms for non-negative matrix factorization. In: NIPS,
pp. 556–562 (2000)

12. Lian, D., Zhao, C., Xie, X., Sun, G., Chen, E., Rui, Y.: GeoMF: joint geographical
modeling and matrix factorization for point-of-interest recommendation. In: KDD,
pp. 831–840 (2014)

13. Liu, H., Hu, J., Rauterberg, M.: iHeartrate: a heart rate controlled in-flight music
recommendation system. In: MB, pp. 26:1–26:4 (2010)

14. Liu, J., et al.: Personalized air travel prediction: a multi-factor perspective. ACM
TIST 9(3), 30:1–30:26 (2018)

15. Lu, J., Wu, D., Mao, M., Wang, W., Zhang, G.: Recommender system application
developments: a survey. Decis. Support Syst. 74, 12–32 (2015)

16. Maalouf, L., Mansour, N.: Mining airline data for CRM strategies. Commun. ACS
1(001) (2008)

17. Mottini, A., Lheritier, A., Acuna-Agost, R., Zuluaga, M.A.: Understanding cus-
tomer choices to improve recommendations in the air travel industry. In: Workshop
on Recommenders in Tourism, pp. 28–32 (2018)

18. Pritscher, L., Feyen, H.: Data mining and strategic marketing in the airline indus-
try. Data Min. Mark. Appl. 39 (2001)

19. Takeuchi, K., Ishiguro, K., Kimura, A., Sawada, H.: Non-negative multiple matrix
factorization. In: IJCAI, pp. 1713–1720 (2013)

20. Xue, H., Dai, X., Zhang, J., Huang, S., Chen, J.: Deep matrix factorization models
for recommender systems. In: IJCAI, pp. 3203–3209 (2017)

21. Yu, Y., Gao, Y., Wang, H., Wang, R.: Joint user knowledge and matrix factoriza-
tion for recommender systems. World Wide Web 21(4), 1141–1163 (2018)

22. Zhao, X., Deng, N., Jing, L.: Application of image recognition in civil aviation
security based on tensor learning. J. Intell. Fuzzy Syst. 33(4), 2145–2157 (2017)

A Minimax Game for Generative
and Discriminative Sample Models

for Recommendation

Zongwei Wang, Min Gao(B), Xinyi Wang, Junliang Yu, Junhao Wen,
and Qingyu Xiong

School of Big Data and Software Engineering, Chongqing University,
Chongqing, China

{zongwei,gaomin,xywang,yu.jl,jhwen,xiong03}@cqu.edu.cn

Abstract. Recommendation systems often fail to live up to expecta-
tions in real situations because of the lack of user feedback, known as
the data sparsity problem. A large number of existing recommendation
methods resort to side information to gain a performance improvement.
However, these methods are either too complicated to follow or time-
consuming. To alleviate the data sparsity problem, in this paper we
propose UGAN, which is a general adversarial framework for recom-
mendation tasks and consists of a generative model and a discriminative
model. In UGAN, the generative model, acts as an attacker to cheat the
discriminative model to capture the pattern of the original data input and
generate similar user profiles, while the counterpart, the discriminative
model aims to distinguish the forged samples from the real data. By com-
peting with each other, two model are alternatively updated like playing
a minimax game until the generative model has learned the original data
distribution. The experimental results on two real-world datasets, Movie-
lens and Douban, show that the user profiles forged by UGAN can be
easily integrated into a wide range of recommendation methods and sig-
nificantly improve their performance, which provides a promising way to
mitigate the adverse impact of missing data.

Keywords: Recommendation system · Data sparsity ·
Generative Adversarial Network · Minimax game · Adversarial training

1 Introduction

Nowadays, personalized recommendation systems become increasingly impor-
tant due to the problem of information overload. However, it is inevitable for
recommendation systems to suffer from data sparsity because of the lack of user
feedback. To address this problem, researchers have proposed many approaches.
Among them, Kabbur et al. [9] use a structural equation modeling approach to
learn the item-item similarity matrix, and He et al. [6] combine methods based on
similarity with Markov chain. Breese et al. [3] describe techniques based on cor-
relation coefficients and vector-based similarity calculations to predict additional
c© Springer Nature Switzerland AG 2019
Q. Yang et al. (Eds.): PAKDD 2019, LNAI 11440, pp. 420–431, 2019.
https://doi.org/10.1007/978-3-030-16145-3_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16145-3_33&domain=pdf
https://doi.org/10.1007/978-3-030-16145-3_33

Minimax Game for Sample Generating for Recommendation 421

topics or products that a new user might like. Huang et al. [8] apply an associa-
tive retrieval framework and related spreading activation algorithms to explore
transitive associations among consumers. In addition, Xiong et al. [21] present
a reordering model for phrase-based statistical machine translation that uses a
maximum entropy model. Besides, there are a lot of studies that [13,16,22–24]
pay attention to incorporate other information, such as social information, per-
sonal information, and item profiles [7], into recommendation model to mitigate
the problem of data sparsity.

The approaches or algorithms above have achieved great success in alleviating
data sparsity problem, but to the best of our knowledge, methods that directly
add simulated ratings into the input to increase the density of original data have
not yet been explored. Existing approaches which simply replicate genuine user
profiles are based on heuristic inference, but the input data is generally composed
of users with quite different patterns. Directly adding duplicated users may not
have a considerable effect on the recommendation quality or even lower the
performance. Generative Adversarial Networks (GANs) [1,5,17] give an example
that generates a similar sample data distribution from true data distribution
and have been applied to many fields. For instance, IRGAN [20] unifies the two
types of models in the field of information retrieval to improve recommendation
algorithm performance, IDSGAN [14] generates new types of network intrusion
and auto-painter [15] deals with image fill problems.

Inspired by GANs in machine learning, in this paper we propose a adver-
sarial framework named UGAN, which takes advantages of both wGAN [1] and
cGAN [2,4,17] to forge users that are highly close to genuine users in the input
data. In UGAN, the discriminative model uses Wassertein distance to measure
the difference between the original distribution and the generated distribution
and estimates the probability that samples come from real data rather than
generated data, while the generative model make great efforts to fit the original
data distribution and generates specified user profiles based on extra informa-
tion. The two types of models act as two players in a minimax game and each
of them strikes to improve itself to ‘beat’ the other one at every round of this
competition. At last, we incorporate the forged user profiles into the input data
and conduct recommendation tasks with a wide range of recommendation meth-
ods. Extensive experimental results on two real-world datasets, Movielens and
Douban, show that the user profiles forged by UGAN can significantly improve
the recommendation performance.

The rest of this paper is organized as follow: Sect. 2 introduces the principle
of our approach. In Sect. 3, we describe experiments on two real-world datasets
and analyze experimental results. In the end, we conclude work in Sect. 4.

2 UGAN Formulation

In this section, we build our framework UGAN by fusing generative and discrim-
inative models in an adversarial setting.

422 Z. Wang et al.

2.1 A Minimax Sample Generation Framework

For recommendation system, we propose a UGAN framework to reduce the spar-
sity of dataset. In a recommendation system, user profile can be represented by
a vector, and each dimension of the vector represents each rating the user gives
to the item, as Fig. 1 shows. The generated users with ratings information are
named simulated users.

Fig. 1. A user profile can be represented by a user-profile vector.

Our approach are divided into three parts, as illustrated in Fig. 2. Firstly,
we put original data that are derived from real datasets into UGAN to generate
the simulated users. Secondly, we inject the simulated users into the original
datasets to form a mixed datasets. Finally, we use the new datasets to conduct
recommendation algorithm. We construct two types of sample models:

Generative Sample Model. This model generates simulated user from given
real data distribution, trying to achieve two goals. One is that simulated user
data is made to approximate the real data distribution as much as possible. The
other is that simulated users need a large number of ratings that can greatly alle-
viate data sparsity greatly. Thus, we should obtain real users’ extra information
to guide the generation.

Discriminative Sample Model. On the contrary, this model is a classifier
that aims to distinguish between generated data and real data. Concretely, it
uses Wassertein distance to measure the difference of two data distribution and
meanwhile keeps the process of generation stable without mode collapse.

2.2 Loss Function

Inspired by the idea of cGAN that learns the mapping from the observed input
x and random noise vector z to y : G : {x, z} → y. We would like to use the
user’s activity level information as extra information to guide the generation,

Minimax Game for Sample Generating for Recommendation 423

Fig. 2. Our framework.

which makes the simulated user relatively dense. Formally, we have the overall
objective (Loss) function:

min
G

max
D

V (G,D) = Ex,y∼pdata(x,y)[D(x, y)]

+Ex∼pdata(x),z∼pdata(z)[1 − D(x,G(x, z))],
(1)

where x is the input sketch, y is the label vector and G (x, z) means the simulated
user vector. The discriminator D outputs the probability to classify the ‘real’ and
‘fake’ input pair by measuring Wassertein distance.

It is hard to simulate the distribution of real user rating data. To solve this
problem, we need more constraints for better performance. The generator is
trained to minimize the generative loss, and the loss function is given as follows:

LG = Ex∼pdata(x),z∼pdata(z) [1 − D (x,G (x, z))] (2)

Previous studies have shown that the cGAN objective with a traditional loss
function is more beneficial for training. Thus, we use the L1 distance to describe
the rating loss LR, making the generated user data approximates the real user
data in an optimized way.

LR = Ex∼pdata(x),z∼pdata(z)[‖x − G(x, z)‖1] (3)

Then we use the Pearson correlation coefficient to measure the rating corre-
lation between the generated user profiles and the real user profiles.

LP = Ex∼pdata(x),z∼pdata(z)[P (x,G(x, z))], (4)

where P is Pearson coefficient.
Finally, the objective function is defined as follows:

L = WGLG + WRLR + WPLP (5)

424 Z. Wang et al.

where WG,WR,WP are the weights for loss functions. We adjust them to control
the importance of each part. We use these loss functions to ensure that the
simulated user data nearer to the real user data.

The overall logic of our proposed UGAN solution is summarized in Algo-
rithm1. Before the adversarial training, the generator and discriminator can be
initialized by their conventional models.

Algorithm 1. Minimax Game For User Generation(a.k.a UGAN). ALL exper-
iments in this paper used the default values α = 0.0001, c = 0.01, m = 100,
Ncritic = 10.
Input: R, real ratings distribution, C, real labels distribution. α, the learning rate, c, the

clipping parameter. m, the batch size, Ncritic, the number of iterations of the critic per
generator iteration. k, the limit number of the active user. w0, initial critic parameters. θ0,
initial generator parameters, Z0, initial generator distribution.

1: while not converged do

2: for i = 0, . . . , Ncritic do

3: Sample{Ru}u=1,...,m ∼ R, {Cu}u=1,...,m ∼ C, a batch from the real rating data.
4: Sample{Zu}u=1,...,m ∼ Z, {Yu}u=1,...,m ∼ Y, a batch of prior sample.

5: gw ← �w[1
m

∑m
u=1 fw(Ru.concat(Cu)) − 1

m

∑m
u=1 gθ(Zu.concat(Yu)]

6: w ← w + α · RMSProp(w, gw)

7: w ← clip(w, −c, c)
8: end for

9: Sample{Zu}u=1,...,m ∼ Z, {Yu}u>k ∼ Y, a batch from the real rating data.
10: gθ ← − �θ

1
m

∑m
u=1 fw(gθ(Zu))

11: θ ← θ − α · RMSProp(θ, gθ)

12: end while
Output: Sample {Zu}u=1,...,m ∼ Z

2.3 Extension to a Specific Case

As Sect. 1 mentioned, the proposed approach can alleviate data sparsity through
increasing the average rating number of each user. To achieve this goal, we gen-
erate users with more ratings that approximate the original data distribution.
As Fig. 3 shows, we use activity level labels to generate a single simulated user
with a relatively large number of ratings. For the sake of simplicity, we have only
three items and two labels. Besides, users who rate more than two are consid-
ered active users, which means the label is one. The generator initially generates
random user profiles and labels. Then we put the randomly generated user pro-
files with labels and the real user profiles with labels into the discriminator at
the same time, after which the discriminator returns the discriminant results to
the generator, making the generator update to a new version. With continuous
generation-discrimination process, user profiles that are similar to real data will
be generated. Finally, we use activity level labels to pick out the user profiles
which are active.

Minimax Game for Sample Generating for Recommendation 425

Fig. 3. The process of UGAN

3 Experiments and Analysis

3.1 Datasets and Evaluation Metrics

In the paper, we utilize two real-world datasets, Movielens1 and Douban2, in
which the average rating numbers are 146 and 27, to evaluate our approach. The
details of the two real-world datasets are shown in Table 1. In our experiments,
we use 80% of the data for training and the remaining for testing.

Table 1. Basic information of the datasets.

Information Dataset

Movielens Douban

User number 681 14026

Item number 9125 9066

Rating number 100004 377365

We use MAE and RMSE to evaluate the performance of rating predictions
and use Precision, Recall, F1, and MAP to evaluate the recommendation per-
formance of the Top-N rank algorithm.

Furthermore, we use ratings sparsity and active ratio to evaluate the data
sparsity of the dataset. The ratings sparsity reflects the average data sparsity of

1 https://grouplens.org/datasets/movielens/.
2 https://github.com/CQU-CSE/DatasetCollection.

https://grouplens.org/datasets/movielens/
https://github.com/CQU-CSE/DatasetCollection

426 Z. Wang et al.

the ratings in the dataset. The active ratio reflects the average activity level of
all users in the dataset. In this paper, we treat users whose number of ratings is
greater than 100 as an active ones.

As follows, we will give the formula for the evaluation metrics. In the formula,
fi is the predicted rating, yi is the true rating, N is the number of all predicted
items, Na is the number of predicted top-N items, and N t is the number of all
true top-N items.

MAE =
1
N

N∑

i=1

|fi − yi| (6)

RMSE =

√√√√ 1
N

N∑

i=1

‖fi − yi‖2 (7)

Precision =
Na

N
, (8)

Recall =
Na

N t
, (9)

F =
2 ∗ Precision ∗ Recall

Precision + Recall
. (10)

MAP =
∑

AveragePrecision

N
(11)

3.2 Experimental Results

In this paper, we operate a number of baseline recommendation algorithms com-
bining with our approach, including UserKNN, BasicMF, SlopeOne [12], SVD
[11], all of which has data sparsity problems. The experimental results show that
our approach can improve the recommendation performance of these algorithms.
At the same time, we also experiment several recommendation algorithms that
have positive effects on data sparsity, including BPR [18], PMF [19], EE [10].
From the experimental results, we found that the recommendation performance
of these algorithms is also improved when combined with our approach.

We put the preprocessed training data into UGAN for training throughout
the experiment. To observe the influence of the dataset on the recommendation
algorithm after injecting different portion of simulated users, we generate sim-
ulated users whose number is equal to 20%–100% of real users’ total number
in the original datasets. Besides, simulated user data are respectively injected
into the original dataset to run on a variety of recommendation algorithms. The
results on the two datasets are shown in Tables 2 and 3.

Because UserKNN, BasicMF, SlopeOne, SVD, PMF and EE are rating pre-
diction algorithms, their evaluation Metrics are MAE and RMSE. BPR is a
Top-N rank algorithm, its evaluation Metrics are precision, recall, F1 and MAP.
From Tables 2 to 3, we can find that the performance of recommendation algo-
rithms with sparsity problem and the recommendation algorithms that alleviate

Minimax Game for Sample Generating for Recommendation 427

Table 2. Results for recommendation algorithm on DouBan.

Algorithm Evaluation
metrics

Original Add20%
simulated
users

Add40%
simulated
users

Add60%
simulated
users

Add80%
simulated
users

Add100%
simulated
users

UserKNN MAE 0.7056 0.6951 0.6866 0.6779 0.6720 0.6584

RMSE 0.8873 0.8723 0.8599 0.8479 0.8391 0.8314

BasicMF MAE 0.6317 0.6224 0.6056 0.5962 0.5900 0.5769

RMSE 0.8127 0.7993 0.7774 0.7644 0.7553 0.7465

SlopeOne MAE 0.5869 0.5726 0.5643 0.5553 0.5446 0.5311

RMSE 0.7660 0.7567 0.7511 0.7451 0.7379 0.7287

SVD MAE 0.5906 0.5864 0.5839 0.5823 0.5806 0.5786

RMSE 0.7511 0.7408 0.7363 0.7333 0.7290 0.7130

PMF MAE 0.8772 0.8524 0.8300 0.7891 0.7261 0.6888

RMSE 1.1548 1.0980 1.1202 1.0276 0.9679 0.9342

EE MAE 0.6495 0.6493 0.6464 0.6403 0.6319 0.6177

RMSE 0.8079 0.8048 0.9056 0.8009 0.7994 0.7621

BPR Precision 0.1458 0.2262 0.2416 0.2463 0.2663 0.2693

Recall 0.0211 0.0526 0.0594 0.0682 0.0761 0.0762

F1 0.0369 0.0854 0.0954 0.1069 0.1184 0.1188

MAP 0.0795 0.1405 0.1605 0.1644 0.1746 0.1764

data sparsity problem on the generated dataset improved compared with the
original datasets. As Table 2 shows, the MAE and RMSE values reduce and the
precision, recall, F1 and MAP values increase with more simulated user data
injecting in DouBan dataset. However, the trend of improvement doesn’t con-
tinue all the time. As Table 3 shows, we find the improvement of recommendation
performance converge after a certain amount of simulated users is injected into
the Movielens dataset. For example, the MAE and RMSE on UserKNN algo-
rithm reach the best value when injecting 80% simulated users. Other algorithms
also follow the similar disciplines.

Thus, the experimental results show that the performance of the recom-
mendation algorithm can be improved by using our approach. However, we can
not improve the performance of the recommendation algorithm all the time
with users’ number increasing. Though the simulated users generated by UGAN
guarantee a relatively large number of ratings and alleviate data sparsity, these
simulated users are unable to have fully ratings on every item because such
users must conform to the distribution of the original rating data. Therefore,
after injecting a certain number of simulated users, data sparsity will not be
further reduced. To prove our conclusion, we further study the sparsity change
of the dataset with simulated users injecting.

Then, we calculate data sparsity on Movielens dataset. First, we generate
simulated users whose number is 20%–200% of original users’ total number and
inject them into the dataset. As can be seen from Fig. 4, ratings sparsity declines

428 Z. Wang et al.

Table 3. Results for recommendation algorithm on Movielens.

Algorithm Evaluation
metrics

Original Add20%
simulated
users

Add40%
simulated
users

Add60%
simulated
users

Add80%
simulated
users

Add100%
simulated
users

UserKNN MAE 0.7801 0.7729 0.7669 0.7600 0.7585 0.7621

RMSE 1.0119 0.9979 0.9857 0.9761 0.9678 0.9703

BasicMF MAE 0.7721 0.7402 0.7326 0.7171 0.7123 0.7008

RMSE 1.0173 0.9753 0.9605 0.9421 0.9333 0.9154

SlopeOne MAE 0.6945 0.6850 0.6776 0.6654 0.6676 0.6698

RMSE 0.9086 0.8923 0.8778 0.8512 0.8562 0.8631

SVD MAE 0.6976 0.6872 0.6803 0.6613 0.6756 0.6769

RMSE 0.9128 0.8893 0.8745 0.8303 0.8588 0.8666

PMF MAE 0.8141 0.7646 0.7511 0.7180 0.7213 0.7557

RMSE 1.0402 0.9817 0.9647 0.9473 0.9336 0.9673

EE MAE 0.7535 0.7631 0.7656 0.7636 0.7662 0.7594

RMSE 0.9672 0.9679 0.9576 0.9524 0.9510 0.9444

BPR Precision 0.2192 0.2318 0.2481 0.2690 0.2675 0.2637

Recall 0.0452 0.0561 0.0649 0.0774 0.0808 0.0778

F1 0.0749 0.0904 0.1029 0.1202 0.1241 0.1202

MAP 0.1454 0.1578 0.1631 0.1764 0.1768 0.1763

Fig. 4. Data sparsity on Movielens. Ratings sparsity is calculated by the ratio of zero
ratings number to total ratings number. Active ratio is calculated by the ratio of active
users number to total users number.

and active ratio climes up, which means the sparsity of rating data is significantly
reduced and the average activity level of all users is significantly improved. It is
shown that our approach plays a great role in alleviating data sparsity. However,
we can also find that the curves in both graphs are tended to remain stable after
injecting a certain number of users, which means that the sparsity of dataset
will finally stop reducing.

Finally, we compare the effect of constraint on the loss function via Eq. (5).
We generate simulated users whose number is equal to 100% of original real

Minimax Game for Sample Generating for Recommendation 429

users’ total number without LP and LR via Eqs. (3) and (4). Then we generate
the same number of simulated users with LP and LR and set the weights WG,
WR, WP as 0.8, 0.1, and 0.1. Then we respectively inject data into the original
dataset. The experimental results on Movielens and DouBan are shown in Fig. 5.
The experimental results show that the MAE and RMSE value of datasets that
are injected into simulated users without LP and LR decline to a certain degree.
And the MAE and RMSE value of dataset that are injected into simulated users
with LP and LR have a further declination. The result show the performance of
algorithms with constraints has been improved further.

Fig. 5. Results for recommendation algorithm penalty comparison.

4 Conclusion and Future Work

In this paper, we propose a minimax game framework for generative and dis-
criminative sample models to alleviate data sparsity in the recommendation sys-
tems. This approach uses UGAN and adds some constraints for a better sample
generation process. In addition, whether the algorithm in our experiment has
data sparsity problem or not, the experimental results show that the algorithms
have obvious improvement with our approach. Furthermore, we analyze the data
sparseness of the dataset after using our approach, and find that the degree of
data sparsity is significantly reduced. Since the extra information we use for
UGAN is only based on the user’s activity level labels in the minimax game. In
our future works, we plan to use other information to generate more types of
sample data, and solve practical issues such as lack of experimental data.

References

1. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein GAN. CoRR abs/1701.07875
(2017)

2. Bodnar, C.: Text to image synthesis using generative adversarial networks. CoRR
abs/1805.00676 (2018)

3. Breese, J.S., Heckerman, D., Kadie, C.M.: Empirical analysis of predictive algo-
rithms for collaborative filtering. CoRR abs/1301.7363 (2013)

430 Z. Wang et al.

4. Eigen, D., Fergus, R.: Predicting depth, surface normals and semantic labels with a
common multi-scale convolutional architecture. In: 2015 IEEE International Con-
ference on Computer Vision, ICCV 2015, Santiago, Chile, 7–13 December 2015,
pp. 2650–2658 (2015)

5. Goodfellow, I.J., et al.: Generative adversarial networks. CoRR abs/1406.2661
(2014)

6. He, R., McAuley, J.: Fusing similarity models with Markov chains for sparse sequen-
tial recommendation. In: IEEE 16th International Conference on Data Mining,
ICDM 2016, Barcelona, Spain, 12–15 December 2016, pp. 191–200 (2016)

7. Hsieh, C., Yang, L., Wei, H., Naaman, M., Estrin, D.: Immersive recommendation:
news and event recommendations using personal digital traces. In: Proceedings of
the 25th International Conference on World Wide Web, WWW 2016, Montreal,
Canada, 11–15 April 2016, pp. 51–62 (2016)

8. Huang, Z., Chen, H., Zeng, D.D.: Applying associative retrieval techniques to alle-
viate the sparsity problem in collaborative filtering. ACM Trans. Inf. Syst. 22(1),
116–142 (2004)

9. Kabbur, S., Ning, X., Karypis, G.: FISM: factored item similarity models for top-
n recommender systems. In: The 19th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD 2013, Chicago, IL, USA, 11–14
August 2013, pp. 659–667 (2013)

10. Khoshneshin, M., Street, W.N.: Collaborative filtering via Euclidean embedding.
In: Proceedings of the 2010 ACM Conference on Recommender Systems, RecSys
2010, Barcelona, Spain, 26–30 September 2010, pp. 87–94 (2010)

11. Koren, Y.: Collaborative filtering with temporal dynamics. Commun. ACM 53(4),
89–97 (2010)

12. Lemire, D., Maclachlan, A.: Slope one predictors for online rating-based collabo-
rative filtering. CoRR abs/cs/0702144 (2007)

13. Li, W., et al.: Social recommendation using Euclidean embedding. In: 2017 Interna-
tional Joint Conference on Neural Networks, IJCNN 2017, Anchorage, AK, USA,
14–19 May 2017, pp. 589–595 (2017)

14. Lin, Z., Shi, Y., Xue, Z.: IDSGAN: generative adversarial networks for attack
generation against intrusion detection. CoRR abs/1809.02077 (2018)

15. Liu, Y., Qin, Z., Wan, T., Luo, Z.: Auto-painter: cartoon image generation from
sketch by using conditional wasserstein generative adversarial networks. Neuro-
computing 311, 78–87 (2018)

16. Ma, H., Yang, H., Lyu, M.R., King, I.: SoRec: social recommendation using prob-
abilistic matrix factorization. In: Proceedings of the 17th ACM Conference on
Information and Knowledge Management, CIKM 2008, Napa Valley, California,
USA, 26–30 October, pp. 931–940 (2008)

17. Mirza, M., Osindero, S.: Conditional generative adversarial nets. CoRR
abs/1411.1784 (2014)

18. Rendle, S., Freudenthaler, C., Gantner, Z., Schmidt-Thieme, L.: BPR: Bayesian
personalized ranking from implicit feedback. CoRR abs/1205.2618 (2012)

19. Salakhutdinov, R., Mnih, A.: Bayesian probabilistic matrix factorization using
Markov chain Monte Carlo. In: Machine Learning, Proceedings of the Twenty-
Fifth International Conference (ICML 2008), Helsinki, Finland, 5–9 June 2008,
pp. 880–887 (2008)

20. Wang, J., et al.: IRGAN: a minimax game for unifying generative and discrimina-
tive information retrieval models. In: Proceedings of the 40th International ACM
SIGIR Conference on Research and Development in Information Retrieval, Shin-
juku, Tokyo, Japan, 7–11 August 2017, pp. 515–524 (2017)

Minimax Game for Sample Generating for Recommendation 431

21. Xiong, D., Liu, Q., Lin, S.: Maximum entropy based phrase reordering model
for statistical machine translation. In: ACL 2006, 21st International Conference
on Computational Linguistics and 44th Annual Meeting of the Association for
Computational Linguistics, Proceedings of the Conference, Sydney, Australia, 17–
21 July 2006 (2006)

22. Yu, J., Gao, M., Li, J., Yin, H., Liu, H.: Adaptive implicit friends identification
over heterogeneous network for social recommendation. In: Proceedings of the
27th ACM International Conference on Information and Knowledge Management,
CIKM 2018, Torino, Italy, 22–26 October 2018, pp. 357–366 (2018)

23. Yu, J., Gao, M., Rong, W., Song, Y., Xiong, Q.: A social recommender based on
factorization and distance metric learning. IEEE Access 5, 21557–21566 (2017)

24. Zhang, C., Yu, L., Wang, Y., Shah, C., Zhang, X.: Collaborative user network
embedding for social recommender systems. In: Proceedings of the 2017 SIAM
International Conference on Data Mining, Houston, Texas, USA, 27–29 April 2017,
pp. 381–389 (2017)

RNE: A Scalable Network Embedding
for Billion-Scale Recommendation

Jianbin Lin1, Daixin Wang1,2(B), Lu Guan3, Yin Zhao3, Binqiang Zhao3,
Jun Zhou1, Xiaolong Li1, and Yuan Qi1

1 Ant Financial Services Group, Hangzhou, China
daixin.wdx@antfin.com

2 Computer Science and Technology, Tsinghua University, Beijing, China
3 Alibaba Group, Hangzhou, China

Abstract. Nowadays designing a real recommendation system has been
a critical problem for both academic and industry. However, due to the
huge number of users and items, the diversity and dynamic property of
the user interest, how to design a scalable recommendation system, which
is able to efficiently produce effective and diverse recommendation results
on billion-scale scenarios, is still a challenging and open problem for exist-
ing methods. In this paper, given the user-item interaction graph, we pro-
pose RNE, a data-efficient Recommendation-based Network Embedding
method, to give personalized and diverse items to users. Specifically,
we propose a diversity- and dynamics-aware neighbor sampling method
for network embedding. On the one hand, the method is able to pre-
serve the local structure between the users and items while modeling the
diversity and dynamic property of the user interest to boost the recom-
mendation quality. On the other hand the sampling method can reduce
the complexity of the whole method theoretically to make it possible for
billion-scale recommendation. We also implement the designed algorithm
in a distributed way to further improves its scalability. Experimentally,
we deploy RNE on a recommendation scenario of Taobao, the largest
E-commerce platform in China, and train it on a billion-scale user-item
graph. As is shown on several online metrics on A/B testing, RNE is able
to achieve both high-quality and diverse results compared with CF-based
methods. We also conduct the offline experiments on Pinterest dataset
comparing with several state-of-the-art recommendation methods and
network embedding methods. The results demonstrate that our method
is able to produce a good result while runs much faster than the baseline
methods.

1 Introduction

With the exponential growth of data and information on the Internet, recom-
mendation system plays a critical role in reducing information overload. Rec-
ommendation systems are widely deployed on many online services, including
E-commerce, social networks and online news systems. How to design an effec-
tive recommendation system has been a fundamental problem in both academia
and industry.
c© Springer Nature Switzerland AG 2019
Q. Yang et al. (Eds.): PAKDD 2019, LNAI 11440, pp. 432–445, 2019.
https://doi.org/10.1007/978-3-030-16145-3_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16145-3_34&domain=pdf
https://doi.org/10.1007/978-3-030-16145-3_34

RNE: A Scalable Network Embedding for Billion-Scale Recommendation 433

The key for recommendation system is to model the users’ preferences based
on their interactions (e.g., clicks and rating) with the items. One of the most
popular recommendation methods are known as collaborative filtering (CF) [12].
Its basic idea is to match the users with similar item preferences. Among the
various collaborative filtering methods, matrix factorization [10,25] is the mostly
used one. However, these matrix factorization based methods are regarded as the
linear methods, which are difficult to model the user-item interactions. Then fol-
lowing works use the deep neural networks to model the user-item relationships
[11]. Despite of their success, these CF-based methods only aim to model the
direct links, i.e. the first-order relationship between the users and items. How-
ever, for a graph, only preserving the first-order relationships between the nodes
is not enough to characterize the network structure and thus cannot achieve
good performance [2,4].

To preserve the second-order local structure in the networks, network embed-
ding is an effective way [4]. Network embedding aims to embed nodes into a
low-dimensional vector space with the goal of capturing the low-order and high-
order topological characteristics in graphs [9,16,19,20,24]. Although network
embedding is able to incorporate local structures, they mainly target on tasks
of common link prediction and node classification. Few of them deal with the
task of recommendation and thus they seldom consider some specific properties
of recommendation, which makes them difficult to get a good performance on
recommendation. Last but not least, few of these methods can be applied to the
billion-scale networks.

To extend network embedding to recommendation, we meet three challenges.
(1) Diversity of user interest. User interest is always diverse and the diverse rec-
ommendation can help users explore new items of interest. Therefore, diversity
has been a very important measure to evaluate the recommendation system [1].
However, existing network embedding methods seldom consider the diversity. (2)
Dynamic changes of user interest. User’s preference is dynamic and how to model
such a dynamic property is another challenge. (3) Scalability of recommendation
system. Existing recommendation scenario often has a huge number of users and
items, which is a serious problem with a scale beyond most of existing network
embedding methods.

To address these challenges, we propose RNE, a scalable Recommendation-
based Network Embedding method. In our method, when discovering the local
structure of a user, we will not model all the items the user clicked. Instead, we
propose a sampling method, which considers the diversity and dynamics of the
user interest, to sample a portion of the items the user has clicked as the user’s
neighbors. In this way, the sampling method not only can incorporate the impor-
tant properties of recommendation, i.e. the diversity and dynamics, to improve
the recommendation accuracy, but also reduce the computational complexity of
the algorithm. Furthermore, we deploy the algorithm on a recommendation sys-
tem based on the Parameter Server to do distributed and parallel computing,
which further facilitates the large-scale training available.

434 J. Lin et al.

In summary, the contributions of the paper can be listed as follows:

– We propose a network-embedding-based recommendation method, named
RNE. When modeling the local structures between the users and items, our
method is able to incorporate the dynamics and diversity of the user interest
to produce more accurate and diverse recommendation results.

– We implement our recommendation algorithm in a distributed way based on
parameter server, which jointly makes the system available for billion-scale
recommendation.

– Experimentally, we deploy the whole system on a recommendation scenario
of Taobao. Online A/B tests demonstrate that our method is able to achieve
more accurate results compared with CF and greatly improve the diversity
of the recommendation results. Experiments on offline dataset Pinterest also
demonstrate the quality of our method.

Table 1. Multifaceted comparisons between different methods

Method Local-structure preserving Diversity Billion-scale Complexity

GMF-CF/MLP-CF/NCF × × × O(|E|)
LINE/node2vec

√ × × O(|E|)
RNE

√ √ √
O(|V |)

2 Related Work

2.1 Collaborative Filtering

Recommendation algorithms and systems are well-investigated research fields. In
our work, we are only given the user-item interaction data. Therefore, we mainly
introduce the CF-based recommendation methods and omit the discussions of
content-based recommendation methods and the hybrid recommendation meth-
ods.

Collaborative Filtering exploits the interaction graph between the users and
items to give the recommendation lists to users. Its basic idea is to match the
users which have similar item preferences. Earlier CF methods mainly use the
matrix factorization on the user-item matrices to obtain the latent user factors
and item factors [5,10,17]. The user factors and item factors together aim to
reconstruct the original user-item matrices. However, the matrix factorization is
just the linear-based methods, which is difficult to capture the user-item rela-
tionships. To overcome such a drawback, following works use the deep neural
networks to perform collaborative filtering [18,21]. However, most of the CF-
based methods only aim to model the pairwise relationships between the user
and item but omit their local structures. And many graph-based works have
demonstrate that local structures like second-order relationships are very impor-
tant for capturing graph structures [19]. In this way, existing CF-based methods
are sub-optimal for capturing the relationships between user and items.

RNE: A Scalable Network Embedding for Billion-Scale Recommendation 435

2.2 Network Representation Learning

Network embedding has been demonstrated as an effective methods for model-
ing local and global structures of a graph. It aims to learn a low-dimensional
vector-representation for each node. DeepWalk [16] and Node2vec [9] propose
to use the random walk and skip-gram to learn the node representations. LINE
[19] and SDNE [20] propose explicit objective functions for preserving first- and
second-order proximity. Some further works [2,15] use the matrix factorization
to factorize high-order relation matrix. Aforementioned methods are designed
for homogeneous networks. Then some following embedding methods for het-
erogeneous networks are proposed, like Metapath2vec [6], HNE [3], BiNE [7]
and EOE [23]. Some works further focuses on knowledge graph embedding [22].
Although these network embedding methods are able to preserve the local struc-
tures of the vertices, most of them are not specifically designed for the task of
recommendation. They do not consider some specific properties of the recom-
mendation tasks like the diversity and dynamic changes of user interest, the
scalability issues of large-scale recommendation tasks. Therefore, how to pro-
pose an effective network embedding method for billion-scale recommendation
is still an open problem.

In summary, we compare our method and the related works in Table 1. Our
method is specifically designed for the recommendation scenario and thus con-
sider some specific properties. Furthermore, the proposed method is very scalable
and thus can apply to billion-scale recommendations.

3 The Methodology

In our scenario, we have a large number of users and items. Each user may have
different ways to interact with the items. For example, the user may view the
items, collect the items or buy the items. In this way, we can build the user-item
interaction graph, formally formulated as G = (U , I, E). Here U denotes the
total of n users and I denotes the total of T items. U ∪ I denotes the set of
nodes in G. If a user u ∈ U views, collects or buys an item i ∈ I, there is an
edge Eui between u and i. We use E(v), v ∈ U ∪I to denote the edges connected
to the node v. We assume that G is connected. The recommendation problem is
that given a user u, we hope to recommend some personalized items to the user
based on his previous behavior.

3.1 Network Embedding for Recommendation

Given the user-item interaction graph G = (U , I, E), we aim to map each user
and item to a common low-dimensional latent space, where user u can be embed-
ded as Eu

U ∈ Rd and item i can be embedded as Ei
I ∈ Rd. Then with the embed-

dings for each user and item, we can retrieve the similar items for the user as
his recommendation results.

To achieve this, we propose our method, whose framework can be shown in
Fig. 1. It consists of the embedding-lookup layer, embedding layer and softmax

436 J. Lin et al.

…

user item item item

Fig. 1. The framework of RNE.

layer. The embedding-lookup layer helps us obtain the embeddings for the users
and items. The embedding layer and softmax layer together model the interac-
tions between the users and items to update the embedding-lookup layer. Then
we introduce the designed loss functions to update the embeddings.

We first consider how to model the local structure of a user in the given
user-item graph. In the original space, the empirical distributions given a user
can be defined as:

p̂(i|u) =
wui

du
, (1)

where wui is the weight between user u and item i and du is the degree of user u.
Then we hope to estimate the local structure of a user in the embedding

space. Word2vec [14] inspires us to use the inner product between two vertices
to model their interactions. Then in our work, given a user u, we define the
probability of item i generated by user u as:

p(i|u) =
exp(EuT

U Ei
I)

∑|I|
j=1 exp(Eu

U
T Ej

I)
, (2)

where T means the transpose of a matrix.
Equation 2 is a softmax-like loss function, which defines the conditional dis-

tributions p(·|u) of user u over its neighborhoods, i.e. the entire item set, in the
embedding space.

With the empirical distributions on the original network and reconstructed
distributions on the embedding space, we can learn the embedding by making
the defined probability p(·|u) specified by the low-dimensional representations be
close to the empirical distributions p̂(·|u). We use the KL-divergence to measure
the distance between the distributions. Then the loss functions can be defined as:

L =
∑

u∈U
λuKL(p̂(·|u), p(·|u)) ∝ −

∑

(u,i)∈E

wuilogp(i|u), (3)

where λu denotes the prestige of user u and we set λu = du.
Minimizing Eq. 3 will make the vertices with similar neighbors similar to each

other. Therefore, it can not only model the observed links on the graph, but also
preserve the local structures for each node.

RNE: A Scalable Network Embedding for Billion-Scale Recommendation 437

3.2 Recommendation-Based Sub-sampling

However, aforementioned network embedding meets two challenges for large-
scale recommendation: (1) Minimizing Eq. 3 is time-consuming since for each
edge it needs to run over the entire set of the items when evaluating p(i|u).
In this way, the whole complexity is O(|E||I|), which is unbearable for real
recommendation systems. (2) Minimizing Eq. 3 only considers the topology of
the graph. It does not consider the diversity and the time decay of the user
interest, which are very important properties for recommendation systems.

To reduce the complexity, we first adopt negative sampling as many meth-
ods do [19]. For each positive edge (u, i), we will sample some negative edges
according to predefined distributions Pui. By performing negative sampling, the
objective function for each edge (u, i) can be reformulated as:

Lui = log(σ(Eu
U

T Ei
I)) +

k∑

j=1

Eij∼Pu
(log(σ(Eu

U
T E

ij
I))), (4)

where k is the number of negative samples for each user-item pair, Pui ∝ d
3/4
i .

Although negative sampling can reduce the time complexity from O(|E||I|)
to O(k|E|), for billion-scale recommendation, a complexity linear to the number
of edges is still a great challenge.

To further reduce the complexity, we only select a portion of the items the
user has clicked to obtain his behavior sequence. Then the question comes to how
to select the items to effectively represent the user’s interest. Here, we mainly
consider two properties specified for recommendation. (1) The diversity of user
interest: User interest is always diverse. A user will always focus on the items
of more than one cluster. (2) The time decay of user interest: User interest is
always dynamic. More recent user behavior is more reliable to reflect the recent
user interest. Therefore, we should more focus on recent user behavior. Based on
these two considerations, we define the selection probability for each user-item
pair (u, i) as follows:

p(u, i) = 0.999ti ∗ click(u, ci)γ , (5)

where ti is the hours of the item i from the most recent item, ci is the cluster
index of item i and click(u, ci) =

∑
j∈ci

wuj , γ is set to −0.2. Then for each
user, we will sample m samples according to the defined probability in Eq. 5 to
represent his behavior sequence. Then in this way, the complexity can be reduced
from O(k|E|) to O(km|U|), which is linear to the number of nodes.

In summary, on the one hand, if a user more recently shows the interest
to an item, the item should have a larger probability to be sampled. On the
other hand, the method is prone to sample the items of the clusters clicked less
times by the user. In this way, our method may cover more clusters to ensure
the diversity. Therefore, such a sampling strategy can simultaneously model the
diversity and time decay of the user interest Furthermore, with the sampling
strategy, we do not need to model all the edges in one iteration but instead for

438 J. Lin et al.

each user we only model a portion of its preferred items as the user’s behavior
sequence. It significantly reduce the time complexity.

3.3 Implementation

In this section, we will introduce the technical implementation of the proposed
RNE. The whole process can be divided into two phases: offline model training
and online retrieval. This section will describe them in detail.

Off-Line Model Training. To train the proposed RNE, we utilize the Stochas-
tic Gradient Descent (SGD) on the loss function of Eq. 4 to update the node
embeddings. In detail, we use Epos to denote all the positive edges sampled by
the method we proposed before. Then for each (u, i) ∈ Epos, we can update their
embeddings as follows:

Eu
U = Eu

U + λ{
∑

z∈{i}∪Nk
neg(u)

[I(z, u) − σ(Eu
U

T Ez
U)] · Ez

U}, (6)

where I(a, b) is the indicator function that if a = b, I(a, b) = 1, otherwise
I(a, b) = 0. Nk

neg(i) is the negative neighborhoods of vertex i. λ denotes the
learning rate. Similarly, we can update embedding Ei

I for an item i in a similar
way, which we will not discussed more.

From Eq. 6, when given a positive edge, we can update their embeddings.
Then we will go over all the pair of positive edges for several iterations to update
their embeddings. The whole algorithm can be summarized in Algorithm1.

Algorithm 1. Training Algorithm for RNE
Input: G = (U , I, E)
Output: Eu, EI

1: Initializing Eu and EI .
2: while not converged do
3: Construct the positive edge set Spos according to G = (U , I, E) and Eq. 5.
4: for all (u, i) ∈ Spos do
5: Construct the negative set Nk

neg(u).
6: Update Eu and Ei according to Eq. 6.
7: end for
8: end while

From Algorithm 1, we find that the learning process from Line 4 to Line 6
is independent for different edges, which inspires us to use some parallelization
mechanism to implement it. Then we deploy the whole algorithm on the param-
eter server, which implements a data-parallelization mechanism. In detail, from
Eq. 6 we find that to update a node’s embedding, we only need to know the
node’s previous embeddings, the node’s neighborhoods and their embeddings.

RNE: A Scalable Network Embedding for Billion-Scale Recommendation 439

Therefore, we can resort to parameter server to implement such a process in
a parallelized way. The main workflow of the system is built as follows: (1) In
each iteration, the server will assign each worker a subset of the vertices of the
graph G. (2) Each worker will pull the assigned vertices from the server and cal-
culate the positive and negative neighborhoods for the assigned vertices. Then
with positive and negative sets, each worker can update the embeddings of the
assigned vertices according to Eq. 6. (3) After updating, each worker will push
his assigned vertices’ embddings to the server. Such a training process will be
iterated several times.

Online Efficient Nearest Neighbor Search. For online recommendation,
we use the nearest neighbor search on the learned embedding space to make
recommendations. That is, given a query user u, we can recommend items whose
embeddings are the K-nearest-neighbors (K-nn) of the query user’s embedding
Eu. To achieve the K-nn search, we use the Faiss library [13] which is an efficient
implementation for state-of-the-art product-quantization methods. Given that
RNE is trained offline and all the user and item embeddings are computed via
Parameter Server and saved in database, the efficient K-nn search enables the
system to recommend items online.

4 Experiments

The goal of RNE is to produce high-quality and scalable recommendations for
real-world systems. Therefore, we conduct comprehensive experiments in two
ways: Online A/B tests and Offline experiments.

4.1 Datasets

We use two real-world datasets, i.e. Ali-mobile taobao and Pinterest in this
paper.

– Ali-mobile taobao: It is a mobile recommendation scenario deployed on
Taobao, the largest E-commerce platform in China. The dataset is extremely
large. It has about 1 billion users, tens of million items and a total of about
one hundred billion edges. Each edge denotes whether the user has clicked
the products. We deploy our algorithm on the service to do online A/B test
to evaluate our method.

– Pinterest: The dataset is an image recommendation dataset constructed by
[8]. We filter the users which have very few interactions with the items and
only retain the users which have more than 20 interactions. After the pre-
processing, the dataset consists of 50 thousand users, 10 thousand items and
1.5 million user-item edges. Each edge denotes whether the user has pinned
the items.

440 J. Lin et al.

4.2 Online A/B Tests

The ultimate goal of the recommendation system is to lift the user’s interest in
the items. Therefore, we perform random A/B experiments on Ali-mobile taobao
to demonstrate this, where a random set of users obtain the recommendation
results of RNE and another obtain the results of CF-based methods. Any dif-
ference in the engagement of the items between the two groups can truly reflect
the recommendation quality of two methods. Note that here we only use one
baseline because deploying many methods online to do A/B tests will cost a lot
of resources. And the reason why we choose CF is that it is well investigated
for recommendation and existing network embedding methods cannot scale to
billion-scale dataset. For more comparisons with state-of-the-art methods, we do
offline experiment, which we will introduce in detail later.

We use the following six metrics to measure the recommendation quality.

– AVD (Averaged View Depth): The metric denotes how deep a user views the
page. It measures the recommendation quality.

– ACN (Averaged Click Number): The metric measures the number of clicks on
the items for each user in average. It measures the recommendation quality.

– P-CTR (Page Click-through Rate): for a page p, pctr = #click-throughs(p)
#impressions(p) ×

100%. It measures the recommendation quality.
– U-CTR (User Click-through Rate): for a user u, uctr = #click-throughs(u)

#impressions(u) ×
100%. It measures the recommendation quality.

– Re-C (Recommended number of clusters): The averaged number of clusters
recommended to users. The clusters are obtained by using our clustering
algorithm. The metric measures the recommendation diversity.

– CK-C (Clicked number of clusters): The averaged number of clusters clicked
by users. It measures both the recommendation quality and the diversity.

Table 2. Performance of online A/B tests on Ali-mobile taobao

Metrics AVD ACN P-CTR U-CTR Re-C CK-C

Ali-mobile taobao 9.54% 13.21% 4.99% 1.12% 20.49% 16.32%

Table 2 summarizes the lift in engagement of items recommended by RNE
compared with CF-based methods in controlled A/B experiments. From Table 2,
we have the following observations and analysis:

– We find that RNE can achieve a significant improvement in terms of AVD
and ACN over the CF. It indicates by using the results of RNE, users are
more willing to go deeper to view more items and click more items, which
indirectly demonstrates the ranking quality of RNE.

RNE: A Scalable Network Embedding for Billion-Scale Recommendation 441

– In terms of the two CTR metrics, a popular and well-accepted metric to
evaluate the recommendation quality, our proposed method also achieves a
better result than CF. It further demonstrates that RNE is able to produce
personalized items for users. The reason for a better recommendation quality
is twofold. (1) Our method is able to capture the local structures between the
users and items. (2) Our method considers the dynamic change of the user’s
interest.

– We find that RNE achieves a higher Re-C compared with CF, which indicates
that our recommended results are from more clusters. The reason is that our
proposed method incorporates the diversity issue into the model design.

– More importantly, our method achieves a higher CK-C than CF, which
demonstrates that not only our method can produce more diverse recom-
mendations, but also the users are willing to click these diverse recommended
items. It indicates that our method is able to improve the recommendation
quality while improving the recommendation diversity.

– Under the billion-scale scenario, RNE can be deployed online and still obtain
good results, which demonstrates the superiority of our method.

4.3 Showcase

In this section, we give some showcase to see some intuitions regarding the
embeddings we learn. After the learning process of RNE, all the items will have
embeddings. Then in this experiment, given a query item’s embedding, we aim
to find the most similar 8 items whose embeddings have the smallest distance
with the query. Then we display both the query image and the recommended
images in Fig. 2.

Fig. 2. Real showcase on Ali-mobile taobao: Given an item (in red box), searching for
the nearest 8 items (in blue box) using the embeddings learned by RNE. (Color figure
online)

In Fig. 2(a), the query item is a princess-style educational toy for girls. When
we look at the returned results, these images belong to different categories with

442 J. Lin et al.

the query, like plasticine and origami. But all of them are for fun and a majority
of them are also princess-style. It demonstrates that our method is able to find
more categories of items but retain the primary style of the item. In Fig. 2(b), the
query item is a woman sweatshirt of the brand of Peacebird. The returned images
are all coat, sweater or sweatshirt of the brand of Peacebird or Only. Similarly,
the returned images and the query image are all casual style but belong to differ-
ent fine-grained categories. Moreover, actually the brand of Peacebird and Only
have very similar styles and our method can learn their inherit relationships.

In summary, in our method, we do not have the item features and the direct
relationships between items. We are only given the user-item interaction graph.
Although in this case, our method still can model the item relationships by using
the user behaviors as the bridge. It demonstrates that by using the network
embedding method we propose, the learned embeddings can capture the local
relationships between the entities.

4.4 Offline Experiment

To compare more baselines to get comprehensive results, we conduct the offline
experiments on the dataset of Pinterest. We randomly sample 90% user-item
pairs as the training set and the rest as the testset. For training set, we use
9-fold cross-validation to tune the parameters for all the methods. Note that
in this dataset, we do not have the cluster and time information for the item.
So we uniformly sample the items to do training. To evaluate the performance,
we use the following three metrics: Normalized Discounted Cumulative Gain
(NDCG), Mean Reciprocal Rank (MRR) and Hit Rate (HR). NDCG and MRR
will consider the rank of the hit and will assign higher scores to hits at top ranks.
While HR will only evaluate whether the test items are hit or not. We calculate
all the metrics for the test users and report the average score.

Table 3. Recommendation performance on Pinterest.

Method HR NDCG RR

Top5 Top10 Top50 Top100 Top5 Top10 Top50 Top100 Top5 Top10 Top50 Top100

GMF 0.501 0.678 0.9 0.97 0.332 0.386 0.425 0.434 0.276 0.292 0.301 0.307

MLP 0.504 0.679 0.908 0.99 0.341 0.385 0.426 0.436 0.275 0.295 0.302 0.309

NCF 0.529 0.688 0.912 0.99 0.35 0.405 0.443 0.454 0.298 0.32 0.343 0.341

LINE 0.536 0.7 0.91 0.99 0.353 0.409 0.448 0.455 0.297 0.325 0.334 0.335

node2vec 0.527 0.691 0.93 0.99 0.355 0.411 0.459 0.46 0.302 0.329 0.341 0.342

RNE 0.531 0.695 0.925 0.99 0.356 0.41 0.45 0.457 0.3 0.327 0.345 0.348

We first use the advanced CF-based methods GMF, MLP and NCF [11]
as baseline methods. We perform the same process of parameter search as the
work [11] did to select the optimal parameters. For network embedding methods,
since we only have the graph topology, in this case LINE [19] and node2vec

RNE: A Scalable Network Embedding for Billion-Scale Recommendation 443

[9] are state-of-the-art network embedding methods, so we choose them as the
baselines. For LINE, we use LINE1st+2nd with the default parameter settings.
For node2vec, we also use the default settings except for the bias parameters
p, q, which we conduct the grid search from {0.5, 1}. The embedding dimension
of them is all set as 128.

The results are shown in Table 3. From Table 3, we find that RNE achieves
a better performance than all the CF-based methods. The reason is that RNE
is able to capture the local structure of each user while CF-based methods only
focus on the direct links the user has clicked. It demonstrates that capturing the
local structures on the user-item graph is important for recommendation. LINE,
node2vec and RNE achieve similar performance in different evaluation metrics
and scenarios. But our method runs much faster than node2vec and LINE, which
will be discussed later. Therefore, RNE is a better balance between accuracy and
efficiency.

Fig. 3. Time comparisons on Pinterest dataset. We change the number of edges to be
trained and report the training time for each network embedding method.

Now we discuss the training time of LINE, node2vec and RNE. For a fair
comparison, we do not use the distributed strategy for RNE. From Fig. 3, we
find that RNE can boost the running time over LINE and node2vec. Specifically,
when the training edges increase from 0.15 million to 1.5 million, the running
time improvement of RNE compared with LINE will be larger and larger, from
2x to 4.4x. When the edges continuously increase to the billion-scale dataset like
the Ali-mobile taobao dataset, it is difficult for LINE and node2vec to obtain the
results. But RNE can still obtain a good result. The reasons why our method
can scale to billion-scale dataset are twofold: (1) The proposed sampling method
avoids us running over all the edges in the graph. (2) Our method can be deployed
on distributed system for parallel computations.

In summary, RNE has a good scalability, which is much more efficiency than
baseline methods and can scale to billion-scale recommendation scenario, mean-
while RNE do not sacrifice its recommendation accuracy.

444 J. Lin et al.

5 Conclusion

In this paper, we propose a novel network embedding method named RNE for
scalable recommendation. The proposed network embedding method is able to
capture the local structures on the user-item graph to achieve a better recom-
mendation quality. Specifically, to consider the specific properties for recommen-
dation, i.e the diversity and time-decay of user interest, we design a sampling
method for embedding process to incorporate these properties. And the sampling
method also guarantees the scalability of the proposed method while almost pre-
serving the recommendation quality. We also deploy our algorithm on parameter
server to make it available for large-scale recommendation. Experimental results
on online A/B tests and offline experiments all demonstrate the superiority of
the proposed method.

For the future work, we may consider the user and item features, which can
further address the sparsity and cold-start problem. We also want to analyze the
role of features and topology structures for recommendation.

Acknowledgement. We would like to thank all the colleagues of our team and all
the members of our cooperative team: the search engine team in Alibaba. They provide
many helpful comments for the paper. We also would like to thank the support of the
Initiative Postdocs Supporting Program and the valuable comments provided by all
the reviewers.

References

1. Adomavicius, G., Kwon, Y.O.: Improving aggregate recommendation diversity
using ranking-based techniques. TKDE 24(5), 896–911 (2012)

2. Cao, S., Lu, W., Xu, Q.: GraRep: learning graph representations with global struc-
tural information. In: CIKM, pp. 891–900 (2015)

3. Chang, S., Han, W., Tang, J., Qi, G.J., Aggarwal, C.C., Huang, T.S.: Heteroge-
neous network embedding via deep architectures. In: SIGKDD, pp. 119–128. ACM
(2015)

4. Cui, P., Wang, X., Pei, J., Zhu, W.: A survey on network embedding. TKDE (2018)
5. Deshpande, M., Karypis, G.: Item-based top-n recommendation algorithms. ACM

Trans. Inf. Syst. 22(1), 143–177 (2004)
6. Dong, Y., Chawla, N.V., Swami, A.: metapath2vec: scalable representation learning

for heterogeneous networks. In: SIGKDD, pp. 135–144. ACM (2017)
7. Gao, M., Chen, L., He, X., Zhou, A.: BiNE: bipartite network embedding (2018)
8. Geng, X., Zhang, H., Bian, J., Chua, T.S.: Learning image and user features for

recommendation in social networks. In: ICCV, pp. 4274–4282 (2015)
9. Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In:

SIGKDD, pp. 855–864 (2016)
10. Harvey, M., Carman, M.J., Ruthven, I., Crestani, F.: Bayesian latent variable mod-

els for collaborative item rating prediction. In: CIKM, pp. 699–708 (2011)
11. He, X., Liao, L., Zhang, H., Nie, L., Hu, X., Chua, T.S.: Neural collaborative

filtering, pp. 173–182 (2017)
12. Herlocker, J.L., Konstan, J.A., Terveen, L.G., Riedl, J.T.: Evaluating collaborative

filtering recommender systems. ACM Trans. Inf. Syst. 22(1), 5–53 (2004)

RNE: A Scalable Network Embedding for Billion-Scale Recommendation 445

13. Johnson, J., Douze, M., Jégou, H.: Billion-scale similarity search with GPUs. arXiv
preprint arXiv:1702.08734 (2017)

14. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space. arXiv preprint arXiv:1301.3781 (2013)

15. Ou, M., Cui, P., Pei, J., Zhang, Z., Zhu, W.: Asymmetric transitivity preserving
graph embedding. In: SIGKDD, pp. 1105–1114 (2016)

16. Perozzi, B., Al-Rfou, R., Skiena, S.: DeepWalk: online learning of social represen-
tations. In: SIGKDD, pp. 701–710. ACM (2014)

17. Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Item-based collaborative filtering
recommendation algorithms. In: International Conference on World Wide Web, pp.
285–295 (2001)

18. Strub, F., Mary, J.: Collaborative filtering with stacked denoising autoencoders and
sparse inputs. In: NIPS Workshop on Machine Learning for e-Commerce (2015)

19. Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: LINE: large-scale infor-
mation network embedding. In: WWW, pp. 1067–1077 (2015)

20. Wang, D., Cui, P., Zhu, W.: Structural deep network embedding. In: SIGKDD, pp.
1225–1234 (2016)

21. Wu, Y., Dubois, C., Zheng, A.X., Ester, M.: Collaborative denoising auto-encoders
for top-n recommender systems, pp. 153–162 (2016)

22. Xiao, H., Huang, M., Zhu, X.: TransG: a generative model for knowledge graph
embedding. In: Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers). vol. 1, pp. 2316–2325 (2016)

23. Xu, L., Wei, X., Cao, J., Yu, P.S.: Embedding of embedding (EOE): joint embed-
ding for coupled heterogeneous networks. In: Proceedings of the Tenth ACM Inter-
national Conference on Web Search and Data Mining, pp. 741–749. ACM (2017)

24. Zhang, Z., Cui, P., Li, H., Wang, X., Zhu, W.: Billion-scale network embedding
with iterative random projection. arXiv preprint arXiv:1805.02396 (2018)

25. Zhou, X., et al.: Enhancing online video recommendation using social user inter-
actions. VLDBJ 26(5), 637–656 (2017)

http://arxiv.org/abs/1702.08734
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1805.02396

Social Network and Graph Mining

Graph Compression with Stars

Faming Li1, Zhaonian Zou1(B), Jianzhong Li1, and Yingshu Li2

1 Harbin Institute of Technology, Harbin, China
{lifaming2016,znzou,lijzh}@hit.edu.cn
2 Georgia State University, Atlanta, USA

yili@gsu.edu

Abstract. Making massive graph data easily understandable by people
is a demanding task in a variety of real applications. Graph compres-
sion is an effective approach to reducing the size of graph data as well
as its complexity in structures. This paper proposes a simple yet effec-
tive graph compression method called the star-based graph compression.
This method compresses a graph by shrinking a collection of disjoint
subgraphs called stars. Compressing a graph into the optimal star-based
compressed graph with the highest compression ratio is shown to be NP-
complete. We propose a greedy compression algorithm called StarZip.
We experimentally verify that StarZip achieves compression ratios of 3.8–
45.7 and 2.9–241.6 in terms of vertex count and edge count, respectively.
Besides, we study the shortest path queries on compressed graphs. On the
real graphs, the StarSSSP algorithm for processing shortest path queries
on compressed graphs is 4X–20X faster than Dijkstra’s algorithm running
on original graphs. The average absolute error between the query results
of StarSSSP and the exact shortest distances is about 1. On the synthetic
graphs, StarSSSP is up to 313X faster than Dijkstra’s algorithm, and the
average absolute error is also about 1.

Keywords: Graph compression · Star · Shortest path

1 Introduction

In recent years, graphs have been extensively used to model complex relation-
ships between entities in a wide variety of applications. For example, the Web
graph represents hyperlinks between Web pages in the World Wide Web. Social
networks represent social relationships between people in general or specific
domains. So far, massive amount of data represented by graphs, known as graph
data, has been accumulated in numerous applications. For example, the Web
graph consists of at least 4.62 billion vertices (Web pages) in 20171. The total
number of monthly active Facebook users has reached 1.754 billion in Octo-
ber 20172. The volume of graph data continues increasing in even faster speed.
Currently, graph data has evolved to be a typical class of big data.
1 http://www.worldwidewebsize.com.
2 http://www.statisticbrain.com/facebook-statistics/.

c© Springer Nature Switzerland AG 2019
Q. Yang et al. (Eds.): PAKDD 2019, LNAI 11440, pp. 449–461, 2019.
https://doi.org/10.1007/978-3-030-16145-3_35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16145-3_35&domain=pdf
http://www.worldwidewebsize.com
http://www.statisticbrain.com/facebook-statistics/
https://doi.org/10.1007/978-3-030-16145-3_35

450 F. Li et al.

Massive graphs are too large and too complex to be easily understood by
people. Recently, numerous studies have been carried out on graph query pro-
cessing and graph mining. The goal is to develop advanced tools for understand-
ing, querying and mining massive graph data. For a graph analysis problem Q
on a large graph G, traditional studies on graph algorithms mostly focus on
reducing the time complexity of algorithms to solve Q on G. However, this kind
of approaches often do not scale to very large graphs. In recent years, scale-down
approaches to graph analytics have attracted considerable research attentions.
The main idea of scale-down approaches is to reduce the size of the graph G and
(approximately) solve the problem Q on the reduced graph of G. Two typical
ways to reduce the size of G are graph sampling and graph compression. Graph
sampling [1] randomly selects a subgraph of G that can preserve the character-
istics of G. Graph compression merges multiple similar vertices into one vertex,
so it reduces the size of G.

We focus on graph compression method in this paper. The concept of graph
compression is similar to the notion in [2] and [3]. The graph G∗, which is
constructed by super vertices and super edges, is a compression of an original
graph G and has the following properties:

– G∗ is a graph with |E∗| edges, where |E∗| is smaller than the number of edges
in G;

– It is computationally easy to convert G into G∗.

The main contributions of this paper are listed as follows.

– We propose a simple yet effective graph compression method called StarZip,
which can compress big graph efficiently.

– Besides the impressive compression ratios that the star-based graph com-
pression can achieve, this graph compression method can also support query
processing on compressed graphs, such as shortest path queries.

– We conducted comprehensive experiments on the performance of the star-
based graph compression and the efficiency and the accuracy of query pro-
cessing on star-based compressed graphs.

The rest of this paper is organized as follows. Section 2 gives a formal def-
inition of the star-based graph compression and proposes the star-based graph
compression algorithm StarZip. Section 3 studies shortest path queries on star-
based compressed graphs. Experimental results are reported in Sect. 4. Section 5
reviews the related work. Finally, we conclude the paper in Sect. 6.

2 The Star-Based Graph Compression

This section gives a formal definition of the star-based graph compression and
proposes a star-based graph compression algorithm. A graph is a pair (V,E),
where V is a set of vertices, and E is a set of edges. A graph is undirected if
(u, v) and (v, u) refer to the same edge. In this paper, we consider undirected
graphs. Let V (G) and E(G) denote the vertex set and the edge set of a graph
G, respectively.

Graph Compression with Stars 451

2.1 Star-Based Compressed Graphs

First, we introduce some basic concepts used in the definition of the star-based
graph compression.

Definition 1. A graph S is a star if there is a vertex s ∈ V (S) such that
E(S) = {(s, v)|v ∈ V (S) \ {s}}. The vertex s is called the center of the star S.
The vertices in V (S) \ {s} are called the border vertices of S.

In the graph shown Fig. 1(a), the subgraph formed by the edges (v3, v0),
(v3, v1), (v3, v2), (v3, v4), and (v3, v10) is a star, where v3 is the center vertex,
and v0, v1, v2, v4, v10 are the border vertices.

v0 v2 v5 v6

v10 v3 v8

v1 v4 v7 v9

v11 v12

(a)

S1 S2

S3

{v3, v0, v1, v2, v4, v10} {v8, v5, v6, v7, v9}

{v11, v12}

(b)

Fig. 1. A sample graph.

Definition 2. Let G be a graph and Φ = {V1, V2, . . . , Vn} be a partition of V (G),
that is, V (G) = V1 ∪ V2 ∪ · · · ∪ Vn and Vi ∩ Vj = ∅ for i �= j. Let H be a graph
such that

– V (H) = Φ, and
– (Vi, Vj) ∈ E(H) if and only if there exist u ∈ Vi and v ∈ Vj such that

(u, v) ∈ E(G).

We call H the compressed graph of G with respect to the vertex partition Φ. The
vertices in H are called super-vertices, and the edges in H are called super-edges.

Consider the graph G shown in Fig. 1(a). Let

Φ = {{v3, v0, v1, v2, v4, v10}, {v8, v5, v6, v7, v9}, {v11, v12}}.

Then, Φ is a partition of V (G). The compressed graph of G with respect to Φ
is shown in Fig. 1(b). This compressed graph consists of 3 super-vertices and 2
super-edges.

Graph compression is the process of creating a compressed graph by grouping
vertices with similar structural contexts into super-vertices. In this paper, we
propose the star-based graph compression, which is described as follows.

452 F. Li et al.

Definition 3. Let G be a graph. The star cover of G is a set {S1, S2, . . . , Sn}
of stars in G such that

– V (G) = V (S1) ∪ V (S2) ∪ · · · ∪ V (Sn), and
– V (Si) ∩ V (Sj) = ∅ for i �= j.

Given a star cover {S1, S2, . . . , Sn} of a graph G, {V (S1), V (S2), . . . , V (Sn)}
is a partition of V (G). The compressed graph of G with respect to {V (S1), V (S2),
. . . , V (Sn)} is called the star-based compressed graph of G with respect to the
star cover {S1, S2, . . . , Sn}. In the star-based graph compression, each star in
the star cover is compressed into a super-vertex in the compressed graph.

Consider the graph G shown in Fig. 1(a). The stars S1, S2 and S3 consti-
tute a star cover of G. The star-based compressed graph of G with respect to
{S1, S2, S3} is shown in Fig. 1(b), where the stars are compressed into the super-
vertices.

2.2 Star-Based Graph Compression Algorithm

Let G be a graph. For any star cover of G, we have a corresponding star-based
compressed graph. The optimal star-based compressed graph should be the one
with the highest compression ratio, that is, it contains the minimum number of
super-vertices. Note that each super-vertex uniquely corresponds to a star in the
star cover. The optimal star-based compressed graph is therefore determined by
the minimum star cover, that is, the star cover with the minimum number of
stars.

The minimum star cover of G is closely related to the minimum dominating
set of G. The dominating set of G is a vertex subset C ⊆ V (G) such that
every vertex in V (G) \ C is adjacent to at least one vertex in C. The minimum
dominating set is the one of the minimum cardinality.

Lemma 1. Let {S1, S2, . . . , Sn} be a star cover of a graph G. For i = 1, 2, . . . , n,
let si be the center of Si. Then, {S1, S2, . . . , Sn} is the minimum star cover of
G if and only if {s1, s2, . . . , sn} is the minimum dominating set of G.

Proof. First, we prove the sufficiency. Assume that {S′
1, S

′
2, . . . , S

′
m} is the min-

imum star cover of G, where m < n. For i = 1, 2, . . . ,m, let s′
i be the center of

S′
i. By the definition of stars, s′

i dominates all the border vertices in S′
i. Thus,

{s1, s2, . . . , sn} is not the minimum dominating set of G, which is a contradiction.
Hence, {S1, S2, . . . , Sn} is the minimum star cover of G.

Next, we prove the necessity. Assume that {s′
1, s

′
2, . . . , s

′
m} is the minimum

dominating set of G, where m < n. Now, we construct a star cover of G based
on {s′

1, s
′
2, . . . , s

′
m}. For i = 1, 2, . . . ,m, let s′

i be a center vertex of a star S′
i. For

all v ∈ V (G)\{s′
1, s

′
2, . . . , s

′
m}, we assign v to a star Si if (si, v) ∈ E(G). Clearly,

{S′
1, S

′
2, . . . , S

′
m} is a star cover of G. Thus, {S1, S2, . . . , Sn} is not the minimum

star cover of G, which is a contradiction. Hence, {s1, s2, . . . , sn} is the minimum
dominating set of G.

Thus, the lemma holds. �	

Graph Compression with Stars 453

Algorithm 1. MSC
Input: a graph G
Output: a star cover of G
1: C ← ∅
2: while V (G) �= ∅ do
3: s ← the vertex of the maximum degree
4: S ← the star composed by s and all its neighbors in G, where s is the center
5: C ← C ∪ {S}
6: delete s and all its neighbors from G
7: return C

Algorithm 2. StarZip
Input: a graph G
Output: a compressed graph of G
1: V ← MSC(G)
2: E ← ∅
3: for all S, S′ ∈ V and S �= S′ do
4: if there exist v ∈ S and v′ ∈ S′ such that (v, v′) ∈ E(G) then
5: E ← E ∪ {(S, S′)}
6: return (V,E)

By Lemma 1, we immediately have the following theorem.

Theorem 1. Finding the minimum star cover of a graph is NP-hard.

Proof. The minimum dominating set problem, that is, finding the minimum
dominating set of a graph, is NP-hard [4]. By the proof of Lemma 1, the minimum
dominating set can be constructed from the minimum star cover in polynomial
time. Thus, the theorem holds. �	

Since it is infeasible to exactly find the minimum star cover in polynomial
time, we propose an approximation algorithm called MSC to find the minimum
star cover. The MSC algorithm is developed based on the greedy heuristic min-
imum dominating set algorithm [5]. The pseudocode of the MSC algorithm is
shown in Algorithm1.

Theorem 2. The MSC algorithm is (ln Δ+2)-approximate, where Δ is maximal
degree of the vertices in G.

Proof. The minimum dominating set of a graph can be approximated within
ln Δ + 2 [5]. By Lemma 1, the minimum star cover has the same cardinality as
the minimum dominating set. Thus, the theorem holds. �	

Based on the MSC algorithm, we propose our star-based graph compression
algorithm called StarZip. The pseudocode of the StarZip algorithm is shown in
Algorithm 2. The StarZip algorithm runs in O(|V (G)|+|E(G)| log Δ) time, where
Δ is the maximum vertex degree of G.

3 Query Processing on Star-Based Compressed Graphs

In this section, we show that the star-based graph compression is capable of sup-
porting efficient query processing. Particularly, we study single-source shortest
path queries on star-based compressed graphs.

454 F. Li et al.

3.1 Single-Source Shortest Path Queries

Now, we study how to process single-source shortest path (SSSP) queries on star-
based compressed graphs. Let G be a graph and G∗ be the star-based compressed
graph of G computed by the StarZip algorithm. Given a vertex s in G as a source,
the single-source shortest path query from s computes the length of the shortest
paths from s to all the other vertices in G. Dijkstra’s algorithm can process an
SSSP query on G in O(|E(G)| + |V (G)| log |V (G)|) time, where |V (G)| is the
number of vertices in G, and |E(G)| is the number of edges in G. Since the star-
based compressed graph G∗ is significantly smaller than the original graph G,
we try to process an SSSP query directly on G∗ to save query processing time.

To support SSSP queries on the star-based compressed graph G∗, we asso-
ciate every super-edge e in G∗ with three bits denoted by b1(e), b2(e) and b3(e),
respectively. Let u and v be the endpoints of e. The super-vertex u represents a
star Su in G, and the super-vertex v represents a star Sv in G. We assign the
bits b1(e), b2(e) and b3(e) as follows.

– b1(e) = 1 if the center vertex of Su is adjacent to a border vertex in Sv;
otherwise, b1(e) = 0;

– b2(e) = 1 if the center vertex of Sv is adjacent to a border vertex in Su;
otherwise, b2(e) = 0;

– b3(e) = 1 if a border vertex in Su is adjacent to a border vertex in Sv;
otherwise, b3(e) = 0.

Notably, it is impossible that the center vertices of Su and Sv are adjacent
because the StarZip algorithm must have identified one of them as a border
vertex in the other star.

Given an SSSP query starting from a source vertex s in the original graph
G, the SSSP query can be processed on the star-based compressed graph G∗ by
the StarSSSP algorithm given in Algorithm 3.

For all super-vertices w in G∗ that are adjacent to v, we need to update d[w].
We propose three strategies to update d[w].

Strategy 1: Update d[w] to min(d[w], d[v] + 1).
Strategy 2: Update d[w] to min(d[w], d[v] + 2).
Strategy 3: Let e = (u, v).

– If b1(e) = 1 or b2(e) = 1, update d[w] to min(d[w], d[u] + 2);
– Otherwise, update d[w] to min(d[w], d[u] + 3).

The time complexity of the StarSSSP algorithm is O(|E(G∗)| +
|V (G∗)| log |V (G∗)|) since Dijkstra’s algorithm runs on the compressed graph
G∗ in O(|E(G∗)| + |V (G∗)| log |V (G∗)|) time, and our adaption to Dijkstra’s
algorithm in StarSSSP only adds O(1) cost to each of the |E(G∗)| iterations.

4 Experiments

In this section, we experimentally evaluate the star-based graph compression as
well as the query processing algorithms on star-based compressed graphs.

Graph Compression with Stars 455

Algorithm 3. StarSSSP
Input: a star-based compressed graph G∗ of a graph G and a source vertex s
Output: the shortest distances d∗(s, v) from s to all the other vertices v in G
1: s∗ ← the super-vertex in G∗ containing s
2: initialize d[s∗]
3: Q ← V (G∗)
4: while Q �= ∅ do
5: v ← extract min(Q)
6: for all vertices u adjacent to v in G∗ do
7: update d[u] by strategy 1, 2 or 3
8: for all w ∈ V (G∗) do
9: for all vertices w′ in the super-vertex w do
10: if w′ is center then
11: d∗(s, w′) ← d[w]
12: else
13: d∗(s, w′) ← d[w] + 1
14: return d∗(s, v) for all v ∈ V (G)

Table 1. Statistics of the graph datasets.

Dataset Type # vertices # edges Average degree Diameter

Youtube Social network 1,134,890 2,987,624 5.265 20

DBLP Collaboration network 317,080 1,049,866 6.622 21

Skitter Autonomous system 1,696,415 11,095,298 13.081 25

LiveJournal Social network 3,997,962 34,681,189 17.349 17

Road-PA Road network 1,088,092 1,541,898 2.834 786

Orkut Social network 3,072,441 117,185,083 76.281 9

R-MAT-16384 Synthetic 16,384 850,000 103.760 8

R-MAT-65536 Synthetic 65,536 10,000,000 305.176 7

R-MAT-32768 Synthetic 32,768 15,000,000 915.527 5

4.1 Experimental Setting

We implemented the star-based graph compression algorithm StarZip and the
query processing algorithm StarSSSP in C++ and compiled them with g++. All
the experiments were carried out on a machine with 2 GHz Intel Core 2 CPU
and 22 GB of RAM running Ubuntu 14.04.

4.2 Datasets

We carried out the experiments on six real datasets obtained from the Stanford
SNAP datasets [6]. In order to control the volume and the density of graphs, we
generated some synthetic graph datasets using the R-MAT model [7], a scale-
free graph generation model. The characteristics of the real datasets and the
synthetic datasets are described in Table 1.

4.3 Performance of the Star-Based Graph Compression

First, we evaluated the performance of the star-based graph compression. Par-
ticularly, we examined the compression ratios and the degree distributions of the
compressed graphs.

456 F. Li et al.

Table 2. Sizes and compression ratios of the star-based compressed graphs.

Dataset |V (G∗)| |E(G∗)| |V (G)|
|V (G∗)|

|E(G)|
|E(G∗)|

Youtube 160,660 595,909 7.064 5.014

DBLP 60,191 207,906 5.227 5.050

Skitter 338,713 1,288,202 5.008 8.613

LiveJournal 868,088 9,246,980 4.605 3.751

Road-PA 289,769 531,716 3.755 2.900

Orkut 418,300 24,933,610 7.345 4.700

R-MAT-16384 1,431 77,105 11.449 11.108

R-MAT-65536 3,077 374,996 21.299 28.898

R-MAT-32768 717 61,823 45.701 241.588

(a) Youtbube. (b) DBLP. (c) Skitter. (d) Orkut.

(e) Compressed
Youtube.

(f) Compressed
DBLP.

(g) Compressed Skit-
ter.

(h) Compressed
Orkut.

Fig. 2. Degree distributions of the real graphs and their star-based compressed graphs.

Compression Ratios. Let G be a graph and G∗ be the star-based compressed
graph of G produced by the StarZip algorithm. The compression ratio is defined
as the ratio of the size of G to the size of G∗. Specifically, if the graph size is
measured by the number of vertices, we have the vertex compression ratio, that
is, |V (G)|/|V (G∗)|; if the graph size is measured by the number of edges, we have
the edge compression ratio, that is, |E(G)|/|E(G∗)|. Table 2 gives the number
of vertices, the number of edges, the vertex compression ratio and the edge
compression ratio of each star-based compressed graph returned by the StarZip
algorithm. On real graphs, the vertex compression ratio varies from 3.8 to 7.3,
and the edge compression ratio varies from 2.9 to 8.6. On synthetic graphs, the
vertex compression ratio varies from 11.4 to 45.7, and the edge compression ratio
varies from 11.1 to 241.6.

Graph Compression with Stars 457

The correlation coefficient [8] between the vertex compression ratio and the
average vertex degree of the input graph is 0.994, and the correlation coefficient
between the edge compression ratio and the average degree is 0.973. Thus, the
compression ratio is positively correlated with the average degree of the input
graph. The denser a graph is, the higher the compression ratio is.

Degree Distributions. A large number of graphs in the real worlds have been
shown to be power-law graphs, that is, the vertex degrees in a graph follows a
power-law distribution. All the real graphs used in our experiments are power-
law graphs.

Figure 2 plots the degree distributions of the real graphs before and after
compression. The points are plotted in log-log scale. We can see that both the
original graph and the star-based compressed graphs follow power-law degree
distributions. In Fig. 2, we also give the power law exponents. We can see that
the power law exponents of the original graph and the compressed graph are
very close.

4.4 Query Processing Performance on Star-Based Compressed
Graphs

After examining the performance of the star-based graph compression itself, we
evaluated the performance of the query processing algorithms on the star-based
compressed graphs.

Efficiency of Shortest Path Query Processing. To evaluate the improve-
ment in query processing efficiency, we use Dijkstra’s algorithm running on G as
the baseline. For all experimented graphs G, we select |V (G)|/10 source vertices
uniformly at random and compose |V (G)|/10 shortest path queries. For each
query, we ran Dijkstra’s algorithm on G and ran the StarSSSP algorithm with
distance updating strategy 2 on the compressed graph G∗.

Table 3 shows the speedup ratio, that is, the ratio of the average execution
time of Dijkstra’s algorithm to that of the StarSSSP algorithm. We can see that
the StarSSSP is 4–20 times faster than Dijkstra’s algorithm on the real graphs
and is 22–313 times faster on synthetic graphs. It verifies that the StarSSSP algo-
rithm is much more efficient than Dijkstra’s algorithm running on the original
graphs. Besides, the denser the original graph is, the more efficient StarSSSP is.

Accuracy of Shortest Path Query Processing. The StarSSSP algorithm is
an approximate query processing algorithm. Depending on the strategy that the
StarSSSP algorithm uses to update distances, the StarSSSP algorithm is able to
return lower bounds or upper bounds of the shortest distances from the source
vertex to all the other vertices.

To evaluate the accuracy of the StarSSSP algorithm, we measure the accuracy
rate, the average absolute error and the average relative error of the query

458 F. Li et al.

Table 3. Executing time (s) and Speedup ratios of the StarSSSP algorithm against
Dijkstra’s algorithm and accuracy rate (A.R.), average absolute error (A.A.E.) and
average relative error (A.R.E.) of query results.

Dataset Dijkstra StarSSSP Speedup A.R. A.A.E. A.R.E.

Youtube 2.554 0.124 20.630 0.169 1.424 0.289

DBLP 0.661 0.040 16.408 0.265 1.064 0.164

Skitter 4.495 0.349 12.871 0.290 1.044 0.229

LiveJournal 13.476 3.121 4.318 0.209 1.021 0.207

Road-PA 1.599 0.090 17.774 0.134 18.122 0.081

Orkut 22.097 4.084 5.412 0.302 0.919 0.274

R-MAT-16384 0.104 0.005 22.882 0.365 0.738 0.336

R-MAT-65536 1.248 0.021 58.878 0.238 0.934 0.374

R-MAT-32768 1.601 0.005 313.922 0.540 1.016 0.516

results. Let G be a graph and G∗ be the star-based compressed graph of G
computed by the StarZip algorithm. For two vertices s and t in G, let d(s, t)
be the shortest distance from s to t in G, and let d∗(s, t) be the approximate
shortest distance from s to t computed on G∗ by the StarSSSP algorithm using
distance updating strategy 2. The absolute error between d(s, t) and d∗(s, t) is
|d(s, t) − d∗(s, t)|, and the relative error between d(s, t) and d∗(s, t) is |d(s, t) −
d∗(s, t)|/d(s, t).

Table 3 shows the accuracy rate, the average absolute error and the average
relative error of the query results obtained on all experimented graphs. As we
can see, the accuracy rate varies from 13.4% to 54%, the average absolute errors
are all about 1 except the one on the Road-PA dataset, and the average relative
error varies from 8.1% to 49.5%. Note that Road-PA is a road network, which is
very sparse. The diameter of Road-PA is 786, and the shortest distances between
vertices are generally large. Although the average absolute error on the Road-PA
dataset is 18.122, the average relative error is just 8.1%. The experimental results
verify that the StarSSSP algorithm is accurate enough in processing shortest path
queries.

5 Related Work

Graph compression has been studied for about four decades. Considerable graph
compression algorithms have been proposed to compress graphs collected in a
variety of applications. Here, we list some related works based on the literal
conceptions similar to the graph compression in our paper.

Graph Aggregation and Graph Summarization. Graph aggregation and
summarization produce small and informative summarization of the original

Graph Compression with Stars 459

graph to help understand the underlying characteristics of large graphs. k-
SNAP [9,10] produce summary graph based on the vertex attributes and rela-
tionships. It puts some vertices into a vertex with rules that users select or are
defined in advance. Navlakha et al. [11] summary unlabelled graphs using Rissa-
nen’s Minimum Description Length (MDL) principle. It defines the quality of a
graph summary G∗ by cost(G∗). This method finds the optimal graph represen-
tation by minimizing cost(G∗). But, it becomes difficult when somebody wants
to do some queries or operations like the shortest path between two nodes, the
cut vertices of graph, etc. In essence, these graph aggregation and summariza-
tion algorithms are similar to graph clustering algorithms. They are unable to
support queries on compressed graphs without decompression.

Graph Simplification. Ruan et al. [12] simplify a graph by using the con-
cept “gate graph” to preserve the distance of original graph. Then the shortest-
path distance between any “non-local” pair can be recovered by consecutive
“local” walks through the gate vertices in the gate graph. As we test, the time
of compressing a graph with 15,000 edges is more than 2 h, while StarZip only
needs 1105 s to compress a graph with 117 million edges. Besides, the accuracy
of approximate distance computed through gate graph can not be guaranteed.
Bonchi et al. [13] simplify a graph by selecting a subset of arcs in the graphs to
maximize the number of nodes reachable in all directed acyclic graphs through
some specified root vertices. This method preserves the property of activity of
the graph while the graph it gets doesn’t support any queries.

Graph Compaction and Graph Partition. The graph compaction here is
same to the concept of graph compression in our paper which reduces the scale
of graphs and the compact(compressed) graphs can support many operations
on graphs. The graph partition is always used in parallel graph processing sys-
tem [14,15]. It breaks the graph into some small parts to distribute them on dif-
ferent machines to minimize the communication cost between different machines.

Graph Compression. The graph compression method can be applied in several
fields. Boldi and Vigna [16] stores the Web graph in adjacency lists. They use
multiple lists to copy one list by leveraging locality and similarity. The multiple
lists record the list they copy by 0 and 1 sequence. Alder and Mitzenmacher [17]
construct the minimum spanning tree to compress the randomly generated Web
graph. Different from the studies above, Apostolico and Drovandi [18] make no
use of locality and similarity. They compress the Web graph by breath-first search
(BFS). To facilitate graph decompression, type labels are used to remember the
types of the compressed blocks. In summary, the Web graph compression algo-
rithms in [16] do not apply to graphs in other applications because those graphs
usually do not have the locality or the similarity characteristics. Besides, some
Web compression algorithms [16,18] just encode the adjacency list to reduce stor-
age space without supporting any queries without decompression. Fan et al. [19]
proposes two compression methods on labelled directed graph based on reach-
ability and graph pattern queries. They can get results quickly on compressed

460 F. Li et al.

graph. But all the methods above aim at weight graph, which are useless when
graph is unlabelled.

6 Conclusions

This paper gives a formal definition of the star-based graph compression. We
show that finding the optimal star-based compressed graph is an NP-complete
problem. The StarZip algorithm uses a greedy compression strategy and achieves
an approximation ratio of lnΔ + 2, where Δ is the maximum vertex degree. In
practice, StarZip also achieves impressive compression ratios, which are positively
correlated with average vertex degrees. Star-based compressed graphs preserve
the distributions of vertex degrees of original graphs. The query results returned
by the StarSSSP algorithm on star-based compressed graphs well approximate
the exact query results on original graphs. StarSSSP is 4X–313X faster than
Dijkstra’s algorithm running on original graphs.

Acknowledgements. This work was partially supported by the National Natural
Science Foundation of China (No. 61532015, No. 61672189, No. 61732003 and No.
61872106) and the National Science Foundation of USA (No. 1741277 and No. 1829674).

References

1. Leskovec, J., Faloutsos, C.: Sampling from large graphs. In: KDD, pp. 631–636
(2006)

2. Feder, T., Motwani, R.: Clique partitions, graph compression and speeding-up
algorithms. J. Comput. Syst. Sci. 51(2), 261–272 (1995)

3. Toivonen, H., Zhou, F., Hartikainen, A., Hinkka, A.: Compression of weighted
graphs. In: KDD, pp. 965–973 (2011)

4. Chvatal, V.: A greedy heuristic for the set-covering problem. Math. Oper. Res.
4(3), 233–235 (1979)

5. Ruan, L., Du, H., Jia, X., Wu, W., Li, Y., Ko, K.I.: A greedy approximation for
minimum connected dominating sets. Theoret. Comput. Sci. 329(1–3), 325–330
(2004)

6. Leskovec, J., Krevl, A.: SNAP datasets: Stanford large network dataset collection,
June 2014. http://snap.stanford.edu/data

7. Chakrabarti, D., Zhan, Y., Faloutsos, C.: R-MAT: a recursive model for graph
mining. In: SDM, vol. 4, pp. 442–446 (2004)

8. Li, L.: A concordance correlation coefficient to evaluate reproducibility. Biometrics
45(1), 255–268 (1989)

9. Tian, Y., Hankins, R.A., Patel, J.M.: Efficient aggregation for graph summariza-
tion. In: SIGMOD, pp. 567–580 (2008)

10. Zhang, N., Tian, Y., Patel, J.M.: Discovery-driven graph summarization. In: ICDE,
pp. 880–891 (2010)

11. Navlakha, S., Rastogi, R., Shrivastava, N.: Graph summarization with bounded
error. In: SIGMOD, pp. 419–432 (2008)

12. Ruan, N., Jin, R., Huang, Y.: Distance preserving graph simplification. In: ICDM,
pp. 1200–1205 (2011)

http://snap.stanford.edu/data

Graph Compression with Stars 461

13. Bonchi, F., Morales, G.D.F., Gionis, A., Ukkonen, A.: Activity preserving graph
simplification. Data Min. Knowl. Disc. 27(3), 321–343 (2013)

14. Gonzalez, J.E., Low, Y., Gu, H., Bickson, D., Guestrin, C.: PowerGraph: dis-
tributed graph-parallel computation on natural graphs. In: OSDI, pp. 17–30 (2012)

15. Shao, Y., Cui, B., Ma, L.: PAGE: a partition aware engine for parallel graph
computation. IEEE Trans. Knowl. Data Eng. 27(2), 518–530 (2015)

16. Boldi, P., Vigna, S.: The webgraph framework I: compression techniques. In:
WWW, pp. 595–601 (2004)

17. Adler, M., Mitzenmacher, M.: Towards compressing web graphs. In: DCC, pp.
203–212 (2001)

18. Apostolico, A., Drovandi, G.: Graph compression by BFS. Algorithms 2(3), 1031–
1044 (2009)

19. Fan, W., Li, J., Wang, X., Wu, Y.: Query preserving graph compression. In: SIG-
MOD, pp. 157–168 (2012)

Neighbor-Based Link Prediction
with Edge Uncertainty

Chi Zhang(B) and Osmar R. Zäıane

Department of Computing Science, University of Alberta,
Edmonton, AB, Canada

{chi7,zaiane}@ualberta.ca

Abstract. In this work, we are concerned with uncertain networks and
focus on the problem of link prediction with edge uncertainty. Networks
with edge uncertainty are networks where connections between nodes
are observed with some probability. We propose the uncertain version of
the popular neighbors-based metrics for link prediction. The metrics are
developed by considering all possible worlds generated by the uncertain
network. We state that by taking all possible worlds of the uncertain net-
work into account, the performance of link prediction can be improved.
Since uncertain edges result in a very large number of possible worlds, we
propose an efficient divide and conquer algorithm to reduce time com-
plexity and calculate these metrics. Finally, we evaluate our metrics using
existing ground truth to show the effectiveness of our proposed approach
against other popular link prediction methods.

Keywords: Social network analysis · Link prediction ·
Uncertain networks

1 Introduction

Link prediction is the problem of determining future or missing associations
between entities in networks based on observed links. Because of its broad appli-
cations in different domains, link prediction has attracted increasing attention.

In the past decade, many works have been done about link prediction in deter-
ministic graphs, graphs where the network structure is exactly and determinis-
tically known. There are many metrics available for computing the similarity
of two nodes. Among all approaches, neighbor-based metrics [1–5] are effective
and the simplest way to predict missing links. The other metrics include path-
based metrics [6], random-walk-based metrics [7]. Furthermore, there are some
learning-based methods [8] and embedding-based methods [9] that have been
proposed in recent years.

Most previous studies on link prediction have focused on networks where
the structure is exactly known. With the increasing number of applications in
which the edges are constructed in the network through uncertain or statisti-
cal inference, the problem of link prediction with edge uncertainty has become
c© Springer Nature Switzerland AG 2019
Q. Yang et al. (Eds.): PAKDD 2019, LNAI 11440, pp. 462–474, 2019.
https://doi.org/10.1007/978-3-030-16145-3_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16145-3_36&domain=pdf
https://doi.org/10.1007/978-3-030-16145-3_36

Neighbor-Based Link Prediction with Edge Uncertainty 463

increasingly important. Examples of such networks include protein-protein inter-
action networks with experimentally inferred links, sensor networks with uncer-
tain connectivity links, or social networks, which are augmented with inferred
friendship, similarity, or trust links. However, only few studies take probabilities
into consideration. Ahmed et al. [10] proposed the uncertain version of the ran-
dom walk method for link prediction with edge uncertainty. Mallek et al. [11]
put forward an approach combined sampling techniques and information fusion
and obtained good results in real-life settings. Up to now, the uncertain ver-
sion of the popular neighbor-based metrics have not been studied. Murata and
Moriyasu [12] proposed weighted similarity indices, including variants of some
popular neighbor-based metrics. People may regard probabilities as weights and
apply weighted variants of those metrics; however, it may lead to some problems.
More details are presented in Sect. 4.

The uncertain scenario will make the problem of link prediction become more
complex, and the uncertain version of the most basic neighbor-based methods are
not yet studied. Therefore, in this work, we mainly focus on using neighbor-based
algorithms to solve the problem of link prediction in the context of uncertain
networks. We propose the uncertain version of the popular neighbors-based met-
rics and efficient algorithms to calculate them. The remainder of this paper is
organized as follows. In Sect. 2, we provide the problem definition. In Sect. 3,
we review related work. In Sect. 4, we show the limitation of previous work,
propose the uncertain version of common-neighbors-based metrics and efficient
algorithms to produce them. In Sect. 5, we present the experiment results and
our evaluation metric. Finally, we conclude in Sect. 6.

2 Problem Definition

2.1 Uncertain Network

An uncertain graph G = (V, E ,P) is defined over a set of nodes V, a set of edges E ,
and a set of probabilities P of edge existence. Note the probability over the edge
between node Vi and node Vj can be represented as Pi,j or Pj,i. The multiple
links and self-connections are not allowed.

2.2 Link Prediction Problem Definition

The task of link prediction is to discover missing, hidden or future associations
between two nodes. Given a network and two unconnected nodes Vx and Vy ∈ V,
link prediction is to predict the probability of the existence of a link between the
node Vx and the node Vy. To do this, for each pair of nodes, Vx,Vy ∈ V, which
are not directly connected, we assign a score, sxy, according to a given similarity
measure. A higher score means nodes Vx and Vy are more likely to have an edge.
All the nonexistent links are sorted in a descending order according to their
scores, and the links at the top are most likely to exist.

Generally, we do not know which links are the missing or future links, other-
wise we do not need to do predictions. Therefore, to evaluate algorithms, we use

464 C. Zhang and O. R. Zäıane

known networks, hide some links, use link prediction algorithms to predict those
hidden links and compare the prediction results. Based on the type of network,
the observed edges E can be divided into training set ET and probe set EP

randomly or according to the timestamp. If the known network is time-varying
and we know the time each change happens, we can regard the network before a
certain time as the training set and the remaining as the probe set. Otherwise,
we can just divide the training set and the probe set randomly. To quantify the
accuracy of prediction algorithms, we use Precision as our evaluation metric.
More experiment details can be found in Sect. 5.

3 Previous Work

As mentioned above, neighbor-based metrics are the simplest yet effective to
predict missing links. They assume that two nodes are more likely to be con-
nected if they have more common neighbors. Common neighbors (CN) is one of
the most widespread measure used in the link prediction problem mainly due to
its simplicity [1]. The Resource Allocation (RA) metric [5] is regarded as one of
the best neighbor-based metrics because of its performance. Therefore, in this
paper, we concentrate on CN and RA indexes, whose definitions are as follows.

Common Neighbors (CN): Two nodes, Vx and Vy, are more likely to form a
link if they have many common neighbors. Let Γ (x) denote the set of neighbors
of node Vx. The simplest measure of the neighborhood overlap is the directed
count:

sxy = |Γ (x) ∩ Γ (y)| (1)

Resource Allocation (RA): Considering a pair of nodes, Vx and Vy, which
are not directly connected. The node Vx can send some resource to Vy, with
their common neighbors playing the role of transmitters. In the simplest case,
we assume that each transmitter has a unit of resource, and will evenly distribute
to all its neighbors. As a results the amount of resource Vy received is defined
as the similarity between Vx and Vy, which is:

sxy =
∑

z∈Γ (x)∩Γ (y)

1
k(z)

(2)

where k(z) is the degree of node Vz, namely k(z) = |Γ (z)|.
The above-mentioned similarity metrics, CN and RA, only consider the

binary relations among nodes; however, in the real world, links are naturally
weighted, which may represent the amount of traffic load along connections in a
transportation network or the number of co-authorized papers in a co-authorship
network. Murata and Moriyasu [12] proposed weighted similarity metrics as vari-
ants of Common Neighbors and Resource Allocation:

Weighted Common Neighbors: sxy =
∑

z∈Γ (x)∩Γ (y)

w(x, z) + w(y, z) (3)

Neighbor-Based Link Prediction with Edge Uncertainty 465

Weighted Resource Allocation: sxy =
∑

z∈Γ (x)∩Γ (y)

w(x, z) + w(y, z)
s(z)

(4)

Here, w(x, y) = w(y, x) denotes the weight of the link between nodes Vx and
Vy, and s(x) =

∑
z∈Γ (x) w(x, z) is the strength of node Vx.

Besides the aforementioned metrics, we will also use the Local Näıve Bayes
model [8] and the Local Random Walk metric [7] to assess our metrics as they
are popular. The Local Näıve Bayes model is considered as the state-of-the-art
in neighbor-based link prediction algorithms. Due to limited space, we will not
cover them in details here.

4 Link Prediction for Uncertain Graphs

To solve the problem of link prediction for uncertain graphs, one very
näıve/intuitive way is to regard the probability as a weight and apply weighted
similarity metrics. However, there exists some problems. Figure 1 is an example.

Nodes VA and VB are more likely to be connected than nodes VD and VE

based on Eq. (3) for Weighted Common Neighbors.

sAB = 0.2 + 0.9 = 1.1 (5)

sDE = 0.5 + 0.5 = 1.0 < 1.1 (6)

Fig. 1. An example showing the problem when considering the probability as a weight.

However, because each edge may exist or not exist in the real world, both of
these two uncertain graphs have four possible worlds, as can be seen in Fig. 2:
both links may exist, both may be absent, or either one is present.

Fig. 2. Possible worlds for two uncertain links between three nodes

466 C. Zhang and O. R. Zäıane

Only when both edges EAC and EBC exist, node VC is the common neighbor
of nodes VA and VB , as Fig. 2(1), the probability for this case is 0.2× 0.9 = 0.18
(we assume that the existence of edges are independent with each other). In this
case, sAB = 1 based on Eq. (1). If node VC is not the common neighbor of nodes
VA and VB , as Fig. 2(2, 3 and 4), then sAB = 0. The probability for this case
is 0.82. In comparison, the probability that sDE = 1 is 0.5 × 0.5 = 0.25, while
the probability of sDE = 0 is 0.75. Therefore, nodes VD and VE are more likely
to be connected than nodes VA and VB , because the probability of sDE = 1 is
larger than the probability of sAB = 1.

From this example, we can find that each uncertain edge in an uncertain
graph may exist or not exist in a real world. If an uncertain graph has |E| uncer-
tain edges, there will be 2|E| possible worlds in total, since each edge provides
us with a binary sampling decision.

Given an uncertain network G = (V, E ,P), we can sample each edge in G
according to the probability P(e) to generate the possible graph G = (VG, EG).
We have EG ∈ E and VG ∈ V. The probability Pr(G) of sampling the possible
graph is as follows:

Pr(G) =
∏

e∈EG

P(e)
∏

e∈E,e/∈EG

(1 − P(e)) (7)

For each possible world, its corresponding similarity measure may differ.
When we calculate its similarity measures, we should take all possible worlds
and their possibilities into account. Therefore, Common Neighbor and Resource
Allocation in uncertain graphs can be represented as follows.

Uncertain Common Neighbors: sxy =
∑

G∈G
(Pr(G) × |ΓG(x) ∩ ΓG(y)|) (8)

Uncertain Resource Allocation: sxy =
∑

G∈G
(Pr(G)

∑

z∈ΓG(x)∩ΓG(y)

1
kG(z)

) (9)

Here, ΓG(x) denotes the set of neighbors of node Vx in the possible world G;
kG(x) is the degree of node Vx in the possible world G.

4.1 Time Complexity Analysis for the Calculation of Common
Neighbors in Uncertain Networks

We have a total of 2|E| possible worlds, and we can calculate CN value for
each possible world in O(k), where k is nodes’ average degree in the possible
world. Therefore, the time complexity of calculating the Common Neighbors
value based on Eq. (8) is O(2|E|k).

Assume Γxy = Γ (x) ∩ Γ (y) is the common neighbors set of nodes Vx and
Vy in uncertain graph G. Whether a node Vz ∈ Γxy is a common neighbor of
nodes Vx and Vy in a possible world is independent of other nodes because
it is determined by the existence of edges Exz and Eyz in the possible world.
Therefore, each node in Γxy can be considered independently. If the existence

Neighbor-Based Link Prediction with Edge Uncertainty 467

probability over uncertain edges Exz and Eyz are Px,z and Py,z respectively, only
in Px,z × Py,z of all possible worlds, node Vz is the common neighbor of nodes
Vx and Vy. Therefore, Eq. (8) can also be represented as:

sxy =
∑

G∈G
(Pr(G) × |ΓG(x) ∩ ΓG(y)|)

=
∑

z∈Γ (x)∩Γ (y)

∑

G∈G
Pr(G) × IΓG(x)∩ΓG(y)(z)

=
∑

z∈Γ (x)∩Γ (y)

Px,z × Py,z

When z ∈ ΓG(x)∩ΓG(y), IΓG(x)∩ΓG(y)(z) = 1, otherwise, IΓG(x)∩ΓG(y)(z) = 0.
By doing so, the time complexity for calculating sxy can be reduced to O(K),

where K is the nodes’ average degree in the uncertain network.

4.2 Time Complexity Analysis for the Calculation of Resource
Allocation in Uncertain Networks

We have a total of 2|E| possible worlds, and nodes’ average degree in the possible
world is k, then we can calculate RA value for each possible world in O(k), so
the time complexity of calculating Resource Allocation value based on Eq. (9) is
O(2|E|k).

As mentioned in Sect. 4.1, whether a node Vz ∈ Γxy is a common neighbor
of nodes Vx and Vy in a possible world is independent of other nodes. Besides,
the number of edges each common neighbor has is also independent of other
nodes. Therefore, each common neighbor can also be considered independently
in this case. For the common neighbor node Vz, when we generate possible
worlds, we can consider only edges connecting to it, because the existence of
other edges will not have an impact on IΓG(x)∩ΓG(y)(z) and kG(z). The nodes’
average degree in the uncertain network is K, so we can consider 2K possible
worlds for the node Vz, and the time complexity can be reduced to O(2Kt),
where t = |ΓG(x) ∩ ΓG(y)|.

sxy =
∑

G∈G
(Pr(G) ×

∑

z∈ΓG(x)∩ΓG(y)

1
kG(z)

)

=
∑

z∈Γ (x)∩Γ (y)

∑

Gz∈Gz

Pr(Gz) × IΓGz (x)∩ΓGz (y)
(z) × 1

kGz
(z)

Gz here stands for the uncertain sub-graph formed by edges connecting to
node Vz, and Gz is the possible world based on the uncertain sub-graph Gz.

468 C. Zhang and O. R. Zäıane

4.3 An Efficient Algorithm for the Calculation of Resource
Allocation

Only when both edges Exz and Eyz exist, node Vz is the common neighbor of node
Vx and node Vy in the possible world G, which means IΓG(x)∩ΓG(y)(z) = 1. When
node Vz is not the common neighbor of node Vx and node Vy, IΓG(x)∩ΓG(y)(z) =
0, it means those possible worlds will not have an impact on the value of sxy.
Edges Exz and Eyz belong to the edge set which connects to node Vz, so for those
possible worlds which have an impact on the value of sxy, node Vz at least has
two edges Exz and Eyz.

Assume node Vz has m extra edges in an uncertain graph except edges Exz

and Eyz. Although it will result in 2m possible worlds, the number of its edges
in possible worlds will only range from 0 to m (the number of edges node Vz

has in total ranges from 2 to m + 2), which means some of the possible worlds
share the same number of edges. To calculate sxy, one way is to iterate through
all possible worlds, calculate each possible world’s possibility based on Eq. (7)
and its corresponding count of edges. The other way is to iterate through all the
possible number of edges and calculate their corresponding probability, which
can be seen as follows:

sxy =
∑

z∈Γ (x)∩Γ (y)

∑

Gz∈Gz

Pr(Gz) × IΓGz (x)∩ΓGz (y)
(z) × 1

kGz
(z)

=
∑

z∈Γ (x)∩Γ (y)

Px,z × Py,z ×
m∑

n=0

(Pn
1→m × 1

n + 2
)

For the common neighbor Vz, assume there are m edges connecting to it
except edges Exz and Eyz, so we can index them from 1 to m. Pn

1→m here stands
for from edges e1 to em, the probability that exactly n among them exist in
possible worlds. For the node with m edges in the uncertain graph, the number
of its edges in possible worlds will range from 0 to m, and in other words, we
need to compute P 0

1→m, P 1
1→m, . . . , Pm

1→m.
We propose an efficient way to compute them, which can be regarded as a

divide and conquer algorithm. Conceptually, it works as follows:

(1) Divide the probability list into n sublists, each containing 1 element, and
compute the probability of having and not having this item respectively.

(2) Repeatedly merge sublists to compute probabilities for sublists with more
than 1 element. Here is the equation for merging the left half sublist and the
right half sublist.

Pn
1→m =

min(n,�m/2�)∑

i=max(0,n−�m/2)
P i
1→�m/2�P

n−i
�m/2�+1→m (10)

It can be implemented recursively. The result probability list has the length
of m + 1 and P 0

1→m, P 1
1→m, . . . , Pm

1→m are saved sequentially in the result
probability list. The full algorithm description can be found in Algorithm1.

Neighbor-Based Link Prediction with Edge Uncertainty 469

Algorithm 1. kEdgeProbability
Data: Probability List uncertainEdgeList
Result: The probability list probList of existing n among m edges,

n ∈ [0,m]
1 uncertainEdgeListLength ← len(uncertainEdgeList);
2 return kEdge(0, uncertainEdgeListLength − 1);
3 // Inner Function;
4 Function kEdge(i, j)
5 length ← j − i + 1;
6 if length = 1 then
7 return [1 − uncertainEdgeList[i], uncertainEdgeList[i]]
8 else
9 leftLength ← length//2;

10 rightLength ← length − leftLength;
11 left ← kEdge(i, i + leftLength − 1);
12 right ← kEdge(i + leftLength, j);
13 probList ← [0] × (length + 1);
14 for each n ∈ [0, length] do
15 for each k ∈ [0, n] do
16 if k <= leftLength and n − k <= rightLength then
17 probList[n] ← probList[n] + left[k] × right[n − k];
18 end
19 end
20 end
21 return probList;
22 end

Based on the description of Algorithm 1, we can find the time complexity of
Algorithm 1 is O(m2). After calculating the probability list, we can easily calcu-
late node Vz’s contribution for sxy. It is reasonable to calculate Vz’s contribution
for sxy in O(m2). However, because the node Vz has (m + 2) neighbors in total,
then any two of these neighbors (except those that are already connected, assume
u of them are already connected) will regard the node Vz as a common neigh-
bor when calculating their similarity measures. Then node Vz will be calculated
((m+2)(m+1)

2 − u) times, so the total time complexity will be O(m4).
This kind of time complexity is still very large. We can use the similar idea as

we mentioned in Algorithm 1 to reduce the time complexity. In Algorithm 1, we
use the probability lists of the left half sublist and the right half list to compute
the probability list of the full list. Actually, Eq. (10) has a more general form,
which can be represented as follow:

Pn
1→m =

min(n,k)∑

i=max(0,n+k−m)

P i
1→kPn−i

k+1→m (11)

In Eq. (10), we choose k = �m/2�.

470 C. Zhang and O. R. Zäıane

When we consider different pairs of unconnected nodes, node Vz’s total edges
remain the same, what differs is the set of two edges which connects to the pair
of nodes we are considering, and it results in the difference of the remaining
edges list which will be used in Algorithm 1. To reduce the time complexity,
the idea is to calculate the full edges list’s corresponding probability list, which
can be represented as A = [P 0

1→m+2, P
1
1→m+2, . . . , P

m+2
1→m+2]. For each pair of

unconnected nodes, we want to calculate the remaining edges list’s correspond-
ing probability list, which can be represented as B = [P 0

1→m, P 1
1→m, . . . , Pm

1→m].
We can firstly find the two edges connecting to the pair of unconnected nodes,
and calculate these two edges’ corresponding probability list, which can be rep-
resented as C = [P 0

m+1→m+2, P
1
m+1→m+2, P

2
m+1→m+2]. Then we can use A and

C to calculate B based on the Eq. (11). The full equations can be represented
as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P 2
m+1→m+2P

m
1→m = Pm+2

1→m+2

P 1
m+1→m+2P

m
1→m + P 2

m+1→m+2P
m−1
1→m = Pm+1

1→m+2

P 0
m+1→m+2P

m
1→m + P 1

m+1→m+2P
m−1
1→m + P 2

m+1→m+2P
m−2
1→m = Pm

1→m+2

P 0
m+1→m+2P

m−1
1→m + P 1

m+1→m+2P
m−2
1→m + P 2

m+1→m+2P
m−3
1→m = Pm−1

1→m+2

. . .

P 0
m+1→m+2P

3
1→m + P 1

m+1→m+2P
2
1→m + P 2

m+1→m+2P
1
1→m = P 3

1→m+2

P 0
m+1→m+2P

2
1→m + P 1

m+1→m+2P
1
1→m + P 2

m+1→m+2P
0
1→m = P 2

1→m+2

These equations are easy to solve. After we get A and C, we can calculate the
probability list [P 0

1→m, P 1
1→m, . . . , Pm

1→m] in O(m). Though it takes O(m2) time
to calculate A, when we consider different pairs of unconnected nodes which have
common neighbor Vz, A only needs to be calculated once. To calculate different
pairs of unconnected nodes’ corresponding probability list B, we can calculate
their probability C in constant time, and then use A and C to calculate B in
O(m). Because we have ((m+2)(m+1)

2 − u) pairs of unconnected nodes, the time
complexity of calculating A can be ignored. After we calculate nodes Vx and
Vy’s each common neighbor’s contribution for sxy, we can calculate sxy easily.

5 Experiments

5.1 Datasets

Protein-Protein Interaction Network: We used the protein-protein inter-
action network (PPI) created by Krogan [13]. Two proteins are linked if it is
likely that they interact. The core network consists of 2708 proteins and 7123
interactions labeled with probabilities.

Enron Network: The dataset is a subset of Enron employees, comprised of
emails sent between employees, resulting in a dataset with 50,572 emails among
151 employees. We used the same method as Pfeiffer and Neville in [14] to assign
each edge with a possibility of occurrence.

Neighbor-Based Link Prediction with Edge Uncertainty 471

Synthetic Uncertain Network Based on Deterministic Network: Con-
sidering that there are not many publicly available uncertain network datasets
on the web, we also generated an uncertain network based on deterministic net-
works. The dataset we used here is USAir. The US air transportation network
contains 332 airports and 2126 airlines. Based on this network, we use an uncer-
tain network generator to generate its corresponding uncertain network. The
uncertain network generator used here is adopted from [15]. The percentage of
non-existential edges we choose to add in this experiment is 20%.

5.2 Experiments

To test the prediction performance of an algorithm, the observed edges, E, are
divided into two separate sets: training set ET , is regarded as known information;
and probe set EP , is used for testing and no information therein is allowed to
be used for prediction. Clearly, we have ET ∪ EP = E and ET ∩ EP = ø.

For the protein-protein interaction network and the synthetic uncertain net-
work, we only know their connection information, so the training set ET and
the probe set EP can be randomly divided. In this paper, the training set ET

and the probe set EP are assumed to contain 90% and 10% of the links respec-
tively. To get more reliable result, each value is obtained by averaging over 100
independent runs of random divisions of the training set and probe set.

Link prediction algorithms should be capable of detecting the dynamic rela-
tionships between members in a temporal social network. Because the Enron
dataset is time-evolving, the relations among social members change continu-
ously over time. Using link prediction algorithms, we should be able to predict
newly added links in future networks. In the experiment, we predict new com-
munications between two employees in Enron Corporation after Jan. 16, 2001,
based on historical data. The idea is that, if two employees have email records
before Jan. 16, 2001, we generate a potential edge between them. Then we assign
these edges with a probability following the method described in [14]. The result-
ing probabilistic graph consists of 113 nodes and 419 edges, and this graph is
regarded as the training set. The testing set is formed by taking in all the edges
formed after Jan. 16, 2001. After discarding employees that have not appeared
in the list of the 113 employees, as well as the edges that have appeared both
before and after Jan. 16, 2001, we obtained 578 ground-truth edges with 113
distinct employees.

To evaluate the performance of prediction algorithms, we apply Precision
metric to quantify the accuracy of the prediction, which focuses on top-ranked
latent links. It is defined as Lr/L, where among top-L candidate links, Lr is the
number of accurate predicted links actually appearing in the testing period.

5.3 Results and Evaluation

As the literature suggested [8], the top L is set to 100 in our experiments. In this
section, we compare our metrics (UCN and URA) and other metrics/algorithms
using existing ground truth. To evaluate our metrics, we mainly focus on the

472 C. Zhang and O. R. Zäıane

comparison between the uncertain version of graph proximity measures with
weighted and unweighted ones. We also compare our metrics with LNB and
SRW. LNB is a local Näıve Bayes model which is based on neighbor-based met-
rics, and SRW is a local-random-walk based algorithm (we choose t = 2 and
t = 3 in our experiments because they are the optimal choices based on Liu and
Lü’s experiments in [7]). Since LNB and SRW algorithms are for determinis-
tic networks, in our experiments we ignore the edge probabilities and consider
uncertain networks as normal deterministic networks. The prediction accuracies
on the three networks are shown in Table 1.

Algorithm name Description

CN/RA Pay no attention to probabilities and use the original
metrics

WCN/WRA Regard probability as weight and use weighted metrics

UCN/URA Use our uncertain version of graph proximity measures

SRW2 Ignore probabilities and run local random walk algorithm
[7], choose t = 2

SRW3 Ignore probabilities and run local random walk algorithm
[7], choose t = 3

LNB-CN Ignore probabilities and use Local Näıve Bayes form of
Common Neighbors [8]

LNB-RA Ignore probabilities and use Local Näıve Bayes form of
Resource Allocation [8]

Table 1. Comparative results for different algorithms

Datasets Common neighbor Resource allocation SRW2 SRW3 LNB-CN LNB-RA

CN WCN UCN RA WRA URA

PPI 0.472 0.5045 0.5288 0.4123 0.45 0.5728 0.4136 0.5284 0.4856 0.4992

Enron 0.49 0.52 0.61 0.51 0.47 0.52 0.43 0.45 0.55 0.46

Synthetic network 0.5812 0.5954 0.6043 0.6075 0.6124 0.6233 0.5852 0.5992 0.5962 0.5885

From Table 1, we can observe that our uncertain version of the Common
Neighbor and Resource Allocation metrics can significantly outperform their
original and weighted ones when dealing with uncertain networks. This shows
that in the task of link prediction with edge uncertainty, it is worthwhile to take
every possible worlds into account.

From Table 1, we can also observe that our metrics (UCN and URA) can
outperform the other four baseline methods on PPI and Synthetic datasets. The
Enron dataset allows the following observation: the Common Neighbor-based
metrics seems to outperform the Resource Allocation-based counterparts on this
dataset. It seems that the Resource Allocation metrics are not good choices for
Enron dataset.

Neighbor-Based Link Prediction with Edge Uncertainty 473

For run time, based on our experiments, we find UCN to be just a little bit
slower than CN, but it has almost the same run time as WCN; and URA is
around 2 to 3 times slower than RA and WRA.

6 Conclusion

In this paper, we propose an uncertain version of graph proximity measures for
the link prediction problem in uncertain networks. We propose a new algorithm
to reduce the time complexity of computing the uncertain version of graph prox-
imity measures. By taking all possible worlds into consideration, the performance
of link predictions are improved. In this work, we only focus on the neighbor-
based algorithms because they are simple, effective but not yet have been stud-
ied, and we have shown the effectiveness of considering all possible worlds when
using neighbor-based metrics to do link prediction. When proposing the uncer-
tain version of other link prediction metrics, such as path-based, learning-based
metrics and embedding-based algorithms, all possible worlds should also be con-
sidered, which would also be very time-consuming. To reduce time complexity,
some variants of our algorithm may then be considered.

References

1. Newman, M.E.: Clustering and preferential attachment in growing networks. Phys.
Rev. E 64(2), 025102 (2001)

2. Salton, G., McGill, M.J.: Introduction to Modern Information Retrieval (1986)
3. Jaccard, P.: Étude comparative de la distribution florale dans une portion des alpes

et des jura. Bull. Soc. Vaudoise Sci. Nat. 37, 547–579 (1901)
4. Adamic, L.A., Adar, E.: Friends and neighbors on the web. Soc. Netw. 25(3),

211–230 (2003)
5. Zhou, T., Lü, L., Zhang, Y.-C.: Predicting missing links via local information. Eur.

Phys. J. B-Condens. Matter Complex Syst. 71(4), 623–630 (2009)
6. Lü, L., Jin, C.-H., Zhou, T.: Similarity index based on local paths for link prediction

of complex networks. Phys. Rev. E 80(4), 046122 (2009)
7. Liu, W., Lü, L.: Link prediction based on local random walk. EPL (Europhys.

Lett.) 89(5), 58007 (2010)
8. Liu, Z., Zhang, Q.-M., Lü, L., Zhou, T.: Link prediction in complex networks: a

local näıve Bayes model. EPL (Europhys. Lett.) 96(4), 48007 (2011)
9. Perozzi, B., Al-Rfou, R., Skiena, S.: DeepWalk: online learning of social represen-

tations. In: Proceedings of the 20th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 701–710. ACM (2014)

10. Ahmed, N.M., Chen, L.: An efficient algorithm for link prediction in temporal
uncertain social networks. Inf. Sci. 331, 120–136 (2016)

11. Mallek, S., Boukhris, I., Elouedi, Z., Lefevre, E.: Evidential missing link prediction
in uncertain social networks. In: Carvalho, J.P., Lesot, M.-J., Kaymak, U., Vieira,
S., Bouchon-Meunier, B., Yager, R.R. (eds.) IPMU 2016. CCIS, vol. 610, pp. 274–
285. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40596-4 24

12. Murata, T., Moriyasu, S.: Link prediction of social networks based on weighted
proximity measures. In: Proceedings of the IEEE/WIC/ACM International Con-
ference on Web Intelligence, pp. 85–88. IEEE Computer Society (2007)

https://doi.org/10.1007/978-3-319-40596-4_24

474 C. Zhang and O. R. Zäıane

13. Krogan, N.J., et al.: Global landscape of protein complexes in the yeast Saccha-
romyces cerevisiae. Nature 440(7084), 637 (2006)

14. Pfeiffer, J.J., Neville, J.: Probabilistic paths and centrality in time. In: Proceedings
of the 4th SNA-KDD Workshop, KDD 2010 (2010)

15. Zhang, C., Zäıane, O.R.: Detecting local communities in networks with edge uncer-
tainty. In: 2018 IEEE/ACM International Conference on Advances in Social Net-
works Analysis and Mining (ASONAM), pp. 9–16. IEEE (2018)

Inferring Social Bridges that Diffuse
Information Across Communities

Pei Zhang, Ke-Jia Chen(B), and Tong Wu

Jiangsu Key Laboratory of Big Data Security and Intelligent Processing,
Nanjing University of Posts and Telecommunications, Nanjing 210023, Jiangsu, China

zp njupt@163.com, chenkj@njupt.edu.cn, wutong22@163.com

Abstract. While the accuracy of link prediction has been improved con-
tinuously, the utility of the inferred new links is rarely concerned when
it comes to information diffusion. This paper defines the utility of links
based on average shortest distance and more importantly defines a special
type of links named bridge links based on community structure (overlap-
ping or not) of the network. In sociology, bridge links are considered
to play a more crucial role in information diffusion across communities.
Considering that the accuracy of previous link prediction methods are
high in predicting strong ties but not much high in predicting weak ties,
we propose a new link prediction method named iBridge, which aims
to infer new diffusion paths using biased structural metrics in a super-
vised learning framework. The experimental results in 3 real online social
networks show that iBridge outperforms the traditional supervised link
prediction method especially in inferring the bridge links and meantime,
the overall performance of predicting bridge links and non-bridge links
is not compromised, thus verifying its robustness in inferring new links.

Keywords: Bridge link prediction · Information diffusion · Weak ties

1 Introduction

Many complex systems can be described by networks with nodes represent-
ing individuals and links denoting the interactions between nodes. As the most
widely studied network, social network plays an important role for people to
connect with others and to diffuse various types of information. Link prediction
[17], one of the important tasks in SNAM (social network analysis and min-
ing), studies the formation of missing links or new links based on current and
historical network, with wide application in item recommendation, pre-warning
system, biomedical discovery etc. Researchers have been working extensively to
study effective link prediction methods for different types of networks and for
different application scenarios [1,12,20,21].

Though the accuracy in link prediction continuously improves, it is realized
that the new inferred links could be correct, but not particularly novel nor sig-
nificantly useful to expand new links for users. For example, the users in a social
c© Springer Nature Switzerland AG 2019
Q. Yang et al. (Eds.): PAKDD 2019, LNAI 11440, pp. 475–487, 2019.
https://doi.org/10.1007/978-3-030-16145-3_37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16145-3_37&domain=pdf
https://doi.org/10.1007/978-3-030-16145-3_37

476 P. Zhang et al.

network share more common neighbors are more likely to establish friendship
link, but this new connection does not help much in getting more new informa-
tion or having more new friends for both of them.

This phenomenon reminds us of the sociological theory of weak ties proposed
by Granovetter [11] and the theory of structural hole proposed by Burt [7].
That is, there has been a large amount of redundant information in the circle
of strong ties while the really useful information often comes from weak ties.
Some researchers [15,16] proposed to measure weak ties using the weights of
links. Another work [18] differentiated the strong and weak ties based on the
community division of the network. But there is no commonly accepted definition
for weak ties till now. Moreover, there is no relevant research on how to accurately
infer weak ties, which has strong application background in controlling public
opinion and preventing the spread of infectious diseases and computer viruses.

This paper aims to use the bridge link concept to define a type of weak ties,
quantify the utility of bridge links and eventually propose an effective method to
infer bridge links accurately. The main contributions of this paper are as follows:

– We define a new type of link—bridge link. Some previous work [24] computed
the tie strength as the frequency of user interactions. But the tuning of a cutoff
threshold has a crucial impact on the correct identification of weak ties. The
concept of bridge defined by Granovetter [11], which provides the only path
between two nodes, is too strict for large-scale networks. The paper redefines
bridges as bridge links which connect different communities to facilitate the
wider diffusion of information.

– We define the utility of links and verify the importance of bridge links on
information diffusion. Currently, there is no measure to evaluate the utility of
weak ties in information diffusion. The paper designs a utility function based
on the average shortest path length of nodes, to evaluate the influence of
bridge link on information diffusion.

– We propose an efficient inferring method of bridge links named iBridge (infer-
ring Bridge links). This method modifies the structural metrics of node pairs
according to the statistical characteristics of bridge links, and uses a super-
vised learning model. The performance of iBridge is higher in predicting
bridge links and is not compromised in predicting non-bridge links.

The rest of this paper is organized as followed. Section 2 introduces the related
work. Section 3 gives the formalization of related conceptions. Section 4 intro-
duces the measurement of link utility in information diffusion and presents the
proposed framework of inferring new bridge links. Section 5 shows the experi-
mental results in details. Section 6 concludes the work.

2 Related Work

In information science, link prediction aims to infer the unknown or missing links
from the current or historical networks. The early work is primarily based on
Markov chain [20], which proves that the high-level model is more conducive to

Inferring Social Bridges that Diffuse Information Across Communities 477

the prediction accuracy in large-scale networks. Subsequently, some researchers
[12] convert link prediction to the binary classification problem in a (semi-
)supervised learning framework. Due to the sparsity of the real information net-
works, the methods using semi-supervised learning [6,13] and active learning [4]
are further introduced and achieve good results. Considering that many informa-
tion networks evolve over time, time-aware techniques [1] are developed, which
was proved to be effective for dynamic networks. Recently, the performance
of the link prediction method is further improved by leveraging heterogeneous
information in the network [21].

The previous link prediction methods are mainly concerned on whether the
predicted links are relevant or not, without discussing the quality of these links,
such as whether they are useful for information diffusion. Studies [3] show that
information propagates more extensively through weak ties in social networks.
Some researchers [24] propose the calculation formula of link strength and shows
that if links are deleted according to the order of weights, the information cover-
age in the network will fall sharply. Another work [10] shows that weak ties are
able to connect small communities into one large community, helping to reach
a wider variety of contacts. In a further study [8], only selected weak ties are
helpful for information diffusion.

In link prediction task, weak tie theory was once introduced to solve the
problem of information redundancy. Lü et al. [17] studied the role of weak ties
in the weighted network link prediction problem. A link is defined as a strong
tie if its weight is on the top 50% of all weights; Otherwise, it is a weak tie. In
another work [18] weak ties are defined based on community division and then
improves the accuracy of link prediction with weak ties.

Different from the above two methods, this paper focuses on how to accu-
rately infer weak ties rather than improving link prediction methods using weak
ties. The most related work is the method proposed by Song et al. [22], which
aims to find the brokers (a type of nodes) that are critical to information diffu-
sion. But our method is more predictive to find new weak ties.

3 Formalization

This section gives formalization of related conceptions used in this paper.

Definition 1 Link Prediction. In a given network G = 〈V,E〉, where V =
{vi}N

i=1 denotes a set of nodes and E = {eij}t denotes the set of edges that
have been observed at time t, where eij denotes the link between the node pair
〈vi, vj〉. This task is to predict the possibility of connection between 〈v′

i, v
′
j〉 /∈ E

at time t′ (t′ > t).

Definition 2 Community Detection. Community is an important feature of
many networks, especially social networks [19]. Links within the same community
are dense while links between different communities are sparse. Given a network
G = 〈V,E〉, the task is to divide all node vi into different subsets obtaining the
collection of communities Com = {Comi}K

i=1 where Comi ⊂ V .

478 P. Zhang et al.

Community detection methods can be classified as: non-overlapping methods
[19], overlapping methods [2] and hierarchical methods [9]. A non-overlapping
method outputs Com, where any Comi

⋂
Comj = ∅ and i �= j. An overlapping

method outputs Com, where may exist Comi

⋂
Comj �= ∅ and i �= j. The hier-

archical method is an iteration of non-overlapping method, where each Comi

can be further divided into smaller community set.

Definition 3 Bridge Link. In this paper, bridge link is defined as the link across
communities. The definition varies depending on different community partition-
ing methods.

(a) in non-overlapping communities (b) in overlapping communities

Fig. 1. Examples of bridge links across communities.

Bridge Links Across Non-overlapping Communities. Let C(vi) denotes the
community set of node vi. Since the communities are non-overlapping, for any
vi ∈ V , |C(vi)| = 1. For any given link eij , if C(vi) �= C(vj), then eij is a bridge
link labeled as B(eij) = 1; otherwise B(eij) = 0. As shown in Fig. 1(a), e1,5 and
e3,6 are bridge links.

Bridge Links Across Overlapping Communities. Sometimes one node may
belong to multiple communities. Let C(vi) denotes the community set of node
vi. For any given link eij , only if |C(vi)| = |C(vj)| = 1 and C(vi) = C(vj),
eij is labeled as B(eij) = 0; in other cases B(eij) = 1. In Fig. 1(b), two of
the communities are overlapping. e1,8 and e4,6 are bridge links according to the
above definition; e1,5, e2,5, e3,5 and e4,5 are also bridge links since node v5 is in
the overlapping part of communities.

Bridge Links in Hierarchical Communities. The hierarchical community
detection method is based on the iteration of non-overlapping method and
there is no overlap between communities in each layer. Therefore, the defini-
tion method of bridge link in each layer of the dendrogram is the same as that
in non-overlapping communities described above.

Definition 4 Bridge Link Prediction. Similar to the general link prediction task,
the bridge link prediction aims to predict the bridge links. In a given network
G = 〈V,E〉, where the meaning of V and E are the same as in Definition 1.

Inferring Social Bridges that Diffuse Information Across Communities 479

Q = {eij |B(eij) = 1} (Q ⊂ E) denotes the bridge link set. The definition of
bridge link is given in Definition 3. This task is to predict the possibility of
connection e′

ij between 〈v′
i, v

′
j〉 at time t′ where 〈v′

i, v
′
j〉 /∈ E but B(e′

ij) = 1. As
shown in Fig. 2, the task is to predict the formation of links like e1,6 and e3,5 at
time t′, which are potential bridge links.

Fig. 2. Description of bridge link prediction.

4 The Proposed Method

4.1 Utility of Bridge Links

To quantify and verify the role of bridge links defined above in information
diffusion, we define the utility function based on the average shortest path.

The average shortest distance Dist (Eq. 1) is often used to measure the capa-
bility of the network to diffuse information. Generally, the smaller the Dist value,
the more conducive the network is to diffuse information. Here, n denotes the
total node number of the network, and d(vi, vj) denotes the shortest path length
between node vi and vj .

Dist =
∑

vi,vj∈V

d(vi, vj)
n(n − 1)

(1)

Based on Dist, Φ(Ek) (Eq. 2) is defined to measure the change rate of Dist
after deleting k edges, where Ek denotes the deleted edges. The higher the value
of Φ, the edges are more useful for information diffusion.

Φ(Ek) =

∑
eij∈E−Ek

d(vi,vj)
n(n−1) − ∑

eij∈E
d(vi,vj)
n(n−1)

∑
eij∈E

d(vi,vj)
n(n−1)

(2)

Figure 3 shows a comparison of the Φ value in the Facebook dataset, after ran-
domly deleting a certain number of bridge links and non-bridge links (obtained
using Louvain method [5]). As expected, the increase rate of the Φ value obtained
by deleting bridge links is significantly higher than by deleting non-bridged links.

480 P. Zhang et al.

4.2 Biased Features

Several heuristic structural features like common neighbors (CN), Jaccard coef-
ficient (JC) and Resource Allocation (RA) are often used to describe node pairs
due to their low computational complexity and good predictive performance. In
bridge link prediction problem, the new features (B-CN, B-JC, B-RA, SBC and
SDC) are proposed to describe the node pairs in the bridge position.

Fig. 3. Comparison of the utility values of bridge links and non-bridge links.

In the following equations, τ(vi) denotes neighbor node set of vi, d(vi) denotes
node degree of vi, gst

i is the number of geodesic paths from node vs to node vt

that pass through vi, nst is the total number of geodesic paths from vs to vt, τij

represents the set of common neighbors of vi and vj .
In Eq. 3, C(vk) denotes the community (communities) where vk is located.

If |C(vi) ∩ C(vk)| ≥ 1 or |C(vk) ∩ C(vj)| ≥ 1, B-CN will have an additional
value. Notice that |C(vi) ∩ C(vk)| or |C(vk) ∩ C(vj)| may be larger than 1 in
overlapping communities.

B-CN(vi, vj) = |τij | +
∑

vk∈τij

|C(vi) ∩ C(vk)| +
∑

vk∈τij

|C(vk) ∩ C(vj)| (3)

The definition of B-RA (Eq. 4) is similar to RA but only considers the situ-
ation that the |C(vi) ∩ C(vk)| ≥ 1 or |C(vk) ∩ C(vj)| ≥ 1.

B-RA(vi, vj) =
∑

vk∈τij

|(C(vi) ∩ C(vk)) ∪ (C(vk) ∩ C(vj))|
d(vk)

(4)

If |C(vi) ∩ C(vk)| ≥ 1 or |C(vk) ∩ C(vj)| ≥ 1, B-JC(vi, vj) will have an addi-
tional value.

B-JC(vi, vj) =
|τij |

|τ(vi) ∪ τ(vj)| +

∑
vk∈τij

(|C(vi) ∩ C(vk)| + |C(vk) ∩ C(vj)|)
|τ(vi) ∪ τ(vj)|

(5)

Inferring Social Bridges that Diffuse Information Across Communities 481

In addition, SBC (Sum of Betweenness Centrality) and SDC (Sum of Degree
Centrality) are used because the probability of bridge links connecting to the
most influential nodes (top 10% users with highest PageRank scores) in the
community is much higher than that of non-bridge links.

SBC(vi, vj) =

∑
s<t

gst
i

nst
+

∑
s<t

gst
j

nst

1
2n(n − 1)

(6)

SDC(vi, vj) =
d(vi) + d(vj)

n − 1
(7)

The comparison of average SBC and average SDC of bridge links and non-
bridge links on three datasets (Facebook, Twitter and NetScience) is shown in
Fig. 4, which verifies the effectiveness of SBC and SDC.

(a) SBC (b) SDC

Fig. 4. Comparison of average SBC and SDC.

4.3 The iBridge Framework

In this paper, inferring bridge links is regarded as a supervised classification prob-
lem. The proposed iBridge method is described in Algorithm 1. Firstly, a given
network is divided into communities using a community detection method. Sec-
ondly, all node pairs which form or may form a bridge link (as defined in Sect. 3)
are collected. If there exists an edge between node vi and vj , Label〈vi, vj〉 = 1.
Otherwise 0. P is a set of positive examples, and N is a set of negative exam-
ples. Fea〈vi, vj〉k

n=1 represents the structural features vector of node pair 〈vi, vj〉.
ClfBL is a classifier learned by training set, which can infer the label of any node
pair 〈v′

i, v
′
j〉 in G′ at time t′, where Label〈v′

i, v
′
j〉 = 0.

Here is an example to illustrate how iBridge infers new bridge links (Fig. 5).
First, the network is divided into different non-overlapping communities. Take
node pair 〈v1, v5〉 as an example, where node v1 and v5 belong to differ-
ent communities. The features of the node pair 〈v1, v5〉 are calculated: B-
CN (v1, v5) = 2, B-RA(v1, v5) = 0.25, B-JC (v1, v5) = 2, SBC (v1, v5) = 0.33, and
SDC (v1, v5) = 1.17. In the illustration, node pair 〈v1, v5〉, 〈v4, v5〉 and 〈v3, v6〉
are positive examples. The classifier ClfBL is then trained based on all node

482 P. Zhang et al.

pairs in the training set. Finally, the link probability predicted by ClfBL for
the node pair 〈v4, v6〉 is higher than the threshold and is therefore inferred as a
bridge link.

5 Experiment

This section evaluates the performance of iBridge in inferring new bridge links,
as well as all new links. All experiments are run on the computer with Windows
10 systems, 2.6 GHz CPU and 12 GB of memory.

5.1 Datasets and Settings

The experiment uses three real-world datasets: Facebook (4,039 nodes and 88,234
edges), Twitter (5,646 nodes and 47,475 edges) and NetScience (1,461 nodes and
2,742 edges). The latter two networks are directed graphs and are converted to
undirected graphs for convenience.

Algorithm 1. The proposed method—iBridge.
Input: Network G = 〈V,E〉;

Community detection algorithm CD;
Learning model M ;

Output: The Classifier ClfBL;
1 Call CD to find community set {Comi} in G;
2 Collect all node pairs {〈vi, vj〉} which have or may have bridge links,

represented as D;
3 Create P = {〈vi, vj〉|〈vi, vj〉 ∈ D ∩ Label〈vi, vj〉 = 1},

N = {〈vi, vj〉|〈vi, vj〉 ∈ D ∩ Label〈vi, vj〉 = 0};
4 Generate Trainset by sampling from P and N ;
5 for each 〈vi, vj〉 in Trainset do

6 Calculate Fea〈vi, vj〉kn=1 with Eq. 3-7;
7 Get Label〈vi, vj〉;
8 end
9 Train M with Trainset;

10 Get ClfBL.

The learning settings in all networks are shown in Table 1. The settings are
slightly different in non-overlapping communities and overlapping communities.
Considering the stability and complexity of the model, the Random Forest clas-
sifier is used in both methods. We use the downsampling method to deal with
the imbalanced problem, and the experiment uses 10-fold cross validation and
outputs the average results.

Inferring Social Bridges that Diffuse Information Across Communities 483

Fig. 5. An illustrative example of iBridge framework.

5.2 Comparative Methods

The method iBridge is compared to baseline method BLiP. Both methods are
based on supervised learning framework which first appeared in the work of [12],
except that BLiP uses benchmark features while iBridge uses biased features.
Both methods can infer bridge links in non-overlapping communities and over-
lapping communities (BLiP-nc and iBridge-nc for non-overlapping communities,
and BLiP-oc and iBridge-oc for overlapping communities).

Table 1. Learning settings in non-overlapping and overlapping community division.

Dataset Non-overlapping Overlapping

Pos-set Neg-set Train-set Test-set Pos-set Neg-set Train-set Test-set

Facebook 6,816 335,915 308,457 34,273 8769 7,741,283 6,975,046 775,005

Twitter 1,9778 1,291,729 1,180,356 131,150 640 6,100,969 5,491,448 610,160

NetScience 317 1,062,571 956,599 106,288 337 1,061,901 956,014 106,223

To get non-overlapping communities, the modularity-based Louvain algo-
rithm [5] is used because it is a simple but efficient method for large networks.
To get overlapping communities, SLPA algorithm [23] is used because it has good
performance in both low density and high density overlapping network without
knowing the number of communities.

5.3 Results

AUC (Area under ROC Curve) value, precision and F1-score are used to evaluate
the accuracy of iBridge and BLiP in inferring both new bridge links and all types
of new links. The comparative results of two methods in inferring bridge links
in the non-overlapping and overlapping communities are shown in Figs. 6(a) and
6(b), respectively.

484 P. Zhang et al.

(a) in non-overlapping communities (b) in overlapping communities

Fig. 6. Comparison of two methods in two community settings.

Figure 6(a) shows that the AUC values of iBridge are higher than those of
BLiP in all three datasets. In NetScience, the improvement of AUC is not as
significant as in Facebook and Twitter. Moreover, the F1-score has a slight
decrease. The possible reason is that in scientific collaboration networks, the
ties connecting different clusters are even stronger than ties in densely intercon-
nected local clusters [14]. Figure 6(b) shows that iBridge has higher AUC and
precision values in all networks but lower F1-scores in Facebook and Twitter.
Moreover, the improvement of AUC and precision values is not as big as that in
non-overlapping communities. The possible reason is that in overlapping com-
munities, bridge links are closer to non-bridge links. So the features of these two
types of links are not significant different. In addition, the imbalance between
positive and negative instances in overlapping communities is more serious than
that in non-overlapping communities, which leads to limited improvement of
iBridge.

The detailed comparison of values of each indicator is listed in Table 2.

Table 2. Comparison of two methods in non-overlapping and overlapping communities.

Facebook Twitter NetScience

AUC Pre F1 AUC Pre F1 AUC Pre F1

BLiP-nc 0.8198 0.624 0.4156 0.7158 0.5514 0.237 0.876 0.7504 0.6532

iBridge-nc 0.9883 0.9912 0.9856 0.9467 0.7887 0.8122 0.8822 0.7685 0.6355

BLiP-oc 0.8783 0.6604 0.5197 0.5677 0.4405 0.174 0.8219 0.737 0.5833

iBridge-oc 0.8798 0.6735 0.4945 0.5738 0.4731 0.1572 0.8392 0.7692 0.5921

The paper also compares the performance of two methods in inferring all
new links. The experiment setup and training process are similar to the previous
one, except that the dataset contains all node pairs in the network. The learning
settings are shown in Table 3. The comparison results of AUC value, precision,
and F1-score are shown are listed in Table 4.

Inferring Social Bridges that Diffuse Information Across Communities 485

Table 3. Learning settings in inferring both bridge links and non-bridge links.

Dataset Pos-set Neg-set Train-set Test-set

Facebook 88,234 8,066,507 7,339,266 815,474

Twitter 47,475 15,888,367 14,342,257 1,593,584

NetScience 2,742 1,063,788 959,877 106,653

The result shows, in all three networks, the AUC value of iBridge is still
higher than that of BLiP in predicting all new links. But the precision and F1-
score of iBridge are lower than BLiP in most cases. Considering the structural
features in iBridge are biased for inferring new bridge links, the experimental
results verify the robustness of iBridge since it is not much worse than BLiP in
some indicators, and even slightly better in others.

Table 4. Comparison of two methods in inferring all new links.

Facebook Twitter NetScience

AUC Pre F1 AUC Pre F1 AUC Pre F1

BLiP 0.943 0.7073 0.6416 0.6593 0.5383 0.2471 0.9406 0.8843 0.8492

iBridge 0.9644 0.7002 0.6191 0.676 0.5898 0.1957 0.9512 0.8136 0.7838

We also analyze the complexity of all methods. Considering all methods use
Random Forest as the base classifier, the time complexity of training and testing
model can be ignored when comparing. In a network with m edges and n nodes,
the time complexity of BLiP is O(mn) + O(n2), and the time complexity of
iBridge is O(mn)+O(tm)+O(n2). Here, O(mn) represents the time complexity
of calculating the betweenness index, O(n2) represents the time complexity of
generating features for all instances, and O(tm) is the time complexity of detect-
ing communities with Louvain and SLPA where t is the predefined maximum
number of iterations of the algorithm.

5.4 Discussion

In this paper, we use BLiP as comparative method because there is currently no
other related work on inferring weak ties or bridge links. However, the iBridge
framework can be well tuned to other link prediction methods by updating the
structural metrics in the network.

The most related work is Song et al.’s [22] method. They developed a heuristic
algorithm to find the Top-k brokers based on the weak tie theory. But their
method is to mine nodes (brokers)while our method is to mine links (weak ties).
In practical applications, deleting the bridges (specific diffusion paths) may be
less expensive than deleting brokers, because the latter changes the network
structure to a great extent. Another advantage of our method is that it can infer
new diffusion paths and therefore play an early warning role.

486 P. Zhang et al.

6 Conclusion

The paper for the first time tries to infer weak ties, aiming to stop the spread
of malicious information or to relieve the Matthew effect in sociology. We define
weak ties as bridge links based on communities instead of the link weights. The
paper proves that bridge links play a more important role in information diffusion
than non-bridge links and proposes a utility function for links. New bridge links
can be inferred under a proposed supervised learning framework using the biased
similarity index. The experiment result shows that the proposed method can
effectively infer bridge links as well as non-bridge links.

However, not all bridge links are equally useful, so more sensitive utility
function need to be proposed in the future for further differentiation among
bridge links. Moreover, weak links and weak ties are not completely equivalent.
How to measure the weak relationships between nodes requires further study.
Finally, network representation learning can be used to automatically obtain
features of weak ties instead of using heuristic biased features.

Acknowledgements. This research was supported by the National Nature Science
Foundation of China (No. 61571238, No. 61603197 and No. 61772284).

References

1. Aggarwal, C.C., Xie, Y., Yu, P.S.: A framework for dynamic link prediction in
heterogeneous networks. Stat. Anal. Data Min. ASA Data Sci. J. 7(1), 14–33 (2014)

2. Ahn, Y.Y., Bagrow, J.P., Lehmann, S.: Link communities reveal multiscale com-
plexity in networks. Nature 466(7307), 761 (2010)

3. Bakshy, E., Rosenn, I., Marlow, C., Adamic, L.: The role of social networks in
information diffusion. In: International Conference on World Wide Web, pp. 519–
528 (2012)

4. Bilgic, M., Mihalkova, L., Getoor, L.: Active learning for networked data. In: Inter-
national Conference on Machine Learning, pp. 79–86 (2010)

5. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of
communities in large networks. J. Stat. Mech. 2008(10), 155–168 (2008)

6. Brouard, C., D’Alché-Buc, F., Szafranski, M.: Semi-supervised penalized output
Kernel regression for link prediction. In: International Conference on Machine
Learning, pp. 593–600 (2013)

7. Burt, R.S.: Structural holes and good ideas. Am. J. Soc. 110(2), 349–399 (2004)
8. Chiu, H.Y., Chen, S.M.: Propagating online social networks: via different kinds of

weak ties. In: IEEE/ACM International Conference on Advances in Social Net-
works Analysis and Mining, pp. 1189–1195 (2013)

9. Clauset, A., Moore, C., Newman, M.E.: Hierarchical structure and the prediction
of missing links in networks. Nature 453(7191), 98 (2008)

10. Ferrara, E., Meo, P.D., Fiumara, G., Provetti, A.: The role of strong and weak ties
in Facebook: a community structure perspective. Commun. ACM 57(11), 78–84
(2012)

11. Granovetter, M.: The strength of weak ties. Am. J. Soc. 78(6), 1360–1380 (1973)

Inferring Social Bridges that Diffuse Information Across Communities 487

12. Hasan, M.A., Chaoji, V., Salem, S., Zaki, M.: Link prediction using supervised
learning. In: Proceedings of SDM 2006 Workshop on Link Analysis, Counterter-
rorism and Security (2006)

13. Kashima, H., et al.: Link propagation: a fast semi-supervised learning algorithm for
link prediction. In: International Conference on World Wide Web, pp. 1099–1110
(2009)

14. Ke, Q., Ahn, Y.Y.: Tie strength distribution in scientific collaboration networks.
Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 90(3), 032804 (2014)

15. Liu, H., Hu, Z., Haddadi, H., Tian, H.: Hidden link prediction based on node
centrality and weak ties. Europhys. Lett. 101(1), 18004 (2013)

16. Lü, L., Zhou, T.: Link prediction in weighted networks: the role of weak ties.
Europhys. Lett. 89(1), 18001 (2010)

17. Lü, L., Zhou, T.: Link prediction in complex networks: a survey. Phys. A Stat.
Mech. Appl. 390(6), 1150–1170 (2011)

18. Meo, P.D., Ferrara, E., Fiumara, G., Provetti, A.: On facebook, most ties are weak.
Commun. ACM 57(11), 78–84 (2014)

19. Newman, M.E.: Fast algorithm for detecting community structure in networks.
Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 69, 066133 (2004)

20. Sarukkai, R.R.: Link prediction and path analysis using markov chains. Comput.
Netw. 33(1–6), 377–386 (2000)

21. Shi, C., Li, Y., Zhang, J., Sun, Y., Yu, P.S.: A survey of heterogeneous information
network analysis. IEEE Trans. Knowl. Data Eng. 29(1), 17–37 (2017)

22. Song, C., Hsu, W., Lee, M.L.: Mining brokers in dynamic social networks. In:
ACM International on Conference on Information and Knowledge Management,
pp. 523–532 (2015)

23. Xie, J., Szymanski, B.K.: Towards linear time overlapping community detection
in social networks. In: Tan, P.-N., Chawla, S., Ho, C.K., Bailey, J. (eds.) PAKDD
2012. LNCS (LNAI), vol. 7302, pp. 25–36. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-30220-6 3

24. Zhao, J., Wu, J., Xu, K.: Weak ties: subtle role of information diffusion in online
social networks. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 82(2), 016105
(2010)

https://doi.org/10.1007/978-3-642-30220-6_3
https://doi.org/10.1007/978-3-642-30220-6_3

Learning Pretopological Spaces
to Extract Ego-Centered Communities

Gaëtan Caillaut1(B), Guillaume Cleuziou1, and Nicolas Dugué2

1 Université d’Orléans, INSA Centre Val de Loire, LIFO EA 4022, Orléans, France
{gaetan.caillaut,guillaume.cleuziou}@univ-orleans.fr

2 Le Mans Université, LIUM, EA 4023, Le Mans, France
nicolas.dugue@univ-lemans.fr

Abstract. We present a pretopological based approach to extract ego-
centered communities. Classical methods often consider only one struc-
tural feature of the network, whereas pretopology enables to do multi-
criteria analysis. Our approach consists in learning a logical combination
of network’s descriptors to define a pretopological space. Ego-centered
communities are extracted by computing the elementary closure of each
node. The quality of such communities is evaluated against the ground
truth communities. We show the benefits of our method by comparing
it to others on both real and synthetic networks.

Keywords: Community extraction · Pretopology ·
Ego-centered communities

1 Introduction

Complex network theory highlights the existence of properties shared by many
networks modeling real systems. These networks are often structured by com-
munities, that is to say a partition of nodes such that each part is strongly
connected toward itself and loosely toward the other nodes [13]. Social networks
are a very typical case of such networks, where users gather themselves around
various topics. The analysis of these communities is a critical task since it allows
to study networks at an intermediate level (mesoscopic) between the local level
(neighborhoods) and the global level (the entire network).

A common way to extract network’s communities is to find a partition of
its nodes that maximizes the modularity [13], that is to say that maximizes the
density of internal edges while minimizing the density of external edges inside a
community. The entire network’s structure must be known in order to compute
such a partition. When considering huge networks such as the world wide web
or online social networks, this requirement is sometimes hard or impossible to
fulfill. Either because the entire network is not known or because it cannot be
held in memory. Furthermore a strict partition of the network’s nodes is often
far from the actual communities, since community overlapping is forbidden [14].

c© Springer Nature Switzerland AG 2019
Q. Yang et al. (Eds.): PAKDD 2019, LNAI 11440, pp. 488–500, 2019.
https://doi.org/10.1007/978-3-030-16145-3_38

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16145-3_38&domain=pdf
https://doi.org/10.1007/978-3-030-16145-3_38

Learning Pretopological Spaces to Extract Ego-Centered Communities 489

Hence we focus our work on ego-centered communities which are local com-
munities centered on one (or several) node(s) of interest [3,7]. This approach
allows to do the computation on a small/local part of the network, which is a
lot less resource demanding. It is even feasible without knowing the entire net-
work since its exploration can be done, if necessary, during the application of
the algorithm. Furthermore overlapping communities can be detected by such
methods, resulting in communities in accordance with the real ones.

This paper aims to introduce a pretopological approach to uncover ego-
centered communities. The pretopology theory is a generalization of the graph
theory [6], it is thus a better alternative to study and model complex networks.
It allows in particular to model links of various natures between sets of nodes
whereas graph theory allows only links between two nodes. A social pretopol-
ogy can then be made of multiple types of relations between users (friends,
co-workers, families, . . .).

After an overview of works related to the community extraction task (Sect. 2),
we introduce (Sect. 3) some key concepts of the pretopology theory as well as
the generic class of logical pretopological spaces. The latest enables to learn a
pretopological space adapted to the characteristics of the network. Section 4 sets
the framework for our experiments. A description of the predicates that compose
our logical formulas is also given. The results of our experiments made on both
real world and synthetic networks are shown in Sect. 5. A comparison between
classical and pretopological methods is made.

2 Related Works

The task of extracting ego-centered communities has already been tackled by
many researchers. At least three different approaches can be distinguished: meth-
ods guided by a local modularity inspired measure [13], methods based on prop-
agation algorithms or methods relying on graph embeddings [9].

Modularity based methods extract ego-centered communities by means of a
greedy accumulation process. They often start from a single node, called node of
interest, which is expanded one node at a time. At each step, the node bringing
the greatest gain to the local modularity score is inserted into the community
under construction. The algorithm stops when either no node gives an increase
to the local modularity or the community is large enough [4]. Some methods
have an additional pruning phase that removes the outliers that do not belong
anymore to the ego-centered community [3,12].

The carryover-opinion [7] is a proximity measure inspired from opinion or
heat propagation. The node of interest can be considered as a heat source
which will propagate to other nodes through the network’s edges. After a cer-
tain amount of time, the temperature of each node will remain stable and a
score will be awarded to each node, the hotter the greater the score. An ego-
centered community can then be extracted by retaining nodes whose score is
greater than a given threshold. This allows to extract communities at different
levels of granularity.

490 G. Caillaut et al.

Finally, some works apply word embeddings learning methods to learn graph
embeddings [8,9]. Let’s consider each vertex of a network as a word, then sen-
tences describing paths taken by random walks can be generated. Such sentences
can then be fed to any word embedding learning algorithm to learn graph embed-
dings. Community structures can then be extracted out of these embeddings by
various means (e.g. clustering algorithms).

Many approaches have been proposed to solve the community extraction task.
There is probably no generic and optimal way to solve this task, nevertheless
each method brings a part of the answer which would be a shame to ignore. This
motivates the need of our alternative pretopological based method. Indeed, the
pretopology allows to model a propagation process defined by various knowledge
bases. We propose to leverage this process to extract ego-centered communities.

3 Basics of Pretopology

A pretopological space is defined by a couple (E, a) where E is a finite non-
empty set and a(.) a mapping from P(E) to P(E) satisfying the following two
properties.

∀A ∈ P(E), A ⊆ a(A) (1)
a(∅) = ∅ (2)

The pseudo-closure operator defines an expansion process from a set A ⊆ E
to a bigger one. It is commonly defined by a set V of neighborhoods on E [1]
where V ∈ V is a reflexive mapping from E to P(E).

∀A ∈ P(E), a(A) = {x ∈ E | ∀V ∈ V, V (x) ∩ A �= ∅} (3)

Unlike topological operators, the pretopological pseudo-closure is not neces-
sarily idempotent. It can be applied multiple times on a set A ∈ P(E) until a
set K such that A ⊆ K ⊆ E and a(K) = K is reached. The set K is called
the closure of A and noted F (A). If |A| = 1 then F (A) is called an elementary
closed set.

A new class of pretopological spaces defined by a logical formula is introduced
in [2]. The pseudo-closure operator is defined by a logical formula Q in disjunctive
normal form (DNF).

∀A ∈ P(E), aQ(A) = {x ∈ E | Q(A, x)} (4)

This new definition of the pseudo-closure operator is more generic than the
previous one, but more importantly, it allows to learn a logical combination to
define a pretopological space. The LPS (Learning Pretopological Spaces) frame-
work [5] consists in learning a numerical function to define the pseudo-closure
operator. This model enforces some limitations, especially the inability to model
non-linear combinations. This can be fixed by a logical modelling of the pseudo-
closure operator (as proposed in Eq. 4).

Learning Pretopological Spaces to Extract Ego-Centered Communities 491

The LPS framework proposes to learn a pretopological space based on its
expected elementary closed sets. Given a set S∗ = {F ∗({x})}∀x∈E of elementary
closed sets and a list of predicates, LPS learns a positive DNF Q compounded
of the predicates fed to the algorithm and such that the elementary closed sets
S∗ can be retrieved by the learned pseudo-closure operator aQ(.).

We propose to use the LPS framework to learn a pretopological space such
that its elementary closed sets are actually ego-centered communities. To this
purpose, we introduce two learning algorithms: LPSMI [2] and LPSFM.

LPSMI allows to learn only pretopological spaces of type V which are
defined by a pseudo-closure operator satisfying the isotonic property: ∀A,B ∈
P(E), A ⊆ B ⇒ a(A) ⊆ a(B). LPSFM does not enforce any restriction on the
type of the pretopological space learned.

4 Community Extraction Method

We consider in the following the network in Fig. 1 and we note E its set of nodes.
This network is roughly compounded of two communities, namely {a, b, c, d} and
{f, h, g}, in addition to the outsider node e. When considering the community
centered on d, it is not clear if e belongs to its local community (the same apply
for node f). On the contrary it is relatively safe to exclude e from the community
centered on a.

a b

c d e

f

g

h

(a) A network with two com-
munities.

a b c d e f g h

a 1.00 0.77 0.77 0.59 0.30 0.07 0.00 0.00
b 0.91 1.00 0.86 0.70 0.36 0.07 0.00 0.00
c 0.85 0.79 1.00 0.63 0.30 0.05 0.00 0.00
d 0.68 0.76 0.76 1.00 0.53 0.13 0.00 0.00
e 0.00 0.06 0.06 0.33 1.00 0.44 0.26 0.26
f 0.00 0.04 0.04 0.19 0.58 1.00 1.00 1.00
g 0.00 0.03 0.03 0.14 0.43 0.76 1.00 0.88
h 0.00 0.03 0.03 0.12 0.40 0.73 0.85 1.00

(b) Carryover-opinion proximity matrix.

Fig. 1. Example

4.1 Optimization Functions Targeted at Pretopological Spaces
Learning

Given a set of elementary closed sets S∗ (the ground truth), LPSMI and LPSFM
does not rely on the same criterion to evaluate the quality of a pretopological
space in construction and so leading the learning process.

492 G. Caillaut et al.

The LPSMI’s optimization criterion relies on the structural properties of
pretopological spaces of type V to evaluate not only the quality of the learned
DNF with regard to the closed sets it engenders, but also its potential relating to
its non-elementary closed sets. The pretopological space learned in this fashion
will thus be of type V. It is therefore essential that the predicates compounding
the learned DNF Q satisfy the same properties as pretopological spaces of type
V. That is to say, if a set A ∈ P(E) propagates to an element x ∈ E, then
any super-set of A must propagates to x too. Let q be a predicate defined on
P(E) × E, it is of type V if it satisfies the following property:

∀A,B ∈ P(E), x ∈ E , A ⊆ B ⇒ [q(A, x) ⇒ q(B, x)] (5)

The ego-centered communities of the network in Fig. 1 cannot be expressed
by the elementary closed sets of this type of pretopological spaces. We assume
that the community centered on a is the set {a, b, c, d}, then the set {d} can-
not be propagated to e. While it is not absurd in this case, it is probably too
restrictive in general. We hence introduce the FM criterion to allow the learning
of unconstrained pretopological spaces.

The optimization criterion used by LPSFM is simpler since it does not fit
account of the potential of the non-elementary closed sets. Instead it only relies
on the raw matching (the F-measure) between the learned elementary closed
sets and the ground truth. In practice this optimization criterion is less efficient
when the task consists specifically in learning a V-type pretopological space
[2]. It is however precious in last resort to lead unconstrained pretopological
spaces learning algorithms. Any DNF Q that defines a pseudo-closure operator
(satisfying Eqs. 1 and 2) is then allowed. Predicates must therefore satisfy the
following properties.

∀A ∈ P(E), ∀x ∈ A, q(A, x) = 1 (6)
∀x ∈ E, q(∅, x) = 0 (7)

4.2 From Network Descriptors to Predicates

We propose a set of predicates dedicated to the task of ego-centered communities
extraction. Each predicate can be seen as a descriptor of a network as it captures
one of its features.

We still consider the network in Fig. 1 and we note E its set of nodes, A
a subset of E and x an element in E. The whole set of predicates we propose
can be organized into three distinct categories described below. The diversity of
this set of predicates is a wonderful example showing the multi-criteria analysis
ability offered by the pretopology formalism.

Topological Predicates. Let V (x) the neighbors of x in the network and V (A) =⋃
x∈A V (x) the union of the neighbors of each node in A. We consider only

reflexive neighborhoods such that x ∈ V (x) (hence A ⊆ V (A)). In the example,
V (a) = {a, b, c}, V (d) = {b, c, d, e} and V ({a, d}) = V (a) ∪ V (d) = {a, b, c, d, e}.

Learning Pretopological Spaces to Extract Ego-Centered Communities 493

A base predicate is defined from the raw adjacency matrix. It is noted
qadj(A, x) and is true when an edge between a node in A and x exists.

qadj(A, x) =
{

1 if x ∈ V (A)
0 otherwise (8)

A good community is commonly described as having strong internal inter-
actions. We propose four predicates defined by the neighborhoods of A and x
which aim to capture the intensity of the interactions between A and x.

– qr1(A, x, k) = |A∩V (x)|
|A| ≥ k

– qr2(A, x, k) = |A∩V (x)|
|V (x)| ≥ k

– qr3(A, x, k) = |A∩V (x)|
|A∪V (x)| ≥ k

– qr4(A, x, k) = |V (A)∩V (x)|
|V (A)∪V (x)| ≥ k

with k a threshold setting in the interval [0, 1]. Among these four predicates,
only qr2 is a predicate of type V.

Modularity Based Predicates. Three predicates are defined by the three different
local modularity measures given by Clauset [4], Luo [12] and Chen [3]. These
predicates are noted qX(A, x) with X ∈ {clauset, luo, chen}. The predicate
qX(A, x) is true if adding x to A makes its local modularity (noted modX(A))
to increase.

∀A ∈ P(E), ∀x ∈ E , qX(A, x) = modX(A ∪ {x}) > modX(A) (9)

These predicates do not satisfy the properties of pretopological spaces of type
V and thus cannot be used by the LPSMI approach.

Proximity Based Predicates. We define the predicate qdanisch(A, x) from the
carryover-opinion proximity measure [7]. This predicate is true when an element
in A is close enough to x. Two elements are said to be close enough when their
carryover-opinion proximity is greater than k, with k in the interval [0, 1].

∀A ∈ P(E),∀x ∈ E , qdanisch(A, x, k) = max
y∈A

{carryover(x, y)} ≥ k (10)

Many other predicates can be considered, for example predicates based on
graph embeddings such as those learned by node2vec. However such approaches
require to know the entire network and thus do not suit the local nature of the
task. Furthermore experiments shown the inefficiency of this type of predicates
for the task of ego-centered community extraction.

4.3 Learning a Pretopological Space

Both LPSMI and LPSFM learn a logical formula in a greedy fashion. The learn-
ing process starts from an empty DNF to which conjunctive clauses are appended
after each iteration of the algorithm. An iteration of the algorithm consists in
finding the best conjunctive clause c knowing a DNF Q already learned during

494 G. Caillaut et al.

the previous iteration. The clause c is a conjunction of the predicates described
above. It is similar to find the clause c maximizing a given optimization crite-
rion for the DNF Q ∨ c. Since an exhaustive search of the conjunctive clauses
space is difficult, a beam search strategy is employed to find a good clause. The
algorithm stops when either the maximum number of iterations is reached or
the optimization criterion is not improved by the new clause.

The time complexity of these algorithms is mainly governed by the time
complexity of the computation of the elementary closed sets. Let (E, aQ) be a
pretopological space, Q a positive DNF and A a subset of E. An application of
the pseudo-closure operator aQ(A) consists in finding all the nodes x ∈ E such
that Q(A, x) is true. Its time complexity is then O(|E| · O(Q)) where O(Q) is
the time complexity of the evaluation of the DNF Q, which cannot be formally
defined since it is different for each iteration. In the context of ego-centered
community, A can only propagates to its neighbors, so the time complexity can
be reduced to O(|V (A)| · O(Q)). The closure operator F (A) needs to apply the
pseudo-closure operator until it converges. In the worst case F (A) = E and
each pseudo-closure application propagates to one element at a time, so |E \ A|
steps are required. The worst time complexity of the closure operator is then
O(|E \ A| · |V (A)| · O(Q)). The time complexity of the computation of all the
elementary closed sets is hence O(|E| · |E \ A| · |V (A)| · O(Q)) which can be
simplified by its upper bound O(|E|3 ·O(Q)). The worst time complexity of the
algorithm are then O(maxiter · |Q|2 · beam · |E|3 · O(Q)) where maxiter is the
maximum number of iterations, beam is the size of the beam for the beam search
and Q is the set of predicates; O(|Q|2 ·beam) is the time complexity of the beam
search strategy.

As a final remark, we should mention that each elementary closed set can
be computed independently of the others. So the computation of all the elemen-
tary closed sets can be done parallel which should drastically reduce the overall
complexity.

4.4 Community Extraction from a Pretopological Space

In order to illustrate how an ego-centered community is extracted from an ele-
mentary closed set, let us again consider the network in Fig. 1. Let (E, aQ)
be a pretopological space with E the set of nodes in the network and Q the
DNF defined by Q = qdanisch(A, x, 0.5)∧qr1(A, x, 0.5). Let the carryover-opinion
proximity matrix given in Fig. 1b, the ego-centered community of the node a is
obtained by calculating the elementary closed set F ({a}) in the pretopological
space (E, aQ).

aQ({a}) = {a, b, c}
aQ({a, b, c}) = {a, b, c, d}

aQ({a, b, c, d}) = {a, b, c, d} = FQ({a})

The elementary closure of element a effectively matches a community in
the network. This closed set is obtained by two subsequent applications of the

Learning Pretopological Spaces to Extract Ego-Centered Communities 495

pseudo-closure operator aQ(.). By construction of Q, the propagation from A to
an element x requires that both predicates qdanisch(A, x, 0.5) and qr1(A, x, 0.5)
are satisfied. The singleton {a} is then extended to nodes b and c because:

– on the one hand carryover(a, b) ≥ 0.5 and |{a}∩V (b)|
|{a}| ≥ 0.5

– on the other hand carryover(a, c) ≥ 0.5 and |{a}∩V (c)|
|{a}| ≥ 0.5.

The other node d is not reached by the first application of the pseudo-closure
since |{a}∩V (d)|

|{a}| = 0, even if qdanisch({a}, d, 0.5) is true. It will be reached
throughout the second application thanks to the nodes b and c previously
included since |{a,b,c}∩V (d)|

|{a,b,c}| ≥ 0.5.
Next, let’s consider the community centered on d.

aQ({d}) = {b, c, d, e}
aQ({b, c, d, e}) = {a, b, c, d, e}

aQ({a, b, c, d, e}) = {a, b, c, d, e} = FQ({d})

The same community {a, b, c, d} is once again retrieved to which node e is
added. This community seems consistent with regard to the locality of d.

This example shows how the complex community structure of a network can
be extracted from a well-defined pretopological space. The relevance of the DNF
defining the pretopological space is the key to this “well-defined” concept. We
are tackling this problem with the LPSMI and LPSFM methods.

5 Experiments

In this section we compare the results of the new proposed supervised approaches
(LPSFM and LPSMI methods) with existing unsupervised methods devoted to
the ego-centred community extraction task. The experiments are performed on
two synthetic and two real networks.

5.1 Datasets

The first synthetic network contains 60 nodes distributed across three commu-
nities of equal sizes. It is obtained with a simple random model: first, each
community is generated according to an Erdős-Rényi model with a probability
of 0.2; then, the edges between each pair of nodes from different communities
are added with a probability of 0.01.

The second synthetic network arises from the LFR benchmark [10] parame-
terized in order to obtain a network with 200 nodes. The average degree of the
nodes is 15 with at most 30 neighbors per node. The mixing parameter is fixed
to 0.3 and 40 nodes belong to three different communities among the 15 com-
munities making up the network. The other parameters are left at their default
value.

496 G. Caillaut et al.

The first real network used is the famous Zachary’s karate club [15]. It models
the interactions between the 34 members of a karate club and is composed of
two known communities.

The second network from real data describes the interactions between the
American football teams of a university championship1 [3]. The network contains
179 nodes (football teams) and 787 edges (matches); 115 teams are distributed
across 11 pre-identified communities and 64 teams are not in any community.

5.2 Experimental Setup and Results

The quality of a community extraction method can be evaluated according to
the matching between the obtained vs. expected communities by mean of the F-
measure. Let E the set of nodes of the network, an ego-centered community C(x)
is extracted from each node x ∈ E and compared to the expected community
noted C∗(x). For the new proposed pretopological methods, the ego-centered
community is obtained by the elementary closed set (C(x) = F ({x})). The
definitions of the precision (P), the recall (R) and the resulting F-measure are
reminded in (11).

P =

∑

x∈E

|C(x) ∩ C∗(x)|
∑

x∈E

|C(x)|
; R =

∑

x∈E

|C(x) ∩ C∗(x)|
∑

x∈E

|C∗(x)|
; FM = 2 · P × R

P + R
(11)

We compare the scores obtained with the new proposed pretopological meth-
ods with the ones resulting of the methods from Clauset [4], Luo [12], Chen [3]
and Danisch [7]. The methods from Clauset, Luo and Chen provide ego-centered
communities by aggregation of nodes maximizing a modularity score. Danisch’s
approach assumes the proximity of a node with its local community is signifi-
cantly higher than with nodes from other communities; he shows that, for a given
node, the proximity carryover-opinion curve reveals successive plateaus sepa-
rated by sharp decreasing. Different granularity levels are obtained depending of
the number of considered plateaus. In the following experiments, three levels of
granularity have been used by considering the first two, three or four plateaus;
the corresponding methods are noted “Danisch2”, “Danisch3” and “Danisch4”
respectively.

The LPSMI approach allows to combine only V-type predicates unlike the
LPSFM approach that benefits of the whole set of predicates to learn the pre-
topological space. In the experiments, the threshold is fixed to k = 0.3 for the
topological predicates, and two predicates are derived from Danisch by consid-
ering different parameters : qdanisch(k = 0.15) and qdanisch(k = 0.3).

LPSMI and LPSFM are evaluated using a 5-fold cross-validation. The results
reported in Table 1 are the means of the F-measures obtained by each method

1 http://www.espn.com/college-football/standings/ /season/2006.

http://www.espn.com/college-football/standings/_/season/2006

Learning Pretopological Spaces to Extract Ego-Centered Communities 497

on the (same) five test sets corresponding each to 20% of the communities to
extract. Let us notice that the communities serving as references are derived from
partitions (except for LFR that contains overlaps) of the network ; actually such
references are therefore approximations of the ego-centered communities. The
computed scores do not reflect the exact quality of the methods, however they
stay the best (and rather good) available indicators at this stage. Finally, the
best logical rules learned with LPSFM are given in Table 2.

Table 1. Scores obtained by different ego-centered community extraction methods on
four networks. Supervised methods are identifiable by the ∗ symbol.

Method Erdős-Rényi Karate Foot LFR

Clauset 0.45 ± 0.08 0.68 ± 0.11 0.53 ± 0.07 0.50 ± 0.06

Luo 0.74 ± 0.06 0.82 ± 0.08 0.57 ± 0.07 0.57 ± 0.05

Chen 0.39 ± 0.11 0.37 ± 0.05 0.88 ± 0.04 0.46 ± 0.06

Danisch2 0.70 ± 0.01 0.79 ± 0.05 0.63 ± 0.03 0.43 ± 0.06

Danisch3 0.80 ± 0.03 0.89± 0.03 0.65 ± 0.03 0.51 ± 0.06

Danisch4 0.82 ± 0.04 0.88 ± 0.01 0.52 ± 0.05 0.56 ± 0.06

LPSMI∗ 0.50 ± 0.00 0.67 ± 0.01 0.31 ± 0.07 0.34 ± 0.09

LPSFM∗ 0.85± 0.02 0.80 ± 0.07 0.96± 0.03 0.65± 0.04

The scores obtained confirm first that V-type pretopological spaces (gener-
ated from LPSMI) are not suitable for modeling local communities. On the other
hand, the unconstrained spaces generated with LPSFM are suitable and outper-
form significantly any other method on most of the datasets. This result reveal
in addition the practical interest of the supervision for the community extraction
task. Indeed, the supervision allows to take into account the properties of a given
network in order to generate a fitting extraction model. Conversely, the perfor-
mances of the other (unsupervised) methods are highly network dependent. As
an example, the communities extracted by the Chen’s method on the network
Foot are good comparatively to the ones from Luo; and it is the opposite on the
network Karate. The approach from Danisch appears to be more stable across
the datasets but remains threshold sensitive.

Table 2. Examples of rules learned with LPSFM. The clauses are presented in the
same order they are introduced in the DNF.

Networks Logical rules

Erdős-Rényi (qluo ∧ qdanisch(k = 0.3)) ∨ (qr2 ∧ qluo) ∨ (qadj ∧ qr4 ∧ qdanisch(k = 0.3))

Karate qluo ∧ qdanisch(k = 0.15)

Foot (qr4) ∨ (qr3 ∧ qdanisch(k = 0.15))

LFR qr1 ∧ qluo

498 G. Caillaut et al.

Model Generalization. In order to evaluate its degree of genericity, each pretopo-
logical model learned on a given network with LPSFM has been reused to extract
ego-centered communities on the other networks. The values reported in Table 3
are the means of the scores obtained by each of the five models learned and
tested on the full dataset (the scores on the diagonal are therefore not exactly
similar to the ones observed in Table 1).

Table 3. Generalization score obtained by pretopological models learned with LPSFM.

Erdős-Rény Karate Foot LFR

Erdős-Rény 0.85 ± 0.01 0.62 ± 0.07 0.29 ± 0.21 0.07 ± 0.00

Karate 0.75 ± 0.03 0.80 ± 0.04 0.47 ± 0.14 0.34 ± 0.11

Foot 0.41 ± 0.00 0.59 ± 0.00 0.97 ± 0.00 0.41 ± 0.00

LFR 0.54 ± 0.01 0.74 ± 0.00 0.60 ± 0.00 0.65 ± 0.00

As expected, given that the semantics of the logical rules highly differs from
one network to another (Table 2), the pretopological models obtain lower per-
formances when applied on networks unknown a priori. However the apparent
robustness of the models derived from the LFR network allows us to consider in
perspective a way to lift this lock.

Finally, the new proposed learning strategy opens the way to solutions that
exploit all the aspects of a network. The logical formalism used offers a way
to combine any type of feature. As an example, the rule learned on the Erdős-
Rényi network combines a low-level topological descriptor (qr2) with higher-
level one (qluo). On the other hand, this formalism makes the learned model
understandable; it’s clear that the rule learned on the Erdős-Rényi network is
driven by the two predicates qluo and qdanisch(k = 0.3). This rule reveals that,
on the considered network, the two predicates are (1) additional because they
don’t appear together in the second and third clauses and (2) too permissive
because they must be “controlled” by another predicate.

6 Conclusion

The main contributions in this paper concern:

1. the formalization of the ego-centered community extraction task using the
recent techniques for learning pretopological spaces (LPS),

2. the definition of a first collection of local features (as logical predicates),
considering the main existing methodologies for the task,

3. the experimental validation on both, real and simulated data, revealing that
suitable pretopological spaces exists that are reachable in a supervised learn-
ing strategy.

Learning Pretopological Spaces to Extract Ego-Centered Communities 499

The study shows the suitability of the pretopology for the community extrac-
tion task in networks. The use of this theory allows to increase performance with
respect to usual methods of ego-centered community detection. The structuring
operators offered by pretopolgy have the ability to express various types of inter-
actions between sets of nodes in a natural and elegant way. This ability is crucial
when information from different levels have to be capitalized from the network.
The present work paves the way to numerous perspectives; some of them are
announced hereafter.

Firstly, this work highlighted that a V-type pretopolgy is not suitable for
the ego-centered community extraction task by mean of elementary closed sets.
However, more investigations have to be led in order to consider other definitions
for the concept of community in a V-type pretopological space.

On the other hand, even if the proposed pretopological approach leads to
qualitative communities, the underlying models obtain low performances on net-
works on which they were not trained; but such a training requires in practice a
costly recourse to experts making the whole (supervised) strategy crippling2. A
way to lift the “expert dependent” lock consists in learning pretopological spaces
in a totally unsupervised manner. In this perspective, we observed the rather
good generalization abilities of the pretopological spaces learned on the LFR
network. This result suggests the possibility - recently investigated in [11] - to
produce automatically training data from artificial networks satisfying structural
properties similar to a target real network.

References

1. Belmandt, Z.: Basics of Pretopology. Hermann, Paris (2011)
2. Caillaut, G., Cleuziou, G.: Learning pretopological spaces to model complex prop-

agation phenomena: a multiple instance learning approach based on a logical mod-
eling. arXiv preprint arXiv:1805.01278 (2018)

3. Chen, J., Zäıane, O.R., Goebel, R.: Local community identification in social net-
works. In: ASONAM, pp. 237–242 (2009)

4. Clauset, A.: Finding local community structure in networks. Phys. Rev. E 72(2),
026132 (2005)

5. Cleuziou, G., Dias, G.: Learning pretopological spaces for lexical taxonomy acquisi-
tion. In: Appice, A., Rodrigues, P.P., Santos Costa, V., Gama, J., Jorge, A., Soares,
C. (eds.) ECML PKDD 2015. LNCS (LNAI), vol. 9285, pp. 493–508. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-23525-7 30

6. Dalud-Vincent, M.: Une autre manière de modéliser les réseaux sociaux. Applica-
tions à l’étude de co-publications. Nouvelles perspectives en sciences sociales 12(2),
41–68 (2017)

7. Danisch, M., Guillaume, J., Grand, B.L.: Towards multi-ego-centred communities:
a node similarity approach. IJWBC 9(3), 299–322 (2013)

8. Figueiredo, D.R., Ribeiro, L.F.R., Saverese, P.H.P.: struc2vec: learning node rep-
resentations from structural identity. In: KDD (2017)

2 Let us notice that in practice, few examples are sufficient for driving efficiently the
learning process.

http://arxiv.org/abs/1805.01278
https://doi.org/10.1007/978-3-319-23525-7_30

500 G. Caillaut et al.

9. Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: KDD,
pp. 855–864. ACM (2016)

10. Lancichinetti, A., Fortunato, S.: Benchmarks for testing community detection algo-
rithms on directed and weighted graphs with overlapping communities. Phys. Rev.
E 80(1), 016118 (2009)

11. Lu, X., Kuzmin, K., Chen, M., Szymanski, B.K.: Adaptive modularity maximiza-
tion via edge weighting scheme. Inf. Sci. 424(C), 55–68 (2018)

12. Luo, F., Wang, J.Z., Promislow, E.: Exploring local community structures in large
networks. Web Intell. Agent Syst. 6(4), 387–400 (2008)

13. Newman, M.E.: Modularity and community structure in networks. Proc. Nat.
Acad. Sci. 103(23), 8577–8582 (2006)

14. Palla, G., Derényi, I., Farkas, I., Vicsek, T.: Uncovering the overlapping community
structure of complex networks in nature and society. Nature 435(7043), 814 (2005)

15. Zachary, W.W.: An information flow model for conflict and fission in small groups.
J. Anthropol. Res. 33(4), 452–473 (1977)

EigenPulse: Detecting Surges in Large
Streaming Graphs with Row

Augmentation

Jiabao Zhang1,2, Shenghua Liu1,2(B), Wenjian Yu3(B), Wenjie Feng1,2,
and Xueqi Cheng1,2

1 CAS Key Laboratory of Network Data Science and Technology,
Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China

liu.shengh@gmail.com
2 University of Chinese Academy of Sciences, Beijing, China

zhangjiabao18@mails.ucas.edu.cn
3 BNRist, Department of Computer Science and Technology, Tsinghua University,

Beijing, China
yu-wj@tsinghua.edu.cn

Abstract. How can we spot dense blocks in a large streaming graph
efficiently? Anomalies such as fraudulent attacks, spamming, and DDoS
attacks, can create dense blocks in a short time window, emerging a surge
of density in a streaming graph. However, most existing methods detect
dense blocks in a static graph or a snapshot of dynamic graphs, which
need to inefficiently rerun the algorithms for a streaming graph. More-
over, some works on streaming graphs are either consuming much time
on updating algorithm for every incoming edge, or spotting the whole
snapshot of a graph instead of the attacking sub-block.

Therefore, we propose a row-augmented matrix with sliding window
to model a streaming graph, and design the AugSV D algorithm for
computation- and memory-efficient singular decomposition. EigenPulse
is then proposed to spot the density surges in streaming graphs based
on the singular spectrum. We theoretically analyze the robustness of our
method. Experiments on real datasets with injections show our perfor-
mance and efficiency compared with the state-of-the-art baseline.

Keywords: Surge detection · Streaming graphs · Sliding window

1 Introduction

The surges of density in some subgraph are a strong signal to detect anomalies
in streaming graphs [2,13]. For example, the controlled user accounts rate fake
and high scores to a set of target objects in a short period of time, in Amazon,
Yelp, App stores, etc. The spamming phone calls/msgs are sent intensively from
a group of phone numbers to another group. And the attacks to a set of servers
of target websites from a large pool of IPs. Those cases will result a very dense
c© Springer Nature Switzerland AG 2019
Q. Yang et al. (Eds.): PAKDD 2019, LNAI 11440, pp. 501–513, 2019.
https://doi.org/10.1007/978-3-030-16145-3_39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16145-3_39&domain=pdf
https://doi.org/10.1007/978-3-030-16145-3_39

502 J. Zhang et al.

subgraph between some users and objects, phone numbers, and IPs in a short
time window. Thus the question is raised:

How can we detect such a dense subgraph, and spot the density surge in a
large streaming graph in an efficient and accurate way?

Many existing dense subgraph detection methods, such as M-zoom [11],
D-Cube [12], HoloScope [9], have achieved satisfied accuracy in large static
graphs. Re-running those methods once a batch of new data comes is very time-
consuming and low efficiency, in a streaming graph. The recent work, SpotLight
[2], can efficiently detect the sudden changes of a snapshot of the graph in a time
period. It was not able to tell which specific part of the snapshot is attacked.
DenseAlert [13] detects dense subgraph using an incremental and heuristic algo-
rithm, which updates for every single incoming edge, in order to have a high
accuracy. This slows down the algorithm, even though DenseAlert is faster than
the batch methods.

Therefore, we reasonably model the streaming graph as a row-augmented
matrix, and propose, EigenPulse, to detect surges in large streaming graphs,
based on the singular spectrum of the matrix. To get the singular spectrum of a
row-augmented matrix, we propose AugSVD for singular decomposition of the
streaming graph in a sliding window. Even if attacks may cross windows, we
can still detect them since the windows intersect. AugSVD outputs the singular
spectrum of every stride, and EigenPulse algorithm calculate the density of a
subgraph in first several singular vectors and detect anomalies. The experiments
on 5 real data sets show that EigenPulse can detect the suspicious surges of den-
sity of some subgraph, achieving high accuracy as the baselines, but consuming
much less computation time.

In summary, the main advantages of our algorithms are:

• Incremental singular value decomposition: we propose a scalable algo-
rithm, AugSVD, to decompose large streaming graphs, which can output the
spectral values of graph nodes at each time window, as long as the graphs
can be formulated as matrices augmented in rows.

• Robust and effective: we theoretically analyze that the robust approxima-
tion of AugSVD to batch SVD. The experiments show that the EigenPulse
generated by AugSVD can detect suspicious synchronized activities accu-
rately in real-world graphs.

• Scalable: EigenPulse is computation- and memory-efficient. Compared with
the state-of-the-art baseline, EigenPulse can be more than 5 times faster.

2 Related Work

2.1 Anomaly Detection in Static Graphs

Anomaly detection in static graphs is well studied in [1]. For example, methods
based on spectral decomposition, e.g., EigenSpokes [10], which discovers that
the induced sub-graph of the 20 nodes which had the highest magnitude pro-
jection along the singular vector almost contains near-cliques. Many existing

EigenPulse: Detecting Surges in Large Streaming Graphs 503

methods rely on graph’s density, e.g., Fraudar [6], several methods even taking
into account rating variation and burst of attacks, e.g., CrossSpot [7] and Holo-
Scope which is the only one considers temporal spikes and hyperbolic topology.

2.2 Anomaly Detection in Streaming Graphs

We summarize dense subgraph detection algorithms in streaming graphs. Tra-
ditional methods just compare the changes of adjacent graphs via a similarity
function based on, e.g., belief propagation [8]. They do not consider evolution-
ary/periodic trends. Many existing methods, e.g., DenseAlert model dynamic
graphs as streaming tensors and aim to approximately identify the top-k dens-
est subblocks, i.e., maintained dense subtensors. DenseAlert divide time into
bins and can detect sudden emerging dense subtensors, same with EigenPulse.
In contrast, Spotlight detects only the sudden appearance or disappearance of
dense blocks in real-time by using randomized sketching-based approach. [15]
designs an algorithm MASCOT for counting local triangles to detect anomalies
in graph streams. There are some methods based on graph decomposition and
partitioning, such as [14] storing a summary of the graph structure based on
tensor decomposition and identify change points as anomalies. Some random-
ized algorithms, i.e., [4] defines a robust random cut data structure that can be
used as a sketch or synopsis of the input stream. Some other methods find pat-
terns for anomaly detection, e.g., [3] investigates continuous pattern detection
over large evolving graphs with snapshot isolation.

3 Proposed Method

We define a bipartite graph G to represent the relationships between users and
rating objects, callers and callees, attacking IPs and target IPs, etc. The problem
that detects surges of density in a large streaming graph G is described as follows:

Informal Problem 1 (Detecting Density Surges) Given: a stream of
triplets (user, object, timestamp), where timestamp is the time when a user
creates an edge on an object, and a time window of width w,

– find: at each time step t, calculate the density Dt of the subgraph that is the
densest one in streaming graph G within current time window;

– detect suspicious surges of density that are above a threshold.

In our problem, a triplet (user, object, timestamp) is a new edge created in
streaming graph G. The triplets come in an order of timestamp. A streaming
graph G within a time window indicates that only the triplets coming in the time
window are considered as the edges in graph G. The time windows are sliding at
each time step.

504 J. Zhang et al.

3.1 Our Model

To develop a fast algorithm for singular decomposition, we model large streaming
graph G as a row-augmented matrix A.

Row-Augmented Matrix: Matrix which is modified in a row augmented man-
ner. For each new piece of data, its corresponding row is incremental or just same
with the last row of current matrix.

us

er
s

cols within # cols within

window sliding

Fig. 1. The sliding window for the row-augmented matrix. w is the window size in
a time unit, s is the stride size in a time unit. Note that the number of columns in
different time windows may be different.

Figure 1 shows the sliding window for AT , which A is the row-augmented
matrix. The columns of row-augmented matrix A represent the user ids in
streaming graph G. The rows are increasing, and each row is a combination
of an object id and timestamp/s, where s is the stride to a next step. Such
ids guarantee the rows coming in the next step are totally different, keeping
the property of row-augmented matrix. Note that our model of A is actually
batch-row augmented, and the batch size is decided by the number of new edges
between stride s.

We now explain why we can model a streaming graph G with a row-
augmented matrix A. One reason is that since fraudsters and attackers create
edges in a relatively short period of time, combining the object ids with binned
time can still show a dense block in our matrix A for anomalies. Besides, an
object in different time can mean differently, e.g. the same app may be different
versions at different time, the same restaurant and product may have improve-
ment or new generation at later time. With such a combination, one can consider
those differences. In another case, a piece of twitter message or news as an object
probably no users will read after a short while, which reduces the bias of our
model. Finally, the most important of all, such a model, can help us achieve fast
algorithm to detect density surges, which is described in the following sections.

Similarly, we can still introduce a sliding window for row-augmented matrix
A as show in Fig. 1. With such a window, we can make algorithm focus on the
most recent edges in graph G. When assigning the width of window w as infinity,
we can consider all the history at every time step. Or we can have non-overlapped
dense subgraphs by setting w = s.

EigenPulse: Detecting Surges in Large Streaming Graphs 505

Algorithm 1. AugSVD with sliding window
Input: row-augmented matrix A with sliding window w, column size n, rank param-

eter k, block size b, two queues glist and hlist.
1: Choose l = tb, where t is an integer, so that l is slightly larger than k
2: Ω = randn(n, l); G = []; set H to an n × l zero matrix
3: if glist is not empty then
4: glist.dequeue(); hlist.dequeue()
5: end if
6: repeat
7: Read rows a for next stride s
8: g = aΩ; h = aTg
9: glist.enqueue(g); hlist.enqueue(h)

10: until the elements in glist corresponds to a window w
11: for all g in glist, h in hlist do
12: G = [G,g]; H = H + h
13: end for
14: Q = []; B = []
15: for i = 1, 2, · · · , t do
16: Ωi = Ω(:, (i − 1)b + 1 : ib); Yi = G(:, (i − 1)b + 1 : ib) − Q(BΩi)
17: [Qi,Ri] = qr(Yi)

18: [Qi, ˜Ri] = qr(Qi − Q(QTQi))

19: Ri = ˜RiRi

20: Bi = R−T
i (H(:, (i − 1)b + 1 : ib)T − YT

i QB − ΩT
i BTB)

21: Q = [Q,Qi]; B = [BT ,BT
i]T

22: end for
23: [˜U,S,V] = svd(B)

24: U = Q˜U
25: U = U(:, 1 : k); V = V(:, 1 : k); S = S(1 : k, 1 : k)
26: return U,S,V

3.2 AugSVD Algorithm

AugSVD is designed for fast singular decomposition of row-augmented matrix
A with sliding windows. It involves only one pass over the data and having
accuracy guarantees. The algorithm is described as Algorithm 1.

Initially, for the first window, the queues glist and hlist are empty. The
AugSVD algorithm outputs the first k singular values and vectors for the data
observed through the first window. At the second time invoking the algorithm,
the window slides one stride forward to form the next window.In such a way,
repeatedly calling AugSVD results in the singular vectors of row-augmented
matrix A observed from the sliding windows. Such an algorithm outperforms
the standard SVD and other existing randomized algorithms by largely reducing
runtime and memory usage.

In Algorithm 1, Steps 3 through 13 prepares matrices G and H for the sliding
window, while Steps 14 through 25 are just the same as those in the single-pass
PCA algorithm [16]. Due to the accumulation of round-off errors, the orthonor-
mality among the columns in {Q1,Q2, · · · } may lose. To fix this issue, Qi is

506 J. Zhang et al.

explicitly re-projected away from the span of the previously computed basis
vectors (Step 19), just as what is done in [16].

Theorem 1. The AugSVD algorithm is mathematically equivalent to the basic
randomized SVD algorithm in [5] for the row augmented matrix A.

Proof. As stated before, the AugSVD algorithm is the same as the single-pass
PCA algorithm for streaming data in the sliding window, i.e. the row augmented
matrix A. It has been proved in [16] that the single-pass PCA algorithm is
mathematically equivalent to the basic randomized SVD algorithm in [5]. So,
the theorem is proved.

Based on Theorem 1, the AugSVD algorithm inherits the theoretical error
bound (if ignoring the round-off error) [5]:

E‖A − QQTA‖ ≤
(

1 +

√
k

s − 1

)
σk+1 +

e
√

k + s

s

⎛
⎝min(m,n)∑

j=k+1

σ2
j

⎞
⎠

1/2

(1)

where E denotes expectation, s = l − k. If choosing s = k + 1, we have

E‖A − ÛΣ̂V̂
T ‖ ≤ 2σk+1 +

e
√

2k + 1
k

⎛
⎝min(m,n)∑

j=k+1

σ2
j

⎞
⎠

1/2

(2)

Here, we have substituted the computed SVD factors: Û, Σ̂ and V̂ with the
single-pass PCA algorithm. Applying a rough analysis, we have

E max
i=1,...,k

|σi − σ̂i| = E‖Σ − Σ̂‖ ≤ 2σk+1 +
e
√

2k + 1
k

⎛
⎝min(m,n)∑

j=k+1

σ2
j

⎞
⎠

1/2

(3)

where σi and σ̂i are the accurate and computed the i-th singular value, respec-
tively. Moreover, it can be shown that the likelihood of a substantial deviation
from the expectation is extremely small; see Sec. 10.3 of [5] for a proof. This
means the expectation symbol in (3) can be removed in an approximate sense.
This results in:

|σi − σ̂i| � 2σk+1 +
e
√

2k + 1
k

⎛
⎝min(m,n)∑

j=k+1

σ2
j

⎞
⎠

1/2

, i = 1, . . . , k (4)

where � means less than approximately. The right-hand side of (4) means that
the error on singular value depends not only on the (k+1)-th singular value
but also the summation of its subsequent singular values. If A’s singular values
do not decay slowly, the second right-hand-side term in (4) would be relatively
small, which means the computed singular value has sufficient accuracy.

EigenPulse: Detecting Surges in Large Streaming Graphs 507

Algorithm 2. EigenPulse
Input: time t, matrix At within time window [t−w, t], row size mt and column size

n, a pair of left/right singular vectors ut, vt.
1: rowset = []; colset = []
2: τu = 1√

mt
; τv = 1√

n

3: for i = 1, · · · , mt do
4: if abs(ut[i]) >= τu then
5: rowset.append(i)
6: end if
7: end for
8: for j = 1, · · · , n do
9: if abs(vt[j]) >= τv then

10: colset.append(j)
11: end if
12: end for
13: [optional] rowset, colset = dense block detection(At, rowset, colset)
14: return Dt(rowset, colset)

3.3 EigenPulse Algorithm

As we known, the nodes in a dense subgraph probably correspond to larger
absolute values in the first several singular vectors. The EigenPulse algorithm
is used to detect such subgraph and calculate the density measure based the
singular vectors computed with AugSVD. It is described as Algorithm 2.

In Algorithm 2, τu and τv are two thresholds for left and right singular vectors
respectively. The density measure is calculated as:

Dt(rowset, colset) =

∑
i∈rowset

∑
j∈colset At(i, j)

|rowset| + |colset| (5)

We calculate this density measure for every time window. If it is obviously
larger in a window than that in other windows, the window is very suspicious.
Optionally, we can use an existing dense block detection algorithm, such as Frau-
dar and HoloScope (HS-α), to further shave rowset and colset to find a densest
subblock, which is efficient for a reduced rows and columns (see step 2–12 in
Algorithm 2), and benefit from the existing algorithms. To detect suspiciously
surging window, one can simply combine mean value with standard deviation of
historical density values as a threshold to take out suspicious windows. By this
way, we greatly reduce the data needs to be detected than static methods.

4 Experiments

We design experiments to answer the following questions:

Q1.Efificiency: How fast does EigenPulse analyze the real world data com-
pared with competitor?
Q2. Accuracy: How accurately does EigenPulse detect dense blocks?
Q3. Scalability: Does EigenPulse scale linearly with the size of tensor?

508 J. Zhang et al.

Table 1. Datasets statistic information

Name Nodes Edges Span time

BeerAdvocate 26.5K × 50.8K 1.08M Jan 2008 – Nov 2011

Yelp 686K × 85.3K 2.68M Oct 2004 – Jul 2016

Amazon Cellphone 2.26M × 329K 3.45M Jan 2007 – Jul 2014

Amazon Electronics 4.20M × 476K 7.82M Dec 1998 – Jul 2014

Amazon Grocery 763K × 165K 1.29M Jan 2007 – Jul 2014

Sina Weibo 2.74M× 8.08M 50.06M Sep 2013 – Dec 2013

4.1 Experimental Settings

Machine: We ran all experiments on a machine with 2.7 GHz Intel Xeon E7-
8837 CPUs and 512 GB memory.

Data: Table 1 lists the real-world datasets used in our experiments. All of the
data are 4-way tensors (users, items, timestamps, ratings) where entry values are
the number of reviews. In addition, the AugSVD can only decompose matrices
augmented in rows, so we first filter the data with high rating scores, then
concatenate these items by the timestamp as row, user as column, and thus the
row of modified tensor grows with the forward of time.

Implementations: We chose the state-of-the-art streaming dense-subtensor
detection algorithm, DenseAlert, as baseline. In all the experiments, we used
sparse tensor format and only considered the first pair left/right singular vector.

4.2 Q1.Efficiency

As we see, EigenPulse chooses suspicious windows based on AugSVD, and then
combines other shaving algorithms to obtain smaller dense blocks, finally identi-
fies the fraudulent blocks with density measure. Other streaming methods, how-
ever, e.g., DenseAlert needs to update dense subtensor every time when coming
a new tensor and SpotLight maintains a streaming tensor about graph sketch
information in real-time. So EigenPluse is faster than those algorithms.

We measured the wall-clock time taken by EigenPluse and DenseAlert for
analyzing the first 5 datasets and showed the results in the Fig. 2(a). The Eigen-
Pluse achieves 2.53× faster than DenseAlert, or even achieves 12.2× speed up
in BeerAdvocate dataset. According to the performance results of DenseAlert,
which is a million times faster than the fastest batch algorithms, e.g., M-Zoom
or CP Decomposition. We can draw the conclusion that EigenPluse significantly
outperforms most of the state-of-the-art competitors.

In addition, EigenPulse is memory-efficient for only calculating one window’s
data each time, which up to 2.33 GB memory consumed.

EigenPulse: Detecting Surges in Large Streaming Graphs 509

4.3 Q2.Accuracy

This experiment demonstrates the accuracy of EigenPulse for detecting dense
blocks in different datasets.

4.42X

2.53X

2.53X

5.77X

12.20X

El
ap

se
d

T
im

e
(m

ic
ro

se
co

nd
s)

(a) Runtime performance

61024002 Year
0

2

4

6

8

10

D
e
n
s
it
y

 Injected Attacks

Threshold

(b) Detection for injected attacks

Fig. 2. EigenPluse performance: (a). EigenPulse consistently outperforms DenseAl-
ert on 5 datasets, and achieves more than 2.53× speed up. (‘Beer’ denotes BeerAdvo-
cate); (b). EigenPluse successfully detects most of the injected attacks on Yelp dataset.

Detection of Injected Attacks: Here, we set w = 30 and s = 10 in days.
We injected dense blocks with different densities and different speeds to iden-

tify the lowest detection density(LDD) and the lowest detection speed(LDS). The
unit of detection speed is (#edges/days), referring to the maximum number of
injected edges in one day which we can detect. To identify the LDS, we keep
the injected density unchanged and change the time span until the F-measure
value is less than 90%. We randomly choose 20 products whose in-degrees are
no more than 100 because they are more likely to buy fake reviews. Since data
in windows is part of all the data, so we should inject small blocks into windows.
For 0.1 may be a suitable density, we sample out 200 fraudsters as a whole to
randomly create 20 edges on each of the 20 products, and also create biased
camouflage on other products. Then, we just vary the time span across the data
to find out the LDS for each dataset. Having identified the LDS, We choose a
proper time span, e.g., 30 days, then inject blocks with different densities until
the F-measure value is less than 90% to identify the LDD. We randomly choose
20 products as mentioned above and sample out fraudsters ranges from 20 to
2000 to generate fraudulent blocks with densities ranges from 1.0 to 0.01 for
testing to find the lowest fraudulent density. The time was generated for each
fraudulent edge: randomly choosing a time in the window range.

In order to give a comparison with DenseAlert, we compare the LDD and
LDS on the first 5 datasets in Table 2. As we can see that EigenPulse has the
lower LDD than DenseAlert except on Amazon Electronics dataset and has the
lower LDS than DenseAlert. In detail, EigenPluse has the LDD which can be
as small as 250 on source nodes on Yelp dataset and Amazon Cellphone dataset
with the minimum density of 0.08 on sink nodes, which means we can detect
fraudsters even if they use 250 accounts to create 20 × 20 edges across 30 days.

510 J. Zhang et al.

Table 2. Experimental results on real data with injected labels

Data Name Metrics DenseAlert EigenPulse

BeerAdvocate LDD 0.1 0.1

LDS 13.33 6.67

Yelp LDD 0.2 0.1

LDS 26.67 13.33

Amazon Cellphone LDD 0.2 0.08

LDS 26.67 13.33

Amazon Electronics LDD 0.2 1

LDS 26.67 6.67

Amazon Grocery LDD 0.2 0.08

LDS 26.67 6.67

Besides, we injected 10 dense blocks with density vary from 0.01 to 1 for
the Yelp dataset. The Fig. 2(b) shows the densities of all the windows on the
EigenPulse. We can see that the injected dense blocks cause significant density
surges. By assuming the density follows a Normal distribution, we successfully
detect 6 injected blocks after simply set the density detection threshold as μ+3σ,
where μ and σ are the mean and standard deviation of all windows’ density
measures.

3102/10/213102/51/113102/10/11
0

20

40

60

80

100

D
en

si
ty

China Telecom Promotion Activity
11.11 Shopping Festival ads
A pop.singer's(Lixin Wang) music album ads
Thanksgiving sales ads

Fig. 3. EigenPulse detects anomalies dense blocks on Sina weibo dataset.

Anomaly Detection on Real Data: For the social network, i.e.,following
relationship or message retweets, the dense blocks usually contain anomalous
items or correspond to suspicious behaviors, and the sudden surges of density
measure can be a significant signal for anomalies. So we applied the EigenPluse
to Sina weibo dataset to detect the suspicious dense blocks, and also crawled the
detailed content of msgs for verification.

The Fig. 3 illustrates the density change of dense blocks in the sliding windows
with w = 2 hours, s = 1 hour. The Table 3 reports the suspicious features and
content of detected blocks. We spot some significant spikes in the Fig. 3, and the
message content all gives the tell-tale sign of suspicious behaviors, that is, as the

EigenPulse: Detecting Surges in Large Streaming Graphs 511

’Message Topic’ shown, most of the messages about advertisements or products
promotion information. In particular, We can notice that there are 953 edges
for the only 7 users × 8 messages in two hours, which means a user retweeted 20
times for one message in average, and it’s very suspicious intuitively. In summary,
EigenPluse can detect anomalies dense blocks in real dataset.

Table 3. Dense blocks detected by EigenPulse on Sina weibo dataset

Message topic Size Time range #Edges

China Telecom
Promotion Activity

39 × 57 6:00–8:00, Nov 7 2,004

78 × 58 7:00–9:00, Nov 7 4,051

151 × 119 8:00–10:00, Nov 7 8,295

11.11 Shopping
Festival ads

201 × 139 6:00–8:00, Nov 10 7,012

196 × 111 7:00–9:00, Nov 10 9,668

126 × 93 8:00–10:00, Nov 13 638

A pop. singer’s
(Lixin Wang) music
album ads

7 × 8 22:00–24:00, Nov 26 953

Thanksgiving sale
ads

26 × 36 23:00, Nov 26–1:00, Nov 27 629

43 × 34 1:00–3:00, Nov 27 263

4.4 Q3.Scalability

We demonstrate the linearly scalability with of EigenPluse by measuring how
rapidly its update time increases as a tensor grows.

We choose two representative datasets: BeerAdvocate with the highest vol-
ume density, and Amazon Electronics with the most edges, and randomly sample
sub-tensors with different size of edges. As shown in Fig. 4, the running time of
our algorithm increases linearly with the number of the edges.

0 2 4 6 8 10
#of edges

105

0

20

40

60

80

100

A
lg

o
ri
th

m
 R

u
n
n
in

g
 T

im
e
(s

)

(a) BeerAdvocate dataset

0 1 2 3 4 5
#of edges 106

0

200

400

600

800

1000

A
lo

g
ri
th

m
 R

u
n

n
in

g
 T

im
e

(s
)

(b) Amazon Electronic dataset

Fig. 4. EigenPulse runs in near-linear time.

512 J. Zhang et al.

5 Conclusion

In this paper, we proposed a surge detection method, EigenPulse, which can spot
the density surge in a large streaming graph in a efficient and accurate way. We
use row-augmented matrix and Sliding Window to model streaming graph and
design the AugSVD algorithm for efficient singular decomposition which is the
input of EigenPulse. In conclusion, our algorithm has the following advantages:

• Incremental singular value decomposition: we propose a scalable algo-
rithm, AugSVD,which combines Sliding Window to do streaming graph
decomposition.

• Robust and effective: AugSVD has good robustness and EigenPulse gen-
erated by AugSVD can detect suspicious synchronized activities accurately.

• Scalable: EigenPulse is near-linear in running time and memory-efficient
because it only detects one window’s data each time.

• Reproducibility: The code and data are available at https://github.com/
shenghua-liu/EigenPulse/invitations.

Acknowledgments. This material is based upon work supported by the Strategic Pri-
ority Research Program of CAS (XDA19020400), NSF of China (61772498, 61872206,
61425016, 91746301), and the Beijing NSF (4172059).

References

1. Akoglu, L., Tong, H., Koutra, D.: Graph based anomaly detection and description:
a survey. Data Min. Knowl. Discov. 29(3), 626–688 (2015)

2. Eswaran, D., Faloutsos, C., Guha, S., Mishra, N.: Spotlight: detecting anomalies
in streaming graphs. In: SIGKDD, pp. 1378–1386. ACM (2018)

3. Gao, J., Zhou, C., Yu, J.X.: Toward continuous pattern detection over evolving
large graph with snapshot isolation. In: VLDB (2016)

4. Guha, S., Mishra, N., Roy, G., Schrijvers, O.: Robust random cut forest based
anomaly detection on streams. In: ICML (2016)

5. Halko, N., Martinsson, P.G., Tropp, J.A.: Finding structure with randomness:
probabilistic algorithms for constructing approximate matrix decompositions.
SIAM Rev. 53, 217–288 (2011)

6. Hooi, B., Song, H.A., Beutel, A., Shah, N., Shin, K., Faloutsos, C.: Fraudar: bound-
ing graph fraud in the face of camouflage. In: KDD. ACM (2016)

7. Jiang, M., Beutel, A., Cui, P., Hooi, B., Yang, S., Faloutsos, C.: A general suspi-
ciousness metric for dense blocks in multimodal data. In: ICDM. IEEE (2015)

8. Koutra, D., Shah, N., Vogelstein, J.T., Gallagher, B., Faloutsos, C.: Deltacon:
principled massive-graph similarity function with attribution. ACM Trans. Knowl.
Discov. Data (TKDD) 10, 28 (2016)

9. Liu, S., Hooi, B., Faloutsos, C.: Holoscope: topology-and-spike aware fraud detec-
tion. In: CIKM, pp. 1539–1548. ACM (2017)

10. Prakash, B.A., Sridharan, A., Seshadri, M., Machiraju, S., Faloutsos, C.: Eigen-
Spokes: surprising patterns and scalable community chipping in large graphs. In:
Zaki, M.J., Yu, J.X., Ravindran, B., Pudi, V. (eds.) PAKDD 2010. LNCS (LNAI),
vol. 6119, pp. 435–448. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-13672-6 42

https://github.com/shenghua-liu/EigenPulse/invitations
https://github.com/shenghua-liu/EigenPulse/invitations
https://doi.org/10.1007/978-3-642-13672-6_42
https://doi.org/10.1007/978-3-642-13672-6_42

EigenPulse: Detecting Surges in Large Streaming Graphs 513

11. Shin, K., Hooi, B., Faloutsos, C.: M-Zoom: fast dense-block detection in tensors
with quality guarantees. In: Frasconi, P., Landwehr, N., Manco, G., Vreeken, J.
(eds.) ECML PKDD 2016. LNCS (LNAI), vol. 9851, pp. 264–280. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-46128-1 17

12. Shin, K., Hooi, B., Kim, J., Faloutsos., C.: D-cube: dense-block detection in
terabyte-scale tensors. In: WSDM (2017)

13. Shin, K., Hooi, B., Kim, J., Faloutsos, C.: Densealert: incremental dense-subtensor
detection in tensor streams. In: KDD. ACM (2017)

14. Sun, J., Tao, D., Faloutsos, C.: Beyond streams and graphs: dynamic tensor anal-
ysis. In: KDD. ACM (2006)

15. Yongsub Lim, M.J., Kang, U.: Memory-efficient and accurate sampling for counting
local triangles in graph streams: from simple to multigraphs. In: TKDD. ACM
(2018)

16. Yu, W., Gu, Y., Li, J., Liu, S., Li, Y.: Single-pass PCA of large high-dimensional
data. In: IJCAI, pp. 3350–3356 (2017)

https://doi.org/10.1007/978-3-319-46128-1_17

TPLP: Two-Phase Selection Link
Prediction for Vertex in Graph Streams

Yang Xiao, Hong Huang, Feng Zhao(B), and Hai Jin

National Engineering Center for Big Data Technology and System,
Services Computing Technology and System Lab, Cluster and Grid Computing Lab,

School of Computer Science and Technology,
Huazhong University of Science and Technology, Wuhan 430074, China

zhaof@hust.edu.cn

Abstract. Currently, data in many applications have naturally been
modeled as streams over the massive graph infrastructure, e.g., social
networks and electronic business. Graph streams are rapidly changing,
enormous and endless networks that are too large to maintain in memory
or on disks. An important problem in networks is link prediction, which
aims to estimate the likelihood of the existence of a specific link. However,
in graph streams, predicting the existence of links connected to one vertex
is more common. For example, in social networks, we generally want to
recommend several friends to a user rather than determining whether a
specific user is your friend. Rapidly and accurately predicting groups of
links becomes a formidable challenge because of the tremendous size and
rapidly updated information of graph streams. In this paper, we propose
the problem of link prediction for vertex in graph streams, which aims
to predict the top-k vertices, i.e., the top-k links, that are most likely
to connect to the target vertex in graph streams. A two-phase selection
framework is proposed to predict top-k links with high efficiency and
without loss of accuracy. We also propose a novel method for estimating
common neighbor in graph streams, which is a very important measure
in link prediction. Extensive experiments show that our algorithms are
more efficient and more accurate than state-of-the-art methods.

1 Introduction

Link prediction, which aims to predict unknown links in networks, is a useful and
fundamental problem in network science; it has attracted a considerable amount
of attention in many fields, such as social networks [5], recommendation systems,
[1] and biology [3]. In these fields, many applications can be represented as graph
streams, which are rapidly changing, enormous networks with nodes and edges
that are received and updated rapidly in a form of a stream. For example, Twitter,

F. Zhao—This work was supported in part by National Natural Science Foundation of
China under Grants No. 61672256 and Guandong Science and Technology Plan under
Grants no. 2017B030305003.

c© Springer Nature Switzerland AG 2019
Q. Yang et al. (Eds.): PAKDD 2019, LNAI 11440, pp. 514–525, 2019.
https://doi.org/10.1007/978-3-030-16145-3_40

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16145-3_40&domain=pdf
https://doi.org/10.1007/978-3-030-16145-3_40

TPLP: Two-Phase Selection Link Prediction 515

a type of social network, is a massive, endless graph with nodes and edges that
change very quickly over time; thus, they can be represented as graph streams [4].

Traditional link prediction methods generally fail in real-world graph stream
scenarios for three reasons. First, these real-world graphs are typically too large
to maintain either in memory or even on disks [2,6]. Second, similar to data
streams, the edges in graph streams can be processed only once [7]. There-
fore, some methods with multipass traversals are no longer feasible in graph
streams. Finally, even if we find a way to maintain the full graph in memory
or on disk, running algorithms on such a massive graph would be very ineffi-
cient and impractical for online link prediction. Therefore, new algorithms and
techniques are needed for link prediction in graph streams.

Zhao [6] proposes the problem of link prediction in graph streams, which
aims to predict links that may appear in the future. However, in real-world
applications, such as recommendation systems, we often encounter scenarios of
link prediction for vertex, where unknown links connected to one vertex need
to be discovered. Link prediction for vertex aims to predict the top-k vertices
that are most likely to connect to the target vertex. For simplicity, the predicted
top-k vertices (or top-k links) are called k future neighbors (KFN) of the target
vertex. Unfortunately, there is no efficient method to solve the link prediction
for vertex problem in graph streams. State-of-the-art method [6] traverses all of
the unlinked vertex pairs and calculates a probability using a type of similarity
measure, such as common neighbor or Adamic-Adar [5]. The vertex pairs with
the largest probability are predicted to be connected. The time complexity of this
method is proportional to |V | because it is necessary to calculate the probability
between the target vertex and all the other vertices, where |V | is the number
of vertices in the graph streams. Given a graph stream with 106 vertices, this
method will be time consuming.

In this paper, we propose a two-phase selection link prediction (TPLP) frame-
work to solve the problem of link prediction for vertex in graph streams. Our main
contributions can be briefly summarized as follows:

– We propose the problem of link prediction for vertex in graph streams and
propose a two-phase selection algorithm to perform link prediction with high
efficiency and without loss of accuracy.

– A new method for estimating common neighbor is designed in graph streams,
and it is more accurate than state-of-the-art methods. The accuracy of link
prediction has been improved by a maximum of 47%.

2 Preliminaries

2.1 Link Prediction for Vertex in Graph Streams

In graph streams, edges are received in the form of a sequence (e1,e2...et), where
t represents the timestamp when edges are received. For convenience, we use
G(t) = (V (t), E(t)) to indicate the graph received thus far, where V (t) represents
the set of vertices in G(t) and E(t) represents the set of edges in G(t). We further

516 Y. Xiao et al.

denote Γ (u, t) as the set of neighbors of vertex u in graph G(t) and d(u, t) as the
degree of vertex u in graph G(t). Formally, We define the problem of streaming
link prediction for vertex as follows:

Definition 1: (Link prediction for vertex in graph streams). Given graph
streams G(t) and a target vertex u, we aim to find the top-k vertices that are
most likely to connect with u in the future. These top-k vertices are called k future
neighbors (KFN) of vertex u.

In our framework, we use two types of similarity-based measures to estimate
the likelihood of the existence of a specific link.

Definition 2: (Similarity measures). Similarity measures are used to esti-
mate the similarity between a given vertex pair. For vertex pair (u, v) /∈ E(t),
where u, v ∈ V (t), we define the similarity measures for (u,v) as follows:

(1) Common Neighbor
C(u, v) = |Γ (u, t) ∩ Γ (v, t)| (1)

(2) Adamic-Adar

AA(u, v) =
∑

w∈Γ (u,t)∩Γ (v,t)

1
log |Γ (w, t)| (2)

2.2 Vertex-Biased Sampling

Graph streams are generally too large to maintain in memory or on disk; there-
fore, sampling is an efficient approach to process graph streams. Zhao [6] pro-
posed vertex-biased sampling to obtain a sampled graph (called graph sketch).
Each vertex is randomly assigned a hash value, which represents the priority of
this vertex. Then they set a threshold L (called the sample size) to limit the
number of neighbors for each vertex, i.e., the algorithm only maintains neigh-
bors with the highest L priority for vertices whose degree is larger than L. This
sampling algorithm ensures that all of the neighbors of low-degree vertices are
retained, while neighbors of high-degree vertices are retained with certain pos-
sibilities. This approach yields a reasonable prediction performance. Thus, we
also use the vertex-biased sampling algorithm in our work. The graph sketch
structure is defined as follows:

Definition 3: (Graph Sketch). Graph sketch is the graph structure after
vertex-biased sampling. Given a vertex u, the graph sketch S(u) is defined as
the set of neighbors of u remaining in the sampled graph.

To measure how much information is retained or lost for the given vertex u
in the graph sketch, we use a measure called sample ratio of graph sketch. This
measure is defined as follow:

TPLP: Two-Phase Selection Link Prediction 517

Definition 4: (Sample ratio of graph sketch). Given time t and vertex u,
suppose that the size of graph sketch S(u) is |S(u, t)| and that the degree of u in
graph G(t) is d(u, t). Then, the sample ratio of graph sketch for vertex u at time
t is

η(u, t) =
|S(u, t)|
d(u, t)

(3)

For example, if u has a total of 1000 neighbors and only 100 of them remain
after sampling, then we say that only 10% of vertex u′s information is retained.
In fact, we can get the estimation of η(u) by using a hash function [6]. In this
paper, we take η(u, t) as a known variable.

3 TPLP: A Two-Phase Selection Streaming Link
Prediction Framework

3.1 Inverted Graph Sketch

To improve the performance of link prediction, we use a structure called inverted
graph sketch, an import structure in our work.

Definition 5: (Inverted Graph Sketch). For each vertex u, inverted graph
sketch I(u) is defined as the indices of graph sketch S(u), i.e., v ∈ I(u) if and
only if u ∈ S(v).

Similar to the ratio defined in Sect. 2.2, we define sample ratio of inverted
graph sketch as follow:

η′(u, t) =
|I(u, t)|
d(u, t)

(4)

Note that we cannot obtain the true value of d(u, t) because we only have a
sampled graph. However, we can estimate d(u, t) based on Eq. (3) as follows:

d(u, t) =
|S(u, t)|
η(u, t)

(5)

Therefore, we can estimate η′(u, t) by

η′(u, t) =
|I(u, t)| · η(u, t)

|S(u, t)| (6)

3.2 Two-Phase Selection Algorithm

In this section, we discuss our methods for reducing the prediction time. Our
main idea is to use the information in the graph sketch and inverted graph
sketch to filter those vertices that are unlikely to be the KFN of target vertex
u. The remaining vertices, called candidates of vertex u, are vertices that can
potentially be the KFN of vertex u. After this selection step, we only need to
calculate the similarity measures of |Cdd(u)| vertex pairs, where |Cdd(u)| is the

518 Y. Xiao et al.

number of vertex u′s candidates. Therefore, for target vertex u, our method is
accelerated approximately |V |/|Cdd(u)| times compared to the method without
selection, where |V | is the number of vertices in G(t). Here, we only discuss two-
phase selection algorithm of Adamic-Adar measure. The selection algorithm for
common neighbor measure can be derived in the same way.

Phase-1 Selection. This phase of selection is for all of the vertices. Here, we
use inverted graph sketch to estimate the Adamic-Adar measure since we only
have sampled graph streams and Eq. (2) is transformed as:

AA(u, v) =
∑

w∈I(u)∩I(v)

1
log |Γ (w, t)| (7)

We do not need to consider vertex v with I(u) ∩ I(v) = ∅ because it has zero
similarity to the target vertex u. Therefore, the candidates of vertex u can be
formulated as follows:

Cdd(u) = {v|I(u) ∩ I(v) �= ∅} (8)

If we traverse all of the vertex v ∈ G(t) and determine whether I(u) ∩ I(v) =
∅, the time complexity is O(|V |L); the average time complexity to obtain
I(u) ∩ I(v) is O(L), and we need to perform this step |V | times. This method is
highly inefficient. Instead, we use graph sketches S(u) and S(v) to improve com-
putational efficiency. Recall that v ∈ I(u) if and only if u ∈ S(v). Assume that
v ∈ Cdd(u); then, we have I(u) ∩ I(v) �= ∅, which means that there is at least
one element in I(u)∩I(v). Without loss of generality, we assume q ∈ I(u)∩I(v).
Then, we have

q ∈ I(u)

q ∈ I(v) ⇒ v ∈ S(q)

Therefore, we have
Cdd(u) = {v|v ∈ S(q), q ∈ I(u)} (9)

The number of candidates is now

|Cdd(u)| =
∑

q∈I(u)

|S(q)| ≤ L · |I(u)| (10)

The link prediction efficiency improves more than |V |
L·|I(u)| times by Phase-1 Selec-

tion.

Phase-2 Selection. This phase of selection is for vertices that have been
queried previously. In general, the number of queries for different vertices follows
a power-law distribution, where some important vertices are frequently queried
and other vertices are rarely queried. Suppose that there is a target vertex u
that has been queried before. The last query result is denoted as KFNold, and

TPLP: Two-Phase Selection Link Prediction 519

the last query time is denoted as t1. We now want to query target vertex u again
at time t2, where t2 > t1; the query result is now denoted as KFNnow.

Because graph streams change rapidly over time, the similarity measures and
KFN change over time. In other words, some vertices in KFNold may be replaced
by new vertices (called KFNnew) during time interval (t1, t2), although some
vertices in KFNold may remain unchanged. Consequently, to obtain KFNnow, we
only need to focus on KFNnew, rather than recalculating the KFN at time t2.

Based on Eq. (7), the value of Adamic-Adar measure can be changed by two
factors. The first is new vertices added to I(u)∩I(v), and the second is the change
in |S(w)| for a vertex w ∈ I(u) ∩ I(v). In fact, we can ignore the influence of
the second factor because it is always very small compared to that of the first
factor. For example, if |S(w)| increases from 50 to 60, the change in Adamic-
Adar measure is 1/log(50)−1/log(60) ≈ 0.011. However, if a new vertex w with
a degree of 10 is added to I(u) ∩ I(v), the change in Adamic-Adar measure is
1/log(10) ≈ 0.434. For convenience, we ignore the influence of the change in
|S(w)|. Therefore, v ∈ KFNnew only if the similarity measure AA(u, v) increases
during time interval (t1, t2); otherwise, it is unable to replace the vertices in
KFNold, which can be formulated as follow:

AA(u, v)now > AA(u, v)old (11)

where AA(u, v)now is the similarity measure at time t2, and AA(u, v)old is the
similarity measure at time t1.

Then, based on Eq. (11), we have

|I(u) ∩ I(v)|now > |I(u) ∩ I(v)|old (12)

Our candidates now become

Cdd(u) = KFNold ∪ {v||I(u) ∩ I(v)|now > |I(u) ∩ I(v)|old} (13)

For convenience, we divide S(u) into two parts. The first part, denoted as
Sold

u , is the set of vertices in S(u) that remain unchanged during (t1, t2). The
second part, denoted as Snew

u , is the set of vertices added to S(u) during time
interval (t1, t2). Iold

u and Inew
u are denoted in the same way. We can rewrite

I(u) ∩ I(v) as
I(u) ∩ I(v) = (Iold

u ∪ Inew
u) ∩ (Iold

v ∪ Inew
v)

Note that Iold
u ∩ Inew

u = ∅ and Iold
v ∩ Inew

v = ∅. We have

I(u) ∩ I(v) = (Iold
u ∩ Iold

v) ∪ (Iold
u ∩ Inew

v) ∪ (Inew
u ∩ Iv) (14)

Similar to the formula derivation in Phase-1 Selection, the size of the candi-
dates is

|Cdd(u)| =
∑

q∈Iold
u

|S(q)new| +
∑

q∈Inew
u

|S(q)| + k (15)

520 Y. Xiao et al.

It is clear that |S(q)new| ≤ |S(q)| because S(q)new ⊂ S(q). We can ignore k
because it is a small value compared to the first two terms. Therefore, we have

|Cdd(u)| ≤
∑

q∈Iold
u

|S(q)| +
∑

q∈Inew
u

|S(q)| =
∑

q∈I(u)

|S(q)| (16)

This means that the number of candidates for a queried vertex can be further
reduced compared to Phase-1 Selection.

3.3 Estimation of Common Neighbor

Common neighbor is a very important measure in many types of applications,
particularly in link prediction. For example, in social networks, the number of
mutual friends reflects familiarity between users. However, in graph streams, we
are not able to obtain the real value of common neighbor because we only have
the sampled graph. Therefore, accurate estimation of the true common neighbor
measure is a crucial problem.

Given a vertex pair (u, v), common neighbor estimation is to estimate the
number of common neighbor of u and v from the sampled graph streams. Zhao
[6] proposed a method to estimate common neighbor in graph streams:

C(u, v) =
|S(u) ∩ S(v)|

max(η(u, t), η(v, t))
(17)

Because the size of reservoir is upper bounded by L, the sample ratio of graph
sketch is very low for high-degree vertices. For example, given L = 50, d(u) =
1000, the sample ratio of vertex u is 0.05, which means that 95% of the neighbors
of u are lost. Consequently, using this method to estimate the common neighbor
for high-degree vertices is not accurate. Therefore, we propose a novel method to
estimate common neighbor for high-degree vertices. Although the sample ratio of
S(u) is very low, I(u), the inverted index structure of S(u), has a relatively high
sample ratio, as the size of I(u) is not upper bounded by L. In our experiment,
the sample ratio of the inverted graph sketch for a high-degree vertex is larger
than 50% in most cases. Therefore, we consider using the inverted graph sketch
I for common neighbor estimation.

Suppose that the true value of common neighbor is C(u, v). Since I(u) and
I(v) are independent of each other, the number of common neighbor in the
sampled graph is C(u, v) · η′(u, t) · η′(v, t). Therefore, our common neighbor
estimation can be formulated as

C(u, v) =
|I(u) ∩ I(v)|

η′(u, t) · η′(v, t)
(18)

where η′(u, t) and η′(v, t) are the sample ratios of the inverted graph sketch for
vertices u and v, respectively, which can be obtained by Eq. (6).

TPLP: Two-Phase Selection Link Prediction 521

4 Experiments

4.1 Datasets

We use four real-world, public datasets that can be formulated as graph streams.

– Amazon. This dataset is based on Customers Who Bought This Item Also
Bought feature of the Amazon website. If a product i is co-purchased with
product j, there is an edge between i to j. Note that all of the edges have at
a certain timestamp; thus, these networks can be treated as graph streams.
There are a total of 262,111 vertices and 1,234,877 edges in the graph streams.

– DBLP. In this dataset, vertices represent the distinct authors, and edges
correspond to the cooperative relationship between two authors. If author
A and author B publish at least one paper together, then there is an edge
between A and B. We extracted papers from 1940 to 2015 and discarded
vertex pairs without a publication year. There are a total of 1,411,376 vertices
and 10,597,380 edges in the graph streams.

– Wikipedia. This dataset describes the evolution of the online knowledge base
Wikipedia. Vertices represent the articles in Wikipedia, and edges represent
the reference relationship between two articles. There are a total of 1,870,709
vertices and 39,953,145 edges in the graph streams.

– Super-User. This dataset describes the interactions on the stack exchange
website Super User. If user u answers or comments on user v′s question at
time t, then there will be an edge <u, v> attached with timestamp t. There
are a total of 194,085 vertices and 1,443,339 edges in the graph streams.

4.2 Performance of Two-Phase Selection

In this section, we test the average prediction time of three types of algo-
rithms: Without Selection, Phase-1 Selection, and Phase-2 Selection. We
design two different query sets for the selection algorithm of different phases. For
Phase-1 Selection, we randomly choose 1,000 vertices. For Phase-2 Selec-
tion, we generate a power-law dataset with 10,000 vertices as our query set.
In other words, the number of queries for different vertices follows a power-law
distribution. The skewness of the power-law distribution is set to 1.

We test three types of similarity measures: common neighbor proposed by
Zhao [6] (Base CN), our common neighbor (Our CN) and Adamic-Adar (AA).
Table 1 presents the experimental results of Phase-1 Selection for the Ama-
zon and DBLP datasets. For the Amazon dataset, the total prediction time of
Phase-1 Selection for the three algorithms is approximately 0.2 s for a total of
1000 queries, which is almost 500 times faster than the corresponding algorithm
Without Selection. For the DBLP dataset, the total prediction time for the
three algorithms with Phase-1 Selection is approximately 0.5 s, while the pre-
diction time (of Without Selection) is approximately 15 min. Table 2 presents
the results of Phase-2 Selection. The results show that Phase-2 Selection
can reduce the prediction time by approximately 5 times compared to Phase-1
Selection.

522 Y. Xiao et al.

Table 1. Performance of Phase-1 Selection on the Amazon and DBLP datasets

Methods Prediction time

cost (s)

Methods Prediction time

cost (s)

Amazon DBLP Amazon DBLP

Base CN (Without Selection) 103.0 835.0 Base CN (Phase-1 Selection) 0.20 0.51

Our CN (Without Selection) 118.6 1165.0 Our CN (Phase-1 Selection) 0.22 0.67

AA (Without Selection) 108.9 1019.2 AA (Phase-1 Selection) 0.25 0.58

Table 2. Performance of Phase-2 Selection on the Amazon and DBLP datasets

Methods Prediction time

cost (s)

Methods Prediction time

cost (s)

Amazon DBLP Amazon DBLP

Base CN (Phase-1 Selection) 9.6 16.2 Base CN (Phase2 Selection) 1.6 3.7

Our CN (Phase-1 Selection) 10.7 21.8 Our CN (Phase2 Selection) 1.7 5.5

AA (Phase-1 Selection) 9.5 21.1 AA (Phase-2 Selection) 1.9 4.2

4.3 Performance of Common Neighbor Estimation

In this section, we test the performance of common neighbor estimation algo-
rithm. Because high-degree vertices have a very low sample ratio, estimation for
these vertices is more difficult compared to low-degree vertices. To test the accu-
racy of common neighbor estimation for vertices with different degrees, we design
a series of query sets with different degrees: V1 = V Setd≥20, V2 = V Setd≥30· · ·
V9 = V Setd≥100, where V Setd≥m means the set of vertices whose degree is not
less than m. We define the accuracy of common neighbor estimation as follows.

Suppose that V Setd≥m = {v1, v2, · · · , vH}, where H is the number of vertices
in V Set. For each vertex vi ∈ V Set, we find the KFN of vi based on three
different algorithms: Base CN, Our CN, True CN, where True CN measures
the value of common neighbor on the entire graph streams rather than the
sampled graph. We define the common neighbor estimation accuracy of a target
vi as

ri =
|KFNi

est ∩ KFNi
true|

k
(19)

where KFNi
est is the common neighbor estimation result (i.e., the set of vertices

having the largest k common neighbor measure to vertex vi) for Base CN or
Our CN, while KFNi

true is the predicted result for True CN. Then, the average
accuracy of common neighbor estimation on the whole query set V Setd≥m is

r =

H∑
i=1

ri

H
(20)

We conduct experiments on the DBLP datasets for different values of k :
k = 5, k = 10, k = 20. The result is shown in Fig. 1. The result shows that the
estimation result of Our CN is more accurate than Base CN in all query sets
regardless of the value of k. It is clear that our CN significantly outperforms

TPLP: Two-Phase Selection Link Prediction 523

Base CN, particularly for high-degree vertices. For V Setd≥100, our estimation
accuracy is approximately 0.8 on the DBLP dataset, which is an improvement of
approximately 20% compared to Base CN. This result occurs because we utilize
the inversed graph sketch structure for high-degree vertices, and the sample ratio
is much higher than that in the graph sketch structure.

(a) k=5 (b) k=10 (c) k=20

Fig. 1. Estimation accuracy of common neighbor on DBLP for different k

4.4 Performance of Link Prediction Accuracy

In this part, we test the link prediction accuracy of different algorithms. Given
graph streams G(t), we consider two intervals [0, t1] and [t1, t2], which are called
the training interval and test interval, respectively. The graph in the training
interval is called Gtrain, and Gtrain = (Vtrain, Etrain). The graph in the test
interval is called Gtest, and Gtest = (Vtest, Etest). For each dataset, the train-
ing interval and the test interval have the same length. We choose a set Core
of vertices that arise in both the test interval and training interval for predic-
tion, i.e., Core = Vtrain ∩ Vtest. We further denote Enew = {(u, v)|(u, v) ∈
Etrain\Etest, u, v ∈ Core} as the set of edges that arise in the test interval but
not in the training interval. Then, we define kv as the arisen time in Enew for ver-
tex v. For example, if Enew = {(v1, v2), (v1, v3)}, then we say v1 arises 2 times and
v2, v3 arise only 1 time. Our query set is all the vertices that arise in Enew, i.e.,
Vquery = {v|kv ≥ 1}. For each vertex vi ∈ Vquery, we obtain its KFN based on
three algorithms: Base CN, Our CN, and AA, where k = kvi

. The query result
for vi is called KFNvi

, and the real result is defined as Resvi
= {u|(u, vi) ∈ Enew}.

We define the link prediction accuracy as follows:

acc =

∑
vi∈Vquery

|KFNvi
∩ Resvi

|
∑

vi∈Vquery

kvi

(21)

where the numerator refers to the number of links that are correctly predicted,
and the denominator refers to the number of links that need to be predicted.
To compare different link prediction algorithms, our link prediction accuracy is

524 Y. Xiao et al.

measured in terms of relative improvement to a random prediction algorithm
on three datasets: DBLP dataset, Wikipedia dataset, and Super-User dataset.
Given a vertex vi, the random prediction algorithm randomly chooses kvi

vertices
from Core as KFN of vertex vi.

To test the relationship between link prediction accuracy and sample size,
we choose different sample sizes L to test prediction accuracy. The results on
DBLP dataset, Wikipedia dataset, and Super-User dataset are shown in Fig. 2a,
b, and c, respectively. For the DBLP dataset, Our CN performs the best. For
the Wikipedia dataset, Adamic-Adar performs the best. One possible reason for
this result is that link prediction accuracy depends heavily on the dataset. The
second significant observation is that the link prediction accuracy increases as the
sample size increases. This result occurs because more information is obtained
as the sample size increases. However, when the sample size reaches 100, the
accuracy increases very slowly. Additionally, the accuracy of Our CN is higher
than that of Base CN in all the three datasets. In particular, on the Wikipedia
and Super-User datasets, the accuracy of Our CN improves by approximately
28% and 47% compared to Base CN when the sample size is equal to 100,
respectively. This observation further verifies that proposed common neighbor
estimation method has a better estimation of common neighbor compared to
state-of-the-art methods.

(a) DBLP (b) Wikipedia (c) Super-User

Fig. 2. Link prediction accuracy in terms of sample size on different datasets

4.5 Error Incurred by Sampling

Finally, we evaluate the error incurred by sampling. Specifically, we test link
prediction accuracy with and without sampling to obtain the relative error rate.
We evaluate the relative error rates of three similarity measures, Base CN,
Our CN, and AA, with five different sample sizes: 20, 40, 60, 80, and 100.
The experimental results are shown in Table 3. From Table 3, it can be seen
that the relative error rate decreases as the sample size increases. Additionally,
when the sample size is 100, the relative error rate is very low, even negligible.
Particularly for Our CN, the relative error rate is only 0.1%. Thus, the error
incurred by sampling can be ignored as long as we choose an appropriate sample
size (such as 100) such that our proposed algorithm can achieve a particularly
good estimation of the similarity measure in graph streams.

TPLP: Two-Phase Selection Link Prediction 525

Table 3. Link prediction error of different sample size

Algorithm Sample size

L =20 L =40 L =60 L = 80 L= 100

Base CN 10.4% 7.2% 4.0% 3.4% 2.8%

Our CN 9.7% 5.4% 2.1% 0.7% 0.2%

AA 10.9% 7.7% 4.8% 3.6% 3.2%

5 Conclusions

In this paper, we propose the problem of link prediction for vertex in graph
streams. Link prediction for vertex has found many real-world applications, such
as recommendation systems and social networks. To support rapid online link
prediction, we propose a two-phase selection framework to reduce the prediction
time by several orders of magnitude. To improve the link prediction accuracy, we
propose a new common neighbor estimation method that performs much better
than state-of-the-art algorithms. The experimental results demonstrate that our
algorithms are more efficient and accurate than state-of-the-art approaches, and
thus can be employed to real-word graph stream applications.

References

1. Li, X., Chen, H.: Recommendation as link prediction in bipartite graphs: a graph
kernel-based machine learning approach. Decis. Support Syst. 54(2), 880–890 (2013)

2. McGregor, A.: Graph stream algorithms: a survey. ACM SIGMOD Rec. 43(1), 9–20
(2014)

3. Menche, J., et al.: Uncovering disease-disease relationships through the incomplete
interactome. Science 347(6224), 1257601 (2015)

4. Song, C., Ge, T., Chen, C., Wang, J.: Event pattern matching over graph streams.
Proc. VLDB Endow. 8(4), 413–424 (2014)

5. Wang, P., Xu, B., Wu, Y., Zhou, X.: Link prediction in social networks: the state-
of-the-art. Sci. China Inf. Sci. 58(1), 1–38 (2015)

6. Zhao, P., Aggarwal, C., He, G.: Link prediction in graph streams. In: Proceedings
of 2016 IEEE 32nd International Conference on Data Engineering (ICDE), pp. 553–
564. IEEE (2016)

7. Zhao, P., Aggarwal, C.C., Wang, M.: gSketch: on query estimation in graph streams.
Proc. VLDB Endow. 5(3), 193–204 (2011)

Robust Temporal Graph Clustering
for Group Record Linkage

Charini Nanayakkara(B), Peter Christen, and Thilina Ranbaduge

Research School of Computer Science, The Australian National University,
Canberra, ACT 2600, Australia

charini.nanayakkara@anu.edu.au

Abstract. Research in the social sciences is increasingly based on large
and complex data collections, where individual data sets from different
domains need to be linked to allow advanced analytics. A popular type
of data used in such a context are historical registries containing birth,
death, and marriage certificates. Individually, such data sets however
limit the types of studies that can be conducted. Specifically, it is impos-
sible to track individuals, families, or households over time. Once such
data sets are linked and family trees are available it is possible to, for
example, investigate how education, health, mobility, and employment
influence the lives of people over two or even more generations. The link-
age of historical records is challenging because of data quality issues and
because often there are no ground truth data available. Unsupervised
techniques need to be employed, which generally are based on similar-
ity graphs generated by comparing individual records. In this paper we
present a novel temporal clustering approach aimed at linking records
of the same group (such as all births by the same mother) where tem-
poral constraints (such as intervals between births) need to be enforced.
We combine a connected component approach with an iterative merging
step which considers temporal constraints to obtain accurate clustering
results. Experiments on a real Scottish data set show the superiority of
our approach over a previous clustering approach for record linkage.

Keywords: Entity resolution · Star clustering · Vital records ·
Birth bundling

1 Introduction

Databases that contain personal information, such as censuses or historical civil
registries [18], generally contain records that describe a group of individuals,
where each individual can occur with different types of roles [6]. A baby is born,
then recorded as a daughter or son in a census, and later she or he might marry
(as a bride or groom) and become the mother or father of her or his own children.
Being able to link such records across different databases will allow the recon-
struction of whole populations and open a multitude of studies in the health

c© Springer Nature Switzerland AG 2019
Q. Yang et al. (Eds.): PAKDD 2019, LNAI 11440, pp. 526–538, 2019.
https://doi.org/10.1007/978-3-030-16145-3_41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16145-3_41&domain=pdf
https://doi.org/10.1007/978-3-030-16145-3_41

Robust Temporal Graph Clustering for Group Record Linkage 527

and social sciences that currently are not feasible on individual databases [4].
Studying these issues is important to identify how societies evolve over time and
discover the changes that influenced and contributed for social evolution [14].

The process of identifying the sets of records that correspond to the same
individual is known as record linkage, entity resolution, or data matching [5].
Record linkage involves comparing pairs of records to decide if a pair refers to
the same entity (known as a match) or to different entities (a non-match). In
this process, generally, the similarities between the values in selected attributes
are compared to decide if two records are similar enough to be classified as a
match (if for example all similarities are above a given threshold) [5]. For certain
applications such a simple pair-wise linkage does however not provide enough
information to identify matching records with high accuracy [6].

In contrast to traditional pair-wise record linkage, group linkage [17] has
recently received significant attention because of its applicability of linking
groups of individuals, such as families or households [6,11]. The identification
of relationships between individuals can enrich and improve the quality of data,
and thus facilitate more sophisticated analysis of different socio-economic factors
(such as health, wealth, occupation, and social structure) of large populations [4].

Historical record linkage [19] involves the linkage of records from historical
censuses, as well as birth, death, and marriage certificates, to construct longitu-
dinal data sets about a population. This problem has been studied in the past
two decades by researchers working in different domains. In 1996 Dillon investi-
gated an approach to link census records from the US and Canada to generate a
longitudinal database to examine changes in household structures [9]. IPUMS is
a large project which aims to curate and ultimately link large demographic data
collections [19]. The Life-M project is another example of transforming histor-
ical records into a multi-generational longitudinal database [3]. The Digitising
Scotland project [8], which this work is part of, aims to link civil registration
events recorded in Scotland between 1856 and 1973 to create a linked database
covering the whole population of Scotland spanning more than a century to allow
researchers to conduct studies that currently are not possible.

Here we address one specific step used in historical record linkage as con-
ducted by demographers and historians [18]: the bundling (clustering) of birth
records by the same mother to identify siblings. Once sibling groups have been
identified, they can be linked to census, marriage, and death records using group
linkage techniques [6,11]. Linked bundles of siblings allow a variety of studies,
for example, about fertility and mortality and how these change over time [18].

Contributions: In this paper we investigate how clustering techniques for
record linkage [13,20] can be employed for grouping records where temporal
constraints exist between record pairs. We propose and evaluate a novel tempo-
ral clustering approach which first creates temporally possible connected com-
ponents with high precision using only links of high similarities [21], and then
employs an iterative refinement step that merges those connected components
that are highly similar and temporally possible. We conduct an empirical study
on a real historical data set which has been extensively linked semi-manually

528 C. Nanayakkara et al.

by domain experts [18] providing us with ground truth data to calculate link-
age quality. We show that our temporal clustering approach can outperform a
state-of-the-art clustering technique for record linkage in terms of linkage quality.

2 Related Work

Classification techniques for record linkage can be categorised into supervised
and unsupervised methods. Unsupervised clustering techniques view record link-
age as the problem of how to identify all records that refer to the same entity
and to group these records into the same cluster. Hassanzadeh et al. [13] pre-
sented a framework to comparatively evaluate different clustering techniques for
record linkage. Saeedi et al. [20] proposed a framework to perform clustering for
record linkage on a parallel platform using Apache Flink. In their evaluation,
star clustering [2] was one of the best performing techniques compared to other
clustering methods. In star clustering, records that have high similarities with
other records are selected as the centres of possibly overlapping clusters, where
the overlapping clusters then need to be split in an iterative second step.

Saeedi et al. [21] recently proposed a novel clustering algorithm based on the
strengths of links between records as categorised into strong, normal, and weak
(as we discuss in the next section). Connected components are formed based
only on strong links initially, which are then refined by adding normal links.

Neither of these clustering approaches, however, has considered temporal
constraints. In our recent work [16] we have considered temporal aspects as an
improvement to star clustering. While this improved star clustering algorithm
was able to achieve better results compared to a greedy temporal clustering app-
roach, it still resulted in low linkage quality due to the requirement of splitting
overlapping clusters. Our aim is to improve linkage quality using a novel tem-
poral clustering method which employs the concepts of link strength [21], and
integrates them with temporal constraints and an iterative cluster merging step.

3 Overview of Temporal Graph Clustering

Our methodology to conduct temporal graph clustering for group linkage consists
of three major phases. In this section, we first describe how we model tempo-
ral constraints, and then detail how we generate the initial similarity graph. In
Sect. 4 we then propose a connected component generation phase, and in Sect. 5
an iterative refinement phase which merges similar temporally consistent con-
nected components. For notation we use bold letters for clusters, lists, and sets
(with upper-case bold letters for sets and lists of sets, lists, and clusters), and
normal type letters for numbers and strings. Lists are shown with square and
sets with curly brackets, where lists have an order but sets do not.

Modelling Temporal Constraints: One aspect of all three phases of our tem-
poral clustering approach is the consideration of temporal constraints of which
pairs of records to consider for linkage. Temporal constrains between records can

Robust Temporal Graph Clustering for Group Record Linkage 529

include that the birth record of a person must be before their death record, a
marriage record can only occur once an individual has reached a certain age,
or (for our clustering problem) the same mother can only give birth to several
babies according to certain biological limitations (at least nine months apart or
within a few days for multiple births such as twins) [18].

We model such temporal constraints as a list T of time intervals where it is
plausible (or not) for two records to be linked (such as a mother to give birth to
two babies). We assume each record ri ∈ R includes a time-stamp, ri.t, such as
a date of birth, marriage, or death. Based on these time-stamps we can calculate
the temporal difference Δti,j = ri.t − rj .t between two records where Δti,j is
positive if ri.t > rj .t (i.e., ri refers to a life event that occurred after rj).

The list T contains time intervals and temporal plausibilities, p, where
p = 1 means two records are temporally plausible and p = 0 means
they are not, in the form of tuples (Δtstart, pstart,Δtend, pend), with Δtstart

< Δtend. For example, for birth records, T = [(0, 1, 2, 1), (3, 0, 273, 0),
(274, 1, 12783, 1), (12784, 0, 99999, 0)] means that two births by the same mother
up-to two days apart are plausible, as are two births nine months to 35 years
(274 to 12,783 days) apart, but not two births between three days to nine months
or more than 35 years apart.

We calculate the temporal plausibility, pi,j , for a pair of records (ri, rj), by
first identifying the corresponding time difference interval in T for Δti,j , and
then calculating the pair’s temporal plausibility using linear interpolation as:

pi,j =

⎧
⎪⎨

⎪⎩

pstart, if Δti,j = Δtstart,

pend, if Δti,j = Δtend,

(pend − pstart) · (Δti,j−Δtstart)
(Δtend−Δtstart)

+ pstart, if Δtstart < Δti,j < Δtend.

If the calculated pi,j is below a given minimum temporal plausibility thresh-
old pmin (provided as input to Algorithm 1), then the corresponding record pair
is deemed not to be temporally plausible and it will not be compared. Currently
we assume the list T of temporal constraints is provided by domain experts. As
future work, we aim to develop techniques to learn such temporal constraints
using true matching record pairs available in ground truth data.

Similarity Graph Generation: In the first phase of our approach, as detailed
in Algorithm 1, we calculate pair-wise record similarities. This is a standard
record linkage approach [5] using techniques such as approximate string com-
parisons and a locality sensitive hashing (LSH) [15] based blocking approach.

The main input to the algorithm is a list of records, R, which we aim to
link and cluster (in our case we aim to determine which birth records are by the
same mother). In order to calculate the pair-wise similarity between record pairs,
we use a list of attributes A and approximate string comparison functions S,
such as Jaro-Winkler and edit distance [5], as appropriate to the type of data in
an attribute. The calculated attribute similarities may or may not be weighted
using the provided list of weights w (unweighted if all elements of w are set to 1).
In general record linkage, assigning different weights to attributes can increase

530 C. Nanayakkara et al.

the quality of the generated links between records [5]. Higher weights can, for
example, be assigned to first and last name similarities compared to occupation
because names are more likely to help identify matching record pairs.

Algorithm 1. Pair-wise similarity graph generation
Input:
- R: List of records to be linked
- A: List of attributes from R to be compared
- S: List of similarity functions to be applied on attributes from A
- w: List of weights given to attribute similarities, with |w| = |S|
- T: List of temporal constraints
- b, r Number of bands and band size for min-hash based LSH blocking
- pmin: Minimum temporal plausibility for record pairs to be compared
- spmin: Minimum pair-wise similarity for record pairs to be added to the generated graph

Output:
- G: Undirected pair-wise similarity graph

1: V = ∅, E = ∅, G = (V,E) // Initialise an empty graph
2: L = MinHashLSHIndexing(R, b, r) // Generate a min-hash index
3: for l ∈ L do: // Loop over all min-hash blocks
4: for (ri, rj) : ri ∈ l, rj ∈ l, ri.id < rj .id do: // Loop over all record pairs in a block
5: if IsTempPlausible(ri, rj ,T, pmin) then: // Check the temporal plausibility of pair
6: si,j = CompareRecords(ri, rj ,A,S,w) // Calculate record pair similarity
7: si,j = NormaliseSim(si,j ,w) // Normalise the similarity
8: if si,j ≥ spmin then:
9: UpdateGraph(G, (ri, rj), si,j) // Add edge and nodes (if they do not exist) to G
10: return G

To prevent a full comparison of every possible record pair (ri, rj) : ri, rj ∈ R
we employ blocking using min-hash based LSH [15] as parameterised using b (the
number of min-hash bands) and r (the band size). Only record pairs (ri, rj) in the
same LSH block will be compared in detail (line 6 in Algorithm 1). Furthermore,
before comparing records, in line 5 we check if a pair of records is temporally
plausible with regard to the list T of temporal constraints, as described above.
The generated undirected similarity graph, G, basically contains records as nodes
and edges between records if the calculated normalised similarity, si,j between
two compared records ri and rj is at least the provided minimum threshold,
spmin, and the two records are also temporal plausible with regard to T.

4 Temporal Connected Component Clustering

In the second phase of our approach, based on the ideas of link strength
(described below) as proposed by Saeedi et al. [21], we generate a set of con-
nected components (clusters) using the similarity graph G, where every pair of
records in a cluster must be temporally consistent. The original connected com-
ponent based clustering approach by Saeedi et al. [21] differs from ours in that it
does not consider temporal constraints and also assumes the linkage of records
across multiple data sources only. The requirement of incorporating temporal
constraints makes the problem much more complex, since simply obtaining the
connected components does not ensure temporal consistency between all records
within a component, as the example in Fig. 1 shows.

Extending the ideas described by Saeedi et al. [21], and using a minimum
cluster similarity threshold, scmin, with scmin ≥ spmin (the pair-wise similarity
threshold used in Algorithm 1), we categorise the edges in G into three types:

Robust Temporal Graph Clustering for Group Record Linkage 531

– Strong: An edge (ri, rj) is strong if (1) the corresponding similarity si,j is
the highest similarity for both records ri and rj with regard to any other
edges they have with other records in G, and (2) si,j ≥ scmin.

– Norm: An edge (ri, rj) is normal if (1) the corresponding similarity si,j is
the highest similarity for either record ri or rj (but not both) with regard to
any other edges they have with other records in G, and (2) si,j ≥ scmin.

– WeakHigh: An edge (ri, rj) is weak high if (1) it is neither strong nor normal,
and (2) si,j ≥ scmin.

As detailed in Algorithm 2, one or several of these edge types are used to
create the initial connected components (named base clusters). Edges (ri, rj)
with similarity si,j < scmin are ignored. The temporal implausible base clusters
are then split further until all are temporally consistent.

Fig. 1. Example iterative temporal cluster refinement in the base cluster generation
phase, as detailed in Algorithm 2, where in each step we identify the best edge(s) to be
removed that most improve the temporal consistency of the cluster(s).

First, in lines 1 to 7 of Algorithm 2, we generate the connected components
based on the edges in G of the selected edge type(s) bt (one or several of Strong,
Norm and WeakHigh, as described above) which we retrieve in the set Eb in
line 2. We then check, in line 5, if all pairs of records in a connected component ci

are temporal plausible. If they are then ci is added to the set of base clusters, Cb,
and removed from the set of connected components Ccc. At the end of this step
the clusters left in Ccc are those that contain record pairs that are temporally
implausible (like two birth records five months apart).

We next process the clusters in Ccc (lines 8 to 19) one by one. We pick one
cj ∈ Ccc (line 9) and generate a list N which for each node vi ∈ cj contains its
average similarity with the other nodes in cj , its neighbours in cj , and the other
nodes in cj it is temporally not plausible with. In line 13, using the function
GetNodeToRefineCluster() we identify from N the best vi ∈ cj to process
which reduces by most the number of temporal implausible edges in cj .

To select the best node vref , in line 13 we first attempt to find the first
node in N with a non-empty intersection between its set of neighbours nref and
the set of neighbours of nodes which vref is temporal inconsistent with, nntref .
If the intersection is empty for all nodes in N, vref will be the node with the
lowest average similarity in the cluster, the lowest number of neighbours, and
that is involved in the highest number of implausible edges in cj . In the example

532 C. Nanayakkara et al.

shown in Fig. 1, assuming the nodes with non-temporal connections are ordered
as N = [f, e, a, g, c], we select node f first since it is the first node in N with
a non-empty intersection (nref ∩ nntref = {b, d}). Subsequently (Fig. 1(b)), we
check nodes e and a in that order, for non-empty intersection. However, since
the intersection is empty for both nodes a and e, node e is selected for removal.

Algorithm 2. Connected component base cluster generation
Input:
- G: Undirected pair-wise similarity graph
- T: List of temporal constraints (as discussed in Sect. 3)
- pmin: Minimum plausibility threshold for record pairs to be added to a cluster
- scmin: Minimum similarity for record pairs to be added to a cluster
- bt: Type(s) of edges to use to create base clusters

Output:
- Cb: Set of generated temporal consistent base clusters

1: Cb = { } // Initialise an empty set of clusters
2: Eb = FindTempEdges(G, bt, scmin) // Get temporal edges of type bt
3: Ccc = GetConnComp(G,Eb) // Get the set of connected components
4: for ci ∈ Ccc do: // Iterate through the connected components
5: if IsTempPlausibleCluster(ci,T, pmin) do:
6: Cb = Cb ∪ {ci} // Add the cluster to the final cluster set
7: Ccc = Ccc \ {ci} // Remove the processed cluster

8: while Ccc �= ∅ do: // Iterate through the temporal inconsistent clusters
9: cj = Ccc.pop() // Get the first connected component
10: N = [] // Initialise a list to hold cluster nodes and node information
11: for vi ∈ cj do: // Iterate through the nodes in cluster cj

12: N.add((CalcSim(vi, cj ,G), GetNeigh(vi, cj),
GetTempNotP lausible(cj , vi,T, pmin), vi))

13: nref ,nntref , vref = GetNodeToRefineCluster(N) // Select node to refine cj

14: Cr = GetTempImproved(cj , vref ,nref ,nntref) // Partition cj based on vref

15: for ci ∈ Cr do:
16: if IsTempPlausibleCluster(ci,T, pmin) do:
17: Cb = Cb ∪ {ci} // Add cluster to the final base cluster set
18: else:
19: Ccc = Ccc ∪ {ci} // If not temporal, add cluster to Ccc to be refined
20: return Cb

Based on the selected node vref , and sets nref and nntref , we then partition
the cluster cj (line 14) using the function GetTempImproved() which returns
the set Cr of two or more temporally improved clusters. In lines 15 to 19 we
check each cluster ci ∈ Cr if it is temporally consistent (in which case we add
it to the set of base clusters, Cb) or not (in which case we add it to the set of
clusters Ccc to be processed further). In Fig. 1, the edges that node f has with
its neighbours {b, d} are removed first, and then edges of node e are removed
next resulting in the three temporally consistent clusters shown in Fig. 1(c).

The algorithm ends once all clusters in Ccc have been processed and the set
of temporally consistent base clusters, Cb, that is to be refined in the next phase
of our approach, is returned in line 20 of Algorithm 2.

5 Iterative Cluster Merging

In the final phase of our approach we merge base clusters that have high overall
similarities between all their individual records. This process is iterative, in that
merged clusters will be further compared until no cluster is highly similar with
any other cluster. We ensure all merged clusters are temporally consistent.

Robust Temporal Graph Clustering for Group Record Linkage 533

As detailed in Algorithm 3, we use a priority queue and sets of similar clusters
to keep track of cluster pairs that are similar in order to prevent a full pair-wise
recalculation of cluster similarities each time a merged cluster is generated. We
start the algorithm (lines 1 and 2) by initialising the empty set of final clusters
to be generated, Cf , and the empty priority queue, Q, which will hold cluster
pairs and their similarities.

Algorithm 3. Similar base cluster merging
Input:
- G: Undirected pair-wise similarity graph
- Cb: Base clusters (as generated in Algo. 2)
- T: List of temporal constraints (as discussed in Sect. 3)
- pmin: Minimum plausibility threshold for record pairs to be considered temporal consistent
- smmin: Minimum similarity threshold for clusters to be merged
- mt: Type of edges to use to merge base clusters
- mm: Method to merge base clusters (cluster similarity calculation method)
- wsim: Weight to assign to cluster similarity versus cluster coverage

Output:
- Cf : Final set of generated clusters

1: Cf = { } // Initialise an empty set of final clusters
2: Q = [] // Initialise an empty priority queue which will be sorted by similarity
3: Em = FindTempEdges(G, mt, smmin) // Get temporal edges of type mt
4: for (ci, cj) ∈ Cb, i < j do: // Loop over all cluster pairs in Cb

5: Q.add((CalcSim(ci, cj ,G,Em, mm, wsim), ci, cj)) // Add cluster pair and its similarity

6: while Q �= ∅ do: // Iterate through cluster pairs in Q
7: sx,y, cx, cy = Q.pop() // Get the most similar cluster pair from Q
8: Sx = {cp : (cp, cx) ∈ Q ∧ sp,x ≥ smmin, cp �= cy} // Set of clusters highly similar to cx

9: Sy = {cq : (cq, cy) ∈ Q ∧ sq,y ≥ smmin, cq �= cx} // Set of clusters highly similar to cy

10: RemoveAllTuplesWithCluster(Q, cx) // Remove tuples containing cx from Q
11: RemoveAllTuplesWithCluster(Q, cy) // Remove tuples containing cy from Q
12: if (sx,y ≥ smmin) and IsTempPlausibleClusterPair(cx, cy,T, pmin) do:
13: cmer = cx ∪ cy // Merge clusters if similarity is high enough and if temporally plausible

14: if Sx ∪ Sy = ∅ do: // If no clusters are similar with cx or cy

15: Cf = Cf ∪ {cmer} // Add merged cluster to final clusters
16: else:
17: for cz ∈ Sx ∪ Sy do: // Add cmer with clusters similar to cx or cy into Q
18: Q.add((CalcSim(cz, cmer,G,Em, mm, wsim), cz, cmer))

19: else:
20: Cf = Cf ∪ {cx, cy} // Add cluster pair cx and cy to final clusters if non-mergeable
21: return Cf

In lines 3 to 5, we calculate the similarities between every pair of base clusters
in Cb, where we consider a set of edge types, mt, different to Algorithm 2, with
one or several of Strong, Norm, and WeakHigh, as described before.

In line 5 we calculate the similarity between a cluster pair ci and cj using the
function CalcSim() which also takes as input a merge method, mm, and a clus-
ter similarity weight, wsim. mm determines how the overall similarity between
clusters is calculated, where it can be one of the aggregation functions mini-
mum, average or maximum. The aggregated similarity between two clusters is
assigned a weight of wsim whereas a weight of 1 − wsim is assigned for coverage.
The coverage is the ratio between the number of edges across ci and cj in Em,
and the number of edges across ci and cj in G, which reflects the proportion of
edges covered in our similarity calculation. The cluster similarity, sx,y, returned
by CalcSim() is the weighted sum of similarity and coverage.

The main loop starts in line 6 and iterates over each cluster pair tuple in
the queue Q. For both clusters in the tuple, cx and cy, we next (lines 8 and 9)

534 C. Nanayakkara et al.

identify all other clusters that they are similar with, and we keep these clusters in
two sets Sx and Sy, respectively. We then remove all tuples in Q that contain cx

or cy since they should not be re-processed. In line 12 we check if the similarity
between cx and cy is at least the minimum cluster merge similarity smmin and
if they are temporally consistent with each other. If this is the case we merge
clusters cx and cy into cmer in line 13.

If both cx and cy are not similar with any other clusters (i.e. both Sx and Sy

are empty; the test in line 14), then based on the triangular inequality we know
that the merged cluster cmer cannot be merged further with any other clusters.
Therefore cmer is added to the set of final clusters, Cf , in line 15. Otherwise, in
line 17 we calculate the similarity of the merged cluster, cmer, with each cluster
in Sx and Sy and add new tuples into the queue in line 18.

If a cluster pair in the queue was not similar enough or not temporally con-
sistent, we do not merge cx and cy but instead add both into Cf in line 20.
Finally we return the set of merged and temporally consistent clusters, Cf .

6 Experimental Evaluation

We evaluated our temporal clustering approach using a real Scottish data set, as
provided by [18], that covers the population of the Isle of Skye over the period
from 1861 to 1901. This data set consists of 17,614 birth certificates, where each
of these contains personal details about a baby and its parents such as their
names, address, marriage date, occupations, and the birth date. As with other
historical data [1,11], this data set has a very small number of unique name
values (2,055 first and only 547 last names), and the frequency distributions of
names are also very skewed. Many records have missing addresses or occupations,
and for unmarried women the details of a baby’s father are mostly missing.

This data set has been extensively curated and linked semi-manually by
demographers who are experts in the domain of linking such historical data [18].
Their approach followed long established rules for family reconstruction, leading
to a set of linked birth records. We thus have a set of manually generated links of
births that allows us to compare the quality of the different clustering techniques,
and to evaluate how temporal constraints can improve linkage quality.

We used three different subsets of attributes to compare record pairs and gen-
erate the similarity graph G discussed in Sect. 3: All (parents names, addresses,
occupations, and marriage dates), Parent names and addresses, and Parent
names only. To compare attribute values we used approximate string comparison
functions such as Jaro-Winkler and edit-distance [5]. We used both unweighted
(UW) and weighted (W) similarities, where weights were calculated based on the
traditional Fellegi and Sunter record linkage approach [10]. We thus ended up
with six different similarity graphs G where we set spmin = 0.7 to only include
pair-wise links with at least this normalised similarity.

As discussed in Sect. 4, we evaluated different combinations of the edge types
Strong, Norm, and WeakHigh in our approach. For Algorithm 2 we generated
base clusters with only Strong edges because these clusters showed much higher

Robust Temporal Graph Clustering for Group Record Linkage 535

precision (95%) in set-up experiments compared to using other edge type combi-
nations. In Algorithm 3 we used ‘Norm’, ‘Norm with WeakHigh’ (where base
clusters were merged using both edge types in the same run), as well as ‘Norm
and WeakHigh’ (where base clusters were first merged using Norm edges and
then the resulting clusters were merged again using WeakHigh edges). As dis-
cussed in Sect. 5, we used the three cluster merge methods (mm): Min (minimum
pair-wise record similarity across two clusters), Avr (average pair-wise similar-
ity), and Max (maximum pair-wise similarity). We also ran experiments where
we did not consider any temporal constraints, i.e. we set T = [] in all algorithms.

We calculated linkage quality as precision (the ratio of true links identified
against all links within clusters) and recall (the ratio of true links identified
against all true links) [5]. We do not present F-measure results given recent
work has identified some problematic aspects with this measure when used for
record linkage [12]. Instead we present the area under the precision-recall curve
(AUC-PR) which has shown to be robust for class imbalance problems [7].

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io
n

Edge category: Norm
Merge method: Min

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io
n

Edge category: Norm
Merge method: Avr

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io
n

Edge category: Norm
Merge method: Max

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io
n

Edge category: Norm and WeakHigh
Merge method: Min

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io
n

Edge category: Norm and WeakHigh
Merge method: Avr

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io
n

Edge category: Norm and WeakHigh
Merge method: Max

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io
n

Edge category: Norm with WeakHigh
Merge method: Min

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io
n

Edge category: Norm with WeakHigh
Merge method: Avr

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io
n

Edge category: Norm with WeakHigh
Merge method: Max

All (UW)
All (W)
Names and addresses (UW)
Names and addresses (W)
Names only (UW)
Names only (W)

Fig. 2. Precision and recall of our approach with different merge methods (as discussed
in Sect. 5) for different similarity graphs as described in Sect. 6.

We compared the proposed approach with our recent star clustering based
method [16], as this is the only approach we are aware of that uses temporal
aspects for group linkage. We applied LSH [15] (blocking) to limit the number

536 C. Nanayakkara et al.

of record pairs being compared, resulting in a recall of 99.7% of true matches
for the similarity graph G. We set the similarity threshold in Algorithm 2 and
3 from 1.0 to 0.7 in 0.05 steps, and the weight wsim in Algorithm 3 to 0.5. We
implemented all techniques using Python 2.7, and the programs and similarity
graphs are available from the authors to facilitate repeatability.

Figure 2 shows precision and recall curves of our approach with different edge
combinations. As can be seen, the edge combination ‘Norm with WeakHigh’
provided the best linkage quality compared to other edge combinations. The
reason for this is that when using Norm edges only, many true links that are in
the WeakHigh category are ignored. It also appears that merging clusters in a
single run using the ‘Norm with WeakHigh’ method provided better results
than conducting the cluster merging in two phases (as done in the ‘Norm and
WeakHigh’ method). We also noted that the quality of clustering does not
change much with the merge method mm (Min, Avr, or Max) because most
clusters generated only contained between 2 to 4 records.

Table 1. The area under the precision-recall curve (AUC-PR) results (averages and
standard deviations) of our approach and star based clustering [16], with (T) and
without (NT) temporal constraints for different similarity graphs.

Similarity graph ConnComp (T) Star (T) ConnComp (NT) Star (NT)

All (UW) 0.72± 0.012 0.70± 0.003 0.64± 0.005 0.63± 0.003

All (W) 0.77± 0.014 0.74± 0.006 0.69± 0.005 0.68± 0.004

Names and addresses (UW) 0.87± 0.006 0.70± 0.014 0.83± 0.002 0.73± 0.003

Names and addresses (W) 0.86± 0.007 0.69± 0.016 0.80± 0.003 0.72± 0.007

Names only (UW) 0.88± 0.002 0.72± 0.018 0.85± 0.001 0.78± 0.015

Names only (W) 0.80± 0.002 0.65± 0.016 0.73± 0.001 0.69± 0.019

Averages 0.82± 0.064 0.70± 0.030 0.76± 0.083 0.71± 0.051

Finally, Table 1 shows AUC-PR results of our approach with different simi-
larity graphs. The average and standard deviations of AUC-PR values across the
three merge methods are reported for the best edge combination ‘Norm with
WeakHigh’ from Fig. 2. As can be seen, our approach achieved the highest
AUC-PR value of 0.88 with temporal constrains while it resulted in an AUC-PR
value of 0.85 without any temporal constraints. We conducted a t-test to evaluate
the statistical significance between the AUC-PR values of 0.88 and 0.85, which
resulted in a p-value less than 0.0001. Such high statistical significance confirms
that the use of temporal constraints can improve the overall linkage quality in our
approach. Further, as this table shows, our approach outperformed both tempo-
ral and non-temporal star clustering in terms of linkage quality for all similarity
graphs which indicates our approach is suitable to cluster records, such as the
births by the same mothers in the context of historical record linkage, with high
linkage quality.

Robust Temporal Graph Clustering for Group Record Linkage 537

7 Conclusions and Future Work

We have presented a temporal clustering approach for group record linkage.
Our approach first generates a graph that represents the similarities calculated
between individual records, and then generates temporally consistent connected
components which are merged to obtain a set of high quality clusters. Our exper-
imental evaluation on a real data set from Scotland has shown that our approach
can substantially outperform a previous temporal clustering approach for record
linkage. In the future we aim to conduct empirical evaluations for different data
sets and parameter settings. We further plan to conduct a complexity analysis
on the proposed algorithms and also learn temporal constraints for different time
intervals using ground truth data based on true matching record pairs.

Acknowledgements. This work was supported by ESRC grants ES/K00574X/2
Digitising Scotland and ES/L007487/1 ADRC-S. We like to thank Alice Reid of the
University of Cambridge and her colleagues Ros Davies and Eilidh Garrett for their
work on the Isle of Skye database, and their helpful advice on historical Scottish
demography. This work was partially funded by the Australian Research Council under
DP160101934.

References

1. Antonie, L., Inwood, K., Lizotte, D.J., Ross, J.A.: Tracking people over time in
19th century Canada for longitudinal analysis. Mach. Learn. 95, 129–146 (2014)

2. Aslam, J.A., Pelekhov, E., Rus, D.: The star clustering algorithm for static and
dynamic information organization. J. Graph Algorithms Appl. 8, 95–129 (2004)

3. Bailey, M., Cole, C., et al.: How well do automated methods perform in historical
samples? Evidence from new ground truth. Technical report, NBER (2017)

4. Bloothooft, G., Christen, P., Mandemakers, K., Schraagen, M.: Population Recon-
struction. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-319-19884-2

5. Christen, P.: Data Matching. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-31164-2

6. Christen, V., Groß, A., Fisher, J., Wang, Q., Christen, P., Rahm, E.: Temporal
group linkage and evolution analysis for census data. In: EDBT, Venice (2017)

7. Davis, J., Goadrich, M.: The relationship between precision-recall and ROC curves.
In: ACM ICML, Pittsburgh, pp. 233–240 (2006)

8. Dibben, C., Williamson, L., Huang, Z.: Digitising Scotland (2012). http://gtr.rcuk.
ac.uk/projects?ref=ES/K00574X/2

9. Dillon, L.Y.: Integrating nineteenth-century Canadian and American census data
sets. Comput. Hum. 30(5), 381–392 (1996)

10. Fellegi, I.P., Sunter, A.B.: A theory for record linkage. J. Am. Stat. Assoc. 64(328),
1183–1210 (1969)

11. Fu, Z., Christen, P., Zhou, J.: A graph matching method for historical census
household linkage. In: Tseng, V.S., Ho, T.B., Zhou, Z.-H., Chen, A.L.P., Kao, H.-
Y. (eds.) PAKDD 2014. LNCS (LNAI), vol. 8443, pp. 485–496. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-06608-0 40

12. Hand, D., Christen, P.: A note on using the f-measure for evaluating record linkage
algorithms. Stat. Comput. 28(3), 539–547 (2018)

https://doi.org/10.1007/978-3-319-19884-2
https://doi.org/10.1007/978-3-642-31164-2
https://doi.org/10.1007/978-3-642-31164-2
http://gtr.rcuk.ac.uk/projects?ref=ES/K00574X/2
http://gtr.rcuk.ac.uk/projects?ref=ES/K00574X/2
https://doi.org/10.1007/978-3-319-06608-0_40

538 C. Nanayakkara et al.

13. Hassanzadeh, O., Chiang, F., Lee, H.C., Miller, R.J.: Framework for evaluating
clustering algorithms in duplicate detection. PVLDB 2(1), 1282–1293 (2009)

14. Kum, H.C., Krishnamurthy, A., Machanavajjhala, A., Ahalt, S.C.: Social genome:
putting big data to work for population informatics. IEEE Comput. 47(1), 56–63
(2014)

15. Leskovec, J., Rajaraman, A., Ullman, J.D.: Mining of Massive Datasets. Cambridge
University Press, Cambridge (2014)

16. Nanayakkara, C., Christen, P., Ranbaduge, T.: Temporal graph-based clustering
for historical record linkage. In: MLG, held at ACM SIGKDD, London (2018)

17. On, B.W., Koudas, N., Lee, D., Srivastava, D.: Group linkage. In: IEEE ICDE,
Istanbul (2007)

18. Reid, A., Davies, R., Garrett, E.: Nineteenth-century Scottish demography from
linked censuses and civil registers. History Comput. 14(1–2), 61–86 (2002)

19. Ruggles, S., Fitch, C.A., Roberts, E.: Historical census record linkage. Ann. Rev.
Sociol. 44(1), 19–37 (2018)

20. Saeedi, A., Peukert, E., Rahm, E.: Comparative evaluation of distributed clus-
tering schemes for multi-source entity resolution. In: Kirikova, M., Nørv̊ag, K.,
Papadopoulos, G.A. (eds.) ADBIS 2017. LNCS, vol. 10509, pp. 278–293. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-66917-5 19

21. Saeedi, A., Peukert, E., Rahm, E.: Using link features for entity clustering in
knowledge graphs. In: Gangemi, A., et al. (eds.) ESWC 2018. LNCS, vol. 10843, pp.
576–592. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93417-4 37

https://doi.org/10.1007/978-3-319-66917-5_19
https://doi.org/10.1007/978-3-319-93417-4_37

Data Pre-processing and Feature
Selection

Learning Diversified Features for Object
Detection via Multi-region Occlusion

Example Generating

Junsheng Liang , Zhiqiang Li , and Hongchen Guo(B)

School of Computer Science and Technology, Beijing Institute of Technology,
Beijing, China

guohongchen@bit.edu.cn

Abstract. Object detection refers to the classification and localization
of objects within an image by learning their diversified features. How-
ever, the existing detection models are usually sensitive to the impor-
tant features in some local regions of the object. The existing algo-
rithms cannot learn the diversified features regarding to each region
effectively, which limit the performance of the model to a certain range.
In this paper, we propose a novel and principle method called Multi-
region Occlusion Example Generating (MOEG) to guide the detection
model in fully learning the features of the various regions of the object.
MOEG can generate completely new occlusion examples and it enables
our detection model to learn the features of the remaining regions in the
object by blocking the important regions in the proposal. It is a general
method to generate occlusion examples and it can be implemented to
most mainstream region-based detectors very easily such as Fast-RCNN
and Faster-RCNN. Our experimental results indicate a 2.4% mAP boost
on VOC2007 dataset and a 4.1% mAP boost on VOC2012 dataset com-
pared to the Fast-RCNN pipeline. And as datasets become larger and
more challenge, our method MOEG become more effective as demon-
strated by the results on the MS COCO dataset.

Keywords: Feature extraction · Data augmentation ·
Object detection

1 Introduction

In general, we make full use of visual cues from multiple regions of the object to
classify an object and localize it. However, it is the fact that the object detection
task contains various complex situations, which result in low detection accuracy.
For example, some important regions of an object are occluded, deformed or
blurred caused by background changes, conditions of illumination or the angle
of shooting. Therefore, the detection models may not perform effectively due to
the unobvious features extracted from important regions. So, it is a big challenge

c© Springer Nature Switzerland AG 2019
Q. Yang et al. (Eds.): PAKDD 2019, LNAI 11440, pp. 541–552, 2019.
https://doi.org/10.1007/978-3-030-16145-3_42

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16145-3_42&domain=pdf
http://orcid.org/0000-0001-9414-8580
http://orcid.org/0000-0003-1576-687X
http://orcid.org/0000-0002-7022-3803
https://doi.org/10.1007/978-3-030-16145-3_42

542 J. Liang et al.

for current detection tasks to fully learn and extract the diversified features in
each local region of the object.

In this paper, we propose a novel and principle method called Multi-region
Occlusion Example Generating (MOEG) to learn and extract features in different
local regions of the object as many as possible, although parts of them are
not common features of the object. We utilize these features to classify and
localize the object more accurately. MOEG blocks parts of the local regions
(which have great impacts on the detection results) in the foreground examples
by using masks with different occluded regions (e.g., 30% and 50%). We use
these examples to train our model. In order to reduce the influence of such
manual occlusion examples on the ConvNet’s feature extraction process, we mask
the regions in the feature vectors instead of pixels. In order to avoid learning
the difference between foreground and background examples caused by these
occlusions, we randomly block parts of regions in some background examples.
Furthermore, we combine different examples to train our model in each iteration
to prevent converging too early and missing some of the important regional
features. Examples with different occluded regions can help to learn features in
the remaining regions, and make our model able to learn the diversified features
in each local region of the object.

In order to show the effectiveness of our method, we conduct substantial
experiments over VOC2007 and VOC2012 [18] dataset. We use MOEG to train
Fast-RCNN [8] and Faster-RCNN [19]. We compare our model with the standard
baseline and the state-of-the-art methods such as A-Fast-RCNN [25] and OHEM
[20]. The experimental results indicate that MOEG outperforms the Fast-RCNN
pipeline with a 2.4% mAP on VOC2007 and a 4.1% mAP on VOC2012. Further-
more, our accuracies (mAP: 71.8% and 70.5% on VOC2007 and VOC2012) are
higher than A-Fast-RCNN (mAP: 71.4% and 69.0% on VOC2007 and VOC2012)
and OHEM (mAP: 69.9% and 69.8% on VOC2007 and VOC2012). We integrate
MOEG with a stronger baseline Faster-RCNN and we get a boost in VOC2007
(from 70.9%mAP to 72.6%mAP). For MS COCO [17] dataset, we also get a
significant promotion which proves that our method can get a good performance
even though the dataset itself has provided sufficient examples with objects in
different states.

2 Related Work

In recent years, great improvements have been achieved in the field of object
detection. Most of these methods come from the promotion of the ability to
learn and extract the image features by the detection model. And establish-
ing connections and relationships between features in each region artificially
[1,2,7,16,26] can improve the efficiency of information transmission during both
feature learning and feature extraction such as Gated bi-directional CNN (GBD-
Net) [26]. But such models are too difficult to achieve in engineering due to the
complexity. In addition, these models cannot make the best of the self-learning
ability of DNN.

Learning Diversified Features for Object Detection via MOEG 543

In order to make our model learn the diversified features of the object
autonomously, one of the most straightforward approaches is to provide large-
scale training data which have object in different states. We also can use data
augmentation techniques to expand the training data, such as image scaling,
cropping, flipping, shifting, rotation and color jittering [12,14,21,23]. There are
also some unsupervised data augmentation techniques such as AutoAugment [3]
which have got a significant effect in image classification. These techniques can
increase both the amount and diversity of training data and have been selec-
tively applied in the training process of object detection networks which can
reduce the overfitting phenomenon. Moreover, hard example mining techniques
such as OHEM and S-OHEM [15,20] are also used to select the hard exam-
ples to train the detection model and improve the performance of the model.
OHEM algorithm uses a read-only network for forward pass of all proposals and
computing their losses in order to select hard examples. Its network executes
forward passes for all proposals, but executes backward passes only for the hard
examples selected from the read-only network.

Some novel approaches prove that it is better to generate hard examples
instead of searching in the existing dataset [22,25,27]. For example, Hide-and-
Seek [22] uses random occlusion image patches in the training process. But it is
only applicable for classification and weakly-supervised object localization and
random occlusion is not a good strategy. A-Fast-RCNN [25] provides a novel
idea that we can generate hard examples using adversarial networks. It uses
adversarial networks to generate examples with occlusions and deformations
that may be hard for our object detector to classify. The adversarial networks
have been used in many fields such as generating images [4,10]. But the current
generators cannot achieve good results in generating hard examples in the pixel
space for training. A-Fast-RCNN tries to generate occlusions and deformations in
feature vectors to avoid this problem. Especially, its Adversarial Spatial Dropout
Network can generate occlusion masks for region-based features. However, the
adversarial network’s prediction result is not accurate enough, the examples
generated from it are still not desired hard examples with the most important
regions blocked. In order to alleviate this problem, it uses importance sampling
to sample the output generated by the adversarial network and jointly train the
adversarial network in the detector’s training process.

3 Our Method

We introduce our method called Multi-region Occlusion Example Generating
(MOEG) in details. Compared with the state-of-the-art methods such as A-Fast-
RCNN [25] and Online hard example mining [20] algorithm, MOEG can get a
higher performance and it is easier to implement in the mainstream region-based
object detectors, such as Fast-RCNN [8] and Faster-RCNN [19].

544 J. Liang et al.

3.1 Multi-region Occlusion Example Generating

Our goal is to guide our model to learn the diversified features in each region
of objects. Firstly, we need to extract the features in each region. SPP-net [11]
introduces a spatial pyramid pooling (SPP) layer to generate fixed-length repre-
sentations (we call it region-based features) for each proposal. These region-based
features still keep the spatial message from the proposal. In the Fast-RCNN
pipeline [8], we can get the region-based features for each proposal. The size of
the features is d × d × c, where d is the spatial dimension and c is the number
of channels (e.g., c = 512, d = 7 in VGG16). The features in each region of the
proposal have been mapped to the original image with size d × d corresponding
to the same position, and has a c-dimensional feature vector.

Secondly, we need to find a good way to distinguish which parts of the regional
features are already learned and which parts are not yet. If a part of an object
was occluded in an example and this example caused a higher prediction loss
compared to others, the features extracted from the occlusion regions of this
example must be vital for our current detector to classify the object. That is to
say, our current detector has learned these regional features in a good way to
some degree and these features have been fully used in detection.

Fig. 1. We implement our method in the standard Fast-RCNN architecture. The net-
work can be divided into two parts: the first part is used to generate occluded examples
(on blue background) and the second part is used to accumulate and pass the gradients.
(Color figure online)

Since these regional features have been learned, we need to guide our detector
to learn features in other regions. So we block these important regions (have
higher prediction losses) in the examples and use these examples to train our
model. In this way, our model can learn features in the regions that have not been
occluded. Instead of generating occlusion masks in the pixel space, we generate
masks in the region-based features. It is easier to implement in the network.
And it does not affect the feature extraction process of the ConvNet. We can
generate a mask M with d × d values which is either 0 or 1 (0 means block and
1 means maintain). And the element-wise product of mask M and the region-
based features X is the final feature map M̃ for the proposal with parts of regions

Learning Diversified Features for Object Detection via MOEG 545

occluded. Using different masks we can get the feature maps corresponding to the
examples with different regions occluded. We put these feature maps to the fully
connected layer F and get the class loss of each example. We use exhaustive
strategy to generate the final mask M̃ . That is, to select the top n% regions
which cause highest class loss independently and then combine them. This way
can distinguish the most discriminative regions for the current detector and
without adding any additional parameters. Our final network loss LF can be
written down as,

LF = Lsoftmax(Fc(X·M̃), C) + [C /∈bg]Lbbox(Fl(X·M̃), L) (1)

We use three kinds of foreground examples to train our model: the original
example, the example having occluded 30% of the regions and the example hav-
ing occluded 50% of the regions. These different kinds of examples can guide
our detector in learning diversified features in each region step by step. We only
use our method MOEG to generate masks for foreground examples here. We
also randomly block values in some regions of background examples to avoid
our model learning the difference between foreground and background examples
caused by occlusion.

MOEG intends to learn more diversified regional features by masking regions
where features have been fully learned and then forcing our model to learn other
features in the remaining regions. But the remaining regions in each proposal
are not always including the object we interested. Some of them may include
many background messages. Because a proposal is counted as true-positive for
an object category if the IoU between the proposal and the ground-truth box is
greater than a threshold (e.g. 0.5 in our experiments). So, is it necessary to learn
such background messages for localizing and classifying the object and will it
lead to a decline in the performance of our detector? Many researches [1,6,7,26]
have showed that background messages (especially the regions nearby objects)
are very useful for object detection. It can be used to improve classification of
the proposal when some important object features are missing. And the partially
occlusion examples are more difficult to classify for the current detector, so the
training will automatically focus more on these examples and these examples can
contribute much to the gradient [20,25]. Besides, we use more kinds of foreground
examples to train our model which can improve our model’s adaptability and
prevent the training process falling into the local minimum to some extent.

3.2 Implementation Details

MOEG can be implemented easily by many popular region-based detectors such
as RCNN, Fast-RCNN, Faster-RCNN [8,9,14]. In this paper, we use the standard
Fast-RCNN detector to achieve MOEG algorithm which can be more convenient
for us to compare it with other state-of-the-art methods. We use Python to
implement the layers in MOEG and use Caffe [13] to train our model. In Fast-
RCNN pipeline, the ConvNet extracts the feature maps from the input image
and the RoI pooling layer generates region-based features for each proposal. As

546 J. Liang et al.

shown in Fig. 1, the overall framework can be divided into two parts. The first
part of the network is used to generate masks for region-based features of each
proposal. In this network, we use exhaustive strategy to generate the final mask
M̃ and use this mask to block the region-based features. After that, the processed
region-based features are put into the second part of the network to calculate
the final loss and execute backward passes.

In the first part, we use a fixed-size window (e.g., the window with size 2× 2
is used in our experiments) to slide in a grid with spatial layout d × d step by
step without overlap. We can get �d

2� × �d
2� masks for each proposal. We use

each mask M to drop out the parts of the region-based features in all channels
whose corresponding regions in the mask M are occluded. We put these region-
based features with partial occlusion to the fully connected layers to get the
class losses. We assign those losses to each region where the window is covered
and we can eventually get a loss map corresponding to the proposal. Through
it, we select the regions that have highest losses and generate the final mask M̃ .
More specifically, we select the top 30% and top 50% regions with highest losses
in our experiments. In order to achieve this process, we set the first part to a
read-only network which allocates GPU memory only for forward pass and have
not the backward pass process.

In the second part, the element-wise product of the final mask M̃ and region-
based features X is the final features for the proposal. We put these features to
the fully connected layers F to get the class loss Lsoftmax and the bbox regression
loss Lbbox. And this network will execute the forward and backward passes. And
then, it will accumulate the gradients and pass them to fully connected layers
and ConvNet.

4 Experiments

In order to show the effectiveness of MOEG, we perform most of the experiments
on the PASCAL VOC2007 dataset which has a high authority. And we also con-
duct our experiments on PASCAL VOC2012 [5] and MS COCO [17] dataset. We
perform the ablative study to compare our method MOEG with other occlusion
methods. And then we compare our method MOEG with A-Fast-RCNN (includ-
ing ASDN and ASTN) [25] and Online Hard Example Mining (OHEM) [20]
algorithm on the PASCAL VOC2007 dataset and PASCAL VOC2012 dataset.
In the end, we present result on MS COCO dataset.

4.1 Experimental Settings

Our proposed framework is implemented based on the Fast-RCNN pipeline and
we use pre-trained parameters from ImageNet to initialize our ConvNet. We con-
duct most of our experiments on PASCAL VOC2007 dataset and use the ‘train-
val’ set for training and ‘test’ set for testing. The standard ConvNet architecture
we used is VGG16. We also perform our method MOEG in other architectures
such as VGGM, AlexNet, ResNet. We use the Selective Search proposals [24]

Learning Diversified Features for Object Detection via MOEG 547

during training. We train all methods for 40k iterations with an initial learning
rate of 0.001 and decay the learning rate to 0.0001 after 30k iterations. Each
iteration contains two batches (128 proposals with one image in each batch) and
we apply SGD in each iteration.

4.2 Ablative Analysis

To prove that MOEG is better than other occlusion methods. We do an ablative
study here. We use VGG16 architecture for these experiments. To make it fair, we
use the same Fast-RCNN detector which has been pre-trained for 10k iterations.
And then we use different occlusion methods to train this detector with several
times and choose the best result for each method. Firstly, we compare different
occlusion strategies used in these methods including Random dropout (used in
Hide-and-Seek), ASDN (used in A-Fast-RCNN), Exhaustive dropout (used in
our method) and Anti-Mask (contrary to Exhaustive dropout). The important
thing to note here is we mask region-based features for all experiments, but
Hide-and-Seek was originally used to mask pixels. And through our experiments,
we found that masking region-based features instead of masking pixels can get
better performances. The results have been shown in Table 1.

Table 1. VOC2007 test detection average precision (%). Hide-and-seek mask pixels
and random dropout mask region-based features.

method mAP aero bike bird boat bottle bus car cat chair cow table dog horse mbike persn plant sheep sofa train tv

FRCN 69.4 70.4 78.5 70.1 56.8 44.1 77.2 79.6 81.0 50.8 75.1 70.1 81.0 82.9 72.0 73.9 39.7 69.7 67.1 74.8 72.7
Hide-and-Seek 70.2 73.8 80.5 70.4 58.4 46.1 79.7 80.2 83.0 49.2 74.6 69.9 80.0 80.4 75.8 73.6 40.0 69.9 66.1 78.3 75.9
Random dropout 70.5 69.5 79.1 69.7 59.4 44.0 82.2 79.7 82.6 51.5 75.9 69.7 82.8 84.2 76.7 73.9 42.5 67.7 67.4 76.9 73.8
Anti-Mask 69.9 73.9 79.2 69.7 57.9 43.7 79.8 78.7 82.4 50.3 77.1 67.5 79.8 82.2 76.0 73.2 39.2 69.1 69.5 77.4 72.1
ASDN 70.8 73.6 80.5 70.2 59.1 46.2 80.3 79.8 82.4 50.4 77.9 69.4 81.5 81.8 75.6 73.7 40.4 71.9 68.1 78.6 74.1
Exhaustive dropout 71.2 75.0 79.9 70.8 55.9 46.3 81.6 79.6 81.0 50.6 78.1 69.1 83.2 83.4 76.9 74.2 43.0 73.0 70.9 77.9 74.9

We also compare different sampling strategies. The first is used in A-Fast-
RCNN which provides proposals in a batch without any occlusions and provides
proposals with occlusions (30%) in the other batch. So, it provides the same type
of example combination in each iteration. The second is used in our method
MOEG which provides three different types of foreground examples (original,
30% and 50%). And in order to verify whether background samples need to be
occluded, we also compare different background example combinations. Here, we
use Exhaustive dropout to mask foreground examples and use Random dropout
to mask background examples. The results have been shown in Table 2. We
use exhaustive dropout as our occlusion strategy and combine it with our sam-
pling strategy to train Fast-RCNN. And then we get the best performance. We
achieved 71.6% mAP on the PASCAL VOC2007 dataset.

548 J. Liang et al.

Table 2. VOC2007 test detection mAP(%). Each batch has two ratios representing
the ratio of occlusion examples in foreground and background examples respectively.

Batch1 Batch2 Batch3 mAP

0%, 0% 30%, 0% × 71.2%

0%, 0% 50%, 0% × 70.7%

30%, 0% 50%, 0% × 70.3%

0%, 0% 30%, 0% 50%, 0% 71.4%

0%, 30% 30%, 30% 50%, 30% 70.3%

0%, 0% 30%, 30% 50%, 30% 70.9%

0%, 0% 30%, 0% 50%, 30% 71.6%

4.3 Comparisons with A-Fast-RCNN and OHEM

We have compared our method MOEG with ASDN [25] in the previous section.
But we used the same pre-trained Fast-RCNN detector for the sake of fairness.
That is because ASDN need to be initialized and it also needs feedbacks from
the updating detector in the training. But MOEG algorithm does not need these
settings. So we directly use pre-trained parameters from ImageNet to initialize
our ConvNet and train the Fast-RCNN detector. We increase the total number
of iterations to 50k with an initial learning rate of 0.001 and decay the learning
rate to 0.0001 after 40k iterations. We compare our method MOEG with A-
Fast-RCNN and OHEM in this part. A-Fast-RCNN contains two sub-networks
(ASDN and ASTN), which concerns spatial occlusion and spatial deformation
respectively but our method MOEG only considers on the aspect of spatial occlu-
sion. OHEM concerns Hard Example Mining which is related to our method
MOEG despite we concern Example Generating. We show the results in Table 3.
The results show that our accuracy is 1.0% higher than ASDN and 1.9% higher
than ASTN. Better yet, our accuracy is still better than A-Fast-RCNN which
combines the advantages of two networks ASDN and ASTN. Compared to A-
Fast-RCNN, our training time has been reduced by approximately four times
(including the time to pre-train ASDN and ASTN). In order to compare MOEG
algorithm with OHEM algorithm, we use OHEM algorithm to train Fast-RCNN
detector with the training schedule described in [20], because our training sched-
ule is not suitable for it. The result show that our accuracy is 1.9% higher than
OHEM. In addition, OHEM algorithm need more GPU memory for forward
pass.

MOEG is not just suitable for a single ConvNet architecture and single
region-based detector. It has also achieved significant boosts in other mainstream
architectures such as VGGM, AlexNet and ResNet. On the PASCAL VOC2007
dataset, our method get a 4.3% mAP boost in VGGM, a 3.5% mAP boost in
AlexNet and a 1.9% mAP boost in ResNet. And used in different region-based
detectors such as Faster-RCNN [19], our method also can be significant. We
train Faster-RCNN in the way of approximate joint training. When we use our

Learning Diversified Features for Object Detection via MOEG 549

Table 3. VOC2007 test detection average precision (%). Compared with ASDN and
OHEM algorithm.

method arch mAP aero bike bird boat bottle bus car cat chair cow table dog horse mbike persn plant sheep sofa train tv

FRCN VGG16 69.4 70.4 78.5 70.1 56.8 44.1 77.2 79.6 81.0 50.8 75.1 70.1 81.0 82.9 72.0 73.9 39.7 69.7 67.1 74.8 72.7
OHEM VGG16 69.9 71.2 78.3 69.2 57.9 46.5 81.8 79.1 83.2 47.9 76.2 68.9 83.2 80.8 75.8 72.7 39.9 67.5 66.2 75.6 75.9
ASDN VGG16 70.8 73.6 80.5 70.2 59.1 46.2 80.3 79.8 82.4 50.4 77.9 69.4 81.5 81.8 75.6 73.7 40.4 71.9 68.1 78.6 74.1
ASTN VGG16 69.9 73.7 81.5 66.0 53.1 45.2 82.2 79.3 82.7 53.1 75.8 72.3 81.8 81.6 75.6 72.6 36.6 66.3 69.2 76.6 72.7
A-Fast-RCNN VGG16 71.4 75.7 83.6 68.4 58.0 44.7 81.9 80.4 86.3 53.7 76.1 72.5 82.6 83.9 77.1 73.1 38.1 70.0 69.7 78.8 73.1
Ours VGG16 71.8 73.9 80.9 69.5 57.6 47.5 81.8 79.8 84.6 53.3 80.6 71.9 81.6 84.0 78.8 73.8 42.3 71.7 69.5 77.6 73.8
FRCN VGGM 56.6 66.2 66.7 56.4 40.1 24.8 62.8 71.3 71.0 32.0 58.9 57.2 61.8 70.8 66.4 59.9 30.4 50.2 56.4 65.5 63.4
Ours VGGM 60.9 68.8 71.0 58.9 46.5 29.3 69.9 73.7 73.5 38.0 64.6 62.8 69.4 73.7 68.5 62.6 29.8 59.1 59.4 72.9 65.6
FRCN AlexNet 56.4 64.7 66.0 54.3 39.0 28.2 63.0 71.6 67.5 33.3 58.5 59.4 60.2 71.0 63.2 59.8 29.9 54.4 51.7 65.8 65.8
Ours AlexNet 59.9 66.5 70.3 57.2 41.8 30.8 65.2 72.8 73.6 36.9 64.0 63.9 65.1 75.3 68.5 63.1 30.7 56.5 59.5 70.5 65.1
FRCN ResNet-101 71.6 77.6 82.5 71.7 55.1 41.9 79.2 80.5 86.9 54.2 81.6 72.2 86.9 84.9 80.3 72.2 35.2 71.2 75.5 78.5 64.0
Ours ResNet-101 73.5 78.9 84.2 74.9 56.3 42.3 80.8 81.2 85.7 54.6 82.6 74.3 87.2 86.2 79.1 74.5 35.0 73.9 76.2 77.8 65.3
Faster-RCNN VGG16 70.9 74.1 79.4 68.0 56.2 55.4 76.6 80.4 85.7 52.6 75.7 67.7 77.2 80.5 77.0 78.0 45.5 71.4 67.0 75.7 73.9
Faster-RCNN(Ours) VGG16 72.6 74.4 81.0 71.7 61.7 54.8 81.8 84.1 82.0 55.3 80.1 70.7 81.9 85.1 78.5 77.8 43.7 71.0 66.3 77.9 71.8

method, we keep all the configs but cut off the backward propagated signal from
RPN to ConvNet. The result shows that our method can get a 1.7% mAP boost
on the PASCAL VOC2007 dataset.

4.4 PASCAL VOC2012 and MS COCO Results

In order to prove our method MOEG can make effect in more challenging
datasets. We also conduct experiments on PASCAL VOC2012 [5] and MS COCO
2014 [17] datasets. On PASCAL VOC2012 dataset, we compare our method
MOEG with A-Fast-RCNN and OHEM with VGG16. We show the results in
Table 4. From the result of VOC2012 dataset, our Method MOEG has a better
performance (mAP: 70.5%) compared to OHEM (mAP: 69.8%) and A-Fast-
RCNN (mAP: 69.0%). The result indicates that, when the dataset’s diversity
increased, A-Fast-RCNN’s benefit obviously reduced, but our method MOEG
not. It is because our promotion comes from not only the data diversity but also
the powerful learning ability of diversified features.

Table 4. VOC2012 test detection average precision (%). Compared with A-Fast-RCNN
and OHEM algorithm.

method mAP aero bike bird boat bottle bus car cat chair cow table dog horse mbike persn plant sheep sofa train tv

FRCN 66.4 81.8 74.4 66.5 47.8 39.3 75.9 69.1 87.4 44.3 73.2 54.0 84.9 79.0 78.0 72.2 33.1 68.0 62.4 76.7 60.8
A-Fast-RCNN 69.0 82.2 75.6 69.2 52.0 47.2 76.3 71.2 88.5 46.8 74.0 58.1 85.6 80.3 80.5 74.7 41.5 70.4 62.2 77.4 67.0
OHEM 69.8 81.5 78.9 69.6 52.3 46.5 77.4 72.1 88.2 48.8 73.8 58.3 86.9 79.7 81.4 75.0 43.0 69.5 64.8 78.5 68.9
Ours 70.5 83.3 78.0 70.7 53.9 47.9 77.7 72.6 89.2 47.7 76.7 56.6 87.4 80.9 83.8 77.1 41.6 73.4 62.8 79.7 67.8

To prove our Method MOEG is still significant on the best challenging
dataset, we conduct experiments on MS COCO2014 [17]. For the COCO dataset,

550 J. Liang et al.

Table 5. MS COCO2014 minival detection average precision (%). The architecture is
VGG16.

AP@IoU Area FRCN Ours boost

[0.50 : 0.95] All 19.2 21.9 2.7

0.50 All 37.0 41.1 4.1

0.75 All 18.2 21.6 3.4

[0.50 : 0.95] Small 4.0 6.9 2.9

[0.50 : 0.95] Med. 19.3 22.9 3.6

[0.50 : 0.95] Large 33.8 35.4 1.6

we use the ‘train’ set for training and the ‘minival’ set for testing. During train-
ing the Fast-RCNN [8], we apply SGD with 360K iterations. The learning rate
starts with 0.001 and decreases to 0.0001 after 320K iterations. For object pro-
posals, we still use Selective Search [24]. We evaluate the mAP averaged for IoU
∈ [0.5 : 0.05 : 0.95] (COCO’s standard metric, simply denoted as mAP@[.5, .95])
and mAP@0.5 (PASCAL VOC’s metric). We show the results in Table 5. Using
our method MOEG improves the performance of the baseline Fast-RCNN from
37.0% to 41.1% mAP@0.5 on the VOC metric and from 19.2% to 21.9% AP on
the standard COCO metric. It proved that our method MOEG can be effective
even though datasets become larger and more challenge.

4.5 Visualization

Fig. 2. Visualization of the Fast-RCNN’s last convolutional layer output (conv5 3 in
VGG16). We compare the result that trained with MOEG and without MOEG.

In order to see whether our method can improve the feature extraction ability of
ConvNet or not, we visualize the convolutional layer’s outputs, as shown in Fig. 2.
We train Fast-RCNN with and without MOEG. The ConvNet architecture we
used is VGG16. Compared with the outputs from VGG16 that trained without

Learning Diversified Features for Object Detection via MOEG 551

MOEG, the outputs that trained with MOEG have more activation regions and
larger activation values. Its activation regions not only in the important positions
of the object, but also in other less important areas. It proves that our method
not only can guide the detector to distinguish the features of different regions,
but also can improve the feature extraction ability of the ConvNet even though
mask operation is implemented after ROI pooling layer.

5 Conclusions

In this paper, we present a novel and principle method called Multi-region Occlu-
sion Example Generating (MOEG) to learn and make full use of the diversified
features in each region of objects. MOEG algorithm can be implemented to
most of region-based detectors very easily and it can improve the performance
of the detector significantly. MOEG can provide more diverse examples which
have a better effect on the learning of diversified features for our detectors. Our
experimental results on PASCAL VOC and MS COCO datasets show that using
MOEG to train the detector can get a higher detection accuracy and cost less
training time compared to most of state-of-the-art methods.

References

1. Bell, S., Lawrence Zitnick, C., Bala, K., Girshick, R.: Inside-outside net: detecting
objects in context with skip pooling and recurrent neural networks. In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2874–
2883 (2016)

2. Chen, X., Gupta, A.: Spatial memory for context reasoning in object detection.
arXiv preprint arXiv:1704.04224 (2017)

3. Cubuk, E.D., Zoph, B., Mane, D., Vasudevan, V., Le, Q.V.: Autoaugment: learning
augmentation policies from data. arXiv preprint arXiv:1805.09501 (2018)

4. Denton, E.L., Chintala, S., Fergus, R., et al.: Deep generative image models using
a laplacian pyramid of adversarial networks. In: Advances in Neural Information
Processing Systems, pp. 1486–1494 (2015)

5. Everingham, M., Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal
visual object classes (voc) challenge. Int. J. Comput. Vis. 88(2), 303–338 (2010)

6. Farabet, C., Couprie, C., Najman, L., Lecun, Y.: Learning hierarchical features for
scene labeling. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1915–1929 (2013)

7. Gidaris, S., Komodakis, N.: Object detection via a multi-region and semantic
segmentation-aware CNN model. In: Proceedings of the IEEE International Con-
ference on Computer Vision, pp. 1134–1142 (2015)

8. Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference
on Computer Vision, pp. 1440–1448 (2015)

9. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accu-
rate object detection and semantic segmentation. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014)

10. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Infor-
mation Processing Systems, pp. 2672–2680 (2014)

http://arxiv.org/abs/1704.04224
http://arxiv.org/abs/1805.09501

552 J. Liang et al.

11. He, K., Zhang, X., Ren, S., Sun, J.: Spatial pyramid pooling in deep convolutional
networks for visual recognition. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T.
(eds.) ECCV 2014. LNCS, vol. 8691, pp. 346–361. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-10578-9 23

12. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: Computer Vision and Pattern Recognition, pp. 770–778 (2016)

13. Jia, Y., et al.: Caffe: convolutional architecture for fast feature embedding. In:
Proceedings of the 22nd ACM International Conference on Multimedia, pp. 675–
678. ACM (2014)

14. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: International Conference on Neural Information
Processing Systems, pp. 1097–1105 (2012)

15. Li, M., Zhang, Z., Yu, H., Chen, X., Li, D.: S-OHEM: stratified online hard example
mining for object detection. In: Yang, J., et al. (eds.) CCCV 2017. CCIS, vol.
773, pp. 166–177. Springer, Singapore (2017). https://doi.org/10.1007/978-981-
10-7305-2 15

16. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature
pyramid networks for object detection. In: CVPR, vol. 1, p. 4 (2017)

17. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D.,
Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp.
740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1 48

18. Loshchilov, I., Hutter, F.: Online batch selection for faster training of neural net-
works. Mathematics (2016)

19. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object
detection with region proposal networks. In: Advances in Neural Information Pro-
cessing Systems, pp. 91–99 (2015)

20. Shrivastava, A., Gupta, A., Girshick, R.: Training region-based object detectors
with online hard example mining. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 761–769 (2016)

21. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. Computer Science (2014)

22. Singh, K.K., Lee, Y.J.: Hide-and-seek: forcing a network to be meticulous for
weakly-supervised object and action localization. In: The IEEE International Con-
ference on Computer Vision (ICCV) (2017)

23. Szegedy, C., et al.: Going deeper with convolutions, pp. 1–9 (2014)
24. Uijlings, J.R., Sande, K.E., Gevers, T., Smeulders, A.W.: Selective search for object

recognition. Int. J. Comput. Vis. 104(2), 154–171 (2013)
25. Wang, X., Shrivastava, A., Gupta, A.: A-fast-RCNN: hard positive generation via

adversary for object detection. arXiv preprint arXiv:1704.03414 2 (2017)
26. Zeng, X., Ouyang, W., Yang, B., Yan, J., Wang, X.: Gated bi-directional CNN for

object detection. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016.
LNCS, vol. 9911, pp. 354–369. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-46478-7 22

27. Zhong, Z., Zheng, L., Kang, G., Li, S., Yang, Y.: Random erasing data augmenta-
tion. arXiv preprint arXiv:1708.04896 (2017)

https://doi.org/10.1007/978-3-319-10578-9_23
https://doi.org/10.1007/978-3-319-10578-9_23
https://doi.org/10.1007/978-981-10-7305-2_15
https://doi.org/10.1007/978-981-10-7305-2_15
https://doi.org/10.1007/978-3-319-10602-1_48
http://arxiv.org/abs/1704.03414
https://doi.org/10.1007/978-3-319-46478-7_22
https://doi.org/10.1007/978-3-319-46478-7_22
http://arxiv.org/abs/1708.04896

HATDC: A Holistic Approach for Time
Series Data Repairing

Xiaojie Liu, Guangxuan Song, and Xiaoling Wang(B)

East China Normal University, Shanghai, China
xiaojie liu7@126.com,guangxuan song@163.com,xlwang@sei.ecnu.edu.cn

Abstract. Time series data is prevalent in real life, and time series data
mining is also a hot research topic nowadays. However, there may exist
lots of anomalous data caused by sensor error in the real data sets, which
brings difficulties for data mining. To improve the quality of data mining,
it is to repair the data before data analysis. Most of the existing repair-
ing methods use smooth-based or constraint-based techniques, but they
only consider a few adjacent points and ignore global holistic information.
In this paper, we propose a novel time series data repairing algorithm,
named HATDC, that can exploit the holistic information of the time
series. First, we use speed constraints and the probability distribution
of change rates to detect the dirty data points. After that, the dynamic
time warping (DTW) is applied as the distance measure to find similar
subsequences in the series, and we estimate the value of these abnor-
mal data points according to the selected similar subsequences from the
whole aspect. In addition, we propose an improved algorithm for reduc-
ing the time cost based on incremental clustering. Experiments on several
real datasets demonstrate that HATDC has a significantly higher repair
accuracy and a lower RMS error than other methods.

Keywords: Data repairing · Time series · Anomaly detection · DTW

1 Introduction

With the widespread use of various sensors, time series data is prevalent in our
daily life, such as hourly temperatures and GPS trajectories. And the time series
data mining is a hot research topic nowadays, because there exists a wealth of
implicit information in these data. However, dirty or imprecise values commonly
exist in the time series, which can be caused by sensor error [11] or other reasons.
The low quality of time series data has a huge impact on data analysis. Ensuring
and improving data quality is the two main reasons for data repairing. As shown
in the recent study [19], repairing dirty values could improve clustering over
spatial data.

In the field of time series data repairing, there are two types of mainstream
methods: smooth-based and constraint-based techniques. Smooth-based meth-
ods are usually used to eliminate noisy data points in the series, such as sim-
ple moving average (SMA) [3] and the exponentially weighted moving average
c© Springer Nature Switzerland AG 2019
Q. Yang et al. (Eds.): PAKDD 2019, LNAI 11440, pp. 553–564, 2019.
https://doi.org/10.1007/978-3-030-16145-3_43

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16145-3_43&domain=pdf
https://doi.org/10.1007/978-3-030-16145-3_43

554 X. Liu et al.

(EWMA) [8]. Specifically, SMA just smooths time series data by computing
the unweighted mean of the adjacent data points, while EWMA allocates expo-
nentially decreasing weights over time. However, these methods may lead to
over-repairing as described in Example 1. Besides, recent work [20] proposed a
novel data cleaning approach (SCREEN) under speed constraints, which used
the innovative constraints on the trend of value changes to guide the repairing
process. The speed constraints are effective in identifying large spike error data
points [22]. But the existing constraint-based methods cannot indicate the most
likely result among all the valid repairs that satisfy the constraints, and they do
not make full use of the data points in the sequence.

Therefore, we propose a novel data repairing approach, named as HATDC,
that can exploit the holistic information of the time series: (1) the speed con-
straints and the probability distribution on change of speeds by statistics on the
overall series are used to detect large spike error data points; (2) DTW is used as
the distance measure to find the similar subsequences in the whole series, then
the value of abnormal data points are estimated by the value of data points at
the corresponding position of the selected similar subsequences.

Fig. 1. Example of observations and repairs (Color figure online)

Example 1. Figure 1 presents an example segment of hourly air temperature.
Three dirty values appear at time point 1184, 1196 and 1204, respectively, in
the observed sequence (in black, the corresponding true values are presented in
blue).

The smooth-based cleaning method (in green) modifies almost all the tem-
perature values, most of which are indeed accurate. The speed constraint-based
cleaning method (in red), SCREEN [20], could effectively detect the large spike
error in the sequence, but the repair value is not accurate enough. Finally, our
proposed HATDC approach, with both effectively error detection and value esti-
mation, obtains repairs closest to the truth.

HATDC: A Holistic Approach for Time Series Data Repairing 555

Contributions. The main contribution of this paper is to propose HATDC for
time series data repairing, which takes full advantage of the holistic information
of the series. Specific contributions are as follows:

1. First, we propose a novel anomaly detection method based on the speed (the
definition of speed will be described in Sect. 3) constraints and the probability
distribution on change of speeds by statistics on the overall series. And it
performs well on detecting large spike error data points.

2. Then, we propose a DTW-based time series data repairing algorithm that
can estimate the true value of dirty data points according to the selected
similar subsequences from the whole aspect. Experiments show our method
performces better than the state-of-art methods when the error rate is rela-
tively small.

3. At last, in order to speed up the data repairing algorithm, an improved
method (C-HATDC) is proposed based on DTW barycenter averaging (DBA)
and incremental clustering.

Organization. The remainder of this paper is organized as follows. We first dis-
cuss the related works in Sect. 2. The problem definition and anomaly detection
method are introduced in Sect. 3. The dirty data repairing algorithm and some
optimization are then presented in Sects. 4 and 5, respectively. The experimental
evaluation is demonstrated in Sect. 6. Finally, we conclude our paper in Sect. 7.

2 Related Work

Smooth-based methods are usually used in time series data repairing, such as
SWAB [14], SMA [3] and WMA [8]. And the sliding window is used in these meth-
ods. Specifically, SWAB splits the time series into many subsequences, which is
also applied in our method. And linear interpolation or linear regression is used
in SWAB to get the approximating line of a subsequence. With a sliding win-
dow, SMA just smooths time series data by computing the unweighted mean of
the points in the last window. The data points are weighted equally in SMA,
while WMA gives different weights to data points at different positions in the
sample window. Moreover, the exponentially weighted moving average (EWMA)
[8] allocates exponentially decreasing weights over time. However, these methods
may lead to over-repairing as illustrated in Fig. 1. It is obvious that most of the
original correct data may be seriously altered, and thus have low repair accuracy.

The constraint-based technique is widely considered in data cleaning, such
as holistic data cleaning [5] and sequential dependencies [9]. And the constraint-
based data cleaning method identifies and repairs the violations to the given
constraints. SCREEN [20] is the first constraint-based stream data cleaning
approach, which employs a class of speed constraints. Speed constraint is also
adopted in our method to detect dirty data points. AR and ARX [16] indeed
have been widely used for anomaly detection [2,4]. And existing anomaly detec-
tion techniques could also be adapted to repairing dirty data points by given the
labeled truth of some data points [23].

556 X. Liu et al.

The DTW-based techniques for missing value estimation in gene expression
time series have been studied in [10,15,21]. Unlike they use originally clean gene
expression time series to impute the series with missing values, we clean a whole
time series with erroneous data points in this paper.

3 Anomaly Detection

Consider sequence of n observations x = {x1, x2, ..., xn}. Each xi has a times-
tamp ti relative to it, and the time intervals between adjacent timestamps are
equal. When repairing time series x, we detect the dirty data points in x at first.

In this section, we mainly introduce anomaly detection methods. Instead of
just considering speed constraints, we propose a novel anomaly detection method
that also considers the probability distribution of speed changes.

Definition 1. By reference to [20], the speed from data point i − 1 to i is
defined as vi−1,i = xi−xi−1

ti−ti−1
. And the speed constraints sc = (smin, smax) are

defined as a pair of minimum speed smin and maximum speed smax over the
sequence. In the sequence x, the speed change before and after the i-th data
point is defined as: ui = vi,i+1 − vi−1,i.

Fig. 2. Probability distributions of speed changes on a real temperature dataset

The probability distribution on change of speeds reflects the holistic infor-
mation of change rates of the time series, and it can be simply estimated by
statistics on the overall series. For each data point in the time series, we calculate
its speed change value before and after the point according to Definition 1. And
we estimate the probabilities of the speed changes by counting the appearance
of speed change values in the series. Figure 2 shows the probability distribu-
tions of speed changes on a real temperature dataset presented in Sect. 6. And
there is a high similarity between the discrete probability distribution and the
approximate continuous probability distribution as demonstrated in [22].

HATDC: A Holistic Approach for Time Series Data Repairing 557

As we know, the value of the i-th data point in the sequence affects the speed
change ui, ui−1 and ui+1. Let p(ui) denote the probability of speed change ui,
let u be the mean of the speed changes in the sequence x, and sc = (smin, smax)
represent the speed constraints. Intuitively, there is a relatively small probability
that a speed change ui > u + smax or ui < u + smin. And most of the large
spike error data points do not satisfy the speed constraints. Therefore, these
data points can be easily detected according to the following definition.

Definition 2. In the sequence x, xi is identified as an abnormal data point,
if p(ui−1), p(ui) and p(ui+1) are smaller than min {p(u + smax), p(u + smin)}.

(a) (b)

Fig. 3. Speed constraints and probability distribution of speed changes in Example 2.

Example 2 (abnormal data points detection). Consider a sequence x =
{6, 6, 7, 11, 9, 10, 11, 11, 12, 13, 12, 13}. Suppose that smax = 1 and smin = −1.
Figure 3(a) shows the data points and the speed constraints, and Fig. 3(b) shows
the corresponding probability distribution of speed changes. After calculation,
we get u = 0.1, min {p(u + smax), p(u + smin)} = min {p(1.1), p(−0.9)} = 0.5.
Because P (u3) = P (u5) < 0.5 and P (u4) < 0.5, x4 is identified as an abnormal
data point.

4 Dirty Data Repairing

On the one hand, the existing smooth-based methods may seriously alter most of
the original correct data in the series, and the existing constraint-based methods
cannot indicate the most likely result among all the valid repairs that satisfy the
constraints. On the other hand, there are similar subsequences in the time series,
but all existing methods do not take advantage of these similar subsequences.

To avoid these problems, we only modify the value of abnormal data points
that are identified by the aforementioned method and use the holistic information
of similar subsequences to estimate the value of abnormal data points.

558 X. Liu et al.

In order to find the most similar subsequence in the series, the dynamic time
warping (DTW) is applied as the distance measure in our method. And DTW
has been commonly used in pattern recognition [7], time series clustering [1]
and time series classification (TSC) [6,12,13], because of its good performce in
finding similar sequences.

Algorithm 1. HATDC
Input: time series x, speed constraints sc, window size w
Output: repaired time series x′

1: posList ← AnomalyDetection(x, sc)
2: x ← InitEstimation(x, posList)
3: S ← Segments(w, x)
4: GE ← ∅
5: for each segment si in S, i = 1, 2, ...,M do
6: sj ← FindMostSimilarSegment(GE, si)
7: if sj ! = ∅ then
8: si ← Estimation(sj , si)
9: end if

10: GE ← GE.append(si)
11: end for
12: x′ ← Combine(S)
13: return x′

Therefore, we propose a DTW-based data repairing algorithm to repair the
dirty data points, named HATDC. The details are shown in Algorithm1.

Firstly, Algorithm 1 detects the positions of abnormal data points in the
time series x (line 1). And we initialize a preliminary estimation of the abnormal
data points (line 2). For example, the average of the two nearest non-anomalous
neighbors in the series can be used. Then we segment the series x by a window
with size w, and x is divided into M = �n/w� subsequences S = {s1, s2, ..., sM}
(line 3). Since we do not have the originally clean sequences, we initialize the
repaired subsequence(GE) as empty (line 4).

Secondly, we traverse S = s1, s2, ..., sM in turn (line 5). If there are n′ data
points in GE, there should be n′ − w + 1 subsequences using a sliding window.
And we find the most similar subsequence sj in GE for each subsequence si in
S (line 6). If the t-th position of si is detected as an abnormal data point, it can
be estimated by sj at the corresponding positions to the position t of si on the
best warping path. Let s′

jt denote the mean of all t-aligned values in sj , which
can be an estimated value of the t-th data point of si. Therefore, the value of
the t-th data point of si is estimated as s′

jt (line 8). When si has been repaired,
we append it to GE which can be used in the rest phase (line 10).

Finally, we combine all the subsequences in S to get the output results x′.

HATDC: A Holistic Approach for Time Series Data Repairing 559

5 Clustering-Based Optimization

According to our repairing algorithm, when repairing an abnormal data point, we
need to calculate the DTW distance between the subsequence that the data point
belongs to and all subsequences that have been repaired to find similar subse-
quences. As the number of subsequences increases, the number of DTW distances
need to calculate also increases, so that the repairing time will increases. Mean-
while, we find that similar candidate subsequences are very similar to each other.
For this motivation, we propose an improved algorithm based on time series clus-
tering. In addition, experiments show that there is little difference between using
the sliding window and without using the sliding window. In order to reduce the
number of comparisons, we only use repaired subsequences instead of the sliding
window to do clustering.

Algorithm 2. C-HATDC
Input: time series x, speed constraints sc, window size w, cluster number K
Output: repaired time series x′

1: posList ← AnomalyDetection(x, sc)
2: x ← InitEstimation(x, posList)
3: S ← Segments(w, x)
4: ClusterList ← InitClusters(S,K)
5: CentroidList ← InitCentroids(ClusterList)
6: for each segment si in S, i = 1, 2, ...,M do
7: cid ← AssignCluster(CentroidList, si)
8: sj ← FindMostSimilarSegments(ClusterList[cid], si);
9: if sj ! = ∅ then

10: si ← Estimation(sj , si)
11: end if
12: ClusterList[cid] ← ClusterList[cid].add(si)
13: CentroidList[cid] ← UpdateCentroid(ClusterList[cid])
14: end for
15: x′ ← Combine(S)
16: return x′

In the traditional K-means algorithm, the centroid computation of a cluster
only averages the values of the time series in each position. But for time series
averaging, DTW distance is more suitable than Euclidean distance [17]. Hence
the centroid of a cluster can be calculated according to average time series for
DTW. DTW barycenter averaging (DBA) [18] is the state-of-the-art method to
average time series for dynamic time warping, and we will no longer introduce its
detail in this paper. K-DBA [6,17] is a clustering algorithm that uses K-means
with DTW as distance measure and the DBA method for centroid computation.

In order to reduce the time cost of data repairing, we propose an improved
algorithm based on time series clustering, named C-HATDC. The details of C-
HATDC is shown in Algorithm 2.

560 X. Liu et al.

Compared with Algorithms 1 and 2 has the following differences. Firstly, in
order to initialize the k clusters, we randomly select a subsequence for each
cluster from the subsequences set S (line 4), and we initialize the centroid of
each cluster (line 5). Secondly, when repairing the subsequence si, a cluster is
assigned to si by calculating the DTW distance between si and k centroids (line
7). And the similar subsequences are selected from the assigned cluster (line 8).
Lastly, the repaired subsequence si is added into the assigned cluster, and the
centroid of this cluster is updated by the DBA algorithm introduced previously.

6 Experiments

The experiments run on two real datasets, STOCK and TEMPERATURE,
which can be obtained from YAHOO FINANCE1 and NOAA2 respectively.
These two datasets are originally clean, so they can be used as ground truth. The
positions of dirty data points are selected randomly, and each dirty data point
is assigned a value within a range from the minimum to maximum value of the
series. The STOCK dataset records the daily prices of stock from August, 2007
to August, 2017. The TEMPERATURE dataset includes the hourly temperature
in New York from January 1, 2001 to December 31, 2009.

(a) TEMPERATURE (b) STOCK

Fig. 4. The accuracy of anomaly detection.

6.1 Accuracy of Anomaly Detection

In the first experiment, we show the accuracy of the anomaly detection algo-
rithm. The speed constraint is natural in most scenarios. Specifically, for
STOCK, the price limit in the market declares that the increase or decrease
of daily price should not exceed 10%. According to that, we set smax = 3 and
smin = −3. For the particular domain where speed knowledge is not available,
1 http://finance.yahoo.com.
2 http://www.noaa.gov.

http://finance.yahoo.com
http://www.noaa.gov

HATDC: A Holistic Approach for Time Series Data Repairing 561

the speed constraints can be extracted from data by considering the statistical
distribution of speed. As noted in [20], smax and smin can be estimated accord-
ing to a confidence interval (95%). By this way, smax = 5 and smin =−5 are
suggested for TEMPERATURE.

Figure 4 presents the precision and recall of our anomaly detection method,
and we consider various error rates from 0.05 to 0.45. As the error rate increases,
the detection accuracy decreases.

6.2 Comparison with Existing Approaches

In this experiment, we compare HATDC with WMA, EWMA [8] and SCREEN
[20]. Considering various error rates from 0.05 to 0.45 in TEMPERATURE and
STOCK respectively. We conduct the experiments for 10 times and evaluate the
performce according to the mean value.

(a) TEMPERATURE (b) STOCK

(c) TEMPERATURE (d) STOCK

Fig. 5. The repair accuracy under different error rates.

The evaluation criteria include: the root-mean-square(RMS) error between
the repair result and truth data; the repair accuracy which is defined in [20].

It is obvious that HATDC perform better than those in other methods.
Specifically, Fig. 5(a) and (b) demonstrates that the RMS error of HATDC is
lower than other methods when the error rate is relatively small (<30%). Since
HATDC is based on similar subsequences, and the higher error rate will affect
the similarity calculation, which leads to higher RMS error. Figure 5(c) and (d)
presents the repair accuracy of HATDC is the highest.

562 X. Liu et al.

6.3 Evaluation on Various Window Size

This experiment evaluates the repairing performce of time series divided by
various window size. We use TEMPERATURE dataset with error rate of 0.2.

(a) RMS Error (b) Repair Accuracy

Fig. 6. Evaluation of various window sizes over TEMPERATURE data.

The detailed results with window size w in the range of 1 to 256 are shown
in Fig. 6. And it shows that window size w has a small effect on the RMS error
and the accuracy of the repair result.

6.4 Evaluation on Various Cluster Number

This experiment evaluates the repairing performce and time cost of the improved
algorithm (C-HATDC) with various cluster number K. We use the TEMPER-
ATURE dataset with error rate of 0.2, and the window size w is set to 6.

(a) RMS Error (b) Repair Accuracy (c) Time Cost

Fig. 7. Evaluation of various cluster number K over TEMPERATURE data.

Figure 7 show the detailed results with cluster number K in the range of
1 to 10. As shown in Fig. 7(a) and (b), the RMS error and repair accuracy
barely change with different K. As the number of clusters increases, the time
cost decreases as illustrated in Fig. 7(c), and the decline rate of time cost also
decreases. It demonstrates the effectiveness of the improved algorithm.

HATDC: A Holistic Approach for Time Series Data Repairing 563

7 Conclusion

In this paper, we study the problem of repairing dirty data in time series. The
existing methods don’t take full advantage of holistic information or result in
over-repairing problems. For this motivation, we propose a novel method, named
as HATDC, that can exploit the holistic information of the time series. HATDC
consists of anomaly detection and dirty data repairing. First, the speed con-
straints and the probability distribution of change rates are used to detect
abnormal data points. Hence this method cannot work well under the proba-
bility distribution of speed change does not conform to the normal distribution.
After that, DTW is applied as the distance measure to find similar subsequences
in the series, and we estimate the value of these abnormal data points according
to the selected similar subsequences from the whole aspect. Experiments on sev-
eral real datasets show the superiority of our proposal. Moreover, an improved
method (C-HATDC) based on K-DBA clustering is proposed by us, it can reduce
the time cost effectively and hardly affect the repair results.

Acknowledgments. This work was supported by National Key R&D Program of
China (No. 2017YFC 0803700), NSFC grants (No. 61532021 and 61472141), Shanghai
Knowledge Service Platform Project (No. ZF1213)and SHEITC.

References

1. Begum, N., Ulanova, L., Wang, J., Keogh, E.: Accelerating dynamic time warp-
ing clustering with a novel admissible pruning strategy. In: Proceedings of the
21th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pp. 49–58. ACM (2015)

2. Box, G.E., Jenkins, G.M., Reinsel, G.C., Ljung, G.M.: Time Series Analysis: Fore-
casting and Control. Wiley, Hoboken (2015)

3. Brillinger, D.R.: Time Series: Data Analysis and Theory, vol. 36 (2001). https://
doi.org/10.1016/0304-4149(79)90039-5

4. Brockwell, P.J., Davis, R.A.: Introduction to Time Series and Forecasting. STS.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29854-2

5. Chu, X., Ilyas, I.F., Papotti, P.: Holistic data cleaning: putting violations into con-
text. In: 2013 IEEE 29th International Conference on Data Engineering (ICDE),
pp. 458–469. IEEE (2013)

6. Forestier, G., Webb, G.I., Nicholson, A.E., Chen, Y., Keogh, E.: Faster and more
accurate classification of time series by exploiting a novel dynamic time warping
averaging algorithm. Knowl. Inf. Syst. 47(1), 1–26 (2016)

7. Furlanello, C., Merler, S., Jurman, G.: Combining feature selection and DTW for
time-varying functional genomics. IEEE Trans. Sig. Process. 54(6 II), 2436–2443
(2006). https://doi.org/10.1109/TSP.2006.873715

8. Gardner, E.: Exponential Smoothing: The State of the Art Part II, vol. 22 (2006).
https://doi.org/10.1016/j.ijforecast.2006.03.005

9. Golab, L., Karloff, H., Korn, F., Saha, A., Srivastava, D.: Sequential dependencies.
Proc. VLDB Endow. 2(1), 574–585 (2009)

10. Hsu, H.H., Yang, A.C., Lu, M.D.: KNN-DTW based missing value imputation for
microarray time series data. JCP 6(3), 418–425 (2011)

https://doi.org/10.1016/0304-4149(79)90039-5
https://doi.org/10.1016/0304-4149(79)90039-5
https://doi.org/10.1007/978-3-319-29854-2
https://doi.org/10.1109/TSP.2006.873715
https://doi.org/10.1016/j.ijforecast.2006.03.005

564 X. Liu et al.

11. Jeffery, S.R., Berkeley, U.C., Franklin, M.J.: Adaptive cleaning for RFID data
streams. In: VLDB, pp. 163–174 (2006)

12. Jeong, Y.S., Jeong, M.K., Omitaomu, O.A.: Weighted dynamic time warping for
time series classification. Pattern Recognit. 44, 2231–2240 (2011). https://doi.org/
10.1016/j.patcog.2010.09.022

13. Kate, R.J.: Using dynamic time warping distances as features for improved time
series classification. Data Min. Knowl. Discov. 30(2), 283–312 (2015). https://doi.
org/10.1007/s10618-015-0418-x

14. Keogh, E., Chu, S., Hart, D., Pazzani, M.: An online algorithm for segmenting
time series. In: Proceedings IEEE International Conference on Data Mining, ICDM
2001, pp. 289–296. IEEE (2001)

15. Kostadinova, E., Boeva, V., Boneva, L., Tsiporkova, E.: An integrative DTW-
based imputation method for gene expression time series data. In: Proceedings of
2012 6th IEEE International Conference Intelligent Systems, IS 2012, pp. 258–263
(2012). https://doi.org/10.1109/IS.2012.6335145

16. Park, G., Rutherford, A.C., Sohn, H., Farrar, C.R.: An outlier analysis framework
for impedance-based structural health monitoring. J. Sound Vib. 286(1), 229–250
(2005)

17. Petitjean, F., Forestier, G., Webb, G.I., Nicholson, A.E., Chen, Y., Keogh, E.:
Dynamic time warping averaging of time series allows faster and more accurate
classification. In: 2014 IEEE International Conference on Data Mining (ICDM),
pp. 470–479. IEEE (2014)

18. Petitjean, F., Ketterlin, A., Gancarski, P.: A global averaging method for dynamic
time warping, with applications to clustering. Pattern Recognit. 44(3), 678–693
(2011). https://doi.org/10.1016/j.patcog.2010.09.013

19. Song, S., Li, C., Zhang, X.: Turn waste into wealth: on simultaneous clustering and
cleaning over dirty data. In: Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 1115–1124. ACM (2015)

20. Song, S., Zhang, A., Wang, J., Yu, P.S.: SCREEN: stream data cleaning under
speed constraints. In: Proceedings of the 2015 ACM SIGMOD International Con-
ference on Management of Data, pp. 827–841 (2015). https://doi.org/10.1145/
2723372.2723730

21. Tsiporkova, E., Boeva, V.: Two-pass imputation algorithm for missing value esti-
mation in gene expression time series. J. Bioinform. Comput. Biol. 5(05), 1005–
1022 (2007)

22. Zhang, A., Song, S., Wang, J.: Sequential data cleaning: a statistical approach.
In: Proceedings of the 2016 International Conference on Management of Data, pp.
909–924 (2016). https://doi.org/10.1145/2882903.2915233

23. Zhang, A., Song, S., Wang, J., Yu, P.S.: Time series data cleaning: from anomaly
detection to anomaly repairing. Proc. VLDB Endow. 10(10), 1046–1057 (2017)

https://doi.org/10.1016/j.patcog.2010.09.022
https://doi.org/10.1016/j.patcog.2010.09.022
https://doi.org/10.1007/s10618-015-0418-x
https://doi.org/10.1007/s10618-015-0418-x
https://doi.org/10.1109/IS.2012.6335145
https://doi.org/10.1016/j.patcog.2010.09.013
https://doi.org/10.1145/2723372.2723730
https://doi.org/10.1145/2723372.2723730
https://doi.org/10.1145/2882903.2915233

Double Weighted Low-Rank
Representation and Its Efficient

Implementation

Jianwei Zheng , Kechen Lou, Ping Yang(B), Wanjun Chen,
and Wanliang Wang

Zhejiang University of Technology, Hangzhou 310023, China
ypingpds@163.com

Abstract. To overcome the limitations of existing low-rank represen-
tation (LRR) methods, i.e., the error distribution should be known a
prior and the leading rank components might be over penalized, this
paper proposes a new low-rank representation based model, namely dou-
ble weighted LRR (DWLRR), using two distinguished properties on the
concerned representation matrix. The first characterizes various distri-
butions of the residuals into an adaptively learned weighting matrix for
more flexibility of noise resistance. The second employs a parameterized
rational penalty as well as a weighting vector s to reveal the importance
of different rank components for better approximation to the intrinsic
subspace structure. Moreover, we derive a computationally efficient algo-
rithm based on the parallel updating scheme and automatic thresholding
operation. Comprehensive experimental results conducted on image clus-
tering demonstrate the robustness and efficiency of DWLRR compared
with other state-of-the-art models.

Keywords: Subspace clustering · Low-rank approximation ·
Nonconvex surrogate function · Proximal gradient method

1 Introduction

Low-rank representation (LRR) [1], as a promising approach to capture the
underlying structure of data, has been applied to extensive applications in com-
puter vision and multimedia community. Generally speaking, the success of LRR
mainly originates from three merits: a natural hypothesis of underlying multi-
ple low-rank subspaces in observed data, a self-expressive representation with

Supported by organization x.

Electronic supplementary material The online version of this chapter (https://
doi.org/10.1007/978-3-030-16145-3 44) contains supplementary material, which is
available to authorized users.

c© Springer Nature Switzerland AG 2019
Q. Yang et al. (Eds.): PAKDD 2019, LNAI 11440, pp. 565–577, 2019.
https://doi.org/10.1007/978-3-030-16145-3_44

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16145-3_44&domain=pdf
http://orcid.org/0000-0001-6017-0552
https://doi.org/10.1007/978-3-030-16145-3_44
https://doi.org/10.1007/978-3-030-16145-3_44
https://doi.org/10.1007/978-3-030-16145-3_44

566 J. Zheng et al.

specific noise resistant constraint, and a convex approximation of rank regular-
ization using nuclear norm. However, these characteristics also restrict LRR from
wider applications due to the limitations that the structure of errors should be
known a prior and the intrinsic rank of data might be loosely approximated.

In order to tackle heterogeneous noise sources and obtain better approxima-
tion to the original low-rank assumption, a great variety of clustering methods
have been proposed recently to search for a better representation matrix via dif-
ferent choices of constraints, which can be uniformly formulated as the following
optimization problem [2]:

min
Z

γ‖X − XZ‖μ + Ω(X ,Z), s.t. Z ∈ C,

where X ∈ Rm×n is the data matrix containing n samples as its columns,
Z ∈ Rn×n is the representation matrix, ‖ · ‖μ is a specific norm, Ω and C are
some regularizer and constraint set on Z , respectively, and γ > 0 is a balance
parameter.

For the choice of regularization on the residual term E = X − XZ , different
norms are exploited to cope with various forms of noise. Especially, Frobenius norm
(i.e., ‖·‖2F) is used for modeling the Gaussian noise [3], l1-norm is adopted for char-
acterizing the Laplacian corruption [2,4], and l2,1-norm is introduced for removing
sample-specific outliers [1,5]. However, these constraints (or norms) work well only
with a correct prior knowledge on error structure, which is often difficult to obtain.
Ref. [6] presented another error-removing schemebased on a property named intra-
subspace projection dominance (IPD), but the IPD property itself may be dis-
turbed by gross corruption. Ref. [7] integrated feature selection into the residual
term for revealing more accurate data relationships on the premise of fixed cor-
ruption location, which is a strong assumption that may not be satisfied in most
real-world problems. Ref. [8] and [9] employed the maximum likelihood estimation
principle to estimate the real distribution of noise, which provides a robust frame-
work to deal with complex errors. However, their optimization algorithm, namely
iteratively reweighted inexact augmented Lagrange multiplier (IRIALM) suffers
from two limitations. One is that an independent logistic function is suboptimal
for the overall optimization. The other is that the model loses the reweights essence
by integrating the weights update into the ADMM framework [10].

For the choice of regularization on the representation matrix Z , l1-norm,
Frobenius norm, nuclear norm (‖ · ‖∗), and mixtures, e.g., l1 + F [2], l1 + ‖ · ‖∗
[11], or replacement [12] of some of them, have been extensively studied for var-
ious problems. Despite the success of these convex surrogate functions, recently
there have been numerous explorations on employing nonconvex ones for better
approximating the intrinsic structure of data. As for the singular values, the
key idea is that the larger, and thus more informative, should be less penalized.
Such attempts include different nonconvex surrogates [13,14], weighted nuclear
norm [15], and their mixtures such as weighted Schatten p-Norm [16]. Empiri-
cally, these attempts achieve better performance than the convex counterparts.
However, the resultant optimization problem is much more challenging. In addi-
tion, most existing noncovex optimization methods take at least O(mn2) time

Double Weighted Low-Rank Representation and Its Efficient Implementation 567

complexity at each iteration for a m × n matrix (assuming m ≥ n), and might
be expensive on large matrices.

Motivated by the above works, our goal is to overcome the limitations in the
properties of noise resistant constraint and weighted nonconvex regularization.
For this purpose, we propose a double weighted LRR (DWLRR) method, which
generates clearer block-diagonal representation matrix and facilitates corrupted
subspace clustering. Our main contributions lie in the following aspects:

(1) We propose a new scheme to estimate the contributions of different input fea-
tures, where the tailored residual factors are updated iteratively for revealing
the various contributions of the input features.

(2) We employ a parametric nonconvex function to estimate the singular values
precisely, while keeping convexity of the cost function via a referenced span
of the penalty parameter. An analytical solution of the proposed weighted
nonconvex subproblem is also derived in a parallel manner.

(3) By the observation that the singular values obtained from the introduced
nonconvex function can be automatically thresholded, we derive an efficient
proximal algorithm for model optimization. Moreover, the convergence and
the complexity are also discussed.

2 Proposed Double Weighted Model

To begin with, we first introduce LRR, whose goal is to find the underlying
subspace structure by

min
Z

γ‖X − XZ‖2,1 + ‖Z‖∗, (1)

where l2,1 is for sample specific noise, ‖.‖∗ is the widely used nuclear norm.

2.1 Weighted Feature Learning for Error Penalizing

As the encountered noise in real scenarios is complex, the distribution of residual
E may be far away from the sample specific assumption in (1) or other fixed types
of distribution [5]. Recent works on low-rank reconstruction [8], robust regression
[9], as well as matrix recovery [10] show that reweighting of the priors significantly
promotes the robustness. Similarly, we minimize ‖W 1/2 � (X −XZ)‖μ, where
� denotes an element-wise product, by adopting the weighting factor W , which
aims to use the adaptive weights for flexibly predicting the error distribution.

Considering in large probability that the noisy points are indefinite, thus
might be reconstructed with obvious error, whereas the intrinsic features are
representable, thus can be reconstructed with subtle error, hence a natural way
to determine the weight matrix is solving the following problem:

min
1TW1=1,wij≥0

γ‖W 1/2 � (X − XZ)‖2F + ‖W ‖2F , (2)

where the regularization term ‖W ‖2F is used to avoid the trivial solution that
all weights are zero except for the smallest eij , whose weight is 1, the constraints
1TW1 = 1 and wij ≥ 0 are used for numerical stability.

568 J. Zheng et al.

2.2 Weighted Rational Function for Rank Approximation

Although the nuclear norm used in model (1) is the tightest convex approxima-
tion to the rank constraint, the obtained solution may seriously deviate from
the original one particularly in the presence of noise. Figure 1 illustrates a noisy
face image, its rank components, and some penalty functions under same set-
ting of parameters. It can be noted that both the weighted nuclear norm [15],
i.e.,

∑n
i=1 siσi, and the nonconvex lp constraint [14], i.e.,

∑n
i=1 σp

i , are tighter
approximations than the nuclear norm. We further present a weighted noncon-
vex constraint, i.e.,

∑n
i=1 r(si, σi), to generalize the nuclear norm into a more

flexible model. Figure 1(b) shows that the larger rank components of the noisy
image hold a good fit with the original ones, while the smaller singular values
deviate far away from the original ones. With this observation, we introduce the
parameterized rational function to penalize the larger singular values less than
the smaller ones (see Fig. 1(c)) as follows:

r(s, σ) =
sσ

1 + aσ/2
, (3)

where s is a weight, σ is some singular value, and a is a tunable parameter.

)

(a)

20 40 60 80 100 120
Singular Values

0

1

2

3

M
ag

ni
tu

de

Original
Noisy

0 1 2 3 4
Singular values

0

1

2

3

4

Fu
nc

tio
n

va
lu

es

Rank(Z
Nuclear norm

l
p
 function

Weighted nuclear norm

Rational function
Weighted Rational function

(b) (c)

Fig. 1. An instance of (a) corrupted sample and its (b) rank components, as well as
some (c) penalty functions.

By enhancing model (1) with above two merits for a better performance, the
primitive cost function of DWLRR can be written as

J = min
1TW1=1,wij≥0

γ‖W 1/2 � (X − XZ)‖2F + ν‖W ‖2F +
n∑

i=1

r(si, σi), (4)

where ν is a balance parameter, we follow [17] that uses Frobenius norm to
measure the fitting residual and denote σi = σi(Z) for simplicity.

3 Optimization Algorithm

3.1 Reweighted Framework

We apply the iterative reweighted method (IRM) [10] to solve the optimization
problems (4) with two variables W and Z . The subproblem W can be minimized

Double Weighted Low-Rank Representation and Its Efficient Implementation 569

as follows:
min

1TW1=1,wij≥0
‖W 1/2 � (X − XZ)‖2F + λ‖W ‖2F (5)

where λ = ν/γ. According to the Lagrangian function and KKT condition, we
can get the best W as

W = (κ − E2

2λ
)+, (6)

where E2 denotes a matrix whose elements are e2ij , κ is the Lagrangian mul-
tipliers of 1TW1 = 1, and (·)+ denotes a nonnegative operator. Without loss
of generality, suppose the elements of vec(E2) are in nondecreasing order, then
vec(W) will be in nonincreasing order. Given parameter l denoting the number
of zero elements related to noise, then the (mn − l + 1)th element of vec(W)
equals 0, where mn = m × n. This together with the constraint 1TW1 = 1
leads to

κ =
1

mn − l
+

mn−l∑

j=1

e2
j

2λ(mn − l)
, λ = (mn − l)

e2mn−l+1

2
− 1

2

mn−l∑

j=1

e2j . (7)

With derived parameters κ and λ, we can obtain W analytically by

W =
M(e2mn−l+1) − E

(mn − l)e2mn−l+1 − ∑mn−l
j=1 e2j

, (8)

where M(e2mn−l+1) is an m × n matrix with all elements being e2mn−l+1.

3.2 Accelerated Proximal Gradient Algorithm

With estimated W , the subproblem of Z is as follows

F (Z) =

f(Z)
︷ ︸︸ ︷

γ‖W 1/2 � (X − XZ)‖2F +

r(Z)
︷ ︸︸ ︷

n∑

i=1

r(si, σi),
(9)

We divide (9) into two terms, namely F (Z) = f(Z) + r(Z). With the fact that
f is L-Lipschitz smooth, i.e., ‖�f(Z 1) − �f(Z 2)‖F ≤ L‖Z 1 − Z 2‖F and r(Z) is
nonconvex, the accelerated proximal gradient (APG) method [18] can be applied.
For our problem (9), APG generates

Z k+1 = min
1
2
‖Z − Z k + η�f(Z k)‖2F + ηr(Z)

=proxηr(Z k − η�f(Z k))
(10)

�f(Z k) = 2γ(W � X)T(W � (XZ k − X)) (11)
at iteration k, where 0 < η < 1/L is the stepsize. Recently, APG methods have
been extensively studied. The state-of-the-art is the efficient inexact proximal
gradient algorithm [19], within whose framework our LRR subproblem of Z can
be solved as in Algorithm 1. Each iteration requires only one proximal step
(step 7). Acceleration is performed in step 3 and the objective is then checked
to determine whether Y k+1 is accepted (steps 5).

570 J. Zheng et al.

Algorithm 1. efficient inexact proximal gradient (EIPG) for problem (8)

Input: Estimated W, parameter η∈(0, 1/ L), stopping criterion tol>0, and
k=1;
Output: Z
1. Z 0=0, Z 1∈Rn×n follows N (0,1);
2. While ||F (Z k) − F (Z k−1)||2F /||F (Z k)||2F > tol do
3. k=k+1; Y k=Z k+

k−1
k+2

(Z k-Z k−1);

4. Δk=maxt=max (1,k−3),··· ,kF (Z t);
5. if F (Y k)≤Δk then Gk=Y k;else Gk=Z k; end if ;
6. V k=Gk-η�f (Gk);
7. Z k+1=proxηr(V k).
8. end While

0 1 2 3

2

4

6

8

h(
)

1=2.7

2=2.2

3=1.5

4=0.9

5=0.2

Fig. 2. Illustration of function h(δi) with si in nondescending order. The marked points
denote the global optimums of h(δi). (Color figure online)

3.3 Automatic Singular Value Thresholding

The main computational complexity of Algorithm 1 lies in the proximal step
7. In this subsection, we show how the solution of this step can be achieved
analytically by using the SVT operator. We utilize s = �r(σ(Z)) for the purpose
of preserving the major data components by penalizing the larger singular values
less than the smaller ones. Therefore, the weights are in ascending order with
the premise that the singular values are descending. Under these conditions, our
SVT subproblem h(δi) = 0.5(δi − σi(Z))2 + r(si, σi(Z)) can be illustrated in
Fig. 2, where a = 4.9, σ = [2.7, 2.2, 1.5, 0.9, 0.2]T, and s = [0.8, 1.5, 2.5, 2.7, 3.0]T

are used. From the figure we can see that the three red lines are convex and their
minimal points have the property of δ∗

i ≥ δ∗
j for si ≤ si, i < j, the two other

lines are nonconvex and their minimal points all lie in δ∗ = 0; Fig. 2 guides us to
the hypotheses that the SVT function proxηr(V k) may be strictly convex and
parallelly solvable. We present the following lemmas to validate these hypotheses
(All the proofs for the Lemmas and Theorems are given in the supplemental
material).

Double Weighted Low-Rank Representation and Its Efficient Implementation 571

Lemma 1. Given the weights as 0 ≤ s1 ≤ ... ≤ sn, proxηr(V k) can be decou-
pled into independent subproblems as

min
δi≥0

h(δi) =
1
2
(δi − σi(V k))2 +

ηsiδi
1 + aδi/2

(12)

with their optimal solutions satisfying the order constraint δ1 ≥ δ2 ≥ ... ≥ δn.

Lemma 2. Despite the nonconvexity of rational penalty function, the SVT
function proxηr(·) in (10) is strictly convex if 0 < a < 1/(η max(s)).

From the blue line of Fig. 2, we can further observe that there exists a specific
σ for h(δ∗) = h(0). Thus, the thresholding value τ and the optimal δ∗ can be
achieved following the generalized iterated shrinkage algorithm (GISA) [16]. For
our rational penalty function, we have

τi =
2
√
siaη − 1

2
, i = 1, ...,n.

δi − σi +
siη

(1 + aδi/2)2
= 0, i = 1, ...,n.

(13)

Given Lemmas 1 and 2, Theorem 1 ensures a global solution to the problem
(10) (Step 7 of Algorithm 1). The solution involves automatic thresholding of
singular values in the matrix V k.

Theorem 1. Let V k = UΣV T be the SVD of V k. If 0 < a < 1/(η max(s)),
then the global minimizer of step 7 in Algorithm 1 is

Z k+1 = UΞV T, (14)

where Ξ is the threshold function, whose subproblems are defined in (12) with
solutions generated by Eq. (13).

3.4 Efficient SVD

The SVD operation is the main burden in Theorem1, which needs to be repeat-
edly conducted during each iteration. Proposition 1 shows that proxηr(V k) can
be obtained from the proximal operator on a smaller matrix. To obtain such a
Q , Ref. [20] resorts to the power method for successfully approximating the SVT
in nuclear norm constrained problems. Nevertheless, their algorithm is designed
to tackle a fixed rank problem, i.e., the rank of the objective matrix should
be given in advance, which may not hold in real-world applications. Motivated
by the automatic SVT property from Theorem1 and the randomized blocked
algorithm [21], we attempt to achieve SVD through an adaptive thresholding
problem, which does not require any rank parameter defined in advance. A rank
shrinkage SVD algorithm is presented, where the required singular values sat-
isfying the shrinkage condition are incrementally estimated by blocked SVD
approximation.

572 J. Zheng et al.

Proposition 1. [20]. Assume that Q ∈ Rn×q, where q ≥ rank(V k), is orthog-
onal and span(U q) ⊆ span(Q). Then, proxηr(V k) = Qproxηr(Q

TV k).

Algorithm 2. proxηr(V k) with efficient SVD and automatic SVT

Input: V k, block size b;
Output: Estimated left singular vectors UQ, right singular vectors VQ, and
thresholded singular values Σδ .
1. i=1;
2. While not converged do
3. Generate an n×b Gaussian random matrix Ωi;
4. Q i=PowerScheme(V k, Ωi);

5. Q i=orth(Q i-
∑i−1

j=1 QjQ
T
j Qi), Q=[Q1,...,Q i];

6. B i=QT
i V k; B=[B1,...,B i];

7. V k=V k-Q iB i;
8. [Q t, Rt]=qr(BT,0), [U t,Σt,V t]=svd(Rt);
9. Obtain τ given Σt by (13);
10. if max(τ) ≥ min(Σt), then break;
11. end while
12. Update δ given τ by (13);
13. UQ=QV t, VQ=Q tU t.

The entire SVT procedure is shown in Algorithm 2. Step 3–7 use the power
method and blocked SVD approximation to efficiently build up an orthogonal
matrix Q that approximates span(UQ). Step 8–10 perform a small SVD and
check the stop criterion. Though SVD operation is still needed, matrix Rt is
much smaller than matrix V k. In step 12, the singular values Σt are thresholded
using Theorem 1.

So far, we have presented a new approach to achieve a more appropriate LRR
representation matrix Z . The learned Z can be used to construct an affinity
matrix as (|Z | + |ZT|)/2, which can be further fed into the spectral clustering
method for data segmentation.

3.5 Complexity and Convergence

The main computational complexity of DWLRR lies in the SVT operation. With
the learned UQ , VQ , and Σδ , the dot product by W ∈ Rm×n, the matrix
multiplication, and the SVD cost O(mn), O(mnq), and O(mq2), respectively,
where q is the revealed rank of Z . In contrast, exact SVT operation takes O(mn2)
time, and is much slower as n 	 q.

For the convergence analysis, we first present Theorem 2 to demonstrate the
convergence of subproblem F (Z), which combining with the closed-form solution
(8) for W subproblem leads to J(W i,Zi) ≥ J(W i+1,Zi) ≥ J(W i+1,Zi+1),
where i is the iteration number for IRM. Note that the sequence {J i}∞

i=0 is
bounded from below by zero, hence convergent.

Double Weighted Low-Rank Representation and Its Efficient Implementation 573

Theorem 2. Given η ∈ (0, 1/L), the sequence {Z k} generated by problem (9)
satisfies the following properties:

(1)F (Z k) − F (Z k+1) ≥ 1
2
(
1
η

− L)‖Z k − Z k+1‖2F ≥ 0;

(2) lim
k→∞

‖Z k − Z k+1‖2F = 0.

Table 1. Used image datasets. n, m, and c denote the sample size, the feature dimen-
sion, and the number of subjects.

Datasets n m c

USPS 2913 256 3

JAFFE 213 676 10

MNIST 2000 784 10

COIL 1440 1024 20

ORL 400 1024 40

AR 1200 4980 100

Table 2. Clustering performance (%) on five different image data sets.

Methods USPS JAFFE MNIST COIL ORL Average

AC NMI AC NMI AC NMI AC NMI AC NMI AC NMI

LRR 93.2 81.5 94.2 94.4 50.9 51.1 59.0 69.6 51.8 76.4 69.8 74.6

SMR 94.0 81.2 97.3 97.2 62.3 61.8 70.2 79.5 72.5 84.7 79.3 80.9

FSCNN 93.5 81.8 99.5 99.1 55.0 54.2 62.0 75.0 65.7 81.8 75.1 78.4

IRIALM 94.0 82.0 99.5 99.1 46.0 44.2 45.3 59.1 66.4 83.2 70.2 73.5

NSGLRR 94.6 81.9 98.5 97.8 51.9 52.9 62.0 72.4 65.3 79.8 74.5 77.0

L2Graph 93.2 81.2 97.6 96.5 59.1 54.6 59.7 73.7 69.8 83.8 75.9 78.0

DWLRR 94.6 82.0 99.5 99.1 66.9 64.8 76.7 89.3 70.2 84.1 81.6 83.9

4 Experimental Results

We investigate the performance of our DWLRR by conducting comprehensive
experiments on image clustering problem. Several recently developed methods
including LRR [1], SMR [22], FSCNN [7], IRIALM [8], NSGLRR [11], and
L2Graph [6] are used for comparison. The balance parameters of all the compet-
ing methods are taken from {1e−3, 1e−2, ..., 1e2} to report the best result. The
remaining parameters of all compared algorithms are searched from the sug-
gested candidate sets of the original papers to achieve the best performance.
Unless otherwise specified, for DWLRR, the parameters η and a are set as

574 J. Zheng et al.

0.6max(γ‖XTX ‖2) and 0.9/(η max(s)), respectively. We utilize accuracy (AC),
normalized mutual information (NMI) [11], as well as execution time to evaluate
the clustering performance. All experiments are implemented in MATLAB, and
are run over a laptop with Intel(R) 2.4-GHz i7 CPU and 8.0-GB RAM.

4.1 Clustering Performance

The first five datasets in Table 1 are used for clustering on nonoccluded images.
Table 2 shows the performance of the competing methods, where the last two
columns are with the average results of all the evaluated datasets. The first
observation is that our method outstandingly outperforms the competitors. For
all the datasets, DWLRR achieves the best results except for ORL, where it is
second best.

Fig. 3. Some disguised images from the AR dataset.

AC NMI
Clustering Metrics

0

20

40

60

80

100

Pe
rf

or
m

an
ce

 (%
) SMR

FSCNN
IRIALM
NSGLRR
L2Graph
DWLRR

AC NMI
Clustering Metrics

0

20

40

60

80

100

Pe
rf

or
m

an
ce

 (%
) SMR

FSCNN
IRIALM
NSGLRR
L2Graph
DWLRR

(a) glass (b) scarf

Fig. 4. Clustering performance (%) on the AR dataset.

The disguised images from 100 people of AR dataset are selected to evaluate
the robustness of the competing methods. Figure 3 shows some samples. We
compare our method with SMR, L2Graph, FSCNN, NSGLRR, and IRIALM.
Figure 4 shows the clustering results of AC and NMI. On average, DWLRR
achieves an improvement of 1.27%, 1.75%, 32.26%, 29.31%, and 3.82% over SMR,
FSCNN, IRIALM, NSGLRR, and L2Graph, respectively. This further verifies
the superiority of reweighting scheme and weighted rational penalty.

IRIALM and DWLRR all adopt the idea of weights learning mechanism
to eliminate parts of the useless features in input data. Figure 5 illustrates the
recovered images and the learned weights maps corresponding to the images with

Double Weighted Low-Rank Representation and Its Efficient Implementation 575

scarf from Fig. 3, where the first and second row are the results from IRIALM
and DWLRR, respectively. In Fig. 5, our method clearly learns more accurate
face image and weight maps. Moreover, IRIALM assigns close to 0 values (black
region) to the deemed occlusion pixels and assigns close to 1 values (white region)
to the deemed non-occlusion pixels. However, our method assigns 0 to the occlu-
sion pixels but assigns meaningful values (grey region) to the non-occlusion pix-
els, which exhibits different contributions of active features and leads to a better
clustering results.

4.2 Execution Time

In order to compare the computational complexity of different methods, we
measure the execution time of competing algorithms those with relatively better
performance, i.e., FSCNN, IRIALM, NSGLRR, and DWLRR. We report the
normalized objective values versus execution time of these approaches under
their optimal tuned parameters. Figure 6 illustrates the experimental results on
MNIST and COIL datasets. The same stopping criterion, i.e., tol = 1e−4, is used
for fair comparison. As can be seen from the figure, the proposed approach is
computationally efficient compared to other iterative based clustering methods.
In MNIST dataset, NSGLRR converges faster than DWLRR at the initial stage
of iterations. However, the decreasing objective values turn to increase at certain
point due to the inexactly linearizing approximation to the cost function.

(a) Recovered images (b) Estimated weight maps

Fig. 5. Recovery of AR face images with real disguise.

101 102 103

Time

0

0.2

0.4

0.6

0.8

1

O
bj

ec
tiv

e
va

lu
es

FSCNN
IRIALM
NSGLRR
DWLRR

101 102 103 104

Time

0

0.2

0.4

0.6

0.8

1

O
bj

ec
tiv

e
va

lu
es

FSCNN
IRIALM
NSGLRR
DWLRR

(a) MNIST (b) COIL

Fig. 6. Objective values versus execution time (in seconds).

576 J. Zheng et al.

5 Conclusions

In this paper, we propose a new low-rank representation method, DWLRR,
which marries the advantages of feature learning and weighted nonconvex con-
straint, where the first reveals different contributions of input features in the
learning process and the second ensures a closer approximation to the latent
low-rank representation matrix. A reweighted APG framework is presented to
solve our DWLRR model. Furthermore, based on a key observation that the sin-
gular values can be automatically thresholded, we approximate the SVT opera-
tor by incrementally blocks stacking and thresholding comparison. Experiments
on six image segmentation datasets and four video sequences demonstrate that
DWLRR is not only robust to different types of noise corruption, but also more
efficient than other state-of-the-art iterative methods.

Acknowledgements. This work is supported by National Natural Science Foun-
dation of China (61602413) and Natural Science Foundation of Zhejiang Province
(LY19F030016).

References

1. Liu, G., Lin, Z., Yan, S., Sun, J., Xu, Y., Ma, Y.: Robust recovery of subspace
structures by low-rank representation. IEEE Trans. Pattern Anal. Mach. Intell.
35(1), 171–184 (2013)

2. Kim, E., Lee, M., Oh, S.: Robust elastic-net subspace representation. IEEE Trans.
Image Process. 25(9), 4245–4259 (2016)

3. Lu, C.-Y., Min, H., Zhao, Z.-Q., Zhu, L., Huang, D.-S., Yan, S.: Robust and efficient
subspace segmentation via least squares regression. In: Fitzgibbon, A., Lazebnik,
S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7578, pp. 347–
360. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33786-4 26

4. Ding, Z., Fu, F.: Dual low-rank decompositions for robust cross-view learning.
IEEE Trans. Image Process. 28(1), 194–204 (2019)

5. Zhang, Z., Li, F., Zhao, M., Zhang, L., Yan, S.: Robust neighborhood preserving
projection by nuclear/l2,1-norm regularization for image feature extraction. IEEE
Trans. Image Process. 26(4), 1607–1622 (2017)

6. Peng, X., Yu, Z., Yi, Z., Tang, H.: Constructing the L2-graph for robust subspace
learning and subspace clustering. IEEE Trans. Cybern. 47(4), 1053–1066 (2017)

7. Peng, C., Kang, Z., Yang, M., Cheng, Q.: Feature selection embedded subspace
clustering. IEEE Signal Process. Lett. 23(7), 1018–1022 (2016)

8. Chen, J., Yang, J.: Robust subspace segmentation via low-rank representation.
IEEE Trans. Cybern. 44(8), 1432–1445 (2014)

9. Zheng, J., Yang, P., Chen, S., Shen, G., Wang, W.: Iterative re-constrained group
sparse face recognition with adaptive weights learning. IEEE Trans. Image Process.
26(5), 2408–2423 (2017)

10. Zhang, Z., Li, F., Zhao, M., Zhang, L., Yan, S.: Joint low-rank and sparse principal
feature coding for enhanced robust representation and visual classification. IEEE
Trans. Image Process. 25(6), 2429–2443 (2016)

11. Yin, M., Gao, J., Lin, Z.: Laplacian regularized low-rank representation and its
applications. IEEE Trans. Pattern Anal. Mach. Intell. 38(3), 504–517 (2016)

https://doi.org/10.1007/978-3-642-33786-4_26

Double Weighted Low-Rank Representation and Its Efficient Implementation 577

12. Peng, X., Lu, C., Yi, Z., Tang, H.: Connections between nuclear-norm and
frobenius-norm-based representations. IEEE Trans. Neural Netw. Learn. Syst.
29(1), 218–224 (2018)

13. Lanza, A., Morigi, S., Selesnick, I., Sgallari, F.: Nonconvex nonsmooth optimization
via convex-nonconvex majorization-minimization. Numer. Math. 136(2), 343–381
(2017)

14. Lu, C., Tang, J., Yan, S., Lin, Z.: Nonconvex nonsmooth low rank minimization via
iteratively reweighted nuclear norm. IEEE Trans. Image Process. 25(2), 829–839
(2016)

15. Gu, S., Xie, Q., Meng, D., Zuo, W., Feng, X., Zhang, L.: Weighted nuclear norm
minimization and its applications to low level vision. Int. J. Comput. Vis. 121(2),
183–208 (2017)

16. Xie, Y., Gu, S., Liu, Y., Zuo, W., Zhang, W., Zhang, L.: Weighted schatten p-norm
minimization for image denoising and background subtraction. IEEE Trans. Image
Process. 25(10), 4842–4857 (2016)

17. Peng, C., Kang, Z., Cheng, Q.: Integrating feature and graph learning with low-
rank representation. Neurocomputing 249, 106–116 (2017)

18. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear
inverse problems. SIAM J. Imaging Sci. 2(1), 183–202 (2009)

19. Yao, Q., Kwok, J., Gao, F., Chen, W., Liu, T.: Efficient inexact proximal gradient
algorithm for nonconvex problems. In: Proceedings of the 26th International Joint
Conference on Artificial Intelligence, pp. 3308–3314. Melbourne (2017)

20. Yao, Q., Kwok, J., Zhong, W.: Fast low-rank matrix learning with nonconvex
regularization. In: International Conference on Data Mining, pp. 539–548. IEEE,
Atlantic (2015)

21. Li, Y., Yu, W.: Fast randomized singular value thresholding for low-rank optimiza-
tion. IEEE Trans. Pattern Anal. Mach. Intell. 40(2), 376–391 (2018)

22. Hu, H., Lin, Z., Feng, J., Zhou, J.: Smooth representation clustering. In: Conference
on Computer Vision and Pattern Recognition, pp. 3834–3841. IEEE, Columbus
(2014)

Exploring Dual-Triangular Structure
for Efficient R-Initiated Tall-Skinny

QR on GPGPU

Nai-Yun Cheng and Ming-Syan Chen(B)

National Taiwan University, Taipei, Taiwan
nycheng@arbor.ee.ntu.edu.tw, mschen@ntu.edu.tw

Abstract. The QR decomposition is one of the fundamental matrix
decompositions in data mining. A particularly challenging case of QR
decomposition is to deal with the tall-and-skinny matrix. Tall-skinny
QR has lots of applications such as Krylov subspace methods and some
subspace projection methods. Furthermore, tall-skinny QR can acceler-
ate the process of principal component analysis (PCA). Although algo-
rithms like TSQR and Cholesky QR have been proposed for computing
QR decompositions on tall-and-skinny matrices, none of these algorithms
are suitable for being applied to the GPGPU, which has been increas-
ingly used nowadays. In view of the limited memory in GPGPU and also
the costly data transmission between CPU and GPGPU, we propose a
novel R-initiated TSQR to make the computing of tall-and-skinny QR
on the GPGPU efficient. Explicitly, our method is unique in that it uti-
lizes Givens QR to take advantage of the existence of dual-triangular
(DT) structure in submatrices in TSQR so as to significantly reduce the
computation required. With the R-initiated method, our method can
not only meet the memory limitation of GPGPU but also avoid large
amounts of data transmission. Theoretical results are derived, showing
the merit of the proposed method. The experimental results indicate that
our method significantly outperforms the conventional TSQR.

Keywords: TSQR · Tall-and-skinny matrix · QR decomposition

1 Introduction

The QR decomposition is one of the fundamental matrix decompositions with
applications throughout data analysis and scientific computing. In a QR decom-
position, the target matrix A is factorized into a product of an orthonormal
matrix Q and an upper triangular matrix R, i.e.,

A = QR.

A particularly challenging case of QR decomposition is to deal with a tall-and-
skinny matrix. Note that such a kind of matrices exists in several real appli-
cations. Specifically, millions of data with only a few attributes can be repre-
sented as a tall-and-skinny matrix. The QR decomposition of a tall-and-skinny
c© Springer Nature Switzerland AG 2019
Q. Yang et al. (Eds.): PAKDD 2019, LNAI 11440, pp. 578–589, 2019.
https://doi.org/10.1007/978-3-030-16145-3_45

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16145-3_45&domain=pdf
https://doi.org/10.1007/978-3-030-16145-3_45

Exploring DT Structure for Efficient R-TSQR on GPGPU 579

matrix also appears in various numerical methods. For example, tall-skinny QR
decomposition can be used in Krylov subspace methods [1,2] and some subspace
projection methods [3] for linear systems and eigenvalue problems. Also, the
QR decomposition is an efficient way to accelerate principal component analysis
(PCA) [4], which is one of the most important methods for dimension reduction.

Given the importance of tall-skinny QR decomposition, several algorithms
have been proposed for its efficient execution. However, most of these methods
are not applicable to the case of using GPGPU. In Cholesky QR [5], the matrix
R can be found by computing the Cholesky decomposition of A�A. Then the
matrix Q can be computed from A and R [6]. Since the Cholesky decomposition
cannot be parallelized, Cholesky QR is not applicable when GPGPU is used.
CholeskyQR2 [7], an extension of Cholesky QR, has the same restriction.

Since QR decomposition methods currently developed for the GPGPU [8–
10] are designed for normal matrices, these methods suffer poor performances
on tall-and-skinny matrices. Therefore, a special algorithm, called TSQR, was
introduced to compute the QR decomposition of tall-and-skinny matrices in
parallel [11,12]. TSQR has been widely used in other algorithm [13,14]. Fig. 1
shows the basic idea of TSQR.

However, the conventional TSQR is designed for distributed computing and
is not suitable when GPGPU is used. Note that copying data between the host
and global memory is very time-consuming and should be avoided. In Fig. 1, it
can be seen that all the orthonormal matrices obtained from submatrices need to
be stored during the process. However, due to the limited memory of GPGPU,
it is infeasible to store all of the matrices in GPGPU memory.

To remedy this, we utilize the R-initiated approach as in [15,16], meaning
that instead of updating the Q matrix along the process, we compute Q after
obtaining the final R. However, it is important to point out that our method
is unique in utilizing Givens QR, as opposed to the Householder QR previously
used, to take advantage of the existence of dual-triangular (DT) structure in
submatrices in TSQR so as to significantly reduce the computation required.
Moreover, in our design, the computation of Givens QR can be fully parallelized
in light of the DT structure. The details will be explained in Sect. 3.

Fig. 1. An example of TSQR

580 N.-Y. Cheng and M.-S. Chen

Based on the foregoing, we propose in this paper a scheme to explore dual-
triangular structure for efficient R-initiated tall-skinny QR decomposition on
GPGPU. The main contributions of our work are listed as follows.

– We employ the R-initiated approach for better efficiency. That is, our method
requires much less data transmission between the GPGPU and the host. Also,
the R-initiated method remedies the inefficiency of computing Q in Givens
QR.

– We prove that Givens QR has the same step complexity, n, as Householder
QR for matrices with DT structure in Theorem 1. In Theorems 2 and 3, we
prove that using Givens QR for matrices with DT structure can even lead to
lower complexity on GPGPU.

– The experiment results indicate that our method not only outperforms others
but is also able to accelerate the process of PCA.

This paper is organized as follows. Section 2 briefly summarizes current algo-
rithms for QR factorization. Section 3 presents the proposed R-initiated TSQR
and some theoretical results. Section 4 shows the experimental results. Finally,
the conclusion is given in Sect. 5.

2 Related Work

In this section, several QR decomposition algorithms are introduced. House-
holder QR and Givens QR are two fundamental methods for normal QR decom-
position while Cholesky QR and TSQR are designed for tall-skinny QR.

2.1 Householder QR

In Householder QR, a sequence of Householder reflections is applied to the target
matrix A. Each Householder reflection can be represented by a matrix Hi,

Hi = I − 2
viv

�
i

v�
i vi

where vi is a Householder vector. After applying the Householder reflection H1

on A, we have Ã = H1A. Note that Ã1i = 0 for all i > 1. As H1 . . . Hn are
applied, the R and Q can be obtained.

R = Hn . . . H1A

Q = (HnHn−1 . . . H1)� = H�
1 H�

2 . . . H�
n

The WY representation is a more efficient way to compute Q [17]. By updating
two matrices, Y and T , for each householder reflection, Q can be obtained.

Q = I − Y TY �.

Exploring DT Structure for Efficient R-TSQR on GPGPU 581

2.2 Givens QR

The Givens QR computes the upper triangular matrix R from the target matrix
A by applying a sequence of Givens rotations. Each Givens rotation can replace
a selected element with 0. Consequently, each rotation can be represented by
a unitary matrix G. Therefore, a sequence of Givens matrices can be used to
eliminate all the non-zero elements below the diagonal:

R = GkGk−1 . . . G2G1A.

Since all Gi are unitary, it can be inferred from the above equations that

Q = (GkGk−1 . . . G1)� = G�
1 G2� . . . G�

k .

However, when a Givens rotation is applied, two rows will be rotated at the same
time. Hence, the non-zero element aij can be eliminated only when all akj = 0
where k < i. As a result, for dense matrices, the Givens rotation is not suitable
for parallel computing.

2.3 Cholesky QR

In Cholesky QR [5], the authors assume A = QR, and the following equation
can be obtained,

A�A = R�Q�QR = R�R.

This implies that R is the Cholesky factor of A�A. The following equation is
computed to solve the Cholesky decomposition B = LL�,

Lii =

√
√
√
√Bii −

i−1∑

j=1

L2
ij and Lij =

Bij −
j−1∑

k=1

LjkLik

Ljj

Note that the process of Cholesky decomposition cannot be parallelized, and is
hence not able to fully exploit the architecture of GPGPU.

After obtaining matrix R, the Cholesky QR uses the R-initiated method
introduced by [6] to obtain the Q factor. Note that Q can be written as Q =
Im×n − Y TY �

1 where Y is a lower triangular unit matrix, and T is an upper
triangular matrix [17]. Y1 represents the top n × n block of Y . Hence,

A = QR = (Im×n − Y TY �
1)R =

[

Rn×n

0(m−n)×n

]

− Y TY �
1 R

=⇒ A −
[

Rn×n

0(m−n)×n

]

= −Y TY �
1 R

Let V = −TY �
1 R. Since T, Y �

1 , R are all upper triangular, V is also an upper
triangular matrix. Observe that (A − R) = Y V , which can be a LU decom-
position. Therefore, Y and V are obtained, then T can be achieved by solving
TY �

1 R = −V .

582 N.-Y. Cheng and M.-S. Chen

2.4 TSQR

In [12], the authors introduced a parallel algorithm. First, the m × n matrix A
is divided into M =

⌊
m
n

⌋

blocks {A1, A2, . . . , AM}. Then QR decomposition is
solved for each Ai, so Ai = Q0iR0i is obtained. Additionally, every two R0i are
taken as a new submatrix and the QR is solved again. That is,

[

R0,2i

R0,2i+1

]

= Q1iR1i i = 0, 2, 3, . . . ,

⌊
M − 1

2

⌋

.

This is done iteratively until only one Rk0 is left. The Rk0 is the desired matrix
R, and Q can be computed from {Qij}. Figure 1 is a simple example.

3 R-Initiated Tall-Skinny QR on GPGPU

The proposed method is described in this section. The first subsection shows
the revision we make to meet the limitation of GPGPU. The second subsection
explains how we accelerate the process by the dual-triangular structure. Figure 2
briefly shows the difference between conventional TSQR and our method.

3.1 R-Initiated Method to Meet the Memory Limitation of GPGPU

There are some challenging issues while implementing TSQR on GPGPU. The
most severe issue is the limitation of memory. In conventional TSQR, all of the
Qij have to be stored during the process. Thus, the bottleneck becomes the
data transmission between GPGPU and the host. To solve this problem, the
R-initiated method is used, i.e., the matrix Q is computed from the matrix R.
By doing so, large amounts of data transmission can be avoided.

Explicitly, in the R-initiated method, the Q matrix can be computed after
the matrix R is obtained. The method mentioned in Sect. 2.3 is used to
reconstruct Q.

3.2 Dual-Triangular Structure to Accelerate the Process

Our another design to accelerate the process is to use Givens rotation. Although
many modifications for TSQR already exist, most of these methods use the
Householder QR. This can be explained by two reasons. First, WY representa-
tion from Householder QR can compute the Q matrix more efficiently. Second,
Householder QR normally needs less computation. However, these advantages
do not exist in this situation of interest. Since the R-initiated method is used,
we do not have to compute Q for the submatrices. Also, most of the submatrices
in TSQR are not dense and Givens QR usually leads to better performance on
sparse matrices.

Explicitly, it can be seen from the conventional TSQR algorithm (Fig. 3) that
lots of these submatrices are formed by two upper triangular matrices, which we
refer to as dual-triangular(DT) structure. More specifically, there are two kinds
of QR decomposition.

Exploring DT Structure for Efficient R-TSQR on GPGPU 583

Fig. 2. Comparison between conventional TSQR and R-initiated TSQR

1. normal QR: QR decomposition of a normal matrix.
2. dual-triangular QR: QR decomposition of a matrix with DT structure.

Despite the conventional TSQR using Householder QR is efficient on CPU,
such an approach does not work on GPGPU. For the matrices with DT structure,
the Householder vectors tend to have special patterns of zeros as shown in Fig. 4,
implying that the computation on CPU can be simply reduced by avoiding the
multiplication and addition of zeros. However, this advantage vanishes in the
case of using GPGPU since the matrix multiplication can be parallelized. That
is, avoiding the operation of zeros on GPGPU will only increase the number
of idle threads. In contrast, when Givens QR is used, DT structure can speed
up the computing for Givens QR in parallel, which leads to real prominent
improvement. We state our theoretical results by the following three theorems,
which explain the reason why Givens QR is employed in our method.

Theorem 1. For submatrices with DT structure (2n × n), the step complexity
of Givens QR on GPGPU is n.

584 N.-Y. Cheng and M.-S. Chen

Fig. 3. TSQR on GPGPU

Fig. 4. The special pattern of House-
holder vector

Fig. 5. Parallel Givens QR by the DT
structure

Proof. In the first step, the k-th row is used to eliminate the first non-zero
element in (n + k)-th row (k = 1, 2, . . . , n). In the second step, the k-th row is
used to eliminate the first non-zero element in (n+ k − 1)-th row (k = 2, . . . , n).
This is done iteratively until no non-zero element remains in the lower half of
the matrix. Therefore, the step complexity is n.

An illustrative example of Theorem 1 is given in Fig. 5. From Theorem 1, we learn
that the Householder QR and the Givens QR result in the same step complexity
n. Next, we compare the amount of computation required for both methods in
each step.

Exploring DT Structure for Efficient R-TSQR on GPGPU 585

Theorem 2. For matrices with DT structure, the complexity of Householder
reflection in each individual step varies. Explicitly, the complexity of the ith step
of Householder QR on GPGPU is O(log(i)).

Proof. For the Householder QR, each step is a Householder reflection. In each
Householder reflection, a Householder vector (vi) needs to be computed and
normalized. Then Ã = A − viv

�
i A is computed. Observe that both vi and v�

i A
are vectors. Therefore, the complexity of multiplying vi and (v�

i A) is constant
on GPGPU. This leaves the normalization of vi and the computing of v�

i A
as bottlenecks. Consider the special pattern in Fig. 4, the number of non-zero
elements in (vi) is i+1. Hence, the complexity on GPGPU of the i-th step should
be O(log i).

On the other hand, the merit of the Givens QR is stated below.

Theorem 3. The complexity of Givens rotation on GPGPU is constant.

Proof. In Givens rotation, cosθ and sinθ are computed and the corresponding
two rows are rotated. Notice that, cosθ and sinθ can be computed in constant
time and all the elements in these two rows can be rotated at the same time.
Hence, the complexity of Givens rotation on GPGPU is constant.

For the Givens QR, many Givens rotations may be contained in each step, but all
these rotations can be computed in parallel. Therefore, we just have to focus on
one Givens rotation. Theorem 3 shows that the complexity of Givens rotation on
GPGPU is constant. Hence, the complexity of each step is also constant. From
Theorems 2 and 3, it follows that using the Givens QR results in lower complexity
for matrices with DT structure on GPGPU. The following table summarizes the
complexity (Table 1).

Table 1. Complexity comparison

Compute DT QR on GPGPU Using Householder Using Givens

Complexity in a step O(log(i)) O(1)

Step complexity n n

Total complexity of a submatrix O(
n∑

i=1

log(i)) = O(log(n!)) O(n)

Total complexity of all DT QR O(log(M) log(n!)) O(n log(M))

586 N.-Y. Cheng and M.-S. Chen

Computing Time for the Whole Matrix

0e+00

1e+07

2e+07

3e+07

32 128 512
Row−column ratio (M)

T
im

e
(m

ic
ro

 s
ec

) Cholesky
TSQR
RTSQR

Computation time for different QR algorithm

Fig. 6. Results for different
QR algorithms

1e+02

1e+03

1e+04

1e+05

1e+06

1e+07

32 64 128 256 512 1024
Number of columns (n)

T
im

e
(m

ic
ro

 s
ec

) Givens
Householder

Computation time for a single submatrix

(a)

8

16

32

64

128

256

32 64 128 256 512 1024

Number of columns (n)

S
pe

ed
−

up

Speedup

Speed up for a single submatrix

(b)

Fig. 7. Results for a single submatrix

1e+04

1e+05

1e+06

1e+07

80+e1

32 64 128 256 512

Number of columns (n)

T
im

e
(m

ic
ro

 s
ec

) Givens
Householder

Computation time for DT QR (M=128)

(a)

1e+05

1e+06

1e+07

80+e1

32 64 128 256 512

Number of columns (n)

T
im

e
(m

ic
ro

 s
ec

) Givens
Householder

Computation time for matrix R (M=128)

(b)

2

4

8

16

32

64

128

256

32 64 128 256 512

Number of columns (n)

S
pe

ed
−

up

DTQR
ComputeR

Speed up (M=128)

(c)

Fig. 8. Results with different values of n (M = 128)

1e+04

1e+05

1e+06

1e+07

16 32 64 128 256 512 1024

Row−column ratio (M)

T
im

e
(m

ic
ro

 s
ec

)

Givens
Householder

Computation time for DT QR (n=128)

(a)

1e+05

1e+06

1e+07

16 32 64 128 256 512 1024

Row−column ratio (M)

T
im

e
(m

ic
ro

 s
ec

) Givens
Householder

Computation time for matrix R (n=128)

(b)

0

20

40

60

80

16 32 64 128 256 512 1024

Row−column ratio (M)

S
pe

ed
−

up

DTQR
ComputeR

Speed up (n=128)

(c)

Fig. 9. Results with different values of M (n= 128)

0.0e+00

5.0e+06

1.0e+07

1.5e+07

2.0e+07

16 32 64 128 256 512 1024

Row−column ratio (M)

T
im

e
(m

ic
ro

 s
ec

)

NormalQR
DTQR
ComputeQ

R−initiated TSQR with Householder QR

(a)

0.0e+00

5.0e+06

1.0e+07

1.5e+07

2.0e+07

16 32 64 128 256 512 1024

Row−column ratio (M)

T
im

e
(m

ic
ro

 s
ec

)

NormalQR
DTQR
ComputeQ

R−initiated TSQR with Givens QR

(b)

Fig. 10. Time distribution for R-TSQR (n = 128)

0

1

2

3

32 64 128

Number of columns (n)

T
im

e
(m

ic
ro

 s
ec

)

SVD_QR
SVD

Computation time for different PCA algorithm

Fig. 11. Computational time
of PCA

Exploring DT Structure for Efficient R-TSQR on GPGPU 587

4 Experimental Results

In this section, we present some experimental results performed on Intel(R)
Core(TM) i7-5820K CPU @ 3.30 GHz with 32 GB of main memory and NVIDIA
GeForce GTX TITAN X. In Sect. 4.1, our method is compared with other algo-
rithms. Sections 4.2 and 4.3 show how the size of the target matrix A affects
the computing time. Section 4.4 presents the time distribution of our method.
Finally, Sect. 4.5 shows that proposed method can accelerate the computing of
PCA.

4.1 Results for Different Algorithms

Our method is compared with the Cholesky QR (CPU baseline) and the con-
ventional TSQR (GPGPU baseline). The number of columns is fixed (n = 128).
Figure 6 shows that our method has the best performance. The larger the matrix
size becomes, the further our method outperforms the others.

4.2 Sensitivity of Number of Column N

The influence of n is explored in this subsection. First paragraph shows the
results on a single submatrix while the second paragraph shows the results for
computing the whole matrix.

Computing Time for a Single Submatrix. Figure 7 shows the difference
between Givens QR and the Householder QR for a 2n × n submatrix with DT
structure on GPGPU. Figure 7(a) is the computing time and Fig. 7(b) shows the
speed-up. Figure 7 indicates that our method has better performance and the
speed-up is prominent.

Computing Time for the Whole Matrix. In order to explore the influence of
n, the row-column ratio is fixed (M = 128) in this subsection. Figure 8(a) shows
the computation time of DT QR while Fig. 8(b) presents the results for com-
puting the R matrix, which includes both DT QR and normal QR. Figure 8(c)
shows the speed-up for computing DT QR and R matrix.

Figure 8(c) indicates that the speed-up increases as n grows. However, com-
pared to the speed-up of DT QR, the speed-up of computing the matrix R is
not so significant. This is due to the limited thread numbers in GPGPU, which
prevents our method from achieving the theoretical performance. That is, the
submatrices in each iteration may not be computed at the same time. Hence, we
compare the number of submatrices needed to be factorized in normal QR and
DT QR. It can be seen in Fig. 3 that with M submatrices in normal QR, the num-
ber of submatrices to be computed in DT QR is (M2 +M

22 +M
23 +· · ·+1) ≈ M . Thus,

it can be deduced that the computation time of normal QR and DT QR should
be similar in the conventional TSQR. It is recognized that the Givens QR can
only accelerate the computing of DT QR. Therefore, the speed-up for computing
R is limited even though the speed-up for DT QR is significant.

588 N.-Y. Cheng and M.-S. Chen

4.3 Sensitivity of Row-Column Ratio M

In Sect. 4.3, n = 128 is fixed in order to show the influence of M . Since M
only changes the number of submatrices, the speed-up should be a constant.
Figure 9(c) confirms this reasoning and shows that the speed-up is almost a
constant.

4.4 The Bottleneck: Computing Normal QR

In this subsection, we fix n = 128. Figure 10(a) shows the time distribution of
the R-initiated TSQR with Householder QR and Fig. 10(b) is the results of our
method. Note that the computation time of computing Q is very little and the
DT QR can be significantly accelerated in our method. Therefore, the bottleneck
becomes the normal QR.

4.5 PCA with Tall-Skinny QR

An application of PCA is the stationary video background subtraction. Each
frame of the video is transformed into a long vector. All these vectors can form a
tall-and-skinny matrix in which the number of columns is equal to the number of
frames. In order to subtract the background, we apply PCA on the video matrix,
and the main computation in PCA is the SVD. In the SVD of the video matrix,
the top singular vectors are usually associated with the background. Instead of
doing a SVD of matrix A, we use the R-initiated TSQR to accelerate. The SVD
of matrix A can be obtained by the SVD of matrix R.

A = QR = Q(ŨΣV �) = (QŨ)ΣV � = UΣV �.

In the experiment, there are 16384 pixels in one frame. Therefore, m is fixed and
n is the number of frames. Therefore, the row-column ratio (M = m

n) decreases
when more frames are used. Figure 11 shows the computation time of different
values of n. From the blue bars of Fig. 11, we know that the computation time
of SVD is not sensitive to n. However, n influences the computation time of the
R-initiated TSQR significantly. As a result, our method can speed up the process
of PCA prominently as long as n is not too large.

5 Conclusion

In this paper, we propose a scheme to explore dual-triangular structure for effi-
cient R-initiated tall-skinny QR decomposition on GPGPU. First, the R-initiated
method is used to avoid data transmission between the GPGPU and the host.
Second, we derive that Givens QR has the lower execution complexity for matri-
ces with DT structure on GPGPU. The experimental results validate that our
method outperforms others due to its theoretical merit. The speed-up on com-
putation depends on the size of the target matrix A. The bigger the size, the
further our method outperforms the others.

Exploring DT Structure for Efficient R-TSQR on GPGPU 589

References

1. Bai, Z., Demmel, J., Dongarra, J., Ruhe, A., van der Vorst, H.: Templates for the
Solution of Algebraic Eigenvalue Problems: A Practical Guide. SIAM, Bangkok
(2000)

2. Gutknecht, M.H.: Block Krylov space methods for linear systems with multiple
right-hand sides: an introduction (2006)

3. Sakurai, T., Sugiura, H.: A projection method for generalized eigenvalue problems
using numerical integration. J. Comput. Appl. Math. 159(1), 119–128 (2003)

4. Sharma, A., Paliwal, K.K., Imoto, S., Miyano, S.: Principal component analysis
using QR decomposition. Int. J. Mach. Learn. Cybern. 4(6), 679–683 (2013)

5. Nguyen, H.D., Demmel, J.: Reproducible tall-skinny QR. In: 2015 IEEE 22nd
Symposium on Computer Arithmetic (ARITH), pp. 152–159. IEEE (2015)

6. Yamamoto, Y.: Aggregation of the compact WY representations generated by the
TSQR algorithm. In: Conference Talk Presented in SIAM Applied Linear Algebra
(2012)

7. Fukaya, T., Nakatsukasa, Y., Yanagisawa, Y., Yamamoto, Y.: CholeskyQR2: a sim-
ple and communication-avoiding algorithm for computing a tall-skinny QR factor-
ization on a large-scale parallel system. In: 2014 5th Workshop on Latest Advances
in Scalable Algorithms for Large-Scale Systems (ScalA), pp. 31–38. IEEE (2014)

8. Volkov, V., Demmel, J.: LU, QR and Cholesky factorizations using vector capabil-
ities of GPUS. Technical report, UCB/EECS-2008-49, vol. 49, EECS Department,
University of California, Berkeley (2008)

9. Kerr, A., Campbell, D., Richards, M.: QR decomposition on GPUS. In: Proceedings
of 2nd Workshop on General Purpose Processing on Graphics Processing Units,
pp. 71–78. ACM (2009)

10. Humphrey, J.R., Price, D.K., Spagnoli, K.E., Paolini, A.L., Kelmelis, E.J.: CULA:
hybrid GPU accelerated linear algebra routines. In: SPIE Defense, Security, and
Sensing, pp. 502–770. International Society for Optics and Photonics (2010)

11. Anderson, M., Ballard, G., Demmel, J., Keutzer, K.: Communication-avoiding QR
decomposition for GPUS. In: 2011 IEEE International Parallel & Distributed Pro-
cessing Symposium (IPDPS), pp. 48–58. IEEE (2011)

12. Demmel, J., Grigori, L., Hoemmen, M., Langou, J.: Communication-optimal par-
allel and sequential QR and LU factorizations. SIAM J. Sci. Comput. 34(1), A206–
A239 (2012)

13. Constantine, P.G., Gleich, D.F.: Tall and skinny QR factorizations in MapReduce
architectures. In: Proceedings of the Second International Workshop on MapRe-
duce and Its Applications, pp. 43–50. ACM (2011)

14. Ballard, G., Demmel, J., Grigori, L., Jacquelin, M., Knight, N., Nguyen, H.D.:
Reconstructing householder vectors from tall-skinny QR. J. Parallel Distrib. Com-
put. 85, 3–31 (2015)

15. Ballard, G., Demmel, J., Grigori, L., Jacquelin, M., Nguyen, H.D., Solomonik, E.:
Reconstructing householder vectors from tall-skinny QR. In: 2014 IEEE 28th Inter-
national Parallel and Distributed Processing Symposium, pp. 1159–1170. IEEE
(2014)

16. Benson, A.R., Gleich, D.F., Demmel, J.: Direct QR factorizations for tall-and-
skinny matrices in MapReduce architectures. In: 2013 IEEE International Confer-
ence on Big Data, pp. 264–272. IEEE (2013)

17. Schreiber, R., Van Loan, C.: A storage-efficient WY representation for products of
householder transformations. SIAM J. Sci. Stat. Comput. 10(1), 53–57 (1989)

Efficient Autotuning of Hyperparameters
in Approximate Nearest Neighbor Search

Elias Jääsaari1, Ville Hyvönen2,3(B), and Teemu Roos2,3

1 Kvasir Ltd., Cambridge, England
elias.jaasaari@gmail.com

2 Department of Computer Science, University of Helsinki, Helsinki, Finland
ville.o.hyvonen@gmail.com, teemu.roos@cs.helsinki.fi

3 Helsinki Institute for Information Technology (HIIT), Helsinki, Finland

Abstract. Approximate nearest neighbor algorithms are used to speed
up nearest neighbor search in a wide array of applications. However, cur-
rent indexing methods feature several hyperparameters that need to be
tuned to reach an acceptable accuracy–speed trade-off. A grid search in
the parameter space is often impractically slow due to a time-consuming
index-building procedure. Therefore, we propose an algorithm for auto-
matically tuning the hyperparameters of indexing methods based on
randomized space-partitioning trees. In particular, we present results
using randomized k-d trees, random projection trees and randomized
PCA trees. The tuning algorithm adds minimal overhead to the index-
building process but is able to find the optimal hyperparameters accu-
rately. We demonstrate that the algorithm is significantly faster than
existing approaches, and that the indexing methods used are competi-
tive with the state-of-the-art methods in query time while being faster
to build.

Keywords: Nearest neighbor search · Approximate nearest neighbors ·
Randomized space-partitioning trees · Indexing methods · Autotuning

1 Introduction

Nearest neighbor search is a common component of algorithms and pipelines in
areas such as machine learning [5,17], computer vision [1] and robotics [11]. In
modern applications the search is typically performed in high-dimensional spaces
(100–10000 dimensions) over large data sets.

An exhaustive k-nearest neighbor (k-NN) search is often prohibitively slow
in applications which either require real-time responses (see e.g. [17]) or run on a
resource-constrained device (see e.g. [11]). Hence, approximate nearest neighbor
(ANN) search is often used instead. ANN algorithms first build an index in
an offline phase, after which the index can be used to perform k-NN queries in
sublinear time in an online phase. Most of the efficient algorithms fall into one of
four categories: product quantization (PQ) [8], locality-sensitive hashing (LSH)
[4,7], graph-based methods [10], and tree-based methods [13,14].
c© Springer Nature Switzerland AG 2019
Q. Yang et al. (Eds.): PAKDD 2019, LNAI 11440, pp. 590–602, 2019.
https://doi.org/10.1007/978-3-030-16145-3_46

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16145-3_46&domain=pdf
https://doi.org/10.1007/978-3-030-16145-3_46

Efficient Autotuning of Hyperparameters in ANN Search 591

Because ANN algorithms are typically used as an auxiliary component of a
pipeline, it can be important for a user that an algorithm requires minimal hand-
tuning, especially if the type or size of the data can vary significantly. However,
ANN algorithms typically have several hyperparameters which need to be tuned
by a time-consuming grid search to achieve a given accuracy level or search time.

This problem is solved by an autotuning algorithm where the user specifies
an accuracy level, and the tuning algorithm finds the optimal hyperparameter
values. Previously, autotuning methods have been proposed for VP-trees [18],
multi-probe LSH [4], k-means trees and RKD trees [13]. In this paper, we propose
an autotuning method that is significantly faster than these methods.

Our approach is based on exploiting the structure of randomized space-
partitioning trees [3,6,13,14]. ANN algorithms based on randomized space-
partitioning trees have been used recently for example in machine translation [5],
object detection [1] and recommendation engines [17].

Trees have several advantages: they are fast in high-dimensional spaces (see
e.g. experiments in [6,13]); they are simple to implement; they support easy
insertion and deletion of points and they are independent, making the parallel
implementation trivial. Also of great importance to us is that the structure of a
tree-based index can be exploited to speed up the hyperparameter tuning.

Several types of randomized space-partitioning trees have been proposed for
ANN search. Randomized k-d (RKD) trees [14] with a priority queue search are
used in the popular open-source library FLANN [13]. Random projection (RP)
trees [3] with a voting search have a stronger empirical performance than RKD
trees with a priority queue search [6]. However, a single principal component
(PCA) tree has been found to be more accurate than a single RP tree [16]. The
PCA tree has two problems: it is not randomized, and indexing is slow. To solve
these problems, we design a randomized variant of the PCA tree.

Typically ANN algorithms are compared in terms of the accuracy–speed
trade-off. However, for the algorithm to be useful in practice, the index building
procedure must be efficient as well. We test three different types of trees (RKD,
RP and randomized PCA) with two search methods (priority queue and voting)
considering both the query stage and the index building stage.

More specifically, in this article we:

• Propose an autotuning algorithm to optimize the hyperparameters of tree-
based ANN search, and demonstrate that it is faster and more accurate than
existing autotuning methods for ANN algorithms.

• Compare experimentally the effect of (a) the randomization strategy and (b)
the search method on the efficiency of randomized trees. In particular, we
find RP trees combined with voting search to be the best-performing.

• Demonstrate that the best tree-based method is nearly on par with the state-
of-the-art ANN algorithms when measured on the accuracy–speed trade-off,
and faster when measured on the index building time.

592 E. Jääsaari et al.

2 Approximate Nearest Neighbor Search

In k-nn search, we have a data set x = (x1, . . . , xn), where each xi ∈ A, from
which we want to find the indices f(q) of the k nearest neighbors for an arbitrary
query point q ∈ A measured by a dissimilarity measure dis(u, v) : A2 �→ R. We
assume the dissimilarity measure to be the Euclidean distance ‖u − v‖2.

In approximate nearest neighbor (ANN) search, it is sufficient that the k
points returned by the approximation algorithm are the true nearest neighbors
of the query point only with high probability. We denote the returned points
by f̂(q;α, r), where α stands for the hyperparameters of the algorithm, and r
stands for the realization of a set of random vectors used by the algorithm.

The accuracy of the approximation is measured by the error rate
Err(q;α, r) = 1

k

∑k
j=1 1(fj(q) /∈ f̂(q;α, r)), which is the proportion of missed

true nearest neighbors; the indices of the true nearest neighbors are denoted
by f(q) = (f1(q), . . . , fk(q)). Equivalently, we can use recall : Rec(q;α, r) =
1 − Err(q;α, r).

In addition to the error rate, we also consider the query time, denoted
Time(q;α, r), when assessing the performance of an ANN algorithm. The hyper-
parameter optimization problem can be formulated in two ways:

1. Fix the expected error rate e ∈ (0, 1) and find the hyperparameters α that
minimize E [Time(Q;α,R)] under the constraint E [Err(Q;α,R)] ≤ e.

2. Fix the expected query time t ∈ (0,∞) and find the hyperparameters α that
minimize E [Err(Q;α,R)] under the constraint E [Time(Q;α,R)] ≤ t.

The expectations E [·] are over both the distribution of a query point Q and
the random vectors R. These expectations can be estimated using a validation
set of query points and a generated sample of random vectors.

3 Randomized Space-Partitioning Trees

3.1 Index Construction

A binary space-partitioning tree recursively divides the data points into different
cells with the assumption that nearby points fall into the same cells. At each
branch of the recursion, the data set x is projected onto a chosen direction and
assigned into one of the two child nodes by applying a split criterion. In practice
we use the median split to ensure balanced trees. This process (Algorithm 1) is
continued at the child nodes until the maximum depth � is met.

The type of a space-partitioning tree is determined by its choice of pro-
jection direction (see Fig. 1 for an illustration on 2D data). In Algorithm1,
each different type of tree implements its own version of the abstract function
generate-direction which chooses this direction. Its argument ψ represents
the tree-type dependent tuning parameters.

In randomized space-partitioning trees, the projection direction is chosen in a
non-deterministic fashion. Randomized k-d (RKD) trees [14] choose a coordinate

Efficient Autotuning of Hyperparameters in ANN Search 593

Algorithm 1
1: function grow-tree(depth, x, �, ψ)
2: if depth == � then
3: return indices of points in x as a tree node

4: direction ← generate-direction(ψ)
5: p ← project(x, direction)
6: cut ← split(p)
7: left ← grow-tree(depth + 1, x[p ≤ cut], �)
8: right ← grow-tree(depth + 1, x[p > cut], �)
9: return (left, right, cut, direction) as a tree node

direction uniformly at random from m directions of the highest variance as
the projection direction (we use m = 5 as suggested in [14]). Another popular
randomized variant is a random projection (RP) tree [3] in which the projection
direction is chosen uniformly at random from the d-dimensional unit sphere. We
use a sparse version [6], in which only a proportion a = 1/

√
d of the components

of the random vectors are non-zero.
If the first principal component of the data is used as the projection direction,

the resulting data structure is a principal component (PCA) tree [16]. However,
the original PCA trees are on the one hand deterministic which makes improving
accuracy with multiple trees impossible, and on the other hand slow to compute,
as computing exact PCA is costly. To speed up the computation, using gradient
descent updates to approximate the first principal component of the data at each
node of the tree has been suggested [12]. However, index construction still takes
O (

nd2(i + �)
)

time, where i is the number of gradient descent updates.

Fig. 1. Different projection directions: k-d (left), RP (middle) and PCA (right).

We make PCA trees more practical for ANN search by modifying the gradient
descent update1 to choose uniformly at random only a =

√
d dimensions of the

data at each node of the tree, and compute the estimated covariance matrix
using only these dimensions. Growing a randomized PCA tree is an O (nd(i + �))

1 The gradient descent consistently converges with the learning rate γ = 0.01 in all our
experiments; we did not observe further tuning of the learning rate to be necessary.

594 E. Jääsaari et al.

Fig. 2. Recall vs. query time with different trees and search methods for MNIST (left)
and Fashion-MNIST (right) for k = 10. Towards bottom right is better.

operation since now computing the sample covariance matrix takes only O (nd)
operations. Considering only a sample of dimensions also ensures that the trees
are randomized, allowing us to build multiple trees to increase accuracy.

3.2 ANN Search Using Multiple Trees

To use an index consisting of T randomized space-partitioning trees to find k
approximate nearest neighbors of a query point q, the query point is first routed
down to a leaf at each of the trees: at each level the query point is first projected
onto the saved projection direction and then routed into the left or the right child
node depending on which side of the split point its projection falls. There are two
strategies to choose the candidate set of points for which the true distances are
evaluated: priority queue search and voting search. Both of these are independent
of the randomization strategy used to grow the trees.

Priority Queue Search. In a priority queue search [14], a single priority queue,
ordered according to the distance from the query point to the splitting hyper-
planes, is maintained for all trees. When distances from the query point to all
the points sharing a leaf with the query point are evaluated, b extra branches
are explored; the priority queue is used to choose the branches.

Voting Search. In a voting search [6], distances are computed only to the
subset of the points sharing a leaf with the query point. When a data point
belongs to the same leaf as a query point in a tree, it gets a vote, and distances
are evaluated only to the points that have at least v votes.

3.3 Comparison of Randomization and Search Methods

Figure 2 shows the accuracy–speed trade-off for all combinations of the consid-
ered tree types and search methods on two benchmark data sets. For RP trees,

Efficient Autotuning of Hyperparameters in ANN Search 595

Fig. 3. Recall (for k = 10) as a function of the number of trees on MNIST (left) and
Fashion-MNIST (right) for RP, RKD and randomized PCA trees. � = 8, v = 1.

the results are in line with previous experiments [6]. For each type of tree, voting
outperforms priority queue (for a given recall level, its query time is faster).

For different tree types, the results vary between the data sets. Note that
although both data sets for which results are shown have the same sample size
(n = 60000) and dimensionality (d = 784), the relative order of the trees is
different: for MNIST, RKD trees are the fastest, and randomized PCA trees are
the slowest; whereas for Fashion-MNIST, randomized PCA trees are the fastest,
and RKD trees are the slowest. This means that the relative performance of
different randomization strategies depends also on the distribution of the data.

Figure 3 further illustrates the differences between the tree types with fixed
parameters: on Fashion-MNIST, PCA trees are noticeably more accurate than
RKD trees and RP trees, especially for a small amount of trees. This explains
the stronger performance of PCA trees with the optimal parameters; observe
that the slightly stronger performance of RKD trees on MNIST is due to their
faster projection times (1 vs.

√
d operations per projection).

However, the differences between tree types are less pronounced than the
difference between search methods. Since we can use the same projection vector
on each node at the same level of an RP tree, they are the fastest to build (see
Table 2). Thus, we present some of the experimental results only for them.

4 An Autotuning Algorithm

Since voting outperforms using a priority queue for all the data sets and the
tree types, we present an autotuning algorithm for the voting search. Any of the
different tree types can be used. Hence, the tuned hyperparameters α are the
number of trees T , the depth of the trees �, and the vote threshold v.

The optimal hyperparameter values are searched from the whole range
αlim = (1, . . . , Tmax) × (�1, . . . , �max) × (1, . . . , vmax); setting a grid interval is
not required. Here we use vmax = Tmax, �max = 	log2 n
. Since each individual
tree consumes the same amount of memory and takes an equal time to grow,
Tmax can be chosen as a limit on the building time or the memory consumption.

596 E. Jääsaari et al.

4.1 Estimating Recall and Candidate Set Size

The autotuning algorithm (Algorithm2) first builds an index consisting of Tmax

trees of depth �max (function grow-trees). The true neighbors of each test
query qi are subsequently found by the function exact-knn.

Algorithm 2
1: function generate-index-auto(αlim,x,q, k, ψ)
2: trees ← grow-trees(x, αlim, ψ)
3: for i = 1, . . . , m do
4: true-knn ← exact-knn(qi, k,x)
5: Ai ← count-elected(αlim, qi, true-knn)
6: Bi ← count-elected(αlim, qi, {1, . . . , n})

7: recalls ← 1
km

∑m
i=1 Ai

8: query-times ← fit-times(1
m

∑m
i=1 Bi, x.dim)

9: return recalls, query-times, trees

For each test query, the elected points are counted by count-elected (Algo-
rithm3) for two sets: the whole data set and the set of true k nearest neighbors.
When using an index consisting of the first T trees, all the points that were
elected when using an index consisting of the first T − 1 trees are also elected
for the fixed vote threshold v. This means that we only have to count the points
which get their v:th vote at the T :th tree (line 7 of Algorithm3). Hence, we
can count the numbers of elected points for all 1, . . . , Tmax number of trees with
minimal overhead compared to counting them only for Tmax trees.

Algorithm 3
1: function count-elected(αlim, q, I)
2: initialize three-dimensional tensor A
3: for � = �1, . . . , �max do
4: initialize votes as zero vector of length n
5: initialize c as zero vector of length vmax

6: for T = 1, . . . , Tmax do
7: c ← c + count-votes(T , �, q, I, votes)
8: write c to A
9: return A

10: function count-votes(T , �, q, I, votes)
11: initialize counts as zero vector of length vmax

12: leaf ← node containing q at level � of the T :th tree
13: for point in leaf do
14: if point ∈ I then
15: votes[point] ← votes[point] + 1
16: counts[votes[point]] ← counts[votes[point]] + 1

17: return counts

Efficient Autotuning of Hyperparameters in ANN Search 597

The counting is done by the function count-votes (Algorithm 3) which
adds a vote for each point of the node, and for each v = 1, . . . vmax, counts how
many points of this node get their v:th vote.

Finally, the expected recall and candidate set size can be estimated by their
sample means for each parameter combination (lines 7 and 8 in Algorithm2).
Since a brute force strategy of performing actual test queries and timing them
for each possible hyperparameter combination in the set αlim is impractically
slow, the function fit-times estimates the expected query time as a function of
the candidate set size and data dimension as described in the following section.

4.2 Estimating the Query Time

We exploit linear scaling of the components of a query to build a model which
estimates the query time. The query time can be split into the candidate pruning
time and the final search time. Further, the candidate pruning phase is domi-
nated by two operations: projecting the points onto the split directions, and vote
counting. This suggests that we can estimate each of the three times separately:

Time(q;α, r) ≈ Timeproj(q;α, r) + Timevote(q;α, r) + Timedist(q;α, r).

Projection Time. The projection time depends on the type of randomization
used in the trees. In RKD trees, the projection time is insignificant because
coordinate axes are used as split directions. For RP trees and randomized PCA
trees, the query point is projected onto a sparse vector at each level of each tree.
Hence, the projection time is approximately linear w.r.t. the number of random
vectors z := T� the query point is projected onto. Thus, we can use a linear
model to estimate the projection time for known hyperparameters T and �.

To collect the data for the model, we design an experiment by choosing a
representative sample z = (z1, . . . , zw) of sparse random matrices with d columns
and z1, . . . , zw total components, and measuring the elapsed times to multiply a
d-component vector by each of these matrices. The sparsity is fixed as a = 1/

√
d.

When measuring running times, we observed that the random variation is
typically small, but sometimes outliers appear, for example due to other pro-
cesses activating on the background. This is why we use the Theil-Sen estimator
[15] to model the dependence between the number of random vectors and pro-
jection time. It is a non-parametric estimator for a linear trend, and is much
more robust against outliers than ordinary least squares regression.

Now the expected projection time for the hyperparameter values α = (T, �, v)
can be estimated as T̂imeproj(q;α, r) = β̂0 + zβ̂1, where z = T�, and β̂0 and β̂1

are the intercept and the slope estimated by the Theil-Sen method.

Voting Time. For one tree, counting the votes means adding a vote for each
point of the leaf the query point falls into. For T trees, this means that the whole
voting step takes roughly Tn0 operations, where n0 = �n/2� is the maximum
leaf size. This means that we can model the voting time as a linear function of
y := Tn0, and proceed as in estimating the projection times.

598 E. Jääsaari et al.

Fig. 4. Left: Recall estimated by autotuning vs. recall on the test set. Right: Recall vs.
query time on test set for optimal parameters and auto-tuned parameters. k = 10.

Final Search Time. The final search in the candidate set is dominated by
computing the distances to all |S| points of the candidate set, which takes |S|d
operations; hence it is approximately linear with respect to the candidate set
size |S|. Thus, we can proceed as before, this time measuring the time it takes
to compute the distances from any d-dimensional query point to |S| vectors of
dimension d. After fitting the model, the final search time can be estimated as

T̂imedist(q;α, r) = α̂0 + |S̄(q;α, r)|α̂1,

where α̂0 and α̂1 are the coefficients of the Theil-Sen estimator, and |S̄(q;α, r)|
is the observed mean candidate set size for this hyperparameter combination.

4.3 Using the Autotuning Index

After the expected recall levels and the query times have been computed, finding
the optimal parameter combination is a matter of a simple table lookup. Since
the index has already been built, growing new trees is not required: if the optimal
parameter combination is α̂ = (T̂ , �̂, v̂), we can just pick the first T̂ trees that
have already been built, and prune them to depth �̂.

5 Experimental Results

First, we verify using RP trees that the autotuning algorithm accurately esti-
mates the recall. Figure 4(a) shows estimated recall on a validation set against
recall on an independent test set for the MNIST data set. Larger validation
sets yield sharper estimates, indicating the consistency of the estimator. The
results are similar for other data sets and tree types. Figure 4(b) compares on
an independent test set hyperparameters optimized by the autotuning algorithm
(RP auto) for the validation set to hyperparameters optimized for the test set
(optimal). The parameters found by the algorithm are near-optimal.

Efficient Autotuning of Hyperparameters in ANN Search 599

Table 1. Comparison of autotuning algorithms. Autotuning times (seconds), query
times for 1000 queries (s) and recall (for k = 10) measured on a test set (* = did not
complete within one hour). For the randomized algorithms (RP and FLANN), average
recalls of 10 runs with the corresponding standard deviations are reported. The best
result in each case is typeset in boldface.

Target recall 80% Target recall 90%

RP LSH VPtree FLANN RP LSH VPtree FLANN

MNIST tuning 13.23 26.84 744.4 102.2 13.23 24.61 926.1 113.9

search 0.111 1.164 0.739 0.206 0.169 2.513 1.368 0.311

recall 0.822 0.853 0.831 0.654 0.909 0.939 0.911 0.790

stdev ±0.009 – – ±0.020 ±0.004 – – ±0.017

Fashion tuning 13.22 26.70 396.5 104.8 13.23 25.38 427.4 136.4

search 0.129 0.917 0.353 0.310 0.198 1.575 0.557 0.216

recall 0.798 0.850 0.813 0.693 0.881 0.927 0.908 0.825

stdev ±0.007 – – ±0.034 ±0.006 – – ±0.025

Trevi tuning 75.89 156.1 3026 724.9 76.28 158.9 * 751.6

search 1.730 14.01 13.58 2.813 3.371 25.63 * 4.276

recall 0.822 0.837 0.832 0.566 0.914 0.918 * 0.679

stdev ±0.011 – – ±0.028 ±0.006 – * ±0.016

Random tuning 32.78 55.48 120.6 134.6 32.76 54.56 134.0 149.1

search 0.074 0.256 0.409 0.049 0.095 0.249 0.659 0.087

recall 0.804 0.882 0.827 0.602 0.902 0.941 0.911 0.728

stdev ±0.012 – – ±0.015 ±0.007 – – ±0.015

GIST tuning 317.4 484.1 960.4 * 318.1 437.9 1127 *

search 9.253 122.4 41.55 * 15.51 205.7 66.54 *

recall 0.784 0.862 0.864 * 0.881 0.942 0.940 *

stdev ±0.011 – – * ±0.005 – – *

Next, we compare the performance of the presented algorithm with RP trees
to other autotuning algorithms for ANN: autotuning for VP-trees [18] and multi-
probe LSH [4] implemented in NMSLib [2] and autotuning for RKD trees and
hierarchical k-means trees in FLANN [13]. To the best of our knowledge, these
are the only available ANN libraries that feature an autotuning method. The
compared libraries and our own code are all written in C++.

The data sets used in the experiments are MNIST (n = 60000, d = 784),
Fashion-MNIST (n = 60000, d = 784), Trevi (n = 101120, d = 4096), Random
(n = 256000, d = 256) and GIST (n = 1000000, d = 960). Table 1 shows for
two target recall rates (0.8 and 0.9) the autotuning time (including the index-
building time), and the query time and recall on a test set which was not used
to tune the hyperparameters. The proposed tuning algorithm (with RP trees) is
fastest at index building in all cases. Our approach has significantly faster query

600 E. Jääsaari et al.

Fig. 5. Recall vs. query time (s) for 100 queries for different ANN algorithms. k = 10.

times than VP trees and LSH in all cases, and faster query times than FLANN
for all but one data set. Our approach is also the most accurate at estimating the
recall in most cases. The other methods systematically over- or underestimate
the recall.

We also compare tree-based ANN against state-of-the-art quantization-, and
graph-based algorithms: IVFPQ [8] and HNSW [10] implemented in FAISS [9].
As autotuning for these methods is not available, we perform a grid search on
the possible parameter values. Figure 5 shows that tree-based methods are faster
than PQ (except on highest recall levels) and close to the performance of HNSW.
We emphasize that according to an independent benchmarking project2, HNSW
is the fastest ANN algorithm available. Multi-probe LSH and VP tree are also
included in the comparison; they are significantly slower than the other methods.

Finally, we compare the index building time (Table 2). Even though HNSW
has faster query times, RP trees are significantly faster to build. The whole
autotuning takes less time than building a single HNSW index. We emphasize
that these results are on a single thread; the differences become more pronounced
with multiple threads as the indexing process is embarrassingly parallel for trees.
An implementation of the proposed algorithm is available in the MRPT library3.

2 https://github.com/erikbern/ann-benchmarks.
3 https://github.com/vioshyvo/mrpt.

https://github.com/erikbern/ann-benchmarks
https://github.com/vioshyvo/mrpt

Efficient Autotuning of Hyperparameters in ANN Search 601

Table 2. Index building times (seconds) for optimal parameters at 90% recall for
different ANN algorithms. The best result on each data set is typeset in boldface.

RP RKD PCA HNSW IVFPQ

MNIST 3.62 7.40 12.63 25.1 27.31

Fashion 1.86 14.3 13.12 20.2 30.71

Trevi 102 43.2 185 266 262.5

Random 2.23 6.83 27.8 90.3 63.59

Acknowledgments. This project was supported by Business Finland (project
3662/31/2018 Advanced Machine Learning for Industrial Applications) and the
Academy of Finland (project 311277 TensorML).

References

1. Bilen, H., Pedersoli, M., Tuytelaars, T.: Weakly supervised object detection with
convex clustering. In: CVPR, pp. 1081–1089. IEEE (2015)

2. Boytsov, L., Naidan, B.: Engineering efficient and effective non-metric space
library. In: Brisaboa, N., Pedreira, O., Zezula, P. (eds.) SISAP 2013. LNCS, vol.
8199, pp. 280–293. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-41062-8 28

3. Dasgupta, S., Sinha, K.: Randomized partition trees for nearest neighbor search.
Algorithmica 72(1), 237–263 (2015)

4. Dong, W., Wang, Z., Josephson, W., Charikar, M., Li, K.: Modeling LSH for per-
formance tuning. In: CIKM, pp. 669–678. ACM (2008)

5. Hassan, H., Elaraby, M., Tawfik, A.Y.: Synthetic data for neural machine transla-
tion of spoken-dialects. Small 16, 17–33 (2017)

6. Hyvönen, V., et al.: Fast nearest neighbor search through sparse random projec-
tions and voting. In: IEEE International Conference on Big Data, pp. 881–888
(2016)

7. Indyk, P., Motwani, R.: Approximate nearest neighbors: towards removing the
curse of dimensionality. In: STOC, pp. 604–613. ACM (1998)

8. Jégou, H., Douze, M., Schmid, C.: Product quantization for nearest neighbor
search. TPAMI 33(1), 117–128 (2011)

9. Johnson, J., Douze, M., Jégou, H.: Billion-scale similarity search with GPUs. arXiv
preprint arXiv:1702.08734 (2017)

10. Malkov, Y.A., Yashunin, D.A.: Efficient and robust approximate nearest neighbor
search using hierarchical navigable small world graphs. arXiv:1603.09320 (2016)

11. McBryde, C.R.: Spacecraft visual navigation using appearance matching and multi-
spectral sensor fusion. Ph.D. thesis, Georgia Institute of Technology (2018)

12. McCartin-Lim, M., McGregor, A., Wang, R.: Approximate principal direction
trees. In: ICML, pp. 1611–1618 (2012)

13. Muja, M., Lowe, D.G.: Scalable nearest neighbor algorithms for high dimensional
data. TPAMI 36(11), 2227–2240 (2014)

14. Silpa-Anan, C., Hartley, R.: Optimised KD-trees for fast image descriptor match-
ing. In: CVPR, pp. 1–8. IEEE (2008)

https://doi.org/10.1007/978-3-642-41062-8_28
https://doi.org/10.1007/978-3-642-41062-8_28
http://arxiv.org/abs/1702.08734
http://arxiv.org/abs/1603.09320

602 E. Jääsaari et al.

15. Theil, H.: A rank-invariant method of linear and polynomial regression analysis. In:
Henri Theil’s Contributions to Economics and Econometrics, pp. 345–381 (1992)

16. Verma, N., Kpotufe, S., Dasgupta, S.: Which spatial partition trees are adaptive
to intrinsic dimension? In: UAI, pp. 565–574. AUAI Press (2009)

17. Wang, L., Tasoulis, S., Roos, T., Kangasharju, J.: Kvasir: scalable provision of
semantically relevant web content on big data framework. IEEE Trans. Big Data
2(3), 219–233 (2016)

18. Yianilos, P.N.: Data structures and algorithms for nearest neighbor search in gen-
eral metric spaces. In: SODA, vol. 93, pp. 311–321 (1993)

An Accelerator of Feature Selection Applying
a General Fuzzy Rough Model

Peng Ni1,2, Suyun Zhao1,2(&), Hong Chen1,2, and Cuiping Li1,2

1 Key Lab of Data Engineering and Knowledge Engineering of MOE,
Renmin University of China, Beijing, People’s Republic of China

nipeng@ruc.edu.cn, zhao.suyun@yahoo.com
2 Information of School, Renmin University of China,

Beijing, People’s Republic of China

Abstract. Feature selection, also known as variable selection or attribute
reduction, is to select a subset relevant features to speedup learning/mining and
to improve the learning/mining quality. In the big data era, some feature
selection methods have to face the running time problem led by the large-scale
data. As a result, in this paper, we try to narrow this gap by proposing a feature
selection accelerator. Considering fuzzy rough techniques need no extra expert
knowledge, we design the feature selection accelerator based on fuzzy rough
reduction techniques. First, we proposed a fuzzy rough accelerator by deleting
the learned/discernible instances in the process of feature selection, which
decreases the computation and accelerates feature selection. Second, we design a
fuzzy rough based feature selection accelerated algorithm. Finally, the numerical
experiments demonstrate that the proposed accelerated algorithm could obtain
the same reduction results and save much more time, especially on the large-
scale datasets.

Keywords: Feature selection � Fuzzy rough techniques � Accelerator �
Fuzzy positive region

1 Introduction

Feature selection, also known as variable selection or attribute reduction, is a signifi-
cant problem in knowledge discovery and data mining. By using an evaluation measure
to score every feature and/or different feature subsets, Feature selection selects a subset
of relevant features to speedup learning/mining and improve learning/mining quality.
The choice of evaluation measure heavily influences the feature selection algorithm,
and these evaluation measures which distinguish among the three main categories of
feature selection methods: wrappers, filters and embedded algorithms [1]. In this paper,
we focus on the filter method, which select features regardless of the learning/mining
model and often works as pre-process method.

Till now, there are many known filter feature selection methods. For example,
RELIEF [2] is a typical algorithm on the filter method, it could effectively estimate the
quality of features in problems with dependencies between features. For another
example, mRMR (maximum relevance minimum redundancy) [3] is a mutual

© Springer Nature Switzerland AG 2019
Q. Yang et al. (Eds.): PAKDD 2019, LNAI 11440, pp. 603–614, 2019.
https://doi.org/10.1007/978-3-030-16145-3_47

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16145-3_47&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16145-3_47&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16145-3_47&domain=pdf
https://doi.org/10.1007/978-3-030-16145-3_47

information based filter feature selection method for finding a set of both relevant and
complementary features. What is more, rough/fuzzy rough reduction is also a useful
feature selection method [7, 8, 13, 15, 16, 18–25] since rough/fuzzy rough philosophy
is human understanding and non-need extra expert knowledge.

In the big data era, the amount of data is large and the dimensionality of data is
high, fuzzy rough based feature selection algorithms are rather time consuming. In
view of rough set theory [4, 5], some researchers have proposed some heuristic feature
selection algorithms [16, 18, 23]. Due to rough set theory can only handle data with
categorical values, to deal with continuous values, fuzzy rough set, which combined
rough set and fuzzy set, was proposed by Dubois and Prade [6]. Currently, Feature
selection algorithms based on fuzzy rough sets mainly include fuzzy positive region
based reduction [14, 16], discernibility matrix based reduction [13, 25], fuzzy infor-
mation entropy based reduction [8, 15]. Whereas it is necessary to point out that all of
these algorithms are less effective because of their time and space consumption is too
large on large scale datasets.

To reduce intolerable time costs, Qian et al. [9] proposed an accelerator called
positive approximation for feature reduction in rough set theory. However, in real
applications, data with numerical and symbolic values are ubiquitous. Hence, Qian
et al. [10] further developed an extended version of the accelerator called forward
approximation for accelerating fuzzy rough feature reduction. Both of them effectively
accelerate the algorithm. Whereas it is necessary to point out that forward approxi-
mation is based on a kind of cut set of fuzzy relation [8]. The introduction of cut set
makes many information hidden in features are omitted and then interferes the
reduction results. This motivates us to propose a generalized fuzzy rough based feature
selection accelerator which is based on the real fuzzy rough set, not the cut one.

In this paper, we choose Dubois and Prade’s fuzzy rough model, a general model
without a cut set, to compute the fuzzy positive region, and then we design our
accelerated algorithm based on fuzzy positive region reduction. The main contributions
in this paper include:

(1) We find that some instances, whose fuzzy positive regions reach maximum, are
not useful and meaningful any more for finding the following features. This
finding makes our accelerator design possible.

(2) Based on our proposed accelerator, the instances reaching maximum are deleted
and then the size of the instances involved in the calculation decreases gradually
in the process of feature selection. As a result, feature selection algorithm is
accelerated by avoiding redundancy computation on the whole data.

(3) The numerical experiments show that the accelerated algorithm performs more
efficiency than the original non-accelerated counterpart.

The remainder of this paper is organized as follows. In Sect. 2, some notations of
fuzzy rough set are briefly reviewed. In Sect. 3, we propose a fuzzy rough based feature
selection accelerator. In Sect. 4, numerical experiments on eight datasets are given to
show our proposed accelerated algorithm outperforms the original one. Finally, we
conclude this paper in Sect. 5.

604 P. Ni et al.

2 Preliminaries

In this section, we briefly review Dubois and Prade’s fuzzy rough model and some
reduction concepts, such as fuzzy positive region and reducts [12–16].

2.1 Fuzzy Rough Sets

In rough set philosophy, the dataset could be described as one decision table, denoted
by DT ¼ U;R[Dð Þ. Let U ¼ x1; x2; . . .; xnf g, called the Universe, be a nonempty set
with a finite number of instances. Each instance in U is described by a non-empty finite
set of features, denoted by R[D; R denotes the set of condition features and D denotes
the set of decision features, R\D ¼ ;; When the attribute are crisp, the Universe is

split into q equivalence classes U=D ¼ fX1;X2; . . .;Xqg, where U ¼ Sq
i¼1

Xi and

Xi \Xj ¼ ; (for any i 6¼ j).
In most practical applications, only the decision features are crisp, the condition

features are usually continuous. To handle this type of applications, fuzzy sets [11] is then
introduced into rough sets and then fuzzy rough sets are proposed, which is one known
generalization of rough sets supporting both continuous and crisp values [12–14].

If the condition attributes are continuous, the decision table is then called a Fuzzy
Decision Table, shortly denoted by FD ¼ U;R[Dð Þ, since each continuous attribute
could be transformed into a fuzzy attribute. For example, each attribute value of xi on
the continuous attribute r, denoted by rðxiÞ, could be normalized into 0; 1½ �. In this
paper, we mainly focus on this type of decision tables.

In fuzzy decision table, each continuous attribute subset P � R corresponds a fuzzy
similarity relation. When these is no confusion arise, the fuzzy similarity relation on
attribute subset P is denoted by P �; �ð Þ. If the distance of xi and xj on the attribute subset
P is calculated as dP xi; xj

� � ¼ maxr2P r xið Þ � r xj
� ��� ��� �

; the fuzzy similarity of xi and xj
on the attribute subset P could be calculated as P xi; xj

� � ¼ 1� dP xi; xj
� �

.

Definition 1. Given a fuzzy decision table FD ¼ U;R[Dð Þ and 8A � U, A fuzzy
rough set is an order pair RA; �RAð Þ of A on U such that for every x 2 U,

RA xð Þ ¼ infu2Umax 1� R x; uð Þ;A uð Þf g; �RA xð Þ ¼ supu2Umin R x; uð Þ;A uð Þf g

This concept is the definition of lower and upper approximations. For the more
details the readers are kindly referred to [12–15]. To more illustratively demonstrate
this concept, the Proposition 1 is presented as follows.

Proposition 1. Given a fuzzy decision table FD ¼ U;R[Dð Þ and 8A � U. The lower
approximation of the instance x to A could be simplified as

RA xð Þ ¼ min u2U;u 62Af g 1� R x; uð Þf g; x 2 A
0; x 62 A

�
:

Proposition 1 gives the topological meaning of the lower approximations. That is,
the lower approximation of x 2 A is its minimal distance to the instance which does not
belong to A, i.e., u 62 A. Thus, to find the minimal distance for every x, all the instances

An Accelerator of Feature Selection Applying a General Fuzzy Rough Model 605

in the Universe need be calculated. That is why fuzzy rough sets are slow or even
infeasible on the large-scale datasets.

Fuzzy positive region is also an important concept. Based on Propositions 1, 2 is
then defined as follows.

Definition 2. Given a fuzzy decision table FD ¼ U;R[Dð Þ, the fuzzy positive region
of D relative to R can be simplified as follows.

8x 2 U;POSUR xð Þ ¼ R x½ �D xð Þ ¼ min u2U;u62 x½ �Df g 1� R x; uð Þf g

Definition 2 shows the relation between the fuzzy positive region and the lower
approximation.

Definition 3. In a fuzzy decision table FD ¼ U;R[Dð Þ, the dependency degree of D
on R, denoted by cUR , is defined as cUR ¼ P

x2U
POSUR xð Þ= Uj j.

Definition 4. In a fuzzy decision table FD ¼ U;R[Dð Þ, P � R is called a reduct of R
w.r.t. D if P satisfies the following two statements: (1) cUR ¼ cUP ; (2) for any r 2 P,
cUR 6¼ cUP� rf g.

This definition shows that the reduct is the minimal subset of features to keep the
dependency degree invariant. To design a feature selection algorithm, we need to know
how dependency degree grows with the increasing features. And then Proposition 2 is
presented as follows.

Proposition 2. If P � R, then (1) POSUP xð Þ�POSUR xð Þ; (2) cUP � cUR .
Proposition 2 shows that the dependency function is monotonic with the incre-

mental features. This result is the theoretical foundation to design the algorithm of
feature selection.

Based on Definition 4 and Proposition 2, the feature selection/attribute reduction algo-
rithm based on dependency function, shortened by DAR, is described in Algorithm 1 [16].

606 P. Ni et al.

Proposition 3. In a fuzzy decision table FD ¼ U;R[Dð Þ, P � R is called a reduct of R
w.r.t. D if P satisfies the following two statements: (1) 8x 2 U;POSUP xð Þ ¼ POSUR xð Þ;
(2) for any a 2 P,9x 2 U, POSUP� af g xð Þ 6¼ POSUR xð Þ.

This proposition shows that the reduct could also be seen as a minimal subset of
features to keep all the positive regions invariant.

3 Fuzzy Rough Based Feature Selection Accelerator

In this section, we would like to propose an accelerator. And by using this accelerator,
an accelerated algorithm is then designed.

3.1 Some Theorems

Definition 5. Given a fuzzy decision table FD ¼ U;R[Dð Þ, DU ¼ fx 2 Uj
POSUP xð Þ\POSUR xð Þg is called a Key Instance Set of P on FD.

Theorem 1. Given a fuzzy decision table FD ¼ U;R[Dð Þ. If P � R is a reduct of R
w.r.t. D, then 8x 2 U � DU, POSUP xð Þ ¼ POSUR xð Þ.
Proof. By Proposition 2, we get 8x 2 U, POSUP xð Þ�POSUR xð Þ. By Definition 5, we
get 8x 2 DU, POSUP xð Þ\POSUR xð Þ. Based on the above two results, we get that if
x 62 DU, then POSUP xð Þ ¼ POSUR xð Þ, i.e., 8x 2 U � DU, POSUP xð Þ ¼ POSUR xð Þ. ■

By Proposition 3, we find that P is the minimal subset of R to keep all positive
region values reaching the maximum. However, to effectively handle the noise in the
real applications, it is necessary to propose Parameterized Key Instance Set based on
fuzzy rough sets to handle this kind of problem.

Definition 6. Given a fuzzy decision table FD ¼ U;R[Dð Þ and a threshold a 2 ½0, 1Þ,
DUa ¼ fx 2 UjPOSUP xð Þþ a\POSUR xð Þg is called a Parameterized Key Instance Set
of P on FDU .

Theorem 2. Given a fuzzy decision table FD ¼ U;R[Dð Þ and a threshold a 2 ½0; 1Þ.
If P � R is a reduct of R w.r.t. D, then 8x 2 U � DUa, POSUP xð Þþ a�POSUR xð Þ.

Based on the Parameterized Key Instance Set, we could measure the relative sig-
nificance of the features with respect to the obtained reduct in a fuzzy decision table in
a new way.

Definition 7. Let FD ¼ U;R[Dð Þ, P � R, 8r 2 R� P and a threshold a 2 ½0; 1Þ.
The significance of r in P is defined as

Siga r;P;D;Uð Þ ¼ DUa
P[rf g

��� ���;
where �j j denotes the cardinality of a set and DUa

P[rf g ¼ fx 2 UjPOSUP[rf g
xð Þþ a�POSUR xð Þg.

An Accelerator of Feature Selection Applying a General Fuzzy Rough Model 607

If we choose an important feature r into the candidate reduct, that is to say, the
feature r 2 R� P could distinguish the most instances.

Theorem 3. Let FD ¼ U;R[Dð Þ, P ¼ r1; r2; . . .; rnf g � R and a threshold a 2 ½0; 1Þ.
For 8a 2 R� P, we have Ua

iþ 1 ¼ Ua
i � DUa

P[rf g, where Ua
1 ¼ U and Ua

nþ 1 ¼ ;.
Theorem 3 shows that when we choose the first feature into the candidate reduct,

we need to calculate all instances’ fuzzy positive regions. With the increment of the
size of P, the size of instances involved in the calculation is decreasing gradually.

3.2 Fuzzy Rough Based Feature Selection Accelerator

Based on Proposition 3, we design a feature selection/attribute reduction method based
on positive region, shortened by PAR. It is easy to get that the stop criterion of DAR
and PAR in step 4 is essentially consistent, both of which is to keep the information
invariant before and after reduction. The time complexity of DAR and PAR is same.
The algorithm is described in Algorithm 2.

The stop criteria of PAR need check every instance in the whole dataset. It is really
time consuming. However, Definition 6 and Theorem 3 already show that with the
incremental of the features, some instances, whose fuzzy positive regions reach max-
imum, are not meaningful selecting the following feature. This finding motivates us to
accelerate the PAR by using Theorem 3.

608 P. Ni et al.

The accelerated algorithm is presented in Algorithm 3.

In PARA, Step 5’s time complexity is O
PCj j

i¼1
Cj j þ 1� ið Þi Uij j Uj j

 !
. Whereas Step

4’s time complexity is O
PCj j

i¼1
Cj j þ 1� ið Þi Uj j2

 !
in PAR, it is obvious that PARA

could save much time than PAR.

4 Experimental Analysis

In this section, we conduct several numerical experiments to compare three feature
selection algorithms mentioned in Sect. 3.

4.1 Experimental Setup

(1) The data used in the experiment are showed in Table 1. In addition to ‘stock 1’,
‘stock 2’, ‘stock 3’, which are stock data and not public, the rest of datasets in
Table 1 can be downloaded from [26].

(2) We normalize the feature value into the interval [0, 1] with MinMaxScaler.
(3) We choose the K-nearest neighbor (K is set as 7 in this paper) [17] as the classifier

to measure the performance of reduct. And 5-fold cross validation is used to
guarantee the stability and fairness of classification results.

An Accelerator of Feature Selection Applying a General Fuzzy Rough Model 609

(4) All experiments are conducted on a computer with Ubuntu 16.04.4 LTS, Intel(R)
Xeon(R) W-2145 CPU @ 3.70 GHz and 32 GB memory. The programming
language is C++.

4.2 Compare DAR and PAR

In this subsection, to demonstrate that DAR and PAR has the similar reduction results,
we compare DAR and PAR in Table 2.

Table 2 shows the execution time and selected features number of DAR and PAR
on eight datasets, we can find that both of them can obtain nearly same feature numbers
of selection and the execution time is comparable. For example, their average running
time ratio is almost equal to 1.0 when they obtain the similar size of reducts. What is
more, their running time is also close. All these shows that PAR and DAR are com-
parable reduction methods no matter on the running time or the reduction results.

Table 1. Data description.

Datasets Features Instances Classes

waveform 21 5000 3
letter 16 20000 26
credit 23 30000 2
stock 1 619 938 3
stock 2 1350 2018 3
stock 3 1350 2018 3
optdigits 64 5620 10
coil2000 85 9822 2

Table 2. The time and selection of DAR and PAR.

DAR PAR Ratio: DAR/PAR

Datasets Attr. size Reduct size Time (s) Reduct size Time (s) Reduct Time

waveform 21 14 1060 14 937 1 1.1

letter 16 9 9227 9 8821 1 1.0

credit 23 9 16387 9 13541 1 1.2

stock 1 619 9 659 9 835 1 0.8

stock 2 1350 17 20559 17 21165 1 1.0

stock 3 1350 18 26090 18 31442 1 0.8

optdigits 64 24 16923 24 17220 1 1.0

coil2000 85 33 19899 33 17593 1 1.1

average 441 17 13850 17 13944 1 1.0

610 P. Ni et al.

4.3 Compare PAR and PARA

In this subsection compare our proposed accelerator with PAR in Table 3 and Fig. 1.
Table 3 demonstrates that PARA spends less time than PAR. For example, on the

dataset ‘stock 3’, PARA save almost 28540 s (7.9 h) compared with PAR. It is also
easy to find that the time ratio between PAR and PARA are 7.2 in average. Or even,
sometimes, the time ratio is more than 10, for example, on the cases of ‘stock 3’ and
‘coil2000’. All these show that accelerator is effective and efficiency.

To furtherly show the performance of our accelerator, we graph the time trendlines
of PAR and PARA on gradually incremental datasets. That is, we divide all datasets
into 10 groups equally. Firstly, one group is used as the first dataset, secondly, one
more group is added to the first one as the second dataset. And so on, we get ten
gradually incremental dataset. The time trendlines on those ten gradually incremental
datasets are graphed in Fig. 1.

The time trendlines of two algorithms PAR and PARA are graphed in Fig. 1.
Figure 1 demonstrates that the accelerator works obviously or even significantly faster
and faster. It is easy to see from Fig. 1 that the blue trend (non-accelerated one, PAR)
grows dramatically. This demonstrates that PAR spends more and more time with the
increment of the size of datasets. However, the red trend (the accelerated one, PARA) is
always significantly lower than the blue one, which shows the accelerated algorithm
works significantly faster than the non-accelerated one. With the increase of the size of
data, the accelerated algorithm runs faster and faster.

4.4 The Classification Performance Comparison of Three Algorithms

Finally, we compare the classification performance of these three algorithms in
Table 4. Table 4 mainly shows that DAR, PAR and PARA have the comparable
classification performance. As a result, it is easy to get that this accelerator PARA is
effective.

Table 3. The time and selection of PAR and PARA.

PAR PARA Ratio: PAR/PARA

Datasets Attr. size Reduct size Time (s) Reduct size Time (s) Reduct Time

waveform 21 14 937 14 345 1 2.7

letter 16 9 8821 9 1296 1 6.8

credit 23 9 13541 9 1499 1 9.0

stock 1 619 9 835 9 264 1 3.2

stock 2 1350 17 21165 17 2558 1 8.3

stock 3 1350 18 31442 18 2902 1 10.8

optdigits 64 24 17220 24 7469 1 2.3

coil2000 85 33 17593 33 1187 1 14.8

average 441 17 13944 17 2190 1 7.2

An Accelerator of Feature Selection Applying a General Fuzzy Rough Model 611

0

200

400

600

800

1000

1 2 3 4 5 6 7 8 9 10

Ti
m

e
co

ns
um

p
on

Sizes of the data

waveform

PARA

PAR

0

2000

4000

6000

8000

10000

1 2 3 4 5 6 7 8 9 10
Ti

m
e

co
ns

um
p

on
Sizes of the data

le er

PARA

PAR

0

3000

6000

9000

12000

15000

1 2 3 4 5 6 7 8 9 10

Ti
m

e
co

ns
um

p
on

Sizes of the data

credit

PARA

PAR

0

200

400

600

800

1000

1 2 3 4 5 6 7 8 9 10

Ti
m

e
co

ns
um

p
on

Sizes of the data

stock 1

PARA

PAR

0

4500

9000

13500

18000

22500

1 2 3 4 5 6 7 8 9 10

Ti
m

e
co

ns
um

p
on

Sizes of the data

stock 2

PARA

PAR

0

7000

14000

21000

28000

35000

1 2 3 4 5 6 7 8 9 10

Ti
m

e
co

ns
um

p
on

Sizes of the data

stock 3

PARA

PAR

0

3800

7600

11400

15200

19000

1 2 3 4 5 6 7 8 9 10

Ti
m

e
co

ns
um

p
on

Sizes of the data

optdigits

PARA

PAR

0

3800

7600

11400

15200

19000

1 2 3 4 5 6 7 8 9 10

Ti
m

e
co

ns
um

p
on

Sizes of the data

coil2000

PARA

PAR

Fig. 1. Times of PAR and PARA versus the size of data.

Table 4. The classification performance of PARA, PAR and DAR.

Datasets Accuracy
PARA PAR DAR All features

waveform 0.81 – 0.013 0.81 – 0.013 0.81 ± 0.012 0.83 ± 0.009
letter 0.90 ± 0.007 0.90 ± 0.007 0.91 – 0.004 0.95 ± 0.001
credit 0.81 ± 0.007 0.81 ± 0.007 0.81 – 0.010 0.80 ± 0.008
stock 1 0.72 – 0.025 0.72 – 0.025 0.71 ± 0.032 0.52 ± 0.104
stock 2 0.49 – 0.019 0.49 – 0.019 0.48 ± 0.023 0.52 ± 0.020
stock 3 0.39 – 0.028 0.39 – 0.028 0.38 ± 0.021 0.36 ± 0.026
optdigits 0.97 ± 0.007 0.97 ± 0.007 0.97 – 0.005 0.98 ± 0.005
coil2000 0.94 ± 0.002 0.94 ± 0.002 0.94 – 0.002 0.94 ± 0.001
average 0.75 ± 0.014 0.75 ± 0.014 0.75 ± 0.014 0.74 ± 0.022

612 P. Ni et al.

5 Conclusions

In this paper, we proposed an accelerator based on fuzzy rough sets for feature
selection. Based on the theoretical analysis and experimental results, it is easy to draw a
conclusion that the accelerator proposed in this paper can vastly decrease the execution
time, especially on large-scale datasets, without classification performance loss.

Acknowledgements. This work is supported by National Key Research & Develop Plan
(No. 2016YFB1000702), National Key R&D Program of China (2017YFB1400700), and NSFC
under the grant No. 61732006, 61532021, 61772536, 61772537, 61702522 and NSSFC (No. 12
\&ZD220), and the Fundamental Research Funds for the Central Universities, and the Research
Funds of Renmin University of China (15XNLQ06). It was partially done when the authors
worked in SA Center for Big Data Research in RUC. This Center is funded by a Chinese
National 111 Project Attracting. This work is also supported by the Macao Science and Tech-
nology Development Fund (081/2015/A3).

References

1. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. JMLR. 3, 1157–
1182 (2003)

2. Kira, K., Rendell, L.A.: A practical approach to feature selection. In: Proceedings of the 9th
International Conference on Machine Learning, pp. 249–256. Morgan Kaufmann, Los Altos
(1992)

3. Peng, H.C., Long, F., Ding, C.: Feature selection based on mutual information: criteria of
max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach.
Intell. 27(8), 1226–1238 (2005)

4. Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning About Data. Kluwer Academic
Publishers, Boston (1991)

5. Pawlak, Z., Grzymala-Busse, J.W., Slowiski, R., Ziako, W.: Rough sets. Commun. ACM 38
(11), 89–95 (1995)

6. Dubois, D., Prade, H.: Rough fuzzy sets and fuzzy rough sets. Int. J. Gen. Syst. 17, 109–137
(1990)

7. Wang, X.Z., Tang, E.C.C., Zhao, S.Y., Chen, D.G.: Learning fuzzy rules from fuzzy
samples based on rough set techniques. Inf. Sci. 177, 4493–4514 (2007)

8. Hu, Q., Yu, D.R., Xie, Z.X.: Information-preserving hybrid data reduction based on fuzzy-
rough techniques. Pattern Recogn. Lett. 27(5), 414–423 (2006)

9. Qian, Y.H., Liang, J.Y., Pedrycz, W., Dang, C.Y.: Positive approximation: an accelerator for
feature reduction in rough set theory. Artif. Intell. 174(9), 597–618 (2010)

10. Qian, Y.H., Wang, Q., Cheng, H.H., Liang, J.Y., Dang, C.Y.: Fuzzy-rough feature selection
accelerator. Fuzzy Sets Syst. 258(C), 1–78 (2015)

11. Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)
12. Dubois, D., Prade, H.: Rough fuzzy sets and fuzzy rough sets. Int. J. Gen. Syst. 17(2–3),

191–209 (1990)
13. Tsang, E.C.C., Chen, D.G., Yeung, D.S., Wang, X.Z., Lee, J.W.T.: Attributes reduction

using fuzzy rough sets. IEEE Trans. Fuzzy Syst. 16(5), 1130–1141 (2008)
14. Yeung, D.S., Chen, D.G., Tsang, E.C.C., Lee, J.W.T., Wang, X.Z.: On the generalization of

fuzzy rough sets. IEEE Trans. Fuzzy Syst. 13, 343–361 (2005)

An Accelerator of Feature Selection Applying a General Fuzzy Rough Model 613

15. Hu, Q.H., Zhang, L., An, S., Zhang, D., Yu, D.R.: On robust fuzzy rough set models. IEEE
Trans. Fuzzy Syst. 20(4), 636–651 (2012)

16. Yao, Y.Y., Zhao, Y., Wang, J.: On reduct construction algorithms. Trans. Comput. Sci. 2,
100–117 (2008)

17. Coomans, D., Massart, D.L.: Alternative k-nearest neighbour rules in supervised pattern
recognition: part 1. K-Nearest neighbour classification by using alternative voting rules.
Analytica Chimica Acta 136, 15–27 (1982)

18. Kryszkiewicz, M., Lasek, P.: FUN: fast discovery of minimal sets of attributes functionally
determining a decision attribute. Trans. Rough Sets 9, 76–95 (2008)

19. Zhao, S.Y., Chen, H., Li, C.P., Zhai, M.Y., Du, X.Y.: RFRR: robust fuzzy rough reduction.
IEEE Trans. Fuzzy Syst. 21(5), 825–841 (2013)

20. Bhatt, R.B., Gopal, M.: On fuzzy rough sets approach to feature selection. Pattern Recogn.
Lett. 26(7), 965–975 (2005)

21. Chen, D.G., Tsang, E.C.C., Zhao, S.Y.: Attributes reduction with fuzzy rough sets. In: IEEE
International Conference on Systems, Man, and Cybernetics, Vol. 1, pp. 486–491 (2007)

22. Zhao, S.Y., Wang, X.Z., Chen, D.G., Tsang, E.C.C.: Nested structure in parameterized
rough reduction. Inf. Sci. 248, 130–150 (2013)

23. Swiniarski, R.W., Skowron, A.: Rough set methods in feature selection and recognition.
Pattern Recogn. Lett. 24(6), 833–849 (2003)

24. Chen, D.G., Yang, Y.Y.: Attribute reduction for heterogeneous data based on the
combination of classical and fuzzy rough set models. IEEE Trans. Fuzzy Syst. 22(5),
1325–1334 (2014)

25. Chen, D.G., Zhao, S.Y.: Local reduction of decision system with fuzzy rough sets. Fuzzy
Sets Syst. 161(13), 1871–1883 (2010)

26. http://archive.ics.uci.edu/ml/datasets.html

614 P. Ni et al.

http://archive.ics.uci.edu/ml/datasets.html

Text Feature Extraction and Selection
Based on Attention Mechanism

Longxuan Ma(B) and Lei Zhang

Beijing University of Posts and Telecommunications, Beijing, China
{malongxuan,zlei}@bupt.edu.cn

Abstract. Selecting features that represent a particular corpus is
important to the success of many machine learning and text mining appli-
cations. However, the previous attention-based work only focused on fea-
ture augmentation in the lexical level, lacking the exploration of feature
enhancement in the sentence level. In this paper, we exploit a novel fea-
ture extraction and selection model for information retrieval, denoted by
Dynamic Feature Generation Network (DFGN). In sentence dimension,
features are firstly extracted by a variety of different attention mech-
anisms, then dynamically filtered by thresholds automatically learned.
Different kinds of characteristics are distilled according to specific tasks,
enhancing the practicability and robustness of the model. DFGN relies
solely on the text itself, requires no external feature engineering. Our app-
roach outperforms previous work on multiple well-known answer selec-
tion datasets. Through the analysis of the experiments, we prove that
DFGN provides excellent retrieval and interpretative abilities.

Keywords: Feature extraction and selection · Machine learning ·
Question answering

1 Introduction

Modeling textual relevance between document query pairs lives at the heart of
information retrieval (IR) research. Comprehending logical and semantic rela-
tionship between two sentences is the core challenge and a fundamental technol-
ogy in natural language processing (NLP). Meanwhile, acquiring the ability to
rank is versatile and essential for many information retrieval tasks, and serves
as a core function to more complex and sophisticated systems.

In recent years, the attention mechanism, allocating different weight to words
or sub-phrases in sentences [1,14], is widely employed in natural language pro-
cessing. Searching appropriate semantic information for ranking answers natu-
rally conforms to the characteristics of attention mechanism. By computing word
level similarity matrix to extract matching patterns from different text granu-
larity that is useful for prediction, attention significantly improve the perfor-
mance of convolutional [7,26] or recurrent [23,24] networks. Compare-aggregate
models with soft-attention [11,22] provide a new way of comparing attention
c© Springer Nature Switzerland AG 2019
Q. Yang et al. (Eds.): PAKDD 2019, LNAI 11440, pp. 615–627, 2019.
https://doi.org/10.1007/978-3-030-16145-3_48

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16145-3_48&domain=pdf
http://orcid.org/0000-0003-1431-8485
https://doi.org/10.1007/978-3-030-16145-3_48

616 L. Ma and L. Zhang

results and obtain great achievement. Soft-attention considers all the words in
a sentence when assigning weight, also known as the word by word attention.
Intra-attention based models [9,10] distills relationship between words in a sen-
tence. Co-attention based models [5,8,19] learn joint information with respect
to two sentences then distribute weight to both sides, which embrace a great
success in matching natural language sentences. Attention mechanism comes in
different forms and in company with extractive max and mean pooling [15,27]
or alignment pooling [3,16]. Extractive max-pooling selects each word based on
its maximum importance of all words in the other text. Extractive mean-pooling
is a more wholesome comparison, paying attention to a word based on its over-
all influence on the other text. Alignment-pooling aligns semantically similar
sub-phrases together, extracting only the most relevant information. Although
attention mechanism is typically applied as weight allocation strategy, recent
approaches [17,18] utilize attention as feature augmentation tool. They utilize
co-attention and intra-attention in conjunction with extractive max, mean, align-
ment pooling to compute weighted representations, then compress each rep-
resentation into a scalar, attaching these scalars as extra features to original
embedding, proven to be efficient in retrieval-based question answering tasks.

However, previous approaches have two disadvantages. The first is that they
only focus on the augmentation of lexical level [3,17]. Research on feature
enhancement of sentence level is not enough. Therefore, in this paper, we first
enhance features at the sentence level and then perform information retrieval
process. The second deficiency is that they usually use fixed features and fail to
select features of different quantities based on different tasks. Alignment results
are usually directly employed [16] or compress into scalars [18]. In this work,
we apply parametric co-attention to perform thresholds in filtering operation.
Different kinds of characteristics are distilled according to specific tasks.

The main contributions of our work are as follows:

– We propose a sentence level feature enhancement method, extend feature
augmentation method that used to focus on the word level. In addition to
the traditional attention algorithms, we propose a new feature extraction
algorithm and a new dynamic threshold feature selection algorithm.

– We design Dynamic Feature Generation Network for answer selection, DFGN
acquires the ability to automatically abandon useless and inefficient data,
reducing the cost of adjusting parameters. Our code is publicly available1.

– Experimental results show that DFGN outperforms current work on Wik-
iQA, TREC-QA and InsuranceQA datasets. We give an in-depth analysis to
illustrate why DFGN owns the excellent retrieval and interpretative abilities.

2 Our Proposed Model

The overall structure of DFGN is shown in Fig. 1. We apply pre-trained 300
dimensional Glove [12] as word embedding. The inputs of our model are query

1 https://github.com/malongxuan/QAselection.

https://github.com/malongxuan/QAselection

Text Feature Extraction and Selection Based on Attention Mechanism 617

Fig. 1. The over structure of DFGN.

Q ∈ R
q×d and and answer A ∈ R

a×d, d represents the 300 embedding size, q
and a represent the length of Q and A respectively.

2.1 Multiple Attention and Pooling Strategies

Co-attention and intra-attention are the most commonly used attention mecha-
nisms. In our model, we use both parametric and non-parametric computations
to extract intrinsic features while learning extended features with parameters,
we define self-attention and intra-attention respectively for the sake of distinc-
tion. Self-attention matrices SQ ∈ R

q×d and SA ∈ R
a×d, intra-attention affinity

matrices IQ ∈ R
q×q and IA ∈ R

a×a, co-attention affinity matrices CQ ∈ R
q×a

and CA ∈ R
a×q are calculated by fomulas (1), (2), and (3), where δ means Tanh,

⊗ means matmul product, WSQ

and WSA ∈ R
d×d are parameters.

SQ = δ(Q ⊗ WSQ

) &SA = δ(A ⊗ WSA

) (1)

IQ = Q ⊗ QT & IA = A ⊗ AT (2)

CQ = Q ⊗ AT &CA = A ⊗ QT (3)

We extract feature vectors in a variety of ways then concatenate them to sen-
tence representations. The features are extracted from three levels: word inter-
action between sentences, word interaction within a sentence, and the hidden
layer interaction of a sentence. They are corresponding to co-attention, intra-
attention, self-attention respectively. We use formula (4) to obtain MSQ

. Where
MSQ ∈ R

1×d, and analogously for MSA

, M IQ

, M IA

, MCQ

and MCA

.

MSQ

=
q∑

i=1

exp(
d

max
j=1

SQ
i,j)

∑q
t=1 exp(

d
max
j=1

SQ
t,j)

Qi (4)

It is worth noting that M I and MC extract the sentence level dimensional
features, while MS extracts the hidden dimensional features. Employing extrac-
tive pooling to hidden dimension in answer selection is the first time to our

618 L. Ma and L. Zhang

knowledge. Extractive mean-pooling results, denoted by N , are calculated sim-
ilarity as M with max replaced by mean. Now we get 6 feature vectors for Q
and A respectively. We employ alignment pooling to I and C, the weighted rep-
resentation RIQ ∈ R

q×d is calculated as formulas (5), and analogously for RCQ

,
RIA

, RCA

. Then we apply ordinary max-pooling and mean-pooling to RI and
RC . The max-pooling and mean-pooling results denoted by K and L ∈ R

1×d.

RIQ

j =
q∑

i=1

exp(IQi,j)∑q
t=1 exp(IQt,j)

Qi (5)

By attaching 10 feature vectors to Q, we obtain final question represen-
tation XQ = [Q;MSQ

;M IQ

;MCQ

;NSQ

;N IQ

;NCQ

;KIQ

;KCQ

;LIQ

;LCQ

] ∈
R

(q+10)×d, and analogously for answer representation XA ∈ R
(a+10)×d.

2.2 Encoder Layers

After multiple attention, we use nonlinear functions as encoder to compute the
input of the second co-attention layer separately, denoted by EQ ∈ R

(q+10)×d,
EA ∈ R

(a+10)×d. Where σ represent Sigmoid and δ means Tanh. Experiments
show that this encoding method not only achieves equal level accuracy as other
complex structures like CNN and LSTM but also has fewer parameters and saves
training time. Equation (6) computes EQ, and analogously for EA. WXQ

en1 and
WXQ

en2 are parameters to be learned, ∗ is the element-wise product.

EQ = σ(XQ ⊗ WXQ

en1) ∗ δ(XQ ⊗ WXQ

en2) (6)

2.3 Second Attention Layer

The second co-attention layer learns joint information between features to per-
form interactive confirmation. We use the formula (7) to calculate the affinity
matrices GEQ

and G̃EQ ∈ R
(q+10)×(a+10). G̃EQ

performs threshold. W̃Q ∈ R
d×d

is a parameter matrix to be learned. We employ Eq. (8) to get weighted repre-
sentation HEA ∈ R

(a+10)×d, φ(x, y) is an operation that if x < y then x set to
0, otherwise x keeps original value. The advantage of this method is that it can
remove redundant information dynamically instead of using empirical values. For
different corpora, the number of retained features are different. The calculations
are analogously for GEA

, G̃EA

and HEQ

.

GEQ

= (EQ) ⊗ (EA)T & G̃EQ

= (EQ) ⊗ W̃Q ⊗ (EA)T (7)

HEA

j =
q+10∑

i=1

φ(
exp(GEQ

i,j)
∑q+10

t=1 exp(GEQ

t,j)
,

exp(G̃EQ

i,j)
∑q+10

t=1 exp(G̃EQ

t,j)
)EQ

i (8)

Text Feature Extraction and Selection Based on Attention Mechanism 619

2.4 Compare, Aggregate, Softmax Layers

There are several different forms of compare function [22]. We choose element-
wise multiplication. The goal of the comparison layer is to match each feature
with its weighted version. The comparison result, Y E = HE ∗ E, is fed to CNN
with both max and mean pooling to get aggregate features, then we employ
multilayer perceptron to get the final scores of Q and A, then two branches
are concatenated and compressed to a scalar for the final softmax layers, as
shown in Fig. 1. We feed related answer set A{A1, A2, . . . , AN}, target label set
Y {y1, y2, . . . , yN} along with Q into the model. We select all positive answers
to this question, denoted by p, then randomly select N − p negative answers
from the answer pool. We train our listwise model with KL-divergence loss to
optimize the ranking results. Please consult our code to see the implementation.

3 Experiments

3.1 Datasets and Experimental Protocol

Statistical information of experimental datasets is shown in Table 1. WikiQA [25]
is constructed by crowd-sourcing through sentences extraction from Wikipedia
and Bing search logs. TREC-QA [21] is from the TREC Question Answering
tracks. Recent work [2,16,18] use clean version by removing questions that have
only positive/negative answers or no answers. InsuranceQA [4] is collected from
a community question answering website which contains two versions (V 1 and
V 2). We use the V 1 version which has two test sets (Test1 and Test2).

Table 1. Statistics of WikiQA, TREC-QA and InsuranceQA datasets.

Dataset(train/test/dev) WikiQA TrecQA(clean) InsuranceQA V1

Questions 873/243/126 1162/68/65 12887/1800 ∗ 2/1000

Sentences 20360/6165/2733 5919/1442/1117 24981(ALL)

Average length of questions 7.16/7.26/7.23 11.39/8.63/8.00 7.16

Average length of sentences 25.29/24.59/24.59 30.39/25.61/24.9 49.5

Question answer pairs 5.9k/1.4k/1.1k 53.4k/1.4k/1.1k 1.29m/1.8m/1m

Average candidate answers 9 38 100/500/500

To train our model in mini-batch, we truncate the question to 12 words, the
answer to 50 words, candidate answers to 15 and batch size to 6. We add 0 at the
end of the sentence if it is shorter than the specified length. We remove all the
symbols, keep only the words and fix the word representations during training.
We set a dropout rate as 0.1 at encoder layer. The CNN windows are [1, 2, 3, 4, 5].
We resort to Adam algorithm as the optimization method and update the param-
eters with the learning rate as 0.001, beta1 as 0.9, beta2 as 0.999. We add L2
penalty with the coefficient parameter λ as 10−5. We resort to the gradient global
norm clipping method to avoid the gradient exploding problem and set the clip

620 L. Ma and L. Zhang

norm as 5. We design the model with Keras2 and Theano library3. All experi-
ments are carried out on Ubuntu 16.04, a single GPU (GeForce GTX 1080). We
resort to Mean Average Precision (MAP), Mean Reciprocal Rank (MRR) and
accuracy (Precision@1) to measure the experimental results.

3.2 Experimental Results

Table 2 reports our experimental results on all datasets. We select 11 models
for comparison and use the original papers data. DFGN(reduce) represents a
model without enhanced sentence features, and DFGN(full) means full model.
On WikiQA, we observe that DFGN(full) outperforms a myriad of complex
neural architectures. Notably, we obtain a performance gain of 1.6% in terms
of MRR against strong models such as MULT and DCA. Table 2 also reports
our results on the clean version of TrecQA. On the MRR index, DFGN(full)
model outperforms latest MCAN by 2.4%. On InsuranceQA V1 dataset, our
models outperform the strongest model SUBMULT+NN [22]. DFGN(full) gains
accuracy promotion of 2.3% both in Test1 and Test2. In all experiments, the
DFGN(full) model achieve better performance than the DFGN(reduce) model.

Table 2. Performance on WikiQA, TREC-QA and InsuranceQA datasets.

Models WikiQA TrecQA(clean) InsuranceQA V1

MAP MRR MAP MRR Top1(Test1/Test2)

AP-BiLSTM([15]) 0.671 0.684 0.713 0.803 0.717/0.664

MP-CNN([6]) 0.693 0.709 0.777 0.836 -/-

MPCNN+NCE([13]) 0.701 0.718 0.801 0.877 -/-

PWIM([7]) 0.709 0.723 - - -/-

BiMPM([24]) 0.718 0.731 0.802 0.875 -/-

MS-LSTM([19]) 0.722 0.738 0.813 0.893 0.705/0.669

IWAN([16]) 0.733 0.750 0.822 0.889 -/-

IABRNN([20]) 0.734 0.742 - - 0.701/0.651

MULT([22]) 0.743 0.754 - - 0.752/0.734

DCA([2]) 0.756 0.764 0.821 0.899 -/-

MCAN-FM([18]) - - 0.838 0.904 -/-

DFGN(reduce) 0.745 0.753 0.828 0.905 0.762/0.744

DFGN(full) 0.766 0.780 0.848 0.928 0.775/0.757

2 https://github.com/keras-team/keras.
3 http://www.deeplearning.net/software/theano/.

https://github.com/keras-team/keras
http://www.deeplearning.net/software/theano/

Text Feature Extraction and Selection Based on Attention Mechanism 621

4 Discussion and Analysis

4.1 Question Type Analysis

In this paragraph, we use DFGN(reduce) and DFGN(full) to analyze two prob-
lems, first is the efficiency of the model itself for different types of questions,
second is the impact of dynamic features on different questions. Figure 2 demon-
strates all five types of questions in WikiQA test set. The histograms represent
the MRR metric and the proportion of each type of questions in dataset respec-
tively. Both models own better results for ‘Where’ and ‘Who’ questions because
locations and characters are easier to retrieve. In DFGN(reduce), the MRR value
of 87.2% and 83.8% are respectively achieved for ‘Where’ and ‘Who’ questions.
While due to the proportion of 55.1% and 15.2%, the effect on ‘What’ and ‘How’
questions decide the overall performance of the model. In DFGN(reduce), the
MRR value 75.1% and 65.1% are respectively achieved for ‘What’ and ‘How’
questions. After adding dynamic sentence features, we find that DFGN(full)
improves the MRR value by 2.3% on ‘What’ questions, polish up the MRR
value of ‘How’ question by 5.7%. ‘What’ and ‘How’ problems increase more than
‘Where’ and ‘Who’ problems, which shows that the dynamic feature generation
successfully improves the comprehension ability of complex semantic relations.

Fig. 2. Comparison between DFGN(reduce) and DFGN(full) on type of questions.

4.2 In-Depth Analysis

We resort to a question-answer pair of WikiQA dataset to perform in-depth
analysis. Figure 3 illustrates how sentence features affect the weight allocation
of the second co-attention matrix in DFGN(reduce) and DFGN(full). Since the
second co-attention matrix in DFGN(full) owns 10 additional features both in
rows and columns, we only compared the common parts. The heat map above
is from DFGN(reduce), and the heat map below is from DFGN(full). The ques-
tion is “what is the concept of wellness” and the answer is “wellness is generally

622 L. Ma and L. Zhang

used to mean a healthy balance of the mind body and spirit that results in an
overall feeling of well being”. In DFGN(reduce), we can see that the weighted
matrix fails to find the words related to the question. In DFGN(full), there are
three obvious differences. Firstly, the distribution of weight is more centralized.
Secondly, the number of features filtered out by different rows and columns is
different. Thirdly, the weighted matrix with dynamically generated features not
only filters out useless alignment information but also better understands the
meaning of the question. It focuses on a more appropriate sub-phrases such
as “wellness is”, “healthy balance”, “mind body and spirit”, “overall feeling”
and “well being”. This is because after adding additional features, the weight
distribution range changes from the original sentence length to the sentence
length plus 10. Unimportant information will be allocated less weight. Then
the dynamic selection mechanism filters out irrelevant information and high-
lights important information. Thus the retrieval result is more precise. This also
explains why the “what” and “how” questions improve more in Sect. 4.1. The
difference between this method and former methods is that the number of fea-
tures filtered out is neither empirical nor fixed but automatically learned by
parameters. Dynamic feature generation mechanism corrections the deficiencies
of the original algorithm.

Fig. 3. Comparison between DFGN(reduce) and DFGN(full) in second co-attention.

We also present the co/intra/self extractive pooling attention weight in Fig. 4.
The left and right graphic are the weight allocation on the question and answer
respectively. We can observe that different attention mechanism focuses on dif-
ferent positions. In this example, two self-extractive poolings assign weight more
evenly. In the question part, co-extractive-mean pooling pays more attention
to interrogative word such as “what”, while intra-extractive-max pooling put
all weight at word “concept”. In the answer part, co-extractive-mean pooling
puts more weight at sub-phrases such as “results in” and “well being”, while
intra-extractive-max pooling assigns most weight at “wellness” and “healthy”.
When all six extractive pooling strategies act synthetically, different features

Text Feature Extraction and Selection Based on Attention Mechanism 623

Fig. 4. Comparison between extractive pooling with c o/intra/self attention.

are extracted. Six extractive pooling features, four alignment pooling features,
and the original features together construct a feature set. Dynamic selection
mechanism sets unimportant features to zero and retains useful ones according
to different texts. In practice, the longer the sentence is, the more words are
related to the overall semantics, the more obvious the difference heat map and
line graph between DFGN(reduce) and DFGN(full) will be. The DFGN(full)
model extracts more appropriate semantic information for the ranking task.

4.3 Ablation Analysis

This section shows the relative validity of the different components of
our DFGN(full) model. Table 3 presents the 4 different structures on the
TrecQA(clean) test set.

Table 3. Ablation analysis On TrecQA(clean) test set.

Setting MAP MRR

Full model 0.848 0.928

(1) without Intra-attention features 0.831 0.908

(2) without Self-attention features 0.835 0.912

(3) without Co-attention feature 0.833 0.908

(4) without All sentence features 0.828 0.905

(1) We take away 4 sentence features acquired by intra-attention. With MAP
decreased by 1.7% and MRR drop by 2.0%, intra-attention proves that it
extracts the internal information in a sentence.

624 L. Ma and L. Zhang

(2) We withdraw 2 sentence features extracted by self-attention. The MAP and
MRR reduce 1.3% and 1.6%, indicating the parameters in self-attention
successfully acquire the extension characteristics of sentences.

(3) We discard 4 sentence features generated by first co-attention. With MAP
decreased by 1.5%, interactive features extracted by co-attention prove effec-
tive.

(4) We cast aside all 10 features extracted by multiple attention and pooling
strategies, which means we use only the original embedding. The MAP
drops 2%. The effectiveness of attaching sentence level information is demon-
strated.

From ablation analysis, we can observe the relative functions of various com-
ponents to our model, and confirm the analysis of Sects. 4.1 and 4.2.

5 Related Work

Learning to rank candidate answers is a long-standing problem in NLP and IR.
The state-of-the-art models today are mostly neural attention based approaches.
These models focus on different aspects. MPCNN [13] proposes a new ranking
method in answer selection. PWIM [7] combines LSTM and deep CNN to inves-
tigate the similarity matrix. Gated attention in RNN [14,23] explore the internal
semantic relations of sentences, obtain remarkable improvement in natural lan-
guage inference. IABRNN [20] further develop gated attention and achieve suc-
cess in answer selection. Inner-attention [10] and self-attention [9] are introduced
to LSTM, extracting an interpretable sentence embedding.

Recent advances in neural matching models go beyond independent expres-
sion learning. Major architectural paradigms that invoke interaction between
document pairs directly improve performance because matching has deeper and
finer granularity. Multi-Perspective CNN [6] and BiMPM [24] match sentences
with multiple views and perspectives. AP-BiLSTM [15] utilize extractive max-
pooling to learn the relative importance of a word based on its maximum effect to
all words in the other document. IWAN [16] extract features from a constructed
word-by-word alignment matrix with self-attention. We use all previous extrac-
tion strategies and design a novel fixed attention features with parameterized
self-attention. Meanwhile, Compare-aggregate framework [11,22] are proven to
be effective in answer selection tasks. DCA [2] further improves former work by
dynamic clipping useless information, which inspires our feature filtering method.

However, the approaches using deeper layers lead to more progress in per-
formance. MAN [19] applies multihop-sequential-LSTM to achieve step by step
learning. Most recently, Compare-propagate model CAFE [17] and multi-cast
approach MCAN-FM [18] compress attention vectors into scalar valued features,
which are used to augment the word representations. Inspired by them, we exca-
vate the approach which uses multiple attentions and extractive pooling strate-
gies to enhance representations power for answer selection task. But unlike all
previous work, we design dynamic feature generation methods at sentence levels.

Text Feature Extraction and Selection Based on Attention Mechanism 625

6 Conclusion

We propose a novel architecture Dynamic Feature Generation Network (DFGN)
for retrieval-based question answering. Unlike previous work which only focused
on feature augmentation in the lexical level, we study dynamic feature extrac-
tion and selection in the sentence level. Features are extracted by a variety of
attention mechanisms, attached to the sentence level, and dynamically filtered.
DFGN acquire the ability to extract and select features according to different
tasks dynamically. Different kinds of characteristics are distilled according to spe-
cific tasks, enhancing the practicability and robustness of the model. Our model
needs no external resources and feature engineering, relies solely on the seman-
tic information of the text itself. The experimental results outperform current
work on multiple well-known datasets, which illustrates our approach effectively
improves information retrieval efficiency. Moreover, we give an in-depth analysis
of our model which enables us to comprehend its inner working principle further.
In the future, we plan to validate the efficiency of our model on more sentence
matching tasks, such as natural language inference and paraphrase identification.

References

1. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning
to align and translate. CoRR abs/1409.0473 (2014)

2. Bian, W., Li, S., Yang, Z., Chen, G., Lin, Z.: A compare-aggregate model with
dynamic-clip attention for answer selection. In: Proceedings of the 2017 ACM on
Conference on Information and Knowledge Management, CIKM 2017, Singapore,
06–10 November 2017, pp. 1987–1990. ACM (2017)

3. Chen, Q., Zhu, X., Ling, Z., Wei, S., Jiang, H., Inkpen, D.: Enhanced LSTM for
natural language inference. In: Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics, ACL 2017, Long Papers, Vancouver,
Canada, 30 July–4 August, vol. 1, pp. 1657–1668. Association for Computational
Linguistics (2017)

4. Feng, M., Xiang, B., Glass, M.R., Wang, L., Zhou, B.: Applying deep learning to
answer selection: a study and an open task. In: 2015 IEEE Workshop on Automatic
Speech Recognition and Understanding, ASRU 2015, Scottsdale, AZ, USA, 13–17
December 2015, pp. 813–820. IEEE (2015)

5. Gong, Y., Luo, H., Zhang, J.: Natural language inference over interaction space.
CoRR abs/1709.04348 (2017)

6. He, H., Gimpel, K., Lin, J.J.: Multi-perspective sentence similarity modeling with
convolutional neural networks. In: Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, EMNLP 2015, Lisbon, Portugal, 17–21
September 2015, pp. 1576–1586. The Association for Computational Linguistics
(2015)

7. He, H., Lin, J.J.: Pairwise word interaction modeling with deep neural networks
for semantic similarity measurement. In: NAACL HLT 2016, The 2016 Conference
of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, San Diego California, USA, 12–17 June 2016, pp.
937–948. The Association for Computational Linguistics (2016)

626 L. Ma and L. Zhang

8. Kim, S., Hong, J., Kang, I., Kwak, N.: Semantic sentence matching with densely-
connected recurrent and co-attentive information. CoRR abs/1805.11360 (2018)

9. Lin, Z., et al.: A structured self-attentive sentence embedding. CoRR
abs/1703.03130 (2017)

10. Liu, Y., Sun, C., Lin, L., Wang, X.: Learning natural language inference using
bidirectional LSTM model and inner-attention. CoRR abs/1605.09090 (2016)

11. Parikh, A.P., Täckström, O., Das, D., Uszkoreit, J.: A decomposable attention
model for natural language inference. In: Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Processing, EMNLP 2016, Austin, Texas,
USA, 1–4 November 2016, pp. 2249–2255. The Association for Computational Lin-
guistics (2016)

12. Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word represen-
tation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2014, A Meeting of SIGDAT, a Special Interest
Group of the ACL, Doha, Qatar, 25–29 October 2014, pp. 1532–1543. ACL (2014)

13. Rao, J., He, H., Lin, J.J.: Noise-contrastive estimation for answer selection with
deep neural networks. In: Proceedings of the 25th ACM International Conference
on Information and Knowledge Management, CIKM 2016, Indianapolis, IN, USA,
24–28 October 2016, pp. 1913–1916. ACM (2016)

14. Rocktäschel, T., Grefenstette, E., Hermann, K.M., Kociský, T., Blunsom, P.: Rea-
soning about entailment with neural attention. CoRR abs/1509.06664 (2015)

15. dos Santos, C.N., Tan, M., Xiang, B., Zhou, B.: Attentive pooling networks. CoRR
abs/1602.03609 (2016)

16. Shen, G., Yang, Y., Deng, Z.: Inter-weighted alignment network for sentence pair
modeling. In: Proceedings of the 2017 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2017, Copenhagen, Denmark, 9–11 September 2017,
pp. 1179–1189. Association for Computational Linguistics (2017)

17. Tay, Y., Tuan, L.A., Hui, S.C.: A compare-propagate architecture with alignment
factorization for natural language inference. CoRR abs/1801.00102 (2018)

18. Tay, Y., Tuan, L.A., Hui, S.C.: Multi-cast attention networks for retrieval-based
question answering and response prediction. CoRR abs/1806.00778 (2018)

19. Tran, N.K., Niederée, C.: Multihop attention networks for question answer match-
ing. In: The 41st International ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval, SIGIR 2018, Ann Arbor, MI, USA, 08–12 July
2018, pp. 325–334. ACM (2018)

20. Wang, B., Liu, K., Zhao, J.: Inner attention based recurrent neural networks for
answer selection. In: Proceedings of the 54th Annual Meeting of the Association
for Computational Linguistics, ACL 2016, Long Papers, Berlin, Germany, 7–12
August 2016, vol. 1. The Association for Computer Linguistics (2016)

21. Wang, M., Smith, N.A., Mitamura, T.: What is the jeopardy model? A quasi-
synchronous grammar for QA. In: EMNLP-CoNLL 2007, Proceedings of the 2007
Joint Conference on Empirical Methods in Natural Language Processing and Com-
putational Natural Language Learning, Prague, Czech Republic, 28–30 June 2007,
pp. 22–32. ACL (2007)

22. Wang, S., Jiang, J.: A compare-aggregate model for matching text sequences.
CoRR abs/1611.01747 (2016)

23. Wang, S., Jiang, J.: Learning natural language inference with LSTM. In: NAACL
HLT 2016, The 2016 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, San Diego Califor-
nia, USA, 12–17 June 2016, pp. 1442–1451. The Association for Computational
Linguistics (2016)

Text Feature Extraction and Selection Based on Attention Mechanism 627

24. Wang, Z., Hamza, W., Florian, R.: Bilateral multi-perspective matching for natural
language sentences. In: Proceedings of the Twenty-Sixth International Joint Con-
ference on Artificial Intelligence, IJCAI 2017, Melbourne, Australia, 19–25 August
2017, pp. 4144–4150. ijcai.org (2017)

25. Yang, Y., Yih, W., Meek, C.: WikiQA: a challenge dataset for open-domain ques-
tion answering. In: Proceedings of the 2015 Conference on Empirical Methods in
Natural Language Processing, EMNLP 2015, Lisbon, Portugal, 17–21 September
2015, pp. 2013–2018. The Association for Computational Linguistics (2015)

26. Yin, W., Schütze, H., Xiang, B., Zhou, B.: ABCNN: attention-based convolutional
neural network for modeling sentence pairs. TACL 4, 259–272 (2016)

27. Zhang, X., Li, S., Sha, L., Wang, H.: Attentive interactive neural networks for
answer selection in community question answering. In: Proceedings of the Thirty-
First AAAI Conference on Artificial Intelligence, San Francisco, California, USA,
4–9 February 2017, pp. 3525–3531. AAAI Press (2017)

Author Index

Bai, Lei 29
Benatallah, Boualem 56

Caillaut, Gaëtan 488
Cao, Jinli 136
Chang, Shih-Chieh 217
Chang, Yongzhe 229
Chen, Chaochao 204
Chen, Fang 229
Chen, Hong 603
Chen, Ke-Jia 475
Chen, Ming-Syan 150, 578
Chen, Wanjun 565
Chen, Yu-Ting 217
Cheng, Jiangfei 369
Cheng, Nai-Yun 578
Cheng, Xueqi 501
Chou, Chih-Hsin 123
Christen, Peter 526
Chu, Jing 29
Cleuziou, Guillaume 488

Desmarais, Michel C. 163
Dong, Daxiang 16
Dong, Manqing 56
Dou, Hongjian 16
Du, Zhengxiao 96
Dugué, Nicolas 488

Feng, Songhe 269
Feng, Wenjie 501
Fournier-Viger, Philippe 191
Fu, Chengzhen 242

Gao, Min 420
Gao, Yang 394
Guan, Lu 432
Guo, Hongchen 541
Guo, Huifeng 381
Gupta, Garima 108

He, Congqing 343
He, Jiawei 343

He, Zhicheng 407
Hou, Chenping 331
Hu, Qinghua 3
Huang, Chaoran 56
Huang, Chian-Yun 123
Huang, Hong 514
Huang, JianTao 253
Huang, Yalou 407
Huang, Yu 123
Huo, Xuan 318
Hyvönen, Ville 590

Jääsaari, Elias 590
Jia, Xiuyi 293
Jiao, Yujing 204
Jin, Hai 514
Juan, Da-Cheng 217

Kanhere, Salil S. 29
Kao, David 150
Kitsuregawa, Masaru 191
Krishna Reddy, P. 191

Lai, Kuan-Ting 150
Lang, Congyan 269
Le, Yuquan 343
Li, Chun 43
Li, Cuiping 603
Li, Faming 449
Li, Heng-Yi 318
Li, Jianzhong 449
Li, Ming 318
Li, Weiwei 293
Li, Xiaolong 204, 432
Li, Yingshu 449
Li, Yuntao 242
Li, Zhenhui 175
Li, Zhidong 229
Li, Zhiqiang 541
Liang, Junsheng 541
Liang, Wenxin 305
Lin, Chun-Han 253
Lin, Jianbin 432

Liu, Chun-Hao 217
Liu, Fan 136
Liu, Feng 381
Liu, Hao 70
Liu, Jie 407
Liu, Shenghua 501
Liu, Xiaojie 553
Liu, Ziqi 204
Lo, David 318
Lou, Kechen 565
Luo, Guan 3
Luo, Ling 229
Lyu, Gengyu 269

Ma, Longxuan 615
Minn, Sein 163

Nanayakkara, Charini 526
Ni, Peng 603
Nie, Jinlong 305

Pan, Jia-Yu 217
Pang, Bo 357
Peng, Li 343
Prasad, Ranjitha 108

Qi, Yuan 204, 432

Ranbaduge, Thilina 526
Roos, Teemu 590

Shan, Jincheng 331
Shang, Lin 43
Shi, Shu-Ting 318
Shroff, Gautam 108
Song, Guangxuan 553
Sowmya, Arcot 229
Sun, Lijuan 269
Sun, Ningzhao 331
Sunder, Vishal 108

Tang, Baige 281
Tang, Jie 96
Tang, Ruiming 381
Thung, Ferdian 318
Toyoda, Masashi 191
Tseng, Vincent S. 123, 253
Tseng, Xuan-An 217

Uday Kiran, R. 191

Wang, Chongjun 357
Wang, Daixin 432
Wang, Hao 394
Wang, Hua 136
Wang, Jianzong 163
Wang, Wanliang 565
Wang, Wei 70
Wang, Xianzhi 29, 56
Wang, Xiaoling 553
Wang, Xinyi 420
Wang, Yang 229
Wang, Zhu 136
Wang, Ziyi 43
Wang, Zongwei 420
Wei, Wei 217
Wen, Ji-Rong 16
Wen, Junhao 420
Wu, Cheng-Wei 253
Wu, Ou 3
Wu, Tong 475

Xiao, Jing 163
Xiao, Yang 514
Xiong, Qingyu 420
Xu, Bowen 318
Xu, Guanghui 407
Xu, Kai 175
Xu, Nan 175

Yang, Min 357
Yang, Ping 565
Yang, Qiang 82
Yang, Shangdong 394
Yang, Zheng 29
Yao, Lina 29, 56
Yashwanth Reddy, T. 191
Ye, Yunming 381
Yin, Qing 3
Yu, Hong 305
Yu, Junliang 420
Yu, Wenjian 501

Zaïane, Osmar R. 462
Zhang, Bang 229
Zhang, Chenyu 394
Zhang, Chi 462
Zhang, Jiabao 501

630 Author Index

Zhang, Lei 615
Zhang, Li 281, 369
Zhang, Pei 475
Zhang, Wenzhou 293
Zhang, Xianchao 305
Zhang, Yan 242
Zhang, Yanchun 136
Zhang, Yinghua 82
Zhang, Yu 82
Zhang, Yuzhou 381
Zhao, Binqiang 432
Zhao, Feng 514
Zhao, Suyun 603
Zhao, Wayne Xin 16

Zhao, Yifeng 96
Zhao, Yin 432
Zhao, Yuanpei 16
Zheng, Guanjie 175
Zheng, Hai-Tao 70
Zheng, Jianwei 565
Zhong, Xingyu 204
Zhou, Jun 204, 432
Zhou, Xingshe 136
Zhu, Feida 163
Zhu, Xiaodong 3
Zhu, Yanmin 175
Zong, Linlin 305
Zou, Zhaonian 449

Author Index 631

	PC Chairs’ Preface
	General Chairs’ Preface
	Organization
	Contents – Part II
	Deep Learning Models and Applications
	Semi-interactive Attention Network for Answer Understanding in Reverse-QA
	1 Introduction
	2 Related Work
	2.1 QA
	2.2 Text Classification

	3 Methodology
	3.1 Answer Understanding for T/F rQA
	3.2 Answer Understanding for MC rQA

	4 Experimental Data Construction
	5 Experiment
	5.1 Comparative Methods
	5.2 Training Settings
	5.3 Overall Competing Results
	5.4 Discussion on the Key Modules in Our Models

	6 Conclusion
	References

	Neural Network Based Popularity Prediction by Linking Online Content with Knowledge Bases
	1 Introduction
	2 Related Work
	3 Problem Definition
	4 The Proposed Model
	4.1 A LSTM-Based Popularity Prediction Model
	4.2 Enhancing the Prediction with KB Embeddings
	4.3 Enhancing the Prediction with KB Neighbors

	5 Experiments and Analysis
	5.1 Experimental Setup
	5.2 Results and Analysis

	6 Conclusion
	References

	Passenger Demand Forecasting with Multi-Task Convolutional Recurrent Neural Networks
	1 Introduction
	2 Proposed Approach
	2.1 Problem Formulation
	2.2 Multi-Task CRNN (MT-CRNN) Framework

	3 Experiments
	3.1 Dataset
	3.2 Experiment Settings
	3.3 Experimental Results

	4 Related Works
	5 Conclusions
	References

	Accurate Identification of Electrical Equipment from Power Load Profiles
	1 Introduction
	2 Our Approach and Model Architecture
	2.1 Generative Model
	2.2 Discriminative Model
	2.3 Loss Function

	3 Experiments: Validate the Competition of Our Model
	3.1 Baseline Methods
	3.2 Datasets
	3.3 Hyper Parameters
	3.4 Experimental Results on UCR Datasets

	4 Electrical Equipment Identification from Power Load Profiles
	4.1 Dataset
	4.2 Experimental Results
	4.3 Training Process Analysis

	5 Discussion and Conclusions
	References

	Similarity-Aware Deep Attentive Model for Clickbait Detection
	1 Introduction
	2 Related Work
	2.1 Clickbait Detection
	2.2 Deep Semantic Similarity Model

	3 Methodology
	3.1 Learn Latent Representations
	3.2 Learn the Similarities
	3.3 Learn for Prediction

	4 Experiments
	4.1 Dataset Description
	4.2 Comparison Methods
	4.3 Sensitivity Analysis

	5 Conclusions
	References

	Topic Attentional Neural Network for Abstractive Document Summarization
	1 Introduction
	2 Related Work
	3 Our Model
	3.1 Overview
	3.2 Paired Encoder
	3.3 Paired-Attentional Decoder
	3.4 Copying and Coverage
	3.5 Topic Selection

	4 Experiments
	4.1 Dataset
	4.2 Topic Information Acquisition
	4.3 Implementation
	4.4 Results and Discussion

	5 Conclusion
	References

	Parameter Transfer Unit for Deep Neural Networks
	1 Introduction
	2 Related Works
	3 Parameter Transfer Unit (PTU)
	3.1 Three Transfer States
	3.2 PTU for CNNs
	3.3 PTU for RNNs
	3.4 Scalability

	4 Experimental Results
	4.1 Experiments on CNNs
	4.2 Experiments on RNNs
	4.3 Convergence Performance
	4.4 Integrate PTU with Feature-Based Transfer Learning Method

	5 Conclusion
	References

	EFCNN: A Restricted Convolutional Neural Network for Expert Finding
	1 Introduction
	2 Problem Formulation
	3 Our Model
	3.1 Word Embedding and Similarity Matrix
	3.2 EFCNN: Expert Finding with Restricted CNN

	4 Experiments
	4.1 Experimental Setup
	4.2 Results and Discussion

	5 Conclusions
	References

	CRESA: A Deep Learning Approach to Competing Risks, Recurrent Event Survival Analysis
	1 Introduction
	2 Cause-Specific Recurrent Event Survival Analysis
	2.1 Survival Data
	2.2 Model Description
	2.3 Loss Function

	3 Experiments
	3.1 Dataset I: MIMIC III Clinical Dataset
	3.2 Dataset II: Engine Failures Dataset
	3.3 Dataset III: Synthetic Dataset
	3.4 Training Details
	3.5 Baselines
	3.6 Performance Metrics and Results

	4 Conclusions
	References

	Long-Term Traffic Time Prediction Using Deep Learning with Integration of Weather Effect
	1 Introduction
	2 Related Work
	2.1 Real-Time and Short-Term Traffic Time Prediction
	2.2 Long-Term Traffic Time Prediction

	3 Proposed Framework
	3.1 Dataset Pre-processing
	3.2 Model Training

	4 Experiment Evaluation
	4.1 Data Description
	4.2 Evaluation Metrics
	4.3 Experimental Results

	5 Conclusions
	References

	Arrhythmias Classification by Integrating Stacked Bidirectional LSTM and Two-Dimensional CNN
	Abstract
	1 Introduction
	2 Method
	2.1 The Arrhythmias Classification Model Framework
	2.2 The Wavelet Layer (WL)
	2.3 The Stacked Bidirectional LSTM (SB-LSTM) Layer
	2.4 The Two-Dimensional CNN (TD-CNN) Layer
	2.5 The Fusion Layer (FL)

	3 Experiment Evaluation
	3.1 Dataset Description and Data Preprocessing
	3.2 Experimental Setup
	3.3 Evaluation Results

	4 Conclusion and Future Work
	Acknowledgements
	References

	An Efficient and Resource-Aware Hashtag Recommendation Using Deep Neural Networks
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Related Work
	2.2 Convolutional Neural Network
	2.3 Semantic Embedding Model

	3 Model Architecture
	4 Data
	4.1 Image Dataset
	4.2 Hashtag Dataset

	5 Experiments and Results
	5.1 Sampling of Image-Hashtag Pairs
	5.2 Predicting and Recommending Hashtags
	5.3 Verification and Inspection

	6 Conclusion
	References

	Dynamic Student Classiffication on Memory Networks for Knowledge Tracing
	1 Introduction
	2 Knowledge Tracing
	2.1 Bayesian Knowledge Tracing (BKT)
	2.2 Deep Knowledge Tracing (DKT)
	2.3 Dynamic Key-Value Memory Network (DKVMN)
	2.4 Deep Knowledge Tracing with Dynamic Student Classification (DKT-DSC)

	3 Dynamic Student Classification on Memory Networks (DSCMN)
	3.1 Assessing Student's Mastery of Skill

	4 Datasets
	5 Experimental Study
	6 Conclusion and Future Work
	References

	Targeted Knowledge Transfer for Learning Traffic Signal Plans
	1 Introduction
	2 Related Work
	2.1 Approaches for Traffic Signal Control
	2.2 Methods for Knowledge Transfer

	3 Problem Definition
	4 Method
	4.1 Non-transfer Reinforcement Learning Solution
	4.2 TTRL-B: Targeted Transfer Reinforcement Learning in a Batch Learning Framework

	5 Experiments
	5.1 Datasets
	5.2 Compared Methods
	5.3 Evaluation Metric
	5.4 Overall Performance
	5.5 Variants of Our Model
	5.6 Parameter Sensitivity
	5.7 Case Study of the Batch Learning Framework

	6 Conclusion
	References

	Sequential Pattern Mining
	Efficiently Finding High Utility-Frequent Itemsets Using Cutoff and Suffix Utility
	1 Introduction
	2 Related Work
	3 Proposed Model: High Utility-Frequent Itemset
	4 EFIM and Its Limitations
	5 Proposed Algorithm
	5.1 Finding Secondary Items
	5.2 Finding Candidate Items
	5.3 Finding Primary Items
	5.4 Recursive Mining of Primary Items

	6 Experimental Results
	7 Conclusions and Future Work
	References

	How Much Can A Retailer Sell? Sales Forecasting on Tmall
	1 Introduction
	2 Data Analysis and Problem Definition
	2.1 Sales Data and Feature Description
	2.2 Seasonality Analysis
	2.3 Sale Amount Analysis
	2.4 Problem Definition

	3 Model Design and Implementation
	3.1 Seasonality over Groups of Retailers
	3.2 Tweedie Loss for Regression

	4 Empirical Study
	4.1 Dataset
	4.2 Experimental Settings
	4.3 Comparison Results
	4.4 Effect of Tweedie Distribution Parameter ()

	5 Related Works
	5.1 Linear Model
	5.2 Non-linear Model

	6 Conclusions
	References

	Hierarchical LSTM: Modeling Temporal Dynamics and Taxonomy in Location-Based Mobile Check-Ins
	1 Introduction
	2 Problem Definition
	2.1 Datasets: Foursquare and Jiepang
	2.2 Observations
	2.3 Problem Formulation
	2.4 Data Preprocessing

	3 Methodology
	3.1 Hierarchical LSTM

	4 Experimental Result
	4.1 Experimental Setup
	4.2 Models Compared and Previous Work
	4.3 Result Summary
	4.4 Taxonomy Embedding Analysis

	5 Conclusion
	References

	Recovering DTW Distance Between Noise Superposed NHPP
	1 Introduction
	2 Related Work
	3 Methods
	3.1 DTW Distance on Sequences of Timestamps
	3.2 Remove Noise Before DTW Calculation
	3.3 Integrating Noise Removal Probability to DTW

	4 Experiments
	4.1 Synthetic Data
	4.2 Classification on Real Data
	4.3 Case Study for Customer Behaviour Segmentation

	5 Conclusion
	References

	ATNet: Answering Cloze-Style Questions via Intra-attention and Inter-attention
	1 Introduction
	2 Related Work
	2.1 LSTM with Attention
	2.2 Pointer-Style Attention Sum
	2.3 Self-attention
	2.4 Multi-hop Architecture

	3 ATNet
	3.1 Contextual Encoding Representations
	3.2 Intra-attention Aligner
	3.3 Inter-attention Aligner
	3.4 Answer Prediction Module

	4 Experiments
	4.1 Experimental Setups
	4.2 Overall Results

	5 Ablation Study
	5.1 Effectiveness of Self-attention Module
	5.2 Effectiveness of extAttention

	6 Case Study
	7 Conclusion
	References

	Parallel Mining of Top-k High Utility Itemsets in Spark In-Memory Computing Architecture
	Abstract
	1 Introduction
	2 Preliminary
	3 Related Work
	3.1 High Utility Itemset Mining
	3.2 Top-K High Utility Itemset Mining
	3.3 Parallel Mining of High Utility Patterns

	4 The Proposed Method
	4.1 Pre-evaluation in Parallel
	4.2 Reorganize Transactions in Parallel
	4.3 Mining Patterns in Parallel

	5 Experimental Results
	6 Conclusion
	Acknowledgement
	References

	Weakly Supervised Learning
	Robust Semi-supervised Multi-label Learning by Triple Low-Rank Regularization
	1 Introduction
	2 Related Work
	3 Problem Formulation
	3.1 Notations
	3.2 The Regularization Framework
	3.3 Optimization

	4 Experiments
	4.1 Datasets
	4.2 Evaluation Criteria
	4.3 Comparison with the State-of-the-art Algorithms
	4.4 Multi-label Learning with Incomplete Labels
	4.5 Parameters Sensitivity Analysis

	5 Conclusion
	References

	Multi-class Semi-supervised Logistic I-RELIEF Feature Selection Based on Nearest Neighbor
	1 Introduction
	2 Proposed Method: MSLIR-NN
	2.1 Margin Vectors
	2.2 Optimization Problem
	2.3 Algorithm and Complexity Analysis
	2.4 Connections to Related Work

	3 Experiments
	3.1 Experiments on Multi-class Datasets
	3.2 Experiments on Binary Datasets
	3.3 Comparison of MSLIR-NN and MSLIR

	4 Conclusions
	References

	Effort-Aware Tri-Training for Semi-supervised Just-in-Time Defect Prediction
	1 Introduction
	2 Related Work
	2.1 Just-in-Time Defect Prediction
	2.2 Semi-supervised Learning in Traditional Defect Prediction

	3 Effort-Aware Tri-Training
	3.1 Problem Formulation
	3.2 Model Evaluation
	3.3 Sample Selection
	3.4 Result Prediction

	4 Experiment Setup
	4.1 Datasets
	4.2 Baseline Models
	4.3 Classifiers Selection
	4.4 Evaluation Strategy
	4.5 Performance Indicators
	4.6 Research Questions

	5 Experimental Results and Analysis
	6 Conclusion
	References

	One Shot Learning with Margin
	1 Introduction
	2 One Shot Learning with Margin
	2.1 One Shot Learning
	2.2 One Shot Learning with Margin

	3 Case Study
	3.1 Prototypical Networks
	3.2 Matching Networks

	4 Experiments
	4.1 Settings
	4.2 Results on Omniglot
	4.3 Results on miniImageNet
	4.4 Parameter Study

	5 Related Work
	5.1 One Shot Learning
	5.2 Metric Learning

	6 Conclusion
	References

	DeepReview: Automatic Code Review Using Deep Multi-instance Learning
	1 Introduction
	2 The DeepReview Approach
	2.1 The Framework of DeepReview
	2.2 Data Processing
	2.3 Instance Feature Generation Layer
	2.4 Multi-instance Based Prediction Layer

	3 Experiments
	3.1 Experiment Settings
	3.2 Experiment Results

	4 Related Work
	5 Conclusion
	References

	Multi-label Active Learning with Error Correcting Output Codes
	1 Introduction
	2 Related Work
	3 Revisiting ECOC via Multi-label SVM Classification
	4 The Algorithm
	4.1 Max-Margin Uncertainty Sampling
	4.2 Label Cardinality Inconsistency
	4.3 Active Selection

	5 Experiments
	5.1 Experiments Setup
	5.2 Comparison Results
	5.3 Influence Analysis of Parameter
	5.4 Compared with Traditional ECOC Method

	6 Conclusion
	References

	Dynamically Weighted Multi-View Semi-Supervised Learning for CAPTCHA
	1 Introduction
	2 Related Work
	3 Method
	3.1 Filter Artificial Bee Colony Method
	3.2 Dynamically Weighted Multi-View Semi-Supervised Learning
	3.3 The Complete Algorithm

	4 Experiments
	4.1 Data Specification
	4.2 Baselines
	4.3 Result and Discussions on Feature Selection
	4.4 Result and Discussions on DWMVSSL

	5 Conclusion
	References

	Recommender System
	A Novel Top-N Recommendation Approach Based on Conditional Variational Auto-Encoder
	1 Introduction
	2 Preliminary
	2.1 Variational Auto-encoder
	2.2 Problem Description

	3 Proposed Method
	3.1 CVAE Model
	3.2 The Split-Merge Framework for Multiple Conditions

	4 Experiments
	4.1 The Projection of Latent Feature
	4.2 The Impact of Side Information
	4.3 Performance Comparison

	5 Related Works
	6 Conclusion
	References

	Jaccard Coefficient-Based Bi-clustering and Fusion Recommender System for Solving Data Sparsity
	1 Introduction
	2 Jaccard Coefficient-Based Bi-clustering and Fusion
	2.1 Motivation
	2.2 JC-BiFu

	3 Experiments
	3.1 Datasets
	3.2 Evaluation Metrices
	3.3 Parameters Analysis
	3.4 Performance

	4 Conclusion
	References

	A Novel KNN Approach for Session-Based Recommendation
	1 Introduction
	2 Our Approach
	2.1 Contextual KNN Approach
	2.2 Candidate Selection
	2.3 Diffusion-Based Similarity

	3 Experiment
	3.1 Experiment Setting
	3.2 The Performance of Candidate Selection Strategy
	3.3 The Study of and in DSM
	3.4 Overall Performance

	4 Conclusions
	References

	A Contextual Bandit Approach to Personalized Online Recommendation via Sparse Interactions
	1 Introduction
	2 Problem Formulation and Methodology
	3 Our Approach
	3.1 Estimating the User Attention
	3.2 Learning the User Preference
	3.3 Putting Everything Together

	4 Regret Analysis
	5 Experiments
	6 Related Work
	7 Conclusions
	References

	Heterogeneous Item Recommendation for the Air Travel Industry
	1 Introduction
	2 Related Work
	3 Approach
	3.1 The Air Travel HIN
	3.2 The Joint Factorization Model
	3.3 The Weighting Strategy
	3.4 Model Optimization

	4 Experiments
	4.1 Dataset
	4.2 Baselines
	4.3 Experimental Settings
	4.4 Experimental Results
	4.5 Parameter Analysis

	5 Conclusion
	References

	A Minimax Game for Generative and Discriminative Sample Models for Recommendation
	1 Introduction
	2 UGAN Formulation
	2.1 A Minimax Sample Generation Framework
	2.2 Loss Function
	2.3 Extension to a Specific Case

	3 Experiments and Analysis
	3.1 Datasets and Evaluation Metrics
	3.2 Experimental Results

	4 Conclusion and Future Work
	References

	RNE: A Scalable Network Embedding for Billion-Scale Recommendation
	1 Introduction
	2 Related Work
	2.1 Collaborative Filtering
	2.2 Network Representation Learning

	3 The Methodology
	3.1 Network Embedding for Recommendation
	3.2 Recommendation-Based Sub-sampling
	3.3 Implementation

	4 Experiments
	4.1 Datasets
	4.2 Online A/B Tests
	4.3 Showcase
	4.4 Offline Experiment

	5 Conclusion
	References

	Social Network and Graph Mining
	Graph Compression with Stars
	1 Introduction
	2 The Star-Based Graph Compression
	2.1 Star-Based Compressed Graphs
	2.2 Star-Based Graph Compression Algorithm

	3 Query Processing on Star-Based Compressed Graphs
	3.1 Single-Source Shortest Path Queries

	4 Experiments
	4.1 Experimental Setting
	4.2 Datasets
	4.3 Performance of the Star-Based Graph Compression
	4.4 Query Processing Performance on Star-Based Compressed Graphs

	5 Related Work
	6 Conclusions
	References

	Neighbor-Based Link Prediction with Edge Uncertainty
	1 Introduction
	2 Problem Definition
	2.1 Uncertain Network
	2.2 Link Prediction Problem Definition

	3 Previous Work
	4 Link Prediction for Uncertain Graphs
	4.1 Time Complexity Analysis for the Calculation of Common Neighbors in Uncertain Networks
	4.2 Time Complexity Analysis for the Calculation of Resource Allocation in Uncertain Networks
	4.3 An Efficient Algorithm for the Calculation of Resource Allocation

	5 Experiments
	5.1 Datasets
	5.2 Experiments
	5.3 Results and Evaluation

	6 Conclusion
	References

	Inferring Social Bridges that Diffuse Information Across Communities
	1 Introduction
	2 Related Work
	3 Formalization
	4 The Proposed Method
	4.1 Utility of Bridge Links
	4.2 Biased Features
	4.3 The iBridge Framework

	5 Experiment
	5.1 Datasets and Settings
	5.2 Comparative Methods
	5.3 Results
	5.4 Discussion

	6 Conclusion
	References

	Learning Pretopological Spaces to Extract Ego-Centered Communities
	1 Introduction
	2 Related Works
	3 Basics of Pretopology
	4 Community Extraction Method
	4.1 Optimization Functions Targeted at Pretopological Spaces Learning
	4.2 From Network Descriptors to Predicates
	4.3 Learning a Pretopological Space
	4.4 Community Extraction from a Pretopological Space

	5 Experiments
	5.1 Datasets
	5.2 Experimental Setup and Results

	6 Conclusion
	References

	EigenPulse: Detecting Surges in Large Streaming Graphs with Row Augmentation
	1 Introduction
	2 Related Work
	2.1 Anomaly Detection in Static Graphs
	2.2 Anomaly Detection in Streaming Graphs

	3 Proposed Method
	3.1 Our Model
	3.2 AugSVD Algorithm
	3.3 EigenPulse Algorithm

	4 Experiments
	4.1 Experimental Settings
	4.2 Q1.Efficiency
	4.3 Q2.Accuracy
	4.4 Q3.Scalability

	5 Conclusion
	References

	TPLP: Two-Phase Selection Link Prediction for Vertex in Graph Streams
	1 Introduction
	2 Preliminaries
	2.1 Link Prediction for Vertex in Graph Streams
	2.2 Vertex-Biased Sampling

	3 TPLP: A Two-Phase Selection Streaming Link Prediction Framework
	3.1 Inverted Graph Sketch
	3.2 Two-Phase Selection Algorithm
	3.3 Estimation of Common Neighbor

	4 Experiments
	4.1 Datasets
	4.2 Performance of Two-Phase Selection
	4.3 Performance of Common Neighbor Estimation
	4.4 Performance of Link Prediction Accuracy
	4.5 Error Incurred by Sampling

	5 Conclusions
	References

	Robust Temporal Graph Clustering for Group Record Linkage
	1 Introduction
	2 Related Work
	3 Overview of Temporal Graph Clustering
	4 Temporal Connected Component Clustering
	5 Iterative Cluster Merging
	6 Experimental Evaluation
	7 Conclusions and Future Work
	References

	Data Pre-processing and Feature Selection
	Learning Diversified Features for Object Detection via Multi-region Occlusion Example Generating
	1 Introduction
	2 Related Work
	3 Our Method
	3.1 Multi-region Occlusion Example Generating
	3.2 Implementation Details

	4 Experiments
	4.1 Experimental Settings
	4.2 Ablative Analysis
	4.3 Comparisons with A-Fast-RCNN and OHEM
	4.4 PASCAL VOC2012 and MS COCO Results
	4.5 Visualization

	5 Conclusions
	References

	HATDC: A Holistic Approach for Time Series Data Repairing
	1 Introduction
	2 Related Work
	3 Anomaly Detection
	4 Dirty Data Repairing
	5 Clustering-Based Optimization
	6 Experiments
	6.1 Accuracy of Anomaly Detection
	6.2 Comparison with Existing Approaches
	6.3 Evaluation on Various Window Size
	6.4 Evaluation on Various Cluster Number

	7 Conclusion
	References

	Double Weighted Low-Rank Representation and Its Efficient Implementation
	1 Introduction
	2 Proposed Double Weighted Model
	2.1 Weighted Feature Learning for Error Penalizing
	2.2 Weighted Rational Function for Rank Approximation

	3 Optimization Algorithm
	3.1 Reweighted Framework
	3.2 Accelerated Proximal Gradient Algorithm
	3.3 Automatic Singular Value Thresholding
	3.4 Efficient SVD
	3.5 Complexity and Convergence

	4 Experimental Results
	4.1 Clustering Performance
	4.2 Execution Time

	5 Conclusions
	References

	Exploring Dual-Triangular Structure for Efficient R-Initiated Tall-Skinny QR on GPGPU
	1 Introduction
	2 Related Work
	2.1 Householder QR
	2.2 Givens QR
	2.3 Cholesky QR
	2.4 TSQR

	3 R-Initiated Tall-Skinny QR on GPGPU
	3.1 R-Initiated Method to Meet the Memory Limitation of GPGPU
	3.2 Dual-Triangular Structure to Accelerate the Process

	4 Experimental Results
	4.1 Results for Different Algorithms
	4.2 Sensitivity of Number of Column N
	4.3 Sensitivity of Row-Column Ratio M
	4.4 The Bottleneck: Computing Normal QR
	4.5 PCA with Tall-Skinny QR

	5 Conclusion
	References

	Efficient Autotuning of Hyperparameters in Approximate Nearest Neighbor Search
	1 Introduction
	2 Approximate Nearest Neighbor Search
	3 Randomized Space-Partitioning Trees
	3.1 Index Construction
	3.2 ANN Search Using Multiple Trees
	3.3 Comparison of Randomization and Search Methods

	4 An Autotuning Algorithm
	4.1 Estimating Recall and Candidate Set Size
	4.2 Estimating the Query Time
	4.3 Using the Autotuning Index

	5 Experimental Results
	References

	An Accelerator of Feature Selection Applying a General Fuzzy Rough Model
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Fuzzy Rough Sets

	3 Fuzzy Rough Based Feature Selection Accelerator
	3.1 Some Theorems
	3.2 Fuzzy Rough Based Feature Selection Accelerator

	4 Experimental Analysis
	4.1 Experimental Setup
	4.2 Compare DAR and PAR
	4.3 Compare PAR and PARA
	4.4 The Classification Performance Comparison of Three Algorithms

	5 Conclusions
	Acknowledgements
	References

	Text Feature Extraction and Selection Based on Attention Mechanism
	1 Introduction
	2 Our Proposed Model
	2.1 Multiple Attention and Pooling Strategies
	2.2 Encoder Layers
	2.3 Second Attention Layer
	2.4 Compare, Aggregate, Softmax Layers

	3 Experiments
	3.1 Datasets and Experimental Protocol
	3.2 Experimental Results

	4 Discussion and Analysis
	4.1 Question Type Analysis
	4.2 In-Depth Analysis
	4.3 Ablation Analysis

	5 Related Work
	6 Conclusion
	References

	Author Index

