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Abstract. Current state-of-the-art nonparametric Bayesian text clus-
tering methods model documents through multinomial distribution on
bags of words. Although these methods can effectively utilize the word
burstiness representation of documents and achieve decent performance,
they do not explore the sequential information of text and relationships
among synonyms. In this paper, the documents are modeled as the joint
of bags of words, sequential features and word embeddings. We pro-
posed Sequential Embedding induced Dirichlet Process Mixture Model
(SiDPMM) to effectively exploit this joint document representation in
text clustering. The sequential features are extracted by the encoder-
decoder component. Word embeddings produced by the continuous-bag-
of-words (CBOW) model are introduced to handle synonyms. Experimen-
tal results demonstrate the benefits of our model in two major aspects:
(1) improved performance across multiple diverse text datasets in terms
of the normalized mutual information (NMI); (2) more accurate infer-
ence of ground truth cluster numbers with regularization effect on tiny
outlier clusters.

1 Introduction

The goal of text clustering is to group documents based on the content and topics.
It has wide applications in news classification and summarization, document
organization, trend analysis and content recommendation on social websites [13,
17]. While text clustering shares the challenges of general clustering problems
including high dimensionality of data, scalability to large datasets and prior
estimation of cluster number [1], it also bears its own uniqueness: (1) text data
is inherently sequential and the order of words matters in the interpretation of
document meaning. For example, the sentence “people eating vegetables” has a
totally different meaning from the sentence “vegetables eating people”, although
two sentences share the same bag-of-words representation. (2) Many English
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Fig. 1. Illustration of the proposed sequential embedding induced Dirichlet process
mixture model (SiDPMM).

words have synonyms. Clustering methods taking synonyms into account will
possibly be more effective to identify documents with similar meanings.

Pioneering works in text clustering have been done to address the general
challenges of clustering. Among them nonparametric Bayesian text clustering
utilizes Dirichlet process to model the mixture distribution of text clusters and
eliminate the need of pre-specifying the number of clusters. Current methods
use bag of words for document modeling. In this work, as shown in Fig. 1, the
Bayesian nonparametric model is extended to utilize knowledge extracted from
an encoder-decoder model and word2vec embedding, and documents are jointly
modeled by bag of words, sequential features and word embeddings. We derive
an efficient collapsed Gibbs sampling algorithm for performing inference under
the new model.

Our Contributions. (1) The proposed SiDPMM is able to incorporate rich
feature representations. To the best of our knowledge, this is the first work
that utilizes sequential features in nonparametric Bayesian text clustering. The
features are extracted through an encoder-decoder model. It also takes synonyms
into account by including CBOW word embeddings as text features, considering
that documents formed with synonym words are more likely to be clustered
together. (2) We derive a collapsed Gibbs sampling algorithm for the proposed
model, which enables efficient inference. (3) Experimental results show that our
model outperforms current state-of-the-art methods across multiple datasets,
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and have a more accurate inference on the number of clusters due to its desirable
regularization effect on tiny outlier clusters.

2 Related Work

Traditional clustering algorithms such as K-means, Hierarchical Clustering, Sin-
gular Value Decomposition, Affinity Propagation have been successfully applied
in the field of text clustering (see [23] for a comparison of these methods on
short text clustering). Algorithms utilizing spectral graph analysis [4], sparse
matrix factorization [25], probabilistic models [24] were proposed for performance
improvement. As text is usually represented as a huge sparse vector, previous
works have shown that feature selection [7,14] and dimension reduction [9] are
also crucial.

Most classic methods require access to prior knowledge about the number
of clusters, which is not always available in many real-world scenarios. Dirichlet
Process Mixture Model (DPMM) has achieved state-of-the-art performance in
text clustering with its capability to model arbitrary number of clusters [27,29];
number of clusters is automatically selected in the process of posterior inference.
Variational inference [2] and Gibbs sampling [6,21] can be applied to infer cluster
assignments in these models.

A closely related field of text clustering is topic modeling. Instead of cluster-
ing the documents, topic modeling aims to discover latent topics in document
collections [3]. Recent works showed performance of topic modeling can be sig-
nificantly improved by integrating word embeddings in the model [16,26,30].

The encoder-decoder model was recently introduced in natural language pro-
cessing and computer vision to model sequential data such as phrases [10,11]
and videos [12]. It has shown great performance on a number of tasks including
machine translation [5], question answering [22] and video description [12]. Its
strength of extracting sequential features is revealed in these applications.

3 Description of SiDPMM

Our text clustering model is based on the Dirichlet process mixture model
(DPMM), the limit form of the Dirichlet mixture model (DMM). When DPMM
is applied to clustering, the size of clusters are characterized by the stick-breaking
process, and prior of cluster assignment for each sample is characterized by the
Chinese restaurant process. The Dirichlet process can model arbitrary number
of clusters which is typically inferred via collapsed Gibbs sampling or variational
inference. We refer readers to [2,21] for more details about DPMM.

We tailor DPMM to our task by learning clusters with multiple distinct infor-
mation sources for documents, i.e., bag-of-words representations, word embed-
dings and sequential embeddings, which requires specifically designed likelihood,
priors, and inference mechanism.
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Table 1. Notations

Notation Meaning

di the i-th document
dk,¬i documents belonging to cluster k excluding di

K total number of clusters
ci cluster assignment of di

ck,¬i cluster assignments of cluster k excluding
document i

θk parameters of cluster k
rk number of documents in cluster k
ui number of words in document i
ut
i occurrence of word t in document i

uk,¬i number of words in cluster k excluding di

Notation Meaning

ut
k,¬i occurrence of word t in cluster k excluding di

wi the set of bag of words in di

si sequential information embedding of di

ei word embedding of di

V vocabulary size
Θs set of hyper-parameters {μs, λs, νs, Σs}
Θe set of hyper-parameters {μe, λe, νe, Σe}
α parameter of Chinese restaurant process
β hyper-parameter for multinomial modeling of bag of words
ε dimensionality of sequential embedding vector
δk parameter of multinomial distribution for the k-th cluster

To start with, we first introduce the likelihood function F (di|θk) over docu-
ments:

F (di|θk) = Mult(wi|δk)N (ei|μk
e ,Σk

e)N (si|μk
s ,Σk

s ) (1)

where θk = (μk
e ,Σk

e , μk
s ,Σk

s , δk), with δk = (δ1
k, . . . , δV

k ) and
∑V

j=1 δj
k = 1. ei is

the word embedding and si is the encoded sequential vector. The multinomial
component Mult(wi|δk) captures the distribution of bag of words; the Normal
components N (ei|μk

e ,Σk
e), N (si|μk

s ,Σk
s) measure similarities of word and sequen-

tial embeddings. This model is general enough to model the characteristic of any
text and also specific enough to capture the key information of each document
including word embeddings and sequential embeddings.

The prior is set to be conjugate with the likelihood for integrating out the
cluster parameters during the inference phase (Table 1). As Dirichlet distribution
is the conjugate prior of multinomial distribution and Normal-inverse-Wishart
(NiW) is the conjugate prior of normal distribution, we used the composition of
Dirichlet distribution and NiW distribution to serve as the conjugate prior G0,
which is defined as:

G0(θk) = Diri(δk|β)NiW(μk
s ,Σk

s |Θs)NiW(μk
e ,Σk

e |Θe) (2)

where Diri denotes the Dirichlet distribution and NiW denotes the Normal-
inverse-Wishart distribution. Θs denotes hyper-parameters {μs0, λs0, νs0,Σs0}
for the encoder-decoder component and Θe denotes hyper-parameters {μe0, λe0,
νe0,Σe0} for CBOW word embedding component.

4 Inference via Collapsed Gibbs Sampling

We adopt collapsed Gibbs sampling for inference due to its efficiency. It reduces
the dimensionality of the sampling space by integrating out cluster parameters,
which leads to faster convergence.
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The cluster assignment k for document i is decided based on the posterior
distribution p(ci = k|c¬i,d, θ). It can be represented as product of cluster prior
and document likelihood.

p(ci|c¬i,d, θ) =
p(ci, c¬i,d|θ)
p(c¬i,d|θ) ∝ p(c,d|θ)

p(c¬i,d¬i|θ) =
p(c|θ)

p(c¬i|θ)
p(d|c, θ)

p(d¬i|c, θ)
= p(ci|c¬i, θ)p(di|d¬i, c, θ)

(3)

Based on the Chinese restaurant process depiction of DPMM, we have

p(ci|c¬i, θ) = p(ci|c¬i, α)

=

{
rk,¬i

D−1+α choose an existing cluster k
α

D−1+α create a new cluster

(4)

(D − 1) is the total number of documents in the corpus excluding current docu-
ment i.

Given the number of variables introduced in the model, direct sampling from
the joint distribution is not practical. Thus, we assume conditional independence
on the variables by allowing the factorization of the second term in (3) as:

p(di|d¬i, c, θ) ∝ p(wi|d¬i, c, θ)p(ei|d¬i, c, θ)p(si|d¬i, c, θ) (5)

The calculation for each component p(wi|d¬i, c, θ), p(ei|d¬i, c, θ) and p(si|d¬i,
c, θ) is derived below:

p(wi|d¬i, c, θ) = p(wi|ci = k,dk,¬i, β) =
∫

p(wi|δk)p(δk|dk,¬i, β)dδk (6)

where the first term in the above integral is

p(wi|δk) =
∏

t∈wi

Mult(t|δk) =
V∏

t=1

δ
ut

i

k,t (7)

δk,t is the probability of term t bursting in cluster k and ut
i is the count of term

t in document i. The second term in (6) is

p(δk|dk,¬i, β) =
p(δk|β)p(dk,¬i|δk)

∫
k
p(δk|β)p(dk,¬i|δk)dδk

(8)

By defining Δ(β) =
∏K

k=1 Γ(β)

Γ(
∑K

k=1 β)
similar to [28], we have

p(δk|dk,¬i, β) =
1

Δ(β)

∏V
t=1 δβ−1

k,t

∏V
t=1 δ

ut
k,¬i

k,t

∫
k

1
Δ(β)

∏V
t=1 δβ−1

k,t

∏V
t=1 δ

ut
k,¬i

k,t dδk

=
1

Δ(uk,¬i + β)

V∏

t=1

δ
ut

k,¬i+β−1

k,t

(9)
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Based on (7) and (9), (6) becomes

p(wi|d¬i, c, θ) =
∫

k

1
Δ(uk,¬i + β)

V∏

t=1

δ
ut

k,¬i+β−1

k,t

V∏

t=1

δ
ut

i

k,tdδk

=

∏V
t=1

∏ut
i

j=1(u
t
k,¬i + β + j − 1)

∏ui

j=1(uk,¬i + V β + j − 1)

(10)

As we see from (10), the high dimensionality challenge of text clustering is nat-
urally circumvented by multiplying one dimension of the vector space at a time.
p(ei|d¬i, c, θ) and p(si|d¬i, c, θ) in (5) are derived based on properties of NiW
distribution:

p(si|d¬i, c, θ) = p(si|ci = k,dk,¬i, θ)

=
∫

μk

∫

Σk

p(si|μk,Σk)p(μk,Σk|ci = k,dk,¬i, θ)dμkdΣk

=
∫

μk

∫

Σk

N (si|μk,Σk)NiW(μk,Σk|Θk,¬i
s )dμkdΣk

(11)

where μ and Σ are the mean and variance of the sequential embedding, Θk,¬i
s

includes {μk,¬i
s , λk,¬i

s , νk,¬i
s ,Σk,¬i

s } which is the hyper-parameter in the NiW dis-
tribution of cluster k.

We define the normalization constant Z(ε, λ, ν,Σ) of NiW distribution as

Z(ε, λ, ν,Σ) = 2
(ν+1)ε

2 π
ε(ε+1)

4 λ
−ε
2 |Σ|−ν

2

ε∏

i=1

Γ(
ν + 1 − i

2
) (12)

where ε is the dimensionality of sequential embedding vector. Therefore

p(si|d¬i, c, θ)

=
∫

μk

∫

Σk

N (si|μk,Σk)NiW(μk,Σk|Θk,¬i
s )dμkdΣk

= (π)
−ε
2 (

λk
s

λk,¬i
s

)
−ε
2

|Σk
s |−νk

s
2

|Σk,¬i
s |−ν

k,¬i
s
2

ε∏

j=1

Γ(νk
s +1−j

2 )

Γ(νk,¬i
s +1−j

2 )

(13)

As νk
s = νk,¬i

s + 1, we have

p(si|d¬i, c, θ) = (π)
−ε
2 (

λk
s

λk,¬i
s

)
−ε
2

|Σk
s |−νk

s
2

|Σk,¬i
s |−ν

k,¬i
s
2

Γ(νk
s

2 )

Γ(νk
s −ε
2 )

(14)

The derivation of p(ei|d¬i, c, θ) is analogous to that of p(si|d¬i, c, θ) as they are
following the same form of distribution, thus,

p(ei|d¬i, c, θ) = (π)
−ε
2 (

λk
e

λk,¬i
e

)
−ε
2

|Σk
e |−νk

e
2

|Σk,¬i
e |−ν

k,¬i
e
2

Γ(νk
e

2 )

Γ(νk
e −ε
2 )

(15)

Algorithm 1 presents the complete inference procedure.
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Algorithm 1. Inference of SiDPMM Model
Data : For each document i, the bag of words wi , word embedding ei , sequential

embedding si

Result : Number of clusters K, cluster assignments for each document c
/* Initialization */

1 K=0
2 for each document i do

3 compute cluster prior p(ci|c¬i, α) � (4)
4 calculate p(wi|dk,¬i, ci = k, θ) � (10)

5 calculate p(si|dk,¬i, ci = k, θ) � (14)
6 calculate p(ei|dk,¬i, ci = k, θ) � (15)
7 calculate p(di|dk,¬i, ci = k, θ) � (5)

8 sample cluster ci ∼p(ci = k|c¬i, d, θ) � (3)
9 if ci = K + 1 then

10 K=K+1
11 end
12 update parameters of cluster ci
13 end

/* Collapsed Gibbs Sampling, N iterations */

14 for Iter= 1 to N do
15 for each document i do
16 delete document i from cluster ci, update parameters of cluster ci
17 if cluster ci is empty then

18 K=K-1

19 end
20 repeat line 3 to line 7
21 sample a new cluster ci for document i � (3)

22 if ci = K + 1 then

23 K=K+1

24 end
25 update parameters of cluster ci
26 end

27 end

5 Extraction of Sequential Feature and Synonyms
Embedding

In this section, we describe how to extract sequential embeddings with an
encoder-decoder component and synonyms embeddings with the CBOW model.

The encoder-decoder component is formed with two LSTM stacks [8], one
is for mapping the sequential input data to a fixed length vector, the other is
for decoding the vector to a sequential output. To learn embeddings, we set
the input sequence and output sequence to be the same. An illustration of the
encoder-decoder mechanism is shown in Fig. 2a. The last output of the encoder
LSTM stack contains information of the whole phrase. In machine translation,
researchers have found the information is rich enough for the original phrase to
be decoded into translations of another language [18].

Current state-of-the-art text clustering methods adopt one-hot encoding for
word representation. It neglects semantic relationship between similar words.
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Fig. 2. (a) The Encoder-Decoder Component. It is formed by two LSTM stacks, one is
for mapping a sequential input data to a fixed-length vector, the other is for decoding
the vector to a sequential output. (b) Word embedding of Google News Title Set. Words
describing the same topic have similar embeddings and are clustered together

Recently, researchers have shown multiple degrees of similarity can be revealed
among words with word embedding techniques [20]. Utilizing such embeddings
means we can cluster the documents based on meaning of words instead of the
word itself. As shown in Fig. 2b, words describing the same topic have similar
embeddings and are clustered together. The CBOW model is used to learn word
embeddings by predicting each word based on word context (weighted nearby
surrounding words). The embedding vector ei is the average of word embeddings
in di. Readers are referred to [19] for details about the CBOW model.

6 Experiments

In this section, we will demonstrate the effectiveness of our approach through a
series of experiments. The detailed experimental settings are as follows:

Datasets. We run experiments on four diverse datasets including 20 News
Group (20NG)1, Tweet Set2, and two datasets from [27]: Google News Title
Set (T-Set) and Google News Snippet Set (S-Set). The 20NG dataset contains
long documents with an average length of 138 while the documents in T-Set
and Tweet Set are short with average length less than 10. Phrase structures are
sparse in T-Set, while rich in 20NG and S-Set. The Tweet Set contains moderate
phrase structures.

Baselines. We compare SiDPMM against two classic clustering methods, K-
means and latent Dirichlet allocation (LDA), and two recent methods GSDMM
[28] and GSDPMM [27] that are state-of-the-art in nonparametric Bayesian text
clustering.
1 http://qwone.com/∼jason/20Newsgroups/.
2 http://trec.nist.gov/data/microblog.html.

http://qwone.com/~jason/20Newsgroups/
http://trec.nist.gov/data/microblog.html
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Table 2. NMI scores on various dataset-parameter settings. K is the prior number
of clusters for K-means, LDA and GSDMM, set to be four different values including
the ground truth for each dataset. K is not used for SiDPMM and GSDPMM. 20
independent runs for each setting.

K SiDPMM SiDPMM-sfa SiDPMM-web K-means LDA GSDMM GSDPMM

20NG 10 .689± .006 .686± .005 .680± .006 .235± .008 .585 ± .013 .613 ± .007 .667 ± .004

20 .689± .006 .686± .005 .680± .006 .321± .006 .602 ± .012 .642 ± .004 .667 ± .004

30 .689± .006 .686± .005 .680± .006 .336± .005 .611 ± .012 .649 ± .005 .667 ± .004

50 .689± .006 .686± .005 .680± .006 .348± .006 .617 ± .013 .656 ± .002 .667 ± .004

T-Set 100 .878± .003 .872± .003 .877± .005 .687± .005 .769 ± .012 .830 ± .004 .873 ± .002

150 .878± .003 .872± .003 .877± .005 .721± .009 .784 ± .015 .852 ± .009 .873 ± .002

152 .878± .003 .872± .003 .877± .005 .720± .007 .786 ± .014 .853 ± .009 .873 ± .002

200 .878± .003 .872± .003 .877± .005 .730± .008 .806 ± .013 .868 ± .006 .873 ± .002

S-Set 100 .916± .004 .910± .005 .902± .003 .739± .006 .848 ± .005 .854 ± .004 .891 ± .004

150 .916± .004 .910± .005 .902± .003 .756± .006 .850 ± .006 .867 ± .008 .891 ± .004

152 .916± .004 .910± .005 .902± .003 .757± .007 .852 ± .005 .867 ± .009 .891 ± .004

200 .916± .004 .910± .005 .902± .003 .768± .007 .862 ± .004 .885 ± .005 .891 ± .004

Tweet 50 .894± .007 .887± .006 .884± .005 .696± .008 .775 ± .012 .844 ± .006 .875 ± .005

90 .894± .007 .887± .006 .884± .005 .725± .007 .797 ± .011 .862 ± .008 .875 ± .005

110 .894± .007 .887± .006 .884± .005 .732± .006 .806 ± .010 .867 ± .006 .875 ± .005

150 .894± .007 .887± .006 .884± .005 .742± .006 .811 ± .012 .871 ± .004 .875 ± .005
aSiDPMM model only integrating sequential features.
bSiDPMM model only integrating word embeddings.

Metrics. We take the normalized mutual information (NMI) as the major evalu-
ation metric in our experiments since NMI is widely used in this field. NMI scores
range from 0 to 1. Perfect labeling is scored to 1 while random assignments tend
to achieve scores close to 0.

Encoder-Decoder Component. We truncate the sequence length to be 48 for
Tweet Set and Google News dataset and 240 for 20NG dataset. The document
with characters length shorter than this sequence length is padded with zeros.
The encoder-decoder model is trained for 10 iterations. The length of hidden
vectors is set to be 40, and length of input vector is 67 (number of different
characters). Weights in the LSTM stack are uniformly initialized to be 0.01.
Adam [15] optimizer is used to optimize the network with its learning rate set
to 0.01.

Word Embedding Component. The vocabulary size is set to 100,000 which
is enough to accommodate most of the words present in the dataset. We set the
embedding vector length to be 40. To facilitate training with small datasets such
as the Tweet Set, we augment each dataset with a well-known large-scaled text
dataset3 during training. Window size is set to be 1, meaning we only consider
the words that are neighbors of the target word as its word context. We apply
stochastic gradient descent for optimization with a total of 100,000 descent steps.

3 http://mattmahoney.net/dc/text8.zip.

http://mattmahoney.net/dc/text8.zip
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(a) 20NG (b) Tweet-Set

(c) S-Set (d) T-Set

Fig. 3. Number of clusters with size above a given threshold found in each iteration by
SiDPMM and GSDPMM. A cluster with size smaller than the given threshold does not
count. Plots (a)–(d) are for the datasets 20NG, Tweet-Set, S-Set and T-Set respectively.

Priors. Hyper-parameter α of the Dirichlet process is set to be 0.1 × |d|,
where |d| is number of documents in the dataset. Hyper-parameter β for
the Multinomial modeling of bag of words is 0.002 × V , and parameters for
the prior NiW distribution of word embedding and sequential embedding are
{μ0 = 0, λ0 = 1, ν0 = ε,Σ0 = I}.

6.1 Empirical Results

Table 2 reports the mean and standard deviation of the NMI scores across var-
ious settings. From Table 2, we observe that SiDPMM outperforms K-means,
LDA and GSDMM across all the settings by significant margins. GSDPMM has
comparative performance with SiDPMM on T-Set, while SiDPMM performs bet-
ter in other three datasets. We noted the average length of T-Set is short and
phrase structures are scarce in its documents. To unveil the influence of each
of the component on the model performance, we included implementation of
SiDPMM model only integrating sequential features (denoted as SiDPMM-sf)
and SiDPMM model only integrating word embeddings (denoted as SiDPMM-
we) into the comparison. We noted the contribution from sequential embedding
is significant in 20NG, S-Set and moderate in Tweet-Set.

SiDPMM and GSDPMM can automatically determine the number of clusters.
Table 3 shows that number of clusters inferred by SiDPMM are much more accu-
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Table 3. Inferred number of clusters by SiDPMM
and GSDPMM. Other baseline methods are not
included because they require pre-specified number
of clusters.

Number of clusters Diff. ratio
Ground
truth

GSDPMM SiDPMM GSDPMM SiDPMM

20NG 20 52 31 160% 55%
T-Set 152 323 171 113% 13%
S-Set 152 246 126 62% 17%
Tweet 110 161 99 46% 10%

Fig. 4. Number of clusters found
by SiDPMM with different α val-
ues, revealing the relative strength
of prior (compared to likelihood) in
determining posterior distribution

rate compared to those from GSDPMM across all the datasets. We can observe
that GSDPMM tends to create more clusters than SiDPMM. As illustrated in
Fig. 3, many of those clusters created by GSDPMM are quite small; while in
constrast, SiDPMM tends to suppress tiny clusters and thus are more robust
to outliers. The sequential and word embedding components in SiDPMM are
responsible for this regularization effect on number of clusters.

The hyper-parameter α in the Dirichlet process determines the prior proba-
bility of creating a new cluster (see Eq. (4)). We explore the influence of different
α values on our model. Fig. 4 shows that the number of clusters typically grows
with α; as observed for Tweet Set, T-Set and S-Set, but not the case for the 20NG
dataset. This reveals the relative strength of prior (compared to likelihood) in
determining posterior cluster distribution. The documents in 20NG have large
average length (137.5 words per document). In the sampling process, the like-
lihood dominates the posterior distribution and the small difference caused by
different α in the prior distribution is negligible, while for documents with small
average length, the difference in likelihood is not significant and thus prior affects
more of the posterior distribution.

7 Conclusion

In this paper, we propose a nonparametric Bayesian text clustering method
(SiDPMM) which models documents as the joint of bag of words, word embed-
dings and sequential features. The approach is based on the observation that
sequential information plays a key role in the interpretation of phrases and word
embedding is very effective for measuring similarity between synonyms. The
sequential features are extracted with an encoder-decoder component and word
embeddings are extracted with the CBOW model. A detailed collapsed Gibbs
sampling algorithm is derived for the posterior inference. Experimental results
show our approach outperforms current state-of-the-art methods, and is more
accurate in inferring the number of clusters with the desirable regularization
effect on tiny scattered clusters.
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