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Abstract. Network Embedding is an effective and widely used method
for extracting graph features automatically in recent years. To handle the
widely existed large-scale networks, most of the existing scalable meth-
ods, e.g., DeepWalk, LINE and node2vec, resort to the negative sampling
objective so as to alleviate the expensive computation. Though effective
at large, this strategy can easily generate false, thus low-quality, nega-
tive samples due to the trivial noise generation process which is usually
a simple variant of the unigram distribution. In this paper, we propose
a Ranking Network Embedding (RNE) framework to leverage the rank-
ing strategy to achieve scalability and quality simultaneously. RNE can
explicitly encode node similarity ranking information into the embedding
vectors, of which we provide two ranking strategies, vanilla and adver-
sarial, respectively. The vanilla strategy modifies the uniform negative
sampling method with a consideration of edge existance. The adversarial
strategy unifies the triplet sampling phase and the learning phase of the
model with the framework of Generative Adversarial Networks. Through
adversarial training, the triplet sampling quality can be improved thanks
to a softmax generator which constructs hard negatives for a given tar-
get. The effectiveness of our RNE framework is empirically evaluated on
a variety of real-world networks with multiple network analysis tasks.

1 Introduction

Network embedding, i.e., learning low-dimensional representations for nodes in
graph-structured data, can help encode meaningful semantic, relational and
structural information of a graph into embedding vectors. Typically, such learn-
ing process is conducted in an unsupervised manner [1-3] due to the lack of
labeled data, and thus the learned representations can be used to facilitate dif-
ferent kinds of downstream tasks such as network visualization, link prediction
and node classification. In real-world applications, data entities with compli-
cated relationships can be well organized with graphs. For example, paper cita-
tion networks characterize the information of innovation flow, social networks
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entail complicated relationships among people, groups and organizations, and
protein-protein interaction networks capture information between different pro-
teins. Therefore, it is of great application interest to develop effective and scalable
methods for unsupervised network embedding.

Network data are usually high-dimensional, very sparse and non-linear, which
makes network embedding a challenging problem. Some classical methods, such
as MDS [4], IsoMap [5] and LLE [6], can be used for network representation
learning. However, they can neither effectively capture highly nonlinear struc-
ture of networks, nor scale to large networks. When handling large-scale net-
works, DeepWalk [1], LINE [2] and node2vec [7] are shown to be quite effective
and efficient. These three methods preserve network structural properties in the
embedding vectors through the negative sampling technique [8]. The negative
sampling method is a simplified variant of negative contrastive estimation [9],
which can help speed up the training process of the model. However, since the
negative samples are constructed according to a unigram noise generation pro-
cess, this strategy may generate false negative samples that violate pairwise
relationships presented in the network structure. Here, we aim to answer two
questions: (1) can we find some other ways for encoding pairwise relationships
into node representations instead of the negative sampling approach? (2) how to
sample better negative nodes for target-positive pairs (i.e., closely related node
pairs) for training?

In this paper, we propose a Ranking Network Embedding (RNE) frame-
work based on triplet ranking loss for preserving pairwise relationships of nodes
in embedding vectors. Specifically, we firstly construct triplets based on network
structure where each triplet consists of a target, a positive and a negative node.
In the training process, the distance between embedding vectors of the target and
positive node will be minimized while the distance between that of target and
negative node will be maximized until they are separated by a predefined mar-
gin. Different from the negative sampling technique used in [1,2,7], the ranking
strategy enforces a non-trivial margin between similar node pairs and dissimilar
ones, thus explicitly encodes similarity ranking information among node pairs
into the embedding vectors.

With the RNE framework, we propose two network embedding models by
using a vanilla ranking strategy and an adversarial ranking technique respec-
tively. In the vanilla RNE model, we utilize a simple negative node sampling
method to construct triplets, which uniformly samples nodes from the node
set without direct link to the target. This vanilla approach can perfectly avoid
false negative samples while maintain the efficiency. Though works well to some
extend, this vanilla strategy may also generate totally unrelated negative nodes
for the target node, which will be of little help for the training. This phenomenon
is even more common in very high-dimensional and sparse networks. To improve
the vanilla RNE, we propose a generative adversarial model to unify the triplet
sampling process and the learning process with the framework of Generative
Adversarial Networks (GANs) [10], which leads to an adversarial RNE model.
It leverages a generator for generating hard negative nodes with respect to a
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given target to help construct high-quality triplets, and thus achieves better
node similarity rankings in the embedding space. We empirically evaluate the
proposed vanilla and adversarial RNE models through several network analysis
tasks, including network visualization, link prediction and node classification,
on benchmark datasets. Experimental results show that both models achieve
competitive performance with state-of-the-art methods.

2 Related Work

Many scalable network embedding methods, such as DeepWalk [1], LINE [2]
and node2vec [7], have been proposed to learn node representations to facilitate
downstream tasks. They model node conditional probability with softmax func-
tion over the whole network, which is computationally expensive. Further, the
negative sampling approach [8] is usually leveraged to replace the log likelihood
objective, and thus enabling a scalability to large networks. However, it can gen-
erate some negative samples violating pairwise relationships reflected by network
structure because of the simple unigram noise generation process. To handle this
issue, we propose to use the triplet ranking loss to learn embedding vectors and
leverage an adversarial sampling method to sample negative nodes. We noticed
that the triplet ranking loss is also employed by [11] in learning embeddings, but
for networks with node attributes.

Recently, some methods are proposed to learn node representations through
adversarial training [12,13]. In ANE [12], a prior distribution is imposed on
node representations through adversarial training to achieve robustness. In [13],
the authors proposed to unify the generative models and discriminative models
of network embedding into the framework of GANs to help learn a stronger
generator. Different from these two methods, our method aim to learn a stronger
discriminator to obtain node representations.

Some knowledge graph embedding methods are also related [14-16].
TransE [14] is a translation-based knowledge graph embedding model, which
learns embeddings for both data entities and relations with triplet ranking loss.
KBGAN [16] is an adversarial learning framework for knowledge graph embed-
ding. Our method is by part inspired by these works. However, this line of
research has notable differences with our work. Firstly, knowledge graph is fun-
damentally different from the networks we study. The assumption, that two
connected nodes should be similar and close in embedding space, of network
embedding methods does not hold in knowledge graph. Secondly, knowledge
graph embedding learns representations for both data entities (nodes) and rela-
tions (edges) simultaneously, while network embedding is designed to learn node
representations only.

3 RNE: Ranking Network Embedding

3.1 Framework

The framework of Ranking Network Embedding method is shown in Fig. 1(a).
It consists of two phases, i.e., the triplet construction phase and the learning
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phase. Firstly, we leverage some sampling methods to construct triplets based on
network structure, which can help specify the similarity ranking of some pairwise
relationships. Then, in the learning process, triplet ranking loss is minimized by
directly updating embeddings to pull similar nodes closer in the embedding
space, while pushing dissimilar nodes apart.

To help better understand our model, we first introduce some notations and
describe the research problem. A network is denoted as G = (V, ), with a set
of nodes V representing data entities and a set of edges £ each representing
the relationship between two nodes. We mainly consider undirected graph in
this paper. Given a graph G, we aim to learn low-dimensional representations
u; € R? for each node v; € V, which can capture network structural properties.
We denote U as embedding matrix with u; as its ith row.
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Fig. 1. Model architecture.

3.2 Vanilla Ranking Network Embedding

The vanilla RNE model is a simple instantiation of the proposed RNE framework
with uniform negative sampling method. Some detailed descriptions of its triplet
sampling method and loss function are provided below.

Vanilla Triplet Sampling. Triplet sampling method plays an important role
in learning good embedding vectors for downstream learning tasks. The con-
structed triplets directly specify pairwise relationships from network structure
which will be regarded as ground-truth in learning process to be encoded into
embedding vectors. We only explicitly consider first-order proximity when con-
structing positive pairs. The triplet set 7 is defined as follows:

T = {(ve, vp, V)| (v, 0p) € E, (vg,vn) & EY, (1)

where (v¢, vp, vy,) is a triplet with vy, v, and v, as the target, positive and negative
node, respectively. Since network is usually very sparse, for each positive pair,
there can be a large number of negative nodes. To improve model efficiency,
we only uniformly sample K negative nodes from the negative space for each
positive pair.
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Fig. 2. The triplet ranking loss minimizes the distance between a target node and
a positive node while maximizing that of the target and a negative node until they
are separated by at least a margin distance. The pairwise relationships can be well
preserved in embedding vectors after the learning process.

Triplet Ranking Loss. For vanilla RNE model, we seek to minimize the fol-
lowing loss function:

L= Y [m+D(v,vy:0p) — D(vr,vn:0p)]+, (2)

(ve,vp,vn)ET

where [z]; denotes the positive part of z, D(vy,v9;60p) is a distance function of
two nodes, fp is the union of all node embeddings, and m > 0 is a margin hyper-
parameter separating the positive pair and the corresponding negative one. We
use the squared L2 distances in the embedding space, i.e., D(v1,v2;0p) = ||lug —
uz||?. The triplet ranking loss explicitly encodes similarity ranking among node
pairs into the embedding vectors, and the visualization explanation can be found
in Fig. 2 [17].

3.3 Adversarial Ranking Network Embedding

For the vanilla RNE model, we only use uniform negative sampling method
for constructing triplets. It can easily generate totally unrelated negative nodes
for the target node due to the sparsity and high-dimensionality of the network,
which will be of little help for the training process. To help alleviate this problem,
we propose an Adversarial Ranking Network Embedding model, which unifies
the triplet sampling phase and the learning phase of the RNE method with the
framework of GANs. The model architecture is presented in Fig. 1(b). It consists
of a generator G and a discriminator D (we abuse the notation and directly use
the distance function D to represent the discriminator). In the learning process,
the discriminator tries to pull similar nodes closer in the embedding space, while
pushing dissimilar nodes apart. The generator aims to generate difficult negative
nodes for a given target from a set of negative candidates by optimizing its own
parameters.

Discriminator. The discriminator is aimed at optimizing the following triplet
ranking loss function similar to the vanilla RNE model:

Lp= > Euclove)m+ D, vp;0p) — D(v, vn;00)4,  (3)
(ve,vp)EP
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Fig. 3. For the negative sampling approach, each node is sampled according to its
unigram distribution (regard each node as a word) raised to the 3/4 power, which can
violate pairwise relationships reflected by network structure. For example, node 6 is
very likely to be sampled as negative node for target-positive pair (5, 1), even though
node 5 and 6 have strong relationship. For our triplet sampling method, such problem
can be well avoided. However, simple uniform sampling method can easily generate
totally unrelated nodes (node 8 in the example graph), which can be improved with
adversarial sampling method.

where P = {(v1, v2), (v2,v1)|(v1,v2) € E} is the positive pair set in graph G, and
G(-|v; 0g) is the generator. Ounly first-order proximity is directly considered,
and each edge (v;,v;) € £ corresponds to two positive pairs (v;,v;) and (vj, v;).
Particularly, a softmax generator is employed to construct high-quality triplets
instead of simple uniform sampling method. More detailed illustrations of this
sampling method will be introduced below. Note that Eq.(3) can be directly
optimized with gradient descent technique.

Generator. Softmax function is widely used in network embedding literature [1,
18] to model node conditional probability. In this paper, we also employ softmax
function as the generator to sample negative nodes given a target, but it is defined
over the negative node space with respect to the given positive pair according to
network structure. Specifically, the generator G (v, |ve; 0 ) is defined as a softmax
function over a set of negative candidates:

T
exp(ulw
Goalori ) — o) @)
Zvni ENeg(ve,vp) eXp('u’ni ut)
where Neg(vi,vp) = {Un,,Ungs -+ ;Uny, } is a set of negative candidates with

size as N,. In implementation, Neg(v¢, vp) is a subsample of the original negative
space of the positive pair to reduce the computation complexity, which is actually
a common practice in network embedding literature [1,2]. For each positive pair,
N, negative nodes will be first uniformly randomly sampled from the negative
space, and used as input for the generator. Then, a hard negative node will be
sampled from Neg (v, v,) according to the probability distribution G(vy,|ve; 6a).
Besides, in the training process, K hard negatives will be sampled for each
positive pair.
The loss function of the generator is defined as follows:

La= Y By c(oe D0, 0n0D)] (5)
(ve,vp)EP



Ranking Network Embedding via Adversarial Learning 33

It can encourage the softmax generator to generate useful negative nodes for
a given positive pair instead of totally unrelated ones. The sampling process
of hard negatives is discrete, which hinders the objective from directly being
optimized by gradient descent method as that of the discriminator. According
to [19,20], this loss can be optimized with the following policy gradient:

VocLa=Vog > Eync(los00) D0t 00;0D)]
(Ut7v )
P 6
= Z Evan(~|vt;9c)[‘D(Utvvn5eD)VHG IOgG(UH‘vﬁGG)]' ( )

(ve,vp)

The gradient of Lg is an expected summation of the gradient Vg, log
G(vp|vt; 0) weighted by the distance of node pair (vt,v,). When training the
generator, the parameters will be shifted to involve high-quality negatives with
high probability from softmax generator, i.e., node pairs (v¢, v, ) with small dis-
tance from discriminator will be encouraged to be generated. In practice, the
expectation can be approximated with sampling in the negative space. Besides,
the REINFORCE algorithm suffers from the notorious high variance, which can
be alleviated by subtracting a baseline function from the reward term of the
objective, i.e., adding a baseline function to the reward term in the loss [21].
Specifically, we replace D(vy,v,;60p) in the loss by its advantage function as
follows:

D, vn;00) + > By Gfosoe) [P (v vn; 0D)], (7)

(Uf« 7”;0)

where >0, Eu, G (Jv:00) [P (01, vn; 0p)] is the average reward of the whole
training set, and acts as the baseline function in policy gradient.

A comparison of the sampling methods is presented in Fig. 3 with toy exam-
ples. Our proposed adversarial sampling method can help select difficult negative
nodes with respect to given target. With high-quality triplets, the tricky pair-
wise relationship rankings can be encoded into node representations through the
training of the discriminator as illustrated in Fig.2. Note that false negative
nodes can still be generated by the generator due to the incompleteness and
non-linearity of the real-world networks, but in a very low probability since the
subsampling trick is employed for generating negative candidates among a very
large negative space. So, the embedding vectors can be improved in general. This
is also validated by our experiments.

Algorithm 1 presents the pseudocode of the adversarial RNE model, which
employs a joint training procedure. The overall time complexity of the algorithm
is linear to the number of edges, i.e., O(dKN,|€|) (d, K and N, are some con-
stants independent of the network size), which enables it scale to large networks.
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Algorithm 1. The adversarial RNE algorithm

Input : G(V, &), Dimension d, Margin m, Negative size K, Candidate size N,
Output: The parameters of Discriminator 6p

Initialize the Generator G(v, |v¢; 0g) and Discriminator D(vq,v2;60p) with pretrained
embedding vectors;

[

2 while not converge do

3 Sample a batch of positive pairs B from positive set P;

o | T=(hN =1k

5 // Adversarial negative sampling with softmax generator

6 for each (v¢,vp) € B do

7 repeat

8 Sample N, negative candidates Neg(v¢, vp) uniformly from the negative space

of (ve,vp);

9 Sample a hard negative v,, from Neg(v¢,vp) according to G(vn|ve, 0a);
10 T =T U {on}; N = N U {Neg(vy, vp)};
11 until K times;
12 end
13 // Parameters updating
14 update 0p according to Eq. (3) with 7 as training batch;
15 update g according to Eq. (5) and (4) with 7 and N as training batch;
16 end

4 Experiments

4.1 Experiment Setup

Datasets. We conduct experiments on benchmark datasets from various real-
world applications. Table 1 shows some statistics of them. Note that we regard
all paper citation networks as undirected networks, and do some preprocessing
on the original datasets by deleting self-loops and nodes with zero degree.

Table 1. Statistics of benchmark datasets from real-world applications

Name Citeseer [22]|Cit-DBLP [23]/PubMed [24]|CA-GrQc [25]|CA-HepTh [25]|Wiki [26]|USA-AIR [27]
V| 3,264 5,318 19,717 5,242 9,877 2,363 |1,190

|E| 4,551 28,065 44,335 14,484 25,973 11,596 13,599

Avg. degree|1.39 5.28 2.25 2.76 2.63 4.91 11.43
#Labels 6 3 3 - - 17 4

Baseline Models. We only consider scalable baselines in this paper. Some
matrix factorization based methods such as M-NMF [3,28] are excluded from
the baselines due to the O(|V|?) time complexity. The descriptions of the base-
line models are as follows: Graph Factorization (GF) [29] directly factorizes the
adjacency matrix to obtain the embeddings. DeepWalk (DW) [1] regards node
sequence obtained from truncated random walk as word sequence, and then uses
skip-gram model to learn node representations. LINE [2] preserves proximities
through modeling node co-occurrence probability and node conditional proba-
bility. node2vec (n2v) [7] develops a biased random walk procedure to explore
neighborhood of a node, which can strike a balance between local and global
properties. We denote the vanilla RNE model as V-RNE, and the adversarial
RNE model as A-RNE in the rest of the paper.
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Fig. 4. Visualization of Cit-DBLP network.

Parameter Settings. The window size, walk length and the number of walks
per node of both DeepWalk and node2vec are set to 10, 80 and 10, respectively.
We use node2vec in an unsupervised manner by setting both in-out and return
hyperparameters to 1.0 for fair comparison. For LINE, we follow the original
paper [2] to set the parameters. For our method, the parameter settings are the
margin m = 2.5, the negative size per edge K = 5, and the negative candidate
size N. = 5. The learning rate of V-RNE is set to 0.01, while A-RNE to 0.0001.
L2-normalization is conducted on node embeddings for both the V-RNE and
A-RNE model after each training epoch. Besides, the dimension of embedding
vectors are set to 128 for all methods.

4.2 Network Visualization

We leverage a commonly used toolkit t-SNE [30] to visualize node embeddings
of Cit-DBLP generated by different models. Cit-DBLP is a citation network
constructed from the DBLP datsest [23], which consists of papers from publica-
tion venues including Information Sciences, ACM Transactions on Graphics and
Human-Computer Interaction. These papers are naturally classified into three
categories according to their publication venues, and represented with different
colored nodes in the visualization.

Experimental Results. Figure 4 displays the visualization results. Papers from
different publication venues are mixed together terribly for GF as shown in
Fig.4(a). In the center part of both DeepWalk and LINE, papers from different
categories are mixed with each other. Visualizations from node2vec, V-RNE and
A-RNE are much better as three clusters are formed with quite clear margin.
Compared with V-RNE, A-RNE model has better visualization result, since the
margin between different clusters are larger. The reason is that adversarial sam-
pling method aims to generate hard negative nodes, i.e., negative nodes near the
boundary, which directly contributes to producing more clear margin between
different clusters. On the whole, this experiment demonstrates that ranking net-
work embedding method can help capture intrinsic structure of original network
in embedding vectors.

4.3 Link Prediction

We conduct link prediction on three benchmark datasets. For each network, we
randomly and uniformly sample 20% and 50% of the edges as test labels and use
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the remaining network as input to the models, i.e., training ratio as 80% and
50%. When sampling edges, we ensure the degree of each node is greater than
or equal to 1 to avoid meaningless embedding vectors. The prediction perfor-
mance is measured by AUC score. To calculate AUC score, we first obtain the
edge features from the learned node embeddings through Hadamard product of
embeddings of two endpoints as many other works [7], and then train a L2-SVM

classifier with under-sampling to get prediction results.

Table 2. AUC score for link prediction

Training ratio|80% 50%

Dataset Wiki CA-GrQc CA-HepTh Wiki CA-GrQc CA-HepTh
GF 0.583 £0.008 |0.593 +0.003 |0.554 +0.001 |0.566 £+ 0.002 |0.57240.003 |0.531 4 0.001
DeepWalk 0.656 +0.001 |0.694 +0.001 |0.683 +0.001 |0.639+0.001 |0.657 40.002 |0.630 4 0.001
LINE 0.649 £ 0.007 |0.638 0.005 |0.630+ 0.001 |0.627+0.014 |0.600 =% 0.003 |0.561 4 0.002
node2vec 0.634 £0.016 |0.690 £ 0.007 |0.668 +0.003 |0.6214+0.010 |0.667+0.010 |0.624 £ 0.007
V-RNE 0.647 £ 0.008 |0.691 £0.005 |0.657 £0.005 |0.627£0.007 |0.655+0.004 |0.606 =+ 0.004
A-RNE 0.670 + 0.005|0.708 + 0.004|0.688 + 0.004|0.655 + 0.006 |0.673 + 0.004 |0.639 + 0.004

Experimental Results. The link prediction results are the average of 10 differ-
ent runs, which are shown in Table 2. The AUC scores of A-RNE model consis-
tently outperform those of the V-RNE model. It validates that A-RNE can help
achieve better node similarity rankings in embedding space, since link prediction
task can be considered as similarity ranking among node pairs. The performance
of the proposed RNE method is competitive with the baselines, which shows that
using ranking strategy for learning node representations is a good practice. In
particular, the AUC scores of A-RNE model are superior to all the baselines in
all test datasets when the training ratios are 80% and 50%.

Table 3. Accuracy (%) of multi-class classification on USA-AIR and PubMed
Dataset USA-AIR Pubmed

Ratio 10% |30% |50% |70% |90% |10% |30% |50% |70% | 90%
GF 41.10 |42.21 | 42.27 [41.12 |41.60 |35.63 |36.69 |37.56 |37.74 |38.08
DeepWalk | 43.43 | 51.79 | 53.41 |55.74 |56.05 |69.43 |71.33 |71.74 |71.82 |72.37
LINE 48.80 |53.95 | 56.35 |56.72 |58.91 |67.23 |69.20 |69.84 |69.97 | 70.48
node2vec |42.76 |47.07 |48.62 |49.86 |50.76 | 79.66 |80.89 |81.09 |81.07 | 81.27
V-RNE 55.20 | 58.96 | 60.05 |61.29 |61.09 |77.56 |79.08 |79.39 |79.46 |79.73
A-RNE 56.94 | 61.96 | 62.79 | 65.71 | 64.12 | 80.48 | 81.20 | 81.58 | 81.56 | 81.64

4.4 Node Classification

Node classification can be conducted to dig out missing information. In this
section, we carry out experiments on the air-traffic network USA-AIR and paper
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citation network PubMed. The learned embedding vectors are used as feature
input for the classification model. We randomly sample a portion of nodes as
training data ranging from 10% to 90%, and the rest for testing. For both
datasets, multi-class classification is conducted, and accuracy score is used for
performance comparison. All experiments are conducted with support vector
classifier in Liblinear package! [31] with default settings.

Experimental Results. The experimental results are presented in Table 3.
Both V-RNE and A-RNE perform competitively with baseline models for these
two datasets while varying the train-test split from 10% to 90%. It shows the
effectiveness of the proposed Ranking Network Embedding models for learning
discriminative embedding vectors for classification. Specifically, both V-RNE
and A-RNE achieve better performance in USA-AIR, and A-RNE obtains the
best results in these two datasets across all training ratios. In particular, A-RNE
gives us 13.32% gain on average over the best baseline, i.e., LINE on USA-AIR.
Besides, A-RNE consistently achieves more excellent performance than V-RNE
as shown in the tables, which demonstrates that adversarial sampling method
contributes to learning more discriminative node representations.

5 Conclusion

This paper presented a novel scalable Ranking Network Embedding method,
which can explicitly encode node similarity ranking information into the embed-
ding vectors. Firstly, a vanilla RNE model was proposed with uniform negative
sampling method. Then, we improved the vanilla RNE model by unifying the
triplet sampling phase and the learning phase with the framework of GANs
which leads to an adversarial RNE model. The adversarial RNE model utilizes
a softmax generator to generate hard negatives for a given a target, which can
help strengthen the discriminator. Empirical evaluations prove the effectiveness
of the proposed method on several real-world networks with a variety of network
analysis tasks.
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