
Towards One Reusable Model for Various
Software Defect Mining Tasks

Heng-Yi Li, Ming Li(B), and Zhi-Hua Zhou

National Key Laboratory for Novel Software Technology, Nanjing University,
Nanjing 210023, China

{lihy,lim,zhouzh}@lamda.nju.edu.cn

Abstract. Software defect mining is playing an important role in soft-
ware quality assurance. Many deep neural network based models have
been proposed for software defect mining tasks, and have pushed for-
ward the state-of-the-art mining performance. These deep models usually
require a huge amount of task-specific source code for training to capture
the code functionality to mine the defects. But such requirement is often
hard to be satisfied in practice. On the other hand, lots of free source
code and corresponding textual explanations are publicly available in the
open source software repositories, which is potentially useful in model-
ing code functionality. However, no previous studies ever leverage these
resources to help defect mining tasks. In this paper, we propose a novel
framework to learn one reusable deep model for code functional repre-
sentation using the huge amount of publicly available task-free source
code as well as their textual explanations. And then reuse it for vari-
ous software defect mining tasks. Experimental results on three major
defect mining tasks with real world datasets indicate that by reusing this
model in specific tasks, the mining performance outperforms its counter-
part that learns deep models from scratch, especially when the training
data is insufficient.

Keywords: Software defect mining · Machine learning · Model reuse

1 Introduction

Software Quality Assurance (SQA) is vital in software engineering and one of
the biggest influencing factors is software defects (also referred as bugs). There
have been many ways to find bugs, such as conducting software testing. Recently,
software defect mining, which leverages data mining techniques to help identi-
fying the software defects, has shown its advantages in reducing the software
testing resources, and drawn significant attention.

Various software defect mining tasks can be employed to identify software
defects. The major tasks are: software clone detection, defect prediction and bug
localization. In software engineering, copy-pasting existing code snippets can
usually cause bug propagation. If one code snippet contains a bug, all other
c© Springer Nature Switzerland AG 2019
Q. Yang et al. (Eds.): PAKDD 2019, LNAI 11441, pp. 212–224, 2019.
https://doi.org/10.1007/978-3-030-16142-2_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16142-2_17&domain=pdf
https://doi.org/10.1007/978-3-030-16142-2_17

Towards One Reusable Model for Various Software Defect Mining Tasks 213

snippets similar to it may also exist the same bug [13]. Therefore, software clone
detection aims to mine such bugs by identifying the cloned code snippets. Apart
from that, defect prediction is to directly check if a certain software module
contains bugs before a software system releasing, while bug localization refers
to locate buggy source code based on bug reports written in natural language
submitted by the users after the system releasing.

/*Code1: factorial*/
public static void fac(int n)
{

if(n==0)
return 1;

else
return n*fac(n-1);

}

/*Code2: factorial*/
public static void fac(int n)
{

int i,re=1;
for(i=1;i<=n;i++)

re=re*i;
return re;

}

/*Code3: cumulative sum*/
public static void csum(int n)
{

int i,re=0;
for(i=1;i<=m;i++)

re=re+i;
return re;

}

Fig. 1. An example of three Java code snippets with comments. Code1 and Code2 are
similar with the same functionality shown by “factorial” though implemented in differ-
ent ways (i.e., for-loop and recursion). Code2 and Code3 are dissimilar in functionality
shown by “factorial” and “cumulative sum” though nearly the same in appearance.

Many methods have been proposed for these mining tasks. The most common
way is to design hand-crafted features for specific mining tasks, such as sequence
features, AST (Abstract Syntax Tree) features and PDG (Program Dependence
Graph) features in clone detection [1,7,11], software metrics in defect predic-
tion [3,9], bag-of-words features in bug localization [4,21]. Recently, deep neural
networks have been applied to tackle software defect mining tasks. Wei and
Li [18] address the clone detection problem with deep learning model equipped
with AST-based LSTM (Long Short Term Memory) and learning to hash. Huo
et al. [6] propose a novel deep model structure based on CNN (Convolutional
Neural Network) to learn unified features from both bug reports and source
code. They also improve it by taking LSTM to capture the sequential nature
of source code [5]. All these deep models have significantly pushed forward the
state-of-the-art performance in various software defect mining tasks.

To achieve such promising performance, deep models usually require a huge
amount of training data. However, acquiring sufficient number of training data
and their labels is usually difficult for software defect mining tasks. For example,
after a software system releasing, it takes long time for underlying bugs to be
exposed to users for firing bug reports, and hence the number of bug reports
that can be used to train the model is small; additionally, much human effort is
required to locate the buggy source code from the code bases. Similar problems
hold for software clone detection and defect prediction. Therefore, these proposed
deep models may not perform as well as they should be in practice.

On the other hand, there has been huge amounts of source code as well as
their corresponding textual explanations in the open source software repositories
(e.g., SourceForge1) and technical forums that discuss and share source code
1 https://sourceforge.net/.

https://sourceforge.net/

214 H.-Y. Li et al.

(e.g., Stack Overflow2). These data is publicly available, but is not collected and
preprocessed for any particular software mining tasks. One question arises: can
we leverage the huge amount of task-free data to help software defect mining
tasks with insufficient training data?

Intuitively, if the source code functionality is correctly modeled, it would be
apparent to determine whether the code behaves as it is expected to (i.e., whether
it contains defects). Thus, the key is to effectively model the functionality of
source code which can be reused in many software defect mining tasks to further
assist to mine the defect. However, it is sometimes difficult even for software
maintenance engineers to determine the source code functionality solely based
on the code itself [15], since the same functionality can be implemented in various
ways (e.g., summation implemented with for-loop and recursion) and source code
similar in appearance may carry different meanings, especially when it is freely
written. In this case, additional textual information (e.g., code comments, design
documents) may be further referred to. An example of three code snippets with
comments is given in Fig. 1 to show how the textual information helps.

In this paper, we propose a novel approach to learn one ReUsable deep Model
RUM for the functional representation of source code, which is trained with the
huge amount of publicly available source code resources. It is obvious that the
code functionality can be well captured with the help of textual information.
Unluckily, detailed textual information even comments for source code in specific
task is always missing. Therefore, our approach first leverages both source code
and their corresponding textual explanations which can be available in public
source resources to derive a text-enriched code functionality space. Based on this
space, a reusable code functional representation model RUM, which only lever-
ages source code, is constructed by aligning the learned representation towards
its counterpart in the text-enriched code functionality space. Such a reusable
model can be plugged into different software defect mining tasks with moderate
adaptation over the task-specific data to generate the text-enriched functional
representations even if no additional textual information available for the spe-
cific task. The experimental results on three major software defect mining tasks
(i.e., software clone detection, defect prediction and bug localization) with real
world datasets indicate that by using this model to generate functional represen-
tations for task-specific source code, the mining performance outperforms that
learns deep models from scratch, especially when the task-specific training data
is insufficient.

2 The Proposed Approach

The goal of the proposed approach is to learn a good code functional represen-
tation model using the huge amount of publicly available task-free source code
resources and then reuse it for many specific software defect mining tasks.

2 https://stackoverflow.com/.

https://stackoverflow.com/

Towards One Reusable Model for Various Software Defect Mining Tasks 215

Let O = {o1, o2, ..., oN} denotes the code-text set, where oi = (ci, ti), ci
and ti denote the i-th raw code snippet and corresponding textual comment
respectively, N is set size. Let C = {c1, c2, ..., cN} denotes the code set from O.

Phase One : Learning the Reusable Model RUM Phase Two: Reusing RUM

Text-enriched
Code Functionality Space

Text-enriched
Code Functionality Space

Text-enriched
Code Functionality Space

Classifier
Classifier
Classifier

Classifier
Classifier
Classifier

CNN layers

Classifier

CNN layers

Classifier

.
AUM

.
AUM RUMRUM

Similarity-preserving
Loss

Similarity-preserving
Loss

Similarity-preserving
Loss

Similarity-preserving
Loss

Approximation LossApproximation Loss

.
AUM RUM

Similarity-preserving
Loss

Similarity-preserving
Loss

Approximation Loss

.
AUM RUM

Similarity-preserving
Loss

Similarity-preserving
Loss

Approximation Loss

.
AUM RUM

Similarity-preserving
Loss

Similarity-preserving
Loss

Approximation Loss

Defect PredictionDefect Prediction

RUMRUM

RUMRUM

RUMRUM

RUMRUM

Fig. 2. The framework of learning and reusing RUM, containing two phases. In phase
one, we learn a feature mapping ψ in RUM with the help of feature mapping φ in
AUM. In phase two, we reuse ψ shown in red color in three software defect mining
tasks. (Color figure online)

The framework of the proposal approach is shown in Fig. 2. It contains two
phases. The first phase shown in the left part is to learn a ReUsable code func-
tional representation Model RUM which accepts source code input. With only
code information, semantic functionality is hard to model since the same func-
tionality can be implemented with different lexical or syntactic ways and similar
code functionalities are always with similar textual comments (e.g., factorial
and cumulative sum shown in Fig. 1). Therefore, we first build an AUxiliary
Model AUM to leverage both code and comments to learn the text-enriched
code functionality representation space, resulting in the feature mapping φ(c, t).
To further utilize the space, we design a approximation mechanism for RUM with
feature mapping ψ(c, t) to align the learned representation to its counterpart,
i.e., ψ(ci) ∼= φ(ci, ti), such that it can implicitly encode textual information.

In the second phase shown in the right part, we plug the reusable feature
mapping ψ(c) in RUM into different task-specific deep models to replace the
code feature extraction substructure, and adapt it towards the task with a small
amount of task-specific data. Here, we employ simple fine-tuning technique to
RUM in the purpose of verifying the feasibility of our approach. However, any
advanced model adaptation techniques can be employed and better performance
can be expected. To provide concrete examples on how to reuse RUM in specific
defect mining tasks, we select the aforementioned three major software defect
mining tasks, namely clone detection, defect prediction and bug localization:

– RUM for Clone Detection. Given a source code set (c1, ..., cN), the goal is
to predict if (ci, cj) belong to a clone pair. For this task, double substructures

216 H.-Y. Li et al.

of φ(·) are reused for pairwise input. The fully connected layers are followed
as the classifier to make a prediction. We denote this model as RUMcd.

– RUM for Defect Prediction. Given a source code set (c1, ..., cN), the goal
is to classify if ci is defective. For this mining task, we reuse the substructure
of ψ(·) and add fully connected layers as classifier. It is denoted as RUMdp.

– RUM for Bug Localization. Given a source code set (c1, ..., cM) and bug
report set (r1, ..., rN), the goal is to identify the association yij between ci
and rj . For this mining task, we employ the deep model proposed in [6].
Especially, we replace the substructure responsible for source code with the
reusable structure ψ(·) in RUM. We denote this model as RUMbl.

It is noteworthy that any software mining tasks, even not for mining defects,
may benefit from RUM if they need to model the code functionality. The key
of our approach lies in how to derive the reusable text-enriched code functional
representation model, i.e., how to learn the feature mapping φ(·, ·) in AUM and
the feature mapping ψ(·) in RUM, which will be discussed in the following.

2.1 Auxiliary Model

Auxiliary model AUM is designed to learn a feature mapping φ(·, ·) from oi =
(ci, ti) to a text-enriched functionality space where the source code with similar
functionality should be mapped close to each other and dissimilar ones should
be apart. According to [10], such learning task can be formalized as a binary
classification problem that attempts to learn a prediction function f : O×O �→ Y.
yij ∈ Y = {0, 1} indicates whether a pair of input oi, oj ∈ O is similar or not.
Specifically, we employ L1-distance to weight the affinity of input pairs, and the
probability of a pair (oi, oj) to be similar can be computed as f = σ(αT|φ(oi) −
φ(oj)|), where σ is the sigmoid activation function and α is the parameter to be
learned. We solve the learning problem by optimizing the following regularized
similarity-preserving loss function:

min
f

L + λΩ(f), (1)

where L is the cross-entropy loss, Ω(f) is the L2 regularization term and λ is
the trade-off parameter. This objective can be effectively optimized using SGD.

Note that the number of source code with similar functionality is usually
far less than that with dissimilar functionality. Such imbalanced distribution
may severely affect the quality of learned code functionality space. To reduce
the influence, we impose a larger cost for miss-classifying the similar code pairs
(denoted by costfn) and a smaller cost for miss-classifying the dissimilar code
pairs (denoted by costfp). Therefore, L can be defined as:

L =
∑

i,j

(costfp(1 − yij) log(1 − f(oi, oj) + costfnyij log f(oi, oj)). (2)

Towards One Reusable Model for Various Software Defect Mining Tasks 217

.

AUM

Similarity-preserving Loss

Fully connected layers

CNN for
Natural

Language

..

.
CNN for

Programming
Language

Fully connected layers

CNN for
Natural

Language

CNN for
Programming

Language

Weight
Sharing

Learning
feature mapping

Learning classifierClassifierClassifierClassifier

Fig. 3. The siamese structure of AUM than is weighted sharing for (ci, ti) and (cj , tj).

We instantiate the auxiliary network with siamese convolutional neural net-
work. Siamese network [2], consisting of two identical neural networks with their
weights tied, is usually employed to differentiate the paired input data points
[10,12]. Thus, we leverage the siamese structure to help modeling the similarity
of source code pair. The network structure of AUM is shown in Fig. 3. Source
code is always written in programming language in which multiple continues
statements is constructed in a block to convey the information, e.g., for-loops
and while-loops. While text is written in natural language in a flat way that
several words together can express the complete meanings. Thus, we design two
different feature extraction modules for each in AUM. In the code feature extrac-
tion layers, since convolutional neural networks have shown great performance
in [6], we use the same convolution layers with specific convolution operations
for code structure to extract the semantic features for source code. In the text
feature extraction layers, we use the standard approach in [8] to extract the text
features. Next, we use fully connected layers to further fuse the code features
and text features and get final representations. The above feature extraction
layers are weight-shared for a pair of input (ci, ti) and (cj , tj) to get unbiased
representations. In the end, fully connected layers followed by a sigmoid layer are
constructed to build a classifier based on fused representations for optimization
objective (i.e., similarity-preserving loss).

2.2 Reusable Model

Reusable model RUM aims to learn a feature mapping ψ(·) from ci to the same
text-enriched functionality space by aligning it to its text-enriched counterpart
oi = (ci, ti). To achieve it, we force ψ(ci) ∼= φ(ci, ti) by imposing approximation
loss over the distances between ψ(ci) and φ(ci, ti), as defined in Eq. (3):

Q =
∑

i

||ψ(ci) − φ(ci, ti)||22. (3)

218 H.-Y. Li et al.

By minimizing Eq. (3), we can squeeze ψ(ci) into the neighborhood of φ(ci, ti)
from all directions in the text-enriched space. However, when some hard cases
occur, it is difficult to push some ψ(ci) towards φ(ci, ti), it may end up with a
relatively large neighborhood. In this case, for some similar code pairs ci and cj ,
even if ψ(ci) and ψ(cj) may be squeezed into the neighborhoods of φ(ci, ti) and
φ(cj , tj), they may still be distant by mapping them from the opposite direction
of their counterparts. To overcome it, we also impose a similarity-preserving loss
over source code pairs ci and cj , as defined in Eq. (4):

L′ =
∑

i,j

(costfp(1 − yij) log(1 − g(ci, cj)) + costfnyij log g(ci, cj)). (4)

Therefore, we solve the problem of learning the reusable model RUM by opti-
mizing the following regularized objective loss function,

min
g

Q + βL′ + λΩ(g), (5)

where Ω(g) is the L2 regularization term, β and λ′ are the trade-off parameters.
We instantiate this learning task also by siamese convolutional neural net-

work. The network structure of RUM is the same as that of AUM except for the
text feature extraction layers since RUM only takes source code as the input.
Similar to AUM, the feature extraction layers are weight-shared and a classifier
is built based on the approximation representations for optimization objective.

3 Experiment

In the experiment, we first show how good the functional representation learned
by RUM is and then we show the benefit of reusing RUM for various software
defect mining tasks.

3.1 How Good Is RUM

In this section, we conduct experiments on the real-world dataset Stack Overflow
downloaded from Stack Exchange3 to evaluate the performance of identifying
functional similar code pairs based on the learned representations by RUM.

The dataset contains 8237 questions (text) and 8237 answers (code), in which
each question is along with a answer. In order to get the similarity label, we
label dual problems that are with similar question as similar pairs and generate
dissimilar pairs from non-dual problems, which totally get 16839 pairs.

Since RUM is benefit from the text-enriched functionality space, we compare
RUM with RSiaCNN which learns functional representations only from code. In
both, the network parameters are chosen as follow: the convolution filter size in
code feature extraction layers is 3, 4 with 100 feature maps each and in text

3 https://archive.org/details/stackexchange.

https://archive.org/details/stackexchange

Towards One Reusable Model for Various Software Defect Mining Tasks 219

feature extraction layers is 2, 3 with 100 feature maps each. We set experiment
dropout probability p = 0.5 and activation function ReLU(x) = max(x, 0).

The performance ratio of RSiaCNN and RUM over AUM in terms of AUC
is 91.4% and 95.4%, respectively. Thus, the performance can be improved by
nearly 4% if trained with the help of text-enriched space. The similar conclusion
can be observed in terms of F1 which improved by 6%. Next, we will verify the
effectiveness of RUM on three major defect mining tasks.

3.2 Reusing RUM for Clone Detection

BigCloneBench [16] is a widely used benchmark dataset with known true and
false clones. Following [18], we extract 6282 code snippets as dataset. Since
BigCloneBench is highly imbalanced, we measure the performance in terms of
AUC, F1 and Recall. Besides, Top k Rank (k = 10) is recorded to measure
the retrieval performance. We first compare RUMcd to the state-of-the-art deep
models DeepClone [19] and CDLH [18]. Further more, we compare with our
variants SiaCNN, which is with the same structure as RSiaCNN but trained from
scratch, and RSiaCNNcd to evaluate the effective of enriched text information.

Table 1. Top 10 Rank and AUC of all methods on training data with different sizes.

Methods Top 10 Rank AUC

50 100 250 500 50 100 250 500

DeepClone .894 ◦ .894 ◦ .894 ◦ .894 ◦ .483 ◦ .483 ◦ .483 ◦ .483 ◦
CDLH .795 ◦ .774 ◦ .794 ◦ .858 ◦ .500 ◦ .500 ◦ .500 ◦ .500 ◦
SiaCNN .659 ◦ .698 ◦ .753 ◦ .852 .507 ◦ .533 ◦ .650 ◦ .757 ◦
RSiaCNNcd .808 ◦ .866 ◦ .876 ◦ .905 .609 ◦ .665 .781 .829

RUMcd .912 .917 .933 .935 .621 .666 .794 .838

We randomly sample 5000 code for training and 500 code for testing, resulting
in 25000000 (5000 × 5000) training pairs and 250000 (500× 5000) test pairs. To
evaluate the performance on small datasets, we use only small sizes of the train
pairs, assuming N (N = 50, 100, 250, 500, 750, 1000 respectively), to train and
test on all test pairs which is large enough to prove our performance.

All experiments are randomly repeated 30 times and we report the average
results. The performance with respect to Top k Rank and AUC of all methods on
different training samples are tabulated in Table 1 where the best performance on
each dataset is boldfaced. The performance with respect to F1 score is depicted
in Fig. 4. We conduct Pairwise t-test at 95% confidence level. The compared
methods that are significant inferior than our approach will be marked with “◦”
and significant better will be marked with “•”.

From the results in Table 1, we can observe that when training size is very
small, e.g. 100, RUMcd can achieve the best performance (0.917) in terms of

220 H.-Y. Li et al.

500.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

1000.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

2500.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

 DeepClone CDLH SiaCNN RSiaCNNcd RUMcd

500
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Fig. 4. F1 score of all methods on training data with different size.

Top 10 Rank which improves CDLH (0.774) by 14.3% and SiaCNN (0.698) by
21.9% since they are easy to overfit. When compared to the unsupervised method
DeepClone which trained with all code, we still get 1.8% improvement with only
50 training samples. Similar traces can be found in Fig. 4. The superiority of
RUM is obvious. We further evaluate effectiveness of text information. Indicted
in Table 1, the performance of RUMcd is better than RSiaCNNcd and improves
by 3%–9% in terms of Top 10 Rank. It shows that encoded text information is
beneficial when the code information is not enough. Taking a concrete example
of the cloned pair Code1 and Code2 in Fig. 1, we can get the similar enriched
representations by using RUM with the help of comments “factorial” though
they are very dissimilar in lexical structure.

3.3 Reusing RUM for Defect Prediction

For defect prediction task, we conduct experiments on the widely used bench-
mark datasets [22]. It contains source code files and detailed software metric
information, such as complexity metrics (e.g., number of methods calls, total
lines of code), structure of AST and so on. It also gives the number of defects
that are reported in the first six months before and after releasing, named as
pre-release defects and post-release defects respectively. In this experiment, we
use three different projects as our datasets and use the number of post-release
defects as prediction label. The statistics of the datasets can be found in Table 2.

As indicated in Table 2, the number of defective source code is very imbal-
anced. Therefore, we use AUC to evaluate the performance. We compare
RUMdp with a baseline Logistic Regression LR and two state-of-the-art methods

Table 2. Statistics of three datasets in defect prediction.

Datasets # attributes # instances # defective

Debug 198 194 13%

UI 198 1166 4%

SWT 198 841 17%

Towards One Reusable Model for Various Software Defect Mining Tasks 221

DBN [20] and AST-DBN [17]. Besides, we compare with two variants RSiaCNNdp

and P-CNN [6] which is with the same code feature extraction structure as RUM
but trained from scratch. For each dataset, we randomly sample 30% data to
train and the remaining data to test. All experiments are randomly repeated 30
times and the average results are reported in Fig. 5.

Debug
0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

AU
C

UI
0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

SWT
0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

DBN AST-DBN LR P-CNN RSiaCNNdp RUMdp

Fig. 5. AUC of compared methods on all datasets in defect prediction.

It can be observed from Fig. 5 that RUMdp achieves the best average perfor-
mance (0.821) among all compared approaches. Compared with LR trained with
software metric features (0.664), RUMdp can improve the average performance by
15.7%. When compared with deep models DBN (0.507) and AST-DBN (0.530),
RUMdp can also improve by 31.4% and 29.0%. It is notable that the performance
of DBN and AST-DBN is even worse than LR, we explain that DBN extracts
code features in an unsupervised way. To evaluate the effectiveness of reusable
code functional representations, we use P-CNN for comparison. It is clearly that
RUMdp can improve the performance of P-CNN (0.780) by 4.1%. Also, we com-
pare RUMdp with RSiaCNNdp to evaluate the effectiveness of encoded text infor-
mation. Though RUMdp is fine-tuned without any text input, it can still improve
RSiaCNNdp (0.807) by 1.4% on average. Therefore, the encoded text information
is useful for finding more defective modules. Here we give a more intuitive expla-
nation for the usefulness of text. If one aims to get factorial function but wrongly
writes Code3 in Fig. 1, the encoded text information “cumulative summation”
in the reusable representation can help the detection.

3.4 Reusing RUM for Bug Localization

In bug localization, we extract different well-known open source software projects
and the ground truth of relevance of bug reports and source files using bug
tracking system (Bugzilla) and version control system (Git), following [6]. We
use matched code-report pair as positive instance. To generate the negative
instance, we label the reports with irrelevant code files as negative. Table 3 shows
the detailed information of used datasets.

We use Top k Rank (k = 10) to measure our performance, which has been
widely applied for evaluation in information retrieval based bug localization

222 H.-Y. Li et al.

Table 3. Statistics of three datasets in bug localization.

Datasets #source files #bug reports #total matches

Debug 249 132 301

UI 1152 314 698

JDT 1980 1005 1610

problems [14,21]. We compare our method with the state-of-the-art methods
NP-CNN [6], LSTM-CNN [5] and RSiaCNNbl. For each dataset, we randomly
sample 30% data to train our model, and test on the remaining data. All exper-
iments are randomly repeated 30 times and we report the average results. The
performance is depicted in Fig. 6.

Debug
0.280

0.290

0.300

0.310

0.320

0.330

0.340

To
p1

0R
an

k

UI
0.150

0.200

0.250

0.300

0.350

0.400

0.450

JDT
0.160

0.165

0.170

0.175

0.180

0.185

0.190
NP-CNN LSTM-CNN RSiaCNNbl RUMbl

Fig. 6. Top 10 Rank of compared methods on all datasets in bug localization.

Figure 6 indicates that RUMbl achieves the best average Top k Rank at 0.317,
which improves the average performance of NP-CNN (0.279) by 3.8% and LSTM-
CNN (0.234) by 8.3%. It should be notable that LSTM-CNN performs better
than NP-CNN when the number of training samples is small, we explain that
LSTM without any dropout layers is more easy to overfit. Further to evaluate
the effectiveness of text information, we use RSiaCNNbl for comparison, which
is pretrained with only source code. It can be observed that RUMbl improves
RSiaCNNbl (0.309) by 0.8% on average in terms of Top k Rank, indicating that
encoded text information is also helpful to locate buggy source files. For a more
clear explanation, assuming that we are given the bug report “I always get the
same value for factorial of n” and one aims to locate some factorial function
containing bugs, then the encoded text “factorial” in code representations is
consistent to report description “factorial” and is useful in localization.

4 Conclusion

In this paper, we propose a novel framework to learn one deep model for the code
functional representation using the huge amount of publicly available task-free

Towards One Reusable Model for Various Software Defect Mining Tasks 223

source code and their textual comments, and reuse it for many software defect
mining tasks. Experimental results on three major software defect mining tasks
indicate that by reusing this model in specific task, the mining performance
outperforms its counterpart that learns deep models from scratch, especially
when the task-specific training data is insufficient.

Acknowledgment. This research was supported by National Key Research and
Development Program (2017YFB1001903) and NSFC (61751306).

References

1. Alemi, M., Haghighi, H., Shahrivari, S.: CCFinder: using Spark to find clustering
coefficient in big graphs. J. Supercomput. 73(11), 4683–4710 (2017)

2. Bromley, J., Guyon, I., LeCun, Y., Säckinger, E., Shah, R.: Signature verification
using a Siamese time delay neural network. In: Advances in Neural Information
Processing Systems, pp. 737–744 (1993)

3. D’Ambros, M., Lanza, M., Robbes, R.: Evaluating defect prediction approaches:
a benchmark and an extensive comparison. Empir. Softw. Eng. 17(4–5), 531–577
(2012)

4. Gay, G., Haiduc, S., Marcus, A., Menzies, T.: On the use of relevance feedback in
IR-based concept location. In: Proceedings of the 25th IEEE International Confer-
ence on Software Maintenance, pp. 351–360 (2009)

5. Huo, X., Li, M.: Enhancing the unified features to locate buggy files by exploiting
the sequential nature of source code. In: Proceedings of the 26th International Joint
Conference on Artificial Intelligence, pp. 1909–1915 (2017)

6. Huo, X., Li, M., Zhou, Z.H.: Learning unified features from natural and program-
ming languages for locating buggy source code. In: Proceedings of the 25th Inter-
national Joint Conference on Artificial Intelligence, pp. 1606–1612 (2016)

7. Jiang, L., Misherghi, G., Su, Z., Glondu, S.: DECKARD: scalable and accurate
tree-based detection of code clones. In: Proceedings of the 29th International Con-
ference on Software Engineering, pp. 96–105 (2007)

8. Johnson, R., Zhang, T.: Effective use of word order for text categorization with
convolutional neural networks. In: Proceedings of the 2015 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies, pp. 103–112 (2015)

9. Kim, S., Zimmermann, T., Whitehead Jr., E.J., Zeller, A.: Predicting faults from
cached history. In: Proceedings of the 29th International Conference on Software
Engineering, pp. 489–498 (2007)

10. Koch, G., Zemel, R., Salakhutdinov, R.: Siamese neural networks for one-shot
image recognition. In: Proceedings of the 32nd International Conference on
Machine Learning Deep Learning Workshop, vol. 2 (2015)

11. Komondoor, R., Horwitz, S.: Using slicing to identify duplication in source code.
In: Cousot, P. (ed.) SAS 2001. LNCS, vol. 2126, pp. 40–56. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-47764-0 3

12. Mueller, J., Thyagarajan, A.: Siamese recurrent architectures for learning sentence
similarity. In: Proceedings of the 30th AAAI Conference on Artificial Intelligence,
pp. 2786–2792 (2016)

13. Roy, C.K., Cordy, J.R.: A survey on software clone detection research. Queen’s
Sch. Comput. TR 541(115), 64–68 (2007)

https://doi.org/10.1007/3-540-47764-0_3

224 H.-Y. Li et al.

14. Saha, R.K., Lease, M., Khurshid, S., Perry, D.E.: Improving bug localization using
structured information retrieval. In: Proceedings of the 28th IEEE/ACM Interna-
tional Conference on Automated Software Engineering, pp. 345–355 (2013)

15. de Souza, S.C.B., Anquetil, N., de Oliveira, K.M.: A study of the documentation
essential to software maintenance. In: Proceedings of the 23rd Annual International
Conference on Design of Communication: Documenting & Designing for Pervasive
Information, pp. 68–75 (2005)

16. Svajlenko, J., Islam, J.F., Keivanloo, I., Roy, C.K., Mia, M.M.: Towards a big data
curated benchmark of inter-project code clones. In: Proceedings of the 30th IEEE
International Conference on Software Maintenance and Evolution, pp. 476–480
(2014)

17. Wang, S., Liu, T., Tan, L.: Automatically learning semantic features for defect
prediction. In: Proceedings of the 38th International Conference on Software Engi-
neering, pp. 297–308 (2016)

18. Wei, H.H., Li, M.: Supervised deep features for software functional clone detection
by exploiting lexical and syntactical information in source code. In: Proceedings of
the 26th International Joint Conference on Artificial Intelligence, pp. 3034–3040
(2017)

19. White, M., Tufano, M., Vendome, C., Poshyvanyk, D.: Deep learning code frag-
ments for code clone detection. In: Proceedings of the 31st IEEE/ACM Interna-
tional Conference on Automated Software Engineering, pp. 87–98 (2016)

20. Yang, X., Lo, D., Xia, X., Zhang, Y., Sun, J.: Deep learning for just-in-time defect
prediction. In: Proceedings of the 2015 IEEE International Conference on Software
Quality, Reliability and Security, pp. 17–26 (2015)

21. Zhou, J., Zhang, H., Lo, D.: Where should the bugs be fixed? More accurate infor-
mation retrieval-based bug localization based on bug reports. In: Proceedings of
the 34th International Conference on Software Engineering, pp. 14–24 (2012)

22. Zimmermann, T., Premraj, R., Zeller, A.: Predicting defects for Eclipse. In: Pro-
ceedings of the 3rd International Workshop on Predictor Models in Software Engi-
neering, p. 9 (2007)

	Towards One Reusable Model for Various Software Defect Mining Tasks
	1 Introduction
	2 The Proposed Approach
	2.1 Auxiliary Model
	2.2 Reusable Model

	3 Experiment
	3.1 How Good Is RUM
	3.2 Reusing RUM for Clone Detection
	3.3 Reusing RUM for Defect Prediction
	3.4 Reusing RUM for Bug Localization

	4 Conclusion
	References

