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Abstract. Graph embedding has attracted increasing attention due to
its critical application in social network analysis. Most existing algo-
rithms for graph embedding utilize only the topology information, while
recently several methods are proposed to consider node content informa-
tion. However, the copious information on edges has not been explored. In
this paper, we study the problem of representation learning in node/edge
attributed graph, which differs from normal attributed graph in that edges
can also be contented with attributes. We propose GERI, which learns
graph embedding with rich information in node/edge attributed graph
through constructing a heterogeneous graph. GERI includes three steps:
construct a heterogeneous graph, take a novel and biased random walk
to explore the constructed heterogeneous graph and finally use modified
heterogeneous skip-gram to learn embedding. Furthermore, we upgrade
GERI to semi-supervised GERI (named SGERI) by incorporating label
information on nodes. The effectiveness of our methods is demonstrated
by extensive comparison experiments with strong baselines on various
datasets.

Keywords: Graph embedding · Node/edge attributed graphs ·
Network analysis

1 Introduction

Graph embedding, aiming to learn low-dimensional representations for nodes in
graphs, has attracted a lot of attention recently due to its success in network
learning tasks such as node classification [14], and link prediction [10]. Inspired by
natural language models [9], Deepwalk is proposed to learn node embedding from
network topology [11]. Then LINE [16] proposed to learn embedding by encoding
first-order proximity and second-order proximity between nodes. Node2vec [2]
improved Deepwalk [11] by introducing a more flexible random walk.

There is a new trend to integrate multiple types of input information includ-
ing network topology and node content [3,20], neighbors homophily [22] or node
labels [7,19,21]. In reality, networks are complex in terms that not only nodes
but also edges contain rich information. For example, in a coauthor network,
the nodes representing authors can be associated with a feature vector, which
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contains information like affiliations or education background or research inter-
est. Also, the edges indicating co-author relationships can be contented by the
jointly published papers, which include key-words like classification, matrix com-
pletion etc. It is essential that graph embedding should learn from both topology
information and node/edge content information.

There are several previous works considering attributed network embedding,
where generally attributed network [5,12] is the network only with node content
information. PPNE [6] uses node content information by enforcing representa-
tions to preserve the similarities between nodes. LANE [3] learns embedding
by modelling node proximity in both attributed network space and label space.
PLANETOID [21] uses deep neural networks to do semi-supervised representa-
tion learning, which utilizes text information as well as label information, and it
considers multi-class classification problem. Generally, existing approaches have
a common limitation: they cannot incorporate the edge content information and
only consider node attributes.

In this paper, we extend the problem of attributed network embedding to
a more general case, named node/edge attributed graph embedding, where not
only node, but also edges can contain rich information. We propose a general
framework for graph embedding with rich information (called GERI), which can
learn scalable representations for nodes in networks with rich text information on
nodes/edges. By incorporating label information during representation learning
process, we extend GERI to semi-supervised GERI (named SGERI). GERI and
its variant are composed of three steps. Firstly, a homogeneous graph with text
information on nodes/edges is converted into a heterogeneous one. The main
advantage of this conversion is that it naturally integrates graph topology with
node/edge content information or label information (only for SGERI), giving
us an opportunity to exploit all such information and enhance the performance
of learned representations. Then, a novel discriminant and flexible random-walk
method is proposed to preserve the high-order similarity between nodes targeted
for embedding, by exploring the constructed network in a mixture of the breadth
first search (BFS) and the depth first search (DFS) manner. Finally, modified
heterogeneous skip-gram model is used to learn the embedding for the nodes in
the original network.

The evaluation of obtained graph embedding is conducted with multi-
label/multi-class classification task on three datasets with nodes/edges infor-
mation. The results show that GERI consistently and significantly outperforms
state-of-the-art algorithms for various dimensions on all datasets in the unsuper-
vised setting. SGERI in semi-supervised setting has the better performance than
the semi-supervised methods including LANE and PTE. What’s more, GERI,
and SGERI are also computationally efficient since its major sections can be
easily parallelized.

2 Related Work

The study in unsupervised representation learning with only the topology infor-
mation has a big family of developed approaches [13]. The network topology is
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usually represented by an adjacency matrix, A(|V |∗|V |). To obtain node represen-
tation in R

d, dimensionality reduction techniques like singular value decomposi-
tion or principal component analysis can be applied on graph Laplacian matrix
and Modularity matrix [18]. However, the poor scalability and efficacy of these
approaches makes them difficult to be applied to large-scale networks. Recently,
another stream of work addresses the unsupervised representation learning of
nodes in large-scale graph with an inspiration from neural language processing.
Deepwalk [11] and node2vec [2] exploit word2vec [8,9] to learn embedding from
word-context pairs sampled by random walks in the graph. And LINE [16] is pro-
posed to explicitly preserve the first-order and second-order proximity between
nodes.

The methods for semi-supervised representation learning with only the topol-
ogy are also developed in order to incorporate label information. MMDW [19]
jointly optimizes the max-margin classifier and the embedding learning model
formulated as matrix factorization. Similarly, DDRW [7] jointly learns a classifier
and vertex representation by combining the loss of SVM and Skip-gram model.

Then we introduce works which can exploit both network topology and node
features information. TADW [20] considers node content information by decom-
posing an approximated word-context matrix, with the help of node informa-
tion matrix as side information. HSCA [22] also follows matrix decomposition
model and proposes to enforce homophily between nodes. An obvious weakness
of both methods is that they require matrix operation like SVD decomposition,
which prohibits them from dealing with large scale graphs. PPNE [6] is another
method which belongs to this category. It proposes to preserve property sim-
ilarity between nodes by adding inequality constraints or numeric constraints.
Other works in this topic are semi-supervised. Yang et al. propose Planetoid for
learning the representation for each graph node to jointly predict the class label
and the neighborhood context in the graph [21], but the model is only designed
for multi-class classification problem. LANE [3] learns embedding by modelling
node proximity in both attributed network space and label space.

However, all the above-mentioned approaches are not able to incorporate
information on edges, which can be integrated by our proposed model. In the first
step of our model, we construct a heterogeneous graph to integrate information
in both node and edges seamlessly.

3 Problem Formulation

Formally, let G = (V,E,TV ,TE) denotes a network with rich content infor-
mation for nodes and edges. More specifically, V = {v1, v2, . . . , v|V |} is a set of
nodes, and E = {e = (vi, vj) : vi, vj ∈ V } is a set of edges linking two nodes.
TV is node content attributes, e.g., the word occurrence matrix for nodes, where
each entry TV (i, k) indicates the occurrence of word wk associating with node
vi, and TV (i, k) = 0 for the absence of wk in vi’s content. TE is the edge content
attributes, e.g., word occurrence matrix for edges, where each entry TE(i, j, k)
indicates the occurrence of word wk on edge connecting node vi and vj , and
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TE(i, j, k) = 0 for the absence. The purpose of our work is to learn a low-
dimensional representation vector v ∈ R

d for each node v ∈ V , by considering
the network topology and rich text information on nodes (TV ) and edges (TE).
Note that TV and TE can be constructed by any attributes, not just text words
that are used for simplifying model explanation.

Definition 1: Node/edge attributed graph: It differs from normal
attributed graph in that not only nodes, but also edges can be associated with
attributes.

Definition 2: Target nodes, Bridge nodes and Label nodes: Target nodes
are the nodes in V in the original homogeneous network G, for which embedding
will be learned. When converting G into a heterogeneous one, bridge nodes are
created to incorporate the text information on nodes/edges, for assisting the
embedding learning of target nodes. An example is shown in Fig. 1. The details
of bridge nodes construction will be introduced in Sect. 4.1.

4 Method

4.1 GERI

Heterogeneous Network Construction. Given an attributed network G =
(V,E,TV ,TE), we construct a bipartite heterogeneous network (V,U,Ehe),
where V includes target nodes, U contains bridge nodes, Ehe are edges between
V and U . Bridge nodes are the set of words, U = {w1, w2, . . . , w|U |}, existing in
node and edge text information.

An edge in Ehe connects a target node vi and a bridge node wk under two
circumstances: (1) vi and wk are connected when TV (i, k) �= 0. That is to say,
a target node vi is connected with a bridge node wk if word wk occurs in the
content information of node vi. The weight associating with the edge is the value
of TV (i, k). (2) vi and vj are both connected to wk, when TE(i, j, k) �= 0. In
other words, target node vi and vj are both connected with a bridge node wk if
word wk occurs in the content information of the edge connecting vi and vj .

Fig. 1. Example of converting a homo-
geneous network (left) to a hetero-
geneous network (right) with bridge
nodes.

Fig. 2. Three cases of random walk
in heterogeneous network, giving that
random walk just reached v from t.
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Then, the network our algorithm works on is Ghe = (V,U,Ehe, E), which
includes Ehe and original E, and is associated with a mapping function ϕ(v):
V &U → T = {target, bridge}. A toy example is shown in Fig. 1. One promi-
nent advantage of using the constructed heterogeneous network is that the text
information is integrated seamlessly with the original network. There is no loss
of information.

Modified Heterogeneous Skip-Gram. Given Ghe = (V,U,Ehe, E), our goal
is to learn a mapping: v → R

d for target node v ∈ V . Besides, a bridge node
can be also mapped to feature vectors in R

d. We use X to represent the latent
feature vector for V &U and X ∈ R

(|V |+|U |)∗d. Inspired by metapath2vec [1],
which formulated heterogeneous skip-gram and learn representation for nodes
from meta-path. We maximizes the log-probability of observing network neigh-
borhoods for all the nodes conditioned on their feature representation, and we
formulate modified heterogeneous skip-gram in our constructed heterogeneous
network as a maximum likelihood optimization problem with objective function
defined as follows:

arg max
X

∑

v∈V

∑

t∈T

∑

n∈Nt(v)

log(P (n|v;X)) + λ
∑

v∈U

∑

t∈T

∑

n∈Nt(v)

log(P (n|v;X)) (1)

where Nt(v) is the neighborhoods of node v, and has the type of t. As mentioned
before, t ∈ T = {target, bridge}. The first and second part of the objective is the
log-probability of observing network neighborhoods for target nodes and bridge
nodes, respectively. λ is a balance parameter, controlling the weight of second
part. It shows that λ does have a significant influence on the performance. We
approximate P (n|v;X) by negative sampling [9]. Then we use stochastic gradient
ascent to get the X. We formulate log(P (n|v;X)) as:

log(P (n|v;X)) = log(σ(Xn · Xv)) +
M∑

m=1

Eum∼P (u)[log(σ(−Xum · Xv))] (2)

where σ(x) = 1
1+exp(−x) , and P (u) is the empirical unigram distribution defined

on all nodes by viewing both target and bridge nodes homogeneously, where
negative samples um will be drawn M times regardless of their types. Combining
Eqs. (1) and (2), we can get the objective function for GERI.

An important component in the objectives of GERI is neighborhood
Nt(u), which has a significant influence on the embedding results. Inspired by
node2vec [2], which proposed a concept of flexible neighborhood in homogeneous
network, we propose a novel randomized procedure that can sample neighbor-
hood of a source node in our constructed heterogeneous network.

Novel Sampling Strategy. Following but differing from node2vec, our pro-
posed sampling method can explore the heterogeneous graph in a mixture of
breadth first search (BFS) and depth first search (DFS), such that better neigh-
bors of nodes can be obtained. Our sampling method is superior to the state-of-
the-art sampling methods because the search method in node2vec [2] is designed
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for homogeneous network and the existing sampling strategy in PTE [15] can
only preserve the low proximity between nodes, which is usually not desirable.

Consider a random walk that just reached node v from node t in Fig. 2. Then
it needs to decide where to go in the next step, which depends on the transition
probability βvx between node v and next node x, and the types of previously
visited node v and t.

We define the transition probability βvx in three cases:

Case 1: node t and v are both target nodes, as shown in the left example of
Fig. 2. The next node to visit from v can be a target node, or a bridge node.
We introduce three parameters p1, q1, and r1 to guide the walk, and discuss
their meanings later. Given the weight evx between node v and x, the transition
probabilities βvx is defined as:

βvx =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

p1 ∗ evx if dtx = 0
1 ∗ evx if dtx = 1
q1 ∗ evx if dtx = 2, x ∈ V target nodes
r1 ∗ evx if dtx = 2, x ∈ U bridge nodes

where dtx denotes the shortest path distance between t and x.

Case 2: node t is a target node and v is a bridge node (the middle example in
Fig. 2). In this case, we don’t allow the walk to go back and expect the walk to
explore more target nodes because we focus more on the relationship between a
target node and other target nodes. βvx is defined as:

βvx =

{
0 if dtx = 0
1 ∗ evx if dtx �= 0

Case 3: node t is a bridge node and node v is a target node (the right example
in Fig. 2). We introduce three parameters p2, q2, and r2 to guide the walk. The
transition probabilities βvx is as follows:

βvx =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

p2 ∗ evx if dtx = 0
1 ∗ evx if dtx = 1
q2 ∗ evx if dtx = 2, x ∈ V target nodes
r2 ∗ evx if dtx = 2, x ∈ U bridge nodes

In the following, we discuss the meaning of the parameters and their impli-
cations.

Back parameter p. p1 and p2 control the probability to revisit the node
that has been visited in the second last step. Setting it to a small value means
that the walk is less likely to go back. However, setting it to a large value (>1)
means the walk is more likely to visit the local neighbors of the source node.
Then, it is more like the BFS search.

Out-target parameter q. q1 and q2, on the one hand, control the likelihood
of visiting target nodes in the random walk. If q1(q2) is greater than r1(r2), then
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Algorithm 1. GERI algorithm
Require: G = (V, E,TV ,TE), Dimensions d, walks per vertex γ, window size τ , walk

length l, λ, and p, q,r
Ensure: matrix of nodes representation Θ ∈ R

|V |∗d

1: Initialize Θ by standard normal distribution
2: Construct Ghe = (V, U, Ehe, E)
3: β=PreprocessBiasWeight(Ghe, p, q, r)
4: for iter = 1 to γ do
5: φ=shuffle(V )
6: for all nodes v ∈ φ do
7: walk=BiasedRandomWalk(Ghe, β, v, l)
8: trainpairs=GenerateSkipGramTraining(walk, τ)
9: for (v1, v2) ∈ trainpairs do

10: if v1 is a target node then
11: SGD(k,d,(v1, v2),η)
12: else
13: SGD(k,d,(v1, v2),λη)

14: return Θ

the random walk is more likely to visit target nodes, which means target nodes
play a more important role in the random walk. On the other hand, q1 and q2
control the depth of exploring the graph. If q1 and q2 are large, then the random
walk is more likely to go as deep as possible, which is like DFS search.

Out-bridge parameter r. Contrary to q, r controls the likelihood of visiting
bridge nodes in the random walk. If q1(q2) is less than r1(r2), then the random
walk is more likely to visit target nodes. Similar to q, r controls the probability to
explore the graph deeply. If it’s high (>1), the walk is more like DFS. Otherwise,
the walk is more like BFS.

In practice, since each pair of p1(p2), q1(q2) and r1(r2) has the same meaning,
we set p1 = p2 = p, q1 = q2 = q and r1 = r2 = r.

GERI Algorithm and Complexity. We show the pseudo-code of GERI in
Algorithm 1. It shows that GERI includes three steps: construct heterogeneous
graph, conduct biased random walk, and then use modified heterogeneous skip-
gram to learn embedding. The overall complexity of GERI is O(|V |∗γ∗l2), linear
w.r.t. |V |.

4.2 SGERI

GERI can be easily extended to consider node label information, resulting a semi-
supervised GERI (named SGERI), which works on G

′
he = (V,U, L,Ehe, E

′
he, E),

where L = (l1, l2, . . . , lk) represents the labels of nodes (training data) in V ,
k denotes the number of labels for V and E

′
he represents the edges between V

and L.
Similar to GERI, the complexity of SGERI is also linear with respect to V

and is also easily parallelizable and can be executed asynchronously.



176 G. Sun and X. Zhang

5 Experiments

5.1 Dataset

We employ three benchmark networks with text information on nodes/edges.
The first two networks, which are publicly accessible, contain node information.
The last network which contains edge information was extracted from the source
in Aminer [17].

Cora [20] contains 2708 publications from 7 classes and 5429 links. Each
publication is described by a binary 1433-dimension feature vector.

DBLP [4] contains 27199 authors and 66832 links, representing co-
authorship. Each node has some labels out of 4 labels, representing research
areas of the author. Each author is described by a 3000-dimension feature vec-
tor.

Aminer: we constructed a co-author network from the source in Aminer [17],
containing 20105 authors and 48944 links. Each link corresponds to a co-authored
paper. After processing paper abstracts by removing stop words and stemming,
we have each edge is associated with an 897-dimension feature vector. The labels
of nodes are research fields of the author.

5.2 Comparison Algorithm

The proposed methods are compared with several sate-of-the-art embedding
algorithms, which can be divided into four groups. Firstly, to investigate the con-
tribution of node/edge information, we compare GERI++ with Deepwalk [11],
Line [16], and node2vec [2]. Secondly, we also include node feature information
and naive combination of node2vec feature with node feature information as
baselines. Thirdly, to evaluate the power of constructed heterogeneous graph, we
feed constructed heterogeneous graph directly to Deepwalk, Line and node2vec.
Fourth, we compare GERI and SGERI with PTE [15], and LANE [3], which are
regarded as state-of-the-art algorithms in attributed network embedding. The
detailed descriptions are listed as follows.

Deepwalk & LINE & Node2vec [11]: apply on the original homogeneous
graph and set length of random walk as 150, # of walk as 10 and # of negative
sampling as 5.

Naive Combination: combine node2vec embedding and text information.
Deepwalk(hete) & LINE(hete) & Node2vec(hete): feed the con-

structed heterogeneous graph to Deepwalk, LINE and node2vec.
TADW [20]: the embedding is learned from matrix decomposition.
PTE(unsupervised) & PTE [15]: For PTE (unsupervised), we construct

two bipartite heterogeneous networks(target-target, target-bridge) and restrain
it as an unsupervised method; For PTE, we construct three bipartite heteroge-
neous networks (target-target, target-bridge, target-label) and thus it remains
as a semi-supervised method.

LANE(unsupervised) & LANE [3]: LANE(unsupervised) uses network
and node content information, while LANE not only uses network and node
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Table 1. Comparison of Micro-F1 and Macro-F1 score on Cora datasets for different
dimensions

Algorithm Micro-F1 Macro-F1

d = 16 d = 32 d = 64 d = 128 d = 16 d = 32 d = 64 d = 128

Deepwalk 0.7569 0.7757 0.8013 0.8151 0.7421 0.7645 0.7917 0.8041

Line 0.7323 0.7179 0.7090 0.7127 0.7142 0.7080 0.7048 0.7045

Node2vec 0.7762 0.7936 0.8096 0.8206 0.7651 0.7829 0.8000 0.81

Text only 0.7242 0.7399 0.7344 0.6957 0.6989 0.718 0.7097 0.6651

Naive combination 0.7864 0.8070 0.8198 0.8148 0.7629 0.7898 0.8033 0.8012

Deepwalk(hete) 0.7858 0.8065 0.7951 0.7962 0.7648 0.7867 0.7757 0.7790

Line(hete) 0.7928 0.8131 0.7903 0.7866 0.7928 0.7927 0.7663 0.7703

Node2vec(hete) 0.8172 0.8131 0.8064 0.7920 0.7957 0.7948 0.7836 0.7689

TADW 0.6732 0.7736 0.825 0.8279 0.5676 0.7400 0.808 0.8093

PTE(unsupervised) 0.7256 0.6959 0.7293 0.7275 0.6931 0.6669 0.7058 0.7048

LANE(unsupervised) 0.6948 0.7843 0.8266 0.8371 0.6098 0.7549 0.8136 0.8275

GERI 0.8639 0.8698 0.8699 0.8655 0.8501 0.8604 0.8563 0.8526

content (if available), but also uses label information of training data. We did
extensive grid search on parameters. For α1, we search from 0.1 to 1, with step
0.1, and for α2, we search over [0.01 0.1 1.0]. And for LANE, we also search over
δ1, and δ2.

GERI & SGERI: we set # of walk, length of walk, # of walk and # of
negative sampling, to be the same as Deepwalk and Node2vec, for fair compar-
isons. The balance coefficient λ is 1 (default) and we use grid search to tune only
on p, q, and r.

All the representation vectors are finally normalized such that their L2-norm
as 1. We use logistic classification to evaluate all the embeddings.

5.3 Performance of GERI

We report the performance of different methods under various embedding dimen-
sions on Cora, DBLP and Aminer in Tables 1, 2 and 3, respectively. We use 50%
data as training and another 50% as testing. In Table 3, LANE(unsupervised)
uses only network structure because it can’t use edge content. And we don’t show
Text-only and Naive Combination, because they are not applicable in Aminer,
which contains edge content.

First, GERI consistently outperforms all baselines for various dimensions on
three datasets. For Cora, its performance improvement over PTE(unsupervised)
is at least 19% for all dimensions. And it outperforms unsupervised LANE
by 24%, 11%, 5.2% and 3.4% for dimension 16, 32, 64, 128, respec-
tively. For DBLP, it is better than PTE(unsupervised) and largely improve
LANE(unsupervised) by at least 9.5% over all dimensions. For Aminer, it out-
performs PTE(unsupervised) by 6.0%, 5.9%, 5.8%, and 4.3% on d = 16, 32, 64,
and 128, respectively.
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Table 2. Comparison of Micro-F1 and Macro-F1 score on DBLP datasets for different
dimensions

Algorithm Micro-F1 Macro-F1

d = 16 d = 32 d = 64 d = 128 d = 16 d = 32 d = 64 d = 128

Deepwalk 0.5600 0.5769 0.5839 0.6027 0.4552 0.4896 0.5114 0.5386

Line 0.5220 0.4939 0.4895 0.5080 0.4193 0.3920 0.3946 0.4291

Node2vec 0.5760 0.5860 0.5952 0.6112 0.4858 0.5040 0.525 0.5466

Text only 0.6113 0.6472 0.6698 0.6894 0.6044 0.6333 0.6521 0.6721

Naive combination 0.7440 0.7476 0.7524 0.7511 0.718 0.7233 0.7284 0.7300

Deepwalk(hete) 0.7555 0.7582 0.7684 0.7771 0.7299 0.7319 0.7451 0.7556

Line(hete) 0.7669 0.7703 0.7792 0.7853 0.7442 0.7479 0.7578 0.7648

Node2vec(hete) 0.7553 0.7623 0.7716 0.7787 0.7294 0.7387 0.7495 0.7569

TADW 0.5023 0.6031 0.6657 0.7179 0.4925 0.5904 0.6497 0.697

PTE(unsupervised) 0.7575 0.7585 0.7698 0.7848 0.7383 0.7393 0.7509 0.7664

LANE(unsupervised) 0.1894 0.2462 0.6745 0.7246 0.1377 0.1800 0.6287 0.6790

GERI 0.7725 0.7791 0.7891 0.7939 0.7488 0.7586 0.7687 0.7742

Table 3. Comparison of Micro-F1 and Macro-F1 score on Aminer datasets for different
dimensions

Algorithm Micro-F1 Macro-F1

d = 16 d = 32 d = 64 d = 128 d = 16 d = 32 d = 64 d = 128

Deepwalk 0.4564 0.4643 0.5015 0.5089 0.3354 0.3632 0.4109 0.4373

Line 0.2890 0.2902 0.3839 0.4356 0.1922 0.1995 0.2734 0.3368

Node2vec 0.4759 0.4968 0.5111 0.5335 0.3537 0.3961 0.4181 0.4582

Deepwalk(hete) 0.6600 0.6625 0.6696 0.6729 0.5951 0.6014 0.6113 0.6191

Line(hete) 0.6564 0.6646 0.6687 0.677 0.5849 0.6024 0.6121 0.6227

PTE(unsupervised) 0.6419 0.6485 0.6551 0.6728 0.5665 0.5805 0.5974 0.6209

LANE(unsupervised) 0.2571 0.2940 0.3617 0.4631 0.1412 0.1684 0.2476 0.3756

GERI 0.6801 0.6867 0.6932 0.7027 0.6159 0.6241 0.6330 0.6514

Second, Deepwalk(hete), Line(hete) and Node2vec(hete) all have very com-
petitive performance and are better than Deepwalk, Line and Node2vec that
are applied to the original homogeneous graph. It thus verifies that our con-
structed heterogeneous graph effectively integrates the network topology and
rich text information. But since they are all inferior to GERI, we get that our
proposed biased sampling method is better than the sampling methods in these
approaches.

Last, we find that TADW and LANE(unsupervised) (both methods use
matrix optimization to learn embeddings) perform very poorly with low
dimensions such as d = 16 and 32, but perform well when dimension of
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embeddings increase to 64 or 128. However, PTE(unsupervised), Deepwalk, Line
and Node2vec have consistent performance for all dimensions. For example, the
performance of TADW and LANE(unsupervised) with low dimension of 16 or
32 is worse than other baselines in both Cora and DBLP data set. But these two
methods perform well when d increases to 64 and 128.

5.4 Performance of SGERI

We compare SGERI with GERI, and other semi-supervised methods such as
LANE and PTE on dataset DBLP and Aminer. For fair comparisons, we used
the same set of training and testing data for all methods and did grid search
over parameters.

We show the results on DBLP in Fig. 3. It shows that SGERI improved
GERI by more than 4% in Micro-F1 and 5% in Macro-F1 score for all dimen-
sions. From the comparisons between semi-supervised methods, we see that PTE
outperforms LANE, and SGERI improved PTE by 14%, 12%, 4%, and 2% in
Micro-F1 score for dimension of 16, 32, 64, and 128, respectively. For Macro-F1,
SGERI improved PTE by 14%, 12%, 5%, and 2% for dimension of 16, 32, 64
and 128, respectively. Conclusively, we get that SGERI consistently outperforms
PTE and LANE in all dimensions, and interestingly its superiority is more obvi-
ous in the setting of low dimension. The reason why SGERI is better than PTE
is that it can better preserve proximity between nodes, which uses novel biased
random walk and can take advantage of the high-order proximity while PTE only
uses low-order proximity. For Aminer, the results are shown in Fig. 3. Similarly,
the use of label information of training data really helps and largely improves
the performance of our proposed methods. SGERI outperforms GERI by nearly
20% in both Micro-F1 and Macro-F1 score. Also, SGERI is better than PTE,
with performance gain as least 7.1% for Micro-F1 and 9.8% for Macro-F1, for
all dimensions. It further verifies that our sampling methods is better than the
one in PTE.

Fig. 3. Comparison between SGERI, GERI, LANE and PTE on DBLP dataset (Left
two) and Aminer Dataset (Right two) over various dimensions
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5.5 Parameter Analysis

We show effects of parameters in GERI. All experiments are done by setting d
as 128.

Firstly, Fig. 4 shows that p, q, and r do have a significant influence on the
performance. From the left plot in Fig. 4, we see that the setting of middle value
for 1/p (from 1.0 to 2.0) and small value for 1/q (around 0.25) lead to better
performance, which means a relatively high probability to explore target nodes
when doing random walk better preserve the proximity between nodes. From
the middle and right plots in Fig. 4, we find that a relatively small probability
to explore the bridge nodes can give better performance. The underlying reason
is that the information that bridge nodes contain is less important than target
nodes. Considering the bridge nodes are the terms associated with nodes for
this dataset, we can explain this from two aspects. First, the original homoge-
neous graph represents the co-authorship between authors, whose topology in an
implicit way indicates the common research areas among authors. That’s to say,
the terms are supplementary for graph topology information even though they
are the source of performance gain for our methods. Second, terms can be noisy.
By limiting the probability of visiting bridge nodes, less noise will be brought to
the embedding.

Next, we show how performance changes w.r.t. λ, walk length, # of walks
and window size in Fig. 5. For λ, we see that good performance is obtained
when lambda is a small value, i.e., 0.01 or 0.1. When λ further increases, F1
score drops dramatically. This is because λ controls the weight of loss function
targeted on bridge nodes, and the information in bridge nodes is not as important
as target nodes, following our discussion in above. For walk length, # of walks
and window size, we see that the performance of node classification w.r.t. these
three parameters follows similar pattern: performance increases sharply at the
very beginning, increases slightly when we further increase parameter values,
and fluctuates or converges or even decreases slightly in the later period.

Fig. 4. Performance on different p, q, and r on Cora dataset: left (Micro-F1 score w.r.t.
1/p and 1/q); middle (Micro-F1 score w.r.t. 1/p and 1/r); right (Micro-F1 score w.r.t.
1/q and 1/r).
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Fig. 5. Performance on different λ, walk length, the number of walks, and window size

6 Conclusion

We studied node/edge attributed graph embedding. GERI is proposed to firstly
integrate original graph and copious information in node/edges into a hetero-
geneous graph, and then sample neighborhoods of nodes through the newly
designed biased random walk. Finally, GERI learns embedding by modified het-
erogeneous skip-gram with negative samples. Furthermore, we develop SGERI
which improves GERI by exploiting label information. For the future work, there
are several possible directions. (1) consider dynamic nature of real graphs and
the real-time changes of node/edge content information. (2) As is also the case
with other attributed network embedding, we haven’t considered the cases when
node/edge content is not complete or contaminated.
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