
Auto-encoder Based Co-training
Multi-view Representation Learning

Run-kun Lu, Jian-wei Liu(B), Yuan-fang Wang, Hao-jie Xie, and Xin Zuo

Department of Automation, China University of Petroleum, Beijing 102249, China
zsylrk@gmail.com, {liujw,zuox}@cup.edu.cn

Abstract. Multi-view learning is a learning problem that utilizes the
various representations of an object to mine valuable knowledge and
improve the performance of learning algorithm, and one of the signifi-
cant directions of multi-view learning is sub-space learning. As we known,
auto-encoder is a method of deep learning, which can learn the latent
feature of raw data by reconstructing the input, and based on this, we
propose a novel algorithm called Auto-encoder based Co-training Multi-
View Learning (ACMVL), which utilizes both complementarity and con-
sistency and finds a joint latent feature representation of multiple views.
The algorithm has two stages, the first is to train auto-encoder of each
view, and the second stage is to train a supervised network. Interest-
ingly, the two stages share the weights partly and assist each other
by co-training process. According to the experimental result, we can
learn a well performed latent feature representation, and auto-encoder
of each view has more powerful reconstruction ability than traditional
auto-encoder.

Keywords: Multi-view · Auto-encoder · Co-training

1 Introduction

In real word applications, multi-view learning problems are widespread and they
often exist in two ways. The first one is that multiple views exist naturally in
data, such as we can easily obtain three views from web pages of Facebook, they
include the content of the web page, the text of any web pages linking to this web
page, and the link structure of all linked pages. The second one is that the raw
data is not multi-view data and we need to construct multiple views for data,
which include random approaches [1,3,4] reshape or decompose approaches [13],
and the methods that perform feature set partitioning automatically [6]. Once
we get multiple views of raw data, we can utilize the advantages of multi-view
learning to improve the performance of learning tasks like regression, classifi-
cation and clustering, where multi-view learning methods can be classified into

This work was supported by the National Key R&D Program of China (No.
2016YFC0303703).

c© Springer Nature Switzerland AG 2019
Q. Yang et al. (Eds.): PAKDD 2019, LNAI 11441, pp. 119–130, 2019.
https://doi.org/10.1007/978-3-030-16142-2_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16142-2_10&domain=pdf
https://doi.org/10.1007/978-3-030-16142-2_10


120 R. Lu et al.

three categories: co-training, multiple kernel learning, and subspace learning [14].
In this paper, we focus on subspace learning and propose a novel multi-view
learning algorithm called Auto-encoder based Co-training Multi-View Learn-
ing (ACMVL) which utilizes both complementarity and consistency and finds
a joint latent feature representation of multiple views. Note that “co-training”
in our proposed algorithm’s name is a training strategy instead of co-training
multi-view learning method.

Multiple views of raw data have two wonderful properties, which are consis-
tency and complementarity. Consistency represents the common information of
multiple views, and complementarity represents the special information of each
view. Only consistency and complementarity of multiple views can be utilized
to improve the performance of learning tasks [2,5,10,12], however, both con-
sistency and complementarity are significant that it is a waste of information
if we ignore one of them. In [11], they find a joint latent representation which
include both common and special features of multiple views, and followed this
work, [16] made some improvements. In their works, they compute the special
feature of each view as well as the common feature of all views according to
matrix factorization, and then concatenate them together in to a joint latent
feature. However, this kind of method has two constraints:

(1) it is not reasonable to define all views share a common feature, maybe
they share a common space and each view has its own instantiation in this
space;
(2) the optimization algorithm is hard to adapt large scale data set, because
the algorithm requires to feed all the training data instead of a batch at one
time.

Fig. 1. Diagram of ACMVL: we illustrate a two-views’ problem in this figure, therefore
we have three networks. The left and right ones are view 1 and view 2’s auto-encoder,
and the middle one is the supervised network. Note that the yellow layers not only
participate in the training process of auto-encoder but also supervised network, and
our joint latent representation is the first purple layer of supervised network. (Color
figure online)



Auto-encoder Based Co-training Multi-view Representation Learning 121

To solve such two problems, our proposed algorithm ACMVL builds a frame-
work including multiple auto-encoders and a supervised network (a multi-layer
perceptron which predicts labels of instances and minimize the cross-entropy loss
between prediction and true label). Our proposed approach can easily solve the
second question by running mini-batch gradient descent on large scale training
sets. As for the first question, we first compute each view’s special feature and
then map each special feature into a same space by weight sharing and add them
together, furthermore, with a nonlinear activation function we can get a joint
latent representation. Besides, alternating co-training is another salient charac-
teristic of ACMVL, which is a training strategy that lets our auto-encoders and
supervised network partially share model parameters, and also let supervised
network help auto-encoders meliorate their encoders’ model parameters. And
surprisingly, we find that by using this strategy, we can not only accelerate the
convergence of the algorithm but also improve the learning performance of each
auto-encoder significantly, which means each view will obtain a much better
special feature that can help with the construction of joint latent feature. As a
result, we will make a summarize of contributions we made as follows:

(1) We propose a novel multi-view learning algorithm ACMVL, which utilizes
both consistency and complementarity to build a joint latent representation of
multiple views, where multiple views’ auto-encoders consider the consistency,
and the weight sharing method considers the complementarity;
(2) Compared with the algorithms proposed by [11,16], ACMVL is neural
network-based algorithm which is easy to use mini-batch to adapt large scale
data set.
(3) We propose an alternating co-training strategy which let our auto-
encoders and supervised network partially shared model parameters and also
let supervised network helps each auto-encoder to meliorate their encoder’s
weight. And this strategy can accelerate the training process and improve the
learning performance of each auto-encoder significantly.

2 Framework

2.1 Notations

In this paper, bold uppercase characters are used to denote matrices, bold low-
ercase characters are used to denote vectors, and other characters which are
not bold are all used to denote scalars. Supposed that (Xv,Y) is the sample of
view v, where v = 1, · · · , V . Among of them, Xv ∈ �Mv×N is the set of input
instances of view v, Y ∈ �N is the label, where N is the number of instances,
Mv is the feature number of each instance of view v. More specific, we have V
version of raw data, each version can be expressed as Xv, and Xv = [xv

1, · · · ,xv
N ],

xv
i ∈ �Mv

. Note that all the views share the label Y because they are the various
representation of raw input date, and Y = [y1, · · · ,yN ], yi ∈ �.



122 R. Lu et al.

2.2 Core Concept of Framework

As we known, auto-encoder is an algorithm that can compute the latent feature of
raw data, and we can compute each view’s latent feature by using auto-encoder.
However, the V views’ latent features we obtained only consider the complemen-
tarity of different views, and we cannot guarantee that all of the auto-encoders
can generate good latent features. Therefore, we aim to find a joint latent rep-
resentation by combining the V views’ latent features we obtained according to
some rules. In this paper, we build a simple multi-layer perceptron with its input
of multiple views’ latent features to supervise the process of the generation of
joint latent representation. Furthermore, we adopt a novel training strategy to
train multiple auto-encoders in each view as well as supervised network, we will
give a description in detail in next subsection.

2.3 Description of Framework

Our proposed method ACMVL has a co-training process, which has two stages,
one is the stage of learning latent feature that we need to train auto-encoders
of multiple views, and the other is the stage of meliorating feature and learning
joint latent feature that we need to train a supervised network. Next, we will
explain the two scenarios separately.

Latent feature learning: as shown in Fig. 1, we illustrate an example with two
views. In Fig. 1, there are two auto-encoders because we need to compute the
latent feature of each view. Therefore, we need to train the model parameters
to minimize the reconstruction error of each view, and we can formulate this
problem as:

min
1
V

∑V

v=1

∥∥∥Xv − X̂v
∥∥∥
F

(1)

where X̂v is the reconstruction of view v ’s input. In each auto-encoder, the
activation function is ReLu except for the last layer because the last layer of
each auto-encoder is the reconstruction of raw data, and the optimizer algorithm
we used is AdaDelta [15]. After training two auto-encoders, we should save the
model parameters θven = {wv

en1,w
v
en2,w

v
en3}, and θvde = {wv

de1,w
v
de2,w

v
de3}, note

that each view’s auto-encoder has its own parameters.

Meliorate feature and joint feature learning: when finish the training pro-
cess of auto-encoders, we take out the third layer of each auto-encoder as the
input of the supervised network as shown in the middle of Fig. 1. By mapping
each latent feature representation of each view into a same subspace and add
them together, we can easily find a joint latent representation by using a non-
linear mapping, which can be formulated as follows:

g

(∑V

v=1
wsharehv

)
(2)

where g (·) is a nonlinear activation function, and we use ReLu in this paper. Note
that we share the transform matrix wshare which helps us to find the consistent



Auto-encoder Based Co-training Multi-view Representation Learning 123

Fig. 2. Parameter updating process

factors in various views. Furthermore, in this network, the objective function of
supervised network is to minimize the cross-entropy loss between prediction and
true label, which can be formulated as follows:

min
1
N

∑N

i=1
(yi log (ŷi) + (1 − yi) log (1 − ŷi)) (3)

where ŷi is the prediction of i -th instance. As for the choice of activation func-
tion and optimizer algorithm, expect that last layer uses Softmax as activation
function, others choose ReLu, and AdaDelta is selected to optimize the objec-
tive function. It is remarkable that not only we should train the parameters
θsup = {wshare,w1,w2,w3} as shown in Fig. 1, but also need to update the
value of θven = {wv

en1,w
v
en2,w

v
en3}, which is inherited from last stage, where

v = 1, · · · , V . Same as last stage, we need to save parameter θsup as well as
the updated parameter θven. The two stages we illustrate above is only just one
epoch of training procedure, and we will design a co-training process. We define
in one epoch, auto-encoder will be trained for R1 rounds, and the supervised
network will be trained for R2 rounds. In first epoch, we need to initialize θven,
θvde, and θsup as θven,0, θvde,0, and θsup,0 according to the method of Glorot [7], and
with these initial value we can conduct the first stage and obtain the best model
parameters θ̃ven and θ̃vde. Next, in stage 2, we use θ̃ven and θsup,0 to initialize the
supervised network and obtain the best value after R2 rounds’ training. Simi-
larly, in other epochs, the training strategy only has minor difference that we do
not initialize parameters according to Xavier. Specifically, in first stage, we ini-
tialize θven as θ̃ven from stage 2 of last epoch, and initialize θvde as θ̃vde from stage 1
of last epoch; in second stage, we initialize θven as θ̃ven from stage 1 of this epoch,
and initialize θsup as θ̃vsup from stage 2 of last epoch. To illustrate this process
more clearly, we summarized the whole algorithm of ACMVL in Algorithm1 and
illustrate the parameter updating process of co-training in Fig. 2.



124 R. Lu et al.

Algorithm 1. ACMVL
Initialize θv

en, θv
de and θsup as θv

en,0, θv
de,0, and θsup,0 according to the method of

Xavier;
For each epoch do:

Stage 1:
For each view v = 1, · · · , V do:

If not first epoch:
Initialize θv

en and θv
de:

θv
en : θv

en,0 ← θ̃v
en, where θ̃v

en comes from last
epoch of stage 2;

θv
de : θv

de,0 ← θ̃v
de, where θ̃v

de comes from last
epoch of stage 1;
For each R1 do:

Update θv
en and θv

de using AdaDelta and set the
best one as θ̃v

en and θ̃v
de (select the weight of the

round with the least reconstruction error);
End For

End For
Stage 2:
If not first epoch:

Initialize θv
en and θv

sup:

θv
en : θv

en,0 ← θ̃v
en, where θ̃v

en comes from this
epoch of stage 1;

θv
sup : θv

sup,0 ← θ̃v
sup, where θ̃v

sup comes from last
epoch of stage 2;
For each R2 do:

Update θv
en and θv

sup using AdaDelta and set the

best one as θ̃v
en and θ̃v

sup (select the weight of the
round with the least reconstruction error);
End For

End For

2.4 Tricks

As we known, training a neural network needs to determine many hyperparam-
eters and also needs to adopt some tricks. However, this network is not hard to
train, when selecting the node number, we only need to remember that the num-
ber is decreasing layer by layer for encoder. For example, if our input is a 500-
dimensional data, then for encoder like view 1’s auto-encoder in Fig. 1, the num-
bers of node is [256, 64, 32], and for decoder is [64, 256], where 32 is the middle-
hidden layer’s node number and usually we define these layer’s node numbers are
the same for multiple views even each view’s input dimension is different. As for
learning rate of optimizer algorithm, for each view’s auto-encoder, learning rate
usually sets to 0.5 or 0.3, and for supervised network, learning rate usually equals
to 0.9. Note that suitable learning rates will let each auto-encoder and supervised
network help with each other to accelerate the convergence speed. Additionally, we
further emphasize that we will obtain the joint latent representation by mapping



Auto-encoder Based Co-training Multi-view Representation Learning 125

each view’s latent feature into a same space with a same transformation matrix
wshare, because a same transformation matrix can project different data into a
same subspace and that is also the reason why we define all views’ latent feature
as the same dimension. Lastly, one of the most significant tricks is early stopping,
because the training loss of a neural network cannot always decrease, and after a
period of time, training loss will not decrease any more and even increase. There-
fore, early stopping is necessary that it can stable and accelerate the training pro-
cess. Such as in a training epoch, we set R1 = R2 = 1000, may in round 400,
the loss is lowest but we save the model parameters of round 1000, and we miss
the best model parameters and will train more rounds which is a waste of time
(because our early stopping rule is that if R1, R2 ≥ 200, and the loss no longer
decrease for 200 rounds, we will break the loop and save the parameters belong to
the round corresponds to the best loss).

Fig. 3. Convergence analysis of WebKb

3 Experiment

3.1 Data Set Partition

In this subsection, we give a short description of the data sets and introduce the
method to divide the data set into different views.

WebKb: The WebKb data set contains web information from computer science
departments of four different universities, obviously, we actually have four data
sets, but we compute the average value of four data sets. There are three views
in each data set: the words in the main text in each web page of one of the
universities is a kind of view; the clickable words in the hyperlinks pointing to
other web pages of one of the universities is another view; and the words in
the titles of each web page is also a view. On the other hand, there are seven
categories in this data set, where we choose four most representative categories
in this experiment. In general, we have 3 views in this data set.



126 R. Lu et al.

Fig. 4. Convergence analysis of 20NG

20NewsGroup: The data set consists of 20 News group, that is to say, this
data set contains 20 categories. 200 documents are randomly selected from each
category. As a result, we define 20 tasks corresponding to the classes, and the
documents belong to the category related to the task are defined as positive
instances, and from other different categories are defined as negative ones. Next,
we take the words appearing in all the tasks as a common view, and the words
only existing in each task as a special view. In this way, we get 21 views, however,
there are only two views in each task, 19 views are missed in each task [8]. Now
this is a multi-task and multi-view data, but we can conduct the experiment on
each task and compute the average value of them. In general, we have 2 views
in this data set.

Leaves: The leaves data set includes leaves from one hundred plant species that
are divided into 32 different genera, and 16 samples of leaves for each plant
species are presented. 3 geniuses that have 3 or more plant species are selected
to form the data set, and the aim of the problem is to discriminate different
species in a genus. And in this data set, three views of features are available,
including shape descriptor, fine scale margin and texture histogram, and each
view has 64 features. In general, we have 3 views in this data set.

3.2 Convergence Analysis of Training Process

In Figs. 3, 4, and 5, the first row of figures shows each views’ reconstruction error
of auto-encoder, where, red line shows the original auto-encoder’s curve, and the
blue one is our proposed method’s curve. It’s not hard to see that in Figs. 2 and 4
let each auto-encoder converges faster than the original auto-encoder, ACML has



Auto-encoder Based Co-training Multi-view Representation Learning 127

Fig. 5. Convergence analysis of leaves

less fluctuation in training process than original ones. However, we find in Fig. 5
original auto-encoder performs better because Leaves is a small data set that
only original auto-encoder can fit it soon, but our proposed method will train
the model alternately. Recall that after R1 rounds in one epoch of training each
auto-encoder, we will need to train the supervised network for R2 rounds and
modify each auto-encoder’s parameters of encoder, and then in the next epoch,
we should retrain each auto-encoder. In such way, when facing small data, the
speed of convergence of ACMVL may be slower than the original auto-encoder’s.
However, when dealing with bigger data set, ACMVL can accelerate convergence
speed of each auto-encoder as shown in Figs. 3 and 4.

On the other hand, with the help of each auto-encoder, supervised network
converges fast as shown in the second row of Figs. 3, 4, and 5. As a result, in
ACMVL’s framework, each view’s auto-encoder and supervised network help
with each other according to the co-training rules.

Table 1. Classification task

Classification LR LR-AE LR-AE-ACMVL LR-ACMVL

ACC F1 ACC F1 ACC F1 ACC F1

WebKb View 1 0.8230 0.7281 0.7876 0.6217 0.8142 0.7330 0.9115 0.8703

View 2 0.8673 0.7866 0.8142 0.6991 0.7434 0.6667

View 3 0.7080 0.6477 0.7168 0.6031 0.7256 0.5839

20NG View 1 0.6267 0.6256 0.5333 0.5326 0.5200 0.5169 0.9733 0.9732

View 2 0.9666 0.9667 0.8600 0.8592 0.9200 0.9200

Leaves View 1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

View 2 0.7708 0.7481 0.7917 0.7680 0.7708 0.7514

View 3 0.9167 0.9132 0.8750 0.8713 0.9375 0.9325



128 R. Lu et al.

3.3 Performance Test on Multiple Learning Task

In this subsection, we will test the algorithm performance on classification and
clustering tasks. We select Logistic Regression (LR) as the baseline method of
classification as well as Gaussian Mixture Model (GMM) as the baseline method
of clustering.

Classification: First of all, we divide the data of each view into training set
and testing set at a ratio of 50%. And then, we first conduct an experiment
only use these data with the classifier of LR, and the result is list in the column
“LR” of Table 1; Second, we only train each view’s auto-encoder without the
help of supervised network, and then we use the feature computed by auto-
encoder which corresponds to the training set to train LR classifier and use
the feature corresponding to the testing set to test the result. The result is list
in the column “LR-AE” of Table 1; Thirdly, we will do the same thing as the
second experiment but let supervised network helps each auto-encoder’s training
process, and the result is list in the column “LR-AE-ACMVL” of Table 1. Note
that this experiment use feature computed by each view’s auto-encoder to test
each view’s performance; Lastly, we conduct the third experiment again, but
we use the joint latent feature computed by supervised network to test the
performance, and therefore, this experiment only has one view. The result is list
in the column “LR-ACMVL” of Table 1.

In classification experiment, we select Accuracy (ACC) and F1 score (F1) as
the metrics. We can easily find that when using ACMVL, most of auto-encoders’
performance get better and the joint latent feature’s performance is much better
than each view’s, which verify ACMVL is an effective approach to compute joint
latent feature of multiple views.

Table 2. Clustering task

Clustering GMM GMM-AE GMM-AE-ACMVL GMM-ACMVL

NMI JC NMI JC NMI JC NMI JC

WebKb View 1 0.0935 0.1947 0.1539 0.1460 0.3004 0.2088 0.5809 0.0310

View 2 0.4739 0.1593 0.1221 0.0752 0.3752 0.0885

View 3 0.0843 0.1947 0.0433 0.1858 0.0752 0.1549

20NG View 1 0.0195 0.5167 0.0057 0.3567 0.0110 0.3500 0.3171 0.5100

View 2 0.1413 0.5133 0.1968 0.4533 0.4021 0.4133

Leaves View 1 0.8567 0.2917 0.8461 0.3333 0.8642 0.1250 0.9781 0.1667

View 2 0.7215 0.3021 0.3240 0.0938 0.7999 0.0104

View 3 0.7620 0.1042 0.8555 0.2083 0.8024 0.0208

Clustering: We will conduct some semi-clustering experiment, first of all, we
divide the data of each view into training set and testing set at a ratio of 50%.
And then, we first conduct an experiment only use testing data with the clus-
tering algorithm GMM, and the result is list in the column “GMM” of Table 2;



Auto-encoder Based Co-training Multi-view Representation Learning 129

Second, we only use training data to train each view’s auto-encoder without the
help of supervised network, and then we use the model to compute testing data’s
feature representation and conduct clustering task on these feature representa-
tions. The result is list in the column “GMM-AE” of Table 2; Thirdly, we will do
the same thing as the second experiment but let supervised network helps each
auto-encoder’s training process, and the result is list in the column “GMM-AE-
ACMVL” of Table 2. Note that this experiment use feature computed by each
view’s auto-encoder to test each view’s performance; Lastly, we conduct the third
experiment again, but we use the joint latent feature computed by supervised
network to test the performance, and therefore, this experiment only has one
view. The result is list in the column “GMM-ACMVL” of Table 2.

In clustering experiment, we select Normalized Mutual Information (NMI)
and Jaccard Coefficient (JC, the smaller of JC, the performance of clustering
is better) as the metrics. We can easily find that when using ACMVL, most of
auto-encoders’ performance get better and the joint latent feature’s performance
is much better than each view’s, which verify ACMVL is an effective approach
to compute joint latent feature of multiple views.

4 Conclusion

In this paper, we propose a novel multi-view learning algorithm called Auto-
Encoder based Co-Training Multi-View Representation Learning (ACMVL),
which is aimed to subspace learning and model training strategy. We utilize
the latent feature learning ability of auto-encoder to grasp the complementarity
of multiple views, and at the same time, by using weight sharing we can map
each view’s latent representation in to a same space and learn the consistency of
multiple views. Besides, we adopt co-training strategy to accelerate the training
procedure of each view’s auto-encoder by co-training and model parameters par-
tially shared. And according to experimental results, we find that our proposed
method can learn a suitable joint latent representation which is competent to
classification and clustering learning tasks.

Our proposed method in this paper is a deterministic model which cannot
measure the uncertainty of latent space. Therefore, in the future, a main target
is to find a generative method to obtain the distribution of the joint latent space
instead of an instantiation of the space. To our knowledge, variational auto-
encoder [9] may be a good choice to solve this problem. Generally, multi-view
subspace learning is a great research direction which is hard but deserved to pay
more attention on it, and we will make more attempts and explorations in this
field.

References

1. Bickel, S., Scheffer, T.: Multi-view clustering. In: Proceedings of the 4th IEEE
International Conference on Data Mining (ICDM 2004), Brighton, UK, 1–4 Novem-
ber 2004, pp. 19–26 (2004)



130 R. Lu et al.

2. Blum, A., Mitchell, T.M.: Combining labeled and unlabeled data with co-training.
In: Proceedings of the Eleventh Annual Conference on Computational Learning
Theory, COLT 1998, Madison, Wisconsin, USA, 24–26 July 1998, pp. 92–100 (1998)

3. Brefeld, U., Büscher, C., Scheffer, T.: Multi-view discriminative sequential learning.
In: Gama, J., Camacho, R., Brazdil, P.B., Jorge, A.M., Torgo, L. (eds.) ECML
2005. LNCS (LNAI), vol. 3720, pp. 60–71. Springer, Heidelberg (2005). https://
doi.org/10.1007/11564096 11

4. Brefeld, U., Scheffer, T.: Co-EM support vector learning. In: Proceedings of the
Twenty-First International Conference on Machine Learning, (ICML 2004), Banff,
Alberta, Canada, 4–8 July 2004 (2004)

5. Chaudhuri, K., Kakade, S.M., Livescu, K., Sridharan, K.: Multi-view clustering via
canonical correlation analysis. In: Proceedings of the 26th Annual International
Conference on Machine Learning, ICML 2009, Montreal, Quebec, Canada, 14–18
June 2009, pp. 129–136 (2009)

6. Chen, M., Weinberger, K.Q., Chen, Y.: Automatic feature decomposition for single
view co-training. In: Proceedings of the 28th International Conference on Machine
Learning, ICML 2011, Bellevue, Washington, USA, 28 June–2 July 2011, pp. 953–
960 (2011)

7. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward
neural networks. In: Proceedings of the Thirteenth International Conference on
Artificial Intelligence and Statistics, AISTATS 2010, Chia Laguna Resort, Sardinia,
Italy, 13–15 May 2010, pp. 249–256 (2010)

8. Jin, X., Zhuang, F., Wang, S., He, Q., Shi, Z.: Shared structure learning for multi-
ple tasks with multiple views. In: Blockeel, H., Kersting, K., Nijssen, S., Železný,
F. (eds.) ECML PKDD 2013. LNCS (LNAI), vol. 8189, pp. 353–368. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-40991-2 23

9. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. CoRR abs/1312.6114
(2013)

10. Kursun, O., Alpaydin, E.: Canonical correlation analysis for multiview semisuper-
vised feature extraction. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh,
L.A., Zurada, J.M. (eds.) ICAISC 2010. LNCS (LNAI), vol. 6113, pp. 430–436.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13208-7 54

11. Liu, J., Jiang, Y., Li, Z., Zhou, Z., Lu, H.: Partially shared latent factor learning
with multiview data. IEEE Trans. Neural Netw. Learn. Syst. 26(6), 1233–1246
(2015)

12. Ou, W., Long, F., Tan, Y., Yu, S., Wang, P.: Co-regularized multiview nonneg-
ative matrix factorization with correlation constraint for representation learning.
Multimed. Tools Appl. 77(10), 12955–12978 (2018)

13. Wang, Z., Chen, S., Gao, D.: A novel multi-view learning developed from single-
view patterns. Pattern Recogn. 44(10–11), 2395–2413 (2011)

14. Xu, C., Tao, D., Xu, C.: A survey on multi-view learning. CoRR abs/1304.5634
(2013)

15. Zeiler, M.D.: ADADELTA: an adaptive learning rate method. CoRR abs/1212.5701
(2012)

16. Zhang, Z., Qin, Z., Li, P., Yang, Q., Shao, J.: Multi-view discriminative learning
via joint non-negative matrix factorization. In: Pei, J., Manolopoulos, Y., Sadiq,
S., Li, J. (eds.) DASFAA 2018. LNCS, vol. 10828, pp. 542–557. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-91458-9 33

https://doi.org/10.1007/11564096_11
https://doi.org/10.1007/11564096_11
https://doi.org/10.1007/978-3-642-40991-2_23
https://doi.org/10.1007/978-3-642-13208-7_54
https://doi.org/10.1007/978-3-319-91458-9_33

	Auto-encoder Based Co-training Multi-view Representation Learning
	1 Introduction
	2 Framework
	2.1 Notations
	2.2 Core Concept of Framework
	2.3 Description of Framework
	2.4 Tricks

	3 Experiment
	3.1 Data Set Partition
	3.2 Convergence Analysis of Training Process
	3.3 Performance Test on Multiple Learning Task

	4 Conclusion
	References




