®

Check for
updates

AAANE: Attention-Based Adversarial
Autoencoder for Multi-scale
Network Embedding

Lei Sang!?, Min Xu?®™) Shengsheng Qian®, and Xindong Wu'

1 School of Computer Science and Information Technology,
Hefei University of Technology, Hefei, China
lei.sang@student.uts.edu.au, xwu@hfut.edu.cn
2 Faculty of Engineering and IT, University of Technology Sydney, Ultimo, Australia
Min.XuQuts.edu.au
3 Institute of Automation, Chinese Academy of Sciences, Beijing, China
shengsheng.qian@nlpr.ia.ac.cn

Abstract. Network embedding represents nodes in a continuous vec-
tor space and preserves structure information from a network. Existing
methods usually adopt a “one-size-fits-all” approach when concerning
multi-scale structure information, such as first- and second-order prox-
imity of nodes, ignoring the fact that different scales play different roles in
embedding learning. In this paper, we propose an Attention-based Adver-
sarial Autoencoder Network Embedding (AAANE) framework, which
promotes the collaboration of different scales and lets them vote for
robust representations. The proposed AAANE consists of two compo-
nents: (1) an attention-based autoencoder that effectively capture the
highly non-linear network structure, which can de-emphasize irrelevant
scales during training, and (2) an adversarial regularization guides the
autoencoder in learning robust representations by matching the posterior
distribution of the latent embeddings to a given prior distribution. Exper-
imental results on real-world networks show that the proposed approach
outperforms strong baselines.

Keywords: Network embedding - Multi-scale + Attention -
Adversarial autoencoder

1 Introduction

Network embedding (NE) methods have shown outstanding performance on
many tasks including node classification [1], community detection [2,3] and link
prediction [4]. These methods aim to learn latent, low-dimensional representa-
tions for network nodes while preserving network topology structure information.
Networks’ structures are inherently hierarchical [5]. As shown in Fig. 1, each indi-
vidual is a member of several communities and can be modeled by his/her neigh-
borhoods’ structure information with different scales around him/her, which
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Fig. 1. Illustration of the multi-scale network with three scales.

range from short scales structure (e.g. families, friends), to long-distance scales
structure (e.g. society, nation states). Every single scale is usually sparse and
biased, and thus the node embedding learned by existing approaches may not
be so robust. To obtain a comprehensive representation of a network node, multi-
scale structure information should be considered collaboratively.

Recently, a number of methods have been proposed for learning data repre-
sentations from multiple scales. For example, DeepWalk [1] models multi-scale
indirectly from a random walk. Line [6] proposes primarily a breadth-first strat-
egy, sampling nodes and optimizing the likelihood independently over short
scales structure information such as 1l-order and 2-order neighbors. GraRep
[7] generalizes LINE to incorporate information from network neighborhoods
beyond 2-order, which can embed long distance scales structure information
to the node representation. More recently, some autoencoder based methods,
For example, DNGR [8] learns the node embedding through stacked denoising
autoencoder from the multi-scale PPMI matrix. Similarly, SDNE [9] is realized
by a semi-supervised deep autoencoder model. Besides, MVE [10] aims to learn
embedding from several multi-viewed networks with the same nodes but different
edges, which is different from our single network setting.

Despite their strong task performance, existing methods have the follow-
ing limitations: (1) Lack of weight learning. To learn robust and stable node
embeddings, the information from multiple scales needs to be integrated. Dur-
ing integration, as the importance of different scales can be quite different, their
weights need to be carefully decided. For example, if we consider very young
kids on a social network, and they may be very tightly tied to their family
and loosely tied to the society members. However, for university students, they
may have relatively more ties to their friends and the society than very young
kids. Existing approaches usually assign equal weights to all scales. In other
words, different scales are equally treated, which is not reasonable for most
multi-scale networks. (2) Insufficient constrain for embedding distribution. Take
the autoencoder based method for example, an autoencoder is a neural net-
work trained to attempt to copy its input to its output, which has a typical
pipeline like (x — F — z — D — z’). Autoencoder only requires z to approach
a2’ = D(E(x)), and for that purpose the decoder may simply learn to reconstruct
2 regardless of the distribution obtained from E. This means that p(z) can be
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very irregular, which sometimes makes the generation of new samples difficult
or even infeasible.

In this paper, we focus on the multi-scale network embedding problem and
propose a novel Attention-based Adversarial Autoencoder Network Embedding
(AAANE) method to jointly capture the weighted scale structure information
and learn robust representation with adversarial regularization. We first intro-
duce a set of scale-specific node vectors to preserve the proximities of nodes
in different scales. The scales-specific node embeddings are then combined for
voting the robust node representations. Specifically, our work has two major
contributions. (1) To deal with the weights learning, we propose an attention-
based autoencoder to infer the weights of scales for different nodes, and then
capture the highly non-linear network structure, which is inspired by the recent
progress of the attention mechanism for neural machine translation [11]. (2)
To implement regularisation of the distribution for encoded data, we introduce
adversarial training component [12] to the attention-based autoencoder, which
can discriminatively predict whether a sample arises from the low-dimensional
representations of the network or from a sampled distribution. Adversarial regu-
larisation reduces the amount of information that may be held in the encoding,
forcing the model to learn an efficient representation of the data. Through the
attention-based weight learning together with the adversarial regularization, the
proposed AAANE model can effectively combine the virtues of multiple scale
information to complement and enhance each other.

2 Preliminaries

Network Embedding(NE): An information network is represented as G =
(V,E), where V' = {v;},_, ..y consist a set of nodes, e; ; = (v;,v;) € E is
an edge indicating the relafidnship between two nodes. The task of NE aims
to build a low-dimensional representation z; € R¢ for each node i € V, where
d is the dimension of embedding space and expected much smaller than node
number |V|.

We define adjacency matrix A e RIVIXIVI for a network and D is a diagonal
degree matrix. To capture the transitions from one node to another, we can
define the (first-order) probability transition matrix A = D~'A, where 4, ;
is the probability of a transition from node v; to node v; within one step. It
can be observed that the matrix A is a normalized adjacency matrix where the
summation of each row equals to 1.

In this paper, multi-scale structural information serves two functions: (1) the
capture of long-distance relationship between two different vertices and (2) the
consideration of distinct connections in terms of different transitional orders.

The (normalized) adjacency matrix A characterizes the first-order proximity
which models the local pairwise proximity between vertices. As discussed ear-
lier, we believe that the k-order (with varying k) long scale relational information
from the network needs to be captured when constructing such multi-scale net-
work embedding [7]. To compute the various scale transition probabilities, we
introduce the following k-order probability proximity matrix:
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Fig. 2. The architecture of AAANE. The top row is an attention-based autoencoder
that infers the weights of scales for different nodes, and then captures the highly non-
linear network structure. The bottom row diagrams a discriminator trained to discrim-
inatively predict whether a sample arises from the hidden code of the autoencoder or
from a prior distribution specified by the user.
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where the entry Ai—“’ ; refers to the k-order proximity between node v; and v;.

Multi-scale Network Embedding: Given a network G = (V, E), the robust
node representation {z;},,cyv € R? can be collaboratively learned from k suc-
cessively network structural information representation, A, A2, ..., A* where A*
captures the view of the network at scale k. Intuitively, each member of the family
encodes a different view of social similarity, corresponding to shared membership
in latent communities at different scales.

3 The Framework

In this section, we first give a brief overview of the proposed AAANE, and then
formulate our method of multi-scale network embedding from attention based
adversarial autoencoder.

3.1 An Overview of the Framework

In this work, we leverage attention-based adversarial autoencoder to help learn
stable and robust node embedding. Figure 2 shows the proposed framework of
Attention-based Adversarial Autoencoder for Network Embedding (AAANE),
which mainly consists of two components, i.e., an attention-based autoencoder
and an adversarial learning component.
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We introduce an attention mechanism to the autoencoder for learning the
weights of structure information with different scales. A standard autoencoder
consists of an encoder network and a decoder network. The encoder maps the
network structure information z; into a latent code x;, and the decoder recon-
structs the input data as r;. Then, the adversarial learning component acts as
regularization for the autoencoder, by matching the aggregated posterior, which
helps enhance the robustness of the representation x;. The generator of the
adversarial network is also the encoder of the autoencoder. The adversarial net-
work and the autoencoder are trained jointly in two phases: the reconstruction
phase and the regularization phase. In the reconstruction phase, the autoen-
coder updates the encoder and the decoder to minimize the reconstruction error
of the inputs. In the regularization phase, the adversarial network first updates
its discriminative network to tell apart the true samples (generated using the
prior) from the generated samples (the hidden node embedding x; computed
by the autoencoder). As a result, the proposed AAANE can jointly capture the
weighted scale structure information and learn robust representations.

3.2 Attention-Based Autoencoder

The Attention-based Autoencoder for network embedding (AANE) model uses
a stacked neural network to preserve the structure information. As we dis-
cussed in Sect. 2, different k-order proximity matrices preserve network struc-
ture information in different scales. Scale vector X* is column in each AF, for
k =1,2... K, which denotes the k-th scale structure information for the node.
The length of each scale vector X* is the same as the node size. The autoencoder
component tries to capture the full range of structure information. We construct
a vector representation zs for each node as the input of the autoencoder in the
first step. In general, we expect this vector representation to capture the most
relevant information with regards to different scales of a node. zs is defined as
the weighted summation of every scale vector X* k= 1,2, ... K, corresponding
to the scale index for each node.

K
Zs = Zaka (2)
k=1

For each scale vector X* of one node, we compute a positive weight ay,
which can be interpreted as the probability that X} is assigned by one node.
Intuitively, by learning proper weights aj, for each node, our approach can obtain
most informative scale information. Following the recent attention based models
for neural machine translation, we define the weight of scales k for a node using
a softmax unit as follows:

exp(dy)
> =1 exp(dy)

ap =

K
T 1
dp = X* M-y, yS:?E Xk
k=1
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where y, is the average of different scale vector, which can capture the global
context of the structure information. M is a matrix mapping between the global
context embedding vy, and each structure scale vector X*, which is learned as
part of the training process. By introducing an attentive matrix M, we compute
the relevance of each scale vector to the node. If X* and y, have a large dot
product, this node believes that scale k is an informative scale, i.e., the weight
of scale k for this node will be largely based on the definition.

Once we obtain the weighted node vector representation z, € RIV!, a stacked
autoencoder is used to learn a low-dimensional node embedding. An autoencoder
performs two actions, an encoding step, followed by a decoding step. In the
encoding step, a function f() is applied to the original vector representation zg
in the input space and send it to a new feature space. An activation function
is typically involved in this process to model the non-linearities between the
two vector spaces. At the decoding step, a reconstruction function g()is used to
reconstruct the original input vectors back from the latent representation space.
The r; is the reconstructed vector representation. After training, the bottleneck
layer representations x; can be viewed as the low dimension embedding for the
input node v;.

This attention-based autoencoder is trained to minimize the reconstruction
error. We adopt the contrastive max-margin objective function, similar to pre-
vious work [13-15]. For each input node, we randomly sample m nodes from
our training data as negative samples. We represent each negative sample as ng,
which is computed by averaging its scale vectors as y,. Our objective is to make
the reconstructed embedding r, similar to the target node embedding z, while
different from those negative samples n,. Therefore, the unregularized objective
J is formulated as a hinge loss that maximizes the inner product between r;
and zs, and minimizes the inner product between r; and the negative samples
simultaneously:

J(0) = Z Z max (0,1 — ryzs + rsny) (4)

seD i=1

where D represents the training dataset.

3.3 Adversarial Learning

We hope to learn vector representations of the most representative scale for each
node. An autoencoder consists of two models, an encoder and a decoder, each
of which has its own set of learnable parameters. The encoder is used to get a
latent code z; from the input with the constraint. The dimension of the latent
code should be less than the input dimension. The decoder takes in this latent
code and tries to reconstruct the original input. However, we argue that training
an autoencoder with contrastive max-margin objective function gives us latent
codes with similar nodes being far from each other in the Euclidean space, espe-
cially when processing noisy network data. The main reason is the insufficient
constrain for embedding distribution. Adversarial autoencoder (AAE) addresses
these issues by imposing an Adversarial regularization to the bottleneck layer
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representation of autoencoder, and then the distribution of latent code may
be shaped to match a desired prior distribution. Adversarial regularisation can
reduce the amount of information that may be held in the encoding process,
forcing the model to learn an efficient representation for the network data.

AAE typically consists of a generator G() and a discriminator D(). Our main
goal is to force output of the encoder to follow a given prior distribution p(z)(this
can be normal, gamma .. distributions). We use the encoder as our generator,
and the discriminator to tell if the samples are from a prior distribution or from
the output of the encoder z;. D and G play the following two-player minimax
game with the value function V (G, D):

mci;n max V(D,G) = Epz)llog D(x;)] + Eg (g [log(1 — D(x;))] (5)

where ¢(z) is the distributions of encoded data samples.

3.4 Training Procedure

The whole training process is done in three sequential steps: (1) The encoder
and decoder are trained simultaneously to minimize the reconstruction loss of the
decoder as Eq. 4. (2) The discriminator D is then trained to correctly distinguish
the true input signals x from the false signals x;, where the x is generated from
target distribution, and x; is generated by the encoder by minimizing the loss
function 5. (3) The next step will be to force the encoder to fool the discriminator
by minimizing another loss function: L = —log(D(x;)). More specifically, we
connect the encoder output as the input to the discriminator. Then, we fix the
discriminator weights and fix the target to 1 at the discriminator output. Later,
we pass in a node to the encoder and find the discriminator output which is then
used to find the loss.

4 Experiments

In this section, we conduct node classification on sparsely labeled networks to
evaluate the performance of our proposed model.

4.1 Datasets

We employ the following three widely used datasets for node classification.

Cora. Cora is a research paper set constructed, which contains 2, 708 machine
learning papers which are categorized into seven classes. The citation relation-
ships among them are crawled form a popular social network.

Citeseer. Citeseer is another research paper set constructed, which contains 3,
312 publications and 4, 732 links among them. These papers are from 6 classes.

Wiki. Wiki contains 2, 405 web pages from 19 categories and 17, 981 links
among them. Wiki is much denser than Cora and Citeseer.
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4.2 Baselines and Experimental Settings

We consider a number of baselines to demonstrate the effectiveness and robust-
ness of the proposed AAANE algorithm. For all methods and datasets, we set
the embedding dimension d = 128.

DeepWalk [1]: DeepWalk first transforms the network into node sequences by
truncated random walk, and then uses it as input to the Skip-gram model to
learn representations.

LINE [6]: LINE can preserve both first-order and second-order proximities for
the undirected network through modeling node co-occurrence probability and
node conditional probability.

GraRep [7]: GraRep preserves node proximities by constructing different k-
order transition matrices.

node2vec [16]: node2vec develops a biased random walk procedure to explore
the neighborhood of a node, which can strike a balance between local properties
and global properties of a network.

AIDW [17]: Adversarial Inductive DeepWalk (AIDW) is an Adversarial Net-
work Embedding (ANE) framework, which leverages random walk to sample
node sequences as the structure-preserving component.

Parameter Setting: In our experimental settings, we vary the percentage of
labeled nodes from 10% to 90% by an increment of 10% for each dataset. We
treat network embeddings as vertex features and feed them into a one-vs-rest
logistic regression classifier implemented by LibLinear [18]. For DeepWalk, LINE,
GraRep, node2vec, we directly use the implementations provided by OpenNE!.
For our methods AAANE, the maximum matrix transition scale is set to 8, and
the number of negative samples per input sample m is set to 7. For attention-
based autoencoder, it has three hidden layers, with the layer structure as 512 —
128 — 512. For the discriminator of AAANE, it is a three-layer neural network,
with the layer structure as 512—512—1. And the prior distributions are Gaussian
Distribution following the original paper [19].

4.3 Multi-label Classification

Tables 1, 2 and 3 show classification accuracies with different training ratios on
different datasets, where the best results are bold-faced. In these tables, AANE
denotes our model AAANE without Adversarial component. From these tables,
we have the following observations:

(1) The proposed framework, without leveraging the adversarial regularization
version AANE, achieving average 2% gains over AIDW on cora and wiki
when varying the training ratio from 10% to 90% in most cases, and slightly
better result on Citeseer, which suggests that assigning different weights to
different scales of a node may be beneficial.

! https://github.com/thunlp/OpenNE.
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Table 1. Accuracy (%) of node classification on Wiki.

% Labeled nodes | 10% |20% |30% |40% |50% |60% |70% |80% | 90%

DeepWalk 57.2 ]62.98 |64.03 | 65.78 | 66.74 |68.69 |68.36 | 67.85 | 67.22
LINE 57.09 |59.98 | 62.47 | 64.38 |66.5 |65.8 |67.31 |67.15 |65.15
GraRep 59.55 |60.76 | 62.23 |62.3 |62.76 |63.72 |63.02 |62.79 |60.17
node2vec 58.47 |61.38 |63.9 |63.96 66.08 |66.74 |67.73 | 67.57 | 66.8

AIDW 57.29 |61.89 | 63.77 | 64.26 |66.85 |67.23 |69.04 |70.13 |71.33
AANE 59.95 | 64.14 |66.15 | 68.40 | 68.66 |69.34 |69.25 | 70.89 | 69.71
AAANE 60.36 | 64.98 | 67.21 | 68.79 | 69.07 | 70.32 | 70.85 | 72.03 | 72.45

Table 2. Accuracy (%) of node classification on Cora.

% Labeled nodes | 10% |20% |30% |40% |50% |60% |70% |80% | 90%

DeepWalk 76.37 | 79.6 |80.85 |81.42 |82.35 |82.1 |82.9 |84.32 |83.39
LINE 71.08 |76.19 | 77.32 | 784 |79.25 |79.06 |79.95 |81.92 |82.29
GraRep 77.02 |77.95 | 78.53 |79.75 |79.61 |78.78 |78.6 |78.23 |78.23
node2vec 75.84 | 78.77 |79.54 | 80.86 |80.43 |80.9 |80.44 |79.7 |77.86
AIDW 76.21 |78.93 | 80.21 |81.45 |82.03 |82.74 |82.81 |83.69 |83.92
AANE 77.65 | 81.50 |82.49 |84.43 |84.71 |84.69 |84.75 | 85.98 |86.03
AAANE 78.23 | 82.14 | 82.76 | 85.31 | 85.69 | 86.12 | 86.02 | 86.74 | 87.21

Table 3. Accuracy (%) of node classification on Citeser.

% Labeled nodes | 10% |20% |30% |40% |50% |60% |70% |80% | 90%
DeepWalk 53.47 | 54.19 |54.6 |57.55 |57 59.02 | 58.95 | 58.22 | 55.72
LINE 48.74 | 50.87 |52.82 |52.72 |52 52.3 |53.12 | 53.54 | 5241
GraRep 53.23 | 54.34 | 53.77 | 54.43 | 54.05 |54.57 |54.83 |55.35 |55.12
node2vec 53.94 | 54.08 |56.23 | 57.34 | 57.55 |60.3 |61.17 | 61.24 | 59.33
AIDW 52.17 | 56.23 | 56.87 | 58.26 |58.45 | 59.27 | 59.34 |60.38 |61.3
AANE 55.02 | 56.15 | 58.65 | 58.76 | 58.52 |59.93 |60.97 | 61.39 | 61.23
AAANE 55.45 | 56.73 | 59.37 | 59.81 | 60.12 | 60.58 | 61.43 | 61.72 | 62.38

(2) After introducing Adversarial component into AANE, our Method AAANE
can achieve further improvements over all baselines. It demonstrates that
adversarial learning regularization can improve the robustness and discrim-
ination of the learned representations.

(3) AAANE consistently outperforms all the other baselines on all three
datasets with different training ratios. It demonstrates that attention-based
weight learning together with the adversarial regularization can significantly
improve the robustness and discrimination of the learned embeddings.
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Fig. 4. Parameter sensitivity of dimension d and scale size k.

4.4 Detailed Analysis of the Proposed Model

Analysis of the Learned Attentions over Scales: In our proposed AAANE
model, we adopt an attention based approach to learn the weights of scales during
voting, so that different nodes can focus most of their attentions on the most
informative scales. The quantitative results have shown that AAANE achieves
better results by learning attention over scales. In this part, we will examine
the learned attention to understand why it can help improve the performances
(Fig. 3).

We study which scale turn to attract more attentions from nodes. We take the
Cora and Wiki datasets as examples. For each scale, we report the results of the
scale-specific embedding corresponded to this scale, which achieves by taking
only one scale vector A* as an input of autoencoder. Then, we compare this
scale-specific embedding with the average attention values learned by AAANE.
The results are presented in Fig. 4. Overall, the performances of single scale and
the average attention received by these scales are positively correlated. In other
words, our approach can allow different nodes to focus on the scales with the
best performances, which is quite reasonable.

Parameter Sensitivity: We discuss the parameter sensitivity in this section.
Specifically, we assess how the different choices of the maximal scale size K,
dimension d can affect node classification with the training ratio as 50%.
Figure4(a) shows the accuracy of AAANE over different settings of the dimen-
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sion d. The accuracy shows an apparent increase at first. This is intuitive as
more bits can encode more useful information in the increasing bits. However,
when the number of dimensions continuously increases, the performance starts
to drop slowly. The reason is that too large number of dimensions may introduce
noises which will deteriorate the performance. Figure4(b) shows the accuracy
scores over different choices of K. We can observe that the setting K = 2 has a
significant improvement over the setting K = 1, and K = 3 further outperforms
K = 2. This confirms that different k-order can learn complementary local infor-
mation. When K is large enough, learned k-order relational information becomes
weak and shifts towards a steady distribution.

5 Related Work

To preserve multi-scale structure information, some random walk and matrix
factorization methods [1,7] have been proposed. GraRep [7] accurately calcu-
lates k-order proximity matrix, and computes specific representation for each
k using SVD based dimension reduction method, and then concatenates these
embeddings. Another line of the related work is deep learning based methods.
SDNE [9], DNGR [8] utilize this ability of deep autoencoder to generate an
embedding model that can capture non-linearity in graphs. AIDW [17] proposes
an adversarial network embedding framework, which leverages the adversarial
learning principle to regularize the representation learning. However, existing
approaches usually lack weight learning for different scales.

Our work is also related to the attention-based models. Rather than using all
available information, attention mechanism aims to focus on the most pertinent
information for a task and has been applied to various tasks, including machine
translation and sentence summarization [11]. MVE [10] proposes a multi-view
network embedding, which aims to infer robust node representations across dif-
ferent networks.

6 Conclusion

In this paper, we study learning node embedding for networks with multiple
scales. We propose an effective framework to let different scales collaborate with
each other and vote for the robust node representations. During voting, we pro-
pose an attention-based autoencoder to automatically learn the voting weights
of scales while preserving the network structure information in a non-linear way.
Besides, an Adversarial regularization is introduced to learn more stable and
robust network embedding. Experiments on node classification demonstrate the
superior performance of our proposed method.

References

1. Perozzi, B., Al-Rfou, R., Skiena, S.: DeepWalk: online learning of social represen-
tations. In: Proceedings of the 20th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (2014)



14

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

L. Sang et al.

Wang, X., Cui, P., Wang, J., Pei, J., Zhu, W., Yang, S.: Community preserving
network embedding. In: AAAI pp. 203-209 (2017)

Sang, L., Xu, M., Qian, S., Wu, X.: Multi-modal multi-view Bayesian semantic
embedding for community question answering. Neurocomputing (2018)

Liu, L., Zhou, T.: Link prediction in complex networks: a survey. Phys. A: Stat.
Mech. Appl. 390(6), 1150-1170 (2011)

Perozzi, B., Kulkarni, V., Chen, H., Skiena, S.: Don’t walk, skip!: online learn-
ing of multi-scale network embeddings. In: Proceedings of the 2017 IEEE/ACM
International Conference on Advances in Social Networks Analysis and Mining,
pp- 258-265. ACM (2017)

Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: Line: large-scale infor-
mation network embedding. In: Proceedings of the 24th International Conference
on World Wide Web, pp. 1067-1077. International World Wide Web Conferences
Steering Committee (2015)

Cao, S., Lu, W., Xu, Q.: Grarep: learning graph representations with global struc-
tural information. In: Proceedings of the 24th ACM International on Conference
on Information and Knowledge Management, pp. 891-900. ACM (2015)

Cao, S., Lu, W., Xu, Q.: Deep neural networks for learning graph representations.
In: AAAI pp. 1145-1152 (2016)

Wang, D., Cui, P., Zhu, W.: Structural deep network embedding. In: Proceedings
of the 20th ACM SIGKDD (2016)

Qu, M., Tang, J., Shang, J., Ren, X., Zhang, M., Han, J.: An attention-based collab-
oration framework for multi-view network representation learning. In: Proceedings
of the 2017 ACM on Conference on Information and Knowledge Management, pp.
1767-1776. ACM (2017)

Luong, M.-T., Pham, H., Manning, C.D.: Effective approaches to attention-based
neural machine translation. arXiv preprint arXiv:1508.04025 (2015)

Goodfellow, 1., et al.: Generative adversarial nets. In: Advances in Neural Infor-
mation Processing Systems, pp. 2672-2680 (2014)

Weston, J., Bengio, S., Usunier, N.: WSABIE: scaling up to large vocabulary image
annotation. In: IJCAI, vol. 11, pp. 2764-2770 (2011)

Iyyer, M., Guha, A., Chaturvedi, S., Boyd-Graber, J., Daumé III, H.: Feuding
families and former friends: unsupervised learning for dynamic fictional relation-
ships. In: Proceedings of the 2016 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, pp.
1534-1544 (2016)

He, R., Lee, W.S., Ng, H.T., Dahlmeier, D.: An unsupervised neural attention
model for aspect extraction. In: Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), vol. 1, pp.
388-397 (2017)

Grover, A., Leskovec, J.: node2vec: Scalable feature learning for networks. In: Pro-
ceedings of the 22nd ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, pp. 855-864. ACM (2016)

Dai, Q., Li, Q., Tang, J., Wang, D.: Adversarial network embedding. In: Proceed-
ings of AAAI (2018)

Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R., Lin, C.-J.: Liblinear: a library
for large linear classification. J. Mach. Learn. Res. 9(Aug), 1871-1874 (2008)
Makhzani, A., Shlens, J., Jaitly, N., Goodfellow, I., Frey, B.: Adversarial autoen-
coders. arXiv preprint arXiv:1511.05644 (2015)


http://arxiv.org/abs/1508.04025
http://arxiv.org/abs/1511.05644

	AAANE: Attention-Based Adversarial Autoencoder for Multi-scale Network Embedding
	1 Introduction
	2 Preliminaries
	3 The Framework
	3.1 An Overview of the Framework
	3.2 Attention-Based Autoencoder
	3.3 Adversarial Learning
	3.4 Training Procedure

	4 Experiments
	4.1 Datasets
	4.2 Baselines and Experimental Settings
	4.3 Multi-label Classification
	4.4 Detailed Analysis of the Proposed Model

	5 Related Work
	6 Conclusion
	References




