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PC Chairs’ Preface

It is our great pleasure to introduce the proceedings of the 23rd Pacific-Asia Conference
on Knowledge Discovery and Data Mining (PAKDD 2019). The conference provides
an international forum for researchers and industry practitioners to share their new
ideas, original research results, and practical development experiences from all
KDD-related areas, including data mining, data warehousing, machine learning, arti-
ficial intelligence, databases, statistics, knowledge engineering, visualization,
decision-making systems, and the emerging applications.

We received 567 submissions to PAKDD 2019 from 46 countries and regions all
over the world, noticeably with submissions from North America, South America,
Europe, and Africa. The large number of submissions and high diversity of submission
demographics witness the significant influence and reputation of PAKDD. A rigorous
double-blind reviewing procedure was ensured via the joint efforts of the entire
Program Committee consisting of 55 Senior Program Committee (SPC) members and
379 Program Committee (PC) members.

The PC Co-Chairs performed an initial screening of all the submissions, among
which 25 submissions were desk rejected due to the violation of submission guidelines.
For submissions entering the double-blind review process, each one received at least
three quality reviews from PC members or in a few cases from external reviewers (with
78.5% of them receiving four or more reviews). Furthermore, each valid submission
received one meta-review from the assigned SPC member who also led the discussion
with the PC members. The PC Co-Chairs then considered the recommendations and
meta-reviews from SPC members, and looked into each submission as well as its
reviews and PC discussions to make the final decision. For borderline papers, addi-
tional reviews were further requested and thorough discussions were conducted before
final decisions.

As a result, 137 out of 567 submissions were accepted, yielding an acceptance rate
of 24.1%. We aim to be strict with the acceptance rate, and all the accepted papers are
presented in a total of 20 technical sessions. Each paper was allocated 15 minutes for
oral presentation and 2 minutes for Q/A. The conference program also featured three
keynote speeches from distinguished data mining researchers, five cutting-edge
workshops, six comprehensive tutorials, and one dedicated data mining contest session.

We wish to sincerely thank all SPC members, PC members and externel reviewers
for their invaluable efforts in ensuring a timely, fair, and highly effective paper review
and selection procedure. We hope that readers of the proceedings will find that the
PAKDD 2019 technical program was both interesting and rewarding.

February 2019 Zhiguo Gong
Min-Ling Zhang



General Chairs’ Preface

On behalf of the Organizing Committee, it is our great pleasure to welcome you to
Macau, China for the 23rd Pacific-Asia Conference on Knowledge Discovery and Data
Mining (PAKDD 2019). Since its first edition in 1997, PAKDD has well established as
one of the leading international conferences in the areas of data mining and knowledge
discovery. This year, after its four previous editions in Beijing (1999), Hong Kong
(2001), Nanjing (2007), and Shenzhen (2011), PAKDD was held in China for the fifth
time in the fascinating city of Macau, during April 14–17, 2019.

First of all, we are very grateful to the many authors who submitted their work to the
PAKDD 2019 main conference, satellite workshops, and data mining contest. We were
delighted to feature three outstanding keynote speakers: Dr. Jennifer Neville from
Purdue University, Professor Hui Xiong from Baidu Inc., and Professor Josep
Domingo-Ferrer from Universitat Rovira i Virgili. The conference program was further
enriched with six high-quality tutorials, five workshops on cutting-edge topics, and one
data mining contest on AutoML for lifelong machine learning.

We would like to express our gratitude to the contributions of the SPC members,
PC members, and external reviewers, led by the PC Co-Chairs, Zhiguo Gong and
Min-Ling Zhang. We are also very thankful to the other Organizing Committee
members: Workshop Co-Chairs, Hady W. Lauw and Leong Hou U, Tutorial
Co-Chairs, Bob Durrant and Yang Yu, Contest Co-Chairs, Hugo Jair Escalante and
Wei-Wei Tu, Publicity Co-Chairs, Yi Cai, Xiangnan Kong, Gang Li, and Yasuo Tabei,
Proceedings Chair, Sheng-Jun Huang, and Local Arrangements Chair, Andrew Jiang.
We wish to extend our special thanks to Honorary Co-Chairs, Hiroshi Motoda and
Lionel M. Ni, for their enlightening support and advice throughout the conference
organization.

We appreciate the hosting organization University of Macau, and our sponsors
Macao Convention & Exhibition Association, Intel, Baidu, for their institutional and
financial support of PAKDD 2019. We also appreciate the Fourth Paradigm Inc.,
ChaLearn, Microsoft, and Amazon for sponsoring the PAKDD 2019 data mining
contest. We feel indebted to the PAKDD Steering Committee for its continuing
guidance and sponsorship of the paper award and student travel awards.

Last but not least, our sincere thanks go to all the participants and volunteers of
PAKDD 2019—there would be no conference without you. We hope you enjoy
PAKDD 2019 and your time in Macau, China.

February 2019 Qiang Yang
Zhi-Hua Zhou
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Abstract. Network embedding represents nodes in a continuous vec-
tor space and preserves structure information from a network. Existing
methods usually adopt a “one-size-fits-all” approach when concerning
multi-scale structure information, such as first- and second-order prox-
imity of nodes, ignoring the fact that different scales play different roles in
embedding learning. In this paper, we propose an Attention-based Adver-
sarial Autoencoder Network Embedding (AAANE) framework, which
promotes the collaboration of different scales and lets them vote for
robust representations. The proposed AAANE consists of two compo-
nents: (1) an attention-based autoencoder that effectively capture the
highly non-linear network structure, which can de-emphasize irrelevant
scales during training, and (2) an adversarial regularization guides the
autoencoder in learning robust representations by matching the posterior
distribution of the latent embeddings to a given prior distribution. Exper-
imental results on real-world networks show that the proposed approach
outperforms strong baselines.

Keywords: Network embedding · Multi-scale · Attention ·
Adversarial autoencoder

1 Introduction

Network embedding (NE) methods have shown outstanding performance on
many tasks including node classification [1], community detection [2,3] and link
prediction [4]. These methods aim to learn latent, low-dimensional representa-
tions for network nodes while preserving network topology structure information.
Networks’ structures are inherently hierarchical [5]. As shown in Fig. 1, each indi-
vidual is a member of several communities and can be modeled by his/her neigh-
borhoods’ structure information with different scales around him/her, which
c© Springer Nature Switzerland AG 2019
Q. Yang et al. (Eds.): PAKDD 2019, LNAI 11441, pp. 3–14, 2019.
https://doi.org/10.1007/978-3-030-16142-2_1
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Fig. 1. Illustration of the multi-scale network with three scales.

range from short scales structure (e.g. families, friends), to long-distance scales
structure (e.g. society, nation states). Every single scale is usually sparse and
biased, and thus the node embedding learned by existing approaches may not
be so robust. To obtain a comprehensive representation of a network node, multi-
scale structure information should be considered collaboratively.

Recently, a number of methods have been proposed for learning data repre-
sentations from multiple scales. For example, DeepWalk [1] models multi-scale
indirectly from a random walk. Line [6] proposes primarily a breadth-first strat-
egy, sampling nodes and optimizing the likelihood independently over short
scales structure information such as 1-order and 2-order neighbors. GraRep
[7] generalizes LINE to incorporate information from network neighborhoods
beyond 2-order, which can embed long distance scales structure information
to the node representation. More recently, some autoencoder based methods,
For example, DNGR [8] learns the node embedding through stacked denoising
autoencoder from the multi-scale PPMI matrix. Similarly, SDNE [9] is realized
by a semi-supervised deep autoencoder model. Besides, MVE [10] aims to learn
embedding from several multi-viewed networks with the same nodes but different
edges, which is different from our single network setting.

Despite their strong task performance, existing methods have the follow-
ing limitations: (1) Lack of weight learning. To learn robust and stable node
embeddings, the information from multiple scales needs to be integrated. Dur-
ing integration, as the importance of different scales can be quite different, their
weights need to be carefully decided. For example, if we consider very young
kids on a social network, and they may be very tightly tied to their family
and loosely tied to the society members. However, for university students, they
may have relatively more ties to their friends and the society than very young
kids. Existing approaches usually assign equal weights to all scales. In other
words, different scales are equally treated, which is not reasonable for most
multi-scale networks. (2) Insufficient constrain for embedding distribution. Take
the autoencoder based method for example, an autoencoder is a neural net-
work trained to attempt to copy its input to its output, which has a typical
pipeline like (x → E → z → D → x′). Autoencoder only requires x to approach
x′ = D(E(x)), and for that purpose the decoder may simply learn to reconstruct
x regardless of the distribution obtained from E. This means that p(z) can be
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very irregular, which sometimes makes the generation of new samples difficult
or even infeasible.

In this paper, we focus on the multi-scale network embedding problem and
propose a novel Attention-based Adversarial Autoencoder Network Embedding
(AAANE) method to jointly capture the weighted scale structure information
and learn robust representation with adversarial regularization. We first intro-
duce a set of scale-specific node vectors to preserve the proximities of nodes
in different scales. The scales-specific node embeddings are then combined for
voting the robust node representations. Specifically, our work has two major
contributions. (1) To deal with the weights learning, we propose an attention-
based autoencoder to infer the weights of scales for different nodes, and then
capture the highly non-linear network structure, which is inspired by the recent
progress of the attention mechanism for neural machine translation [11]. (2)
To implement regularisation of the distribution for encoded data, we introduce
adversarial training component [12] to the attention-based autoencoder, which
can discriminatively predict whether a sample arises from the low-dimensional
representations of the network or from a sampled distribution. Adversarial regu-
larisation reduces the amount of information that may be held in the encoding,
forcing the model to learn an efficient representation of the data. Through the
attention-based weight learning together with the adversarial regularization, the
proposed AAANE model can effectively combine the virtues of multiple scale
information to complement and enhance each other.

2 Preliminaries

Network Embedding(NE): An information network is represented as G =
(V,E), where V = {vi}i=1,··· ,N consist a set of nodes, ei,j = (vi, vj) ∈ E is
an edge indicating the relationship between two nodes. The task of NE aims
to build a low-dimensional representation xi ∈ R

d for each node i ∈ V , where
d is the dimension of embedding space and expected much smaller than node
number |V |.

We define adjacency matrix ˜A ∈ R
|V |×|V | for a network and D is a diagonal

degree matrix. To capture the transitions from one node to another, we can
define the (first-order) probability transition matrix A = D−1

˜A, where Ai,j

is the probability of a transition from node vi to node vj within one step. It
can be observed that the matrix A is a normalized adjacency matrix where the
summation of each row equals to 1.

In this paper, multi-scale structural information serves two functions: (1) the
capture of long-distance relationship between two different vertices and (2) the
consideration of distinct connections in terms of different transitional orders.

The (normalized) adjacency matrix A characterizes the first-order proximity
which models the local pairwise proximity between vertices. As discussed ear-
lier, we believe that the k-order (with varying k) long scale relational information
from the network needs to be captured when constructing such multi-scale net-
work embedding [7]. To compute the various scale transition probabilities, we
introduce the following k-order probability proximity matrix:
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Fig. 2. The architecture of AAANE. The top row is an attention-based autoencoder
that infers the weights of scales for different nodes, and then captures the highly non-
linear network structure. The bottom row diagrams a discriminator trained to discrim-
inatively predict whether a sample arises from the hidden code of the autoencoder or
from a prior distribution specified by the user.

Ak = A · A · · · A
︸ ︷︷ ︸

k
(1)

where the entry Ak
i,j refers to the k-order proximity between node vi and vj .

Multi-scale Network Embedding: Given a network G = (V,E), the robust
node representation {xi}vi∈V ⊆ Rd can be collaboratively learned from k suc-
cessively network structural information representation, A,A2, . . . , Ak, where Ak

captures the view of the network at scale k. Intuitively, each member of the family
encodes a different view of social similarity, corresponding to shared membership
in latent communities at different scales.

3 The Framework

In this section, we first give a brief overview of the proposed AAANE, and then
formulate our method of multi-scale network embedding from attention based
adversarial autoencoder.

3.1 An Overview of the Framework

In this work, we leverage attention-based adversarial autoencoder to help learn
stable and robust node embedding. Figure 2 shows the proposed framework of
Attention-based Adversarial Autoencoder for Network Embedding (AAANE),
which mainly consists of two components, i.e., an attention-based autoencoder
and an adversarial learning component.
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We introduce an attention mechanism to the autoencoder for learning the
weights of structure information with different scales. A standard autoencoder
consists of an encoder network and a decoder network. The encoder maps the
network structure information zs into a latent code xi, and the decoder recon-
structs the input data as rs. Then, the adversarial learning component acts as
regularization for the autoencoder, by matching the aggregated posterior, which
helps enhance the robustness of the representation xi. The generator of the
adversarial network is also the encoder of the autoencoder. The adversarial net-
work and the autoencoder are trained jointly in two phases: the reconstruction
phase and the regularization phase. In the reconstruction phase, the autoen-
coder updates the encoder and the decoder to minimize the reconstruction error
of the inputs. In the regularization phase, the adversarial network first updates
its discriminative network to tell apart the true samples (generated using the
prior) from the generated samples (the hidden node embedding xi computed
by the autoencoder). As a result, the proposed AAANE can jointly capture the
weighted scale structure information and learn robust representations.

3.2 Attention-Based Autoencoder

The Attention-based Autoencoder for network embedding (AANE) model uses
a stacked neural network to preserve the structure information. As we dis-
cussed in Sect. 2, different k-order proximity matrices preserve network struc-
ture information in different scales. Scale vector Xk is column in each Ak, for
k = 1, 2 . . . K, which denotes the k-th scale structure information for the node.
The length of each scale vector Xk is the same as the node size. The autoencoder
component tries to capture the full range of structure information. We construct
a vector representation zs for each node as the input of the autoencoder in the
first step. In general, we expect this vector representation to capture the most
relevant information with regards to different scales of a node. zs is defined as
the weighted summation of every scale vector Xk, k = 1, 2, . . . K, corresponding
to the scale index for each node.

zs =
K

∑

k=1

akX
k (2)

For each scale vector Xk of one node, we compute a positive weight ak

which can be interpreted as the probability that Xk is assigned by one node.
Intuitively, by learning proper weights ak for each node, our approach can obtain
most informative scale information. Following the recent attention based models
for neural machine translation, we define the weight of scales k for a node using
a softmax unit as follows:

ak =
exp(dk)

∑n
j=1 exp(dk)

dk = Xk� · M · ys ys =
1
K

K
∑

k=1

Xk

(3)
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where ys is the average of different scale vector, which can capture the global
context of the structure information. M is a matrix mapping between the global
context embedding ys and each structure scale vector Xk, which is learned as
part of the training process. By introducing an attentive matrix M , we compute
the relevance of each scale vector to the node. If Xk and ys have a large dot
product, this node believes that scale k is an informative scale, i.e., the weight
of scale k for this node will be largely based on the definition.

Once we obtain the weighted node vector representation zs ∈ R
|V |, a stacked

autoencoder is used to learn a low-dimensional node embedding. An autoencoder
performs two actions, an encoding step, followed by a decoding step. In the
encoding step, a function f() is applied to the original vector representation zs
in the input space and send it to a new feature space. An activation function
is typically involved in this process to model the non-linearities between the
two vector spaces. At the decoding step, a reconstruction function g()is used to
reconstruct the original input vectors back from the latent representation space.
The rs is the reconstructed vector representation. After training, the bottleneck
layer representations xi can be viewed as the low dimension embedding for the
input node vi.

This attention-based autoencoder is trained to minimize the reconstruction
error. We adopt the contrastive max-margin objective function, similar to pre-
vious work [13–15]. For each input node, we randomly sample m nodes from
our training data as negative samples. We represent each negative sample as ns,
which is computed by averaging its scale vectors as ys. Our objective is to make
the reconstructed embedding rs similar to the target node embedding zs while
different from those negative samples ns. Therefore, the unregularized objective
J is formulated as a hinge loss that maximizes the inner product between rs
and zs, and minimizes the inner product between rs and the negative samples
simultaneously:

J(θ) =
∑

s∈D

m
∑

i=1

max(0, 1 − rszs + rsni) (4)

where D represents the training dataset.

3.3 Adversarial Learning

We hope to learn vector representations of the most representative scale for each
node. An autoencoder consists of two models, an encoder and a decoder, each
of which has its own set of learnable parameters. The encoder is used to get a
latent code xi from the input with the constraint. The dimension of the latent
code should be less than the input dimension. The decoder takes in this latent
code and tries to reconstruct the original input. However, we argue that training
an autoencoder with contrastive max-margin objective function gives us latent
codes with similar nodes being far from each other in the Euclidean space, espe-
cially when processing noisy network data. The main reason is the insufficient
constrain for embedding distribution. Adversarial autoencoder (AAE) addresses
these issues by imposing an Adversarial regularization to the bottleneck layer
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representation of autoencoder, and then the distribution of latent code may
be shaped to match a desired prior distribution. Adversarial regularisation can
reduce the amount of information that may be held in the encoding process,
forcing the model to learn an efficient representation for the network data.

AAE typically consists of a generator G() and a discriminator D(). Our main
goal is to force output of the encoder to follow a given prior distribution p(x)(this
can be normal, gamma .. distributions). We use the encoder as our generator,
and the discriminator to tell if the samples are from a prior distribution or from
the output of the encoder xi. D and G play the following two-player minimax
game with the value function V (G, D):

min
G

max
D

V (D,G) = Ep(x)[log D(xi)] + Eq(x)[log(1 − D(xi))] (5)

where q(x) is the distributions of encoded data samples.

3.4 Training Procedure

The whole training process is done in three sequential steps: (1) The encoder
and decoder are trained simultaneously to minimize the reconstruction loss of the
decoder as Eq. 4. (2) The discriminator D is then trained to correctly distinguish
the true input signals x from the false signals xi, where the x is generated from
target distribution, and xi is generated by the encoder by minimizing the loss
function 5. (3) The next step will be to force the encoder to fool the discriminator
by minimizing another loss function: L = − log(D(xi)). More specifically, we
connect the encoder output as the input to the discriminator. Then, we fix the
discriminator weights and fix the target to 1 at the discriminator output. Later,
we pass in a node to the encoder and find the discriminator output which is then
used to find the loss.

4 Experiments

In this section, we conduct node classification on sparsely labeled networks to
evaluate the performance of our proposed model.

4.1 Datasets

We employ the following three widely used datasets for node classification.

Cora. Cora is a research paper set constructed, which contains 2, 708 machine
learning papers which are categorized into seven classes. The citation relation-
ships among them are crawled form a popular social network.

Citeseer. Citeseer is another research paper set constructed, which contains 3,
312 publications and 4, 732 links among them. These papers are from 6 classes.

Wiki. Wiki contains 2, 405 web pages from 19 categories and 17, 981 links
among them. Wiki is much denser than Cora and Citeseer.
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4.2 Baselines and Experimental Settings

We consider a number of baselines to demonstrate the effectiveness and robust-
ness of the proposed AAANE algorithm. For all methods and datasets, we set
the embedding dimension d = 128.

DeepWalk [1]: DeepWalk first transforms the network into node sequences by
truncated random walk, and then uses it as input to the Skip-gram model to
learn representations.

LINE [6]: LINE can preserve both first-order and second-order proximities for
the undirected network through modeling node co-occurrence probability and
node conditional probability.

GraRep [7]: GraRep preserves node proximities by constructing different k-
order transition matrices.

node2vec [16]: node2vec develops a biased random walk procedure to explore
the neighborhood of a node, which can strike a balance between local properties
and global properties of a network.

AIDW [17]: Adversarial Inductive DeepWalk (AIDW) is an Adversarial Net-
work Embedding (ANE) framework, which leverages random walk to sample
node sequences as the structure-preserving component.

Parameter Setting: In our experimental settings, we vary the percentage of
labeled nodes from 10% to 90% by an increment of 10% for each dataset. We
treat network embeddings as vertex features and feed them into a one-vs-rest
logistic regression classifier implemented by LibLinear [18]. For DeepWalk, LINE,
GraRep, node2vec, we directly use the implementations provided by OpenNE1.
For our methods AAANE, the maximum matrix transition scale is set to 8, and
the number of negative samples per input sample m is set to 7. For attention-
based autoencoder, it has three hidden layers, with the layer structure as 512 −
128 − 512. For the discriminator of AAANE, it is a three-layer neural network,
with the layer structure as 512−512−1. And the prior distributions are Gaussian
Distribution following the original paper [19].

4.3 Multi-label Classification

Tables 1, 2 and 3 show classification accuracies with different training ratios on
different datasets, where the best results are bold-faced. In these tables, AANE
denotes our model AAANE without Adversarial component. From these tables,
we have the following observations:

(1) The proposed framework, without leveraging the adversarial regularization
version AANE, achieving average 2% gains over AIDW on cora and wiki
when varying the training ratio from 10% to 90% in most cases, and slightly
better result on Citeseer, which suggests that assigning different weights to
different scales of a node may be beneficial.

1 https://github.com/thunlp/OpenNE.

https://github.com/thunlp/OpenNE
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Table 1. Accuracy (%) of node classification on Wiki.

% Labeled nodes 10% 20% 30% 40% 50% 60% 70% 80% 90%

DeepWalk 57.2 62.98 64.03 65.78 66.74 68.69 68.36 67.85 67.22

LINE 57.09 59.98 62.47 64.38 66.5 65.8 67.31 67.15 65.15

GraRep 59.55 60.76 62.23 62.3 62.76 63.72 63.02 62.79 60.17

node2vec 58.47 61.38 63.9 63.96 66.08 66.74 67.73 67.57 66.8

AIDW 57.29 61.89 63.77 64.26 66.85 67.23 69.04 70.13 71.33

AANE 59.95 64.14 66.15 68.40 68.66 69.34 69.25 70.89 69.71

AAANE 60.36 64.98 67.21 68.79 69.07 70.32 70.85 72.03 72.45

Table 2. Accuracy (%) of node classification on Cora.

% Labeled nodes 10% 20% 30% 40% 50% 60% 70% 80% 90%

DeepWalk 76.37 79.6 80.85 81.42 82.35 82.1 82.9 84.32 83.39

LINE 71.08 76.19 77.32 78.4 79.25 79.06 79.95 81.92 82.29

GraRep 77.02 77.95 78.53 79.75 79.61 78.78 78.6 78.23 78.23

node2vec 75.84 78.77 79.54 80.86 80.43 80.9 80.44 79.7 77.86

AIDW 76.21 78.93 80.21 81.45 82.03 82.74 82.81 83.69 83.92

AANE 77.65 81.50 82.49 84.43 84.71 84.69 84.75 85.98 86.03

AAANE 78.23 82.14 82.76 85.31 85.69 86.12 86.02 86.74 87.21

Table 3. Accuracy (%) of node classification on Citeser.

% Labeled nodes 10% 20% 30% 40% 50% 60% 70% 80% 90%

DeepWalk 53.47 54.19 54.6 57.55 57 59.02 58.95 58.22 55.72

LINE 48.74 50.87 52.82 52.72 52 52.3 53.12 53.54 52.41

GraRep 53.23 54.34 53.77 54.43 54.05 54.57 54.83 55.35 55.12

node2vec 53.94 54.08 56.23 57.34 57.55 60.3 61.17 61.24 59.33

AIDW 52.17 56.23 56.87 58.26 58.45 59.27 59.34 60.38 61.3

AANE 55.02 56.15 58.65 58.76 58.52 59.93 60.97 61.39 61.23

AAANE 55.45 56.73 59.37 59.81 60.12 60.58 61.43 61.72 62.38

(2) After introducing Adversarial component into AANE, our Method AAANE
can achieve further improvements over all baselines. It demonstrates that
adversarial learning regularization can improve the robustness and discrim-
ination of the learned representations.

(3) AAANE consistently outperforms all the other baselines on all three
datasets with different training ratios. It demonstrates that attention-based
weight learning together with the adversarial regularization can significantly
improve the robustness and discrimination of the learned embeddings.
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Fig. 3. Comparison of performances on each individual scale and the average weights
of scales. Scales with better performances usually attract more attentions from nodes.

Fig. 4. Parameter sensitivity of dimension d and scale size k.

4.4 Detailed Analysis of the Proposed Model

Analysis of the Learned Attentions over Scales: In our proposed AAANE
model, we adopt an attention based approach to learn the weights of scales during
voting, so that different nodes can focus most of their attentions on the most
informative scales. The quantitative results have shown that AAANE achieves
better results by learning attention over scales. In this part, we will examine
the learned attention to understand why it can help improve the performances
(Fig. 3).

We study which scale turn to attract more attentions from nodes. We take the
Cora and Wiki datasets as examples. For each scale, we report the results of the
scale-specific embedding corresponded to this scale, which achieves by taking
only one scale vector Ak as an input of autoencoder. Then, we compare this
scale-specific embedding with the average attention values learned by AAANE.
The results are presented in Fig. 4. Overall, the performances of single scale and
the average attention received by these scales are positively correlated. In other
words, our approach can allow different nodes to focus on the scales with the
best performances, which is quite reasonable.

Parameter Sensitivity: We discuss the parameter sensitivity in this section.
Specifically, we assess how the different choices of the maximal scale size K,
dimension d can affect node classification with the training ratio as 50%.
Figure 4(a) shows the accuracy of AAANE over different settings of the dimen-
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sion d. The accuracy shows an apparent increase at first. This is intuitive as
more bits can encode more useful information in the increasing bits. However,
when the number of dimensions continuously increases, the performance starts
to drop slowly. The reason is that too large number of dimensions may introduce
noises which will deteriorate the performance. Figure 4(b) shows the accuracy
scores over different choices of K. We can observe that the setting K = 2 has a
significant improvement over the setting K = 1, and K = 3 further outperforms
K = 2. This confirms that different k-order can learn complementary local infor-
mation. When K is large enough, learned k-order relational information becomes
weak and shifts towards a steady distribution.

5 Related Work

To preserve multi-scale structure information, some random walk and matrix
factorization methods [1,7] have been proposed. GraRep [7] accurately calcu-
lates k-order proximity matrix, and computes specific representation for each
k using SVD based dimension reduction method, and then concatenates these
embeddings. Another line of the related work is deep learning based methods.
SDNE [9], DNGR [8] utilize this ability of deep autoencoder to generate an
embedding model that can capture non-linearity in graphs. AIDW [17] proposes
an adversarial network embedding framework, which leverages the adversarial
learning principle to regularize the representation learning. However, existing
approaches usually lack weight learning for different scales.

Our work is also related to the attention-based models. Rather than using all
available information, attention mechanism aims to focus on the most pertinent
information for a task and has been applied to various tasks, including machine
translation and sentence summarization [11]. MVE [10] proposes a multi-view
network embedding, which aims to infer robust node representations across dif-
ferent networks.

6 Conclusion

In this paper, we study learning node embedding for networks with multiple
scales. We propose an effective framework to let different scales collaborate with
each other and vote for the robust node representations. During voting, we pro-
pose an attention-based autoencoder to automatically learn the voting weights
of scales while preserving the network structure information in a non-linear way.
Besides, an Adversarial regularization is introduced to learn more stable and
robust network embedding. Experiments on node classification demonstrate the
superior performance of our proposed method.
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4. Lü, L., Zhou, T.: Link prediction in complex networks: a survey. Phys. A: Stat.
Mech. Appl. 390(6), 1150–1170 (2011)

5. Perozzi, B., Kulkarni, V., Chen, H., Skiena, S.: Don’t walk, skip!: online learn-
ing of multi-scale network embeddings. In: Proceedings of the 2017 IEEE/ACM
International Conference on Advances in Social Networks Analysis and Mining,
pp. 258–265. ACM (2017)

6. Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: Line: large-scale infor-
mation network embedding. In: Proceedings of the 24th International Conference
on World Wide Web, pp. 1067–1077. International World Wide Web Conferences
Steering Committee (2015)

7. Cao, S., Lu, W., Xu, Q.: Grarep: learning graph representations with global struc-
tural information. In: Proceedings of the 24th ACM International on Conference
on Information and Knowledge Management, pp. 891–900. ACM (2015)

8. Cao, S., Lu, W., Xu, Q.: Deep neural networks for learning graph representations.
In: AAAI, pp. 1145–1152 (2016)

9. Wang, D., Cui, P., Zhu, W.: Structural deep network embedding. In: Proceedings
of the 20th ACM SIGKDD (2016)

10. Qu, M., Tang, J., Shang, J., Ren, X., Zhang, M., Han, J.: An attention-based collab-
oration framework for multi-view network representation learning. In: Proceedings
of the 2017 ACM on Conference on Information and Knowledge Management, pp.
1767–1776. ACM (2017)

11. Luong, M.-T., Pham, H., Manning, C.D.: Effective approaches to attention-based
neural machine translation. arXiv preprint arXiv:1508.04025 (2015)

12. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Infor-
mation Processing Systems, pp. 2672–2680 (2014)

13. Weston, J., Bengio, S., Usunier, N.: WSABIE: scaling up to large vocabulary image
annotation. In: IJCAI, vol. 11, pp. 2764–2770 (2011)

14. Iyyer, M., Guha, A., Chaturvedi, S., Boyd-Graber, J., Daumé III, H.: Feuding
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Abstract. The recommendation system is an important tool both for
business and individual users, aiming to generate a personalized recom-
mended list for each user. Many studies have been devoted to improv-
ing the accuracy of recommendation, while have ignored the diversity
of the results. We find that the key to addressing this problem is to
fully exploit the hidden features of the heterogeneous user-item network,
and consider the impact of hot items. Accordingly, we propose a person-
alized top-k item recommendation method that jointly considers accu-
racy and diversity, which is called Normalized Network Embedding with
Autoencoder for Personalized Top-K Item Recommendation, namely
NEAR. Our model fully exploits the hidden features of the heteroge-
neous user-item network data and generates more general low dimen-
sion embedding, resulting in more accurate and diverse recommendation
sequences. We compare NEAR with some state-of-the-art algorithms on
the DBLP and MovieLens1M datasets, and the experimental results show
that our method is able to balance the accuracy and diversity scores.

Keywords: Network embedding · Recommendation system ·
Autoencoder · Heterogeneous network

1 Introduction

Recommendation systems are widely used in industry for they can recommend
items that users most likely to consume. Among current methods, the network
embedding algorithm attracts lots of attention. Since the network embedding
algorithm can describe high-dimensional complex networks as low-dimensional
dense vectors, making it possible to combine complex tasks with machine learn-
ing algorithms effectively [6,16]. In [17], it proves that the network embedding
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algorithm is actually equivalent to the matrix decomposition of a particular adja-
cent matrix. Simultaneously, the network embedding method is more effective
than matrix decomposition in feature learning.

Recently, the deep neural network has shown a revolutionary advance
in speech recognition, computer vision and natural language processing.
Researchers apply deep learning methods in capturing useful information of
complex networks [18]. Among these methods, autoencoder aims to map the
input data to the low dimension representation while minimizing the difference
between output and input, which meets the requirements of recommended sys-
tems. In [8], it shows that the autoencoder performs robustly on extracting
the implicit relationships between items and users collaboratively when process-
ing the network representation. Considering the above issues, we propose to
choose a graph embedding algorithm with a deep learning method to train the
model, aiming to fully exploit the hidden features of the heterogeneous user-item
network.

However, on the process of dealing with diversity and novelty, we have found
that the recommended list generated by network embedding methods are almost
hot items, which is called the Harry Potter Problem. Experimental data has also
shown that hot items always have high scores rated by users, which leads to the
large value of the final vector representation. As a result, the items recommended
for each user are much the same (almost hot items only), which leaves a nega-
tive impact on users permanently even if the F1 score is good. To address this
problem, we resort to punishing hot items to a certain extent through the L2
normalization. Experiments show that the prediction of the hot items declines
in ranking, leading to the top-k results more diverse.

In short, the contributions of this paper are listed as follows:

– We propose a Normalized Network Embedding with Autoencoder for Person-
alized Top-K Item Recommendation model, namely NEAR. We generate user
and item embedding with autoencoder separately, combining advantages of
both autoencoder and network embedding algorithms, which is a new method
for the top-k recommendation.

– We choose KL-divergence to extract explicit features of ratings network and
autoencoder to extract the higher-order proximity of implicit features so as
to preserve the network structure more comprehensively.

– We suggest punishing the popular items through a L2 normalization in the
process of network embedding, which turns out to be helpful to generate more
diverse recommendations.

2 Related Work

2.1 Recommendation Systems

The task of the recommendation system includes rating prediction and ranking
prediction [18]. The rating task is to predict vacant scores of the rating matrix
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[5]. The ranking task generates top-k items that each user is most likely to con-
sume. Recommendation algorithms are mainly based on collaborative filtering,
content-based and hybrid recommendation systems [18]. The collaborative filter-
ing (CF) method utilizes users’ historical interactive information to recommend,
including the traditional neighborhood-based algorithm (ItemKNN, UserKNN),
latent factor-based algorithm (NMF, SVD) [9] and graph-based algorithm [4,13].
Many recent efforts devote to utilize deep learning models (such as CNN, RNN,
RBM, and Autoencoder) to learn multi-layer representations of data to achieve
better results [18,19].

2.2 Network Embedding

Network embedding maps graph data to a low dimensional space, which preserves
structure information and properties of graphs [6]. Network embedding methods
are mainly based on matrix eigenvector computation, neural network and matrix
decomposition. Recent methods are mainly based on deep learning methods [3].
For example, the random walk [11] generates random paths on the network to
make the analogy with Word2Vec [10]. LINE further mines the information of the
network [14] through learning the first and second order relations of the network.
Walklet generates multi-scale relationships by subsampling short random walks
on the vertices of a graph [12], which further captures higher-order relationships.
SDNE preserves the higher-order relations of the network based on autoencoder,
aiming to preserve the overall structure of the network [15]. BiNE proposes a
network embedding model for bipartite networks, which is the first work in
bipartite network embedding [7].

3 The Proposed NEAR Model

3.1 Problem Definition

A top-k item recommendation system aims to recommend a sequence of items
most likely to be consumed to each user in a preference decrease order.

For a recommendation system, the input includes: the network G =
(U, V,E), the weight matrix of the network R, and the embedding dimension d.

Table 1. Notations and terms of a recommendation system

Symbol Definition Symbol Definition

U = {ui}|U|
i=1 User set V = {vj}|V |

j=1 Item set

E ∈ U ∗ V Inter-set edges G = (U, V, E) Network
−→ui,

−→vj Embedding vectors U = [−→ui], V = [−→vj ] Embedding matrix

R = [rij ] Rating matrix RU , RV Adjacent matrix of U , V

X = {xi}n
i=1, X̂ = {x̂i}n

i=1 Input, reconstructed Y (l) = {y(l)
i }n

i=1 lth layer embedding

W (l), Ŵ (l) lth layer weights b(l), ̂b
(l)

lth layer biases

θ = {W (l), Ŵ (l),b(l), ̂b
(l)} AE parameters d Embedding dimension
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The output of a system is: a predicted sequence of favorite items Ci for each
user ui. The notations and terms of a recommendation system are summarized
in Table 1.

3.2 Framework

Based on the above analysis, we propose a Normalized Network Embedding with
Autoencoder for Personalized Top-K Item Recommendation model (NEAR). As
shown in Fig. 1, we first preprocess the rating matrix into an adjacent matrix,
then we resort to learn a low dimensional representation of the adjacent matrix
separately with the help of autoencoder, which is proved to preserve features of
adjacent matrix effectively. To capture explicit features of the rating matrix, we
propose to employ KL-divergence and L2 norm to fine-tune the embedding of
the adjacent matrix. More details of the framework are given in following.

Fig. 1. NEAR Framework: the implicit part employs autoencoder to train on user
adjacent matrix and item adjacent matrix separately, the explicit part fine-tunes the
embedding by KL-divergence and normalization.

3.3 Explicit Relations

As shown in Fig. 2a, the edges between nodes ui and vj are defined as the explicit
relationship in the recommendation system scenario. Inspired by the first-order
proximity in LINE [14], we establish explicit relations by considering the local
proximity between two connected nodes. The joint probability P (i, j) between
nodes ui and vj can be defined in (1).

Inspired by Word2Vec [10], we simulate the interaction between two enti-
ties by inner product to estimate the local proximity between two nodes in the
embedding space. The interactive value is transformed into probabilistic space
P̂ (i, j) by a sigmoid function.

P (i, j) =
rij∑

eij∈E rij
, P̂ (i, j) =

1

1 + exp(−−→ui
T −→vj)

(1)
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where rij is the weight of edge eij , −→ui and −→vj are the embedding vectors of nodes
ui and vj respectively.

With the empirical distribution of the co-occurrence probability between
nodes and the reconstructed distribution, we can learn the embedding vector
by minimizing the difference. We choose the KL-divergence as the difference
measure between their distributions. The loss function is defined as follows:

minimize OKL = KL(P ||P̂ ) ∝ −
∑

eij∈E

rij logP̂ (i, j) (2)

By minimizing the loss function, two connected nodes in the original network
will be near in the embedding space, thus maintaining local proximity.

(a) Explicit relations of the
user feedback on items.

(b) First-order and second-
order relations

Fig. 2. Explicit and implicit relations.

3.4 Implicit Relations

We define the implicit relationship as the relationship between the same type
nodes, that is, the relationship between users or between items. We can see
from Fig. 2a that there is an explicit relationship between users and items in the
recommendation system. However, the relationship between the users doesn’t
exist explicitly. Traditionally, we calculate the similarity between two users with
the help of inner product. However, we find that a user with embedding [0, 2, 2,
0] will be more similar to the user with embedding [0, 5, 0, 3] than the user with
[0, 2, 2, 0]. So we define a new similarity function with punishment to depress the
difference as follows, for items are similar. Therefore we can get user adjacent
matrix and item adjacent matrix.

uij =
n∑

k=1

rik ∗ rjk

|rik − rjk| + 1
(3)

where i = 1, 2, ...,m; j = 1, 2, ...,m, and m,n is the shape of the rating matrix.
In order to mine local and global information of adjacent matrices, inspired by

LINE [14], we model low order relations of adjacent matrices as shown in Fig. 2b.
Since nodes 1 and 3 have a direct connection, they should be near in embedding



20 D. Li et al.

space, which is called first-order relations; nodes 1 and 2 have multiple common
neighbors even they don’t have an explicit connection, so they should be near in
embedding space, which is called second-order relations.

Second Order Relations. The idea of second-order relations is that two nodes
with common neighbors tend to be closer in embedding space, so the global
structure of the network can be well preserved. Inspired by SDNE [15], we can
implement the autoencoder algorithm with the idea of unsupervised learning. As
shown in Fig. 1, both the encoder and decoder parts contain multilayer nonlinear
function, the encoder maps the raw data to the low-dimensional space, and the
decoder maps the low-dimensional space representation to the reconstructed
space. In this way, the network is more and more robust by minimizing the
difference between the original space and the reconstructed space, so that the
low-dimensional representation of each node can be obtained. For example, given
xi, the representation of each layer of the encoder is as follows:

y
(1)
i = σ(W (1)xi + b(1)) (4)

y
(k)
i = σ(W (k)y(k−1)

i + b(k)), k = 2, ...,K (5)

where y(K)
i is a low-dimensional representation, and then decoder can perform

an inverse operation to get the reconstructed x̂i, so that the whole auto-coder
can be trained by minimizing the loss functions:

L2nd =
n∑

i=1

‖x̂i − xi‖22 =
∥
∥
∥X̂ − X

∥
∥
∥
2

F
(6)

First Order Relations. Inspired by laplacian eigenmaps (LE) [2], we define
the loss functions L1st as follows:

L1st =
n∑

i,j=1

si,j

∥
∥
∥y(K)

i − y(K)
j

∥
∥
∥
2

2
=

n∑

i,j=1

si,j

∥
∥yi − yj

∥
∥2

2 (7)

where sij is a penalty coefficient to make the related nodes closer.
Combining the first order relation and the second order relation, we define

the joint optimal loss function as follows:

Lae x = L2nd + αL1st + βLreg =
∥
∥
∥X̂ − X

∥
∥
∥
2

F
+ α

n∑

i,j=1

si,j

∥
∥yi − yj

∥
∥2

2
+ βLreg

(8)

Lreg =
1
2

K∑

k=1

(
∥
∥
∥W (k)

∥
∥
∥
2

F
+

∥
∥
∥Ŵ (k)

∥
∥
∥
2

F
) (9)
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3.5 Optimization

For explicit relations eij ∈ E, we use Stochastic Gradient Descent (SGD) to
update the embedding vectors −→ui and −→vj so as to minimize KL-divergence OKL.
The updates to −→ui and −→vj are as follows:

−→ui = −→ui −λ{γwij [1−σ(−→ui
T −→vj)] ·−→vj}, −→vj = −→vj −λ{γwij [1−σ(−→ui

T −→vj)] ·−→ui} (10)

For implicit relations, we want to minimize loss function Lae user and
Lae item, take Lae user for example, the patial derivative is shown below:

∂Lae user

∂Ŵ (k)
=

∂L2nd

∂Ŵ (k)
+

∂Lreg

∂Ŵ (k)
,

∂Lae user

∂W (k)
=

∂L2nd

∂W (k)
+

∂L1st

∂W (k)
+

∂Lreg

∂W (k)
(11)

Firstly, ∂L2nd

∂Ŵ (K) and ∂L2nd

∂X̂
can be rephrased as follows:

∂L2nd

∂Ŵ (K)
=

∂L2nd

∂X̂
· ∂X̂

∂Ŵ (K)
,

∂L2nd

∂X̂
= 2(X̂ − X) (12)

For the second term, since X̂ = σ(Ŷ (K−1)Ŵ (K) + b̂(K)), we can get ∂L2nd

∂Ŵ (K) ,
and based on hack-propagation, we can iteratively obtain ∂L2nd

∂Ŵ (k) , k = 1, ...,K −1
and ∂L2nd

∂W (k) , k = 1, ...,K.
Secondly, we continue to calculate the partial derivative of ∂L1st

∂W (k) . The loss
function of L1st can be rephrased as follows:

L1st =
n∑

i,j=1

si,j

∥
∥yi − yj

∥
∥2

2
= 2tr(Y T LY ) (13)

where L = D − S,D ∈ Rn∗n is a diagonal matrix, Di,i =
∑

j si,j .
Then the calculation of ∂L1st

∂W (K) and ∂L1st
∂Y can be rephrased as follows:

∂L1st

∂W (K)
=

∂L1st

∂Y
· ∂Y

∂W (K)
,

∂L1st

∂Y
= 2(L + LT ) · Y (14)

Since Y = σ(Y (K−1)W (K) + b(K)), we can get ∂Y
∂W (K) . Similar to L2nd, we

can get the calculation of partial derivative of L1st.
Since we have calculated the partial derivatives of the parameters, we can

optimize our model using the stochastic gradient descent method. Empirically,
we pretrain our parameters first in order to find a good region of parameter
space. To sum up, the whole framework is given in Algorithm1.

3.6 Analysis and Discussion

As we discussed before, hot items always have high scores rated by users, which
leads to the large value of the final vector representation. As a result, users are
recommendated too much hot items, which is called the Harry Potter Problem.
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Algorithm 1. NEAR Framework
Require: Network G = (U, V, E); Weight matrix of the network R; Embedding dimen-

sion d;
Ensure: Recommended list Ci for each user ui;
1: Construct the rating matrix R according to the network G = (U, V, E);
2: Calculate the adjacent matrix RU and RV according to the rating matrix R;
3: X = RU (X = RV );
4: Pretrain the model to obtain the initialized parameter θ = {θ(1), ..., θ(K)};
5: repeat
6: Apply encoder to get X̂ and Y = Y K according to X and θ;

7: Calculate the loss according to the loss function Lae x(X; θ) =
∥
∥
∥X̂ − X

∥
∥
∥

2

F
+

2αtr(Y TLY ) + βLreg;
8: Update θ through back-propagate the entire network according to Eq. 11;
9: until converge

10: Obtain the embedding matrix U = Y (K) (V = Y (K));
11: for each edge(ui, vj) ∈ E do
12: Update −→ui and −→vj using Eq. 10;
13: end for
14: Normalize the embedding matrix U and V with l2 norm;
15: Predict the ratings R̂ according to the embedding matrix U and V;
16: Obtain the top-k recommended list Ci for each user ui according to R̂;
17: return Ci;

To address this problem, we resort to punishing hot items to a certain extent
through the L2 normalization.

‖x‖p = (
d∑

i=1

|xi|p)(1/p) (15)

where p is 2 here, x stands for user embeding −→ui or item embedding −→vj .
Experiments show that the prediction of the hot items declines in ranking,

leading to the top-k results more diverse.
Assume that V is the total vertices, E is the total edges, I is the iteration

times, K is the average degree of the network and D is the maximum dimension
of the hidden layer. It is not difficult to see that the complexity of the framework
is O(I(|V | KD + |E|)).

4 Experiments

4.1 Datasets

We choose two popular datasets MovieLens 1M1 and DBLP2 in our experiments.
MovieLens has been widely used in the film recommendation system, where the
1 https://grouplens.org/datasets/movielens/.
2 https://dblp.uni-trier.de/xml/.

https://grouplens.org/datasets/movielens/
https://dblp.uni-trier.de/xml/
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weight of an edge represents a user’s rating of a movie. DBLP dataset contains
the data of the author’s published articles, in which the weight of a side indicates
the number of papers published by an author in a venue. The statistics of the
experimental dataset are summarized in Table 2.

In order to make the experimental comparison more reliable, we use the
same training data and test data for all of the recommendation algorithms, and
we set the scale of test data to 0.4. We set the embedding dimension of all
compared methods as 64 for a fair comparison. For our model, the encoding
layer dimension of auto-encoder are set [1024, 512], the embedding dimension
are set 64. In practical, we need to fine-tune our hyper parameters according to
different datasets to get good results.

4.2 Baseline Algorithms

We choose four contrast algorithms based on deep neural network (Walklet-Rec,
BiNE-Rec) and matrix decomposition (SVD, NMF) respectively. The details are
as follows:

– SVD [1]. SVD maps users and items to low-dimensional vectors on potential
factors by decomposing scoring matrix.

– NMF [9]. Non-negative Matrix Factorization (NMF) is a latent factor model.
– Walklet [12] for recommendation (Walklet-Rec). Walklet is a network repre-

sentation algorithm, which generates multiscale relationships by subsampling
short random walks on the vertices of a graph.

– BiNE [7] for recommendation (BiNE-Rec). BiNE is a bipartite network rep-
resentation learning algorithm.

Table 2. Statistics of the experimental dataset, evaluation metrics and parameters.
AMD means adjacent matrix density.

Dataset MovieLens 1M DBLP

|U | 6040 6001

|V | 3900 1177

|E| 1000209 29256

Density 4.2% 0.4%

User AMD 85.4% 16.2%

Item AMD 63.1% 6.4%

Test rate 0.4 0.4

Embedding dimension 64 64

Metric Coverage, Novelty, F1, NDCG
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4.3 Evaluation Metrics

We select four commonly used recommendation system evaluation metrics: Cov-
erage, Novelty, F1, and NDCG. The analysis detail of four evaluation metrics
are as follows.

– Coverage. Coverage score can evaluate the ability of discovering long-tailed
items and the diversity of the recommended list.

Coverage =

∣
∣⋃

ui∈U Ci

∣
∣

|V | (16)

– Novelty. Novelty can be defined as follows:

Novelty =
1

|U |
|U |∑

i=1

k∑

j=1

popj

k
, popj = log2

|U |
dj

(17)

where k is the length of top-k recommended list, and dj is the degree of item
node vj , which is the number of links between item node vj and user set U .

– F1. F1 score is a compromise between the accuracy and the recall metric.
– NDCG. NDCG is a metric widely used in ranking learning. Normalized Dis-

counted Cumulative Gain (NDCG) is defined as follows:

DCG@k =
k∑

i=1

2reli − 1
log2(i + 1)

, NDCG@k =

∑
ui∈U

DCGui
@k

IDCGui

|U | (18)

where reli means the relevance of i-th item in recommended list; Ideal Dis-
counted Cumulative Gain means the best sorted recommended list score.

Table 3. Top-K recommendation performance comparison of different algorithms on
MovieLens and DBLP

Algorithm DBLP MovieLens 1M

F1@10 NDCG@10 Nov@10 Cov@10 F1@10 NDCG@10 Nov@10 Cov@10

NMF 1.16% 1.01% 8.28 4.79% 0.54% 0.41% 6.18 17.05%

SVD 2.36% 2.92% 7.19 2.46% 2.96% 2.81% 3.72 17.77%

BiNE-Rec 11.32% 25.79% 4.69 1.93% 7.24% 7.08% 3.48 2.74%

Walklet-Rec 4.64% 9.51% 8.17 19.03% 6.10% 4.89% 3.32 2.77%

NEAR 10.28% 20.92% 8.55 57.63% 6.52% 6.21% 6.20 46.89%

F1@20 NDCG@20 Nov@20 Cov@20 F1@20 NDCG@20 Nov@20 Cov@20

NMF 1.65% 2.24% 8.53 8.13% 1.38% 1.06% 5.18 23.77%

SVD 2.54% 3.87% 7.21 4.51% 4.77% 4.23% 3.78 23.13%

BiNE-Rec 8.04% 27.40% 5.05 3.72% 10.13% 9.24% 3.98 2.88%

Walklet-Rec 4.47% 8.86% 7.62 36.62% 8.31% 7.37% 4.19 4.10%

NEAR 7.05% 21.47% 8.68 67.37% 9.30% 8.56% 6.34 51.64%
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4.4 Experimental Results

From the experimental results shown in Table 3, we can see that deep neural net-
work based algorithms (Walklet, BiNE and NEAR) perform better than matrix
factorization-based methods (NMF and SVD) in terms of F1 and NDCG met-
ric. We suppose that deep learning methods preserve sufficient hidden features
of data and generate more general low dimension embedding. By comparing
the results of deep neural network based methods (Walklet, BiNE) and matrix
factorization-based algorithms (NMF, SVD), we can conclude that accuracy and
diversity of the prediction are two mutually exclusive metrics. However, the
impact of diversity on users cannot be ignored according to the previous discus-
sion. Through the comparison of NEAR and Walklet, it can be seen that there is
a significant increase in each metric, especially in terms of novelty and diversity.
The main reasons might be as follows: (1) We employ a new similarity function
to calculate adjacent matrices and mine the implicit relations of the network
through the deep learning method based on autoencoder. (2) To further capture
explicit features of the rating matrix, we propose to employ KL-divergence and
L2 norm to fine-tune the embedding of vertices, we preserve sufficient hidden
features of data and generate more general low dimension embedding, resulting
in more accurate and diverse recommendation sequence. Among the results, we
observe that BiNE algorithm performs best in accuracy while losing coverage
and novelty score. On the contrary, our model NEAR has a significant increase
in novelty and diversity while accuracy varies little from the optimal value.

5 Conclusion

We propose a Normalized Network Embedding with Autoencoder for Personal-
ized Top-K Item Recommendation model, namely NEAR, to balance the accu-
racy and diversity scores and thus to give a more personalized recommendation.
To fully exploit the hidden feature of the heterogeneous network, we design a
new similarity function and employ the network embedding method based on
autoencoder. To further capture explicit features of the rating matrix, we use
KL-divergence and L2 norm to fine-tune the embedding of the vertex. Compar-
ison studies on MovieLens and DBLP datasets show that our model has a good
performance both on diversity and accuracy.

Since network embedding on the heterogeneous network is still in the early
stages, we resort to propose more robust algorithms in our future work. Fur-
thermore, the past decades have witnessed a great improvement in the deep
neural network, we suppose to exploit more information of the recommendation
dataset, such as the timestamp of each activity, the comment on each item, the
information of each item and so on.
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Abstract. Network Embedding is an effective and widely used method
for extracting graph features automatically in recent years. To handle the
widely existed large-scale networks, most of the existing scalable meth-
ods, e.g., DeepWalk, LINE and node2vec, resort to the negative sampling
objective so as to alleviate the expensive computation. Though effective
at large, this strategy can easily generate false, thus low-quality, nega-
tive samples due to the trivial noise generation process which is usually
a simple variant of the unigram distribution. In this paper, we propose
a Ranking Network Embedding (RNE) framework to leverage the rank-
ing strategy to achieve scalability and quality simultaneously. RNE can
explicitly encode node similarity ranking information into the embedding
vectors, of which we provide two ranking strategies, vanilla and adver-
sarial, respectively. The vanilla strategy modifies the uniform negative
sampling method with a consideration of edge existance. The adversarial
strategy unifies the triplet sampling phase and the learning phase of the
model with the framework of Generative Adversarial Networks. Through
adversarial training, the triplet sampling quality can be improved thanks
to a softmax generator which constructs hard negatives for a given tar-
get. The effectiveness of our RNE framework is empirically evaluated on
a variety of real-world networks with multiple network analysis tasks.

1 Introduction

Network embedding, i.e., learning low-dimensional representations for nodes in
graph-structured data, can help encode meaningful semantic, relational and
structural information of a graph into embedding vectors. Typically, such learn-
ing process is conducted in an unsupervised manner [1–3] due to the lack of
labeled data, and thus the learned representations can be used to facilitate dif-
ferent kinds of downstream tasks such as network visualization, link prediction
and node classification. In real-world applications, data entities with compli-
cated relationships can be well organized with graphs. For example, paper cita-
tion networks characterize the information of innovation flow, social networks
c© Springer Nature Switzerland AG 2019
Q. Yang et al. (Eds.): PAKDD 2019, LNAI 11441, pp. 27–39, 2019.
https://doi.org/10.1007/978-3-030-16142-2_3
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entail complicated relationships among people, groups and organizations, and
protein-protein interaction networks capture information between different pro-
teins. Therefore, it is of great application interest to develop effective and scalable
methods for unsupervised network embedding.

Network data are usually high-dimensional, very sparse and non-linear, which
makes network embedding a challenging problem. Some classical methods, such
as MDS [4], IsoMap [5] and LLE [6], can be used for network representation
learning. However, they can neither effectively capture highly nonlinear struc-
ture of networks, nor scale to large networks. When handling large-scale net-
works, DeepWalk [1], LINE [2] and node2vec [7] are shown to be quite effective
and efficient. These three methods preserve network structural properties in the
embedding vectors through the negative sampling technique [8]. The negative
sampling method is a simplified variant of negative contrastive estimation [9],
which can help speed up the training process of the model. However, since the
negative samples are constructed according to a unigram noise generation pro-
cess, this strategy may generate false negative samples that violate pairwise
relationships presented in the network structure. Here, we aim to answer two
questions: (1) can we find some other ways for encoding pairwise relationships
into node representations instead of the negative sampling approach? (2) how to
sample better negative nodes for target-positive pairs (i.e., closely related node
pairs) for training?

In this paper, we propose a Ranking Network Embedding (RNE) frame-
work based on triplet ranking loss for preserving pairwise relationships of nodes
in embedding vectors. Specifically, we firstly construct triplets based on network
structure where each triplet consists of a target, a positive and a negative node.
In the training process, the distance between embedding vectors of the target and
positive node will be minimized while the distance between that of target and
negative node will be maximized until they are separated by a predefined mar-
gin. Different from the negative sampling technique used in [1,2,7], the ranking
strategy enforces a non-trivial margin between similar node pairs and dissimilar
ones, thus explicitly encodes similarity ranking information among node pairs
into the embedding vectors.

With the RNE framework, we propose two network embedding models by
using a vanilla ranking strategy and an adversarial ranking technique respec-
tively. In the vanilla RNE model, we utilize a simple negative node sampling
method to construct triplets, which uniformly samples nodes from the node
set without direct link to the target. This vanilla approach can perfectly avoid
false negative samples while maintain the efficiency. Though works well to some
extend, this vanilla strategy may also generate totally unrelated negative nodes
for the target node, which will be of little help for the training. This phenomenon
is even more common in very high-dimensional and sparse networks. To improve
the vanilla RNE, we propose a generative adversarial model to unify the triplet
sampling process and the learning process with the framework of Generative
Adversarial Networks (GANs) [10], which leads to an adversarial RNE model.
It leverages a generator for generating hard negative nodes with respect to a
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given target to help construct high-quality triplets, and thus achieves better
node similarity rankings in the embedding space. We empirically evaluate the
proposed vanilla and adversarial RNE models through several network analysis
tasks, including network visualization, link prediction and node classification,
on benchmark datasets. Experimental results show that both models achieve
competitive performance with state-of-the-art methods.

2 Related Work

Many scalable network embedding methods, such as DeepWalk [1], LINE [2]
and node2vec [7], have been proposed to learn node representations to facilitate
downstream tasks. They model node conditional probability with softmax func-
tion over the whole network, which is computationally expensive. Further, the
negative sampling approach [8] is usually leveraged to replace the log likelihood
objective, and thus enabling a scalability to large networks. However, it can gen-
erate some negative samples violating pairwise relationships reflected by network
structure because of the simple unigram noise generation process. To handle this
issue, we propose to use the triplet ranking loss to learn embedding vectors and
leverage an adversarial sampling method to sample negative nodes. We noticed
that the triplet ranking loss is also employed by [11] in learning embeddings, but
for networks with node attributes.

Recently, some methods are proposed to learn node representations through
adversarial training [12,13]. In ANE [12], a prior distribution is imposed on
node representations through adversarial training to achieve robustness. In [13],
the authors proposed to unify the generative models and discriminative models
of network embedding into the framework of GANs to help learn a stronger
generator. Different from these two methods, our method aim to learn a stronger
discriminator to obtain node representations.

Some knowledge graph embedding methods are also related [14–16].
TransE [14] is a translation-based knowledge graph embedding model, which
learns embeddings for both data entities and relations with triplet ranking loss.
KBGAN [16] is an adversarial learning framework for knowledge graph embed-
ding. Our method is by part inspired by these works. However, this line of
research has notable differences with our work. Firstly, knowledge graph is fun-
damentally different from the networks we study. The assumption, that two
connected nodes should be similar and close in embedding space, of network
embedding methods does not hold in knowledge graph. Secondly, knowledge
graph embedding learns representations for both data entities (nodes) and rela-
tions (edges) simultaneously, while network embedding is designed to learn node
representations only.

3 RNE: Ranking Network Embedding

3.1 Framework

The framework of Ranking Network Embedding method is shown in Fig. 1(a).
It consists of two phases, i.e., the triplet construction phase and the learning
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phase. Firstly, we leverage some sampling methods to construct triplets based on
network structure, which can help specify the similarity ranking of some pairwise
relationships. Then, in the learning process, triplet ranking loss is minimized by
directly updating embeddings to pull similar nodes closer in the embedding
space, while pushing dissimilar nodes apart.

To help better understand our model, we first introduce some notations and
describe the research problem. A network is denoted as G = (V, E), with a set
of nodes V representing data entities and a set of edges E each representing
the relationship between two nodes. We mainly consider undirected graph in
this paper. Given a graph G, we aim to learn low-dimensional representations
ui ∈ Rd for each node vi ∈ V, which can capture network structural properties.
We denote U as embedding matrix with ui as its ith row.

Em
bedding Lookup

Triplet Ranking Loss

Target Positive Negative

Triplet
sampling

(a) RNE.

D

Target Positive Negative

G… Softm
ax 

output sampling

Candidate

(b) Adversarial RNE.

Fig. 1. Model architecture.

3.2 Vanilla Ranking Network Embedding

The vanilla RNE model is a simple instantiation of the proposed RNE framework
with uniform negative sampling method. Some detailed descriptions of its triplet
sampling method and loss function are provided below.

Vanilla Triplet Sampling. Triplet sampling method plays an important role
in learning good embedding vectors for downstream learning tasks. The con-
structed triplets directly specify pairwise relationships from network structure
which will be regarded as ground-truth in learning process to be encoded into
embedding vectors. We only explicitly consider first-order proximity when con-
structing positive pairs. The triplet set T is defined as follows:

T = {(vt, vp, vn)|(vt, vp) ∈ E , (vt, vn) �∈ E}, (1)

where (vt, vp, vn) is a triplet with vt, vp and vn as the target, positive and negative
node, respectively. Since network is usually very sparse, for each positive pair,
there can be a large number of negative nodes. To improve model efficiency,
we only uniformly sample K negative nodes from the negative space for each
positive pair.
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Target
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Negative
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BEFORE AFTER
Learning

Fig. 2. The triplet ranking loss minimizes the distance between a target node and
a positive node while maximizing that of the target and a negative node until they
are separated by at least a margin distance. The pairwise relationships can be well
preserved in embedding vectors after the learning process.

Triplet Ranking Loss. For vanilla RNE model, we seek to minimize the fol-
lowing loss function:

L =
∑

(vt,vp,vn)∈T
[m + D(vt, vp; θD) − D(vt, vn; θD)]+, (2)

where [x]+ denotes the positive part of x, D(v1, v2; θD) is a distance function of
two nodes, θD is the union of all node embeddings, and m > 0 is a margin hyper-
parameter separating the positive pair and the corresponding negative one. We
use the squared L2 distances in the embedding space, i.e., D(v1, v2; θD) = ‖u1 −
u2‖2. The triplet ranking loss explicitly encodes similarity ranking among node
pairs into the embedding vectors, and the visualization explanation can be found
in Fig. 2 [17].

3.3 Adversarial Ranking Network Embedding

For the vanilla RNE model, we only use uniform negative sampling method
for constructing triplets. It can easily generate totally unrelated negative nodes
for the target node due to the sparsity and high-dimensionality of the network,
which will be of little help for the training process. To help alleviate this problem,
we propose an Adversarial Ranking Network Embedding model, which unifies
the triplet sampling phase and the learning phase of the RNE method with the
framework of GANs. The model architecture is presented in Fig. 1(b). It consists
of a generator G and a discriminator D (we abuse the notation and directly use
the distance function D to represent the discriminator). In the learning process,
the discriminator tries to pull similar nodes closer in the embedding space, while
pushing dissimilar nodes apart. The generator aims to generate difficult negative
nodes for a given target from a set of negative candidates by optimizing its own
parameters.

Discriminator. The discriminator is aimed at optimizing the following triplet
ranking loss function similar to the vanilla RNE model:

LD =
∑

(vt,vp)∈P
Evn∼G(·|vt;θG)[m + D(vt, vp; θD) − D(vt, vn; θD)]+, (3)
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Fig. 3. For the negative sampling approach, each node is sampled according to its
unigram distribution (regard each node as a word) raised to the 3/4 power, which can
violate pairwise relationships reflected by network structure. For example, node 6 is
very likely to be sampled as negative node for target-positive pair (5, 1), even though
node 5 and 6 have strong relationship. For our triplet sampling method, such problem
can be well avoided. However, simple uniform sampling method can easily generate
totally unrelated nodes (node 8 in the example graph), which can be improved with
adversarial sampling method.

where P = {(v1, v2), (v2, v1)|(v1, v2) ∈ E} is the positive pair set in graph G, and
G(·|vt; θG) is the generator. Only first-order proximity is directly considered,
and each edge (vi, vj) ∈ E corresponds to two positive pairs (vi, vj) and (vj , vi).
Particularly, a softmax generator is employed to construct high-quality triplets
instead of simple uniform sampling method. More detailed illustrations of this
sampling method will be introduced below. Note that Eq. (3) can be directly
optimized with gradient descent technique.

Generator. Softmax function is widely used in network embedding literature [1,
18] to model node conditional probability. In this paper, we also employ softmax
function as the generator to sample negative nodes given a target, but it is defined
over the negative node space with respect to the given positive pair according to
network structure. Specifically, the generator G(vn|vt; θG) is defined as a softmax
function over a set of negative candidates:

G(vn|vt; θG) =
exp(uT

nut)∑
vni

∈Neg(vt,vp)
exp(uT

ni
ut)

, (4)

where Neg(vt, vp) = {vn1 , vn2 , · · · , vnNc
} is a set of negative candidates with

size as Nc. In implementation, Neg(vt, vp) is a subsample of the original negative
space of the positive pair to reduce the computation complexity, which is actually
a common practice in network embedding literature [1,2]. For each positive pair,
Nc negative nodes will be first uniformly randomly sampled from the negative
space, and used as input for the generator. Then, a hard negative node will be
sampled from Neg(vt, vp) according to the probability distribution G(vn|vt; θG).
Besides, in the training process, K hard negatives will be sampled for each
positive pair.

The loss function of the generator is defined as follows:

LG =
∑

(vt,vp)∈P
Evn∼G(·|vt;θG)[D(vt, vn; θD)]. (5)
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It can encourage the softmax generator to generate useful negative nodes for
a given positive pair instead of totally unrelated ones. The sampling process
of hard negatives is discrete, which hinders the objective from directly being
optimized by gradient descent method as that of the discriminator. According
to [19,20], this loss can be optimized with the following policy gradient:

∇θG
LG = ∇θG

∑
(vt,vp)

Evn∼G(·|vt;θG)[D(vt, vn; θD)]

=
∑

(vt,vp)

Evn∼G(·|vt;θG)[D(vt, vn; θD)∇θG
log G(vn|vt; θG)]. (6)

The gradient of LG is an expected summation of the gradient ∇θG
log

G(vn|vt; θG) weighted by the distance of node pair (vt, vn). When training the
generator, the parameters will be shifted to involve high-quality negatives with
high probability from softmax generator, i.e., node pairs (vt, vn) with small dis-
tance from discriminator will be encouraged to be generated. In practice, the
expectation can be approximated with sampling in the negative space. Besides,
the REINFORCE algorithm suffers from the notorious high variance, which can
be alleviated by subtracting a baseline function from the reward term of the
objective, i.e., adding a baseline function to the reward term in the loss [21].
Specifically, we replace D(vt, vn; θD) in the loss by its advantage function as
follows:

D(vt, vn; θD) +
∑

(vt,vp)

Evn∼G(·|vt;θG)[D(vt, vn; θD)], (7)

where
∑

(vt,vp)
Evn∼G(·|vt;θG)[D(vt, vn; θD)] is the average reward of the whole

training set, and acts as the baseline function in policy gradient.
A comparison of the sampling methods is presented in Fig. 3 with toy exam-

ples. Our proposed adversarial sampling method can help select difficult negative
nodes with respect to given target. With high-quality triplets, the tricky pair-
wise relationship rankings can be encoded into node representations through the
training of the discriminator as illustrated in Fig. 2. Note that false negative
nodes can still be generated by the generator due to the incompleteness and
non-linearity of the real-world networks, but in a very low probability since the
subsampling trick is employed for generating negative candidates among a very
large negative space. So, the embedding vectors can be improved in general. This
is also validated by our experiments.

Algorithm 1 presents the pseudocode of the adversarial RNE model, which
employs a joint training procedure. The overall time complexity of the algorithm
is linear to the number of edges, i.e., O(dKNc|E|) (d, K and Nc are some con-
stants independent of the network size), which enables it scale to large networks.
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Algorithm 1. The adversarial RNE algorithm
Input : G(V, E), Dimension d, Margin m, Negative size K, Candidate size Nc

Output: The parameters of Discriminator θD

1 Initialize the Generator G(vn|vt; θG) and Discriminator D(v1, v2; θD) with pretrained
embedding vectors;

2 while not converge do
3 Sample a batch of positive pairs B from positive set P;
4 T = {}; N = {};
5 // Adversarial negative sampling with softmax generator
6 for each (vt, vp) ∈ B do
7 repeat
8 Sample Nc negative candidates Neg(vt, vp) uniformly from the negative space

of (vt, vp);
9 Sample a hard negative vn from Neg(vt, vp) according to G(vn|vt, θG);

10 T = T ∪ {vn}; N = N ∪ {Neg(vt, vp)};
11 until K times;

12 end
13 // Parameters updating
14 update θD according to Eq. (3) with T as training batch;
15 update θG according to Eq. (5) and (4) with T and N as training batch;

16 end

4 Experiments

4.1 Experiment Setup

Datasets. We conduct experiments on benchmark datasets from various real-
world applications. Table 1 shows some statistics of them. Note that we regard
all paper citation networks as undirected networks, and do some preprocessing
on the original datasets by deleting self-loops and nodes with zero degree.

Table 1. Statistics of benchmark datasets from real-world applications

Name Citeseer [22] Cit-DBLP [23] PubMed [24] CA-GrQc [25] CA-HepTh [25]Wiki [26] USA-AIR [27]

|V | 3,264 5,318 19,717 5,242 9,877 2,363 1,190

|E| 4,551 28,065 44,335 14,484 25,973 11,596 13,599

Avg. degree 1.39 5.28 2.25 2.76 2.63 4.91 11.43

#Labels 6 3 3 - - 17 4

Baseline Models. We only consider scalable baselines in this paper. Some
matrix factorization based methods such as M-NMF [3,28] are excluded from
the baselines due to the O(|V |2) time complexity. The descriptions of the base-
line models are as follows: Graph Factorization (GF) [29] directly factorizes the
adjacency matrix to obtain the embeddings. DeepWalk (DW) [1] regards node
sequence obtained from truncated random walk as word sequence, and then uses
skip-gram model to learn node representations. LINE [2] preserves proximities
through modeling node co-occurrence probability and node conditional proba-
bility. node2vec (n2v) [7] develops a biased random walk procedure to explore
neighborhood of a node, which can strike a balance between local and global
properties. We denote the vanilla RNE model as V-RNE, and the adversarial
RNE model as A-RNE in the rest of the paper.
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(a) GF. (b) DW. (c) LINE. (d) n2c. (e) V-RNE. (f) A-RNE.

Fig. 4. Visualization of Cit-DBLP network.

Parameter Settings. The window size, walk length and the number of walks
per node of both DeepWalk and node2vec are set to 10, 80 and 10, respectively.
We use node2vec in an unsupervised manner by setting both in-out and return
hyperparameters to 1.0 for fair comparison. For LINE, we follow the original
paper [2] to set the parameters. For our method, the parameter settings are the
margin m = 2.5, the negative size per edge K = 5, and the negative candidate
size Nc = 5. The learning rate of V-RNE is set to 0.01, while A-RNE to 0.0001.
L2-normalization is conducted on node embeddings for both the V-RNE and
A-RNE model after each training epoch. Besides, the dimension of embedding
vectors are set to 128 for all methods.

4.2 Network Visualization

We leverage a commonly used toolkit t-SNE [30] to visualize node embeddings
of Cit-DBLP generated by different models. Cit-DBLP is a citation network
constructed from the DBLP datsest [23], which consists of papers from publica-
tion venues including Information Sciences, ACM Transactions on Graphics and
Human-Computer Interaction. These papers are naturally classified into three
categories according to their publication venues, and represented with different
colored nodes in the visualization.

Experimental Results. Figure 4 displays the visualization results. Papers from
different publication venues are mixed together terribly for GF as shown in
Fig. 4(a). In the center part of both DeepWalk and LINE, papers from different
categories are mixed with each other. Visualizations from node2vec, V-RNE and
A-RNE are much better as three clusters are formed with quite clear margin.
Compared with V-RNE, A-RNE model has better visualization result, since the
margin between different clusters are larger. The reason is that adversarial sam-
pling method aims to generate hard negative nodes, i.e., negative nodes near the
boundary, which directly contributes to producing more clear margin between
different clusters. On the whole, this experiment demonstrates that ranking net-
work embedding method can help capture intrinsic structure of original network
in embedding vectors.

4.3 Link Prediction

We conduct link prediction on three benchmark datasets. For each network, we
randomly and uniformly sample 20% and 50% of the edges as test labels and use
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the remaining network as input to the models, i.e., training ratio as 80% and
50%. When sampling edges, we ensure the degree of each node is greater than
or equal to 1 to avoid meaningless embedding vectors. The prediction perfor-
mance is measured by AUC score. To calculate AUC score, we first obtain the
edge features from the learned node embeddings through Hadamard product of
embeddings of two endpoints as many other works [7], and then train a L2-SVM
classifier with under-sampling to get prediction results.

Table 2. AUC score for link prediction

Training ratio 80% 50%

Dataset Wiki CA-GrQc CA-HepTh Wiki CA-GrQc CA-HepTh

GF 0.583± 0.008 0.593± 0.003 0.554± 0.001 0.566± 0.002 0.572± 0.003 0.531± 0.001

DeepWalk 0.656± 0.001 0.694± 0.001 0.683± 0.001 0.639± 0.001 0.657± 0.002 0.630± 0.001

LINE 0.649± 0.007 0.638± 0.005 0.630± 0.001 0.627± 0.014 0.600± 0.003 0.561± 0.002

node2vec 0.634± 0.016 0.690± 0.007 0.668± 0.003 0.621± 0.010 0.667± 0.010 0.624± 0.007

V-RNE 0.647± 0.008 0.691± 0.005 0.657± 0.005 0.627± 0.007 0.655± 0.004 0.606± 0.004

A-RNE 0.670±0.005 0.708±0.004 0.688±0.004 0.655±0.006 0.673±0.004 0.639±0.004

Experimental Results. The link prediction results are the average of 10 differ-
ent runs, which are shown in Table 2. The AUC scores of A-RNE model consis-
tently outperform those of the V-RNE model. It validates that A-RNE can help
achieve better node similarity rankings in embedding space, since link prediction
task can be considered as similarity ranking among node pairs. The performance
of the proposed RNE method is competitive with the baselines, which shows that
using ranking strategy for learning node representations is a good practice. In
particular, the AUC scores of A-RNE model are superior to all the baselines in
all test datasets when the training ratios are 80% and 50%.

Table 3. Accuracy (%) of multi-class classification on USA-AIR and PubMed

Dataset USA-AIR Pubmed

Ratio 10% 30% 50% 70% 90% 10% 30% 50% 70% 90%

GF 41.10 42.21 42.27 41.12 41.60 35.63 36.69 37.56 37.74 38.08

DeepWalk 43.43 51.79 53.41 55.74 56.05 69.43 71.33 71.74 71.82 72.37

LINE 48.80 53.95 56.35 56.72 58.91 67.23 69.20 69.84 69.97 70.48

node2vec 42.76 47.07 48.62 49.86 50.76 79.66 80.89 81.09 81.07 81.27

V-RNE 55.20 58.96 60.05 61.29 61.09 77.56 79.08 79.39 79.46 79.73

A-RNE 56.94 61.96 62.79 65.71 64.12 80.48 81.20 81.58 81.56 81.64

4.4 Node Classification

Node classification can be conducted to dig out missing information. In this
section, we carry out experiments on the air-traffic network USA-AIR and paper
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citation network PubMed. The learned embedding vectors are used as feature
input for the classification model. We randomly sample a portion of nodes as
training data ranging from 10% to 90%, and the rest for testing. For both
datasets, multi-class classification is conducted, and accuracy score is used for
performance comparison. All experiments are conducted with support vector
classifier in Liblinear package1 [31] with default settings.

Experimental Results. The experimental results are presented in Table 3.
Both V-RNE and A-RNE perform competitively with baseline models for these
two datasets while varying the train-test split from 10% to 90%. It shows the
effectiveness of the proposed Ranking Network Embedding models for learning
discriminative embedding vectors for classification. Specifically, both V-RNE
and A-RNE achieve better performance in USA-AIR, and A-RNE obtains the
best results in these two datasets across all training ratios. In particular, A-RNE
gives us 13.32% gain on average over the best baseline, i.e., LINE on USA-AIR.
Besides, A-RNE consistently achieves more excellent performance than V-RNE
as shown in the tables, which demonstrates that adversarial sampling method
contributes to learning more discriminative node representations.

5 Conclusion

This paper presented a novel scalable Ranking Network Embedding method,
which can explicitly encode node similarity ranking information into the embed-
ding vectors. Firstly, a vanilla RNE model was proposed with uniform negative
sampling method. Then, we improved the vanilla RNE model by unifying the
triplet sampling phase and the learning phase with the framework of GANs
which leads to an adversarial RNE model. The adversarial RNE model utilizes
a softmax generator to generate hard negatives for a given a target, which can
help strengthen the discriminator. Empirical evaluations prove the effectiveness
of the proposed method on several real-world networks with a variety of network
analysis tasks.
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Abstract. Representation or embedding based machine learning mod-
els, such as language models or convolutional neural networks have shown
great potential for improved performance. However, for complex models
on large datasets training time can be extensive, approaching weeks,
which is often infeasible in practice. In this work, we present a method
to reduce training time substantially by selecting training instances that
provide relevant information for training. Selection is based on the sim-
ilarity of the learned representations over input instances, thus allowing
for learning a non-trivial weighting scheme from multi-dimensional repre-
sentations. We demonstrate the efficiency and effectivity of our approach
in several text classification tasks using recursive neural networks. Our
experiments show that by removing approximately one fifth of the train-
ing data the objective function converges up to six times faster without
sacrificing accuracy.

Keywords: Selective training · Machine learning · Neural network ·
Recursive models

1 Introduction

Recent years have seen substantial performance improvements in machine learn-
ing for deep models in a variety of application domains [10]. However, training
times for deep models can easily be in the order of days [27] or even weeks [3].
Being able to efficiently train and evaluate new models is important in order to
preserve our ability to investigate and develop better machine learning models.
Thus, training effort may be a critical factor in the deployment and advancement
of more powerful, expressive machine learning models. This is certainly true for
deep neural network models where the quest for stronger and better neural mod-
els drives doubling of models sizes (number of neurons) approximately every 2.4
years [10].
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In this work, we present Selective Training, an effective training strategy for
artificial neural network models. In a nutshell, by focusing on instances with
relevant information for training, our approach requires fewer training iterations
to converge to a stable and effective model. Selective Training adjusts training
based on multi-dimensional representations of what the network has learned. It
can be used with different training methodologies such as standard backprop-
agation or adaptive training approaches like Adam where the learning rate is
adjusted depending on the loss gradient [14].

In this paper we focus on the deep structured gradient backpropagation train-
ing approach, backpropagation-through-structure (BPTS) [9,12] for text classi-
fication tasks with high training times, where we observe substantial improve-
ments in training time. Still, our results are not limited to this application, but
generalize to classifier models which generate distributed instance representa-
tions. We demonstrate in our empirical study on several document datasets that
the gains in training time do not come at the cost of accuracy, but may even
bring a slight improved accuracy score1.

Our method identifies obsolete training samples through clustering in rep-
resentation space. The cluster approach makes it possible to select those parts
of the training data that matter for training, and to focus on these in order to
reduce training time. This is in contrast to approaches such as instance selection
[25] or active learning [28] where the goal is to find the minimum representa-
tive instances (or equivalently instance lookups). This difference in goals leads
to two major methodological differences; (1) We remove entire clusters rather
than instances and (2) we work on embedded representations rather than on
instance features. A major challenge for instance selection as reported in [25] is
the need for comparing new instances to all previously selected instances. This
costly comparison is a challenge for scale-up, that our method does not suffer
from. Clustering into relatively few clusters is sufficient and efficient, and can
even be further scaled up using sub-sampling or hierarchical approaches [2].

Our contributions include a selection strategy for training with substantial
speed up while still maintaining high model accuracy, an empirical study on
four real world datasets that demonstrates the effectiveness and efficiency of our
approach, robustness with respect to parameterization, as well as a detailed error
analysis.

2 Background

In the following, we study efficient training for complex deep models for text clas-
sification, as a concrete instance of costly training problems in deep learning. In
the text classification, distributed word embeddings [1] have been immensely suc-
cessful for a wide range of tasks including sentiment analysis [31], POS-tagging [4]
and text classification [13]. Many approaches learn unsupervised word embed-
dings on large document sets such as word2vec [23] and GloVe [26]. VecAvg
1 code https://bitbucket.alexandra.dk/projects/TAB, data https://dataverse.

harvard.edu/dataverse/enron-w-trees.

https://bitbucket.alexandra.dk/projects/TAB
https://dataverse.harvard.edu/dataverse/enron-w-trees
https://dataverse.harvard.edu/dataverse/enron-w-trees
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proposed to define sentence embeddings as the average of all word embeddings
in a given sentence [20]. VecAvg has since been superseded by more expressive
models such as recurrent neural networks (RNN) using gated memory cells such
as the LSTM [11].

A generalization of the recurrent model has been proposed in [30] as recursive
neural networks (RecNN)2. RecNN models can incorporate semantic knowledge
about the sentence in a tree or graph like structure. To evaluate a RecNN a
walk is required from node to node through the entire tree. This may nega-
tively impact performance, and the walk may be hard to parallelize, therefore
various restricted versions of the RecNN have been proposed such as Hierar-
chical ConvNet [5] and Graph Convolutional Networks (GCN) [15] where the
number of steps in the graph is restricted to a fixed constant number. In our
experimental study, we consider embeddings generated by the full complexity of
the RecNN model over the constituency parse trees as proposed in [29]. As we
only assume embeddings, our approach can generally be applied to any text or
sentence embedding generating approach as well.

3 Problem Definition

Given a dataset D of n text documents D = {d1, d2, . . . , dn}, a ground-truth
labeling L : D → {1, 2, . . . C} with C classes, and label L(x) for x ∈ D, the
goal is to train a given model m using as few training cycles as possible while
maintaining m’s accuracy. Model m is parametrized by a set of parameters θ ∈ Θ,
where Θ denotes all possible model parametrizations. The approach used to find
a good model is referred to as the learning approach, which we denote Tm. For
example, Tm could be the application of backpropagation on model m. Given
(mini-)batches of b texts per cycle the learning approach updates the set of
parameters Tm : (Θ,Db) → Θ, i.e., given a parametrized model mθ and a subset
D′ ⊆ D of b texts the training function returns a new set of parameters θ′:
θ′ = Tm(θ,D′).

Efficiency of the training approach is then the expected number of random
batches of training text documents that needs to be processed by Tm before the
performance of the model mθ converges. That is, further batches do not bring
mθ closer to L, as indicated by an error measure, such as the squared error
function (L(x) − mθ(x))2.

We wish to minimize the objective function obj(mθ) = 1
|D|

∑
x∈D(L(x) −

mθ(x))2. Given a threshold ε, model mθ′ as the model after training mθ on
additional δ batches, then we say that the model m has converged iff obj(mθ) −
obj(mθ′) < ε, i.e., further batches do not improve mθ. In this paper, we use
the expected number of batches to produce a converged model on the training
dataset as a measure of the training time, denoted t(Tm) or just tm for short.
We define the training time optimization problem for a dataset D with labeling

2 In this work we refer to recursive neural networks as RecNN to avoid name clash
with RNNs.
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function L, a model architecture m and training method Tm as the minimization
of t(Tm) under the constraint that model accuracy be preserved.

For embedding based approaches, a distributed representation of the input
is learned in order to predict the correct label. Thus, our model mθ can be
split into a predictive part mp

θ and an embedding generating part me
θ as follows:

mθ = mp
θm

e
θ. In complex models, the embedding layer in fact typically consists

of several layers me
θ = mL

θ . . . m2
θm

1
θ. For our method, we only use the most

informative embedding which is the final embedding produced just before a
prediction is made. Evaluating model mθ on training instance x yields mθ(x) =
mp

θm
e
θ(x). We refer to the output of the embedding layer as a representation of

x: repr(x) = me
θ(x).

The key idea in this work is to exploit this representation as a means to
identify a subset of the training instances that does not contain information for
training. Excluding it from further training reduces training time t(Tm) while
not hurting accuracy.

4 Our Approach

To minimize the number of training cycles t(Tm), our goal is to select the most
informative training samples. Given a model mθ and input x, we extract repre-
sentations repr(x) of what the model has learned about the input x. In a deep
neural network, this generally is the second last layer before the final prediction
layer.

If the model has learned to differentiate between two inputs x and x′ with
different labels L(x) �= L(x′), then their representations should differ as well.
If the representations were similar then it would be challenging for the model
prediction layer to distinguish between the two representations. We observe that
the structure of the representation space allows us to select training instances
of interest, namely groups of instances with different labels in close vicinity
in representation space, as those have not yet been properly differentiated with
respect to their labels. Clearly, training on instances with similar representations
and identical label provides less information for learning to distinguish between
classes.

We therefore pose the problem of finding subsets of interesting training sam-
ples as a clustering problem. While any hard clustering method could be used,
we use the well established K-means [2,7,21] as a simple and efficient choice.
In brief, K-means assigns representations into k clusters such that the total
sum (TS) of L2 distances between cluster centroid and cluster members is min-
imized: TS =

∑
xi∈D ‖repr(xi) − cj(xi)‖2, where cj(xi) is the centroid of the

cluster that input xi is assigned to.
Let C = {C1, C2, . . . , Ck} be the resulting clusters, grouped exclusively based

on the similarity in representation space. We now analyze them with respect to
label purity to identify sets of samples in representation space that have already
been learned and can be omitted from further training. We formalize this analysis
as the ratio of the most frequently occurring (MFO) class label ratio in a cluster,
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MFOi, as MFOi = max�∈L

∑
x∈Ci:L(x)=� 1

|Ci| i.e., the ratio of the most frequently
occurring class label in a cluster Ci is the maximum (over possible labels) of
the ratio between the number of instances with that label and the cardinality
of the cluster. Clusters with low MFOi are valuable for training, whereas those
where MFOi is close to 1 are uninteresting as little more can be learned. A
strong model has MFOi for all clusters close to 1 (otherwise accuracy is low,
see above). If there are only two classes {0, 1}, we simplify using the ratio for

only one class fi =
∑

x∈Ci:L(x)=1 1

|Ci| and obtain MFOi = max(fi, 1 − fi).
Our goal is to separate interesting from uninteresting clusters by finding a

suitable threshold for the MFO ratio to filter uninteresting training instances
away and focus training on interesting ones only. More formally we wish to
choose the lowest possible MFO threshold such that models trained with our
approach ms

θ satisfy the optimization goal, i.e., that the objective function value
over the model trained using our selective strategy is at least as good as the
objective value obtained with full training over all data samples over all training
cycles.

Algorithm 1. Proposed fast training approach
1: procedure
2: D ← corpus of labeled documents
3: k ← Number of clusters to generate
4: MFOcut ← cutoff for filtering
5: while pretraining do
6: ΔAcc ← rate of acc. improv.
7: if ΔAcc starts dropping then
8: break pretraining

9: Cluster using K-means
10: MFOi ← MFO for cluster i
11: D′ ← clusters with MFOi ≤ MFOcut

12: while main-training do
13: train on reduced dataset D′

14: if convergence is achieved then
15: break main-training

This can be seen as a balance between two forces: (1) high MFO cutoff
means filtering only data where we are sure of the label, and do not mistakenly
dismiss information and in turn decrease model accuracy. (2) low MFO cutoff
means reducing training to fewer instances, thus fewer minibatches and finally
lower training time. Clearly, the best filtering cutoff is a trade-off. We propose to
study the decrease in MFO in the log-scale, and define ΔMFO = − log10(1 −
MFO). Our empirical study suggests values in the range 2 ≥ ΔMFO ≥ 1.5.
At prediction time we match new data to clusters. For data in removed clusters
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we use its dominating class label. For other clusters, we use the model trained
on the reduced set. Algorithm 1 outlines our selective training strategy. In the
experiments, we demonstrate that our approach indeed converges faster, i.e.,
uses fewer training epochs and converges to an accuracy that is at least as high
as the one for full time training on all data.

5 Evaluation

5.1 Data and Experimental Setup

We use the large-scale, open access Enron data [18], comprised of more than
500, 000 documents that vary greatly in style, language and length and thus
provide excellent insight into performance on varied text. All documents are
split into sentences using the Punkt sentence boundary detection approach [16].
Constituency parse trees (splitting sentences into phrases) are generated from a
probabilistic context-free grammar [17], trained over the Stanford Penn Treebank
[32]. We train a recursive neural network model over these parse trees, which
allows us to learn an embedding for each phrase. We make this data available
online (see footnote 1).

We use labels by domain experts from the TREC competition [6,33], where
topics were labeled by at least 3 human annotators (using majority where dif-
ferent). We evaluate on 4 binary topics where a sentence is true if it belongs
to the topic and false otherwise: FCAST : 267366 sentences regarding Enron’s
financial state. We use 40000 sentences for validation, 40000 for testing, the
rest for training. The percentage of positive (i.e., true) sentences is 31%. FAS:
178266 sentences where Enron claims compliance with Financial Accounting
Standards3. We use 27000 sentences for validation, 27000 for training; 59% pos-
itive sentences. PPAY : 134256 sentences about financial prepay transactions.
We use 15000 sentences for validation, 15000 for testing; 13% positive sentences.
EDENCE: 167913 sentences discussing tampering with evidence. We use 25000
sentences for validation, 25000 for testing; positive sentences 23%. For further
details see [6,24,33].

We test Selective Training on an RecNN where the intrinsic model is applied
recursively over parse-trees. For long sentences the number of layers in the final
recursive network (“unfolded” in time and structure) reaches several hundreds
layers. We report findings where the intrinsic model has a single hidden layer and
where the hidden layer has 100 neurons. We have tested on a smaller development
set and found these hyperparameters to yield robust performance. Standard full
training takes in the order of 1 day per 1, 000, 000 minibatches, whereas clustering
takes few minutes. Minibatch count is thus an appropriate measure for training
time of full and selective training.

3 http://www.fasb.org/jsp/FASB/Document C/DocumentPage?cid=1218220124871.

http://www.fasb.org/jsp/FASB/Document_C/DocumentPage?cid=1218220124871
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Fig. 1. Training time (in mini-batches) on 4 datasets

5.2 Empirical Study and Discussion

Figure 1 reports training times on 4 different datasets of varying complexities.
Standard backpropagation through structure (denoted Std. RecNN in the figure)
converges on the EDENCE dataset in 758, 000 minibatches, and on the PPAY
dataset in 3, 674, 000 minibatches, even though the datasets are of comparable
size. Our approach reduces the training time by a factor of approximately 2 to 6,
depending on the dataset under study. FCAST and FAS have approximately
the same runtime on the full dataset, which our approach reduces for FCAST
by factor 2.42, while for FAS we obtain an impressive factor of 6.1. It seems
that FAS can be learned from fewer training instances, which our method picks
up on.

It is interesting to note that our approach indeed selects the most relevant sets
of samples for training, even being able to slightly improve accuracy. Comparing
standard full training and our selective training strategy (in parentheses), we
have FCAST 83.24% (83.41%), FAS 96.05% (96.40%), PPAY 95.93% (96.09%)
and EDENCE 89.02% (89.12%).

Stopping pre-training, i.e., when to cluster and remove instances, can be
determined from the graph over accuracy as a function of training time (see
Fig. 2 for accuracy on PPAY using backpropagation; other datasets show similar
behaviour; omitted here due to space limitations).

Vertical cuts on the training graph show pretraining stopping points and the
number of additional mini-batch visits required after filtering. The minimum
(Total column) is at 200, 000 mini-batches. Comparing with cut-lines in Fig. 2,
we note that the best stopping point for pretraining is where the curve “bends”,
i.e., where the rate of improvement starts to plateau. At this point we have
gained most (further gains are more expensive) and thus have the best potential
for out-performing full training. At this point, large-scale statistical properties
of the data are encoded (Table 1).

To generate the curve in Fig. 2, we use the “pocket” algorithm where the
best performing model seen so far is used to output the accuracy on a small
validation set. This process yields a nice monotonically increasing curve and
allows for a simple pretraining cutoff criteria. In our experiments, we stopped
training manually based on the curve, but this could be automatized based on
the shape and slope of the curve.
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Table 1. Pretraining cutoff on PPAY

Pretraining Training Total

0 3, 674, 000 3, 674, 000

50, 000 2, 128, 000 2, 178, 000

100, 000 2, 365, 000 2, 465, 000

150, 000 913, 000 1, 063, 000

200,000 830,000 1,030,000

250, 000 1, 036, 000 1, 286, 000

500, 000 1, 818, 000 2, 318, 000 Fig. 2. Pre-train cutoffs, PPAY training
curve

Table 2. Filter percentage, PPAY , 200K minibatches

MFO ΔMFO Count Percentage Total training

- (0) - - 3, 674, 000

0.9970 2.52 1 3.6% 3, 362, 000

0.9945 2.26 3 11.9% 2, 574, 000

0.9940 2.22 4 19.3% 1, 194, 000

0.9867 1.88 5 23.0% 1, 030, 000

0.9863 1.85 6 26.9% 891, 000

0.9858 1.85 8 34.3% 1, 480, 000

0.9800 1.70 12 50.6% 1, 739, 000

0.9720 1.55 15 59.9% >5, 000, 000

To determine how many clusters should be filtered out, we study the model
after 200, 000 minibatches and its sentence representations. These representa-
tions are clustered using K-means and we filter out all clusters with a higher
MFO ratio than a filter cutoff. Figure 3 shows clusters sorted by the ratio of
sentences with class 1 (using the simplified approach for 2-class problems as
described above). Clusters to be filtered (i.e., high MFO ratios) are at the far
left and right and clusters to keep are at the center. Note that the MFO ratio
for the far left clusters is much higher than the MFO ratio for the far right clus-
ters. For dataset PPAY it seems easier finding pure clusters of label 0, whereas
clusters with a high ratio of label 1 tend to be mixed with many examples of
label 0 occurrences. Thus, here we only filter clusters on the far left.

We show converge times for different filtering cutoffs from 1 cluster (3.6% of
data filtered) to 15 clusters (59.9%) in Table 2. We observe marked improvements
in the range 19.3% to 26.9%. Cutoffs are shown as vertical lines against class 1
ratio in Fig. 3.
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Fig. 3. Filter cutoffs (Table 2) over class 1 ratio.

Table 2 shows a large drop in ΔMFO from 2.22 to 1.88, where we thus should
place our cut to obtain a runtime of 1, 194, 000, which is significantly less than
the standard full training runtime of 3, 674, 000.

Table 3 shows robustness to hyperparameter k. We test values between 15
and 70 and compare runtime of 3 different filtering cuts. Each cut is a row in
Table 3 (“Small (S)”, “Medium (M)”, “Large (L)”). “Medium (M)” corresponds
to the optimal size cut and the others are smaller and larger, respectively. We set
the MFO cutoff such that we filter approximately the same amount of examples
across different k values (ratio of filtered samples given in column “Size”). Please
note that the actual ratio of samples filtered varies only slightly, due to filtering
an integral number of clusters, but still allowing a comparison of runtimes across
different values of k.

Across k values we experiment with filtering a “Small (S)” amount (≈12%)
of data, a “Medium (M)” amount (≈27%) and a “Large (L)” amount (≈33%).
Table 3 shows that runtimes only vary slightly, i.e., an average difference from
mean of 6.32%, 6.19%, 11.21% for Small, Medium and Large, respectively. Thus,
k does not impact reduction in training time significantly.

Table 3. Time (measured as number of minibatches) over k and filtering cutoffs (Small
(S), Medium (M) and Large (L)). Size is filtered data ratio

k = 15 k = 35 k = 70 Avg. Diff

Size Time Size Time Size Time

S 11.92% 1, 486K 11.91% 1, 683K 11.87% 1, 756K 6.32%

M 27.84% 924K 26.92% 891K 26.92% 1, 040K 6.19%

L 33.66% 1, 551K 34.32% 1, 480K 33.07% 1, 933K 11.21%
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6 Detailed Error Analysis

We study whether selective training still learns models that generalize as well
as full training models do. We report prediction accuracy in PPAY (76067 sen-
tences with embeddings from both selected and full training set) in the interest
of space; findings are similar for the other datasets.

Table 4 shows that the standard full training model misclassifies 1926
instances, whereas our approach only misclassifies 1565. Out of these 1565, 869
are made by the full training approach as well, i.e., our approach makes 18.74%
fewer errors and out of the remaining, 55% are identical to those of full training.
We conclude that our speed up does not jeopardize accuracy, but even leads
to slightly improved accuracy. We analyze errors using K-means clustering of
embeddings (Table 5). Here Id refers to cluster id. Size is the number of elements
(errors) in a cluster and Accuracy the overall accuracy when we cluster all data
elements (not just errors) into these 10 clusters and calculate the accuracy of
our approach per cluster. The errors are fairly uniformly distributed; we observe
that except for group 7 with 310 elements, all other clusters have size around
100–200. This uniform size distribution (especially compared to Fig. 3) suggests
that the errors are not concentrated in any particular part of the embedding
space. Our approach thus is expected to generalize well.

Table 4. Shared embeddings in PPAY .

Total number of shared embeddings 76067

Errors of the standard training 1926

Accuracy of the standard training 97.47%

Errors of our training method 1565

Accuracy of our training method 97.94%

Table 5. Error statistics. See text
for details.

Id Size Accuracy

1 97 100.0%

2 113 100.0%

3 112 99.1071%

4 188 98.9362%

5 134 89.5522%

6 202 78.7229%

7 310 74.8387%

8 78 71.0526%

9 185 48.6486%

10 148 41.8919%

A concern for the clustering step could be that K-Means fails to do meaningful
clustering for very high representation sizes. Such investigation falls outside the
work done here. However we observe that this degradation of K-means has been
investigated in [2] where the authors find that hierarchical K-means may provide
strong clustering even for high dimensionalities.
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Before studying actual examples, we note that the first four groups in Table 5
contain 510 out of 1565 of our errors (32.59%) with high MFO, all for label 1,
which makes some of the errors in these groups challenging to resolve. Groups
6, 7, 8 have a medium MFO score, with group 5 showing a slightly higher score.
Finally, groups {9, 10} show lower MFO. From Table 6 with error examples from
each group, we observe the following types of errors: Soft errors. Clusters 2, 3, 4
contain examples of prepay transactions (label 1) where wording and structure
seem to be good indicators of the class. These clusters also contain challenging
samples. Cluster 7 seems similar, but shows greater diversity in label distribution,
which is even more challenging to resolve. Poor filtering. Cluster 8 contains
examples of sentences which should have been filtered out in pre-processing, and
can therefore be used to inform the pre-processing step. Short emails and
headers. Clusters 6, 9 contain examples of short email sentences. Again, this
can be used to inform pre-processing e.g. combining them with email subject,
to/from or the like. Hard errors. Clusters 1, 5, 10 contain headlines, locations
and sentences with little information, which we consider unlikely targets for
improvement based on sentences alone.

Table 6. Samples from each of the 10 error groups with description of type of error

Group Id Sentence Type of error

1 Section 12.1 Duration Document headlines

2 I spoke to Tim today regarding the
prepayment transactions with terminated
counterparties

Generic sentence

3 Let me know, but as I understand it, the
Chase agreement should be a good
format for this master agreement

Stating facts

4 A similar swap was entered into between
the American Public Energy Agency and
Chase on the same date

Prepay technicalities

5 Maybe this happens in a region of not
prepay and that is why... New York, New
York 10043

Specific location

6 If there is anything else you need please
feel free to call me on 0207 783 5404

Short standard email

7 Please let me know the nature of the
transaction with National Steel

General question wrt. entity

8 [. . .] – – – – – - Enron-6.11.00.ppt Bad text/filtering

9 RE: Swap Transaction; Deal No M180816 Preambles, email header

10 The PSCO Project will be sold into
TurboPark on 1/19/01

Abbreviation and numbers
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In summary, some groups can be used directly to improve performance fur-
ther in pre-processing, others offer potential for future work, and few contain too
little information to be correctly predicted. Models trained using our faster selec-
tive training strategy seem to generalize just as well as full training, providing
even slightly better accuracy.

7 Related Work

There is a large body of research on different training strategies, often with the
aim of improving the accuracy or stability of a classifier. The classical approach is
AdaBoost [8] which adapts training depending on the error observed by weighing
“difficult” examples higher. At an abstract level, boosting also refocuses training.
However, there are two core differences between our approach and boosting:
first, we aim to reduce training time (i.e., speeding up convergence of the model
parameters) by removing samples that are not expected to benefit. And secondly,
we base the selection of samples on their multi-dimensional representation rather
than on the one-dimensional difference in ground truth label and predicted label.
For an extensive survey of bagging and boosting in classification we refer the
interested reader to [19].

Adaptive learning methods, such as Adam [14], automatically adjust the
learning rate based on adaptive estimates of lower-order moments in the loss
function. [14] observe faster convergence of the model during training to a
particular accuracy (cost) value compared to other popular learning optimiz-
ers (AdaGrad, RMSProp, SGDNesterov, AdaDelta). Adaptive learning methods
thus essentially adjust the learning rate, whereas our approach takes a funda-
mentally different approach that adapts the training data being used to learn
accurate models much more efficiently. [22] estimates which samples provide
largest decrease in loss function based on estimates of previous decreases incur-
ring an N log N sorting/rank penalty over all samples. By contrast, we use the
rich information embedded in the representations, using clustering for easy selec-
tion. Zhao et al. [34] use K-means clustering to differentiate local from global
word context for improved text embeddings, but not for training time reduction.

8 Conclusion and Future Work

We present an efficient selective strategy for reducing training time of complex
models, focusing on recurrent neural networks over phrase trees on large text
datasets. We propose studying groups in representation space to identify where
learning from training data seems to be completed, and where more training is
expected to improve model accuracy. Discarding clusters with pure label distri-
bution, we refocus training to those samples that lead to high accuracy models
with less training time. We show how to easily infer the parameters for selecting
clusters using rate of improvement on training graphs and our proposed ΔMFO
measure. In thorough experiments, we demonstrate up to 6 times faster training
without loss of accuracy on a number of datasets.
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Our method generalizes to similar training problems of complex models that
generate distributed instance representations. We intend to study representation
based models, such as Recurrent Neural Networks, Long Short Term Memory
Networks and Convolutional Neural Networks.
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Abstract. Unsupervised random-walk keyphrase extraction models
mainly rely on global structural information of the word graph,
with nodes representing candidate words and edges capturing the co-
occurrence information between candidate words. However, integrating
different types of useful information into the representation learning pro-
cess to help better extract keyphrases is relatively unexplored. In this
paper, we propose a random-walk method to extract keyphrases using
word embeddings. Specifically, we first design a new word embedding
learning model to integrate local context information of the word graph
(i.e., the local word collocation patterns) with some crucial features of
candidate words and edges. Then, a novel random-walk ranking model
is designed to extract keyphrases by leveraging such word embeddings.
Experimental results show that our approach outperforms 8 state-of-the-
art unsupervised methods on two real datasets consistently for keyphrase
extraction.

Keywords: Keyphrase extraction · Word embeddings ·
Ranking model

1 Introduction

Automatic keyphrase extraction extracts a set of representative phrases that are
related to the main topics discussed in a document [10]. Since keyphrases can
provide a high-level topic description of a document, they are very useful for a
wide range of natural language processing (NLP) tasks, such as text summariza-
tion, information retrieval and question answering. However, the performance of
existing methods is still far from being satisfactory [8]. The main reason is it is
very challenging to determine if a phrase or set of phrases accurately capture
main topics presented in a document.

Existing methods for keyphrase extraction can be broadly divided into super-
vised and unsupervised methods. Specifically, supervised methods usually treat
c© Springer Nature Switzerland AG 2019
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the keyphrase extraction as a binary classification task, in which a classifier is
trained on the features of labeled keyphrases to determine whether a candidate
phrase is a keyphrase [8]. By way of contrast, unsupervised approaches directly
treat keyphrase extraction as a ranking problem, scoring each word using various
measures such as tf-idf (term frequency-inverse document frequency), graph-
based ranking scores (e.g., PageRank) [4,12].

The random-walk models (i.e., PageRank-based models) are widely used in
the unsupervised scenario and considered as the state-of-the-arts [8]. These mod-
els first build a word graph in which each node denotes a candidate word and
each edge/link represents a co-occurrence relation between words within a doc-
ument. Random-walk techniques are subsequently employed on the word graph
to rank words. Since Text-Rank [12] firstly computed PageRank scores on the
word graph, many PageRank-based extensions have been proposed, aiming at
integrating various types of information into ranking model to improve the per-
formance of keyphrase extraction.

Although many efforts have been made on PageRank-based models for
keyphrase extraction, how to effectively integrate various types of information is
still not well studied. The PageRank-based models, by their nature, make inte-
grating local context information with features of words and links of the word
graph difficult. More specifically, a PageRank-based model is a way of deciding
on the importance of a node in the word graph, only by taking into account
global information recursively computed from the entire word graph, and ignor-
ing the local context information. In addition, other types of information are
incorporated into a PageRank-based model only by directly modifying its tran-
sition probability or reset probability. Thus, existing PageRank-based models
are not effective to fuse deeply various types of information to achieve better
performance on keyphrase extraction.

In this paper, we first design a heterogeneous text graph representation
learning approach to deeply incorporate the local context information of the
word graph, topical information expressed in the document and co-occurrence
information between words, which are important for keyphrase extraction task.
Although many word embedding methods, such as Skip-gram [13], PTE [16] and
TWE [9], have been proposed, they are mainly designed for general NLP tasks
such as text classification or document visualization, rather than for keyphrase
extraction. Secondly, we propose a novel PageRank-based ranking model to lever-
age the learned word embeddings and global structure information of the word
graph to rank candidate words in the word co-occurrence graph. Finally, we con-
duct comprehensive experiments over two publicly-available datasets (SIGKDD
and SIGIR) in Computer Science area. Our experimental results show that our
approach outperforms 8 state-of-the-art unsupervised methods.

2 Related Work

Many supervised and unsupervised approaches to keyphrase extraction have
been proposed. Supervised approaches use a set of features of labeled keyphrases
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to train a classifier for identifying keyphrases from a document. In the unsu-
pervised approaches, PageRank-based approaches have been widely used for
keyphrase extraction and proved to be effective in this task. Our work is closely
related to these approaches. TextRank [12] is the first to use PageRank algo-
rithm [14], which provides a way to explore the global structural information in
the ranking procedure, to rank each candidate words by iteratively computing
the entire word graph.

Many PageRank-based modifications have been proposed as extensions to the
Text-Rank. These studies usually use different types of background knowledge
to enhance the accuracy of the word graph. ExpandRank [18] uses a small num-
ber of nearest neighbor documents to compute more accurate co-occurrences in
the word graph. Topical PageRank (abbreviated as TPR) [10] first incorporates
topical information into Text-Rank model which increases the weight of impor-
tant topics generated by LDA model. Single-TPR [15] and Salience-Rank [17]
only run PageRank once instead of L times (L is the number of topics used
in LDA model) as in the TPR. CiteTextRank [7] incorporates evidence from a
citation context to enhance co-occurrences in the word graph. PositionRank [6]
integrates position information from all positions of a word’s occurrences into a
biased PageRank. Additionally, both link-associated and word-associated infor-
mation are simultaneously integrated by PageRank optimization models, such
as SEAFARER [21] and MIKE [22]. However, these methods didn’t consider the
local context information of the word graph.

Although a few researches have integrated some background knowledge into
PageRank model using word embedding techniques, the embeddings used in
these studies are learned by the typical representation learning models such as
C&W model on Wikipedia [19] and Skip-gram on domain-specific corpus [20].
In contrast, the word representation learning model proposed in our work is
designed especially for the key-phrase extraction task, rather than for other gen-
eral NLP tasks.

3 Proposed Model: WeRank

Definition 1 (Keyphrase Extraction). Let D = {d1, d2, ..., dm} be a set of
m text documents. Each document di ∈ D includes a set of candidate words
Wi ={wi1, wi2, ..., wini

}. The goal of a keyphrase extraction model is to find a
function to map each wij ∈Wi into a score, and then extract a ranked list of
phrases (which consist of consecutive words) that best represents di.

The basic framework of our proposed method involves four key steps: (1)
constructing a heterogeneous text graph (including word-word graph, word-topic
graph and topic-topic graph), (2) learning word embeddings from this graph in
which some crucial piece of information (e.g., local word collocation patterns
and topical information) are preserved, (3) ranking candidate words using the
modified random-walk ranking model with the learned word embeddings, and (4)
scoring the phrase using the sum scores of individual words that comprise it. To
summarize, the core technical contribution of our method is to learn the Word
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Embedding and then incorporates it into the random-walk Ranking model for
keyphrase extraction, i.e., WeRank.

3.1 Word-Word Graph Embedding

Word-word graph, denoted as Gww = (W,Eww, ωww), captures the word co-
occurrence information between words of a given text corpus. W is a vocabulary
of words, Eww is a set of co-occurrence edges between words, and ωww is a set
of edge weights.

Given a word-word graph, besides its global link structure which is used by
existing random-walk methods, two types of information related to the word
co-occurrences are crucial for keyphrase extraction task. The first type of infor-
mation is the local contexts (i.e., local collocation patterns between words). It
is difficult to integrate directly this information into the random-walk model.
Fortunately, recent advances on word representation learning [1] have shed light
on this problem, which makes it possible to integrate this local context informa-
tion into the process of keyphrase extraction through the word representation
techniques.

The second type of information is the weight of co-occurrence between two
words, which is used to reflect the degree of cooperation between two words.
Specifically, this edge weight is not only related to the co-occurrence frequency
between two words, but also associated with the distance between two words
within a given window size. Thus, the edge weight ωij ∈ ω between word wi and
word wj is defined as follows: ωij =

∑fr(wi,wj)
k=1

1
lk(wi,wj)

, where fr(wi, wj) is the
co-occurrence frequency, and lk(wi, wj) is the number of words between wi and
wj in original text of k-th co-occurrence.

The word-word graph embedding model aims to learn a low-dimensional vec-
tor −→w ∈ R

d for each word, in which the aforementioned two types of information
are preserved. In order to achieve this goal, we can make the joint distribution
p(wi, wj) of two words be close to its empirical distribution p̂(wi, wj), which can
be achieved by minimizing the KL-divergence between such two distributions,
given as:

L(W ) =
∑

(i,j)∈Eww

p̂(wi, wj) log
p̂(wi, wj)
p(wi, wj)

, (1)

where the empirical distribution is defined as p̂(wi, wj) = ωij∑
(i,j)∈Eww

ωij
, and the

joint distribution is computed as p(wi, wj) = 1/(1 + exp(−−→wi
T · −→wj)).

Note that most of existing word embedding methods model the relationship
between a target word wi and its context wj using the conditional probability
p(wi|wj), which is used to predict the target word wi according to its context
wj . In the process of extracting keyphrases, we treat two words occurring in
the same co-occurrence as equally important. Thus, we use the joint probability
p(wi, wj), where the (wi, wj) pairs are trained to obtain higher scores.

Besides the local contexts and weight of the co-occurrence between two words,
the topical information, which is integrated into the random-walk model by
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modifying its rest probability in almost all existing graph-based approaches [10,
15], is also very important for keyphrase extraction, and can be used to improve
the word representations.

3.2 Word-Topic Graph Embedding

Word-topic graph, represented as Gwz = (W,Z,Ewz, φwz, ψ
z
w), is a bipartite

network where W is a set of words and Z is a set of topics. Ewz is the set
of edges between words and topics. The weight φik ∈ φwz of the edge between
word wi ∈W and topic zk ∈Z is defined as the empirical conditional probability
p̂(zk|wi) calculated by LDA [2].

In addition, the weight ψz
i ∈ψz

w is an importance weighting of wi contributing
to all the topics, and defined as the topical specificity of word wi, which was
proposed in the related work [17]. It describes how informative the specific word
wi is for determining the generating topic, versus a randomly-selected word,
given as:

ψz
i =

∑

k∈Z

p̂(zk|wi) log
p̂(zk|wi)
p̂(zk)

, (2)

where p̂(zk) is the likelihood that any randomly-selected word is generated by
topic zk.

To preserve the local word-topic collocation patterns and topical influence
on each candidate word, the objective is to minimize the KL-divergence of two
probability distributions:

L(W,Z) =
∑

(i,k)∈Ewz

ψz
i p̂(zk|wi) log

p̂(zk|wi)
p(zk|wi)

, (3)

where p(zk|wi), which is defined as the probability of wi generates zk when
compared with how wi generates other topics, is estimated using the softmax
function:

p(zk|wi) =
exp(−→zk

T · −→wi)
∑

k′∈Z exp(−→zk′
T · −→wi)

, (4)

where −→wi ∈R
d and −→zk ∈R

d are the embedding of word wi and topic zj , respec-
tively, and d is the dimension of embeddings. In this process of embedding, the
conditional probability is used due to the assumption that two words with similar
distributions over the topics are similar to each other.

In addition to the aforementioned information, the interaction between topics
is important for keyphrase extraction, and can also be used to improve the word
embeddings.

3.3 Topic-Topic Graph Embedding

Topic-topic graph, denoted as Gzz = (Z,Ezz, ϕzz), captures the interaction
between topics, where Z is a set of topics, and Ezz is a set of edges. Given any
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two topics zi and zk, there exists an edge (i, k) ∈ Ezz if zi and zk link with a
same word. The weight ϕik ∈ϕzz of this edge is defined as ϕik =

∑
w φw,zi

∗φw,zk
,

where φw,z is set by the conditional probability p̂(z|w) calculated by LDA model.
Similar to the word-word graph embedding, the objective is to minimize the

KL-divergence of two probability distributions:

L(Z) =
∑

(i,k)∈Ezz

p̂(zi, zk) log
p̂(zi, zk)
p(zi, zk)

, (5)

where the empirical distribution is defined as p̂(zi, zk) = ϕik∑
(i,k)∈Ezz

ϕij
, and

p(zi, zk) is the joint distribution.

3.4 Joint Embedding

In order to capture the mutual interaction among the aforementioned three
graphs, an intuitive approach is to collectively embed the three graphs, which
can be achieved by minimizing the following objective function:

L = L(W ) + L(W,Z) + L(Z). (6)

The objective function in Eq. (6) is optimized in the pre-training and fine-
tuning strategies. Specifically, in our experiments, we learn the word embeddings
and topic embeddings with the word-word graph and topic-topic graph, respec-
tively, and then fine-tune the embeddings with the word-topic graph.

3.5 Model Optimization

We train our model using the stochastic gradient descent, which is suitable for
large-scale data processing. However, optimizing directly the objective function
in Eq. (6) is problematic. Firstly, for the objective function L(W ) in Eq. (1)
or L(Z) in Eq. (5), there exists a trivial solution: −→wi,d or −→zi,d = ∞, for all
i and all d. Secondly, computing the gradients of the conditional probability
p(zk|wi) in Eq. (3) the costly summation over all inner product with every node
in the word-topic graph. To address these problems, we adopt negative sampling
approach [13]. The equivalent counterparts of log p(zk|wi) can be derived, given
as follows:

log p(zk|wi) ∝ log σ(−→zk
� · −→wi) +

K∑

k=1

Ezk′∼pk′ (z) log σ(−−→zk′� · −→wi), (7)

where σ(x)=1/(1+exp(−x)) is the sigmoid function. K is the number of negative
samples zk′ sampled from the “noisy distribution” of pk′(z) = d

3/4
z as proposed

in [13], and dz is the output degree. Similarly, we can easily obtain the equivalent
counterparts of log p(wi, wj) by just changing −→zk to −→wj in log p(zk|wi), and of
log p(zi, zk) by changing −→w to −→z in log p(wi, wj). Thus, the gradients of the
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Algorithm 1. Learning Embeddings Algorithm
Input: (1) Graphs: Gww, Gwz, Gzz; (2) Embedding dimension d; (3) Learning rate η;

(4) Number of negative samples K; (5) Number of edge samples #samples.
Output: word embedding vector −→wi

1: Initialize: −→wi,
−→wj , ∀w∈W ; −→zk , ∀z ∈ Z

2: while iter ≤ #samples do
3: Sample one edge (wi, wj) from Gww and update −→wi,

−→wj based on Eq. (8) with
η;

4: for k = 0; k < K; k = k + 1 do
5: Sample a negative word wj′ for wi;
6: Sample a negative word wi′ for wj ;
7: Update −→wi,

−→wj′ , −→wj and −→wi′ based on Eqs. (8), (10) with η;
8: end for
9: end while

10: pre-training −→zk for all topics in Gzz by procedures similar to Lines 2-9;
11: while iter ≤ #samples do
12: Sample one edge (wi, zk) from Gwz and update −→wi,

−→zk based on Eqs. (8), (9)
with η;

13: for k = 0; k < K; k = k + 1 do
14: Sample a negative topic zk′ and update −→wi,

−→zk′ based on Eqs. (8), (11) with
η;

15: end for
16: end while
17: return word embedding vector −→wi

objective function L with respect to −→wi, −→zk , −→wj′ and −→zk′ can be formulated as
follows:

∂L
∂−→wi

= θw

(
σ(−→wi

� ·−→wj′)−→wj′ −σ(−−→wi
� ·−→wj)−→wj

)
+

θz
w

(
σ(−→zk′� · −→wi)−→zk′ − σ(−−→zk

� · −→wi)−→zk

)
(8)

∂L
∂−→zk

= θz

(
σ(−→zi′ � ·−→zk)−→zi′ −σ(−−→zi

� ·−→zk)−→zi

) − θz
w σ(−−→zk

� · −→wi)−→wi (9)

∂L
∂−→wj′

= θw σ(−→wi
� ·−→wj′)−→wi (10)

∂L
∂−→zk′

= θz σ(−→zk′� ·−→zi )−→zi + θz
w σ(−→zk′� ·−→wi)−→wi (11)

where θw, θz
w and θz are defined as θw = p̂(wi, wj), θz

w = ψz
i p̂(zk|wi) and θz =

p̂(zi, zk), respectively. Due to space limitation, we omit the gradients of −→wj , −→zi ,−→wi′ and −→zi′ which are easily derived.
Note that the magnitudes of these gradients vary considerably, which is

caused by θw, θz
w and θz, so it is very difficult to find a good learning rate

during optimization. A more reasonable solution is to alternatively sample edges
using the technique of edge sampling proposed in [16], which a binary edge is
sampled with the probability proportional to its empirical value θw, θz

w or θz.
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The number of edge samples is set to several times of the number of edges of
respective graph, which will be discussed in detail in Subsect. 4.2.

We summarize the detailed training algorithm in Algorithm1. The overall
time complexity of our model is O(dK|E|), where d is the dimension of embed-
dings, K is the number of negative samples and |E| is the number of edges.

3.6 Word Ranking Using Embedding

Almost all PageRank-based approaches score each candidate words in the word
co-occurrence graph using a unified random-walk framework. That is, the PageR-
ank score R(wi) for a candidate word wi is computed recursively from the entire
word graph, given as follows:

R(wi)=α
∑

j:wj→wi

e(wj , wi)
out(wj)

R(wj)+(1−α), (12)

where α is a damping factor typically set to 0.85, e(wj , wi) is a weight of edge
(wj , wi), out(wj)=

∑
wk:wj→wk

e(wj , wk) is a out-degree of word wj .
In our modified random-walk ranking model, the weight e(wj , wi) is com-

puted as the product of position relationship strength prs(wj , wi) which reflects
the degree of position correlation over semantic similarity between two words,
and dice coefficient dice(wj , wi) [5] which measures the probability of two words
co-occurring in a phrase, given as:

e(wj ,wi) =
pos(wj) · pos(wi)

‖−→wj − −→wi‖2
︸ ︷︷ ︸

prs(wj ,wi)

· 2 · fr(wj , wi)
tf(wj) + tf(wi)
︸ ︷︷ ︸

dice(wj ,wi)

,
(13)

where tf(wi) is a term frequency of the word wi, and pos(wi)=
∑tf(wi)

k=1
1

pk(wi)
is

an importance weighting of the position of word wi with its frequency occurring
in a document. pk(wi) is the k-th position where word wi occurs in the document.
Note that the position information is shown to be a very effective feature in
supervised keyphrase extraction. In this work, we first incorporate the position
information fused semantic similarity into the PageRank-based framework by
modifying the transition probability.

4 Experiments

4.1 Experimental Datasets and Settings

Benchmark Datasets. The first dataset provided by [7] consists of research
papers from ACM Conference on Knowledge Discovery and Data Mining (KDD).
The other dataset is a new dataset collected by us, and is made up of research
papers from ACM Conference on Research and Development in Information
Retrieval (SIGIR). Some statistics of the two datasets are summarized in Table 1,
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including the total number of abstracts and keyphrases in the original dataset
(#Abs/#KPs(All)), the number of abstracts for which at least one author-
labeled keyphrase could be located and the total number of keyphrases located
(#Abs/#KPs(Locatable)), percentage of keyphrases not present in the abstracts
(MissingKPs), average number of keyphrases per paper (#AvgKPs), and the
number of keyphrases with one, two, three and more than three tokens found in
these abstracts.

Table 1. Statistics of the two benchmark datasets.

Dataset #Abs/#KPs(All) #Abs/#KPs(Loc.) MissingKPs AvgKPs #uni. #bi. #tri. #>trigrams

KDD 365/1471 315/719 51.12% 4.03 363 853 189 66

SIGIR 560/2137 560/1257 41.18% 3.81 503 1283 303 48

For data preprocessing, we first use Python and Natural Language Toolkit
(NLTK) package1 to tokenize the raw text, and then assign parts of speech
(POS) to each word. Finally, we retain only nouns and adjectives as candidate
words by POS filtering.

Evaluation Metrics. We have employed 4 widely used evaluation metrics for
keyphrase extraction, including precision, recall, F1-score and Mean Reciprocal
Rank (MRR) to evaluate various methods [11]. Note for each metric, the top
k predicted keyphrases are examined in evaluation. MRR is used to evaluate
how the first correct keyphrase for each document is ranked. Specifically, for a
document d, MRR is defined as MRR = 1

|D|
∑

d∈D
1

rankd
where D is the set of

target documents and rankd is the rank of the first correct keyphrase from all
our extracted keyphrases.

Comparative Methods. We have compared our proposed WeRank with 8
state-of-the-arts, including 5 keyphrase extraction methods, 3 representation
learning models. Specifically, the 5 keyphrase extraction methods are: (1) TF-
IDF, which calculates the ranking score of candidate words based on words’
tf -idf values in the document; (2) TextRank [12], which is the first method to
score candidate words by directly applying Page-Rank on a word graph built
from adjacent words within a document only; (3) Single-TPR [15], which inte-
grates the full topical information into the reset probability of PageRank; (4)
PositionRank [6], which incorporates the position information into the reset
probability of PageRank; (5) WordAttractionRank [19], which first uses word
embeddings pre-trained over Wikipedia to enhance word co-occurrence relations.
In our repeated experiments, we also use the publicly-available word embeddings
trained by fastText2 over Wikipedia [3]. The 3 representation learning models
are summarized as follows: (1) Skip-gram [13], which is capable of accurately
modeling the context (i.e., surrounding words) of the target word within a given

1 http://www.nltk.org/.
2 https://github.com/facebookresearch/fastText.

http://www.nltk.org/
https://github.com/facebookresearch/fastText
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corpus; (2) TWE [9], which first assigns different topics obtained by LDA model
for each target word in the corpus, and then learns different topical word embed-
dings for each word-topic combination; (3) fastText [3], which is a newly proposed
approach based on the Skip-gram model, where each word is represented as the
sum of the n-gram embeddings.

4.2 Parameters and Influences

Some parameters of WeRank are empirically set as follows: (1) the size of co-
occurrence window is set as window size = 2, which is used to construct word
graph in process of ranking candidate words mentioned in Subsect. 3.6; (2) damp-
ing factor α is set to 0.85, same with many existing PageRank-based methods;
(3) similar to some of existing embedding studies, the learning rate is set as
ηi =η0(1−i/S), in which S is the total number of mini-batches or edge samples
and η0 = 0.025; (4) the number of negative samples is set as K = 5; (5) all the
word embeddings are finally normalized by setting ‖−→w ‖2 = 1; (6) a phrase is
scored by using the sum scores of individual words that comprise the phrase,
computed by R(p) = γp

∑
w∈p R(w), where R(w) represents the ranking score

of candidate word w, and γp is a weight of p according to the length of phrase
p. γp is set as follows: γp =1, if |p|=1; γp =0.62, if |p|=2; γp =0.3, if |p|≥3.

Besides empirical parameters mentioned above, we firstly study how the win-
dow size, which is used to construct the word graph Gww for learning word
embeddings, impacts the performance of our WeRank. In our experiments, to
show the influence of the window size, we test values of this parameter in the

Fig. 1. Influence of the window size. Fig. 2. Influence of the number of topics.

Fig. 3. Influence of the number of
samples.

Fig. 4. Influence of dimension of embed-
dings.
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range of 3 to 11 and plot the results in Fig. 1. As can be seen from it, the perfor-
mance of WeRank do not change significantly as the window size varies on both
KDD and SIGIR datasets. The best-performing setting is window size = 3 on
two datasets, which is finally used in the comparison experiments.

Secondly, to illustrate the influence of the number of topics in our WeRank,
we test values of this parameter #topics in the range of 0 to 500 and plot the
results in Fig. 2. Note that the #topics = 0 means that the topical information
has not been added to our model. We observe that the performance of WeRank
is influenced by the changes on the number of topics. Generally, the performance
increases and then slowly decreases on both KDD and SIGIR datasets. The best-
performing setting is #topics = 50 on two datasets, which is finally used in the
comparison experiments.

Thirdly, to study the influence of the number of edge samples #samples in
our WeRank, we test values of this parameter #samples in the range of 0.1 to 10
times of the number of edges in respective graphs and plot the results in Fig. 3.
We can see that the performance of WeRank increases rapidly and then slowly
converges as #samples varies. #samples is set to 7 times of the number of edges
on both datasets in our comparison experiments due to time efficiency.

Finally, as can be seen from Fig. 4, the dimension of embeddings of words or
topics has little impact on the performance of WeRank and is set to 100 in the
experiments.

4.3 Results and Analysis

In our experiments, the predicted keyphrases have to be exactly the same as
the author-labeled keyphrases when computing the number of true positives.
Table 2 shows the comparison of results of our WeRank with other methods at
top k = 2, 5, 8 predicted keyphrases on two datasets.

We first discuss the comparison of results at top k=5 predicted keyphrases.
This value is close to the average numbers of keyphrases AvgKPs in given
research papers (AvgKPs = 4.03 on KDD and 3.81 on SIGIR dataset), as shown
in Table 1. The benefit is that the experiment can reflect real application envi-
ronment. All results are shown in Rows 10–18 of Table 2. Compared with other
5 unsupervised approaches, our WeRank gets the best results in terms of all per-
formance measures on both KDD and SIGIR datasets at top k=5, as presented
in Rows 10–15 of Table 2.

In addition, we further conduct experiments to compare the joint embedding
method used in our WeRank with other three word representation learning mod-
els (TWE-1, Skip-gram and fastText) at top k=5 predicted keyphrases. As the
results shown in Rows 15–18 of Table 2, WeRank with our embeddings gets the
best results in terms of all performance measures. This indicates that our joint
embedding method, which is designed especially for the keyphrase extraction
and preserves some different types of useful information, substantially outper-
forms other three recent word embedding models. Furthermore, the fastText
trained over Wikipedia gives the worst performance. This illustrates that word
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Table 2. Comparison of WeRank with other approaches at top k predicted keyphrases.

k Unsupervised method KDD SIGIR

Precision Recall F1-score MRR Precision Recall F1-score MRR

1 TF-IDF 0.1055 0.0523 0.0700 0.1616 0.1304 0.0683 0.0896 0.1857

2 TextRank 0.0712 0.0354 0.0473 0.1014 0.1098 0.0575 0.0755 0.1518

3 Single-TPR 0.1082 0.0537 0.0718 0.1575 0.1152 0.0603 0.0792 0.1554

4 WordAttractionRank 0.1082 0.0537 0.0718 0.1685 0.1420 0.0744 0.0976 0.2098

5 PositionRank 0.1342 0.0666 0.0891 0.2137 0.1723 0.0903 0.1185 0.2527

2 6 WeRank 0.1452 0.0721 0.0963 0.2178 0.1830 0.0959 0.1258 0.2813

7 WeRank(TWE-1) 0.1425 0.0707 0.0945 0.2027 0.1786 0.0935 0.1228 0.2768

8 WeRank(Skip-gram) 0.1397 0.0693 0.0927 0.2096 0.1830 0.0959 0.1258 0.2759

9 WeRank(fastText) 0.1342 0.0666 0.0891 0.1904 0.1598 0.0837 0.1099 0.2402

10 TF-IDF 0.0927 0.1149 0.1026 0.2150 0.1050 0.1375 0.1191 0.2430

11 TextRank 0.0765 0.0945 0.0845 0.1576 0.0896 0.1174 0.1017 0.2050

12 Single-TPR 0.0898 0.1108 0.0992 0.2080 0.0975 0.1277 0.1106 0.2144

13 WordAttractionRank 0.0881 0.1088 0.0973 0.2148 0.1021 0.1338 0.1158 0.2584

14 PositionRank 0.0994 0.1224 0.1097 0.2588 0.1218 0.1595 0.1381 0.308

5 15 WeRank 0.1097 0.1346 0.1209 0.2682 0.1286 0.1684 0.1458 0.3354

16 WeRank(TWE-1) 0.0990 0.1217 0.1092 0.2465 0.1246 0.1632 0.1414 0.3308

17 WeRank(Skip-gram) 0.1023 0.1258 0.1128 0.2581 0.1211 0.1586 0.1373 0.3239

18 WeRank(fastText) 0.0962 0.1183 0.1061 0.2350 0.1171 0.1534 0.1328 0.2956

19 TF-IDF 0.0719 0.1414 0.0954 0.2271 0.0837 0.1754 0.1133 0.2574

20 TextRank 0.0642 0.1244 0.0847 0.1697 0.0791 0.1656 0.1070 0.2208

21 Single-TPR 0.0731 0.1414 0.0963 0.2212 0.0786 0.1646 0.1064 0.2279

22 WordAttractionRank 0.0712 0.1380 0.0939 0.2277 0.0833 0.1745 0.1128 0.2725

23 PositionRank 0.0799 0.1543 0.1053 0.2706 0.0936 0.1960 0.1267 0.3202

8 24 WeRank 0.0803 0.1550 0.1058 0.2759 0.0996 0.2086 0.1348 0.3490

25 WeRank(TWE-1) 0.0788 0.1523 0.1038 0.2576 0.0974 0.2039 0.1318 0.3444

26 WeRank(Skip-gram) 0.0761 0.1468 0.1002 0.2661 0.0956 0.2002 0.1294 0.3380

27 WeRank(fastText) 0.0778 0.1502 0.1025 0.2477 0.0915 0.1918 0.1239 0.3086

embeddings learned from the documents similar to the target document are more
conducive to keyphrase extraction.

Finally, we discuss the comparison of results at top k = 2, 8 predicted
keyphrases. All the results are presented in Rows 1–9 (top k = 2) and 19–
27 (top k = 8) of Table 2. As the results show, our WeRank gets the best
results in terms of all performance measures, indicating that our method indeed
outperforms the other approaches on two datasets.

5 Conclusions

We studied the problem of extracting keyphrases from scientific research papers.
A novel representation learning model with the objective to learn the word
embedding is first proposed, which not only deeply integrates some different
types of crucial information, especially for integrating local context information
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of the word graph, but also has a strong predictive power for the keyphrase
extraction task. Secondly, a novel PageRank-based model which ranks the can-
didate words is proposed to incorporate the embedded information, especially
global structural information of the word graph. Our extensive experiments con-
ducted on two benchmark datasets demonstrate that our proposed method out-
performs 8 state-of-the-art methods consistently.
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Abstract. Current state-of-the-art nonparametric Bayesian text clus-
tering methods model documents through multinomial distribution on
bags of words. Although these methods can effectively utilize the word
burstiness representation of documents and achieve decent performance,
they do not explore the sequential information of text and relationships
among synonyms. In this paper, the documents are modeled as the joint
of bags of words, sequential features and word embeddings. We pro-
posed Sequential Embedding induced Dirichlet Process Mixture Model
(SiDPMM) to effectively exploit this joint document representation in
text clustering. The sequential features are extracted by the encoder-
decoder component. Word embeddings produced by the continuous-bag-
of-words (CBOW) model are introduced to handle synonyms. Experimen-
tal results demonstrate the benefits of our model in two major aspects:
(1) improved performance across multiple diverse text datasets in terms
of the normalized mutual information (NMI); (2) more accurate infer-
ence of ground truth cluster numbers with regularization effect on tiny
outlier clusters.

1 Introduction

The goal of text clustering is to group documents based on the content and topics.
It has wide applications in news classification and summarization, document
organization, trend analysis and content recommendation on social websites [13,
17]. While text clustering shares the challenges of general clustering problems
including high dimensionality of data, scalability to large datasets and prior
estimation of cluster number [1], it also bears its own uniqueness: (1) text data
is inherently sequential and the order of words matters in the interpretation of
document meaning. For example, the sentence “people eating vegetables” has a
totally different meaning from the sentence “vegetables eating people”, although
two sentences share the same bag-of-words representation. (2) Many English
c© Springer Nature Switzerland AG 2019
Q. Yang et al. (Eds.): PAKDD 2019, LNAI 11441, pp. 68–80, 2019.
https://doi.org/10.1007/978-3-030-16142-2_6
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Fig. 1. Illustration of the proposed sequential embedding induced Dirichlet process
mixture model (SiDPMM).

words have synonyms. Clustering methods taking synonyms into account will
possibly be more effective to identify documents with similar meanings.

Pioneering works in text clustering have been done to address the general
challenges of clustering. Among them nonparametric Bayesian text clustering
utilizes Dirichlet process to model the mixture distribution of text clusters and
eliminate the need of pre-specifying the number of clusters. Current methods
use bag of words for document modeling. In this work, as shown in Fig. 1, the
Bayesian nonparametric model is extended to utilize knowledge extracted from
an encoder-decoder model and word2vec embedding, and documents are jointly
modeled by bag of words, sequential features and word embeddings. We derive
an efficient collapsed Gibbs sampling algorithm for performing inference under
the new model.

Our Contributions. (1) The proposed SiDPMM is able to incorporate rich
feature representations. To the best of our knowledge, this is the first work
that utilizes sequential features in nonparametric Bayesian text clustering. The
features are extracted through an encoder-decoder model. It also takes synonyms
into account by including CBOW word embeddings as text features, considering
that documents formed with synonym words are more likely to be clustered
together. (2) We derive a collapsed Gibbs sampling algorithm for the proposed
model, which enables efficient inference. (3) Experimental results show that our
model outperforms current state-of-the-art methods across multiple datasets,
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and have a more accurate inference on the number of clusters due to its desirable
regularization effect on tiny outlier clusters.

2 Related Work

Traditional clustering algorithms such as K-means, Hierarchical Clustering, Sin-
gular Value Decomposition, Affinity Propagation have been successfully applied
in the field of text clustering (see [23] for a comparison of these methods on
short text clustering). Algorithms utilizing spectral graph analysis [4], sparse
matrix factorization [25], probabilistic models [24] were proposed for performance
improvement. As text is usually represented as a huge sparse vector, previous
works have shown that feature selection [7,14] and dimension reduction [9] are
also crucial.

Most classic methods require access to prior knowledge about the number
of clusters, which is not always available in many real-world scenarios. Dirichlet
Process Mixture Model (DPMM) has achieved state-of-the-art performance in
text clustering with its capability to model arbitrary number of clusters [27,29];
number of clusters is automatically selected in the process of posterior inference.
Variational inference [2] and Gibbs sampling [6,21] can be applied to infer cluster
assignments in these models.

A closely related field of text clustering is topic modeling. Instead of cluster-
ing the documents, topic modeling aims to discover latent topics in document
collections [3]. Recent works showed performance of topic modeling can be sig-
nificantly improved by integrating word embeddings in the model [16,26,30].

The encoder-decoder model was recently introduced in natural language pro-
cessing and computer vision to model sequential data such as phrases [10,11]
and videos [12]. It has shown great performance on a number of tasks including
machine translation [5], question answering [22] and video description [12]. Its
strength of extracting sequential features is revealed in these applications.

3 Description of SiDPMM

Our text clustering model is based on the Dirichlet process mixture model
(DPMM), the limit form of the Dirichlet mixture model (DMM). When DPMM
is applied to clustering, the size of clusters are characterized by the stick-breaking
process, and prior of cluster assignment for each sample is characterized by the
Chinese restaurant process. The Dirichlet process can model arbitrary number
of clusters which is typically inferred via collapsed Gibbs sampling or variational
inference. We refer readers to [2,21] for more details about DPMM.

We tailor DPMM to our task by learning clusters with multiple distinct infor-
mation sources for documents, i.e., bag-of-words representations, word embed-
dings and sequential embeddings, which requires specifically designed likelihood,
priors, and inference mechanism.
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Table 1. Notations

Notation Meaning

di the i-th document
dk,¬i documents belonging to cluster k excluding di

K total number of clusters
ci cluster assignment of di

ck,¬i cluster assignments of cluster k excluding
document i

θk parameters of cluster k
rk number of documents in cluster k
ui number of words in document i
ut
i occurrence of word t in document i

uk,¬i number of words in cluster k excluding di

Notation Meaning

ut
k,¬i occurrence of word t in cluster k excluding di

wi the set of bag of words in di

si sequential information embedding of di

ei word embedding of di

V vocabulary size
Θs set of hyper-parameters {μs, λs, νs, Σs}
Θe set of hyper-parameters {μe, λe, νe, Σe}
α parameter of Chinese restaurant process
β hyper-parameter for multinomial modeling of bag of words
ε dimensionality of sequential embedding vector
δk parameter of multinomial distribution for the k-th cluster

To start with, we first introduce the likelihood function F (di|θk) over docu-
ments:

F (di|θk) = Mult(wi|δk)N (ei|μk
e ,Σk

e)N (si|μk
s ,Σk

s ) (1)

where θk = (μk
e ,Σk

e , μk
s ,Σk

s , δk), with δk = (δ1
k, . . . , δV

k ) and
∑V

j=1 δj
k = 1. ei is

the word embedding and si is the encoded sequential vector. The multinomial
component Mult(wi|δk) captures the distribution of bag of words; the Normal
components N (ei|μk

e ,Σk
e), N (si|μk

s ,Σk
s) measure similarities of word and sequen-

tial embeddings. This model is general enough to model the characteristic of any
text and also specific enough to capture the key information of each document
including word embeddings and sequential embeddings.

The prior is set to be conjugate with the likelihood for integrating out the
cluster parameters during the inference phase (Table 1). As Dirichlet distribution
is the conjugate prior of multinomial distribution and Normal-inverse-Wishart
(NiW) is the conjugate prior of normal distribution, we used the composition of
Dirichlet distribution and NiW distribution to serve as the conjugate prior G0,
which is defined as:

G0(θk) = Diri(δk|β)NiW(μk
s ,Σk

s |Θs)NiW(μk
e ,Σk

e |Θe) (2)

where Diri denotes the Dirichlet distribution and NiW denotes the Normal-
inverse-Wishart distribution. Θs denotes hyper-parameters {μs0, λs0, νs0,Σs0}
for the encoder-decoder component and Θe denotes hyper-parameters {μe0, λe0,
νe0,Σe0} for CBOW word embedding component.

4 Inference via Collapsed Gibbs Sampling

We adopt collapsed Gibbs sampling for inference due to its efficiency. It reduces
the dimensionality of the sampling space by integrating out cluster parameters,
which leads to faster convergence.
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The cluster assignment k for document i is decided based on the posterior
distribution p(ci = k|c¬i,d, θ). It can be represented as product of cluster prior
and document likelihood.

p(ci|c¬i,d, θ) =
p(ci, c¬i,d|θ)
p(c¬i,d|θ) ∝ p(c,d|θ)

p(c¬i,d¬i|θ) =
p(c|θ)

p(c¬i|θ)
p(d|c, θ)

p(d¬i|c, θ)
= p(ci|c¬i, θ)p(di|d¬i, c, θ)

(3)

Based on the Chinese restaurant process depiction of DPMM, we have

p(ci|c¬i, θ) = p(ci|c¬i, α)

=

{
rk,¬i

D−1+α choose an existing cluster k
α

D−1+α create a new cluster

(4)

(D − 1) is the total number of documents in the corpus excluding current docu-
ment i.

Given the number of variables introduced in the model, direct sampling from
the joint distribution is not practical. Thus, we assume conditional independence
on the variables by allowing the factorization of the second term in (3) as:

p(di|d¬i, c, θ) ∝ p(wi|d¬i, c, θ)p(ei|d¬i, c, θ)p(si|d¬i, c, θ) (5)

The calculation for each component p(wi|d¬i, c, θ), p(ei|d¬i, c, θ) and p(si|d¬i,
c, θ) is derived below:

p(wi|d¬i, c, θ) = p(wi|ci = k,dk,¬i, β) =
∫

p(wi|δk)p(δk|dk,¬i, β)dδk (6)

where the first term in the above integral is

p(wi|δk) =
∏

t∈wi

Mult(t|δk) =
V∏

t=1

δ
ut

i

k,t (7)

δk,t is the probability of term t bursting in cluster k and ut
i is the count of term

t in document i. The second term in (6) is

p(δk|dk,¬i, β) =
p(δk|β)p(dk,¬i|δk)

∫
k
p(δk|β)p(dk,¬i|δk)dδk

(8)

By defining Δ(β) =
∏K

k=1 Γ(β)

Γ(
∑K

k=1 β)
similar to [28], we have

p(δk|dk,¬i, β) =
1

Δ(β)

∏V
t=1 δβ−1

k,t

∏V
t=1 δ

ut
k,¬i

k,t

∫
k

1
Δ(β)

∏V
t=1 δβ−1

k,t

∏V
t=1 δ

ut
k,¬i

k,t dδk

=
1

Δ(uk,¬i + β)

V∏

t=1

δ
ut

k,¬i+β−1

k,t

(9)
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Based on (7) and (9), (6) becomes

p(wi|d¬i, c, θ) =
∫

k

1
Δ(uk,¬i + β)

V∏

t=1

δ
ut

k,¬i+β−1

k,t

V∏

t=1

δ
ut

i

k,tdδk

=

∏V
t=1

∏ut
i

j=1(u
t
k,¬i + β + j − 1)

∏ui

j=1(uk,¬i + V β + j − 1)

(10)

As we see from (10), the high dimensionality challenge of text clustering is nat-
urally circumvented by multiplying one dimension of the vector space at a time.
p(ei|d¬i, c, θ) and p(si|d¬i, c, θ) in (5) are derived based on properties of NiW
distribution:

p(si|d¬i, c, θ) = p(si|ci = k,dk,¬i, θ)

=
∫

μk

∫

Σk

p(si|μk,Σk)p(μk,Σk|ci = k,dk,¬i, θ)dμkdΣk

=
∫

μk

∫

Σk

N (si|μk,Σk)NiW(μk,Σk|Θk,¬i
s )dμkdΣk

(11)

where μ and Σ are the mean and variance of the sequential embedding, Θk,¬i
s

includes {μk,¬i
s , λk,¬i

s , νk,¬i
s ,Σk,¬i

s } which is the hyper-parameter in the NiW dis-
tribution of cluster k.

We define the normalization constant Z(ε, λ, ν,Σ) of NiW distribution as

Z(ε, λ, ν,Σ) = 2
(ν+1)ε

2 π
ε(ε+1)

4 λ
−ε
2 |Σ|−ν

2

ε∏

i=1

Γ(
ν + 1 − i

2
) (12)

where ε is the dimensionality of sequential embedding vector. Therefore

p(si|d¬i, c, θ)

=
∫

μk

∫

Σk

N (si|μk,Σk)NiW(μk,Σk|Θk,¬i
s )dμkdΣk

= (π)
−ε
2 (

λk
s

λk,¬i
s

)
−ε
2

|Σk
s |−νk

s
2

|Σk,¬i
s |−ν

k,¬i
s
2

ε∏

j=1

Γ(νk
s +1−j

2 )

Γ(νk,¬i
s +1−j

2 )

(13)

As νk
s = νk,¬i

s + 1, we have

p(si|d¬i, c, θ) = (π)
−ε
2 (

λk
s

λk,¬i
s

)
−ε
2

|Σk
s |−νk

s
2

|Σk,¬i
s |−ν

k,¬i
s
2

Γ(νk
s

2 )

Γ(νk
s −ε
2 )

(14)

The derivation of p(ei|d¬i, c, θ) is analogous to that of p(si|d¬i, c, θ) as they are
following the same form of distribution, thus,

p(ei|d¬i, c, θ) = (π)
−ε
2 (

λk
e

λk,¬i
e

)
−ε
2

|Σk
e |−νk

e
2

|Σk,¬i
e |−ν

k,¬i
e
2

Γ(νk
e

2 )

Γ(νk
e −ε
2 )

(15)

Algorithm 1 presents the complete inference procedure.
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Algorithm 1. Inference of SiDPMM Model
Data : For each document i, the bag of words wi , word embedding ei , sequential

embedding si

Result : Number of clusters K, cluster assignments for each document c
/* Initialization */

1 K=0
2 for each document i do

3 compute cluster prior p(ci|c¬i, α) � (4)
4 calculate p(wi|dk,¬i, ci = k, θ) � (10)

5 calculate p(si|dk,¬i, ci = k, θ) � (14)
6 calculate p(ei|dk,¬i, ci = k, θ) � (15)
7 calculate p(di|dk,¬i, ci = k, θ) � (5)

8 sample cluster ci ∼p(ci = k|c¬i, d, θ) � (3)
9 if ci = K + 1 then

10 K=K+1
11 end
12 update parameters of cluster ci
13 end

/* Collapsed Gibbs Sampling, N iterations */

14 for Iter= 1 to N do
15 for each document i do
16 delete document i from cluster ci, update parameters of cluster ci
17 if cluster ci is empty then

18 K=K-1

19 end
20 repeat line 3 to line 7
21 sample a new cluster ci for document i � (3)

22 if ci = K + 1 then

23 K=K+1

24 end
25 update parameters of cluster ci
26 end

27 end

5 Extraction of Sequential Feature and Synonyms
Embedding

In this section, we describe how to extract sequential embeddings with an
encoder-decoder component and synonyms embeddings with the CBOW model.

The encoder-decoder component is formed with two LSTM stacks [8], one
is for mapping the sequential input data to a fixed length vector, the other is
for decoding the vector to a sequential output. To learn embeddings, we set
the input sequence and output sequence to be the same. An illustration of the
encoder-decoder mechanism is shown in Fig. 2a. The last output of the encoder
LSTM stack contains information of the whole phrase. In machine translation,
researchers have found the information is rich enough for the original phrase to
be decoded into translations of another language [18].

Current state-of-the-art text clustering methods adopt one-hot encoding for
word representation. It neglects semantic relationship between similar words.
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Fig. 2. (a) The Encoder-Decoder Component. It is formed by two LSTM stacks, one is
for mapping a sequential input data to a fixed-length vector, the other is for decoding
the vector to a sequential output. (b) Word embedding of Google News Title Set. Words
describing the same topic have similar embeddings and are clustered together

Recently, researchers have shown multiple degrees of similarity can be revealed
among words with word embedding techniques [20]. Utilizing such embeddings
means we can cluster the documents based on meaning of words instead of the
word itself. As shown in Fig. 2b, words describing the same topic have similar
embeddings and are clustered together. The CBOW model is used to learn word
embeddings by predicting each word based on word context (weighted nearby
surrounding words). The embedding vector ei is the average of word embeddings
in di. Readers are referred to [19] for details about the CBOW model.

6 Experiments

In this section, we will demonstrate the effectiveness of our approach through a
series of experiments. The detailed experimental settings are as follows:

Datasets. We run experiments on four diverse datasets including 20 News
Group (20NG)1, Tweet Set2, and two datasets from [27]: Google News Title
Set (T-Set) and Google News Snippet Set (S-Set). The 20NG dataset contains
long documents with an average length of 138 while the documents in T-Set
and Tweet Set are short with average length less than 10. Phrase structures are
sparse in T-Set, while rich in 20NG and S-Set. The Tweet Set contains moderate
phrase structures.

Baselines. We compare SiDPMM against two classic clustering methods, K-
means and latent Dirichlet allocation (LDA), and two recent methods GSDMM
[28] and GSDPMM [27] that are state-of-the-art in nonparametric Bayesian text
clustering.
1 http://qwone.com/∼jason/20Newsgroups/.
2 http://trec.nist.gov/data/microblog.html.

http://qwone.com/~jason/20Newsgroups/
http://trec.nist.gov/data/microblog.html
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Table 2. NMI scores on various dataset-parameter settings. K is the prior number
of clusters for K-means, LDA and GSDMM, set to be four different values including
the ground truth for each dataset. K is not used for SiDPMM and GSDPMM. 20
independent runs for each setting.

K SiDPMM SiDPMM-sfa SiDPMM-web K-means LDA GSDMM GSDPMM

20NG 10 .689± .006 .686± .005 .680± .006 .235± .008 .585 ± .013 .613 ± .007 .667 ± .004

20 .689± .006 .686± .005 .680± .006 .321± .006 .602 ± .012 .642 ± .004 .667 ± .004

30 .689± .006 .686± .005 .680± .006 .336± .005 .611 ± .012 .649 ± .005 .667 ± .004

50 .689± .006 .686± .005 .680± .006 .348± .006 .617 ± .013 .656 ± .002 .667 ± .004

T-Set 100 .878± .003 .872± .003 .877± .005 .687± .005 .769 ± .012 .830 ± .004 .873 ± .002

150 .878± .003 .872± .003 .877± .005 .721± .009 .784 ± .015 .852 ± .009 .873 ± .002

152 .878± .003 .872± .003 .877± .005 .720± .007 .786 ± .014 .853 ± .009 .873 ± .002

200 .878± .003 .872± .003 .877± .005 .730± .008 .806 ± .013 .868 ± .006 .873 ± .002

S-Set 100 .916± .004 .910± .005 .902± .003 .739± .006 .848 ± .005 .854 ± .004 .891 ± .004

150 .916± .004 .910± .005 .902± .003 .756± .006 .850 ± .006 .867 ± .008 .891 ± .004

152 .916± .004 .910± .005 .902± .003 .757± .007 .852 ± .005 .867 ± .009 .891 ± .004

200 .916± .004 .910± .005 .902± .003 .768± .007 .862 ± .004 .885 ± .005 .891 ± .004

Tweet 50 .894± .007 .887± .006 .884± .005 .696± .008 .775 ± .012 .844 ± .006 .875 ± .005

90 .894± .007 .887± .006 .884± .005 .725± .007 .797 ± .011 .862 ± .008 .875 ± .005

110 .894± .007 .887± .006 .884± .005 .732± .006 .806 ± .010 .867 ± .006 .875 ± .005

150 .894± .007 .887± .006 .884± .005 .742± .006 .811 ± .012 .871 ± .004 .875 ± .005
aSiDPMM model only integrating sequential features.
bSiDPMM model only integrating word embeddings.

Metrics. We take the normalized mutual information (NMI) as the major evalu-
ation metric in our experiments since NMI is widely used in this field. NMI scores
range from 0 to 1. Perfect labeling is scored to 1 while random assignments tend
to achieve scores close to 0.

Encoder-Decoder Component. We truncate the sequence length to be 48 for
Tweet Set and Google News dataset and 240 for 20NG dataset. The document
with characters length shorter than this sequence length is padded with zeros.
The encoder-decoder model is trained for 10 iterations. The length of hidden
vectors is set to be 40, and length of input vector is 67 (number of different
characters). Weights in the LSTM stack are uniformly initialized to be 0.01.
Adam [15] optimizer is used to optimize the network with its learning rate set
to 0.01.

Word Embedding Component. The vocabulary size is set to 100,000 which
is enough to accommodate most of the words present in the dataset. We set the
embedding vector length to be 40. To facilitate training with small datasets such
as the Tweet Set, we augment each dataset with a well-known large-scaled text
dataset3 during training. Window size is set to be 1, meaning we only consider
the words that are neighbors of the target word as its word context. We apply
stochastic gradient descent for optimization with a total of 100,000 descent steps.

3 http://mattmahoney.net/dc/text8.zip.

http://mattmahoney.net/dc/text8.zip
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(a) 20NG (b) Tweet-Set

(c) S-Set (d) T-Set

Fig. 3. Number of clusters with size above a given threshold found in each iteration by
SiDPMM and GSDPMM. A cluster with size smaller than the given threshold does not
count. Plots (a)–(d) are for the datasets 20NG, Tweet-Set, S-Set and T-Set respectively.

Priors. Hyper-parameter α of the Dirichlet process is set to be 0.1 × |d|,
where |d| is number of documents in the dataset. Hyper-parameter β for
the Multinomial modeling of bag of words is 0.002 × V , and parameters for
the prior NiW distribution of word embedding and sequential embedding are
{μ0 = 0, λ0 = 1, ν0 = ε,Σ0 = I}.

6.1 Empirical Results

Table 2 reports the mean and standard deviation of the NMI scores across var-
ious settings. From Table 2, we observe that SiDPMM outperforms K-means,
LDA and GSDMM across all the settings by significant margins. GSDPMM has
comparative performance with SiDPMM on T-Set, while SiDPMM performs bet-
ter in other three datasets. We noted the average length of T-Set is short and
phrase structures are scarce in its documents. To unveil the influence of each
of the component on the model performance, we included implementation of
SiDPMM model only integrating sequential features (denoted as SiDPMM-sf)
and SiDPMM model only integrating word embeddings (denoted as SiDPMM-
we) into the comparison. We noted the contribution from sequential embedding
is significant in 20NG, S-Set and moderate in Tweet-Set.

SiDPMM and GSDPMM can automatically determine the number of clusters.
Table 3 shows that number of clusters inferred by SiDPMM are much more accu-
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Table 3. Inferred number of clusters by SiDPMM
and GSDPMM. Other baseline methods are not
included because they require pre-specified number
of clusters.

Number of clusters Diff. ratio
Ground
truth

GSDPMM SiDPMM GSDPMM SiDPMM

20NG 20 52 31 160% 55%
T-Set 152 323 171 113% 13%
S-Set 152 246 126 62% 17%
Tweet 110 161 99 46% 10%

Fig. 4. Number of clusters found
by SiDPMM with different α val-
ues, revealing the relative strength
of prior (compared to likelihood) in
determining posterior distribution

rate compared to those from GSDPMM across all the datasets. We can observe
that GSDPMM tends to create more clusters than SiDPMM. As illustrated in
Fig. 3, many of those clusters created by GSDPMM are quite small; while in
constrast, SiDPMM tends to suppress tiny clusters and thus are more robust
to outliers. The sequential and word embedding components in SiDPMM are
responsible for this regularization effect on number of clusters.

The hyper-parameter α in the Dirichlet process determines the prior proba-
bility of creating a new cluster (see Eq. (4)). We explore the influence of different
α values on our model. Fig. 4 shows that the number of clusters typically grows
with α; as observed for Tweet Set, T-Set and S-Set, but not the case for the 20NG
dataset. This reveals the relative strength of prior (compared to likelihood) in
determining posterior cluster distribution. The documents in 20NG have large
average length (137.5 words per document). In the sampling process, the like-
lihood dominates the posterior distribution and the small difference caused by
different α in the prior distribution is negligible, while for documents with small
average length, the difference in likelihood is not significant and thus prior affects
more of the posterior distribution.

7 Conclusion

In this paper, we propose a nonparametric Bayesian text clustering method
(SiDPMM) which models documents as the joint of bag of words, word embed-
dings and sequential features. The approach is based on the observation that
sequential information plays a key role in the interpretation of phrases and word
embedding is very effective for measuring similarity between synonyms. The
sequential features are extracted with an encoder-decoder component and word
embeddings are extracted with the CBOW model. A detailed collapsed Gibbs
sampling algorithm is derived for the posterior inference. Experimental results
show our approach outperforms current state-of-the-art methods, and is more
accurate in inferring the number of clusters with the desirable regularization
effect on tiny scattered clusters.
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Abstract. This work studies the problem of signed network embed-
ding, which aims to obtain low-dimensional vectors for nodes in signed
networks. Existing works mostly focus on learning representations via
characterizing the social structural balance theory in signed networks.
However, structural balance theory could not well satisfy some of the fun-
damental phenomena in real-world signed networks such as the direction
of links. As a result, in this paper we integrate another theory Status

Theory into signed network embedding since status theory can better
explain the social mechanisms of signed networks. To be specific, we
characterize the status of nodes in the semantic vector space and well
design different ranking objectives for positive and negative links respec-
tively. Besides, we utilize graph attention to assemble the information
of neighborhoods. We conduct extensive experiments on three real-world
datasets and the results show that our model can achieve a significant
improvement compared with baselines.

Keywords: Signed network embedding · Attention · Status theory

1 Introduction

The rapid growth of social media has greatly promoted the development of social
network analysis. Recently, network embedding(NE), an effective tool to analyze
large-scale network, has attracted quite a lot of attention and aims to obtain low-
dimensional representations for nodes in networks [3,10,12,17]. The representa-
tion of nodes learned in network embedding preserves the structure information
and can be applied in downstream tasks of network analysis, such as node clas-
sification [11], link prediction [15], community detection [16].

Most existing works on network embedding are based on unsigned networks
(i.e., there are only positive links in networks). However, signed networks are
becoming quite ubiquitous in real-world data. In the signed network, the relations
between two nodes are represented with positive and negative links. Positive links
usually indicate that two nodes are of similarity while negative links are opposite
or different. For example, in Slashdot1, a famous online discuss sites, users may
1 https://slashdot.org/.
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tag other users as “friends” or “foes”, which indicate positive and negative links
respectively. The heterogeneity of links leads that the traditional methods on
unsigned network embedding are insufficient for signed networks. In this paper
we will study the problem of signed network embedding.

There are several existing works on signed network embedding [6,14,18,20].
For example, SNE [18] designs the log-bilinear model and learns node representa-
tion along a given path. SiNE [14] introduces social theories and adopts a deep
learning framework. SIGNet [6] proposes a scalable node embedding method
which preserves social theories in higher order neighborhoods.

Fig. 1. The illustration of 4 types of triads. For triad T1, both structural balance theory
and status theory are satisfied, however, structural balance theory can not explain
triads T2, T3 and T4, while all of them satisfy status theory

However, these works mostly learn signed network embedding under the guid-
ance of the structural balance theory [5], which is popular for “the friend of my
friend is my friend; the foes of my foes is my friend” and has been widely used
in signed network analysis. Nevertheless, structural balance theory is naturally
defined for undirected networks and it could not work well in a directed net-
work [9]. As Fig. 1 shows, the cases T2, T3, T4 cannot satisfy balance theory.
However, these cases of signed network exist in many real-world data such as
Slashdot, Wikipedia signed network and etc. To address the direction in signed
networks, another theory named Status Theory was proposed [4,9]. Status The-
ory defines status for nodes to describes a ranking of nodes and suggests that
node u has a higher status than node v if there is a positive link from v to u,
or a negative link from u to v. All cases in Fig. 1 can be well satisfied under the
status theory. Status theory provides a better understanding of the real-world
signed networks and plays a role in many lines of work in the social sciences [9].
However, to the best of our knowledge, status theory has never been used in
previous signed network embedding work yet.

To address the issue above, in this paper we propose a novel signed network
embedding model named SSNE (Status Signed Network Embedding), incorpo-
rating the status theory into network embedding process. We try to quantify
the status of nodes as the transformation in the embedding space. Specifically
inspired by the knowledge graph embedding model TransE [1], we design dif-
ferent translation strategies for positive and negative links to characterize the
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ranking of status. Furthermore, we utilize the information of neighborhoods via
graph attention mechanism to obtain a robust node representation.

The major contributions of the paper are as follows:

– We are the first to consider the status theory to learn signed network embed-
ding.

– We define positive and negative links in signed networks as translations in
embedding space and design an energy-based ranking objective function to
learn embedding of nodes and links.

– We conduct extensive experiments on three real-world signed networks.
Experimental results show that our model SSNE is more effective than the
baselines.

2 Related Work

Different from traditional network analysis methods, network embedding aims
to learn a low-dimension representation of nodes or edges. It has received
extensive attention in recent years and a large number of methods are pro-
posed [3,10,12,13]. For example, DeepWalk [10] leverages skip-gram model to
learn node embedding with truncated random walks. LINE [12] proposes an
objective function to preserve first-order and second-order proximity. However,
there are few works on signed network embedding, because the negative links in
signed networks which usually denote distrust or foe relation make the theories
different from unsigned network [9]. These works mostly learn signed network
embedding under the guidance of the structural balance theory [5]. For example,
SNE [18] designs a log-bilinear model which considers the sign of edges along a
given path. SiNE designs an objective function guided by social balance theory [2]
and proposes a deep learning framework to learn node representations. SIDE [7]
learns representation by leveraging balance theory and socio-psychological theo-
ries along random walks. SIGNet [6] proposes a scalable node embedding method
which can preserve social theories in higher order neighborhoods.

On the other hand, social theories, which are a powerful tool for network
analysis, major include structural balance theory [2,5] and status theory [9] in
signed network. Structural balance theory which is introduced in Heider [5], can
be summarized as four rules: “A friend of my friend is my friend,” “A friend of my
foe is my foe,” “A foe of my friend is my foe,” and “A foe of my foe is my friend.”
Then Cygan et al. [2] extended the aforementioned theory to users should be
able to have their “friends” closer than their “foes”. However, structural balance
theory is naturally defined for undirected networks and it could not work well in
a directed network [9]. Status theory [4,9] which is naturally defined for directed
signed network describes a ranking of nodes. Guha et al. [4] observed that a link
in signed network from u to v can have multiple possible scenarios. Depending
on the intention of u in creating the link, they also develop a framework of
trust propagation schemes in cyclic triad. Then Leskovec et al. [9] extended in
acyclic triad and developed a new theory called Status Theory which suggests
that node u has a higher status than node v if there is a positive link from v to
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u, or a negative link from u to v. The status levels can be passed along the link
to produce a multi-step relation, which usually results in predictions that are
different from the structural balance theory. In this paper, we propose a novel
network embedding method called SSNE that characterizes the status of nodes
in the semantic vector space and has a well-designed ranking loss function for
positive and negative links respectively to learn node representations.

3 Methodology

3.1 Problem Formulation

Definition 1 (Signed directed network). A signed network can be formal-
ized as G = (V,E), where V = {v1, v2, . . . , vn} is the set of vertices and
E ⊂ V × V represents the relations of the nodes. In this paper, for any eij ∈ E,
we define eij = 1 represents positive edge from vi to vj and eij = −1 represents
negative edge from vi to vj .

Definition 2 (Signed network embedding). Given a signed network G =
(V,E), signed network embedding aims to learn a function f : V → R

d, where
d � |V | and V is the set of vertices.

Definition 3 (Status triplet). a status triplet can be formalized as (h, �, t),
where h ∈ V denotes the header vertices of link, t ∈ V denotes the tail vertices
of link and � denotes the link from h to t. Particularly we define �+ to represent
positive link, �− to represent negative link and �0 indicates that there is no edge
between h and t. In particular, (h, �+, t) denotes the status of t is higher than h
and (h, �−, t) denotes the status of h is higher than t in the perspective of status.

3.2 The Model

As mentioned above, status theory suggests that vi has a higher status than
vj if vj has a positive link to vi or vi has a negative link to vj , which can be
translated that the ranking of node embedding vj higher than vi for the positive
links or vi higher than vj for the negative links (note that the bold letters used
in mathematics that appear in this paper represent vector representations of
nodes or relations). Specifically, for the positive link which can be converted
to the triplet (h, �+, t), we want to maintain a ranking relation t > h from
the perspective of status theory, which can be translated into a vector relation:
h + �+ ≈ t. On the other hand, for the negative link which can be converted
to the triplet (h, �−, t), we want to maintain a ranking relation h > t from
the perspective of status theory, which can be translated into a vector relation:
h − �− ≈ t. In order to satisfy the vector relations above, we define the energy-
based ranking function d where d is a distance measure and we adopt L1 or
L2-norm for d. Then we propose the following constraints to make h + �+ closer
to t for the positive links:

d(h + �+, t) < d(h + �+, t′),
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where t′ is selected from V with negative sampling and the details can be found
in the next subsection. In a similar way, we propose the following constraints to
make h − �− closer to t for the negative links:

d(h − �−, t) < d(h − �−, t′).

The illustration of our model is shown in Fig. 2.
Given a set of triplets (h, �, t) as training set S, we minimize an energy-based

ranking loss function as follows:

L =
∑

(h,�,t)∈S

∑

(h,�,t′)∈S
′
(h,�,t)

max (0, γ + d(h + s��, t) − d(h + s��, t
′)) ,

where h, t is the node embedding and � is the relation embedding, s� is the
sign of � (s� = 1 if �h,t = �+ and s� = −1 if �h,t = �−), γ is a margin hyper-
parameter and S

′
(h,�,t) is the set of triplets by negative sampling. Minimizing the

loss function naturally makes h + �+ closer to t than t′ for the positive links,
which depicts the implicit relation: the status of h is higher than t. The case
of the negative link is similar to the positive link. Therefore, the vector after
training is satisfied by status theory.

Fig. 2. The illustration of SSNE

3.3 Optimization via Negative Sampling

For the signed networks, it has been demonstrated that the negative links often
contain addition information which plays an import role for downstream machine
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learning tasks [14] and nodes should be able to have their “friends” closer than
their “foes” [2]. Inspired by this, we design a more reasonable negative sam-
pling method: given a triplet (h, �+, t), we first sample node t′ from the neg-
ative neighbors Nh− = {t ∈ V |(h, �−, t) ∈ S}. Once Nh− is ∅, we then ran-
dom sample t′ from the set of V while h has no link to t′. On the other hand,
given a triplet (h, �−, t), we first sample node t′ from the positive neighbors
Nh+ = {t ∈ V |(h, �+, t) ∈ S}. Once Nh+ is ∅, we then random sample t′ from
the set of V while h has no link to t′. In this way, negative sampling sufficiently
preserves the information of negative links and enlarges the difference between
positive and negative link.

In order to distinguish the node t′ obtained by negative sampling, we define
a new relation between h and t′, called �0, which means that there is no edge
between h and t′, so the triplet obtained by negative sampling becomes (h, �0, t

′)
when h has no link to t′.

Therefore, S
′
(h,�,t) is improved as the following:

S
′
(h,�,t) =

⎧
⎪⎪⎨

⎪⎪⎩

{(h, �′, t′)|t′ ∈ Nh−, �′ = �}
∪{(h, �′, t′)|t′ ∈ V \ Nh, �′ = �0} if � = �+
{(h, �′, t′)|t′ ∈ Nh+, �′ = �}
∪{(h, �′, t′)|t′ ∈ V \ Nh, �′ = �0} if � = �−

,

where Nh = {t ∈ V |(h, �, t) ∈ S} denotes the neighbors of h and V \Nh represents
the nodes that h has no links to them.

3.4 Training

Finally, we get the loss function corrected by a carefully designed negative sam-
pling method as follows:

L =
∑

(h,�,t)∈S

∑

(h,�′,t′)∈S
′
(h,�,t)

max (0, γ�′ + d(h + s��, t) − d(h + s��
′, t′)) ,

where γ�′ ∈ {γ�+ , γ�− , γ�0} which respectively represent the hyper-parameters
corresponding to �′. The detailed algorithm is shown in Algorithm1.

3.5 Attention-Enhance

It is well known that there exist complex interactions between nodes in social
networks, so we add the “context information” of the nodes to enhance the
representation and adopt the attention mechanism to distinguish different inter-
actions between different nodes. Cygan et al. [2] have demonstrated that users
should be closer to their “friends” (positive links) than their “enemies” (negative
links) in signed network, therefore, we only consider the positive link interaction
by concatenating an attention-enhanced neighbor embedding to its own repre-
sentation. Inspired by attention models in Graphs [8,17], Given the embedding
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Algorithm 1. Training algorithm for SSNE
Input: signed network G = (V, E), margin γ�+ , γ�− , γ�0 , embedding dimensional k.
Output: node embedding h, relation embedding �.
1: Initialize h ← uniform(− 6√

k
, 6√

k
), � ← uniform(− 6√

k
, 6√

k
)

2: S ← convert link to status triplets and split training set
3: for (h, �, t) ∈ S do

4: S
′
(h,�,t) ← negative sample S(h,�,t)

5: L ← ∑
(h,�,t)∈S

∑
(h,�′,t′)∈S

′
(h,�,t)

max(0, γ�′ + d(h + s��, t) − d(h + s��
′, t′))

6: Update embedding h, � with Adadelta
7: end for
8: return node embedding h, relation embedding �.

of nodes, for any node vi and its neighborhood node vj ∈ Ni+, attention weights
defined as follows:

αi,j =
exp(ri,j)∑

k∈Ni+
exp(ri,k)

where ri,j denotes the relevance from vi to vj . Particularly we use the inner
product of the embedding of vi and vj to define ri,j . Finally, the embedding of
node vi is improved to the following:

v
′
i = vi ⊕

∑

k∈Ni+

αi,kvk

where v
′
i is the new embedding of vi and vi is the original embedding gained by

Algorithm 1.

3.6 Computational Complexity Analysis

Since one edge corresponds to one status triplet, there are a total of |E| triples, so
the algorithm takes O((n+1)|E|) time to negative sample where n is the number
of negative samples. Considering that the dimension k of each embedding, the
complexity of our approach is O(k(n + 1)|E|).

4 Experiments

4.1 Datasets

We conduct experiments on three real-world signed directed networks: Epinions,
Slashdot, and Wikipedia, which are provided by the Stanford Network Analysis
Project (SNAP)2. Epinions is a product review site that allows users to mark
trust (positive) and distrust (negative) relations with others. Slashdot is a tech-
nology news website where users can build friends (positive) and foes (negative)
relations with other users. The wiki dataset is derived from Wikipedia’s voting
2 http://snap.stanford.edu/.

http://snap.stanford.edu/
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records, where users vote for (positive) or against (negative) others who apply
for administrator privileges. In particular, the examinations on all three signed
networks conducted by Leskovec et al. [9] demonstrate that more than 90% of
triads satisfy status theory. The statistical results of the datasets are shown in
Table 1.

Table 1. Statistic of the datasets.

Epinions Slashdot Wiki

# of nodes 131828 82144 7118

# of edges 841372 549202 103747

% of positive edges 85.3% 77.4% 78.8%

% of negative edges 14.7% 22.6% 21.2%

4.2 Experimental Settings

We conduct link sign prediction on SSNE and several state-of-art unsigned or
signed network embedding models to evaluate performance.

Baselines

– Node2vec [3]: This method designs a biased random walk strategy and lever-
ages neural language model to learn node representation for the unsigned
network.

– SNE [18]: This method designs a log-bilinear model and learns node repre-
sentation along a given path and SNE does not consider any social theory for
the signed network.

– SiNE [14]: This method introduces structural balance theory in signed net-
work embedding and designs a deep learning framework to learn the repre-
sentation.

– SIGNet [6]: This method proposes a scalable node embedding method which
preserves social theories in higher order neighborhoods.

It should be noted that in order to evaluate the performance of Node2vec which
is designed for unsigned network, we convert the signed networks to unsigned
networks by ignoring the sign of the edges, while the downstream task for Link
Sign Prediction is the same as other signed network embedding methods.

Parameter Setting
By default, we set the number of the negative sampling as 2 for all datasets and
set the dimension k of node representation and relation representation as 140. For
hyper-parameters {γ�+ , γ�− , γ�0}, we empirically set γ�+ = 4, γ�− = 2, γ�0 = 4,
respectively. The gradient is calculated using back-propagation and optimized
using Adadelta [19] algorithm. For all other parameters in the baselines, we use
the settings mentioned in their own papers, which can achieve the best results.
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4.3 Link Sign Prediction

Link sign prediction is an important downstream machine learning task for
signed network embedding. In this subsection, we discuss the performance of
SSNE for link sign prediction. Similar to SIGNet [6], for all datasets, we ran-
domly split 50% of edges as training set and the remaining 50% of edges as the
test set. Then we learn the node embedding from the training set and gener-
ate edge embedding by combining the source node embedding and target node
embedding, the combination methods include element-wise product, concatena-
tion and average, the experimental results shows that generating edge embedding
by concatenation always achieves the best results. Finally, using the embedding
of the edges as features and the sign of the edges as labels, we train a simple
logistic regression classifier on the training set and evaluate the performance
on the test set. In real-world signed networks, the ratio of the negative links is
much smaller than the positive links, so we adopt F1-micro to better evaluate
the performance. We repeat the above experiment five times and use the average
as the final result.

Table 2. The average F1-micro score on link sign prediction.

Epinions Slashdot Wiki

Node2vec 0.831 0.776 0.749

SNE 0.854 0.778 0.751

SiNE 0.856 0.779 0.752

SIGNet 0.920 0.832 0.845

SSNE 0.928 0.839 0.866

The detailed experimental results are shown in Table 2. We have the obser-
vations as follows:

1. SSNE performs much better than node2vec which is a network embedding
method for the unsigned network, this is because node2vec does not consider
the difference between the negative and positive links at all, but the negative
links between two nodes indicates that they are not similar.

2. The performance of SSNE is better than SNE. This is due to SNE only
considers the difference between positive and negative edges but ignores the
social theories, which are effective for signed network analysis.

3. SSNE, naturally, has significantly improved over SiNE and SIGNet. This is
because the status theory utilized by the SSNE performs much better than the
structure balance theory utilized by SiNE and SIGNet for the social networks
mentioned in this paper.

In summary, the experiments show that SSNE is more effective than state-of-
the-art methods. Particularly, SSNE has improved performance by 15.3% and
2.5% over SNE and SIGNet on Wiki dataset.
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Table 3. F1-micro score on link sign prediction on effect of status and attention

t% 10 20 30 40 50 60 70 80 90

SSNE-R 0.795 0.837 0.852 0.858 0.860 0.862 0.864 0.865 0.869

SSNE-A 0.808 0.839 0.849 0.853 0.858 0.860 0.864 0.864 0.866

SSNE 0.804 0.842 0.853 0.859 0.866 0.866 0.871 0.870 0.879

Table 4. F1-macro score on link sign prediction on effect of status and attention

t% 10 20 30 40 50 60 70 80 90

SSNE-R 0.689 0.743 0.761 0.768 0.77 0.772 0.775 0.774 0.786

SSNE-A 0.669 0.727 0.748 0.753 0.765 0.766 0.771 0.773 0.777

SSNE 0.689 0.746 0.764 0.774 0.783 0.786 0.791 0.790 0.806

4.4 Effect of Status and Attention

To demonstrate whether the improved part of the model affects performance, we
conduct a contrast experiment on SSNE and its variants. In order to investigate
the effectiveness of introducing the relation �0, we propose the model called
SSNE-R, which is similar to SSNE except that �′ is removed in negative sample
triplet. On the other hand, whether attention-enhance is effective can be found
by comparing SSNE with the model called SSNE-A which only removes the
attention-enhance. In detail, we conduct link sign prediction on the wiki dataset
and report the F1-micro and F1-macro scores, we randomly sample t% from 10%
to 90% of the edges as the training set and other parameters are set to default
values. From Tables 3 and 4, as the training set ratio increases, SSNE performs
better than SSNE-R due to introducing the relation �0 and also perform better
than SSNE-A due to the attention-enhance, so the relation �0 and attention
mechanism work for our model.

Fig. 3. Parameter w.r.t. dimension k, margin loss hyper-parameters γl+ , γl− and γl0
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4.5 Parameter Sensitivity

In this subsection, we investigate whether and how the node embedding dimen-
sion k, margin loss hyper-parameters γ�′ ∈ {γ�+ , γ�− , γ�0} affect the performance
of SSNE. We report F1-micro score and F1-macro score of link sign prediction
on the Wiki dataset.

Figure 3(a) reports the performance of our model w.r.t the dimension k.
Notice that when we study k, other parameters are set to default values. We
find that as the dimension of k increases, the initial performance will increase
significantly. This is because we embed the status into the vector space, so
increasing k can encode more information, which is favorable for depicting the
“status levels” between nodes. However, As k continues to grow since the dimen-
sions of embedding are large enough to contain most of the node information,
the performance of the embedding is stable.

The parameter sensitivity analysis for γ�+ , γ�− , γ�0 are respectively shown in
Fig. 3(b), (c) and (d). γ�+ , γ�− , γ�0 are used to balance the impact of different
margin loss of different relations, so the larger γ�′ ∈ {γ�+ , γ�− , γ�0} is, the more
significant the effect of the loss term corresponding to γ�′ . From Fig. 3(b), we
can see that the performance of γ�+ = 2 and γ�+ = 4 are better than the
performance of γ�+ = 0, which demonstrates that γ�+ is indispensable for our
model. The similar conclusions which are observed in Fig. 3(b), can be found in
Fig. 3(c) and (d).

5 Conclusion

In this paper, we propose a novel signed network embedding method called
SSNE, which leverages the status theory and characterizes the status of nodes in
the semantic vector, then we well design different ranking objectives and negative
sampling method for positive and negative links respectively. The experiments
on three signed networks demonstrate that our model is effective. However, our
model only considers the information of network structure. In the future, we
plan to investigate the status relations of node attributes and try to combine
the status relations for node structure and the status relations for node attributes
to learn the representations.
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Abstract. Network embedding, that learns low-dimensional node rep-
resentations in a graph such that the network structure is preserved, has
gained significant attention in recent years. Most state-of-the-art embed-
ding methods have mainly designed algorithms for representing nodes
in unsigned social networks. Moreover, recent embedding approaches
designed for the sparse real-world signed networks have several limi-
tations, especially in the presence of a vast majority of disconnected
node pairs with opposite polarities towards their common neighbors. In
this paper, we propose sign2vec, a deep learning based embedding model
designed to represent nodes in a sparse signed network. sign2vec lever-
ages on signed random walks to capture the higher-order neighborhood
relationships between node pairs, irrespective of their connectivity. We
design a suitable objective function to optimize the learned node embed-
dings such that the link forming behavior of individual nodes is captured.
Experiments on empirical signed network datasets demonstrate the effec-
tiveness of embeddings learned by sign2vec for several downstream appli-
cations while outperforming state-of-the-art baseline algorithms.

Keywords: Signed network embedding · Autoencoders ·
Conflicting node pairs

1 Introduction

Signed social networks such as Epinion, Slashdot, Wikipedia [6] where links may
have positive or negative sign depicting the polarity of relationships between
nodes connected by them, have gained huge popularity recently [6]. Perform-
ing network embedding on signed networks involves mapping of nodes in such
networks to a low-dimensional feature space, that preserves the sign informa-
tion of links besides the network structure. A vast majority of the state-of-
the-art network embedding approaches, that have been developed for learning
node embeddings in unsigned social networks [1,8–10] containing only positive
links, cannot be simply extended to signed networks. First, unsigned network
embedding methods aim to capture different measures of proximity (first-order,
second-order etc.) between users connected by only positive links reflected by
their network structure. However, it is non-trivial to preserve these proximity
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measures for signed networks due to the presence of positive & negative link
polarities. Additionally, negative links have distinct topological properties com-
pared to positive links that simply violate the assumptions of unsigned network
embedding approaches.

Recently, few attempts have been made in the gamut of signed network
embedding [11,12,15], where the objective is to place positively linked nodes
close to each other in the embedding space than the negatively linked nodes.
Moreover, [3,5,14] leverage on random walks for embedding nodes in signed
directed networks considering both polarity and direction of links into account.
However, the major limitation of the aforementioned endeavours is that compu-
tation of embeddings are mostly dependent on the presence of links connecting
node pairs, their respective direction & polarities and the constituent connected
triplets (say for structural balance theory [6]). Hence, such methods fail to quan-
tify the extent of similarity & dissimilarity between the vast majority of discon-
nected node pairs in real-world signed networks.

Close inspection reveals that most real-world signed social networks are
sparse [2]; hence, there exists a significant volume of node pairs that are discon-
nected. Further, there exist conflicting pairs of nodes in real-world signed net-
works, which are essentially disconnected node pairs having common neighbors
linked with opposite (conflicting) polarities; hence, it is non-trivial to capture
the similarity between such node pairs in the embedding space based on higher-
order proximities. The presence of conflicting node pairs severely compromise
the embedding quality of state-of-the-art signed network embedding methods
due to conflicting polarities and absence of a link between them. Notably, the
neighborhood structure of individual nodes can reveal their inherent link forming
behavior (positive or negative) towards neighbors of different polarities. Subse-
quently, one can leverage on random walks in a signed network [4] to capture
higher-order neighborhood relationships between node pairs, whether connected
or disconnected, and compute the extent of similarity between such pairs in terms
of their link forming behavior. This can help to determine the relative positions
of the vast majority of disconnected node pairs in the embedding space, includ-
ing conflicting pairs. Our paper takes an important step in this direction to learn
node representations in a sparse signed network.

The major contribution of this paper is to develop a network embedding
framework for sparse signed networks, which ensures that nodes exhibiting sim-
ilar link forming behavior are placed closer in the latent embedding space, irre-
spective of their connectivity. First, we formulate the problem of signed net-
work embedding and present the challenges in the light of conflicting node pairs
(Sect. 2). Subsequently, we describe the methodology for computing the extent of
similarity in link forming behavior between any node pair. We develop sign2vec,
a deep autoencoder framework and design suitable objective functions that are
optimized to capture the similarity in link forming behavior reflected by higher-
order neighborhood relationships between node pairs in the learned embed-
dings (Sect. 3). We evaluate the performance of sign2vec by conducting experi-
ments on empirical signed network datasets. We first analyze the correctness of
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embedding vectors learned using sign2vec through extensive statistical signifi-
cance tests. Finally, our evaluation shows effectiveness of sign2vec embeddings
towards achieving discriminative visualizations, good accuracy (62%) for node
clustering, efficiency in performing multi-class classification (86%) and signed
link prediction (93%) with high accuracy, outperforming state-of-the-art meth-
ods (Sect. 4).

2 Problem Definition

In this section, we first formulate the problem of network embedding in a signed
network. Next, we present the challenges involved in learning such embeddings.

2.1 Problem Statement

Let G = (U , Ep, En) be a signed directed network consisting of a set of N nodes
U = {u1, u2, . . . , uN}. Here Ep and En denote the set of directed positive and
negative links respectively in G such that Ep = {(ui, uj ,+) : ui, uj ∈ U} and
En = {(ui, uj ,−) : ui, uj ∈ U}. A ∈ R

N×N represents the adjacency matrix
of G where (i, j)-th entry aij = 1 for positive link and aij = −1 for negative
link from node ui to uj . aij = 0 means ui and uj are disconnected. In this
paper, our aim is to learn a function f(.) that maps each node ui in G to a
low-dimensional embedding vector yi ∈ R

d where d << N is the embedding
dimension. Mathematically, f : ui → yi,∀ui ∈ U . Thus, our objective is to find
a function f(.) that places nodes with similar behavior towards forming links of
a given polarity (positive or negative) close to each other in embedding space.

2.2 Challenges

In order to demonstrate the challenges, we first introduce conflicting pairs of
nodes covering a significant fraction (40%) of node pairs in real signed networks.

Conflicting Pairs of Nodes: Given the signed network G and node ui ∈ U ,
let N+

ui
and N −

ui
denote the positively and negatively connected neighbors of ui

respectively where the neighbor set Nui
= N+

ui
∪ N −

ui
. We define a pair of nodes

ui and uj (ui, uj ∈ U) as conflicting if (a) ui and uj are disconnected in G and
(b) there exists atleast one common neighbor u ∈ U of ui and uj (u ∈ Nui

∩Nuj
)

that is linked with ui and uj via opposite polarities. For instance, for the signed
social network shown in Fig. 1, nodes x and w form a conflicting pair while nodes
w and t denote a non-conflicting pair.

For embedding of a node in a signed network, the state-of-the-art
attempts [12,14] only rely on the presence of positive and negative links with
its neighbors. For instance, structural balance theory [6] provides a guidance to
develop an objective function such that nodes should be placed closer to their
‘friends’ (positively connected neighbors) than their ‘foes’ (negatively connected
neighbors) in the embedding space. However, the presence of conflicting node
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pairs in real-world signed networks make the state-of-the-art node embedding
techniques highly erroneous due to following reasons: (a) Absence of direct links
between conflicting pairs results in difficulty in measuring the similarity between
such node pairs; it fails to capture the extent of similarity or dissimilarity between
those pairs. (b) In case of conflicting node pairs (say x, w in Fig. 1), balance the-
ory infers opposite polarities (positive and negative), depending on the triplets
being considered ({x, y, w} and {x, z, w} respectively). These conflicting polar-
ities affect the correctness of learned embedding vectors while optimizing the
respective objective function [12].

3 sign2vec: A Model for Signed Network Embedding

In this section, we present the proposed sign2vec model by leveraging on relative
trustworthiness scores between node pairs based on signed random walks, in
addition to the presence or absence of connectivity between them to learn the
node embeddings. First, we describe the methodology used for computing the
relative trustworthiness score matrix P . Next, we develop the deep autoencoder
framework for learning the node representations in a signed network.

3.1 Characterizing Similarity in Link Forming Behavior

We introduce the relative trustworthiness score matrix P ∈ R
N×N where each

entry pij represents the relative trustworthiness of a node ui with respect to node
uj in G. A high value of relative trustworthiness score pij denotes that nodes
ui and uj exhibit similar link forming behavior with their respective neighbors.
Essentially, for the pair (ui, uj), pij captures the complex higher-order neighbor-
hood relationships between this node pair in the presence of link polarities, even
if ui and uj are disconnected, conflicting and several hops away in G.

We leverage on Signed Random Walk with Restart (SRWR) model proposed
in [4] to compute P for signed network G. In a signed random walk, a sign is
introduced into a random surfer in order to consider the link polarity in the walk.
The surfer starts with a positive sign from ui and flips her sign if she encounters a
negative link in the walk, else the surfer retains her sign. We consider a surfer as
trustful if the surfer, starting at ui (with polarity positive or negative), retains
the same polarity after reaching uj . On the other hand, if the polarity gets
flipped after landing at uj (from positive to negative or vice versa), we designate
the surfer as distrustful. Finally, the SRWR model assigns a score pij for the
node pair (ui, uj) as the difference in probabilities of the trustful surfer and
the distrustful surfer, initiated at ui, visiting uj . A high positive value of pij
indicates that the trustful surfer, initiated at ui, visits uj in majority of random
walks, whereas a high negative score indicates that the distrustful surfer visits
uj more often. Finally, we construct the matrix P by computing this score for
every node pair, such that the link forming behavior is captured in learned node
embeddings.
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Fig. 1. Framework of sign2vec

3.2 Proposed Model

Leveraging on the computation of the matrix P , we develop the sign2vec model
to learn the node embeddings.

Model Overview. Our proposed sign2vec model is based on deep autoencoders
comprising of a neural network architecture. Autoencoders are unsupervised
learning algorithms that applies backpropagation to learn the representation
of high-dimensional data, typically used for dimensionality reduction. It consists
of two symmetrical deep-belief networks: encoder and decoder. In our model, we
use a deep autoencoder with two sets of hidden layers (see Fig. 1). The first set
of hidden layers form the encoder block while the second set forms the decoder
block of the autoencoder. Given the adjacency matrix A (introduced in Sect. 2)
and the relative trustworthiness score matrix P (obtained in Sect. 3.1), we form
the augmented matrix X = A|P , where the ith row of X denoted by xi is
obtained by concatenating the corresponding rows of A and P respectively. Here
X ∈ R

N×2N is the input matrix. Let Y ∈ R
N×d denote the low-dimensional

embedding matrix where d is the embedding dimension. The ith row of Y is
denoted by yi representing the latent embedding vector for the node ui. The
encoder block encodes the input matrix X to learn the latent representation Y
by reducing the dimensionality. The output of the last encoder layer essentially
represents the generated embedding Y which is fed as input to the symmetric
decoder block. The embeddings are then decoded to X̂ to finally reconstruct the
input matrix at the last layer of decoder. We apply backpropagation to minimize
the loss between the output X̂ and the input X matrices.

Model Construction. We construct the input matrix X from the matrices A
and P such that the ith row xi = ai|pi, denoting that pi is concatenated to the
end of ai. The matrix X is then fed as input to the first hidden layer of the
encoder network. The output of each layer of the encoder is:

Y (1) = σ(W (1)X + b(1)), Y (2) = σ(W (2)Y (1) + b(2)) (1)

where sigmoid activation function σ is used between the hidden layers of the
encoder. Y (2) is the encoder output which is fed as input to the decoder. The
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output of corresponding layers of the decoder, that basically reverses the com-
putations of the encoder is:

ˆY (1) = σ(W (2)Y (2) + b(2)), X̂ = σ(W (1) ˆY (1) + b(1)) (2)

The decoder output X̂ denotes the reconstructed output of the autoencoder.
The weight matrices W (1),W (2) are initialized to random values from a normal
distribution while elements of bias vectors b(1), b(2) are initialized to ones at
the corresponding layers. The model learns the weights and the biases in each
iteration through backpropagation of the decoder loss to the input matrix X.

Loss Computation. The objective of the autoencoder is to minimize the loss
through backpropagation between the reconstructed output X̂ and the input
matrix X. The objective (loss) function ||X̂ − X||22 is designed in a way that
makes the reconstructed output very close to the original input matrix. In order
to ensure that nodes connected by a link with positive polarity are placed very
close in the embedding space, we penalize the reconstruction loss by upweighting
the corresponding terms in the objective function

Lrec = ||(X̂ − X) � B||22 (3)

where � is the Hadamard product operation and the (i, j)-th entry of matrix
B ∈ R

N×2N is denoted by bij . We define bij = ρ if aij = 1 and bij = 1/ρ if
aij = −1 where ρ > 1. We keep bij = 1 for all other entries of B. This choice of
the reconstruction loss Lrec in Eq. 3 ensures that we impose high penalty (via
ρ) to the reconstruction error of the elements in X which depicts positively con-
nected node pairs aij = 1 in the signed network G, so that such elements are
reconstructed with higher precision. Thus, this reconstruction criterion guaran-
tees that positively linked nodes (aij = 1) are mapped close to each other, while
placing negatively linked nodes (aij = −1) farther away from each other in the
embedding space.

Besides preserving the link polarities of the underlying signed network in
the learned embeddings, we also seek to preserve the similarity in link form-
ing behavior between a pair of nodes. For this purpose, we design another loss
function at the encoder output that minimizes the embedding loss by penaliz-
ing the error between embeddings of similar nodes with large value of relative
trustworthiness score denoted by pij :

Lemb =
N∑

i,j=1

pij ||(y(2)
i − y(2)

j )||22 (4)

The embedding loss Lemb in Eq. 4 simply ensures that we highly penalize the loss
when nodes with similar link forming behavior (say ui & uj with embeddings
yi & yj respectively) are placed far away in the embedding space. Finally, we
combine the losses corresponding to Lrec (Eq. 3) and Lemb (Eq. 4) to jointly
minimize the combined objective function



100 A. K. Bhowmick et al.

Table 1. Dataset statistics

L = ||(X̂ − X) � B||22+λ
N∑

i,j=1

pij ||(y(2)
i − y(2)

j )||22 (5)

where λ is the regularizer for the embedding loss to prevent overfitting. The
combined loss (Eq. 5) is minimized by performing optimization with respect to
the parameter set θ = {W (1),W (2),b(1),b(2)}. The error is backpropagated to
update θ using an optimizer at a learning rate of α after every training epoch.
Finally, after a fixed number of training epochs, when the loss L converges, we
obtain the embedding matrix Y = Y (2) as the output of sign2vec.

4 Experiments and Evaluation

In this section, we first describe our experimental setup. Then we evaluate the
effectiveness of the sign2vec embeddings through downstream prediction tasks.

4.1 Experimental Setup

Dataset: We conduct our experiments on the following two real-world signed
directed networks, summarized in Table 1.

Wiki-elec: This dataset consists of all administrator elections and vote his-
tory data extracted from Wikipedia page edit history from January 20081. A
Wikipedia member may cast a vote accompanied by a textual comment towards
another member. This induces a signed directed network in which nodes repre-
sent Wikipedia members while signed directed links represent polarity of votes
cast by members (supporting (+1), opposing (−1) or neutral). In this dataset,
all members are eligible to cast and receive votes.

Slashdot: Slashdot is a technology-related news website that features user-
submitted and editor-evaluated current technology oriented news. The website,
known for its specific user community, allows users to annotate other users as
friends or foes. This induces a signed directed network containing friend/foe links
between the users of Slashdot. The network was obtained in February 20092.

1 https://snap.stanford.edu/data/wiki-Elec.html.
2 https://snap.stanford.edu/data/soc-sign-Slashdot090221.html.

https://snap.stanford.edu/data/wiki-Elec.html
https://snap.stanford.edu/data/soc-sign-Slashdot090221.html


On the Network Embedding in Sparse Signed Networks 101

Fig. 2. Visualization of network embeddings on Wiki-elec dataset. Color indicates the
ground truth user label. Red: ‘positive’, blue: ‘negative’. (Color figure online)

Table 2. Analysis of sign2vec embeddings based on average Euclidean distance between
different types of node pairs

Baseline Algorithms. We introduce the following state-of-the-art baseline
algorithms to learn network embeddings on a signed network:

(a) SNE: This method adopts the log-bilinear model to combine edge sign
information and node representations of all nodes along a given path in the
learned node embeddings [14].

(b) SiNE: This method uses the extended structural balance theory to
embed nodes in a signed undirected network using a deep learning frame-
work [12].

(c) SIGNet: This relies on targeted node sampling for random walks, lever-
aging upon structural balance theory to learn interpretable representations [3].

(d) SIDE: This method is based on truncated random walks for learning
embeddings in a signed directed network [5].

Ground Truth Node Labeling. We extract the ground truth labels of users
in the signed network datasets based on the proportion of incoming positive
or negative links for a user in the underlying network [13]. We designate each
user to one of the three classes: ‘positive’ (denoting a trustful user), ‘negative’
(denoting a distrustful user) and ‘neutral’. If the majority (>0.6) of incoming
links associated with a user ui has positive (or negative) polarity, we label ui

as ‘positive’ (or ‘negative’); all the remaining users are labeled as ‘neutral’. We
validate the ground truth node labels for users in the Wiki-elec dataset through
sentiment analysis of the textual comments posted for a user. Using the sentiment
analyzer module in the NLTK toolkit3 available in Python, for each user ui,
we calculate the positive (pui) and negative polarity (nui) scores for the entire
corpus of textual comments posted for ui. We find that pui > nui for 92% of

3 https://github.com/nltk/nltk.

https://github.com/nltk/nltk


102 A. K. Bhowmick et al.

Fig. 3. Performance of multi-class classification in presence of conflicting node pairs

Table 3. Node clustering results. Here ACC= Accuracy, NMI= Normalized Mutual
Information, WF = Weighted-F1.

users labeled as ‘positive’ in Wiki-elec while pui < nui for 96% of users labeled
as ‘negative’ in Wiki-elec. This validates the ground truth node labels for the
Wiki-elec dataset. We do not validate the ground truth node labels for Slashdot
in the absence of any secondary textual information.

Parameter Settings. To generate the node embeddings using our proposed
model sign2vec, we set the number of hidden layers H = 2 for both encoder and
decoder. We take the size of the first and second hidden layers of the encoder
to be 1024 and 128 respectively. This ensures that the dimension of the gener-
ated embedding vectors is d = 128 at the encoder output. We use the sigmoid
activation function between consecutive hidden layers of the autoencoder. We
employ parameter sharing to ensure that the same weight matrices are used at
corresponding hidden layers of the encoder and decoder. The error is computed
using Eq. 5 in terms of the binary cross-entropy loss where the values of the
hyperparameters ρ and λ have been set to 10 and 50 respectively. To minimize
this loss, we use the RMSProp optimizer with learning rate α = 0.001 and set
the number of training epochs to 100.

4.2 Evaluation of Embedding Quality

In this section, we investigate whether the learned embeddings generated by our
model can indeed capture the link forming behavior of individual users and place
similar nodes close to each other while placing dissimilar nodes far away in the
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Table 4. Multi-class classification results

Table 5. Performance of signed link prediction

embedding space. For this purpose, we consider the set of node pairs that are
connected by positive links Ep and compute the Euclidean distance between their
respective embedding vectors and obtain the average Euclidean distance over all
node pairs in Ep as μEp . Similarly, we compute the average Euclidean distance
between respective embeddings of all node pairs in En connected by negative
links as μEn . We report the average and standard deviation of the Euclidean
distances for all datasets in Table 2. We then conduct two sample t-tests on the
distribution of Euclidean distance values for positively and negatively connected
node pairs in each dataset to test the null hypothesis H0 : μEp ≥ μEn . The
alternative hypothesis is H1 : μEp < μEn . We reject the null hypothesis at the
significance level of α = 0.01 with p-values shown in Table 2. This shows that
our learned embedding vectors can effectively preserve the network structure as
well as the link polarities in a signed network.

Next, we compare the average Euclidean distance between respective embed-
ding vectors of conflicting node pairs having majority of common neighbors
with identical polarities denoted by μEI to those having majority of common
neighbors with opposite polarities denoted by μEO as shown in Table 2. Here
EI and EO denote the population of Euclidean distance values for conflicting
pairs having majority of common neighbors with identical and opposite polar-
ities respectively. We conduct two sample t-tests on these distributions for all
datasets to test the null hypothesis H0 : μEI ≥ μEO . The alternative hypothesis
is H1 : μEI < μEO . We reject the null hypothesis at the significance level of
α = 0.01 with p-values as shown in Table 2. This gives a strong evidence on
difference of both means and distributions between the two sets of conflicting
node pairs, demonstrating the effectiveness of sign2vec embeddings.

4.3 Evaluation on Downstream Tasks

We evaluate the quality of embeddings generated by sign2vec through various
graph mining applications on signed networks such as visualization, node clus-
tering, multi-class classification and signed link prediction.
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Visualization. In Fig. 2, we visualize the learned embeddings obtained from
sign2vec as well as the baseline algorithms in a 3-D space using t-SNE app-
roach [7] only for Wiki-elec dataset due to brevity. Each point represents a user
in the 3-D space with a color denoting the corresponding ground truth label.
sign2vec performs the best as visualizations show that users with same ground
truth label (same color) are placed close to each other in the embedding space
for sign2vec. On the contrary, there is high overlap between points of different
colors for the baseline methods.

Node Clustering. We apply k-means clustering (taking k = 3, as we have
three classes in ground truth) on the embedding vectors obtained from sign2vec
as well as baseline algorithms to cluster the users. We evaluate the quality of the
detected clusters using standard evaluation metrics such as Normalized Mutual
Information (NMI), Accuracy (ACC) and Weighted-F1 (WF) that compare the
detected cluster labels with ground truth labels. In Table 3, we observe that
sign2vec outperforms all the baseline algorithms in terms of clustering perfor-
mance across all datasets. Since baseline embeddings fail to encode similarities
(or dissimilarities) between disconnected node pairs, often such node pairs with
identical ground truth labels get placed in different clusters in case of baselines.

Multi-class Classification. Next, we evaluate the quality of embeddings gen-
erated by different algorithms on multi-class classification task. In a supervised
learning framework, we apply the generated embedding vectors as features to
classify a user into one of the three ground truth labels. We consider different
machine learning algorithms to train the classifier; we randomly sample 80%
of the labeled users as the training set and the remaining 20% as test set. We
predict the label of a user in the test set and report the average Micro-F1 and
Weighted-F1 scores over 100 iterations using Random Forest classifier in Table 4,
since it gives best performance among all classifiers. From the table, we observe
that sign2vec consistently outperforms all baselines for all datasets with signif-
icant performance improvement for multi-class classification. In this paper, we
claim that the novelty of sign2vec is to suitably handle the conflicting user pairs,
which is the major weakness of baseline embeddings. In Fig. 3, we show the classi-
fication performance as we increase the proportion of conflicting pairs present in
the network. Interestingly, baselines achieve superior performance when the net-
work contains only a small fraction of conflicting pairs; performance of sign2vec
mostly suffers due to lack of data points in terms of conflicting pairs. However,
as we increase the fraction of conflicting pairs, performance of sign2vec gradually
increases and finally outperforms all baselines.

Signed Link Prediction. Finally, we evaluate the performance of sign2vec on
signed link prediction task using the learned embedding vectors. For this pur-
pose, we combine the two d-dimensional node representations for a node pair
connected by a link (positive or negative) to obtain a single d-dimensional link
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representation, using element-wise Hadamard product as the operator (as used
in node2vec [1]). We then apply these link representations as features to train a
3-way classifier to predict the label of the corresponding link as positive, negative
or no link (in case of disconnected node pairs). We use 10-fold cross validation for
training and testing the link representations using one-vs-rest logistic regression
classifier. First, we sample a number of disconnected node pairs equal to the num-
ber of negative links in the signed network; we further perform undersampling
on the set of positive links to balance the dataset. Accordingly, we report the
accuracy and F1-score for signed link prediction on both the datasets in Table 5
across different algorithms. This table shows the superiority of sign2vec over the
baselines in performing accurate signed link prediction. The high accuracy in
link prediction for sign2vec stems from the fact that trustworthiness score pij
in P is able to correctly discriminate between node pairs ui & uj connected by
either positive link or negative link from the disconnected node pairs.

5 Conclusion

In this paper, we have proposed sign2vec, a novel signed network embedding
model to represent sparse signed networks. In case of sparse signed networks,
quality of state-of-the-art embedding methods gets severely compromised due to
the absence of connecting links. This problem further gets compounded in the
presence of conflicting node pairs in real-world signed networks. We have relied
on the higher-order neighborhood relationships by leveraging on signed random
walks to quantify the relative trustworthiness between node pairs, irrespective of
their connectivity, to determine their relative positions in the embedding space.
The learned embedding vectors capture the link forming behavior of individual
nodes in a signed network. Leveraging on the relative trustworthiness between
node pairs, we have developed the deep autoencoder based sign2vec framework
that effectively preserves both network structure and link polarities of a signed
network in the latent embedding space, confirmed through extensive statistical
analysis of the learned embedding vectors. Experimental results on empirical
signed networks have demonstrated the effectiveness of sign2vec over state-of-
the-art baseline algorithms on various downstream prediction tasks such as visu-
alization, node clustering, multi-class classification and signed link prediction.
Notably, the performance improvement is substantial in the presence of large
number of conflicting node pairs in sparse signed networks.
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Abstract. Network embedding methods have obtained great progresses
on many tasks, such as node classification and link prediction. Sampling
strategy is very important in network embedding. It is still a challenge
for sampling in a network with complicated topology structure. In this
paper, we propose a high-order Markov chain Sampling strategy for
Network Embedding (MSNE). MSNE selects the next sampled node
based on a distance metric between nodes. Due to high-order sampling,
it can exploit the whole sampled path to capture network properties and
generate expressive node sequences which are beneficial for downstream
tasks. We conduct the experiments on several benchmark datasets. The
results show that our model can achieve substantial improvements in two
tasks of node classification and link prediction. (Datasets and code are
available at https://github.com/SongY123/MSNE.)

Keywords: Network embedding · Random walk · Sampling strategy

1 Introduction

Network embedding provides an effective and efficient way for network repre-
sentation learning. It has been widely applied in many areas including including
biology [19], social sciences [7] and linguistics [2]. Network embedding converts
nodes and edges into vectors in a low dimensional space, in which the network
structure is preserved.

Many network embedding methods learn node representations based on ran-
dom walk statistics. When the network is too large to measure entirely, random
walk is an useful way to approximate many properties in the network, such as
node centrality [14] and similarity [6]. In another word, random walk samples
the context for nodes to capture the network properties, instead of observing the
whole network.

With the sampled context from random walk, DeepWalk [15] adopts a neu-
ral language model (Skip-gram [12]) for network embedding. The objective for
Skip-gram is to learn node representations by maximizing the co-occurrence

This work is supported by the National Science Foundation of China (61472183).
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Fig. 1. An illustration of the random walk procedure in network. The walk path starts
from u4 to u1, i.e., (u4, u3, u2, u1) and is now evaluating the next step among the
neighbors of node u1. Edge labels indicate unnormalized sampling probability. p and q
are parameters of model.

probability among the “words” that appear within a window. Similar to Deep-
Walk [15], Node2vec [9] also converts the networks into embedding based on
random walk. The key characteristic of Node2vec is that it employs biased ran-
dom walk that provides a trade-off between breadth-first (BFS) and depth-first
(DFS) sampling strategies. And it produces higher-quality and more informative
embedding than DeepWalk. There have also been a number of further extensional
algorithms based on random walk. For example, Walklets [16] extends the Deep-
Walk to learn representations that “skip” or “hop” over multiple nodes at each
step. Metapath2vec [5] and HINE [10] design meta-path-based methods to cope
with heterogeneous networks.

Those network embedding methods have obtained great progresses on many
applications and tasks. However, the random walk policies in them are rigid.
They cannot flexibly capture the diversity of connectivity patterns. We can
present an example as follows to show their deficiency. As illustrated in Fig. 1,
there is a simple network containing seven nodes. The current partial walk con-
tains (u4, u3, u2, u1) and is now evaluating its next step among the node u1’s
neighbors, which all have different characteristics: u2 is previously sampled node;
x2 is a part of triangle [4] containing u1, u2, x2; x3 forms a quadrilateral [4] with
u1, u2, u3; x1 is a outlier which is just connected to u1. DeepWalk [15] just uses
unbiased 1-order sampling strategy to approximate the structure of networks,
and it treats all four candidates as equal. Thus it cannot distinguish the differ-
ence among them. Node2vec [9] employs 2-order sampling strategy of balancing
the exploration-exploitation trade-off. After transitioning to node u1 from u2,
its return parameter p and in-out parameter q control the probability of a walk
staying inward revisiting nodes (u2), staying close to the preceding nodes (x2), or
moving outward farther away (x1, x3). But unfortunately, Node2vec still cannot
distinguish subtle difference between x1 and x3. To make matters worse, real-
world networks often consist of numerous nodes formed in more complicated
patterns.

To address above problem, we propose a high-order M arkov chain Sampling
strategy for Network Embedding (named MSNE). Based on the distance between
candidates and previous sampled nodes, MSNE can efficiently explore diverse
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neighborhoods and select the next step. Actually, MSNE generalizes Markov
chain sampling from 2-order to n-order. And due to n-order sampling strategy,
it can exploit the whole sampled path to capture network properties and gener-
ate expressive node sequences which are beneficial for network embedding and
downstream tasks.

Empirically, we conduct the experiments on five real-world network datasets.
The effectiveness of the node embeddings is evaluated on two common prediction
tasks: node classification and link prediction. The experiment results show that
MSNE outperforms other competitive baselines.

Contributions: (1) We provide a high-order Markov chain sampling strategy,
called MSNE. It can exploit the whole sampled path to capture the diversity
of the next sample candidates and generate expressive node sequences which
are beneficial for network embedding and downstream tasks. (2) We extensively
evaluate our generated representation on node classification and link prediction
on several real-world datasets and demonstrate the effectiveness of the MSNE.

2 Preliminary

A network is denoted as G = (V,E), where V = {v1, · · · , vn} represents n
nodes, and E ⊆ (V × V ) represents edges. Network embedding framework aims
to build a powerful function f : V → R

d, which converts each node v ∈ V into
a low-dimensional vector x ∈ R

d. Here, the parameter, d � |V |, specifies the
dimension of representation space.

For learning network embedding, firstly, random walk is used over compli-
cated networks to generate a number of node sequences, which preserve highly
non-linear network structures. Then, following the Skip-gram model [12], a map-
ping function is learned by maximizing the log-probability of the sampled node
sequence, which is the context of a source node.

Specifically, let W (u) = (vu1, · · · , vuk) denote the sampled node sequence. As
same as Skip-gram model [12], the objective of our network embedding frame-
work is to maximize the log-probability as follow:

max
f

∑

u∈V

log Pr
(
W (u)|f(u)

)
. (1)

We can obtain the network representations that capture network properties
by solving the optimization problem. But the context W (u) is a node sequence
making Eq. 1 intractable. Hence, under the assumption that the likelihood of
predicting a context node is independent of any other, we approximate the con-
ditional probability as follow:

Pr(W (u)|f(u)) =
∏

v∈W (u)

Pr(v|f(u)). (2)

Moreover, we consider a source node u and a network sampling context node
v ∈ W (u) as a symmetric role over each other in feature space, which is also
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utilized in [9,15,20]. Furthermore, Pr(W (u)|f(u)) is modeled as a softmax unit
between every source-context node representation pair:

Pr(v|f(u)) =
exp(f(v) · f(u))∑

n∈V exp(f(n) · f(u))
, (3)

here, v ∈ W (u). Hence, the objective of our model is simplified to

max
f

∑

n∈V

[
− log Zn +

∑

v∈W (u)

exp(f(v) · f(u))
]

(4)

It is worth noting that the denominator Zn =
∑

n∈V exp(f(n) · f(u)) in
Eq. 4 needs to consider every node pair existing in networks, which requires
expensive overhead and becomes impractical in real-world networks. To speed
up the training process, there are two technologies: hierarchical softmax [13] and
negative sampling [13]. In this work, we use Skip-gram with negative sampling
(SGNS) to approximate it in the interest of model performance.

Overall, our network embedding framework consists of two main components:
a sampling strategy, which transforms highly non-linear networks into numerous
linear sampled paths, and an embedding architecture, i.e. SGNS [13]. SGNS
has been originally developed to handle with linear text, where the notion of a
neighborhood can be naturally defined using a sliding window over consecutive
words.

It is obvious that the quality of network representation produced by Skip-
gram depends largely on that of the node sequences generated by the sampling
strategy. As we mention before, DeepWalk employs unbiased 1-order sampling
strategy which treats different candidates as equal and ignores their different
characteristics. To capture the diversity of connectivity patterns observed in
network, Node2vec balances the exploration-exploitation trade-off by 2-order
sampling strategy. Illustrated in Fig. 1, Node2vec can differentiate candidates
into three groups: “revisiting” nodes (u2), “inward” nodes (x2) and “outward”
nodes (x1, x3). However, just 2-order sampling strategy fails to distinguish subtle
difference among nodes in same group (x1 is a outlier while x3 are a part of
quadrilateral, i.e., {u1, u2, u3, x3}). As we show, this is a major shortcoming
of prior work which fails to offer enough flexibility in sampling nodes from a
network. To overcome this limitation, we provide a high-order sampling strategy
with more parameters to tune the explored search space.

3 MSNE: A Novel Markov Chain Sampling Strategy for
Network Embedding

In this section, we present the details of our high-order Markov chain Sampling
strategy for Network Embedding (named MSNE), which generalizes the 2-order
Markov chain sampling strategy in Node2vec to n-order. For convenience, we list
some of the terms and notations in Table 1 which will be used later in advance.
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Table 1. Terms and notations.

Term Definition

G Network

V Nodes

E Edges

n Order of MSNE

(un, · · · , ui, · · · , u1) Previous sampled nodes

d(u, v) Length of the shortest path from node u to v

π Sampling strategy based on a distance metric

πi(x, ui) Sampling strategy based on d(x, ui)

pi, qi Parameters pi and qi of strategy πi

Dk(v) Dk(v) = {u|u, v ∈ V ∧ d(u, v) = k}, ∀k ≥ 0

3.1 n-Order Markov Chain Random Walk

Formally, given a partial random walk path walk = (un, · · · , ui, · · · , u1), we are
now evaluating its next step x among the neighbors of node u1 based on the
following probability distribution.

Pr(x|u1, · · · , un) =

{
π(x, u2, · · · , un)/Z, if (u1, x) ∈ E;
0, otherwise.

(5)

where π(x, u2, · · · , un) is the unnormalized probability of sampling node x, which
is biased by the sampled node sequence (un, · · · , u2), and Z is the normalizing
factor.

In order to make π(x, u2, · · · , un) tractable, we simplify it as follow:

π(x, u2, · · · , un) =
n∏

i=2

πi(x, ui) (6)

where πi(x, ui) denotes unnormalized probability biased by node ui and x.
The sampling strategy πi(x, ui) hopefully can differentiate network struc-

tures and help to evaluate the next step. Back to the Fig. 1, we have a sampled
sequence starting from u4 to u1, i.e., (u4, u3, u2, u1), and now residing at node
u1. We observe that a distance metric of shortest length between candidates
and previous sampled nodes, i.e., d(x, ui), can help to distinguish the subtle
diversity among candidates. Specifically, when considering 1-order information,
d(x, u1), we treat four candidates {x1, x2, x3, u2} as equal. Fortunately, when
taking account of d(x, u2), the 2-order information helps us to differentiate can-
didates into three groups: “revisiting” nodes (u2), “inward” nodes (x2) and “out-
ward” nodes (x1, x3). Furthermore, when we consider 3-order information, i.e.,
d(x, u3), it is easy to distinguish between x1 and x3. The shortest length from x1

to u3 is 3, while it is 1 from x3 to u3. Overall, the higher order information and
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the distance metric can help the sampling strategy πi(x, ui) to distinguish the
subtle difference of network structures, and generate expressive node sequences
for network embedding.

However, in Eq. 6, sampling strategy π still suffers from the scope of each
distance d(x, ui) and combinatorial explosion. Thus, we simplify the Eq. 6 as
follow.

π(x, u2, · · · , un) = π2(x, u2) � · · · � πi−1(x, ui−1) � πi(x, ui) · · · � πn(x, un), (7)

where � means that those sampling strategies π2(x, u2), · · · , πn(x, un) are applied
sequentially instead of simultaneously.

Due to the sequential nature of strategy π, we define each πi(x, ui) with
consideration of d(ui−1, x) as follow.

πi(x, ui|d(ui−1, x) = k) =

⎧
⎪⎨

⎪⎩

1/pi, if d(ui, x) = k − 1;
1, if d(ui, x) = k;
1/qi, if d(ui, x) = k + 1.

(8)

We will interpret the Eq. 8 from the following three aspects in detail.

1. The distance from candidate x to ui−1 is not arbitrary. Let k denote the value
of d(ui−1, x), and k must be less or equal to i−1. x is the neighbor node of u1,
so d(u1, x) = 1. And there is a path from ui−1 to u1, so d(ui−1, u1) ≤ i − 2.
Thus, it is easy to prove that d(ui−1, x) ≤ i − 1, i.e., k ≤ i − 1.

2. From above proof, the scope of d(ui, x) is from 0 to i. Furthermore, we can
prove that d(ui, x) can be limited to {k − 1, k, k + 1}, given d(ui−1, x) = k.
We can prove it shortly as follows. Given d(ui−1, x) = k, and d(ui, ui−1) = 1,
there is a trivial path of length k + 1 connecting node ui and x. Meanwhile,
there is no path of length less than k − 1 connecting ui to x, otherwise it
will contradict d(x, ui−1) = k. Therefore, given d(x, ui−1) = k, the distance
d(x, ui) must be one of {k−1, k, k+1}. This is the reason why two parameters
are necessary and sufficient to guide the sampling strategies in Eq. 8.

3. Furthermore, parameters pi and qi in Eq. 8 can lead the sample strategy πi to
select different candidates.1 For each strategy πi(x, ui), a high value of param-
eter pi (> max(qi, 1)) ensures that we are less likely to sample an already-
visited node in the next steps. On the other hand, if pi is low (< min(qi, 1)),
it would lead the walk to backtrack a step and this would keep the walk
close to the starting node. Meanwhile, another parameter qi of each strategy
πi allows the search to differentiate between “inward” and “outward” candi-
dates. If qi > 1, the sampling is biased towards nodes close to preceding node
(“inward” nodes). In contrast, if qi < 1, the walk is more inclined to visit
nodes which are further away from the preceding node (“outward” nodes).
Overall, the parameters provide us a way to tune the explored search space.

1 In fact, the parameters pi, qi can be different for strategies πi(x, ui) with different
distances d(ui−1, x). But in this work, we share the parameters across strategy πi in
order to reduce the burden of parameter searching.
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In summary, our high-order MSNE provides an n-order Markov chain sam-
pling strategy. It can help generate the next step during sampling based on
the distance (shortest path) between the candidates and the previous sampled
nodes. We also present a tractable and efficient way to inference the probability,
as shown in Eq. 8.

3.2 The MSNE Algorithm

Algorithm 1. MSNE-Walk
Inputs: Network G = (V, E);Order n;

Walk Length l; Walks pre node r;
Parameters {p2, q2}, · · · , {pn, qn}

1: Initialize Walks walks = []

2: Distance Sets D = PreprocessData(G)
3: for iter to r do

4: for all node u ∈ V do
5: Initialize Walk walk = [u]
6: Choose one node from D1(u) and

append to walk

7: while |walks| < l do

8: Compute step by
MSNE-Step(n, D, walk, π)

9: Append step to walk

10: end while

11: Append walk to walks

12: end for
13: end for
14: return walks

Algorithm 2. MSNE-Step
Inputs: Order n;

Data D = {D0, D1, · · · , Dn};
Partial Walk walk = [· · · , un, · · · , u1];
Parameters {p2, q2}, · · · , {pn, qn}

1: Initialize Candidate Cand = D1(u1)
2: Initialize i = 2
3: Update n = min{|walk|, n}
4: while |Cand| > 1 and i ≤ n do
5: Update candidate Cand according

to Eq. 8 specified by parameters
{pi, qi}

6: i = i + 1
7: end while
8: Choose one node step from candidate

Cand at random.
9: return step

The pseudo-code for sampling nodes in n-order MSNE is given in Algorithms 1
and 2. From line 3 to 13 of MSNE-Walk, we repeat r rounds sampling which
starts from each node in the network to learn representations. Given the starting
node, MSNE generates the next sampling node according to Eq. 8 specified by
parameters {pi, qi} until the length of sampled node sequences reaches l, as shown
in line 5 of MSNE-Step. It is worth noting that, in the interest of high sampling
efficiency we compute the distance sets in advance, as PreprocessData shown in
line 2 of MSNE-Walk. Instead of computing expensive all-pairs shortest paths
algorithms, we only need to calculate a small amount of distance information
between nodes, i.e. D = {D0,D1, · · · ,Dn}, where Di = {Di(v)|v ∈ V }. By doing
it, sampling of nodes while simulating the random walk can be done efficiently
in O(1) time when applying n-order MSNE.

4 Experiments

With flexible exploration in networks offered by MSNE, we can learn expressive
representations to a wide variety of network. Our experiments mainly evaluate
representations learned by our model on two tasks: node classification and link
prediction.
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4.1 Experimental Setup

We compare MSNE with other models on several datasets. Furthermore, we
choose several representative models listed below as the baseline:

– DeepWalk [20]: DeepWalk adopts truncated random walk to transforms
graph structures into linear sequences. Besides, it uses Skip-gram with hier-
archical softmax as the loss function.

– Node2vec [9]: Node2vec is an extension of DeepWalk which introduces a
biased random walk procedure to efficiently explore diverse neighborhoods.

– LINE [17]: LINE can preserve both first- and second-order proximities
through modeling node co-occurrence probabilities.

– GraRep [3]: GraRep adopts singular value decomposition [8] in k-step prob-
ability transition matrices to obtain low-dimensional representation of nodes.

For all experiments, the dimension of each node is 128, and the length of
generated node sequence is fixed as 80. We repeat sampling for 10 times. In
addition, the window size is 10 for Skip-gram and the k-step of GraRep is 4.

Parameters Search. In the experiment, we search for best parameters in a
greedy way for convenience. First of all, we find the best parameters {p2, q2}
for 2-order MSNE. Then, we use parameters {p2, q2} of 2-order MSNE and find
the best parameters {p3, q3} for 3-order MSNE. And so on, we use parameters
{p2, q2}, · · · , {pn−1, qn−1} of n − 1-order MSNE and find the best parameters
for n-order MSNE. What calls for special attention is that for each level of
parameters, the best parameters are decided by the results of the development
dataset. We stop at 4-order during parameter searching to reduce the number
of experiments.

4.2 Node Classification

In the node classification, each node is assigned one or more labels. The task is
to predict the labels of some nodes in the network. We evaluate models on the
following datasets:

– BlogCatalog [18]: This is a social network of bloggers on BlogCatalog website.
There are 10,312 nodes, 333,983 edges and 39 labels.

– Cora [11]: This is a citation network of scientific publications. There are 2,708
nodes classified with 5429 edges into one of 7 classes.

We evaluate our method using the same experimental procedure outlined in
DeepWalk [15]. Logistic Regression Classifier with L2 regularization is adopted
as the classifier. We randomly sample Tf (10% to 90%) fraction of the labeled
nodes and use them as training data with the rest as a test data set. This process
is repeated 10 times, after which we report the mean Micro-F1 and Macro-F1
scores.

Experimental Results. Experimental setup is described as mentioned earlier.
In case of BlogCatalog, the best strategy of Node2vec is {p = 0.25, q = 0.25},
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Table 2. Micro-F1 and Macro-F1 scores of our MSNE and competing methods on
BlogCatalog and Cora. MSNE-3rd and MSNE-4th denote 3-order and 4-order MSNE,
respectively. Paired t-test results are shown for our method compared to Node2vec
(statistical significance is indicated with **(p < 0.001)).

Blogcatalog Cora

Micro
-F1

ratio
Deep
Walk Node2vec LINE GraRep

MSNE
-3rd

MSNE
-4th

Deep
Walk Node2vec LINE GraRep

MSNE
-3rd

MSNE
-4th

0.1 0.340 0.338 0.329 0.363 0.339 0.340 0.771 0.774 0.651 0.760 0.778 0.764
0.2 0.367 0.373 0.350 0.381 0.373 0.371 0.801 0.807 0.728 0.776 0.794 0.791
0.3 0.382 0.389 0.364 0.388 0.383 0.387 0.818 0.807 0.741 0.784 0.807 0.802
0.4 0.387 0.400 0.373 0.393 0.394 0.397 0.826 0.819 0.758 0.791 0.824 0.814
0.5 0.397 0.398 0.377 0.393 0.403 0.405 0.826 0.817 0.750 0.787 0.825 0.808
0.6 0.405 0.406 0.379 0.399 0.411 0.412∗ 0.817 0.817 0.755 0.786 0.827∗ 0.816
0.7 0.410 0.408 0.388 0.403 0.411 0.418∗ 0.814 0.813 0.766 0.787 0.839∗ 0.822
0.8 0.416 0.418 0.398 0.408 0.421 0.422∗ 0.825 0.821 0.766 0.799 0.828∗ 0.819
0.9 0.421 0.417 0.404 0.417 0.430 0.437∗ 0.823 0.841 0.801 0.808 0.849∗ 0.849

Macro
-F1

0.1 0.189 0.192 0.171 0.194 0.200 0.202 0.756 0.753 0.630 0.745 0.761 0.750
0.2 0.222 0.233 0.195 0.218 0.234 0.238 0.789 0.793 0.721 0.759 0.782 0.779
0.3 0.238 0.247 0.211 0.225 0.251 0.253 0.807 0.795 0.729 0.771 0.796 0.789
0.4 0.245 0.265 0.217 0.229 0.266 0.268 0.817 0.809 0.737 0.779 0.813 0.807
0.5 0.255 0.271 0.223 0.230 0.272 0.282∗ 0.808 0.804 0.737 0.770 0.809∗ 0.800
0.6 0.258 0.274 0.227 0.236 0.286 0.287∗ 0.805 0.810 0.748 0.772 0.813∗ 0.807
0.7 0.266 0.276 0.245 0.243 0.286 0.295∗ 0.802 0.803 0.744 0.768 0.821∗ 0.803
0.8 0.279 0.292 0.254 0.248 0.294 0.302∗ 0.815 0.812 0.755 0.774 0.821∗ 0.795
0.9 0.286 0.291 0.269 0.266 0.315 0.316∗ 0.790 0.810 0.767 0.783 0.823∗ 0.813

while the best strategy of MSNE is {p2 = 2, q2 = 0.25; p3 = 4, q3 = 1; p4 =
1, q4 = 1}. In case of Cora dataset, the best strategy of Node2vec is {p = 2, q =
0.25}, and the best strategy of MSNE is {p2 = 4, q2 = 0.5; p3 = 0.25, q3 = 4}.

The results of our experiments in BlogCatalog are shown in Table 2. When
the training ratio gets higher, the performance of MSNE gets better. In case
of BlogCatalog, when the training ratio is 0.9, MSNE gives us 5.0% gain over
Node2vec in Micro-F1 score and 8.7% gain in Macro-F1 score. In terms of Cora,
when the training ratio is 0.9, MSNE gives us 0.95% gain over Node2vec in
Micro-F1 score and 1.6% gain in Macro-F1 score.

From the experiment, we find that when training ratio is high, MSNE shows
greater improvements over other models. That means with the help of higher
order Markov chain used in MSNE, we can dig out more information of its
structural information to make the classifier better. However, when the training
ratio is low, MSNE does not acquire too much improvements due to the lack of
label information of its neighborhood.2

4.3 Link Prediction

In link prediction, part of edges in network are removed. The task is to predict
these missing edges. We preprocess the network data to generate negative sam-
ples (i.e. edges which do not exist in the original network) and positive samples.
Specifically, we remove 10% of edges randomly from the network while ensur-
ing the residual network connected, and combine positive samples with negative
samples as dataset. We use 50% to train and the left to test. Meanwhile, we use
Hadamard Operator, i.e., element-wise multiplication, to learn edge features.

2 In the supplementary material (at https://github.com/SongY123/MSNE), we dis-
cuss why MSNE with higher order sometimes does not get better results.

https://github.com/SongY123/MSNE
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We evaluate models on the following datasets:

– arXiv-AstroPh3: arXiv-AstroPh is a co-authorship network extracted from
arXiv of Astro Physics category, containing 18,772 nodes and 198,110 edges.

– arXiv-GrQc4: arXiv-GrQc is also a co-authorship network extracted from
arXiv of General Relativity and Quantum Cosmology category. The network
consists of 5,242 nodes and 14,496 edges.

– Protein-Protein Interactions (PPI) [1]: In PPI network, the nodes are pro-
teins, and edges represent the interactions between two proteins. This network
contains 3,890 nodes and 76,584 edges.

Experimental Results. In order to avoid searching for threshold, we use Area
Under Curve (AUC) score for link prediction. Besides, the best parameters (p, q)
of Node2vec for arXiv-AstroPh, arXiv-GrQc and PPI are (0.25, 4), (0.25, 4) and
(4, 4). The best parameters of MSNE for arXiv-AstroPh, arXiv-GrQc and PPI
are {p2 = 0.25, q2 = 4; p3 = 0.5, q3 = 1; p4 = 1, q4 = 1}, {p2 = 0.25, q2 = 4; p3 =
1, q3 = 4} and {p2 = 4, q2 = 4; p3 = 0.5, q3 = 0.25; p4 = 0.25, q4 = 0.5}.

Table 3. Area Under Curve (AUC) scores of our MSNE and competing methods on
arXiv-AstroPh, arXiv-GrQc and PPI. Paired t-test results are shown for our method
compared to Node2vec (statistical significance is indicated with *(p < 0.001)).

Datasets Methods

DeepWalk Node2vec LINE GraRep MSNE-3rd MSNE-4th

arXiv-AstroPh 0.887 0.939 0.918 0.927 0.946∗ 0.949∗

arXiv-GrQc 0.877 0.937 0.927 0.878 0.953∗ 0.947∗

PPI 0.661 0.677 0.659 0.671 0.704∗ 0.708∗

As is illustrated in Table 3, our model achieves best results on all datasets over
other four models. In general, MSNE improves AUC score on arXiv-AstroPh,
arXiv-GrQc and PPI by 1.1% to 7.0%, 1.7% to 8.7% and 4.6% to 7.4%. Specially,
in spite of high AUC score achieved by Node2vec in arXiv-AstroPh, our model
can also get an increase of 1.1% over Node2vec.

5 Conclusions

In this paper, we propose a novel high-order Markov chain sampling strat-
egy for network embedding, named MSNE, based on the distance between
the candidates and the previous sampled nodes. In the experiment, we show
that the MSNE outperforms state-of-art network representation learning tech-
niques. Especially in node classification, when the training ratio is high, MSNE
3 https://snap.stanford.edu/data/ca-AstroPh.html.
4 https://snap.stanford.edu/data/ca-GrQc.html.

https://snap.stanford.edu/data/ca-AstroPh.html
https://snap.stanford.edu/data/ca-GrQc.html
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shows significant advantages over other baselines. Not surprisingly, MSNE can
be applied to different kinds of network to achieve good performance. In the
future, we plan to design several other methods to search parameter in MSNE
and introduce the supervised information of downstream tasks into the sampling
strategy.
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Abstract. Multi-view learning is a learning problem that utilizes the
various representations of an object to mine valuable knowledge and
improve the performance of learning algorithm, and one of the signifi-
cant directions of multi-view learning is sub-space learning. As we known,
auto-encoder is a method of deep learning, which can learn the latent
feature of raw data by reconstructing the input, and based on this, we
propose a novel algorithm called Auto-encoder based Co-training Multi-
View Learning (ACMVL), which utilizes both complementarity and con-
sistency and finds a joint latent feature representation of multiple views.
The algorithm has two stages, the first is to train auto-encoder of each
view, and the second stage is to train a supervised network. Interest-
ingly, the two stages share the weights partly and assist each other
by co-training process. According to the experimental result, we can
learn a well performed latent feature representation, and auto-encoder
of each view has more powerful reconstruction ability than traditional
auto-encoder.

Keywords: Multi-view · Auto-encoder · Co-training

1 Introduction

In real word applications, multi-view learning problems are widespread and they
often exist in two ways. The first one is that multiple views exist naturally in
data, such as we can easily obtain three views from web pages of Facebook, they
include the content of the web page, the text of any web pages linking to this web
page, and the link structure of all linked pages. The second one is that the raw
data is not multi-view data and we need to construct multiple views for data,
which include random approaches [1,3,4] reshape or decompose approaches [13],
and the methods that perform feature set partitioning automatically [6]. Once
we get multiple views of raw data, we can utilize the advantages of multi-view
learning to improve the performance of learning tasks like regression, classifi-
cation and clustering, where multi-view learning methods can be classified into
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three categories: co-training, multiple kernel learning, and subspace learning [14].
In this paper, we focus on subspace learning and propose a novel multi-view
learning algorithm called Auto-encoder based Co-training Multi-View Learn-
ing (ACMVL) which utilizes both complementarity and consistency and finds
a joint latent feature representation of multiple views. Note that “co-training”
in our proposed algorithm’s name is a training strategy instead of co-training
multi-view learning method.

Multiple views of raw data have two wonderful properties, which are consis-
tency and complementarity. Consistency represents the common information of
multiple views, and complementarity represents the special information of each
view. Only consistency and complementarity of multiple views can be utilized
to improve the performance of learning tasks [2,5,10,12], however, both con-
sistency and complementarity are significant that it is a waste of information
if we ignore one of them. In [11], they find a joint latent representation which
include both common and special features of multiple views, and followed this
work, [16] made some improvements. In their works, they compute the special
feature of each view as well as the common feature of all views according to
matrix factorization, and then concatenate them together in to a joint latent
feature. However, this kind of method has two constraints:

(1) it is not reasonable to define all views share a common feature, maybe
they share a common space and each view has its own instantiation in this
space;
(2) the optimization algorithm is hard to adapt large scale data set, because
the algorithm requires to feed all the training data instead of a batch at one
time.

Fig. 1. Diagram of ACMVL: we illustrate a two-views’ problem in this figure, therefore
we have three networks. The left and right ones are view 1 and view 2’s auto-encoder,
and the middle one is the supervised network. Note that the yellow layers not only
participate in the training process of auto-encoder but also supervised network, and
our joint latent representation is the first purple layer of supervised network. (Color
figure online)
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To solve such two problems, our proposed algorithm ACMVL builds a frame-
work including multiple auto-encoders and a supervised network (a multi-layer
perceptron which predicts labels of instances and minimize the cross-entropy loss
between prediction and true label). Our proposed approach can easily solve the
second question by running mini-batch gradient descent on large scale training
sets. As for the first question, we first compute each view’s special feature and
then map each special feature into a same space by weight sharing and add them
together, furthermore, with a nonlinear activation function we can get a joint
latent representation. Besides, alternating co-training is another salient charac-
teristic of ACMVL, which is a training strategy that lets our auto-encoders and
supervised network partially share model parameters, and also let supervised
network help auto-encoders meliorate their encoders’ model parameters. And
surprisingly, we find that by using this strategy, we can not only accelerate the
convergence of the algorithm but also improve the learning performance of each
auto-encoder significantly, which means each view will obtain a much better
special feature that can help with the construction of joint latent feature. As a
result, we will make a summarize of contributions we made as follows:

(1) We propose a novel multi-view learning algorithm ACMVL, which utilizes
both consistency and complementarity to build a joint latent representation of
multiple views, where multiple views’ auto-encoders consider the consistency,
and the weight sharing method considers the complementarity;
(2) Compared with the algorithms proposed by [11,16], ACMVL is neural
network-based algorithm which is easy to use mini-batch to adapt large scale
data set.
(3) We propose an alternating co-training strategy which let our auto-
encoders and supervised network partially shared model parameters and also
let supervised network helps each auto-encoder to meliorate their encoder’s
weight. And this strategy can accelerate the training process and improve the
learning performance of each auto-encoder significantly.

2 Framework

2.1 Notations

In this paper, bold uppercase characters are used to denote matrices, bold low-
ercase characters are used to denote vectors, and other characters which are
not bold are all used to denote scalars. Supposed that (Xv,Y) is the sample of
view v, where v = 1, · · · , V . Among of them, Xv ∈ �Mv×N is the set of input
instances of view v, Y ∈ �N is the label, where N is the number of instances,
Mv is the feature number of each instance of view v. More specific, we have V
version of raw data, each version can be expressed as Xv, and Xv = [xv

1, · · · ,xv
N ],

xv
i ∈ �Mv

. Note that all the views share the label Y because they are the various
representation of raw input date, and Y = [y1, · · · ,yN ], yi ∈ �.
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2.2 Core Concept of Framework

As we known, auto-encoder is an algorithm that can compute the latent feature of
raw data, and we can compute each view’s latent feature by using auto-encoder.
However, the V views’ latent features we obtained only consider the complemen-
tarity of different views, and we cannot guarantee that all of the auto-encoders
can generate good latent features. Therefore, we aim to find a joint latent rep-
resentation by combining the V views’ latent features we obtained according to
some rules. In this paper, we build a simple multi-layer perceptron with its input
of multiple views’ latent features to supervise the process of the generation of
joint latent representation. Furthermore, we adopt a novel training strategy to
train multiple auto-encoders in each view as well as supervised network, we will
give a description in detail in next subsection.

2.3 Description of Framework

Our proposed method ACMVL has a co-training process, which has two stages,
one is the stage of learning latent feature that we need to train auto-encoders
of multiple views, and the other is the stage of meliorating feature and learning
joint latent feature that we need to train a supervised network. Next, we will
explain the two scenarios separately.

Latent feature learning: as shown in Fig. 1, we illustrate an example with two
views. In Fig. 1, there are two auto-encoders because we need to compute the
latent feature of each view. Therefore, we need to train the model parameters
to minimize the reconstruction error of each view, and we can formulate this
problem as:

min
1
V

∑V

v=1

∥∥∥Xv − X̂v
∥∥∥
F

(1)

where X̂v is the reconstruction of view v ’s input. In each auto-encoder, the
activation function is ReLu except for the last layer because the last layer of
each auto-encoder is the reconstruction of raw data, and the optimizer algorithm
we used is AdaDelta [15]. After training two auto-encoders, we should save the
model parameters θven = {wv

en1,w
v
en2,w

v
en3}, and θvde = {wv

de1,w
v
de2,w

v
de3}, note

that each view’s auto-encoder has its own parameters.

Meliorate feature and joint feature learning: when finish the training pro-
cess of auto-encoders, we take out the third layer of each auto-encoder as the
input of the supervised network as shown in the middle of Fig. 1. By mapping
each latent feature representation of each view into a same subspace and add
them together, we can easily find a joint latent representation by using a non-
linear mapping, which can be formulated as follows:

g

(∑V

v=1
wsharehv

)
(2)

where g (·) is a nonlinear activation function, and we use ReLu in this paper. Note
that we share the transform matrix wshare which helps us to find the consistent
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Fig. 2. Parameter updating process

factors in various views. Furthermore, in this network, the objective function of
supervised network is to minimize the cross-entropy loss between prediction and
true label, which can be formulated as follows:

min
1
N

∑N

i=1
(yi log (ŷi) + (1 − yi) log (1 − ŷi)) (3)

where ŷi is the prediction of i -th instance. As for the choice of activation func-
tion and optimizer algorithm, expect that last layer uses Softmax as activation
function, others choose ReLu, and AdaDelta is selected to optimize the objec-
tive function. It is remarkable that not only we should train the parameters
θsup = {wshare,w1,w2,w3} as shown in Fig. 1, but also need to update the
value of θven = {wv

en1,w
v
en2,w

v
en3}, which is inherited from last stage, where

v = 1, · · · , V . Same as last stage, we need to save parameter θsup as well as
the updated parameter θven. The two stages we illustrate above is only just one
epoch of training procedure, and we will design a co-training process. We define
in one epoch, auto-encoder will be trained for R1 rounds, and the supervised
network will be trained for R2 rounds. In first epoch, we need to initialize θven,
θvde, and θsup as θven,0, θvde,0, and θsup,0 according to the method of Glorot [7], and
with these initial value we can conduct the first stage and obtain the best model
parameters θ̃ven and θ̃vde. Next, in stage 2, we use θ̃ven and θsup,0 to initialize the
supervised network and obtain the best value after R2 rounds’ training. Simi-
larly, in other epochs, the training strategy only has minor difference that we do
not initialize parameters according to Xavier. Specifically, in first stage, we ini-
tialize θven as θ̃ven from stage 2 of last epoch, and initialize θvde as θ̃vde from stage 1
of last epoch; in second stage, we initialize θven as θ̃ven from stage 1 of this epoch,
and initialize θsup as θ̃vsup from stage 2 of last epoch. To illustrate this process
more clearly, we summarized the whole algorithm of ACMVL in Algorithm1 and
illustrate the parameter updating process of co-training in Fig. 2.
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Algorithm 1. ACMVL
Initialize θv

en, θv
de and θsup as θv

en,0, θv
de,0, and θsup,0 according to the method of

Xavier;
For each epoch do:

Stage 1:
For each view v = 1, · · · , V do:

If not first epoch:
Initialize θv

en and θv
de:

θv
en : θv

en,0 ← θ̃v
en, where θ̃v

en comes from last
epoch of stage 2;

θv
de : θv

de,0 ← θ̃v
de, where θ̃v

de comes from last
epoch of stage 1;
For each R1 do:

Update θv
en and θv

de using AdaDelta and set the
best one as θ̃v

en and θ̃v
de (select the weight of the

round with the least reconstruction error);
End For

End For
Stage 2:
If not first epoch:

Initialize θv
en and θv

sup:

θv
en : θv

en,0 ← θ̃v
en, where θ̃v

en comes from this
epoch of stage 1;

θv
sup : θv

sup,0 ← θ̃v
sup, where θ̃v

sup comes from last
epoch of stage 2;
For each R2 do:

Update θv
en and θv

sup using AdaDelta and set the

best one as θ̃v
en and θ̃v

sup (select the weight of the
round with the least reconstruction error);
End For

End For

2.4 Tricks

As we known, training a neural network needs to determine many hyperparam-
eters and also needs to adopt some tricks. However, this network is not hard to
train, when selecting the node number, we only need to remember that the num-
ber is decreasing layer by layer for encoder. For example, if our input is a 500-
dimensional data, then for encoder like view 1’s auto-encoder in Fig. 1, the num-
bers of node is [256, 64, 32], and for decoder is [64, 256], where 32 is the middle-
hidden layer’s node number and usually we define these layer’s node numbers are
the same for multiple views even each view’s input dimension is different. As for
learning rate of optimizer algorithm, for each view’s auto-encoder, learning rate
usually sets to 0.5 or 0.3, and for supervised network, learning rate usually equals
to 0.9. Note that suitable learning rates will let each auto-encoder and supervised
network help with each other to accelerate the convergence speed. Additionally, we
further emphasize that we will obtain the joint latent representation by mapping
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each view’s latent feature into a same space with a same transformation matrix
wshare, because a same transformation matrix can project different data into a
same subspace and that is also the reason why we define all views’ latent feature
as the same dimension. Lastly, one of the most significant tricks is early stopping,
because the training loss of a neural network cannot always decrease, and after a
period of time, training loss will not decrease any more and even increase. There-
fore, early stopping is necessary that it can stable and accelerate the training pro-
cess. Such as in a training epoch, we set R1 = R2 = 1000, may in round 400,
the loss is lowest but we save the model parameters of round 1000, and we miss
the best model parameters and will train more rounds which is a waste of time
(because our early stopping rule is that if R1, R2 ≥ 200, and the loss no longer
decrease for 200 rounds, we will break the loop and save the parameters belong to
the round corresponds to the best loss).

Fig. 3. Convergence analysis of WebKb

3 Experiment

3.1 Data Set Partition

In this subsection, we give a short description of the data sets and introduce the
method to divide the data set into different views.

WebKb: The WebKb data set contains web information from computer science
departments of four different universities, obviously, we actually have four data
sets, but we compute the average value of four data sets. There are three views
in each data set: the words in the main text in each web page of one of the
universities is a kind of view; the clickable words in the hyperlinks pointing to
other web pages of one of the universities is another view; and the words in
the titles of each web page is also a view. On the other hand, there are seven
categories in this data set, where we choose four most representative categories
in this experiment. In general, we have 3 views in this data set.



126 R. Lu et al.

Fig. 4. Convergence analysis of 20NG

20NewsGroup: The data set consists of 20 News group, that is to say, this
data set contains 20 categories. 200 documents are randomly selected from each
category. As a result, we define 20 tasks corresponding to the classes, and the
documents belong to the category related to the task are defined as positive
instances, and from other different categories are defined as negative ones. Next,
we take the words appearing in all the tasks as a common view, and the words
only existing in each task as a special view. In this way, we get 21 views, however,
there are only two views in each task, 19 views are missed in each task [8]. Now
this is a multi-task and multi-view data, but we can conduct the experiment on
each task and compute the average value of them. In general, we have 2 views
in this data set.

Leaves: The leaves data set includes leaves from one hundred plant species that
are divided into 32 different genera, and 16 samples of leaves for each plant
species are presented. 3 geniuses that have 3 or more plant species are selected
to form the data set, and the aim of the problem is to discriminate different
species in a genus. And in this data set, three views of features are available,
including shape descriptor, fine scale margin and texture histogram, and each
view has 64 features. In general, we have 3 views in this data set.

3.2 Convergence Analysis of Training Process

In Figs. 3, 4, and 5, the first row of figures shows each views’ reconstruction error
of auto-encoder, where, red line shows the original auto-encoder’s curve, and the
blue one is our proposed method’s curve. It’s not hard to see that in Figs. 2 and 4
let each auto-encoder converges faster than the original auto-encoder, ACML has
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Fig. 5. Convergence analysis of leaves

less fluctuation in training process than original ones. However, we find in Fig. 5
original auto-encoder performs better because Leaves is a small data set that
only original auto-encoder can fit it soon, but our proposed method will train
the model alternately. Recall that after R1 rounds in one epoch of training each
auto-encoder, we will need to train the supervised network for R2 rounds and
modify each auto-encoder’s parameters of encoder, and then in the next epoch,
we should retrain each auto-encoder. In such way, when facing small data, the
speed of convergence of ACMVL may be slower than the original auto-encoder’s.
However, when dealing with bigger data set, ACMVL can accelerate convergence
speed of each auto-encoder as shown in Figs. 3 and 4.

On the other hand, with the help of each auto-encoder, supervised network
converges fast as shown in the second row of Figs. 3, 4, and 5. As a result, in
ACMVL’s framework, each view’s auto-encoder and supervised network help
with each other according to the co-training rules.

Table 1. Classification task

Classification LR LR-AE LR-AE-ACMVL LR-ACMVL

ACC F1 ACC F1 ACC F1 ACC F1

WebKb View 1 0.8230 0.7281 0.7876 0.6217 0.8142 0.7330 0.9115 0.8703

View 2 0.8673 0.7866 0.8142 0.6991 0.7434 0.6667

View 3 0.7080 0.6477 0.7168 0.6031 0.7256 0.5839

20NG View 1 0.6267 0.6256 0.5333 0.5326 0.5200 0.5169 0.9733 0.9732

View 2 0.9666 0.9667 0.8600 0.8592 0.9200 0.9200

Leaves View 1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

View 2 0.7708 0.7481 0.7917 0.7680 0.7708 0.7514

View 3 0.9167 0.9132 0.8750 0.8713 0.9375 0.9325
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3.3 Performance Test on Multiple Learning Task

In this subsection, we will test the algorithm performance on classification and
clustering tasks. We select Logistic Regression (LR) as the baseline method of
classification as well as Gaussian Mixture Model (GMM) as the baseline method
of clustering.

Classification: First of all, we divide the data of each view into training set
and testing set at a ratio of 50%. And then, we first conduct an experiment
only use these data with the classifier of LR, and the result is list in the column
“LR” of Table 1; Second, we only train each view’s auto-encoder without the
help of supervised network, and then we use the feature computed by auto-
encoder which corresponds to the training set to train LR classifier and use
the feature corresponding to the testing set to test the result. The result is list
in the column “LR-AE” of Table 1; Thirdly, we will do the same thing as the
second experiment but let supervised network helps each auto-encoder’s training
process, and the result is list in the column “LR-AE-ACMVL” of Table 1. Note
that this experiment use feature computed by each view’s auto-encoder to test
each view’s performance; Lastly, we conduct the third experiment again, but
we use the joint latent feature computed by supervised network to test the
performance, and therefore, this experiment only has one view. The result is list
in the column “LR-ACMVL” of Table 1.

In classification experiment, we select Accuracy (ACC) and F1 score (F1) as
the metrics. We can easily find that when using ACMVL, most of auto-encoders’
performance get better and the joint latent feature’s performance is much better
than each view’s, which verify ACMVL is an effective approach to compute joint
latent feature of multiple views.

Table 2. Clustering task

Clustering GMM GMM-AE GMM-AE-ACMVL GMM-ACMVL

NMI JC NMI JC NMI JC NMI JC

WebKb View 1 0.0935 0.1947 0.1539 0.1460 0.3004 0.2088 0.5809 0.0310

View 2 0.4739 0.1593 0.1221 0.0752 0.3752 0.0885

View 3 0.0843 0.1947 0.0433 0.1858 0.0752 0.1549

20NG View 1 0.0195 0.5167 0.0057 0.3567 0.0110 0.3500 0.3171 0.5100

View 2 0.1413 0.5133 0.1968 0.4533 0.4021 0.4133

Leaves View 1 0.8567 0.2917 0.8461 0.3333 0.8642 0.1250 0.9781 0.1667

View 2 0.7215 0.3021 0.3240 0.0938 0.7999 0.0104

View 3 0.7620 0.1042 0.8555 0.2083 0.8024 0.0208

Clustering: We will conduct some semi-clustering experiment, first of all, we
divide the data of each view into training set and testing set at a ratio of 50%.
And then, we first conduct an experiment only use testing data with the clus-
tering algorithm GMM, and the result is list in the column “GMM” of Table 2;
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Second, we only use training data to train each view’s auto-encoder without the
help of supervised network, and then we use the model to compute testing data’s
feature representation and conduct clustering task on these feature representa-
tions. The result is list in the column “GMM-AE” of Table 2; Thirdly, we will do
the same thing as the second experiment but let supervised network helps each
auto-encoder’s training process, and the result is list in the column “GMM-AE-
ACMVL” of Table 2. Note that this experiment use feature computed by each
view’s auto-encoder to test each view’s performance; Lastly, we conduct the third
experiment again, but we use the joint latent feature computed by supervised
network to test the performance, and therefore, this experiment only has one
view. The result is list in the column “GMM-ACMVL” of Table 2.

In clustering experiment, we select Normalized Mutual Information (NMI)
and Jaccard Coefficient (JC, the smaller of JC, the performance of clustering
is better) as the metrics. We can easily find that when using ACMVL, most of
auto-encoders’ performance get better and the joint latent feature’s performance
is much better than each view’s, which verify ACMVL is an effective approach
to compute joint latent feature of multiple views.

4 Conclusion

In this paper, we propose a novel multi-view learning algorithm called Auto-
Encoder based Co-Training Multi-View Representation Learning (ACMVL),
which is aimed to subspace learning and model training strategy. We utilize
the latent feature learning ability of auto-encoder to grasp the complementarity
of multiple views, and at the same time, by using weight sharing we can map
each view’s latent representation in to a same space and learn the consistency of
multiple views. Besides, we adopt co-training strategy to accelerate the training
procedure of each view’s auto-encoder by co-training and model parameters par-
tially shared. And according to experimental results, we find that our proposed
method can learn a suitable joint latent representation which is competent to
classification and clustering learning tasks.

Our proposed method in this paper is a deterministic model which cannot
measure the uncertainty of latent space. Therefore, in the future, a main target
is to find a generative method to obtain the distribution of the joint latent space
instead of an instantiation of the space. To our knowledge, variational auto-
encoder [9] may be a good choice to solve this problem. Generally, multi-view
subspace learning is a great research direction which is hard but deserved to pay
more attention on it, and we will make more attempts and explorations in this
field.
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Abstract. The success of machine learning algorithms generally
depends on data representation and recently many representation learn-
ing methods have been proposed. However, learning a good representa-
tion may not always benefit the classification tasks. It sometimes even
hurt the performance as the learned representation maybe not related
to the ultimate tasks, especially when the labeled examples are few to
afford a reliable model selection. In this paper, we propose a novel robust
semi-supervised graph representation learning method based on graph
convolutional network. To make the learned representation more related
to the ultimate classification task, we propose to extend label information
based on the smooth assumption and obtain pseudo-labels for unlabeled
nodes. Moreover, to make the model robust with noise in the pseudo-
label, we propose to apply a large margin classifier to the learned rep-
resentation. Influenced by the pseudo-label and the large-margin princi-
ple, the learned representation can not only exploit the label information
encoded in the graph-structure sufficiently but also can produce a more
rigorous decision boundary. Experiments demonstrate the superior per-
formance of the proposal over many related methods.

Keywords: Robust · Representation learning ·
Semi-supervised learning · Graph convolutional network

1 Introduction

The performance of machine learning methods is heavily dependent on the choice
of data representation (or features). Representation learning, i.e., learning repre-
sentations of the data that needed for the learning classifiers, has already become
an important field in machine learning [2].

One challenge of representation learning is that it faces a paradox between
preserving as much information about the input as possible, and attaining nice
properties for the output learning task [5]. Recently, there are many researches
pointed out that, the representation learning may fail to improve the perfor-
mance of classification task [2,5]. The main reason is that the learned represen-
tation may be far from the ultimate learning task. For example, representation
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learning typically pursuits the whole factors of the raw data, while the ultimate
task may only be related to a small subset of these factors. For this reason, it is
essential to learn a robust representation, especially when the labeled examples
are few to afford a reliable model selection.

In this paper, we focus on learning a robust representation for semi-supervised
graph-structured data. It is widely accepted that graph-structured data occurs in
numerous application domains, such as social networks [14], citation networks [9]
and many others [7]. Learning an appropriate vector representation of nodes in
graphs has proved extremely useful for a wide variety of predictive and graph
analysis tasks [6,14,16]. Figure 1 illustrates a visualization of a classical graph-
structured data and the corresponding node embeddings. A number of graph
representation learning methods such as DeepWalk [14], LINE [16], have been
proposed recently. However, these methods require a multi-step pipeline where
the representation learning model and the classifier are trained separately. In
other words, the learned representation may be far from the classification task,
and thus hurt the performance.

Fig. 1. Graph structure of the Zachary Karate Club social network (left) and the two
dimensional visualization of node embeddings (right).

Most recently, Graph Convolutional Network (GCN) [9] is proposed to fill the
gap. Unlike previous studies where the learned representation and the trained
classifier are conducted separately, GCN jointly optimizes the representation
learning model and the ultimate classifier. Nevertheless, most ultimate classifiers
in GCN work under the labeled data, which is insufficient to learn a robust
representation in semi-supervised learning.

In this paper we propose to obtain high-confidence pseudo-labels for unla-
beled nodes from the well-known label propagation strategy to enhance the label
capacity. Our basic idea is that given graph-structured data, many label informa-
tion are encoded in the graph structure based on the smooth assumption [22],
i.e., connected nodes are likely to share similar labels. We further propose a
large-margin classifier to overcome the noise pseudo-labels induced from label
propagation. Figure 2 shows the pipeline of the proposal.

In conclusion, we make several noteworthy contributions as follows:
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Fig. 2. The structure of the proposed RoGraph.

– We propose a robust representation learning method RoGraph for semi-
supervised graph-structured data, with the idea of the classical label propa-
gation and large margin principle, which is very easy to implement.

– Experiments on real-world network datasets are conducted. The experimental
results demonstrate that RoGraph achieves clearly better results than many
related methods.

The rest of this paper is organized as follows. We first introduce related works
and present preliminaries with an introduction to GCN. Next, we present the
proposed RoGraph, and then show the experimental results and discuss why
the large-margin principle can benefit graph representation learning. Finally, we
conclude this paper.

2 Related Work

The proposed algorithm is conceptually related to semi-supervised graph repre-
sentation learning and large-margin learning methods.

Semi-supervised Graph Representation Learning. Inspired by the Skip-
Gram [13], many semi-supervised learning methods for graph-structured data
have been proposed in recent years. DeepWalk [14] learns embeddings via the
prediction of the local neighborhood of nodes, sampled from random walks on the
graph. There are also many works based on DeepWalk, such as LINE [16] extends
DeepWalk with more sophisticated random walk and node2vec [6] extends Deep-
Walk with breadth-first search schemes. For all these methods, however, a multi-
step pipeline including random walk generation and semi-supervised training is
required where each step has to be optimized separately, so the learned represen-
tation may not the best representation for the classification task. Planetoid [20]
alleviated this by injecting label information in the process of learning embed-
dings. GCN [9] generalize traditional convolutional networks to graph-structured
data and can learn representations end-to-end.
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Large-Margin Learning Methods. There have been many large-margin
learning methods in many fields. Max-margin markov network [17] firstly intro-
duced the large-margin principle into markov networks. MedLDA [21] proposed
a maximum entropy discrimination LDA to learn a discriminative topic model
(e.g., latent Dirichlet allocation [3]). LEAD [10] adopted the large-margin prin-
ciple to judge the quality of graph. MMDW [18] combined large-margin loss
function with DeepWalk to learn discriminative network representations.

It is notable that to our best knowledge, the large-margin principle has rarely
been applied to graph-based methods. We show that large-margin principle is
indeed helpful for robust graph representation.

3 Preliminaries

In this section, we introduce some notations used in our method and give a brief
introduction to the idea of graph convolutional networks.

3.1 Notations

We consider the problem of representation learning on a graph G = (V, E), where
V is the node set and E is the edge set. The given information includes a feature
matrix X ∈ R

N×M which xi is a feature description for every node i, N is
the number of nodes and M is the dimension of input features; an adjacency
matrix A = Aij ∈ R

N×N , where Aij = Aji = 1 if node i and node j has a
link, otherwise Aij = Aji = 0; a labeling matrix Y ∈ R

N×K with K being the
number of classes. In the setting of semi-supervised learning, we have set YL

which includes all labeled nodes and set YU which includes all unlabeled nodes.
The size of YL is much smaller than the size of YU . The learned representation
is matrix X̄ ∈ R

N×F , where F is the dimension of output feature per node. The
prediction is matrix Z ∈ R

N×K , where Zij indicates the probability that node i
belongs to class j.

3.2 Graph Convolutional Networks

Graph convolutional network [9] generalizes the convolutional network into
graph-structured data and proposes an efficient layer-wise propagation rule. The
traditional GCN model contains the following components:

(1) Renormalization: Adding an self-loop to each node, which results in a
new adjacency matrix Ã = A + I where I is the identity matrix and the new
degree matrix D̃ with D̃ii =

∑
j Ãij . After that, symmetrically normalize Ã and

obtain Ãs = D̃− 1
2 ÃD̃− 1

2 .
(2) Graph Convolutional layer: The graph convolutional layer uses the prop-

agation rule:
H(l+1) = σ(ÃsH(l)W(l)) (1)
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where H(l) is the matrix of activations in the l-th layer and H(0) = X, H(L) = X̄
with L is the number of layers in the network, W(l) is a layer specific trainable
weight matrix in layer l, and σ(·) denotes an activation function, such as the
ReLU(·) = max(0, ·).

(3) Softmax cross-entropy loss: Applying a fully connected layer as the clas-
sifier to the learned representation X̄: Z = X̄WL, where WL ∈ R

F×K is a
trainable weight matrix of the fully connected layer. Then evaluates the softmax
cross-entropy loss over labeled nodes. The loss can be written as:

L =
∑

i∈YL

− ln(
eZiyi

∑
j eZij

) (2)

where YL is the set of labeled nodes and yi is the label of the i-th node.

4 Our Proposed Method

In semi-supervised learning, the number of labeled nodes is usually limit to
provide a reliable model selection, thus, the learned representation using only
the labeled data may be not robust for the ultimate classification task.

Observed that in graph-structured data connected nodes are likely to share
the same label, we propose to assign a high-confidence pseudo label for some
unlabeled nodes according to this property so that we can exploit more label
information encoded in the graph structure and enhance labeled data. More-
over, the large-margin principle is often used to train a robust classifier, thus,
we propose to adopt the large-margin softmax cross-entropy loss function [12]
instead of the original softmax function to help decrease the impact of noise in
the pseudo-label and produce even more robust representation.

4.1 Enhance Labeled Data

The underlying assumption in graph-based semi-supervised learning is the
smooth assumption, i.e., connected nodes likely to share the same label. With
this assumption, we can exploit more label information using the graph structure
information and produce a classification task related representation.

A simple method to mine the label information encoded in the graph struc-
ture for unlabeled nodes is label propagation [22]. The label propagation method
only takes the graph matrix A and the labeling matrix Y as input and the objec-
tive is to find a prediction matrix Ŷ ∈ R

N×K of the same size as the labeling
matrix Y by minimizing both fitting error and smooth regularization:
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Ŷ = arg min
Ŷ

C(Ŷ) (3)

= arg min
Ŷ

{||Ŷ − Y||22︸ ︷︷ ︸
fitting error

+α tr(Ŷ�LŶ)
︸ ︷︷ ︸
regularization

}

= arg min
Ŷ

{
∑

i∈YL

(Ŷi − Yi)2 + α

n∑

i,j

Aij(Ŷi − Ŷj)2}

where L is the graph laplacian matrix.
In Eq. (3), the fitting error term enforces the prediction matrix Ŷ to agree

with the label matrix Y, while the smooth regularization term enforces each
column of Ŷ to be smooth along the edges. The scalar α is a balancing parameter.

A closed-form solution of the unconstrained quadratic optimization problem
can be obtained by setting the derivative of the objective function to zero:

Ŷ = (I + αL)−1Y (4)

For small-scale data, we can simply use Eq. (4) to get the prediction of unla-
beled nodes. However, for large-scale data, Eq. (4) is time consuming because it
needs to compute the inverse of the matrix I+ αL. To address this problem, we
use Stochastic Gradient Descent (SGD) to solve Eq. (3).

Let

Ci(Ŷ) = α

n∑

j=1

Aij(Ŷi − Ŷj)2 + I(i) · (Ŷi − Yi)2 (5)

where I(i) = 1 if i ∈ YL, otherwise, I(i) = 0, i ∈ {1, 2, · · · , N} represents the
index of the chosen instance. It is easy to verify that E[∇Ci(Ŷ)] = 1

n∇C(Ŷ).
Therefore ∇Ci(Ŷ) is an unbiased estimator of 1

n∇C(Ŷ) where 1
n is a constant

given a graph. Hence, we can adopt SGD strategy to solve Ŷ by updating:

Ŷ(t+1) = Ŷ(t) − η∇Ci(Ŷ)

where the gradient ∇Ci(Ŷ) = αA�
i (Ŷi − Ŷj) + I(i) · (Ŷi − Yi). We adopt

the interesting stochastic label propagation method [11] to derive the gradient
efficiently. The element Ŷij in the learned prediction matrix Ŷ indicates the
probability of node i belongs to class j. For an unlabeled node i, if the maximum
Yij in Ŷi is greater than a threshold, we think the node i has a high confidence
in class j and add node i to the labeled node set YL. After this process, we derive
a larger labeled node set ỸL to learn a better representation.

4.2 Large-Margin Cross-Entropy Loss

Obviously the pseudo-label derived by the label propagation may consist of noise.
To make the learned representation robust, it is necessary to overcome the affect
caused by noise. Intuitively, if the decision boundary has a large margin to the
nearest training data point, the model turns out to be a robust classifier accord-
ing to margin theory. An additional benefit is that the large margin principle
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works as a regularizer and thus help avoid overfitting issues, which is particularly
useful when labeled data is limited. Thus, to learn a robust representation [12],
we use a generalization of the original softmax cross-entropy loss function termed
Large-Margin Cross-Entropy Loss.

Observed in GCN that Zij = X̄iWL
j . This can be reformulated as: Zij =

‖WL
j ‖ ‖X̄i‖ cos(θj) where θj is the angle between the vector WL

j and X̄i. Thus
the original softmax cross-entropy loss function can be rewritten as:

Li = − ln(
e‖WL

yi
‖ ‖X̄i‖ cos(θyi

)

∑
j e‖WL

j ‖ ‖X̄i‖ cos(θj)
) (6)

In RoGraph, we propose to use large-margin softmax instead of the orig-
inal softmax. For example, once an instance x with the label +1, the original
softmax is to force W�

1 x > W�
2 x, i.e., ‖W1‖ ‖x‖ cos(θ1) > ‖W2‖ ‖x‖ cos(θ2),

in order to classify x correctly. In contrast, the large-margin softmax want to
make the classification more rigorous in order to produce a large-margin deci-
sion boundary. Thus, the large-margin softmax requires ‖W1‖ ‖x‖ cos(mθ1) >
‖W2‖ ‖x‖ cos(θ2)(0 ≤ θ1 ≤ π

m ) where m is a positive integer.
Observed that the following inequality always holds:

‖W1‖ ‖x‖ cos(θ1) ≥ ‖W1‖ ‖x‖ cos(mθ1) > ‖W2‖ ‖x‖ cos(θ2) (7)

Therefore, we have ‖W1‖ ‖x‖ cos(θ1) > ‖W2‖ ‖x‖ cos(θ2). Therefore, the new
classification criteria correctly classifies x, and produces a more rigorous decision
boundary. Figure 3 illustrates a geometric interpretation for the advantage of the
large-margin softmax function [12].

Fig. 3. Illustrative geometric interpretation. The left (right) presents the original soft-
max (large-margin softmax).

Formally, the large-margin softmax cross-entropy loss is defined as:

Li = − ln(
e‖WL

yi
‖ ‖X̄i‖ φ(θyi

)

e‖WL
yi

‖ ‖X̄i‖ φ(θyi
) +

∑
j �=yi

e‖WL
j ‖ ‖X̄i‖ φ(θj)

) (8)
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where

φ(θ) =

{
cos(mθ), 0 ≤ θ ≤ π

m

D(θ), π
m ≤ θ ≤ π

and D(θ) is a monotonically decreasing function, D( π
m ) = cos( π

m ).
According to the work in [12], we let φ(θ) = (−1)k cos(mθ) − 2k, θ ∈

[kπ
m , (k+1)π

m ] where k ∈ [0,m − 1]. The m is related to the classification mar-
gin. The larger the value m is, the larger the classification margin becomes.
Then, we have the final loss function

L-Softmax(X̄,WL) =
∑

i∈ỸL

Li (9)

where ỸL is the set of extended labeled nodes after label propagation.
In short summary, the proposed RoGraph includes these steps: we first

propagate the label information from the labeled nodes to unlabeled nodes using
the graph structure. Then, we renormalize the adjacency matrix and use graph
convolutional layers to produce the representation of each node. Finally, we add
a fully connected layer to the learned representation as the classifier and adopt
the large-margin cross-entropy loss to derive the final representation.

5 Experiments

In this section, we evaluate the proposed RoGraph in benchmark network
datasets and show the effectiveness of our proposal. Besides, we give the loss
vs. epoch in both training set and validation set.

5.1 Experimental Setup

Cora, CiteSeer and PubMed [15] are three benchmark network datasets. The
statistics of datasets are summarized in Table 1. In these networks, nodes are
documents and edges are citation links. Each document is represented by a
sparse 0/1 feature vector. Citation links between documents constitute a 0/1
undirected graph. If vi cites vj or vice versa, then Aij = Aji = 1, otherwise
Aij = Aji = 0. Each document has a class label. For training, we only use 20
labels per class and all feature vectors for each dataset.

Table 1. The statistics of experimental network datasets.

Dataset Nodes Edges Classes Features

CiteSeer 3,327 4,732 6 3,703

Cora 2,708 5,429 7 1,433

PubMed 19,717 44,338 3 500
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For the used datasets, we trained RoGraph with two graph convolutional
layers and a fully connected layer and evaluate the prediction accuracy on a test
set of 1, 000 labeled examples. We train our models on all three datasets for a
maximum of 200 epochs using Adam [8] with a learning rate 0.01, 0.5 dropout
rate, 5 × 10−4 weight decay rate and early stopping with a window size of 10.
We use a hidden layer of 16 units and we initialize weights using the Xavier
initialization [4]. The threshold of assigning a pseudo-label to unlabeled nodes
is set to 0.8 for all the experiments. The parameter m is fixed to 2 for the
large-margin softmax loss on all the experiments.

5.2 Compared Results

We compared the proposed RoGraph with many state-of-the-art methods [9],
including label propagation (LP) [22], semi-supervised embedding (SemiEmb)
[19], manifold regularization (ManiReg) [1], skip-gram based graph embeddings
(DeepWalk) [14], iterative classification algorithm (ICA) [15] and Planetoid [20].

We further compare against with conventional GCN. For GCN, the hyper-
parameters are same with RoGraph. To validate the effectiveness of the
two proposed technologies separately, we also compare with two variants
of RoGraph, i.e., RoGraph-P (RoGraph with pseudo-label only) and
RoGraph-M (RoGraph with L-Softmax only).

The experimental results are summarized in Table 2. For GCN, RoGraph-
P, RoGraph-M, RoGraph, we reported the mean accuracy over five random
splits. Results for all other methods are taken from [9].

From Table 2, we can see that, on all the datasets, RoGraph achieves a clear
performance gain over the GCN method. It demonstrates the effectiveness of the
proposed RoGraph. In addition, RoGraph-P and RoGraph-M also achieve
better results than GCN but are not as good as RoGraph. It indicates that the
two introduced technologies (label propagation and large-margin principle) are
both useful to robust representation.

Table 2. Summary of results in terms of classification accuracy.

Method Citeseer Cora Pubmed

MainReg 60.1 59.5 70.7

SemiEmb 59.6 59.0 71.1

LP 45.3 68.0 63.0

DeepWalk 43.2 67.2 65.3

ICA 69.1 75.1 73.9

Planetoid 64.7 75.7 77.2

GCN 69.6 80.8 77.8

RoGraph-P 72.4 82.4 77.8

RoGraph-M 71.4 83.2 78.1

RoGraph 73.1 83.8 79.1
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Fig. 4. The confidence of assigning a pseudo-label to unlabeled nodes.

5.3 The Confidence of Assigning Pseudo-Label

In this section, we show the confidence of assigning a pseudo-label to unlabeled
nodes after label propagation. For each unlabeled node i, The confidence of
assigning a pseudo-label is the maximum number in Ŷi after row-normalization.
The results for all three datasets are shown in Fig. 4. From Fig. 4, we can see that
even we set the threshold as 0.8, we can still give a pseudo-label to about half of
the unlabeled nodes. This demonstrates that the label-propagation process does
help us exploit more label information encoded in the graph structure.

5.4 Loss vs. Epoch

Figure 5 illustrates the relationship between the loss and the epoch on Cora
dataset (On the other two datasets, we achieve similar results). One can see that
the proposed RoGraph not only achieves the lowest loss in both training set
and validation set but also needs fewer epochs to converge than traditional GCN,
though we adopt a harder loss function. This is consistent with the numerical
results in Table 2 and also verifies the effectiveness of the proposal.

Fig. 5. Loss vs. epoch on Cora. The left (right) presents training (validation) loss.
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6 Discussion

Graph representation learning has attracted significant attention in recent years.
Meantime, the large-margin principle is also widely used to train a robust classi-
fier and help avoid overfitting issues. However, to our best knowledge, the large-
margin principle has rarely been applied to graph representation learning. In
this paper, we successfully fill this blank by applying the large-margin principle
to GCN and show the effectiveness through empirical results. It demonstrates
that the large-margin principle can work well with graph-based methods.

We think that one key reason for why the large-margin principle can work
well with graph-based methods is that, the underlying assumption for the large-
margin principle (large-margin assumption) and graph-based methods (manifold
assumption or smooth assumption) are kind of complementary. Specifically, the
manifold assumption requires the learned representation of nodes in the same
classes are similar to each other. It emphasizes that the data closeness within
the same classes, whereas ignores the data separability between different classes.
By contrast, the large-margin assumption requires the learned representation of
nodes between different classes have a large margin. It emphasizes the data sep-
arability between different classes but ignores the data closeness. Therefore, by
taking the two assumptions into account simultaneously, one can encourage both
the inter-class separability and intra-class compactness between learned repre-
sentations for graphs and leads to a better decision boundary. It is innovative
for the algorithm design of graph representation learning.

7 Conclusion

We have introduced a novel and easy-to-implement approach RoGraph
for robust semi-supervised representation learning on graph-structured data.
RoGraph leverages label propagation to obtain high-confidence pseudo-label
for unlabeled nodes, which can exploit label information encoded in the graph
structure sufficiently. Besides, we adopt the large-margin softmax cross-entropy
loss function instead of the traditional softmax function to produce a more rig-
orous decision boundary. Both of these technologies can help produce a robust
representation. Experiments on a number of benchmark network datasets suggest
that the proposed RoGraph achieves better results than many state-of-the-art
methods. In future, we will extend the proposed strategy to edge representation
rather than only node representation in this work.
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Abstract. A classifier with self-organizing maps (SOM) as feature
detectors resembles the biological visual system learning mechanism.
Each SOM feature detector is defined over a limited domain of view-
ing condition, such that its nodes instantiate the presence of an object’s
part in the corresponding domain. The weights of the SOM nodes are
trained via competition, similar to the development of the visual system.
We argue that to approach human pattern recognition performance, we
must look for a more accurate model of the visual system, not only in
terms of the architecture, but also on how the node connections are
developed, such as that of the SOM’s feature detectors. This work char-
acterizes SOM as feature detectors to test the similarity of its response
vis-á-vis the response of the biological visual system, and to benchmark
its performance vis-á-vis the performance of the traditional feature detec-
tor convolution filter. We use various input environments i.e. inputs with
limited patterns, inputs with various input perturbation and inputs with
complex objects, as test cases for evaluation.

Keywords: Feature detectors · Self-organizing maps ·
Multilayer perceptron · Pattern recognition

1 Introduction

The ability of living organisms to detect salient or target objects regardless of
the background or lighting condition inspires most of the recent computational
models for pattern recognition. For example, the results of the experiments to
map the functional architecture of the monkey and cat’s visual system [3,14,16]
have been the bases for the layered architecture of successful machine vision
systems [8,12,23]. Specifically, the Neocognitron [9,10] and the convolutional
neural network (CNN) [17] networks rely on their layered architecture that are
directly analog of the complex connection of neurons in the visual system.

With the success of CNN in pattern recognition [20], several applications
have been proposed which leverage on the representational power of the trained
feature detectors and address pattern recognition problems e.g. natural face
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detection and recognition [19,22] and action recognition [2,24]. Recently, the
Mask Regional-CNN [13] has shown to have promising performance in automatic
object detection and segmentation. These current successes in such tasks raise
the question: is pattern recognition a solved problem?

In this work, we argue that to approach the visual system pattern recognition
performance, the computational model should consider the visual system behav-
ior, including the manner in which the receptive fields are developed. The work
in [5] proposes self-organizing maps (SOM)-based feature detectors for pattern
recognition which exhibit competition-based development of its weight akin to
the development of connection between neurons of the visual cortex [3,15]. They
showed that indeed SOM feature detectors could be used in pattern recognition.

However, SOM feature detectors [5] performance remains to be inconclusive
as its response to various cases e.g. constrained input environment, input per-
turbation and complex patterns has not been investigated, thus the proposed
network is more of a blackbox. Evidences [3,15] show that the development of
the visual system receptive fields, both simple and complex, have significant
dependence on the kind of environment during its early development. That is,
receptors which are exposed to a specific pattern, e.g. horizontal lines of different
width, color, length, small distortion and the like, for a long time will develop
receptors which are highly specialized to detect horizontal lines. The previous
work [5] also has no verification that their proposed SOM feature detectors
indeed capture the pattern information, i.e. the spatial relationship of pixels
that form the patterns in the input image, as opposed to the convolution filter
which was verified and quantified in [6].

This work examines the performance of SOM as the basic feature detectors for
pattern recognition under various constrained and perturbed input environment.
The classification performance of the feature detectors are determined and mis-
classification of patterns are carefully observed vis-á-vis the type of the training
input patterns. In addition, the SOM feature detectors ability to extract pattern
information is also verified by gradually removing the pixel spatial relationship
of the input pattern. The classification performance of the two feature detectors
are evaluated using simple (MNIST [17]) and complex patterns (vehicle dataset).
MNIST is commonly used to evaluate the potential of several proposed pattern
recognition algorithms, e.g. [4,17,21]. The following are the contributions of our
work:

– We verified that the proposed SOM feature detectors exhibit similar decline in
pattern recognition performance of the visual system, when trained with lim-
ited input pattern during the training phase. Towards biological visual system
pattern recognition performance, we argue that it is important to have a simi-
lar visual system characteristics, not only in terms of the layered architecture,
but also in terms of how the connections are developed. We discovered that
increasing the number and proper positioning of the receptive fields result in
robustness of the classifier from a set of feature detectors exposed to limited
input pattern.
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– We show that for various input perturbation, the classifier using SOM feature
detector was able to correctly classify the input. We showed that the canonic
forms help in the equivariance as the input conditions change and the entity
is rotated over the appearance manifold or the SOM receptive field. Although
convolution filter has better performance, the accuracy of SOM feature detec-
tors at this early stage shows potential.

2 Related Works

Early studies [3,15] revealed that the development of the visual system exhibits
competition by limiting the input patterns that pass through the visual path-
way during their development. For example in an experiment [15] which sutured
the left eyelid of a kitten from birth, results show profound cell atrophy in
layers receiving light input from the covered eye. A similar experiment was per-
formed [3] which sutured the left eye of an infant monkey to observe the effect in
the development of its striate cortex. Their experiment showed that the popu-
lation of cells favors the open eye and the earlier and longer the exposure of the
open eye, the greater shift in eye preference is observed. Further investigation
reveals that eyes which are exposed to a certain pattern e.g. vertical stripes have
more cells orientation like the input pattern.

Several feature detectors which exhibit competition during their development
have been proposed as an alternative to convolution filters. SOM nodes are used
as the feature map nodes in CNN architecture in [18]. They additionally intro-
duce algorithm which determine the locations of high density data. Another
work is proposed by Arevalo et al. [1] which uses topographic independent com-
ponent analysis (TICA) for CNN learning. Their system is used in detecting
basal cell carcinoma in medical images. A semi-supervised learning proposed
by Dong et al. [7] uses Sparse Laplacian Filtering learning (SLFL) during the
training of the convolution layer. This allows much less data during the network
training. Their proposed work is applied to vehicle type classification which takes
in high resolution video frames. These systems, however, presented the feature
detectors in black box, i.e. did not show any verification as to how these extract
the pattern information.

Current image pattern recognition systems [13,22,24] based on convolution
filters show promising performance and demonstrate applicability to several pat-
tern recognition tasks e.g. speech and text recognition. We argue that to continue
to approach human-level pattern recognition performance, we should probe vari-
ous computational models that better represent the biological visual system. We
investigate further in this paper SOM as competition-based feature detectors for
pattern recognition.

3 Test Setup

Three experiments are conducted in this work. The first experiment simulates
the constrained input environment conducted to observe the response of the
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Fig. 1. Pattern recognition with SOM feature detectors (left). Six (not explicitly
shown) SOMs are used as feature detector. The output of the feature detector is a
similarity vector whose elements are equal to the cosine similarity of the node weights
and the pixels in the corresponding limited domain. Shown at the right is the arrange-
ment of the limited domains for each SOM feature detector.

visual system. It uses limited input pattern in training the feature detectors
namely (a) vertical only, (b) horizontal only, and (c) circular only. The second
experiment determines the robustness of the SOM feature detectors to input
perturbation particularly (a) rotation, (b) variation of pattern size and stroke
thickness and (c) affine transformation. The third experiment observes the pat-
tern extraction capability of the feature detectors. The spatial relationships of
the pixels which form the digit, e.g. curves and edges, are gradually removed by
randomly repositioning the pixels. Note that the repositioning is random with
respect to the image, but the new pixel arrangement is fixed for the training and
test images [6].

3.1 Architecture

Shown in Fig. 1 (left) the architecture with SOM feature detectors under test.
The map size of these SOM feature detectors is set to have 4×4 nodes. Six SOMs
are used as the feature detectors which are trained separately from the classifier.
The SOMs are arranged such that the limited domain or the receptive field for
each SOM are focused at the center of the image as illustrated in Fig. 1 (right).
This type of limited domain arrangement is used as visual system receptive fields
encode the information at the center of the scene [11].

The performance of this architecture is then compared to the conventional
feature detector with a single layer of convolution filters and mean pooling ker-
nels. Twenty (20) 9 × 9 convolution kernels and 20 mean pooling kernel are
used for the conventional architecture. A simple CNN architecture is used as
we are after the comparison of the basic behavior of the two feature detectors,
i.e. comparing deeper CNN will be unfair for the SOM feature detector. For
both networks using convolution filters (CNN) and SOM feature detectors, the
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Fig. 2. Training sequence for the evaluation of the feature detector trained in lim-
ited input environment. The feature detectors are first trained using specific patterns.
Afterwards, the feature detector weights are frozen and the classifier training proceeds.
In the classifier training, input patterns are unconstrained.

number of hidden nodes in the fully-connected layer is 256. For digit classifica-
tion task, the output node is 10 while for vehicle classification task, the output
node is 3.

3.2 Training and Testing

In the first experiment, the feature detectors are trained separately from the
classifier to allow the learning on limited pattern i.e. vertical, horizontal and
circular patterns (first training). Afterwards, the learned feature detector weights
are frozen, and the classifier are then trained to classify the handwritten digits
(second training) as illustrated in Fig. 2. MNIST test set is used to evaluate the
performance of this experiment.

In the second experiment, the feature detectors are trained together with
the classifier using the MNIST training set for 60 epochs and batch size of 256.
Afterwards, we use the test sets called the rotated-NIST, the size-NIST and the
Affine-NIST1 to evaluate the robustness of the SOM feature detectors and to
compare it with the convolution filter. The rotated-NIST are simply the MNIST
test set randomly rotated from −15◦ to 15◦, the size-NIST are generated from
the test set with varying dilation and resizing of the digit.

Finally, in the third experiment, the feature detectors are trained and the
classifier using the MNIST for the digit classification and the vehicle training set
for the vehicle classification. For each randomization of the pixel position (please
refer to [6]), the two architectures are retrained using the new set repositioned
pixels. In this way, we ensure that the pixel values as attributes of the dataset
are preserved, and only the spatial correlation of the pixel forming the patterns
are removed.

1 Downloaded from: https://www.cs.toronto.edu/∼tijmen/affNIST/.

https://www.cs.toronto.edu/~tijmen/affNIST/
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Fig. 3. The performance of the pattern recognition models with SOM feature detectors
whose receptive fields are the SOM and the convolution filters. The average accuracies
in classifying the MNIST digits using unconstrained input pattern are significantly
higher when the feature detectors are trained using limited patterns. Also shown the
commonly misclassified pairs digits 5 and 8 and digits 4 and 9.

4 Results and Analysis

4.1 Performance in Constrained Input Environment

Generally, as summarized in Fig. 3(a), the accuracies of SOM feature detectors
and the convolution filter feature detector show expected decrease in classifica-
tion ability when the feature detectors are trained with limited patterns. This
was first observed in the visual system which manifests as cell atrophy when the
visual receptors are exposed to limited environment during its early development
stage [3,15]. The results also imply that both types of feature detectors exhibit
similar response as that of the biological system visual receptors developed in a
constrained environment.

Interestingly, however, for SOM feature detectors whose receptive fields are
distributed all over the input image (shown in Fig. 4 (left)), the ability to iden-
tify the input pattern seems to be robust, see Fig. 4 (right), despite the limited
training pattern of the feature detectors, presumably due to the richness of the
sampled viewing domain or receptive fields. In the confusion matrix of these



150 M. O. Cordel II and A. P. Azcarraga

Fig. 4. Another experiment is conducted using distributed receptive fields as opposed
to the previous center-focused receptive fields. Although each SOM has limited domain
in the input, the distributed domain allows the architecture to look at the other parts of
the input pattern rather than concentrating at the center. The respective average accu-
racies (right) for classifying all the digits trained using unconstrained and constrained
patterns show that distributing the receptive field of the feature detector increases the
robustness to the dependency to limited input patterns.

three evaluation setups, digit pair 5 and 8; and digit pair 4 and 9 are often
confused and misclassified in the center-focused SOM receptive fields and con-
volution filter receptive fields, but not in distributed SOM receptive fields. The
misclassification between the digit pairs are more common in center-focused
SOM feature detectors and convolution filter (refer to Fig. 3(b) and (c)). Intu-
itively, these pairs (digits 5 and 8, digits 4 and 9) are very similar when the
horizontal or vertical components are missing.

Both SOM and the convolution filter as feature detector exhibits similar
behavior as biological detectors, such that when the detectors are exposed to lim-
ited pattern, the pattern recognition ability drops significantly. However, when
SOM feature detectors have distributed receptive field, the classifier does not
experience significant decrease in pattern recognition (see the three graphs of
Fig. 3 A’) – which implies that this type of receptive field arrangement over-
comes the limitation of the biological visual system which only develops feature
detectors depending on the input environment. For our experiments, the classi-
fier whose feature detectors are arranged to focus on the center details, shows
dependence on what the feature detectors have seen. For the case where the
SOM feature detectors are distributed across the input pattern, the classifier
has more viewing points or spatial sampling which add to the classifier input
information.

Using the commonly confused input digit pair 5 and 8, we compared the fea-
ture maps of the digit pairs for the two receptive field arrangements, shown in
Fig. 5 for the distributed and in Fig. 6 center-focused receptive fields. These fea-
ture maps are rendered from the element-by-element multiplication of the input
pattern and the node’s weight vector with the highest response or activation.
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Fig. 5. The feature maps from distributed receptive fields (or arrangement A’) trained
using the 10 digits from MNIST (first two rows), trained using vertical patterns only
(3rd to 4th rows) and trained using horizontal patterns only (5th to last row). The
feature maps are formed by rendering the input image (digits 5 and 8) and the weight
vector of the corresponding receptive field node with the highest response. The uncon-
strained feature maps of 8 and 5 has significant difference as compared with the corre-
sponding constrained feature maps.

Note that rendered portion in Figs. 5 and 6 which are near yellow implies high
value of similarity of the input pattern and the canonical weight value, while
the feature map portions which are near blue means approaching zero similar-
ity. In the test setup when the training is unconstrained, using both receptive
field arrangements, the feature maps of 5 and 8 with significant activation differ
visually when rendered, see the first two rows of Figs. 5 and 6.

For the constrained input pattern however, the difference between the ren-
dered feature maps of 5 and 8 decreases significantly for the center-focused recep-
tive field (see Fig. 6 trained with vertical and horizontal patterns) but not in
distributed receptive field (see Fig. 5 trained with vertical and horizontal pat-
terns) – thus, the classifier with center-focused receptive fields frequently fails
to discriminate the input pattern of digits 5 and 8.

4.2 Performance in Perturbed Input Patterns

SOM as feature detectors was able to allow the classifier to detect the input
pattern with small random rotation from −15◦ to 15◦. For distributed receptive
fields the accuracy is 97.97% and for the center-focused receptive fields the accu-
racy is 89.39% both of which are comparable to the performance when there is
input no rotation. This implies that SOM feature detectors performance is robust
to small rotation. For various stroke size and thickness, however, a significant
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Fig. 6. The feature maps from center-focused feature detectors (or arrangement B)
trained using the 10 digits from MNIST (first two rows), trained using vertical patterns
only (3rd to 4th rows) and trained using horizontal patterns only (5th to last row).
The unconstrained feature maps of 8 and 5 has significant difference as compared with
the corresponding constrained feature maps.

Table 1. Average accuracy of 4 × 4 SOM feature detectors with distributed receptive
field (A’), center-focused receptive field (B) and convolution filter feature detectors,
under for various perturbed and complex patterns

Dataset SOM (A’) SOM (B) Conv filter

Perturbed NIST (small rotation) 97.97% 89.39% 96.08%

Perturbed NIST (stroke thickness) 72.59% 62.80% 96.98%

Affine-NIST 10.41% 9.25% 39.38%

decrease in classification accuracy is seen for both receptive field arrangements.
For the distributed receptive fields, the accuracy drops to 72.59% and for the
center-focused receptive fields, the accuracy becomes 62.80% only. This perfor-
mance becomes even worse when the input patterns went through affine trans-
formation. For both arrangements of receptive fields for SOM feature detectors,
the accuracy was no better than chance (Table 1).

For small rotation the convolution filter was able to detect 96.08%, which is
lower than the accuracy of the distributed SOM receptive field. For various size
and thickness however, the convolution filters were able to extract the needed
information for the classifier to achieve the accuracy of 96.98%. Finally, for the
Affine-NIST, convolution filters show accuracy of 39.38% which is much better
than the SOM feature detectors.
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Fig. 7. As the spatial correlation of the (a) MNIST and the (b) vehicle datasets are
gradually removed, the primitive pattern information e.g. edges and corners are also
gradually removed. The plot shows gradual decrease in CNN performance using con-
volution filter as the pattern information from left to right are gradually removed for
both datasets. The classifier using SOM as feature detectors shows consistent accuracy
even in the absence of the input pattern.

4.3 Performance in Complex Vehicle Dataset

We also verify the performance of SOM feature detectors in complex dataset i.e.
vehicle dataset. In addition to this, we gradually remove the pattern from the
input image and observe the classification performance of SOM A’ and SOM
B. Previous work [6] shows that by gradually randomizing the position of the
pixels in an image, while fixing these new randomized position of the pixels
for all the images in the dataset, the primitive pattern information e.g. edges
and corners, are removed while retaining the pixel value information as the only
image attribute.

Figure 7 shows the classification accuracy of SOM feature detectors as for
(a) MNIST and (b) vehicle datasets as the pixel positions are randomized to
remove the resemblance of the object, from left to right. The convolution filter
feature detector of the CNN shows this dependence to the spatial correlation of
the pixel forming the edges as shown by the gradual decrease in the classification
accuracy for both the MNIST and vehicle dataset. The consistent performance
of the classifier using SOM as feature detector implies that SOM feature detector
is robust to such removal of spatial correlation of pixels. However, as R increases
from left to right, no canonical information, as to the kind of input patterns,
could be obtained when the weights of the SOM nodes are rendered.

5 Discussion

We performed the evaluation of SOM as feature detectors for different input
environment conditions. We showed that both the SOM and convolution filters
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suffers misclassification if these detectors are trained under constrained input
environment. Particularly, feature detectors trained on vertical patterns could
only extract vertical patterns and feature detectors trained on horizontal pat-
terns could only extract horizontal patterns from the input image, such that
any differentiating traits between two categories other than the vertical (or the
horizontal) pattern, are not regarded. Although SOM feature detectors exhibit
this behavior of the biological feature detectors, we discovered that the arrange-
ment of the receptive fields of SOM feature detectors allows the classifier to be
robust to the removal of the primitive patterns, e.g. edges and curves, in the
input image.

SOM feature detectors also have better robustness to small rotation of the
input pattern as compared to the convolution filter. However, for various stroke
sizes and thickness and affine transformation of the input pattern, the convo-
lution filter shows better performance. SOM feature detectors show promising
results however when the resemblance of primitive patterns e.g. edges and curves,
are slowly removed.

The remarkable performance of SOM feature detectors over the conventional
convolution filters exhibits its potential. SOM feature detectors are still far from
perfect. Examining the different receptive field arrangements and tweaking the
connection of this feature detector to fit the dynamic routing algorithm [21]
could help SOM feature detectors reach its full potential.
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Abstract. Through mapping network nodes into low-dimensional vec-
tors, network embedding methods have shown promising results for
many downstream tasks, such as link prediction and node classifica-
tion. Recently, attributed network embedding obtained progress on the
network associated with node attributes. However, it is insufficient to
ignore the attributes of the context nodes, which are also helpful for node
proximity. In this paper, we propose a new attributed network embed-
ding method named PCANE (Preserving Context Attributes for Network
Embedding). PCANE preserves both network structure and the context
attributes by optimizing new object functions, and further produces more
informative node representations. PCANE++ is also proposed to repre-
sent the isolated nodes, and is better to represent high degree nodes.
Experiments on 3 real-world attributed networks show that our methods
outperform the other network embedding methods on link prediction and
node classification tasks.

1 Introduction

Recently, some plain network (with only links and nodes) embedding methods
were proposed and achieved substantial improvements, such as DeepWalk [12]
and Node2Vec [1]. These methods first sampled a number of node sequences
from the network based on random walk, which presented structural regularities
of the network. Then they tried to preserve the context nodes to the source
nodes in the sequences. Besides links, the rich information associated to the
nodes can also help to produce more informative network embeddings, including
attribute [6], label [10] and so on [16,17]. These auxiliary information can be
considered as some types of attributes.

However, the existing attributed network embedding methods [6,10,17] can
only utilize the attributes of the source node, so called source attributes, but
ignored the attributes of the context nodes, named context attributes. Figure 1
shows some examples of a citation network. With the title attributes of A along,
we only acquire that A is about feature learning of network. If the attributes of B,
C, D and E are used, we can reasonable infer A may be related to random walk
and social networks, and it’s true. Note that a more recently research SEANO [5]
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can model the attributes of the adjacent nodes, such as B and C. However, they
are not able to utilize the attributes of other context nodes, such as D and E.

Fig. 1. Samples of a citation network. The citation relationship and the paper are
regarded as the link and the node respectively. The title words are the attributes of
the node.

In this paper, we propose two models called PCANE (Preserving Context
Attributes for Network Embedding) and PCANE++ to learn node represen-
tations of attributed network. We first apply random walk based strategy to
generate context nodes for the source node, which contain the high order struc-
ture information of the network to the source node. Second, we propose PCANE,
which has two objective functions to preserve the context nodes and the context
attributes respectively. Finally, some networks may contain isolated nodes that
have only attributes but no links. These nodes will not be trained by PCANE. We
therefore propose PCANE++, which directly encodes attributes to the source
vectors. PCANE++ can thus cope with isolated nodes and enhance the effect of
the source attributes.

In summary, the contributions of this paper are as follows.

– We propose PCANE and PCANE++ for attributed network embedding.
The ability of preserving context attributes can help to produce better node
embeddings.

– We conduct extensive experiments on 3 open datasets with two tasks of link
prediction and node classification. Empirical results demonstrate the effec-
tiveness and rationality of PCANE and PCANE++.

The rest of the paper is organized as follows. Section 2 discusses related
works and our motivation. Section 3 introduces problem definition. In Sect. 4,
we present our methods for attribute network embedding. The experiments and
analysis are outlined in Sect. 5.

2 Related Works and Our Motivation

2.1 Related Work

One of the most fundamental problems in network analysis is network embed-
ding, that focuses on embedding a network into a low-dimensional vector
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space. The plain network was investigated first. DeepWalk [12] used local node
sequences obtained from truncated random walks to learn latent representations
by treating walks as the equivalent of sentences. Node2Vec [1] refined the way
to generate node sequence by balancing breadth-first sampling and depth-first
sampling. Line [13] designed new object functions by preserving local and global
structures. The method is able to scale for real world information networks which
usually contain millions of nodes.

Recently, some researchers found attributes of nodes can help to produce
more informative representations. SEANO [5] is designed for partially labeled
attributed network. They encoded the attributes of the source node and its adja-
cent neighbor nodes, and then jointly decoded the source label and the neighbor
nodes. The most related work to our method is ASNE [6]. In their work, each
node was mapped to two vectors, an ID vector for encoding the structure infor-
mation and an attribute vector for encoding its attributes. Then the two vectors
were jointed optimized to maximize the likelihood of preserving neighborhood
nodes. However, SEANO [5] cannot utilize high-order context attributes and
ASNE [6] cannot use any context attributes at all.

2.2 Our Motivation

Most plain network embedding methods aim to preserve the structure of the
original network, by maximizing the likelihood of the context nodes to their
source node, as in the top of Fig. 2(a). Afterwards, some attributed network
embedding methods (such as ASNE [6] followed the objective, but integrated
the source attributes when projecting the source vector, as in the bottom of
Fig. 2(a).

(a) Existing methods. (b) Our methods.

Fig. 2. An illustration of the existing network embedding methods and our methods.
v and u denotes a source node and one of its context nodes respectively. a v and a u
denote the attributes of v and u respectively.
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We can refer to the underlying idea of network embedding: if the high-
dimensional information of the original network can be recovered from the
learned embeddings, then the embeddings should contain all necessary network
information for downstream tasks. For a plain network, preserving the context
nodes indeed aims to recover the node topology structure. ASNE still follows the
objective when embedding attributed network. Hence, no matter how strong the
learning algorithm is, the global attributes will be forever lost since it is not able
to recover any attribute information from the vectors. As in Fig. 2(b), PCANE
and PCANE++ try to predict both the context nodes and their attributes. The
additional objective to predict the context attributes can be considered as apply-
ing some extra constrains on v’s embedding. As a result, our methods are able
to learn higher quality vectors with richer information.

3 Problem Definition

We formally define the attributed network in Definition 1.

Definition 1 (Attributed Network). An attributed network is defined as
G = (V,E, T,A), where V is the set of nodes, each corresponding to a data
object; E is the set of links between the nodes, each corresponding to a relation-
ship between two nodes; T is the attribute type set; A is the set of all discrete
attribute values; Each attribute value a ∈ A is corresponding to a type T (a) ∈ T .
Each node v ∈ V is associated with several attribute values A(v). Each e ∈ E
is an ordered pair e = (u, v) where u, v ∈ V and is associated with a weight
wuv > 0, which denotes the strength of the edge.

The notation differs from [6]’s definition by adding type T , which will be
used to preserve the context attributes. PCANE and PCANE++ can be applied
to any (un)directed, (un)weighted network. For undirected network, for e =
(u, v) ∈ E, there must be an e′ = (v, u) ∈ E. For unweighted network, every wuv

is constant 1.
We define the problem of attributed network embedding as follows.

Definition 2 (Attributed Network Embedding). Given an attributed net-
work G = (V,E, T,A), the problem of attributed network embedding is to embed
each v ∈ V to a low-dimensional vector space Rd, where d << |V |. In the map-
ping, the network structure and network attributes are preserved.

4 Proposed Method

In this section, we first introduce the PCANE model which is able to preserve the
network structure and context attributes. Second, we describe the PCANE++
model, an modification to the PCANE model, which can cope with isolated
nodes and enhance the importance of source attributes.
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4.1 The PCANE Model

Structure Modeling. First, we apply random walks to the network V to obtain
truncated node sequences. The node sequences contain the structure information
of the network. In the node sequences, for a source node v ∈ V , its neighbor-
hood nodes within certain steps are regarded as the context nodes of v, denoted
as N(v) ⊂ V . We use simple uniform sampling strategy, the same as Deep-
walk [12]. Our method can also use more complex biased sampling strategy,
such as Node2vec [1]. But in practice, we find minor improvements.

Similar to [1,8,12], we propose to maximize the likelihood of the context
nodes given a source node. The underline idea is that the source nodes share
similar context nodes should be close in vector space. By assuming conditional
independence of the source-context node pairs, we maximize the following objec-
tive, as in Eq. 1.

O1 =
∏

v∈V

∏

u∈N(v)

p1(u|v) (1)

We define the conditional probability of source-context nodes with a softmax
function.

p1(u|v) =
exp(f(v) · s(u))∑

k∈V

exp(f(v) · s(k))
(2)

f and s are the mapping functions from nodes to the source embeddings and
context structure embeddings respectively. Equivalently, f and s are real-value
matrices with size |V | ∗d, where each row is corresponding a node and d denotes
the dimension of the vectors.

Context Attribute Modeling. We aim to preserve the attributes of the con-
text nodes here. The attributes of the source vector is of course very important
too. However, a source node could be the context node of itself during random
walk sampling. Hence, for linked nodes, we have already preserve the source
attributes implicitly. Since the context nodes is obtained via random walk, our
methods can preserve the high-order context attributes.

Similar to structure modeling, we aim to maximize the likelihood of preserv-
ing the attributes of all the context nodes.

O2 =
∏

v∈V

∏

u∈N(v)

∏

a∈A(u)

p2(a|v) (3)

By optimizing Eq. 2, source nodes with similar context attributes will be closer
in vector space. We define the conditional probability of p(a|v) as the softmax
function below, where g is the mapping function from attributes to the context
attribute embeddings. Equivalently, g is a real-value matrix with size |A| ∗ d,
where each row is corresponding to a node.

p2(a|v) =
exp(f(v) · g(a))∑

k∈V andT (k)=T (a)

exp(f(v) · g(k))
(4)
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Maximizing Eq. 3 actually has two effects: to enhance the similarity between
a source node v and its context attributes, as well as weaken that between v
and other attributes. Note that the denominator is not the whole attribute set,
but the attributes of the same type to a. In general, to enhance the similarity
of one type of attributes should not affect that of the other types. For exam-
ple, there are two types of attributes in a friendship network, the gender and
the career. If a person has the attribute gender-male, then the probability of
gender-female should be zero, but the probability of career-teacher should not
be influenced. The other advantage of the design is to reduce the calculation cost
in the denominator.

4.2 PCANE++: Encoding the Source Attributes Explicitly

Since a source node can be the context node of itself, PCANE has already
modeled the source attributes implicitly. However, sometimes it is still necessary
to encode the source attributes explicitly. First, some attributed networks may
contain some isolated nodes with only attributes but no links. The random walk
sampling strategy will produce no context nodes, and hence no context attributes
for these nodes. Therefore, PCANE can not even model the source attributes for
these nodes. Second, it is difficult to sample the source node as its own context
node if the node degree is large or the network is dense, since the walker can
easily walks faraway from the source node. Hence, source attributes may not be
utilized efficiently. Based on the above considerations, we propose PCANE++,
which integrates the source attributes explicitly to the source node. PCANE++
can better cope with isolated nodes and highlight the source attributes.

The basic idea is to project the source attributes of v to a separate vector
c(v) ∈ R

d2 , and then concatenate it with original source vector f(v) to obtain
the new source vector f++(v).

f++(v) =
[
f(v)
c(v)

]

Then we replace f(v) with f++(v) in Eqs. 2 and 4, and leave Eqs. 1 and 3
unchanged. To make the dot product in Eqs. 2 and 4 plausible, we define the
dimension of f and c in PCANE++ as d1 and d2 where d1 + d2 = d.

To build c(v), we first define a mapping h from attribute a ∈ A to source
attribute vector h(a) ∈ R

d2 . Equivalently, h is a real-value matrix with dimension
|A| ∗ d2. c(v) is define as the summation of v’s source attribute vectors.

c(v) =
∑

a∈A(v)

h(a)

Considering a node t without any links, f++(t) will not be trained either.
Hence, f(t) will be the same as it was initialized for ever. However, c(t) is built
based on the t’s attributes, which provides the attribute information of t. More-
over, the other training instances will project similar attributes to similar h(.),
which makes c(t) more reasonable.
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4.3 Optimization

Optimization for PCANE. For PCANE, the optimization of O1 can be sim-
plified to:

arg max
f,s

∑

v∈V

∑

u∈N(v)

log p1(u|v) (5)

The calculation of the denominator in p1(u|v) is computational expensive since
it is required to traverse the entire node set. We approximate it using negative
sampling [9]. For each sampled context node, we randomly select several other
nodes as negative context nodes. The optimization of O2 can be simplified to:

arg max
f,g

∑

v∈V

∑

u∈N(v)

∑

a∈A(u)

log p2(a|v) (6)

and we will also approximate it with negative sampling if the denominator of
p2(a|v) requires too much calculation. We optimize the two objective functions
using stochastic gradient ascent over the model parameters defining the features
f, s, g. Specifically, we apply the Adaptive Moment Estimation (Adam) [3], which
adapts the learning rate according to parameter frequency.

Optimizing the two objective functions is indeed a kind of multi-task learning.
In practice, we will alternatively train the two objectives. Once a batch of source-
context nodes are trained, we will feed the model the corresponding batch of
source-context attributes. Since a node has multiple attributes in general, the
latter batch size is larger and is not fixed.

Optimization for PCANE++. The optimization of PCANE++ is similar to
PCANE. The only difference is that the learned parameters are f, h, s, g.

Final Embeddings. After optimization, previous wisdom shows using f + s
as the final embeddings will bring improvement [4,6,11]. However, we optimize
an additional context attribute objective. f receives more training opportunities
than s in PCANE, since both objective functions will update f . f is thereby
expected to be more informative than g. We propose f + αs as the final embed-
dings, where α is a real value weight parameter between [0, 1] and hence can
turn down the impact of g. With the same consideration, we propose f++ + αs
as the final embeddings of PCANE++.

5 Experiments

5.1 Experiment Setup

Dataset. We use one social network: the friendship network of students from
University of North Carolina at Chapel Hill (UNC) [14], and two citation
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networks: DBLP1 and CITESEER2. Code and preprocessed data to reproduce
our results is in github page3.

UNC data has 7 types of discrete attributes, 18163 nodes and 766800 links.
For the citation, 4732 edges, and only the title is provided. We apply TF-IDF
to extracted 5 most important words for the titles, and the words are used as
discrete attributes. Each paper is labeled with research area, which we will used
for node classification task later.

Baseline Methods. We compare our methods with several state of art network
embedding methods. We set the final embedding size of all the methods to 128
and the parameters generally follow the settings in the original papers.

Node2vec [1]. Node2vec is a plain network embedding method. We set p = 1,
q = 0.25, window size = 10, walk length = 10 and number walks = 80.

Line [13]. Line is also an embedding method for plain network. We set
order = 3.

TADW [16]. TADW is an embedding method for network where the nodes
are associated with text. We set lambda = 0.2.

ASNE [6]. ASNE is for attributed network embedding. We set the ID vector
size to 100 and attribute vector size to 28. The rest of parameters are the same
as Node2vec.

Some other methods related to attributed network embedding, e.g. AANE [2],
TriDNR [10] and SLR [7], are excluded from comparison, as [6] has demon-
strated that they were outperformed by ASNE. We excluded SEANO [5] since
it is designed for partial labeled attributed networks. TADW is applied to the
two citation datasets, while publication venue is not used on CITESEER, since
TADW can utilize only text attributes.

Training Details. The random walk sampling parameters of PCANE and
PCANE++ are similar to those used in Node2vec and Line. Specifically, we set
k = 10, l = 10 and r = 80. The dimension of both PCANE and PCANE++ vec-
tors is 128. The dimension of source structure vector and source attribute vector
in PCANE++ are 100 and 28 respectively. We randomly initialize the parame-
ters of the matrices with a Gaussian distribution whose mean is 0.0 and standard
deviation is 0.01. We train the models with mini-batch Adam [3] whose batch size
is 1024. The number of negative sampling is 64. We set α ∈ {0, 0.05, 0.1, 0.15, 0.2}
when the best result is obtained on the validation set of link prediction task. We
repeated our experiments for 10 random seed initializations and our results are
statistically significant with a p-value of less than 0.01.

1 https://www.aminer.cn/citation (V4 version).
2 http://citeseerx.ist.psu.edu/.
3 https://github.com/zhudanhao/PCANE.

https://www.aminer.cn/citation
http://citeseerx.ist.psu.edu/
https://github.com/zhudanhao/PCANE
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5.2 Link Prediction

Task Description. The link prediction task aims to predict whether two nodes
are linked in the test set, when they are not linked in the training set. Each
dataset of links is divided to a training set and a test set with training ratio in
{0.1, 0.3, 0.5, 0.7, 0.9}. We use normalized Cosine angle to measure the similarity
between two vectors, and Area Under the ROC Curve (AUROC) [18] to evaluate
the similarities. We train the models until the best results are obtained on the
test set. Since the datasets have only positive edges, for the test set, we have
to add the same number of random fake links as negative samples. It is worth
noting that we design two test sets: a standard test set and a filtered test set.
The design of the standard test set is the same as previous studies [1,6,15]. The
standard test set may contain some isolated nodes with no links appearing in
the training set. In the filtered test set, we filter out all links with isolated nodes.

Results. The results of link prediction task is shown in Fig. 3. Note that on
UNC, the results on the standard and the test sets make minor differences. The
reason is that even 10% training links has already covered almost the entire node
set in UNC. Hence, the filtered and the standard test sets on UNC are nearly
the same.

Fig. 3. The results of link prediction. The x axis denotes the fraction of training links,
whereas the y axis in the top and bottom rows denote the ROC value on the standard
test set and the filtered test set respectively.

Overall, the proposed PCANE++ consistently outperforms all baseline meth-
ods on both the standard test set and the filtered test set. For example, given
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10% of training links on the standard test set of DBLP, PCANE++ achieves
9.95% improvement of ROC value. PCANE can not outperform TADW and
ASNE on the standard test of CITESEER and DBLP, since the standard test
set contains a lot of isolated nodes where PCANE cannot make use of. However,
on the filtered test set without isolated nodes, both PCANE and PCANE++ can
achieve better results than the baseline methods. The results show the modeling
of context attributes enables our methods to learn better representations.

Since PCANE++ can cope with the isolated nodes, PCANE++ easily beats
PCANE on the standard test sets of all the networks except UNC. However, the
advantage is not that strong as on the filtered test sets. With training percent
larger than 30% on DBLP, PCANE and PCANE++ achieve similar perfor-
mance. On UNC, PCANE even slightly outperforms PCANE++. On Citeseer,
the advantage is weaken as the training percent arising. The results indicate
that for networks without isolated nodes, PCANE and PCANE++ performs
similarly.

5.3 Node Classification

Task Description. Node classification aims to predict the label of node in the
test set. Therefore, the task can assess if the learned vectors contains sufficient
useful information for the downstream tasks. We conduct node classification on
Citeseer and DBLP where the research area is used as labels. We exclude UNC
for evaluation since no labels consistently exist on all nodes. We train each entire
network for one epoch. Hence there are no isolated nodes in both networks. The
trained node embeddings are split to training, development and test set with
ratio 8:1:1. A simple softmax classifier is trained on the training set until the
best result is obtained on the validation set, and we report the results on the
test set.

Results. The results of the node classification task is in Table 1. From the
results, we can find:

(1) PCANE++ significantly outperforms other baseline methods. On CITE-
SEER, PCANE++ get an improvement of 2.2% on Macro-F1. On DBLP,
PCANE++ achieves an improvement of 7.01% (with 62.23% relative error
reduction) on Macro-F1. The result shows modeling context attributes can
help to produce more informative network embeddings.

(2) PCANE achieves similar performance to PCANE++ on Citeseer. However,
PCANE performs even slightly weaker than ASNE on DBLP. The key reason
is that DBLP has much more high degree nodes and is denser, which makes
PCANE more difficult to utilize the source attributes. We give detail analysis
next.
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Table 1. Results of node classification.

CITESEER DBLP

Micro-F1 Macro-F1 Micro-F1 Macro-F1

LINE 0.4796 0.4354 0.7932 0.7445

Node2vec 0.4887 0.4359 0.7712 0.7039

TADW 0.5746 0.5105 0.8299 0.783

ASNE 0.5053 0.453 0.8691 0.8401

PCANE 0.5822 0.5321 0.8578 0.8212

PCANE++ 0.5897 0.5335 0.9520 0.9396

5.4 Discussion

To understand why our methods can produce better node representations, we
present the classification performance w.r.t. the degree of nodes in Fig. 3.

The precisions of both Node2vec and ASNE are sharply increasing when the
degree is getting larger. However, the precisions of PCANE and PCANE++ are
relatively more stable w.r.t. different degrees. The result shows that utilizing only
source attributes and network structure is not sufficient enough for embedding
the sparser parts of networks. Preserving context attributes can greatly alleviate
the data sparse problem, and enhance the learning of low degree nodes.

ASNE outperforms PCANE when degree is larger than 3. We believe the
reason is that PCANE cannot sample source attributes as context attributes
efficiently for high degree nodes. Since DBLP is dense, PCANE falls behind
PCANE++ even on low degree nodes. Hence, it is necessary to use PCANE++
rather than PCANE when the network is dense or contains many high degree
nodes.

Fig. 4. Classification performance w.r.t. the degree of nodes on DBLP.

5.5 Parameter Sensitivity

Next, we investigate the parameter sensitivity of α and vector dimension.
Figure 4(a) presents classification result on UNC w.r.t. different α, and the best
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result is obtained when α = 0.1, which gives evidence to the necessity of turn-
ing down the impact of s. Figure 4(b) gives the result of link prediction w.r.t.
different dimensions. The training ratio is 10% and we set the source attribute
size of PCANE++ as 28/128% of the total dimension. The result indicates that
it is not effective to use too large dimensions (Fig. 5).

(a) α (b) Dimension

Fig. 5. Sensitivity w.r.t. α and dimension.

6 Conclusion

We introduced novel methods to preserve context attributes to improve
attributed network embeddings. Our methods can outperform state of art
attributed network embedding methods on link prediction and node classifi-
cation tasks. A number of extensions and potential improvements are possible,
such as sampling the context attributes to reduce training time, and improving
the walking strategy to balance the effect of high degree nodes.
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dation of the Jiangsu Higher Education Institutions of China under grant number
18KJB510010 and National Nature Science Foundation of China (NSFC) under grant
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Abstract. Graph embedding has attracted increasing attention due to
its critical application in social network analysis. Most existing algo-
rithms for graph embedding utilize only the topology information, while
recently several methods are proposed to consider node content informa-
tion. However, the copious information on edges has not been explored. In
this paper, we study the problem of representation learning in node/edge
attributed graph, which differs from normal attributed graph in that edges
can also be contented with attributes. We propose GERI, which learns
graph embedding with rich information in node/edge attributed graph
through constructing a heterogeneous graph. GERI includes three steps:
construct a heterogeneous graph, take a novel and biased random walk
to explore the constructed heterogeneous graph and finally use modified
heterogeneous skip-gram to learn embedding. Furthermore, we upgrade
GERI to semi-supervised GERI (named SGERI) by incorporating label
information on nodes. The effectiveness of our methods is demonstrated
by extensive comparison experiments with strong baselines on various
datasets.

Keywords: Graph embedding · Node/edge attributed graphs ·
Network analysis

1 Introduction

Graph embedding, aiming to learn low-dimensional representations for nodes in
graphs, has attracted a lot of attention recently due to its success in network
learning tasks such as node classification [14], and link prediction [10]. Inspired by
natural language models [9], Deepwalk is proposed to learn node embedding from
network topology [11]. Then LINE [16] proposed to learn embedding by encoding
first-order proximity and second-order proximity between nodes. Node2vec [2]
improved Deepwalk [11] by introducing a more flexible random walk.

There is a new trend to integrate multiple types of input information includ-
ing network topology and node content [3,20], neighbors homophily [22] or node
labels [7,19,21]. In reality, networks are complex in terms that not only nodes
but also edges contain rich information. For example, in a coauthor network,
the nodes representing authors can be associated with a feature vector, which
c© Springer Nature Switzerland AG 2019
Q. Yang et al. (Eds.): PAKDD 2019, LNAI 11441, pp. 169–182, 2019.
https://doi.org/10.1007/978-3-030-16142-2_14
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contains information like affiliations or education background or research inter-
est. Also, the edges indicating co-author relationships can be contented by the
jointly published papers, which include key-words like classification, matrix com-
pletion etc. It is essential that graph embedding should learn from both topology
information and node/edge content information.

There are several previous works considering attributed network embedding,
where generally attributed network [5,12] is the network only with node content
information. PPNE [6] uses node content information by enforcing representa-
tions to preserve the similarities between nodes. LANE [3] learns embedding
by modelling node proximity in both attributed network space and label space.
PLANETOID [21] uses deep neural networks to do semi-supervised representa-
tion learning, which utilizes text information as well as label information, and it
considers multi-class classification problem. Generally, existing approaches have
a common limitation: they cannot incorporate the edge content information and
only consider node attributes.

In this paper, we extend the problem of attributed network embedding to
a more general case, named node/edge attributed graph embedding, where not
only node, but also edges can contain rich information. We propose a general
framework for graph embedding with rich information (called GERI), which can
learn scalable representations for nodes in networks with rich text information on
nodes/edges. By incorporating label information during representation learning
process, we extend GERI to semi-supervised GERI (named SGERI). GERI and
its variant are composed of three steps. Firstly, a homogeneous graph with text
information on nodes/edges is converted into a heterogeneous one. The main
advantage of this conversion is that it naturally integrates graph topology with
node/edge content information or label information (only for SGERI), giving
us an opportunity to exploit all such information and enhance the performance
of learned representations. Then, a novel discriminant and flexible random-walk
method is proposed to preserve the high-order similarity between nodes targeted
for embedding, by exploring the constructed network in a mixture of the breadth
first search (BFS) and the depth first search (DFS) manner. Finally, modified
heterogeneous skip-gram model is used to learn the embedding for the nodes in
the original network.

The evaluation of obtained graph embedding is conducted with multi-
label/multi-class classification task on three datasets with nodes/edges infor-
mation. The results show that GERI consistently and significantly outperforms
state-of-the-art algorithms for various dimensions on all datasets in the unsuper-
vised setting. SGERI in semi-supervised setting has the better performance than
the semi-supervised methods including LANE and PTE. What’s more, GERI,
and SGERI are also computationally efficient since its major sections can be
easily parallelized.

2 Related Work

The study in unsupervised representation learning with only the topology infor-
mation has a big family of developed approaches [13]. The network topology is
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usually represented by an adjacency matrix, A(|V |∗|V |). To obtain node represen-
tation in R

d, dimensionality reduction techniques like singular value decomposi-
tion or principal component analysis can be applied on graph Laplacian matrix
and Modularity matrix [18]. However, the poor scalability and efficacy of these
approaches makes them difficult to be applied to large-scale networks. Recently,
another stream of work addresses the unsupervised representation learning of
nodes in large-scale graph with an inspiration from neural language processing.
Deepwalk [11] and node2vec [2] exploit word2vec [8,9] to learn embedding from
word-context pairs sampled by random walks in the graph. And LINE [16] is pro-
posed to explicitly preserve the first-order and second-order proximity between
nodes.

The methods for semi-supervised representation learning with only the topol-
ogy are also developed in order to incorporate label information. MMDW [19]
jointly optimizes the max-margin classifier and the embedding learning model
formulated as matrix factorization. Similarly, DDRW [7] jointly learns a classifier
and vertex representation by combining the loss of SVM and Skip-gram model.

Then we introduce works which can exploit both network topology and node
features information. TADW [20] considers node content information by decom-
posing an approximated word-context matrix, with the help of node informa-
tion matrix as side information. HSCA [22] also follows matrix decomposition
model and proposes to enforce homophily between nodes. An obvious weakness
of both methods is that they require matrix operation like SVD decomposition,
which prohibits them from dealing with large scale graphs. PPNE [6] is another
method which belongs to this category. It proposes to preserve property sim-
ilarity between nodes by adding inequality constraints or numeric constraints.
Other works in this topic are semi-supervised. Yang et al. propose Planetoid for
learning the representation for each graph node to jointly predict the class label
and the neighborhood context in the graph [21], but the model is only designed
for multi-class classification problem. LANE [3] learns embedding by modelling
node proximity in both attributed network space and label space.

However, all the above-mentioned approaches are not able to incorporate
information on edges, which can be integrated by our proposed model. In the first
step of our model, we construct a heterogeneous graph to integrate information
in both node and edges seamlessly.

3 Problem Formulation

Formally, let G = (V,E,TV ,TE) denotes a network with rich content infor-
mation for nodes and edges. More specifically, V = {v1, v2, . . . , v|V |} is a set of
nodes, and E = {e = (vi, vj) : vi, vj ∈ V } is a set of edges linking two nodes.
TV is node content attributes, e.g., the word occurrence matrix for nodes, where
each entry TV (i, k) indicates the occurrence of word wk associating with node
vi, and TV (i, k) = 0 for the absence of wk in vi’s content. TE is the edge content
attributes, e.g., word occurrence matrix for edges, where each entry TE(i, j, k)
indicates the occurrence of word wk on edge connecting node vi and vj , and
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TE(i, j, k) = 0 for the absence. The purpose of our work is to learn a low-
dimensional representation vector v ∈ R

d for each node v ∈ V , by considering
the network topology and rich text information on nodes (TV ) and edges (TE).
Note that TV and TE can be constructed by any attributes, not just text words
that are used for simplifying model explanation.

Definition 1: Node/edge attributed graph: It differs from normal
attributed graph in that not only nodes, but also edges can be associated with
attributes.

Definition 2: Target nodes, Bridge nodes and Label nodes: Target nodes
are the nodes in V in the original homogeneous network G, for which embedding
will be learned. When converting G into a heterogeneous one, bridge nodes are
created to incorporate the text information on nodes/edges, for assisting the
embedding learning of target nodes. An example is shown in Fig. 1. The details
of bridge nodes construction will be introduced in Sect. 4.1.

4 Method

4.1 GERI

Heterogeneous Network Construction. Given an attributed network G =
(V,E,TV ,TE), we construct a bipartite heterogeneous network (V,U,Ehe),
where V includes target nodes, U contains bridge nodes, Ehe are edges between
V and U . Bridge nodes are the set of words, U = {w1, w2, . . . , w|U |}, existing in
node and edge text information.

An edge in Ehe connects a target node vi and a bridge node wk under two
circumstances: (1) vi and wk are connected when TV (i, k) �= 0. That is to say,
a target node vi is connected with a bridge node wk if word wk occurs in the
content information of node vi. The weight associating with the edge is the value
of TV (i, k). (2) vi and vj are both connected to wk, when TE(i, j, k) �= 0. In
other words, target node vi and vj are both connected with a bridge node wk if
word wk occurs in the content information of the edge connecting vi and vj .

Fig. 1. Example of converting a homo-
geneous network (left) to a hetero-
geneous network (right) with bridge
nodes.

Fig. 2. Three cases of random walk
in heterogeneous network, giving that
random walk just reached v from t.
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Then, the network our algorithm works on is Ghe = (V,U,Ehe, E), which
includes Ehe and original E, and is associated with a mapping function ϕ(v):
V &U → T = {target, bridge}. A toy example is shown in Fig. 1. One promi-
nent advantage of using the constructed heterogeneous network is that the text
information is integrated seamlessly with the original network. There is no loss
of information.

Modified Heterogeneous Skip-Gram. Given Ghe = (V,U,Ehe, E), our goal
is to learn a mapping: v → R

d for target node v ∈ V . Besides, a bridge node
can be also mapped to feature vectors in R

d. We use X to represent the latent
feature vector for V &U and X ∈ R

(|V |+|U |)∗d. Inspired by metapath2vec [1],
which formulated heterogeneous skip-gram and learn representation for nodes
from meta-path. We maximizes the log-probability of observing network neigh-
borhoods for all the nodes conditioned on their feature representation, and we
formulate modified heterogeneous skip-gram in our constructed heterogeneous
network as a maximum likelihood optimization problem with objective function
defined as follows:

arg max
X

∑

v∈V

∑

t∈T

∑

n∈Nt(v)

log(P (n|v;X)) + λ
∑

v∈U

∑

t∈T

∑

n∈Nt(v)

log(P (n|v;X)) (1)

where Nt(v) is the neighborhoods of node v, and has the type of t. As mentioned
before, t ∈ T = {target, bridge}. The first and second part of the objective is the
log-probability of observing network neighborhoods for target nodes and bridge
nodes, respectively. λ is a balance parameter, controlling the weight of second
part. It shows that λ does have a significant influence on the performance. We
approximate P (n|v;X) by negative sampling [9]. Then we use stochastic gradient
ascent to get the X. We formulate log(P (n|v;X)) as:

log(P (n|v;X)) = log(σ(Xn · Xv)) +
M∑

m=1

Eum∼P (u)[log(σ(−Xum · Xv))] (2)

where σ(x) = 1
1+exp(−x) , and P (u) is the empirical unigram distribution defined

on all nodes by viewing both target and bridge nodes homogeneously, where
negative samples um will be drawn M times regardless of their types. Combining
Eqs. (1) and (2), we can get the objective function for GERI.

An important component in the objectives of GERI is neighborhood
Nt(u), which has a significant influence on the embedding results. Inspired by
node2vec [2], which proposed a concept of flexible neighborhood in homogeneous
network, we propose a novel randomized procedure that can sample neighbor-
hood of a source node in our constructed heterogeneous network.

Novel Sampling Strategy. Following but differing from node2vec, our pro-
posed sampling method can explore the heterogeneous graph in a mixture of
breadth first search (BFS) and depth first search (DFS), such that better neigh-
bors of nodes can be obtained. Our sampling method is superior to the state-of-
the-art sampling methods because the search method in node2vec [2] is designed
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for homogeneous network and the existing sampling strategy in PTE [15] can
only preserve the low proximity between nodes, which is usually not desirable.

Consider a random walk that just reached node v from node t in Fig. 2. Then
it needs to decide where to go in the next step, which depends on the transition
probability βvx between node v and next node x, and the types of previously
visited node v and t.

We define the transition probability βvx in three cases:

Case 1: node t and v are both target nodes, as shown in the left example of
Fig. 2. The next node to visit from v can be a target node, or a bridge node.
We introduce three parameters p1, q1, and r1 to guide the walk, and discuss
their meanings later. Given the weight evx between node v and x, the transition
probabilities βvx is defined as:

βvx =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

p1 ∗ evx if dtx = 0
1 ∗ evx if dtx = 1
q1 ∗ evx if dtx = 2, x ∈ V target nodes
r1 ∗ evx if dtx = 2, x ∈ U bridge nodes

where dtx denotes the shortest path distance between t and x.

Case 2: node t is a target node and v is a bridge node (the middle example in
Fig. 2). In this case, we don’t allow the walk to go back and expect the walk to
explore more target nodes because we focus more on the relationship between a
target node and other target nodes. βvx is defined as:

βvx =

{
0 if dtx = 0
1 ∗ evx if dtx �= 0

Case 3: node t is a bridge node and node v is a target node (the right example
in Fig. 2). We introduce three parameters p2, q2, and r2 to guide the walk. The
transition probabilities βvx is as follows:

βvx =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

p2 ∗ evx if dtx = 0
1 ∗ evx if dtx = 1
q2 ∗ evx if dtx = 2, x ∈ V target nodes
r2 ∗ evx if dtx = 2, x ∈ U bridge nodes

In the following, we discuss the meaning of the parameters and their impli-
cations.

Back parameter p. p1 and p2 control the probability to revisit the node
that has been visited in the second last step. Setting it to a small value means
that the walk is less likely to go back. However, setting it to a large value (>1)
means the walk is more likely to visit the local neighbors of the source node.
Then, it is more like the BFS search.

Out-target parameter q. q1 and q2, on the one hand, control the likelihood
of visiting target nodes in the random walk. If q1(q2) is greater than r1(r2), then
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Algorithm 1. GERI algorithm
Require: G = (V, E,TV ,TE), Dimensions d, walks per vertex γ, window size τ , walk

length l, λ, and p, q,r
Ensure: matrix of nodes representation Θ ∈ R

|V |∗d

1: Initialize Θ by standard normal distribution
2: Construct Ghe = (V, U, Ehe, E)
3: β=PreprocessBiasWeight(Ghe, p, q, r)
4: for iter = 1 to γ do
5: φ=shuffle(V )
6: for all nodes v ∈ φ do
7: walk=BiasedRandomWalk(Ghe, β, v, l)
8: trainpairs=GenerateSkipGramTraining(walk, τ)
9: for (v1, v2) ∈ trainpairs do

10: if v1 is a target node then
11: SGD(k,d,(v1, v2),η)
12: else
13: SGD(k,d,(v1, v2),λη)

14: return Θ

the random walk is more likely to visit target nodes, which means target nodes
play a more important role in the random walk. On the other hand, q1 and q2
control the depth of exploring the graph. If q1 and q2 are large, then the random
walk is more likely to go as deep as possible, which is like DFS search.

Out-bridge parameter r. Contrary to q, r controls the likelihood of visiting
bridge nodes in the random walk. If q1(q2) is less than r1(r2), then the random
walk is more likely to visit target nodes. Similar to q, r controls the probability to
explore the graph deeply. If it’s high (>1), the walk is more like DFS. Otherwise,
the walk is more like BFS.

In practice, since each pair of p1(p2), q1(q2) and r1(r2) has the same meaning,
we set p1 = p2 = p, q1 = q2 = q and r1 = r2 = r.

GERI Algorithm and Complexity. We show the pseudo-code of GERI in
Algorithm 1. It shows that GERI includes three steps: construct heterogeneous
graph, conduct biased random walk, and then use modified heterogeneous skip-
gram to learn embedding. The overall complexity of GERI is O(|V |∗γ∗l2), linear
w.r.t. |V |.

4.2 SGERI

GERI can be easily extended to consider node label information, resulting a semi-
supervised GERI (named SGERI), which works on G

′
he = (V,U, L,Ehe, E

′
he, E),

where L = (l1, l2, . . . , lk) represents the labels of nodes (training data) in V ,
k denotes the number of labels for V and E

′
he represents the edges between V

and L.
Similar to GERI, the complexity of SGERI is also linear with respect to V

and is also easily parallelizable and can be executed asynchronously.
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5 Experiments

5.1 Dataset

We employ three benchmark networks with text information on nodes/edges.
The first two networks, which are publicly accessible, contain node information.
The last network which contains edge information was extracted from the source
in Aminer [17].

Cora [20] contains 2708 publications from 7 classes and 5429 links. Each
publication is described by a binary 1433-dimension feature vector.

DBLP [4] contains 27199 authors and 66832 links, representing co-
authorship. Each node has some labels out of 4 labels, representing research
areas of the author. Each author is described by a 3000-dimension feature vec-
tor.

Aminer: we constructed a co-author network from the source in Aminer [17],
containing 20105 authors and 48944 links. Each link corresponds to a co-authored
paper. After processing paper abstracts by removing stop words and stemming,
we have each edge is associated with an 897-dimension feature vector. The labels
of nodes are research fields of the author.

5.2 Comparison Algorithm

The proposed methods are compared with several sate-of-the-art embedding
algorithms, which can be divided into four groups. Firstly, to investigate the con-
tribution of node/edge information, we compare GERI++ with Deepwalk [11],
Line [16], and node2vec [2]. Secondly, we also include node feature information
and naive combination of node2vec feature with node feature information as
baselines. Thirdly, to evaluate the power of constructed heterogeneous graph, we
feed constructed heterogeneous graph directly to Deepwalk, Line and node2vec.
Fourth, we compare GERI and SGERI with PTE [15], and LANE [3], which are
regarded as state-of-the-art algorithms in attributed network embedding. The
detailed descriptions are listed as follows.

Deepwalk & LINE & Node2vec [11]: apply on the original homogeneous
graph and set length of random walk as 150, # of walk as 10 and # of negative
sampling as 5.

Naive Combination: combine node2vec embedding and text information.
Deepwalk(hete) & LINE(hete) & Node2vec(hete): feed the con-

structed heterogeneous graph to Deepwalk, LINE and node2vec.
TADW [20]: the embedding is learned from matrix decomposition.
PTE(unsupervised) & PTE [15]: For PTE (unsupervised), we construct

two bipartite heterogeneous networks(target-target, target-bridge) and restrain
it as an unsupervised method; For PTE, we construct three bipartite heteroge-
neous networks (target-target, target-bridge, target-label) and thus it remains
as a semi-supervised method.

LANE(unsupervised) & LANE [3]: LANE(unsupervised) uses network
and node content information, while LANE not only uses network and node
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Table 1. Comparison of Micro-F1 and Macro-F1 score on Cora datasets for different
dimensions

Algorithm Micro-F1 Macro-F1

d = 16 d = 32 d = 64 d = 128 d = 16 d = 32 d = 64 d = 128

Deepwalk 0.7569 0.7757 0.8013 0.8151 0.7421 0.7645 0.7917 0.8041

Line 0.7323 0.7179 0.7090 0.7127 0.7142 0.7080 0.7048 0.7045

Node2vec 0.7762 0.7936 0.8096 0.8206 0.7651 0.7829 0.8000 0.81

Text only 0.7242 0.7399 0.7344 0.6957 0.6989 0.718 0.7097 0.6651

Naive combination 0.7864 0.8070 0.8198 0.8148 0.7629 0.7898 0.8033 0.8012

Deepwalk(hete) 0.7858 0.8065 0.7951 0.7962 0.7648 0.7867 0.7757 0.7790

Line(hete) 0.7928 0.8131 0.7903 0.7866 0.7928 0.7927 0.7663 0.7703

Node2vec(hete) 0.8172 0.8131 0.8064 0.7920 0.7957 0.7948 0.7836 0.7689

TADW 0.6732 0.7736 0.825 0.8279 0.5676 0.7400 0.808 0.8093

PTE(unsupervised) 0.7256 0.6959 0.7293 0.7275 0.6931 0.6669 0.7058 0.7048

LANE(unsupervised) 0.6948 0.7843 0.8266 0.8371 0.6098 0.7549 0.8136 0.8275

GERI 0.8639 0.8698 0.8699 0.8655 0.8501 0.8604 0.8563 0.8526

content (if available), but also uses label information of training data. We did
extensive grid search on parameters. For α1, we search from 0.1 to 1, with step
0.1, and for α2, we search over [0.01 0.1 1.0]. And for LANE, we also search over
δ1, and δ2.

GERI & SGERI: we set # of walk, length of walk, # of walk and # of
negative sampling, to be the same as Deepwalk and Node2vec, for fair compar-
isons. The balance coefficient λ is 1 (default) and we use grid search to tune only
on p, q, and r.

All the representation vectors are finally normalized such that their L2-norm
as 1. We use logistic classification to evaluate all the embeddings.

5.3 Performance of GERI

We report the performance of different methods under various embedding dimen-
sions on Cora, DBLP and Aminer in Tables 1, 2 and 3, respectively. We use 50%
data as training and another 50% as testing. In Table 3, LANE(unsupervised)
uses only network structure because it can’t use edge content. And we don’t show
Text-only and Naive Combination, because they are not applicable in Aminer,
which contains edge content.

First, GERI consistently outperforms all baselines for various dimensions on
three datasets. For Cora, its performance improvement over PTE(unsupervised)
is at least 19% for all dimensions. And it outperforms unsupervised LANE
by 24%, 11%, 5.2% and 3.4% for dimension 16, 32, 64, 128, respec-
tively. For DBLP, it is better than PTE(unsupervised) and largely improve
LANE(unsupervised) by at least 9.5% over all dimensions. For Aminer, it out-
performs PTE(unsupervised) by 6.0%, 5.9%, 5.8%, and 4.3% on d = 16, 32, 64,
and 128, respectively.
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Table 2. Comparison of Micro-F1 and Macro-F1 score on DBLP datasets for different
dimensions

Algorithm Micro-F1 Macro-F1

d = 16 d = 32 d = 64 d = 128 d = 16 d = 32 d = 64 d = 128

Deepwalk 0.5600 0.5769 0.5839 0.6027 0.4552 0.4896 0.5114 0.5386

Line 0.5220 0.4939 0.4895 0.5080 0.4193 0.3920 0.3946 0.4291

Node2vec 0.5760 0.5860 0.5952 0.6112 0.4858 0.5040 0.525 0.5466

Text only 0.6113 0.6472 0.6698 0.6894 0.6044 0.6333 0.6521 0.6721

Naive combination 0.7440 0.7476 0.7524 0.7511 0.718 0.7233 0.7284 0.7300

Deepwalk(hete) 0.7555 0.7582 0.7684 0.7771 0.7299 0.7319 0.7451 0.7556

Line(hete) 0.7669 0.7703 0.7792 0.7853 0.7442 0.7479 0.7578 0.7648

Node2vec(hete) 0.7553 0.7623 0.7716 0.7787 0.7294 0.7387 0.7495 0.7569

TADW 0.5023 0.6031 0.6657 0.7179 0.4925 0.5904 0.6497 0.697

PTE(unsupervised) 0.7575 0.7585 0.7698 0.7848 0.7383 0.7393 0.7509 0.7664

LANE(unsupervised) 0.1894 0.2462 0.6745 0.7246 0.1377 0.1800 0.6287 0.6790

GERI 0.7725 0.7791 0.7891 0.7939 0.7488 0.7586 0.7687 0.7742

Table 3. Comparison of Micro-F1 and Macro-F1 score on Aminer datasets for different
dimensions

Algorithm Micro-F1 Macro-F1

d = 16 d = 32 d = 64 d = 128 d = 16 d = 32 d = 64 d = 128

Deepwalk 0.4564 0.4643 0.5015 0.5089 0.3354 0.3632 0.4109 0.4373

Line 0.2890 0.2902 0.3839 0.4356 0.1922 0.1995 0.2734 0.3368

Node2vec 0.4759 0.4968 0.5111 0.5335 0.3537 0.3961 0.4181 0.4582

Deepwalk(hete) 0.6600 0.6625 0.6696 0.6729 0.5951 0.6014 0.6113 0.6191

Line(hete) 0.6564 0.6646 0.6687 0.677 0.5849 0.6024 0.6121 0.6227

PTE(unsupervised) 0.6419 0.6485 0.6551 0.6728 0.5665 0.5805 0.5974 0.6209

LANE(unsupervised) 0.2571 0.2940 0.3617 0.4631 0.1412 0.1684 0.2476 0.3756

GERI 0.6801 0.6867 0.6932 0.7027 0.6159 0.6241 0.6330 0.6514

Second, Deepwalk(hete), Line(hete) and Node2vec(hete) all have very com-
petitive performance and are better than Deepwalk, Line and Node2vec that
are applied to the original homogeneous graph. It thus verifies that our con-
structed heterogeneous graph effectively integrates the network topology and
rich text information. But since they are all inferior to GERI, we get that our
proposed biased sampling method is better than the sampling methods in these
approaches.

Last, we find that TADW and LANE(unsupervised) (both methods use
matrix optimization to learn embeddings) perform very poorly with low
dimensions such as d = 16 and 32, but perform well when dimension of
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embeddings increase to 64 or 128. However, PTE(unsupervised), Deepwalk, Line
and Node2vec have consistent performance for all dimensions. For example, the
performance of TADW and LANE(unsupervised) with low dimension of 16 or
32 is worse than other baselines in both Cora and DBLP data set. But these two
methods perform well when d increases to 64 and 128.

5.4 Performance of SGERI

We compare SGERI with GERI, and other semi-supervised methods such as
LANE and PTE on dataset DBLP and Aminer. For fair comparisons, we used
the same set of training and testing data for all methods and did grid search
over parameters.

We show the results on DBLP in Fig. 3. It shows that SGERI improved
GERI by more than 4% in Micro-F1 and 5% in Macro-F1 score for all dimen-
sions. From the comparisons between semi-supervised methods, we see that PTE
outperforms LANE, and SGERI improved PTE by 14%, 12%, 4%, and 2% in
Micro-F1 score for dimension of 16, 32, 64, and 128, respectively. For Macro-F1,
SGERI improved PTE by 14%, 12%, 5%, and 2% for dimension of 16, 32, 64
and 128, respectively. Conclusively, we get that SGERI consistently outperforms
PTE and LANE in all dimensions, and interestingly its superiority is more obvi-
ous in the setting of low dimension. The reason why SGERI is better than PTE
is that it can better preserve proximity between nodes, which uses novel biased
random walk and can take advantage of the high-order proximity while PTE only
uses low-order proximity. For Aminer, the results are shown in Fig. 3. Similarly,
the use of label information of training data really helps and largely improves
the performance of our proposed methods. SGERI outperforms GERI by nearly
20% in both Micro-F1 and Macro-F1 score. Also, SGERI is better than PTE,
with performance gain as least 7.1% for Micro-F1 and 9.8% for Macro-F1, for
all dimensions. It further verifies that our sampling methods is better than the
one in PTE.

Fig. 3. Comparison between SGERI, GERI, LANE and PTE on DBLP dataset (Left
two) and Aminer Dataset (Right two) over various dimensions
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5.5 Parameter Analysis

We show effects of parameters in GERI. All experiments are done by setting d
as 128.

Firstly, Fig. 4 shows that p, q, and r do have a significant influence on the
performance. From the left plot in Fig. 4, we see that the setting of middle value
for 1/p (from 1.0 to 2.0) and small value for 1/q (around 0.25) lead to better
performance, which means a relatively high probability to explore target nodes
when doing random walk better preserve the proximity between nodes. From
the middle and right plots in Fig. 4, we find that a relatively small probability
to explore the bridge nodes can give better performance. The underlying reason
is that the information that bridge nodes contain is less important than target
nodes. Considering the bridge nodes are the terms associated with nodes for
this dataset, we can explain this from two aspects. First, the original homoge-
neous graph represents the co-authorship between authors, whose topology in an
implicit way indicates the common research areas among authors. That’s to say,
the terms are supplementary for graph topology information even though they
are the source of performance gain for our methods. Second, terms can be noisy.
By limiting the probability of visiting bridge nodes, less noise will be brought to
the embedding.

Next, we show how performance changes w.r.t. λ, walk length, # of walks
and window size in Fig. 5. For λ, we see that good performance is obtained
when lambda is a small value, i.e., 0.01 or 0.1. When λ further increases, F1
score drops dramatically. This is because λ controls the weight of loss function
targeted on bridge nodes, and the information in bridge nodes is not as important
as target nodes, following our discussion in above. For walk length, # of walks
and window size, we see that the performance of node classification w.r.t. these
three parameters follows similar pattern: performance increases sharply at the
very beginning, increases slightly when we further increase parameter values,
and fluctuates or converges or even decreases slightly in the later period.

Fig. 4. Performance on different p, q, and r on Cora dataset: left (Micro-F1 score w.r.t.
1/p and 1/q); middle (Micro-F1 score w.r.t. 1/p and 1/r); right (Micro-F1 score w.r.t.
1/q and 1/r).
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Fig. 5. Performance on different λ, walk length, the number of walks, and window size

6 Conclusion

We studied node/edge attributed graph embedding. GERI is proposed to firstly
integrate original graph and copious information in node/edges into a hetero-
geneous graph, and then sample neighborhoods of nodes through the newly
designed biased random walk. Finally, GERI learns embedding by modified het-
erogeneous skip-gram with negative samples. Furthermore, we develop SGERI
which improves GERI by exploiting label information. For the future work, there
are several possible directions. (1) consider dynamic nature of real graphs and
the real-time changes of node/edge content information. (2) As is also the case
with other attributed network embedding, we haven’t considered the cases when
node/edge content is not complete or contaminated.
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Abstract. Natural Language Inference (NLI) is a fundamental task in
natural language understanding. In spite of the importance of existing
research on NLI, the problem of how to exploit the contexts of sentences
for more precisely capturing the inference relations (i.e. by address-
ing the issues such as polysemy and ambiguity) is still much open. In
this paper, we introduce the corresponding image into inference process.
Along this line, we design a novel Context-Aware Dual-Attention Net-
work (CADAN) for tackling NLI task. To be specific, we first utilize the
corresponding images as the Image Attention to construct an enriched
representation for sentences. Then, we use the enriched representation as
the Sentence Attention to analyze the inference relations from detailed
perspectives. Finally, a sentence matching method is designed to deter-
mine the inference relation in sentence pairs. Experimental results on
large-scale NLI corpora and real-world NLI alike corpus demonstrate
the superior effectiveness of our CADAN model.

1 Introduction

Natural Language Inference (NLI), also named as Recognizing Textual Entail-
ment (RTE), requires an agent to determine the semantic relation between two
sentences among entailment (if the semantic of hypothesis can be concluded
from the premise), contradiction (if the semantic of hypothesis cannot be con-
cluded from the premise) and neutral (neither entailment nor contradiction), as
depicted in the following example from [19], where the semantic of hypothesis
can be concluded from the premise:

p: Several airlines polled saw costs grow more than expected, even after adjust-
ing for inflation.
h: Some of the companies in the poll reported cost increases.

c© Springer Nature Switzerland AG 2019
Q. Yang et al. (Eds.): PAKDD 2019, LNAI 11441, pp. 185–198, 2019.
https://doi.org/10.1007/978-3-030-16142-2_15
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p People shopping at outside market

h 

gold-label: Entailment 

People are enjoying the  sunny day at the market.

Fig. 1. Example from SNLI dataset.

Indeed, NLI not only is concerned with the key parts of natural language
understanding, i.e. reasoning and inference [4], but also has broad applications,
e.g. question answering [27] and automatic summarization [31]. Many research
efforts have been conducted in this area. Generally, the main idea of these
works can be summarized into two categories: sentence representation and words
matching. Sentence representation models focus on extracting semantic represen-
tations for sentences by various network structures [3,9,21]. In contrast, words
matching models express more concern about the interactions among aligned
words between the premise and hypothesis, such as word-by-word matching
model [34] and decomposable attention model [25].

To the best of our knowledge, most of existing research assumed that the
hypothesis inference is independent of any context. The contexts (e.g. the corre-
sponding images), however, are actually critical for natural language understand-
ing [1]. Figure 1 gives an example. Both the premise and hypothesis sentences
describe that people are shopping at the market. Without the image as context,
we might conclude the inference relation is neutral since the weather in premise
is unclear. However, when we know the context, it’s easy to find out the relation
is entailment, which indicates the importance of context. Non-literal contexts,
like images, can be useful to clarify these issues such as polysemy, ambiguity, as
well as fuzziness of words and sentences [39]. Therefore, it’s urgent to take into
consideration the image contexts for NLI.

In fact, researchers have converged that images convey important information
about the associated sentences [14,18]. Much progress has been made on the
image and sentence retrieval [13], image captioning [24], and visual question
answer [28], e.g. m-RNN model [20] and NIC model [33]. However, these works
focused more on the alignments between images and sentences rather than the
interactions between sentences, which made it unsuitable for applying them to
the conditional NLI task directly.

Inspired by these works, we introduce the corresponding image of the sentence
pair as the context into inference process. The key challenge along this line is
how to incorporate images into the inference processing effectively. Thus, in this
paper, we propose a novel Context-Aware Dual-Attention Network (CADAN) to
tackle NLI task. To be specific, we propose Image Attention layer to utilize the
correlated image to enhance the sentence representations. The enhanced sentence
representations are further sent to Sentence Attention layer to analyze the infer-
ence relations from detailed perspectives. With the help of this dual-attention,
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CADAN can better evaluate sentence semantic and achieve better performance
on NLI task. Finally, the extensive evaluations on the large-scale NLI corpus and
real-world NLI alike corpus demonstrate the superior effectiveness of CADAN.

2 Related Work

In this section, we introduce the related works, which can be classified into two
parts: methods about NLI and methods about image captioning.

Natural Language Inference Methods. With the help of large annotated
datasets, such as Stanford Natural Language Inference (SNLI) [2] and Multi-
Genre NLI [36], a variety of methods have been developed for NLI. These mod-
els can be classified into two frameworks: sentence representation framework and
words matching framework.

The representation framework focused on the sentence representation and
interaction. Bowman et al. [2] encoded the premise and hypothesis with different
LSTMs. Munkhdalai et al. [22] proposed a memory augmented method, which
understood the sentence through read, compose and write operation. In addition
to network and sentence structures, inner information of sentences also attracted
researchers’ interests, such as TBCNN [21], bi-directional LSTM with inner-
attention [16].

The second framework concentrated more on words matching. Rocktäschel
et al. [29] proposed a word-by-word attention model to capture the attention
information among words and sentences. Cheng et al. [5] proposed an LSTM
with deep attention fusion model to process text incrementally from left to right.
However, most of them assumed that the hypothesis inference was independent
of any context, which is actually critical for natural language understanding and
should be highly considered.

Image Captioning Methods. It has been observed that using the intermediate
representation from Convolutional Neural Network (CNN) as an image descrip-
tor significantly boosts subsequent tasks such as object detection, fine-grained
recognition [6]. Moreover, researchers have found that using image descrip-
tors from a pre-trained CNN benefited the image captioning [33]. For example,
Karpathy et al. [10] proposed an alignment model to learn about the inter-model
correspondences between images and texts. Then they utilize the alignments to
learn to generate novel descriptions of images.

3 Problem Statement and Model Structure

In this section, we formulate the conditional NLI task as a supervised conditional
classification problem and introduce the structure and technical details of the
Context-Aware Dual-Attention Network (CADAN) for the task.
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3.1 Problem Statement

The inputs of this problem are two sentences sa = {sa
1 , s

a
2 , . . . , s

a
l }, sb =

{sb
1, s

b
2, . . . , s

b
l}, as well as one corresponding image c as the given context, where

sa and sb denote the premise and hypothesis sentence. l represents the length
of sentences. Note that sa

i or sb
i here denotes the one-hot representation of the

ith word in the premise or hypothesis sentence. c is the feature representation of
the image. The goal is to predict a label y that indicates the inference relation
between the premise a and the hypothesis b.

Our task in this paper is to learn an accurate classification model, to predict
y given a sentence pair with the associated image (sa , sb , c). To this end, we
propose the Context-Aware Dual-Attention Network (CADAN) to tackle this
issue.

Fig. 2. Architecture of the Context-Aware Dual-Attention Network (CADAN).

3.2 Context-Aware Dual-Attention Network

Our model can be divided into two parts; (1) The preprocessing part: generat-
ing the feature representations of sentences and images. (2) The inference part:
utilizing the Context-Aware Dual-Attention Network (CADAN) to understand
the sentences semantics and classify the inference relations between premise and
hypothesis.

The Preprocessing Part. Since the inputs of the task are sentence pairs and
corresponding images, we utilize different models to represent these different
types of data.

For sentences, we utilize the concatenation of pre-trained word embedding
(840B Glove) [26] and character feature for English words. The character feature



Context-Aware Dual-Attention Network for Natural Language Inference 189

is obtained by applying a convolutional neural network and a max pooling to the
learned character embeddings. For Chinese words, we utilize AutoEncoder [12]
to perform the representations of words in sentences. Thus, we get the word
embedding E for further use.

For images, we choose the pre-trained VGG19 [32] to process the images.
Then we extract the outputs of the last convolution layer of VGG19 and send
them to a fully-connected layer to get feature representations of images.

The Inference Part. Figure 2 shows the overall framework of CADAN, which
consists of three components: (1) Image Attention layer; (2) Sentence Attention
layer; (3) Sentence Matching layer. In the following part, we take the premise
processing as an example to describe technical details of these three components.
The same method will be applied to the hypothesis processing.

(A) Image Attention Layer: The images contain the non-literal context of
sentences. However, how to utilize the information effectively for sentence seman-
tic is still challenging. Thus, we propose Image Attention layer to integrate them
effectively.

In this layer, we first multiply the one-hot representations of the premise sa =
{sa

1 , s
a
2 , . . . , s

a
l } and the hypothesis sb = {sb

1, s
b
2, . . . , s

b
l } by the word embedding

E from the preprocessing part. Then we get the {a}lj=1 for premise and {b}lj=1

for hypothesis. Next, we leverage Gated Recurrent Units (GRU) [7] to encode
these representations. The GRU hidden states below, i.e., {ā}li=1 and {b̄}li=1

encode each word and sentence context around it:

āi = GRU1({ai
j=1}), b̄i = GRU1({bi

j=1}), i = 1, 2, . . . , l. (1)

After getting the hidden state of each word, we aim to identify the content of
each sentence. Since sentences are both related to the image, the words that are
more relevant to the image should get more attention. The attention mechanism
can help the model focus on the most relevant part of the input [6,37]. Thus,
we utilize VGG19 to get the feature representation c of the corresponding image
and send it to the attention cell:

Ā = [ā1, ā2, . . . , āl], M = tanh(WĀ + Uc ⊗ el), W ,U ∈ R
k∗k,

α = softmax(ωTM), ca = ĀαT, ω ∈ R
k,

(2)

here W ,U ,ω are trained parameters. k is the state size of GRU cell in Eq. (1),
α is the attention weights vector of hidden states for words, ca is the first-level
representation for premise, and el ∈ R

l is a row vector of 1. The outer product
Uc ⊗ el means repeating Uc as many times as the number of words in the
premise (i.e. l times).

To be specific, the Image Attention representation mi (i-th column vector in
M) of the i-th word in the premise is obtained from a non-linear combination
of the premise’s hidden state āi and the transformation of image representation
c [29]. With the guidance of the image, the relevant words are selected to form
the first-level sentence representation ca. Therefore CADAN can understand
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what the sentence is discussing under the image context information and model
the inference relation in term of contents.

(B) Sentence Attention Layer: However, knowing what exactly each sen-
tence discusses is still not enough. What NLI is concerned with is the relations
between two sentences. Thus, we also need to model the interaction between two
sentences. Since sentence interaction can obtain mutual valued information of
the premise and hypothesis, it will help to grasp the local relations in the premise
and hypothesis. In order to further characterize the relationship between sen-
tences, we propose Sentence Attention layer to analyze the interaction and local
relations from detailed perspectives.

In this layer, we first send the {a}lj=1 for premise sentence and {b}lj=1 for
hypothesis sentence to another GRU:

ā′
i = GRU2({ai

j=1}), b̄′
i = GRU2({bi

j=1}), i = 1, 2, . . . , l. (3)

After getting hidden states {ā′}li=1 and {b̄′}li=1, we utilize Sentence Atten-
tion to model the local relations between hypothesis and premise. Since the
first-level sentence representation ca contains the information that the image is
concerned with, it can help to model the local interaction between the premise
and hypothesis sentences on the same aspect. Therefore, we treat the first-level
sentence representation as the input of Sentence Attention to figure out the local
relations between two sentences in this layer.

In other words, with the help of Sentence Attention, the words in the hypoth-
esis that are more important to the premise will get higher weights. We can use
these concerned words to generate the second-level representation of premise,
which contains enriched information from textual information and image infor-
mation. We perform attention again and take the same mechanism like Image
Attention as follows:

B̄′ = [b̄′
1, b̄′

2, . . . , b̄′
l], M ′ = tanh(W ′B̄′ + U ′ca ⊗ el), W ′,U ′ ∈ R

k∗k,

α′ = softmax(ω′TM ′), c′
a = B̄α′T, ω′ ∈ R

k,
(4)

Different from Image Attention, here we treat the hidden states {b̄′}li=1 of
hypothesis sentence and first-level premise representation ca as the inputs. In this
way, the content in {b̄′}li=1 that is relevant to ca will be selected and represented
as the second-level premise representation c′

a.

(C) Sentence Matching Layer: In order to determine the overall inference
between two sentences, we leverage heuristic matching [4] between first-level
sentence representations ca, cb and second-level sentence representations c′

a, c
′
b

after attention operation. Specifically, we use the element-wise product, their
difference, and concatenation. Then we concatenate two calculated vectors va

and vb and send the result v to multi-layer perceptron (MLP) to calculate the
probability of inference relation’s existence between these sentence pairs. The
MLP has two hidden layers with ReLu activation and a softmax output layer.

va = (ca, c′
a � ca, c′

a − ca, c′
a), vb = (cb, c′

b � cb, c′
b − cb, c′

b),
v = (va,vb), P (y|(sa , sb , c)) = MLP(v).

(5)
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In this layer, concatenation can retain all the information [38]. The element-
wise product is a certain measure of “similarity” of premise and hypothesis [21].
Their difference can capture the degree of distributional inclusion on each dimen-
sion [35].

3.3 Model Learning

In this section, we introduce the details about the model learning. Recalling the
model description, the training processing can also be divided into two parts:
(1) The preprocessing part: We separately train the AutoEncoder and fine-tune
VGG19. (2) The inference part: The loss function we use in this part is softmax
cross-entropy function.

To be specific, in both stages, mini-batch gradient descent is utilized to opti-
mize the models, where the batch size is 64. The dimensions of feature repre-
sentation of the image and the words are all 300. The lengths of premise and
hypothesis are all set as 15. The state sizes of two GRU cells are set as 200, the
dimensions of the parameters W ,U ,w are also set as 200. To initialize the model,
we randomly set the weights W ,U ,w following the uniform distribution in the
range between −√

6/(nin + nout) and
√

6/(nin + nout) as suggested by [23].
We use SGD with momentum [30], where the learning rate and momentum are
separately set as 0.05 and 0.6, and gradient clipping is performed to constrain
the L2 norm of the global gradients do not exceed 1.0.

4 Experiments

In this section, we provide empirical validation on the large-scale NLI corpus
and real-world NLI alike corpus, and utilize the parameter size and accuracy on
different test sets to evaluate the models.

4.1 Dataset Description

SNLI. Stanford Natural Language Inference (SNLI) [2] has 570k human anno-
tated sentence pairs with labels “entailment”, “neutral”, “contradiction”. The
premise data is drawn from the captions of the Flickr30k corpus. Thus, we can
treat the corresponding images as the context. Since the hypothesis data is man-
ually composed, annotation artifacts will lead the model correctly classify the
hypothesis alone, Gururangan et al. [8] proposed a challenging hard subset, in
which the premise-oblivious model cannot classify accurately, to better evalu-
ate the models’ ability to understand sentences. We also evaluate the models’
performance on this test set.

DanMu. Different from SNLI that has been synthesized specifically for NLI
task [11], DanMu data comes from the real world with labels “entailed” and “not-
entailed”. Both the premise and hypothesis data are user-generated time-sync
comments on videos. Therefore, the corresponding video frames can be treated as
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the context information. Moreover, these sentences are highly diverse in various
aspects (length, complexity, expression, etc.), posing linguistic challenges for the
task. By the nature of its construction, DanMu focuses on what a good context-
aware NLI system needs to find out inference relation between sentence pairs.

To be specific, DanMu contains 120,650 sentence pairs with associated video
frames from more than 4,000 movie videos, including 42,527 positive and 78,123
negative pairs with the labels “entailed” and “not-entailed”. Each item contains
one premise sentence p, one hypothesis sentence h, and the corresponding video
frame.

Following [15], we extract the premise and the corresponding image from
a short period [17], the hypothesis sentence is a modified variant of one of the
comments from either the same period or a random, unrelated one. The instances
that have high word overlap are removed. Then, each remaining instance is
modified by three annotators. The annotator was given the instance and asked
“whether he can conclude the hypothesis from the premise and the image”. The
majority of the answers from annotators was treated as the label of the instance.
Figure 3(A) show some examples of this dataset.

Baselines. In order to better verify the performance of CADAN, we choose some
sentence encoding-based NLI models and image captioning models as baselines.

– LSTM encoders [2]: encoding the premise and hypothesis with two different
LSTMs.

– W-by-W Attention [29]: checking for inference relations of word-pairs and
phrase-pairs between the premise and hypothesis.

– BiLSTM with Inner-Attention [16]: using bidirectional LSTM with inner
attention mechanism to generating sentence representation for NLI.

– CENN [38]: utilizing different sentence vectors to determine the inference
relation.

– Gated-Att BiLSTM [3]: employing intra-sentence gated-attention compo-
nent to encodes a sentence to a fixed-length vector for NLI.

– m-RNN [20]: utilizing a deep RNN for sentences and a CNN for images to
model the probability distribution of words.

– NIC [33]: utilizing a vision CNN and a language RNN for image captioning.

For these two models, we add the premise and hypothesis as inputs to RNN
module separately and treat the final state of models as sentence representa-
tions. After getting sentences representations, we use Sentence Matching layer
in CADAN to determine the inference relation in sentences pairs. Note that all
the models use the same pre-trained word and image representations.

4.2 Overall Performance

We evaluate the performance of models and baselines from the following aspects:
(A) The parameter size (#Para.); (B) The accuracy in (1) SNLI Full test set
(SNLI Full); (2) SNLI Hard test set (SNLI Hard); (3) DanMu test set (DanMu
Test).
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Table 1. Performance (accuracy) of models for NLI.

Model #Para. SNLI full SNLI hard DanMu test

(1) LSTM encoders 3.0M 80.6 58.5 64.9

(2) CENN <700K 82.1 60.4 65.2

(3) W-by-W Attention model 3.9M 83.5 61.7 66.9

(4) BiLSTM with Inner-Attention 2.8M 84.2 62.7 66.3

(5) Gated-Att BiLSTM 12m 85.5 65.5 67.3

(6) CENN with image <700K 83.1 61.7 66.6

(7) NIC - 84.3 63.6 67.9

(8) m-RNN - 84.9 64.9 68.2

(9) CADAN 2.6M 85.7 67.9 71.8

The overall results are summarized in Table 1. We can observe that CADAN
achieves comparable performance. To be specific, CADAN utilizes Image Atten-
tion layer to generate first-level sentence representation, thus it can under-
stand sentences in terms of content accurately. Then Sentence Attention layer
is employed to model the interaction and local relations from detailed perspec-
tives. Therefore, our model achieved the best performance on SNLI full test.
Since SNLI hard test remove those examples that premise-oblivious model can
classify correctly, the performance on this test set can better evaluate the mod-
els’ ability. We can observe that CADAN outperformed all the baselines by a
large margin, e.g. Gated-Att BiLSTM (+2.4%), BiLSTM with Inner-Attention
(+5.2%).

Compared with NLI Models. LSTM encoders [2] encode sentences with
different LSTMs and lead many related works to use different neural networks
as encoders. Thus, we choose it as one of the baselines. However, 58.5% in hard
test and 64.9% in DanMu test prove that simply encoding a sentence with its own
textual information is not enough. CENN and its variant have less than 700K
parameters, but they achieve comparable results with Word-by-Word Attention
model [29], which have 3.9M parameters. It proves that context is really helpful
for sentence understanding and NLI indeed. BiLSTM with Inner-Attention [16]
uses intra-attention on top of BiLSTM to generate sentence representation, and
Gated-Att BiLSTM [3] leverages the gate information in LSTM to calculate the
importance of states of words. Thus, they can understand sentences with a finer
granularity. However, when sentence semantics become obscure, like the hard
test, their performances is not so good, which proves the context is essential for
sentence semantic understanding and NLI.

Compared with Variants of Image Captioning Models. Since CADAN
introduces the image, we want to figure out whether image captioning works
can have good performance on this task. We choose NIC [33] and m-RNN [20]
as baselines. They can generate sentence representation and adapt to the NLI
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Fig. 3. Classification results of different models and ablation result of CADAN.

task through slight changes. From the results, we can conclude that they achieve
comparable performance on the full test with the help of images. When sentences
become complex, i.e. instances in hard test, their performances are still steady,
which indicates the importance of images. However, their original purpose is
generation rather than classification. They are good at aligning the images and
sentence, but poor at modeling the interaction between sentences from detailed
perspectives.

4.3 Ablation Performance

To investigate the effectiveness of the major components of CADAN, Fig. 3(B)
provides additional analysis. From the best model, we remove the Image Atten-
tion layer, in which images are removed, to verify the performance of the model.
We also remove the Sentence Attention layer to verify whether only Image Atten-
tion layer was enough. Without Image Attention layer, the performance drops
to 59.2% (−8.7%) for hard test and 66.3% (−5.5%) for DanMu test, showing
that incorporating image as the context is essential. Without Sentence Atten-
tion layer, the performance drops to 62.5% (−5.4%) for hard test and 67.2%
(−4.6%) for DanMu test, proving that it’s important to consider local relations
between sentences from detailed perspectives. Based on these observations, we
can summarize that contexts and sentence interaction are both very important
for sentences semantic understanding.

4.4 Qualitative Evaluation

Evaluation of the Results. Here we choose the Gated-Att BiLSTM and m-
RNN as they perform the best of the baselines in the NLI-related baselines
and image captioning-related baselines for qualitative evaluation. The results
are shown in Fig. 3(A). The first two examples come from SNLI hard test and
the rest come from DanMu test. Taking the last instance as an example, this
instance describes that a robot looks very sad like human beings. Without the
image, the description of the premise will be ambiguous. We don’t realize that
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‘He’ is referring to an object rather than a person until we know the non-literal
context. With the image, we could understand that the meaning of premise is
that this robot may have the same emotions as humans since ordinary robots
cannot be able to cry. Then it’s easy to infer that this robot has no difference
with humans. CADAN makes a right choice, while the other two misclassify it.

The rest examples also show the importance of images as contexts in
Fig. 3(A). All of them indicate that context is essential for NLI.

Fig. 4. Visualization of attention on two examples.

Evaluation of the Attention. Here we visualize the attention in our model.
There are two kinds of attention: (1) The image’s attention to each sentence: (2)
The sentence’s attention on each other. Figure 4 shows to what extent the Image
Attention and Sentence Attention focus on the hidden states of two sentences
respectively.

The example above may be confusing without the image. As described before,
both premise and hypothesis describe that people are shopping at the mar-
ket. However, the weather in the premise is unclear. We may conclude that the
weather is sunny since the premise describes that the market is outside, which
is hard for machines and we are not sure about the conclusion. However, with
the image’s help, it’s easy for us to find out the relation is entailment. More-
over, CADAN focuses on the word “outside” in the premise and “sunny day” in
hypothesis sentence. On this basis, CADAN also pay attention to “people shop-
ping” in premise and “enjoying, market” in hypothesis. Therefore, our model
not only makes the right classification, but also gives a clear explanation about
the inference relation between the sentence pairs.

The example below, which comes from the movie “I, Robot”1, also indicates
that our model not only makes the right classification, but also gives a clear
explanation.

With the information of the image, CADAN finds the alignment between
“spray” in premise and “Yunnan Baiyao spray”2 in hypothesis. Moreover,
1 https://en.wikipedia.org/wiki/I, Robot (film).
2 Yunnan Baiyao is a kind of healing spray.

https://en.wikipedia.org/wiki/I,_Robot_(film)
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CADAN finds that “2333” in hypothesis and “what the hell” in the premise
both express the same feeling about the image. All these indicate “entailed”
relation between the sentence pair.

In conclusion, when semantic meanings of sentences are clear, CADAN can
make the right choice and give a detailed explanation about the inference rela-
tion. When sentence semantics are obscure, CADAN can utilize image as context
to understand its meaning precisely and make the correct classification.

5 Conclusion and Future Work

In this paper, we argued that context is crucial for sentence understanding. We
proposed a novel Context-Aware Dual-Attention Network (CADAN) to incorpo-
rate both textual and image information into the inference processing effectively.
To be specific, we utilized Image Attention to incorporate image to understand
the semantic meaning of sentences in terms of contents. Then Sentence Atten-
tion was employed to model the interaction and local relations of sentences
from detailed perspectives. With the help of two-level representations and dual-
attention mechanisms, our model could better understand sentence semantic and
make correct decision. Experimental results demonstrated the superiority of our
proposed model. In the future, we will explore more effective ways to process
the context and finer grained methods to understand sentences semantics more
precisely.
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Abstract. Distant supervision relation extraction is a promising app-
roach to find new relation instances from large text corpora. Most pre-
vious works employ the top 1 strategy, i.e., predicting the relation of a
sentence with the highest confidence score, which is not always the opti-
mal solution. To improve distant supervision relation extraction, this
work applies the best from top k strategy to explore the possibility of
relations with lower confidence scores. We approach the best from top
k strategy using a deep reinforcement learning framework, where the
model learns to select the optimal relation among the top k candidates
for better predictions. Specifically, we employ a deep Q-network, trained
to optimize a reward function that reflects the extraction performance
under distant supervision. The experiments on three public datasets -
of news articles, Wikipedia and biomedical papers - demonstrate that
the proposed strategy improves the performance of traditional state-of-
the-art relation extractors significantly. We achieve an improvement of
5.13% in average F1-score over four competitive baselines.

Keywords: Distant supervision · Relation extraction ·
Deep reinforcement learning · Deep Q-networks

1 Introduction

Relation extraction aims to predict the relation for entities in a sentence [20]. It is
an important task in information extraction and natural language understand-
ing. However, for the early development of relation extraction applications, a
major issue is creating human labeled training sets which is both time-consuming
and expensive.

Therefore, a new task in terms of distant supervision relation extraction [2,
4,8,13,15,18] becomes popular, since it uses entity pairs and their relations from
knowledge bases to heuristically create training sets. The definition of distant
supervision relation extraction is as follows:
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Definition 1. Let X be the sentence space and Y the set of relations, distant
supervision relation extraction aims to learn a function f : 2X → 2Y from
a given data set {(X1, Y1), (X2, Y2), . . . , (XN , YN )}, where Xi ⊆ X is a set of
sentences {x1,x2, . . . ,x|Xi|}, Yi ⊆ Y is a set of relations {y1, y2, . . . , y|Yi|}.
Here Xi denotes the set of sentences that relates to the ith entity pair and Yi

its relations, |Xi| denotes the number of sentences in Xi and |Yi| the number of
relations in Yi.

Strategy Top 1. Most previous works resolve distant supervision relation
extraction by a sentence-level extractor along with an entity-pair-level predica-
tor to make the final decision [2,4,15,18]. The sentence-level extractor outputs a
set of real-valued scores for each sentence x, the score h(x, y) indicates the confi-
dence of sentence x describes relation y. For each sentence, at least one relation
should be selected and fed to the entity-pair-level predictor, which will make the
final prediction based on all the selected relations for all the sentences. Existing
distant supervision relation extraction models usually employ the top 1 strategy,
i.e., selecting arg maxy∈Y h(x, y) as the predicted relation for x. However, the
relation with the highest confidence score, i.e., arg maxy∈Y h(x, y) is not always
the optimal option, existing models have not explored the possibility of other
relations with lower confidence scores.

For example, Fig. 1 shows a sample sentence that describes the relation
instance (Ernst Haefliger, place of birth, Davos). As shown in the bottom of
the figure, a sentence-level extractor outputs the confidence score for each rela-
tion. Obviously, the relation with the highest confidence score (i.e., place lived)
is not the best choice for the sentence.

Strategy Best from Top k. This paper proposes a strategy to address the
issue in existing models. Instead of employing the top 1 strategy, we investigate
the possibility of improving distant supervision relation extraction by using the
best from top k strategy, i.e., we choose the best prediction from the top k
candidates {y|∀y ∈ Y, rank(h(x, y)) ≤ k}, where rank(h(x, y)) returns the rank
of y derived from h(x, y), and then feed it to the entity-pair-level predictor. For
example, there is a chance to make an optimal selection for the sentence in Fig. 1
(i.e., place of birth) using the best from top k strategy (k = 3).

Relation instance:
(Ernst Haefliger, place of birth, Davos)
Sample sentence:
Ernst Haefliger (pronounced heff-ligger) was born in Davos on July 6, 1919 , and
studied at the Wettinger seminary and the Zurich conservatory before moving to
Vienna , where he became a student of the Tenor Julius Patzak .
Top k candidates:
〈place lived 0.541, place of birth 0.311, nationality 0.072〉

Fig. 1. The top k (k = 3) outputs of the sentence-level extractor.
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Specifically, we address the best from top k strategy using a deep reinforce-
ment learning (RL) framework that learns to predict a set of most possible
relations for each entity pair based on the top k candidate relations from the
sentence-level extractor. To effectively select among the top k candidate rela-
tions, the state representation encodes information about the confidence scores
and the context in which the entity pair appears. We train the RL model using
a deep Q-network (DQN) [9], whose goal is to learn to select good actions in
order to optimize the reward function, which reflects the extraction performance
under distant supervision.

While we use the sentence-level extractors of four state-of-the-art models in
the experiments, i.e., MultiR [2], MIMLRE [15], CNN+ATT and PCNN+ATT
[4], this method can be inherently applied to other models. The experiments
on three public datasets from different domains, the New York Times news
articles, the Wikipedia articles, and the PubMed paper abstracts, demonstrate
that the proposed method outperforms four comparative baselines significantly.
The average F1-score has an improvement of 5.13% compared with baseline
models.

The contributions in this work include:

• This work proposes the best from top k strategy, which is implemented with
a novel deep reinforcement learning framework, to improve existing distant
supervision relation extraction models.

• The proposed strategy can be applied to any distant supervision relation
extractors that output confidence scores for predicted relations.

2 Related Work

Pioneer work in distant supervision relation extraction used a set of frequent
relations in Freebase to train relation extractors over Wikipedia without labeled
data [8]. Since then, a lot of works focused on relation extraction using distant
supervision. However, using distant supervision to annotate training data would
introduce a lot of false positive labels [13].

To alleviate the wrong label issue, a series of graphical models have been pro-
posed based on hand-craft features. A joint model was proposed to learn with
multiple relations [2]. Later, a multi-instance multi-label learning (MIML) frame-
work was proposed to further improve the performance [15]. Additional infor-
mation has been employed to reduce wrong labels of training data upon these
models. For example, the fine-grained entity types [3], the document structure
[6], the side information about rare entities [14], and the human labeled data [7].

Neural network models have shown superior performance over approaches
using hand-crafted features in distant supervision relation extraction [4,18]. Con-
volutional neural networks (CNN) and piecewise convolutional neural networks
(PCNN) are among the first deep neural network models that have been applied
to this task [18]. An instance-level selective attention mechanism was introduced
for multi-instance multi-label learning [4], and has significantly improved the
prediction accuracy for several of these base deep neural network models.
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Recently, deep reinforcement learning have been applied to distant supervi-
sion relation extraction [1,12,19]. The relation extractor is regarded as a rein-
forcement learning agent and the goal is to achieve higher long-term reward
[19]. To further improve the performance, an instance selector was proposed to
cast the sentence selection task as a reinforcement learning problem to choose
high-quality training sentence for a relation classifier [1], and a false-positive
indicator was proposed to automatically recognize false positive labels and then
redistribute them into negative examples [12].

This work relates to the previous works that based on graphical models and
neural network models because their sentence-level extractors can be reused in
our model. This work also relates to the previous works that based on deep
RL methods as we also learn a RL agent. The main differences between our
work and existing deep RL methods are that our RL agent tries to improve the
testing process of relation extraction while theirs are designed for better training
process, and our RL agent is based on deep Q-networks while theirs are mainly
based on policy gradient. Considering the training cost of the model, we do not
update the parameters of sentence-level extractors during training the RL agent.
Thus the learning process tends to be faster than the previous works.

3 Framework

The task of improving relation extraction models under distant supervision can
be modeled as a markov decision process (MDP), which learns to utilize the
outputs of a sentence-level extractor to improve extractions. We represent the
MDP as a tuple 〈S,A, T,R〉, where S = {s} is the space of all possible states,
A = {a} is the set of all actions, R(s, a) is the reward function, and T (s′|s, a)
is the transition function. The overall framework of the task is shown in Fig. 2.
Given a set of sentences, the sentence-level extractor produces the predicated
relations and their confidence scores. The RL agent selects one action for each
state to produce the best relation, which is merged into the selected relation set.

States. The state s in our MDP consists of the sentence-level extractor’s confi-
dence scores of the predicted relations and the context in which the entity pair
appears. As shown in Fig. 2 (the bottom boxes), we represent the state as a
continuous real-valued vector incorporating the following pieces of information:

– Confidence scores of current selected relations between the entities.
– Confidence scores of the newly predicted relations between the entities in the

new sentence.
– One-hot encoding of matches between current and newly predicted relations.
– TF-IDF counts1 of context words, which occur in the neighborhood of the

entities in a sentence.

1 TF-IDF counts are computed based on the training sentences.
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Fig. 2. Overall framework. The left boxes are input sentences. The middle boxes are
predicted relations and their confidence scores of the sentence-level extractor. The right
boxes are relations that selected by the RL agent step by step from the current episode.
The bottom boxes are two sample states corresponding to the input sentences.

Actions. We define an action a ∈ {0, 1, 2, . . . , k}2 to indicates whether the
predicted relations by the sentence-level extractor should be rejected or accepted.
Here the number k corresponds to the k in the best from top k strategy. The
decision can be one of the following types: (1) reject all the relations, i.e., a = 0,
or (2) accept the lth (1 ≤ l ≤ k) relation according to the ranked predicted
confidence scores, i.e., a = l. The agent continues to inspect more sentences
until the episode ends. The current relation and confidence scores are simply
updated with the accepted relation and the corresponding confidences.

Rewards. The reward function is an indicator of the quality of chosen relations.
For a certain set of training sentences Xi = {x1,x2, . . . ,x|Xi|} of an episode, the
agent selects an action for each sentence to determine whether the sentence-level
extractor’s outputs should be accepted or not. We assume that the agent has a
terminal reward when it finishes all the selection. Therefore we receive a delayed
reward at the terminal state s|Xi|+1 based on the performance of current selected
relation set Y cur for the ith entity pair on Xi (see the outputs in Fig. 2).

At other states, after an action is taken (i.e., a relation is chosen), the reward
is computed immediately based on the agent’s performance on the newly pre-
dicted relation set Y new

j (j ≤ |Xi|) for the new sentence. The performances of
Y cur and Y new

j are computed using the number of true positive (i.e., TP) and
false positive (i.e., FP) relations compared with the distantly annotated data.
The intuition is that, the reward is positive if true positive relations are more
than false positive ones, and the reward is negative vice versa. Note that, the
2 We choose k by ranging it from 1 to 5 in our experiments, the model achieves the

best performance in most cases when k = 3.
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reward is zero if the agent decided to reject all the predicated relations for the
new sentence. Therefore, the reward function is defined as follows:

r(sj |Xi) =

{
TP (Y new

j ) − FP (Y new
j ) j < |Xi| + 1

TP (Y cur) − FP (Y cur) j = |Xi| + 1
(1)

Transitions. Each episode starts off with an initial state that consists of an
empty set of current relation and its confidence score respect to the entity pair
(see the initial state s1 in Fig. 2). The subsequent steps in the episode involve
traversing the set of sentences and integrating the extracted new relation to the
current relation set. The transition function T (s′|s, a) incorporates the selected
decision a from the agent in state s along with the relation from the next sentence
and produces the next state s′, e.g., s = s1, s

′ = s2 in Fig. 2.
Algorithm 1 details the MDP framework for the training phase of the best

from top k strategy. During the testing phase, each sentence is handled only
once in a single episode. The training process of our agent contains M epochs.
For the ith entity pair, we first initialize an empty set to the current relation
set, denoted as Y cur and set the initial reward r to 0 (line 3), then traverse
all training sentences in Xi to update the current relation set Y cur and the
immediate reward r according to the action taken by the agent based on the
state sj (lines 4–13). The terminal state s|Xi|+1 and the delayed reward r for the
ith entity pair based on Xi is then sent to the agent (line 14). After the training,
the agent learns a policy to further improve the relation extraction results of
sentence-level extractors.

Algorithm 1. MDP framework for the best from top k strategy
1: for epoch = 1,M do
2: for i = 1, N do
3: Y cur ← {}, r ← 0
4: for j = 1, |Xi| do
5: Compute confidence score vector F(xj)
6: Compute context vector C(xj)
7: Form state sj using Y cur, F(xj) and C(xj)
8: Send (sj , r) to agent
9: Get action a from agent

10: Y new
j ← Select(F(xj), a)

11: Y cur ← Reconcile(Y cur, Y new
j )

12: update r using Equation 1
13: end for
14: Send (s|Xi|+1, r) to agent
15: end for
16: end for
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4 DQN Parameter Learning

For the purpose of learning a good policy for an agent, we utilize the deep
reinforcement learning framework described in the previous section. Following
previous work [10], the MDP can be viewed in terms of a sequence of transitions
(s, a, r, s′). The agent seeks to learn a policy to determine which action a to
perform in state s. A commonly used technique for learning an optimal policy is
Q-learning [17], in which the agent iteratively updates Q(s, a) using the rewards
obtained from experiences. The updates are derived from the recursive Bellman
equation [16] for the optimal Q:

Q∗(s, a) = E
[
r + γ max

a′
Q∗(s′, a′)

∣∣∣s, a]
(2)

where r is the reward and γ is a factor discounting the value of future rewards
and the expectation is taken over all transitions involving state s and action a.

We use DQN [9] as a function approximator Q(s, a) ≈ Q(s, a; θ), since our
problem involves a continuous state space. The DQN has been shown to learn
better value functions than linear approximators [9] and can capture non-linear
interactions between different pieces of information in continuous state [10]. We
use a DQN that consists of two linear layers (20 hidden units each) followed by
rectified linear units (ReLU), along with a separate output layer.

The parameters θ of the DQN are learnt using stochastic gradient descent
with RMSprop3. The parameter update aims to close the gap between the
Q(s, a; θ) predicted by the DQN and the expected Q-value from the experiences.
Following previous work [9], we make use of a (separate) target Q-network to
calculate the expected Q-value, in order to have stable updates. The target Q-
network parameters θ̂ is periodically updated with the current parameters θ.
We also make use of an experience replay memory D to store transitions. To
perform updates, we sample a batch of transitions (s, a, r, s′) randomly from D
and minimize the loss function:

L(θ) = Es,a,r,s′

[(
r + γ max

a′
Q(s′, a′; θ̂) − Q(s, a; θ)

)2
]

(3)

The learning updates are made every training step using the following gradients:

∇θL(θ) = Es,a,r,s′
[
2
(
r + γ max

a′
Q(s′, a′; θ̂) − Q(s, a; θ)

)
∇θQ(s, a; θ)

]
(4)

5 Experimental Setup and Results

In our experiments, we first evaluate the performance of the proposed model
compared with four state-of-the-art baseline models. Then to further illustrate
the effectiveness of the best from top k strategy, we also evaluate the perfor-
mances of the models that apply different strategies respectively.
3 See http://www.cs.toronto.edu/∼tijmen/csc321/slides/lecture slides lec6.pdf.

http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
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5.1 Dataset

Our experiments use three public datasets from different domains. (1) NYT [13]
is constructed from New York Times news articles. It contains 522,611 sentences
in the training set, and 172,448 sentences in the testing set. Among these data,
there are 53 unique relations from Freebase including a special relation NA that
signifies no relation between two entities in a sentence. (2) Wiki-KBP [5] is
derived from Wikipedia articles. It contains 23,111 sentences in the training
set, and 15,847 sentences in the testing set. There are 7 unique relations from
the KBP 2013 slot filling database including a NA relation. (3) BioInfer [11]
is sampled from PubMed paper abstracts. It contains 1,139 sentences in the
training set, and 876 sentences in the testing set. There are 92 unique relations
including a NA relation among these data.

5.2 Baseline Extractors

We compare the proposed model with the following distant supervision relation
extraction models in our experiments. Note that the sentence-level extractors of
these baseline models are also used in our model.

MultiR [2] is a typical work based on probabilistic graphical model for multi-
instance learning. It uses the perceptron algorithm for learning and a greedy
search algorithm for inference. We implemented this model using the publicly
available code4.

MIMLRE [15] is a graphical model for multiple instances and multiple
relations. It is trained by using hard discriminative Expectation-Maximization.
We use the publicly available code provided by the authors5.

CNN+ATT and PCNN+ATT [4] are two state-of-the-art neural networks
for relation extraction, which adopt a sentence-level attention over the sentences
and thus can reduce the weights of noisy sentences. We implemented the two
models using the publicly available code6.

5.3 RL Models

We train a RL model using the proposed best from top k strategy based on each
sentence-level extractor respectively. For example, MultiR+RL uses the same
sentence-level extractor as in MultiR, then learn a RL model to generate the
final predictions in the entity-pair-level.

We used the same network architecture, hyperparameter values and learn-
ing procedure throughout to demonstrate that our approach robustly learns
successful policies over a variety of datasets based only on distant supervision
knowledge. The RL models are trained for 10,000 steps every epoch using the
sentence-level extractors, and evaluate the entire test set every epoch. The final

4 http://www.cs.washington.edu/ai/raphaelh/mr/.
5 http://nlp.stanford.edu/software/mimlre.shtml.
6 https://github.com/thunlp/NRE/.

http://www.cs.washington.edu/ai/raphaelh/mr/
http://nlp.stanford.edu/software/mimlre.shtml
https://github.com/thunlp/NRE/
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evaluation metrics reported are averaged over 20 epochs after 100 epochs of
training. We used a replay memory D of size 500k, and a discount (γ) of 0.8.
We set the learning rate to 2.5E−5. The ε-greedy exploration is annealed from
1 to 0.1 over 500k transitions. The target-Q network is updated every 5k steps.

5.4 Evaluation Metrics

Similar to the previous works [13], we adopt the held-out evaluation to evalu-
ate our models, which can provide an approximate measure of the classification
ability without costly human evaluation. The held-out evaluation compares the
predicted relations of the entity pair with the gold relations, which is automat-
ically labeled by knowledge bases. It’s an effective evaluation method for large
dataset. Precision (P), recall (R), and F1-score (F1) are used as our evaluation
metrics.

We compute the evaluation metrics based on the distinct occurrence of each
relation instance, i.e., any occurrence of the extracted relation instance is consid-
ered as one extraction. All compared models are evaluated use the same method.

5.5 Experimental Results

The precisions, recalls and F1-scores of eight compared models evaluated on
three datasets are shown in Table 1. We observe from the table that all RL
models yield obvious and steady improvements compared with baseline models
on all datasets except the PCNN+ATT+RL model on the BioInfer dataset.
It not only demonstrates the rationality of our best from top k strategy, but
also verifies our hypothesis that the state-of-the-art distant supervision relation
extractors can be further improved by the best from top k strategy.

Specifically, the F1 score of CNN+ATT+RL has 18.2% improvement com-
pared with CNN+ATT on the NYT dataset, and the average F1 score of all RL
models on all datasets has 5.13% improvement compared with that of all base-
line models. These comparable results illustrate that our approach is capable in
improving relation extraction based on distant supervision in different domains,
and making RL models develop towards a good direction.

(a) MultiR+RL (b) MIMLRE+RL (c) CNN+ATT+RL (d) PCNN+ATT+RL
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Fig. 3. Training curves tracking the RL model’s average reward achieved per
episode for models (a) MultiR+RL, (b) MIMLRL+RL, (c) CNN+ATT+RL and (d)
PCNN+ATT+RL on the dataset NYT.
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Table 1. Precision, Recall and F1-score of the compared models on three datasets.
The RL models use the same sentence-level extractor as in the baseline models, and
apply the proposed best from top k strategy. The average F1-score improvement of RL
models over the baseline models is 5.13%.

System NYT Wiki-KBP BioInfer

P R F1 P R F1 P R F1

MultiR 0.756 0.371 0.497 0.444 0.427 0.435 0.102 0.087 0.094

MultiR+RL 0.731 0.412 0.527 0.421 0.620 0.501 0.117 0.114 0.116

MIMLRE 0.529 0.506 0.517 0.489 0.461 0.475 0.059 0.049 0.054

MIMLRE+RL 0.722 0.427 0.537 0.515 0.677 0.585 0.073 0.148 0.097

CNN+ATT 0.965 0.426 0.591 0.654 0.680 0.667 0.119 0.100 0.109

CNN+ATT+RL 0.773 0.773 0.773 0.652 0.700 0.675 0.113 0.119 0.116

PCNN+ATT 0.938 0.504 0.656 0.604 0.593 0.599 0.193 0.179 0.186

PCNN+ATT+RL 0.764 0.779 0.772 0.592 0.637 0.614 0.190 0.176 0.183

Figure 3 shows the training curves tracking the average reward achieved per
episode for each RL model on the dataset NYT. We can see from the figures that
our RL models are able to improve the performance of all the traditional distant
supervision relation extraction models in a stable manner. The same conclusion
can be derived from the results on other datasets.

5.6 Analysis and Case Study

We analyze the influence of different k values for RL models with best from
top k strategy. Figure 4 shows precision, recall and F1-score of the compared
approaches on the NYT dataset. Sub-figure (a) shows the comparison results of
MultiR, MultiR+RL (k = 1) and MultiR+RL (k = 3). The MultiR method uses
the top 1 strategy. The difference between MultiR and MultiR+RL (k = 1) is
that they use different methods in entity-pair-level to make the final prediction.
We can see from sub-figure (a) that MultiR+RL (k = 3) achieves the best F1-
score. The same observations can be derived from other sub-figures. It illustrates
that models applying the best from top k strategy (k = 1) is as good as those
applying the top 1 strategy, and models applying the best from top k strategy
(k > 1) can achieve significant improvements compared with the baselines.

Table 2 shows three examples of sentence-level relation extraction for PCNN+
ATT and PCNN+ATT+RL. For the first sentence, both models select the cor-
rect relation for the entities, which are labeled with subscripts. For the second
sentence, PCNN+ATT selects the most possible but wrong relation, i.e., NA
based on the predicted confidence scores in the brackets, while PCNN+ATT+RL
selects the correct relation, i.e., nationality. This case explains why our RL
models can achieve higher recalls than baseline models in most cases. For
the third sentence, PCNN+ATT selects a wrong relation, i.e., NA, while
PCNN+ATT+RL rejects all the predicted relations by PCNN+ATT since the
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(a) MultiR vs. MultiR+RL (b) MIMLRE vs. MIMLRE+RL
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(c) CNN+ATT vs. CNN+ATT+RL (d) PCNN+ATT vs. PCNN+ATT+RL
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Fig. 4. Precision, Recall and F1-score of the compared models that use the top 1
strategy and the best from top k strategy (k = 1 and k = 3) on the NYT dataset.

Table 2. Relation extraction examples by different models. The correct relations
between entities in the three sentences are company, nationality and contains.

Test sentence PCNN+ATT PCNN+ATT+RL

mel karmazin1, the chief executive of
sirius satellite radio2, made a lot of
... radio on monday

company(0.790) Company

NA(0.170)

place of birth(0.011)

a young cape verdean singer who was
born in portugal2, lura1 specializes in
bubbly, ... by cesaria evora

NA(0.387) Nationality

nationality(0.159)

place lived(0.075)

despite madrid2’s efforts to catch up,
barcelona arguably remains the design
capital of spain1, and vinçon ...

NA(0.842) /

nationality(0.042)

place of birth(0.024)

correct relation, i.e., contains is not in the top 3 candidates. This case indi-
cates that our RL models are able to prevent potential errors. It is clearly show
that our model can do better relation extraction than traditional state-of-the-art
distant supervision relation extraction models.

6 Conclusions

This paper proposed the best from top k strategy to improve existing distant
supervision relation extraction models, which use the top 1 strategy. The pro-
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posed strategy chooses the best prediction from the top k candidates generated
by the sentence-level extractor of the existing models. We approach the best
from top k strategy using a deep RL framework, which employs a DQN to learn
to select good actions for optimizing the reward function. Based on the deep
RL framework, our model is capable to predict a set of possible relations for
each entity pair in the entity-pair-level. In the experiments, we evaluate the per-
formance of the proposed model compared with four state-of-the-art baselines,
i.e., the MultiR, MIMLRE, CNN+ATT and PCNN+ATT models. The experi-
mental results on three public datasets from different domains demonstrate that
the proposed model that applies the best from top k strategy outperforms the
comparative baselines that apply the top 1 strategy significantly. The average
F1-score has 5.13% improvement compared with all baseline models.

Acknowledgements. This work is partially funded by the National Science Foun-
dation of China under Grant 61170165, Grant 61702279, Grant 61602260, and Grant
61502095.
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Abstract. Software defect mining is playing an important role in soft-
ware quality assurance. Many deep neural network based models have
been proposed for software defect mining tasks, and have pushed for-
ward the state-of-the-art mining performance. These deep models usually
require a huge amount of task-specific source code for training to capture
the code functionality to mine the defects. But such requirement is often
hard to be satisfied in practice. On the other hand, lots of free source
code and corresponding textual explanations are publicly available in the
open source software repositories, which is potentially useful in model-
ing code functionality. However, no previous studies ever leverage these
resources to help defect mining tasks. In this paper, we propose a novel
framework to learn one reusable deep model for code functional repre-
sentation using the huge amount of publicly available task-free source
code as well as their textual explanations. And then reuse it for vari-
ous software defect mining tasks. Experimental results on three major
defect mining tasks with real world datasets indicate that by reusing this
model in specific tasks, the mining performance outperforms its counter-
part that learns deep models from scratch, especially when the training
data is insufficient.

Keywords: Software defect mining · Machine learning · Model reuse

1 Introduction

Software Quality Assurance (SQA) is vital in software engineering and one of
the biggest influencing factors is software defects (also referred as bugs). There
have been many ways to find bugs, such as conducting software testing. Recently,
software defect mining, which leverages data mining techniques to help identi-
fying the software defects, has shown its advantages in reducing the software
testing resources, and drawn significant attention.

Various software defect mining tasks can be employed to identify software
defects. The major tasks are: software clone detection, defect prediction and bug
localization. In software engineering, copy-pasting existing code snippets can
usually cause bug propagation. If one code snippet contains a bug, all other
c© Springer Nature Switzerland AG 2019
Q. Yang et al. (Eds.): PAKDD 2019, LNAI 11441, pp. 212–224, 2019.
https://doi.org/10.1007/978-3-030-16142-2_17
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snippets similar to it may also exist the same bug [13]. Therefore, software clone
detection aims to mine such bugs by identifying the cloned code snippets. Apart
from that, defect prediction is to directly check if a certain software module
contains bugs before a software system releasing, while bug localization refers
to locate buggy source code based on bug reports written in natural language
submitted by the users after the system releasing.

/*Code1: factorial*/
public static void fac(int n)
{

if(n==0)
return 1;

else
return n*fac(n-1);

}

/*Code2: factorial*/
public static void fac(int n)
{

int i,re=1;
for(i=1;i<=n;i++)

re=re*i;
return re;

}

/*Code3: cumulative sum*/
public static void csum(int n)
{

int i,re=0;
for(i=1;i<=m;i++)

re=re+i;
return re;

}

Fig. 1. An example of three Java code snippets with comments. Code1 and Code2 are
similar with the same functionality shown by “factorial” though implemented in differ-
ent ways (i.e., for-loop and recursion). Code2 and Code3 are dissimilar in functionality
shown by “factorial” and “cumulative sum” though nearly the same in appearance.

Many methods have been proposed for these mining tasks. The most common
way is to design hand-crafted features for specific mining tasks, such as sequence
features, AST (Abstract Syntax Tree) features and PDG (Program Dependence
Graph) features in clone detection [1,7,11], software metrics in defect predic-
tion [3,9], bag-of-words features in bug localization [4,21]. Recently, deep neural
networks have been applied to tackle software defect mining tasks. Wei and
Li [18] address the clone detection problem with deep learning model equipped
with AST-based LSTM (Long Short Term Memory) and learning to hash. Huo
et al. [6] propose a novel deep model structure based on CNN (Convolutional
Neural Network) to learn unified features from both bug reports and source
code. They also improve it by taking LSTM to capture the sequential nature
of source code [5]. All these deep models have significantly pushed forward the
state-of-the-art performance in various software defect mining tasks.

To achieve such promising performance, deep models usually require a huge
amount of training data. However, acquiring sufficient number of training data
and their labels is usually difficult for software defect mining tasks. For example,
after a software system releasing, it takes long time for underlying bugs to be
exposed to users for firing bug reports, and hence the number of bug reports
that can be used to train the model is small; additionally, much human effort is
required to locate the buggy source code from the code bases. Similar problems
hold for software clone detection and defect prediction. Therefore, these proposed
deep models may not perform as well as they should be in practice.

On the other hand, there has been huge amounts of source code as well as
their corresponding textual explanations in the open source software repositories
(e.g., SourceForge1) and technical forums that discuss and share source code
1 https://sourceforge.net/.

https://sourceforge.net/
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(e.g., Stack Overflow2). These data is publicly available, but is not collected and
preprocessed for any particular software mining tasks. One question arises: can
we leverage the huge amount of task-free data to help software defect mining
tasks with insufficient training data?

Intuitively, if the source code functionality is correctly modeled, it would be
apparent to determine whether the code behaves as it is expected to (i.e., whether
it contains defects). Thus, the key is to effectively model the functionality of
source code which can be reused in many software defect mining tasks to further
assist to mine the defect. However, it is sometimes difficult even for software
maintenance engineers to determine the source code functionality solely based
on the code itself [15], since the same functionality can be implemented in various
ways (e.g., summation implemented with for-loop and recursion) and source code
similar in appearance may carry different meanings, especially when it is freely
written. In this case, additional textual information (e.g., code comments, design
documents) may be further referred to. An example of three code snippets with
comments is given in Fig. 1 to show how the textual information helps.

In this paper, we propose a novel approach to learn one ReUsable deep Model
RUM for the functional representation of source code, which is trained with the
huge amount of publicly available source code resources. It is obvious that the
code functionality can be well captured with the help of textual information.
Unluckily, detailed textual information even comments for source code in specific
task is always missing. Therefore, our approach first leverages both source code
and their corresponding textual explanations which can be available in public
source resources to derive a text-enriched code functionality space. Based on this
space, a reusable code functional representation model RUM, which only lever-
ages source code, is constructed by aligning the learned representation towards
its counterpart in the text-enriched code functionality space. Such a reusable
model can be plugged into different software defect mining tasks with moderate
adaptation over the task-specific data to generate the text-enriched functional
representations even if no additional textual information available for the spe-
cific task. The experimental results on three major software defect mining tasks
(i.e., software clone detection, defect prediction and bug localization) with real
world datasets indicate that by using this model to generate functional represen-
tations for task-specific source code, the mining performance outperforms that
learns deep models from scratch, especially when the task-specific training data
is insufficient.

2 The Proposed Approach

The goal of the proposed approach is to learn a good code functional represen-
tation model using the huge amount of publicly available task-free source code
resources and then reuse it for many specific software defect mining tasks.

2 https://stackoverflow.com/.

https://stackoverflow.com/
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Let O = {o1, o2, ..., oN} denotes the code-text set, where oi = (ci, ti), ci
and ti denote the i-th raw code snippet and corresponding textual comment
respectively, N is set size. Let C = {c1, c2, ..., cN} denotes the code set from O.

Phase One : Learning the Reusable Model RUM Phase Two: Reusing RUM
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Fig. 2. The framework of learning and reusing RUM, containing two phases. In phase
one, we learn a feature mapping ψ in RUM with the help of feature mapping φ in
AUM. In phase two, we reuse ψ shown in red color in three software defect mining
tasks. (Color figure online)

The framework of the proposal approach is shown in Fig. 2. It contains two
phases. The first phase shown in the left part is to learn a ReUsable code func-
tional representation Model RUM which accepts source code input. With only
code information, semantic functionality is hard to model since the same func-
tionality can be implemented with different lexical or syntactic ways and similar
code functionalities are always with similar textual comments (e.g., factorial
and cumulative sum shown in Fig. 1). Therefore, we first build an AUxiliary
Model AUM to leverage both code and comments to learn the text-enriched
code functionality representation space, resulting in the feature mapping φ(c, t).
To further utilize the space, we design a approximation mechanism for RUM with
feature mapping ψ(c, t) to align the learned representation to its counterpart,
i.e., ψ(ci) ∼= φ(ci, ti), such that it can implicitly encode textual information.

In the second phase shown in the right part, we plug the reusable feature
mapping ψ(c) in RUM into different task-specific deep models to replace the
code feature extraction substructure, and adapt it towards the task with a small
amount of task-specific data. Here, we employ simple fine-tuning technique to
RUM in the purpose of verifying the feasibility of our approach. However, any
advanced model adaptation techniques can be employed and better performance
can be expected. To provide concrete examples on how to reuse RUM in specific
defect mining tasks, we select the aforementioned three major software defect
mining tasks, namely clone detection, defect prediction and bug localization:

– RUM for Clone Detection. Given a source code set (c1, ..., cN ), the goal is
to predict if (ci, cj) belong to a clone pair. For this task, double substructures
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of φ(·) are reused for pairwise input. The fully connected layers are followed
as the classifier to make a prediction. We denote this model as RUMcd.

– RUM for Defect Prediction. Given a source code set (c1, ..., cN ), the goal
is to classify if ci is defective. For this mining task, we reuse the substructure
of ψ(·) and add fully connected layers as classifier. It is denoted as RUMdp.

– RUM for Bug Localization. Given a source code set (c1, ..., cM ) and bug
report set (r1, ..., rN ), the goal is to identify the association yij between ci
and rj . For this mining task, we employ the deep model proposed in [6].
Especially, we replace the substructure responsible for source code with the
reusable structure ψ(·) in RUM. We denote this model as RUMbl.

It is noteworthy that any software mining tasks, even not for mining defects,
may benefit from RUM if they need to model the code functionality. The key
of our approach lies in how to derive the reusable text-enriched code functional
representation model, i.e., how to learn the feature mapping φ(·, ·) in AUM and
the feature mapping ψ(·) in RUM, which will be discussed in the following.

2.1 Auxiliary Model

Auxiliary model AUM is designed to learn a feature mapping φ(·, ·) from oi =
(ci, ti) to a text-enriched functionality space where the source code with similar
functionality should be mapped close to each other and dissimilar ones should
be apart. According to [10], such learning task can be formalized as a binary
classification problem that attempts to learn a prediction function f : O×O �→ Y.
yij ∈ Y = {0, 1} indicates whether a pair of input oi, oj ∈ O is similar or not.
Specifically, we employ L1-distance to weight the affinity of input pairs, and the
probability of a pair (oi, oj) to be similar can be computed as f = σ(αT|φ(oi) −
φ(oj)|), where σ is the sigmoid activation function and α is the parameter to be
learned. We solve the learning problem by optimizing the following regularized
similarity-preserving loss function:

min
f

L + λΩ(f), (1)

where L is the cross-entropy loss, Ω(f) is the L2 regularization term and λ is
the trade-off parameter. This objective can be effectively optimized using SGD.

Note that the number of source code with similar functionality is usually
far less than that with dissimilar functionality. Such imbalanced distribution
may severely affect the quality of learned code functionality space. To reduce
the influence, we impose a larger cost for miss-classifying the similar code pairs
(denoted by costfn) and a smaller cost for miss-classifying the dissimilar code
pairs (denoted by costfp). Therefore, L can be defined as:

L =
∑

i,j

(costfp(1 − yij) log(1 − f(oi, oj) + costfnyij log f(oi, oj)). (2)
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Fig. 3. The siamese structure of AUM than is weighted sharing for (ci, ti) and (cj , tj).

We instantiate the auxiliary network with siamese convolutional neural net-
work. Siamese network [2], consisting of two identical neural networks with their
weights tied, is usually employed to differentiate the paired input data points
[10,12]. Thus, we leverage the siamese structure to help modeling the similarity
of source code pair. The network structure of AUM is shown in Fig. 3. Source
code is always written in programming language in which multiple continues
statements is constructed in a block to convey the information, e.g., for-loops
and while-loops. While text is written in natural language in a flat way that
several words together can express the complete meanings. Thus, we design two
different feature extraction modules for each in AUM. In the code feature extrac-
tion layers, since convolutional neural networks have shown great performance
in [6], we use the same convolution layers with specific convolution operations
for code structure to extract the semantic features for source code. In the text
feature extraction layers, we use the standard approach in [8] to extract the text
features. Next, we use fully connected layers to further fuse the code features
and text features and get final representations. The above feature extraction
layers are weight-shared for a pair of input (ci, ti) and (cj , tj) to get unbiased
representations. In the end, fully connected layers followed by a sigmoid layer are
constructed to build a classifier based on fused representations for optimization
objective (i.e., similarity-preserving loss).

2.2 Reusable Model

Reusable model RUM aims to learn a feature mapping ψ(·) from ci to the same
text-enriched functionality space by aligning it to its text-enriched counterpart
oi = (ci, ti). To achieve it, we force ψ(ci) ∼= φ(ci, ti) by imposing approximation
loss over the distances between ψ(ci) and φ(ci, ti), as defined in Eq. (3):

Q =
∑

i

||ψ(ci) − φ(ci, ti)||22. (3)
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By minimizing Eq. (3), we can squeeze ψ(ci) into the neighborhood of φ(ci, ti)
from all directions in the text-enriched space. However, when some hard cases
occur, it is difficult to push some ψ(ci) towards φ(ci, ti), it may end up with a
relatively large neighborhood. In this case, for some similar code pairs ci and cj ,
even if ψ(ci) and ψ(cj) may be squeezed into the neighborhoods of φ(ci, ti) and
φ(cj , tj), they may still be distant by mapping them from the opposite direction
of their counterparts. To overcome it, we also impose a similarity-preserving loss
over source code pairs ci and cj , as defined in Eq. (4):

L′ =
∑

i,j

(costfp(1 − yij) log(1 − g(ci, cj)) + costfnyij log g(ci, cj)). (4)

Therefore, we solve the problem of learning the reusable model RUM by opti-
mizing the following regularized objective loss function,

min
g

Q + βL′ + λΩ(g), (5)

where Ω(g) is the L2 regularization term, β and λ′ are the trade-off parameters.
We instantiate this learning task also by siamese convolutional neural net-

work. The network structure of RUM is the same as that of AUM except for the
text feature extraction layers since RUM only takes source code as the input.
Similar to AUM, the feature extraction layers are weight-shared and a classifier
is built based on the approximation representations for optimization objective.

3 Experiment

In the experiment, we first show how good the functional representation learned
by RUM is and then we show the benefit of reusing RUM for various software
defect mining tasks.

3.1 How Good Is RUM

In this section, we conduct experiments on the real-world dataset Stack Overflow
downloaded from Stack Exchange3 to evaluate the performance of identifying
functional similar code pairs based on the learned representations by RUM.

The dataset contains 8237 questions (text) and 8237 answers (code), in which
each question is along with a answer. In order to get the similarity label, we
label dual problems that are with similar question as similar pairs and generate
dissimilar pairs from non-dual problems, which totally get 16839 pairs.

Since RUM is benefit from the text-enriched functionality space, we compare
RUM with RSiaCNN which learns functional representations only from code. In
both, the network parameters are chosen as follow: the convolution filter size in
code feature extraction layers is 3, 4 with 100 feature maps each and in text

3 https://archive.org/details/stackexchange.

https://archive.org/details/stackexchange
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feature extraction layers is 2, 3 with 100 feature maps each. We set experiment
dropout probability p = 0.5 and activation function ReLU(x) = max(x, 0).

The performance ratio of RSiaCNN and RUM over AUM in terms of AUC
is 91.4% and 95.4%, respectively. Thus, the performance can be improved by
nearly 4% if trained with the help of text-enriched space. The similar conclusion
can be observed in terms of F1 which improved by 6%. Next, we will verify the
effectiveness of RUM on three major defect mining tasks.

3.2 Reusing RUM for Clone Detection

BigCloneBench [16] is a widely used benchmark dataset with known true and
false clones. Following [18], we extract 6282 code snippets as dataset. Since
BigCloneBench is highly imbalanced, we measure the performance in terms of
AUC, F1 and Recall. Besides, Top k Rank (k = 10) is recorded to measure
the retrieval performance. We first compare RUMcd to the state-of-the-art deep
models DeepClone [19] and CDLH [18]. Further more, we compare with our
variants SiaCNN, which is with the same structure as RSiaCNN but trained from
scratch, and RSiaCNNcd to evaluate the effective of enriched text information.

Table 1. Top 10 Rank and AUC of all methods on training data with different sizes.

Methods Top 10 Rank AUC

50 100 250 500 50 100 250 500

DeepClone .894 ◦ .894 ◦ .894 ◦ .894 ◦ .483 ◦ .483 ◦ .483 ◦ .483 ◦
CDLH .795 ◦ .774 ◦ .794 ◦ .858 ◦ .500 ◦ .500 ◦ .500 ◦ .500 ◦
SiaCNN .659 ◦ .698 ◦ .753 ◦ .852 .507 ◦ .533 ◦ .650 ◦ .757 ◦
RSiaCNNcd .808 ◦ .866 ◦ .876 ◦ .905 .609 ◦ .665 .781 .829

RUMcd .912 .917 .933 .935 .621 .666 .794 .838

We randomly sample 5000 code for training and 500 code for testing, resulting
in 25000000 (5000 × 5000) training pairs and 250000 (500× 5000) test pairs. To
evaluate the performance on small datasets, we use only small sizes of the train
pairs, assuming N (N = 50, 100, 250, 500, 750, 1000 respectively), to train and
test on all test pairs which is large enough to prove our performance.

All experiments are randomly repeated 30 times and we report the average
results. The performance with respect to Top k Rank and AUC of all methods on
different training samples are tabulated in Table 1 where the best performance on
each dataset is boldfaced. The performance with respect to F1 score is depicted
in Fig. 4. We conduct Pairwise t-test at 95% confidence level. The compared
methods that are significant inferior than our approach will be marked with “◦”
and significant better will be marked with “•”.

From the results in Table 1, we can observe that when training size is very
small, e.g. 100, RUMcd can achieve the best performance (0.917) in terms of
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Fig. 4. F1 score of all methods on training data with different size.

Top 10 Rank which improves CDLH (0.774) by 14.3% and SiaCNN (0.698) by
21.9% since they are easy to overfit. When compared to the unsupervised method
DeepClone which trained with all code, we still get 1.8% improvement with only
50 training samples. Similar traces can be found in Fig. 4. The superiority of
RUM is obvious. We further evaluate effectiveness of text information. Indicted
in Table 1, the performance of RUMcd is better than RSiaCNNcd and improves
by 3%–9% in terms of Top 10 Rank. It shows that encoded text information is
beneficial when the code information is not enough. Taking a concrete example
of the cloned pair Code1 and Code2 in Fig. 1, we can get the similar enriched
representations by using RUM with the help of comments “factorial” though
they are very dissimilar in lexical structure.

3.3 Reusing RUM for Defect Prediction

For defect prediction task, we conduct experiments on the widely used bench-
mark datasets [22]. It contains source code files and detailed software metric
information, such as complexity metrics (e.g., number of methods calls, total
lines of code), structure of AST and so on. It also gives the number of defects
that are reported in the first six months before and after releasing, named as
pre-release defects and post-release defects respectively. In this experiment, we
use three different projects as our datasets and use the number of post-release
defects as prediction label. The statistics of the datasets can be found in Table 2.

As indicated in Table 2, the number of defective source code is very imbal-
anced. Therefore, we use AUC to evaluate the performance. We compare
RUMdp with a baseline Logistic Regression LR and two state-of-the-art methods

Table 2. Statistics of three datasets in defect prediction.

Datasets # attributes # instances # defective

Debug 198 194 13%

UI 198 1166 4%

SWT 198 841 17%



Towards One Reusable Model for Various Software Defect Mining Tasks 221

DBN [20] and AST-DBN [17]. Besides, we compare with two variants RSiaCNNdp

and P-CNN [6] which is with the same code feature extraction structure as RUM
but trained from scratch. For each dataset, we randomly sample 30% data to
train and the remaining data to test. All experiments are randomly repeated 30
times and the average results are reported in Fig. 5.

Debug
0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

AU
C

UI
0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

SWT
0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

DBN AST-DBN LR P-CNN RSiaCNNdp RUMdp

Fig. 5. AUC of compared methods on all datasets in defect prediction.

It can be observed from Fig. 5 that RUMdp achieves the best average perfor-
mance (0.821) among all compared approaches. Compared with LR trained with
software metric features (0.664), RUMdp can improve the average performance by
15.7%. When compared with deep models DBN (0.507) and AST-DBN (0.530),
RUMdp can also improve by 31.4% and 29.0%. It is notable that the performance
of DBN and AST-DBN is even worse than LR, we explain that DBN extracts
code features in an unsupervised way. To evaluate the effectiveness of reusable
code functional representations, we use P-CNN for comparison. It is clearly that
RUMdp can improve the performance of P-CNN (0.780) by 4.1%. Also, we com-
pare RUMdp with RSiaCNNdp to evaluate the effectiveness of encoded text infor-
mation. Though RUMdp is fine-tuned without any text input, it can still improve
RSiaCNNdp (0.807) by 1.4% on average. Therefore, the encoded text information
is useful for finding more defective modules. Here we give a more intuitive expla-
nation for the usefulness of text. If one aims to get factorial function but wrongly
writes Code3 in Fig. 1, the encoded text information “cumulative summation”
in the reusable representation can help the detection.

3.4 Reusing RUM for Bug Localization

In bug localization, we extract different well-known open source software projects
and the ground truth of relevance of bug reports and source files using bug
tracking system (Bugzilla) and version control system (Git), following [6]. We
use matched code-report pair as positive instance. To generate the negative
instance, we label the reports with irrelevant code files as negative. Table 3 shows
the detailed information of used datasets.

We use Top k Rank (k = 10) to measure our performance, which has been
widely applied for evaluation in information retrieval based bug localization
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Table 3. Statistics of three datasets in bug localization.

Datasets #source files #bug reports #total matches

Debug 249 132 301

UI 1152 314 698

JDT 1980 1005 1610

problems [14,21]. We compare our method with the state-of-the-art methods
NP-CNN [6], LSTM-CNN [5] and RSiaCNNbl. For each dataset, we randomly
sample 30% data to train our model, and test on the remaining data. All exper-
iments are randomly repeated 30 times and we report the average results. The
performance is depicted in Fig. 6.
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Fig. 6. Top 10 Rank of compared methods on all datasets in bug localization.

Figure 6 indicates that RUMbl achieves the best average Top k Rank at 0.317,
which improves the average performance of NP-CNN (0.279) by 3.8% and LSTM-
CNN (0.234) by 8.3%. It should be notable that LSTM-CNN performs better
than NP-CNN when the number of training samples is small, we explain that
LSTM without any dropout layers is more easy to overfit. Further to evaluate
the effectiveness of text information, we use RSiaCNNbl for comparison, which
is pretrained with only source code. It can be observed that RUMbl improves
RSiaCNNbl (0.309) by 0.8% on average in terms of Top k Rank, indicating that
encoded text information is also helpful to locate buggy source files. For a more
clear explanation, assuming that we are given the bug report “I always get the
same value for factorial of n” and one aims to locate some factorial function
containing bugs, then the encoded text “factorial” in code representations is
consistent to report description “factorial” and is useful in localization.

4 Conclusion

In this paper, we propose a novel framework to learn one deep model for the code
functional representation using the huge amount of publicly available task-free
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source code and their textual comments, and reuse it for many software defect
mining tasks. Experimental results on three major software defect mining tasks
indicate that by reusing this model in specific task, the mining performance
outperforms its counterpart that learns deep models from scratch, especially
when the task-specific training data is insufficient.
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References

1. Alemi, M., Haghighi, H., Shahrivari, S.: CCFinder: using Spark to find clustering
coefficient in big graphs. J. Supercomput. 73(11), 4683–4710 (2017)
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Abstract. There are more and more online sites that allow users to
express their sentiments by writing reviews. Recently, researchers have
paid attention to review generation. They generate review text under
specific contexts, such as rating, user ID or product ID. The encoder-
attention-decoder based methods achieve impressive performance in this
task. However, these methods do not consider user preference when gen-
erating reviews. Only considering numeric contexts such as user ID or
product ID, these methods tend to generate generic and boring reviews,
which results in a lack of diversity when generating reviews for different
users or products. We propose a user preference-aware review generation
model to take account of user preference. User preference reflects the
characteristics of the user and has a great impact when the user writes
reviews. Specifically, we extract keywords from users’ reviews using a
score function as user preference. The decoder generates words depend-
ing on not only the context vector but also user preference when decod-
ing. Through considering users’ preferred words explicitly, we generate
diverse reviews. Experiments on a real review dataset from Amazon show
that our model outperforms state-of-the-art baselines according to two
evaluation metrics.

Keywords: Review generation · Natural language generation ·
Mining review data

1 Introduction

Natural Language Generation (NLG) belongs to the subtopic of artificial intelli-
gence and computational linguistics. The aim of NLG is generating understand-
able texts in human languages [15]. The progress achieved in NLG will contribute
to building strong intelligent systems that can comprehend and compose human
languages. Recurrent Neural Networks (RNN) have shown promising perfor-
mance in text generation [1,6,18]. This advantage makes an increasing number
of researchers explore a variety of NLG tasks, such as image caption [3,16,17].
Recently, researchers have paid attention to review generation [2,4,9,19,24]. For
that more and more online sites allow users to express their sentiments about
products by writing reviews, such as Amazon, Taobao, and Yelp. This task is
c© Springer Nature Switzerland AG 2019
Q. Yang et al. (Eds.): PAKDD 2019, LNAI 11441, pp. 225–236, 2019.
https://doi.org/10.1007/978-3-030-16142-2_18
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very useful for explainable recommendation, which is aimed at generating expla-
nations rather than only predicting a numerical rating for an item.

In this work we also focus on review generation, which tries to generate
human reviews under specific contexts. Ratings of reviews are first used as con-
text to generate reviews. Specifically, a character-level RNN is applied to gener-
ate reviews with the input of a review character concatenated with a rating [9].
Conditioning on multiple ratings in different aspects to generate reviews is also
similar [2]. Both methods only use rating as context and merely contain an RNN
based decoder. In order to condition on user ID, product ID and rating together,
an encoder-decoder based framework was proposed, which first encodes contexts
into a vector and then decodes it to generate reviews [19]. Recently attention
mechanism was used to enhance the encoder-decoder method, which pays atten-
tion to different contexts in each time step [4]. These methods all apply a decoder
based on RNN to generate reviews and the encoder-attention-decoder method
[4] achieves the best performance under multiple kinds of contexts.

However, these methods do not consider user preference when generating
reviews. They only consider numeric contexts such as rating, user ID or product
ID. With limited information provided by numeric contexts, these methods tend
to generate generic and boring reviews like “i loved this book” or “it was a good
read”, which results in a lack of diversity when generating reviews for different
users or products. In addition, due to the high frequency of these patterns in
data, the RNN based decoder learns these patterns easily. This aggravates the
problem of generic reviews.

By taking account of user preference, we propose a User Preference-Aware
Review Generation model (UPRG) to improve the diversity of generated reviews.
There are many words in languages while people always have their own favorite
words. These words can be seen as user preference. User preference reflects the
characteristics of the user. Users tend to use these words when writing some-
thing, such as online reviews. Through considering user preference, we provide
rich information as a supplement to numeric contexts. Furthermore, we can con-
trol the generated reviews and produce more personalized words. The generated
reviews are better interpreted. Additionally, introducing user preference into
decoding process is beneficial for the decoder to learn more patterns.

UPRG is consisted of two components: context encoder and user preference
augmented decoder. The context encoder coverts one-hot representations of con-
texts into low dimensional vectors used for decoding. The decoder produces final
review depending on the context vector computed by a context attention mecha-
nism. To address the problem of generic reviews, we incorporate user preference
into the decoder. Specifically, we extract important words from users’ reviews in
training set using a score function. These words are treated as user preference.
When decoding we decide to generate a word or copy a word from user preference
using a gate function. The copying probability of each word in user preference is
computed by a user attention mechanism. We conduct various experiments on
real review data to evaluate our model. Experimental results on a real review
dataset show that UPRG achieves higher performance than baseline methods in
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two evaluation metrics. The main contributions of this paper are summarized as
follows:

– We utilize user preference to improve the diversity of generated reviews which
efficiently alleviates the problem of generic reviews.

– We design a user preference augmented decoder which dynamically decides
when to select and which word to select in user preference.

– Experiments on a real review dataset from Amazon demonstrate that our
model outperforms state-of-the-art baselines according to two evaluation met-
rics.

The remainder of this paper is organized as follows. We review related
works in Sect. 2. Section 3 introduces the detail of our proposed model. Section 4
describes dataset, experimental setups and gives the result analysis. Finally, we
give a summary of this paper and discuss the future direction of improvement
in Sect. 5.

2 Related Work

Natural Language Generation (NLG) belongs to the subtopic of artificial intel-
ligence and computational linguistics. The aim of NLG is generating under-
standable texts in human languages [15]. The RNN based approaches of text
generation have drawn more and more attention in recent years. Compared to
the traditional rule-based approaches, the RNN based approaches provide an
end-to-end solution without much human participation. Mikolov et al. [11,12]
improved the performance of language modeling through the long dependency of
RNN. Their methods outperformed the n-gram language modeling significantly.
These work prove the effectiveness of RNN in text generation. Since then RNN
has become a standard component in many tasks which contain a module of
text generation, such as poetry generation [5,22,23], image caption [3,16,17],
and neural machine translation [21,25].

Review generation aims to generate realistic reviews under specific contexts,
which is a kind of text generation. There are some work on review generation.
Lipton et al. [9] proposed a character-level recurrent neural networks(RNN) to
generate review given auxiliary information, such as a sentiment. They concate-
nate auxiliary information with character as input. Costa et al. [2] used a similar
method to generate review according to user’s rating in different aspects. Both
methods use rating as context and only contain a RNN based decoder. In order
to condition on user ID, product ID and rating together, Tang et al. [19] pro-
posed an encoder-decoder based framework, which first encodes contexts into a
vector and then decodes it to generate reviews. Dong et al. [4] enhanced Tang
et al.’s method through adding encoder-side attention mechanism, which pays
attention to different contexts in each time step. Our method is similar to [4]
but we introduce user preference to improve the diversity. Comparing to these
methods, we provide rich information related to users. Through explicitly adding
bias to users’ favorite words in decoding phase, our method generates more novel
words rather than common words for each user.
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3 Methodology

To begin with, we state the problem of review generation as follows: given the
contexts x = x1, x2, ..., xm as input, the model needs to generate corresponding
review y = y1, y2, ..., yn by maximizing the conditional probability p(y|x). xi is
one-hot representation of context such as rating, user ID, or product ID. |xi|
is the number of rating categories, or the number of users, m is the number of
contexts. In this work we use three contexts: user ID, product ID and rating.
yi ∈ R

|V | is a review token, n denotes the number of review tokens.

Fig. 1. User preference-aware review generation

As shown in Fig. 1, UPRG contains two parts: context encoder and user pref-
erence enhanced decoder. The encoder utilizes multilayer perceptrons (MLP) to
covert one-hot representations of user, product and rating into a low dimensional
vector. The vector is used for initializing the decoder. The decoder produces final
review depending on two probability distributions, generating probability and
copying probability. The former is conditioning on the context vector computed
by a context attention. The latter is computed by a user attention on user pref-
erence. Next we first introduce some background knowledge, and then present
two components respectively.

3.1 Background: Recurrent Neural Networks

Recurrent neural networks process sequence information well, which represents
history information into a hidden state and then computes a probability distri-
bution of next word according to the hidden state. However, training the basic
RNN above suffers from the problem of gradient vanishing or exploding. The
long-short term memory (LSTM) unit [7] addresses the problem effectively. The
core idea of LSTM is introducing the memory state and multiple gating functions
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to control the information to be written to the memory sate, read from the mem-
ory state, and removed from the memory state. The computing process of LSTM
is as follows:

it = σ (Wxixt + Whiht−1)
ft = σ (Wxfxt + Whfht−1)
ot = σ (Wxoxt + Whoht−1) (1)
gt = tanh (Wxcxt + Whcht−1)
ct = ft � ct−1 + it � gt

ht = ot � tanh (ct) ,

where σ is the sigmoid function, it, ft, ot are input, forget, and output gates
respectively, and gt, ct are proposed cell value and true cell value, ht is the new
hidden state.

3.2 User Preference-Aware Review Generation

Context Encoder: The encoder uses multilayer perceptrons with one hidden
layer to encode contexts into a context vector. Each context is represented as
a one-hot vector, e.g. user context. We use m different embedding matrices to
convert x = x1, x2, ..., xm into the embedding representations. The embedding
representation of xi is computed as follows:

ei = Eixi, (2)

where Ei ∈ R
l×|xi| is the embedding matrix for context i, l is the dimension of

embedding, and |xi| is the length of one-hot vector, e.g. user numbers. Then we
concatenate them and feed them into a hidden layer to get a context vector as
follows:

c = tanh(Wc[e1, e2, .., em] + bc), (3)

where c ∈ R
qk is a qk-dimension context vector, Wc ∈ R

qk×ml is a weight matrix,
bc is the bias, and q, k are the number of layers and hidden units in the decoder
respectively. Next, vector c is used to initialize the decoder.

User Preference Enhanced Decoder: The decoder utilizes RNN to generated
review tokens one by one according to weighted context vector computed by
attention mechanism. We first get word representation ej by the word embedding
matrix Ew ∈ R

k×|V | and then feed it into LSTM to get hidden vector of word j
as follows:

hj = LSTM(ej , hj−1), (4)

where hj ∈ R
k is a hidden vector and LSTM denotes the LSTM unit. A con-

verting layer is applied on each context in order to transform these contexts into
the same space. It is useful to make sense of the addition between contexts. The
converting process of ei is as follows:

ẽi = tanh(Wiei + bi), (5)
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where Wi ∈ R
l×l and bi ∈ R

l are the parameters. After that, a context attention
mechanism is used to compute weight of each context as follows:

dij = vT tanh (Weẽi + Whhj) , (6)

aij =
exp (dij)∑m

k=1 exp (dkj)
, (7)

where v ∈ R
k is a parameter vector, We ∈ R

k×l and Wh ∈ R
k×k are parameter

matrices. The new context vector c̃ is obtained by:

c̃j =
∑

aij ẽi, (8)

where c̃j ∈ R
l is the weighted context vector. Then the new context vector fuses

with original hidden vector through a nonlinear operation as follows:

h̃j = tanh (Wf [hj , c̃j ] + bf ) , (9)

where Wf ∈ R
k×(k+l) is a parameter matrix and bf is the bias. Now the model

computes the probability of the next word via:

p(yj+1|y ≤ j) = p(yj+1|hj) ∝ exp
(
Woh̃j + bo

)
, (10)

where Wo ∈ R
|V |×k is a parameter matrix and bo is the bias.

In order to incorporate user preference, there are three questions to be
answered: (1) how to construct user preference; (2) which word to select in
user preference; (3) how to incorporate it into original decoder.

First, we need to construct user preference. In this task we use users’ favorite
words as user preference. We collect all words of each user from training set as
candidates. Then TFIDF weight is used as the score function to grade words.
We can use other methods to estimate the importance of words. We leave this
as future work. Next two heuristic rules are used to filter out nonsense words.
200 words with the highest word frequency are removed for that these words
are too common. In addition, words whose part of speech (POS) belongs to
punctuation, article, pronoun or preposition are also removed. In the remaining
words we choose up to 100 words for each user as user preference.

Second, a user attention mechanism is applied to compute copying probabil-
ity of each word in user preference. For time j the copying probability of word
wi in user preference Vu is computed as follows:

uij = vT
u tanh (Wueewi + Wuhhj) , (11)

puser(wi) =
exp (uij)∑
k exp (ukj)

, (12)

where vu ∈ R
k is a parameter vector, Wue ∈ R

k×l and Wuh ∈ R
k×k are param-

eter matrices, ewi is the embedding representation of wi.
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Third, in order to combine generating probability with copying probability,
a gate function is computed as follows:

pg = σ(wT
c c̃j + wT

h hj + wT
y yj + bg), (13)

where wc, wh, wy are parameter vectors, bg is the bias. pg indicates the prob-
ability of selecting from two modes. Given pg, the final probability of yj+1 is
computed as follows:

p(yj+1) = pgp(yj+1|y ≤ j) + (1 − pg)puser(yj+1), (14)

where p(yj+1|y ≤ j) computed by Eq. 10 is the generating probability, puser
(yj+1) is the copying probability. Based on the probability of next word computed
by Eq. 14 and the actual word we have, we can calculate the cross-entropy of the
generated review sequence for model training.

4 Experiments

In this section, we describe our experiments and results on a real review dataset
from Amazon. We first introduce the dataset for this task. Then we compare
UPRG with two state-of-the-art baselines. We use two automated metrics to
evaluate UPRG and detail results analysis.

4.1 Experimental Setup

Data Set. We use the processed review data1 from [4]. It is built upon Amazon
product data of book domain [10]. Every review is paired with three attributes,
user ID, product ID and rating. We introduce the process of building the dataset
briefly. We first filter books and users which appear less than 6 and 15 times,
respectively. And then we filter reviews whose lengths are greater than 60 words.
After that we get 937,033 reviews paired with attributes, which contain 80,256
books, 19,675 users, and 5 rating levels. The average length of reviews is about
35 words, and the average number of sentences is 3. We select the most popular
words as the vocabulary and other words are replaced with UNK. The size of
word vocabulary is 30K. Then, the whole dataset is randomly split into TRAIN,
DEV and TEST (70%/10%/20%).

Setup. We use a one-layer MLP encoder and a two-layer LSTM decoder. The
dimensions of all contexts are set to 64 and the dimension of word embeddings is
set to 512. The dimension of hidden vectors is set to 512 in the decoder. The batch
size is set to 16. All the parameters are randomly initialized by sampling from a
uniform distribution [−0.08, 0.08]. We train the model using RMSProp [20] with
learning rate 0.002 and an smoothing constant 0.95. We also clamp gradient
values into the range [−5.0, 5.0] to avoid the exploding gradient problem [14]. The

1 The data is available at https://goo.gl/TFjEH4.

https://goo.gl/TFjEH4
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dropout layer is inserted between different LSTM layers and the dropout rate is
set to 0.2 for regularization. We use early stopping on DEV set to determine the
number of epochs and apply the greedy search algorithm to generate reviews at
test time.

4.2 Results

We use the BLEU [13] and Distinct [8] score for automatic evaluation, which are
applied in many text generation tasks. The BLEU score measures the precision
of n-gram matching by comparing the generated results with references, and
penalizes length using a brevity penalty term. We compute BLEU-1 (unigram)
and BLEU-4 (up to 4 grams) in experiments. What’s more, to evaluate the
quality of diversity we compute Distinct-1/2, which is the percentage of distinct
n-grams in all predicted results. Compared to the BLEU, the Distinct is related
to the recall and higher scores indicate higher diversity. In Table 1 Reference
denotes the score of reference reviews in TEST set, which indicates the expected
higher bound. We describe the comparison methods as follows:

Random: For each test example this method randomly samples from all the
reviews in the training set as generated result. This baseline method suggests
the expected lower bound for this task.

Enc2Dec: This method first utilizes MLP to encode contexts into a context
vector. Then a LSTM based decoder initialized by the context vector is used to
generate reviews.

Enc2AttDec: This method improves Enc2Dec method with a context attention
mechanism, which is similar to [4].

UPRG: This is our proposed method which is built on Enc2AttDec. The differ-
ence is that, UPRG enhances the decoder by user preference and adds a context
converting layer. In order to verify the role of two components separately, we
compare two versions of UPRG. Specifically, UPRGv1 uses a user preference
enhanced decoder. UPRGv2 uses a context converting layer and an enhanced
decoder concurrently.

The first three methods use user ID, product ID and rating as input. UPRG
uses these three contexts and user preference as input.

As shown in Table 1, the result of Random is the worst in terms of BLEU
score, whereas other methods taking account of contextual information are bet-
ter. This shows that contextual information is important for generating reviews,
especially for BLEU-4. Compared to Enc2Dec and Enc2AttDec, UPRGv1
improves the score of Distinct significantly. This demonstrates user preference
contributes to generating diverse reviews. With the user preference enhanced
decoder, UPRGv1 has access to more novel words directly and has a big learn-
ing capacity. Therefore, UPRGv1 learns to produce novel words easily. While
Enc2Dec and Enc2AttDec only learn to produce some common words well. It
is difficult for them to learn to produce more novel words. However, we notice
that UPRGv1 is almost no gain in BLEU. Because the novel words produced by
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Table 1. Evaluation results on TEST set

Method BLEU-1(%) BLEU-4(%) Distinct-1(%) Distinct-2(%)

Random 21.36 0.87 / /

Enc2Dec 23.92 3.51 0.018 0.083

Enc2AttDec 24.26 3.49 0.027 0.141

UPRG(v1) 24.34 3.49 0.114 0.435

UPRG(v2) 25.26 3.71 0.078 0.269

Reference / / 1.112 10.847

UPRGv1 do not necessarily appear in the reference review. UPRGv2 achieves
the best performance comparing to other methods in BLEU, which demonstrates
the effectiveness of context converting layer. UPRGv2 transforms representation
of three contexts into the same space so it gets better performance in BLEU.
But the context converting layer results in a decline in Distinct. We claim that
the context converting layer improves the weight of contexts between contexts
and user preference when generating reviews.

4.3 Analysis of User Preference

In order to evaluate the effect of user preference, we analyze the probability of
user mode when generating reviews. The probability of user mode is represented
by 1−pg (Eq. 14). We find some typical phenomena in TEST set. The results are
shown in Fig. 2. As shown in Fig. 2(a), “marie” and “force” have higher prob-
ability than other words. This demonstrates that UPRG can efficiently copy
some noun words, such as authors’ name. In addition, UPRG also chooses novel
verb words as shown in Fig. 2(b), in which “considers” has the highest proba-
bility among all words. These examples show that the user preference enhanced
decoder learns when to copy and which to copy successfully and user preference
introduces various words and contributes to generating diverse reviews.

4.4 Case Study

We analyze generated results on TEST set produced by different methods to find
the reason why BLEU and Distinct of different approaches behave differently.
There are some representative examples of generated reviews in Table 2.

As we can see, reviews from two different methods are very similar in the
mass. The results of two methods express the sentiment properly. For example,
they generate “i loved this book” and “this book was very well written” for 5-
rating, “i was disappointed in this book” and “this book was so hard to read”
for 1-rating. However, UPRG generates more novel words, such as “i love the
way marina adair writes” in Example 1 and “i was so happy to see how the
story ended” in Example 2, while the result of Enc2AttDec does not. Because
user preference enhanced decoder has access to more information that is closely
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(a) example 1

(b) example 2

Fig. 2. Probability of user mode when generating each word of review

Table 2. Examples of generated reviews

Method UID PID Rating Generated Review

Enc2AttDec A X 5 i loved this book . it was a great story and i loved the
characters . i would recommend this book to anyone who
likes a good romance .

B Y 5 i loved this book . it was a great story and i could n’t put it
down . i would recommend this book to anyone who likes a
good romance .

C Z 1 i was disappointed in this book . i was n’t able to finish it . i
was n’t able to finish it . i ’m not sure i would read it again .

UPRG A X 5 i love the way marina adair writes . i have read all of her
books and have n’t been disappointed yet .

B Y 5 this book was very well written . i could n’t put it down . i
was so happy to see how the story ended .

C Z 1 this book was so hard to read . i could n’t finish it . i could
n’t finish it . i do n’t think i ’ll read the other books .
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related to user context and selects from them to produce reviews. Therefore,
UPRG generates diverse and personalized reviews compared to Enc2AttDec.

5 Conclusion and Future Work

In this paper, we propose a user preference-aware review generation model
(UPRG), which is consisted of context encoder and review decoder. The encoder
first encodes the contexts into vectors, then the decoder generates review words
one by one according to the context vector computed by a context attention
mechanism. What’s more, we introduce user preference when decoding. This
gives priority to users’ favorite words than common words and improves the
diversity of generated reviews efficiently. Experimental results on a real review
dataset show that UPRG is superior to baseline methods.

There are some directions of improvement. We will use more contextual con-
dition to control the generated reviews, which is more suitable for real situations.
We will explore transfer learning to generate reviews for new products that have
no reviews.
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ral network based language model. In: Eleventh Annual Conference of the Inter-
national Speech Communication Association (2010)

12. Mikolov, T., Zweig, G.: Context dependent recurrent neural network language
model. SLT 12, 234–239 (2012)

13. Papineni, K., Roukos, S., Ward, T., Zhu, W.J.: BLEU: a method for automatic
evaluation of machine translation. In: Proceedings of the 40th Annual Meeting on
Association for Computational Linguistics, pp. 311–318. Association for Compu-
tational Linguistics (2002)

14. Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural
networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013)

15. Reiter, E., Dale, R.: Building Natural Language Generation Systems. Cambridge
University Press (2000)

16. Ren, Z., Wang, X., Zhang, N., Lv, X., Li, L.J.: Deep reinforcement learning-based
image captioning with embedding reward. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 290–298 (2017)

17. Rennie, S.J., Marcheret, E., Mroueh, Y., Ross, J., Goel, V.: Self-critical sequence
training for image captioning. In: Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pp. 7008–7024 (2017)

18. Sutskever, I., Martens, J., Hinton, G.E.: Generating text with recurrent neural net-
works. In: Proceedings of the 28th International Conference on Machine Learning
(ICML-11), pp. 1017–1024 (2011)

19. Tang, J., Yang, Y., Carton, S., Zhang, M., Mei, Q.: Context-aware natural language
generation with recurrent neural networks. arXiv preprint arXiv:1611.09900 (2016)

20. Tieleman, T., Hinton, G.: Lecture 6.5-RMSProp: divide the gradient by a running
average of its recent magnitude. COURSERA Neural Netw. Mach. Learn. 4(2),
26–31 (2012)

21. Wu, S., Zhang, D., Yang, N., Li, M., Zhou, M.: Sequence-to-dependency neural
machine translation. In: Proceedings of the 55th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), vol. 1, pp. 698–707 (2017)

22. Zhang, J., et al.: Flexible and creative Chinese poetry generation using neural
memory. In: Proceedings of the 55th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), vol. 1, pp. 1364–1373 (2017)

23. Zhang, X., Lapata, M.: Chinese poetry generation with recurrent neural networks.
In: EMNLP, pp. 670–680 (2014)

24. Zheng, H.T., Wang, W., Chen, W., Sangaiah, A.K.: Automatic generation of news
comments based on gated attention neural networks. IEEE Access 6, 702–710
(2018)

25. Zhou, H., Tu, Z., Huang, S., Liu, X., Li, H., Chen, J.: Chunk-based Bi-scale decoder
for neural machine translation. In: Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume 2: Short Papers), vol. 2, pp.
580–586 (2017)

http://arxiv.org/abs/1511.03683
http://arxiv.org/abs/1611.09900


Mining Cluster Patterns in XML
Corpora via Latent Topic Models

of Content and Structure

Gianni Costa and Riccardo Ortale(B)

ICAR-CNR, Via P. Bucci 8/9C, Rende, CS, Italy
{costa,ortale}@icar.cnr.it

Abstract. We present two innovative machine-learning approaches to
topic model clustering for the XML domain. The first approach consists
in exploiting consolidated clustering techniques, in order to partition the
input XML documents by their meaning. This is captured through a new
Bayesian probabilistic topic model, whose novelty is the incorporation of
Dirichlet-multinomial distributions for both content and structure. In the
second approach, a novel Bayesian probabilistic generative model of XML
corpora seamlessly integrates the foresaid topic model with clustering.
Both are conceived as interacting latent factors, that govern the word-
ing of the input XML documents. Experiments over real-world bench-
mark XML corpora reveal the overcoming effectiveness of the devised
approaches in comparison to several state-of-the-art competitors.

Keywords: Bayesian probabilistic XML analysis · XML clustering ·
Latent topic modeling

1 Introduction

XML document clustering poses two major challenges. Firstly, the explicit
manipulation of XML documents to catch content and structural resemblance
embraces several research issues, namely the alignment of their (sub)structures,
the identification of similarities between such (sub)structures and between the
textual data nested therein, along with the discovery of possible mutual seman-
tic relationships among textual data and (sub)structure labels. Secondly, resem-
blance between the structures and textual contents of XML documents should
be caught at a semantic (i.e., topical) level.

In this paper, we focus on XML document clustering based on latent topic
modeling for the purpose of avoiding the aforementioned issues. Our intuition
is to partition a corpus of XML documents by topical similarity rather than by
content and structure similarity. In particular, two are the proposed approaches.

The first approach consists in applying well-known clustering techniques to
partition the semantic representations of the XML documents of an input corpus
according to the MUESLI model. MUESLI (xMl clUstErS from Latent topIcs) is

c© Springer Nature Switzerland AG 2019
Q. Yang et al. (Eds.): PAKDD 2019, LNAI 11441, pp. 237–248, 2019.
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an innovative XML topic model, that is conceived as an adaptation to the XML
domain of the former LDA [6] topic model for unstructured text data. Under
MUESLI, the semantics of the observed XML documents is modeled as a prob-
ability distribution over a number of latent (or, beforehand unknown) topics. In
turn, each such a topic consists of two multinomial probability distributions placed
over the word tokens and the root-to-leaf paths, respectively. Both probability
distributions are randomly sampled from respective Dirichlet priors. The latent
topics are inferred from the observed XML documents by conventional Bayesian
reasoning. For this purpose, approximate posterior inference and parameter esti-
mation are derived. Additionally, a Gibbs sampling algorithm implementing both
is designed.MUESLI differs from previous topic models of documents with text and
tags (e.g., [10,20,21,23,24]) primarily in the generation of document structure. In
particular, [20,21,23,24] are not explicitly meant for XML corpora. Instead, [10]
proposes the only one previous topic model for the XML domain. However, the
latter differs from MUESLI, in that topics are not also characterized by a specific
probability distribution over the root-to-leaf paths.

The second approach combines XML document clustering and topic modeling
into one unified process. For this purpose, a new generative model of XML cor-
pora, named PAELLA (toPicAl clustEr anaLysis of xmL corporA), is presented.
Essentially, PAELLA describes a generative process, in which XML document
clustering and topic modeling act as interacting latent factors, that rule the
formation of the observed XML documents. Technically, this is accomplished
through the incorporation of MUESLI into an innovative Bayesian probabilistic
model, that also associates a latent cluster-membership random variable with
each XML document. To the best of our knowledge, the integration of document
clustering and topic modeling is unprecedented in the XML domain and PAELLA
is the first effort along this previously unexplored line of research.

A comparative evaluation on real-world XML corpora reveals the superior
effectiveness of the devised approaches.

This paper proceeds as follows. Section 2 presents notation and preliminar-
ies. Sections 3 and 4 cover the approaches based on MUESLI and PAELLA,
respectively. Section 5 provides a comparative evaluation of our approaches
on real-world benchmark XML corpora. Section 6 concludes and highlights
future research.

2 Preliminaries

In this section, we introduce the adopted notation and some basic concepts.

2.1 Traditional Tree-Based XML Document Representation

The structure and content of an XML document with no references [1] can be
modeled through a suitable XML tree representation, that refines the traditional
notion of rooted labeled tree to also catch content and its nesting into structure.
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An XML tree is a rooted, labeled tree, represented as a tuple t =
(Vt, rt,Et, λt), whose elements have the following meaning. Vt ⊆ N is a set
of nodes and rt ∈ Vt is the root of t, i.e. the only node with no entering edges.
Et ⊆ Vt × Vt is a set of edges, catching the parent-child relationships between
nodes of t. λt : Vt �→ Σ is a node labeling function, with Σ being an alphabet
of node tags (i.e., labels).

Notice that the elements of XML documents are not distinguished from their
attributes in an XML tree: both are mapped to nodes in the corresponding
XML-tree representation.

Let t be a generic XML tree. Nodes in Vt can be divided into two disjoint
subsets: the set Lt of leaves and the set Vt − Lt of inner nodes. An inner node
has at least one child. A leaf has no children and can only enclose textual items.

A root-to-leaf path prtl in t is a sequence of nodes encountered along the path
from the root rt to a leaf node l in Lt, i.e., prtl = <rt, . . . , l>. Notation λt(prtl )
denotes the sequence of labels that are associated in the XML tree t with the
nodes of path prtl , i.e., λt(prtl ) = <λt(rt), . . . , λt(l)>. The set of all root-to-leaf
paths in t is denoted as paths(t) = {prtl |l ∈ Lt}.

Let l be a leaf in Lt. The set text-items(l) = {w1, . . . , wh} is a model of the
text items provided by l. Elements wi (with i = 1 . . . h) are as many as the
distinct text items in the context of l. The whole text content of the XML tree
t is denoted as text-items(t) = ∪l∈Lt text-items(l).

Notation λt(prtl ).wh indicates an enriched path and will be used to explicitly
represent the nested occurrence of the text item wh in the structural context of
the labeled root-to-leaf path prtl . Notice that prefixing a content item with the
sequence of labels of the respective root-to-leaf path is an instance of tagging [7,
28]. The collection of all enriched paths in t is instead indicated as paths(e)(t) =
∪l∈Lt,w∈text-items(l){λt(prtl ).w}.

Hereafter, the notions of XML documents and XML tree are used inter-
changeably. Moreover, the generic (labeled) root-to-leaf path and (labeled)
enriched path are indicated as p and p.w, respectively, to avoid cluttering
notation.

2.2 XML Features for Topic Modeling

The design of topic models for the XML domain benefits from the adoption of
a flat representation for the XML documents, since the underlying generative
process is relieved of nesting text items into arbitrarily complex tree structures.

The generic XML document t can be flattened into a collection x(t) of XML
features chosen from its tree-based model. In this paper, we represent t as a bag
of enriched paths, since such XML features preserve the nesting of text items
into root-to-leaf paths. Accordingly, we define x(t) � {p.w| ∈ paths(e)(t)}.

3 MUESLI: A Topic Model for Clustering XML Corpora

MUESLI (xMl clUstErS from Latent topIcs) is a new hierarchical topic model of
XML corpora, that is conceived as an adaptation of the basic LDA model [6] to
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Fig. 1. Graphical representation of MUESLI (a) and PAELLA (b)

the XML domain. More precisely, let D = {x(t)|t ∈ D} be the bag-of-enriched-
paths representation of an input XML corpus D, in which the individual XML
documents are characterized as discussed in Sect. 2.2. MUESLI is a Bayesian
probabilistic model of the imaginary process, that generates D.

Such a generative process is assumed to be influenced by K latent topics.
Each XML document x(t) in D (or, also, t in D) exhibits the different topics to
distinct degrees. This is captured by associating x(t) with an unknown proba-
bility distribution ϑt over the individual topics k = 1, . . . , K, such that ϑt,k is
the probability of topic k within x(t). In turn, each topic consists of

– an unknown probability distribution ϕk over the text items in the vocabulary
I � ∪t∈Dtext-items(t), such that ϕk,w indicates the probability in topic k of
the generic text item w from I;

– an unknown probability distribution ψk over the root-to-leaf paths in the
vocabulary R � ∪t∈Dpaths(t), such that ψk,p.w captures the probability
in topic k of the generic root-to-leaf path p.w from R.

Figure 1(a) formalizes the conditional (in)dependencies among the random
variables of MUESLI through a graphical representation in plate notation. All
random variables of MUESLI are represented as nodes. The shaded nodes mark
observed random variables, whose values are the observed results of the gener-
ation process (i.e., the XML documents in their bag-of-enriched path represen-
tation). Instead, the unshaded nodes indicate hidden random variables, whose
values correspond to latent (or unobserved) aspects (i.e., sampled distributions
and topic assignments). Plates (or rectangles) indicate reiterations.

Based on the conditional (in)dependencies of Fig. 1(a), the generative prob-
abilistic process assumed by MUESLI implements the realization of all random
variables as algorithmically detailed in Fig. 2. Notice that α, β and γ are hyper-
parameters of the MUESLI model and their role is clarified in Sect. 3.1.

3.1 Observed-Data Likelihood and Prior Distributions

Let x(t) = {p(t,1).w(t,1), . . . , p(t,Nt).w(t,Nt)} be the flattened representation of
the XML tree t from the XML corpus D, in which Nt stands for the number of
enriched paths in t. Moreover, let z(t) � {zt,1, . . . zt,Nt} be the collection of topic
assignments in t, i.e., the generic element zt,i is the latent topic of the correspond-
ing enriched path p(t,i).w(t,i) in x(t) (with i = 1, . . . , Nt). In addition, assume
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that P and W denote, respectively, all observed root-to-leaf paths and text
items, i.e., P � ∪t∈D{p(t,1), . . . , p(t,Nt)} and W � ∪t∈D{w(t,1), . . . , w(t,Nt)}.

The data likelihood can be formalized as the following conditional probability
distributions over P and W

Pr(P |Z,Ψ ) =
K∏

k=1

∏

p∈R
ψ

n
(p)
k

k,p Pr(W |Z,Φ) =
K∏

k=1

∏

w∈I
ϕ

n
(w)
k

k,w

where

– n
(p)
k stands for the occurrences of the root-to-leaf path p under the topic k;

– n
(w)
k stands for the occurrences of the text item w under the topic k;

– Ψ is a compact notation denoting all topic-specific root-to-leaf path distribu-
tions, i.e., Ψ � {ψ1, . . . , ψK} (with K being the number of latent topics);

– Φ is a compact notation denoting all topic-specific word distributions, i.e.,
Φ � {ϕ1, . . . , ϕK} (with K being the number of latent topics);

– Z compactly denotes all topic assignments in D, i.e., Z � {z(t)|x(t) ∈ D}.

Furthermore, the conditional probability distribution over Z is

Pr(Z|Θ) =
∏

t∈D

K∏

k=1

ϑ
n
(k)
t

t,k

where

– n
(k)
t stands for the occurrences of the topic k in the XML document t;

– Θ is a compact notation, that stands for the whole set of the topic distribu-
tions associated with the individual XML documents, i.e., Θ � {ϑt|t ∈ D}.

In compliance with standard Bayesian modeling, under MUESLI, uncertainty
on ψ, Φ and Θ is captured by means of the below conjugate Dirichlet priors

Pr(Ψ |β ) =
K∏

k=1

1

Δ(β )

∏

p∈R
ψ

β p−1
k,p

Pr(Φ |γ ) =
K∏

k=1

1

Δ(γ )

∏

w∈I
ϕ

γ w−1
k,w

Pr(Θ |α ) =
∏

t∈D

1

Δ(α )

K∏

k=1

ϑ
α k−1
t,k

The above β = {βp|p ∈ R}, α = {αk|k = 1, . . . , K} and γ = {γw|w ∈ R}
are three hyperparameters. Their generic elements βp, αk and γw represent suit-
able pseudo-counts, enabling the incorporation of domain-specific prior knowl-
edge [17] into the exploratory analysis of the latent topics in D.

– For each topic k
• sample the probability distribution ϕk over the text items of vocabulary I, i.e., ϕk ∼ Dirichlet(γ);
• Sample the probability distribution ψk over the root-to-leaf paths of vocabulary R, i.e., ψk ∼

Dirichlet(β).
– For each t in D

• sample the probability distribution ϑt over the latent topics, i.e., ϑt ∼ Dirichlet(α);
• for each n = 1, . . . , Nt

∗ choose a latent topic zt,n ∼ Discrete(ϑt);
∗ choose a root-to-leaf path pt,n ∼ Discrete(ψzt,n );

∗ choose a text item wt,n ∼ Discrete(ϕzt,n );

Fig. 2. The probabilistic generative process under MUESLI



242 G. Costa and R. Ortale

3.2 Approximate Posterior Inference and Parameter Estimation

MUESLI is a generative model of XML corpora given their latent aspects. Essen-
tially, it postulates assumptions explaining how such latent aspects govern the
generation of the individual XML documents. Nonetheless, in order to cluster
the XML documents by their latent topics, one has to infer the latent aspects
(including the foresaid topic distributions) from the XML documents. Posterior
inference is used for this purpose.

As it generally happens with probabilistic models of practical interest, under
MUESLI, exact posterior inference is intractable, due to the complexity of the
posterior distribution. Thus, we resort to collapsed Gibbs sampling, a Markov-
Chain Monte-Carlo method for approximate inference [3,5], that enables simple
inference algorithms, even if the number of hidden variables is very large [5,17].
The pseudo code of Gibbs sampling under MUESLI is sketched in Algorithm 1.
The full conditional below is used for sampling (at step 10) any topic assignment
zt,n given all other topic assignments Z¬(t,n) and the observed data W and P

Pr(zt,n = k|Z¬(t,n),W ,P ,α,β,γ)

=
n

(w)
k − 1 + γw

(
∑

w′∈I n
(w′)
k + γ ′

w) − 1
· n

(p)
k − 1 + βp

(
∑

p′∈R n
(p′)
k + β′

p) − 1
· n

(k)
t − 1 + αk

∑K
k′=1(n

(k′)
t + αk′) − 1

(1)

Concerning parameter estimation, due to conjugacy, Pr(ϑt|zt,α),
Pr(ϕk|Z,W ,γ) and Pr(ψk |Z,P ,β) are Dirichlet distributions. Thus, by using
the expectation of the Dirichlet distribution [17], one can calculate the below
parameter estimates

ϑt,k =
n

(k)
t + αk

∑K
k′=1 n

(k′)
t + αk′

, t ∈ D ∧ k = 1, . . . , K (2)

ϕk,w =
n

(w)
k + γw∑

w′∈I n
(w′)
k + γw′

, k = 1, . . . , K ∧ w ∈ I (3)

ψk,p =
nk

(p) + βp∑
p′∈R nk

(p′) + βp′
, k = 1, . . . , K ∧ p ∈ R (4)

3.3 Partitioning Algorithms

The MUESLI topic model produces a lower-dimensional mixed-membership rep-
resentation Θ of the XML corpus D, by projecting the individual XML docu-
ments into a K-dimensional space of latent topics. The parameters Θ establish
the degree of participation of the individual XML documents in the distinct
latent topics. We next discuss two techniques for partitioning D based on Θ.

Naive Partitioning. This technique places each XML document t inside the
cluster C∗ = argmaxk=1,...,Kϑt,k, with C∗ corresponding to the most represen-
tative topic of t according to MUESLI.
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Algorithm 1. Collapsed Gibbs sampling with parameter estimation
Gibbs sampling(D,α , β , γ , K)

Input: The XML corpus D in its flat representation;
the hyperparameters α , β and γ ;
the number K of latent topics;

Output: The topic assignments Z ;
the multinomial parameters Θ , Φ and ψ ;

1: zero all counts n
(k)
t , n

(w)
k

, n
(p)
k

;
2: randomly assign topics to the text items in the context of the enriched

paths of the XML documents and set the related counts accordingly;
3: iteration ← 1;
4: s ← 1;
5: while iteration ≤ Maximum iteration number do
6: for each t in D do
7: for each n = 1, . . . , |paths(e)(t)| do
8: k ← zt,n;

9: decrement counts n
(k)
t , n

(w(t,n))
k

and n
(p(t,n))
k

by 1;

10: sample k′ from Eq. (1);

11: increment counts n
(k′)
t , n

(w(t,n))
k′ and n

(p(t,n))
k′ by 1;

12: end for
13: end for
14: if (iteration > burn-in) and (iteration mod lag == 0) then
15: for each t in D and each k = 1, . . . , K do

16: estimate the individual parameters ϑ
(s)
t,k by Eq. (2);

17: end for
18: for each k = 1, . . . , K and each w in I do

19: estimate the individual parameters ϕ
(s)
k,w

by Eq. (3);

20: end for
21: for each k = 1, . . . , K and each p in R do

22: estimate the individual parameters ψ
(s)
k,p

by Eq. (4);

23: end for
24: s ← s + 1;
25: end if
26: iteration ← iteration + 1;
27: end while
28: for each t in D and each k = 1, . . . , K do

29: ϑ t,k ← 1
s

∑s
d=1 ϑ

(d)
t,k;

30: end for
31: for each k = 1, . . . , K and each w in I do

32: ϕ k,w ← 1
s

∑s
d=1 ϕ

(d)
k,w

;

33: end for
34: for each k = 1, . . . , K and each p in R do

35: ψ k,p ← 1
s

∑s
d=1 ψ

(d)
k,p

;

36: end for

K-Medoids Partitioning. A more sophisticated technique for separating D
based on MUESLI consists in partitioning the topic distributions Θ. This allows
for grouping the XML documents through their cross-topic similarity along with
using a number K of latent topics larger than the number K of clusters to find in
D. Both are expected to enable a more accurate separation of D. k-medoids [16]
is a well-known clustering algorithm, that can be chosen to partition Θ, because
of its effectiveness and robustness to noise as well as outliers. k-medoids involves
the computation of the intra-cluster divergences. To this end, we use the square
root of the Jensen-Shannon distance, that was shown to be a metric [14].

4 PAELLA: Joint XML Clustering and Topic Modeling

PAELLA (toPicAl clustEr anaLysis of xmL corporA) is an innovative generative
model of XML corpora, in which document clustering and topic modeling act as
simultaneous and interdependent latent factors in the formation of the individual
XML documents. Essentially, PAELLA envisages a scenario, in which each XML
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document x(t) is associated with a corresponding latent cluster membership ct
as in [26]. ct is randomly sampled from an unknown cluster distribution η. Fur-
thermore, the underlying semantics ϑt of the XML document x(t) is a unknown
distribution over K latent topics. These are individually characterized as in the
MUESLI topic model of Sect. 3. Figure 1(b) shows the graphical representation
of PAELLA. Its generative process is detailed in Fig. 3.

Under PAELLA, collapsed Gibbs sampling is exploited to perform the approx-
imate posterior inference of ct and z(t) for each XML document x(t). Besides,
parameter estimation is utilized to calculate the cluster distribution η, the topic
distribution ϑt for each XML document x(t) as well as the distributions ϕk and
ψk for each topic k = 1, . . . , K. The mathematical and algorithmic details of
collapsed Gibbs sampling and parameter estimation under PAELLA are omitted
for space limitations, being similar to the respective developments in Sect. 3.2.

5 Evaluation

In this section, we empirically assess the effectiveness of our approaches to XML
clustering in comparison to various state-of-the-art competitors. In the follow-
ing, the naive and K-Medoids clustering techniques adopted in conjunction with
MUESLI are named, respectively, Naive and K-Medoids.

5.1 XML Corpora, Competitors and Evaluation Measures

All tests are carried out on Wikipedia and Sigmod. These are two real-world
benchmark XML corpora, that are often used in the literature for the evaluation
of techniques devoted to XML classification and clustering.

Wikipedia was adopted as the test-bed for the task of XML clustering by
both content and structure, in the context of the XML Mining Track at INEX
2007 [13]. The overall corpus consists of 47, 397 articles from the online digital
encyclopedia, that are organized into 19 classes (or thematic categories). Each
such a class corresponds to a different Wikipedia Portal.

The 140 XML documents of the Sigmod corpus represent a portion of the
SIGMOD Record issues. The documents comply with two different structural

– Draw the probability distribution over clusters, i.e., η ∼ Dirichlet(α);
– For each topic k

• sample the probability distribution ϕk over the text items of vocabulary I, i.e., ϕk ∼ Dirichlet(γ);
• Sample the probability distribution ψk over the root-to-leaf paths of vocabulary R, i.e., ψk ∼

Dirichlet(β).
– For each t in D

• Draw cluster membership ct ∼ Discrete(η);
• sample the probability distribution ϑt over the latent topics, i.e., ϑt ∼ Dirichlet(δct );
• for each n = 1, . . . , Nt

∗ choose a latent topic zt,n ∼ Discrete(ϑt);
∗ choose a root-to-leaf path pt,n ∼ Discrete(ψzt,n );

∗ choose a text item wt,n ∼ Discrete(ϕzt,n );

Fig. 3. The probabilistic generative process under PAELLA
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class DTDs and were, initially, used to evaluate the effectiveness of XML struc-
tural clustering techniques (e.g., in) [2]. However, the minimal number of struc-
tural classes makes this task not truly challenging. Thus, in our experimentation,
we consider a rearrangement of Sigmod into 5 general classes proposed in [19].
These classes were formed, by means of expert knowledge, to reflect as many
groups of structural and content features of the underlying XML documents.

Interestingly, the choice of Wikipedia and Sigmod allows for assessing the
effectiveness of our approaches on XML corpora with diverging features. In par-
ticular, while the XML documents in Wikipedia can be viewed as schema-less
XML trees with a deep structure and a high branching factor, Sigmod includes
a much smaller number of XML trees with two distinct schema definitions [19].
Table 1 summarizes a selection of primary statistics of the chosen XML corpora.

Table 1. Characteristics of the chosen XML corpora

XML Corpus Size Classes Max. out

degree

Max. tree

depth

Distinct

paths

Terms Distinct

terms

Wikipedia 47,397 21 1,776 48 18,839 21,840,997 1,004,207

Sigmod 140 5 29 8 33 25,666 6,286

Naive, K-Medoids and PAELLA are compared on Wikipedia and Sigmod
against several state-of-the-art competitors, i.e., HPXTD [10], MCXTD [10], XC-
NMF [9], XPEC [8], XCFS [19], HCX [18], CRP [27], 4RP [27], SOM [15] and
LSK [25].

The clustering effectiveness of all competitors is measured in terms of macro-
averaged and micro-averaged purity, according to the standard evaluation guide-
lines of the of the Mining Track at the INEX 2007 competition [13].

5.2 Partitioning Effectiveness

All competitors are tested in the discovery of a number of clusters in the chosen
XML corpora, that amounts to the actual number of natural classes.

Cluster discovery through MUESLI and PAELLA also involves setting a rea-
sonable number of underlying topics. In the context of the Naive clustering strat-
egy, MUESLI was trained to unveil both in Sigmod and in Wikipedia as many
latent topics as the number of natural classes within the respective XML cor-
pora. Instead, a preliminary sensitivity analysis was conducted to determine
the number of topics under K-Medoids and PAELLA. This was accomplished by
ranging the number of topics in the interval [5, 30] over Sigmod and [10, 60]
over Wikipedia. Figure 4 shows the sensitivity of clustering effectiveness under
K-Medoids and PAELLA to the number of topics. We fixed the number of topics
under K-Medoids and PAELLA, so that to maximize their clustering effectiveness.

The clustering effectiveness of all competitors is compared in Fig. 5. PAELLA
and K-Medoids deliver an overcoming clustering effectiveness, being aware of
the whole semantics of the individual XML documents. Naive achieves a lower
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effectiveness compared to both PAELLA and K-Medoids, since cluster assignment
is determined for each XML document only on the basis of its most pertinent
topic. This does not allow for grouping the XML documents on an actual cross-
topic similarity basis. Moreover, with Naive, inference under MUESLI is subject
to the constraint on the number of topics, that is required to equal the number of
clusters. Such limitations affect neither PAELLA nor K-Medoids, that naturally
exploit the specificity of MUESLI (i.e., modeling the semantics of an XML corpus
with no prior restrictions on the actual number of underlying topics), in order
to group the XML documents by their respective topic mixtures.

The superiority of PAELLA with respect to K-Medoids is due to the fact that
the former conceives and seamlessly integrates MUESLI as a natural complement,
with which to enhance XML document clustering.

Noticeably, the better clustering performance delivered by Naive and K-
Medoids in comparison with HPXTD and MCXTD, respectively, substantiates
the rationality of enriching topics under MUESLI through the incorporation of
probability distributions over root-to-leaf paths. Clearly, such a modeling choice
also contributes to the performance gain attained by PAELLA.
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Fig. 4. Sensitivity of K-Medoids and PAELLA to the number of topics.

Next, we demonstrate the behavior of the proposed approaches on XML
corpora, by inspecting the results outputted by PAELLA over Sigmod.

Figure 6 shows the topic mixtures associated with the 5 uncovered clusters.
These are obtained by averaging the topic distributions of the individual docu-
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Fig. 5. Macro-averaged and micro-averaged purity on Sigmod (a) and Wikipedia (b)
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Table 2. Two Sigmod topics.

Topic 1 (Mobile) Topic 2 (DBMS)

Wireless Memory

Mobile Architecture

Communication Database

Access Node

Data Transaction

ments therein. Additionally, Table 2 details two inferred word topics. Each topic
is summarized by its top-5 most relevant words, whose clarity, specificity and
coherence enable the intuitive interpretations in brackets.

6 Conclusions and Future Research

We proposed two innovative machine-learning approaches for clustering XML
corpora by latent topic homogeneity. The empirical evidence from experiments
on real-world benchmark XML corpora showed the effectiveness of the devised
approaches against several state-of-the-art competitors.

It is interesting to refine MUESLI and PAELLA, in order to also account for
the syntactic and semantic relationships among words [4,22], which is expected
to improve XML clustering effectiveness. Finally, the incorporation of an n-
gram topic model for text items is likely beneficial to more accurately catch the
meaning of the textual content of the XML documents. In turn, this may be
useful to further increase clustering effectiveness [11,12].
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Abstract. Deterministic regular expressions (DREs) have been used in
a myriad of areas in data management. However, to the best of our
knowledge, presently there has been no large-scale repository of DREs
in the literature. In this paper, based on a large corpus of data that
we harvested from the Web, we build a large-scale repository of DREs
by first collecting a repository after analyzing determinism of the real
data; and then further processing the data by using normalized DREs to
construct a compact repository of DREs, called DRE pattern set. At last
we use our DRE patterns as benchmark datasets in several algorithms
that have lacked experiments on real DRE data before. Experimental
results demonstrate the usefulness of the repository.

Keywords: Deterministic regular expressions · Repository ·
Evaluation

1 Introduction

Regular expressions (REs) occur naturally in the definition of database (for
example in the schema definition of structured and certain semi-structured data
sets) and as fragments of most tree and graph query languages. This paper
focuses on deterministic regular expressions (DREs), which have been used and
studied in a myriad of areas in data management.

Roughly speaking, determinism means that, when matching a word from left
to right against an expression, a symbol can be matched to only one position in
the expression without looking ahead. For example, a(a)∗ is deterministic but
(a)∗a is not, although they define the same language. One immediate benefit

Work supported by the National Natural Science Foundation of China under Grant
Nos. 61872339, 61472405, 61762061 and the Natural Science Foundation of Jiangxi
Province, China under Grant 20161ACB20004.

c© Springer Nature Switzerland AG 2019
Q. Yang et al. (Eds.): PAKDD 2019, LNAI 11441, pp. 249–261, 2019.
https://doi.org/10.1007/978-3-030-16142-2_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16142-2_20&domain=pdf
https://doi.org/10.1007/978-3-030-16142-2_20


250 H. Chen et al.

of using DREs is efficient parsing. Indeed, it gives a natural manner to define
determinism in REs. As a result, several decision problems behave better for
DREs than for general ones. For example, language inclusion for REs is PSPACE-
complete but is tractable when the expressions are deterministic. It is known that
DREs are strictly less expressive than REs and not every non-deterministic RE
can be defined by a DRE [11].

There have been many applications of DREs in practice, here we mention
a few examples. First, DREs have been used in different kinds of applications
such as the SPARQL query language for RDF [26], efficiently evaluating regu-
lar path queries [20], AXML [4], etc. Second, DREs are commonly appeared in
RegExLib [2] which is the main regular expression repository available on the
Web. It contains multiple kinds of expressions for matching URIs, markup code,
C style strings, pieces of Java code, SQL queries, spam, etc. Third, DREs are
widely used in the popular schema languages of XML, such as DTD and XSD,
which are recommended by the World Wide Web Consortium (W3C) [30], and
Relax NG, which is a standard of ISO (International Organization for Standard-
ization) [27].

However, the lack of benchmark datasets is a problem for many research
areas, including the research of DREs. In detail, a large-scale repository of DREs
would be quite useful in the research of DREs for many purposes, such as the
testing, experiments of programs having input of DREs, etc. Nevertheless, to the
best of our knowledge, currently there has been no such repository of DREs in the
literature. Actually, the real data set has been a weak point in the literature. The
related work is summarized in Table 1 (we use RNG to represent Relax NG in this
and following tables), from which we can clearly observe that the data obtained
contains only from several dozens of to several thousands of schemas, which are
quite insufficient. For example, many researches on different subclasses of DREs
were based just on several hundreds of XSDs or DTDs (i.e., very small set).
This is because harvesting a large-scale DTD, XSD and Relax NG schema files
from the Web is not an easy task (we give discussions in Sect. 3). Consequently,
many researches have lacked experiments on large-scale real DRE data, although
these experiments should be very important. The following are some examples,
disjunctive multiplicity expressions (DME) [21], the membership and inclusion
checkers for conflict-free REs [16,17] and the DRE inclusion checkers [12].

Furthermore, one may think that we can use generators of REs to generate
large-scale DREs by first generating REs then selecting the deterministic ones
using a determinism checker for DREs. However, as our previous experiments
have shown, since the ratio of DREs in REs is very low (e.g, the ratio of DREs
is less than 1.2% for REs of length 50 with alphabet size 26), and as the given
length of DREs increases, the probability that the generated RE is deterministic
decreases very quickly, repeatedly generating arbitrary REs until we obtain a
DRE is not a feasible option to generate DREs. For instance, when the given
length is much larger than the alphabet size, it cannot generate a DRE even in
one day. This further shows the significance of having a large-scale repository of
DREs.
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Considering the above problem, in this paper, we get a large-scale repository
of DREs, called DRE pattern set. We further show the usefulness of our reposi-
tory by using it in some applications that have lacked experiments on real DRE
data before.

Table 1. DTD, XSD and Relax NG schema files
obtained over the years

Year DTDs XSDs RNGs Total Work

2002 60 N/A N/A 60 Choi et al. [14]

2004 109 93 N/A 202 Bex et al. [7]

2005 N/A 819 N/A 819 Bex et al. [6]

2005 N/A 199 N/A 199 Laender et al. [23]

2006 75 N/A N/A 75 Barbosa et al. [5]

2007 N/A 697 N/A 697 Bex et al. [9]

2008 N/A 223 N/A 223 Laender et al. [23]

2011 3087 4141 337 7565 Grijzenhout et al. [19]

2015 N/A 8000+ N/A 8000+ Björklund et al. [10]

2016 2427 4859 N/A 7286 Li et al. [25]

In detail, a large-scale
data set is the prerequi-
site for analyzing DREs.
For this purpose, we have
obtained data files from the
Web, including RegExLib,
Relax NG, XSD and DTD.
The data set that we col-
lected is sufficiently large
compared with previous
work, and is also repre-
sentative to investigate the
practical usage of DREs
with counting and interleaving (see Sect. 3 for details). Starting from the data
set we constructed a large-scale repository of DREs.

Then we use our repository of DREs in some algorithms involving DREs. The
first experiments are to evaluate the correctness and efficiency of some inference
algorithms. Since DREs are widely used in schema definitions, inference algo-
rithms are quite common. The second experiments are to compare the perfor-
mance and efficiency of two algorithms for checking inclusion of DREs [12], which
can be used in many applications such as query processing, schema update and so
on. Experiments illustrate that it is possible to effectively apply DRE algorithms
on this data set. We call algorithms that deal with DREs as DRE algorithms for
simplicity. It should be noted that actually every subclass of DREs, besides the
ones used in the experiments, and their algorithms, can be evaluated using our
repository similarly in this way. The results demonstrate the usefulness of the
repository.

Contributions. To the best of our knowledge, there has been no large-scale
repository of DREs in the literature. In this paper we build such a repository of
DREs as follows. (1) We harvest a large corpus of data from the Web, including
RegExLib, Relax NG, XSD and DTD, which forms the basis of our approach
(Sect. 3). (2) We collect a large-scale repository of DREs from this data set after
analyzing determinism of all data in this set (Sect. 4). (3) We use normalized
DREs to get a compact repository of DREs, called DRE pattern set (Sect. 4).
The lack of benchmark datasets is a problem for the research of DREs. We show
that the DRE pattern set is an important step to fix this problem by using the
DRE patterns in several algorithms that have lacked experiments on real DRE
data before. Experimental results give some insight into the performance of the
algorithms, and thus demonstrate that the repository can be a helpful tool for
research in this research area (Sect. 5).
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2 Preliminaries

Let Σ be an alphabet of symbols. The set of all finite words over Σ is denoted
by Σ∗. The empty word is denoted by ε. A (standard) regular expression over
Σ is defined as: ∅, ε or a ∈ Σ is a regular expression, the union E1|E2, the
concatenation E1E2, the Kleene-star E∗

1 , the option E?
1 , or the plus E+

1 is a reg-
ular expression for regular expressions E1 and E2. Note E? and E+ are actually
redundant, science E? = ε|E and E+ = EE∗. We include them in the definition
because they are used in practice. Also, the concatenation E1E2 is often written
as E1, E2 in practice.

Let N denotes the set {0, 1, 2, . . .}. A regular expression with counting and
interleaving is extended from RE by further using the numerical iteration oper-
ator E[m,n] and the interleaving operator E1&E2. The bounds m and n satisfy:
m ∈ N, n ∈ N\{0} ∪ {∞}, and m ≤ n. For s, s1, s2 ∈ Σ∗ and a, b ∈ Σ,
s&ε = ε&s = {s} and as1&bs2 = {a(s1&bs2)} ∪ {b(as1&s2)}.

For a regular expression we can mark symbols with subscripts so that in the
marked expression each marked symbol occurs only once. For example (a1 +
b1)∗a2 is a marking of the expression (a+ b)∗a. We use E to denote the marking
of E, and Σ to denote the alphabet of subscripted symbols. The same notation
will also be used for dropping of subscripts from the marked symbols: E = E.
Now we can give the definition of deterministic regular expressions (DREs for
short):

Definition 1 [11]. An expression E is deterministic if and only if, for all words
uxv, uyw ∈ L(E) where u, v, w ∈ Σ

∗
and x, y ∈ Σ, if x �= y then x �= y. A

regular language is deterministic if it is denoted by some deterministic regular
expression.

For example, E = aa∗ is a DRE while E = a∗a is not. Because for E = a∗a
a marking of E is E = a∗

1a2, then we have a1, a2 ∈ L(E) and a1 �= a2 but
a1 = a = a2, where x = a1, y = a2, u, v, w = ε, thus E = a∗a is not deterministic.

Furthermore, it is known that DREs are strictly less expressive than REs,
which means that not every RE can be rewritten to an equivalent DRE [11]. It
is nontrivial for ordinary users to decide whether an expression is DRE or not,
and if not, whether it has an equivalent DRE. For instance, (a + b)∗a + ε is not
a DRE. Nevertheless, the language denoted by (a + b)∗a + ε is a deterministic
language, since it is also denoted by (b∗a)∗, which is a DRE. Clearly it is not
easy for an ordinary user to find the DRE (b∗a)∗ to replace (a + b)∗a + ε.

3 The Data Set

One basis of our work is the large-scale data set, which we introduce in this
section.
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3.1 The Data Sources

The data set should be representative to investigate DREs. For this purpose,
as we have mentioned, we have obtained data files from the Web, including
RegExLib, Relax NG, XSD and DTD. DTD and XSD are recommended by
W3C [30], Relax NG is a standard of ISO [27], and RegExLib is the main regular
expression repository available on the Web [2]. W3C specification requires that
the content models of DTDs and XSDs must be DREs, while both Relax NG
and RegExLib do not have determinism restrictions. Both XSD and Relax NG
support interleaving, in which the interleaving supported by XSD is very limited
and the interleaving supported by Relax NG is unlimited. And both XSD and
RegExLib support counting. So it is representative to take them as examples to
investigate the practical usage of DREs with counting and interleaving.

3.2 Harvesting Schema Files from the Web

In order to investigate DREs, the data set should also be sufficiently large. One
feature of our work is that the data set is sufficiently large compared with pre-
vious work. Harvesting a large corpus of DTD, XSD and Relax NG schema files
from the Web is not an easy task, because although there are many schema
files on the Web, they exist in different forms and locations so they cannot be
directly obtained in batches. Previous research gained schema files usually from
some local sources, e.g. Bex et al. studied 109 DTDs and 93 XSDs downloaded
from the XML Cover pages repository [7]. However, we have made good use of
search engines and project platforms (such as GitHub and Maven) to obtain data
without source restriction, thus the data obtained are much larger and represen-
tative than those of previous research. In detail, we proposed four data collec-
tion strategies: comprehensively utilizing Google search engine, path-ascending
crawling, downloading and analyzing the Web sites and finding potential data,
to attain more schema files from the Web. Figure 1 shows the data collection
process and the strategies used.

Fig. 1. The process of data collection
and strategies used

Finally, we obtained 276371 data files
including 124326 DTDs, 134816 XSDs,
13946 RELAX NGs and 3283 RegExLib
expressions. And previous work is sum-
marized in Table 1. For example, the
total number of data files is 34 times
of Björklund et al.’s [10] (see Table 1).
Such an extensive and large-scale data
set is significant in analyzing DREs,
because studying the practicability of
DRE requires data to reflect practical
applications as far as possible, and large-

scale random schemas are in line with this requirement. Our repository can be
found at https://github.com/yetingli/IDEAS18.

https://github.com/yetingli/IDEAS18
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3.3 A Practical Study of DREs

For the data collected, we preprocess with the steps such as schema normaliza-
tion, duplicate file removal, well-formedness and validity checking, and so on.
And then we parse the content models into REs.

Then we conducted an extensive study to investigate the practical usage
of DREs using the data. For example, we studied the percentage of DREs of
the data set, and the usages of various subclasses of DREs; we analyzed the
complexity of the data set, including star height, nesting depth, density, and so
on; we investigated counting and interleaving used in the data set. Details about
the practical study can be found in [24].

4 The Repository

4.1 Getting the DRE Set from the Data Set

To build the DRE set, we need techniques and tools that can decide determinism
of REs with interleaving. Furthermore, they are also necessary for using the
DRE set. Fortunately, we have solved this problem and have tools for deciding
determinism of REs with counting and unlimited interleaving [29]. This forms
the basis of the present work.

Determinism. Using our data set and our determinism checking tools, we
studied the determinism of REs generated by schema files and the REs from
RegExLib respectively. The results are shown in Table 2, where DREs (%)
denotes the percentage of DREs in each type of files in our data set, which
demonstrate that large proportions of expressions in Relax NG and expressions
from RegExLib are deterministic.

Table 2. Determinism of REs

Source DTD XSD RNG RegExLib

DREs (%) 0.9883 0.9993 0.9825 0.5656

The DRE Set. Then we collect deter-
ministic REs from the data set to
build the initial repository of DREs, in
which after removing duplicate DREs
the total number of DREs is 222163. This repository then is used in the
following.

4.2 From the DRE Set to the DRE Pattern Set

Now we start to consider how to make the repository of DREs more efficient. To
this end, we further process the data which are introduced in this section.

Theoretical Preparations. To further processing the data, we first need the
following results.

From the theoretical studies of DREs [11,13,22,29], we have that any subex-
pression of a DER is a DRE.

According to this statement, for a DRE E in the repository, a part of E may
still be a DRE if this part is a subexpression of E. The subexpressions of an
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expression E can be easily found, e.g., using the syntax tree of E. In fact, any
subtree of the syntax tree of E is a subexpression of E. And a DRE given by the
user can start from a position that is the starting position of a subexpression of
a DRE in the repository, not necessarily the starting position of a DRE in the
repository. That is, a DRE given by the user can be a subexpression of a DRE
in the repository of DREs.

From formal language theory we know that two grammars which only differs
in using different alphabets are isomorphic. Applying this result to DREs, we
have that for any DRE r over the alphabet Σ, when replacing Σ by another
alphabet Σ′, the result is also a DRE.

Constructing the DRE Pattern Set from the DRE Set. Based on the
above results, we further use normalized DREs to construct a more compact
repository, called DRE pattern set. We normalize the DREs as follows.

Definition 2. A DRE is normalized if the symbols in the DRE, in the order
from left to right, are uniformly substituted by symbols a1, a2, a3, . . .. Note that
a repeatedly occurring symbol in the DRE will be substituted by a same symbol.

Example 1. Suppose we have three original DREs: (1) red, green, blue; (2)
SORE, CHARE, eCHARE; and (3) red, green, green. The normalized DREs
are as follows: (1) a1, a2, a3; (2) a1, a2, a3; and (3) a1, a2, a2.

Thus two different DREs in the repository of DREs that only differ in sym-
bols become the same in their normalized forms. In Example 1, the first two
DREs become the same normalized DREs, and in the third DRE the repeatedly
occurring symbol ‘green’ is substituted by the same symbol a2.

Normalized DREs make it possible for us to concentrate on the structures of
the expressions, regardless of the alphabets. As a result, expressions with same
or similar structures can be merged, thus we get a more compact set. Moreover,
the normalized DREs cover more DREs than the original repository of DREs in
the following sense: actually any DRE that has the same structure as (a subtree
of) a normalized DRE but is not contained in the original repository of DREs
will be covered. These observations are formalized as follows.

Fact 1. For normalized DREs E1 and E2, if E1 = E2, or E2 is isomorphic to
a subtree of E1 up to a renaming of symbols, then E2 is redundant and can
be removed. And any DRE that has the same structure as (a subtree of) E1 is
covered by E1. Notice here = means identical.

Actually, it is easy to see that any DRE covered by E2 will also be covered
by E1, so we can safely remove E2. So we get a more compact set that covers
more DREs than the original DRE repository, which is called DRE pattern set.

For example, the first two normalized DREs in Example 1 are identical, i. e.,
a1, a2, a3, so one of them is removed. Suppose we also have a fourth normal-
ized DRE in Example 1, which is a1, a2. Since it is isomorphic to a subtree of
a1, a2, a3, then it is removed. To be mentioned, it is also isomorphic to a sub-
tree of a1, a2, a2. Furthermore, other DREs, for example the ones that can be
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normalized as a1, a2, a3 but are not contained in the original DREs, such as
yellow, seagreen, pink, will also be covered by the normalized DRE a1, a2, a3.

Since in the repository of DREs that we have obtained there is a large portion
of DREs satisfying the above conditions, this will effectively get a compact set
(see Sect. 4.4 for details).

4.3 Dynamically Increasing the Power of the Repository

If a DRE that the user wanted is not in the repository, we also allow the user
to add new DREs that meet her needs into the repository. That is, we allow
the user to input an arbitrary expression. Then, we check if the expression is
deterministic by using our determinism check tools [29]. There will be two cases.
If the expression is deterministic, then we normalize this new DRE, add it into
the DRE pattern set and rebuild the pattern set. So the repository knows the
new pattern from now on. Otherwise, our tools will hint the possible reasons for
nondeterminism, which can be used by the user for redesigning of the expression.

The diagnostic information for nondeterminism that our tools can report
include locating the nondeterministic subexpression, giving competing positions,
and so on. The interface of one of our tools is shown in Fig. 2.

In this manner, the repository is able to increase its power dynamically.

4.4 Getting the Repository of DREs

We processed the data set according to the above as follows. First, we get the
set of DREs from the original data set after determinism checking and duplicate
DREs removal. The total number of DREs is 222163. Then, we get the DRE
pattern set from the set of DREs, in which the number of expressions in the
pattern set is only about 0.145% of the set of DREs. The results for the DRE
set and the DRE pattern set are shown in Table 31.

Table 3. Number of DREs

Type DTD XSD RNG RegExLib Total

DRE set 25142 155475 42968 1402 222163
Pattern set 3767 14771 2791 724 20339

Fig. 2. The interface of our tool

1 The number of total is not equal to the sum of DTD, XSD, RNG and RegExLib,
because there exist duplicate DREs among the different types of files.
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5 Experiments

We experimentally evaluate our repository on several algorithms that have lacked
experiments on real DRE data before, showing that it is possible to effectively
apply DRE algorithms on this data set. All experiments were conducted on a
machine with a Intel(R) Xeon(R) CPU (3.19 GHz) and 48G memory.

5.1 Algorithm Selection

The first experiments are to evaluate the correctness and efficiency of some infer-
ence algorithms, including the inference algorithms for chain regular expression
(CHARE) [8], the subset of regular expression with interleaving (SIRE) [28], and
DME [21]. All of them are subclasses of DREs, where DME supports unordered
concatenation, a weaker form of interleaving, SIRE supports interleaving, and
CHARE supports standard REs. Since DREs are widely used in schema defini-
tions, inference algorithms are quite common for DREs and their subclasses. And
the subclasses we selected in the experiments have different features so they are
quite representative. The second experiments are to compare the performance
and efficiency of two algorithms for checking inclusion of DREs [12], which is
another kind of application of DREs that can be widely used.

5.2 Experiment1

We give experiments to evaluate the correctness and efficiency of the inference
algorithms for three subclasses of DREs: CHARE, SIRE, and DME. Roughly
speaking, an inference algorithm for a subclass of DREs D is to, given a sample
set S, infer a DRE e satisfying S ⊆ L(e), where S and e belong to D. By select-
ing different DREs that satisfy different definitions of the subclasses from our
repository, we performed test of the correctness and efficiency of their inference
algorithms using the data.

In detail, we randomly selected three groups of DREs from our repository
with each group containing 200 DREs, and the groups respectively belong to
CHARE, SIRE and DME. The alphabet sizes of the selected DREs range from 5
to 100. For each selected DRE, we randomly generated three sample sets with size
of 500, 1000 and 3000 respectively. For each sample set, we run its corresponding
inference algorithms and record the average runtime.

First, using the inferred DREs, we verified whether the sample sets can be
generated by the corresponding inferred DREs, that is, whether we have S ⊆
L(e) for each sample set S and the corresponding inferred DRE e. Results show
all the sample sets can be generated by the corresponding inferred DREs. This
gives a test of the correctness of the inference algorithms using the data as the
test set.

Next, we compare the efficiency of the inference algorithms. We use the algo-
rithm Soa2Chare [18] for the inference of CHARE. Results are shown in Fig. 3,
where the horizontal axis denotes alphabet size and the vertical axis denotes
average runtime of Soa2Chare for samples of different sizes in milliseconds, |S|
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Fig. 3. Average runtime
for learning CHARE of
varying alphabet size

Fig. 4. Average runtime
for learning SIRE of
varying alphabet size

Fig. 5. Average runtime
for learning DME of vary-
ing alphabet size

denotes the size of sample. We can see the sample size |S| has a significant influ-
ence on the inference time, that is, average runtime increases with the increase
of sample size.

We run the approximation algorithm and the exact algorithm in [28] respec-
tively for inference of SIRE. The main difference between the two algorithms
is the solution to the maximum independent set problem, which is NP-hard,
thus approximation algorithms are necessary to find approximate solutions to
this problem. In detail, the exact algorithm calls the igraph package [1], and the
approximation algorithm uses the NetworkX package [3] to get the maximum
independent set. The experimental results are shown in Fig. 4, where the hor-
izontal and vertical axes are same as in Fig. 3, in addition we use marks −E
and −A respectively to denote the exact and approximation algorithms. On the
whole, the approximation algorithm is faster than the exact algorithm. Still,
average runtime increases with the increase of sample size.

Figure 5 shows the result of DME inference algorithm [15], where the horizon-
tal and vertical axes and the marks are same as in Fig. 4. The difference between
the exact and the approximation algorithms lies in the solution of maximum
clique problem, which is also NP-hard. Actually, the independent set problem
and the clique problem is complementary. It should be noted that the DME infer-
ence algorithm described in [15] is not accompanied with source code. Therefore
we implemented their algorithm according to the pseudo-code given in [15], in
which the exact algorithm calls the igraph package and the approximation algo-
rithm uses the NetworkX package. These algorithms are used in the present
experiments. Compared with the sample size, the alphabet has a greater impact
on the average runtime, that is, the average runtime increases with the increase
of alphabet size. Moreover, the average runtime of approximation algorithm is
faster than the average runtime of exact algorithm.

From the above experiments we can also have the following conclusions. First,
the inference algorithm for CHARE is more efficient than that for SIRE and
DME. This is mainly because CHARE is defined on standard REs while both
SIRE and DME support interleaving. Second, both approximation algorithms
for SIRE and DME are efficient than their exact versions, which are the same
as expected. Third, exceeding the authors’ expectations, the inference algorithm
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for DME is much slower than that for SIRE, but indeed DME only supports
unordered concatenation, a weaker form of interleaving, while SIRE supports
interleaving.

5.3 Experiment2

We give experiments to evaluate two algorithms for checking inclusion of
DREs [12] using the repository. An algorithm for checking inclusion of DREs is
to decide whether e1 ⊆ e2 for DREs e1 and e2. In [12] there are two algorithms
for checking inclusion of DREs, namely the DFA-based and the derivative-based
algorithms. Please notice that there is a necessary condition for e1 ⊆ e2 holds,
that is the alphabet of e2 must include the alphabet of e1.

To evaluate the two algorithms, we randomly selected 5680 DREs from our
repository. Then we get 11463823 pairs of DREs from these DREs, satisfying the
alphabet of e2 includes the alphabet of e1 for each pair (e1, e2). Figure 6 shows
the distribution of the pairs of DREs, where the horizontal axis denotes the sum
of the lengths of DRE pairs (e1, e2), and the vertical axis denotes the number of
DRE pairs in each length interval.

We randomly selected 10,000 DRE pairs in each length interval, totally get
120,000 DRE pairs. We run each inclusion algorithm on the pairs to determine
whether e1 ⊆ e2, and account the runtime for each pairs. From these DRE pairs,
we get 8396 pairs of DREs satisfying the inclusion relation, which form the
positive sample, and 111604 pairs of DREs not satisfying the inclusion relation,
which form the negative sample.

We compare the two algorithms using both positive and negative samples.
Figure 7 shows the results on positive sample, where the horizontal axis denotes
the lengths of DRE pairs, and the vertical axis denotes the average runtime of
each of the algorithms, i.e., running each DRE pairs 100 times for totally 10000
DRE pairs in each length interval then divided by 10000. We show the runtime in
milliseconds. Results show that the derivative-based algorithm is more efficient
on smaller expressions (i.e., when the length of the DRE pairs is smaller than
100), while the DFA-based algorithm performs better on larger expressions (i.e.,
when the length of the DRE pairs is larger than 100). This is because that the
derivative-based algorithm performs, in a sense, a breadth-first exploration of
the two compared expressions, and smaller expressions tend to have a smaller
amount of such exploration.

Figure 8 shows the results on negative sample, from which we can see that
the derivative-based algorithm performs better (due to that looking for a reason
to fail is easy to spot) then the DFA-based algorithm (due to the construction
of Glushkov DFAs).

Discussion of the Experiments. The repository makes it possible to evaluate
DRE algorithms on large-scale real DRE data, and the experiments give some
insight into the performance of the algorithms, thus demonstrate the usefulness
of our repository.
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Fig. 6. Distribution of
expressions pair sizes

Fig. 7. Positive sample
experiment

Fig. 8. Negative sample
experiment

6 Conclusion

Based on a large corpus of real data that we harvested from the Web, we collected
a large-scale repository of DREs after analyzing determinism of the real data.
Then we further process the collected repository by using normalized DREs to
compact the DRE set into the pattern set. At last we use the DRE patterns
in several algorithms that have lacked experiments on real DRE data before,
including some inference algorithms, and DRE inclusion checkers. Experimental
results demonstrate the usefulness of the repository. We can further enhance
the repository by using pattern generalization and machine learning techniques,
which remain as future work.
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Abstract. Record linkage is the process of integrating information from
the same underlying entity across disparate data sets. This process, which
is increasingly utilized to build accurate representations of individuals
and organizations for a variety of applications, ranging from credit wor-
thiness assessments to continuity of medical care, can be computationally
intensive because it requires comparing large quantities of records over
a range of attributes. To reduce the amount of computation in record
linkage in big data settings, blocking methods, which are designed to
limit the number of record pair comparisons that needs to be performed,
are critical for scaling up the record linkage process. These methods
group together potential matches into blocks, often using a subset of
attributes before a final comparator function predicts which record pairs
within the blocks correspond to matches. Yet data corruption and miss-
ing values adversely influence the performance of blocking methods (e.g.,
it may cause some matching records not to be placed in the same block).
While there has been some investigation into the impact of missing val-
ues on general record linkage techniques (e.g., the comparator function),
no study has addressed the impact of the missing values on blocking
methods. To address this issue, in this work, we systematically perform
a detailed empirical analysis of the individual and joint impact of missing
values and data corruption on different blocking methods using realistic
data sets. Our results show that blocking approaches that do not depend
on one type of blocking attributes are more robust against missing val-
ues. In addition, our results indicate that blocking parameters must be
chosen carefully for different blocking techniques.

Keywords: Record linkage · Deduplication · Missing values ·
Blocking methods · Data corruption

1 Introduction

Record linkage is the process of identifying the same entity across different and
possibly dispersed data sources. It is a task of paramount importance in many
domains where linking and combining data related to the same entity is of vital
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necessity. Occasionally, data belonging to different entities such as clients, con-
sumers, social network users, patients, tax payers and travelers remain dispersed
among different sources [6]. Linking relevant data sets from these sources pro-
duces concise, but comprehensive, high quality data and ensures better analyt-
ics and business intelligence. Deduplication can be considered a special type of
record linkage where a data set is linked to its own in order to retrieve the dupli-
cate pairs belonging to the same entity. It is a crucial step in the data cleaning
process which offers more accurate statistics by removing the redundancies.

Regardless of the type, record linkage procedures require quadratic time com-
plexity. This is because each record from a data set is compared to all the records
in the other data set. Consequently, blocking methods are often applied to reduce
the number of record pair comparisons by grouping together similar records
based on some blocking key value (BKV). Afterwards, a comparator function
can be applied to compare record pairs only within the groups (i.e., the blocks).
Unfortunately, a common phenomenon in real world data sets is the existence of
missing values. Understanding the impact of missing values on blocking methods
is important because these methods partition the records into blocks based on
BKV, which in turn is generated from the attribute values. Generally, blocking
methods cannot handle empty key values and discard the record from compari-
son. To address the missing attribute values’ problem in the blocking step, there
are several options.

First, a straw-man approach is to place the records with an empty key into
another block, termed as the “empty key block” and then to compare all the
records within the block. This näıve approach, while seemingly effective in terms
of finding the matches that would otherwise be missed, may be computationally
infeasible if the percentage of records having empty key is high enough to require
a huge number of comparisons for the empty key block. A second idea is to define
multiple blocking keys and then to iteratively perform comparisons within the
blocks generated by each of these keys and finally merging the matches. Yet
another idea is to construct the blocking key from several different attributes
such that the probability of getting an empty key is very low even if the record
contains one or more missing attribute values. An additional step applicable to
the previous two ideas is to define the parameters of the blocking method in a
loose way such that matches having very dissimilar blocking key values due to
having one or more missing attributes can still be placed into the same block.
There is no systematic analysis to understand the tradeoffs of these potential
approaches and how they work under different existing blocking schemes.

1.1 Our Contributions

In this research, we explore what impact the missing attribute values have on
the blocking methods. Our contributions are as follows:

– To the best of our knowledge, this is the first work that tries to evaluate the
impact of missing values on blocking techniques for record linkage.
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– Extensive empirical analysis are conducted to understand how different set-
tings and techniques perform when we have both missing and noisy attributes.
Our results indicate that multiple blocking steps that combine different sets
of attributes can enhance blocking performance with little overhead.

– This work also provides guidance for choosing the length of the blocking key
and the type of the parameters for different blocking techniques.

The remainder of this paper is organized as follows. In Sect. 2, we briefly
describe prior research related to our own. In Sect. 3, we provide a general
overview of blocking methods and their performance metrics. Then in Sect. 4,
we summarize the technical details of several widely used blocking methods that
we incorporate in our study. The data sets, experimental design, and empirical
results are presented in Sect. 5. Section 6 reports on our conclusion and highlights
future directions.

2 Related Work

To provide context, we summarize the works most relevant to our research.
Christen et al. published a detailed theoretical and experimental study of

six blocking methods with a total of twelve variations of those [6]. This study
found that the most important factor behind effective and efficient blocking for
record linkage and deduplication is the selection of blocking keys. Also, it was
shown that the performance of the blocking methods may change significantly
based on the chosen blocking parameters while finding the optimal parameters
is a difficult problem as it depends on the quality and characteristics of the data
to be linked or deduplicated. While this study provides important insights into
the performance of the blocking methods on general data sets, the performance
degradation caused by missing values is not explicitly addressed.

Ong et al. introduced three methods, namely (i) Weight Redistribution,
(ii) Distance Imputation, and (iii) Linkage Expansion to solve the missing
value problem in record linkage [11]. Weight Redistribution omits missing value
attributes for linkage and redistributes their weights to other available attributes
in proportion to the missing attributes’ weights. Distance Imputation infers the
distance accounted for the missing value attribute instead of inferring the miss-
ing value itself. Linkage Expansion adds more attributes to the set of linkage
attributes to compensate for the missing values. Please note that, their meth-
ods deal with the final comparator in the record linkage process and are not
applicable to the blocking methods.

Prasad et al. proposed a data driven approach of selecting blocking key
attribute(s) automatically by considering the amount of missing values along
with two other characteristics of the attributes [12]. Unfortunately, their method
is applicable only to the simplest type of blocking method known as the Standard
Blocking. It further suffers from complexity issues when multiple attributes are
collectively chosen for blocking key construction in high-dimensional data sets.
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3 Background

Effective and scalable Record Linkage is not a single step procedure, but a com-
bination of three. Data comes in different formats, shapes and qualities. So, the
first step in linking data sets is to remove these idiosyncrasies that make the
task difficult. The chance of a successful linkage depends heavily on how much
endeavor is exerted on cleaning and standardizing the data [7]. The second step
is known as blocking. The general idea of blocking is to distribute the records
into overlapping or non-overlapping sets of blocks based on the blocking key
value. The blocking key is constructed by choosing a subset of the attributes,
defining some transformation functions for each of these attributes (optionally)
and defining a combination strategy for the transformed attributes. In the third
step, a classifier or comparator function compares the records within the gen-
erated blocks from the previous step using deterministic or probabilistic (e.g.,
Fellegi Santur EM algorithm [14]) techniques and outputs the matches, possible-
matches, and non-matches.

The performance of a blocking method depends on three different metrics
known as pair completeness, reduction ratio, and blocking time. Suppose, A and
B are two data sets with size nA and nB respectively. Then for record linkage,
the total number of record pair comparisons needed to link the two data sets is
nc = nA ×nB . In case of deduplication of data set A, since a record is compared
to every other record in the same data set, the total number of comparisons
becomes nc = nA × (nA − 1)/2.

Pair completeness (PC), also referred to as detection rate or recall, provides
the ratio of total number of distinct true matches found in any of the generated
blocks, dm to the actual number of true matches, nm. So, PC = dM/nM .

Reduction ratio (RR) indicates the reduction in the number of record pair
comparisons required after applying blocking method. If the particular blocking
method distributes the records into k blocks, each requiring of ni comparisons
for i ∈ {1, ..., k}, then RR = 1 − 1

nc
· ∑k

i=1 ni.
Blocking time is another important metric to measure the performance of

the blocking methods. Note that, the complexity of a blocking method depends
not only on the length and properties of the defined blocking key, but also on
the parameters related to the method. As a result, complexity expressions are
often incomprehensible when there are lots of parameters involved.

4 Major Blocking Methods

In this section, we summarize the most common blocking techniques imple-
mented in popular record linkage software packages such as Febrl [5].

Standard Blocking (STD): The Standard Blocking method [4] places records
having the same blocking key value into the same blocks. Only the records within
the same block are compared by the comparator function.

Sorted-Neighborhood (SRT): The Sorted-Neighborhood method [8] starts
by combining all the records into a sequential list of n records. The records in
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the list are then sorted based on the blocking key value. Then a window of size
ω is slid along the list and the last record in the window is compared to the
previous ω − 1 records.

Q-gram Indexing (QGM): The Q-gram Indexing method, implemented in
Febrl [5], converts the blocking key of a record into a list of q-grams. Then all
possible sublists down to a minimum length are generated, where that length
is set by multiplying a user-defined threshold (τ ∈ [0, 1]) to the size of the
q-gram list. The resulting sublists are then sorted and placed into an inverted
index data structure in which all sublists keep track of the particular record’s
identifier. Here, a record is compared to all other records that have at least
a single q-gram sublist in common. This method works efficiently only if the
length of the blocking key is small since large ones generate too many sublists
(and hence blocks) in the above process for lower values of τ .

Canopy Clustering (CNP): Canopy clustering method [10] depends on two
user-defined distance thresholds, namely a tight threshold, Ttight and a loose
threshold, Tloose (Ttight < Tloose). It begins by selecting a particular record
randomly from the list of all records as the center record of a cluster (known
as canopy) against which other records in the list are compared. The records
that are within the Tloose distance are placed into the same canopy with the
center record and the records that are within Ttight distance are removed from
the list. This process continues until the list is empty. Here, the distance is often
measured by the TF-IDF or Jaccard distance based on the q-grams available in
the blocking keys.

String-Map (STM): The string-Map method maps the blocking key values
into a multi-dimensional Euclidean space that preserves the distances over strings
using a modified FastMap algorithm [9]. While the original method uses an
R-tree to retrieve similar pairs of strings from the high-dimensional space, Febrl
uses an inverted index based approach similar to the iGrid index [5].

Suffix Array (SFX): The Suffix Array method [3] extracts the suffixes of
the blocking key values down to a minimum length. Then all the suffixes are
alphabetically sorted to form the suffix array. Each of these suffixes generates
a block by grouping together the records having the suffix in their blocking
key values. If the size of a block is more than a user-defined threshold, the
corresponding suffix is considered too general and removed from the suffix array.
A variation of this method can be obtained by extracting all substrings, instead of
only the suffixes, which our experimental analysis shows achieves better results.

5 Experimental Evaluation

To conduct an experimental evaluation, we perform deduplication tasks on data
sets with known ground truth about matches to measure the impact of missing
attribute values on blocking methods. This section begins with a description
of the data sets and experimental setup. We then report on the results of the
experiments.
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5.1 Data Set Construction

To construct realistic data sets, we rely upon the publicly-available state-wide
voter registration records of Florida (FL) and North Carolina (NC) [1,2], both
having more than 10 million records. Based on these data sources, we generate
data sets for our experiments as follows.

For each data source, we randomly sample 35,000 records defined over 16
attributes (e.g., first name, year of birth, sex etc.) that can be useful for overall
record linkage procedure. We then randomly choose 15,000 records from the
sample to serve as duplicates. We merge these two sets of data to generate a
sample of size 50,000 having 30% (i.e., 15,000) duplicates. This is done for each
data source.

For each sample, we choose 7 attributes as candidates for blocking keys. We
modify x% (x ∈ {10, 20}) records of the sample to generate missing values for
up to three of these attributes such that the percentages of missing value records
having 1, 2, or 3 missing attributes are 50%, 30%, and 20% respectively. In
addition, we generate the corrupted versions of the data sets using the GeCo
[13] data corrupter, such that 5% of the records are corrupted on the candidate
blocking attributes. An attribute is modified at most twice and a maximum of
three modifications is applied to a record. The rate of corrupted records hav-
ing 1, 2, or 3 modifications are 50%, 30%, and 20% respectively. Different cor-
ruption functions defined in GeCo, such as edit corruptor2, ocr corruptor,
keyboard corruptor, phonetic corruptor and a custom-defined function for
sex (gender corrputor), are used on the attributes according to the probability
distribution in Table 1.

Table 1. Corruption functions and their probabilities.

Attributes Corruption function Probability

First name, middle name, last name edit corruptor2 0.1

ocr corruptor 0.1

keyboard corruptor 0.1

phonetic corruptor 0.7

Month of birth, day of birth, year of birth,
age, zip code

edit corruptor2 0.5

keyboard corruptor 0.5

Address edit corruptor2 0.2

ocr corruptor 0.2

keyboard corruptor 0.3

phonetic corruptor 0.3

Sex gender corruptor 1.0
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Table 2. Blocking keys defined for this study.

Data set Key Value∗ Max length

FL F1 ln[:4] + yy[2:4] + s 7

F2 fn[:4] + mn[:1] + mm + dd 9

F3 F1 + F2 16

NC N1 dmph(ln,4) + mn[:1] + s + zip[2:5] 9

N2 dmph(fn,4) + age + dmph(ad,4) 11

N3 N1 + N2 20
∗ Here fn, ln, mn, s, mm, dd, yy, zip and ad represent the values of first
name, middle name, last name, sex, month of birth, day of birth, year
of birth, zip code and address respectively. The function dmph(x,y)

returns the Double Metaphone encoding of x upto the length of y.

Table 3. Parameters involved in different methods

Method Parameter list∗

SRT Window size

QGM (q-gram length, threshold)

CNP (Canopy method, thresholds/nearest, tight threshold/remove nearest,
loose threshold/cluster nearest, q-gram length)

STM (Grid resolution, dimension, sub-dimension, thresholds/nearest, tight
threshold/remove nearest, loose threshold/cluster nearest)

SFX (Suffix method, minimum suffix length, maximum block size)
∗A detailed description of these parameters can be found in the indexing.py

module of Febrl [5].

5.2 Experimental Setup

To experiment with the various strategies mentioned earlier, we use the following
experimental settings. We define three blocking keys for each data set as shown
in Table 2 (using Python notation). Note that the first two keys (F1, F2 or
N1, N2) are based on a smaller number of attributes, while the third key (F3
or N3) is the concatenation of the two and thus larger. We also use the first
two keys iteratively (F1 & F2 or N1 & N2) and merge the matches to perform
multi-key blocking. Next, we define two sets of parameter values for each of the
blocking methods, which we refer to as tight and loose. Tight values are expected
to encompass less records in the same block, while loose values are expected to
encompass more. The reason is that duplicates may have very dissimilar blocking
key values if one or more component attributes are missing and thus may not be
placed in the same block due to the application of the tight parameter values.
Tables 3 and 4 provide the parameter list and the corresponding tight and loose
values for different methods, respectively. It should be noted that the Standard
Blocking method does not require any parameter and, thus its results remain
unchanged for the same blocking key.
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Table 4. Parameter values for different methods

Method Tight parameters Loose parameters

SRT 2, 3, 5, 7, 10 100, 125, 150, 175, 200

QGM (2, 0.95), (2, 0.9), (3, 0.95), (3, 0.9) (2, 0.85), (2, 0.8), (3, 0.85), (3, 0.8)

CNP (‘jaccard’, ‘threshold’, 0.9, 0.8, 2), (‘jaccard’, ‘threshold’, 0.6, 0.4, 2),

(‘jaccard’, ‘threshold’, 0.8, 0.7, 2), (‘jaccard’, ‘threshold’, 0.7, 0.5, 2),

(‘jaccard’, ‘nearest’, 5, 10, 2), (‘jaccard’, ‘nearest’, 50, 100, 2),

(‘jaccard’, ‘nearest’, 10, 20, 2), (‘jaccard’, ‘nearest’, 100, 200, 2),

(‘tfidf’, ‘threshold’, 0.9, 0.8, 2), (‘tfidf’, ‘threshold’, 0.6, 0.4, 2),

(‘tfidf’, ‘threshold’, 0.8, 0.7, 2), (‘tfidf’, ‘threshold’, 0.7, 0.5, 2),

(‘tfidf’, ‘nearest’, 5, 10, 2), (‘tfidf’, ‘nearest’, 50, 100, 2),

(‘tfidf’, ‘nearest’, 10, 20, 2) (‘tfidf’, ‘nearest’, 100, 200, 2)

STM (100, 20, 18, ‘nearest’, 20, 40), (100, 20, 18, ‘nearest’, 20, 80),

(100, 20, 18, ‘nearest’, 50, 100), (100, 20, 18, ‘nearest’, 50, 200),

(100, 20, 18, ‘nearest’, 10, 20) (100, 20, 18, ‘nearest’, 10, 40)

SFX (‘allsubstr’, 3, 5), (‘allsubstr’, 3, 10), (‘allsubstr’, 3, 100), (‘allsubstr’, 4, 100),

(‘allsubstr’, 3, 15), (‘allsubstr’, 5, 5), (‘allsubstr’, 5, 100), (‘allsubstr’, 3, 200),

(‘allsubstr’, 5, 10), (‘allsubstr’, 5, 15), (‘allsubstr’, 4, 200), (‘allsubstr’, 5, 200),

(‘suffixonly’, 3, 5), (‘suffixonly’, 3, 10), (‘suffixonly’, 3, 100), (‘suffixonly’, 4, 100),

(‘suffixonly’, 3, 15), (‘suffixonly’, 5, 5), (‘suffixonly’, 5, 100), (‘suffixonly’, 3, 200),

(‘suffixonly’, 5, 10), (‘suffixonly’, 5, 15) (‘suffixonly’, 4, 200), (‘suffixonly’, 5, 200)

We utilize Febrl [5] to perform the experiments on an Intel Core i7 3.40 GHz
machine with 16GB of RAM. For different data set qualities (% missing, %
corrupted), we run the deduplication tasks for all of the methods described in
Sect. 4 using the defined blocking keys and the multi-keys.

5.3 Experimental Results

In this section, we present the results of the experiments. We use the notation
〈M = x%, C = y%〉 to represent that x% records have missing values and y%
records have corruption in the data set. Also note that, instead of reporting the
average value of the performance metric for different parameters in the figures,
we provide the range of the values.

Tight vs. Loose Parameters. Figures 1 and 2 depict the three performance
metrics for the FL and NC data sets, respectively, under the setting 〈M = 10%,
C = 0%〉. It can be seen that the detection rate increases by 1–3% when using
the loose parameters for SRT, QGM, CNP and SFX, but remain unchanged
for STM. When we increase the missing value rate with the setting 〈M = 20%,
C = 0%〉, it can be seen that the detection rates are much higher (3–7%) for
the loose parameters in comparison to the previous setting. This is depicted for
the FL data set in Fig. 3. The same applies to NC data set (not shown due to
space limitations). Similarly, when we add corruption while keeping the missing
value rate intact with the setting 〈M = 10%, C = 5%〉, we achieve much higher
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(a) Detection Rate (tight parameters) (b) Detection Rate (loose parameters)

(c) Reduction Ratio (tight parameters) (d) Reduction Ratio (loose parameters)

(e) Blocking Time (tight parameters) (f) Blocking Time (loose parameters)

Fig. 1. Results for FL data set under 〈M = 10%, C = 0%〉.

detection rates for loose parameters compared to the first setting as depicted in
Fig. 4 for the FL data set (and the same applies to the NC data set). This finding
reveals that loose parameters are highly successful in detecting the duplicates in
the presence of missing values and corruption.

In terms of reduction ratio, we find that loose parameters cause small over-
head. In Fig. 1, while the lowest reduction ratio for tight parameters is 0.992,
it is 0.977 for the loose parameters. This means that for loose parameters, it
requires 2.3% of the total number of comparisons that would be required if no
blocking step was incorporated into the linkage procedure. We consider this to
be an acceptable number of comparisons in practice.

Finally, in terms for blocking time we see that for most methods (i.e., SRT,
QGM, CNP, STM, and SFX) the blocking time increases only negligibly while
using loose parameters. But for some special cases of QGM, the blocking time
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(a) Detection Rate (tight parameters) (b) Detection Rate (loose parameters)

(c) Reduction Ratio (tight parameters) (d) Reduction Ratio (loose parameters)

(e) Blocking Time (tight parameters) (f) Blocking Time (loose parameters)

Fig. 2. Results for NC data set under 〈M = 10%, C = 0%〉.

may be mischievously higher, particularly when large blocking key is used as
evident from Figs. 1(f) and 2(f) (the green outliers). Actually for QGM, a large
key coupled with lower value of τ (see Sect. 4) may result in generating too
many q-gram sublists per record (and hence blocks) as already mentioned earlier.
Consequently, it may require an impractical amount of time to finish the blocking
process.

In view of the above discussion, we argue that using loose parameters, in
general, improves the detection rate while keeping the blocking time intact and
decreasing the reduction ratio tolerably. Also note that, data quality (% missing,
% corrupted) has only negligible impact on reduction ratio and blocking time.

Small Key vs. Large Key vs. Multi-key. In Table 2, it can be seen that
the keys for each data set are sorted according to increasing length. Now, it can
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Fig. 3. Results for FL data set under 〈M = 20%, C = 0%〉.

Fig. 4. Results for FL data set under 〈M = 10%, C = 5%〉.

further be seen in Figs. 1 and 2 that having too large of blocking key is suitable
for neither STD and GQM. This is because the detection rates for the third key
(F3 or N3) are always much lower in comparison to the other keys. For CNP
and SFX, the highest value of detection rate increases while increasing the length
of the blocking keys. It means that larger blocking keys coupled with suitable
parameters are expected to increase the detection rates for these methods. For
SRT, there is no obvious impact of the size of the blocking key on the detection
rate.

However, for all methods, except for SFX, it can be seen that multi-key block-
ing (see Sect. 5.2) always achieves significantly higher detection rates. Surpris-
ingly for SFX, using large keys (F3 or N3) improves the detection rate slightly
(0.5–1.0%) over multi-key. It is clear that, for multi-key, the reduction ratio
decreases and the blocking time increases linearly according to number of com-
ponent keys. Based on the above discussion, we argue for limiting the length
of the blocking keys. Instead, iteratively applying multiple smaller keys leads
to a better rate of duplicate detection while maintaining an acceptable level of
overhead in the reduction ratio and blocking time.

Performance of Different Methods. In the Figs. 1, 2, 3, and 4, it can be
seen that SRT, CNP, and SFX achieve superior detection rates over alternative
methods. SFX, in particular, achieves higher upper bounds of detection rate
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for all blocking key configurations. While SRT and CNP achieve their best for
multi-key configuration, it can be seen that SFX achieves its best rate with one
large single key (coupled with “allsubstr” option). Upon closer inspection, we
find that SFX with one large single key and tuned parameters achieves the best
detection rate among all the methods, as well as key and parameter configura-
tions. Moreover, SFX has a significantly lower blocking time than that of SRT
and CNP while maintaining an acceptable reduction ratio.

In summary, these findings lend support to the belief that the Suffix Array
(SFX) is the best method for duplicate detection under missing value con-
straints. In addition, using multiple blocking keys provides significant perfor-
mance improvement over using a single key for all of the methods except SFX.

6 Conclusion

In this work, we perform a systematic study to understand the impact of missing
values on different blocking methods. From our extensive set of experiments, we
figure out the particular blocking method, blocking key, and parameter configu-
rations that can subdue this impact quite effectively and efficiently. We believe
that, the results presented here would provide guidelines to anyone performing
record linkage tasks under missing value constraint. As part of future task, we
would also like to see how multi-method blocking performs against the missing
value problem and how to fine-tune the parameters in a systematic way.
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Abstract. Despite the ever-increasing enthusiasm from the industry,
artificial intelligence or machine learning is a much-hyped area where
the results tend to be exaggerated or misunderstood. Many novel mod-
els proposed in research papers never end up being deployed to pro-
duction. The goal of this paper is to highlight four important aspects
which are often neglected in real-world machine learning projects, namely
Communication, Objectives, Deliverables, Evaluations (CODE). By
carefully considering these aspects, we can avoid common pitfalls and
carry out a smoother technology transfer to real-world applications. We
draw from a priori experiences and mistakes while building a real-world
online advertising platform powered by machine learning technology,
aiming to provide general guidelines for translating ML research results
to successful industry projects.

Keywords: Machine learning · Project management ·
Online advertising · Real-time bidding

1 Introduction

Modern machine learning approaches achieved impressive results on many chal-
lenging tasks, such as image recognition [21], machine translation [2] and speech
recognition [3]. However, most machine learning research is concerned with build-
ing high-quality classification methods in isolation. While they are essential
in advancing the research frontier, many proposed methods are never produc-
tionised and applied to real-world problems.

Having a high accuracy on the test set does not guarantee ML models can
be applied in production. We need to consider multiple factors, such as latency,
scalability, cost and the accuracy on real-world data. Even if all of these con-
ditions are satisfied, the research team still need to convince the CTO and the
engineering team to give their support before the model can be integrated into
production systems. All of these complications will cause ML models built by
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the research team to remain on the shelf and do not have an impact on the real-
world problem. A natural question then arises: what is the gap between research
outputs and real-world applications and how can we bridge this gap?

The goal of this paper is to propose four important aspects as a framework
for technology transfer that will bridge the above gap, namely, Communication,
Objectives, Deliverables, and Evaluations (CODE). By giving careful consider-
ations to these aspects, we can align the ML projects better with the business
goals and accelerate the productionisation process. We demonstrate the CODE
framework with the help of past industrial experiences building a large-scale
machine learning-powered online advertising platform. While most cases studies
used in this paper are related to online advertising, the framework we propose is
not limited to a particular domain but is applicable to a wide range of machine
learning projects in the production.

2 Related Works

Most attention to machine learning was paid to the modelling step with numer-
ous new model architectures being proposed every year. However, applying
machine learning models to real-life problems is far beyond that. The data min-
ing community has been trying to standardise the data mining workflow and
establish a common methodology since the 1990s. The resultant cross-industry
standard process for data mining (CRISP-DM) [23] breaks the process of data
mining into six major phrases, namely business understanding, data understand-
ing, data preparation, modeling, evaluation and deployment. Modern large-scale
ML frameworks share a similar workflow [12,18]. While a common methodology
is critical to the success of machine learning projects, most research papers only
focus on the modeling part, leaving little discussion on the rest of the steps.

Sculley et al.’s seminal work [22] highlighted technical debts in machine
learning systems that can incur massive maintenance cost and make future
changes forbiddingly tricky. They commented that entanglement is in some sense
“innate” to machine learning because it aims to mix the information sources to
make a more accurate prediction. Raeder et al. [20] is also concerned with build-
ing large-scale machine learning systems. They proposed an end-to-end ML sys-
tem that has been designed with maintenance and quality control in mind. They
formulated three design principles for building massive and robust prediction
systems, namely yield fail-safe predictions, scale and easily extend and minimise
human intervention. They demonstrated the application of these principles with
a large-scale online advertising platform.

Thomas [26] listed several scenarios where machine learning projects fail.
Based on the article, none of the failure cases is due to the incompetency of
machine learning practitioners. In contrary, almost all cases are related to mis-
communication, either with the management team or with the engineering team.
Some example scenarios are (1) the machine learning team produces models
faster than engineering team can put them in production. (2) The model built
by the machine learning team does not align with the business priority or logic.
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Most recently, Ng [13] and Hermann and Del Balso [8] published blog arti-
cles sharing their experience executing AI projects in large Internet companies.
Ng [13] drew from his experience leading the AI transformation in Google and
Baidu and provided five recommendations for large enterprises who wish to
become an AI company. Hermann and Del Balso [8] reflected on the ML evo-
lution at Uber and the process of developing Michelangelo, a platform which
helped the company to scale ML services in production.

Our work is closest to [13] and [8] in that they also drew insights and recom-
mendations from their experience working on ML projects. Both articles were
published after we submitted our manuscript and they were developed inde-
pendently from our work. We were not surprised to see that they share some
common ideas with our work. All in all, we are not trying to propose a totally
new methodology, but to draw from our success and failure working on ML
projects and formalise a simple and easy-to-follow framework for the ML research
community.

3 Background of Online Advertising

Real-time bidding (RTB) is an emerging business model of online advertising
markets. In RTB, the Ad exchange will consolidate opportunities for showing ads,
namely impressions, and send them to eligible demand-side platforms (DSPs).
DSPs act as an agents for multiple advertisers to run ad campaigns across differ-
ent platforms and ad formats. Each DSP will evaluate the value of the impression
and submit its bid. The highest bidder among all DSPs will win the impression
and display their ad. The whole process takes place within 100 ms and hence is
called “real-time bidding” [27].

Usually, advertisers want to optimise the number of clicks on their ads and the
number of conversions, which is a specific user action they define a priori, such
as user booking a hotel, purchasing a product or signing up for a newsletter.
Standard metrics of online advertising are cost per 1,000 impressions (CPM),
click-through rate (CTR), cost per click (CPC), conversion rate (CVR) and cost
per acquisition (conversion) (CPA).

4 The CODE Framework

In this section, we present the CODE framework, which summarises four impor-
tant yet often neglected aspects of machine learning projects. CODE stands
for Communication, Objectives, Deliverables, Experiments. Besides illustrating
each aspect, we will also provide related case studies based on our experiences
while building a large-scale online advertising platform.

4.1 Communication

In ML research, people give strong emphasis on novel models and approaches.
Almost no attention has been given to the human and organisational aspects
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of ML projects. In the real-world scenario, teams across different departments
need to work together in synergy to deploy a large-scale ML model to production.
Each team has their own priorities. If we ignore the people aspect, we will almost
certainly run into obstacles trying to push the progress.

The large team size and the management cost are the major causes of com-
munication overhead in software engineering [5]. As a result, the total productiv-
ity increases sub-linearly with additional manpower added. In machine learning
projects, there is another challenge: the technical knowledge. Machine learning is
difficult for people outside the field to understand, even on an intuitive level [6].
In the industry, machine learning teams often need to work closely with the rest
of the organisation, such as the management team, the engineering team or even
the business team. For a ML model to be productionised, the rest of the organ-
isation need to “buy” the idea and offer their support (e.g. the management
team needs to allocate sufficient budget and time; the engineering team needs
to build the supporting data pipeline). However, it’s hard for them to be willing
to support without sufficient understanding of the newly proposed model.

In a recent project, we worked on optimising clicks on online ads. The team
proposed two approaches. The first one is a K-nearest neighbour approach [16],
which finds the users who are most similar to the users who clicked on the ads and
then displays the ads to them. The second approach is a recent state-of-the-art
click-through rate prediction model based on the interaction of feature embed-
dings [19]. When we communicated the proposed methods to the management
team, the first approach was immediately embraced because it was straightfor-
ward to understand. In fact, it is the core idea behind an advertising strategy
called look-alike model [1]. However, the management team was sceptical about
the second approach despite the impressive reported accuracy.

Having learned from this experience, we urge our researchers to be able to
“sell” their models. Doing novel research and building highly-accurate models are
important, yet being able to communicate the idea succinctly with the decision
makers who have little ML background can be more critical to productionise
the ML models. To this end, we initiated an internal technical blog and host
knowledge sharing sessions where the researchers share the ideas behind their
models in simple language. Other teams can also ask questions to better under-
stand the models and their potential impact on the business. We believe that in
machine learning projects, although external teams do not have to understand
the technical details of machine learning models, it is critical to communicate
to them the intuition behind the models and their implications and impact. A
clear communication and a common ground will drastically boost people’s trust
in the ML models and the willingness to adopt them.

4.2 Objectives

A large proportion of machine learning problems can be modelled as optimisation
problems [25]. Thus, the careful selection of the objective function (also known as
cost function) plays an essential role in the success of machine learning projects.
Machine learning researchers tend to be eager to jump into the modelling part
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without spending time trying to understand the business metric. The specific
business metric may differ subtly from the commonly used objective functions
in machine learning. Failing to notice this difference will lead to misalignment
of the produced model and makes it unable to achieve the business objective.

In the user click prediction example, the business requirement is to optimise
the click-through rates (CTR) of ad campaigns. However, the final observed CTR
is affected by many other factors, including the campaign budget, the market
competitiveness and the bidding strategy, which takes the estimated CTR as
an input and returns the bid price. After conducting a literature survey, the
team decided to follow the simple linear bidding approach proposed by Perlich
et al. [15]. The system consists of two components. The first component is a CTR
estimation model, which predicts the likelihood that the user will click on the
ad. The second component is a simple bid price logic which bids proportional
to the predicted CTR. The intuition is that we bid at a higher price for the ad
impressions which are more likely to be clicked.

Since only the CTR estimation part is an ML model, the team focused on
improving the model performance as measured by the area under the ROC curve
(AUC), which is the standard evaluation metric for CTR estimation in the lit-
erature. AUC is a number between 0 and 1 with a larger value indicating a
more accurate prediction. An AUC of 1 means the model can perfectly pre-
dict clicks and non-clicks. An AUC of 0.5 means the prediction is equivalent
to random. After deploying the new model, we observed that although AUC
improved consistently between 26th Aug and 3rd Sep, the CTR did not show
clear improvement as in Fig. 1. We finally resolved the problem by building a bid-
ding simulation environment and testing each component in the pipeline (CTR
estimator, bidding strategy, budget allocation) individually. This helped us to
improve the average CTR by 10%, which is a huge improvement in the context
of online advertising and saves us millions of dollars of advertising cost per year.
The improvement would not be likely if we focused on CTR estimation model
only, because previous work showed that even by applying a very complex state-
of-the-art CTR estimation model, the improvement in CTR is no more than
2.2%–6.3% [11].

This example demonstrates that although AUC is the standard evaluation
metric for CTR estimation in the literature, optimising it alone does not guar-
antee a better business metric because the final business metric is affected by
multiple other factors and components, not the ML model alone.

4.3 Deliverables

The performance indicator of an industrial R&D team is the models that it
delivers and the overall impact on the business and products, not the amount of
novel research which remains a proof-of-concept. In the IT industry, the business
pressure is always high. Companies may lose their business if their competitors
provide a feature which they do not provide. Therefore, the management often
proposes a new problem to the machine learning team and expect them to deliver
a solution within a short time frame, usually within six months. However, it
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Fig. 1. Area-under-curve (AUC) and click-through rates (CTR) of an ad campaign.

takes considerable time to conduct an in-depth literature survey, to build the
data pipeline, to evaluate competitive methods and to fine-tune the model. The
given time is usually not sufficient to deliver a model with a good accuracy.

Instead of delaying the delivery date, the ML team should wrap up a func-
tioning v0.1 and deliver it first. From the business point of view, whether the
ML model has a good accuracy is less critical than whether the model is in pro-
duction or not. After the first deliverable, the business pressure will reduce. We
will have time to refactor the model and deliver on a better v1.0. Another advan-
tage of deploying an initial version of the ML model fast is that we can gather
feedbacks from internal and external users, which will shape the directions for
the subsequent effort.

As part of the global expansion effort, our team were requested to extend
the text classifiers for contextual advertising [10] to ten more languages within
a quarter. For each language, the number of categories is around 400, and we
have millions of training documents. Even the engineering effort is tremendous
to train all the models within the given time frame. Our team initially sur-
veyed semi-supervised learning [24] or cross-lingual deep learning methods [14].
After a shallow exploration, we concluded that we would not be able to use
these approaches in the first version. They require either a bi-lingual dictionary
or multi-lingual word embeddings aligned to the same semantic space. Such
resources may be available for high-resource languages such as German, Chinese
and French, but not for low-resource languages such as Bahasa Malay and Thai.
To meet the project deadline, we decided to make use of Google Translate API1

to translate the training documents from English to the target language. The
translated corpus is then used to train the text classifiers. With this, we were
able to deliver the text classifiers for ten languages with an average accuracy of
2–3% lower than English, which is acceptable for the application.

1 https://cloud.google.com/translate/.

https://cloud.google.com/translate/
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Besides the tight timeline, the management team often formulates require-
ments for the ML models based on the business requirements, instead of based on
the state of the technology development. For example, the business may require
that a chatbot to give a meaningful response 95% of the time while the state-of-
the-art may only achieve 80% on a similar benchmark. While keeping pushing
the research frontier is an obvious solution, it may not be feasible within the
timeframe or the target may not be achievable at all. A more immediate and
promising solution is to propose a new scope of the problem. While we cannot
solve the general problem with 95% accuracy, it is possible that we can solve
a subset of relatively easy problems accurately. In the same line, Goodfellow
et al. [7] presented a case study on Street View address number transcription
system. The goal was to automatically transcribe 95% of the address numbers at
98% accuracy. The rest 5% hard cases will be transcribed by human annotators.

4.4 Evaluations

While the “Experiments and Results” section is in almost every ML research
paper, the result can sometimes be difficult to interpret. It is especially true for
intrinsic evaluation metrics (such as mean-squared error) and artificially designed
metrics (such as ROUGE score for machine translation). Even the straight-
forward accuracy measure can sometimes have discrepancy between the reported
figure and the accuracy the user perceives.

Although automatic evaluations are essential for quick experimentation, we
believe that human evaluation cannot be neglected, especially for ML models
in production systems. Automatic evaluation has certain limitations, such as it
does not reflect which type of mistakes the model tends to make and it does not
guarantee that the test data and the real-world data are similar enough. Exhaus-
tive human evaluation takes a long time, but a small-scale “smoke testing” can
already help us to identify most obvious problems of the ML model.

Evaluate with Simple Examples. In a project detecting the language of
web pages. We made use of the Optimaize library2, which claimed to be the
best open-source language detection library. The author of the library reported
a 99% accuracy for 53 languages. We also evaluated the library using sampled
Wikipedia pages and obtained similar results. When we delivered the project, the
engineering manager randomly tried the API with a few sentences. One example
input was “today is wednesday”, where the library wrongly predicted as Somali
instead of English. He then concluded that the accuracy of the library is bad
and it cannot even classify a simple case correctly. After days’ of investigation,
the team found out that the problem is because the model uses a Naive Bayes
classifier with character n-gram features. When the input text is short, it may
not contain sufficient unique n-grams to distinguish the languages. A seemingly
trivial example turned out to be the weakness of the ML model.

2 https://github.com/optimaize/language-detector.

https://github.com/optimaize/language-detector
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The team then worked on improving the accuracy for short text input by
extending the unigram, bigram, trigram features to 4, 5, 6-grams. By Adding
longer n-gram features, we hope to capture n-gram features unique to each lan-
guage (We do not use word dictionaries for each language because we need to
know the language before we can tokenise the text into words). We selected
two most ambiguous language pairs to conduct the evaluation, namely English-
French and Bahasa Indonesia-Bahasa Malay3. The results in Table 1 shows that
the simple treatment drastically improved the language detection accuracy.

Table 1. Short text language detection accuracy for ambiguous language pairs before
and after the improvement (P/R/F1).

Language Original After improvement

English 0.76/0.52/0.62 0.91/0.98/0.94

French 0.67/0.58/0.62 0.97/0.95/0.96

Indonesian 0.62/0.36/0.46 0.94/0.80/0.87

Malay 0.75/0.58/0.66 0.83/0.94/0.88

Macro avg. 0.70/0.51/0.59 0.92/0.92/0.91

From this experience, we learned that a high accuracy does not necessarily
mean a good user perception. We need to analyse the actual user input and
ensure that the model can deliver the promised accuracy on the real-world data.

Compare with Simple Baselines. One of our data scientists recently pro-
posed to use a multi-layer Long Short-Term Memory (LSTM) [9] model to pre-
dict the real-time bidding traffic coming to our system. LSTM model is a specific
type of recurrent neural networks architecture which can model long-term depen-
dencies effectively. The model has become the de facto approach for sequence
prediction tasks such as speech recognition, and part-of-speech tagging. It is
therefore natural to expect that it will yield good performance in time series
prediction.

The model we used contains two layers of LSTM units, with dropout layers
to prevent over-fitting. At each time step, it takes a scalar number as input,
which is the traffic volume of the current minute. The last layer is a linear layer
with one output unit predicts traffic volume for the following minute.

The model was trained using a single epoch consisting roughly 5,000 training
sequences. The point-by-point prediction achieves a mean-squared error (MSE)
of 0.0333 on the test set. The prediction of the model is also shown in Fig. 2(b).
At this point, we may conclude that the model is effective. However, the model

3 Adding more languages will actually inflate the average accuracy because most other
languages can be easily identified by looking at the character alone and have an
accuracy close to 1 (e.g. Chinese, Korean).
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may output “accurate” predictions simply because it predicts a value similar to
the value of the previous time step.

To validate our assumption, we implemented a naive baseline of persistent
prediction, a model which simply predicts the same value as the previous time
step. The simple baseline turned out to achieve an MSE of 0.0316, which is
lower than the proposed LSTM model. We can also observe clearly from Fig. 2
that the predictions of the baseline are closer to the actual values. This example
demonstrates that the effectiveness of a ML model cannot be validated without
a meaningful benchmark and a comparison with (possibly rule-based) baselines.

Fig. 2. Comparison of persistent prediction (loss = 0.0316) and LSTM prediction (loss
= 0.0333).

Ensure Fair Evaluation. For ML models in production, another challenge is
that sometimes it is impossible to conduct a head-to-head comparison. In online
advertising, the most popular way to compare two competing strategies is to
perform A/B testing4. Advertisers will run two models with the same setting
except for the different bidding strategies. After the evaluation period, they

4 https://vwo.com/ab-testing/.

https://vwo.com/ab-testing/
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collect the performance metrics such as clicks and conversions to compare which
strategy is better. However, a pitfall of this approach is that the two strategies
will never display ads to the same user at the same moment. Therefore, the
samples used to evaluate the two strategies are different. This problem was
observed in [4] as well. They proposed to split the real-time bidding traffic based
on geography and allocate two subpopulations for each competing strategy.

When we first deployed our ML models, our system could not serve multiple
versions of models simultaneously to conduct A/B testing yet. Therefore, we had
model A running during period 1 and model B running during period 2 (there is
no overlap between the two periods). Nevertheless, to conclude whether model A
and model B yield statistically different performance, we calculate the confidence
interval for two independent samples [17]. We first compute the sample sizes
(n1 and n2, the number of days we run each strategy), means (x1 and x2, the
average click-through rates) and standard deviations (s1 and s2) of each sample.
The pooled estimate of the common standard deviation Sp is computed as:

Sp =

√
(n1 − 1)s21 + (n2 − 1)s22

n1 + n2 − 2
(1)

Depending on the sample size, we use either z-table or t-table to compute
the final confidence interval, which is used to evaluate whether the performance
difference between model A and model B is significant.

Regardless of the evaluation metrics, we should always try to identify and
eliminate potential bias and make the evaluation as fair as possible. In the case
where it is not possible, we should also take note of the bias and understand its
impact on the possible conclusions we can derive.

Table 2. Summary of the CODE Framework.

Communication Communicate the intuition and implication of ML models
with external teams to facilitate decision-making

Objectives Optimise for business metrics instead of focusing on
objective functions of ML models only

Deliverables Deliver the first version of the ML model fast without
worrying too much about the accuracy. Carefully scope
the problem to make it feasible and useful to the business

Experiments Make sure the model predicts correctly for simple
examples and beats naive baselines. Try to ensure the
evaluation is as fair as possible

5 Conclusions and Future Work

In this work, we highlighted the gap between academic research and industry
applications of machine learning technologies. We proposed the CODE frame-
work, which summarises four essential aspects for machine learning projects to
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succeed, namely Communication, Objectives, Deliverables, and Experiments.
We summarise the key takeaway from this paper in Table 2. We wish that the
recommendations in this paper will be helpful for machine learning researchers
who want to productionise their models.

In future work, we want to re-examine established frameworks in software
engineering such as Agile or Scrum and adapt them for machine learning
projects. We also want to establish evaluation methods to quantitatively evalu-
ate the effectiveness of the proposed framework. This work is just a tip of the
iceberg, and we believe much more effort needs to be invested to establish a
general framework for machine learning projects and to help the community to
translate the success in academic research into real-world applications.
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Abstract. Point-of-interest (POI) prediction is a key task in location-
based social networks. It captures the user preference to predict POIs.
Recent studies demonstrate that spatial influence is significant for predic-
tion. The distance can be converted to a weight reflecting the relevance of
two POIs or can be utilized to find nearby locations. However, previous
studies almost ignore the correlation between user and distance. When
people choose the next POI, they will consider the distance at the same
time. Besides, spatial influence varies greatly for different users. In this
work, we propose a Distance-to-Preference (Distance2Pre) network for
the next POI prediction. We first acquire the user’s sequential preference
by modeling check-in sequences. Then, we propose to acquire the spa-
tial preference by modeling distances between successive POIs. This is
a personalized process and can capture the relationship in user-distance
interactions. Moreover, we propose two preference encoders which are
a linear fusion and a non-linear fusion. Such encoders explore different
ways to fuse the above two preferences. Experiments on two real-world
datasets show the superiority of our proposed network.

Keywords: POI · Sequential preference · Spatial preference ·
Non-linear

1 Introduction

Point-of-interest (POI) prediction is one of the most important tasks in location-
based social networks (LBSNs). With rich check-ins and contextual information,
physical movements of users can be predicted, which is beneficial to explore
POIs for users, launch advertisements, and so on. In this work, we focus on
successive POI prediction by modeling check-in sequences and incorporating
spatial influence in a personalized way.
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Spatial influence has been considered in lots of works and mostly modeled
by computing the distance between two POIs. The distance can be computed
as a weight to reflect the relevance of two POIs [5,11]. Usually, the smaller the
distance, the stronger the relevance. Besides, people can apply the distance to
find nearby locations. Neighbors around a visited POI can be considered as neg-
ative samples for BPR optimization criterion [1], used to construct a hierarchical
preference [20], and so on. People can also divide multiple locations close to each
other into the same region [4]. Furthermore, recent works try to acquire spatial
influence between POIs in other formats. Wang et al. [17] apply three factors
to model spatial influence: geo-influence, geo-susceptibility, and distance. Geo-
influence acquires a POI’s ability to spread its spatial influence to other POIs.
Geo-susceptibility captures how a POI is spatially influenced by others.

Although the aforementioned studies achieve successful results, they still have
a critical limitation. These modelings of spatial influence are conducted within
POIs and do not consider the relationship with users. They capture the sequen-
tial preference by modeling user-poi check-in sequences, but people have prefer-
ences for distances. For example, if a user wants some spicy food in a restaurant,
how far would he want to go? It is likely that there will be several restaurants
which all satisfy the user interest at different distances. Under such a situation,
it is beneficial to predict user’s preference for the distance that a user would
take at next time. Previous works almost ignore the user’s personalized choice
of distance, while we propose to model the spatial preference.

In this paper, we propose a Distance-to-Preference (Distance2Pre) network
to predict the next POI. First, we apply the recurrent neural network to model
check-in sequences and construct the sequential preference. Then, based on dis-
tances of successive POIs, spatial preference can be computed to indicate the
probabilities of different distances for the next time. This preference can explore
the relationship between user and distance. Then, we devise different preference
encoders, which can explore the influence of different combinations of the two
preferences on the performance of POI prediction. Specifically, we propose a lin-
ear fusion and a non-linear fusion. Next, a pair-wise ranking framework is used
to optimize the two preferences. The contributions are as follows:

– We first introduce and compute the personalized spatial preference, which can
effectively capture the relationship between the user and spatial distance.

– We propose a linear way and a non-linear way as preference encoders to
combine sequential preference with spatial preference.

– Experiments on two real-world datasets reveal that our network is effective
and outperforms the state-of-the-art methods.

2 Related Work

In this section, we briefly review the POI prediction, including modeling succes-
sive POIs and incorporating spatial influence.

We can arrange a user’s successive POIs into a check-in sequence and it
is important to model the sequential pattern. Many studies apply the Markov
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chain to predict POIs. Cheng et al. [1] recommend POIs based on first-order
Markov chain. Recently, the neural network is also investigated to model
sequences. The work [14] applies the word2vec to model context of locations
(Fig. 1).
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Fig. 1. A user’s POIs in Singapore and the framework of our Distance2Pre network. At
t-th time, the input is a POI vector xt

p and a distance vector dt
p. The hidden state ht

is used to compute the spatial preference st for next time. User’s sequential preference
and spatial preference are fused by our preference encoders.

Liu et al. [12,13] employs recurrent neural network (RNN) to model POIs
by using different contexts. RNN can model the recent check-ins. Because of the
gradient vanishing and exploding problem, gated activation function like gated
recurrent unit (GRU) [2] and long short-term memory (LSTM) [8] are developed
to better capture the long-term dependency.

The spatial influence has been proven to be a significant factor in POI pre-
diction. Firstly, some works convert the distance to a weight. Feng et al. [5]
incorporate the spatial influence by using the weight of distance. The smaller
the distance between the last POI and a POI, the more likely this POI to be
recommended. Li et al. [11] build a Rank-GeoFM model to capture the user pref-
erence as well as spatial influence score, but the distance is still used as a weight
between a POI and its neighbors. Secondly, people apply distance to find neigh-
bors for a visited POI. The study [4] builds a binary tree by distances. Nearby
POIs are clustered into the same region in this POI2Vec model because they
are highly relevant. Zhao et al. apply the POIs that are nearby and far away to
construct a hierarchical pairwise preference relation [20]. Thirdly, some studies
other spatial information in addition to distance. Wang et al. [17] model a POI’s
ability to spread its visited users to other POIs (geo-influence) and receive users
from other POIs (geo-susceptibility). However, spatial influence mostly works
between POIs now and no work has studied the user’s spatial preference.
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3 The Distance2Pre Network

In this section, we begin with the problem formulation of the next POI predic-
tion, then introduce the proposed Distance-to-Preference (Distance2Pre) net-
work. In detail, we model the check-in sequence to obtain sequential preference
and model the distance sequence to capture spatial preference for each user.
Then, we fuse sequential and spatial preferences linearly and non-linearly.

3.1 Problem Formulation

Let U and I be the sets of users and POIs respectively. Use Iu = (I1
u, ..., I |Iu|

u )
to represent the check-ins of user u in the time order. Given each user’s check-ins
Iu, the latitude and longitude of each POI, our goal is to generate a list of POIs
for u at next time.

3.2 Sequential Preference

In this part, we model user-POI sequences and capture the sequential preference.
Previous work has indicated that the sequential pattern is important for POI
prediction [5].

Instead of using traditional Markov chain, we apply RNN to model each
user’s check-ins Iu.

ht = f
(
Uxt

p,Wht−1, b
)
, ht ∈ R

d, (1)

where ht is the hidden state, U ,W are transition matrices and b is the bias. A
vector xt

p ∈ R
d is used to represent the POI at the t-th time, where the subscript

p indicates this POI is in Iu. Function f(·) is non-linear, and we choose the gated
recurrent unit (GRU) in order to better capture the long-term dependency [2].

zt = σ
(
U1x

t
p + W 1h

t−1 + b1
)

rt = σ
(
U2x

t
p + W 2h

t−1 + b2

)

h̃
t
= tanh

(
U3x

t
p + W 3

(
rt � ht−1

)
+ b3

)

ht =
(
1 − zt

) � ht−1 + zt � h̃
t

(2)

where U1∼3,W 1∼3 ∈ R
d×d and b1∼3 ∈ R

d. GRU has an update gate zt and a
reset gate rt to control the flow of information. h̃

t
is the candidate state.

In our network, we consider h and x as latent vectors for a user and a POI
respectively. Inspired by matrix factorization, a user’s preference for a POI by
considering sequential preference is denoted as

x̂t
up =

(
ht

)T
xt+1

p (3)

where ht is used as the current user latent vector when modeling Iu. The pref-
erence x̂t

up is an inner product between ht and the next POI vector xt+1
p .
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3.3 Spatial Preference

We acquire the spatial preference from user-distance sequences. Previous works
show that spatial influence is helpful, but it is usually modeled only among
POIs [1,4,5,11,17,20]. We go a step further and build the relationship between
users and distances. In previous studies, we find that people define a return
time prediction problem and propose to apply survival analysis [3,9,10]. These
works model time gaps from a user’s visiting sequence to predict when a user
will return to the service. However, they usually predict a certain time value as
a single regression task which does not help to recommend items. Inspired by
these works but different from them, we model a user’s spatial preference for a
wide range of distances and promote the task of recommending POIs.

To model the spatial preference, we map each distance value to an interval.
Firstly, all distances between two successive POIs in each Iu are computed. We
define two values δd and MD to represent the minimum interval and maximum
interval. Then, we have a vector [0, δd, 2δd, ...,MD] to indicate all intervals. Each
distance is converted to an interval. If a distance is bigger than MD, it is also
represented by MD. Then, the modeling of distance is converted to the modeling
of interval. Just like each POI has a vector x, we define a latent vector d ∈ R

d

for each interval d, and this operation forms a latent matrix D ∈ R
(MD+1)×d for

all intervals [0, δd, 2δd, ...,MD]. The non-bold d is a value, while the bold d is a
vector. Given Iu for each user, we will have a sequence of intervals

[
d1p, d

2
p, ...

]

and a sequence of vectors
[
d1

p,d
2
p, ...

]
. Next, we update the computation of ht.

ht = f
(
U

[
xt

p;d
t
p

]
,Wht−1, b

)
, ht ∈ R

d, (4)

where U ∈ R
d×2d, dt

p is concatenated with xt
p.

At each time, we calculate spatial preference of all intervals for next time.

st = SoftReLU
(
V sh

t + bs

)

=
[
st(0), st(δd), st(2δd), ..., st(MD)

] (5)

where each value in st is the spatial preference for a certain interval. Accordingly,
the spatial preference for next ground truth interval is st

(
dt+1

p

)
, where the value

dt+1
p is the distance interval between xt

p and xt+1
p .

3.4 Preference Encoders

As we have two preferences, we need to encode them together and we propose a
linear way and a non-linear way. Our network considers not only which POIs a
user would like at next time, but also how far he wants to go.

By introducing a weight wd, the sequential preference and spatial preference
can be combined together linearly.

x̂t
up =

(
ht

)T
xt+1

p + wds
t
(
dt+1

p

)
(6)
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However, linear fusion is natural. It is worth exploring non-linearity to inves-
tigate correlations between two preferences. Inspired from the attention mecha-
nism, our innovative strategy is

x̂t
up = vT

a tanh
(
ra

(
ht

)T
xt+1

p + east
(
dt+1

p

))
(7)

where va, ra,ea ∈ R
d×d are weight vectors. The attention mechanism enables a

model to concentrate on critical parts and it has been widely in many tasks and
fields, such as image classification [15], next item recommendation [18], and so
on. However, previous works using attention usually assign an appropriate weight
for each factor to tell its importance. Therefore, the attention previously models
one-to-many problems. In our work, we change the attention to capture one-to-
one relationship and replace two commonly used weight matrices in attention
with two weight vectors ra,ea. By innovatively using the attention, we create a
non-linear combination Eq. (7) to encode two preferences.
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Fig. 2. Illustration of positive and negative POIs and distances from t-th time to (t+1)-
th time. The xt+1

p ∈ Iu is positive. The negative POI xt+1
p /∈ Iu is randomly chosen.

The negative distance (interval) dt+1
q is computed between xt

p and xt+1
q .

3.5 Training Framework

In this subsection, we apply the widely-used pair-wise Bayesian Personalized
Ranking (BPR) [1,5,16] to train the model.

ltbpr = − ln σ
(
x̂t

up − x̂t
uq

)
(8)

where x̂t
up and x̂t

uq are positive and negative preferences. At each time, a negative
POI xq /∈ Iu is randomly chosen from I. Illustrated in Fig. 2, the negative
distance dt+1

q is calculated between xt
p and xt+1

q . Finally, the loss function is

Θ∗ = argmin
Θ

∑

u

t=|Iu|∑

t=1

ltbpr +
λΘ

2
‖Θ‖2 (9)

where Θ denotes a set of parameters Θ = {X,D,U ,W , b,Vs , bs , wd,va, ra,ea},
where X,D are sets of all POI vectors and all distance vectors respectively.
Stochastic gradient descent (SGD) is used to learn the parameters.
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4 Experiments

4.1 Experimental Settings

Datasets. We apply two widely-used datasets called Foursquare and Gowalla
which are preprocessed in [19]. Specifically, all the information used in our
work includes each user’s chronological check-in sequence and the correspond-
ing distance sequence, except for the time of check-ins. Following previous
works [6,7,16], we employ the leave-one-out evaluation. For each user’s check-in
sequence, we treat the last POI as the test data and apply the rest POIs for
training.

Comparison Methods. Our Distance2Pre network is compared with the fol-
lowing methods. (1) BPR [16]: This method refers to the BPR-MF for implicit
feedback. It optimizes the difference of the user’s preferences for positive and
negative items. (2) GRU [2]: RNN is effective for successive POI prediction. We
apply GRU in this work. (3) FPMC-LR [1]: This work is based on first-order
Markov chain and uses neighbors as negative samples. (4) PRME-G [5]: It is a
metric embedding method, and the spatial distance is considered as the weight.
(5) CA-RNN [12]: A novel model incorporates input and transition contexts.
Accordingly, we apply GRU to implement CA-RNN and compute the transition
context by using distance intervals. (6) POI2Vec [4]: A binary tree is used to
cluster the nearby POIs into the same region. Moreover, a POI is assigned to
multiple regions in this model to strengthen the spatial influences of POIs. As
our proposed network has a linear fusion and a non-linear fusion, it has two
variants: Distance2Pre (Linear) and Distance2Pre (Non-Linear).

Evaluation Metrics. The top-k metrics are popular for POI prediction [1,4,
5,11,20]. In this work, we apply metrics called Recall and F1-score. Values of
metrics in our work are all expressed as percentages. During the test, each user’s
training sequence (x1

p, ...,x
n
p ) is recomputed by using GRU to obtain hn and

sn. Then, hn is applied to acquire user’s sequential preferences for all items X.
Meanwhile, all distances between xn

i and each item in X are calculated because
we do not know any information about the test set. These distances are fixed
in each epoch and converted to spatial preferences for X by using sn. Then,
we obtain each user’s final preferences for all items and recommend top-k items
with the highest preference.

Additionally, parameters Θ are initialized to the same range, e.g., uniform
distribution [−0.5, 0.5]. The learning rate, regularization λΘ and the dimension
are set as 0.01, 0.001 and 20 for all methods. Weight wd is initialized by a positive
value 1.0 and is also updated by SGD. Details of wd are illustrated in Fig. 4. The
code is written by using Theano and is available on GitHub1.

1 https://github.com/cuiqiang1990/Distance2Pre.

https://github.com/cuiqiang1990/Distance2Pre
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Fig. 3. Experimental results on two datasets.

4.2 Performance Comparison

Performances of all methods are illustrated in Fig. 3. First, we explore baselines
BPR, GRU, and FPMC-LR. They are comparable but perform differently on two
datasets. FPMC-LR is always better than BPR and proves the effectiveness of
the spatial influence. GRU performs worst among them on Foursquare. Perhaps
because there is more than one behavior at a certain time and we are unable
to know the true order of these multiple check-ins. This disordered property in
Foursquare hinders the sequential modeling of GRU. Fortunately, GRU is the
best on Gowalla which has the right time order. This meaningful result indicates
that correct sequential modeling is important for POI prediction.

In the following, we compare PRME-G, CA-RNN, POI2Vec with our Dis-
tance2Pre network. First, performances of these four methods are also adversely
affected by the disordered property. Their performance on Foursquare is close
to or even below the performance of BPR, GRU and FPMC-LR, especially CA-
RNN. On the contrary, their performance on Gowalla is obviously better. The
CA-RNN treats distance intervals as transition contexts. Accurately, CA-RNN
acquires a transition matrix for every possible interval. Such a precise model-
ing will result in great improvement as well as great decline, which depends on
whether the order is correct or not. POI2Vec has a comparable performance
of top-5 with our Distance2Pre on both datasets, while it is obviously weaker
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than our network on Recall@20 and F1-score@20. Actually, POI2Vec clusters
nearby POIs into the same region, which causes a strong local correlation of
POIs. Therefore, POI2vec is good at recommending a small quantity of POIs.

Overall, our Distance2Pre is optimal on two datasets. Our spatial prefer-
ence is powerful for predicting next POI and robust to disordered property in
Foursquare. We have a visualization of spatial preference in Sect. 4.5 and find
that people have personalized moving pattern. Such a pattern is a kind of user
interest which is regular and does not change dramatically. Therefore, our Dis-
tance2Pre can still get good performance on Foursquare.

4.3 Settings of Max Distance MD and Distance Interval δd

In this part, we explore the effect of max distance MD(km) and distance interval
δd(km) on the spatial preference s in Eq. (5). The MD and δd reflect the range
and granularity of s. Results are in Table 1.

The proper MD and δd are chosen based on all the distances between suc-
cessive POIs in user sequences. The distribution of distances is different on
two datasets. For example, MD = 20 km covers 97.6% and 79.9% distances
on Foursquare and Gowalla respectively. Gowalla has a greater proportion
of large distance. Finally, we set MD = [2.5, 5, 10], δd = [0.10, 0.15, 0.20] for
Foursquare and MD = [10, 20, 40], δd = [0.10, 0.20, 0.30] for Gowalla. Obviously,
MD = 5, δd = 0.10 and MD = 5, δd = 0.15 are best for our linear fusion and
non-linear fusion on Foursquare. MD = 20, δd = 0.20 and MD = 20, δd = 0.10
are the best on Gowalla. We can see that if a dataset covers more larger dis-
tances, setting larger MD, δd may be more suitable. The comparison between
linear fusion and non-linear fusion is discussed in the next subsection.

Table 1. Performance evaluated by Recall@10 with varying max distance MD (km)
and distance interval δd (km).

Method Distance2Pre (linear) Distance2Pre (non-linear)

Evaluation Recall@10 F1-score@10 Recall@10 F1-score@10

δd 0.10 0.15 0.20 0.10 0.15 0.20 0.10 0.15 0.20 0.10 0.15 0.20

Foursquare MD 2.5 18.23 18.53 18.44 3.31 3.37 3.35 19.86 19.74 19.26 3.61 3.59 3.50

5 19.13 18.92 18.48 3.48 3.44 3.36 19.13 19.96 19.39 3.47 3.63 3.53

10 18.70 18.57 18.48 3.40 3.38 3.36 19.57 19.65 19.70 3.56 3.57 3.58

δd 0.10 0.20 0.30 0.10 0.20 0.30 0.10 0.20 0.30 0.10 0.20 0.30

Gowalla MD 10 19.23 19.23 19.01 3.50 3.50 3.46 16.79 20.71 16.06 3.05 3.77 2.92

20 19.33 19.44 19.04 3.51 3.53 3.46 20.89 19.57 19.77 3.80 3.56 3.59

40 19.15 19.33 19.14 3.48 3.51 3.48 19.96 20.28 20.28 3.63 3.69 3.69

Table 2. Performance of our proposed Distance2Pre network on two datasets.

Method Distance2Pre (linear) Distance2Pre (non-linear)

Evaluation Recall@ F1-score@ Recall@ F1-score@

5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20

Foursquare 14.55 19.13 22.21 24.50 4.85 3.48 2.78 2.33 14.55 19.96 22.90 25.24 4.85 3.63 2.86 2.40

Gowalla 14.59 19.44 22.57 24.82 4.86 3.53 2.82 2.36 15.37 20.89 24.79 27.21 5.12 3.80 3.10 2.59
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4.4 Linear Fusion Vs. Non-Linear Fusion

In this subsection, we investigate the linear fusion and non-linear fusion by anal-
ysis values in Tables 1 and 2 and Fig. 4. Assuredly, non-linear fusion is more
powerful to handle two different preferences.

The performance is higher under non-linear fusion. In Table 1, there is a big
difference in values between linear fusion and non-linear fusion on both datasets.
Most values under non-linear fusion are obviously larger than those under linear
fusion. Moreover, many values of Recall@10 are one percentage point higher than
corresponding values in the left half of the table. By using best parameters,
the performance of our two Distance2Pre networks is shown in Table 2. It is
interesting that the difference between the two kinds of fusions on Gowalla is
greater than that on Foursquare. Perhaps non-linearity is more powerful to deal
with more complex situations as Gowalla has much more data than Foursquare.

Illustrated in Fig. 4, we analysis changes of weight wd. This parameter is also
updated by SGD and we preserve the value of wd after each epoch. (1) On both
datasets, wd changes from a large value to a smaller one. Because search space of
sequential preference is much bigger than that of spatial preference, it is not easy
to obtain a good representation of sequential preference and spatial preference
plays a major role in the beginning. During the later period of training, the effect
of sequential preference gradually appears and wd eventually stabilizes near a
certain value, 1.1 and 2.1 on two datasets respectively. (2) Gowalla’s curve is
steeper than Foursquare’s because the search space of sequential preference on
Gowalla is obviously larger. (3) Both curves are concussion drops, not smooth
ones. The relationship between the two preferences is actually complicated. We
do not know which preference will play a bigger role when choosing the next
POI. Therefore, when modeling each pair of two preferences, non-linear fusion
tends to be a better fit rather than linear fusion.

0 20 40 60 80 100
epoch

0.8

1

1.2

1.4

1.6

Foursquare

(a) Foursquare

0 20 40 60 80 100
epoch

1.5

2

2.5

3

3.5

Gowalla

(b) Gowalla

Fig. 4. Changes of weight wd in Eq. (6) from epoch 1 to epoch 100.

4.5 Visualization of Spatial Preference

We make visualization to study different spatial preferences on Foursquare. At
the end of each user’s training sequence, we compute each user’s spatial pref-
erence sn for the test set. We choose Distance2Pre (Non-Linear) as the sam-
ple. Because we have MD = 5 km, δd = 0.15 km in this network, each sn is
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a 34-dimensional vector and the horizontal axis length is 34. First, we convert
vector sn by softmax to cause the sum of it to be 1. Then, based on all spatial
preferences, we obtain 10 clusters by the k-means method. Multiple vectors of
spatial preferences within one cluster are reduced to one vector by averaging. We
illustrate three representative clusters cluster-[3, 4, 9] in Fig. 5(a). In order to
distinguish three curves, horizontal axis uses log coordinate in Fig. 5(a). Besides,
we select a user from each cluster to show its own spatial preference in Fig. 5(b)
and draw his historical POIs in Fig. 5(c).

Different groups of people may have different moving patterns. Cluster-3 has
large probabilities for small intervals and the probability reduces rapidly with
the increase of interval. This pattern is likely to be around a point. User-688
may be a retired people and his POIs are almost around the center of Singapore.
In cluster-4, there are two crests. Probabilities on large intervals are also almost
zero. Such POIs of a user are mainly distributed around two points. POIs of user-
1591 focus on the Nanyang Technological University and the center of Singapore.
She might be a student. Cluster-9 is obviously different from cluster-3/4 because
it has probabilities for many large intervals. These users may often need to go
to different places for business. User-1537 prefers the center of Singapore but
he also goes everywhere. By clustering, we find that patterns of movement are
personalized. By looking at users one by one, the learned spatial preference in
our network can effectively reflect the distribution of user’s historical POIs.

Fig. 5. Visualization of spatial preference on the test set. (a) shows three representative
clusters. (b) are three users’ spatial preferences sequentially chosen from each cluster.
(c) are three users’ historical POIs. Each straight line links two successive POIs and
each node is a POI located by its longitude and latitude.
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5 Conclusion

In this work, we have proposed a Distance2Pre network for the next POI predic-
tion. It can mine spatial preference to model the correlation of the user-distance.
Besides, we propose two preference encoders which are a linear fusion and a non-
linear fusion. Both encoders can capture the relationship between two preferences
and the non-linear fusion is better. Experiments demonstrate the effectiveness of
our network. In the future, we will incorporate more information, like the time
of check-ins and time interval.
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Abstract. An improved algorithm for recommender system is proposed
in this paper where not only accuracy but also comprehensiveness of
recommendation items is considered. We use a weighted similarity mea-
sure based on non-dominated sorting genetic algorithm II (NSGA-II).
The solution of optimal weight vector is transformed into the multi-
objective optimization problem. Both accuracy and coverage are taken
as the objective functions simultaneously. Experimental results show that
the proposed algorithm improves the coverage while the accuracy is kept.

Keywords: Recommender system · Weighted similarity measure ·
Multi-objective optimization

1 Introduction

Personalized recommender system can help users quickly obtain the useful infor-
mation they may be interested in from massive information, so as to alleviate
the negative impact of information overload. An essential step in the recommen-
dation algorithm is to calculate the similarity between users or items. There are
many common methods, such as cosine similarity, pearson correlation coefficient
and adjusted cosine similarity. Bobadilla et al. [3] proposed a weighted simi-
larity measure which consists of linear combination of rating difference vector
and weight vector, and utilized genetic algorithm (GA) to obtain the optimal
similarity function. Gupta et al. [9] added fuzzy logic to the former, that is,
the fuzzy c-means clustering algorithm was used to cluster a data set, and then
used the similarity measure based on GA to calculate the similarity between the
clustering values.

The items in the recommender system can be divided into popular items and
long tail items. Long tail items refer to items with low popularity and low prob-
ability of being recommended. Coverage reflects the ability of the recommender
system to explore long tail items. So far, many algorithms have been presented
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to enhance the accuracy of the recommender system, where the comprehensive-
ness of recommended items are usually not considered. Thus, the long tail items
rarely have the opportunities to be recommended. Therefore, it is necessary to
improve the coverage of the recommender system. Ge et al. [7] suggested that
beyond accuracy, coverage and serendipity should be considered as criteria for
evaluating the performance of recommender systems, and proposed several meth-
ods of measuring coverage and serendipity. Park and Tuzhilin [12] enhanced the
utilization of long tail items by dividing the item sets into popular sets and long
tail sets, and clustering long tail items into different groups to reduce rating
errors. Yin et al. [17] proposed a suite of recommendation algorithms to address
the problem of long tail item recommendation. Wang et al. [16] proposed a novel
multi-objective framework, and two contradictory objective functions are uti-
lized to suggest both popular and novel items for users.

In order to meet the demands of different users, multiple indicators of the
performance should be considered as much as possible, so the multi-objective
optimization algorithm based recommendation algorithms have been proposed.
Ribeiro et al. [13] proposed a hybrid recommendation algorithm, which uses
strength pareto evolutionary algorithm (SPEA) to acquire the optimal hybrids
maximizing both accuracy and diversity of the recommender system. Geng et al.
[8] put forward a framework based on multi-objective evolutionary algorithm,
where non-dominated neighbor immune algorithm (NNIA) is used to generate
a series of recommendation lists of different focuses. Cui et al. [5] introduced
a new diversity index and proposed a probabilistic multi-objective evolution-
ary algorithm which can achieve an excellent compromise between accuracy and
diversity.

In this paper, a weighted similarity measure based on NSGA-II is presented.
The weighted similarity measure in [3] is used to calculate the similarity between
users, which is a linear combination of weight vector and user rating difference
vector. Instead of only considering the weight vector corresponding to the highest
accuracy in [3], we transform the solution of weight vector into a multi-objective
optimization problem. Both accuracy and coverage are taken as the objective
functions simultaneously, and then the optimal solution is obtained by NSGA-II.

2 Similarity Measure

Let U = {u1, ..., us} be a user set, and I = {c1, ..., ct} be an item set. rx =
[r(1)x , r

(2)
x , ..., r

(t)
x ] denotes user x’s ratings on the items, where r

(i)
x is user x’s

rating on the item i. The range of ratings is from m to M , which are integers.
Here, m denotes the user’s lowest rating on the item, which indicates that the
user is most displeased with the item. M denotes the highest rating of the user
on behalf of the user is perfectly satisfied with the item. Note that in some cases
the user has not rated some items, which will be denoted by a dot mark •.

The similarity measure used in this paper was proposed by Bobadilla et al. [3],
which is related to weight vector and user rating difference vector. The similarity
between two users can be expressed as follows:
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simw (x, y) =
1

M − m + 1

M−m∑

i=0

w(i)v(i)
x,y, (1)

where −1 ≤ w(i) ≤ 1 denotes the significance of the corresponding element
v
(i)
x,y in calculating the similarity between user x and y. vx,y = [v(0)

x,y, ..., v
(M−m)
x,y ]

denotes the difference between the ratings of user x and y, the dimension of which
is the number of possible rating differences between two users. The element v

(i)
x,y

in the vector vx,y denotes the ratio of items rated by user x and y, and in which

the absolute value of the rating difference is i(i =
∣∣∣r(i)x − r

(i)
y

∣∣∣), to the total
number of items that both users have rated together. The following example
clearly illustrates the meaning of vx,y.

Suppose that there are eight items in the recommender system, the minimum
rating m is 1, and the maximum rating M is 5. Thus, we can see that the range
of rating difference is {0, 1, 2, 3, 4}, and the dimension of vector vx,y is 5. The
rating vectors of user x and y are known as follows:

rx = [5, 3, •, 1, 2, •, 4, 4],
ry = [4, 1, 2, 4, 3, •, •, 4].

The total number of items rated by two users is 5, and only item 8 was rated
equally, so that v

(0)
x,y = 1/5. There is no item for which user x rated it as 1 and

user y rated it as 5, so v
(M−m)
x,y = v

(4)
x,y = 0. The value of other components in the

vector can be calculated in the same way, and the vector vx,y can be obtained
as: vx,y = [1/5, 2/5, 1/5, 1/5, 0].

Each component w(i) in the vector w denotes the effect of rating difference
on the similarity between users. Obviously, the smaller the rating difference, the
larger the value of the corresponding w(i) should be. It means that users with
similar ratings are more similar.

With the Movielens and Netflix data sets where the reasonable range of
ratings is 1 to 5, the ranges of w(i) are as shown: 0.6 ≤ w(0) ≤ 1, 0.2 ≤ w(1) ≤ 0.6,
−0.2 ≤ w(2) ≤ 0.2, −0.6 ≤ w(3) ≤ −0.2, −1 ≤ w(4) ≤ −0.6.

The critical issue now is to achieve the best weight vector so that the cor-
responding similarity function is optimal. In this paper, the optimal weighted
similarity function is obtained by NSGA-II, which can improve the coverage of
recommender system and preserve the accuracy simultaneously. At this point,
solving the optimal weight vector turns into a multi-objective optimization
problem.

3 The Proposed Algorithm

In this section, we describe the weighted similarity measure based on NSGA-II in
detail, including the objective functions, the genetic operators and the procedure
of our proposed algorithm.
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3.1 Objective Function

To improve coverage of the recommender system on the premise of ensuring the
accuracy, the accuracy function and the coverage function are selected as the
objective function of the multi-objective optimization problem. The accuracy
can be measured by the mean absolute error (MAE), which can be described as
follows:

MAE =
1

|U |
∑

u∈U

∑
i∈Iu

∣∣r̂iu − riu
∣∣

|Iu| , (2)

where U is the user set, Iu is the item set that has been rated by user u, r̂iu is
the predictive rating on item i rated by user u, and riu is the practical rating on
item i rated by user u.

Coverage usually is used to measure the ratio of the number of items recom-
mended to all users to the total number of all items, which reflects the ability
of the recommender system to exploit long tail items. If the coverage of a rec-
ommender system is 100%, all items are recommended to at least one user. The
calculation of the coverage is as follows:

Coverage =
|∪u∈UL(u)|

|I| , (3)

where L(u) is a specified length of recommendation list for user u, I is the item
set.

We choose Eqs. (2) and (3) as the objective functions, which are expressed
as follows:

{
min f1, f1 = MAE
min f2, f2 = −Coverage

3.2 Design of the Proposed Algorithm

Many multi-objective optimization algorithms have been proposed. Among
them, there are some well-known algorithms such as non-dominated sorting
genetic algorithm (NSGA) [15], SPEA [18] and pareto archived evolution strat-
egy (PAES) algorithm [10]. NSGA-II [6] is an improved version from NSGA.
Compared with NSGA, NSGA-II reduces computational complexity, accelerates
execution speed of the algorithm, introduces an elite strategy, expands the sam-
pling space and better maintains the diversity, so it has been widely used. In
this paper, we choose NSGA-II to obtain the optimal weight vector w.

Definition. Multi-objective optimization algorithm can optimize various con-
tradictory objective functions simultaneously, coordinate each objective function
and finally obtain a set of Pareto optimal solutions. According to [11], the multi-
objective optimization can be described as follows:

Min F̂ (x̂) = (f1(x̂), f2(x̂), ..., fk(x̂))ᵀ,

S.t. x̂ = (x̂1, x̂2, ..., x̂d) ∈ Ω,
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where fi(x̂)(1 ≤ i ≤ k) is the objective function, k is the total number of the
objective functions, x̂ is a d-dimensional decision vector and Ω is the decision
space.

Let us first introduce Pareto domination. Suppose that x̂a, x̂b ∈ Ω are two
feasible solutions to minimize the multi-objective function, if fi(x̂a) ≤ fi(x̂b)
for i = 1, 2, ..., k and fj(x̂a) < fj(x̂b) for one or more objective function j,
where j = 1, 2, .., k, and it is called x̂a dominate x̂b, denoted as x̂a � x̂b. If
no feasible solution in decision space can dominate x̂∗, then x̂∗ is referred to
as the Pareto optimal. The set of all Pareto optimal solutions is known as the
Pareto optimal set, and the values of the objective function under the objective
space corresponding to the feasible solutions in Pareto optimal set are called the
Pareto optimal front.

Encoding. The coding method commonly used in genetic algorithm is the
binary coding. In this paper, each element w(i) in w is represented by a 10
bits binary strings b9i ...b

1
i b

0
i , where i = {0, 1, ...,M −m}. Each component (−1 ≤

w(i) ≤ 1) is calculated by the following expression:

w(i) =
2
∑9

j=10 2jbji
210 − 1

− 1.

Initialize Population. Generate a population of size N randomly, which is the
initial parent population.

Fast Non-dominated Sorting Approach. In our proposed algorithm, the
population W is the weight vector w of all possible values in a reasonable ranges.
In this paper, we have two objective functions f1 and f2.

First, for each individual wp in W , two parameters need to be calculated:
one is the number of individuals n̂wp

that dominates the individual wp, and the
other is the sum of individuals ŝwp

dominated by the individual wp. The steps of
identifying the population W into different non-dominated fronts F1, F2, ..., FR

are as follows:

1: for each wp ∈ W
2: initialize ŝwp

= ∅, n̂wp
= 0

3: for each wq ∈ W
4: if wp � wq

5: add wq to the set ŝwq

6: else if wq � wp

7: execute n̂wp
= n̂wp

+ 1
8: if n̂wp

= 0
9: let wprank

= 1 and put them in set F1

10: initialize i = 1
11: While Fi is not empty
12: initialize Q = ∅
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13: for each wp ∈ Fi and each wq ∈ ŝwp

14: do n̂wq
= n̂wq

− 1
15: if n̂wq

= 0
16: let wqrank = i + 1 and put them in Q
17: Execute i = i + 1, Fi = Q

Crowding Distance Computation. Crowding distance is used to measure the
number of individuals around a given individual in the population that belong
to the same non-dominated front. The crowding distance of individuals in the
non-dominated fronts F1, F2, ..., FR are calculated as follows:

1: for each rank j = 1, 2, ..., R
2: let l = |Fj | , Ŵ = Fj

3: for each objective function fk (where k = 1, 2)
4: Ŵ = sort(Ŵ , fk)

// sort wi in Ŵ in the ascending order according to the value of fk.
5: Ŵ [w1, k]distance = Ŵ [wl, k]distance = ∞

// specify the crowding distance of two boundary individuals w1 and wl is infinite
6: for other individuals wi (where i = 2, ..., l − 1)
7: Ŵ [wi, k]distance = Ŵ [wi, k]distance +(Ŵ [wi+1].k−Ŵ [wi−1].k)/(fmax

k −fmin
k )

8: for i = 2, ..., l − 1
9: Ŵ [wi]distance =

∑
k Ŵ [wi, k]distance

// the total crowding distance value of each individual is obtained by summing the
crowding distance values corresponding to k normalized objective functions

In the above algorithm, l denotes the number of individuals in the set Fj ,
Ŵ [wi, k]distance denotes the crowding distance value of the individual wi on the
objective function fk, Ŵ [wi].k denotes the value of the objective function fk
of the individual wi in the set Ŵ , and fmax

k and fmin
k are the maximum and

minimum values of the objective function fk respectively.

Crowded-Comparison Operator. After fast non-dominated sort and crowd-
ing distance computation, each individual w in the population W has the fol-
lowing two attributes:

(1) Non-domination rank wrank,
(2) Crowding distance W [w]distance.

The definition of crowded-comparison operator ≺n is as follows:
Let wp and wq be two individuals in W , if wprank < wqrank or wprank =

wqrank and W [wp]distance > W [wq]distance, then wp ≺n wq, indicating that the
individual wp is better than the individual wq.
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Genetic Operators. As usual, we use the selection, crossover and mutation
operators in the genetic algorithm to create a new population.

Selection: The selection of individuals in the population is based on the crowded-
comparison operator ≺n.

Crossover: One-point crossover technique is adopted in this paper, and the prob-
ability of crossover is 0.8.

Mutation: We use the single-point mutation operator like other multi-objective
optimization genetic algorithms, and mutation probability is 0.05.

Procedure of the Proposed Algorithm. The weighted similarity measure
based on NSGA-II is as follows:

Step 1 Generate 10 groups of random weight vectors, which constitute the parent
population P0, and the size N of the population is 10, initialize z = 0.
Step 2 Apply crossover and mutation on P0 to generate the first generation offspring
population Q0 of size N .
Step 3 Combine Pz and Qz to create a population Rz of size 2N , that is, Rz = Pz∪Qz.
Step 4 For each weight vector w in Rz, put them into Eq. (1), then 2N similarity
functions can be obtained.
Step 5 Identify 2N solutions w in Rz into several non-dominated fronts F1, F2, ..., FR

according to the value of f1 and f2 on the training set by using the fast non-dominated
sorting approach, and initialize Pz+1 = ∅, i = 1. When |Pz+1|+ |Fi| ≤ N , the following
loop is performed:

Step 5.1 Calculate the crowding distance of all solutions in the set Fi, then do
Pz+1 = Pz+1 ∪ Fi and i = i + 1.
Step 6 When |Pz+1|+ |Fi| > N , sort Fi in descending order according to the crowded-
comparison operator and add the first N − |Pz+1| solutions from Fi to Pz+1.
Step 7 Generate the offspring population Qz+1 by applying crossover and mutation
operators on Pz+1, and do z = z + 1.
Step 8 If the required number of iterations is not reached, go to Step 3.

After NSGA-II runs the specified number of iterations, we get a set of Pareto
optimal solutions, which contains 10 sets of weight vectors. In this paper, we
obtain the weighted mean of the weight vectors, which is regarded as the final
solution of the weight vector under different number of iterations.

4 Experiments

In order to verify the effectiveness of the proposed algorithm, we design two sets
of experiments from the following aspects:

(1) To explore the impact of the number of iterations on the experimental results.
(2) To explore the impact of the number of nearest neighbors on the performance

of the recommender system.
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4.1 Experimental Settings

Experimental Data Sets. In this paper, we use Movielens 1M [1] and Netflix [2]
data sets to evaluate the effectiveness of our algorithm. Movielens 1M data set
is provided by GroupLens research group, which contains 6040 users rating of
3952 movies, and each user rated at least 20 movies with a rating varies from 1
to 5. Netflix data set is published by Netflix, which contains approximately 100
million ratings of 17770 movies by 480189 anonymous users, and the rating is
also varies from 1 to 5. In our experiments, we choose 80% of the data as the
training set, and the remaining 20% of the data is used as the test set.

Evaluation Metrics. MAE, coverage, recall and precision are used to evaluate
the performance of the proposed algorithm. MAE evaluates the error between
the predicted ratings by recommender systems and the users’ practical ratings.
Coverage measures the ability of the recommender system to exploit long tail
items. The combination of precision and recall is used to evaluate the classifica-
tion accuracy of the recommender system.

In order to evaluate the effectiveness of the proposed algorithm, we com-
pare our algorithm with the pearson correlation coefficient based collaborative
filtering (CF) [14], the matrix factorization (MF) [4] and the weighted similar-
ity measure based on GA [3]. We design two groups of experiments, which are
tested respectively on the two data sets to compare the performance of different
algorithms. In the first set of experiments, we compare the impact of the recom-
mendation quality by running different number of iterations. In the other set of
experiments, we observe the effect on the experimental results by changing the
number of nearest neighbors or the number of the latent factors.

4.2 Experimental Results

Iterations. In the first part of the experiment, we refer to the literature [4] to
set the parameters for MF, and the regularization parameter is set to 0.05, and
the learning rate is set to 0.05. Compared with other algorithms, MF runs more
number of iterations when it reaches the optimal value. Therefore, we set the
number of iterations varies from 15 to 120 at intervals of 15 in MF, and we set
the number of iterations vary from 5 to 40 at intervals of 5 for other algorithms.
Thus, the actual number of iterations of MF is three times the abscissa value. K
represents the number of latent factors for MF, while K represents the number
of neighbors for other algorithms. We specify K to 70 on Movielens data set,
and specify K to 90 on Netflix data set. The comparison results are shown in
Figs. 1 and 2.

Figures 1 and 2 describe the performance of the four algorithms at different
number of iterations on the two data sets, respectively. Figures 1 and 2 show
that the four indicators of all algorithms reach stable gradually with the number
of iterations increases. After the performance of the algorithm is stable, the
coverage of our algorithm is improved by about 4% compared with the GA,
and the values of recall and precision are also improved, while the value of
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(a) MAE (b) Coverage

(c) Precision (d) Recall

Fig. 1. Comparison results on Movielens under different iteration numbers.

(a) MAE (b) Coverage

(c) Precision (d) Recall

Fig. 2. Comparison results on Netflix under different iteration numbers.
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(a) MAE (b) Coverage

(c) Precision (d) Recall

Fig. 3. Comparison results on Movielens under different values of K.

MAE is somewhat higher. The reason is that the GA focuses on improving
accuracy, and our algorithm considers the coverage while keeping accuracy of
the recommender system. In addition, GA and NSGA-II are superior to CF in
the four indicators. MF is slightly better than both GA and NSGA-II in precision
and recall, but the coverage of NSGA-II is improved 3.5% compared with the
MF. The objective function of MF is to minimize the error between the predicted
rating and the practical rating, and the proposed algorithm optimizes MAE and
coverage simultaneously. Therefore, the predicted rating is not as accurate as MF
to some extent, which shows that the proposed algorithm has played a certain
role in mining long tail items in the recommender system. Figure 2 shows roughly
the same trend of results as Fig. 1, except that it takes longer for the performance
to stabilize, and the performance of the algorithms are worse, which is caused
by the fact that Netflix data set is more sparse.

K-Neighbors. To explore the impact of the number of nearest neighbors, we
specify the value of K vary from 10 to 120 with an interval of 10 on Movielens
data set and specify the value of K vary from 10 to 150 on Netflix data set. We fix
the number of iterations to 75 in MF, and set the number of iterations to 30 for
the weighted similarity measure based on GA and NSGA-II. The experimental
results are shown in Figs. 3 and 4.
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(a) MAE (b) Coverage

(c) Precision (d) Recall

Fig. 4. Comparison results on Netflix under different values of K.

Figures 3 and 4 describe the performance of the four algorithms at different
value of K on the two data sets, respectively. Figures 3 and 4 show that the
four indicators of all algorithms tend to be stable with the increase of the value
of K. Figure 4 shows a similar trend to Fig. 3, but the convergence is slower.
The comparison results show that the predicted rating error of our proposed
algorithm has a slight increase over the GA, but the precision and recall have
been improved, meanwhile the coverage has also been greatly promoted. GA and
NSGA-II are still superior to CF in the four indicators, while the performance
of MF is slightly better than that of NSGA-II except for coverage. Figures 3 and
4 further illustrates the effectiveness of the proposed method.

5 Conclusion

In this paper, a weighted similarity measure based on NSGA-II is proposed,
and achieving optimal weight vector is transformed into a multi-objective opti-
mization problem. The accuracy function and coverage function are chosen as
objective functions, and NSGA-II algorithm is used to obtain optimal solution.
Compared with the CF algorithm, the MF algorithm and the weighted similarity
measure based on GA, the proposed algorithm efficiently improves the coverage
of recommender system while the accuracy is kept, and the precision and recall
have also been improved to some extent. In the future work, we will choose more
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indicators as objective functions to further explore the effect on the performance
of the recommender system. In practical applications, the objective functions can
be chosen dynamically according to the recommendation emphasis.
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Abstract. Event-based social networks (EBSN), such as meetup.com
and plancast.com, have witnessed increased popularity and rapid growth
in recent years. In EBSN, a user can choose to join any events such as
a conference, house party, or drinking event. In this paper, we present
a novel model—Event2Vec, which explores how representation learning
for events incorporating spatial-temporal information can help event rec-
ommendation in EBSN. The spatial-temporal information represents the
physical location and the time where and when an event will take place.
It typically has been modeled as a bias in conventional recommendation
models. However, such an approach ignores the rich semantics associ-
ated with the spatial-temporal information. In Event2Vec, the spatial-
temporal influences are naturally incorporated into the learning of latent
representations for events, so that Event2Vec predicts user’s preference
on events more accurately. We evaluate the effectiveness of the pro-
posed model on three real datasets; our experiments show that with a
proper modeling of the spatial-temporal information, we can significantly
improve event recommendation performance.

1 Introduction

Event-based social network (EBSN) is a new type of social network that has
experienced increasing popularity and rapid growth. For instance, Meetup1, one
of the largest online social networks for facilitating offline group meetings, has
attracted 30 million registered users who have created nearly 270,000 Meetup
groups. Douban2, a Chinese social networking service, has more than 200 mil-
lion registered users and has hosted about 590,000 offline groups. These EBSN
websites allow members to find and join groups unified by a common interest,
such as politics, books, games, movies, health, careers or hobbies, and schedule a
time to meet up together offline, which results in very interesting user behavior
data combining both online and offline social interactions [9]. One challenging

1 https://meetup.com.
2 https://douban.com.
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issue on these EBSN websites is how to keep users actively joining new events.
Recommendation plays a critical role [11].

In contrast to conventional online social networks that mainly contain user’s
online interactions, users in EBSN can choose to join the event according to their
interest in the event (based on the event content) and their availability (based
on the event location and availability at the schedule time). Therefore, user’s
mobile behaviors presented in EBSN are explored typically in several important
aspects, including event content, spatial influence [8] and temporal effect [5].

Many recent studies have exploited different factors to improve recommenda-
tion effectiveness. For instance, some efforts have been made to explicitly model
the spatial information as in [15,20]. Some others exploit temporal cyclic effect
to provide spatial or/and temporal novel recommendation like [18]. However,
they lack an integrated analysis of the joint effect of all factors in a unified effec-
tive way and no previous work has explicitly modeled user’s preference on both
spatial and temporal factors to improve the recommendation performance.

In this work, we stand on the recent advances in embedding learning tech-
niques and propose an embedding method—Event2Vec to encode events in a
low-dimension latent space which integrates the spatial and temporal influence.
In specific, we learn representations for three factors—the event, the location
and the time simultaneously using the event sequential data attended by users.
We propose to use multitask learning settings to model and predict user’s prefer-
ence on three factors naturally. The technique of shared embeddings are utilized
in our proposed model to improve the efficiency.

In addition, our approach leverages the interactive influence between spatial
and temporal factors presented in user’s behaviors by modeling the combination
of spatial-temporal information. In specific, events held at the same location
could have very different topics at different time periods, thus attract varying
groups of user. For instance, an urban park usually holds events like “picnic”
in the afternoon while holds events like “jogging” at night. In the course of
this paper, we will present how our embedding model exploits such joint and
interactive influences of spatial and temporal factors in a natural way.

Finally, we propose a recommendation algorithm based on a similarity metric
in the latent embedding space which is proved to be effective in our experiments.
Compared with state-of-the-art recommendation frameworks, we can achieve a
significant improvement.

2 Problem Definition

In this section, we will first clarify some terminology used in this paper, and
then explicitly present our problem.

User behaviors are formulated as a set of four tuple {(u, e, l, τ) : u ∈ U, e ∈
E, l ∈ L, t ∈ T}, where each means user u attended event e at location l, at time
slot t. U is a set of users and E is a set of events, L3 is a set of locations and T is
3 The location l can be represented as a pair (longitude, latitude) or a specific address

(e.g., “Wine Bar at MIST”).
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Fig. 1. Architectures of the three Event2Vec models

a set of time slots discretized from continuous timestamps. We use the notation
| · | to denote the cardinality of a set — for example, |L| indicates of the number
of locations in set L.

For each user u, we create a user profile Du = {(ei, li, ti), i = 1 . . . nu}, which
is a sequence of events user u attended in chronological order.

Input: The input of our problem is an event-based social network G =
(U,E,L, T ), and a set of user profiles D = {Du : u ∈ U}.

Goal: Given a querying user u, our goal is to recommend upcoming events based
on historical preferences of the user.

3 The Proposed Approach

In this section, we present the details of the proposed model—Event2Vec.
To incorporate different types of information, we learn latent representations

for each event, location and time. Then, we model and predict user’s preferences
on the three factors explicitly to improve the recommendation accuracy.

In specific, the three factors are related to each other: for instance inferring
user’s preference on the location helps the inference of user’s preference on the
time. Predicting one helps in predicting the other one, and three factors alto-
gether decides user’s tendencies and behaviors. Therefore, we propose to take
the perspective of multitask learning settings to naturally leverage the useful
information contained in user’s preferences on different factors which are related
to each other. We set up three single tasks for predicting user’s preference on
the event, the location and the time respectively. We propose to use shared
parameters (i.e., shared embeddings) in all three different tasks to learn latent
representations which integrate different points of view. Shared embeddings are
also important for the efficiency and generalization of low-dimensional represen-
tation learning in our proposed model.

We derive three different model architectures each with different target vari-
ables to implement the proposed model.
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Fig. 2. The joint model with three target variables in which three similar networks are
trained per each target variable. At serving, a nearest neighbor lookup is performed to
generate a set of event recommendations.

In the first model (Event2Vec-1, Fig. 1(a)), we learn the embeddings for each
event, location and time by learning to predict the next event user would attend,
and the associated location and time simultaneously.

In the second model (Event2Vec-2, Fig. 1(b)), we learn the embeddings for
each event and spatial-temporal pair (i.e., (l, t)) to further capture the interactive
influences between spatial and temporal factors.

In the third model (Event2Vec-3, Fig. 1(c)), we propose a compromise
between Event2Vec-1 and Event2Vec-2. We reserve distinct embeddings for each
location and time but predict the spatial-temporal pair as a combination.

In the remainder of this section, we will describe the three models in more
detail.

3.1 Our Models

Event2Vec-1. Event2Vec-1 learns low dimensional embeddings for each event,
location and time in a fixed vocabulary and feeds these embeddings into a feed-
forward neural network. The purpose of the neural network is to predict user’s
next behavior including the event to attend, the location and the time to go,
using his/her historical behaviors. A user’s history is represented by a variable-
length sequence of sparse event, location and time IDs which are mapped to dense
vector representations via the embeddings. However the network requires fixed-
sized dense inputs. We find averaging the embeddings performed best among
several strategies (sum, component-wise max, etc.).

More formally, we describe the proposed model starting with a single net-
work of predicting the next event. Given a user profile Du = {(ej , lj , tj), j =
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1 . . . nu}, to predict users’ preferences on the event, the input is a sequence of
{(e1, l1, t1) . . . (ei, li, ti)} and the target is ei+1, where i ranges from 1 to n−1. we
feed the sequence into the neural network, which are represented by three one-
hot vectors for the event, location and time respectively. The entry is set to one
if it exists in the sequence, zero otherwise. In the embedding layer, we look up
the embeddings from three embedding matrices, i.e., Ce ∈ R

|E|×de , Cl ∈ R
|L|×dl

and Ct ∈ R
|T |×dt , where de, dl and dt are the dimensions of the event, location

and the time representations. By averaging, three fixed-sized vectors −−→eavg,
−−→
lavg

and
−−→
tavg are obtained. Then they are concatenated into a flat vector −→vin which is

fed as the input of the following fully-connected layers, with |−→vin| = de + dl + dt.
We use one fully-connected layer parameterized by W1 in our model.

The output of the fully-connected layer, denoted as −→oe ∈ R
de , encodes the

user’s historical behaviors and thus can be used to predict the upcoming events
user will attend. Let ei denotes the target event, given the encoded historical
behaviors −→oe , our model formulates the conditional probability Pr(ei | −→oe) using
a softmax function in Eq. 1.

Pr(ei | −→oe) =
exp(−→ei T · −→oe)

∑
e′∈E exp(

−→
e′ T · −→oe)

(1)

where −→ei and
−→
e′ are row vectors of Ce. In order to make the model efficient

for learning, the techniques of hierarchical softmax and negative sampling are
used as proposed in Skip-Gram [6]. Similar to the single network of predicting
the event, the other two neural networks with target variables of the location
and time are built and output the probabilities of Pr(li | −→ol ) and Pr(ti | −→ot ).
Therefore, the objective of Event2Vec-1 is to minimize three cross entropy losses
simultaneously. Figure 1(a) illustrates the architecture of Event2Vec-1 model.

At serving time we need to recommend top k events to the user. Our recom-
mendation algorithm is based on the user-event cosine similarity in the embed-
ding space. Since both spatial and temporal factors play important roles in event
recommendation, so we utilize all output vectors of the neural networks to make
recommendations.

In specific, we feed all user’s historical behaviors into the neural networks and
obtain the predicted vectors −→oe , −→ol and −→ot by forward propagation. We build
user’s preference −→vu by concatenating them all together, i.e., −→vu = −→oe‖−→ol ‖−→ot ,
where ‖ is the concatenation operation. For each candidate event ei associated
with location li and time ti, we get its final representation as −→vei = −→ei ‖−→

li ‖−→
ti ,

where the embeddings are looked up in the embedding matrices—Ce, Cl and Ct.
Given a user u, for each event ei which has not been attended by u, we

compute its ranking score using Eq. 2, and select top k events with highest
scores to recommend to the user.

S(u, ei) = −→vuT · −→vei (2)

Figure 2 demonstrates our proposed joint model with three target variables in
which three similar networks are trained per each target variable. The trainable
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parameters include three embedding matrices, Ce, Cl and Ct, and the weight
matrices of the fully connected layer, W1, W2 and W3. Please note that param-
eters of the embedding matrices are shared and trainable in all three neural
networks, while parameters of weight matrices are only updated through the
associated neural network.

Event2Vec-2. The combination of the location and the time contain richer
semantic information, however Event2Vec-1 doesn’t consider such interactive
influence between the spatial and temporal factors. A location usually holds dif-
ferent semantics at different time, and these semantics should have discrimina-
tive vectors. Therefore, Event2Vec-2 learns embeddings for each spatial-temporal
pair. The spatial-temporal embedding matrice is denoted as Ct

l ∈ R
|L×T |×dt

l ,
where dtl means the dimension of spatial-temporal representation and L × T
means the Cartesian product of L and T .

The architecture of Event2Vec-2 is illustrated in Fig. 1(b). There are two
neural networks predicting the next event and the next spatial-temporal pair
respectively. When making recommendations, the user preference is represented
as −→vu = −→oe‖

−→
otl ; and the candidate event ej is represented as −→vei = −→ei ‖

−→
lti , where

−→ei and
−→
lti are row vectors of Ce and Ct

l .

Event2Vec-3. Since Event2Vec-2 divides the occurrences of each location into
multiple time slots, the learning of embeddings suffer from the sparsity issue. In
an attempt to alleviate the problem, we propose a new model—Event2Vec-3 to
provide a trade-off between the discrimination and sparsity.

Event2Vec-3 reserves distinct embeddings for each event, location and time.
However slightly different from Event2Vec-1, the location and the time are pre-
dicted as a combination. Each spatial-temporal pair (l, t) is represented by con-
catenating their distinct vectors

−→
l and

−→
t into a flat vector (

−→
l ‖−→

t ) ∈ R
dl+dt .

The corresponding output
−→
otl has the same length of dl + dt. The outputs of two

neural networks are Pr(ei | −→oe) and Pr((li, ti) | −→
otl ) as shown in Fig. 1(c), where

Pr((li, ti) | −→
otl ) is calculated as in Eq. 3

Pr((li, ti) | −→
otl ) =

exp((
−→
li ||−→ti )T · −→

otl )
∑

(l′,t′)∈L×T exp((
−→
l′ ||−→t′ )T · −→

otl )
(3)

It’s worthy of noting that the embeddings of each location and time are shared
among all spatial-temporal pairs (l, t).

4 Experiments

In this section, we evaluate the proposed model for the task of event recommen-
dations. We first examine the performance of Event2Vec models compared with
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related models in Sect. 4.2. Then we examine the importance of spatial-temporal
factors in Sect. 4.3; and finally different temporal patterns are compared and dis-
cussed in Sect. 4.4.

4.1 Experimental Setup

Datasets. We use three datasets in real-world domains, two from Douban and
one from Meetup, for our experiments.

– Meetup. We collected the first dataset Meetup by crawling real events hosted
in New York from meetup.com in 2016. For each event, we retrieved its geo-
graphic location, start time, and a list of users who attended. To reduce noise,
we selected events that are attended by at least 20 users, and users who have
attended at least 20 events. In the end, the Meetup dataset contains 4722
users and 5064 events.

– Douban [19]. We collected two datasets Douban-bej and Douban-sha by
crawling events hosted in 2012 from douban.com located at Beijing and
Shanghai respectively. For each event, we also retrieved its geographic loca-
tion, start time, and a list of registered users who attended. Then we removed
users who attended fewer than 20 events, and events attended by fewer than
20 users. We have 222795 attendances by 6513 users, 5326 events in the
Douban-bej dataset; 6964 users, 4189 events and 241093 attendances in the
Douban-sha dataset.

Data Preprocessing. To normalize the locations of events, we split the city into
even grid cells according to coordinates, and each resultant location (gird) spans
0.13 km. The numbers of locations in the Meetup, Douban-bej and Douban-sha
dataset are 1569, 813 and 626 respectively.

To capture the temporal characteristics in user’s behaviors, we design a time
discretizing scheme to smoothly map a continuous timestamp to a time slot.
The preference variance exists in three time scales generally: hours of a day,
different days in a week (or a month), and different months in a year, which
is observed in [5] but not modeled. By experiments, we propose to divide the
continuous time space into time slots using a weekday-hour pattern, such as “4
(day of the week), 1:00–2:00 (hour of the day)”. Therefore, we can get at most
7 * 24 discretized time slots on all three datasets. Other temporal patterns are
compared and discussed in Sect. 4.4.

Comparison Methods. We compare our model with the following methods
representing the state-of-the-art event-based recommendation techniques.

– SVDFeature. SVDFeature [3] is a machine learning toolkit designed to solve
the feature-based matrix factorization. To compare with our model fairly, we
implement it by incorporating more side information including the location
and the time.

https://meetup.com
https://douban.com
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– IRenMF. IRenMF [10] is based on Weighted Matrix Factorization (WMF).
IRenMF considers the influence of neighboring locations while modeling user’s
preferences.

– Rank-GeoFM. Rank-GeoFM [7] is a ranking based factorization method,
which includes spatial influence in a latent model.

– Event2Vec. Our proposed methods for event recommendation, which incor-
porate spatial-temporal information using the embedding learning methods.

In summary, SVDFeature models the spatial-temporal information as sim-
ple bias, while both IRenMF and Rank-GeoFM model geographic influences as
latent vectors using Matrix Factorization techniques.

For each individual user in the dataset, we sort his behaviors in time order and
then mark off the last 10% events he attended for testing, while use the previous
90% historical events for training. In the experiments, we use a validation set
to find the optimal hyper-parameters, and finally set de, dl and dt to 200, (we
use the same dimension for simplicity, but they are not necessarily equal in
practice). For implementation, we develope the model based on Tensorflow [1].
We use stochastic gradient descent (SGD) for optimization, and gradients are
calculated using the back-propagation algorithm. We run each recommendation
method for 5 times and report the average performances in Table 1.

Evaluation Metrics. We compare the performances through precision, recall,
and f1-score as they are generally used in recommendation systems. We denote
these metrics at top-k recommendation as p@k, r@k, f1@k respectively. Formally,
if we define ER

u as recommended events sorted by score in descending order and
ET

u as the true events attended by user u,

p@k =
1

|U |
∑

u∈U

|ET
u ∩ ER

u [: k]|
k

r@k =
1

|U |
∑

u∈U

|ET
u ∩ ER

u [: k]|
|ET

u |

f1@k =
2 · p@k · r@k

p@k + r@k

(4)

4.2 Results

Table 1 shows the experimental results. We find Event2Vec models outperform
other baselines significantly on all metrics, among which Event2Vec-2 achieves
the best performance. The standard deviation of the performance from each
method is less than 4×10−4, confirming the reliability of our comparison results.

Baselines vs. Our Models. Several observations are made by comparing
baselines and our models from the results. (1) Rank-GeoFM and IRenMF
achieve a higher recommendation accuracy than SVDFeature on all metrics of
performance, showing the benefits brought by factorizing the spatial-temporal
influences into latent vectors instead of scalar bias used by SVDFeature. (2)
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Table 1. Performance comparison

Dataset Meetup

Metric p@1 p@5 p@10 r@1 r@5 r@10 f1@10

SVDFeature 0.0085 0.0131 0.013 0.0023 0.0188 0.0371 0.0192

IRenMF 0.0209 0.0234 0.0243 0.006 0.0335 0.0698 0.0360

Rank-GeoFM 0.0209 0.0278 0.0273 0.0058 0.0387 0.0763 0.0403

Event2Vec-1 0.1778 0.1237 0.0922 0.0463 0.1581 0.2312 0.1318

Event2Vec-2 0.2006 0.1350 0.1014 0.0514 0.1715 0.2522 0.1447

Event2Vec-3 0.1561 0.1099 0.0829 0.0403 0.1401 0.2097 0.1188

Dataset Douban-bej

Metric p@1 p@5 p@10 r@1 r@5 r@10 f1@10

SVDFeature 0.0382 0.0296 0.026 0.0073 0.0267 0.0468 0.0334

IRenMF 0.0323 0.0311 0.0297 0.0069 0.0287 0.0502 0.0373

Rank-GeoMF 0.0344 0.0353 0.0326 0.007 0.0318 0.0543 0.0407

Event2Vec-1 0.244 0.1658 0.1275 0.0409 0.1284 0.1866 0.1515

Event2Vec-2 0.2572 0.1748 0.1312 0.0451 0.1431 0.2055 0.1602

Event2Vec-3 0.1154 0.0772 0.0571 0.0226 0.0726 0.1031 0.0735

Dataset Douban-sha

Metric p@1 p@5 p@10 r@1 r@5 r@10 f1@10

SVDFeature 0.0456 0.0328 0.0269 0.0183 0.0631 0.1009 0.0425

IRenMF 0.0656 0.0533 0.0436 0.0284 0.1031 0.1568 0.0683

Rank-GeoFM 0.0692 0.0567 0.0452 0.0297 0.1063 0.1596 0.0704

Event2Vec-1 0.1721 0.0988 0.0718 0.054 0.1342 0.1825 0.1031

Event2Vec-2 0.2245 0.1215 0.0884 0.0763 0.1825 0.2516 0.1308

Event2Vec-3 0.1124 0.0653 0.0459 0.0419 0.1108 0.1479 0.07

Event2Vec models outperform other competitor methods by 4%–9% in terms
of p@10 on three datasets. It shows the advantages of the proposed multitask
learning framework and shared embeddings in modeling different related factors.
Moreover, the proposed Event2Vec models explicitly predict user’s preferences
on three factors using the historical data. Therefore, we can see a significant
improvement over other baseline methods in Table 1.

Event2Vecs. The performance of three Event2Vec models are very different
and reflect their characteristics. (1) Event2Vec-2 achieves the best performance.
Event2Vec-2 outperforms Event2Vec-1 by 0.9%–2.7% in terms of f1-score. The
most possible reason is, Event2Vec-2 discriminates different location-time com-
binations and learn distinct representations for each of them to capture more
accurate semantics. For example, the representation of “cafe-morning” learned
by Event2Vec-2 could encode concrete and discriminative semantics probably like
“breakfast”, while in Event2Vec-1 it’s represented by concatenating the vectors
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Fig. 3. The effect of different factors

Table 2. Comparison of temporal patterns

Dataset Meetup Douban-bej Douban-sha

Metric p@10 r@10 f1@10 p@10 r@10 f1@10 p@10 r@10 f1@10

Weekday-hour 0.1045 0.2627 0.1495 0.1312 0.2055 0.1602 0.0884 0.2516 0.1308

Day-hour 0.0929 0.2355 0.1332 0.1037 0.1649 0.1274 0.0856 0.2575 0.1285

Month-weekday-hour 0.0893 0.2258 0.128 0.1208 0.19 0.1477 0.0901 0.2641 0.1343

Month-day-hour 0.0881 0.2239 0.1264 0.1129 0.1812 0.1391 0.086 0.2593 0.1292

of “cafe” and “morning” which may introduce the noises. From the results, we
can conclude that in Event2Vec-2, the effectiveness of modeling interactive influ-
ence between the spatial and temporal factors is more significant than the issue
caused by sparsity, thus Event2Vec-2 achieves the best performance. (2) The per-
formance of Event2Vec-3 drops behind the other two Event2Vec methods, this
is probably because during the back propagation, the updates on embeddings of
the location and the time will influence each other, for that the boundary of the
embeddings are blurred because of concatenating operation. Therefore it makes
the representation learning of the location and the time less distinguishable and
results in a worse performance than other Event2Vec models.

4.3 Impact of Different Factors

To explore the benefits of incorporating spatial and temporal influences into
Event2Vec models respectively, we compare our Event2Vec model with two
variants—Event2Vec-loc and Event2Vec-time. All three original Event2Vec mod-
els will reduce to the same architecture when only including one factor of the
location or the time.

Event2Vec-time is the first simplified version where we ignore the spatial
information in Event2Vec models.

Event2Vec-loc ignores the temporal information in Event2Vec models.
Event2Vec-2 is our best model by learning embeddings for spatial-temporal

pairs.
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We show the results on three datasets in Fig. 3. From Fig. 3, we first observe
that Event2Vec-2 consistently outperforms the other two variants on all met-
rics, indicating that Event2Vec-2 takes advantage of both spatial and temporal
influences simultaneously. Moreover, it’s observed that the contributions of two
factors to performance improvement are different. By comparing Event2Vec-
time and Event2Vec-loc, we find that spatial influence is more significant than
temporal influence for event recommendation.

4.4 Exploring Various Temporal Patterns

Our model recommends events to a user by taking advantage of the tempo-
ral influence. So far, we have evaluated its recommendation performance using
a weekday-hour pattern, while its recommendation ability is not limited to one
specific temporal pattern. By taking different definitions of temporal state, some
other temporal patterns can be used for event recommendation with our model.
For example, apart from the weekly pattern, we could also define the tem-
poral state as daily pattern (day of the month); monthly pattern (month of
the year); and their combinations. The only change made to our model is to
divide time slots using different strategies. Table 2 shows the recommendation
results of our model using different temporal patterns. The results show that the
weekday-hour pattern achieves the best overall performance. By comparing the
weekday-hour pattern and day-hour pattern, we observe that day of the week
is more informative than day of the month, which indicates human behaviors
exhibit stronger temporal cyclic patterns in a week than in a month (like work-
ing purpose on weekdays and entertainment purpose at weekends). However, the
month-weekday-hour pattern and the month-day-hour pattern perform slightly
worse than the weekday-hour pattern and the day-hour pattern on Meetup and
Douban-bej dataset. Possible reasons could be that user’s behaviors don’t have
strong patterns at month level and that adding monthly pattern additionally
causes the sparsity issue to representation learning in time space.

5 Related Work

Event-based social networks (EBSN) have attracted much attention from
research community. A great deal of research has been conducted on EBSNs.
For example, Brown et al. [2] suggested that geographical closeness could influ-
ence the formation of online communities. Liu et al. [9] observed that 81.93%
of event participations by a user are within 10 miles of his/her home location.
Pham et al. [13] presented a graph-based model for event recommendation and
Cheng et al. [4] developed a particular location recommendation method based
on user preferences. Zhang et al. [20] used the location-based features for group
recommendations in EBSN. Qiao et al. [15] proposes an approach to combine the
heterogeneous social relationships, geographical features of events and implicit
rating data from users to recommend events to users. However, most of these
methods simply consider the spatial information as a bias factor and ignore the
location-related semantic information.
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From an algorithmic perspective, embedding techniques has been applied
in a quantity of works such as network embedding [12], user profiling [16],
social media prediction tasks [17], E-commerce product recommendation [14],
and many other works. The embedding methods based on representing entries
in low dimensional vector space, while preserving their properties, have been
proved useful in multiple machine learning tasks such as classification, predic-
tion and so on. However, no previous works have employed the representation
learning methods in EBSN scenario where spatial and temporal factors have
significant influences on user’s behaviors.

6 Conclusion

In this paper, we study the recommendation problem in event-based social net-
works (EBSN). We proposed Event2Vec, a new embedding method that incor-
porates the spatial-temporal information jointly. We embed the event, location
and time into low dimensional space based on event sequential data by taking
advantages of the multitask learning and parameter sharing techniques. Different
variants of Event2Vec are exploited to leverage the interactive influence between
the spatial and temporal information.

We conducted extensive experiments to evaluate the performance of
Event2Vec model on real-world datasets. The results showed superiority of our
proposed model over other competitor methods. Moreover, we analyzed the effec-
tiveness of spatial-temporal influences and compared different temporal patterns
in user’s behaviors in experiments.
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Abstract. Peer to peer marketplaces enable transactional exchange of
services directly between people. In such platforms, those providing a
service are faced with various choices. For example in travel peer to
peer marketplaces, although some amenities (attributes) in a property
are fixed, others are relatively flexible and can be provided without sig-
nificant effort. Providing an attribute is usually associated with a cost.
Naturally, different sets of attributes may have a different “gains” for a
service provider. Consequently, given a limited budget, deciding which
attributes to offer is challenging.

In this paper, we formally introduce and define the problem of Gain
Maximization over Flexible Attributes (GMFA) and study its complexity.
We provide a practically efficient exact algorithm to the GMFA problem
that can handle any monotonic gain function. Since the users of the peer
to peer marketplaces may not have access to any extra information other
than existing tuples in the database, as the next part of our contribu-
tion, we introduce the notion of frequent-item based count (FBC), which
utilizes nothing but the database itself. We conduct a comprehensive
experimental evaluation on real data from AirBnB and a case study that
confirm the efficiency and practicality of our proposal.

1 Introduction

Peer to peer marketplaces enable both “obtaining” and “providing” in a tempo-
rary or permanent fashion valuable services through direct interaction between
people [6]. Travel peer to peer marketplaces such as AirBnB, HouseTrip, Home-
Away, and Vayable1, work and service peer to peer marketplaces such as UpWork,
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FreeLancer, PivotDesk, ShareDesk, and Breather2, car sharing marketplaces such
as BlaBlaCar, education peer to peer marketplaces such as PopExpert, and pet
peer to peer marketplaces such as DogVacay are a few examples3 of such mar-
ketplaces. In travel peer to peer marketplaces, for example, the service caters to
accommodation rental; hosts are those providing the service (service providers),
and guests, who are looking for temporary rentals, are receiving service (service
receivers). Hosts list properties, along with a set of amenities for each, while
guests utilize the search interface to identify suitable properties to rent. Figure 1
presents a sample set of rental accommodations. Each row corresponds to a
property and each column represents an amenity. For instance, the first prop-
erty offers Breakfast, TV, and Internet as amenities but does not offer Washer.

Although sizeable effort has been devoted to design user-friendly search tools
assisting service receivers in the search process, little effort has been recorded
to date to build tools to assist service providers. Consider for example a host
in a travel peer to peer marketplace; while listing a property in the service for
(temporary) rent, the host is faced with various choices. Although some amenities
in the property are relatively fixed, such as number of rooms for rent, or existence
of an elevator, others are relatively flexible; for example offering Breakfast or
TV as an amenity. Flexible amenities can be added without a significant effort.
Although amenities make sense in the context of travel peer to peer marketplaces
(as part of the standard terminology used in the service), for a general peer to
peer marketplace we use the term attribute and refer to the subsequent choice
of attributes as flexible attributes.

Service providers participate in the service with specified objectives; for
instance hosts may want to increase overall occupancy and/or optimize their
anticipated revenue. Since there is a cost (e.g., monetary base cost to the host to
offer internet) associated with each flexible attribute, it is challenging for service
providers to choose the set of flexible attributes to offer given some budget limi-
tations (constraints). An informed choice of attributes to offer should maximize
the objectives of the service provider in each case subject to any constraints.
Objectives may vary by application; for example an objective could be maxi-
mize the number of times a listing appears on search results, the position in the
search result ranking or other. This necessitates the existence of functions that
relate flexible attributes to such objectives in order to aid the service provider’s
decision. We refer to the service provider’s objectives in a generic sense as gain
and to the functions that relate attributes to gain as gain functions in what
follows. In general, the gain function design may vary upon on the availability
of information. However, in a peer to peer setting, a service provider may not
have access to extra information other than the enlisted services.

In this paper, we aim to assist service providers in peer to peer marketplaces
by suggesting those flexible attributes which maximize their gain. Given a service
with known flexible attributes and budget limitation, our objective is to identify a
set of attributes to suggest to service providers in order to maximize the gain. We

2 upwork.com; freelancer.com; pivotdesk.com; sharedesk.net; breather.com.
3 blablacar.com; popexpert.com; dogvacay.com.
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ID Breakfast TV Internet Washer ID Breakfast TV Internet Washer
Accom. 1 1 1 1 0 Accom. 6 1 0 1 0
Accom. 2 1 1 1 1 Accom. 7 1 0 0 0
Accom. 3 0 1 1 0 Accom. 8 1 1 0 1
Accom. 4 1 1 1 0 Accom. 9 0 1 1 1
Accom. 5 0 1 1 1 Accom. 10 1 0 0 1

Fig. 1. A sample set of rental accomodations

refer to this problem as Gain Maximization over Flexible Attributes (GMFA).
Since the target applications involve mainly ordinal attributes, in this paper, we
focus our attention on ordinal attributes and we assume that numeric attributes
(if any) are suitably discretized. Without loss of generality, we first design our
algorithms for binary attributes, and, due to the space limitations, provide the
extension to ordinal attributes in the technical report [15].

Our contribution in this paper is twofold. First, we formally define the general
problem of Gain Maximization over Flexible Attributes (GMFA) in peer to peer
marketplaces and propose a general solution which is applicable to a general class
of gain functions. Second, without making any assumption on the existence extra
information other than the dataset itself, we introduce the notion of frequent-
item based count as a simple yet compelling gain function in the absence of other
sources of information. First, we prove that the general GMFA is NP-hard and
there is no approximation algorithm with a fixed ratio for it unless P = NP. We
provide a (practically) efficient exact algorithm to the GMFA problem for a
general class of monotonic gain functions4. This generic proposal is due to the
fact that gain function design is application specific and depends on the available
information. Thus, instead of limiting the solution to a specific application, the
proposed algorithm gives the freedom to easily apply any arbitrary gain function
into it. In other words, it works for any arbitrary monotonic gain function no
matter how and based on what data it is designed. In a rational setting in which
attributes on offer add value, we expect that all gain functions will be monotonic.

The next part of our contribution focuses on the gain function design. It is
evident that gain functions could vary depending on the underlying objectives.
The gain function design, as discussed in technical report [15], is application
specific and may vary upon on the availability of information such as query logs,
reviews, or a weighting of attributes based on some criteria (e.g., importance)
that can be naturally incorporated in our framework without changes to the
algorithm. However, in a peer to peer setting, the users may usually have no
extra information other than enlisted services. Thus, rather than assuming the
existence of any specific extra information, we, alternatively, introduce the notion
of frequent-item based count (FBC) that utilizes nothing but the existing tuples
in the database to define the notion of gain for the absence of extra information.
The motivation behind the definition of FBC is that (rational) service providers
provide attributes based on demand. For example, in Fig. 1 the existence of TV

4 Monotonicity of the gain function simply means that adding a new attribute does
not reduce the gain.



330 A. Asudeh et al.

and Internet together in more than half of the rows, indicates the demand for
this combination of amenities. Also, as shown in the real case study provided
in Sect. 5.3, popularity of Breakfast in the rentals located in Paris indicates the
demand for this amenity there. Since counting the number of frequent itemsets is
#P-complete [10], computing the FBC is challenging. In contrast with a simple
algorithm that is an adaptation of Apriori [1] algorithm, we propose a practical
output-sensitive algorithm for computing FBC that runs in the time linear in its
output value. The algorithm uses an innovative approach that avoids iterating
over the frequent attribute combinations by partitioning them into disjoint sets.
In summary, we make the following contributions in this paper:

– We introduce the notion of flexible attributes and the novel problem of gain
maximization over flexible attributes (GMFA) in peer to peer marketplaces.

– Studying the complexity of the problem, we propose an efficient algorithm
that any arbitrary monotonic gain function can simply get plugged into it.

– While not promoting any specific gain function, we propose frequent-item
based count (FBC) as a simple yet compelling gain function in the absence
of extra information other than the dataset itself. We propose a practically
efficient algorithm for assessing the gain.

– We conduct a comprehensive performance study on real dataset from AirBnB
to evaluate the proposed algorithms. Also, in a real case study, we to illustrate
the practicality of the approaches.

2 Preliminaries

Dataset Model: We model the entities under consideration in a peer to peer
marketplace as a dataset D with n tuples and m attributes A = {A1, . . . , Am}.
For a tuple t ∈ D, we use t[Ai] to denote the value of the attribute Ai in t.
Figure 1 presents a sample set of rental accommodations with 10 tuples and
4 attributes. Each row corresponds to a tuple (property) and each column
represents an attribute. For example, the first property offers Breakfast, TV,
and Internet as amenities but does not offer Washer. Note that, since the tar-
get applications involve mainly ordinal attributes, we focus our attention on
such attributes and we assume that numeric attributes (if any) are suitably
discretized. Without loss of generality, throughout the paper, we consider the
attributes to be binary and defer the extension of algorithms to ordinal attributes
in the technical report [15]. We use At to refer to the set of attributes for which
t[Ai] is non zero; i.e. At = {Ai ∈ A | t[Ai] �= 0}, and the size of At is kt.

Query Model: Given the dataset D and set of binary attributes A′ ⊆ A, the
query Q(A′,D) returns the set of tuples in D where contain A′ as their attributes;
formally:

Q(A′, D) = {t ∈ D|A′ ⊆ At} (1)
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Table 1. Table of notations

Notation Meaning Notation Meaning

D The dataset A The set of the attributes in database D
m The size of A n The number of tuples in database D
t[Ai] The value of attribute Ai in tuple t At Set of non-zero attributes in tuple t

B The budget cost[Ai] Cost to change the (binary) Ai to 1

gain(.) The gain function LAi
Lattice of attribute combinations Ai

V (LAi
) The set of nodes in LAi

B(vi) The bit representative of the node vi

v(Ai) The node with attribute combination Ai v(Bi) The node with the bit representative Bi

�(vi) The level of the node vi cost(vi) The cost associated with the node vi

ρ(B(vi)) The index of the right-most zero in B(vi) parentT (vi) Parent of vi in the tree data structure

Similarly, the query model for the ordinal attributes is as following: given the
dataset D, the set of ordinal attributes A′ ⊆ A, and values V where Vi ∈ V is
a value in the domain of Ai ∈ A′, Q(A′,V,D) returns the tuples in D that for
attribute Ai ∈ A′, Vi ≤ t[Ai].

Flexible Attribute Model: In this paper, we assume an underlying cost5

associated with each attribute Ai, i.e., a flexible attribute Ai can be added to
a tuple t by incurring cost[Ai]. For example, the costs of providing attributes
Breakfast, TV, Internet, and Washer, in Fig. 1, on an annual basis, are cost =
[1000, 300, 250, 700]. For the ordinal attributes, cost(Ai, V1, V2) represents the
cost of changing the value of Ai from V1 to V2. Our approach places no restric-
tions on the number of flexible attributes in A. For the ease of explanation, in
the rest of paper we assume all the attributes in A are flexible.

We also assume the existence of a gain function gain(.), that given the dataset
D, for a given attribute combination Ai ⊆ A provides a score showing how
desirable Ai is. For example in a travel peer to peer marketplace, given a set of
m amenities, such a function could quantify the anticipated gain (e.g., visibility)
for a host if a subset of these amenities are provided by the host on a certain
property.

Table 1 presents a summary of the notation used in this paper. Next, we
formally define the general Gain Maximization over Flexible Attributes (GMFA)
in peer to peer marketplaces.

2.1 General Problem Definition

We define the general problem of Gain Maximization over Flexible Attributes
(GMFA) in peer to peer marketplaces as a constrained optimization problem.
The general problem is agnostic to the choice of the gain function. Given gain(.),
a service provider with a certain budget B strives to maximize gain(.) by con-
sidering the addition of flexible attributes to the service. For example, in a travel

5 Depending on the application it may represent a monetary value.
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peer to peer marketplace, a host who owns an accommodation (t ∈ D) and has
a limited (monetary) budget B aims to determine which amenities should be
offered in the property such that the costs to offer the amenities to the host
are within the budget B, and the gain (gain(.)6) resulting from offering the
amenities is maximized. Formally, our GMFA problem is defined as following:

Gain Maximization over Flexible Attributes (GMFA):
Given a dataset D with the set of binary flexible attributes A where each attribute
Ai ∈ A is associated with cost cost[Ai], a gain function gain(.), a budget B, and a
tuple t ∈ D, identify a set of attributes A′ ⊆ A\At, such that

∑

∀Ai∈A′
cost[Ai] ≤ B

while maximizing gain(At ∪ A′, D).

2.2 Computational Complexity

In Theorem 1, we prove that GMFA is NP-hard7 by reduction from quadratic
knapsack (QKP) [8,19]. The reduction from the QPK shows that it can be
modeled as an instance of GMFA; thus, a solution for QPK cannot not be used
to solve GMFA. In addition to the complexity, this reduction shows the difficulty
of designing an approximate algorithm for GMFA. Rader et al. [14] prove that
QKP, in general, does not have a polynomial time approximation algorithm
with fixed approximation ratio, unless P=NP. In Theorem 2, we prove that a
polynomial approximate algorithm with a fixed approximate ratio for GMFA
guarantees a fixed approximate ratio for QKP, and its existence contradicts the
result of [14]. Furthermore, studies on the constrained set functions optimization,
such as [7], also admits that maximizing a monotone set function up to an
acceptable approximation, even subject to simple constraints is not possible.
Due to the space limitations, further details on the problem complexity, as well
as the proofs of Theorems 1 and 2, are provided in the technical report [15].

Theorem 1. The problem of Gain maximization over flexible attributes
(GMFA) is NP-hard.

Theorem 2. There is no polynomial-time approximate algorithm with a fixed
approximate ratio for GMFA unless there is an approximate algorithm with a
constant approximate ratio for QKP.

6 In addition to the input set of attributes, the function gain(.) may depend to other
variables such as the number of attribute (n); one such function is discussed in
Sect. 4.

7 Please note that the GMFA is NP-complete even for the polynomial time gain func-
tions.
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Fig. 2. Illustration of LA for Example 1

3 Solution

Considering the negative result of Theorem 2, we turn our attention to the
design of an exact algorithm for the GMFA problem; even though this algorithm
will be exponential in the worst case, we will demonstrate that is efficient in
practice. In this section, our focus is on providing a solution for GMFA over
any monotonic gain function. A gain function gain(.) is monotonic, if given two
set of attributes Ai and Aj where Aj ⊂ Ai, gain(Aj ,D) ≤ gain(Ai,D). As
a result, this section provides a general solution that works for any monotonic
gain function, no matter how and based on what data it is designed. In fact
considering a non-monotonic function for gain is not reasonable here, because
adding more attributes to a tuple (service) should not decrease the gain. For
ease of explanation, we first provide the following definitions and notations.

Definition 1. Lattice of Attribute Combination: Given an attribute com-
bination Ai, the lattice of Ai is defined as LAi

= (V,E), where the nodeset V ,
depicted as V (LAi

), corresponds to the set of all subsets of Ai; thus ∀Aj ⊆ Ai,
there exists a one to one mapping between each vj ∈ V and each Aj. Each node
vj is associated with a bit representative B(vj) of length m in which bit k is 1 if
Ak ∈ Aj and 0 otherwise. For consistency, for each node vj in V (LAi

), the index
j is the decimal value of B(vj). Given the bit representative B(vj) we define func-
tion v(B(vj)) to return vj. In the lattice an edge 〈vj , vk〉 ∈ E exists if Ak ⊂ Aj

and B(vk), B(vj) differ in only one bit. Thus, vj (resp. vk) is parent (resp. child)
of vk (resp. vj) in the lattice. For each node vj ∈ V , level of vj, denoted by �(vj),
is defined as the number of 1’s in the bit representative of vj. In addition, every
node vj is associated with a cost defined as cost(vj) =

∑
∀Ak∈Aj

cost[Ak].

Definition 2. Maximal Affordable Node: A node vi ∈ V (LA) is affordable
iff cost(vj) ≤ B; otherwise it is unaffordable. An affordable node vi is maximal
affordable iff ∀ nodes vj in parents of vi, vj is unaffordable.
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Example 1: As a running example throughout the paper, consider D as
shown in Fig. 1, defined over the set of attributes A = {A1:Breakfast, A2:TV,
A3:Internet, A4:Washer} with cost to provide these attributes as cost =
[1000, 300, 250, 700]. Assume the budget is B = 1300 and that the property t
does not offer these attributes/amenities, i.e., At = ∅.

Figure 2 presents LA over these four attributes. The bit representative for
the highlighted node v10 in the figure is B(v10) = 1010 representing the set of
attributes A10 = {A1:Breakfast, A3:Internet}; The level of v10 is �(v10) = 2, and
it is the parent of nodes v2 and v8 with the bit representatives 0010 and 1000.
Since B = 1300 and the cost of v2 is cost(v2) = 250, v2 is an affordable node;
however, since its parent v10 the cost cost(v10) = 1250 and is affordable, v2 is not
a maximal affordable node. v11 and v14 with bit representatives B(v11) = 1011
and B(v14) = 1110, the parents of v10, are unaffordable; thus v10 is a maximal
affordable node.

A baseline approach for the GMFA problem is to examine all the 2m nodes
of LA. Since for every node the algorithm needs to compute the gain, it’s run-
ning time is in Ω(m2mG), where G is the computation cost associated with the
gain(.) function. As the first improvement over the baseline, Improved GMFA
(I-GMFA) improves upon this baseline by leveraging the monotonicity of the
gain function, which enables it to prune some of the branches in the lattice while
searching for the optimal solution. We provide further details about I-GMFA
in the technical report [15]. I-GMFA has two efficiency issues that we resolve
in General GMFA (G-GMFA) as following:

The Problem with Multiple Children Generation. The first efficiency
issue is that, following the Definition 2, a node with multiple unaffordable par-
ents, gets generated multiple times (by its parents). To address this, we adopt
the set enumeration tree [16] and one-to-all broadcast in a hypercube [4] con-
structing a tree that guarantees to generate each node in LA only once.

Tree Construction: Considering the bit representation of a node vi, let ρ(B(vi))
be the right-most 0 in B(vi). The algorithm first identifies ρ(B(vi)); then it
complements the bits in the right side of ρ(B(vi)) one by one to generate the
children of vi. Figure 3 demonstrates the resulting tree for the lattice of Fig. 2 for
this algorithm. For example, consider the node v3 (B(v3) = 0011) in the figure;
ρ(0011) is 2 (for attribute A2). Thus, nodes v1 and v2 with the bit representatives
B(v1) = 0001 and B(v2) = 0010 are generated as its children. As shown in Fig. 3,
all the nodes of the lattice are generated once and only once. The only parent
of each node is identified by flipping the bit ρ(B(vi)) in B(vi) to one. We use
parentT (vi) to refer to the parent of the node vi in the tree structure. Also,
based on the way vi is constructed, ρ(B(vi)) is the bit that has been flipped by
its parent to generate it.

The Problem with Checking All Parents in the Lattice. In order to
decide if an affordable node is maximal affordable, one has to check all its parents
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in the lattice (not the tree). If at least one of the parents is affordable, it is not
maximal affordable. Thus, even though we construct a tree to avoid generating
the children multiple times, the parents may get checked multiple times by their
children. Therefore, in the following, we show how the monotonicity of the cost
function can help to generate a node only if it does not have an affordable parent.
In the lattice, each child has one less attribute than its parents. Thus, for a
node vi, one can simply determine the parent with the minimum cost (cheapest
parent) by considering the cheapest attribute in A that does not belong to Ai.
The key observation is that, for a node vi, if the parent with minimum cost
is not affordable, none of the other parents is affordable; on the other hand, if
the cheapest parent is affordable, there is no need to check the other parents
as this node is not maximal affordable. Consequently, one only has to identify
the missing attribute with the least cost and check if its cost plus the cost of
attributes in the combination is at most B. Identifying the missing attribute
with the smallest cost is in O(m). For each node vi, ρ(B(vi)) is the bit that has
been flipped by parentT (vi) to generate it. For example, consider v1 = v(0001)
in Fig. 3; since ρ(0001) = 3, parentT (v1) = v(0011). We can use this information
to reorder the attributes and instantly get the cheapest missing attribute in Ai.
The key idea is that if we originally order the attributes from the most expensive
to the cheapest, ρ(B(vi)) is the index of the cheapest attribute. Moreover, adding
the cheapest missing attribute generates parentT (vi). Hence, if the attributes are
sorted on their cost in descending order, a node with an affordable parent in the
lattice will never be generated in the tree data structure. Consequently, after
presorting the attributes, there is no need to check if a node has an affordable
parent.

Sorting the attributes is in O(m log(m)). In addition, computing the cost of
a node is thus performed in constant time, using the cost of its parent in the
tree. For each node vi, cost(vi) is cost(parentT (vi)) − cost[Aρ(B(vi))]. Therefore,
the algorithm of G-GMFA is in Ω

(
max(m log(m),G)

)
and O(2mG). Due to

the space limitations, we provide pseudo-code of G-GMFA in the technical
report [15].

4 Gain Function Design

In Sect. 3, we proposed a general solution that works for any arbitrary monotonic
gain function. We conducted our presentation for a generic gain function because
the design of the gain function is application specific and depends on the avail-
able information. The application specific nature of the gain function design,
motivated the consideration of the generic gain function, instead of promoting a
specific function. Consequently, any monotonic gain function can directly applied
into the general algorithm G-GMFA. In our work, the focus is on understand-
ing which subsets of attributes are attractive to users. Based on the application,
in addition to the dataset D, some extra information (such as query logs and
user ratings) may be available that help in understanding the desire for com-
binations of attributes and could be a basis for the design of such a function.
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Fig. 3. Tree construction for Fig. 2 Fig. 4. Intersection of children of
C = {A1, A2, A4} (Color figure online)

1001 

0XXX 1XX0 

Fig. 5. Illustration of sublattice cover-
age by the tree (Color figure online)

id vi B(vi)Disjnt Ptrnscnt
1 v7 0111 0XXX 23

2 v14 1110 1XX0 22

3 v9 1001 1 0 0 1 20

Fig. 6. FBC(1111) = 8 + 4 + 1 = 13

However, such comprehensive information that reflect user preferences are not
always available. Consider a third party service for assisting the service providers.
Such services have a limited view of the data [3] and may only have access to
the dataset tuples. An example of such third party services is AirDNA8 which is
built on top of AirBnB. Therefore, instead on focusing on a specific application
and assuming the existence of extra information, in the rest of this section, we
focus on a simple, yet compelling variant of a practical gain function that only
utilizes the existing tuples in the dataset to define the notion of gain in the
absence of other sources of information. We provide a general discussion of gain
functions with extra information in the technical report [15].

4.1 Frequent-Item Based Count (FBC)

Here, we propose a practical gain function that only utilizes the existing tuples in
the dataset. It hinges on the observations that the bulk of market participants are
expected to behave rationally. Thus, goods on offer are expected to follow a basic
supply and demand principle. For example, based on the case study provided in
Sect. 5.3, while many of the properties in Paris offer Breakfast, offering it is not
popular in New York City. This indicates a higher demand for such an amenity in
8 www.airdna.co.

www.airdna.co
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Paris than in New York City. As another example, while many accommodations
provide washer, dryer, and iron together, providing dryer without a washer and
iron is rare. This reveals a need for the combination of these attributes. Utilizing
this intuition, we define a frequent node in LA as follows:

Definition 3. Frequent Node: Given a dataset D, and a threshold τ ∈ (0, 1],
a node vi ∈ V (LA) is frequent if and only if the number of tuples in D containing
the attributes Ai is at least τ times n, i.e., |Q(vi,D)| ≥ τn.9

For instance, in Example 1 let τ be 0.3. In Fig. 1, v3 = v(0011) is fre-
quent because Accom. 2, Accom. 5, and Accom. 9 contain the attributes
A3 = {A3:Internet, A4:Washer}; thus |Q(v3,D)| = 3 ≥ 0.3 × 10. However, since
|Q(v11 = v(1011)),D)| is 1 < 0.3 × 10, v11 is not frequent.

Consider a tuple t and a set of attributes A′ ⊆ A\At to be added to t. Let
Ai be At ∪ A′ and vi be v(Ai). After adding A′ to t, for any node vj in LAi

, t
belongs to Q(vj ,D). However, according to Definition 3, only the frequent nodes
in LAi

are desirable. Using this intuition, Definition 4 provides a practical gain
function utilizing nothing but the tuples in the dataset.

Definition 4. Frequent-item Based Count (FBC): Given a dataset D, and
a node vi ∈ V (LA), the Frequent-item Based Count (FBC) of vi is the number
of frequent nodes in LAi

. Formally

FBCτ (B(vi),D) = |{vj ∈ LAi
| |Q(vj ,D)| ≥ τ}| (2)

For simplicity, throughout the paper we use FBC(B(vi)) to refer to
FBCτ (B(vi),D). In Example 1, consider v15 = v(1111). In Fig. 4, we have colored
the frequent nodes in LA15 . Counting the number of colored nodes, FBC(1111)
is 13.

Such a definition of a gain function has several advantages, mainly (i) it
requires knowledge only of the existing tuples in the dataset (ii) it naturally
captures changes in the joint demand for certain attribute combinations (iii) it
is robust and adaptive to the underlying data changes. However, it is known
that [10], counting the number of frequent itemsets is #P-complete. Conse-
quently, counting the number of frequent subsets of a subset of attributes (i.e.,
counting the number of frequent nodes in LAi

) is exponential to the size of the
subset (i.e., the size of LAi

). Therefore, for this gain function, even the verifica-
tion version of GMFA is likely not solvable in polynomial time. Thus, in the rest
of this section, we design a practical output sensitive algorithm for computing
FBC(B(vi)).

4.2 FBC Computation

Given a node vi, to identify FBC(B(vi)), the baseline traverses the lattice under
vi, i.e.,LAi

counting the number of nodes in which more than τ tuples in the

9 For simplicity, we use Q(v, D) to refer to Q(A(v), D).
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dataset match the attributes corresponding to vi. Thus, this baseline is always
in θ(n2�(vi)). An improved method to compute FBC of vi, is to start from the
bottom of the lattice LAi

and follow the well-known Apriori [1] algorithm dis-
covering the number of frequent nodes. This algorithm utilizes the fact that any
superset of an infrequent node is also infrequent. The algorithm combines pairs
of frequent nodes at level k that share k−1 attributes, to generate the candidate
nodes at level k+1. It then checks the frequency of candidate pairs at level k+1
to identify the frequent nodes of size k + 1 and continues until no more candi-
dates are generated. Since generating the candidate nodes at level k+1 contains
combining the frequent nodes at level k, this algorithms is in O(n.FBC(B(vi))2).

Consider a node vi which is frequent. In this case, Apriori will generate all
the 2�(vi) frequent nodes, i.e., in par with the baseline solution. One interesting
observation is that if vi itself is frequent, since all nodes in LAi

are also frequent,
FBC(B(vi)) is 2�(vi). As a result, in such cases, FBC can be computed in con-
stant time. In Example 1, since node v7 with bit representative B(v7) = 0111 is
frequent FBC(0111) = 23 = 8 (�(v7) = 3). This motivates us to compute the
number of frequent nodes in a lattice without generating all the nodes. First, let
us define the set of maximal frequent nodes as follows:

Definition 5. Set of Maximal Frequent Nodes: Given a node vi, dataset
D, and a threshold τ ∈ (0, 1], the set of maximal frequent nodes is the set of
frequent nodes in V (LAi

) that do not have a frequent parent. Formally,

Fvi
(τ, D) = {vj ∈ V (LAi

)| |Q(vj , D)| ≥ τn and ∀vk ∈ parents(vj , LAi
) : |Q(vk, D)| < τn} (3)

In the rest of the paper, we ease Fvi
(τ,D) with Fvi

. In Example 1, the set
of maximal frequent nodes of v15 with bit representative B(v15) = 1111 is
Fv15 = {v7, v10, v14}, where B(v7) = 0111, B(v10) = 1001, and B(v14) = 1110.
Unfortunately, unlike the cases where vi itself is frequent, calculating the FBC
of infrequent nodes is challenging. That is because the intersections between the
frequent nodes in the sublattices of Fvi

are not empty (further details about
this are provided in the technical report [15]). Therefore, in the following, we
propose an algorithm that breaks the frequent nodes in the sublattices of Fvi

into disjoint partitions.
Let Uvi

be the set of all frequent nodes in LAi
– i.e., Uvi

=
⋃

∀vj∈Fvi
V (LAj

).
In Example 1, Uv15 is a set of all colored nodes in Fig. 4. Our goal is to partition
Uvi

to a collection S of disjoint sets such that (i)
⋃

∀Si∈S(Si) = Uvi
and (ii) the

intersection of the partitions is empty, i.e., ∀Si, Sj ∈ S, Si ∩ Sj = ∅; given such
a partition, FBC(B(vi)) is

∑
∀Si∈S |Si|. Such a partition for Example 1 is shown

in Fig. 5, where each color represents a set of nodes which is disjoint from the
other sets designated by different colors.

In order to identify the disjoint partitions, we first define a “pattern” P as a
string of size m, where ∀1 ≤ i ≤ m: P [i] ∈ {0, 1,X}. Specially, we refer to the
pattern generated by replacing all 1s in B(vi) with X as the initial pattern for
vi. For example, in Fig. 5, there are four attributes, P = 0XXX is a pattern
(which is the initial pattern for v7). The pattern P = 0XXX covers all nodes
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whose bit representatives start with 0 (the nodes with green color in Fig. 4).
More formally, the coverage of a pattern P is defined as follows:

Definition 6. Given the set of attributes A and a pattern P , the coverage of
pattern P is10

COV(P ) = {vi ⊆ V (LA)|∀1 ≤ k ≤ m if P [k] = 1 then Ak ∈ Ai, and if P [k] = 0 then Ak /∈ Ai}
(4)

In Fig. 4, all nodes with green color are in COV (0XXX) and all nodes with
blue color are in COV (XXX0). Specifically, node v3 with bit representative
B(v3) = 0011 is in COV (0XXX) because its first bit is 0. Note that a node
may be covered by multiple patterns, e.g., node v6 with bit representative
B(v6) = 0110 is in COV (0XXX) and COV (XXX0). We refer to patterns
with disjoint coverage as disjoint patterns. For example, 01XX and 11XX are
disjoint patterns. Figure 5, provides a set of disjoint patterns (also presented in
the 4-th column of Fig. 6) that partition Uv15 in Fig. 4. The nodes in the coverage
of each pattern is colored with a different color.

Consider a set of disjoint patterns P that partition Uvi
. For a pattern P ∈

P let xk(P ) be the number of Xs in P ; the number of nodes covered by the
pattern P is 2kx(P ). Thus, FBC(B(vi)) is simply

∑
∀Pj∈P 2kx(Pj). For example,

considering the set of disjoint patterns in Fig. 5, the last column of Fig. 6 presents
the number of nodes in the coverage of each pattern Pj (i.e., 2kx(Pj)); thus
FBC(1111) in this example is the summation of the numbers in the last column
(i.e., 13).

In order to find the set of disjoint patterns that partition Uvi
, we define a

bipartite graph that allows us to assign every frequent node in Uvi
to one and

only one partition. Due to the space limitations, we provide the details in the
technical report [15].

5 Experimental Evaluation

We now turn our attention to the experimental evaluation of the proposed algo-
rithms, over real-world data. In addition to the performance evaluation, we also
provide a case study in Sect. 5.3 to illustrate the practicality of the approaches.

5.1 Experimental Setup

Hardware and Platform: All the experiments were performed on a Core-I7
machine 8 GB of RAM. The algorithms were implemented in Python.

Dataset: The experiments were conducted over real-world data collected from
AirBnB, a travel peer to peer marketplace. We collected the information of
approximately 2 million real properties around the world, shared on this website.
10 Note that if P [k] = X, Ak may or may not belong to Ai.
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Fig. 7. Impact of varying m on GMFA
algorithms

Fig. 8. Impact of varying B on GMFA
algorithms

Fig. 9. Impact of varying n on FBC
algorithms

Fig. 10. Impact of varying m on FBC
algorithms

Fig. 11. Impact of varying τ on FBC
algorithms

Fig. 12. Impact of varying n on pre-
processing and online processing

AirBnB has a total number of 41 attributes for each property. Among all the
attributes, 36 of them are boolean attributes, such as TV, Internet, Washer, and
Dryer, while 5 are ordinal attributes, such as Number of Bedrooms and Number of
Beds. We identified 26 (boolean) flexible attributes and for practical purposes we
estimated their costs for a one year period. Notice that these costs are provided
purely to facilitate the experiments; other values could be chosen and would not
affect the relative performance and conclusions in what follows. In our estimate
for attribute cost[.], one attribute (Safety card) is less than $10, nine attributes
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Fig. 13. Impact of varying m on preprocessing and online processing

(eg. Iron) are between $10 and $100, fourteen (eg. TV) are between $100 and
$1000, and two (eg. Pool) are more than $1000.

Algorithms Evaluated: We evaluated the performance of our proposed algo-
rithms: B-GMFA (Baseline GMFA), I-GMFA (Improved GMFA) and G-
GMFA (General GMFA). According to Sect. 3, B-GMFA does not consider
pruning the sublattices of the maximal affordable nodes and examines all the
nodes in LA. In addition, for Sect. 4, the performance of algorithms A-FBC
(Apriori-FBC) and FBC is evaluated.

Default Values: n (number of tuples): 200,000; m (number of attributes): 15;
B (budget): $2000; τ (frequency threshold): 0.1; At = {}.

5.2 Experimental Results

Figure 7: Impact of Varying m on GMFA Algorithms. We first study the
impact of the number of attributes (m) on the performance Sect. 3 algorithms
where the GMFA problem is considered over the general class of monotonic gain
functions. In this (and next) experiment we only consider the running time
for the GMFA algorithms by deducting the gain function computation from the
total time. Figure 7 presents the results for varying m from 5 to 25. The size of
LA exponentially depends on the number of attributes (m). Thus, traversing the
complete lattice, B-GMFA did not extend beyond 15 attributes (requiring more
than 10K s to finish). Utilizing the monotonicity of the gain function, I-GMFA
scaled up to 20 attributes. Still it took 1566 s for I-GMFA to finish with 20
attributes. Despite the exponential growth of LA, transforming the lattice to a
tree structure, reordering the attributes, and amortizing the computation costs,
G-GMFA performed well for all the settings, requiring 116 s for 25 attributes.

Figure 8: Impact of Varying B on GMFA Algorithms. In this experiment,
we vary the budget from $1K up to $3K Since B-GMFA traverses the complete
lattice and its performance does not depend on B. For a small budget, the
maximal affordable nodes are in the lower levels of the lattice and I-GMFA (as
well as G-GMFA) require to traverse more nodes until they terminate their
traversal. To resolve the issue when the budget is limited, one may identify the
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node vi with the cheapest attribute combination and start the traversal from
level �(vi) as no other maximal affordable node can have more attributes.

Figure 9: Impact of Varying n on FBC Algorithms. In next three exper-
iments we compared the performance our proposed algorithm for computing
FBC to that of adopting the Apriori algorithm for such computation (A-FBC).
The algorithms are utilized inside G-GMFA computing the FBC (gain) of max-
imal frequent nodes. When comparing the performance of these algorithms, after
running G-GMFA, we consider the total time of each run. The input to FBC
is the set of maximal frequent nodes, which is computed offline. Thus, during
the identification of the FBC of a node vi there is no need to recompute them.
Still, for a fair comparison, we include in the graphs a line that demonstrates
total time (the time to identify maximal affordable nodes and the time required
by FBC). First, we vary the number of tuples (n) from 200 to 2M . As reflected
in the figure, A-FBC does not extend beyond 20K tuples and even for n = 20K
it requires more than 17K s to complete. Even considering preprocessing in the
total running time of FBC (blue line), it extends to 2M tuples with a total time
less than 3K s. The running time of FBC itself does not depend on n. This is
reflected in Fig. 9, as in all settings the time required by FBC is less than 2 s.

Figure 10: Impact of Varying m on FBC Algorithms. Next, we vary the
number of attributes from 5 to 25. A-FBC requires 10K s for 10 attributes
and does not extend beyond, in a reasonable time. On the other hand, FBC
performs well for all the settings; the total time for preprocessing and running
time for FBC on 25 attributes is around 4K s, while the time to run FBC itself
is 510 s.

Figure 11: Impact of Varying τ on FBC Algorithms. We vary the fre-
quency threshold (τ) from 0.05 to 0.2. A-FBC did not complete for any of the
settings! Thus, in Fig. 11 we present the performance of FBC. To demonstrate
the relationship between the gain and the time required by the algorithm, we
add the FBC of the optimal solution in the right-y-axis and the dashed orange
line. When the threshold is large, smaller number of nodes are frequent and the
maximal frequent nodes appear at the lower levels of the lattice. Thus, prepro-
cessing stops earlier. Also, having smaller number of nodes for larger thresholds,
the gain (FBC) of the optimal solution decreases as the threshold increases. In
this experiment, the gain of the optimal solution for τ = 0.05 was 129 while it
was 22 for τ = 0.2. The performance of FBC linearly depends on its output
value. The time required by FBC in this experiment is less than 3.2 s for all
settings.

Figures 12 and 13: Impacts of Varying n and m in the Online and
Offline Running Times. We evaluate the performance of G-GMFA with
FBC and perform two experiments to study offline processing time (identifying
the maximal affordable nodes) and the total online (query answering) time.
We also include the right-x-axis and the dashed orange line to report the gain
(FBC) of the optimal solution. First, we vary the number of tuples (n) between
200 and 2M (Fig. 12). While the preprocessing time increases from less than 3
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s for n = 200 up to around 3, 400 s for n = 2M, the online processing time
(i.e., GMFA and FBC times) does not depend on n, and for all the settings
requires less than 2 s. This verifies the suitability of our proposal for online
query answering at scale. Next, we vary m from 5 to 25. Despite the exponential
increases in the size of LA, the total time to execute G-GMFA with FBC for
25 attributes is around 600 s. In practice, since At is probably not empty set, the
number of remaining attributes is less than m and one may also select a subset
of them as flexible attributes; we utilize m = 25 to demonstrate that even for
the extreme cases, the proposed algorithms provide answers in reasonable time.

5.3 Case Study

We preformed a real case study on the actual AirBnB rental accommodations in
two popular locations: Paris and New York City (NYC). We used the location
information of the accommodations, i.e., latitude and longitude for the filtering,
and found 42, 470 rental accommodations in Paris and 37, 297 ones in NYC. We
considered two actual accommodations, one in each city, offering the same set
of amenities. These accommodations lack providing the following amenities: Air
Conditioning, Breakfast, Cable TV, Carbon Monoxide Detector, Doorman, Dryer,
First- Aid Kit, Hair Dryer, Hot Tub, Indoor Fireplace, Internet, Iron, Laptop

Friendly Workspace, Pool, TV, and Washer. We used the same cost estimation
discussed in Sect. 5.1, assumed the budget B = $2000 for both accommodations,
and ran GMFA while considering FBC (with threshold τ = 0.1) as the gain
function. It took 0.195 s to finish the experiment for Paris 0.365 s for NYC. While
the optimal solution suggests offering Breakfast, First Aid Kit, Internet, and
Washer in Paris, it suggests adding Carbon Monoxide Detector, Dryer, First Aid

Kit, Hair Dryer, Internet, Iron, TV, and Washer in NYC. Comparing the results
for the two cases reveals the popularity of providing Breakfast in Paris, whereas
the combination of Carbon Monoxide Detector, Dryer, Hair Dryer, Iron, and TV

are preferred in NYC.

6 Related Work

Product Design: The problem of product design has been studied by
many disciplines such as economics, industrial engineering, and computer sci-
ence [2,17,18]. More specifically, manufacturers want to understand the prefer-
ences of their (potential) customers for products and services they are or may
consider offering. Many factors like the cost and return on investment are cur-
rently considered. Work in this domain requires direct involvement of consumers,
who choose preferences from a set of existing alternative products. While the
existing work’s focus is on identifying the set of attributes and information col-
lection from various sources for a single product, our goal is to use the existing
data for providing a tool that helps service providers as a part of peer to peer
marketplace. In such marketplaces, service providers (e.g. hosts) are the cus-
tomers of the website owner (e.g., AirBnB) who aim to list their service for
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other customers (e.g. guests) which makes the problem more challenging. The
problem of item design in relation to social tagging is studied in [5], where the
goal is to creates an opportunity for designers to build items that are likely to
attract desirable tags when published. [13] also studied the problem of select-
ing the snippet for a product so that it stands out in the crowd of existing
competitive products. Still, none studied our proposed problem.

Frequent Itemsets Count: Finding the number of frequent itemsets and num-
ber of maximal frequent itemsets has been shown to be #P-complete [10,11].
The authors in [9] provided an estimate for the number of frequent itemset can-
didates containing k elements rather than true frequent itemsets. Clearly, the set
of candidate frequent itemsets can be much larger than the true frequent item-
set. In [12] the authors theoretically estimate the average number of frequent
itemsets under the assumption that the transactions matrix is subject to either
simple Bernoulli or Markovian model. In contrast, we do not make any proba-
bilistic assumptions about the set of transactions and we focus on providing a
practical exact algorithm for the frequent-item based count.

7 Final Remarks

We proposed the problem of gain maximization over flexible attributes (GMFA)
in the context of peer to peer marketplaces. Studying the complexity of the
problem, we provided a practically efficient algorithm for solving GMFA that
works for any arbitrary monotonic gain function. We presented frequent-item
based count (FBC), as an alternative practical gain function in the absence of
extra information, and proposed an efficient algorithm for computing it. The
extensive experiment on a real dataset from AirBnB and the case study con-
firmed the efficiency and practicality of our proposal. The focus of this paper
is such that it works for various application specific gain functions. Of course,
which gain function performs well in practice depends on the application and
the availability of the data. A comprehensive study of the wide range of possible
gain functions and their applications left as future work.
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Abstract. In a successive Point of Interest (POI) recommendation
problem, analyzing user behaviors and contextual check-in information
in past POI visits are essential in predicting, thus recommending, where
they would likely want to visit next. Although several works, especially
the Matrix Factorization and/or Markov chain based methods, are pro-
posed to solve this problem, they have strong independence and con-
ditioning assumptions. In this paper, we propose a deep Long Short
Term Memory recurrent neural network model with a memory/attention
mechanism, for the successive Point-of-Interest recommendation prob-
lem, that captures both the sequential, and temporal/spatial character-
istics into its learned representations. Experimental results on two popu-
lar Location-Based Social Networks illustrate significant improvements of
our method over the state-of-the-art methods. Our method is also robust
to overfitting compared with popular methods for the recommendation
tasks.

Keywords: Deep learning · Spatio-temporal data ·
Attention mechanism · Recurrent neural network ·
Long short term memory · Social networks

1 Introduction

Location-Based Social Networks (LBSNs) produce a huge amount of data, in
both veracity and volume, thus providing opportunities for building personalized
Point-of-Interest (POI) recommender systems. In a typical POI recommendation
task, a user makes a sequence of check-ins at various POIs that are both geo-
tagged and time-stamped, and the task is to recommend the next POI that
the user is likely interested in visiting. Here a check-in comprises of which POI
is visited, and additional contextual information such as the time or geotag
of the visit. Finding an efficient way to represent the POI and its contextual
information is essential because this can improve the performance of the model
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and allow a better understanding of the seemingly complex inter-relationships
of the heterogeneous properties of the POIs.

The recommendation task has been studied in numerous works [6,11,12,16,
20]. One of the most widely used technique is matrix factorization (MF), or a
hybrid of MF and Markov Chain (MC). These methods, albeit having impressive
performance, rely on strong independent assumption among different factors.
Several attempts (e.g., Neighborhood-based MF methods [13,14,16]) have been
made to overcome these limitations, but are unable to efficiently model the
sequential, periodic check-in behaviors.

It has been shown that human movements usually demonstrate strong pat-
terns in both spatial and temporal domain [3]. To take advantage of the spatio-
temporal nature of check-ins, several recommendation systems have been pro-
posed particularly for POIs (e.g., [18]). The state-of-the-art POI recommenda-
tion systems [5,15] use neural networks to learn the latent correlation between
spatio-temporal features from historical check-ins and the next check-in location
of a user. By mining spatio-temporal information from such correlations, these
techniques are able to significantly outperform generic recommendation systems
in the POI recommendation task.

In this paper, we will tackle this challenge and try to advance the state-of-
the-art in POI recommendation systems. We propose a novel Attentive Spatio-
TEmporal Neural (ASTEN) model that is able to recommend a POI by (1)
extracting useful information from the most relevant POI visits reported by a
user, and (2) minimizing the influence from non-relevant POI visits from the user.
At the core of the proposed system is a Long-Short Term Memory (LSTM) Net-
work structure, which employs the attention mechanism [2,4] to automatically
select and extract information from the most relevant check-ins on a user’s tra-
jectory and make recommendations. ASTEN’s network architecture overcomes
the limitations of using a single hidden vector to represent a user’s dynamical
check-in behavior. As a result, our system is able to exploit long user trajectories
without having to deal with the excessive noise. The main contributions of our
work are:

– We propose a novel ASTEN model that addresses the challenge of noise han-
dling in user trajectory data and advances the state-of-the-art of POI rec-
ommendation systems. This is achieved by combining the LSTM Network
structure with a sophisticated attention mechanism specifically designed for
spatio-temporal information present in LBSN datasets. To the best of our
knowledge, this approach and the model design have not been studied for
POI recommendation in the literature.

– We demonstrate the effectiveness of our method using three real-world LBSN
datasets. Experiments show that our model outperforms existing POI rec-
ommendation systems. Our method is not only scalable but also robust to
overfitting when the complexity increases.

– From our analysis of experimental results, we derive a set of practical impli-
cations that are useful for real-world applications.
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2 Related Works

We describe the prior works that capture sequential, temporal and geographical
influences in the context of LBSNs.

2.1 POI Recommendation

MF-based methods are arguably one of the best user-based collaborative filter-
ing approaches [6,12]. Neighborhood-based MF methods attempt to incorporate
temporal and spatial features. TimeSVD++ [11], for example, takes advantage
of both the transition effect and the long-term transition pattern by modeling
the user preference as a function of time. Similarly, recent works [13,16] model
users’ interest limited to the neighborhoods of the recently visited locations. In
[6], PRME learns a personalized metric embedding and models the sequential
POI transition. Another popular approach for modeling sequential data is MC,
which learns a transition probability matrix over sequential events. In recent
works [20], instead of estimating a single matrix for all users, each user can be
mapped to a personalized transition probability matrix. For example, Factoriz-
ing Personalized MC (FPMC), which has the ability to model sequential data
in an MF-based approach, is the state-of-the-art method [20].

Besides the cold-start problem, the common drawbacks of the MF based
approaches are their strong independent assumptions among the factorized com-
ponents and that their generalization strengths depend on designing a good
feature space, which might not be a realistic assumption for many real-world
problems.

2.2 Neural Models and Attention Mechanism

Progress in RNNs has shown impressive results in modeling sequential data [7].
Although RNN is theoretically capable of conditioning the model on all of the
previous time-steps, the number of time-steps, in practice, what such a RNN
model can remember is limited because of its difficulties in training.

Because RNN assumes discrete influence of the sequential events, it does
not explain well real-world situations where the transition to a POI is contin-
uously influenced by the historical spatial and temporal context. ST-RNN [15]
models the continuous local temporal and spatial contexts with time-specific
and distance-specific transition matrices and achieves a significant performance
improvement in the recommendation task. RMTPP [5] jointly models the predic-
tion of the time to next events and the event themselves. ST-RNN and RMTPP,
however, suffer from the bottleneck problem in RNN where the use of the sin-
gle hidden vector is insufficient to capture the complex characteristics of the
sequences in a problem [2]. A recent success in training RNNs is a concept of
attention [2,4]. For POI recommendation, however, it is not straightforward how
the attention mechanism should be modeled.

In this paper, we attempt to formalize the concepts of POI and check-in rep-
resentations and describe how such representations can be embedded and learned
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within an efficient spatio-temporal attentive recurrent network structure. The
proposed model is able to capture the sequential information, and spatio-
temporal influence between check-ins in an end-to-end network that
is robust to noisy check-in data.

3 Data Description and Analysis

3.1 Data Description

We use three datasets collected from various activities of users on two popular
LBSNs, namely, Foursquare (4SQ) and Gowalla. For 4SQ, we collect activities of
users in the United States and in Europe separately and denote them as 4SQ-US
and 4SQ-EU, respectively. For Gowalla, we use the dataset described in [3]. We
pre-process the check-in data by filtering out POIs that were checked into by less
than 10 users and users who checked-in less than 10 POIs. Table 1 summarizes
the pre-processed datasets.

Table 1. Summary statistics of the LBSN datasets.

4SQ-US 4SQ-EU Gowalla

Number of users 21,878 15,387 52,484

Number of POIs 21,651 30,276 115,567

Number of check-ins 569,091 56,301 3,227,845

Average length 37 34 61

3.2 Check-In Data Exploration

Figures 1a–c show the temporal characteristics of the check-in activities. We
observe that weekdays and weekend have different patterns of cumulative check-
ins, defined as the total number of observed check-ins from all users at a specific
hour of the day. Moreover, check-in activities form different patterns for different
hours of the day inside the weekday or weekend group. Therefore, modeling POI
and check-in representations should consider the temporal periodic variances and
their interaction patterns.

Next, we perform analysis on the regularity of the check-in sequences. For
each user, we calculate the transition distances between the sequentially visited
POIs. We employ approximate entropy [19] as a measure of the regularity and
unpredictability of local fluctuations in the resulting sequences of transition dis-
tances. We set a filtering level of 1 mile. Figures 1d–f show the histogram of
approximate entropies of the sequences in the three datasets. We filter highly
irregular series with infinite approximate entropies. In all datasets, the filter
removes at most 25% of the users. We observe that the majority of the sequences
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(a) 4SQ-US (b) 4SQ-EU (c) Gowalla

(d) 4SQ-US (e) 4SQ-EU (f) Gowalla

Fig. 1. Statistics of check-ins in the studied datasets. Figures (a–c) show the total
number of check-ins on different days of the week. Solid lines correspond to weekdays.
Dashed-lines correspond to weekends. Figures (d–f) show the distribution of approxi-
mate entropies of transition distances of user check-in sequences.

Table 2. Notations used in our paper.

Notation Description

W∗ Weight matrices of the network architecture. A Wab is a matrix of size
Rm×n, where m is the dimension of the input layer a and n is the
dimension of the output layer b

b∗ Bias term associated with the corresponding W∗
lt One-hot encoding vector of POI at time t

pt Embedding of a POI at time t

st1,t2 Spatial distance between POIs at time t1 and t2. Note that t1 and t2
may not be consecutive time-steps

tt Temporal periodicity vector at time t

have low approximate entropies, which means that their transition distances
exhibit not only regularity but also less fluctuation. This observation motivates
us to model the distance transition behavior into a sequence’s representation.

4 Proposed Methodology

4.1 Problem Definition

In this section, we formally define the successive recommendation task discussed
in this paper.
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Definition 1. (Check-in). A check-in Cu(t) is a tuple of (u, l, t, s) ∈ U × L ×
T × S, where U is a set of unique users, L is a set of unique POIs, T is the
continuous time domain, and S is continuous spatial domain, indexed by the
latitude and longitude coordinates. Cu(t) indicates that user u visited location l
geo-tagged with coordinates s at time t.

Definition 2. (User-historical check-ins). A set of time-ordered, historical
check-ins of a user u is defined as CTu

u = {Cu(t) : t ∈ [1, Tu]}, where Tu is the
number of check-ins of user u.

Definition 3. (Successive POI Recommendation). Given a set of user-
historical check-ins CTu

u , the successive point of interest recommendation task is
to suggest the POI(s) that the user u will likely check-in after time Tu.

In the following sections, we discuss our proposed method. Table 2 describes
the notations used in our discussion.

4.2 POI Embedding and Check-In Representation

We propose to learn efficient representations of POIs and check-ins. Given a
user u who performs a sequence of check-ins CTu

u = (Cu(1), ..., Cu(Tu)), where
each check-in, as described, contains a POI l(j) ∈ L, and the spatio-temporal
information about the check-in, we learn two types of representations:

1. POI embeddings: we learn a function fl(j) : L �→ Rm that maps every POI to
a real-valued vector Rm where m is the dimension of the embedding.

2. Check-in representations: we learn a similar function fCu(t) : Cu(t) �→ Rn that
maps every check-in, which is a tuple of the checked POI, and its temporal
information and spatial transition relationship to the previously checked POI,
into a n-dimensional real-valued vector.

Given these objectives, we model a check-in xt at time t as a function of the
embedded visited-POI, its temporal context and its spatial transition distance
shown in Eq. 1. pt is the one-hot encoding of the checked POI at time step t.
The temporal context is a set of one-hot vectors encoding the time periodicity
and denoted by tt = concatenate(domt, dowt, hrt), where domt is the day of the
month, dowt is the day of the week and hrt is the hour of the day. The spatial
transition context st,t−1 is the great-circle distance between the checked POIs
at time-points t and t − 1. The spatio-temporal model is shown in Fig. 2a.

xt = ReLU(Wvx ∗ ct + bx)
ct = concatenate(pt, tt, st,t−1) (1)
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4.3 Recurrent Neural Networks and LSTMs

We model the hidden state as a latent representation of the past events. The
predicted output, the ranked list of the recommended POIs, is a function of the
hidden state:

ht = σ(Whhht−1 + Wxhxt + bh)
ŷ = softmax(Whyht + by) (2)

where Whh and Wxh are weight matrices of the hidden-hidden and input-hidden
connections respectively, bh is the hidden bias term, Why and by are the weights
and bias of the hidden-output connections respectively, and σ is a Rectified
Linear Unit (ReLU) [7] in our paper.

(a) Input Module (b) Attention Module

Fig. 2. Network architecture of ASTEN. (a) Illustration of the recurrent input. (b)
Illustration of the attention module: ht in the vanilla RNN is replaced by ĥt.

In our model, we use a combination of the gradient-clipping technique to
overcome the gradient exploding problem [7] and the LSTM units [9] to better
capture long-term dependencies.

4.4 The Proposed ASTEN Model

Most of the existing RNNs rely on the last hidden activation vector as input into
a feed-forward module, such as the softmax layer used in Sect. 4.3. Consequently,
the last hidden state becomes the primary bottleneck of the neural model as dis-
cussed in Sect. 2.2, which often results in non-trivial model tuning and longer
training time. In our paper, we introduce an attention or memory access mech-
anism that allows the recommendation task to pool a fixed set of the hidden
states created in the previous time-steps in order to make the recommendation.

At a time step t, we learn the unit-length alignment vector at ∈ RW . W is
called the window and is a hyperparameter that determines how many of the
previous hidden states in the previous timesteps should play a role in construct-
ing the pooled hidden representation. An element at position w of at determines
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the amount of information from the previous hidden state ht−w the model should
retain and can be calculated by:

at,w =
score(ht, ht−w)

∑W
k=1 score(ht, ht−k)

(3)

where there are several options for the score function. A common version of the
score function can be specified as:

score(ht, hk) = htWahhk (4)

Although there are other choices of the attention score function, we have seen
better performance of the proposed score function, which is similar to the findings
in [17]. Since spatial check-in characteristics and temporal transition distances
could influence the check-in behaviors as discussed in Sect. 3, we propose mod-
eling the score as a function of the relative relationship between the spatial and
temporal properties of the check-ins at time t − w and t. Specifically, score can
be expressed as follows:

score(ht, hk) = htWahhk + htWattk + htwasst,k (5)

where tk is the temporal periodicity vector at time k defined in Sect. 4.2, while
st,k – similar to the definition of st,t−1 also in Sect. 4.2 – is the great-circle spatial
transition distance between check-in at time k and the current check-in at time t.

Given at, the final attentive hidden state ĥt can be calculated as follows:

ĥt = Wchconcat(ht, gt)

gt =
W∑

w=1

at,wht−w (6)

Our goal, therefore, is to learn parameters of the scoring function such that
the scores reflect the similarity between the past hidden states and the current
hidden state t based on their temporal and spatial similarities. The architecture
of our proposed ASTEN model is shown in Fig. 2b.

4.5 Parameter Inference

We train an LSTM network that, given a sequence of check-ins, will recommend
the next likely checked-in location. Given a sequential representation of check-
ins, we minimize the cross entropy loss as follows:

W∗, w∗, b∗
1
T

T∑

t=1

−yt+1 log ŷt − (1 − yt+1) log (1 − ŷt) (7)

where

ŷt =
exp(Whyĥt + by)

∑L
j=1 exp(Why[j, :]ĥt + by[j])

(8)
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and Why and by are the weight matrix and bias vector of the softmax classifier
to predict the next checked-in POI, respectively.

To train the proposed model, we adopt the gradient based backpropagation
through time training technique [8] and Adam optimizer [10]. We also employ
dropout technique [7] for learning all parameters. We set the dropout value to
0.2. We train our model using an initial learning rate of 0.01 and an exponential
learning rate decay of 0.96 at every 100 train steps.

5 Experimental Results

In this section, we show the performance evaluation of our proposed model
through empirical experiments.

5.1 Experimental Setup

We perform our experiments on real-world LBSN datasets, namely, Foursquare
(Europe and US) and Gowalla, as described in Sect. 3.1. We employ the 5-fold
cross validation technique. The performance metrics are reported from their
averages across the folds.

To evaluate the performance, we employ two popular ranking metrics,
Recall@k and F1-score@k, where k is the number of recommended POIs.
We also report the Area under the ROC curve (AUC) in our experiments.

5.2 Comparison Methods

We compare the effectiveness of our ASTEN model with several representative
recommendation methods:

1. Most Popular Location (TOP): recommend the most popular locations.
2. Markov Chain (MC): the popular MC model for sequential data. We choose

the Markov order using its generalization error on the validation set.
3. Spatio-temporal Analysis via Low Rank Tensor Learning (LRTL) [1]: an

extension of Matrix Factorization into three-dimensional user, spatial and
temporal information.

4. Factorizing Personalized Markov Chains (FPMC) [20]: state-of-the-art
Markov chain method based on matrix factorization.

5. Personalized Ranking Metric Embedding (PRME) [6]: state-of-the-art pair-
wise Metric Embedding method for POI recommendation that jointly models
the sequential information, user preference and geographical influence.

6. Recurrent Neural Network (RNN): RNN model for discrete temporal data.
7. Spatial Temporal RNN (ST-RNN) [15]: state-of-the-art RNN-based POI rec-

ommender system that models both local temporal and spatial transition
context via time-specific and distant-specific transition matrices respectively.

For the MF models, we perform grid-search to find the best hyperparameters
using a validation set, which is 20% of the training data, before evaluating their
performances on a hold-out test set. For RNN and ST-RNN, we use a similar
learning rate, decay schedule, and batch sizes as those of ASTEN.
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Table 3. Evaluation results of various methods on various LBSN datasets.

Dataset Method recall@1 recall@5 recall@10 F1@1 F1@5 F1@10 AUC

Foursquare-US TOP 0.029 0.120 0.275 0.029 0.051 0.049 0.731

MC 0.101 0.209 0.301 0.101 0.134 0.107 0.761

LRTL 0.125 0.237 0.307 0.125 0.135 0.128 0.787

FPMC 0.141 0.258 0.322 0.141 0.159 0.147 0.804

PRME 0.148 0.265 0.343 0.148 0.161 0.153 0.820

RNN 0.145 0.267 0.349 0.145 0.163 0.151 0.825

ST-RNN 0.159 0.281 0.364 0.159 0.175 0.165 0.846

ASTEN 0.181 0.328 0.414 0.181 0.189 0.178 0.897

Foursquare-EU TOP 0.028 0.074 0.153 0.028 0.044 0.043 0.610

MC 0.073 0.131 0.204 0.073 0.083 0.078 0.702

LRTL 0.107 0.188 0.259 0.107 0.117 0.112 0.746

FPMC 0.112 0.196 0.275 0.112 0.126 0.123 0.768

PRME 0.120 0.208 0.291 0.120 0.131 0.125 0.780

RNN 0.121 0.219 0.304 0.115 0.139 0.129 0.774

ST-RNN 0.125 0.243 0.329 0.125 0.148 0.138 0.794

ASTEN 0.144 0.281 0.35 0.144 0.159 0.150 0.827

Gowalla TOP 0.009 0.025 0.061 0.009 0.013 0.012 0.566

MC 0.019 0.054 0.097 0.019 0.065 0.062 0.601

LRTL 0.026 0.063 0.132 0.026 0.077 0.071 0.608

FPMC 0.044 0.083 0.174 0.044 0.091 0.089 0.652

PRME 0.050 0.091 0.192 0.050 0.097 0.090 0.670

RNN 0.048 0.098 0.189 0.048 0.121 0.095 0.673

ST-RNN 0.061 0.120 0.223 0.061 0.138 0.120 0.695

ASTEN 0.081 0.152 0.266 0.081 0.165 0.158 0.735

5.3 POI Recommendation Performance

Table 3 shows the averaged performance results across different metrics discussed
in Sect. 5.1. TOP has the worst performance results, as expected. MC improves
over TOP since it incorporates the sequential transitions into the model. How-
ever, MC’s recall, F1-scores and AUC are worse than that of the three neural
models that have a better memory capacity. Since FPMC combines the suc-
cesses of MF-based models and MC-based models, in our experiments, FPMC
outperforms MC by at least 2% in all metrics. FPMC also outperforms LRTL.
PRME improves further upon FPMC and its performance is comparable to that
of RNN. However, its performance is worse than that of ST-RNN and the pro-
posed ASTEN model in our experiments.

Among the neural models, ST-RNN expectedly outperforms RNN by 2%−5%
in our results. Nevertheless, ASTEN achieves a better performance improvement
compared to ST-RNN. Moreover, when K increases, ASTEN experiences the
highest recall improvement compared to the other methods, suggesting that
the top-ranked POIs are more relevant to the recommendation. The results are
consistent across all the datasets.
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Table 4. Performance evaluation when adding spatial and temporal components.

Dataset Method recall@1 recall@5 recall@10

4SQ-US LSTM 0.155 0.279 0.361

ST-LSTM 0.161 0.303 0.378

A-LSTM 0.159 0.309 0.371

ASTEN 0.181 0.328 0.414

Gowalla LSTM 0.049 0.105 0.192

ST-LSTM 0.054 0.118 0.218

A-LSTM 0.067 0.132 0.231

ASTEN 0.081 0.152 0.266

5.4 ASTEN Performance Analysis

In this section, we present the performance improvements of our proposed model
when various modeling components are being added in the 4SQ-US and Gowalla
datasets. We look at the recall@k metric in the experiments on both 4SQ-US
and Gowalla datasets in the following settings:

1. Discrete LSTM (D-LSTM), which is similar to the discrete (vanilla) RNN
mentioned in Sect. 5.2 but using LSTM as hidden units.

2. Spatio-temporal LSTM (ST-LSTM), the ASTEN model without the spatio-
temporal attention mechanism.

3. Attentive LSTM (A-LSTM), the ASTEN model without spatio-temporal
embedding inputs as described in Sect. 4.2.

4. ASTEN model, which is our proposed model described in Sect. 4.4.

In Table 4, D-LSTM only slightly outperforms the previous RNN’s recall
discussed in Sect. 5.3. This result may be explained by the fact that although
LSTM models are theoretically more robust to the gradient problems, in practice,
this is not always the case. Both of the baseline neural models, however, have
lower recall values compared to ST-LSTM and A-LSTM, both of which have
comparable recall values in our experiments. We conjecture that the superior
performances of these two models are due to the following reasons:

– Learning the spatio-temporal interaction of check-in sequences results in bet-
ter recommendation quality.

– Our attentive mechanism captures better the check-in representation of a
user, thus improving the recommendation quality.

Finally, our proposed model combines the spatio-temporal and attention mech-
anism and achieves the best performance in our experiments.
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(a) 4SQ-US (b) Gowalla

Fig. 3. Recall@1 when varying ASTEN’s dimensions.

5.5 Varying Dimensions

To determine the effect of increasing the network complexity on its performance,
we vary the dimensionality of POIs and check-in representations, and the hid-
den layer’s LSTM size from 50 to 400, and compute the network’s generalization
using recall@1 for each case. As the dimension increases, the network’s perfor-
mance increases until an optimal value is achieved, after which the recall slowly
decreases, though the decrease is not very significant. We notice that the gen-
eralization recall@1’s, around and after the optimal values, are still better than
that of the methods compared in Sect. 5.3, which indicates that increasing the
network’s performance is not sensitive to its capacity when the dimensionality is
sufficient. We conjecture that this is probably because of the dropout technique
employed in our model.

6 Conclusion

We proposed a novel end-to-end learning model that takes advantage of the
sequential nature and spatial/temporal contextual information of user check-
ins. We also proposed a novel attention/memory access mechanism that can
effectively overcome the hidden layer bottleneck of RNNs. We have shown that
the proposed ASTEN model outperforms various existing methods on real-world
datasets. A primary goal of our work is to find efficient representations for a
learning task and our results clearly illustrate that our method could achieve
this goal. Our complexity analysis shows that ASTEN outperforms state-of-the-
art methods even as the number of parameters increases.
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Abstract. A typical software tool for solving complex problems tends
to expose a rich set of features to its users. This creates challenges such as
new users facing a steep onboarding experience and current users tend-
ing to use only a small fraction of the software’s features. This paper
describes and solves an unsupervised mentor pattern identification prob-
lem from product usage logs for softening both challenges. The problem
is formulated as identifying a set of users (mentors) that satisfies three
mentor qualification metrics: (a) the mentor set is small, (b) every user
is close to some mentor as per usage pattern, and (c) every feature has
been used by some mentor. The proposed solution models the task as
a non-convex variant of an �1-norm regularized logistic regression prob-
lem and develops an alternating minimization style algorithm to solve it.
Numerical experiments validate the necessity and effectiveness of men-
tor identification towards improving the performance of a k-NN based
product feature recommendation system for a real-world dataset. Fur-
ther, t-SNE visuals demonstrate that the proposed algorithm achieves a
trade-off that is both quantitatively and qualitatively distinct from alter-
native approaches to mentor identification such as Maximum Marginal
Relevance and K-means.
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1 Introduction

Consider the set of software tools devised to assist in solving complex problems.
Common examples include, but are not limited to, software that are classified as
3D modelling tools, image editing software or Integrated Development Environ-
ments (IDEs). These tools are often developed with numerous features, making
them complicated to use and leading to multiple problems during adoption. For
novice users, the onboarding process presents a steep learning curve, taking them
months of practice and frustration to gain sufficient expertise [5] to use the tools
productively. Furthermore, even after onboarding, most users don’t use a large
fraction of available features. For most users, this means that they use the soft-
ware inefficiently [15] and are unable to guide or onboard new users. Figure 1
illustrates this issue with our real-world data.

Fig. 1. Number of users vs Number of distinct features used for a software with 600
distinct features over a period of two months. Rapid decay suggests that most users
use very few features.

Herein, we develop a method to soften the above challenges. We term the core
problem as mentor pattern identification and propose an algorithm to solve it. A
mentor is described by [6] as “someone who helps someone else learn something
that he or she would have learned less well, more slowly, or not at all if left alone.”
Informally, our core problem translates to identifying a small set of existing users
who collectively possess expertise (as per usage pattern) across all features of
the software tool. If this is successful, then the usage patterns from these users
may serve as mentor patterns for virtual/algorithmic mentoring of other users.

Nature of the Data. The characteristics of the mentor pattern identification
problem are tied to information captured in the data. The difficulty and possible
approaches to the problem can change with the presence of auxiliary information.

Our dataset consists of usage logs for a feature rich image editing software
over an observation period of two months. The logs contain timestamped entries
for each feature that was accessed by each registered user at each time point
during the observation period. Approximately 10,000 users accessed over 600
features every month, generating a few million log entries per month. The fea-
tures offered by the software are categorized as being useful to either experts or
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non-experts. Henceforth, we use the shorthands E and NE, respectively, to refer
to expert and non-expert feature categories. In our data, this categorization is
known at the outset for each feature and this auxiliary information makes our
setting unique. Ground truth labels for mentors are not available. Hence, the
problem is an unsupervised task.

We make two broad assumptions for the work presented here. First, patterns
present in usage logs can capture candidacy for mentorship. Second, a feature
recommendation system can be used to gauge whether mentor identification is
beneficial. Subject to these assumptions, the paper makes the following contri-
butions:

1. We formulate the mentor pattern identification problem from product usage
logs in an unsupervised setting. We model the mentor set as achieving three
desirable properties called mentor qualifications, viz. the mentor set is small,
every user is close to some mentor w.r.t. usage pattern, and every feature has
a mentor.

2. To the best of our knowledge, we are the first to consider a unique set-
ting where features are categorized as being useful to either expert or non-
expert users. Apart from this, we make no other non-standard assumptions
in addressing the problem. We design a mentor identification algorithm that
utilizes this feature categorization and solves a non-convex extension of an
�1-norm regularized logistic regression.

3. We provide experimental evidence that mentor identification can improve
k-NN feature recommendation performance for a real-world dataset. We fur-
ther show that our approach outperforms other intuitive mentor identification
attempts based on Maximum Marginal Relevance (MMR), K-means and fre-
quent user selection.

2 Problem Setup and Feature Extraction

Let U denote the set of users and F denote the set of features in the software.
We define the mentor pattern identification problem as the identification of a
mentor set M ⊆ U that achieves the following properties, which we refer to as
mentor qualifications:

1. Size Metric: M should be small in size relative to U . This is reasonable if
mentors tend to possess expert knowledge.

2. Closeness Metric: Every user in U should be ‘close’ to some mentor in M
w.r.t. feature usage pattern. This is a proxy for matching every user with a
suitable mentor.

3. Coverage Metric: Every feature in F should have been used by some mentor
in M. This is a proxy for coverage provided by collective expertise of the
mentors.

To capture ‘closeness’, we need a metric space representation of users. Let U =
{1, 2, . . . , |U|} and F = {1, 2, . . . , |F|} be the index sets corresponding to the
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users and the features, where |·| denotes cardinality. We construct a feature
space matrix X ∈ R

|U|×|F|
+ where X(u, f) represents a proficiency score for user

u w.r.t. feature f and the vector X(u, :) represents the usage pattern of user
u. We use cosine similarity between X(u, :) and X(u′, :) to capture closeness
between users u and u′.

We construct X as follows. Let L represent the dataset. For every (f, u) ∈
F × U , let the set L(f, u) represent all timestamps at which user u accessed
feature f . If u never accessed f , then L(f, u) is empty. To gauge user proficiency,
we use three usage-metrics from the literature [13]. For these metrics to be well-
defined, we assume that all unused features have been removed from F .

1. Depth of Usage: This metric captures frequency of usage. We collect this
usage-metric in a matrix D ∈ [0, 1]|F|×|U| defined element-wise as

D(f, u) =
|L(f, u)|

∑
u′∈U |L(f, u′)| . (1)

2. Timestamp: This metric captures recency of usage. We collect this usage-
metric in a matrix T ∈ [0, 1]|F|×|U| defined element-wise as

T (f, u) = 1 − tobs − max L(f, u)
tobs − min L(f, u)

, (2)

where we have assumed tobs > max
f,u

max L(f, u), and that maxL(f, u) =

min L(f, u) = 0 if L(f, u) = ∅.
3. Niche Access: This metric captures the importance of more esoteric features

that do not get used enough across the user base. We collect this usage-metric
in a matrix A ∈ [0, 1]|F|×|U| defined element-wise as

A(f, u) =

{
1

log2(1+k(f,u)) , L(f, u) �= ∅,

0, otherwise,
(3)

where the quantity k(f, u) � |{u′ ∈ U | L(f, u′) �= ∅}| is the number of users
who have accessed feature f at least once.

By construction, if u scores higher than u′ on any of the usage metrics w.r.t. some
feature f , it suggests that u has higher proficiency than u′ w.r.t. feature f . We
define X by XT = D+T +A. We further define for subsequent use, a matrix Xw

parametrized by wT = (w1, w2, w3) ∈ [0, 1]3 as the weighted linear combination
XT

w = w1D + w2T + w3A. Here superscript T denotes transpose.

3 Mentor Identification Algorithm

We design an alternating minimization style algorithm [8] to select a mentor
set that captures mentor qualifications well. The algorithm solves a non-convex
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extension of an �1-norm regularized logistic regression and utilizes the E/NE fea-
ture categorization described in Sect. 1. The pseudo-code is given as Algorithm 1.
Salient assumptions behind the construction of the algorithm are described
below.

Since each feature in F is categorizable as being useful to either experts (E)
or non-experts (NE), F admits a binary labeling scheme. Let y ∈ {0, 1}|F| denote
the vector of labels such that y(f) = 1 iff f ∈ E. Each row of XT

w represents
the usage proficiencies (parametrized by w) for some feature across the set of all
users. We assume that XT

w can be used to explain the probability of each feature
belonging to the E category, using the logistic regression model. Supposing that
each label y(f), f ∈ F is a realization of a Bernoulli random variable in {0, 1}
and letting

(
β0,β

T
)

∈ R
1+|U| denote the vector of regression coefficients, we

have the label y(f) is governed by the conditional probability

Pr
(
y(f) = 1 |Xw (:, f);β, β0

)
= σ

(
Xw (:, f)Tβ + β0

)

=
(
1 + exp

(
−Xw (:, f)Tβ − β0

))−1 (4)

where σ(t) � (1 + exp(−t))−1 is the logistic function.
Since our goal is to identify the mentor set M, we want to attach the following

interpretation to the regression coefficients β(u), 1 ≤ u ≤ |U|: If β(u) is non-
zero and of significant magnitude, then user u belongs to the mentor set M.
To encourage this interpretation of β in our learning algorithm, we introduce
sparsity based regularization for β via the �1-norm penalty [17].

The problem at hand involves a joint estimation of all the unknowns w ,
β and β0, resulting in a non-convex optimization problem. Hence we adopt an
alternating minimization style algorithm. In Algorithm1, (·)(k) is used to specify
values of iteratively calculated variables at iteration k, σ(·) denotes the logis-
tic function, and ‖β‖1 �

∑
u∈U |β(u)| denotes the �1-norm of β. Of the three

parameters ε, τ and C in Algorithm 1, the first two are tolerance parameters and
we set them to τ = ε = 10−6 across all experiments. This is standard on many
systems implementing optimization algorithms. C is the only effective parameter
for which we have tested a wide range of values in our experiments.

Note that both subproblems (P1) and (P2) in Algorithm 1 are convex and
are �1-norm regularized logistic regressions. We use efficient algorithms for the
same to solve them [12]. Supplementary material provides some intuition as to
why Algorithm 1 tends to select proficient users as mentors.

4 Experimental Results

A quantitative validation for unsupervised methods is challenging in general in
the absence of ground truth. We evaluate the performance of algorithm in two
ways. First, we analyze the mentor set, obtained using Algorithm1, based on
the mentor qualifications described in Sect. 2. Second, we show the effectiveness
of our identified mentor set in improving the performance of a k-NN based
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Algorithm 1. Mentor Identification Algorithm

Inputs: Factors D,T ,A ∈ [0, 1]|F|×|U|, feature labels y(f) ∈ {0, 1}, f ∈ F , �1-
norm penalty multiplier C > 0, stopping tolerance ε > 0, and selection threshold
τ > 0.
Outputs: Estimated regression coefficients β̂ ∈ R

|U|, β̂0 ∈ R, estimated weight
vector ŵ = (ŵ1, ŵ2, ŵ3)

T ∈ [0, 1]3+, and estimated mentor set M.
Steps:

1. Initialize w(0) = 1.
2. Let t(k−1) = Xw (k−1)(:, f)Tβ + β0. At iteration k ≥ 1, solve the �1-norm

regularized logistic regression problem

minimize
β , β0

C‖β‖1 +
∑

f∈F
log σ

(
(−1)y(f)

t(k−1)
)

subject to XT
w (k−1) = w

(k−1)
1 D + w

(k−1)
2 T + w

(k−1)
3 A,

(P1)

and let the solution be captured in β(k), β
(k)
0 .

3. At iteration k ≥ 1, solve the logistic regression problem

minimize
0≤w≤1

∑

f∈F
log σ

(
(−1)y(f)(Xw (:, f)Tβ(k) + β

(k)
0 )

)

subject to XT
w = w1D + w2T + w3A,

(P2)

and let the solution be captured in w(k).

4. If
‖w (k−1)−w (k)‖2

‖w (k−1)‖2

≤ ε (i.e. relative change w.r.t. �2-norm in w across consecu-

tive iterations is below the stopping tolerance) then set K = k and go to next
step, otherwise repeat steps 2 through 4 with k ← k + 1 (i.e. next iteration).

5. Return β̂ = β(K), β̂0 = β
(K)
0 , and ŵ = w(K). Also return M =

{
u ∈ U

∣
∣

∣
∣β̂(u)

∣
∣ ≥ τ

}
, i.e. M consists of all indices at which elements of β̂ admit an

absolute value of at least τ .

recommendation system. We also state the baseline approaches for comparative
purposes and establish that our algorithm achieves a better trade-off among the
evaluation metrics while improving the recommendation quality as well.

4.1 Dataset Details

The real-world dataset is described in Sect. 1. Table 1 provides some statistics
of the dataset. For the purpose of validation through the recommendation algo-
rithm, we let the test dataset Ltest comprise of feature usage timestamps in the
second month while timestamps of feature usage in the first month form the
training dataset L. Users whose feature usage timestamps are present in both L
and Ltest are about 6000 and denoted by Utt.
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Table 1. Statistical characteristics of the real-world dataset

Statistic Min Max Mean Std. dev.

#E features used per user 0 40 3.87 4.00

#NE features used per user 1 152 30.55 16.63

#users per E feature 1 3216 227.48 473.32

#users per NE feature 1 7634 686.64 1222.05

E feature timestamps (days) 0 30 17.51 8.51

NE feature timestamps (days) 0 30 17.93 8.49

The real-world dataset mentioned above is owned by the software vendor and
hence we cannot share it publicly. For this reason, in the spirit of reproducibility,
we have also created a synthetic dataset that preserves empirical distributional
characteristics (mean and variance of timestamps per user) and made it freely
available under GNU GPL for download and reuse1.

4.2 Evaluation Methodology

Mentor Qualifications Metrics. Quantitative comparison w.r.t. mentor qual-
ification metrics can be captured from the definitions in Sect. 2. The closeness
metric can be captured as a scalar by the diversity value

div valM = 1.0 − min
u∈U\M

max
m∈M

X(u, :) · X(m, :)
‖X(u, :)‖2‖X(m, :)‖2

. (5)

If div valM is low, for users there exist mentors who are similar to them
in feature usage and thus, the mentor set is representative of all the different
types of users in U , a desirable characteristic. Further, we find support for this
assertion by visualizing a geometrical representation of identified mentor and
non-mentor sets from each baseline and our own approach, projected down to a
2-dimensional space, using the t-SNE plotting technique [14].

Two other qualification metrics are: the size metric, or, number of mentors
|M|, and the coverage metric represented by the number of features missed by
the mentor set M.

Evaluating Recommendations. We design a simple recommendation algo-
rithm based on the popular k-NN collaborative filtering approach [10]. In this
algorithm, recommendations are generated for a user based on the interpolated
ratings of similar users. For our experiments, we find this set of similar users, for
each user, from the mentor set. Cosine similarity between a user vector X(u, :)
and mentor vector X(m, :) is used as a measure to find the top k similar mentors
to a user in the test set. The vectors, X(m, :), of the k most similar mentors are

1 https://goo.gl/bEfE79.

https://goo.gl/bEfE79
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then averaged along each feature to get the representative vector for a user u in
the test set denoted by Xavg(u, :). We obtain the recommendation set for a user
u, denoted by Ru, by taking the top 10 highest valued features from Xavg(u, :).
Now, {f | |Ltest(f, u)| > 0, f ∈ F} gives the set of features used by user u in
the test set, and denoted by Tu, then we can evaluate the performance of our
recommendation using precision, recall and F1-score.

Note that for this evaluation, we use the Xw matrix for mentor sets generated
by our proposed approach and the X matrix for the baselines since it also depicts
the benefit of assigning different weights to the three usage metrics.

4.3 Baselines for Comparison

Note that the unsupervised setting together with the nature of the usage log
dataset and the absence of ground truth makes the problem unique. There are
of course many natural baselines in the supervised setting [3] for similar problems
that we cannot utilize in our setting. Under these restrictions, we compare our
approach with the baselines mentioned below.

1. Maximum Marginal Relevance (MMR): This is a popular technique in text
retrieval and summarization [4]. The algorithm is designed to reduce the
redundancy in topics (present in each document) while retrieving a set of
documents relevant to a given query. If we imagine topics as being product
features and documents as users, then the importance of a topic in a document
could be mapped to the proficiency score of a user u for the product feature
f , i.e. X(u, f). With that hypothesis, the documents that would be found
by the MMR algorithm will correspond to the mentors to be found in our
problem setting. Since we want the selected mentor set to represent all the
product features and be ‘close’ to the other users, there is an implied diversity
that is necessary for our mentor set to have.

2. K-means Clustering (with K = 2): This is a popular algorithm for clustering
(which is a form of unsupervised classification) [9]. Since our problem is about
classifying each user as being either a mentor or a non-mentor in an unsu-
pervised fashion, it can be trivial to think of using the K-means clustering
algorithm with K = 2 clusters to arrive at a solution.

3. Frequent Users: Here we select users in the following manner: For each
feature f ∈ F , select the user u ∈ U , who uses that feature maximum
number of times. Mathematically, the set can be given by Mfreq =

⋃
f∈F

{arg maxu∈U |L(u, f)|}. This follows from [13] and is a valid baseline in our
case since it seems like a simple and intuitive way of generating the mentor
set.

4. Everyone: We study the utility of using a mentor set to generate recommen-
dations by using a baseline where no mentor identification algorithm is used
prior to generating the recommendations and thus, the k-NN algorithm [16],
finds the top k similar users from the whole user set U . We denote this baseline
by MU .
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Table 2. Performance of mentor identification algorithms on the real-world dataset

(a) Mentor Qualification metrics (lower is
better)

Mentors #Mentors div val #Missed

MC=101 133 0.999 115
MC=100 404 0.934 2
MC=10−1 324 0.962 0
MC=10−2 387 0.934 0
MC=10−3 399 0.897 0
MC=10−4 481 0.876 0
MC=10−5 845 0.862 0
MC=10−6 2336 0.832 0
Mmmr 9864 0.674 0
M2−means 2312 0.994 58
Mfreq 429 0.911 0

(b) Recommendation metrics on test set
using k = 30 (higher is better)

Mentors Prec
(%)

Rec
(%)

F1
(%)

MC=101 44.55 19.85 27.46
MC=100 45.09 20.28 27.94
MC=10−1 45.00 20.22 27.90
MC=10−2 44.87 20.09 27.75
MC=10−3 44.71 20.18 27.81
MC=10−4 44.90 20.27 27.93
MC=10−5 45.42 20.56 28.31
MC=10−6 44.53 20.75 28.51
Mmmr 44.36 20.45 27.99
M2−means 45.51 20.47 28.24
Mfreq 44.11 20.16 27.67
MU 44.54 20.56 28.14

4.4 Comparison of Results

Since Algorithm 1 admits the tuning parameter C that controls the regularization
w.r.t. the �1-norm penalty, we have evaluated the results of mentor qualifications
across different values of C and then selected the best value of C for qualitative
analysis via t-SNE plots. In all future references, MC=10n , refers to the mentor
set obtained using Algorithm1 with C = 10n. For the other baselines discussed
in Sect. 4.3, we use the best parameter settings obtained by trial and error.

Analysis of Mentor Set Based on Mentor Qualifications. Table 2a shows
the size of the mentor set, diversity value (div val) and the number of features
represented by mentor set w.r.t. the real-world dataset for each algorithm. Recall
from Sect. 4.2 that lower values of div val and number of features missed are
desired. Further, lower number of mentors selected is preferred. We notice that
while MMR does not miss any feature and has the lowest diversity value, it selects
too many mentors. This is because our stopping criterion in MMR ensures that
no features are missed. If instead we put a constraint on the size of the mentor
set, then MMR misses many features. Thus, in both situations MMR performs
worse than our approach. On the other hand, our algorithm with C = 101 selects
very few mentors, but misses many features and has a high diversity value, both
of which are undesirable. In general, there seems to be a trade-off between the
size of the mentor set, the number of features missed and the diversity value.
We pick the value C = 10−5 as the operating point for our algorithm as it
achieves a good balance among the three desirable qualification metrics. Figure 2
shows the t-SNE plots for the mentor sets identified by some of the algorithms.
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We see that the C = 10−5 and the frequency based (Mfreq) algorithm show
a healthy spread in the set of mentors selected as per the t-SNE plots and
correspondingly, they achieve lower div val with a small mentor set in Table 2a.
The 2-means algorithm selects mentors that cluster around one part of the t-SNE
plot (see Fig. 2d) and correspondingly, achieves a poor trade-off in Table 2a by
selecting too many mentors. Another observable characteristic of our algorithm
as seen from Table 2a is that as value of C decreases, the number of mentors
selected increases and more features are progressively covered until all features
are represented.

We also point out that for this dataset our algorithm’s run time is 3−4 min
whereas, the MMR baseline takes a few hours to identify a mentor set. This
highlights that our approach is efficient and effective in identifying a mentor set
which does well on mentor qualifications.

(a) MC=10−5 (b) Mmmr

(c) Mfreq (d) M2−means

Fig. 2. Results on real-world dataset. Mentors indicated by red dots. (Color figure
online)

Recommendation Performance. Table 2b shows the precision, recall and
F1–score value of recommendation evaluated on the test set, Ltest, of the real-
world dataset using k = 30. First of all, we notice that without mentor iden-
tification, i.e. MU , the recommendation quality is really poor. This indicates
that the dataset and the scenario are particularly challenging for recommenda-
tion generation. We further notice that almost all of the mentor identification
resultant sets lead to better downstream recommendation performance, suggest-
ing that such techniques may be needed to boost recommendation quality, at
least in the setup described, and warrant further investigation from the research
community.

Based on the discussion in Sect. 4.4, we consider methods for which the num-
ber of features represented by the mentor set is equal to |F| in Table 2b. Finally,
we note that C = 10−5 is slightly better than Mfreq at recommendation quality.
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This effect is due to the lower value of div val combined with more number of
mentors for C = 10−5. Other things being equal, lower div val and higher |M|
work as proxy for better representation which translates to better recommenda-
tions.

5 Related Work2

To the best of our knowledge, there does not exist a widely accepted and math-
ematically precise notion of a mentor. The absence of such a notion makes the
problem challenging. Our experiments in Sect. 4.4 show that simple alternative
approaches to mentor identification, such as MMR [4] and selecting frequent
users for each feature, may not work well. Mentor identification is an important
problem and some attempts have been made in the literature with application
specific modeling assumptions under restrictive contexts [2,3]. The nature of our
data is different and less restrictive from these prior works, warranting a fresh
approach.

Usage data have been explored in the literature to help recommendation of
features in a variety of scenarios. For example, [7,13] rely on usage of features in
a software to make recommendation based on usage expertise. Unlike prior art
in this area, we recognize that all features are not created equal and categorize
them as E or NE. Further, we allow for a user to be a mentor for NE features,
without being a mentor for E features, and vice versa. This distinction is not
possible when applying the approach in [13] to our data and can adversely affect
the mentor qualification metrics.

One of the early papers [11], explaining the Lumière project, relies on usage
data although the interest is primarily to infer goals and needs of users, but
not to identify mentors, nor expertise in usage of features. A distinction of our
approach is that our end goal is not to build a recommendation system, but
to identify mentors among users of a software. The identified mentor set can
be used as input for a broad set of end goals, one of which can be making
recommendations.

6 Conclusion

We formulate the problem of identifying a set of mentors from software usage
logs in an unsupervised setting such that they satisfy three desirable proper-
ties termed as mentor qualifications. We present an algorithmic solution for the
problem and showcase experimental results on a real-world dataset. We illustrate
that our approach improves over baselines with regard to mentor qualifications.
An application of our work is guided recommendation of features to a user of a
software and show that the mentor set identified by our approach can be used
to improve k-Nearest Neighbor based recommendations in an effective and effi-
cient manner. Future work will focus on alternative ways to featurize and define
patterns in sequential data (e.g. [1]) to improve upon our current results.
2 The authors thank Dr. Moumita Sinha for pointers to relevant literature.
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Abstract. The detection of multiple changes (i.e., different change
types) in bitemporal remote sensing images is a challenging task. Numer-
ous methods focus on detecting the changing location while the detailed
“from-to” change types are neglected. This paper presents a super-
vised framework named AggregationNet to identify the specific “from-to”
change types. This AggregationNet takes two image patches as input and
directly output the change types. The AggregationNet comprises a fea-
ture extraction part and a feature aggregation part. Deep “from-to” fea-
tures are extracted by the feature extraction part which is a two-branch
convolutional neural network. The feature aggregation part is adopted
to explore the temporal correlation of the bitemporal image patches. A
one-hot label map is proposed to facilitate AggregationNet. One element
in the label map is set to 1 and others are set to 0. Different change types
are represented by different locations of 1 in the one-hot label map. To
verify the effectiveness of the proposed framework, we perform experi-
ments on general optical remote sensing image classification datasets as
well as change detection dataset. Extensive experimental results demon-
strate the effectiveness of the proposed method.

Keywords: Multiple change detection · Remote sensing ·
Aggregation network

1 Introduction

The aim of change detection is to compare two remote sensing images obtained
from different times at the same location. With the development of earth obser-
vation, change detection has wide applications including ecosystem management,
urban expansion and land cover monitoring [5,6,16]. Generally, change detec-
tion can be categorized into multiple change detection [15,19] (i.e., different
change types) and binary change detection [11]. The former task describes
c© Springer Nature Switzerland AG 2019
Q. Yang et al. (Eds.): PAKDD 2019, LNAI 11441, pp. 375–386, 2019.
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different kinds of changes, such as the change appearing among the land cover
types. The latter task segments the input images into changed and unchanged
regions.

In the literature, change detection algorithms can be distinguished to unsu-
pervised [2–4,11,12,17,21] and supervised [17,20].

Traditional unsupervised methods are common in the domain of change
detection. The change vector analysis (CVA) is used to compute the change infor-
mation in [3]. Liu et al. [11] explore the local image descriptor to identify changes
without image co-registration. Benedek et al. [2] investigate a multi-layer condi-
tional mixed Markov (CXM) model for optical image change detection. Besides,
the authors released a publicly available dataset called AirChange Benchmark
set. These unsupervised methods greatly depend on the statistical property or
the hand-crafted features that are easily affected by the image quality. Neural
network can extract more robust features [13]. Thus the deep learned features
are adopted. Gong et al. [7] proposed a method using The Restricted Boltzmann
Machine (RBM) network to distinguish the changed and unchanged areas in
synthetic aperture radar images. Liu et al. [12] proposed an unsupervised sym-
metric convolutional coupling network (SCCN) for change detection of optical
and radar images. However, all the algorithms mentioned above can not discrim-
inate different kinds of change. A few unsupervised methods are also applied to
solve the multiple change detection. Bovolo et al. [4] proposed a compressed
CVA framework (C2VA) to detect multiple changes from bitemporal images.
Considering the drawback of the C2VA that the available spectral channels can
be affected by noise, Zhang et al. [21] proposed a framework adopting the deep
belief network (DBN) to transform the spectral channels into an abstract feature
space. These two algorithms do not require any labeled training data and can
be easily applied in some cases. Although these two algorithms can distinguish
different kinds of changes, they can not identify the specific “from-to” change
types (e.g. from farmland to building). However, this specific “from-to” change
types is very important to some tasks such as land survey and so on. Further-
more, all these unsupervised methods do not use the ground truth and usually
rely on some prior assumptions. However, irrelevant variations always exist in
bitemporal optical remote sensing images, such as noise interference and illumi-
nation. Therefore, it may be challenging for the unsupervised methods in some
situation.

In the literature, many efforts have been made to develop supervised change
detection algorithms on account of the drawbacks of the unsupervised methods
mentioned above. Zhan et al. [20] proposed a deep siamese convolutional network
(DSCN) with contrastive loss [8] to determine whether the input images belong
to unchanged regions or changed regions [8]. CNNs have many structures [14].
And the siamese convolutional network is one of them. Thus DSCN can extract
better features for change detection. However, the application of DSCN is lim-
ited by defining the difficult pixel level labels. In addition, the DSCN can not
detect multiple changes, let alone identify the specific “from-to” change types.
Another intuitional method named post-classification comparison is classifying
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the two bitemporal images to create classification maps and then compare the
classification maps pixel by pixel to estimate the multiple types change detec-
tion [17]. However, this approach did not consider temporal correlation of the
two bitemporal images and critically depended on the accuracies of the single
classification maps. And (under the assumption of independent errors in the
maps) it is close to the product of the accuracies of the two images [4].

In this study, we focus on a much more challenging multiple change detection
task, i.e., our model not only determines changed regions but also identifies the
“from-to” change types. We decompose this “from-to” procedure into a mul-
tiple classification issue. In order to avoid creating difficult pixel level labels
mentioned above, We use a patch level labels as a substitute. That is to say a
dataset that containing all the classes of patches in the two bitemporal images
will be set. Then a one-hot label map representing a specific change type (e.g.,
from farmland to building) will be set to label the two classes of patches (e.g.,
the first class is farmland and the second class is building). Then considering the
temporal correlation of the two bitemporal image patches, we proposed a novel
framework called AggregationNet to guarantee the effect of change detection
by adopting the temporal correlation. This AggregationNet takes the image pairs
as the input and outputs a probability map which can be used to identify the
change types as the location of the maximum value in the probability map rep-
resents a specific change type. The AggregationNet consists of feature extraction
part and a feature aggregation part. The feature extraction part used to extract
the deep “from-to” features is a two-branch deep convolutional network which
is composed of two backbone networks (e.g., Residual Network [9]). The feature
aggregation part which is composed of a few convolution layers, two fully con-
nected layers and a reshape layer is adopted to the mine temporal correlation
of the two bitemporal image patches. The reshape layer is used to change the
dimensions of features.

The remainder of this paper is organized as follows. The proposed method is
described in Sect. 2. The experimental organization and results are presented in
Sect. 3. Finally, we draw the conclusion of this paper in Sect. 4.

2 Proposed Method

We formulate the multiple change detection as a multiple classification task.
An AggregationNet is built for this task and a one-hot label map is proposed
for training this network. Figure 1 shows the detailed structure of the proposed
AggregationNet and Fig. 2 shows the proposed one-hot label map.

2.1 Network Architecture

The proposed AggregationNet mainly consists of two parts: a two-branch feature
extraction part and a feature aggregation part. The size of the output of the
AggregationNet equals to the size of the one-hot label map. In the training phase,
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Fig. 1. Architecture of the proposed AggregationNet. Two images (belongs to class B
and class C ) are fed into the feature extraction part, and then feature aggregation part
integrates the output feature for classification.
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Fig. 2. The one-hot label map. The black region shown in the proposed one-hot
label map indicates that the input image pairs belong to class farmland and building,
respectively.

the cross entropy loss is applied to the output of the AggregationNet and the one-
hot label map. In the testing phase, the output of AggregationNet is a probability
map and the location of maximum value in the probability map represents the
specific “from-to” change type of the two input patches. As shown in Fig. 1.
Rather than comparing the outputs of two-branch convolution features directly,
the proposed network aggregates the output features via a feature aggregation
block.

Feature Extraction Part. The discriminating features of the input patches
are extracted by the feature extraction part. The feature extraction part consists
of a two-branch CNNs with weights shared. Specifically, Residual Network [9]
is adopted as the backbone. ResNet is a variant of CNNs with shortcut connec-
tions. These shortcut connections and their corresponding convolutional layers
constitute virtual residual blocks. An illustration of a residual block is shown in
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Fig. 3. A residual block in a ResNet.

Fig. 3. The residual block consists of three convolution layers. A batch normal-
ization layer and a ReLU layer are implemented after every convolution layer.
Each branch in this feature extraction part includes of a single convolution layer
and subsequent three residual blocks. The kernel size of the first convolution
layer is 7 × 7 and each residual block consists of three convolution layers with
kernel sizes of 1 × 1, 3 × 3 and 1 × 1 as in [9].

Feature Aggregation Part. The feature aggregation part is composed of a
few convolution layers, two fully connected layers and a reshape layer. The kernel
sizes of the convolution layers are 1 × 1 because the sizes of the feature maps
are small. The extracted features of two input images via the feature extraction
part are concatenated by a concat layer in the feature aggregation part. After
that, a convolution layer is added for information integrating before inputting
to two fully connected (FC) layers. The FC layers work as a non-local operation
which considers the global information for judging the changed area. It is noted
that the nodes of the final fully connected layer are equal to the 2 ∗ k2 where k
is the number of the patch classes. As a result, we can employ a reshape layer
to make the AggregationNet’s output be two k × k maps. Then, we employ a
convolution layer to perform high-level semantic feature aggregation [22] again
with one output channel. A two-dimensional soft-max layer is added at the end
of the network to normalize the output to the scale of [0, 1].

2.2 One-Hot Label Map

To train the proposed AggregationNet,a one-hot label map is designed for
describing the “from-to” procedure. The size of the one-hot label map will
increase with the growth of the classes of patches in a two-dimension style.
If the number of the classes of the patches is k, the size of the label map is k×k.
That means the number of the possible change types is k × k. Different cells of
the label map represent different “from-to” change types. As shown in Fig. 2, if
the input images belong to farmland and building respectively, then the corre-
sponding label is a matrix in which only the farmland-building position is set
to 1 and other elements are set to 0. Via this one hot label map, we transform
the multiple change detection task into a multi-class classification task. There-
fore, we can impose a cross entropy loss to train the AggregationNet. The cross
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entropy loss is:

L = −
k×k∑

j=1

yj log(pj) (1)

where pj is an element in the output of AggregationNet and yj is the label value
in the corresponding position of the one hot label map.

3 Experiment

Extensive experiments are conducted to demonstrate the effectiveness of the
proposed AggregationNet. The reasonability of the proposed AggregationNet is
validated on SAT-4 and SAT-6 datasets [1] compared with the post-classification
method [17]. To highlight the effectiveness of the proposed method, Aggre-
gationNet is compared with other unsupervised and supervised methods on
TISZADOB dataset. Furthermore, two extra newly built datasets are adopted to
reflects how the proposed AggregationNet handles the “from-to” types in change
detection.

3.1 Data and Experimental Settings

Dataset. Firstly, we perform the multiple change detection at the image level to
validate the reasonability of the proposed AggregationNet on SAT-4 and SAT-6
datasets [1]. SAT-4 dataset contains 500000 image patches, including four classes:
barren land, grassland, trees and others. SAT-6 contains 405000 image patches,
covering 6 classes: barren land, trees, grassland, roads, building and water bodies.
The image patches in these two datasets are with the size of 28 × 28 pixels. To
validate the effectiveness of the proposed method, AggregationNet is compared
with the state of art unsupervised and supervised methods on the change detec-
tion dataset named TISZADOB. TISZADOB is a subset in SZTAKI AirChange
Benchmark Set [2]. TISZADOB consists of a pair of images and a label image
with size 952 × 640 pixels. The resolution of each image is 1.5 m/pixel. Finally,
we build two extra image pairs and evaluate the proposed AggregationNet on
this new collected dataset named village and suburban. The resolutions of the
village and suburban images are 0.5 m/pixel and 0.1m/pixel. The sizes of these
two image pairs are 890 × 1024 pixels and 2304 × 1024 pixels separately.

Training and Testing Setting. To train AggregationNet, we first build the
training pairs as [18]. Each class combines with all classes in the training set
to compose different training pairs of different classes and each class of training
pairs will be labeled with one one-hot label map. For SAT-4 and SAT-6 datasets,
70% of the total samples are randomly selected for training and the remaining are
used for testing. For the change detection dataset, we adopt the training strategy
proposed by [20].We crop the top-left corner of each image pair to 784×448 as the
test set. And the rest constitute the training set. The regions in training set are
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cut to 28 × 28 patches overlapped. Then these patches are treated in the same
way as the SAT datasets. We implement the proposed AggregationNet using the
caffe [10], the training and testing are performed on an NVIDIA GTX 1080TI
GPU. Stochastic gradient descent (SGD) is employed to train the network. We
set the network learning rate to 0.001 and weight decay to 0.0005. The batch
size is 64. The trained network is obtained after about 100 epoches.

Table 1. Comparison with three methods on the TISZADOB dataset. Best results
viewed in bold.

Dataset Methods Measures

Precision (%) Recall (%) F-rate (%)

TISZADOB CXM [2] 61.7 93.4 74.3

SCCN [7] 92.7 79.8 85.8

DSCN [20] 88.3 85.1 86.7

AggregationNet 89.4 95.6 92.4
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Fig. 4. Multiple change detection with the proposed AggregationNet on SAT-4 (left)
and SAT-6 (right) datasets.

3.2 Results and Analysis

SAT Datasets. For SAT-4 and SAT-6, our proposed AggregationNet achieves
overall accuracy (OA) of 98.16% and 98.57%, respectively. The detailed classifi-
cation precision matrices for all classes are shown in Fig. 4. In order to verify the
effectiveness of AggregationNet, we implement experiments to post-classification
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Fig. 5. Multiple change detection with the backbone network on SAT-4 (left) and
SAT-6 (right) datasets.

method. Thus, the backbone network of AggregationNet(the ResNet of the fea-
ture extraction part) is singly applied to all classes of SAT-4 and SAT-6 dataset
twice. The backbone network achieves OAs of 96.69% and 97.37%, respectively.
The detailed classification precision matrices for all classes are shown in Fig. 5.

In detail, there are 42 and 62 “from-to” change types for SAT-4 and SAT-6
dataset, and our method performs well on both changed pairs and unchanged
pairs. For all unchanged types (i.e., the diagonal of the precision matrix) and the
changed types, the corresponding OAs are higher than 96% and more competitive
with the ones of the backbone network. In the results, the first row and the first
column have inferior performance. The reason is that some images belonging
to the “barren land” class are similar to the “grassland” class. This case also
appears in the experiments with the backbone network. Overall, the proposed
AggregationNet improves the overall accuracy by 1.47% and 1.20% on SAT-4
and SAT-6 dataset respectively. We speculate that the reason is AggregationNet
not only extract the discriminating features of each input patch but also exploit
the temporal correlation of the two input patches. The results verify the validity
of the proposed AggregationNet and the proposed one-hot label map.

AirChange and Our Collected Dataset. To further evaluate the proposed
AggregationNet, we compare it to CXM [2] as well as recent deep learning based
methods: SCCN [7] and DSCN [20] on change detection task. A pair of images
of TISZADOB is used for evaluation. To construct training and testing batches,
we crop the images into patches with size of 28 × 28 and stride to 20 pixels. As
a result, our method is based on patch level instead of pixel level (SCCN [7] and
DSCN [20]). Other experimental settings follow the protocol in [20].

There are three evaluation criteria: precision, recall and F-measure rate which
is the harmonic mean of precision and recall. The overall quantitative results are
listed in Table 1. The proposed AggregationNet ranks first among all compared
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Fig. 6. Visualization results of different methods for change detection on the
TISZADOB dataset. The changed areas are with white color. (a) and (b) are image
pairs; (c) Ground-truth; (d) CXM; (e) SCCN; (f) DSCN; (g) AggregationNet.

methods according to the recall (95.6%) and F-rate (92.4%). We visualize the
change detection qualitative example in Fig. 6. The reason of the excellent per-
formance is AggregationNet not only extracts the discriminating features of each
input patch but also explore the temporal correlation of the input pairs. Further-
more, AggregationNet is a patch level method. Compared with pixel level change
detection methods, AggregationNet can suppress the false positive samples effec-
tively. Thus AggregationNet achieve a more excellent performance in term of recall
than other methods. Moreover, without extra post-processing (e.g., k-NN in [20]),
our methods generate low-noise change map when compared with Fig. 6(e) and
(f). However, the patch level method can not distinguish the details in a patch. For
example, AggregationNet can not precisely distinguish the edges of the changed
regions. This drawback affects the performance in term of precision.

We further analyze the benefit of the proposed AggregationNet on a newly
collected change detection dataset: village and suburban. We crop the images of
the two datasets into patches with sizes of 28 × 28 pixels and 64 × 64 pixels. We
choose a stride of 28 pixels and a stride of 64 pixels, separately. This dataset
better reflects how the proposed AggregationNet handles “from-to” types in
change detection. There are two image pairs in our collected dataset, as shown
in Figs. 7 and 8. Figure 7 contains four classes: building, farm, greenhouse and
vinylhouse, thus there are 16 potential change types. Figure 8 contains three
classes: barren land, building, grassland, thus there are 9 potential change types.

Among these two datasets, (a) and (b) denote the input image pairs. (c)
is the ground truth image. (d) visualizes the changed region and the corre-
sponding change types with different colors. Considering all compared methods
introduced on AirChange dataset can not deal with multiple change detection
task, Figs. 7(d) and 8(d) only show the multiple change detection result based
on the proposed AggregationNet. Based on patch level, the proposed Aggrega-
tionNet can simultaneously detect the changed regions and identify the specific
“from-to” change types. Apart from the qualitative evaluation result, we also
report the quantitative results in terms of precision and recall for completeness
in Table 2.
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Fig. 7. Our new collected village dataset and change detection results for the “form-
to” change types using the proposed AggregationNet, where different colors indicate
different change types. Fm, Bg, Ve and Ge indicate farmland, building, vinyl house
and greenhouse, respectively.

Fig. 8. Our new collected suburban dataset and change detection results for the “form-
to” change types using the proposed AggregationNet, where different colors indicate
different change types. Gd, Bn and Bg mean grassland, barren land and building,
respectively.
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Table 2. Change detection results on new collected dataset with our proposed method.

Dataset Measures

Precision (%) Recall (%)

Village dataset 90.41 86.83

Suburban dataset 81.83 76.09

4 Conclusion

In this paper, we focus on the multiple change detection task based on deep learn-
ing. A novel CNN architecture called AggregationNet with one-hot label map
is proposed. AggregationNet works well on optical remote sensing dataset (e.g.,
SAT-4 and SAT-6). Furthermore, the experimental results on change detection
dataset illustrate that our AggregationNet can not only determine the changes
region but also identify the specific “from-to” change types. Overall, this paper
provides the first step to perform multiple change detection task based on deep
learning. In the future, we plan to improve the detection results through reusing
the features extracted by AggregationNet.
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Abstract. Facial micro-expressions, which usually last only for a frac-
tion of a second, are challenging to detect by the human eye or machine.
They are useful for understanding the genuine emotional state of a
human face, and have various applications in education, medical, surveil-
lance and legal sectors. Existing works on micro-expressions are focused
on binary classification of the micro-expressions. However, detecting
the micro-expression intensity changes over the spanning time, i.e., the
micro-expression profiling, is not addressed in the literature. In this
paper, we present a novel deep Convolutional Neural Network (CNN)
based hybrid framework for micro-expression intensity change detection
together with an image pre-processing technique. The two components of
our hybrid framework, namely a micro-expression stage classifier, and an
intensity estimator, are designed using a 3D and 2D shallow deep CNNs
respectively. Moreover, we propose a fusion mechanism to improve the
micro-expression intensity classification accuracy. Evaluation using the
recent benchmark micro-expression datasets; CASME, CASME II and
SAMM, demonstrates that our hybrid framework can accurately classify
the various intensity levels of each micro-expression. Further, comparison
with the state-of-the-art methods reveals the superiority of our hybrid
approach in classifying the micro-expressions accurately.

Keywords: Micro-expression intensity ·
Convolutional Neural Networks · Hybrid framework ·
Fusion mechanism

1 Introduction

Facial expressions provide affluent information in understanding the emotional
states of the human face. Facial expressions are broadly categorised into macro
and micro expressions based on the spanning time and the strength of mus-
cle movements. The macro-expression, also known as the regular expression, is
easy to recognise under real-time settings through naked eyes since it continues
for a considerable sprint of time. Unlike macro-expression, the micro-expression
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provokes involuntarily as a rapid and brief facial expression. Hence, it is diffi-
cult to detect micro-expressions accurately and spontaneously by observers (e.g.,
another human). Presently, only the highly trained professionals can characterise
the micro-expressions spontaneously, albeit with low accuracies. However, micro-
expression is one of the most significant features for revealing the genuine emo-
tions of a person, and therefore it is important to be analysed conscientiously. In
the past, a widely used approach for analysing the micro expressions is through
video processing techniques. Many micro-expression detection methods in the
literature are confined, since they do not focus on systematic micro-expression
profiling, such as detecting micro-expression intensity changes using spatial or
temporal information.

Incorporating micro-expression is not only limited to traditional applications,
such as lie or threatening behaviour detection, but also can be utilised in detect-
ing positive behaviours, such as the level of confidence [2]. Micro-expressions
are useful in many domains, such as educational, medical and legal sectors. For
example, teachers can use the detected changes in micro-expressions to identify
the students’ stress, confidence level and other significant behavioural changes
that happen in a classroom environment. In the medical field, doctors and psy-
chologists can reveal the concealed emotions of their patients to provide further
assistance. Micro-expression profiling plays a vital role during police investi-
gations to recognise the abnormal behaviours, such as lies. For example, the
intensity classification of micro-expressions can be used to analyse the onset of
changes of a trouble maker in a public place. More importantly, the low level
micro-expressions can also be detected by some intelligent algorithms, there-
fore, it is hard to conceal the actual emotion even for an expert human being.
However, there are only a limited work exist in the literature that focus on com-
prehensive micro-expression profiling. This is due to the involuntariness and the
shorter operating duration nature of the micro-expressions.

In this paper, we propose a novel hybrid micro-expression profiling frame-
work that detects the intensity changes of micro-expression spontaneously from
a video sequence. To the best of our knowledge, no previous work exist to detect
the intensity changes of micro-expression on the fly. In our work, we use both
spatial and temporal features, and a deep Convolutional Neural Network (CNN)
based hybrid architecture, along with a fusion mechanism, to detect the inten-
sity changes from videos. Further, we introduce a comprehensive image pre-
processing technique to improve the micro-expression profiling, along with the
major aspiration of this paper. In summary, the novelty and contributions of
this research work are three-fold:

– We propose an efficient deep CNN based hybrid micro-expression intensity
change detector to detect the fine-grained changes in a micro-expression.
Our hybrid framework first classifies the micro-expression changes into three
stages, namely formation, peak and release, using temporal information. Then,
it detects the frame level intensity changes using spatial information.

– We introduce a fusion mechanism to enhance the automatic micro-expression
intensity change detection accuracy.
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– We demonstrate that our proposed hybrid framework is capable of accurately
detecting the intensity changes through a cross-subject evaluation on three
recent benchmark datasets. Moreover, we present a comparison results, before
and after the fusion operation, to demonstrates the improvements achieved
in the classification accuracy by the fusion process. Further, we compare our
hybrid CNN based approach with the state-of-the-art algorithms and demon-
strates its superiority in classifying the micro-expressions accurately.

The rest of this paper is organized as follows. Section 2 presents a review of
the related work on micro-expression detection. We explain our proposed hybrid
framework in Sect. 3. Experiment results and discussions are provided in Sect. 4.
Finally, we conclude with suggestions for future work in Sect. 5.

2 Related Work

Here, we discuss the general history of micro-expressions, and provide a survey
on the different micro-expression detection approaches used in the past. A recent
review by Merghani et al. [8] provides an extensive summary of the literature on
micro-expressions analysis. However, no work has been identified on the micro-
expression intensity detection in the recent literature.

Two psychologists, namely Ekman and Friesen, have first discovered the
micro-expression in 1969 while investigating a medical case, in which a sub-
ject tried to conceal the emotion sad nicely masked with a smile on his face [2].
Since then, numerous social psychologists, such as Ekman [2] and Gottman [3],
have studied the micro-expressions extensively. Most of the techniques associated
with the micro-expression are primarily focussed on detecting basic emotions,
also known as prototypical or universal emotions, to provide Facial Action Cod-
ing System (FACS) based facial action unit annotations. Although the micro-
expressions are hard to observe spontaneously, they are empirically inspected
through psychological studies. Further, training programs (e.g., Ekman’s Micro
Expressions Training Tools1) have been created to enhance the support for
micro-expression analysis.

In computer vision, only a handful of work exists on micro-expression analysis
due to the high complexity of micro-expressions. Many current research focused
on hand engineered features for analysis, such as 3D Histograms of Oriented
Gradients (3DHOG) [1], Local Binary Pattern-Three Orthogonal Planes (LBP-
TOP) and variations [1,11,14], and Histogram of Oriented Optical Flow (HOOF)
[14]. For computer vision tasks, nowadays, deep CNN has become a mainstream
feature extractor. As a reflection of this, deep CNN based micro-expression detec-
tion research have emerged over the past few years, and two noteworthy works
on this are [5] and [9]. In the past, researchers have used standard classifiers to
classify the micro-expressions, such as support vector machines [15], long short-
term memory (LSTM) [5] and dual temporal scale CNN (DTSCNN) [9]. In this

1 https://www.paulekman.com/micro-expressions-training-tools/.

https://www.paulekman.com/micro-expressions-training-tools/
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Fig. 1. Micro-expression intensity change detection framework.

paper, we focus on deep learning based feature extractors and classifiers for micro
expression intensity detection.

In 2016, Kim et al. [5] adopted CNN for spontaneous micro-expression recog-
nition from video sequences using spatiotemporal features. They encoded the
spatial features from representative expression-state frames (i.e., onset, offset
and apex) using CNN. Next, the temporal features are analysed after the learned
spatial features are passed through an LSTM recurrent network. The overall
accuracy achieved was 60.98% on CASME II [11], which is slightly better than
the existing state-of-the-art approaches. Peng et al. [9] presented another sig-
nificant work in micro-expression recognition using a two stream shallow net-
work (4 layers only), namely DTSCNN. They used a selected set of images from
the merged CASME I [12] and CASME II [11] datasets to train their model,
which comprised four classes: positive, negative, surprise and others. Optical
flow sequences, instead of raw sequences, are used to reduce the complexity of
the classifier, and they achieved an overall accuracy of 66.67%.

In summary, works in [1,4–6,9,11,14,15] have only addressed the recognition
(binary classification) problem of the micro-expressions. None of the existing
works focused on detecting the intensity changes of micro-expressions. In this
paper, we propose a novel hybrid framework for detecting the micro-expression
intensity changes from video. Moreover, a significant problem faced by the deep
learning based methods is the lack of larger datasets for training, contributing to
the lower overall detection accuracy. Hence, we also present a carefully crafted
hybrid framework, which includes a pre-processing mechanism, that prepares a
comprehensive training set for use with the deep learning based micro-expression
analysis. Next, we present our proposed framework.

3 The Proposed Hybrid Framework

Figure 1 illustrates the overall architecture of our proposed hybrid micro-
expression intensity change detection framework. The framework primarily com-



Detecting Micro-expression Intensity Changes from Videos 391

prises a pre-processing unit, two separate deep CNN components and a fusion
component. In the pre-processing phase, we augment and normalise the train-
ing set to use with the subsequent deep learning hybrid framework. In the deep
CNN component, a micro-expression stage classifier classifies the three stages
(formation, peak and release) of micro-expression changes using temporal fea-
ture information. The next component, namely the micro-expression intensity
estimator, estimates the frame-wise micro-emotion intensities using spatial fea-
ture information. Finally, the fusion mechanism updates the intensity predictions
incorporating the stage classifier predictions. Below, we explain each of the com-
ponents of our hybrid framework in detail.

3.1 Pre-processing

In the pre-processing process, we convert the input video frames to grayscale, as
the first step, in order to reduce the cross-database discrepancy between the video
frames. Our descriptor comprises two significant pre-processing phases namely
(a) data augmentation or synthetic sample generation and (b) normalisation.
In the data augmentation step, we generate a set of synthesised frames in large
amounts to increase the number of video frames, especially for training purposes
using a deep learning model, which often require larger dataset. Adopting the
approach of [10], we added random noise, using a 2D Gaussian distribution, in the
eye centre and nose regions of the face to produce the synthetic frames. We used
the individual frames to train the micro-expression intensity estimator, and the
whole sequence to train the micro-expression stage classifier, which classifies the
frames into three stages; formation (start of the micro-expression), peak (highest
intensity level of the micro-expression) and release (end of the micro-expression).

Spa al 
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Normalisa on
Intensity 

Normalisa on
Scale 

Normalisa on
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0.3 mes a

1.1 mes a

a

Fig. 2. Pre-processing steps: Spatial domain normalisation is performed based on the
distance “a” between the active appearance model (AAM) facial feature points 37 and
46. The intensity and scale normalisations are applied subsequently.

We then perform a series of normalisation process in a sequel, as illustrated
in Fig. 2. First, in the spatial normalisation step, a region of interest (ROI) is
selected to eliminate the insignificant areas of the video frames for feature extrac-
tion, and each video frame is cropped accordingly. In this work, we eliminate not
only the background information, but also some parts of the face, such as ears,
chin and forehead, which do not reflect any micro-expression related information.
The cropping of the facial region is performed based on the distance, indicated
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as a, between the active appearance model (AAM) facial feature points 37 and
46, as shown in the second image of Fig. 2. Second, we apply an intensity nor-
malisation process, using the Contrast Limited Adaptive Equalization (CLAHE)
[16] method, on each video frame to reduce the variation in the feature vector.
An advantage of the CLAHE is that it redistributes the histogram part which
exceeds the clip limit between all histogram bins, rather than just eliminating
it. In this work, we use a Rayleigh distribution with clip limit of 0.01 and α
value of 1. Third, in the scale normalisation step, we down-sampled the video
frames to reduce the size to 128 × 128 pixels, using linear interpolation. Scale
normalisation enables the same facial feature points of different video frames to
co-occur approximately in the same location. Fourth, as the final step of the
pre-processing, we performed the temporal normalisation to the input dataset
(both training and testing datasets) of the micro-expression stage classifier. The
input dataset is normalised to eight frames, and used as input to classify them
as one of the micro-expression stages, i.e., formation, release or peak.

The pre-processed frames are used as input to our deep CNN components,
as illustrated in Fig. 1, which we discuss in detail next.
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Fig. 3. The three stages of a spontaneously recognised micro-expression in a video
sequence. The green dotted line demonstrates the intensity changes of the micro-
expression throughout the sequence. (Color figure online)

3.2 Deep CNN Components

Figure 3 shows the ground-truth annotation of a micro-expression video
sequence. In here, the onset and offset frames are the first and the last recognised
frames of a particular micro-expression. The maximum intensity of the micro-
expression (i.e., micro-expression intensity level 5 in our work) is identified from
the frames between the apex frame 1 and the apex frame 2. The three stages,
from onset frame to apex frame 1, apex frame 1 to apex frame 2 and apex frame
2 to offset frame, are named as formation, peak and release respectively. The
micro-expression intensity shows a linearly increasing trend (levels 1 to 4) in the
formation stage, and reaches the maximum (level 5) in the peak stage. After
remaining unchanged for a while during the peak stage, the intensity drops lin-
early, during the release stage, to reach the minimum (level 1) again. Using the
behaviour observed here, we perform the micro-expression stage detection, the
frame-wise intensity estimation and a fusion process as explained below.
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Micro-expression Stage Classifier. Micro-expression stage classifier is an
action classifier, which classifies three stages of a micro-expression, called for-
mation, peak and release. We use a shallow (i.e., three-layer) 3-dimensional
convolutional network as the stage classifier. Further, two fully-connected (FC)
layers are assembled, as the FC layer is known for learning a non-linear func-
tion in a computationally efficient way from the high-level feature space. We
use a large-size convolutional kernel (i.e., input frames) while maintaining a
fixed temporal dimension, which is not fine-tuned during the experiment. Unlike
2-dimensional CNNs, where each video frame is considered as an object, 3-
dimensional CNNs treat the whole video sequence as an object for classifica-
tion. As indicated in the figure, the size of the input image is 128 × 128 × 1 × 8
(width × height × channel × frames). Each convolution layer is followed by
a dropout layer, in which the dropout probability is set and tuned during the
experiment. Subsequently, a pooling layer is assembled, after each dropout layer,
which uses max-pooling with a kernel size of 1 × 2 × 2.

We use the same values for learning parameters, such as momentum, learning
rate and decay, to train the hybrid framework on CASME [12], CASME II [11]
and SAMM [1] datasets. Stochastic gradient decent with momentum (SGDM)
optimiser was applied with the parameters momentum and learning rate set
to 0.95 and 0.001 respectively. The classification output of this stage classifier
forms one of the inputs of the subsequent fusion process to estimate the micro-
expression intensity changes, as shown in Algorithm 1.

Micro-expression Intensity Estimator. In the literature, the intensities of
action units (AUs) were used to estimate the intensities of macro emotions [7].
However, unlike macro expressions, micro-expression intensity estimation using
AU intensity is challenging due to its rapid and feeble nature. Here, we introduce
a novel frame-wise micro-expression intensity estimator using relative intensity
differences between the frames of a video sequence. Zhao et al. [13] used a rel-
ative intensity based method to estimate the intensities of the macro-emotions.
Inspired by this work, to assign the frame-wise intensities of micro-expressions
in a video sequence, we use the following Eq. (1) to obtain the intensity level
of jth frame Ij in a video sequence. The maximum and minimum intensities of
micro-expression are denoted as Ih = 5 and Il = 1, where the maximum intensity
is attained at the peak micro-expression stage, and the minimum is attained at
the formation and release micro-expression stages.

Ij =
⌊

j

a1
(Ih − Il)

⌉
ψ1≤j<a1 + Ihψa1≤j≤a2 +

⌊
n − j

n − a2
(Ih − Il)

⌉
ψa2≤j≤n (1)

In Eq. (1), ψ is the indicator function applied on the frame number j, where j
= 1 · · · n, and n is the number of frames in a video sequence. a1 and a2 are
the apex frame 1 and apex frame 2, respectively. The acquired micro-expression
intensity curve for a video sequence is shown in Fig. 3.

For micro-expression intensity estimation, we propose a 2-dimensional deep
CNN architecture, and the structure is similar to the one proposed for the micro-
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expression stage classifier, but with the replacement of all the 3-dimensional
convolution layers with 2-dimensional convolution layers. The input layer of the
micro-expression intensity estimator takes images with size 128×128×1 (width×
height × channel) as input. The output size of the last fully connected layer is
set to 5, representing the five-level micro-expression intensity values/levels. We
set the learning environmental settings of the micro-expression intensity change
detector to the same values as used for the micro-expression stage classifier.
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Fig. 4. For each frame, the predicted stage (formation, peak or release), and the con-
fidence score for each intensity level, are shown. The red value indicate the highest
confidence score and the corresponding intensity level of that frame. The green value
indicates the confidence score and the corresponding intensity level that is assigned for
that frame after the fusion process. (Color figure online)

3.3 Fusion Mechanism

The fusion process takes each frame and its intensity level obtained from the
micro-expression intensity estimator, and adjusts its intensity level to match
with the correct stage’s (obtained from the micro-expression stage classifier ;
formation, peak and release) intensity level as described below. Figure 4 shows
an example of this process.

– For the frames in the formation and release stages, we update the frames
predicted with the highest intensity (i.e., level 5) by the intensity prediction
of the second highest confidence score (e.g., frames (1) and (4) in Fig. 4).
This adjustment is done because these frames are identified as belonging to
either the formation stage or the release stage. Hence, their intensity levels are
expected to be less than the maximum intensity level. We use the intensity
level of the second highest confidence score to decide this.

– For the frames in the peak stage, we update the frames with predicted intensity
levels 1, 2, 3 and 4 to intensity level 5 (e.g., frame (2)), if the second highest
confidence value obtained is for level 5; otherwise we keep the intensity level
of the highest confidence score (e.g., frame (3)). This adjustment is done
because these frames are identified as belonging to the peak stage. Hence,
their intensity levels are expected to be at the maximum level. We use the
intensity level of the second highest confidence score to decide this.
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Algorithm 1 explains the steps involved in the fusion process in detail.

Algorithm 1 . Fusion process: Si and Fi are the outputs of stage detector
and intensity change detector components. Γi returns the intensity level for ith

confidence score rank. Ih indicates the highest intensity level. Ω(I) returns the
confidence value of level I
1: procedure FUSION-PROCESS(Si, Fi)
2: For all i, Si ∈ {′Formation′,′ Release′}
3: if Γ1(Fi) �= Ih then
4: Ii = Γ1(Fi)
5: else
6: Ii = Γ2(Fi)
7: end if
8: For all i, Si ∈ {′Peak′}
9: if Γ1(Fi) = Ih or (Γ1(Fi) �= Ih and Ω(Ih) ≥ Ω(Γ2(Fi))) then

10: Ii = Ih
11: else
12: Ii = Γ (Ii)
13: end if
14: Output: I
15: end procedure

4 Results and Analysis

In this section, we evaluate the proposed hybrid framework under divergent
environments. The results are reported using classification accuracy measure
obtained via leave-one-subject out cross validation procedure.

4.1 Micro-expression Intensity Change Detection

We present the results and analysis obtained using our proposed hybrid archi-
tecture, evaluated on three recent spontaneous micro-expression benchmark
datasets CASME [12], CASME II [11] and SAMM [1]. CASME [12] dataset
comprises 195 samples including eight micro-emotions namely, amusement, sad-
ness, disgust, surprise, contempt, fear, repression and tense. The second dataset,
CASME II [11], is an improved version of CASME [12], which comprises five dis-
tinct micro-expression classes: happiness, surprise, disgust, repression and others.
SAMM [1] is another recent dataset with 159 micro-expression samples based
on seven basic emotions; contempt, disgust, fear, anger, sadness, happiness, and
surprise.
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The confusion matrices shown in Fig. 5 presents the detection accuracies
of the micro-expression stage classifier, where the average prediction results
obtained are 89.37%, 93.2% and 93.6% on CASME [12], CASME II [11] and
SAMM [1], respectively. We use this prediction result as the input for the fusion
process to refine the micro-expression intensity change detection in videos. Fur-
thermore, we evaluated the prediction accuracy of the micro-expression stage
classifier before and after the pre-processing of datasets, and it clearly demon-
strates a 10% increase in the classification rate on average. Although, the tempo-
ral normalisation is included in both of the experiments to maintain the unifor-
mity of the fed CNN input, the above evaluation results are avoided for brevity.

Fig. 5. Confusion matrix for the leave-one-subject-out classification of micro-expression
stage classifier on (a) CASME [12], (b) CASME II [11] and (c) SAMM [1].

Table 1 shows the micro-expression intensity change classification results,
adopting the entire validation methodology as described before. In order to val-
idate the significance of the fusion process, we also carried out the experiment
and recorded the prediction accuracies before and after the fusion process. In
validation, before the fusion process, the intensity estimation is performed with-
out the stage classifier. In validation, after the fusion process, the stage classifier
is used to improve the output of the micro-expression intensity estimator. After
the fusion process, the results demonstrate that the highest micro-expression
intensity detection achieved is 76% with the SAMM [1] dataset, while the lowest
is reported for the CASME [12] dataset, with 71%. As it can be seen, after the
fusion process, we have a substantial increase (>7% better than the accuracy
of before fusion) in the intensity prediction accuracy of any emotion, regardless
of the micro-expression dataset. More precisely, the micro-expression intensity
detection prediction results are more accurate when in combination with a stage
classifier and the fusion process. For example, the Fig. 6 illustrates the inten-
sity updation operation for a micro-expression video sequence after applying the
fusion process, using confident scores (in this case, the micro-expression stages
are correctly classified). In this, frames 9, 10 and 15 are adjusted to the correct
intensity levels by the fusion process. This explicitly improves the classification
accuracy from 62.5% to 75.0%.
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Table 1. Micro-expression intensity change detection results before and after the fusion
process. The pair of numbers represent the classification accuracies in the form of
(before fusion, after fusion).

Micro-expressions Datasets

CASME [12] CASME II [11] SAMM [1]

Amusement (0.61, 0.68) – –

Anger – – (0.69, 0.74)

Contempt (0.57, 0.59) – (0.55, 0.60)

Disgust (0.72, 0.79) (0.79, 0.84) (0.77, 0.81)

Fear (0.77, 0.81) – (0.71, 0.79)

Happy – (0.73, 0.81) (0.66, 0.71)

Others – (0.47, 0.52) –

Repression (0.52, 0.59) (0.55, 0.59) –

Sad (0.81, 0.85) – (0.79, 0.84)

Surprise (0.74, 0.77) (0.81, 0.87) (0.76, 0.83)

Tense (0.58, 0.61) – –

Average rate (0.67, 0.71) (0.67, 0.73) (0.70, 0.76)
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Fig. 6. Fusion process for a sequence in CASME [12] with emotion happy. Left figure
illustrates frame-wise confidence scores and the right figure presents the frame-wise
intensity labelling before and after the fusion process

4.2 Comparison with Existing Works

As discussed in the related work section, the closely related works to ours either
targeted intensity estimation of the macro-expressions [13] or a binary classifi-
cation (i.e., existence or not) of the micro-expression [1,4–6,11,14]. In order to
perform a fair comparison of our framework with the existing works, we need to
convert the intensity level (five levels) output of our framework to a binary form.
Hence, we combined all the micro-expression intensity levels from 1 to 5 and con-
sidered them as the indicator of the existence of the micro-expression, while the
level 0 is considered as the indicator of non-existence of the micro-expression.
We compared these works using the CASME [12], CASME II [11] and SAMM



398 S. Thuseethan et al.

[1] datasets. Table 2 provides the comparison results. It can be observed that
the deep learning based approaches, both CNN based approach of [5] and our
approach have outperformed the hand-crafted feature-based approaches. Fur-
ther, our scheme showed the highest accuracy among all; 77%, 82% and 91%
on CASME [12], CASME II [11] and SAMM [1] respectively. This demonstrates
that our hybrid architecture and the fusion mechanism helped to attain higher
accuracy. Moreover, our proposed framework is capable of further classifying
the various intensity levels within the micro-expression as demonstrated in the
previous section.

Table 2. Comparison of micro-expression recognition methods against the proposed
hybrid framework with leave-one-subject-out cross-validation on CASME [12], CASME
II [11] and SAMM [1]. ‡ and § indicate the performance measures recognition accuracy
and F-measure respectively.

Methods Datasets

CASME [12] CASME II [11] SAMM [1]

LBP-TOP [1,11,14] 0.69‡ 0.39§ 0.55§

HOOF [14] – 0.59‡ –

3DHOG [1] – – 0.89‡

Bi-WOOF [6] – 0.61§ –

FHOFO [4] 0.55§ 0.52§ –

CNN [5] – 0.61‡ –

Ours (0.77‡, 0.61§) (0.82‡, 0.68§) (0.91‡, 0.70§)

5 Conclusion

In this paper, we proposed a novel hybrid micro-expression intensity change
detection framework, consisting of three components, namely, micro-expression
stage classifier, micro-expression intensity estimator and a fusion mechanism.
The hybrid framework is built on a combination of 3D and 2D deep CNN based
architectures. The fusion mechanism is integrated to further enhance the classi-
fication efficiency. Moreover, we proposed a comprehensive preprocessing tech-
nique to cater the requirements of deep networks; a large amount of training
data and reduced complexity. Experiments were carried out on three bench-
mark micro-expression datasets CASME [12], CASME II [11] and SAMM [1].
We demonstrated that our hybrid framework is capable of accurately detecting
the intensity changes in the micro-expression. Further, we compared the accuracy
before and after the fusion mechanism, and shown the improvement achieved in
the accuracy of intensity change detection. In the future, we aim to apply this
in combination with the macro-expression intensity changes for fast detection of
onset of emotions.
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Abstract. The major challenge for 3D human pose estimation is the ambiguity
in the process of regressing 3D poses from 2D. The ambiguity is introduced by
the poor exploiting of the image cues especially the spatial relations. Previous
works try to use a weakly-supervised method to constrain illegal spatial relations
instead of leverage image cues directly. We follow the weakly-supervised
method to train an end-to-end network by first detecting 2D body joints heat-
maps, and then constraining 3D regression through 2D heatmaps. To further
utilize the inherent spatial relations, we propose to use a multi-scale recalibrated
approach to regress 3D pose. The recalibrated approach is integrated into the
network as an independent module, and the scale factor is altered to capture
information in different resolutions. With the additional multi-scale recalibration
modules, the spatial information in pose is better exploited in the regression
process. The whole network is fine-tuned for the extra parameters. The quan-
titative result on Human3.6m dataset demonstrates the performance surpasses
the state-of-the-art. Qualitative evaluation results on the Human3.6m and in-the-
wild MPII datasets show the effectiveness and robustness of our approach which
can handle some complex situations such as self-occlusions.

Keywords: 3D human pose estimation � Recalibration module � Deep learning

1 Introduction

Estimating human pose from images is a hot spot in computer vision. It can be used in
numerous applications, including human-computer interaction, medical rehabilitation,
surveillance, action recognition, etc. The research on the human pose estimation is
active but challenging for the ambiguity in human depiction. This can be attributed to
the variant background, self-occlusions, limited viewpoint and so on [1]. In recent
years, deep neural networks are utilized to mitigate the issues, and the tremendous
network architectures are supported by large datasets [2–4]. In this paper, we aim at
estimating 3D human pose from a single monocular RGB image.

In the context of 3D human pose estimation, lots of creative methods are proposed.
In general, they can be divided into two categories: inferring 3D configuration from off-
the-shelf 2D joints detector [5–8] and performing an end-to-end model to regress 3D
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joint coordinates directly [9–12]. Restricted by the limits of 3D annotated human pose
datasets, the shortage of scale and the lack of variance in natural settings, the model is
not generalized enough to handle in-the-wild situations. To tackle the problem, some
methods are proposed: using synthetic data [13], multi-view camera merging [14], and
the hybrid learning for both 2D and 3D pose [15, 16].

In the hybrid learning, the cues in the original images and intermediate heat maps
are exploited to introduce the spatial information and lower level features. With the use
of large-scale in-the-wild 2D annotated datasets, both the accuracy and generalizability
are promoted. Zhou et al. [16] proposed a weakly-supervised approach to introduce 3D
geometric constraint. We reuse their work and make some change to further exploit
image cues in the regression process.

The image classification is the foundation of other computer vision tasks. At the same
time, the pre-trained networks can be used and fine-tuned to extract other high-level
image features for other tasks. To a great extent, the work we did is inspired by some
novel network designs for the task of image classification. For the most of the deep
networks, they lie in the spatial domain and are composed of convolution layers. Con-
volution operation is spatial-symmetric naturally, but the saliencies are not uniformly
distributed in the spatial domain for some highly structural tasks such as human pose
estimation. For instance, when all the joints except head are settled, the distribution of
head position is closer to the ‘upper’ position instead of uniformly. So, in the regression
process of 3D pose estimation, we propose to introduce a recalibration approach [17, 18]
to revise the response of each neuron by a spatial weight in residual modules [19].

Our contribution is introducing the spatial enhanced multi-scale recalibration to the
base residual modules in 3D pose regression aiming to exploit the structural infor-
mation in some human poses. This approach slightly outperforms than state-of-the-art
baseline systems after fine-tuning. The experiments show that the Mean Per Joint
Position Error (MPJPE [4]) is 4% lower than the state-of-the-art methods on the largest
annotated 3D pose dataset. Moreover, the network possesses a high-performance in
inferencing, so the system which is based on the approach has the ability to be
equipped in some real-time applications.

This paper is organized as follow: After reviewing the related work in Sect. 2,
Sect. 3 introduces the proposed approach, and the evaluation results are presented in
Sect. 4. At last, Sect. 5 concludes the paper and previews the future work.

2 Related Work

Human pose estimation has been extensively studied in the past years [1, 20]. Pro-
viding a detailed overview is far beyond the scope of this work. In the context of this
paper, we focus on related works on 3D human pose estimation which is one of the
most challenging studies in computer vision. Simultaneously, we will review the spatial
enhancement, especially the recalibration, for deep networks.

2.1 3D Human Pose Estimation

The 3D human pose can be simplified into a set of joints in 3D coordinate with
some volumeless connections between joints. So, 3D human pose estimation can be
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formulated as a supervised regression problem which has the 3D coordinate as the
output and the original images or predicted 2D pose as the inputs. With the alternative
of input, most methods of 3D human pose estimation can be separated into two types.

The first type of methods is to train an end-to-end regression model or a data-based
encoder directly predicting coordinates of each joint. Li et al. [11] regress and detect
joints with a deep convolutional neural network. Pavlakos et al. [9] utilize volumetric
representation in output space and proposes a coarse-to-fine approach to deal with the
large dimensionality. Tekin et al. [10] introduce a deep learning regression architecture
for structured prediction. An overcomplete auto-encoder is used to learn latent pose
representation and joint dependencies. Li et al. [12] use two sub-networks for image
and pose embedding. [21] proposes a new CNN as pose regressor to predict location
maps for the 3D poses.

The other is separated into two subtasks [5–8]. For the first subtask, an off-the-shelf
2D human pose estimation method [22, 23] is used to detect different joints in a human
pose, and it can be fine-tuned through large-scale in-the-wild 2D pose datasets. And the
second subtask is regressing the 3D location of the corresponding 2D joint. Ramakr-
ishna et al. [8] present a matching pursuit algorithm to estimate 3D pose from 2D
projections. Moreno-Noguer et al. [5] use distance matrices to represent 3D and 2D
pose and complete 2D to 3D lifting by a neural network architecture. Chen et al. [6]
match the 2D pose in a bigdata 3D pose library through the nearest neighbors algo-
rithm. Martinez et al. [7] create a simple network to lift 2D joint locations to 3D space.
The state-of-the-art stacked hourglass network is adopted as the 2D joint detector.

Recently, some prior knowledge including structural or geometric constraints is
utilized. Akhter and Black [24] set pose-dependent joint angle limits for lifting 2D
location to 3D. Sun et al. [15] propose a bone-based pose representation to a structure-
aware loss function. Zhou et al. [25] use a generative forward-kinematic layer to
enforce the bone-length constraints in the prediction. In [16], they further introduce
geometric constraints into their network to maintain consistency of bone-length ratios
in the pose prediction.

2.2 Spatial Enhancement for Deep Networks

All the above methods did not exploit the spatial relations in the 3D pose regression.
But for most of the image comprehension task, the relationship between two features is
tighter when their spatial location is closer to each other. Some approaches are pro-
posed to introduce this spatial priority [17, 26–29]. Spatial pooling is performed by He
et al. [26], which explicitly splits the image lattice into several groups, and ignores the
diversity of features in the same group. In [27], a set of regional proposals is utilized to
summarize features. Another perspective is discriminate the salient features from
others. Some approaches find the neurons that contribute most to the result through
gradient back-propagation [28] or attention [29]. For the purpose of capturing non-
linear properties an reducing the number of parameters, a recalibration approach [17] is
proposed to revise the response of neurons by a spatial level weight set. Recently,
recalibration is enhanced by multi-scale strategy.
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3 The Proposed Approach

The 3D human pose can be abstractly represented into a set of human joints coordinates
with the volumeless connections between spatially associated joints. The set of joints is
denoted as P3D 2 R3�J , where J is the number of crucial joints in a human skeleton.

Each joint in the set is a 3-dimension vector P3D
j ¼ Xj; Yj; Zj

� �T
; j 2 1; . . .; J. The first

two coordinates are rescaled to the pixel coordinate which is consistent with the input
RGB image I, and the third coordinate is the vertical depth from joint j to the camera.
Our goal is to estimate the 3D human pose P3D from a single RGB image I.

The overview of our approach is illustrated in Fig. 1. It consists of two substruc-
tures: 2D pose estimation and 3D pose regression with multi-scale recalibration
modules. 2D joints set P2D is detected by the 2D pose estimation module which
predicts the joints locations with the highest probability. The vertical depth Zdep is
predicted by the regression module. The final output is the constitution of 2D joints set
P2D and joints vertical depth Zdep.

The network we use is based on a weakly-supervised approach [16] which is
trained from both images with 3D pose annotations and images with 2D pose anno-
tations. As the main process of 3D human pose estimation, the regression module is
improved by utilizing the multi-scale recalibration branches in residual modules [19].
Each multi-scale recalibration branch has its own weights, and these weights are fine-
tuned separately during the training process. We describe the baseline pose estimation
network and multi-scale recalibration regression below.

Fig. 1. Overview. A batch of images I are first fed into the 2D pose estimation module which
consisted of two stacked hourglass network and the heatmaps for each joint are the outputs as
fHjjj 2 Jg. Every stack network produces an interim heatmap which contain the massive hidden
features from multi layers, and all these heatmaps are coalesced as the input of the cascaded
regression module. In regression module, multi-scale recalibration modules are added as the extra
branches in residual structures. The regression module predicts the depth of each joint, as Ẑjdep,
and the 3D pose estimations are constituted of predicted 2D joints positions and regressed joints
depth from camera.
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3.1 Baseline Pose Estimation Network

We adopt an end-to-end network [16] with a weakly-supervised constraint from 2D
pose to 3D pose. The network contains two main modules. Brief introductions are as
below.

2D Pose Estimation Module. The state-of-the-art network structure in [23] is utilized
and reduces the stacked number from 6 to 2. The output of the module is a set of
heatmaps fHjjj 2 Jg where for a given heatmap the module predicts the probability of
a joint’s coordinate on pixels coordinate system. To train the module, a Mean-Squared
Error (MSE) loss is applied comparing the difference between predicted heatmap and
ground-truth heatmap [23].

3D Pose Regression Module. The design of the regression module is inspired by the
ResNet [19] which is constructed with residual modules. The number of residual
modules of regression is also reduced to 8. A linear layer is applied as the output layer
with outputting predicted joints depth Ẑjdep.

3.2 Multi-scale Recalibration Regression

Most 3D pose regression methods [5, 7] are aiming to lift the 2D joints positions to 3D
directly by exploiting 2D information which is preparatory to the regression from a
well-performed 2D joints detector. To reduce the ambiguity of 3D joint location, image
cues [30] or geometric constraints [15, 16] are exploited in some methods. All the
above methods neglect the spatial relations in images, which is often reflected in
adjacent joints during the task of 3D pose regression. In 2D pose estimation, the
problem is often offset through enlarging the local receptive field or combining features
across scales, e.g. in [23], pooling and up-sampling are used repeatedly to gain high-
level representations from multi-resolution. This method is proved to be effective
(PCKh0.5 = 90.9%) in the task of 2D pose estimation.

Our approach is inspired by some novel networks [17, 18] designed for image
classification. These networks adapt additional recalibration module to learn the spatial
information which is benefits to some complex situations in classification. So, we adapt
the multi-scale recalibration method in [18] to the 3D pose regression module for long-
range features extraction.

As shown in Fig. 1, the 3D pose regression module utilizes the heatmaps H from
2D pose estimation module to predict the joints depth Ẑdep. The structure of the
regression module is visualized in Fig. 2(a). It contains 8 cascaded residual modules
which are totally the same. We define the residual module as a function,

Y ¼ HþF Hð Þ ð1Þ

The input of the residual module is H, and the output is Y, the convolution is equal
to the function F(*). And the detail is showed in Fig. 2(b): 3 Convolution layers with
batch normalization [31] and Rectified Linear Units (ReLUs) [32]. The output of the
residual module with multi-scale recalibration Y* can be expressed as:
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Y� ¼ HþF Hð Þ � R F Hð Þð Þ ð2Þ

Note that R(*) is the function of the multi-scale (scale factor L = {1, 2, 4})
recalibrations which are inserted after the convolution layers in the residual module (in
Fig. 2(c)). ‘⊙’ is element-wise multiply. The process of recalibration at scale factor L is
constructed in Fig. 2(d). The structure of the recalibration module demonstrates that the
input feature is squeezed to a narrow pipeline with the resolution of L � L.

Fig. 2. (a) The regression module. 8 residual modules cascaded in line; (b) The details of
residual module; (c) The residual module with multi-scale recalibration (d) L-Scale recalibration.
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3.3 Training

We first pre-train the model follows the three-stage training schema in [16]. For each
stage with an exponential decay learning rate from 0.001, and mini-batch of size 6.

For stage 1, the network is trained for 60 epochs, and for both stage 2&3, are 30
epochs.

After the training of the baseline network, the recalibration modules are introduced
into the regression module. All the parameters of the baseline network are frozen, and
the recalibration modules are optimized during the training, with the learning rate of
0.0025 and 30 epochs. Training for all the stages takes around 2 days in a Tesla
M40 GPU, and the finetune process is done in 10 h. The inference spends 46 ms for
each frame, so it is effective enough to be used to the real-time systems.

4 Evaluation

Our model is trained on Human3.6m dataset [4] and MPII dataset [2]. For the baseline
network [16], we follow the training strategy of 3 stages (Sect. 3.3). And we fine-tune
the recalibration modules on the baseline network.

Table 1. Quantitative results of our model on the Human3.6m dataset. The numbers are MPJPE
(mm) results. BL means the baseline method which is trained without the Multi-SCALE
Recalibration Modules, and Ours is the method we proposed with the Multi-Scale Recalibration
Modules.

Method Directions Discussion Eating Greeting Phoning Photo Posing Purchases

Chen [6] 89.9 97.6 90.0 107.9 107.3 139.2 93.6 136.1

Tome [33] 65.0 73.5 76.8 86.4 96.3 110.7 68.9 74.8

Moreno [5] 69.5 80.2 78.2 87.0 100.8 102.7 76.0 69.7

Zhou [34] 87.4 109.3 87.1 103.2 116.2 143.3 106.9 99.8

Metha [35] 59.7 69.7 60.6 68.8 76.4 85.4 59.1 75.0

Pavakos [9] 58.6 64.6 63.7 62.4 66.9 70.7 57.7 62.5

Zhou [16] (BL) 54.8 60.7 58.2 71.4 62.0 65.5 53.8 55.6

Martinez [7] 51.8 56.2 58.1 59.0 69.5 78.4 55.2 58.1

Ours 56.0 61.3 52.0 63.2 60.9 69.2 60.9 50.2

Method Sitting Sitting down Smoking Waiting walk dog Walking Walk pair Average

Chen [6] 133.1 240.1 106.7 106.2 87.0 114.1 90.6 114.2

Tome [33] 110.2 172.9 85.0 85.8 86.3 71.4 73.1 88.4

Moreno [5] 104.2 113.9 89.7 98.7 82.4 79.2 77.2 87.3

Zhou [34] 124.5 199.2 107.4 118.1 114.2 79.4 97.7 79.9

Metha [35] 96.2 122.9 70.8 68.5 54.4 82.0 59.8 74.1

Pavakos [9] 76.8 103.5 65.7 61.6 67.6 56.4 59.5 66.9

Zhou [16] (BL) 75.2 111.6 64.2 66.1 51.4 63.2 55.3 64.9

Martinez [7] 74.0 94.6 62.3 59.1 65.1 49.5 52.4 62.9

Ours 76.1 103.6 62.5 52.4 65.1 45.5 49.0 62.4

406 Z. Xie et al.



The result of the test data is shown in both quantity and quality. Quantitative
evaluation (Table 1) is performed only on the Human3.6m dataset, and qualitative
evaluation (Fig. 3) is performed on both Human3.6m and MPII.

We also perform an ablation study for our model, and the result is in Table 2.

4.1 Datasets

MPII Dataset. MPII dataset [2] is a large-scale in-the-wild 2D human pose dataset. It
contains around 25k images over 40k people with annotated body joints. The training
set of MPII is used to train the 2D pose estimation module in the baseline network.
Despite the lack of 3D joint location, it can be exploited as the input of geometric
constraints in the network.

Human3.6m Dataset. Human3.6m dataset [4] is used for both training and testing
process. It is the largest public dataset for 3D human pose estimation. The dataset
contains 3.6 million images in 11 subjects and 15 daily activities. All the data is
captured by a motion capture system in an experimental indoor environment. We
follow the standard protocol in [5, 9, 15, 16], which uses subjects S1, S5, S6, S7 and S8
for training and S9 and S11 for evaluating. The metric we use is Mean Per Joint
Position Error (MPJPE) [4], which measures the average of millimeter Euclidean

Fig. 3. Qualitative results of our model on the Human3.6m dataset and MPII 2D pose dataset.
Predicted poses are rotated and zoomed for the consistency of perspective with original image.
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distance between the predicted and ground truth corresponding joints after aligning the
root(pelvis) joint.

4.2 Quantitative Results

After the convergence of model around 30 epochs for the fine-tuning, we use the pre-
trained model to the test dataset, and the result is summaries in Table 1 compared to
most state-of-the-art methods in all the 15 activities under the standard protocol. Noted
that in most activities, after the introducing and fine-tuning of the recalibration mod-
ules, we gain an enhancement from extra components. Our method reduces the MPJPE
down to 62.4 in average. For most of the activities in Human3.6m, we exceed to
baseline method (around 4% promotion) and achieve the state-of-the-art results.

4.3 Ablation Study and Analysis

We changed the scale factor set L in the recalibration modules. When the L = {1, 2, 4},
the recalibration modules capture coarse to fine grain, so relevance in different scale is
exploited. As expected, the result when using most scale branches gains most profit to
other 3 ablative scale factor sets. And we notice a quite interesting phenomenon: when
L is ablated to only one element 1 (equivalent to Squeeze-and-excitation network [17])
and 4, deterioration appear when comparing to multi-scale one, but former is slightly
better than later, on account of the relevancy between joints on full-range is much more
influential to regional-range.

4.4 Qualitative Results

Finally, we demonstrate some qualitative results on both Human3.6m and MPII dataset
in Fig. 3. For the first line is the experiment result in Human3.6m which is in a limited
controlled environment. Second to sixth lines is in-the-wild MPII dataset. As the results
reveal, our model can dispose of most of the 3D human pose estimation problem in the
wild and gain a precise prediction even in some self-occlusion situations. But our
model has some limitation for predicting partial bodies, for the model is trained on full
bodies, and these cases are not taken into consideration temporarily.

5 Conclusions and Future Work

In this paper, we first introduce the multi-scale recalibration approach in the 3D pose
regression process for capturing more spatial information in the highly structural
human pose. The evaluation results show the advancement of state-of-the-art baseline

Table 2. Result of ablation study.

L set {1, 2, 4} {1, 2} {1} {4}

MPJPE(avg)(mm) 62.4 63.1 63.4 64.3

408 Z. Xie et al.



method. In the future, we plan to explore more geometric constraints in 3D human pose
estimation to punishing some implausible predictions. We also expect this work can
inspire some relevant work in 3D human pose estimation.
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Abstract. Recent years have witnessed the successful rise of the time-
sync “gossiping comment”, or so-called “Danmu” combined with online
videos. Along this line, automatic generation of Danmus may attract
users with better interactions. However, this task could be extremely
challenging due to the difficulties of informal expressions and “semantic
gap” between text and videos, as Danmus are usually not straightforward
descriptions for the videos, but subjective and diverse expressions. To
that end, in this paper, we propose a novel Embedding-based Generative
Adversarial (E-GA) framework to generate time-sync video comments
with “gossiping” behavior. Specifically, we first model the informal styles
of comments via semantic embedding inspired by variational autoen-
coders (VAE), and then generate Danmus in a generatively adversarial
way to deal with the gap between visual and textual content. Extensive
experiments on a large-scale real-world dataset demonstrate the effec-
tiveness of our E-GA framework.

1 Introduction

Recent years have witnessed the booming of the novel time-sync comments on
online videos, or so-called “Danmu” [10,11], which describes the scene that
massive comments flying across the screen just like bullets [14]. This new business
mode could not only enrich the video with textual information but also attract
viewers with better interactions. For instance, the report of iQiYi1, a leading
Danmu-enabled video-sharing platform in China, revealed that Danmus have
improved the online user activities, such as views or comments, even by 100
times. Along this line, administrators are encouraged to improve the loyalty

1 http://digi.163.com/14/0915/17/A66VE805001618JV.html.
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of users with high-quality Danmus. However, due to the limitation of “grass-
root” users, the quantity and quality of Danmu could be hardly ensured. Thus,
solutions for automatic Danmu generation is urgently required.

Usually, prior arts conducted the short text generation mainly following the
idea of tagging method [25], textual summarization [4,17] or Question-answering
system [1]. Nevertheless, though large efforts have been made, these brilliant
works may not be suitable for the Danmu generation task due to its unique
characters. Indeed, Danmu is not just the objective statement of video content,
more importantly, it could be the “gossiping” to the video. First, different
from the image caption techniques, Danmu always indicates the subjective
opinions, e.g., “I like Penny” and “Sheldon is so cute” (from the American
TV sitcom “The Big Bang Theory”). Second, the content of Danmus could be
more diverse, which is not limited to the current episode of video, e.g., we can
see “Bazinga”, the pet phrase of Sheldon, in Danmus at anywhere even without
Sheldon. Besides, the expression of Danmus could be informal, as emotions (e.g.,
“O(∩ ∩)O”) or slangs (e.g., “lol” which means laughing), which could be more
fluent just like human talking, but cannot be interpreted by literal meanings
and thus increase the difficulty of generation.

To that end, in this paper, we propose a novel Embedding-based Generative
Adversarial framework (E-GA) to generate the gossiping Danmus of videos.
Specifically, considering the informal expressions in Danmu, we represent both
the video scenes and textual information as vectors. Then, to deal with the
semantic gap between visual content and user opinions, a generative adversarial
model is adapted to learn the latent mapping between visual space and semantic
space. Along this line, the proper and diverse semantic vectors will be generated,
and then decoded as sentences. To the best of our knowledge, we are among
the first ones who attempt to generate Danmu-like comments with combining
both embedding and adversarial approaches. Extensive experiments on a large-
scale real-world dataset demonstrate the effectiveness of our E-GA framework,
which validates the potential of our framework on generating “gossiping” text
in Danmu-enable social media platforms.

Sequence 
Encoder

Semantic
vectors

Sequence 
Decoder

Image 
Encoder

Visual
vectors

GeneratorNoise

Discriminator

Generated
vectors

Real / 
Fake

Scenes extracted from videos.

Generated time-sync comments.

Time-sync comments.

The generation part.

The scene embedding part. The text embedding part.

Fig. 1. The overall architecture of the generation framework.
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2 Problem Definition and Technical Solution

In this paper, we target at generating Danmus for video frames. Formally, we
first give the definition as follow:

Definition 1 (Danmu Generation). Given the training set of video frames
{vi}, where vi ∈ V denotes the i-th frame in video, combined with related Dan-
mus as Si = {sik}. Our target is to learn a Danmu generator G, so that a series
of Danmu-like comments {s′

kj} could be produced for gossiping any given frame
v′
i ∈ V ′ in the test set.

Specifically, as we mentioned above that we target at generating the “gos-
siping” Danmus for given video frames, we have to satisfy the following three
requirements to ensure the gossiping characters:

1. Relation. The generated Danmus must be semantically related to the given
frame.

2. Diversity. The generated Danmus should be more than only the description
of the objective truth in the frame. They should be subjective and semanti-
cally diverse.

3. Fluency. The generated Danmu should be fluency, i.e., their style should be
similar to the human-written comments.

Along this line, to satisfy all the three requirements above, we formulate our
solution in the following way. First, according to the basic task, i.e., generating
a sequence of comments given the video frame, we propose a generator G to
model the probability distribution P (s|v). Then, considering the requirements
on semantic relation, we adopt the Generative Adversarial Networks (GANs)
structure [16], and further introduce a noise vector τ , so that the requirements
on diversity could also be satisfied.

Correspondingly, the generator G could be re-formulated as {sk} = G(τ |v).
However, here the generated Danmu, as the sequences of words, will be dis-
crete but not continuous as prior arts. Thus, requirements of fluency could be
unsatisfied with directly using the GAN [28]. Moreover, the informal expres-
sions exist in Danmu may further increase the difficulty in understanding the
relations between frames and text. To address these challenges, we design an
Embedding-based Generative Adversarial framework (E-GA), where the frames
V and comments S are first represented into low dimensional continuous spaces
Hv and Hs. Then, we further adapt our generator as {hsk} = G(τ |hv), in which
hsk ∈ Hs and hv ∈ Hv. Finally, Danmu sentences si will be reconstructed
from hsi.

In summary, the overall framework of our E-GA model is illustrated in Fig. 1,
which includes two parts, namely (1) the embedding part and (2) the generation
part. Technical details will be introduced in the following sections.

2.1 The Embedding Part

First, we will introduce the detail of embedding part. In order to better model
the internal relations for the frames and text, we choose to perform data
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representation via the Variational AutoEncoders (VAE) [13], which is based on
a regularized standard autoencoder. It modifies the conventional ones by using
a posterior distribution q(z|x) instead of the deterministic embedding φ(x) for
input x. Reconstruction of x is generated by sampling a vector z from q(z|x)
and then passing it through a decoder. In addition, to ensure that the embedding
space is continuous where any point (vector) can be decoded to a valid sample,
the posterior q(z|x) is regularized with its KL-divergence from a prior distri-
bution p(z), which usually follows standard Gaussian N (0,1). The objective
function takes the following form:

L = −Eq(z |x)[log p(x|z)] + DKL(q(z|x)||p(z)), (1)

where the expectation term is known as the reconstruction loss Lrec, while the
other term denotes the KL-loss LKL.

Though the VAE based model can achieve decoding vectors to human accept-
able data, e.g., images or fluency sentences, its embedding ability has been largely
weakened. Note that, the “embedding ability” here refers to how well the repre-
sentations can reconstruct their original inputs. For example, if there are embed-
ding vectors h = φ(x) that can be decoded to the inputs x with little loss, we
normally say that φ have good embedding ability. In contrast, if a series of rep-
resentations fail to reconstruct the original inputs, there is definitely a loss of
information. At the same time, the associated reconstruction loss Lrec will be
large. Thus, we are not going to use the VAE directly. Considering the KL term
in Eq. 1, the KL divergence for diagonal Gaussian N (μ,σ2) can be formulated
by:

LKL =
N∑

i=1

(μ2
i + σ2

i − log(σ2
i ) − 1), (2)

which is composed of the “μ-term” and the “σ-term”. As we know, for a con-
verged VAE, these two terms will ideally set μ and σ to 0 and 1 respectively,
which will result in poor embedding effect. In our task, both of the ability of
embedding and decoding are needed. On one hand, we need the proper repre-
sentations μ to feed into the generator. On the other hand, we also need the
decoder to generate new sentences from h ∼ N (μ,σ2) rather than giving the
existing sentences from the training set. To this end, we loose the KL constraint
by replacing the μ-term with max(μ2

i − μ2
0, 0):

LKL =
N∑

i=1

(max(μ2
i − μ2

0, 0) + σ2
i − log(σ2

i ) − 1), (3)

so as to σ still converge to 1 while μi can be in the range of [−μ0, μ0]. Further,
to measure the embedding capacity for the modified model, we define a metric
as follows:

C = Eµi∼U(−µ0,µ0)

[
DKL

(
q(z|x)||p(z)

)

H
(
q(z|x), p(z)

)
]

= 1 −
√

ln 2πe
μ0

arctan
μ0√

ln 2πe
, (4)
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Fig. 2. The RNN structure of sentence encoder and decoder. Size of each layer is
labeled on the box. Note that the encoder and decoder share the same parameters for
word embedding layer.

where H denotes the cross entropy of the two distribution. C is valued in [0, 1),
and we could balance the effect of embedding and decoding by tuning μ0 based
on this. We will discuss more about this later in Sect. 3.4.

Next, to be specific, for video frames, we set up an encoder φv to encode an
image v ∈ V as a posterior distribution q(hv|v). Typically, we use a diagonal
Gaussian distribution N (μv,σ

2
v) to present this posterior, where (μv,σv) =

φv(v). Then, to formulate the loss function and learn the model, a visual vector
hv is sampled from q(hv|v) and then sent to a decoder ψv. The image is finally
reconstructed as v′ = ψv(hv). The reconstruction loss is in the form of Mean
Squared Error (MSE):

Lrec =
1
N

∑
(v′ − v)2. (5)

Specially, the encoder φv and decoder ψv are implemented by deep convolutional
networks with 4 layers as used in [19].

For Danmu sentences, the situation is a little different. We design character
level Gated Recurrent Unit (GRU) [5] networks as encoder φs and decoder ψs, as
shown in Fig. 2. At each time, a pair of sentences (s1, s2) that are selected from
the same frame are first put into the encoder by characters to get their posterior
distributions N (μs1,σ

2
s1) and N (μs2,σ

2
s2). Like frame embedding, hs1 and hs2

which are sampled from the two distributions are put into the decoder. In the
decoder, for every single sentence, the corresponding reconstruction loss is the
sum of the negative log likelihood of the correct character at each step:

Lrec(s) = − log P (s|hs) = −
N∑

t=1

log P (ct|hs, c0, ..., ct−1). (6)

More importantly, to model the deeper semantic meaning of Danmus, we also
involve a semantic loss formulated as:

Lsem(s1, s2) = dist(μs1,μs2), (7)

in which we take the assumption of “temporal correlation” [14], i.e., comments
appear in the same frame hold the similar topics (relevant to the frame, but
semantically diverse). Here we choose cosine distance as the distance function
dist(). Finally, the overall reconstruction loss for Danmu embedding is given by:
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Lrec = Lrec(s1) + Lrec(s2) + Lsem(s1, s2). (8)

2.2 The Generation Part

In the generation part, we set up Conditional Generative Adversarial Model
which consists of two “adversarial” models: a generative model G that captures
the data distribution, and a discriminative model D that estimates the prob-
ability that a sample came from the training data rather than G. Here, since
we aim to produce semantic vectors from the visual vectors, both G and D are
implemented by deep neural networks.

In detail, we choose to utilize our GAN as a Wasserstein GAN [2]. For G, the
visual vector hv and the noise vector τ are first concatenated, and then put into
the hidden layers with size 1000 and 500. Here, we perform the batch normal-
ization [12] for every layer to reduce the internal-covariate-shift by normalizing
its input distributions to the standard Gaussian distribution, and leaky ReLU
with leak value 0.01 is used as the activation function. Then, a linear transfor-
mation is took place on the output to produce the “fake” semantic vector, i.e.,
hs = G(τ |hv).

Similarly, for D, the input is the concatenation of a visual vector hv and a
(fake) semantic vector hs, while the hidden layers are sized as 2000 and 1000
with the same activation function. Please note that batch-norm should not be
used for a discriminator since it can cause the model unable to converge. Finally,
the critical output y = D(hs|hv) is calculated by linearly mapping the hidden
state to a scalar, which indicates whether the input semantic vector is fake or
not. Furthermore, G and D are trained alternatively and the objective function
of a two-player min-max game would be:

min
G

max
D

V (D,G) = Ep(hs|hv)[D(hs|hv)] − Ep(τ )[D(G(τ |hv)|hv)].

2.3 Learning the Model

We then turn to introduce details about learning the model. With recalling the
Fig. 1, the training process can be divided into two stages: (1) We separately
learning the two autoencoders with the frames and comments from the videos.
After the parameters are fine-tuned, we store the models including the image
encoder φv, sequence encoder φs and the sequence decoder ψs for further use.
(2) Based on the autoencoders, we train the generator G and the discriminator
D in a generative adversarial way. Note that in this stage, parameters of φv, φs

and ψs are kept unchanged, only G and D are updated.
To be specific, in both of the two stages, mini-batch gradient descent is used

to optimize the models, where the batch size in our case is 32. For the autoen-
coders, we use SGD with momentum, where the learning rate and momentum
are separately set as 0.1 and 0.6, and at the same time, gradient clipping is per-
formed to constrain the L2 norm of the global gradients not larger than 1.0. To
our pilot study, it is crucial to clip the gradients for most of the optimizing algo-
rithms due to the exploding gradients problem even with a very small learning
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rate. For the GAN part, we take the RMSProp2 algorithm with learning rate
10−5 and decay 0.9.

Another problem is the trade-off between reconstruction loss Lrec and KL-
loss LKL when training the embedding models. For a VAE-based model, directly
minimizing Lrec + LKL may fail to encode useful information [3] in the embed-
ding vector, since in most cases, LKL is far more easy to be optimized, which will
yield models that consistently set Q(z|x) equal to P (z). Thus, in our case, we
design a simple annealing approach, in which Lrec +αLKL is used to replace the
original loss function, where α is initialized with 0 and then gradually increased
to 1.

3 Experiments

3.1 Data Preparation

We choose to validate our work on a real-world dataset extracted from Bilibili,
which is one of the largest video-sharing platforms in China. Specially, totally
2, 716 individual movies are extracted, which last for 232, 485 minutes and con-
tain 9, 661, 369 Danmus. To get scene images, we split the videos into frames for
every one second.

Since the total number of the frames is too large, key frame extraction is
carried out to eliminate the duplicated ones. First, we extract features for frames
by constructing the scalable color descriptors (SCD) [15]. Then, based on these
features, an affinity propagation algorithm is performed to cluster the frames,
and the kernels are collected as our key frames. In our experiment, we got 214, 953
key frames with their corresponding Danmus. 80% of them are used as training
data, while others for testing.

3.2 Experimental Setup

Baseline. As far as we know, few works about Danmu generation have been done
before and there can be mainly three kinds of models for generation tasks. Thus,
to evaluate our model, we consider the corresponding straightforward baseline
models to compare with.

(1) Encoder-Decoder framework. We train a Convolutional Neural Net-
work (CNN) as the encoder to get the representations of frames. The repre-
sentations are then treated as inputs for a decoder implemented by a Recur-
rent Neural Network (RNN). The model is similar to the Neural Image Cap-
tion [22].
(2) Conditional Variational Autoencoders (CVAE). The CVAE [21]
is based on traditional VAE which has an condition input y to both
encoder and decoder. In our experiment, we take the representations of the
frames as y.

2 http://www.cs.toronto.edu/∼tijmen/csc321/slides/lecture slides lec6.pdf.

http://www.cs.toronto.edu/~{}tijmen/csc321/slides/{lecture_slides_lec6.pdf}
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(3) Simple Generative Adversarial Networks. Similar with CVAE, gen-
erative adversarial nets can be extended to a conditional model [16]. We can
perform the conditioning by feeding extra information y (the representations
of frames in our experiment) into both the discriminator and generator.

Artificial Judgement. Since heuristic rules could hardly judge whether a sen-
tence should be “gossiping” of a given video, to evaluate the Danmu generation
models, a human study is carried out, in which we have 40 experts who have
years of experience in watching Danmu-enabled videos. While, as the amount of
all generated Danmu is really huge for humans, we also developed a web-based
GUI for online labeling. For each time a person logs in the system, 20 video
frames are randomly sampled from the test set with their corresponding gener-
ated Danmus. Then he/she is asked to click the Danmus which are thought as
fake. Our system will then label the clicked ones as “fake”, and the others as
“escaped”. We evaluate the models based on the percentage of the “escaped”
Danmus, which we call it “Human Recall”.

Metrics. To eliminate the errors caused by the human raters, we will take
metrics which can be automatically computed as our alternative measurements.
The BLEU score [18] which is a form of precision of word n-grams between
generated and reference sentences has been commonly used in machine trans-
lation and image description. In this paper, we use the character level BLEU-4
score to measure the overall performance. The references set of BLEU are 3
sentences randomly selected from the existing comments of the corresponding
frame. Additionally, we also define Fluency and Diversity metrics to measure
the performances on multiple aspects. In detail, for each Danmu sentence s, we
split it into n-gram tokens t ∈ Ts . The Fluency and Diversity are separately
defined in the form below:

Fluency =

∑
t∈Ts

[t ∈ T ]len(t)
∑

t∈Ts
len(t)

, Diversity = 1 − 1
N

∑

si,sj∈S′,i �=j

2|Tsi
∩ Tsj

|
|Tsi

| + |Tsj
| ,

where T denotes the n-gram tokens for all human written sentences in the train
set, [t ∈ T ] is an indicator function whose value is 1 if t ∈ T otherwise is 0,
and S ′ indicates all sentences generated for the same scene and N is the total
number of the pair combinations in S ′.

Table 1. Performance of these models.

Human Recall BLEU-4 Fluency Diversity

Encoder-Decoder 0.4572 0.168214 0.678827 0.904757

Conditional VAE 0.5580 0.174298 0.733117 0.948959

Simple-GAN 0.3454 0.129924 0.440087 0.705946

E-GA 0.6274 0.177638 0.845072 0.964757
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3.3 Overall Results

The overall experimental results are summarized in Table 1. We can see that
our proposed framework outperforms the other models in all of four metrics.
Not surprisingly, all models except Simple-GAN achieve high performance on
Fluency, since for those straightforward RNN-based models, it is easier to imi-
tate human style languages, while simple implemented GAN fails due to the
discreteness output in the task. However, all of these methods perform poor on
BLEU, which we think is also reasonable since our task is quite different from
those like translation or image description. As mentioned in Sect. 1, the Danmu
senders do not aim to reveal the objective truth in most cases, so the exist-
ing Danmus cannot be considered as the only deterministic ground-truth in our
experiment. Consequently, it is very difficult and sometimes no need to hit the
existing Danmus precisely.

At the same time, we have observed that our model outperforms the others
with significant margin on Human-Recall and Diversity due to the excellent gen-
erative ability of GAN. Thus, it is proved to be reasonable that the combination
of embedding method and GAN is suitable for Danmu generation task. On one
hand, the embedding technology simplifies the GAN structure into DNNs which
are more easy to learn. On the other hand, it avoids the discrete problem when
training a GAN in generating sequential data.

3.4 Balance for Embedding and Decoding Capacity

The performance of our framework can be affected by the embedding/decoding
capacity of autoencoders, therefore, it is crucial for us to determine the asso-
ciated parameter and also necessary to analyze the impacts of them. As men-
tioned in Sect. 2.1, the embedding effect of a VAE model is naturally opposite
to its decoding ability, and thus we involved parameter μ0 in making a trade-off.
According to Eq. 4, there is a curve that the embedding capacity C changes along
with μ0. As shown in Fig. 3, C is zero at the beginning, which means the model
is almost unable to perform sentence representation but perfect in generating.
Then, as μ0 increases, C grows rapidly, and at the same time, the embedding
ability will become stronger. As μ0 continues to become larger, the enhancement
for embedding quality is getting less stark.

We examined this by setting up several autoencoders with different μ0. Here,
Table 2 gives some examples with μ0 set to 0, 2, 4 and 8, and Fig. 3 shows
the reconstruction loss changing with μ0. For every case, three sentences are
listed which separately indicate the “input”, the “reconstruction” from μ and
the “generation” from a sample from N (μ,σ2). Obviously, when μ0 is zero, we
got the best generation effect, however, we could hardly reconstruct the original
sentence from its representation μ. Then, we can see for μ0 valued 2 and 4,
the reconstructed sentences are much better and the generated ones are still
acceptable. At last, if μ0 is much larger, the reconstruction quality reached the
best, while the generated sentence became unreadable for humans. In summary,
the results prove that our modification for VAE is reasonable, and in most cases,
we can set μ0 to around 2.
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Table 2. Samples from trained autoencoders.
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Fig. 3. The embedding capacity (a) and reconstruction loss (b) w.r.t µ0.

3.5 Case Study

At last, some typical scene images and the generated Danmus can be seen in
Fig. 4. Row 1 and Row 2 are good and bad cases generated by our E-AG frame-
work. Row 3 shows outputs from other baselines. For scenes in the first row, the
generated Danmus are mainly focused on expressing viewers’ different opinions
on the frame, which have very high diversity. Especially, for the scene from row 1
column 2, we can easily recognize it as scared shot. Just like human viewers, our
model not only generates Danmus to indicate “the ghost will come”, but also
send something like “BGM is lovely”, “It is an interesting movie” to embolden
themselves. Of course, we have to admit that there are also some Danmus do
not fit the given scenes. While, to our further observation, we found that most
of the miss-generated scenes are images with some strange content. Finally, for
some results in the third row, we can hardly imagine the relationship between
some of the comments and frames. In summary, the results are interesting, and
furthermore, we could intuitively feel the diversity and the gossiping behavior of
Danmu-enabled videos.
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(Men always like actress like this.)

(Why do I like the supporting actor ?)
2333333

(Puff, Ha ha ha ha)

(The ghost will come soon.)

(So interesting the movie is…)
bgm

(BGM is very lovely)

b
(I give full mark for his pretension)

(Wow~ Handsome !!!)
66

(What a tender look !)

(What’s the problem??)
……

(Experienced in dating…)

(I want to die! Ha ha ha ha ha)

(I’ v had phobia of Lolita.)
yy

(Lolicon lies in  imaginations.)

(Wave your hands, Libras!)

(It is so cruel)

(Trap!!!)

(Girls, be careful if you do that again)

(Is he mad that he asked too much?)
17

(Valentine’s Day, somebody here?)
•

(Xia Minghan • Bond)

(Oh, I dare not watch this.)
anybody canssee e

(Anybody can see?)

(So handsome the driver is!)

(Why I think it must die?)

(While, when does the loop started?)
233333333

(Ha ha ha ha)

(The person dose unhappy)

(This is childhood!)
2333333

(Ha ha ha ha)

hhhhh
(The hero will be defrauded, ha ha ha)

(This has exposed the bonus, ha ha)
23333333

(Distressed, ha ha ha)

goleao
(Goleao, good suit!)

(There is a little saliva.)

(Why I think he’s playing so great?)

Good cases 
generated by E-GA.

Bad cases 
generated by E-GA.

Cases generated by 
other baselines.

Fig. 4. Typical cases of generated Danmus. The Chinese sentences are translated into
English.

4 Related Work

In this section, we will summarize the prior arts on three related topics, namely
Text Generation, Unsupervised Autoencoders and the Generative Adversarial
Networks.

Text Generation. Since we have witnessed only a few prior arts which focus
on the Danmu analysis, especially for the Danmu generation, we will summa-
rize related works on similar topics with Danmu-like Text Generation, i.e., the
Image Caption which focus on extracts “meaningful” descriptions for images.
Traditionally, early approaches rely on recognizing the visual elements, and then
performing template model, n-gram model, or statistical machine translation
to get sentences [8,20]. Recently, end-to-end methods [22,24] are proposed to
combine deep convolutional networks and recurrent neural networks as autore-
gressive models. However, image caption techniques mainly focus on describing
the objective facts, which is different from the task the Danmu generation who
targets at expressing the subjective opinion of viewers.

Unsupervised Autoencoders. These NN-based techniques are designed for
efficient embedding, with the aim of learning an encoder φ(x) by maximizing
the likelihood of a probabilistic decoder P (x|φ(x)). Though autoencoders have
seen success in pre-training image [23] and sequence [6] models, they may not
be effective at extracting for global semantic features, e.g., generating data from
the continuous space. In contrast, recently, a variant method called Variational
Autoencoder (VAE) [13] has become more widely used for learning generative
models. The VAE learns representations not as single points, but as a distribu-
tion in the latent space, forcing them to fill the space rather than memorizing
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the training data as the isolated vectors. However, according to the features
above, the VAE may not be suitable for embedding, due to the difficulty in
reconstructing samples from the indeterministic representations.

Generative Adversarial Networks. GANs are methods to generate synthetic
data with similar statistical properties as the real one [9]. Instead of explicitly
defining a loss from a target distribution, GANs train a generator by receiving a
loss from a discriminator which tries to differentiate between real and generated
data. Though GANs and its variants have shown great success in Computer
Vision domain [7,19], there are still challenges in applying them to the traditional
NLP tasks [26–28].

5 Conclusion

In this paper, we proposed an embedding-based framework to generate Danmu-
like comments for video scenes. In detail, we first represented key frames and
comments into continuous spaces, and then learned the mapping between the
two spaces via a generative adversarial approach. Along this line, the proper
and diverse semantic vectors will be generated, and then decoded as sentences.
Experiments on a real-world dataset showed the potential of our framework
on generating “gossiping” text in Danmu-enable social media platforms. In the
future, we will improve our framework with more comprehensive factors (e.g.,
positions, colors) which may help to better understand the meaning.
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Abstract. Deep face recognition has achieved rapid development but
still suffers from occlusions, illumination and pose variations, especially
for face identification. The success of deep learning models in face recog-
nition lies in large-scale high quality face data with accurate labels. How-
ever, in real-world applications, the collected data may be mixed with
severe label noise, which significantly degrades the generalization ability
of deep models. To alleviate the impact of label noise on face recognition,
inspired by curriculum learning, we propose a self-paced deep learning
model (SPDL) by introducing a negative l1-norm regularizer for face
recognition with label noise. During training, SPDL automatically eval-
uates the cleanness of samples in each batch and chooses cleaner samples
for training while abandons the noisy samples. To demonstrate the effec-
tiveness of SPDL, we use deep convolution neural network architectures
for the task of robust face recognition. Experimental results show that
our SPDL achieves superior performance on LFW, MegaFace and YTF
when there are different levels of label noise.

Keywords: Face recognition · Label noise · Self-pace learning

1 Introduction

Deep learning has achieved consistent breakthroughs in different tasks, including
face recognition [3], object detection [19] and visual tracking [25]. The superior
performance of deep learning owns to the representations of data with multiple
levels of abstraction and massive well-labelled training data. For face recognition,
despite the success of deep learning in face verification, it is hard to achieve sat-
isfactory recognition accuracy without sufficient training data, especially when
there are a large number of subjects in face identification. CosFace [20] uses a
large-scale face dataset that consist of 5 millions face images from more than 90
thousands identities. FaceNet [18] is learned on a much larger dataset with 200
millions face images of 8 millions identities. The large-scale face databases with
accurate labels can dramatically improve the performance of face recognition in
that the deep learning models can be well trained. However, the high expense of
labelling data makes it hard to get massive face data with accurate identification
information. In real-world applications, the collected data are mixed with severe
c© Springer Nature Switzerland AG 2019
Q. Yang et al. (Eds.): PAKDD 2019, LNAI 11441, pp. 425–435, 2019.
https://doi.org/10.1007/978-3-030-16142-2_33
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label noise, which significantly degrades the generalization ability of deep learn-
ing models. For face recognition, it is much challenging to utilize the massive
face data with inaccurate decision information to train a robust face recognition
model.

How to acquire correctly labelled face dataset is one of the key challenges in
face recognition tasks. One intuitive way is to manually collect and label the face
images. The other way is semi-automatic annotation by online image searching.
Searching results contain massive label noise, which should be manually cor-
rected. Both strategies are in bad need of manual annotation, which suffers from
high time consumption and labelling expense. In most cases, we get a small-scale
dataset with accurate labels and a large-scale dataset with label noise. DCNNs
such as Resnet [6] and ResNeXt [22] have hundreds of layers and millions of
parameters, and therefore need a large number of accurately labelled samples
for training. Although they can achieve the state-of-the-art result in many tasks,
they perform poorly when they meet label noise. How to train a model with label
noise is still a difficult task to solve.

For DCNNs, they update the parameters of deep learning models by training
on fixed-size mini-batches that consist of random samples With stochastic gra-
dient descent (SGD) and back propagation, each sample in mini-batches reflects
its own influence by gradients propagation. If the data is clean enough, all sam-
ples in the mini-batch guide the DCNNs to train a satisfactory model. However,
when there exists label noise in the massive face data, noisy samples could do
harm to DCNNs in the training period. Noisy samples slow down convergence
speed of DCNNs, or even make model unable to converge. In other words, the
cleanness of samples in the training dataset directly affect the performance of
the deep model. This paper studies how to overcome the negative impact of label
noise on DCNNs.

Inspired by the recent success of self-paced learning (SPL) [10], we propose a
self-paced deep learning model (SPDL) for robust face recognition with corrupted
labels and outliers. First, we train a deep face recognition model on a small
clean dataset. Then a more robust model with good generalization ability is
trained on a large-scale dataset that contains label noise. In each iteration of
the training process, SPDL learns the cleanness of all samples in each mini-
batches by introducing the sample weights. Large weights are assigned to the
samples with low classification loss via a negative l1-norm regularizer. Then
cleaner samples, i.e., samples with larger weights are used for loss calculation
and back propagation of gradients. To verify the effectiveness of the proposed
method, experiments are conducted on LFW [7], MegaFace [12], and YTF [21]
datasets. Results show that SPDL can significantly improve the performance of
DCNNs trained on both corrupted labels and outliers. This paper makes three
key contributions towards face recognition.

– A novel robust self-paced learning framework is proposed for DCNNs.
– The difference of the influence on DCNNs is discussed between corrupted

labels and outliers.
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– We verify our proposed SPDL on three face recognition benchmarks and
validate the robustness of SPDL.

2 Related Work

There are two types of label noise, i.e., corrupted labels and outliers. If a sample
is not accurately labelled but belongs to one class of the training data, this is
called corrupted labels. If a sample is not only mislabelled but does not belong
to any class of the training data, the sample is a outlier. To deal with label noise,
there are mainly three types of methods: noise-robust, noise-removal and noise-
tolerant. The noise-robust method is the most straightforward and ideal method
to deal with label noise. Patrini et al. proposed to improve the robustness to label
noise by loss factorization in weakly supervised leaning [17]. Gao et al. divided
the loss function into two parts: one irrelevant to noise and the other related
with noise, by risk minimization [4]. The second type of methods consider that
the noisy face images can be relabelled or discarded by a filter. These methods
need to manually set a threshold for noise removal [24]. Brodley et al. proposed
to detect noisy samples by setting classification confidence scores [2]. The third
type of methods model the noise distribution. Thus, the classification model
and the noise model are directly separated. The most common noise modelling
method is to estimate the noise distribution by the Bayesian methods. However,
there are few methods to train DCNNs with label noise, especially the large ratio
of label noise.

Recent studies show that selecting a subset of good samples for training a
classifier can lead to better results than using all the samples [13,14]. Curricu-
lum learning (CL) [1] is one of the most representative works. CL introduced
a heuristic measure of easiness to determine the selections of samples from the
training data. CL has successfully improved the performance in a variety of
vision tasks. MentorNet [11] is a work that learns data-driven curriculums for
DCNNs trained on corrupted labels. It connects curriculum learning and Stu-
dentNet and achieves a high performance on benchmarks. But curruculums in
CL are usually predefined and remain fixed during training. By comparison, SPL
quantifies the easiness by the current sample loss. In SPL, there is a threshold λ
controlling the sample selecting during training. The training instances with loss
values less than the threshold are selected as easy samples to train. The training
instances with loss values larger than λ are neglected during training. λ dynam-
ically increases in the training process to make more complex samples will be
learned, until all training instances are considered. SPL has been widely applied
to various problems, including visual tracking [8], person re-identification [26]
and multi-label learning [15].

3 Self-paced Robust Face Recognition

3.1 Label Noise

Label noise contains two types: corrupted labels and outliers. Assume that we
have a training set with N samples D = {xn, yn}N

n=1, where yn is the label of
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sample xn and the real label is ŷn. For noisy samples, yn �= ŷn and for clean
sample yn = ŷn. Let C denote the number of classes, C < N .

For corrupted labels, assuming there is a noisy sample xi ∈ N in the training
set with label yi and its real label is ŷi, then yi �= ŷi, yi ∈ C , and ŷi ∈ C , In
other words, the real labels of the samples with corrupted labels belong to the
classes of the training set but they are labelled to other classes of the training
set by mistake.

For outliers, if there is a noisy sample xi ∈ N in the training set with label
yi and its real label is ŷi, then yi �= ŷi, yi ∈ C , and ŷi /∈ C . In other words, the
real labels of outliers do not belong to the classes of the training set but they
are labelled to the known class of the training set by mistake.

Person 1

Person 2

Person 3

Person 4

Clean dataset with 
known classes

Dataset with 
corrupted labels

Dataset with  
outliers

Fig. 1. The example of two kinds of label noise as there are four known classes. The
images with green boxes are samples with corrupted labels, which are mislabeled but
belong to the classes of the training set. The images with red boxes are outliers, whose
real labels do not belong to the classes of the training set. (Color figure online)

As shown in Fig. 1, the dataset could be mixed with two types of label noise,
i.e., corrupted labels and outliers. Both of them seriously impact our model
training. The difference of the impact on DCNNs between corrupted labels and
outliers will be shown in our experimental section (Fig. 2).

3.2 SPDL Framework

For clean dataset or other standard tasks, the loss function can be formulated
as:

L(w) =
n∑

i=1

L(yi, f(xi,w)), (1)
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Clean Mini-batch

Noisy Mini-batch

Self-Paced 
Cross-Entropy 

Loss

abandon 

DCNN

DCNN
Clean 
Samples

Noisy 
Samples

Fine-tuning 

select 

Fig. 2. The flowchart of self-paced robust deep face recognition. We first pre-train a
deep model with a small clean dataset. Then we fine-tune on a large-scale noisy dataset
with SPDL. v∗ represents the cleanness of samples in each mini-batch. Images with red
boxes represent noisy samples while images with green boxes represent clean samples.
SPDL automatically chooses clean samples for training and abandons noisy samples.
(Color figure online)

where L(yi, f(xi, w)) is the loss function of the sample xi which measures the
cost between the ground truth label yi and the estimated label f(xi, w). Here
w represents the model parameter inside the decision function f . Our work is
to learn the network parameters w by minimizing L. For SPL, its strategy is to
generate a curriculum which includes easy and diverse samples during learning.
The training instances with loss values larger than a threshold, λ, are neglected
during training and λ dynamically increases in the training process to include
more complex samples, until all training instances are considered. We first train
a deep face recognition model with a small clean dataset. Faced with label noise,
we utilize the self-paced strategy to estimate the cleanness of every sample in
mini-batches. The loss function can be written as:

L(w) =
n∑

i=1

viL(yi, f(xi,w)), (2)

where vi represents the cleanness of the sample xi and it also represents the
weight of xi to DCNNs in the training process. It acts on back propagation to
supervise the model training. In this case, the objective function can be further
formulated as

min
w,v

E(w, v) =
n∑

i=1

viL(yi, f(xi,w)) − λ

n∑

i=1

vi, (3)

With w fixed, the goal optimum v∗ = [v∗
1 , . . . , v

∗
n] can be easily obtained. v∗ can

be solved as follows:

v∗
i =

{
1 − Li

λ , Li < λ,
0, otherwise.

(4)
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where Li = L(yi, f(xi,w)), which can be calculated by the DCNN in every
training iteration.

In our method, vi represents the cleanness of the ith sample. There exists an
intuitive explanation behind this alternative search strategy: (1) when updating
v with fixed w, a sample whose loss is smaller than a certain threshold λ is taken
as an “clean” sample, and will be selected in training (v∗

i = (1 − Li

λ ) > 0), or
otherwise unselected noisy sample (v∗

i = 0). (2) when updating w with fixed v,
the classifier is trained only on the selected “clean” samples. The parameter λ
controls the pace of the learning process.

The detailed algorithm of SPDL is presented in Algorithm1.

Algorithm 1. SPDL
Require: Input: D(training data), B(batch size), C(number of classes), M(pre-trained

model parameters), E(total iteration)
Ensure: Output: The model parameters W
1: Initialize parameters M ;
2: for j = 0 → E do
3: for i = 0 → B do
4: Calculate the loss of each sample Li = L(yi, f(xi,w));
5: if L(yi, f(xi,w)) > λ then
6: vi = 0;
7: else
8: vi = 1 − Li

λ
;

9: end if
10: Li = vi ∗ L(yi, f(xi,w))
11: end for
12: Update w via BP;
13: end for

But we set λ = 12.0 fixed in our experiments. In early training process,
limited by the performance of the trained model, the loss of every sample may
be very big. Then the weight of all samples may be small. For noisy samples and
hard samples their weight is 0. During the first few iterations, clean samples will
be used to train DCNN and noisy samples will be abandoned. Our purpose is to
ensure the DCNN can learn satisfactory parameters to accelerate the convergence
speed. In the later training process, with the improvement of model’s accuracy,
the value of λ will not change to ensure our model the ability of learning hard
samples. With this strategy, all the clean samples in mini-batches will be selected
for training and some easy noisy samples with low weights will be selected, which
can improve the generalization of the deep models.

4 Experiments

This section empirically verifies the proposed method on different benchmarks in
terms of both corrupted labels and outliers. We first train a model with a small
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clean datasets and then fine-tune on a large-scale noisy datasets. All experi-
ments are conducted using the Caffe [9] framework with four NVIDIA Titan xp
GPUs. Stochastic gradient descent (SGD) is utilized to train the Resnet-80, a
kind of residual networks. Face images are all cropped to 256 × 256 pixels. We
compared our SPDL method against DCNN with cross-entropy loss. λ are kept
consistent between the strategy in our SPDL, In our experiments, we use differ-
ent datasets to train our models and evaluate them on different datasets. The
following sections discuss the experimental setups and results in more detail.

4.1 Datasets

The datasets in our experiments are shown in Table 1. CASIA-WebFace [23]
was used as a small clean dataset to pre-train a model firstly. Labeleb Faces
in the Wild (LFW) [7] and YouTube Faces (YTF) [21] are two benchmarks in
face recognition. MegaFace [12] and FaceScrub [16] are two parts of MegaFace
Challenge 1. MegaFace dataset is the gallery dataset comprised of photos from
Flickr users and FaceScrub dataset is comprised of celebrities. MS is a clean
subset of MS-Celeb-1M [5]. All the training and test operations are based on
those datasets.

Table 1. The information of face datasets.

Datasets Subjects Images Role

LFW 5, 749 13, 233 Test

CASIA-webface 10, 575 494, 414 Train

MS 41, 857 3, 095, 536 Train

MegaFace 530 100, 000 Test

FaceScrub 80 3, 530 Test

In our experiments, because there are few open-source face datasets with
different types of label noise, we utilize MS to create our noisy datasets as shown
in Tabel 2. For corrupted label noise, we separately select 30%, 50%, 70% face
images from the MS dataset to establish noisy data. The label of the noisy
samples is randomly set as other classes in the training data. For examples,
for the dataset with 30% noisy data, about 928,661 images should be set as
noisy samples. We select 928,642 images from 12,654 classes and set their label
randomly among the other 29,203 classes. For outliers, we shuffled the data of all
datasets first. Then we select 30%, 50%, 70% data from the datasets separately
and set this label randomly. Here we need to address that in our experiments we
keep the total number of face images in every noisy datasets the same as original
MS with 3,095,536 images.
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Table 2. The comparison of different types and ratios of MS in our experiments.

Original dataset Noisy type Noise ratio Subjects Clean images

MS No 0 41,857 3, 095, 536

MS Corrupted labels 30% 41,857 2, 166, 875

MS Corrupted labels 50% 41,857 1, 547, 768

MS Corrupted labels 70% 41,857 928, 661

MS Outliers 30% 29,203 2, 166, 894

MS Outliers 50% 20,855 1, 547, 798

MS Outliers 70% 12,493 928, 658

4.2 Results and Discussion

This subsection shows the experimental results on different benchmarks of cor-
rupted label noise and outlier noise. All the settings of experiments are fixed
for fair comparison. Table 3 shows the face recognition performance when the
deep model is trained on the MS dataset without label noise. Raw means the
original cross entropy loss is used for traning DCNN directly. CASIA-WebFace
is used to pre-train a deep model. For the MegaFace dataset, the accuracy is the
identification rate using uncropped FaceScrub set with 1,000,000 distractors of
MegaFace Challenge 1.

Table 3. The face recognition rate with clean datasets.

Datasets Method Accuracy (%)

LFW MegaFace YTF

MS Raw 99.48 63.57 94.72

Table 4 shows the comparison between using the original cross entropy loss
and SPDL under different ratios of corrupted labels noise. With direct training,
DCNN is robust at lower ratio noise. But with noisy samples increasing, DCNN is
unable to learn a satisfactory model. By comparison, our SPDL method achieves
significant improvement. The result of SPDL with 30% noise is better than
directly learning on clean MS dataset. The result of SPDL with 50% noise is not
bad than directly learning on clean MS dataset. When the noise ratio is 70%,
the original cross-entropy loss is unable to converge, but our SPDL achieves not
bad results. To sum, the proposed SPDL is robust for corrupted labels noise
compared with the original DCNN.

Table 5 shows the comparison between the original cross entropy loss and
SPDL under different ratios of outlier noise. The superiority of the proposed
SPDL to the original DCNN is much significant. Under 50% noise ratio, SPDL
achieves much better results on three benchmarks compared with the baseline.
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Table 4. The comparison between the original cross entropy loss and SPDL under
different ratios of corrupted labels noise. “-” represents the DCNN can not converge.

Dataset Noise ratio Method Accuracy (%)

LFW MegaFace YTF

MS 30% Raw 99.18 55.74 94.14

MS 30% SPDL 99.52 65.28 95.36

MS 50% Raw 94.97 21.83 88.10

MS 50% SPDL 99.63 62.90 95.26

MS 70% Raw - - -

MS 70% SPDL 97.43 29.67 70.08

When the noise ratio is 70%, it also has the ability to learn a good model, which
validates the robustness of the proposed method to outliers. The experiments
shows that our SPDL method is also robust for outliers noise, especially for high
ratio noise.

Table 5. The comparison between the original cross entropy loss and SPDL under
different ratios of outliers noise.

Dataset Noise ratio Method Accuracy (%)

LFW MegaFace YTF

MS 30% Raw 99.03 55.89 93.36

MS 30% SPDL 99.58 65.64 95.52

MS 50% Raw 98.36 33.08 93.07

MS 50% SPDL 99.53 66.44 95.66

MS 70% Raw 87.83 1.67 91.02

MS 70% SPDL 98.93 37.40 94.82

By comparison, DCNN is more robust for outliers noise than corrupted
labels noise when the ratio of noise very high. The proposed SPDL significantly
improves the robustness of DCNN. Our SPDL method is robust to both cor-
rupted labels noise and outliers noise, especially for the high ratio label noise.

5 Conclusions

In this paper, we proposed a self-paced deep learning model (SPDL) for robust
face recognition with label noise, including corrupted labels and outliers. Sample
weights are embedded to evaluate the cleanness of the face images in each mini-
batch. A negative l1-norm regularizer is introduced to the loss function of deep
convolutional neural network. During each iteration in the training process, only
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the clean samples with large weights contributes to back propagation of gradients
and therefore alleviate the impact of noisy samples. Experimental results on
LFW, Meageface and YTF validate the effectiveness of the proposed SPDL.
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Abstract. Sparse representation based on dictionary learning has been
widely applied in recognition tasks. These methods only work well under
the conditions that the training samples are uncontaminated or contami-
nated by a little noise. However, with increasing noise, these methods are
not robust for image classification. To address the problem, we propose
a novel multi-constraints-based enhanced class-specific dictionary learn-
ing (MECDL) approach for image classification, of which our dictionary
learning framework is composed of shared dictionary and class-specific
dictionaries. For the class-specific dictionaries, we apply Fisher discrimi-
nant criterion on them to get structured dictionary. And the sparse coeffi-
cients corresponding to the class-specific dictionaries are also introduced
into Fisher-based idea, which could obtain discriminative coefficients.
At the same time, we apply low-rank constraint into these dictionaries
to remove the large noise. For the shared dictionary, we impose a low-
rank constraint on it and the corresponding intra-class coefficients are
encouraged to be as similar as possible. The experimental results on three
well-known databases suggest that the proposed method could enhance
discriminative ability of dictionary compared with state-of-art dictionary
learning algorithms. Moreover, with the largest noise, our approach both
achieves a high recognition rate of over 80%.

Keywords: Sparse representation · Dictionary learning ·
Low-rank matrix recovery · Discriminative coefficients ·
Image classification

1 Introduction

Sparse representation technique has achieved the great performance in signal
processing applications consisting of compressed sensing [5], image denoising
[6]. As the extension of signal processing field, Wright et al. exploit sparse
representation-based classification (SRC) [23] for face recognition. SRC assumes
that test samples could be a linear combinations of dictionary atoms composed
of original training samples and the size of atoms is generally fixed, which could
c© Springer Nature Switzerland AG 2019
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decrease the performance of image classification since the training samples gen-
erally include pixel corruptions or occlusion corruptions. Therefore, lots of dic-
tionary learning algorithms are proposed and have led to promising results.

Dictionary learning is aimed at designing dictionary to better fit the data. To
get the suitable and appropriate dictionary, Aharon et al. [1] with K-SVD use
the generalizing k-means clustering process to optimize the dictionary atoms.
To scales up gracefully to large databases with millions of samples, Mairal et al.
[16] propose online optimization algorithm based on stochastic approximations.
In addition, Yang et al. [26] use the inconsistency of atoms to remove the redun-
dancy of atoms. However, these methods cannot handle identification tasks effec-
tively.

Recently, dictionary learning has successfully been applied to face recognition
[14,25], object recognition [11,21], digit recognition [11,19] and gender classifi-
cation [14,25]. The discriminative dictionary learning with sparse representation
can be roughly divided into two categories. The first category of approaches learn
class-specific (particular) sub-dictionary from each class of samples. To obtain
compact between-class dictionaries, Ramirez et al. [19] with DLSI introduce the
structural inconsistency into between-class dictionaries. Yang et al. [25] with
FDDL incorporate Fisher discrimination criterion into dictionaries and coeffi-
cients to improve the recognition performance. Liu et al. [14] replace simple
linear classifier with bilinear discriminative classifier. In fact, the above methods
ignore common patterns in training samples, which may decrease the dictio-
nary’s discriminative power. Therefore, Kong et al. [11] divide dictionary learn-
ing framework into particular dictionaries and a shared dictionary (COPAR).
However, Vu et al. [21] point out particular features may get represented by
shared dictionary in COPAR so that it greatly decrease the classification ability.
Therefore, Vu et al. with LRSDL impose low-rank constraint on shared dictio-
nary, but could not consider these condition that dictionary from same class
should be as correlated as possible and samples corrupted by large noise.

The second set of approaches learn a dictionary shared by all classes. To
promote K-SVD to obtain classification ability, Zhang et al. [27] with D-KSVD
embed a simple linear classifier into it. To enhance discriminative sparse codes
of D-KSVD, Jiang et al. [10] with LC-KSVD introduce a new label consistency
constraint on D-KSVD but LC-KSVD’s label consistency isn’t smooth enough.
Therefore, Zhang et al. [28] improve label consistency by cosine similarity among
signals and introduce sparse codes auto-extractor into LC-KSVD. Based on LC-
KSVD, Xu et al. [24] add within-class-similar representation coefficients into
D-KSVD to enhance the classification ability of linear classifier.

However, the above methods only work well for clean signals or signals with
a little noise. Inspired by low-rank matrix recovery [13], most of researchers try
to learn low-rank class-specific dictionaries to remove noise in training samples.
Chen et al. [3] combine low-rank constraint and structural incoherence on dic-
tionary learning, which has been proven to be an effective method for dealing
with noise in images. Ma et al. [15] with DLRD integrate low-rank minimiza-
tion and Fisher-based idea into dictionary learning. Li et al. [12] with D2L2R2
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embed Fisher-based ideas into particularity dictionaries and coefficients. These
methods both take advantage of global structure of the data. However they
can hardly handle the locality information of data. Therefore, Wang et al. [22]
exploit locality constraint on coding schemes to explore data’s manifold struc-
ture. The above methods only consider class-specific features in images, but not
introduce common pattern from between-class data. Therefore, Jiang et al. [9]
impose low-rank constraint on the class-specific dictionary and common dic-
tionary. It is inappropriate to obtain a low-rank class-specific dictionary since
dictionary from the same class should be as similar or correlated as possible not
from all classes. Then, Rong et al. [20] with LRD2L introduce low-rank con-
straint into a shared dictionary and particular dictionaries, but fails to consider
to minimize the distance of intra-class subspace (coding coefficients) correspond-
ing to particular dictionaries and maximize the distance of inter-class subspace
corresponding to particular dictionaries, which may makes intra-class subspace
dispersed and inter-class subspace overlapped. Moreover, Rong et al. ignore the
intra-class shared coefficients to be as similar as possible.

In order to alleviate the problems of LRD2L and LRSDL model, we aim at
designing a multi-constraints-based enhanced class-specific dictionary learning
method for image classification. Multi-constraints in our model include low-rank,
sparse, minimizing within-class scatter and maximizing between-class scatter
constraints. Next, we highlight some characteristics of our approach below:

(1) Dictionary learning framework based on sparse representation is composed
of class-specific dictionaries and shared dictionary.

(2) MECDL makes the intra-class subspace compact and the inter-class subspace
dispersal by minimizing the intra-class scatter of subspace and maximizing
the inter-class scatter of subspace. At the same time, the intra-class shared
coefficients are urged to be as similar as possible.

(3) To increase the discriminability in class-specific dictionaries, we apply Fisher
discrimination criterion on it, which means the c-th samples can well be
represented by c-th sub-dictionary not by j-th sub-dictionary, j �= c. To
remove the noise and increase the dictionary’s representation ability, the
class-specific dictionaries and shared dictionary are introduced into low-rank
recovery technology. Then, the corrupted samples are separated three types
of information by our method: class-specific features, shared features and
noise.

The rest of the paper is organized as follows. Section 2 introduces the details
of multi-constraints-based enhanced class-specific dictionary learning (MECDL)
method. Experiments are conducted and presented in Sect. 3, followed by con-
clusion in Sect. 4.
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2 Multi-Constraints-Based Enhanced Class-Specific
Dictionary Learning (MECDL)

2.1 Notation

Let Y = [Y1, ..., Yc, ..., YC ] ∈ �d×n be the n d-dimensional training samples from

C classes where Yc comprises those in class c and n =
C∑

c=1
nc. Xi, X, and X0

represent the coding coefficients of Y corresponding to the dictionary Di, D,
and D0, respectively. Denote by X0

c Xi
c, Xc, and Xc = [(Xc)T , (Xc

0)T ]T the
sparse coding coefficients of Yc on D0, Di, D, and D, respectively, where XT is
the transpose of the matrix X, D = [D,D0] ∈ �d×K with K = k + k0 is the

total dictionary, D = [D1, ...,Dc, ...,DC ] ∈ �d×k with k =
C∑

c=1
kc is a structural

dictionary, D0 ∈ �d×k0 is a shared dictionary. Let mc, m0 and m be the mean
vector of Xc, X0 and X columns, respectively. Next, M0

c , Mc, M0, and M are
the mean matrices of X0

c , Xc, X0 and X, respectively.

2.2 MECDL Model

It is assumed that c-th training samples Yc contaminated by noise are separated
into three parts including particular features Yc, shared common patterns Ŷc and
sparse noise Ec, i.e., Yc = Yc+Ŷc+Ec. According to sparse representation theory,
Yc can be linearly represented by particular dictionaries D and Ŷc can be linearly
represented by a shared dictionary D0, i.e., Yc = DXc +D0X

0
c +Ec. Since Dc is

related with Yc, it is expected to well represent Yc, i.e., Yc = DcX
c
c +D0X

0
c +Ec,

which enhances discriminability in the class-specific dictionaries. In addition,

r(Dc) =
C∑

j=1,j �=c

∥
∥DcX

c
j

∥
∥2

F
is embedded into our model to prevent c-th dictionary

to represent j-th samples to enhance the discriminative ability of class-specific
sub-dictionary. In order to make full use of subspace corresponding to dictio-
nary, g(Xc) = g(Xc)+

∥
∥X0

c − M0
c

∥
∥2

F
is added into the objective function, where

g(Xc) = ‖Xc − M c‖2F −‖Mc − M‖2F +η ‖Xc‖2F makes intra-class subspace com-
pact and keeps inter-class subspace dispersed, the term

∥
∥X0

c − M0
c

∥
∥2

F
encourages

the shared coefficients from the same class to be as similar as possible. Based on
these analyses, the objective function of MECDL is designed as follows:

arg min
Dc,Xc,D0,X0

c ,Ec

‖Dc‖∗ + ‖D0‖∗ + λ1

∥
∥Xc

∥
∥
1

+ λ2g(Xc) + β‖Ec‖1 + r(Dc)

s.t. Yc = DXc + D0X
0
c + Ec, Yc = DcX

c
c + D0X

0
c + Ec,

(1)

where λ1, λ2, and β denote balance parameters to balance the minimization of
the six terms. The model is composed of five parts: two constraint term, the
Fisher-based coefficients term g(Xc), the representation coefficients based on
l1-norm term, the nuclear norm ‖‖∗ term which promotes dictionary to get the
clear images from the corrupted training samples. When λ2 is set as 0, our model
degenerate into LRD2L [20] model.
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2.3 Optimization of MECDL

The objective function in Eq. (1) is not convex for D, D0, Xc and X0
c simul-

taneously, but it is convex for one of them when the others are fixed. To solve
the optimization problem in Eq. (1), we divide it into three sub-problems: (1)
Updating the sparse coefficients Xc and X0

c by class by class by fixing D and D0;
(2) Updating the dictionary D by computing Dc class by class while the others
fixed; (3) Updating the dictionary D0 by fixing other variables. We describe the
detailed implementations of solving these three sub-problems in this sub-section.

Updating Coding Coefficients Xc and X0
c : When D and D0 are fixed, Xc

and X0
c are simultaneously updated class by class. The objective function (1)

is introduced two auxiliary variables H and S. Similar as [20], problem (1) is
reduced to the following optimization problem:

arg min
Xc,H,X0

c ,S,Ec

λ1‖H‖1 + λ1‖S‖1 + β1 ‖Ec‖1 + λ2(‖XcNc‖2F

− ‖XcPc − G‖2F −
C∑

k=1,k �=c

∥
∥
∥Z − XcBc

k
∥
∥
∥
2

F
+ η ‖Xc‖2F +

∥
∥X0

cNc

∥
∥2

F
)

s.t. Yc = DXc + D0X
0
c + Ec,Xc = H,X0

c = S,

(2)

where G =
C∑

k=1,k �=c

XkBk
c, Z = XkAk

k/nk −
C∑

j=1,j �=c

XjBj
k, Bj

k = Aj
k/n,

Pc = Ac
c/nc − Ac

c/n, Nc = Inc×nc
− Ac

c/nc, I is an identity matrix, Aj
k

is a matrix of size nj × nk with all entries being 1. For derivation details of
discriminative g(Xc), we refer to Ref. [25]. The above problem can be solved by
ALM [13] method:

arg min
Xc,H,X0

c ,S,Ec

λ1‖H‖1 + λ1‖S‖1 + β1 ‖Ec‖1 + λ2(‖XcNc‖2F

− ‖XcPc − G‖2F −
C∑

k=1,k �=c

∥
∥
∥Z − XcBc

k
∥
∥
∥
2

F
+ η ‖Xc‖2F +

∥
∥X0

cNc

∥
∥2

F
)

+ 〈T1, YA − DXc − Ec〉 + 〈T2,Xc − H〉 +
〈
T3,X

0
c − S

〉

+
u

2
(‖YA − DXc − Ec‖2F + ‖Xc − H‖2F +

∥
∥X0

c − S
∥
∥2

F
),

(3)

where λ1 controls sparsity of coding coefficients, β1 balances the level of noise,
YA = Yc − D0X

0
c , T1, T2 and T3 are Lagrange multipliers, and u is a positive

parameter. 〈D,D0〉 = Tr(DTD0) is sum of the diagonal elements of the matrix
DTD0.

Updating Class-Specific Dictionaries D: When variables Xc, X0
c , and D0

are fixed, we update D by computing Dc class by class. The sub-dictionary Dc are
updated, and the corresponding coefficients Xc

c are updated simultaneously to
meet the constraint. Similar to solving strategy of this work in [20], the objective
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function of Eq. (1) introduced two auxiliary variables B and Z is reduced to the
following optimization problem:

arg min
Dc,Xc

c,Ec,B,Z
‖B‖∗ + λ1‖Z‖1 + r(Dc) + β2‖Ec‖1

s.t. Yc = DcX
c
c + D0X

0
c + Ec,Dc = B,Xc

c = Z,
(4)

where β2 represents the balance parameter of noise. The problem (4) can be
converted by ALM [13] method:

arg min
Dc,Xc

c,Ec,B,Z
‖B‖∗ + λ1‖Z‖1 + r(Dc) + β2‖Ec‖1

+ 〈T1, YA − DcX
c
c − Ec〉 + 〈T2,Dc − B〉 + 〈T3,X

c
c − Z〉

+
u

2
(‖YA − DcX

c
c − Ec‖2F + ‖Dc − B‖2F + ‖Xc

c − Z‖2F ),

(5)

where T1, T2 and T3 are Lagrange multipliers and u is a balance parameter.
Equation (5) can be solved by using ALM algorithm. The detailed implementa-
tion of ALM can be referred to the Ref. [20].

Updating Shared Dictionary D0: When variables Xc, X0
c , and D are fixed,

we learn the dictionary D0 and the corresponding coding coefficients X0
c are

also updated to meet the constraint. Similar as [20], using all-classes samples
update the shared dictionary D0. Then the objective function Eq. (1) introduced
two auxiliary variables Q and L becomes the following equivalent optimization
problem:

arg min
D0,X0,E,Q,L

‖Q‖∗ + λ1‖L‖1 + β1‖E‖1
s.t. Y = DX + D0X

0 + E,D0 = Q,X0 = L,
(6)

where β1 controls the balance parameter of noise. Equation (6) can be further
reduced to the following ALM [13] method:

arg min
D0,X0,E,Q,L

‖Q‖∗ + λ1‖L‖1 + β1‖E‖1
+

〈
T1, YB − D0X

0 − E
〉

+ 〈T2,D0 − Q〉 +
〈
T3,X

0 − L
〉

+
u

2
(
∥
∥YB − D0X

0 − E
∥
∥2

F
+ ‖D0 − Q‖2F +

∥
∥X0 − L

∥
∥2

F
),

(7)

where T1, T2 and T3 are Lagrange multipliers, u is a balance parameter, and
YB denotes Y − DX. Equation (7) can be solved by using ALM algorithm. The
detailed implementation of ALM can be referred to the Ref. [20].

Complete Algorithm of MECDL: To get a better representation power of Yc

and a good performance, similar to Refs. [9,20], we initialize each class-specific
sub-dictionary by applying the singular value decomposition (SVD) on Yc and
normalize the columns in Dc to unit vectors. The specific initialization method
can be written as follows:

Yc = UcScV
T
c , Dc = Uc(1 : d, 1)Sc(1, 1)Vc(1 : kc, 1)T ,

Dc(:, i) = Dc(:, i)/norm(Dc(:, i)) for i = 1, 2, ..., kc.
(8)
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Algorithm 1. The complete algorithm of MECDL.
Input:
Data matrix Y , initial shared dictionary D0 and class-specific dictionaries D,
parameters λ1, λ2, η, β1, and β2.
Output:
The class-specific dictionaries D, shared dictionary D, the coefficients matrix X
and X0, and the error matrix E.

1: While not converged and the maximal iteration number is not reached do
2: Fix D and D0, simultaneously update Xc and X0

c by solving the problem
(3) with the Inexact ALM algorithm [13];

3: Fix Xc, X0
c , and D0, update D by updating each Dc, c = 1, ..., C, by solving

Eq. (5) with the Inexact ALM algorithm presented in Ref. [20];
4: Fix Xc, X0

c , and D, update D0 by solving Eq. (7) with the Inexact ALM
algorithm presented in Ref. [20].

5: end

This initialization could capture the most significant class-specific information.
For the shared dictionary D0, similar to [25], we initialize the shared dictionary
D0 with eigenvectors of Y , which is related to the largest k0 eigenvalues. Our
experiments can lead to a desirable result by this initialization strategy.

Once the class-specific dictionaries D and shared dictionary D0 are initial-
ized, we can proceed by iteratively repeating the above process until a stopping
criterion is reached. The complete algorithm of MECDL model is shown as Algo-
rithm1.

Complexity Analysis: In this section, we analyze the total complexity of
MECDL method. The number of dictionary atoms from each class (shared class)
are assumed to be same, which means ki = k0 = k, i = 1, ..., C. To calculate
simply, the number of the samples from different classes are assumed to be same,
i.e. ni = n, i = 1, ..., C. For simplicity, we use the following facts to analyse
complexity: (1) if Aε�m×n, Bε�n×p, then the complexity of AB is O(mnp); (2)
iterative number of each iterative algorithm is set to be q.

The main complexity cost of our method consists of updating coding coef-
ficient matrix Xc and X0

c , class-specific dictionaries D, and shared dictionary
D0 in Formulae (3), (5), and (7). In the solving process of problem (3), we
can use the algorithm in the Refs. [2,8] to solve the lyapunov equation prob-
lem XA + BX = C. The time cost of the lyapunov equation to solve Xc

and X0
c is respectively O((2 + 4σ)((Ck)3 + n3) + 5

2 (Ckn2 + n(Ck)2)) and
O((2 + 4σ)(k3 + n3) + 5

2 (kn2 + n(k)2)) in the Ref. [2], where σ is the aver-
age number of QR steps required to make a sub-diagonal element negligible.
Similar to the Ref. [20], the overall complexity of solving Eqs. (5) and (7) is
CqO(dnk + dk2 + k3) and qO(d(Cn)k + dk2 + k3), respectively. Here we have



Multi-Constraints-Based Enhanced Class-Specific Dictionary Learning 443

supposed C + 1 ≈ C for large C. So the computational complexity of MECDL
is CqO((2 + 4σ)((Ck)3 + n3) + 5

2 (Ckn2 + n(Ck)2)) + CqO(dnk + dk2 + k3).

Classification Based on MECDL: After dictionary learning process, we
obtain low-rank double dictionaries including shared dictionary D0 and class-
specific dictionaries D. For a corrupted test sample, its coding coefficient vector
is obtained by solving:

arg min
x,x0,e

‖x‖1 + γ
∥
∥x0

∥
∥
1

+ ω ‖e‖1
s.t. y = Dx + D0x

0 + e,
(9)

where γ and ω are positive-valued parameters, x = [xT , (x0)T ]T denotes sparse
vector of a new test sample y, e represents error matrix, x = [x1; ...;xc; ...;xC ].
Equation (9) can be further reduced to the following ALM [13] method. Intro-
ducing two relaxation variables H and S into Eq. (9), and the problem can be
converted to minimize an unconstrained problem:

arg min
x,H,x0,S,e

‖H‖1 + γ‖S‖1 + ω ‖e‖1 +
〈
T1, y − Dx − D0x

0 − e
〉

+ 〈T2, x − H〉 +

〈
T3, x

0 − S
〉

+
u

2
(
∥
∥y − Dx − D0x

0 − e
∥
∥2

2
+ ‖x − H‖22 +

∥
∥x0 − S

∥
∥2

2
),

(10)
where T1, T2 and T3 are Lagrange multipliers, u is a balance parameter. Same
as [20], the above problem can be solved by inexact ALM algorithm [13]. Once
x, x0 and e are obtained, we use the following strategy for classification:

identity(y) = arg min
1≤c≤C

∥
∥y − Dcx

c − D0x
0 − e

∥
∥2

2
. (11)

3 Experiments

3.1 Databases and Experimental Settings

Databases: COIL-20 [18] consists 1440 images of 20 subjects, with each subject
having 72 images. For each subject, we randomly select 10 images for training,
and the rest as testing samples. Extended Yale B [7] consists 2414 images of 38
individuals, with each individual having around 60 images. Similar to Ref. [12],
we select the first 15 individuals in this experiment. For each individual, we ran-
domly select 20 images for training, and the rest as testing samples. AR database
[17] includes 4,000 images of 126 subjects. These images are affected by light-
ing, expression change, and occlusion including scarfs and sunglasses. Similar to
Refs. [4,20], we select the subset containing 1400 images of 100 individuals with
50 females and 50 males, which means each individual has 14 images. For each
individual, the first 7 images are used for training, and the others for testing.
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Experimental Settings: In all experiments, all samples need to be prepro-
cessed before training. Firstly, the sample images are uniformly cropped to
32 × 32 for COIL-20, 54 × 48 for Extended Yale B, 60 × 43 for AR. Next, a
certain percentage of pixels of each image are manually corrupted by occlu-
sion corruptions (i.e., a varying percentage (10%–50%) of image pixels manually
corrupted by block image at the random location) or by pixel corruptions (i.e.,
randomly selected a percentage of pixels (10%–40%) in each image contaminated
with noise uniformly distributed over [0, Vmax]), where the largest value Vmax

in image. Figure 1 shows different database are corrupted by different percent-
age of corruptions. Our method is compared with LCKSVD [10], FDDL [25],
COPAR [11], LRSDL [21], DLRD [15], LRD2L [20]. To verify the validity of the
experiment, the size of the total dictionary should be same. The overall dictio-
nary (class-specific dictionaries and shared dictionary) size of LCKSVD, FDDL,
COPAR, LRSDL, DLRD, LRD2L and MECDL are set to be 10 × 20, 10 × 20,
6 × 20 + 80, 6 × 20 + 80, 10 × 20, 6 × 20 + 80 and 6 × 20 + 80 for COIL-20
database, 20 × 15, 20 × 15, 15 × 15 + 75, 15 × 15 + 75, 20 × 15, 15 × 15 + 75,
and 15 × 15 + 75 for Extended Yale B database, 7 × 100, 7 × 100, 5 × 100 + 200,
5 × 100 + 200, 7 × 100, 5 × 100 + 200, and 6 × 100 + 100 for AR database.
Experiments are repeated 5 times to calculate the average recognition and the
corresponding standard deviation.

There are five parameters in MECDL model: λ1 for the sparse coefficients
term, λ2 and η for the discriminative coefficients term, β1 and β2 related with the
sparse noise term. According to η = 1 in [25], we select the optimal solution of
η from a small set {0.8, 0.9, 1, 1.1, 1.2}. Experimental results show that η = 1.1
makes the discriminative coefficient term g(Xc) stable and convex. For the sake
of fairness, the value of λ1 is searched from 0.001 to 1, the value of λ2, β1 and
β2 is selected from 0.01 to 1, and the value of other parameters in all model is
searched from 0.01 to 1. In our model, parameters are set to be η = 1.1 for all
databases, λ1 = 0.1, λ2 = 0.4, β1 = 0.09, and β2 = 0.055 for Extended Yale

Fig. 1. Examples with different percentage of corruptions from three databases.



Multi-Constraints-Based Enhanced Class-Specific Dictionary Learning 445

B database, λ1 = 0.1, λ2 = 0.05, β1 = 0.1 and β2 = 0.015 for AR database,
λ1 = 0.4, λ2 = 0.6, β1 = 0.3, and β2 = 0.04 for COIL-20 database.

3.2 Results

Table 1 shows the average recognition rates and standard deviation on Extended
Yale B database. These images are corrupted by different percentage (10%–50%)
of occlusion corruptions. Although LRSDL achieves the better performance with-
out noise, the experimental performance of it with small or large noise is lower
than our method, which indicates the proposed method is robust to image with

Table 1. Recognition accuracy (%) on Extended Yale B database with various occlu-
sion corruptions percentage (%).

Corruptions MECDL LRD2L DLRD LRSDL COPAR FDDL LCKSVD

0% 98.01± 0.32 96.80± 0.80 95.09± 0.93 98.91± 1.22 95.96± 0.40 96.93± 1.03 94.50± 1.20

10% 97.89± 0.81 95.68± 0.95 93.82± 0.72 93.72± 0.45 94.88± 0.84 94.53± 1.88 91.89± 0.97

20% 95.09± 1.03 93.60± 1.02 92.25± 1.24 91.49± 0.98 90.34± 0.94 91.40± 1.12 85.62± 1.57

30% 90.68± 1.34 88.29± 1.19 87.06± 1.58 85.40± 1.35 84.19± 1.19 85.81± 1.45 67.39± 3.13

40% 84.94± 0.68 83.23± 1.84 82.26± 1.09 81.55± 0.69 79.63± 1.96 80.59± 1.24 60.93± 1.71

50% 80.51± 1.35 79.81± 2.58 76.03± 1.66 74.97± 1.78 73.14± 2.12 73.91± 1.07 53.20± 2.73

b) Recovered images of  ARa) Recovered images of  Extended Yale B 

Fig. 2. Examples of the proposed MECDL. First row: testing images with 10% occlu-
sion corruptions or pixel corruptions; Second row: the recovered images Dx + D0x

0;
Third row: class-specific images in Dx; Fourth row: shared images in D0x

0; Fifth row:
error images in e.
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increasing noise. When these images contain 40% or 50% block corruptions, our
method is almost 0.7% higher than the second highest performance of LRD2L.
Figure 2(a) visualizes some results of image recovery by the proposed MECDL
method.

From the Fig. 3, the proposed method achieves the highest performance on
AR database with images corrupted by pixel corruptions (10%–40%). In addi-
tion, without noise, the classification accuracy of LRD2L is slightly higher than
our method, which may be because the size of the shared dictionary plays a
important role without noise. However, with increasing corruptions, our method
is higher than LRD2L due to the discriminative coefficients. With 40% pixel
corruptions, our method is almost 3% higher than other methods. Figure 2(b)
visualizes some examples of recovery images generated by the MECDL method.

Recognition rates on COIL-20 database under different levels of corruptions
are demonstrated on Table 2. Apparently, our method performs the best perfor-

Table 2. Recognition accuracy (%) on COIL-20 database with various occlusion cor-
ruptions percentage (%).

Corruptions MECDL LRD2L DLRD LRSDL COPAR FDDL LCKSVD

0% 91.47± 0.96 91.21± 1.06 89.27± 1.15 88.95± 1.79 87.19± 0.60 87.97± 2.07 90.77± 0.27

10% 90.29± 1.80 89.71± 1.94 88.76± 1.48 87.47± 1.27 85.53± 1.38 87.27± 1.54 89.68± 1.03

20% 88.63± 1.75 88.21± 1.42 86.34± 1.59 85.77± 0.89 82.13± 1.45 85.58± 1.34 82.74± 2.72

30% 84.07± 1.71 83.94± 1.35 83.32± 1.32 83.15± 1.85 78.73± 1.53 80.97± 0.78 79.24± 3.26

40% 80.48± 1.36 79.86± 1.11 78.53± 1.82 77.55± 1.38 73.48± 1.24 76.92± 0.67 76.13± 1.06
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Fig. 3. Recognition accuracy on AR database under different levels of pixel corruptions.



Multi-Constraints-Based Enhanced Class-Specific Dictionary Learning 447

mance compared with other methods. With increasing noise, the performance of
low-rank dictionary learning methods is higher than dictionary learning without
low-rank, which indicates that low-rank dictionary learning method is suitable
for corrupted images.

4 Conclusion

In this paper, we propose a multi-constraints-based enhanced class-specific dic-
tionary learning method for image classification. Our dictionary learning frame-
work contains low-rank class-specific dictionaries and a low-rank shared dictio-
nary. To enhance discriminablity in dictionary and coefficients, the class-specific
dictionaries and it’s coefficients are simultaneously introduced into Fisher-based
ideas. Moreover, the intra-class shared coefficients corresponding to the shared
dictionary should be as similar as possible. With increasing noise, our method
could be robustness and effective compared with some state-of-art methods. In
addition, with the largest noise, our approach both achieves a high recognition
rate of over 80%.
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Science Foundation of China (61432008).

References

1. Aharon, M., Elad, M., Bruckstein, A.: K-SVD: an algorithm for designing over-
complete dictionaries for sparse representation. IEEE Trans. Sig. Process. 54(11),
4311–4322 (2006)

2. Bartels, R.H., Stewart, G.W.: Solution of the matrix equation AX + XB = C [F4]
(algorithm 432). Commun. ACM 15(9), 820–826 (1972)

3. Chen, C., Wei, C., Wang, Y.F.: Low-rank matrix recovery with structural incoher-
ence for robust face recognition. In: CVPR, pp. 2618–2625 (2012)

4. Chen, Y., Su, J.: Sparse embedded dictionary learning on face recognition. Pattern
Recogn. 64, 51–59 (2017)

5. Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306
(2006)

6. Elad, M., Aharon, M.: Image denoising via sparse and redundant representations
over learned dictionaries. IEEE Trans. Image Process. 15(12), 3736–3745 (2006)

7. Georghiades, A.S., Belhumeur, P.N., Kriegman, D.J.: From few to many: illumi-
nation cone models for face recognition under variable lighting and pose. IEEE
Trans. Pattern Anal. Mach. Intell. 23(6), 643–660 (2001)

8. Golub, G.H., Nash, S., Loan, C.V.: A Hessenberg-Schur method for the problem
AX + XB = C. IEEE Trans. Autom. Control. 24(6), 909–913 (1978)

9. Jiang, X., Lai, J.: Sparse and dense hybrid representation via dictionary decomposi-
tion for face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 37(5), 1067–1079
(2015)

10. Jiang, Z., Lin, Z., Davis, L.S.: Label consistent K-SVD: learning a discriminative
dictionary for recognition. IEEE Trans. Pattern Anal. Mach. Intell. 35(11), 2651–
2664 (2013)



448 Z. Tian and M. Yang

11. Kong, S., Wang, D.: A dictionary learning approach for classification: separating
the particularity and the commonality. In: Fitzgibbon, A., Lazebnik, S., Perona, P.,
Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7572, pp. 186–199. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-33718-5 14

12. Li, L., Li, S., Fu, Y.: Learning low-rank and discriminative dictionary for image
classification. Image Vis. Comput. 32(10), 814–823 (2014)

13. Lin, Z., Chen, M., Ma, Y.: The augmented lagrange multiplier method for exact
recovery of corrupted low-rank matrices. CoRR. abs/1009.5055 (2010)

14. Liu, H., Yang, M., Gao, Y., Yin, Y., Chen, L.: Bilinear discriminative dictionary
learning for face recognition. Pattern Recogn. 47(5), 1835–1845 (2014)

15. Ma, L., Wang, C., Xiao, B., Zhou, W.: Sparse representation for face recognition
based on discriminative low-rank dictionary learning. In: CVPR, pp. 2586–2593
(2012)

16. Mairal, J., Bach, F.R., Ponce, J., Sapiro, G.: Online dictionary learning for sparse
coding. In: ICML, pp. 689–696 (2009)

17. Martinez, A.M.: The AR face database. CVC Technical report, 24 (1998)
18. Murase, H., Nayar, S.K.: Visual learning and recognition of 3-D objects from

appearance. Int. J. Comput. Vis. 14(1), 5–24 (1995)
19. Ramı́rez, I., Sprechmann, P., Sapiro, G.: Classification and clustering via dictionary

learning with structured incoherence and shared features. In: CVPR, pp. 3501–3508
(2010)

20. Rong, Y., Xiong, S., Gao, Y.: Low-rank double dictionary learning from corrupted
data for robust image classification. Pattern Recogn. 72, 419–432 (2017)

21. Vu, T.H., Monga, V.: Fast low-rank shared dictionary learning for image classifi-
cation. IEEE Trans. Image process. 26(11), 5160–5175 (2017)

22. Wang, S., Fu, Y.: Locality-constrained discriminative learning and coding. In:
CVPR, pp. 17–24 (2015)

23. Wright, J., Yang, A.Y., Ganesh, A., Sastry, S.S., Ma, Y.: Robust face recognition
via sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 31(2), 210–227
(2009)

24. Xu, L., Wu, X., Chen, K., Yao, L.: Supervised within-class-similar discriminative
dictionary learning for face recognition. J. Vis. Commun. Image Represent. 38,
561–572 (2016)

25. Yang, M., Zhang, L., Feng, X., Zhang, D.: Fisher discrimination dictionary learning
for sparse representation. In: CVPR, pp. 543–550 (2011)

26. Yang, M., Zhang, L., Yang, J., Zhang, D.: Metaface learning for sparse represen-
tation based face recognition. In: ICIP, pp. 1601–1604 (2010)

27. Zhang, Q., Li, B.: Discriminative K-SVD for dictionary learning in face recognition.
In: ICCV, pp. 2691–2698 (2010)

28. Zhang, Z., Li, F., Chow, T.W.S., Zhang, L., Yan, S.: Sparse codes auto-extractor
for classification: a joint embedding and dictionary learning framework for repre-
sentation. IEEE Trans. Sig. Process. 64(14), 3790–3805 (2016)

https://doi.org/10.1007/978-3-642-33718-5_14


Discovering Senile Dementia from Brain
MRI Using Ra-DenseNet

Xiaobo Zhang, Yan Yang(B), Tianrui Li, Hao Wang, and Ziqing He

School of Information Science and Technology,
Southwest Jiaotong University, Chengdu 611756, China

{xiaobo zhang,yyang,trli}@swjtu.edu.cn, {hwang,zqhe}@my.swjtu.edu.cn

Abstract. With the rapid development of medical industry, there is a
growing demand for disease diagnosis using machine learning technology.
The recent success of deep learning brings it to a new height. This paper
focuses on application of deep learning to discover senile dementia from
brain magnetic resonance imaging (MRI) data. In this work, we pro-
pose a novel deep learning model based on Dense convolutional Network
(DenseNet), denoted as ResNeXt Adam DenseNet (Ra-DenseNet), where
each block of DenseNet is modified using ResNeXt and the adapter of
DenseNet is optimized by Adam algorithm. It compresses the number of
the layers in DenseNet from 121 to 40 by exploiting the key characters of
ResNeXt, which reduces running complexity and inherits the advantages
of Group Convolution technology. Experimental results on a real-world
MRI data set show that our Ra-DenseNet achieves a classification accu-
racy with 97.1% and outperforms the existing state-of-the-art baselines
(i.e., LeNet, AlexNet, VGGNet, ResNet and DenseNet) dramatically.

Keywords: Senile dementia · Deep learning ·
Magnetic resonance imaging (MRI) ·
ResNeXt Adam DenseNet (Ra-DenseNet)

1 Introduction

Senile dementia (e.g., Alzheimer’s disease) is a chronic neurodegenerative disease
that usually starts slowly and then worsens over time. The clinical manifesta-
tions of senile dementia are accompanied by memory disorder, aphasia, apraxia,
agnosia, visuospatial impairment, executive dysfunction, and other performance
of comprehensive dementia [3]. The exact pathogenesis of senile dementia is poorly
understood so far. However, senile dementia appears constantly in real world.

Machine learning has been instrumental for the advances of data analysis
and artificial intelligence. As current machine learning matures, many attempts
applying machine learning models have been made to assist modern medical
diagnosis. A certain number of biological diseases including Alzheimer’s disease
have been treated with diagnostics supportive by intelligent technologies, see
[15,21,26,27]. The diagnosis of senile dementia usually requires brain magnetic
c© Springer Nature Switzerland AG 2019
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resonance imaging (MRI) data collected from clinical medicine [12]. Although
traditional machine learning methods have been exploited to discover senile
dementia from MRI data, there are few attempts to use deep learning tech-
nology. In this work, we make attempt to discover Alzheimer’s disease from
MRI data using deep learning technology. In addition, we collect a brain MRI
data set of Alzheimer’s disease from the Open Access Series of Imaging Studies
(OASIS), which are publicly available for Alzheimer’s disease research [16].

In this paper, the task of discovering senile dementia (i.e., Alzheimer’s dis-
ease) with brain MRI data is performed by an improved Dense convolutional
Network (DenseNet). The DenseNet model has a character of efficient parame-
ters, where each layer directly accesses to the gradients from the loss function
data [5]. Moreover, DenseNet can reduce the risk of over-fitting when it is fed
with a small size of training data. This is a crucial point as there are limited
MRI Alzheimer’s disease data. Therefore, we build our model upon DenseNet.
In practice, we modify each block of DenseNet with ResNeXt [29]. Meanwhile,
the adapter of DenseNet is optimized by Adam algorithm [7]. Thus, we call the
proposed model ResNeXt Adam DenseNet (Ra-DenseNet). In our experiments,
we evaluate the classification performance of the proposed Ra-DenseNet by com-
paring with LeCun Network (LeNet) [10], Alex Network (AlexNet) [9], Visual
Geometry Group Network (VGGNet) [22], Residual Networks (ResNet) [4] and
DenseNet [5]. Experimental results show that our Ra-DenseNet model makes
considerable improvement over the above-mentioned deep learning models.

The remaining part of this paper is organized as follows. Section 2 gives a brief
review to the related work about the senile dementia prediction using brain MRI
data. Section 3 presents the proposed Ra-DensNet model. Extensive experiments
are conducted in Sect. 4. Finally, Sect. 5 concludes this paper.

2 Related Work

Several types of machine learning technologies have been studied to discover
Alzheimer’s disease from medical data in recent years. For example, Sorg et al.
[24] analyzed functional and structural MRI data by a resting-state networks
(RSNs) for Alzheimer’s disease. It demonstrates that functional brain disorders
can be characterized by functional-disconnectivity profiles of RSNs. Kong et al.
[8] exploited independent component analysis and non-negative matrix factor-
ization to identify significant genes and related pathways in the microarray gene
expression data set of Alzheimer’s disease.

Classification technologies are also employed on Alzheimer’s disease research.
Zhang et al. [31] proposed a multi-modal classification approach for Alzheimer’s
disease and mild cognitive impairment. This approach combines three modalities
of biomarkers upon a kernel method. Liu et al. [11] discussed a local patch-based
subspace ensemble method for the detection of Alzheimer’s disease. It builds
multiple individual classifiers with different subsets of local patches and then
combines them to provide a more accurate and robust classification result. In
addition, Zhang et al. [32] investigated a multi-modal multi-task learning app-
roach to jointly predict multiple variables from multi-modal Alzheimer’s disease
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data. Young et al. [30] used a Gaussian process classification to predict the prob-
ability of conversion for the Alzheimer’s disease in patients with mild cognitive
impairment. Gray et al. [2] discussed random forest-based similarity measures
for multi-modal classification of Alzheimer’s disease on neuroimaging and bio-
logical data. Recently, Tong et al. [28] presented a multi-modality classification
framework with nonlinear graph fusion to exploit the complementary in the
multi-modal data of Alzheimer’s disease.

The brain MRI data of the Alzheimer’s disease were also analyzed with clus-
tering algorithms, e.g., K-Means, K-Medoids, Gaussian Mixture Model (GMM),
Affinity Propagation (AP), Density Peaks (DP) and Cluster-based Similarity
Partitioning Algorithm (CSPA) [33]. Meanwhile, the brain tumour was detected
by using K-Means clustering algorithm [20]. In addition, non brain MRI data
sets were studied by neuroimaging and deep learning methods [17,19].

For feature selection technology, Liu et al. [13] proposed a multi-task feature
selection approach to preserve the complementary inter-modality information
for Alzheimer’s Disease and mild cognitive impairment identification. Zhu et al.
[34] also employed a feature selection method by transferring the relational and
inherent information in the data into a sparse multi-task learning framework,
i.e., regression task and classification task of Alzheimer’s disease diagnosis.

In terms of the early diagnosis of Alzheimer’s disease, Moradi et al. [18]
presented used Alzheimer’s disease MRI data to predict the conversion of mild
cognitive impairment from one to three years before clinical diagnosis. Fang et al.
[1] investigated a Gaussian discriminant analysis method for the early diagnosis
of mild cognitive impairment in Alzheimer’s disease.

Apart for the above-mentioned methods, Hon et al. [6] performed two CNN
architectures, i.e., VGGNet and GoogLeNet Inception, for the Alzheimer’s dis-
ease diagnosis problem. Liu et al. [14] developed a multi-scale modeling variant-
to-function-to-network framework to investigate the causal effect of rare non-
coding variants on the Alzheimer’s disease.

3 Methods

In this section, we first review LeNet, AlexNet, VGGNet, ResNet, ResNeXt,
DenseNet and Adam algorithm. Then, we propose our Ra-DenseNet, which com-
bines the key characters of ResNeXt and Adam algorithm with DenseNet archi-
tecture.

The LeNet Architecture. The LeNet [10] model is one of the most classic
and basic model in convolutional neural network, which consists of three layers,
i.e., a convolution layer and two pooling layers. Then the outputs are fed into a
full connection layer to produce the final results.

The AlexNet Architecture. The AlexNet [9] model is a deeper and more
effective model than LeNet [10]. The AlexNet model consists of five convolution
layers containing pool layers and three fully connected layers. Besides, it uses a
data enhancement technology.
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The VGGNet Architecture. The VGGNet [22] is proposed by Oxford Uni-
versity. It has 16 layers of network structure, which includes 13 convolution layers
and 3 fully connected layers.

The ResNet and ResNeXt Architecture. For ResNet [4], it not only makes
the number of network layers deeper than VGGNet, but also proposes to use
residual error which aims at solving the exploding gradient problem from deep
networks. For ResNeXt [29], it combines the wide residual network and the group
convolution in AlexNet [9] with the basis of ResNet [4]. Note that the number of
channels in each layer of ResNeXt is doubled and the network is also widened.
In such a way, it can improve the classification performance without increasing
the complexity of parameters as well as reduce the number of super-parameters.

The DenseNet Architecture. DenseNet [5] is a deeper model which has fewer
parameters. In DenseNet, each layer obtains additional inputs from all preceding
layers and then transfers its own feature-maps to all subsequent layers, which can
enhance the transmission of the feature map and reduce the vanishing gradient
problem of deep learning.

The Adam Algorithm. The Adam algorithm [7] is a method for efficient
stochastic optimization. It only requires the first-order gradients with a few
memory requirements, which can compute an adaptive learning rate for each
parameter generated from the estimates of the first and second moments of the
gradients. The main function of Adam is shown as follows:

θt = θt−1 − αm̂t√
v̂t + ε

, (1)

where t denotes the number of times, α and ε are taken constant values, mt is
the exponential moving mean obtaining from the first moment of gradient, and
νt is a square gradient achieving from the two moment of the gradient [7].

Ra-DenseNet (the Proposed Model). Our Ra-DenseNet builds upon
DenseNet, meanwhile, exploits the key characteristics of ResNeXt and Adam.
The structure of the proposed Ra-DenseNet is shown in Fig. 1. It consists of 40
layers and 4 blocks. In order to avoid over-fitting caused by excessive layers, we
choose 3 identical sub-structures for each block. Each substructure contains three
convolution layers with the convolution kernel of 1 ∗ 1, 3 ∗ 3, 1 ∗ 1, respectively.
In order to reduce the number of input feature maps, we perform the preceding
layer with the 3 ∗ 3 convolution in each dense block using a 1 ∗ 1 convolution
operation, which can not only reduce the dimensionality and computation, but
also fuse the features of each channel. Combining the block method used in
ResNeXt, the following layer with the 3 ∗ 3 convolution of each dense block also
contains a 1∗1 convolution operation in order to expand the number of channels.
In such a way, the width can be doubled as introduced in [29]. At the same time,
we use the technology of group convolution such that the correlation between
feature mapping has been increased, which is similar to the regularization effect.
Besides, we choose Adam optimizer [7] with better adaptation and convergence,
unlike the Momentum optimizer [25] used in the original DenseNet network.
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Fig. 1. Main structure of Ra-DenseNet Fig. 2. Dense block and transition layer

The input of the Ra-DenseNe network is a tensor of [224, 224, 3]. First, we
feed the input tensor into the convolution layer with a convolution kernel of 7 * 7
and a step size of 2. The tensor of [112, 112, 16] is obtained, and the tensor of
size [56, 56, 16] is captured by a max pooling layer with a convolution kernel of
3 * 3 and a step size of 2. Then through the first dense block, the tensor of [56,
56, 52] is gotten, and the tensor of [28, 28, 52] is received through the transition
layer. Next, through the same three dense blocks and two transition layers, the
tensor of [7, 7, 160] is captured, and through the max pooling layer with a
convolution kernel of 7 * 7, the tensor of [1, 1, 160] is obtained, which is then
reshaped into a 160-dimensional eigenvector. And through a fully connected layer
a 1000-dimensional eigenvector is gotten. Finally, with the softmax classifier, the
loss function is formed by the cross-entropy of the label y and the output. The
structures of Dense Block and Transition Layer for Ra-DenseNet are illustrated
by Fig. 2.

Compared with DenseNet, our Ra-DenseNet has the following features: (1)
It’s number of layers is much smaller and less than one third of DenseNet. (2)
It’s channels of each block is wider than DenseNet because of adding convolution
operation, and it’s structure is updated by the technology of group convolution.
(3) The adaptability and convergence of it’s optimizer are better than DenseNet.
In this work, we aim to create a better neural network structure and propose a
suitable model for brain MRI data. Ra-DenseNet may be not suitable for other
data sets compared with DenseNet, but its identification results for brain MRI
data is promising (see experimental results).

4 Experiments

In this section, we evaluate the classification performance of the proposed model.
We use a brain MRI data set collected from OASIS, which can be accessed freely
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for the scientific community. We compare with the LeNet, AlexNet, VGGNet,
ResNet, DenseNet and Ra-DenseNet on MRI data sets, and demonstrate the
classification performance in terms of Accuracy metric.

4.1 Data Set

The initial data set consists of a cross-sectional collection of 416 subjects that
are all right-handed and include both men and women aged from 18 to 96.
We applied the 235 complete marking of 416 subjects to study the Alzheimer’s
disease by MRI. One hundred of the included subjects older than 60 years have
been clinically diagnosed with very mild to moderate Alzheimer’s disease. The
characteristics of each subject are AGE, M/F, EDUC, MMSE, eTIV, ASF and
nWBV, and the data label is CDR, all of which are summarized in Table 1 [24].
In the MRI, the values as 0, 0.5, 1, 2 of CDR are expressed as no dementia, very
mild, mild, moderate, separately, while the value of the eTIV is the estimated
total intracranial volume (cm3) and the nWBV is the percent of all voxels in the
atlas-masked. Further information on eTIV and nWBV are drawn with ages in
Figs. 3 and 4 for the data included in the samples [33].

Table 1. Imaging measures in the brain MRI data sets

Age Age at time of image acquisition (years)

Sex Male or female

Edu Years of education

MMSE Ranges from 0 (worst) to 30 (best)

ASF Atlas scaling factor

eTIV Estimated total intracranial volume (cm3)

nWBV Expressed as the percent of all voxels in the atlas-masked image

CDR 0 = no dementia, 0.5 = very mild, 1 = mild, 2 = moderate

4.2 Experimental Setup

All experiments are performed by a PC Server (Intel(R) Core(TM) i5-3337U
CPU @ 1.80 GHz, memory 4 GB). Firstly, we implement Python script to process
the initial MRI data sets for one MRI by one sample. Secondly, we select the
235 MRI samples with data labels and use eighty percent of all samples as a
training set with ten percent as a verification set and ten percent as a test set,
where the four different classifications with the values of CDR in initial MRI
data sets are shown in Fig. 5. Thirdly, we choose the LeNet, AlexNet, VGGNet,
ResNet, DenseNet and Ra-DenseNet architectures on the brain MRI data sets
applying the Accuracy value as the evaluation of the performance in service of
the TensorFlow software platform. Finally, we compare the evaluation results of
the six neural network architectures.
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Fig. 5. Four images with different classifications of brain MRI data sets, that is, the
CDR values are 0, 0.5, 1, 2 from left to right for MRI

4.3 Training

In this subsection, we give the detailed training processes of the LeNet, AlexNet,
VGGNet, ResNet, DenseNet and Ra-DenseNet architectures with the MRI data
sets and performance comparisons of the training results of each network.

In the experiments, the brain MRI data sets are divided into four categories,
that is, disease-free, mild, moderate and severe. The training set, the verification
set and the test set are distributed according to the ratio of 8:1:1. Hence 188
training sets and 23 verification sets with 24 test sets are gotten. We choose the
smaller growth rate k = 12 to avoid that the network will become too wide.
In addition, there is a transition layer between each dense block to control the
output size between blocks so that unstable training caused by excessive channels
can be avoided. The parameter here is set to be 0.5, which indicates the times
that the output of each block will be reduced. Since there are many connections in
the entire network, we use dropout technology [23] to randomly reduce branches
to avoid over-fitting. The basic attributes of each network in training process
are shown in Table 2, respectively, which also contains the layers, params and
running time of each epoch.

With the increase of training times, the changes of the parameter of the
neural network will be smaller and smaller. Therefore, we use the learning rate
that changes with training times, which is initially 0.0005. When the times of
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Table 2. The architecture of each network

Method Depth Params Running time of each epoch

LeNet 5 0.06M 0.05 ms

AlexNet 8 60M 14.56 ms

VGGNet 16 138M 128.62 ms

ResNet 34 0.46M 51.59 ms

DenseNet 121 27.2M 80.65 ms

Ra-DenseNet 40 1M 60.16 ms

training exceed half of the preset number, the learning rate will be reduced by
10 times, and when the training times exceed 4/5 of the preset value, the rate
will be reduced by another 10 times. Each batch is set to consist of 8 and 16
samples as batch size separately, and the training times, i.e. epochs is reset to
be 500, 1000, 1500 and 2000.

More intuitively, when the batch size is 8 and epochs reach to 2000, the loss
values comparison results and the accuracy performance are shown in Figs. 6
and 7, respectively.

Fig. 6. Loss value comparison in train-
ing process with batch size of 8

Fig. 7. Accuracy performance comparison
in training process with batch size of 8

And when batch size is 16 and epochs reach to 2000, the loss values com-
parison results are shown in Fig. 8 and the accuracy performance comparison is
shown in Fig. 9, respectively.

A comparative analysis of Figs. 6 and 8 shows that the loss values of Ra-
DenseNet are much less than other networks in the whole training process with
different batch sizes. Figures 7 and 9 present that the accuracies of Ra-DenseNet
are higher than other networks during training when the batch size is 8 or 16.

4.4 Results and Discussions

In this subsection, we give the testing results of the comparisons after the
experiments with fifty running times for the LeNet, AlexNet, VGGNet, ResNet,
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Fig. 8. Loss value comparison in train-
ing process with batch size of 16

Fig. 9. Accuracy performance comparison
in training process with batch size of 16

DenseNet and Ra-DenseNet architecture on the brain MRI data sets. In case of
the batch size of 8, the average values of accuracy of each network for the brain
MRI data set are shown in Table 3, While the average accuracies of each network
are given in Table 4 when the batch size is 16.

Table 3. The performances of each network with batch size of 8

Method 500 epochs 1000 epochs 1500 epochs 2000 epochs

LeNet 52.5% 56.7% 50.9% 63.4%

AlexNet 69.6% 73.3% 78.3% 81.5%

VGGNet 80.0% 83.6% 86.2% 90.4%

ResNet 82.0% 87.9% 90.3% 91.3%

DenseNet 79.1% 81.6% 83.2% 81.7%

Ra-DenseNet 89.6% 93.8% 96.2% 96.3%

Table 4. The performances of each network with batch size of 16

Method 500 epochs 1000 epochs 1500 epochs 2000 epochs

LeNet 52.1% 56.7% 58.3% 62.5%

AlexNet 62.1% 70.7% 76.3% 82.3%

VGGNet 78.7% 82.9% 86.7% 91.2%

ResNet 81.6% 89.3% 92.5% 92.5%

DenseNet 71.7% 79.1% 85.3% 85.4%

Ra-DenseNet 87.9% 90.4% 95.8% 97.1%

In Tables 3 and 4, the highest accuracies have been highlighted. It is noted
that the Ra-DenseNet has the highest accuracy value with each different epochs
for the recognition of the Alzheimer’s Disease by the brain MRI data sets. More
intuitively, in case of the batch size of 8, the comparison of accuracies for each
network is shown in Fig. 10, while the comparison of accuracies is presented in
Fig. 11 with the batch size of 16.
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Fig. 10. Accuracy comparison results
in testing process when batch size is 8

Fig. 11. Accuracy comparison results in
testing process when batch size is 16

A comparative analysis of Figs. 10 and 11 shows that the accuracy values of
Ra-DenseNet are much higher than other networks in the testing process with
different epochs, i.e. 500, 1000, 1500 and 2000. Figures 10 and 11 also present that
the accuracies of Ra-DenseNet appear an upward trend and the highest leveling
over the course of the testing when the batch sizes are taken 8 and 16. Overall,
the Ra-DenseNet model we proposed performs the best in the recognition of
Alzheimer’s disease on the MRI data sets. Ra-DenseNet may be not suitable for
other data sets compared with others’ deep learning network, but its recognize
results for brain MRI data is excellent.

5 Conclusion

It is instrumental to use MRI data (or other types of medical data) to assist
physicians to make a quick and exact diagnosis and treatment for diseases in
modern medical industry. With the increase of patients and the waiting time
of disease treating in hospital, it also calls for a large amount of demand for
computer-aided diagnosis. In this paper, we proposed a new deep learning model
(i.e., Ra-DenseNet), which utilizes the key characters of DenseNet, ResNeXt and
Adam algorithm. After training the proposed Ra-DenseNet model on brain MRI
data, Ra-DenseNet can effectively discover Alzheimer’s disease in test. In this
work, we evaluated our model on a brain MRI data set. Our future work includes
collecting more MRI data sets, and then performing our Ra-DenseNet on these
data sets. Meanwhile, we will study a new network architecture based on deep
learning technology for others’ diseases.

Acknowledgment. This work was supported by the National Natural Science Foun-
dation of China (No. 61572407) and the Seeding Project of Scientific and Technological
Innovation in Sichuan Province of China (No. 2018102).



Discovering Senile Dementia from Brain MRI Using Ra-DenseNet 459

References

1. Fang, C., Li, C., Cabrerizo, M., et al.: A Gaussian discriminant analysis-based
generative learning algorithm for the early diagnosis of mild cognitive impairment
in Alzheimer’s disease. In: Proceedings of the IEEE International Conference on
Bioinformatics and Biomedicine, pp. 538–542 (2017)

2. Gray, K.R., Aljabar, P., Heckemann, R.A., et al.: Random forest-based similarity
measures for multi-modal classification of Alzheimer’s disease. NeuroImage 65,
167–175 (2013)

3. Harman, D.: Alzheimer’s disease pathogenesis. Ann. N. Y. Acad. Sci. 1067, 454–
560 (2007)

4. He, K., Zhang, X., Ren, S., et al.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778 (2016)

5. Huang, G., Liu, Z., Weinberger, K.Q., et al.: Densely connected convolutional
networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, vol. 1, pp. 4700–4708 (2017)

6. Hon, M., Khan, N.M: Towards Alzheimer’s disease classification through transfer
learning. In: Proceedings of the IEEE International Conference on Bioinformatics
and Biomedicine, pp. 1166–1169 (2017)

7. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. Comput. Sci.
(2014)

8. Kong, W., Mou, X., Hu, X.: Exploring matrix factorization techniques for signifi-
cant genes identification of Alzheimers disease microarray gene expression data.
In: Proceedings of the IEEE International Conference on Bioinformatics and
Biomedicine, vol. 12, no. 5, p. S7 (2011)

9. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks. In: Proceedings of the 25th International Conference
on Neural Information Processing Systems, vol. 1, pp. 1097–1105 (2012)

10. LeCun, Y., Bottou, L., Bengio, Y., et al.: Gradient-based learning applied to doc-
ument recognition. Proc. IEEE 86(11), 2278–2324 (1998)

11. Liu, M., Zhang, D., Shen, D.: Ensemble sparse classification of Alzheimer’s disease.
Neuroimage 60(2), 1106–1116 (2012)

12. Liu, Y.: Magnetic resonance imaging. In: Current Laboratory Methods in Neuro-
science Research, pp. 249–270 (2013)

13. Liu, F., Wee, C.Y., Chen, H., et al.: Inter-modality relationship constrained multi-
modality multi-task feature selection for Alzheimer’s disease and mild cognitive
impairment identification. NeuroImage 84, 466–475 (2014)

14. Liu, Q., Chen, C., Gao, A., et al.: VariFunNet, an integrated multiscale modeling
framework to study the effects of rare non-coding variants in genome-wide associ-
ation studies: applied to Alzheimer’s disease. In: Proceedings of the IEEE Interna-
tional Conference on Bioinformatics and Biomedicine, pp. 2177–2182 (2017)

15. Luo, Y.M., Weng, H., Zhang, L., et al.: Salt restriction: recognition and treatment
of chronic kidney disease related edema in ancient literature mining. In: Proceed-
ings of the IEEE International Conference on Bioinformatics and Biomedicine, pp.
1369–1375 (2017)

16. Marcus, D., Wang, T., Parker, J., et al.: Open Access Series of Imaging Stud-
ies (OASIS): cross-sectional MRI data in young, middle aged, nondemented, and
demented older adult. J. Cogn. Neurosci. 19(9), 1498–1507 (2007)



460 X. Zhang et al.

17. Milletari, F., Ahmadi, S.-A., Kroll, C., et al.: Hough-CNN: deep learning for seg-
mentation of deep brain regions in MRI and ultrasound. Comput. Vis. Image
Underst. 164, 92–102 (2017)

18. Moradi, E., Pepe, A., Gaser, C., et al.: Machine learning framework for early MRI-
based Alzheimer’s conversion prediction in MCI subjects. Neuroimage 104, 398–
412 (2015)

19. Nichols, T.E., Das, S., Eickhoff, S.B., et al.: Best practices in data analysis and
sharing in neuroimaging using MRI. Nat. Neurosci. 20(3), 299–303 (2017)

20. Panda, A.K., Kumar, M., Chaudhary, M.K., et al.: Brain tumour extraction from
MRI images using k-means clustering. Int. J. Innov. Res. Electr. Electron. Instrum.
Control Eng. 4(4), 356–359 (2016)

21. Peng, Y., Tang, C., Chen, G., et al.: Multi-label learning by exploiting label cor-
relations for TCM diagnosing Parkinson’s disease. In: Proceedings of the IEEE
International Conference on Bioinformatics and Biomedicine, pp. 590–594 (2017)

22. Russakovsky, O., Deng, J., Su, H., et al.: ImageNet large scale visual recognition
challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015)

23. Srivastava, N., Hinton, G., Krizhevsky, A., et al.: Dropout: a simple way to prevent
neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

24. Sorg, C., Riedl, V., Muhlau, M., et al.: Selective changes of resting-state networks in
individuals at risk for Alzheimer’s disease. Proc. Natl. Acad. Sci. 104(47), 18760–
18765 (2007)

25. Sutskever, I., Martens, J., Dahl, G., et al.: On the importance of initialization and
momentum in deep learning. In: Proceedings of the International Conference on
Machine Learning, pp. 1139–1147 (2013)

26. Tahmasian, M., Shao, J., Meng, C., et al.: Based on the network degeneration
hypothesis: separating individual patients with different neurodegenerative syn-
dromes in a preliminary hybrid PET/MR study. J. Nucl. Med. 57, 410–415 (2016)

27. Tang, X., Hu, X., Yang, X., et al.: A algorithm for identifying disease genes by incor-
porating the subcellular localization information into the protein-protein interac-
tion networks. In: Proceedings of the IEEE International Conference on Bioinfor-
matics and Biomedicine, pp. 308–311 (2016)

28. Tong, T., Gray, K., Gao, Q., et al.: Multi-modal classification of Alzheimer’s disease
using nonlinear graph fusion. Pattern Recogn. 63, 171–181 (2017)

29. Xie, S., Girshick, R., Dollár, P., et al.: Aggregated residual transformations for deep
neural networks. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 5987–5995 (2017)

30. Young, J., Modat, M., Cardoso, M.J., et al.: Accurate multimodal probabilistic
prediction of conversion to Alzheimer’s disease in patients with mild cognitive
impairment. NeuroImage: Clin. 2, 735–745 (2013)

31. Zhang, D., Wang, Y., Zhou, L., et al.: Multimodal classification of Alzheimer’s
disease and mild cognitive impairment. Neuroimage 55(3), 856–867 (2011)

32. Zhang, D., Shen, D.: Multi-modal multi-task learning for joint prediction of multi-
ple regression and classification variables in Alzheimer’s disease. Neuroimage 59(2),
60–67 (2012)

33. Zhang, X., Yang, Y., Wang, H., et al.: Analysis of senile dementia from the brain
magnetic resonance imaging data with clustering. In: Proceedings of the 13th Inter-
national FLINS Conference (FLINS 2018) and Intelligent Systems and Knowledge
Engineering (ISKE 2018), pp. 1454–1461 (2018)

34. Zhu, X., Suk, H.I., Wang, L., et al.: A novel relational regularization feature selec-
tion method for joint regression and classification in AD diagnosis. Med. Image
Anal. 38, 205–214 (2017)



Knowledge Graph and Interpretable
Data Mining



Granger Causality for Heterogeneous
Processes
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Abstract. Discovery of temporal structures and finding causal interac-
tions among time series have recently attracted attention of the data
mining community. Among various causal notions graphical Granger
causality is well-known due to its intuitive interpretation and computa-
tional simplicity. Most of the current graphical approaches are designed
for homogeneous datasets i.e. the interacting processes are assumed to
have the same data distribution. Since many applications generate het-
erogeneous time series, the question arises how to leverage graphical
Granger models to detect temporal causal dependencies among them.
Profiting from the generalized linear models, we propose an efficient
Heterogeneous Graphical Granger Model (HGGM) for detecting causal
relation among time series having a distribution from the exponential
family which includes a wider common distributions e.g. Poisson, gamma.
To guarantee the consistency of our algorithm we employ adaptive Lasso
as a variable selection method. Extensive experiments on synthetic and
real data confirm the effectiveness and efficiency of HGGM.

1 Introduction

Recently there is a significant interest in causal inference in various data mining
tasks. Discovery of causal relations among different processes leads to character-
ize the evolution in time of regular instances. The regular pattern can be used to
detect the deviated observations or outliers in anomaly detection [15]. A number
of methods has been developed to infer causal relations from time series data
by Granger causality [8] which is a popular method due to its computational
simplicity. The presumption of this approach is that a cause helps to predict its
effects in the future. Most of the existing methods in this area assume additive
causal interactions among time series following a specific data type or a certain
distribution. The well-know causality notion, Additive Noise Models (ANMs),
have been proposed for either continuous [17] or discrete [14] time series. More-
over, most of the probabilistic approaches are designed for homogeneous datasets
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[4,5]. However, in reality the interacting processes do not have to be homoge-
neous (having the same distribution). Such situations can occur, for example, in
climatology when various measurements are provided for different meteorological
stations. Figure 1 shows 10 weather stations and three major weather systems
in Austria. The monthly amount of precipitation as well as the number of sunny
days have been measured for every station, each of which with a non-Gaussian
distribution. One can be interested in investigating how the number of sunny
days in a station, influenced by one of the weather systems, can impact the
amount of precipitation in the other locations.

Fig. 1. Meteorological stations and three major weather systems influencing Austria.

Applying existing algorithms on such data sets can result an inaccurate
Granger causal model since they have been designed for specific homogeneous
data types. Moreover, the small set of algorithms, which are supposed to cope
with the heterogeneity, mostly employ an exhaustive pairwise testing. This leads
to inefficiency in a causal network discovery specially when the number of inter-
acting processes is increasing. In between, graphical Granger models are pop-
ular due to their efficiency and effectiveness. They employ a penalized Vector
Autoregression (VAR) to the Granger concept [1,3,7,18]. However, to the best of
our knowledge, so far they have been designed only for homogeneous data sets.
Thus, in this paper we propose a penalized VAR-based algorithm to detect the
Heterogeneous Graphical Granger Model (HGGM) by employing generalized
linear models (GLMs). Similar to the other graphical models, we assume that
the interactions among the involved processes are additive. Moreover, to ensure
the convergence of HGGM to the true causal graph (i.e. consistency) we employ
the well-know penalization approach, adaptive Lasso, with oracle properties [20].
The paper brings the following contributions:

– Heterogeneity: Applying the GLM methodology, we propose a heteroge-
neous graphical Granger model to discover the causal interactions among a
wide variety of heterogeneous time series from the exponential family;
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– Consistency: Assessing the causal relations via adaptive Lasso ensures con-
sistency of our method;

– Scalability: Unlike other existing algorithms, HGGM avoids an exhaustive
pairwise causality testing by penalized estimation of VAR models. Due to the
computational simplicity of HGGM, it is convenient to be used in practice.
Moreover, its reasonable runtime complexity makes our algorithm scalable for
the large data sets consisting of long time series;

– Effectiveness: Following the result of our extensive experiments on synthetic
and real datasets, HGGM is an effective algorithm even by detecting sparse
causal graphs.

In the following we specify the problem and the theoretical background and
propose our HGGM model. Section 2 presents the related work. In Sect. 3, we
introduce the problem and our proposed framework to deal with heterogeneous
data. In Sect. 4 we introduce our integrative algorithm HGGM and the theoret-
ical considerations of it. Extensive experiments on synthetic and real data are
demonstrated in Sect. 5. Our conclusion is in Sect. 6.

2 Related Work

Among various approaches to infer causality, Granger causality [8] is well-known
due to its simplicity and computational efficiency. It states that a cause effi-
ciently improves the predictability of its effect. There are various approaches
depending on how to assess the predictability. Probabilistic approaches inter-
pret it as the improvement in the likelihood (i.e. probability). However, several
methods in this group are distinguished based on the way how they employ
probability. Information-theoretic methods detect the causal direction by intro-
ducing some indicators. Among them, compression-based algorithms apply the
Kolmogorov complexity and define a causal indicator by mean of the Minimum
Description Length (MDL) [4–6]. Essentially, these algorithms are designed to
infer the pairwise causal relations. Therefore, employing them for discovery of
causal networks leads to inefficiency, especially when the number of processes
increases. Moreover, to the best of our knowledge, almost all the algorithms in
this category deal with homogeneous data sets except Crack [10], the most recent
compression-based algorithm to deal with multivariate and heterogeneous pro-
cesses. Beside the pairwise testing and its drawbacks, this algorithms lacks the
accurate causal relations since there is no lag parameter considered in this app-
roach. Transfer entropy, shortly TEN, is another approach among information-
theoretic methods which is based on Shannon’s Entropy [16]. In this approach
it is more likely that the causal direction with the lower entropy corresponds to
the true causal relation. Given a lag variable, TEN can detect both linear and
non-linear causal relations. However, due to pairwise testing and its dependency
on the lag variable, the computational complexity of this algorithm is exponen-
tial in the lag parameter. Moreover, similar to compression-based methods, TEN
is not designed to deal with bidirectional causalities. As another method in this
category, the authors in [9] employ the log-likelihood ratio to detect any causal
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relations among processes. They propose a statistical framework (SFGC) for
mixed type data and assessing the causal relations between multiple time series
is accomplished by the false discovery rate (FDR). The statistical power of the
FDR based methods rapidly decreases with increasing number of hypotheses and
these methods are computationally intensive. As the consequence, the statisti-
cal efficiency of SFGC decreases for the increasing number of investigated time
series.

Another approach to assess the predictability is the graphical Granger
method where a penalized VAR model is supposed to be estimated [1,18]. Graph-
ical Granger method is popular for its simplicity and efficiency since employing
a penalized VAR model we avoid the pairwise testing. However most of the
algorithms in this category are designed for Gaussian processes. Utilizing the
advantages of this approach we introduced a graphical Granger algorithm for
heterogeneous processes.

3 Theory

3.1 Granger Causality

Granger causality is a well-known notion of causality introduced by Granger in
the area of econometrics [8]. Although the Granger causality is not meant to
be equivalent to the true causality but it provides useful information capturing
the temporal dependencies among time series. In a bivariate case let x1:n =
{xt|t = 1, . . . , n} and y1:n = {yt|t = 1, . . . , n} denote two time series up to time
n. Moreover, let the following two models represent two autoregressive models
corresponding to time series y with and without taking past observations of x
into consideration.

yT = α1y
1 + · · · + αT−1y

T−1 + γ1x
1 + · · · + γT−1x

T−1 + εT (1)

yT = α1y
1 + · · · + αT−1y

T−1 + εT (2)

Following the principle of Granger causality, x Granger-causes y if the Model
1 significantly improves the predictability of y comparing to the Model 2. The
concept of Granger causality can be extended to more than two time series. Let
x1:n
1 , . . . , x1:n

p be p time series up to time n and XT be the concatenated vector
of all time series at time T , i.e. XT = (xT

1 , . . . , xT
p ). The vector autoregressive

(VAR) model is given by:

XT = A1X
1 + · · · + AT−1X

T−1 + εT (3)

where At is a matrix of the regression coefficients at time t = 1, . . . , T − 1 and
εt is a white noise. Thus, xj Granger-causes xi if at least one of the (i, j)th
elements in the coefficient matrices A1, . . . , AT−1 is non-zero.
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3.2 Causal Inference by Penalization

In order to detect the causal relations between several time series, one needs to
estimate the coefficients of the VAR model introduced in the last section. Since
this problem can be ill-posed, penalizing the VAR of order d (a time window) by
means of a penalty function provides an efficient and sparse solution when the
convergence to the true causal graph is ensured (e.g. [1,18]). The penalization
approach is referred to as variable selection as well. Thus, given the window size
d for any time series xi, i = 1, . . . , p, we consider the VAR model including all
p time series. We slide the window over time series and get the corresponding
VAR model. The fact is that the best regressors with the least squared error for
any specific time series will have non-zero coefficients in the VAR model only for
the dependent time series. More precisely, Let XLag

T,d = {xi
T−t|i = 1, . . . , p; t =

1, . . . , d} denote the concatenated vector of all the lagged variables up to time T
for a given time window of length d. For simplicity we consider the same lag d
for each time series. Applying the penalized optimization, the variable selection
problem for the time series xi is given by:

β̂i = arg min
βi

n∑

T=d+1

(xT
i − XLag

T,d βi)
2

+ λR(βi) (4)

where R(.) is the penalty function and λ is the regularization parameter.
β̂i = (β1, . . . , βp) is a concatenated vector of the regression coefficients β1, . . . , βp

corresponding to any time series x1, . . . , xp. Back to the definition of Granger
causality, xj Granger-causes xi if and only if at least one of the coefficients in
βj is non-zero.

3.3 Adaptive Lasso

One of the well-known variable selection methods is Lasso [19] where the penalty
function considered in Eq. 4 is the L1 norm of the coefficients, i.e. R(βi) =
||βi||1. Despite the efficiency of Lasso, the consistency1 of this approach is not
ensured. Therefore, we employ adaptive Lasso [20], a modification of Lasso, as
the variable selection method in our model due to its consistency as well as its
oracle properties. In this approach we assign adaptive weights for penalizing the
L1 norm of different coefficients. The penalty function is given by:

R(βi) :=
p∑

j=1

wj |βj | where wj =
1

|β̂(mle)
j |ω

(5)

In fact, wj is the weight vector for some ω > 0 and β̂
(mle)
j is the maximum likeli-

hood estimate of the parameters. The consistency of adaptive Lasso is guaranteed
under some mild regularity conditions in the following theorem [20]:

1 I.e. the resulting sequence of estimates does not have to converge in probability to
the optimal solution for variable selection under certain conditions (Sect. 2 in [20]).
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Theorem 1. Let A = {i : β̂i �= 0} be the set of all non-zero coefficient estimates.
Suppose that λ/

√
n → 0 and λn

(ω−1)
2 → ∞ then under some mild regularity

conditions adaptive Lasso must be consistent for the variable selection.

3.4 Heterogeneous Granger Causality

Most of the approaches to detect the Granger causality among time series have
certain Gaussian assumptions for the interacting processes. However in many
applications this assumption leads to an inaccurate causal model. Moreover,
mostly the variable selection algorithms employed to penalize the VAR model
are consistent under additional specific conditions on the Gaussian time series,
see e.g. [1]. Profiting from the GLM framework, we propose a general integrative
model to detect causal relations among a large number of heterogeneous time
series. GLM, introduced by Nelder and Baker in [13], is a natural extension
of linear regression to the cases when the regressed variables (time series) can
have any distribution from the exponential family. In another word, the relation
among the response variable and the covariates in a regression is not any more
linear but defined by a link function g, a monotone twice differentiable function
depending on concrete distribution functions from the exponential family.

In our model we assume the mean value of each time series at time T depends
on its own history and the past values of the concurrent time series so that:

E(xT
i ) = g−1

i (XLag
T,d .βi). (6)

Finally, our general objective function is defined as:

β̂i = arg min
βi

n∑

T=d+1

[ − xT
i (XLag

T,d .βi) + g−1
i (XLag

T,d .βi)
]
+ λ.

p∑

j=1

wj |βj |. (7)

The concrete form of our proposed objective function (7) concerning xi to have
binomial and Poisson distribution, respectively, is given by:

β̂i = arg min
βi

n∑

T=d+1

[ − xT
i (XLag

T,d .βi) + log(1 + e(X
Lag
T,d .βi))

]
+ λ.

p∑

j=1

wj |βj |, (8)

β̂i = arg min
βi

n∑

T=d+1

[ − xT
i (XLag

T,d .βi) + exp(XLag
T,d .βi)

]
+ λ.

p∑

j=1

wj |βj |. (9)

4 HGGM Algorithm

Our method HGGM is summarized in Algorithm1. At first it constructs the over-
all lagged matrix XLag, by sliding the window of size d over each time series.
Then, HGGM solves the optimization problem (Eq. 7) for each time series by call-
ing GLM − penalize(), [11]. This procedure applies Fisher scoring algorithm to
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estimate the coefficients. We set the maximum λ as an input of GLM−penalize()
and the procedure employs the cross-validation to find the best regularization
parameter.

Essentially one needs to know the distribution of every time series in order to
specify an appropriate link function g. We utilize a statistical fitting procedure
to find the most accurate distribution for every time series. We assign to any
time series the distribution from the exponential family with the least Akaike
Information Criterion (AIC). Finally, based on the definition of Granger causal-
ity we get pairwise Granger-causal relations among p time series out of which
we construct the adjacency matrix corresponding to the final causal graph.

Algorithm 1. Causal Detection by HGGM
HGGM (xi, gi, i = 1, . . . , p; d; λmax)
Adj := adjacency matrix of the output graph
Xlag := lagged matrix of all temporal variables
// find Granger causalities for each feature
for all xi do

// solve the penalized optimization problem considering lagged variables
βi = GLM − penalize(XLag, xi, gi, λmax, d); // βi := coefficients w.r.t xi

for all βi
j sub-vectors of βi do

Adj(j, i) = 0 //discover Granger-causalities
if (∃t, 1 < t < d such that βi

j(t) > 0) then
Adj(j, i) = 1

end if
end for

end for
return (Adj)

Consistency: The consistency of adaptive Lasso for the variable selection has
been proven under some mild regularity conditions (Sect. 3). Thus, applying the
adaptive Lasso for GLMs enables us to make the following statement about the
consistency of HGGM.

Corollary 1. Assume G be a true Granger causal graph corresponding to p time
series, each of length n. Let the regularization parameter λ fulfils the conditions
of Theorem1. Then taking p time series as input, HGGM outputs a causal graph
which converges to the true graph G with probability approaching 1 as n → ∞.

Proof. When n → ∞ the conditions of Theorem 1 are fulfilled. Therefore it
follows that the procedure GLM–penalize(.) in Algorithm 1 converges to the
true Granger causal graph. Thus, HGGM is consistent as well.

Computational Complexity: Based on the proposed objective function (7),
we investigate causal relationships for any time series xi, i = 1, . . . , p by fit-
ting the most accurate VAR model. Therefore at any time we have p regression
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models each of which consists of d lagged variables corresponding to x1, . . . , xp.
Applying Fisher scoring to estimate the parameters of VAR models, the num-
ber of computations required to solve a VAR of order d is O(d2). Thus, the
computational complexity of HGGM is in order of O(np2d2).

5 Experimental Results

In this section the performance of HGGM in comparison to other algorithms
will be assessed in terms of F-measure which takes both precision and recall into
account. Although there are many approaches to detect the Granger causality,
only few of them are designed for heterogeneous time series. Therefore, we com-
pare our algorithm to three methods which are applicable to mixed time series,
i.e. transfer entropy, shortly TEN [16], Crack [10] and SFGC [9]. To evaluate
HGGM we investigate the effectiveness and efficiency of HGGM by extensive
experiments on synthetic and real-world data sets. HGGM is implemented in
MATLAB and for the other comparison methods we use their publicly available
implementations and recommended parameter settings. The source code and
data sets are publicly available at: https://bit.ly/2FkUB3Q.
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Fig. 2. Performance in various heterogeneous data sets. Ga: Gamma, G: Gaussian, B:
Bernoulli, P: Poisson.

5.1 Synthetic Heterogeneous Data Sets

Firstly, we investigate the effectiveness of HGGM comparing to other algorithms
in terms of F-measure. That is, we conduct various experiments each of which
concerning a unique aspect. Then, we target the scalability of the algorithms
varying the number of time series and the length of them. In any synthetic
experiment, we report the average performance of 50 iterations performed on
different data sets with the given characteristics. The length of generated time
series n is always 1,000 except for the experiment on increasing the length. For
any algorithm which requires to specify the lag variable we run the algorithm
for various lags and take the average F-measure as the final result.

https://bit.ly/2FkUB3Q
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Effectiveness: HGGM is designed to deal with Gaussian as well as non- Gaus-
sian time series having a distribution from the exponential family. In this exper-
iment we generated time series with various combinations of Gaussian and non-
Gaussian distributions in order to assess HGGM in various cases. Figure 2 shows
that HGGM outperforms other algorithms in various combinations of Gaussian
– non-Gaussian distributions and discrete - continuous time series. It confirms
that our GLM-based objective function effectively copes with heterogeneity of
time series comparing to the other methods. For the rest of the experiments we
focus on Poisson - Gaussian combination as a representative for heterogeneous
data sets.

Dependency: Figure 3a illustrates how various algorithms perform when the
dependency among time series, i.e. the coefficients in VAR model, is increasing
ranging from 0.1 to 1. As one can expect, HGGM and SFGC have an ascending
trend. However, the effectiveness of Crack and TEN is surprisingly decreasing.
Although the performance of HGGM is smaller than SFGC and TEN in a very
early stage, it outperforms other algorithm for the dependencies higher than 0.3
with a high margin.
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Fig. 3. Synthetic experiments.

Increasing the Number of Features: We increased the number of time series
(features) iteratively in order to compare the performance of the algorithms
when many time series are involved. Figure 3b shows that the F-measure of any
algorithm is descending while HGGM is still more efficient than others in any
case. There is a big gap among the performance of two algorithms, Crack and
TEN, comparing to HGGM in this figure. One of the reasons for this is that
they are not able to deal with the bidirectional causality and by increasing the
number of time series it effects the performance more and more.

Causal Relations: How will the various algorithms behave when the true causal
graph is sparse? In this experiment we vary the number of causal relations among
5 mixed time series from Poisson - Gaussian combination. As expected, the
effectiveness of any algorithm is increasing when the density of the true causal
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graph is increasing too. However Fig. 3c shows the superiority of our algorithm
comparing to others even for sparse graphs.

Scalability: The scalability is investigated in two experiments. First, we increase
the number of time series iteratively where the length is set to 1,000 i.e. n =
1, 000. Then we vary n while every time four time series are generated. By the
first experiment the efficiency of HGGM is shown (Fig. 4a) when the number
of features is bigger than 6 comparing to Crack and TEN and bigger than 9
comparing to SFGC. However, considering the next experiment (Fig. 4b) the
efficiency of our algorithm is confirmed. HGGM is the fastest algorithm almost
always for the time series longer than 2,000.
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Fig. 4. Experiments on runtime in seconds

Ground Truth HGGM, Fmeasure = 0.86 TEN and Crack, Fmeasure = 0.5 SFGC, Fmeasure = 0.5

Fig. 5. Comparison on German weather data set.

5.2 Real-World Applications

We conducted the experiments on publicly available real data sets considering
two cases, whether a ground truth is given or not. In order to be fair in the real
experiments we set d = 15 for all the algorithms which require a lag variable.
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Weather in Germany: The first data set DWD2 is a climatological data con-
sisting of 6 measurements, temperature, sunshine hours, altitude, precipitation,
longitude and latitude for 394 weather stations all over Germany. The altitude
measurement is already provided in a discrete time series while all other mea-
surements are continuous. Applying the statistical fitting procedure (Sect. 4),
we assign Gaussian distribution for all continuous time series and the Poisson
distribution for the altitude. The ground truth is available in [12] which is pro-
vided by pairwise causal relations. In order to be fair by evaluating the results
of the algorithms, we do not consider the causal interactions where no informa-
tion is provided. Figure 5 shows the performance of HGGM comparing to other
algorithms in terms of F -measure. HGGM ably finds all the existing causal
relations. However, it detects causal relations where sunshine and temperature
cause altitude.

Marks: The next two data sets together with the corresponding ground truth
are publicly available3. Marks data set concerns the examination marks of 88
students on five different topics. The given true causal graph reveals any impacts
the grades of a topic could have on the other topics. We assign Poisson distribu-
tion to any topic. In this experiment HGGM (F -measure = 0.74) was able to
outperform TEN (0.55), Crack (0.6) and SFGC (0.71).

Gaussian: The Gaussian data set is a simulated data showing the causal inter-
actions among 7 Gaussian time series. The time series are of the length 5,000.
HGGM (F -measure = 0.4) performs more accurately comparing to other algo-
rithms, TEN (0), Crack (0.14) and SFGC (0.14), although non of the algorithms
was able to capture all the causal relations in the ground truth.

Austrian Climatological Data Set: As a real world application we investi-
gate causal spatio-temporal interactions among climatological phenomena for 10
sites uniformly distributed in Austria (Fig. 1). For any site we used the monthly
measurements of precipitation and of the number of sunny days for 26 months.
Employing the statistical fitting, we consider a Gamma distribution for the pre-
cipitation and a Poisson distribution for the number of sunny days. Because of
the space limit we randomly focus on one of the stations, Feuerkogel, and the
complete experiment is provided in the supplementary material. Moreover, the
real meteorological data set is publicly available4. Essentially, Austrian weather
is influenced by three climatic systems while any system has its own charac-
teristics. Concerning the interpretation of results for the selected station, we
concentrate on the Atlantic maritime climate from the north-west which is char-
acterized by low-pressure fronts, mild air from the Gulf Stream, and precipita-
tion [2]. The northern slopes of the Alps, the Northern Alpine Foreland, and the
Danube valley are influenced by the Atlantic weather system.

Figure 6 shows the causal graph discovered by HGGM, TEN and Crack.
SFGC was not able to detect any causal relation therefore we exclude its result.

2 http://www.dwd.de/DE/Home/home node.html.
3 http://www.bnlearn.com/documentation.
4 https://www.zamg.ac.at.

http://www.dwd.de/DE/Home/home_node.html
http://www.bnlearn.com/documentation
https://www.zamg.ac.at
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HGGM Crack TEN

Fig. 6. Experiment on the Austrian climatological data. Blue circles: amount of pre-
cipitation and orange circles: number of sunny days. (Color figure online)

Considering the impact of the Atlantic weather system, one expects the influ-
ence on the neighbour sites of Feuerkogel and the sites in eastern Austria. The
sites in southern slope cannot be influenced by this system since the Alps are
located in between. Comparing HGGM to other algorithms, HGGM is success-
ful to detect more influenced sites by finding the correct causal direction among
Linz, Salzburg, Retz, Wien and Eisenstadt. However it detects an interaction
between Feuerkogel and Lienz which is not likely due to the large mountain
area between the sites. Regarding Crack, although the only causal relation dis-
covered by this algorithm sounds reasonable, there are other stations, e.g. Linz
and Salzburg, where it is plausible to consider a causal interaction among them.
On the other hand, TEN discovers a dense causal graph among all 20 time series
and Feuerkogel which is hard to interpret. Moreover considering the Atlantic
weather system, there is no interpretation for the causal direction from Retz to
Feuerkogel detected by TEN since its direction is exactly in the opposite.

6 Conclusions and Future Work

In this paper we proposed HGGM, a graphical Granger model for discovery of
causal relations among a number of heterogeneous processes. Profiting of a GLM
framework our approach is generalized for time series having distributions from
exponential family. Moreover to ensure the consistency of HGGM we employ
adaptive Lasso with a proven consistency. We investigated the performance of
HGGM in terms of effectiveness and efficiency comparing to state-of-the-art
methods. Extensive experiments on synthetic and real data sets demonstrates
the advantages of HGGM. As already mentioned, one of the interesting appli-
cations of our algorithm can be utilizing HGGM to detect anomalies among
heterogeneous time series. To the best of our knowledge none of the current
algorithms deal with heterogeneous anomalies by means of graphical Granger
causality.
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Abstract. Knowledge graphs (KGs) are large scale multi-relational
directed graph, which comprise a large amount of triplets. Embedding
knowledge graphs into continuous vector space is an essential prob-
lem in knowledge extraction. Many existing knowledge graph embed-
ding methods focus on learning rich features from entities and relations
with increasingly complex feature engineering. However, they pay little
attention on the order information of triplets. As a result, current meth-
ods could not capture the inherent directional property of KGs fully.
In this paper, we explore knowledge graphs embedding from an inge-
nious perspective, viewing a triplet as a fixed length sequence. Based
on this idea, we propose a novel recurrent knowledge graph embed-
ding method RKGE. It uses an order keeping concatenate operation and
a shared sigmoid layer to capture order information and discriminate
fine-grained relation-related information. We evaluate our method on
knowledge graph completion on benchmark data sets. Extensive exper-
iments show that our approach outperforms state-of-the-art baselines
significantly with relatively much lower space complexity. Especially on
sparse KGs, RKGE achieves a 86.5% improvement at Hits@1 on FB15K-
237. The outstanding results demonstrate that the order information of
triplets is highly beneficial for knowledge graph embedding.

Keywords: Knowledge graph · Embedding · Order information ·
Recurrent model

1 Introduction

Knowledge graphs (KGs) such as WordNet [17] and Freebase [1] have been widely
adopted in various applications such as web search, Q&A, etc. KG is a multi-
relational directed graph and usually organized in the form of triplets, denoted
by (h, r, t). h and t are head and tail entities, respectively, and r is the relation
between h and t. For instance, (William Shakespeare, Write, Hamlet) denotes
the fact that William Shakespeare wrote Hamlet.

However, current KGs are both extremely large and highly incomplete [6].
How can we predict missing entities based on the observed triplets in an incom-
plete graph presents a tough challenge for machine learning research. In addition,
c© Springer Nature Switzerland AG 2019
Q. Yang et al. (Eds.): PAKDD 2019, LNAI 11441, pp. 476–488, 2019.
https://doi.org/10.1007/978-3-030-16142-2_37
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Fig. 1. A Simple Illustration of Knowledge Graph. Knowledge graph is directed graph
and organized in the form of triplets. The meaning of a triplet should be determined by
head entity, relation, tail entity and the order of three objects together, for example,
(Hamlet, Write, William Shakespeare) is invalid.

due to the large amount data in real-world KGs, an efficient and scalable solution
is crucial [16]. To address the challenge, knowledge graph embedding (KGE) has
been widely adopted. The key idea of KGE is to embed entities and relation
types of a KG into a continuous vector space. Therefore, we can do reasoning
over KGs through algebraic computations.

Many KGE methods have been proposed to learn low-dimensional embed-
dings of entities and relations [2,19,22]. As shown in Fig. 1, the meaning of a
triplet should be determined by head entity, relation, tail entity and the order of
three objects together. Thus, the order information of triplets is significant for
KGE. However, few researches pay attention on it. For example, DistMult [25]
just ignores the directional property of KGs, so it is unable to model asymmet-
ric relations. ComplEx [22] makes use of complex embeddings and Hermitian
dot product to address the asymmetric problem of DistMult. Translation-based
models can capture order information to some extent, since they treat heads and
tails in different way. TransE [2] regards every relation as translation between the
heads and tails. When (h, r, t) holds, the embedding h is close to the embedding
t by adding the embedding r, that is h + r ≈ t. In summary, current methods
could not capture the inherent directional property of KGs fully.

On the other hand, indiscriminate methods, like TransE and ComplEX,
process complex relations poorly (i.e., one-to-many, many-to-one and many-to-
many relations) [23]. Because the representation of an entity is the same when
involved in any relations. In fact, an entity may have multiple aspects that
related to different relations [14]. As a consequence, one key to improve embed-
ding is developing a good mechanism to discriminate relation-related informa-
tion from entities [11,12,14,23]. TransH [23] realizes discrimination by introduc-
ing relation-specific projection vectors and projecting entities to relation-specific
hyperplanes. TransR [14] realizes discrimination by introducing relation-specific
transformation matrix Mr and map entity vectors into different relation spaces.
However, current methods are failed to create practical discriminate mechanisms,
which are low efficient or low scalable [5,18].

In this paper, we explore knowledge graphs embedding from an ingenious per-
spective: since the meaning of a triplet is determined by head entity, relation,
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tail entity and the order of three objects, we believe a triplet in KG form a
fixed length sequence virtually. Based on this idea, we develop a novel recurrent
discriminate mechanism and propose a scalable and efficient method RKGE.
It uses an order keeping concatenate operation and a shared sigmoid layer to
capture order information and discriminate fine-grained relation-related infor-
mation. Our method can avoid large number of discriminate parameters and has
almost same space complexity as TransE. We evaluate our method on knowl-
edge graph completion on benchmark data sets. Extensive experiments show
that RKGE outperforms state-of-art baselines significantly.

The main contributions of this paper are summarized as follows:

1. We identify the significance of order information that is largely overlooked by
existing literature. Furthermore, we explore KGE from an ingenious perspec-
tive, viewing triplets as fixed length sequences. As far as we know, we are the
first research that models KG as sequences.

2. To appropriately leverage order information, we propose a scalable and effi-
cient model RKGE by adopting a order keeping concatenate operation and
developing a novel recurrent discriminate mechanism.

3. Our experimental results show that RKGE outperforms state-of-the-art base-
lines significantly. The outstanding results demonstrate that the order infor-
mation in triplets is highly beneficial for knowledge graph embedding.

2 Related Work

Notation. We briefly introduce mathematical notations used in this paper here.
A knowledge graph G is defined as a set of triplets of the form (h, r, t). Each
triplet is composed of two entities h, t ∈ E and relation r ∈ R, where E and R
are the set of entities and relations, respectively. The embeddings are denoted
with the same letters in boldface.

2.1 Researches on Order Information

Current KGE methods always pay little attention on order information and
thus could not take full advantage of order information of triplets. DistMult [25]
neglects the directional property of KGs and uses weighted element-wise dot
product to define the score function fr(h, t) =

∑
hkrktk. DistMult is unable

to model asymmetric relations, since (h,r,t) and (t, r, h) will get same score
in DistMult, while (t, r, h) is usually invalid. ComplEx [22] makes use of com-
plex valued embeddings and Hermitian dot product to address the antisym-
metric problem in DistMult, but ComplEX is failed to model symmetry rela-
tions. TransE [2] regards each relation as translation between the heads and
tails and wants h + r ≈ t when (h, r, t) holds. The score function of TransE is
fr(h, t) = ||h + r − t||L1/L2 . TransE treats heads and tails in different way, so it
can capture order information to some extent.

Researchers have always attach great importance to the order information in
sequence. The great ability of recurrent neural in sequential modeling has been
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shown in many researches [15]. In this paper, we view triplets as fixed length
sequence and propose a recurrent model to utilize order information.

2.2 Discriminate Models

Indiscriminate models often process complex relations poorly [23]. Because the
representation of an entity is the same when involved in various relations. Many
discriminate models have been proposed recently.

TransH [23] extends TransE by mapping entity embedding into relation
hyperplanes to discriminate relation-related information. The score function is
defined as fr(h, t) = ||h − wT

r hwr + r − (t − wT
r twr)||L1/L2, where wr is the

normal vector of r’s relation hyperplane. TransR [14] learns a mapping matrix
Mr for each relation. It assumes entity and relation are in different spaces and
maps entity embedding into relation space to realize the discrimination. The
score function is fr(h, t) = ||Mrh + r − Mrt||L1/L2 . CTransR [14] is an exten-
sion of TransR. It clusters diverse head-tail entity pairs into groups and sets
a relation vector for each group. TransD [11] constructs two mapping matri-
ces dynamically for each triplet by setting projection vector for each entity and
relation, that is Mrh = h�

p rp + Im×n, Mrt = t�
p rp + Im×n. The score func-

tion is fr(h, t) = ||Mrhh + r − Mrtt||L1/L2. NTN [19] learns a 3-way tensor
and two transfer matrices for each relation as discriminate parameter set. The
score function defined as fr(h, r, t) = uT

r f(h�M̂rt+Mr1h+Mr2t+br), where
M̂r ∈ R

m×m×s, and f() is tanh operation.
However, current methods are failed with creating practical discriminate

mechanisms, which are low efficient or low scalable [5,18]. For example, it is
shown by [18] that TransR learns thousands of mapping matrices, but they are
all similar and approximate to the unit matrix.

2.3 Other Models

Some types of additional information have been used to improve embedding.
The NLFeat model [21] is a log-linear model using simple node and link features.
RUGE [10] utilizes the soft-rule between triplets to enhance ComplEX. TransAt
[18] adopts K-means to collect category information in KGs to reduces candidate
entities and improve prediction. Jointly [20] adopts three neural models to encode
the text description of entity. But the extraction of additional information is
always the bottleneck.

Many researches attempt to introduce some novel techniques of deep learning
into knowledge graph embedding. KBGAN [3] introduces GAN to boost several
embedding models. ConvE [5] and ConvKB [4] introduce convolution network
in KGE and achieve the state-of-art results on knowledge graph completion.
ConvKB concatenates head, tail and relation vectors into a 3 × m matrix, then
feeds it into a convolution network. The score function is defined as fr(h, t) =
concat(g([h, r, t] ∗ Ω))w, where ∗ means convolution operation, Ω ∈ R

τ×1×3 is
the set of filters, τ is the number of filters, and w ∈ R

τm×1. To learn expressive
features, the magnitude of τ is same as m in above three convolution models.
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RKGE is a shallow model without using any additional information. This
make it scale to real-world KGs easier.

3 Our Model

3.1 Motivation

In essence, knowledge graph is a directed graph. As shown in Fig. 1, the meaning
of a triplet should be determined by head entity, relation, tail entity and the order
of three objects together. Therefore, order information of triplets is significant
to KGE, but few researches pay attention on it. Based on the direction property
of KGs, we believe a triplet in KGs form a fixed length sequence virtually. We
believe only operating heads and tails in different ways, like translation-based
methods, could not take full advantage of order information.

Additionally, as mentioned in “Introduction”, one key to improve embed-
ding is developing a good mechanism to discriminate relation-related information
from entities. However, previous methods are failed with creating fine-grained
discriminate mechanisms. Worse still, they potentially suffer from large param-
eters in real-world KGs. Because current models always introduce large discrim-
inate parameters. In fact, the relation-related information should be determined
by entity, relation and order between these two objects together. For example,
in (Jane Austen, Language, English) the Language-related information of Jane
Austen and English should be discriminated in different ways. Because Language
is a antisymmetric relation and (English, Language, Jane Austen) is invalid.

Our objective in this paper is not only to learn appropriate embeddings of
KGs, but also to propose a scalable and efficient KGE method. Based on the
reasons in last paragraph, we explore to develop a novel recurrent discriminate
mechanism to discriminate fine-grained relation-related information and avoid
large number of discriminate parameters. More than this, we believe the direc-
tional property of KGs comes from original data, which is text mainly. In fact,
recurrent neural networks (RNNs) have been extremely successfully in natural
language processing [20].

3.2 KGE with Recurrent Discriminate Mechanism (RKGE)

The framework of RKGE is shown as Fig. 2 and the detailed descriptions are as
follow:

Entities and relations are embedded into same continuous vector space R
m.

We input both entity embedding and relation embedding into sigmoid layer,
while keeping the original order between them. Afterwards, output of sigmoid
layer will be used to discriminate relation-related information. In this way, RKGE
is able to capture the inherent directional property of KGs.

The sigmoid layer is fully connected layer, and its parameters denoted as
W ∈ R

m×2m and b ∈ R
m. W and b are shared parameters and independent of

embeddings. Then we define the discriminated vectors of entities as

hr = h � σ(W[h, r]), (1)
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tr = t � σ(W[r, t]). (2)

The sigmoid function σ(·) is applied element-wise and σ(x) = 1
1+exp(−x) . [,]

means concatenate operation. � means the element-wise product.
As we view triplets as fixed length sequences, we just view relation as the

predecessor of tail and successor of head. Note that the concatenate operation
will keep the order of head, relation and tail in triplet. Then we share the sigmoid
layer between [h, r] and [r, t], forming a recurrent layer. The sigmoid operation
sets its output between 0 and 1, describing how much information should be
let through. Thus, we use element-wise product to discriminate relation-related
information.

Given a triplet (h,r,t), the log-odd of the probability that G holds the triplet
is true is:

P ((h, r, t) ∈ G) = σ(fr(h, r)). (3)

Thus, the fr is the score function and score is expected to be higher for valid
triplets and lower for invalid ones. Formally, we define the RKGE score function
fr as follows:

fr(h, r) = <hr, r, tr> =
m∑

k=1

hrkrktrk. (4)

Fig. 2. RKGE Architecture. We unfold recurrent sigmoid layer and dashed arrow means
no information transmission. The concatenate operation keeps the order in triplets.

As described above, RKGE can avoid huge discriminate parameters and
achieve recurrent relation-related discrimination by sharing discriminate param-
eters across different triplets.

3.3 Training

To learn above embeddings, we use the Adam optimizer to minimizing following
common loss function [22] with L2 regularization on weight matrix W of sigmoid
layer.

L =
∑

(h,r,t)∈{G∪G′}
log(1 + exp(−Yhrtfr(h, t))) +

λ

2
||W||22, (5)

where Yhrt = 1 if (h, r, t) ∈ G, and Yhrt = −1 otherwise.
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G′ is a collection of invalid triplets generated by replacing entities or relations
in training triplets randomly. That is

G′ = {(h′, r, t)|h′ ∈ E} ∪ {(h, r, t′)|t′ ∈ E} ∪ {(h, r′, t)|r′ ∈ R} (6)

It should be noted that |G′| can be different from |G|. We use η to represent
negative samples per training sample, that is η = |G′|

|G| . Our experiments have
shown that η is an important hyperparameter for RKGE. Please refer to Fig. 3
and “Experiment” section for details.

In practice, we enforce constraint on the norm of the relation embeddings,
i.e. ∀r ∈ R, ||r||2 = 1. Because the element-wise product will reduce the element
values of entity embeddings. We make no constraint on entity embeddings and
bias of sigmoid layer.

The embeddings and weight matrix are initialized by sampling from a trun-
cated standard normal distribution, rather than using Xavier initialization [9].
Since it assumes the network consists only of a chain of matrix multiplications.
Experiments also show a higher rate of convergence. In addition, the bias is ini-
tialized as a vector that all elements are 1. The training is stopped based on the
performance on validation set.

3.4 Complexity Analysis

We compare our method with several state-of-the-art methods in parameter size,
time complexity and pre-training method. Table 1 lists the detailed results. Ne,
Nr represent the number of entities, relations, respectively. m is the dimension
of entity embedding space and n is the dimension of relation embedding space.
d denotes the number of clusters of a relation. k is the hidden nodes’ number of
a neural network and s is the number of slices of a tensor. θ̂ denotes the average
sparse degree of all transfer matrices. τ is the number of convolutional kernels.

Table 1. Complexities (the parameter size, time complexity in an epoch and pre-
training method) of several embedding models.

Model Parameter size Time complexity Pre-training method

NTN [19] O(Nem + Nr(n
2s + 2nk + 2k))(m = n) O(m2s + mk) Word embedding

TransE [2] O(Nem + Nrn)(m = n) O(m) None

TransH [23] O(Nem + 2Nrn)(m = n) O(m) TransE

DistMult [25] O(Nem + Nrn)(m = n) O(m) None

TransR [14] O(Nem + Nr(m + 1)n) O(mn) TransE

CTransR [14] O(Nem + Nr(m + d)n) O(mn) TransR

TransD [11] O(2Nem + 2Nrn) O(m) TransE

ComplEx [22] O(2Nem + 2Nrn)(m = n) O(m) None

ConvKB [4] O(Nem + Nrn + (τ + 3)m)(m=n) O(τm) None

TransAt [18] O(Nem + 4Nrn)(m = n) O(m) K-means

RKGE O(Nem + Nrn + 2m2))(m = n) O(m2) None



RKGE 483

It can be seen that our method does not significantly increase the space or
time complexity. Since m � Nr � Ne among existing KGs, parameter size of
RKGE is almost same as TransE, which has been applied on real-word KGs
[24]. The time complexity of RKGE is similar to TransR in an epoch. Note
that our method is self-contained method, i.e., RKGE does not require pre-
trained embeddings from prerequisite models. In contrast, TransR needs pre-
trained embeddings from TransE, which further increases the cost of training.
In practice, our model can be applied on real-world KGs with less computing
resources and running time than TransR.

In summary, RKGE has relatively much lower time complexity and tolerable
space complexity, making it a scalable and efficient KGE method.

4 Experiments

4.1 Data Sets

We evaluate our model on knowledge graph completion using two commonly
used large-scale knowledge graph, namely Freebase and WordNet. Table 2 lists
statistics of the data sets used in this paper.

Table 2. Statistics of data sets.

Dataset #Rel #Ent #Train #Valid #Test

WN18RR 11 40,943 86,835 3,034 3,134

FB15K-237 237 14,541 272,115 17,535 20,466

FB15K-237. FB15K [2] is a subset of Freebase which contains about 14,951
entities, 1,345 different relations and 592,213 triplets. It is firstly discussed by
[21] that FB15K suffers from test leakage through inverse relations, i.e. many
test triplets can be obtained simply by inverting triplets in the training set.
To address this issue, Toutanova et al. [21] generated FB15K-237 by removing
redundant relations in FB15K and greatly reducing the number of relations.

WN18RR. WordNet provides semantic knowledge of words. WN18 [2] is a
subset of WordNet and contains 40,943 entities, 18 relation types and 151,442
triplets. Like FB15K, WN18 suffers from test leakage through inverse relations
too. Therefore, Dettmers et al. [5] removed reversing relations in WN18 and
generated WN18RR. As a consequence, the difficulty of reasoning on the data
set is increased dramatically.

4.2 Knowledge Graph Completion

Knowledge graph completion aims to predict the missing h or t for a triplet
(h, r, t). In this task, the model is asked to rank a set of candidate entities from
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Table 3. Experimental results of knowledge graph completion.

Model WN18RR FB15K-237

MRR Hits@10(%) Hits@1(%) MRR Hits@10(%) Hits@1(%)

TransE [2] 0.226 50.1 39.1 0.294 46.5 14.7

DistMult [25] 0.43 49.0 39.0 0.241 41.9 15.5

TransD [11] - 42.8 - - 45.3 -

ComplEX [22] 0.44 51.0 41.0 0.247 42.8 15.8

KB-LRN [8] - - - 0.309 49.3 21.9

NLFeat [21] - - - 0.249 41.7 -

KBGAN [3] 0.213 48.1 - 0.278 45.8 -

ConvE [5] 0.43 52.0 40.0 0.325 50.1 23.7

ConvKB [4] 0.248 52.5 - 0.396 51.7 -

RKGE 0.44 53.0 41.9 0.477 55.4 44.2

the KG, instead of giving one best result. We report two common measures as
our evaluation metrics: the mean reciprocal rank of all correct entities (MRR),
and the proportion of correct entities ranked in top K (Hits@K ). A good KGE
method should achieve high results on both MRR and Hits@K.

For each test triplet (h, r, t), we replace the head/tail entity by all possible
candidates in the KG, and rank these entities in descending order of scores cal-
culated by score function fr. We follow the evaluation protocol in [2] to report
filtered results. Because a corrupted triplet, generated in the aforementioned
process of removal and replacement, may also exist in KG, and it should be con-
sidered as correct. In other word, we filtered out the valid triplets from corrupted
triplets which exist in the training set.

Hyperparameters of RKGE are selected via grid search according to the MRR
on the validation set. For two data sets, we traverse all the training triplets for
at most 1000 epochs. We search the initial learning rate α for Adam among
{0.01, 0.1, 0.5}, the L2 regularization parameter λ among {0,0.01, 0.03, 0.1, 0.3,
0.5, 1}, the embedding dimension m among {32, 50, 100, 200}, the batch size
B among {120, 480, 1440}, and the number of negative samples generated per
training sample η among {1,2,5,10,20}.

The best configurations are as follow: on WN18RR, λ = 0.01, α = 0.01,
m = 200, B = 120 and η = 20; on FB15K-237, λ = 0.1, α = 0.1, m = 200,
B = 480 and η = 20. Table 3 shows the evaluation results on knowledge graph
completion. Since the data sets are same, we directly copy experimental results
of several baselines from [3–5]. It can be observed from Table 3 that:

1. RKGE outperforms all baselines on WN18RR and FB15K-237 at every met-
ric. The results indicate that RKGE learns better embeddings and achieves
more fine-grained model relation-related discrimination.
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2. Our method outperforms baselines significantly on sparse data set, i.e.,
FB15K-237, 20.5% higher at MRR and 86.5% higher at Hits@1 than pre-
vious best result.

3. RKGE is able to better handle both sparse graph FB15K-237 and dense graph
WN18RR. This indicates the good generalization of our methods.

4. RKGE outperforms TransE on both data sets. Especially on FB15K-237.
RKGE is 62.2% higher at MRR and 200% higher at Hits@1 than TransE.
These results indicate translation-based method could not capture inherent
directional property of KGs fully.

5. The outstanding results demonstrate that the order information in triplets is
highly beneficial for KGE. These results also indicate that recurrent discrim-
inate mechanism may be a good direction for improving KGE.

4.3 Influence of Negative Samples

We further investigate the influence of the number of negative samples generated
per training sample. Due to computational limitations, η was validated among
{1,2,5,10,20} in the previous experiments. We want to explore the influence here
from two aspects: the performance and the training time of our method. To do so,
experiments focus on FB15K-237, with the best configurations obtained from the
previous experiment. Then we let η vary in {1,2,5,10,20,50,100,150,200}. Train-
ing was stopped using early stopping based on filtered MRR on the validation
set, computed every 50 epochs with a maximum of 1000 epochs. Note that our

(a) MRR and Hits@K (b) Training epoches to convergence
and Runtime per epoch

(c) Runtime to Converge

Fig. 3. Influence of the number of negative triples generated per training sample
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method is implemented in TensorFlow, and all models were run on a standard
hardware of Inter(R) Core(TM) i7 2.6 GHz + GeForce GTX 960M, with 480 at
mini-batch size. The evaluation results are shown at Fig. 3.

It can be observed from Fig. 3(a) that generating more negatives clearly
improves the results. RKGE achieve the best results when η is 200: 0.511 at
filtered MRR, 57.5% at Hits@10 and 47.7% at Hits@1. It should be noted that
when η is 5, RKGE has outperformed all state-of-art baselines with 0.442 at fil-
tered MRR, 54.2% at Hits@10 and 38.8% at Hits@1. However, results improve
slowly as the number of negatives increases when η is larger than 10. As the
training time, Fig. 3(b) shows that our method basically converges with fewer
epochs when η is larger. RKGE reduces training epochs sharply when η is 20
and reduces epochs relatively slow in other cases. Meanwhile, the training time
per epoch grows linearly as the η increases. As a result, runtime to converge
increases as the growth of η, except η is 20. In conclusion, η = 5 makes a good
trade-off between accuracy and training time.

5 Conclusion and Future Work

In this paper, we identify the significance of order information that is largely
overlooked by existing literature. To appropriately leverage the information, we
ingeniously view a triplet as a fixed length sequence. We develop a novel recurrent
discriminate mechanism and propose a scalable and efficient method RKGE. As
far as we know, we are the first research tring model KGs as sequences.

Our method is evaluated on knowledge graph completion. To deeper under-
stand our method, we also make experiments in influence of the number of
negative samples. Experiments show that our method outperforms state-of-art
baselines significantly with almost the same space complexity as TransE. The
outstanding results demonstrate that the order information in triplets is highly
beneficial for KGE. These results also indicate that recurrent discriminate mech-
anism may be a good direction for improving KGE.

In the future, we will explore following research directions: (1) Many entities
may have multi-step relations [7,13], which can be viewed as sequences with
variable length. We will improve our method to handle this problem; (2) We will
explore sophisticated RNNs to propose better KGE methods, like LSTM.

Acknowledgement. This work is supported by the National Key Research and Devel-
opment Program of China, and National Natural Science Foundation of China (No.
U163620068).
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Abstract. Mining logical rules from knowledge graphs (KGs) is an
important yet challenging task, especially when the relevant data is
sparse. Transfer learning is an actively researched area to address the
data sparsity issue, where a predictive model is learned for the target
domain from that of a similar source domain. In this paper, we pro-
pose a novel method for rule learning by employing transfer learning
to address the data sparsity issue, in which most relevant source KGs
and candidate rules can be automatically selected for transfer. This is
achieved by introducing a similarity in terms of embedding representa-
tions of entities, relations and rules. Experiments are conducted on some
standard KGs. The results show that proposed method is able to learn
quality rules even with extremely sparse data and its predictive accuracy
outperformed state-of-the-art rule learners (AMIE+ and RLvLR), and
link prediction systems (TransE and HOLE).

Keywords: Knowledge graph · Transfer learning ·
Representation learning

1 Introduction

Following Google’s success in semantic search empowered by its Knowledge
Graph, more and more companies have started to develop their own knowl-
edge graphs (KGs) [1]. Well-known examples of large-scale and comprehensive
KGs include YAGO [2], DBpedia [3], and Freebase [4]. In a KG, entities such
as persons and places are nodes linked through predicates representing relation-
ships among the entities; a pair of entities and a predicate linking them form a
fact about the world.

Despite of the large sizes of these comprehensive KGs, the issue of data
sparsity exists, that is, when only a small number of relevant facts are available.
For example, while large KGs contain many entities, most entities are associated
with a small number of facts [5], and for a large portion of predicates, only a few
facts are available for each of them. For instance, only few facts are available for
c© Springer Nature Switzerland AG 2019
Q. Yang et al. (Eds.): PAKDD 2019, LNAI 11441, pp. 489–500, 2019.
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the predicates organismsOfThisType and exhibitionSponsor in Freebase (FB15K).
Also, when companies develop their business related KGs, these KGs often need
to be developed from scratch and from small sizes, where both entities and
available facts are few.

The importance of coupling KGs with logical rules has been highlighted in
the literature [1]. A rule can present an abstract pattern mined from the data.
For instance, if a person was born in New York and we know that New York is a
city of the United States, then the person’s nationality is the United States with
a high possibility. This pattern can be expressed as the following first-order rule
with a confidence degree such as 0.8:

bornInCity(x, y) ∧ cityOfCountry(y, z) → nationality(x, z).

While it is well known that rules are important for reasoning, they are also
useful for KG completion [6], which is the process to automatically extract new
facts from existing ones (e.g., link prediction). Recently, several approaches to
rule mining in KGs have been proposed, such as SWARM [7], RDF2rules [8],
ScaleKB [9], AMIE+ [10] and RLvLR [11]. These methods are capable to mine
firs-order rules augmented with confidence degrees.

However, these approaches to KG rule mining all suffer from the so-called
data starvation problem [12]. That is, they typically require very large datasets
for rule mining and struggle to mine over sparse data.

Transfer learning is a promising paradigm for overcoming the data starvation
problem. The goal of transfer learning is to reuse knowledge learned from one
task (source task) and apply it in a different and unlearned task (target task).
This paradigm of learning is mostly pursued in feature vector machine learning,
but some attempts have been made to learn relational models. These methods
usually assume that the source and target domains are highly similar in terms of
models of interest. Once such strict conditions are violated, unfavourable effects
can be caused. This is usually referred to as negative transfer [12,13].

In this paper, we tackle the problem of rule mining with sparse data by
combining transfer learning with the technique of embedding in representation
learning. Given a KG, a learning task (or just a task) is that of learning rules
whose head is about a specific predicate. Given a set of source tasks and a target
task, we assume that each source task is learned, that is, a set of rules have been
learned for the source task, and we aim to learn a set of rules for the target task
based on the source tasks. To facilitate knowledge transfer and reduce the effect
of negative transfer, we make use of embedding techniques.

The basic idea of embedding techniques is to encode relational information
as low-dimensional representations (embeddings) of entities and predicates [6].
Such representation learning techniques have been applied in rule mining over
KGs [14,15]. Instead of directly mining rules from data and embeddings, we uti-
lize the pre-trained embeddings to measure structural similarity between source
and target tasks and relevant predicates, in order to transfer logical rules from
source tasks to the target task.

The novelty of our approach lies in that the paradigm of transfer learning and
embedding techniques are combined for rule mining which is not trivial. Transfer
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learning can help address the data starvation problem while embedding tech-
niques can provide useful similarity measures that reduce negative transfer. As
a result, this combination makes it possible to develop effective systems for rule
mining over sparse data in KGs. In fact, our experiments demonstrate that on
sparse data, our system outperformed state-of-the-art rule learner AMIE+ [10]
and RLvLR [11] in terms of the number of quality rules and the accuracy in link
prediction. We also compared our system with embedding-based link prediction
systems, our system outperformed TransE [16] and HOLE [17] in link prediction
on sparse predicates regarding accuracy and runtime.

The paper is organised as follows. We introduce some basics of KGs, rules
and embeddings in Sect. 2. Then we provide an overview of our proposed method
in Sect. 3. We define measures for similarity using embeddings in Sect. 4. The
experimental evaluation is reported in Sect. 5. Finally, we discuss some related
works and conclude our work in Sect. 6.

2 Preliminaries

In this section, we briefly recall some basics of knowledge graphs and embeddings
as well as fixing some notations to be used later.

2.1 Knowledge Graphs and Rules

An entity e is an object such as a place, a person, etc., and a fact is an RDF
triple (e, P, e′), which means that the entity e is related to another entity e′ via
the binary predicate P . Following the convention in knowledge representation,
we denote such a fact as P (e, e′). A knowledge graph (K) is a set of facts.

A Horn rule or just a rule r is of the form a1∧ . . .∧an → awhere a, a1, . . . , an

are atoms of the form P (t1, t2) with each of the t1 and t2 being an entity or a
variable. Intuitively, the rule r reads that if a1, . . . , an hold, then a holds too.
Atom a is referred to as the head of r and atoms a1, . . . , an as the body of r.

To assess the quality of mined rules, standard confidence (SC) and head cov-
erage (HC) are used in some major approaches of rule learning [9,10]. Formally,
assume the head of r is of the form P (x, y), a pair of entities (e, e′) satisfies the
body of r in KG K, denoted body(r, e, e′,K), if there is a way of substituting
variables in the body of r with entities in K such that (i) (e, e′) substitutes (x, y)
and (ii) all atoms in the body of r (after substitution) are facts in K. (e, e′)
satisfying the head of r in KG K is defined in the same way and denoted as
head(r, e, e′,K). Then the support degree of r is defined as

supp(r,K) = #(e, e′) : body(r, e, e′,K) ∧ head(r, e, e′,K)

To normalize this degree, the degrees of standard confidence (SC) and head
coverage (HC) are defined as follows:

SC(r,K) =
supp(r,K)

#(e, e′) : body(r, e, e′,K)
HC(r,K) =

supp(r,K)
#(e, e′) : head(r, e, e′,K)
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2.2 Embeddings

Various approaches have been proposed to construct embeddings, which include
translation based embeddings [16] and matrix factorization based embed-
dings [17,18]. The translation based embeddings use additive calculus and uses
vectors to represent the embeddings of predicates, whereas the matrix factor-
ization based embeddings use dot calculus and uses matrices to represent the
embeddings of predicates. Since our rule mining approach requires a relatively
expressive form of embeddings, we adopt matrix factorization based embed-
dings. In particular, we employ the state-of-the-art RESCAL system [17,18] to
construct such embeddings.

RESCAL embeds each entity e to a vector e and each predicate P to a
matrix P. In [11], a notion of argument embeddings is introduced by aggregating
the entities embeddings. Formally, the embeddings of the subject and object
argument of a predicate P are defined as:

p(1) =
1
n

∑

e∈SP

se.e and p(2) =
1
n

∑

e∈OP

oe.e

where n is the number of facts in the KG K, SP and OP are the sets of entities
occurring as respectively subjects and objects of P in K (more precisely, SP =
{e | ∃e′ s.t. P (e, e′) ∈ K} and OP = {e′ | ∃e s.t. P (e, e′) ∈ K}), and se and oe
are the numbers of occasions for entity e to occur as respectively a subject and
a object in K (more precisely, se = #{P (e, e′) ∈ K} and oe = #{P (e′, e) ∈ K}).

3 An Overview of Our Approach

Unlike a standard transfer learning setting, we do not assume the source domain
for transfer is pre-known; instead, we generate a pool of potential sources from
existing KGs and select the sources that are most similar to the target.

We consider a learning task (or simply a task) T to be a triple T = (K, P,R)
where K is a KG, P is a predicate in K and R is a set of rules about P (i.e.,
having P in its head). Intuitively, T = (K, P,R) represents the task of learning
rules about predicate P over KG K, and R consists of the rules learnt so far. For
transfer learning, the input consists of a target task Tt = (Kt, Pt,Rt) and a set
of n (potential source) tasks Ti = (Ki, Pi,Ri) with 1 ≤ i ≤ n. For convenience,
we assume Rt = ∅ initially, and Pt and each Pi are pairwise distinct. We call
Pt and each Pi the goal predicate respectively for task Tt and each task Ti. The
output of learning is a set of rules Rt about Pt over Kt.

In Algorithm 1, we illustrate the data flow and major components of our
algorithm.

In line 1, the Embedding method computes the embeddings for all (source and
target) KGs. It employs a sampling method [11] to filter out irrelevant facts in
Kt and each Ki, and then computes predicate embeddings as well as subject and
object argument embeddings as in [11]. After sampling, the (source and target)
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Algorithm 1. Transfer rule learning for KGs
Input: a target task Tt = (Kt, Pt, ∅) and a set of learnt tasks T = {T1, . . . , Tn} where

Ti = (Ki, Pi,Ri) for 1 ≤ i ≤ n
Output: a set of rules Rt about Pt over Kt

1: (Et, E1, . . . , En) := Embedding(Kt,K1, . . . ,Kn) /* compute embeddings */
2: Ts := Retrieve(Et, E1, . . . , En) /* retrieve source tasks */
3: Rt := ∅ /* initialise target rule set */
4: for each Ti ∈ Ts do
5: M := Map(Ei, Et) /* build a mapping between source and target */
6: R := Transfer(Ri,M) /* transfer rules from source to target */
7: Rt := Rt ∪ Validate(R,Kt) /* validate the transferred rules */
8: end for
9: return Rt

KGs contain only predicates related to the corresponding goal predicates, and
we measure similarity (for transfer) only among these predicates.

Then, in line 2, the Retrieve method selects a set of tasks Ts from the pool
of tasks T that are considered most similar to the target task Tt. Tasks in Ts

are called source tasks. Since our goal is to learn rules about Pt, we consider a
task Ti similar to Tt if the goal predicate Pi (of Ti) is similar to Pt, and such
similarity is measured by their embeddings (ref. Sect. 4.1).

After that, in lines 4 and 5, for each source task Ti, the Map method estab-
lishes a mapping M between the predicates in respectively the source KG Ki

and the target KG Kt. We developed two effective similarity measures based on
embeddings (Ei and Et) for constructing such a mappings and both similarity
measure ensure the goal predicates (Pi and Pt) are mapped to each other (ref.
Sect. 4.2). Then in line 6, the Transfer method transfers the source rules in Ri

to generate candidate rules through the mapping M, by substituting the source
predicates of a rule with the corresponding target predicates.

Finally, in line 7, the Validate method validates the transferred rules and
adds validated rules to Rt. Standard validation is ineffective over sparse data,
where both SC and HC measures have limited significance. Hence, instead of
validating single candidate rules, we measure for each source task Ti the per-
centage of transferred rules that have sufficient support in the target KG Kt.
We call this measure Transfer Confidence (TC), and it essentially validates the
selected source task and the established mapping. When the TC is above a cer-
tain threshold, all the rules transferred from Ti are considered valid. We define
TC as follows:

TC(R,Kt) =
#r ∈ R : supp(r,Kt) ≥ α

|R|
where α is a learning parameter.
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4 Similarity Measures via Embeddings

In this section, we present our approach for measuring the similarity between
two predicates (in possibly two different KGs), which is central to both Retrieve
and Map methods in Algorithm 1.

4.1 Similarity Between Goal Predicates

For a source tasks Ti = (Ks, Ps,Rs) to be considered similar to the target task
Tt = (Kt, Pt,Rt), intuitively it requires that the goal predicate Ps associates
entities in Ks in a similar way as the goal predicate Pt does in Kt. Inspired by
entity alignment measures [19], where similarity between entities are measure
through their embeddings, we show that similarity on how predicates associate
entities can be captured by predicate embeddings.

For two matrices M1 and M2, the closeness between them can be defined in
a standard way using the Frobenius norm:

close(M1,M2) = − ‖M1 − M2‖F .

We also measure the (absolute value of the) difference between the numbers of
predicates in two KGs K1 and K2, denoted as diff(K1,K2). Note that after sam-
pling, this measure shows the difference between two goal predicates regarding
how many other predicates each of them are related to in their correspond-
ing KGs. Then, the similarity degree between two tasks T1 = (K1, P1,R1) and
T2 = (K2, P2,R2) are defined as

sim(T1, T2) = exp(close(P1,P2)) − β · diff(K1,K2)

where P1 and P2 are predicate embeddings of P1 and P2 respectively, and β is
a small coefficient which adjusts the effect of the second measure.

4.2 Similarity Between Other Predicates

To build a mapping between other predicates in the source and target tasks,
we measure the similarity between each pair of predicates in respectively source
and target KGs (Ks and Kt). The mapping will be used to transfer rules about
the source goal predicate (Ps) to construct rules about the target goal predicate
(Pt). Hence, the source and target goal predicates should be mapped to each
other under our similarity measure. Also, the similarity between other predicates
should be measured by how they relate to the goal predicates; that is, a predicate
P1 in Ks is considered similar to a predicate P2 in Kt if P1 relates to Ps (through
joint entities) in a similar way as how P2 relates to Pt.

We propose two similarity measures: linear transformation and translation
with argument embeddings, one based on the intuition that predicate embedding
transformations [11,20] and the other is based on the intuition of embedding
translations [16].
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Linear Transformation. It uses a single matrix, T, to represent the transfor-
mation from the source goal predicate Ps to the target goal predicate Pt, and
then apply the same transformation to each source predicate P1 to search for
the corresponding target predicate P2. Formally, a transformer T from Ps to Pt

satisfies the following condition:

Ps · T = Pt

That is, T can be computed through T = P−1
s · Pt whenever the matrix Ps is

invertible (which is the case for all matrices we had in our experiments). If Ps

is not invertible and a T cannot be computed, we simply skip this source task.
Then, for a pair of source and target predicates P1 and P2, their similarity

degree is defined as follows:

simLT (P1, P2) = close(P1 · T,P2).

Translation with Argument Embeddings. It uses predicate embeddings as
well as argument embeddings, i.e., a matrix T and two vectors t(1) and t(2), to
represent the translations of respectively the predicate embedding, the subject
argument embedding and the object argument embedding of the source goal
predicate Ps to those of the target goal predicate Pt. For the translation, we
use the additive calculus instead of the dot calculus. In particular, the three
translations are as following:

Ps + T = Pt p(1)
s + t(1) = p(1)

t p(2)
s + t(2) = p(2)

t

Here, p(1)
s and p(2)

s are the subject and object argument embeddings of Ps, and
p(1)
t and p(2)

t are the subject and object argument embeddings of Pt.
Then, for a pair of source and target predicates P1 and P2, their similarity

degree is defined as follows:

simTAE(P1, P2) = close(P1 +T,P2) + close(p
(1)
1 + t(1),p

(1)
2 ) + close(p

(2)
1 + t(2),p

(2)
2 ).

5 Experiments

We have implemented a Transfer Rule Learner (TRL) based on the described
algorithms and conducted two sets of experiments on inter- and intra-KG trans-
fer rule learning. The datasets and detailed results can be found at https://www.
ict.griffith.edu.au/aist/TRL/.

The adopted benchmark datasets for our experiments include modified ver-
sions of Freebase and YAGO. The two benchmark datasets are commonly used
for rule mining and link prediction, whose specifics are in Table 1. FB15K is the
same as used in [16,20], and YAGO2s is the same as in [10].

Since existing transfer rule learners cannot handle the adopted datasets due
to their lack of scalability (ref. Sect. 6 for detailed explains), we compared TRL
with state-of-the-art non-transfer rule learners AMIE+ [10] and RLvLR [11], as
well as statistical link predictors TransE [16] and HOLE [17]. Our experiments
were designed to validate the following statements:

https://www.ict.griffith.edu.au/aist/TRL/
https://www.ict.griffith.edu.au/aist/TRL/


496 P. G. Omran et al.

Table 1. Benchmark specifications

KG # Facts # Entities # Predicates

FB15K 541K 15K 1345

YAGO2s 4.12M 1.65M 37

1. For small KGs (i.e., with small numbers of facts), TRL is able to learn,
through inter-KG transfer, more quality rules than AMIE+ and RLvLR.

2. For sparse predicates (i.e., associated with limited numbers of facts) in large
KGs, TRL can also provide, through intra-KG transfer, better accuracy in
link prediction than RLvLR, TransE and HOLE.

All experiments were conducted on a desktop with Intel Core i5-4590 CPU
at 3.3 GHz (one thread) and with 8 GB of RAM, running Ubuntu 14.04.

5.1 From FB15K to YAGO2s

For the first set of experiments, we evaluated inter-KG transfer rule learning
from large source KGs to small target KGs. To this end, we pruned YAGO2s
by eliminating entities and predicates with fewer than respectively 10 and 100
occurrences, and the pruned version contains 24 predicates. For each of these
24 predicates Pt, we constructed a target task with Pt as the goal predicate as
follows: we first set apart 30% of the facts about Pt as the test data and the
remaining facts as evaluation data. From the evaluation data, we extracted three
subsets of YAGO2s with decreasing sizes, i.e, with 500, 200 and 100 entities, as
the target KGs, through a sampling procedure similar to that in [11].

To obtain a pool of potential source tasks for transfer, we coupled FB15K
with rules learnt by RLvLR. For generating source rules, other rule learner like
AMIE+ can be also used, and we deployed only RLvLR for implementation
convenience. For each target task, top 100 most similar source tasks were selected
from the pool for transfer.

We compared TRL with AMIE+ and RLvLR, where those two learned rules
directly from the target KGs. To evaluate the quality of learnt rules, we first
evaluated their SC and HC over the evaluation data. Note that the evaluation
data are not sparse, and thus the SC and HC scores indeed reflect the quality of
the learnt rules. We recorded the numbers of rules with SC≥ 0.1 and HC≥ 0.01.

We also evaluated the quality of rules through link prediction, through two
queries Pt(e, ?) and Pt(?, e′) for each goal predicate Pt and each fact Pt(e, e′)
from the test data. We applied learnt rules on the evaluation data to predict
the missing entities (instead of the sparse data in the target KGs for all three
learners) for better evaluation of the predictive power of the learnt rules. The
predictions were measured using Mean Reciprocal Rank (MRR) and Hits@10, by
ranking each inferred fact based on the numbers of rules inferring it [20]. MRR
indicates the average of the reciprocal ranks of the missing entities and Hits@10
expresses the percentage of missing entities being ranked among the top 10.
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Table 2 summarizes the results, where #E, #P and #F are respectively the
numbers of entities, predicates and facts in the target KGs, #QR is the number
of quality rules, and H@10 is the Hits@10 score in percentage. All the numbers
are averaged over the 24 target tasks.

Table 2. Transfer rule learning from large KGs to small KGs.

#E #P #F TRL AMIE+ RLvLR

#QR MRR H@10 #QR MRR H@10 #QR MRR H@10

500 17.2 44K 16.3 0.18 30 0.7 0.12 19 8.7 0.19 31

200 12.6 17K 13.6 0.17 28 0.7 0.12 19 5.3 0.15 25

100 11.3 6K 10.0 0.17 29 0.2 0.08 12 1.4 0.06 12

While AMIE+ struggled on such sparse data (learning averagely fewer than a
single rule), TRL managed to learn more than 10 rules on average. On relatively
larger KGs with 500 entities, the predictive power of rules produced by RLvLR
was comparable to those produced by TRL. Yet as the sizes of target KGs
decrease, the performance of both AMIE+ and RLvLR dropped significantly,
whereas that of TRL is relatively stable due to the nature of transfer learning.

Among the rules learnt by TRL, we discovered some interesting rule patterns
(i.e., transferable knowledge). For instance, a large number of rules are like the
following rules (with distinct predicates):

wasBornIn(x, z) ∧ wasBornIn(t, z) ∧ livesIn(t, y) → livesIn(x, y),

which states if two persons x and t were born in the same city z then it is likely
that they both live in the same city y. There are also quite a few rules stating
symmetry property of predicates such as

influences(y, x) → influences(x, y),

and those stating association between predicates such as

isAffiliatedTo(x, y) → playsFor(x, y).

5.2 From FB15K to FB15K

For the second set of experiments, we evaluated TRL on intra-KG transfer learn-
ing, i.e., to transfer rules from rich data to sparse data within the same KG.
FB15K includes a large number of predicates that are each associated with only
a small number of facts, which we call sparse predicates. We consider the top
5%, 10%, 15%, and 20% most sparse predicates in FB15K from all of its 1345
predicates, and use them as goal predicates Pt. FB15K comes with its own sepa-
rate training and test data [16], and we used its training data for both the target
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KG and the source KG. We eliminated from the pool of source tasks those with
same goal predicates as Pt to avoid trivial transfer.

Since RLvLR outperforms AMIE+ on large KGs [11], we compared TRL
with RLvLR and focused on link prediction. We added two statistical link pre-
dictors (not rule learners) TransE and HOLE in the comparison, and measure
the prediction only against goal predicates Pt (by removing irrelevant facts in
test data). For fine-grained comparisons of prediction accuracy, we also measured
the Hits@1 and Hits@3 scores, which are the proportions of correctly predicted
entities that are ranked respectively, top one and top three.

Table 3 summaries the results, where %P and #P are respectively the per-
centage and the number of most sparse predicates as goal predicates, Time is the
system time for model learning and link prediction (in hours, disregarding the
times for computing source embeddings which could be done offline), and H@1,
H@3, and H@10 are the Hits@1, Hits@3, and Hits@10 scores in percentage.

Table 3. Transfer rule learning from dense predicates to sparse predicates.

%P #P TRL RLvLR

Time MRR H@1 H@3 H@10 Time MRR H@1 H@3 H@10

20% 272 3.5 0.18 13 23 24 6.8 0.14 9 16 21

15% 204 2.2 0.17 13 20 22 3.9 0.11 7 12 17

10% 136 1.6 0.11 9 14 14 2.6 0.05 2 7 9

5% 68 1.0 0.11 8 14 14 1.9 0.03 0 6 6

%P #P TransE HOLE

Time MRR H@1 H@3 H@10 Time MRR H@1 H@3 H@10

20% 272 5.4 0.30 25 33 33 15.6 0.48 42 42 75

15% 204 5.3 0.02 0 0 0 15.5 0.08 0 0 50

10% 136 5.3 0.02 0 0 0 15.1 0.08 0 0 50

5% 68 5.5 0.02 0 0 0 15.3 0.08 0 0 50

On such sparse predicates, TRL again outperformed RLvLR regarding both
prediction accuracy and time efficiency. While HOLE and TransE showed better
accuracy on 20% most sparse predicates, as the sparsity increases, TRL outper-
forms them on Hits@3 and Hits@1 accuracy, which means top ranked predictions
from TRL are more likely to be correct. Note that for top 5% sparse predicates,
TRL could hit the target with its top one prediction (i.e., Hits@1) for 8% of the
cases, whereas the other systems failed in all cases.

To analyse the contributions of the two similarity measures presented in
Sect. 4.2, we tested three configurations of TRL on 10% most sparse predicates:
with linear transformation (LT) only, with translation with argument embed-
dings (TAE) only, and with both. Other settings are as before, and Table 4
reports the prediction accuracy of learnt rules.
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Table 4. Comparison of different similarity measures.

Similarity measures MRR H@1 H@3 H@10

LT 0.08 5 7 14

TAE 0.10 8 11 14

LT, TAE 0.11 9 14 14

Using both LT and TAE showed the best prediction accuracy, which justifies
our default configuration of combining them. The performance is suboptimal
when using either LT or TAE alone, while the performance of TAE alone is
slightly better than that of LT alone. This demonstrates the usefulness of argu-
ment embeddings in measuring similarity.

6 Conclusion and Discussion

In this paper, based on embedding in representation and transfer learning, we
have proposed a method TRL (Transfer Rule Learner) for mining first order rules
in KGs with sparse data. In our approach, most similar source tasks to the target
task can be retrieved and high quality mappings between predicates in source
tasks and the target task can be built to reduce negative transfer. We evaluated
our method TRL for the tasks of rule mining and link prediction in widely used
large KGs. Our experimental results demonstrate the superior performance of
TRL on sparse data over AMIE+ and RLvLR, two state-of-the-art rule learners,
and over link prediction systems TransE and HOLE (although our system is not
specifically design for link prediction).

We are unaware of any approach on embedding-based transfer rule learning
for KGs. Transfer learning on relational data has been intensively studied in
the literature, examples include [21,22]. These approaches transfer logical prob-
abilistic models such as Markov Logic Network (MLN), which can be expressed
as a form of rule languages. However, these transfer learners assume a known
source domain that is similar enough to the target domain for transfer, which
may work for specific domains but not for KGs with general knowledge. Our
system, on the other hand, can explore the existing KGs and retrieve source
tasks.

For future work, we plan to extend our system to parallel processing. We
are also looking into iterated learning, where rules learned via transfer can be
applied to learn new rules in the next iteration.
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Abstract. Knowledge base (KB) completion predicts new facts in a KB
by performing inference from the existing facts, which is very important
for expanding KBs. Most previous KB completion approaches infer new
facts only from the relational facts (facts containing object properties)
in KBs. Actually, there are large number of literal facts (facts containing
datatype properties) besides the relational ones in most KBs; these lit-
eral facts are ignored in the previous approaches. This paper studies how
to take the literal facts into account when making inference, aiming to
further improve the performance of KB completion. We propose a new
approach that consumes both relational and literal facts to predict new
facts. Our approach extracts literal features from literal facts, and incor-
porates them with path-based features extracted from relational facts;
a predictive model is then trained on all the features to infer new facts.
Experiments on YAGO KB show that our approach outperforms the
compared approaches that only take relational facts as input.

Keywords: Knowledge base completion · Path ranking ·
Relational facts · Literal facts

1 Introduction

Recently, a number of large-scale knowledge bases (KBs) have been created, such
as DBpedia [1], YAGO [16], and Freebase [2]. These KBs contain large amounts of
facts regarding various entities, and they are becoming useful resources for many
applications, such as question answering, semantic relatedness computations,
and entity linking. Large-scale KBs are usually constructed automatically based
on information extraction techniques. Although KBs may contain huge amounts
of facts, most of them are still incomplete, missing many important facts. To add
more facts to KBs, much work has been undertaken regarding KB completion,
aiming to automatically infer new facts from the existing ones in KBs.

In general, existing KB completion approaches fall into two major groups:
symbolic approaches and embedding approaches. Symbolic approaches use sym-
bolic rules or relation paths to infer new facts in KBs. For example, Galárraga et
c© Springer Nature Switzerland AG 2019
Q. Yang et al. (Eds.): PAKDD 2019, LNAI 11441, pp. 501–513, 2019.
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al. [5] proposed a rule mining system, AMIE, which extracts logical rules based
on their support in a KB. The learned rules are then used to infer new facts in
a KB. Lao et al. [11] introduced the path ranking algorithm (PRA), which uses
random walks to search relation paths connecting entity pairs. These paths are
then used as features in a classifier to predict new facts. Embedding approaches
learn low-dimensional representations of entities and relations in KBs, which
can be used to infer new facts. TransE [3] is a representative embedding app-
roach, which learns to represent both entities and relations as vectors in R

k. If
a triple (h, r, t) holds, then TransE wants that h + r ≈ t. After the embedding
representations are learned, new facts can be predicted based on computations
over embeddings. Most recently, some methods have attempted to combine sym-
bolic and embedding techniques, including path-based TransE [12] and recurrent
neural network (RNN)-based relation path composition [6].

Existing KB completion approaches of both the symbolic and embedding
variety only consider relational facts in KBs when inferring new facts. Here,
relational facts refer to those facts using object properties to describe relations
between entities. However, in most KBs, there are literal facts as well, which
describe certain datatype properties of entities, such as ages of people or areas
of a city. Table 1 shows the numbers of relational facts and literal facts in three
well-known KBs. This shows that the number of literal facts is close to or even
bigger than the number of relational facts. We believe that such a huge number
of literal facts in KBs must be useful for inferring new facts as well.

Table 1. Numbers of relational and literal facts in KBs

Knowledge base #Relational facts #Literal facts

YAGO 4.48M 3.35M

DBpedia 14.8M 17.3M

Freebase 1.3B 1.8B

Based on the above observations, we propose a new KB completion approach
named IRL (inference from relational and literal facts). The most significant
feature of our approach is its ability to extract useful information from literal
facts in order to improve the KB completion performance. Our approach first
finds a set of path types from the relational facts in KBs, following the same
method in PRA. Then, it extracts useful features from the literal facts. Path
types and literal features are combined as the input of a prediction model, which
is trained to predict new facts in KBs. Experiments on Freebase and YAGO show
that IRL outperforms comparable approaches that only use relational facts.

The remainder of this paper is organized as follows. Section 2 introduces the
path ranking algorithm, which generates path types in our approach. Section 3
describes the proposed approach. Section 4 presents the experiment results.
Section 5 discusses some related work, and finally Sect. 6 concludes this paper.
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2 Background Knowledge

2.1 RDF and RDF KB

The resource description framework (RDF) is a framework for the conceptual
description or modeling of information in web resources. RDF expresses infor-
mation by making statements about resources in the form of

〈subject〉〈predicate〉〈object〉.

The subject and object represent two resources, and the predicate represents the
relationship (directional) between the subject and object. RDF statements are
called triples, because they consist of three elements. RDF is a graph-based data
model. A set of RDF triples constitutes an RDF graph, where nodes represent
resources and directed vertices represent predicates. There can be three types
of nodes (resources) in an RDF graph: IRIs, literals, and blank nodes. An IRI
is a global identifier for a resource, such as people, organizations, and places.
Literals are basic values, including strings, dates, and numbers. Blank nodes
in RDF represent recourses without global identifiers. Predicates in RDF are
also represented by IRIs, because they can be considered as resources specifying
binary relations.

An RDF KB is a well-defined RDF dataset that consists of RDF statements
(triples). The statements in an RDF KB are usually divided into two groups:
T-box statements, which define a set of domain specific concepts and predicates;
and A-box statements, which describe facts about instances of the concepts. A-
box triples excluding triples with literals are employed by our approach to learn
inference rules. Unlike AMIE, our approach also takes triples having rdf:type
predicate as input. rdf:type is a special predicate, which is used to state that a
resource is an instance of a concept. The entity-type information specified by
rdf:type predicate is very useful and important for rule learning from RDF KBs,
which is verified by our experiments.

2.2 Path Ranking Algorithm

PRA is a state-of-the-art KB completion approach, which infers new relational
facts from the existing ones. In this work, we propose to extract literal features
from KBs and then combine them with path types generated by PRA for KB
completion. Therefore, we first briefly introduce PRA in this section.

PRA was first proposed by Lao et al. [11]. PRA predicates new relations
between two entities based on a set of relation paths that connect the entity
pair. A relation path is a sequence of relations 〈r1, r2, ..., rk〉. Such a path can
be an indicator of a new relation between entities that are linked by that path.
For example, 〈bornInCity, CityInCountry〉 is a path that may indicate the
nationality relation between the entities it connects. PRA first finds a set of
potentially useful relation paths that connect the entity pairs, and then uses
the discovered paths as features in a classification model to predict whether or
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not a specific relation holds. Formally, there are three basic steps in PRA: (1)
path feature selection, (2) path feature computation, and (3) classification model
training.

Path Feature Selection. Given a target relation r and a set of its instances
Ir = {(sj , tj)|〈sj , r, tj〉 ∈ KB}, the total number of path types that connect
the entity pairs can be considerably large. Therefore, the first step of PRA is to
select a set of path types as features in the prediction model. PRA selects useful
path types by performing random walks on the graph, starting at the source
and target entities. If the walks from the source entities and target entities reach
the same intermediate entities, then the corresponding path types are recorded,
and measures of precision and recall will be computed for each path type. Path
types whose precisions and recalls are not lower than predefined thresholds will
be selected as path features in the prediction model.

Path Feature Computation. After a set of path features are selected, PRA
computes the feature values of each entity pair in Ir. In this step, PRA will gen-
erate a feature vector for each entity pair, where each feature in the generated
feature vector corresponds to a path type selected in the first step. Specifically,
for an entity pair (sj , tj), the value of a path type π is computed as the prob-
ability of a random walk starting from sj and arriving at tj following the path
type π, which is denoted as p(tj |sj , π). In a recent extension of PRA [7], it is
shown that using binary features instead of random walk probabilities improves
the efficiency of PRA, and there is no statistically significant difference in the
performance for KB completion.

Classifier Training. The final step of PRA is to train a classification model on
the feature vectors of entity pairs in Ir. Technically, any classifier can be used
in this step, but PRA simply uses a logistic regression model.

3 Proposed Approach

This section presents our proposed approach, IRL. This infers new facts using
both relational and literal facts in KBs. Figure 1 illustrates the framework of our
approach. To predict a relation r between the entities h and t, our approach first
extracts relational features by finding path types that connect h and t, following
the same method in PRA. Then, it extracts literal features from related literal
facts in the KB. After the two types of features are extracted, they are merged
to form the combined feature vector of the entity pair (h, t), which is then fed
into a classification model for the relation r. The classification model decides
whether or not the fact 〈h, r, t〉 holds. The remainder of this section introduces
our proposed approach in further detail.

3.1 Extract Relational Features

Previous KB completion approaches have already investigated how to extract
useful features from relational facts to infer new facts. In our approach, we
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Fig. 1. Framework of our IRL approach

follow the method in PRA to selects a set of path types as features for fact
prediction. Given two entities h and t, the path types that connect them are
located in the KB. Instead of computing the random walk probabilities of path
types as the feature values, we compute binary features for the path types, as
introduced in [7]. It was reported that computing binary features costs less time,
and will not decrease the performance. In the work of [7], the authors proposed
a subgraph feature extraction (SFE) method, which leads to better results than
PRA. Thus, we also test subgraph features as relational features in our approach.
Here, we use vr(h, t) to denote the extracted relational features of an entity pair
(h, t).

3.2 Extract Literal Features

To utilize literal facts when predicting relations between (h, t), our approach
extracts literal features from the related literal facts. The process of extracting
literal features includes the following steps:

(1) Literal Value Preprocessing
Most literal facts contain numeric values, or contain literals that can be trans-

formed into numeric values. Before extracting features from the literal facts,
our approach first preprocess the literal values contained in them. Specifically,
numeralization and normalization are performed on the literal values. Numeral-
ization transforms non-numeric literal values into numeric values.



506 Z. Wang and Y. Huang

After transforming non-numeric literal values into numeric ones, all the
numeric values are then normalized to the same scale, i.e., [0.1, 1]. Normalization
is performed for values of each datatype property p separately. Let Xp

min and
Xp

max denote the minimum and maximum property values of p. Then, all the
property values of p are normalized by

X ′ = 0.1 + 0.9
X − Xp

min

Xp
max − Xp

min

(1)

(2) Literal Feature Selection
To extract literal features from literal facts, we first have to determine which

literal facts are useful in predicting new instances of the target relation. Intu-
itively, if a fact 〈h, r, t〉 is to be predicted, then literal facts for the entities h
and t should be considered in the prediction model. For example, if the target
relation is hasCapital, then the populations and areas of the entities h and t
provide important clues for predicting the hasCapital relation between them. In
addition, if the entities h and t are connected by multiple paths, then the literal
facts for the intermediate entities in these paths might also be useful. Therefore,
our approach selects literal features from the literal facts of subject entities,
object entities, and intermediate entities in paths that connect the subject and
object entities. We use Esub, Eobj , and Einter, respectively, to denote the above
three groups of entities.

Entities in a KB are described by different datatype properties, even for enti-
ties of the same type. In order to select literal features of a fixed length, we have
to select commonly used datatype properties. This is done by finding frequent
datatype properties for entities in Esub, Eobj , and Einter. More specifically, our
approach will enumerate all the entities in Esub, Eobj , and Einter, and takes all
the literal facts these entities appear in from the KB. Then, datatype properties
appearing in these literal facts and their frequencies will be recorded. By setting
a frequency threshold δ, our approach selects frequent datatype properties whose
frequencies are no lower than the threshold as the literal features. Literal features
are selected for entities in Esub, Eobj , and Einter separately. Correspondingly,
the selected sets of features are denoted as Lsub, Lobj , and Linter.

(3) Literal Feature Computation
Once the literal features have been selected for the target relation r, the next

step is to compute their values. Given an entity pair (h, t), the values of the
literal features in Lsub or Lobj are computed by directly taking the values of
the datatype properties of h and t in the KB. More specifically, for a datatype
property l ∈ Lsub, if there is a literal fact 〈h, l, x〉 ∈ KB, then x is taken as
the feature value of l. For datatype properties Lobj , literal facts of t are used to
obtain their values. As introduced above, numeralization and normalization are
performed on literal values. The values of datatype properties used here have
already been preprocessed. If the value of a selected datatype property does
not exist in the KB (i.e., 〈h, l, x〉 /∈ KB or 〈t, l, x〉 /∈ KB), then the value of the
literal feature l is set to 0. If there are multiple literal facts for the same datatype
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property of an entity, then the feature value is computed as the average of the
literal values in these facts.

To compute the feature values of intermediate entities of (h, t), our approach
first obtains all the intermediate entities that appear in the paths connecting h
and t. These paths are discovered in the step of extracting relational features,
so the intermediate entities for each entity pair will be recorded in that step,
denoted by I(h,t). For each entity e ∈ I(h,t), a feature vector vLinter

(e) is gener-
ated by using the same method as for computing literal features of subject and
object entities. After obtaining feature vectors for all the intermediate entities,
our approach computes the mean vector of these vectors. The mean vector is
computed by averaging over all the non-zero elements along each dimension. If
the elements along one dimension in all the feature vectors are zeros, this means
that none of the entities have the corresponding datatype property in the KB,
and the feature value in the mean vector will be set to 0. The mean vector for
all the feature vectors is taken to represent the feature values of the interme-
diate entities of (h, t). In this manner, feature vectors of fixed length can be
computed for different entity pairs, although they may have different numbers
of intermediate entities.

3.3 Prediction Model Training

Predicting new facts in a KB is considered as a classification problem in our app-
roach. Before predicting new facts, the classification model has to be trained.
Our approach trains separate classifiers for different relations. For a target rela-
tion r, let the set of training examples for this be Tr = {(hi, ti), yi}Ni=1, where
(hi, ti) denotes an entity pair, and yi ∈ {0, 1} is the class label (0 indicates
a negative example and 1 indicates a positive example). After computing the
relational and literal features for every entity pair in Tr, we obtain the feature
matrix Mr = [Mrel Mlit] for the training examples, where Mrel is the sub-matrix
of relational features and Mlit is the sub-matrix of literal features. The computed
feature matrix will be used to train the classification model to predict new facts
in the KB.

In this work, we test both logistic regression and random forest models as the
classification model in our approach. Logistic regression is linear classification
model, which was adopted in PRA and SFE to predict new facts. Random for-
est [4] is an ensemble learning method for classification and regression. We use
random forest to handle the possible complicated dependencies among relational
and literal features.

4 Experiments

4.1 Experimental Settings

Datasets. To evaluate our approach, we used the data from YAGO knowledge
base. YAGO is built automatically from Wikipedia, GeoNames, and WordNet.
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Currently, YAGO contains more than 10 million entities and more than 120 mil-
lion facts about these entities. In our experiment, we generate evaluation datasets
from two YAGO’s datasets named yagoFacts and yagoLiteralFacts, which can
be downloaded from the website of YAGO1. yagoFacts contains all the relational
facts, and yagoLiteralFacts contains all the literal facts (except entities’ labels).
There are 4,484,914 relational facts describing 38 kinds of relations about enti-
ties, and there are 3,353,659 literal facts describing 35 datatype properties of
entities.

To generate the evaluation datasets, we first extract positive examples for
each relation from the relational facts. Given a relation r and a fact 〈h, r, t〉, the
entity pair (h, t) is then taken as a positive example of the relation r. For each
positive example, we generate 10 negative examples; 5 of them are generated by
replacing the subject entity h with random entities, and the rest are generated
by replacing the object entity t with random entities. 80% of positive examples
are used for training and 20% of them are used for testing. Negative examples
are split into training and testing sets according to their corresponding positive
examples.

Using the above method, we generated two datasets for evaluation. The first
one is generated by using all the available entity pairs of each relation as the
positive examples, which is denoted as YAGOall here. Another one is generated
by removing from YAGOall the entity pairs having not enough literal facts in the
KB; the second dataset is denoted YAGOlit. The reason of building YAGOlit is
that our approach has to extract literal features from literal facts, if entities don’t
have enough literal facts, our approach will not perform well. So we think it’s
more fare to use YAGOlit for evaluating our approach. Every entity in YAGOlit

has no less than 3 literal facts. In both two datasets, 32 out of 38 relations are
selected as the tested relation; 6 relations are not chosen because they have few
or too many positive examples2. Table 2 outlines some details of YAGOall and
YAGOlit.

Table 2. Details of evaluation datasets

YAGOall YAGOlit

# Tested relations 32 32

# Avg. train examples/relation 106, 711 63, 479

# Avg. test examples/relation 26, 557 15, 706

Evaluation Metric. We use Mean Average Precision (MAP) as the evaluation
metric, which is widely used in recent work on knowledge base completion. MAP
1 http://www.mpi-inf.mpg.de/departments/databases-and-information-systems/

research/yago-naga/yago/downloads/.
2 Not tested relations: Earth, hasGender, wasBornIn, isLeaderOf, participatedIn, isAf-

filiatedTo.

http://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/yago/downloads/
http://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/yago/downloads/
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is computed based on the ranks of positive examples according to the predictions,
and it reflects both precision and recall [17].

Compared Methods. We compare our approach IRL with PRA and SFE.
These two approaches achieve the state-of-art performance in KB completion;
and another important reason for comparing with these two approaches is that
the relational features used in our approach are computed in the same way
as they do. PRA and SFE are both implemented using the code provided by
Matt Gardner3. Our approach has two variants in the experiments, IRLpra using
relational features of PRA and IRLsfe using relational features of SFE.

4.2 Experiment Results

Table 3 shows the results of different methods on YAGOall and YAGOlit. MAP of
different methods on the 32 tested relations are outlined in the table. Methods are
compared in two groups, {PRA, IRLpra} and {SFE, IRLsfe}; because methods
in the same group use the same kind of relational features. In Table 3, numbers
in bold are the single best results for relations among two compared methods.
Average results of all the methods are outlined at the bottom of the table, the
best average results are also in bold. Paired t-test with significance level p < 0.05
is performed to find whether the overall improvements of the winner methods are
statistically significant. If a method with the best result significantly outperform
the corresponding baseline method (PRA or SFE), a symbol “*” is marked on
its average result.

The results show that the performance of KB completion is improved by
taking literal features into account. On YAGOall dataset, IRLpra performs the
best among four compared methods, and its MAP is significantly better than
PRA; when using the relational features from SFE, IRLsfe gets higher average
MAP than SFE and IRLsfe, but the improvements are not significant according
to the paired t-test. On YAGOlit dataset, IRLpra and IRLpra both get the highest
average MAP among the compared methods; and the differences between them
and their baseline methods (PRA and SFE) are both significant. IRLpra gets
a 5% improvement of MAP over PRA, and IRLsfe gets a 6% improvement of
MAP.

Based on the experiment results, we get the following observations. (1) The
predicted relations between entities can be more accurate if entities’ literal fea-
tures are also taken as the input of the prediction model. Since the improvements
of IRL-series methods on YAGOlit are bigger than on YAGOall, it is obvious that
more literal facts are helpful for improving the KB completion performance. (2)
Using relational features from SFE leads to better results. SFE uses more expres-
sive features than PRA does, and SFE performs better than PRA according to
previous published work. So combining literal features with more expressive rela-
tional features is helpful for getting better results.

3 https://github.com/matt-gardner/pra.

https://github.com/matt-gardner/pra
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Table 3. KB completion results on YAGOall and YAGOlit

Relation YAGOall YAGOlit

PRA IRLpra SFE IRLsfe PRA IRLpra SFE IRLsfe

actedIn 0.2924 0.3243 0.3179 0.3337 0.2712 0.3659 0.3080 0.4281

created 0.3312 0.3366 0.3432 0.3397 0.7743 0.8099 0.8094 0.8225

dealsWith 0.0617 0.0669 0.0562 0.0680 0.0691 0.0527 0.0581 0.0524

diedIn 0.5312 0.5369 0.5304 0.5168 0.5367 0.5520 0.4949 0.5270

directed 0.7443 0.7485 0.8020 0.8036 0.8134 0.8236 0.8675 0.9131

edited 0.7627 0.7646 0.7712 0.7731 0.7089 0.8410 0.7091 0.8430

exports 0.0485 0.1078 0.0740 0.1003 0.0344 0.0751 0.0344 0.0927

graduatedFrom 0.5849 0.6407 0.6138 0.6223 0.5421 0.6504 0.5426 0.6483

happenedIn 0.6481 0.6600 0.6545 0.6618 0.7812 0.7808 0.7870 0.7909

hasAcademicAdvisor 0.8826 0.9381 0.9039 0.9362 0.8396 0.9051 0.9232 0.9510

hasCapital 0.6242 0.6356 0.6364 0.6408 0.9189 0.9154 0.9308 0.9333

hasChild 0.8187 0.8187 0.8170 0.8205 0.8557 0.8591 0.8580 0.8666

hasCurrency 0.3519 0.4004 0.3742 0.4108 0.6976 0.7505 0.7337 0.8319

hasMusicalRole 0.0030 0.0001 0.0006 0.0012 0.9975 0.9950 0.9765 0.9975

hasOfficialLanguage 0.3709 0.4393 0.4331 0.4570 0.5829 0.5905 0.5874 0.6566

hasWebsite 0.0331 0.0304 0.0301 0.0306 0.8500 0.9500 0.7500 0.9500

hasWonPrize 0.1286 0.1217 0.1417 0.1157 0.4783 0.8913 0.5000 0.9783

holdsPoliticalPosition 0.5247 0.5341 0.5381 0.5446 0.4016 0.5543 0.4815 0.5509

imports 0.0203 0.0353 0.0415 0.0188 0.0208 0.0441 0.0271 0.0143

influences 0.3768 0.4215 0.4111 0.4181 0.3173 0.3770 0.3299 0.3878

isCitizenOf 0.4626 0.7720 0.4776 0.4844 0.8598 0.8582 0.5206 0.5376

isConnectedTo 0.4505 0.4599 0.4577 0.4660 0.6944 0.6964 0.7039 0.7082

isInterestedIn 0.1049 0.1705 0.1352 0.1405 0.2656 0.3750 0.3594 0.4063

isKnownFor 0.2204 0.2644 0.2429 0.3259 0.4615 0.5128 0.6154 0.7179

isLocatedIn 0.5322 0.5368 0.5353 0.5415 0.8936 0.8920 0.9024 0.9066

isMarriedTo 0.3493 0.3621 0.3804 0.4031 0.5862 0.5065 0.6272 0.5522

isPoliticianOf 0.5206 0.7285 0.7272 0.7337 0.5395 0.7474 0.5378 0.7621

livesIn 0.6751 0.6768 0.6908 0.6983 0.6938 0.6965 0.7098 0.7305

owns 0.4020 0.4079 0.4098 0.4109 0.8211 0.8198 0.8294 0.8312

worksAt 0.5409 0.5572 0.5407 0.5472 0.5281 0.5746 0.5151 0.5787

wroteMusicFor 0.7243 0.7170 0.7648 0.7632 0.7730 0.7926 0.8445 0.8632

playsFor 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Avg 0.4413 0.4755∗ 0.4642 0.4728 0.6128 0.6642∗ 0.6211 0.6822∗

5 Related Work

As mentioned in Sect. 1, KB completion approaches can be generally divided
into two groups, symbolic approaches and embedding approaches. Symbolic
approaches use symbolic rules or relation paths to infer new facts in KBs. For
example, AMIE learns logic rules to infer new facts; PRA infers new facts by
training classification model based on relation paths. Embedding approaches
learn embeddings of entities and relations, and then predict new facts by compu-
tations over embeddings. TransE [3] is a representative embedding model, which
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is simple but powerful. Recently, several extensions of TransE have been pro-
posed, including TransR [14], TransH [19], etc. Most recently, some approaches
have been proposed to combine symbolic and embedding technique, aiming to
get better performance in KB completion. Nickel et al. gave a comprehensive
review of different kinds of KB completion approaches [15].

Most existing approaches only use the relational facts in KBs to infer new
facts. Recently, there have been several approaches that utilize information other
than the relational facts, but the additional information usually comes from
resource outside KBs. For example, Gardner et al. proposed approaches that
incorporate latent features mined from large corpus in PRA to improve the per-
formance [8] and use vector space similarity in the random walk inference in
PRA [9]; these improved approaches of PRA use extra information in texts, lit-
eral facts in KBs are not used. There are also several embedding approaches that
use information from texts to improve the performance. Wang et al. proposed a
method of jointly embedding entities and words into the same continuous vector
space [18]. Their approach attempts to learn embeddings preserving the relations
between entities in the knowledge graph and the concurrences of words in the
text corpus. Approaches proposed in [10,21] also used information in text when
learn the embedded representations of entities and relations.

Before our work, there have been approaches also use literal facts in KBs. In
the work of SFE, Gardner et al. tested one-side feature comparisons as a kind
of new features, which involves comparing datatype properties of subject and
object entities. But in their work, they just computed the differences between the
origin values of datatype properties shared by two entities; and the experimental
results show that the performance actually drops after adding one-side feature
comparisons in the model. Compared with SFE, our approach provides a more
general and effective way to use literal facts in KB completion; our approach
uses not only the datatype properties of subject and object entities, but also the
datatype properties of intermediate entities in the paths connecting subject and
object entities. Xie et al. [20] proposed an embedding approach that uses the
text descriptions of entities in KBs when learns the representations of KBs; the
descriptions of entities are from literal facts in KBs, but they are the only kind
of literal facts used in their approach. Our work provides method to incorporate
literal different kinds of facts into the relation prediction model, and to further
improve the precision and recall of new predicted facts. In the work of Lin et
al. [13], object properties are divided into two groups, relations and attributes.
Attributes in their work are not datatype properties in the KB.

6 Conclusion

In this paper, we studied how to perform inference from both relational and
literal facts for knowledge base completion. We propose a new approach IRL,
which extracts relational and literal features from two kinds of facts in KBs
for predicting new facts. By taking literal facts into account, IRL effectively
improves the results of KB completion. Experiments on YAGO shows that our
approach outperforms the compared state-of-art approaches.
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Abstract. The basic unit of knowledge graph is triplet, including head
entity, relation and tail entity. Centering on knowledge graph, knowledge
graph completion has attracted more and more attention and made great
progress. However, these models are all verified by open domain data sets.
When applied in specific domain case, they will be challenged by practical
data distributions. For example, due to poor presentation of tail entities
caused by their relation-oriented feature, they can not deal with the com-
pletion of enzyme knowledge graph. Inspired by question answering and
rectilinear propagation of lights, this paper puts forward a tail-oriented
method - Embedding for Multi-Tails knowledge graph (EMT). Specifi-
cally, it first represents head and relation in question space; then, finishes
projection to answer one by tail-related matrix; finally, gets tail entity via
translating operation in answer space. To overcome time-space complex-
ity of EMT, this paper includes two improved models: EMTv and EMTs.
Taking some optimal translation and composition models as baselines,
link prediction and triplets classification on an enzyme knowledge graph
sample and Kinship proved our performance improvements, especially in
tails prediction.

Keywords: Knowledge graph · Knowledge graph completion ·
Specific domain knowledge graph · Embedding · Tail-oriented

1 Introduction

With constantly booming, Knowledge Graph (KG) has been widely used in
search engine [7], question answering and others. Before made full use of, they
should be built firstly. As a necessary building part, KG completion has become
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a hot spot and gotten great theoretical developments in recent years. And almost
all existing completing models are verified on open domain (for example, Free-
base [2], YAGO [21], Nell [6] and Probase [24]) data samples, like WN18 [4]
and FB15k [4], whose data distributions are different from specific domain ones,
such as bioinformatics [1], life science [15] and biomedicine [19]. What if existing
models are applied on specific domain?

As Table 1 shows, heads and tails number in open domain KGs, like WN18
[4] and FB15k [4], are nearly equal. But it is not true for specific domain. For
example, the Nations [18] describes social changes from 1950 to 1965. To exclude
time influence, we sampled data in 1965, getting the Nations65, showing one head
has about 5 tails on average. In microbiology Enzyme KG (EnzymeKG), it is
about 1,002. For typicality, we will take EnzymeKG as a case to analyze.

Table 1. Open v.s. specific domain KGs.

Data sets #Ent. #Head #Tail Ratio

WN18 40,943 40,940 40,939 1
FB15k 14,951 14,866 14,913 1
Nations65 1,106 182 924 5
EnzymeKG 6,482,370 6,463 6,475,907 1,002

Ratio means #Tail to #Head.

enzyme/
1.5.1.17

"With NAD+ or 
NADP+ as acceptor"

 "Acting on the CH-
NH group of donors" 

"ADH"

class

otherName

"ALPDH" otherName

"NADH" 

"NAD+" 

"H2O" 
productproduct

class

substrate

substrate

"L-alanine" 

Fig. 1. An EnzymeKG illustration.

Taking head enzyme/1.5.1.17 as an example, Fig. 1 shows that same head can
be linked to various tails by same relation. Furthermore, based on EnzymeKG,
Table 2 statistics the proportion of each relation; the largest, smallest and average
#Head (#Tail) when sharing same tail (head) and relation. Largest #Head of
type and class are 6,436 and 1,840, much larger than others. Things are totally
different for tails: x-gene, ncbiGene and keggGene are respectively 31,809, 39,051
and 40,635. And proportions of these three relations can make about 98.58%.
So, it is reasonable to say they can represent most triplets in EnzymeKG.

As the most widely recognized completing genre, embedding representation
includes translation, composition and neural network. From Fig. 1, we can see
heads and tails are not invertible in EnzymeKG, conflicting with similar oper-
ations on heads and tails in composition models. Neural network models have
many parameters to learn, bringing high cost. So we focus on translation ones.

TransE [4] is a classical translation model. Taking it for an example, we did
entities prediction on an EnzymeKG sample, filt Hit@10 was 57.2%. However,
TransE on WN18 can make 89.2% [4]. Combining with the above data distri-
bution features, we found following reasons. By training embeddings h, r and
t for head, relation and tail, TransE fits triplet <h, r, t> by h + r ≈ t. When
one head connects only one tail by one relation, it performs well. However, as
Fig. 2 shows, it is not good at handling the situation that one head links 3 tails
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Table 2. Data distributions of EnzymeKG.

Relations Proportion #Head #Tail

Largest/Smallest/Avg. (Nh) Largest/Smallest/Avg. (Nt)

sysname 0.07% 11/1/1.0 3/1/1.0

description 0.08% 37/1/1.0 1/1/1.0

name 0.09% 298/1/1.1 1/1/1.0

history 0.09% 1/1/1.0 1/1/1.0

type 0.09% 6,436/6,436/6,436.0 1/1/1.0

x-pathway 0.10% 1,497/1/46.1 21/1/2.4

substrate 0.16% 1,129/1/3.0 8/1/2.3

product 0.17% 702/1/2.9 9/1/2.4

class 0.28% 1,840/1/271.0 3/2/3.0

otherName 0.28% 5/1/1.0 206/1/4.1

x-gene 12.88% 5/1/1.1 31,809/1/275.5

ncbiGene 39.36% 5/1/1.1 39,051/1/821.8

keggGene 46.34% 5/1/1.1 40,635/1/966.3

by same relation. Because these 3 tails can be very close and even overlap each
other to meet h + r ≈ t, influencing semantic expression.

Fig. 2. Basic idea of TransE.

Table 3. Mathematical notations.

Notations Descriptions

h/r/t Head entity/relation/tail entity

〈h, r, t〉 A triplet with h, r and t

h/r/t Embeddings of h/r/t

fr/t(h, t/r) Score function

|| ||2L1/L2
First or second order distance

So, it is necessary to deal with specific domain KG completion by new models.
Based on the above analysis, its key is to distinguish tails for same head-relation.
Different from traditional relation-oriented models, inspired by question answer-
ing and rectilinear propagation of lights, we put forward a tail-oriented model,
i.e. first embedding head and relation in question space; then finishing projection
to answer one by tail-related matrix; and finally getting corresponding tail by
translation.
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Contributions of this paper are listed as follows:

• A tail-oriented completing method: EMT. It distinguishes multiple tails for
same head-relation with various projecting matrices. Experiments proved its
superiority over translation and composition models.

• Improved EMT: EMTv and EMTs. Instead of dense matrix Mt and matrix-
vector multiplication in EMT with vectors multiplication and sparse matrix
respectively, EMTv and EMTs achieve a performance-complexity balance.

The rest is structured as follows. Related work is discussed in Sect. 2. After
fundamental definitions, Sect. 3 elaborates EMT method. Then Sect. 4 demon-
strates experimental results. Finally, Sect. 5 concludes this paper.

2 Related Work

To be clear, we define some general notations in Table 3. Others will be defined
near their first use. Generally, KG completing models contain translation, com-
position and neural network.

TransE [4], a typical translation model, believes h+ r ≈ t. Considering rela-
tion properties, TransH [22] distinguishes reflexive, 1-N, N-1 and N-N relations
[4] by a hyperplane. But an entity may have many aspects. And relations may
focus on any one of them. TransR [12] gets projected entities in relation space
by Mrh and Mrt. TransD [9] and Sparse [10] are TransR variants.

As a composition model, RESCAL [17] denotes triplets as a three-way tensor
χ, where an entry χijk represents existing triplets as 1; otherwise, 0. Based
on relation, χ is sliced. For k-th relation, slice χk ≈ ARkAT . Specifically, A
is a n × r matrix containing entity embeddings, Rk is an asymmetric r × r
matrix modeling the interactions of entities linked by k-th relation. By modeling
relation as bilinear matrix Mr, score function of LFM [8] is fr(h, t) = hTMrt.
Making Mr be a diagonal matrix, DistMult [25] reduces complexity and improves
performance. HolE [16] captures rich heads and tails interactions by circular
correlation, while Complex [23] replaces real embeddings with complex ones. By
considering analogical properties of entities and relations, ANALOGY [13] is an
integration of DistMult, HolE and Complex.

Compared with SE [5], SLM [20] describes entity-relation semantic links
by nonlinear operations. But it costs more by score function fr(h, t) =
ur

T g(Mr,1lh+Mr,2lt). With higher cost, NTN [20] connects entity vectors across
multiple dimensions by bilinear tensor layer, getting corrected probabilities of
triplets, while SME [3] links entity and relation by multiple projecting matrices.
Differently, including DNN and RMNN, NAM [14] models entities connection
as a conditional probability via multilayer nonlinear activations in deep neural
nets.

Therefore, translation models finish translating operations from head to tail
via relation. Composition ones describe heads and tails from the view of rela-
tions. As for neural network, it focuses on entity-relation interactions. Here, we
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call them relation-oriented models that are indeed powerful in relations pre-
diction, but not necessarily for heads and tails one. Specifically, as mentioned in
Sect. 1, they can not distinguish multiple tails for same head-relation. Besides,
composition and neural network models, especially the later, often bring high
computing cost.

3 EMT Method

Before modeling, we first abstract the phenomenon that one head links multiple
tails via same relation. Let Nh and Nt be the average #Head and #Tail in
Table 2. Then, taking δ as boundary, [4] divides triplets into 1-1, 1-N, N-1 and
N-N by fixing only relation, especially N-N. However, KG completion aims to
identify the third one of a triplet via referring to the other two. So, fixing only
one element can lead to distraction. Moreover, Sect. 1 shows tails share same
head-relation in Nations65 and EnzymeKG. Therefore, it is necessary to make
new categorizations by fixing heads (tails) and relations.

Considering Nh, Nt and δ, we can get new categorizations by

Nh < δ ↔ 1-1-1 Nh ≥ δ ↔ N-1-1 Nt < δ ↔ 1-1-1 Nt ≥ δ ↔ 1-1-N, (1)

where underline parts are the two given elements. Here makes δ = 1.5. Mapping
of [4] and ours is shown in Fig. 3, including 3 complete sets: {1-1, 1-N, N-1,
N-N }, {1-1-1, N-1-1} and {1-1-1, 1-1-N }.

With more 1-1-N triplets than N-1-1 ones, KG like EnzymeKG (6,986,933
v.s. 53,944) is Multi-Tails KG (MTKG). Otherwise, Multi-Heads KG
(MHKG). Since our data sets are typical MTKGs, this paper will focus on
MTKG completion, i.e. representation learning of 1-1-1 and 1-1-N triplets.
According to Sect. 1, existing models can deal with 1-1-1 well. So our problem
can be narrowed to the representation learning of 1-1-N .

↕

↔

↕

↔

Fig. 3. Triplets categoriza-
tions.
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Fig. 4. A simple EMT illustration.
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3.1 Embedding for MTKG

As mentioned above, the crucial point of representing 1-1-N is to find the most
suitable tail for given head-relation. It is similar to the problem of picking out
the wanted one among many close answers for a fixed question. So, by regarding
head-relation as question, while the wanted tail as the answer, we construct a
model for 1-1-N triplets, called Embedding for MTKG (EMT).

Figure 4 details EMT. Divided into four quadrants by x and y axes, plane xOy
is answer space, above which is question one. There are two triplets <hk, rk, ti>
and <hk, rk, tj> in this figure. Located at question space, head and relation
embeddings hk, rk ∈ R

n start from the origin point. According to geometrical
optics, light propagates along straight lines in homogeneous medium. So things
get different shadows when irradiated by parallel rays from various directions.
Projecting matrices Mti and Mtj ∈ R

m×n in Fig. 4 play the role of parallel rays.
Here considers <hk, rk, ti>. Based on

h⊥ = Mth r⊥ = Mtr, (2)

model gets projected head and relation hk⊥i and rk⊥i to predict tail ti in quad-
rant II of answer space. Then, ti can be obtained by hk⊥i + rk⊥i, during which
rk⊥i

′ is produced by moving rk⊥i parallelly. Similarly, tj is born in quadrant IV.
Corresponding score function is

ft(h, r) = ||h⊥ + r⊥ − t||2L1/L2
. (3)

Constraints added in experiments are ||h||2L1/L2
, ||r||2L1/L2

, ||t||2L1/L2
, ||h⊥||2L1/L2

and ||r⊥||2L1/L2
≤ 1.

Figure 4 shows that though starting from the origin point like hk and rk,
various tail embeddings, i.e. ti and tj , have different directions and lengths. Since
projecting heads and relations to tail space, EMT is a tail-oriented model.

3.2 EMT by Vectors Multiplication

According to Eq. (2), EMT includes a dense matrix and two matrix-vector multi-
plications, leading to a bottleneck when completing large-scale KGs. By replacing
the dense matrix with vectors multiplication, we put forward EMT by Vectors
Multiplication (EMTv).

It respectively represents head, relation and tail with 2 vectors. One is for
semantic (h, r and t). The other one is for projecting (hp, rp and tp). To distin-
guish heads and relations, their projecting matrices are constructed separately
by

Mh
t = tphT

p + Im×n Mr
t = tprT

p + Im×n, (4)

where Mh
t , Mr

t ∈ R
m×n. Like Eq. (2), projected h and r are

h⊥ = Mh
t h r⊥ = Mr

tr. (5)
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After replacing matrices in Eq. (5) with Eq. (4), we can get

h⊥ = tphT
p h + Im×n × h

r⊥ = tprT
p r + Im×n × r

⇒ h⊥ = tp(hT
p h) + Im×n × h

r⊥ = tp(rT
p r) + Im×n × r,

(6)

where hT
p h and rT

p r are dot products, getting scalars. Then tp(hT
p h) and

tp(rT
p r) are scalar products. In other words, EMTv replaces original matrix-

vector multiplication with dot and scalar products, reducing time-space com-
plexity. With same score function as EMT, its constraints added in experiments
are ||h||2L1/L2

, ||r||2L1/L2
, ||t||2L1/L2

, ||hp||2L1/L2
, ||rp||2L1/L2

, ||tp||2L1/L2
, ||h⊥||2L1/L2

and ||r⊥||2L1/L2
≤ 1.

3.3 EMT by Sparse Matrix

EMTv gets projecting matrices by vectors multiplication. According to
Sylvester’s Inequality, if A is m × n and B is n × r, then rank(AB) ≤
min{rank(A), rank(B)}. So projecting matrices in EMTv are low-rank ones
with rank ≤ 1, reducing expressiveness. As for sparse matrix, some of its ele-
ments are made zeros and others not. Zero elements are kept and non-zero ones
are updated during training. Therefore, its values are more free, corresponding
model is more expressive than EMTv. Next will focus on EMT by Sparse
Matrix (EMTs).

More complex a tail is, more parameters it should have. We think that seman-
tic complexity of a tail is related to corresponding numbers of head-relation
(h-r) pairs and relations. So EMTs constructs two corresponding sparse matri-
ces Mhr

t (θhr
t ) and Mr

t (θ
r
t ) for each tail, where θhr

t and θr
t are sparse degrees,

i.e. proportions of zero elements. For a given tail t, Nhr
t is corresponding h-r

pairs number. N
(hr)∗
t∗ is the max one of Nhr

t , i.e. tail t∗ links most h-r pairs at
(hr)∗. So do Nr

t and Nr∗
t∗ . Given min sparse degrees of projecting matrices θhr

min,
θr
min ∈ (0, 1], then final sparse degrees are

θhr
t = θ

hr
min Nhr

t /N
(hr)∗
t∗ θr

t = θ
r
min Nr

t /Nr∗
t∗ . (7)

Projected heads and relations can be computed by

h⊥ = Mhr
t (θhr

t )h r⊥ = Mr
t (θ

r
t )r. (8)

With same score function as EMT, its constraints added in experiments are
||h||2L1/L2

, ||r||2L1/L2
, ||t||2L1/L2

, ||h⊥||2L1/L2
and ||r⊥||2L1/L2

≤ 1.

3.4 Time-Space Complexity Analysis

Up to now, EMT method has been introduced. As you can see, there are dense
matrices and matrix-vector multiplications in EMT. Based on this fact, EMTv

and EMTs are put forward to deal with its time-space complexity problem. So
this subsection will analyze time-space complexity of these three models.



EMT 521

This paper defines time complexity by multiplication operating times in an
epoch and space one by parameters number. Specifically, N,Nr, Nt and Ne are
respectively numbers of triplets, relations, tail entities and entities. Besides, m
is the dimension of head and relation vectors and n is for tail. In EMTs, θavg

represents the average sparse degree of all projecting matrices.

Table 4. Time-space complexity analysis on EMT method

Model Time complexity Space complexity

EMT O(2mnN) O((Ne + Nr)m + Ntmn)

EMTv O(2nN) O(2(Ne + Nr)m + 2Ntn)

EMTs(0 � θavg ≤ 1) O(2(1 − θavg)mnN) O((Ne + Nr)m + 2Nt(1 − θavg)mn)

According to Table 4, we can see that EMTv has lowest time and space cost.
Besides, compared with EMT, EMTv and EMTs have some improvements. As
explained before, our models are tail-oriented. That is to say, all of them project
heads and relations to tail space. We do cost more than relation-oriented model.
Because, generally, tail entities are much more than relations in KGs. However,
in reality, performance can be as important as cost. Exactly, our models can
improve performance a lot, which will be introduced in Sect. 4.

3.5 Training

Assuming that a train set includes s triplets, where the i-th one is <hi, ri, ti>
(i = 1, . . . , s). Each of them has a yi to denote it is positive (yi = 1) or not
(yi = 0). Positive and negative examples are represented as Δ and Δ′. But
our data only contain positive samples. Based on bern [22], negative ones were
produced by replacing head or tail with different probabilities.

According to margin-based ranking loss, shared loss function is defined as

L =
∑

<h,r,t>∈Δ

∑

<h′,r,t′>∈Δ′
[ft(h, r) + γ − ft′(h′, r)]+, (9)

where [x]+
Δ= max(0, x), γ is the separating margin of positive and negative exam-

ples. Objective function is optimized by mini-batch SGD. To exclude initializa-
tion influence, we initiate all vectors randomly, matrices by identity ones.

With more complicated training process, EMTs will be detailed. When con-
structing sparse matrices, non-zero elements distribute symmetrically along the
diagonal direction, and corresponding locations are stored. Based on mini-batch
SGD, model updates these values by indexing locations during training.

4 Experiments

Like NTN [20], almost all neural network models have many parameters to
learn, leading to high cost. So five translation models mentioned in Sect. 2
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and four better composition ones (DistMult [25], HolE [16], Complex [23] and
ANALOGY [13]) will be compared with ours via link prediction [5] and triplets
classification [20].

4.1 Data Sets

Taking EnzymeKG as a case, we model EMT to deal with MTKG completion.
For simplicity, here considered an EnzymeKG Sample (ES). Firstly, description,
history and type were deleted from Table 2. Because tails linked by description
and history are almost all long text. It is more reasonable to use them as auxiliary
information. As for type, its heads are all enzymes, and corresponding tails are
EnzymeNode. So it is not necessary to consider type. Then, to guarantee entities
in valid and test data have been trained, we removed entities appearing only
once, randomly sampled twice ones and kept those appearing more than twice.

Kinship [11] is another specific domain experimental data set, but it is a com-
mon one. Due to limiting space, we only demonstrate results of these twos. Their
final statistics are shown in Table 5 where #1-1-1 and #1-1-N are corresponding
triplets number in test set.

Table 5. Statistics of experimental data sets.

Data sets #Rel #Ent #Train #Valid #Test #1-1-1 #1-1-N

ES 10 57,066 155,417 5,000 5,000 227 4,773

Kinship 25 104 6,411 2,137 2,138 14 2,124

4.2 Link Prediction

Usually, link prediction identifies missing heads and tails. Here added relations
prediction. As previous works [4,9,10,12,22] did, this task had two evaluating
protocols, i.e. Mean Rank (MR) and Hit@k (%). Lower MR and higher Hit@k
mean better performance. Dealing with ES, we made k = 10 for heads and tails
prediction. With only 10 relations totally, k = 1 was taken for relations one. As
for Kinship, k = 10 for all. Besides, like [4], we reported both raw and filt results.

To be fair, we took all embedding dimensions as 20, and adopted mini-
batch 100, max training epoches 1,000. Based on related papers of baselines,
we adjusted other optimal parameters (like learning rate) of open domain KGs
for experimental ones. As for ours, we selected learning rate λ in {0.1, 0.01, 0.001,
0.0001}, margin γ in {1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6} and θhr

min = θr
min in

{0.1, 0.3, 0.5, 0.7, 0.9} via grid searching. Then, we found best configurations for
ES: λ = 0.01, γ = 2 for EMT; λ = 0.001, γ = 2 for EMTv; θhr

min = θr
min = 0.3,

λ = 0.001, γ = 1 for EMTs. Similarly, best configurations for Kinship were
λ = 0.001, γ = 3.5 for EMT; λ = 0.001, γ = 1 for EMTv; θhr

min = θr
min = 0.7,

λ = 0.01, γ = 2 for EMTs.
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Table 6. Link prediction results by heads, tails and relations.

Data sets Models Heads prediction Tails prediction Relations prediction

MR Hit@10(%) MR Hit@10(%) MR Hit@1/10(%)

raw/filt raw/filt raw/filt raw/filt raw/filt raw/filt

ES TransE 21/18 84.7/85.9 2,531/1,929 5.7/28.5 1/1 92.1/92.1

TransH 25/22 86.6/87.4 1,726/1,114 5.4/49.6 1/1 93.5/93.5

TransR 26/24 89.0/90.0 820/202 5.2/36.8 1/1 98.3/98.3

TransD 38/35 96.2/96.5 728/137 7.3/76.1 1/1 92.4/93.7

TranSparse 14/11 95.2/95.7 731/117 7.0/50.6 1/1 94.6/94.6

DistMult 52/49 93.9/94.2 758/130 7.8/82.3 1/1 98.4/98.7

HolE 17/11 94.2/96.4 732/124 9.0/83.0 1/1 99.5/99.8

Complex 29/26 94.0/94.1 741/128 8.6/83.9 1/1 99.6/99.7

ANALOGY 16/13 94.5/94.7 735/126 8.9/84.8 1/1 99.9/99.9

EMT 5/2 97.4/98.6 621/11 9.7/86.7 1/1 99.7/99.7

EMTv 12/9 96.7/97.1 628/16 9.1/83.9 1/1 98.0/98.0

EMTs 10/7 96.7/97.7 620/21 8.8/86.9 1/1 99.3/99.3

Kinship TransE 23/19 40.2/51.3 27/21 33.6/46.0 5/5 84.8/84.8

TransH 20/16 42.9/56.1 22/17 35.5/53.3 4/4 91.4/91.4

TransR 14/9 52.0/76.1 16/10 44.7/72.1 3/3 94.3/94.3

TransD 15/8 51.5/65.2 13/12 45.9/64.4 3/3 92.7/92.7

TranSparse 9/5 69.4/90.2 11/5 57.7/88.5 2/2 98.4/98.4

DistMult 16/8 65.6/88.7 12/6 51.6/84.6 2/2 98.6/98.8

HolE 14/7 66.6/87.3 15/7 56.3/88.6 3/3 97.6/97.6

Complex 11/6 71.1/88.8 13/6 56.3/86.3 2/2 98.4/98.4

ANALOGY 10/4 74.1/88.9 12/5 57.4/87.4 2/2 98.3/98.3

EMT 11/5 62.6/87.4 12/5 53.7/89.9 2/2 97.9/97.9

EMTv 13/8 55.6/76.8 15/9 45.9/74.1 3/3 95.3/95.3

EMTs 12/7 56.3/82.9 13/6 51.9/85.1 2/2 97.8/97.8

Link prediction results are shown in Tables 6 and 7, where bold ones are the
best results under given conditions. Overall, our models had obvious advantages
over translation ones, and slight advantages over composition ones, especially
in tails prediction of ES. It is because that ours fit MTKG very well. Distinc-
tions between translation and composition ones are caused by richer interaction
description among entities and relations, like circular correlation, in composi-
tion models. Among ours, EMT performed best, EMTs took the second place,
according with theoretical analysis on low-rank and sparse matrices in Sect. 3.3.

Table 6 shows that, in ES, raw results were close to filt ones in heads and
relations prediction. However, when predicting tails, raw MR were over 600, but
filt ones even can be 11. In terms of Hit@10, raw values were lower than 10%,
while filt ones even near to 90%. According to [4], the only difference between
raw and filt is whether deleting corrupted triplets in train, valid and test or
not. Like heads and relations prediction, tails one replaced the linked tail by any
other entities. But tails dominated entities. Moreover, same head and relation
can have various tails. So when predicting tails, probability of deleting corrupted
triplets was higher, leading to more distinctions between raw and filt values.
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According to Table 6, ours outperformed translation models, especially MR
of heads prediction and both metrics of tails one, on ES. Among translation
models, overall, Trans R, D and Sparse were better than Trans E and H. Taking
matrix to translate heads and tails, TransR is more expressive. As for TransD, its
translating matrices are determined by both entities and relations. TranSparse
believes that the semantic complexity of a relation is related to corresponding
head and tail numbers. So these three models had better performance. As for
composition ones, various models had similar performance.

In Table 6, dealing with Kinship, TranSparse was the best one among all mod-
els in some metrics, like raw MR and filt Hit@10 of heads prediction. Compared
with TranSparse, training a matrix for each tail, EMT had more parameters.
However, according to Table 5, Kinship only has 6,411 training triplets, is about
23 times less than ES. With too many parameters to learn enough, EMT did
not get best performance in heads prediction. Even though, it still had best
tails prediction in filt MR and Hit@10, proving strengths of tail-oriented mod-
els. Besides, among our models, EMTv did not perform well as the other two.
Getting corresponding projecting matrices by vectors multiplication, EMTv uses
low-rank matrices to finish projecting process, limiting its expressiveness.

Table 7. Link prediction results by relations.

Data sets ES Kinship

filt Hit@10 (%) Heads prediction Tails prediction Heads prediction Tails prediction

Relations 1-1-1 1-1-N 1-1-1 1-1-N 1-1-1 1-1-N 1-1-1 1-1-N

TransE 22.9 88.9 79.3 26.0 57.1 51.3 50.0 46.0

TransH 18.9 90.7 75.3 48.4 57.1 56.1 71.4 53.2

TransR 19.4 93.4 71.8 35.2 50.0 76.3 57.1 72.3

TransD 31.3 99.6 61.2 76.8 50.0 65.3 42.9 64.5

TranSparse 30.0 98.8 85.9 48.9 78.6 90.3 78.6 88.6

DistMult 58.1 95.9 85.5 82.1 78.6 88.8 71.4 84.7

HolE 60.8 98.1 88.5 82.7 78.6 88.7 85.7 88.7

Complex 64.8 95.5 86.8 83.8 85.7 88.8 42.9 86.5

ANALOGY 88.1 95.0 87.2 84.7 85.7 88.9 50.0 87.6

EMT 69.6 100.0 100.0 86.1 71.4 87.5 71.4 90.0

EMTv 35.7 100.0 90.7 83.6 64.3 76.9 50.0 74.2

EMTs 54.6 99.7 98.2 86.3 82.6 82.9 84.6 85.2

Focusing on MTKG completion, furthermore, representation learning of 1-1-
N, different from [4], referring to filt Hit@10, Table 7 groups link predication into
1-1-1 and 1-1-N. It shows that our models outperformed others on ES in 1-1-N.
Specifically, EMTs got the best tails prediction of 1-1-N, proving its superiority.
As for the Kinship, it is similar to Table 6. With too many parameters to learn
enough, EMT only got best performance in tails predication for 1-1-N triplets.

By considering KG completion as a question answering problem, with tail-
related projecting matrices, we project heads and relations from question space
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to answer one where tails are. Compared with baselines, ours had better perfor-
mance in nearly all metrics on ES and tails prediction on Kinship. Therefore,
tail-oriented models are good at handling MTKG.

4.3 Triplets Classification

According to [20], triplets classification is a binary classification problem, judging
triplets are positive or not. Experimental details, including the metric (accuracy),
in this paper were as same as those in [20].

With same baselines and similar parameters optimizing process, triplets clas-
sification was carried out like link prediction. Specifically, to be fair, we took all
embedding dimensions as 20, adopted mini-batch 100 and max training epoches
1,000. Also, the gird searching were same: λ in {0.1, 0.01, 0.001, 0.0001}, γ in
{1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6} and θhr

min = θr
min in {0.1, 0.3, 0.5, 0.7, 0.9}.

After optimized, we found best configurations for ES: λ = 0.01, γ = 2.5 for
EMT; λ = 0.01, γ = 1.5 for EMTv; θhr

min = θr
min = 0.7, λ = 0.01, γ = 2 for

EMTs. As for Kinship, best configurations were: λ = 0.001, γ = 2 for EMT;
λ = 0.01, γ = 2 for EMTv; θhr

min = θr
min = 0.9, λ = 0.0001, γ = 2 for EMTs.

Table 8. Triplets classification results (%).

Models TransE/H/R/D/Sparse DistMult/HolE/Complex/ANALOGY EMT/EMTv/EMTs

ES 87.34/89.98/75.89/96.29/94.64 93.31/93.8/93.36/93.58 94.03/96.32/97.20

Kinship 66.77/70.95/66.46/60.24/72.82 67.50/70.12/69.97/68.11 69.76/71.66/64.5

Triplets classification results are shown in Table 8 where bold results are the
best one under given conditions. With 97.20%, EMTs got highest accuracy on
ES. As for Kinship, the best score 72.82% was from TranSparse. Our EMTv was
the runner up whose accuracy was 71.66%. It is related to non-enough training
of our models (see the similar detailed analysis in Paragraph 6 of Sect. 4.2).

5 Conclusion

Focusing on specific domain KG, this paper practically pays attention to MTKG
completion and puts forward a tail-oriented method EMT. Considering its time-
space complexity, EMTv and EMTs were born. In link prediction, our models,
especially EMT, can get best performance on ES in nearly all metrics. When
handling Kinship, with limiting training data, our model can still get best perfor-
mance in filt Hit@10 and MR of tails predication. As for triplets classification,
EMTs performed best on ES; EMTv was the runner up for Kinship, 1.16%
lower than TranSparse. Although explained via EnzymeKG examples, EMT can
be applied on any MTKG.

Based on our research, EMT can be strengthened by referring to local topo-
logical structure. In ES of our experiments, tails of description and history are
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all long text. So these two relations were removed. But if these text can be con-
sidered as auxiliary information, corresponding performance will be improved.

We define MHKG and MTKG, furthermore, put forward a tail-oriented
method EMT for the later. What about a head-oriented one EMH? If numbers
of N-1-1 and 1-1-N are very close, can we combine EMH and EMT together to
form new strong adaptable models? If yes, how?
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Abstract. Deep neural networks have achieved promising prediction
performance, but are often criticized for the lack of interpretability, which
is essential in many real-world applications such as health informatics
and political science. Meanwhile, it has been observed that many shal-
low models, such as linear models or tree-based models, are fairly inter-
pretable though not accurate enough. Motivated by these observations,
in this paper, we investigate how to fully take advantage of the inter-
pretability of shallow models in neural networks. To this end, we propose
a novel interpretable neural model with Interactive Stepwise Influence
(ISI) framework. Specifically, in each iteration of the learning process,
ISI interactively trains a shallow model with soft labels computed from
a neural network, and the learned shallow model is then used to influ-
ence the neural network to gain interpretability. Thus ISI could achieve
interpretability in three aspects: importance of features, impact of fea-
ture value changes, and adaptability of feature weights in the neural net-
work learning process. Experiments on both synthetic and two real-world
datasets demonstrate that ISI could generate reliable interpretation with
respect to the three aspects, as well as preserve prediction accuracy by
comparing with other state-of-the-art methods.

Keywords: Neural network · Interpretation · Stepwise Influence

1 Introduction

Neural networks (NNs) have achieved extraordinary predictive performance in
many real-world applications [19]. Despite the superior performance, NNs are
often regarded as black-boxes and difficult to interpret, due to their complex net-
work structures and multiple nested layers of non-linear transformations. This
“interpretability gap” poses key roadblocks in many domains – such as health
informatics, political science, and marketing – where domain experts prefer to
have a clear understanding of both the underlying prediction models as well as
the end results [5]. In contrast, many “shallow” models, such as linear regres-
sion or tree-based models, do provide easier interpretability [3] (e.g., through
inspection of the intermediate decision nodes) but may not achieve accuracy on
par with deep models. To bridge this gap, we investigate how to take advantage
c© Springer Nature Switzerland AG 2019
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of the interpretability of shallow models in developing interpretable deep neural
networks.

Recently, several efforts have been devoted to enable interpretability of
deep models, including visualization for feature selection in computer vision
area [2,24], prediction-level interpretation [18] and attention models [7] in med-
ical and other areas. These and related methods typically focus on results inter-
pretability which explains results of each individual sample separately [18]. In
contrast, we focus on model interpretability which can show the features influ-
ences to response variables regardless of individual samples; that is, we aim to
identify for each feature its importance (the contribution to the result) and its
influence (the impact of changes in the feature on changes in the result) [5]. Addi-
tionally, we aim to uncover aspects of the internal mechanism of the NN “black
box” by capturing how each feature adapts over training iterations. Recently,
a widely-used way to build such an interpretable neural network is to firstly
train a complex but accurate deep NN, and then transfer its knowledge to a
much smaller but interpretable model [6]. However, this approach has several
limitations. First, it makes use of the soft labels computed from the deep model
to train another shallow model, which ignores the fact that the “dark” knowl-
edge [1] learned at the end may or may not be the best to train an effective
shallow model. Second, parameters in NN are usually learned by complex pro-
cess, which makes NN hard to be understood while the method does not con-
sider that. So if we could show how each features is learned in NN, it can help
interpret NN.

Motivated by these observations, we propose a novel framework ISI – an Inter-
active Stepwise Influence model, that can interactively learn the NN and shallow
models simultaneously to realize both interpretability and accuracy. Specifically,
ISI first uses a shallow model to approximate the neural network’s predictions
in a forward propagation. Then, ISI uses fitted values of the shallow model as
prior knowledge to train the next learning step. In sum, the two parts in ISI –
shallow models and the NN, interactively influence each other in each training
iteration.

During the process, ISI can be interpreted in three aspects: (i) Importance:
ISI calculates the contribution of each input feature; (ii) Impact: ISI gives the
value changes of predicted variable based on different feature value changes by
a relatively simple relationship; and (iii) Adaptability: ISI shows variations of
feature weights changes in learning process of NN. In experiment, we evaluate
ISI on both synthetic and two real-world datasets for classification problems.
Specifically, we first evaluate the reliability of ISI interpretability based on the
correctness of feature importance and feature influence. We also show the vari-
ations of feature weights changes in ISI updating process. At last, we compare
the prediction accuracy of ISI with traditional machine learning methods and
state-of-the-art methods such as CNN and MIMIC learning [6]. Our results show
that ISI can give utility interpretations from the three aspects and outperforms
all the other interpretable state-of-the-art methods in AUPRC and AUROC.
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2 Related Work

NNs are widely used because of their extraordinary performance in fitting non-
linear relationships and extracting useful patterns [12]. However, in some real
world applications, such as health care, marketing, political science and educa-
tion, interpretability provides significant insights behind the predictions. In such
situations, interpretation can be more important than prediction accuracy. NNs
are limited used [4,6,7,9] in those areas because they are hard to interpret.

Some researchers have been working on the interpretability of models [8].
There is an overview about making traditional classification models more com-
prehensible [10]. Specifically, Wang et al. built an oblique treed sparse addic-
tive model to make the interpretable model more accurate [22]. [3] analyzed
tree-based models by using a training selected set to make the original model
interpretable. [7] proposed an end-to-end interpretable model RETAIN by using
reverse time attention mechanism. Some methods use visualization to find the
good qualitative interpretations of intermediate features [15]. [18] proposed
LIME to learn an interpretable model locally around each prediction. [9] investi-
gated a guided feature inversion framework which could show the NN decision-
making process for interpretation. Another approach for the interpretation meth-
ods are based on calculating the sensitivity of the output in terms of the input.
For example, if an input feature change can bring a significant prediction differ-
ence, it means the feature is important to the prediction, such as [20]. Among
those methods, “distilled” methods [1,11,13] become popular because of their
extraordinary performance and strong interpretability. [1] “distilled” a Monte
Carlo approximation in Bayesian parameter estimation to consider the dark
knowledge inside the deep NN. Meanwhile, recent work showed that by distill-
ing the knowledge, models not only gained a good accuracy, but also maintained
interpretability in the shallow models [6].

A popular interpretable “distilled” method [6] uses a shallow model as the
mimic model to interpret the final neural network results. However, since only
final results are learned, there could be a large gap between soft prediction score
of NN and results of the mimic shallow model, which may have an influence on
the interpretation. Secondly, parameters in NN are calculated by complicated
training process (propagation) which makes it harder to understand while tradi-
tional methods could not interpret that. If we can show how the influence changes
of input features in the training process, it can help users better understand the
neural network.

3 Preliminaries

Before we introduce the interpretable framework ISI, it is important to clarify the
kind of interpretability that we aim to achieve. Specifically, following previous
work [6], we focus on three aspects of interpretability which is the input feature
importance, their impacts and the adaptability for neural networks.

Formally, given a supervised neural network f : X → Y. We assume all input
features in X are explainable. xi represents ith input feature variable and i ∈
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{1, 2, . . . q}, where q is the number of input features. Let x = [x1, x2, . . . xq] ∈ X
represents corresponding feature vector, and y = f(x). Our proposed NN targets
the following three aspects of interpretation:

– Importance: For each feature Xi, f can provide the corresponding contribu-
tion βi ∈ R to y;

– Impact: If feature Xi changes �Xi, f can provide the change �y of y in a
linear/tree based relationship;

– Adaptability: Since f is a NN, f has a learning process to update its param-
eters. f can provide how each βi changes in each iteration.

Table 1. Notations.

Notations Definitions

X ∈ Rn×k Input matrix for sample x1, . . . xn

y ∈ Rn Output vector for sample x1, . . . xn

g(·) Ground true relationship from X to Y
θN = {w1

N , . . .} Parameters set of neural network

f(X; θ
(i)
N

) Learned neural network in ith iteration

wi
N ∈ Ri Weight in layer i of f(X; θN ), i ∈ 1, . . . h

ŷ(i) Output of f(X; θ
(i)
N

)

πS = {w1
S , . . .} Parameters of mimic shallow model

ξ(X; π
(i)
S

) Mimic shallow model of f(X; θ
(i)
N

, y)

ỹ(i) Output of ξ(X; π
(i)
S

)

Here we target to perform
“model interpretability” rather
than “results/local interpretabil-
ity” since latter explains results
of each example separately [18]
while the former shows the
impact of features to response
variable and the interpretation
is not constrained by a single
sample. For example, the inter-
pretable linear models [21] can be
used to explain the relationship between diabetes and lab test variables. Fur-
thermore, humans are limited to understand complex associations between vari-
ables [14]. Shallow models are considered as more interpretable since they have
simple structures explicitly expressing how features influence the prediction [6].
So for the second aspect, we are tying to find similar variable associations as shal-
low models to explain the feature impact. By combining the first two aspects of
interpretation, f can identify features that are highly related to response vari-
able. For the third aspect, we target to learn the changes of each input feature
influence during the NN parameter updating process (Table 1).

4 Interpretable Neural Networks with Interactive
Stepwise Influence

The key idea of the proposed framework ISI is to use an interpretable model to
approximate the NN outputs in the forward propagation, and then, update NN
parameters according to the output of the interpretable model. So in ISI, a NN
f for gaining prediction accuracy, and the shallow but interpretable model ξ for
tuning f parameters to make it interpretable. In this section, we first introduce
our proposed framework ISI and show how to utilize the ISI framework to gain
the three interpretation aspects. Then we provide details of ISI optimization.

4.1 The Proposed ISI Framework

In this section, we first introduce our novel ISI framework (shown in Fig. 1) in
details. Suppose g : X → Y denote the prediction function, where X ,Y are
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Fig. 1. (A) The standard NN learning architecture: update parameters through back-
propagation from a NN output in each iteration. (B) MIMIC learning: first train a NN,
and then train an interpretable model using the output of the NN as soft labels. (C)
ISI architecture: the first module is a NN f used to gain accuracy. The second module
is interpretable models ξ(i) embedded in f . Instead of using the difference between
forward propagation and ground truths for backpropagation, we use forward propa-
gation output as soft labels to train ξ, and then use the fitted output of ξ to replace
forward propagation output in backpropagation. ξ can be used to adjust f to provide
interpretations for f .

its domain and codomain, respectively. Samples (x1, y1), (x2, y2), . . . (xn, yn) ∈
(X ,Y) constitute the dataset (X,y). The goal is to train a traditional NN
f(X; θN ), which is parameterized by θN = {w1

N ,w2
N , . . .wh

N}, wj
N is the jth

hidden layer parameter for f . Parameters in θN are get by minimizing the loss
function LP (f(X; θN ),y). For example, it can be the cross entropy loss func-
tion LP (f(X; θN ),y) = −∑

i yilogŷi, and we minimize it to get the optimal
solution θ

′
N .

Based on the interpretation that we target, we dig into the neural network
learning process (backpropagation for parameters updating). For traditional neu-
ral network, the optimized parameters θ

′
N is calculated from:

θ
′
N = argmin

θ
(i)
N

LP (f(X; θN ),y), (1)

by backpropagations of iterations until it converges. Specifically, for each itera-
tion i > 1 of backpropagation, it includes two parts:

(1) A forward pass to use learned θ
(i)
N in ith iteration and generate the current

prediction output: ŷ(i) = f(X; θ(i)N );
(2) Then a backward pass to update θ

(i)
N in f by minimizing the current loss

function value: θ
(i+1)
N = θ

(i)
N − η∇θN

L(ŷ(i),y), where γ is the learning rate;

Repeat (1)(2), we can get a sequence of θ
(1)
N → θ

(2)
N → . . . → θ

(k)
N , . . . until to a

stable state that |LP (ŷ(i+1),y) − LP (ŷ(i),y)| < ε, where ε ∈ R is the threshold.
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As shown above, the training process is complicated and it is hard to find how
each input feature in X influences θN during the two parts of backpropagation,
which also makes the final neural network model hard to be interpreted. In our
proposed ISI (shown in Fig. 1(c)), a mimic shallow model ξ(X;πS) is embedded
in f training process to adjust parameter updates in each iteration of f , where
πS denote the parameters of the shallow model ξ(X;πS), respectively. Based on
that, we propose a new loss function that can jointly train the shallow model
ξ(X;πS) and neural network f(X; θ(i)N ) to gain the interpretation:

θ∗
N , π∗

S = argmin
θN ,πS

LP (ξ(X;πS , f(X; θN ,y)),y), (2)

where LP (·) is the total loss function. Specifically, Eq. 2 includes three parts: neu-
ral network f(X; θN ) is trained based on ground truth y to ensure the accuracy
of ISI. Then different from mimic learning where shallow model ξ(X;πS) is fitted
by the final results of f and is used to interpret f , we jointly train ξ(X;πS) in
the training process of f , to ensure the close connection between mimic model
and neural network, since it decreases the differences between fitted ξ̂ and f .
Therefore, the shallow model can better approximate and interpret the NN than
mimic learning model. Finally, we trained our joint model ISI by L(·,y) to gain
interpretation. Details of ISI training process is explained in Sect. 4.2.

In sum, compared with the other interpretable methods, there are two major
benefits of ISI: (1) The mimic shallow model ξ(X;πS) is jointly trained with
neural network f to ensure the close connection between them, rather than use
the final results of f and directly fitted ξ(X;πS) in traditional mimic learning
process. Then ξ(X;πS) can better be used for interpretation of f ; (2) We can
use the trained ξ(X;π(i)

S ) in each parameter updating process to explain the
feature influence in each iteration since they are jointly trained. Specifically, we
can record ξ in each iteration: instead of representing the learning process as
complex f (1) → f (2) → . . . → f (k) . . ., it can be represented by shallow models
as ξ(1) → ξ(2) → . . . → ξ(k) . . . which is easier to show the feature influence
in each iteration. For example, if the shallow models are linear models, their
corresponding parameters π

(1)
S → π

(2)
S → . . . → π

(k)
S . . . represent variations of

feature contributions of each input feature; if the shallow models are tree-based
models, we can use Gini importance to calculate the variations.

4.2 Optimization of ISI

Directly optimizing Eq. 2 is hard and time-consuming. In this section, we discuss
how to optimize it. Specifically, we divide each learning iteration in three parts
for Eq. 2 and formulate them as below:

1. Train the shallow model with soft labels: At the ith iteration, we utilize
a loss function π

(i)
S = arg min

πS

LI(ξ(X;πS), ŷ(i)) to train the shallow model

part ξ(X;πS). Here ŷ(i) is the ith iteration output of f , so it contains the
knowledge acquired by f .
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Algorithm 1. Interactive Stepwise Influence (ISI) Model
Input : Data X = [xT

1 ,xT
2 , ...xT

n ], y is the true label, C is the number of class y has, η

is the stepsize, γ ∈ (0, 1] is the fitting parameter, T is the maximum number of

iterations, h is the number of hidden layer

Output: y(f,ξ) is the output

1 Initialized Wtotal = {W1,W2, ...Wh},btotal = [b1,b2...bh];

2 Pick explainable model ξ;

3 for i from 1 to T do

4 Assign ŷ(i) by using forward-propagate of the inputs over the whole unfolded

network;

5 for c ∈ Class do

6 Optimize objective function of LI(X; ξ(πS), ŷ(i)) based on ξ to get ξ̂c

7 Calculate the fitted value ỹ ← ξ̂c(X, ŷ(i))

8 Calculate gradient
dLP (y,ŷ(i))

dWtotal ,
dLP (y,ŷ(i))

dbtotal ;

9 Update Wtotal ← Wtotal − ηd̃LP (y, ỹ(i))/d̃Wtotal;

10 btotal ← btotal − ηd̃LP (y, ỹ(i))/d̃btotal based on previous step;

11 Assign ŷ(i+1) by using forward-propagate using updated parameter Wtotal,btotal;

12 Calculate loss function LP (y, ŷ(i+1));

13 if LP (y, ŷ(i+1)) increase then

14 Update η ← γη ;

15 Use updated Wtotal, btotal or πS to calculate y(f,ξ) based on performance.

2. Obtain predictions from the shallow model: The fitted output of the
shallow model is obtained by computing ỹ(i) = ξ(πS ,X) with optimized πS .
The interpretable patterns are contained in ξ, and it can also be used as a
snapshot of the learning process.

3. Update parameters of the neural network: We use the outputs ỹ(i) from
the shallow model, instead of ŷ(i) from the neural network, as an approxima-
tion of NN forward prediction to compute errors and update NN parameters:
θN = arg min

θN

LP (ỹ(i),y). Due to the relatively simple structure of ỹ(i), ỹ(i)

makes NN easier to be interpreted [6].

The procedure above is formally presented in Algorithm15. We first initial-
ize parameters wk,bk in each hidden layer k, then select a shallow model to be
trained in line 2 and 3. From line 4 to 7, we optimize parameters in the shallow
model ξ based on loss function LI(ξ(X;πS), ŷ(i)). From line 8 to 14, we update
the parameters in f using backward propagation. We use gradient descent as
an example. Note here, if traditional gradient descent is used in LP (ỹ(i)

(S),y)
to update parameters wN in f , we should calculate the derivative of ξ trained
by LI(ξ(X;πS), ŷ(i)). Even if ξ is differentiable, calculating its gradient is time
consuming. So instead of letting θN ← θN − η dLP (ŷ(i),y)/dθN , we first cal-
culate the derivative of dLP (ŷ(i),y)/dθN . Then we replace ŷ(i) with ỹ(i) in
the calculated gradient equations in line 8 and 9. We denote the procedure as
θN ← θN−η d̃LP (ỹ(i),y)/d̃θN . Thus, ISI would not be limited by non-differential
shallow models.
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5 Experiments

We conduct comprehensive experiments to evaluate the performance of ISI on
the three interpretation aspects and accuracy. In particular, we aim to answer
the following questions: (1) Can ISI provide reliable interpretations for its pre-
dictions, in terms of giving proper feature contributions and unveiling feature
influences? (2) Can ISI provide reasonable interpretations for feature adaptabil-
ity in its learning process? (3) Does ISI at the same time have a good precision
compared to the state-of-art methods?

5.1 Data and Setup

We use three datasets including one synthetic data (SD) and two real-world
datasets, i.e., MNIST and the default of credit card clients (D CCC) [17] for
classification tasks. Parametric distributions of different classes in SD are known
as the basis to assess the faithfulness of the three interpretation results from
ISI. The two real-world datasets are used to evaluate ISI interpretation utility
and accuracy. Specifically, MNIST [16] is for handwritten digit classification, and
D CCC is to explore features that have an influence on the occurrence of default
payment (DP). D CCC is randomly partitioned into 80% for training and valida-
tion, and 20% for testing. We use widely used and relatively robust interpretable
shallow models [6]: Logistic regression (LR), Decision Trees (DT), linear SVM,
the state-of-art interpretable neural network model mimic learning [6], and also
neural networks ANN and CNN as baselines. Specifically, for the neural network
module in ISI and mimic learning, we use the same structure of ANN with three
layers where tanh and sigmoid are used as activation functions with consider-
ing the trade-off between performance and computation complexity as well as
for fair comparison. Cross-entropy is used as the loss function. The CNN with
two convolution layers, a pooling layer and a densely-connected layer are used.
Hyperparameters for all methods are tuned by five-fold cross validation. Predic-
tion accuracy is measured by AUPRC (Area Under Precision-Recall Curve) and
AUROC (Area Under receiver operating Characteristic Curve) [6]. Results are
reported by averaging over 100 random trails.

5.2 Interpretation Evaluation

We first test the interpretation ability of ISI in SD since ground truth is known.
The task is a binary classification where data samples are generated from a
mixture of multivariate Gaussian distributions {N (μ1,Σ1),N (μ2,Σ2)} of two
classes. For each sample xi ∈ R

(d1+d2), d1 and d2 are dimensions for informative
and noise features respectively. Informative features are used to separate the two
classes. Noise features are appended to evaluate interpretations, as those features
are not expected to affect classification. N1 = 1200 and N2 = 1500 denote the
number of samples in each class. d1 = 6, d2 = 6 × 20 = 120 and Σ1 = Σ2

are identity matrices. Each noise feature is generated from independent stan-
dard normal distribution N (0, 1). To distinguish contributions among different
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features, we set μ1 = [6, 5, 4, 3, 2, 1]T , μ2 = [−1,−1,−1,−1,−1,−1]T , so the
contributions of features are already sorted in a descending order according to
their importance. Figure 2(a) shows a 3-D visualization of SD.

Table 2. ISI performance of different
interpretable models.

ISI AUPRC AUROC

ANN + LR 0.8567 ± 0.0000 0.8850 ± 0.0000

ANN + DT 0.7200 ± 0.0438 0.7357 ± 0.0438

ANN + SVM 0.8731 ± 0.0016 0.9018 ± 0.0004

ANN + LASSO 0.8802 ± 0.0096 0.9082 ± 0.0067

Table 3. Feature selection performances of
different methods.

Selected features indices NM NP

LASSO 1, 2, 3, 4, 5, (10, 15, 31, 30) 18% 0.20

MIMIC 1, 2, 3, 4, 5, (50, 68, 99, 103, 122) 22% 0.26

ISI 1, 2, 3, 4, 5, (71) 3% 0.03

Table 2 shows the prediction accuracy of ISI embedded with different shallow
models. When the mimic shallow model part ξ uses a linear model such as LR, lin-
ear SVM and LASSO, ISI has higher AUPRC and AUROC than that of tree-based
models. This indicates that linear classifiers are preferred, which matches the fea-
tures associations in synthetic data. The best accuracy performance is achieved
by using LASSO in ISI, so we use it for subsequent interpretation analysis. For the
first interpretation aspect “importance” of each feature, we first test the percent-
age of selected noise features for different models in Table 3 where parameters are
tuned based on their best accuracy in Table 4. Indices in the parameter represent
noise features. “NM” in the table denotes the possibility that the corresponding
model contains noise features out of 100 trails. “NP” is the average ratio of noise
features in each model. Specifically, noise features appear in 22% and 18% models
over 100 random trails for LASSO and MIMIC respectively, while noise features
appear in only 3% of the models for ISI. Moreover, we calculate the contributions
of each feature by normalized coefficients of each linear model and Gini impor-
tances of DT. The results of each interpretable method is shown in Fig. 2(b). We
notice feature importance calculated by ISI are close to the true value. For sec-
ond aspect “impact”, since LASSO is selected in ISI shallow model part (shown
in Table 2), if feature Fi changes �Fi, the probability that it belongs to a certain
group changes αi � Fi, where αi is the coefficient of Fi in LASSO. Those results
indicate ISI can provide more reliable interpretations.

Fig. 2. Fi is the ith input feature of SD. (a)
uses three features to give a 3-D visualization of
SD. Different colors mean different groups. (b)
calculates feature contributions of different inter-
pretable methods based on the accuracy in Table 4.

For the third aspect “adapt-
ability”, the NN f can be
intuitively explained using the
embedded shallow models in
ISI. The approximated varia-
tion of each feature contribu-
tion is shown in Fig. 3(a)(b).
They are calculated by using
features weights (coefficients)
of embedded shallow models in
each iteration, since LASSO is
selected as shallow models. The
variation rates in Fig. 3(b) are
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the weight differences of two adjacent iterations. As the learning process pro-
ceeds, contributions to the final results of each informative feature becomes more
clear, at a fast rate especially in the early stages of training. The weight of noise
features approaches 0. It also matches the converge process in NN learning iter-
ations. Such information may help people understand the final parameters of
neural network.

Fig. 3. (a)(b) show the variations (adaptability) and variation rates of features contri-
butions during the learning process in SD. (c) illustrates contributions for some features
in D CCC. (d) depicts some parameter variations (adaptability) for D CCC.

For real-word dataset, ISI also shows extraordinary and reliable interpretabil-
ity in terms of the three interpretable aspects that we targets. For MNIST, we
select LASSO as the shallow model part of ISI to interpret classification results
according to best accuracy. Figure 4(a) shows input pixels contributions mea-
sured by corresponding coefficients in LASSO. The darker area means that the
corresponding pixels have higher negative relations to the class, while the lighter
area means the weights have more positive relations. Specifically, gray area means
that the coefficients of corresponding pixels in the shallow part are approximate
to zero. For example, for pixels in an image with high values, if they are in
the lighter area, there is a higher probability that the image would be classi-
fied to the corresponding digit. While if those pixels are in the darker area, the
image is less likely to be classified to the corresponding digit. Gray area means
the corresponding pixels have little contribution to detecting digit. Here we can
observe that the white areas sketch the outline of each digit and dark areas are
near them. Gray areas are far from the outline of digits. Figure 4(b) shows five
examples of feature variations interpretation results from ISI in the first 100
iterations. The interval between two columns is 10 iterations. The results show
that there are no specific patterns at the beginning regarding how to classify a
digit. But after more iterations, we can see that the sketch of each digit high-
lighted by white areas becomes more obvious. For D CCC, LR is selected as the
shallow model ISI to explain the three interpretation aspects based on the accu-
racy performance. Figure 3(c) shows the contribution of the amount of previous
payment in each month. It indicates that the amount of previous payments in
April and May strongly influence DP. Since linear model LR is selected, each
feature influence is the product of the corresponding coefficient of LR and the
changes of the feature. Figure 3(d) shows the feature adaptability. It also gives
reasonable explanation of each features to the final DP [23].
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Fig. 4. (a) Selected features by ISI with LASSO in MNIST dataset. The first four rows
are calculated with L1 regularization parameter λ = 0.5, 0.1, 0.05, 0.01 and 100 hidden
units. The results in the last row are calculated with λ = 0.01 and 500 hidden units.
(b) Variations of feature weights in NN learning process of five examples with λ = 0.1
and 100 hidden units.

5.3 Prediction Accuracy Evaluation

In this section, we evaluate the prediction capability of ISI in AUPRC and
AUROC, compared with other classification models as baselines cross the three
different datasets. Here MIMIC learning uses the same NN structure as ISI for
fair comparison. For the shallow part in MIMIC and ISI methods, we try differ-
ence shallow models (LR, DT, SVM, LASSO) in each dataset and reports the
best performed ones. Table 4 shows the accuracy of ISI compared with baseline
methods. “NA” here means the corresponding method takes more than 10 times
longer than the other methods.

Overall, we see the full-blown ISI improves upon all the other interpretable
models cross the three different datasets. Moreover, the performance of ISI is
comparable to that of ANN and CNN while ISI is also easier to interpret. From
the first three rows of LR, DT and SVM in Table 4, ISI improves versus the next-
best alternative an average of 3.24% in AUPRC and 1.06% in AUROC. It may

Table 4. Accuracy performance on the three datasets. MIMIC learning uses SVM,
LASSO, LASSO respectively for the three datasets. ISI is embedded with LASSO, LR
and LASSO for MNIST, D CCC and SD, respectively. Here different shallow models are
used for different datasets because we choose the best NN-shallow models combination
for each case. ISI outperforms all the interpretable models. The performance of ISI is
comparable to that of ANN and CNN, and sometimes is even better.

Method MNIST D CCC SD

AUPRC AUROC AUPRC AUROC AUPRC AUROC

LR 0.8159 ± 0.0113 0.9589 ± 0.0021 0.5954 ± 0.0017 0.6482 ± 0.0030 0.8721 ± 0.0109 0.9007 ± 0.0075

DT 0.7570 ± 0.0140 0.9189 ± 0.0019 0.5177 ± 0.0451 0.5321 ± 0.0091 0.8595 ± 0.0079 0.8128 ± 0.0109

SVM NA NA 0.5349 ± 0.0400 0.5661 ± 0.0048 0.8626 ± 0.0072 0.8944 ± 0.0072

ANN 0.9726 ± 0.0023 0.9946 ± 0.0006 0.6792 ± 0.0189 0.6133 ± 0.0049 0.8891 ± 0.0139 0.9119 ± 0.0093

CNN 0.9894 ± 0.0007 0.9982 ± 0.0001 0.6002 ± 0.0597 0.5010 ± 0.0018 0.8706 ± 0.0104 0.8987 ± 0.0104

MIMIC 0.7219 ± 0.0086 0.9261 ± 0.0029 0.5446 ± 0.0028 0.5790 ± 0.0028 0.8789 ± 0.0151 0.9062 ± 0.0123

ISI 0.8722 ± 0.0033 0.9710 ± 0.0003 0.6066 ± 0.0101 0.6553 ± 0.0083 0.8802 ± 0.0096 0.9082 ± 0.0067
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contributes to ISI neural network structure. Comparing with traditional NN,
the AUROC of ISI is significantly higher than the AUROC of ANN in D CCC
dataset. Based on the row of MIMIC method, ISI outperforms the state-of-the-
art interpretable model MIMIC 10.78% on average in AUPRC and 6.08% in
AUROC. It shows by jointly training shallow models and neural network, ISI
can gain a higher accuracy. Moreover, based on the standard deviation of each
experiment, ISI is also more robust than MIMIC learning in terms of stabil-
ity. This further shows that ISI has desirable discriminative power after being
incorporated into the shallow model to enable interpretability.

6 Conclusions and Future Work

We have proposed a novel interpretable neural network framework ISI which
embeds shallow interpretable models in NN learning process, and they are jointly
trained to gain both accuracy and interpretability. Through experiments over
different datasets, ISI not only outperforms the state-of-the-art methods, but also
can be reasonably explained in three aspects: feature importance, feature impact
and the adaptability of feature weights in NN learning process. Notice here ISI
is mainly applied in areas where interpretability is necessary and traditional
models are still widely used [6,22], such as political and economics area. For the
future work, how to choose proper interpretable shallow models and applying
ISI to more complex data and other neural network architectures are promising
directions for future explorations.
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Abstract. Multivariate time-series early classification is an emerging
topic in data mining fields with wide applications like biomedicine,
finance, manufacturing, etc. Despite of some recent studies on this topic
that delivered promising developments, few relevant works can provide
good interpretability. In this work, we consider simultaneously the impor-
tant issues of model performance, earliness, and interpretability to pro-
pose a deep-learning framework based on the attention mechanism for
multivariate time-series early classification. In the proposed model, we
used a deep-learning method to extract the features among multiple vari-
ables and capture the temporal relation that exists in multivariate time-
series data. Additionally, the proposed method uses the attention mecha-
nism to identify the critical segments related to model performance, pro-
viding a base to facilitate the better understanding of the model for fur-
ther decision making. We conducted experiments on three real datasets
and compared with several alternatives. While the proposed method can
achieve comparable performance results and earliness compared to other
alternatives, more importantly, it can provide interpretability by high-
lighting the important parts of the original data, rendering it easier for
users to understand how the prediction is induced from the data.

Keywords: Early classification on time-series · Deep neural network ·
Attention

1 Introduction

Multivariate time-series early classification has received much attention in data
mining, in which the goal is to predict the class label of time-series data using
only the starting subsequence of the time series. In real-life scenarios, time-series
data often have multiple variables, where the variables exist at each time stamp.
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Hence, the relation between different variables should also be considered. Thus,
it is a challenging task for the traditional machine-learning and data-mining
methods to handle the multivariate time-series early classification.

Several methods have been proposed to handle the early classification on
time-series (ECTS) problem, including the one-nearest neighbor (1NN) [3,6,17,
18], shapelets [5,19,20] and deep learning approaches [2,15,21]. Data mining
method such as shapelet could provide interpretable results, but feature extrac-
tion using shapelets is a time-consuming and high-complexity task. In contrast,
deep learning could learn discriminative feature representations from data, but
the deep architecture with nonlinear transformation renders it difficult for the
practitioners to understand how the prediction results are induced from the
data. The concerns about whether the user should trust the results of machine-
learning models especially those of deep-learning approaches have arose in recent
years [11,14], as the predictions must be trusted for further decision making.
Thus, this work focuses on devising a model which could provide accurate and
explainable results.

The attention mechanism provides a means for deep-learning methods to
mimic the visual attention mechanism found in humans. Chen et al. [1] focused
on the image classification problem and proposed a visual-attention-based con-
volutional neural network (CNN) to simulate the process of recognizing objects
and determining the area of interest, which is related with the task. The atten-
tion mechanism provides a means for deep learning methods to focus on a specific
parts that are crucial to the prediction. We herein propose using the attention
mechanism to provide accurate and interpretable results. Although the proposed
algorithm is a framework, we focused on the setting when the learning algorithm
is of the deep neural network (DNN) method.

The contributions of this work are listed as follows: First, we propose a frame-
work that handles the multivariate time-series early prediction problem. Next,
the proposed attention mechanism enables the important segments of the time-
series data to be identified. We believe that the proposed approach could be
applied to other problems. As compared with the previous studies, this work
applies the attention mechanism to offer effective multivariate time-series early
classification with interpretability. Subsequently, we conducted experiments on
three datasets, and compared with several alternatives. The proposed method
is comparable to other methods in terms of prediction performance; meanwhile,
the proposed work can provide interpretable results. The visualization results of
the proposed work are presented and investigated.

2 Related Work

The literature survey involves the recent studies on early classification on time
series data and time series classification using deep learning.
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2.1 Early Classification on Time Series Data

Xing et al. [16] studied the early classification of sequences. They managed to
minimize the length of the sequence prefix while maintaining comparable accu-
racy to the state-of-the-art methods simultaneously. Xing et al. [18] further intro-
duced the idea of minimum prediction length (MPL) to the early classification
on time series (ECTS), combining with the 1NN classification method. The con-
cept of MPL is to determine the earliest time stamp for each time series, where
the correct nearest neighbor can still be determined.

The 1NN is one of the most powerful tools for time-series classification, and
the simplicity and effectiveness of the 1NN have inspired researchers to focus on
this approach [3,6,17,18]. However, this method does not summarize or extract
features from the data itself, therefore Ye et al. [20] proposed the concept of
shapelets.

Shapelets are subsequences of the time-series data obtained by calculating
the entropy and used as a distinctiveness to classify time-series instances. The
nature of the shapelet approaches causes the prediction results to contain an
explanation, which are the shapelets themselves. Based on shapelets, Xing et
al. [19] proposed a method to obtain the local shapelets using a measurement
called the best matching distance (BMD) that considers the earliness. As the
shapelet approaches are designed for univariate time-series data, they could not
be directly applied to multivariate time-series problems. Ghalwash et al. [4]
devised a method called multivariate shapelet detection (MSD) to extract mul-
tivariate shapelets from all dimension of the time series and uses them as the
pattern to match and classify the target class.

2.2 Time Series Classification Using Deep Learning

Zheng et al. [21] proposed an algorithm called the multichannels deep convolution
neural networks (MC-DCNN) to learn features by corresponding each variable of
the multivariate time series to its channels, and subsequently feed those features
into a multilayer perceptron (MLP) to make the final prediction. Cui et al. [2]
proposed a multiscale convolutional neural network (MCNN) to extract features
at different scales and frequencies, and the experimental results on the bench-
mark datasets show that they have outperformed the state-of-the-art approaches.
Subsequently, Wang et al. [15] proposed the earliness aware deep convolutional
networks (EA-ConvNets) to train the stochastic truncated training data, where
they predicted the target label at any given time. Liu et al. [12] proposed an
attention-based approach for identification of misinformation on social media,
in which the attention mechanism comprises content attention and dynamic
attention. The content attention focuses on textual features of microblogs, while
dynamic attention is related to the time information of the microblogs. Qin et
al. [13] proposed a dual-stage attention based RNN for time series prediction,
which was inspired by the theory that behavioral results are best modeled by
a two-stage attention mechanism [8]. They used an input attention mechanism



544 E.-Y. Hsu et al.

in the first stage to extract features at each time step, and a temporal atten-
tion mechanism in the second stage to select relevant candidates across all time
steps. Notably, the above two approaches proposed to use attention mechanism
to improve prediction performance, whereas our work focuses on using attention
mechanism to provide interpretable results.

3 Proposed Method

This section introduces our proposed framework and the training algorithm.
Besides, we briefly describe a model called the multi-domain deep neural network
(MDDNN), as the MDDNN achieved remarkable results in early classification
on multivariate time series. The proposed work uses MDDNN as a pre-trained
model, but other deep-learning algorithms on time-series data could be used in
the proposed framework.

3.1 Problem Definition

The goal of MTS early prediction is to correctly predict the class label c of a
multivariate time series MT = {T 1, T 2, . . . , TN}, where T j is a time series that
represents the jth variable of MT , and all T js are with the same length L. We use
the early subsequences es = {s1, s2, . . . , sN} of MT where sj is a subsequence
of T j that has the same starting point with T j , namely sj = {tj1, t

j
2, . . . , t

j
�}

for j = 1, 2, . . . , N and � is the length of es with � < L to obtain earliness
E = �

L < τ , where τ is the user-defined threshold of earliness.

Fig. 1. The structure of MDDNN model

3.2 MDDNN Model

The MDDNN is a neural network model that contains the time-series data in
the time domain and frequency domain as the two inputs of the model. The
time domain input is the original time series, while the frequency domain uses
the fast Fourier transform (FFT) to transform the time-series input into a fre-
quency representation. The MDDNN structure is presented in Fig. 1, in which
the two domains are processed by DNNs with two convolutional layers followed
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by one long-short term memory (LSTM) layer. The design of the MDDNN aims
to capture the discriminative features with CNN and extract the temporal char-
acteristic of the features obtained from CNN with LSTM. We chose MDDNN
as the core model of our architecture because it performs well on a multivariate
time-series early predicting task.

3.3 Attention Architecture

Fig. 2. The explainable time series classification model

The proposed explainable time series classification model (ETSCM) uses
attention mechanism to discover important segments as presented in Fig. 2, and
includes four steps. The first step is to use a sliding window to obtain the subse-
quences of the input multivariate time series input, each of which is considered
a candidate segment. Once the first step is completed, for a N -dimensional mul-
tivariate time series MT = {T 1, T 2, . . . , TN}, the segments obtained from MT
are defined in (1).

fi = {{t1i , t
1
i+1, . . . , t

1
i+l−1}, . . . , {tNi , tNi+1, . . . , t

N
i+l−1}}, (1)

where i is the starting timestamp and l is the sliding window length, which can
be specified by the user.

The second step is to feed fi obtained in (1) into a pre-trained MDDNN
model. It is noteworthy that the MDDNN requires the time-series data of the
time domain and frequency domain as the inputs; therefore, fi should be trans-
formed into the representations of these two domains before feeding into the
MDDNN. Additionally, the MDDNN model is a pre-trained model on time-series
data of full length, therefore we used the padding technique to concatenate the
segments with zeroes until the length is equal to the full length of the time-series
data.

Next, each segment is predicted by the pre-trained model, and the outcome
is a probability vector [p1, . . . , pC ] for the classification of C classes. We uses
entropy as listed in (2) to calculate the information embedded in each sliding
window, because entropy is a measure of the state unpredictability.



546 E.-Y. Hsu et al.

E = −
|C|∑

c=1

pc log pc, (2)

where pc is the probability for class c the MDDNN model predicted, and |C| is
the number of total classes.

The information entropy E is used to determine whether the candidate sliding
window is discriminative. If the prediction probabilities tend to follow a uniform
distribution, subsequently the information entropy is large, indicating that this
candidate fails to provide discriminative information for the model to make a
prediction. Consequently, we selected the candidates with the least values of
information entropy in this step.

We select the top K candidates with the lowest information entropy as the
selected discriminative parts, where K is a parameter representing the number
of focused parts to be considered in the proposed method. The next step is to
use these K entropy to perform a weighted majority vote to decide the final
prediction. The weights wk are defined in (3).

Dk = Emax − Ek (3)

wk =
Dk∑K
i=1 Di

, k = 1, 2, . . . ,K

where Emax is the maximum entropy when the probabilistic result is a uniform
distribution, and Dk could be viewed as the discriminative capability of the kth

selected part because the lower the entropy, the more important it is, and wk is
the weight coefficient for the focused part. Once the weights are available, the
prediction for this iteration is determined by majority vote as listed in (4).

y∗ = max
k

K∑

i=1

wkI(yi = yk), k = 1, 2, . . . ,K

I =

{
1, yi = yk

0, yi �= yk

(4)

where yi, yk are the MDDNN prediction results of the focused parts and y∗ is
the final prediction which is calculated by obtaining the maximum of the sum
of weights where yi = yk.

Finally, the top K segments will be selected as the interpretation of the pre-
diction results, because the final results are decided by the majority voting using
them. We used such weighted ensemble approach to ensure that the final predic-
tion would not be decided by only the number of votes; instead, their importance
would also be considered. Using these segments, which are subsequences of the
original input time series, as important features is intuitive and reasonable. This
is because they are directly obtained from the data without any form of transfor-
mation into another feature space, rendering it easy for end users to comprehend
and apply [19].
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The time complexity of the proposed method is O(NL), where N is the
number of time series instances and L is the maximum length along the time
series inputs, since the number of segments generated by the sliding window is
L minus the sliding window size. The space complexity is O(BsL), where B is
the batch size, s is the sliding window size, and L is the maximum time series
length.

Algorithm 1. Training Process
1: procedure Train(input, swl, criteria)
2: fi ← SlidingWindow(input, swl) � fi from (1)
3: while EarlyStop(criteria) �= true do
4: Prob ← Model(fi)
5: E, L ← EntropyAndLoss(Prob)
6: obtain EK by selecting the top K from E
7: WK ← CalculateWeight(EK)
8: Ltotal ← ∑

LWK

9: AdamOptimizer(Ltotal) to update model
10: end while
11: end procedure

3.4 Training Process

As mentioned above, the final prediction of the proposed method is based on
the K sliding windows, each of which uses cross-entropy loss as listed in (5) to
measure the prediction performance.

l(fk, y) = − log py, (5)

where fk is the selected kth segment and y is the ground truth label for the input
multivariate time series.

The loss L for the model is the summation of all K parts, and the definition
of L is presented in (6).

L(MT, y,w) =
K∑

k=1

l(fk, y)wk, (6)

where MT denotes the input multivariate time series, and wk are the weights
from (3).

We minimize L to fine tune the model parameters in the MDDNN model. It is
noteworthy that this is an iterative process. For each iteration, we input all input
segments into the model and select the top K focused parts for this iteration,
which can be used to calculate the weights. Subsequently, the total loss L for
this iteration can be obtained, and the network can use the backpropagation
algorithm to update the model parameters. The training process will continue
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until convergence is reached. This work uses a number of epochs or the early
stopping criteria to determine the convergence of the proposed methods.

The key idea behind the proposed method is to separate the input time-
series data into sliding windows, each of which can make a correct prediction.
The final result is determined by the majority vote of these sliding windows,
indicating that the sliding windows with large weights are discriminative ones.
Consequently, the proposed method could not only help a DNN model, which
is MDDNN in this work, improve the prediction performance, but also identify
the essential segments that can contribute to the model prediction.

4 Experiments

4.1 Datasets

We used three datasets to evaluate our proposed method, including ECG, Wafer,
and AusLan10. The ECG and the Wafer datasets are available on Bobski’s web-
site1, and the AusLan dataset could be downloaded from [9]. These datasets are
typically used in multivariate time series early prediction research, and are thus
used in the experiments. The detailed information about these datasets could
refer to the websites of data providers owing to the limit of page length.

4.2 Experimental Settings

For the input time-series data, they were zero-padded at the end to be of the
same length. For the MDDNN model, we set the number of filters to 64 and 32
for the first convolutional layer and the second convolutional layer, respectively,
on both domains. The filter size was set to 10% of the maximum input length.
We also added batch normalization layers and a dropout layer with 0.5 dropout
rate. For the attention architecture, we used Adam optimizer to minimize the
total loss in (6), and we set K = 5 to obtain five focused parts for each instance.
Additionally, we set the size of sliding window to be 20% of the sequence length.
For the early stopping mechanism, we set two parameters: patience and criteria
for each dataset. Once the change in total loss L from (6) does not bypass
criteria for over patience epochs, the training process stops.

4.3 Comparison Methods and Evaluation Metrics

For the methods we choose for comparison, we selected the classical methods in
early classification on time series problem, including 1 Nearest Neighbor (1NN-
Full) [3], Multivariate Shapelet Detection (MSD) [4], Reliable Early Classifi-
cation (REACT) [10] and Multi-Domain Deep Neural Network (MDDNN) [7].
These are the state-of-the-art multivariate time series early predicting methods.

The metrics in the experiments are the F1-score and earliness. Here, we used
the non-weighted average of F1-score among all classes. We chose the F1-score
1 Bobski’s World: http://www.cs.cmu.edu/∼bobski/.

http://www.cs.cmu.edu/~{}bobski/
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as our metric because accuracy may be inappropriate to evaluate the datasets
we used, as some of them are imbalanced. Regarding earliness, it was used to
assess our model’s ability to make correct predictions as early as possible while
maintaining a decent F1-score.

Table 1. Earliness and F-score results of each method.

Dataset ECG Wafer AusLan

Earliness F-score Earliness F-score Earliness F-score

MSD 0.08 0.59 – – 0.06 0.62

REACT 0.06 0.77 0.23 0.92 0.08 0.86

INN-full 1.0 0.79 1.0 0.87 1.0 0.97

MDDNN 0.06 0.81 0.23 0.91 0.05 0.99

ETSCM 0.13 0.89 0.5 0.93 0.16 0.99

4.4 Experimental Results

We compared our proposed model with four other methods in terms of the F1-
score and earliness, and the results are listed in Table 1, in which the hyphens
indicate that the model failed to make predictions on the given dataset.

The experimental results indicate that the proposed ETSCM can produce
comparable or even better results than other alternatives in terms of F-score.
However, our method does not outperform all other methods when considering
earliness. Regarding earliness, REACT achieved the best earliness, but it could
not provide interpretable results for the end users. In contrast, the proposed
method can balance the F1-score and earliness, while providing interpretable
results to the users. The shapelet-based method MSD can provide interpretable
results as well, but its performance is poor. It is well known that the trade-off
between prediction performance and earliness is an important consideration in
designing an early classification algorithm. In this experiment, we conjecture
that it is difficult to consider interpretability and earliness simultaneously in the
proposed method, because the most important segments may be missing if the
model emphasizes on earliness.

4.5 Interpretation

The interpretations captured by the proposed ETSCM are shown in Fig. 3. We
used the top one interpretation among the top K ones for convenience. Further,
we assessed the interpretation of the full-length prediction (i.e., earliness = 1.0),
as we believe that using a full-length time-series input would provide the model
with the maximum amount of information to make accurate interpretations.
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(a) ECG

(b) Wafer

Fig. 3. Interpretation (Color figure online)

Further, we only showed the correctly predicted ones. We visualized the multi-
variate time series by drawing all the variables on one image such that we have
one image for one instance. We drew the original data in blue lines, and the
focused parts highlighted by our model are drawn in red lines.

4.6 ECG Interpretation from Doctor’s Perspective

Since the ECG dataset is related to the medical field, we invited two doctors to
help us understand the interpretations produced by our proposed method. How-
ever, from their perspective, the highlighted parts do not seem to have medical
meanings because they’re too short to include a whole interval or complex. They
also mentioned that it’s hard for them to look at the raw data and tell whether
the ECG time series is normal or abnormal, since the timespan of the collected
data is also too short to make the waves complete.

We use another ECG dataset provided by Taipei Veterans General Hospital
(VGHTPE) to examine the robustness of our proposed method. This is a 12-
lead ECG dataset with 2 classes, namely atrial fibrillation (abnormal) and sinus
rhythm (normal), and there are 50 instances for 2 classes each. We can reach
84.21% F-score on full length data, and near half of the interpretations of the
abnormal class are correct according to the doctor’s judgement. Figure 4 shows
two of the the correctly predicted and correctly interpreted figures, the doctor
said that the main trait of an atrial fibrillation ECG is that the P-waves are
tattered and do not form a complete P-wave. The red highlighted parts in Fig. 4
are the place where a P-wave should occur, however they turned out to be
incomplete shapes. Hence we believe our method can capture correct patterns
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Fig. 4. Correctly captured fragments on atrial fibrillation data (Color figure online)

that lead to atrial fibrillation, and with further improvements, our method can
correctly interpret more atrial fibrillation time series.

5 Conclusion

This work proposes a framework to provide accurate and interpretable results
on multivariate time-series data. Central to the proposed method is using the
attention mechanism to identify the essential segments, while retaining model
performance. The future work involves extending the proposed work to other
application domains.

Acknowledgment. This research was partially supported by Ministry of Science and
Technology, Taiwan, under grant no. 107-2218-E-009-005 and 107-2218-E-009-050.

References

1. Chen, Y., Zhao, D., Lv, L., Li, C.: A visual attention based convolutional neu-
ral network for image classification. In: 2016 12th World Congress on Intelligent
Control and Automation (WCICA), pp. 764–769. IEEE (2016)

2. Cui, Z., Chen, W., Chen, Y.: Multi-scale convolutional neural networks for time
series classification. arXiv preprint arXiv:1603.06995 (2016)

3. Ding, H., Trajcevski, G., Scheuermann, P., Wang, X., Keogh, E.: Querying and
mining of time series data: experimental comparison of representations and dis-
tance measures. Proc. VLDB Endow. 1(2), 1542–1552 (2008)

http://arxiv.org/abs/1603.06995


552 E.-Y. Hsu et al.
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