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Abstract The study aims to present advances made by the academia in terms of
multidisciplinarywork among groups formed by industrial designers, industrial engi-
neers, physiotherapists, and physicians, related to a University Hospital in a local
environment in order to consolidate a collaborative strategy that allows the devel-
opment of specific medical devices. Methodology A product portfolio consolidated
by surgical devices and lower limb prostheses was the outcome of undergraduate
projects, master and medical-surgical specialization projects working together. The
baseline of surgical devices contains virtual pre-planning, biomodels, surgical guides,
and implants according to requirements from different anatomical areas, predomi-
nantly skull and knee treatments. The baseline of lower limb prostheses presents
cases developed and tested with users who had transtibial or transfemoral unilateral
amputation. Results As the number of actors who shared data and limited resources
increased, a gradual implementation of PLM strategy was established by building
collaborative databases based on an established conceptual framework proposed
by previous tool selection, so that the roles for project execution were defined in
terms of access according to the role. To achieve comprehension among partici-
pants, a visualization model was adapted to involve workflows, roles, capabilities,
and resources. Several data were collected from study cases to be stored and retrieved
for further development according to stage development, understanding time and
resources implemented to respond to a short period request when schedule uncer-
tainties demand those requirements. Regardless of those results, the further project
needs biocompatible materials as well as machines capable of transforming this raw
material in order to achieve high-quality standards.
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1 Introduction

Technological changing promoted by the digital era has merged with the real world,
integrating physical and biological systems. This situation has created opportunities
to alter the shape and reality of the environment around us. Our reality has been built
by newmaterials studies that apply to personalized issues and bioprinting, redefining
the way of conceiving processes, products, and value creation according to theWorld
Economic Forum [1].

Specific cases are related to the development of orthopedic surgical medical
devices. Instead of the traditional approach of mass standard device production,
some products have emerged from new manufacturing concepts such as flexible fac-
tories [2] andDirect DigitalManufacturing (DDM) [3]. These advances have granted
process flexibility for developing Medical Devices (MD) obtained via 3D printing
such as Patient-Specific Implants (PSI) [4], surgical guides for cutting, guiding or
drilling, 3D printing from skin cells for tissue replacement and even printing organs.
Those are pieces of evidence about the way how technological change has impacted
on the new medical devices conception [5]. It was by far demonstrated that Medical
Devices have been effective for patient functional recovery and also improvement in
health professional performance [6].

The development of these Medical Devices requires the integration of a large
amount of data that must be kept updated and traced through the process. Those
systems are heterogeneous and allow the exchange of data between different roles,
processes, communication tools and digital visualization apps [7]. Healthcare orga-
nizations face new challenges that are derived from a greater focus on controlling
health system costs regarding increased expectations on treatment efficiency and per-
sonalized medicine [8]. It must be oriented to create and improve value throughout
collaborative strategies for the organization and patients [9]. A correct strategy must
integrate the patient’s profitability with successful care. Therefore, financial success
would be a desirable consequence instead of the most relevant strategy in healthcare
treatment [10].

In the light of this approach, it was identified that implementing product lifecycle
management strategy PLM grants value creation [9]. The studies on literature review
showed positive results to PLM implementation by improving processes acceleration
[11] that allows reduction of information access time, number of errors, improvement
of communication between actors and reduction of design time and product costs
[12].

Just a few studies carried out on the PLMapproach in themedical sector have been
able to identify three intervention topics: implants, biomedical imaging and product
portfolio in medical device companies. Likewise, it was possible to identify develop-
ment issues fromMedical Devices, mainly focused on information exchange and the
relationship among roles [13].Another difficulty reported has been obtaining relevant
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data for raw biomedical images [14], as well as handling the transmission of patients’
data between collaborators [15]. Finally, technology integration deals with different
processes. From reverse engineering RE to computer-aided design CAD, computer-
aided engineering CAE, rapid prototyping RP, computer-aided manufacturing CAM
and other data files that must be integrated in order to ensure interoperability [16].

On the other hand, despite the fact that PLM strategy is known and implemented
by automotive and aeronautics in countries with emerging economies since the 90s
[17], the PLM strategy applied to the orthopedic medical sector is still uncertain
and needs to be explored in more detail. To our knowledge, a few studies on PLM
in Latin America in the health sector have been oriented to osteosynthesis implants
[18–20], and no studies on socket development for lower limb disabilities have been
found. However, in order to execute a management strategy, it was found that some
researches approximate to the data control on early design stage in sockets for inferior
members [21–24] and customized implants [13, 16].

Different authors recognize the importance of health technologies for value cre-
ation in surgical innovation to improve patients’ life quality within industries 4.0
framework, to configure a System of Systems based onCAx. Those technologies spin
on design and manufacturing labor, supporting patient-centered activities, applying
the principles of flexible manufacturing by using a PDM system integrating virtual
technologies and low-cost 3D printing. Those isolated systems were selected by
technology assessment. Based on these criteria, authors designed the PLM strategy
in order to enhance the development of medical devices, articulating process areas,
tasks, and roles with the technologies mentioned above.

The following sections describe the background, the methodology implemented
to define the strategy and the procedure in which the PLM reference framework
was established for surgical and prosthetic medical devices development. Finally,
the results, discussion, and conclusions are presented.

1.1 Background

Almost 1.5 million different medical devices, a vast variety of artifacts, integrate
Medical Devices [25]. Since 2002, the global market was calculated at US$14 billion
[6], but four years later this value increased around US$260 billion [26]. In 2014, the
orthopedic medical devices world market was estimated at US$375.2 million [27]
from standard devices produced by countries such as Australia, Canada, The United
States, The European Union, and Japan, which belong to The Global Harmonization
Task Force GHTF. Comparatively, Europe was just the third worldwide market,
which was led by the USAwith the 50%, although emerging countries such as China
and India have also risen [28]. In Latin America, Mexico and Brazil were the largest
manufacturers of Medical Devices in the region [29].

Due to the fact that medical devices have been so profitable, they have had two
drawbacks during exportation. First, medical devices in developed countries are
not suitable for contextual, anthropometric and epidemiological needs for the Third
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World population [26]. Second, technological dependence and weak regulations in
developing countries had already opened the door to adulterated and even degraded
products [30].

In contrast to this trend, personalization in product development [31] is a correct
path to generate solutions that correspond to patients’ real needs, applying technolo-
gies to value creation in clinical practice [32]. The technologies involved in medical
devices development come from the integration of architecture systems defined by
the inclusion of Reverse Engineering RE [33] or CAD systems [34]. These systems
implement segmentation techniques such as tomography to obtain soft tissue or hard
tissue virtual models as bone geometries; or by point cloud techniques to generate the
use of a light scanner or contact reconstruction. These systems integrate the applica-
tion of virtual CAD technologies for modeling, CAE for evaluation by simulation,
3DP printing [35] or CAM for the fabrication of final devices [36].

Recent studies on new technologic products for specific patients apply RE based
on image segmentation technique to create implants adapted to bone geometry for
reduction or restitution of complex fractures in: skull [37], jaw [38], spine [39], knee
[40], ankle [41], elbow [42] and shoulder [43]. Apart from implants, other related
technologies have also been developed as temporary guides to assist surgeries [44],
virtual pre-planning [45] and use of physical Biomodels [46]. At the same time, the
application of RE by point cloud has allowed the generation of reference models
from residual limbs that serve as a reference for the design of customized prostheses
for lower limb amputation [47] and upper limb, [48] using virtual technologies and
additive manufacturing for socket generation.

Despite the successful evidenced applications, there were identified three draw-
backs to achieve technology implementation for medical devices. The first one is
related to equipment and specialized software cost. Although different tools have
been proposed, communication difficulties between reverse engineering activity and
CAD/CAE software remain [22]. These difficulties arise due to the investment limita-
tion on commercial PDM licensed from robust use, as well protection and migration
of data [49]. The second drawback refers to the complexity represented by the devel-
opment of these devices, corresponding to compliance with regulatory requirements,
clinical requirements, established monitoring processes and treatment [50]. Finally,
insufficient knowledge management causes the third problem, since specialized pro-
cesses depend on tacit knowledge that only few people have.

Based on the previous approach, the health sector requires solutions focused
on creating robust and reliable design methods, which involve flexible manufac-
turing articulated with low-cost systems. That purpose could be attained by means
to defining workflows that allow a reliable implementation of virtual technologies
[51], oriented towards compliance by quality, safety and efficacy criteria. Not less
important is to guarantee that knowledge is transferable and becomes explicit by
routines and practices from organizational knowledge, to guide and supervise each
role performance during the lifecycle phases of the process development [23].
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2 Methodology

A conceptual framework was established based on the PLM model visualization,
and Martinez’s definition of process areas involved in each phase [52]. Strategy
constructionmethodologywas designed as established by Stark [53], since the design
of the strategy aims to meet the user’s expectations quickly and sustainably. The
implementation objective was defined on the basis of the need to organize the basic
data related to the product portfolio, as aimed by Schuh et al. [54]. Thus, goals
were defined accordingly as follows. On the first stage, two objectives that brought
together the key activities to carry out PLM strategy implementation were defined.
Namely, the aims were:

• To define a System of System (SoS) or an integration model related to flexible
manufacturing technologies based on low-cost health techniques to obtain surgical
Medical Devices (MD) and orthopedic prosthetics MD for specific patients.

• To define a reference framework that integrates the stages and process areas with
technologies, establishing practices and diagnostic tools, process protocols and
quality verification for results generated in each case in order to contribute with
the fulfillment of the quality criteria in the processes associated to the stages of
ideation, definition and implementation, by means of case studies.

The fulfillment of first objective was executed by means of two stages. The first
one was concerned about the strategy configuration, for which was to be required to
define the software architecture to be able for developing medical devices. In accor-
dance with the SoS theory, RE-CAx-3DP systems were defined, selecting potential
technologies to support health software as well as low-cost hardware. From this
study, the inputs and outputs of each system were defined as measurable milestones
throughout the entire workflow [55]. The measurement of performance and interop-
erability between technologies were identified. To do this, user requirements were
defined on software and hardware capabilities such as file weight, virtual volume,
final part weight, virtual and physical processing times, affordability and compati-
bility of CAx file formats [56, 57]. The definition of the types of technologies was
conducted while projects were oriented and addressed to medical devices design,
which allowed defining activities by stages and alternatives to support RE-CAx-3DP
architecture.

In the second stage, requirements were established to configure data management
and government system. Like the SoS from low-cost RE-CAx-3DP, this system was
made up with PDM low-cost product data management platforms. Three sorts of
data were set up to frame the PDM. First, the file storage of RE-CAx-3DP that is
a primary line to support the product development process. Second, for documents
concerned to process management that allows traceability to be carried out in terms
of progress, quality and compliance with product requirements in accordance with
the operational line advance. Third, supporting materials for training and research
such as catalogs, tutorial videos and design guides. These three types of data were
the ones required to administer in any case study.
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According to the second objective and based on the model established by Mar-
tinez [52], the SoS was articulated in a conceptual framework of the PLM strategy,
delimiting the development process to the first three stages of the product life cycle:
ideation, definition and implementation. The process areas derived from conceptual
framework guidelines are fuzzily involved in different lifecycle stage. We proceeded
to define a reference framework to adjust a PLM strategy to medical devices that
was supported by the development of research projects for undergraduate, masters
and doctoral studies that contribute to do more research and configure both SoS, for
RE-CAx-3DP and for cloud storage and documentation. On this strategy, workflows,
roles, activities, and tools were integrated within the strategy.

Finally, a strategy was defined for two kinds of cases, surgical medical device and
a prosthetic medical device. Those involve flexible manufacturing technologies and
SoS, RE-CAx-3DP and Storage documentation by low-cost resources. The strategy
incorporated workflows, stages, process areas implemented, actors involved and sort
of information generated through product development.

3 Results

This section describes themain results related to the guidelines for the PDMplatform,
the selection of technologies for the SoS RE CAx 3DP definition, the conceptual
framework of the PLM strategy, the description of case studies and the PLM strategy
of health technologies for the development of orthopedic medical devices.

3.1 Guidelines to Build a PDM Framework

The four areas proposed by Schuh et al. [54] were considered for the configura-
tion of the strategy: data management, basic product data management, project data
management, business administration and system integration. The first area is prod-
uct data management, which involves tools for the storage of source files, planning,
hierarchy, information coding, document creation and editing, file management and
change and configuration management. The selection of the platform for informa-
tion management required the identification of the capabilities of the system. It was
established that the platform should first allow the administration of the technical and
operational information associated with the device development process, as opposed
to the storage of DICOM formats and the generation of CAx files: RE CAD CAE
RP [58]. Second, the platform had to include office tools for the creation and edition
of documents for administrative processes and quality management. Third, the plat-
form should allow the storage and administration of audiovisual material, created for
learning processes [59].

The second one is the project management area, where formats were organized
through planning tools, quality assessment and maintenance support documenta-
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tion. The third area, business management, is related to the management of multiple
projects, tracking and document backup, change control, process performance indi-
cators (time, cost, quality), access levels andworkflowmanagement. The fourth area,
collaboration and integration, concatenating each system into a single storage and
data exchange interface. Since commercial PDMs of a robust type require a con-
siderable investment [60], it was decided to evaluate isolated technologies that in
an integrated version make up a SoS with the capacity to support the basic features
described above [61].

3.2 Technology Selection

A matrix of capabilities of software tools was generated in relation to the type of
software and possible actions to be carried out. This matrix was built for the pre-
liminary selection of software tools, to be used in the configuration of the software
architecture in order to develop medical devices and PDM platform setting oriented
to storage, configuration and changes of files derived from process development, data
management and knowledge transfer.

Regarding the actions required to perform in these software, criteria such as file
editing, CAD volume visualization, storage, office documents edition and data man-
agement creation of CAx files for product development processes are described in
Fig. 1. Based on this matrix, it was identified software with greater capacity to
respond to the requirements. We identified public software that allows us to perform
5 actions regarding the 6 requirements; however, information is uploaded to a cloud
service. This is followed by educational software that allows performing 4 types of
actions in respect of the file size, the learning cave, its cost, its accuracy, availability
of supporting material and data security; these are the six requirements proposed.
This procedure can be carried out once the software typology, the selected systems
and typology of low-cost integrated software tools have been identified.

Fig. 1 Comparative analysis between capabilities and software selection
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Fig. 2 Workflow and activities based on system integration

3.3 Strategy Conceptual Framework

The main requirement for the development of these devices is to respond to the need
to generate personalized products, tailored to the patient. This feature has implica-
tions such as order of production by customer demand and generation of production
requirements based on the clinical case typology. Consequently, the development of
each product generates a geometry adjusted to a specific patient and product.

The way these products should be developed requires the definition of a flexible
manufacturingmodel, appropriating the use of technologies that can be implemented
in the health area. In accordance with the above, since the conception of 4.0 indus-
tries in the integration of the virtual world materialized physically by 3D printing
manufacturing techniques, a conceptual framework for the construction of the PLM
strategy could be configured. The visualizationmodel proposed byMartínez [52]was
taken as reference due to its contribution in the definition of process areas involved in
the development of new CAD-CAM products and the correspondence of this visual-
ization model with regard to the development process to obtain a variety of products
through SoS RE-CAx-3DP.

Figure 2 describes the conceptual framework of product development processes
according to the process areas and the general workflow involved. In addition, it
entails the definition of two parallel SoS that respond to the capabilities requested by
user requirements, which are the platform related to document editing and storage,
and theRE-CAx-3Dp system for the project definition and implementation according
to the needs of the multidisciplinary team.

According to Fig. 2, the process areas and the stages of the product lifecycle
generate a matrix in which SoS are included. Based on this structure, the workflow
of the process is configured. It starts in Product Marketing area, where the service
request is made. By approval, it is then taken by Product Requirement, where the
product specifications of the portfolio to be developed are defined.

Then, in the Product Design, Product Production and Product Testing areas, the
software tools defined in the SoS RE-CAx-3DP are distributed to get the product
requested. Meanwhile, the work plan is defined from the Project Management area
and consists of assigning roles, tasks and quality formats to meet requirements such
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as delivery times and availability of resources. In the Configuration and Change
area, storage, management, and change management are formalized according to the
client’s request or the assigned roles. Finally, the Marketing area receives the result
generated in the Production Product area in order to deliver it to the client, the one
who provides lifecycle feedback.

3.4 Case Studies

3.4.1 Technologies for Specific Patients

The development of different projects was made according to the relevant area of
knowledge for the development ofmedical devices.Differentmultidisciplinary teams
were formed between Industrial Designers, Physiotherapists and Surgeons. This syn-
ergy allowed the exchange of technical knowledge and facilitated access to clinical
information, as well as the opportunity to generate solutions on real cases and situ-
ations, based on clinical cases of patients with pathologies of congenital, trauma or
oncological origin.

Ethical principles practices were defined and carried out, as well as precautions
such as the codification of the information tomaintain the patient’s data anonymously
were taken, as established by the ethics committees. Once the level of information
security was guaranteed and the interaction roles between the actors involved in the
device development processes were defined, the data were shared through public
platforms, editing and 3D visualization. The working groups were divided into those
responsible for specific medical devices projects and those in charge of lower limb
prosthetic devices.

Figure 3 describes the main workflow with digital manufacturing defined for the
development of Patient-Specific Implant PSI. The process was carried out through
data acquisition via Computer Tomography CT established as input data. A reverse
engineering processwas performed to obtain a virtual referencemodel. Subsequently,
once the specifications of the clinical case by the specialist surgeon are defined, the
list of requirements is stablished and the PSI is modeled in a CAD model. Virtual
simulation tests are performed in CAE by Finite Element Analysis FEM and finally,
the biomodels and PSI are taken to 3D printing.

A pilot study was carried out and structured in two stages. In the first stage, diag-
nostic and planning cases were developed. In this phase, clinical cases are addressed
for diagnosis of tibial plateau fractures, pre-surgical planning for craniosynostosis,
orbital-malar region trauma, PSI design process for cranioplasty, reduction of type
B hemipelvis fracture or replacement of mandibular edentulous areas. In the second
stage, cases were submitted on verification processes by geometrymatching between
device and tissue, namely a surgical approach of LeFort 1 type to reduce cleft lip
LPH sequelae and maxillary retrognathia, segmental mandibulectomy for reduction
of sequelae of mandibular fracture, multiple reductions in pseudoarthrosis and severe
facial trauma.
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Fig. 3 Process and typology of specific medical devices with digital manufacturing technologies

There were 10 cases of skull and face trauma, 2 of jaw, 1 of hip damage, 22 of
knee and 1 case for dental PSI. Derived from these cases, according to the service
requirement definition, four kinds of products were generated. Virtual biomodels
that were used as a reference for diagnosis in order to define surgical pre-planning
processes. In complex cases, the decision-making process was also supported by pre-
surgical or post-surgical physical biomodels, the design of PSI to replace blemished
zones and the design of template guides to assist activities such as cutting, drilling,
and repositioning a bone tissue during surgical activity. All the obtained 3DP virtual
products were developed on a natural scale, and the scope of the results allowed them
to be implemented in surgery.

3.4.2 Lower Limb Prosthesis

Another type of tailored medical devices is the lower limb prostheses. This device
works as a support structure to replace the amputated anatomical region, allowing the
rehabilitation process to recover its ability to walk [62]. These devices are made up
of the socket, the cane, the ankle and the foot [63]. The socket is the main and most
important component of the prosthesis since it is the interface between the stump and
the prosthesis and therefore, it must be adjusted to the stump anatomy [64]. Prob-
lems in the development and manufacture of the sockets obtained by the traditional
technique have been identified in the literature; these problems are associated with
factors such as development time [65–67], information management [24, 68–70] and
product quality [24, 66, 70].

A process based on digital manufacturing, is a SoS RE CAx 3DP, was proposed in
the framework of the PLM strategy. Figure 4 describes the process flow defined for
the development of lower limb sockets. This process starts with reverse engineering
obtaining input data by means of a 3D scanner for the generation of the virtual
reference model of the stump.
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Fig. 4 The development process of lower limb sockets

A process based on digital manufacturing was proposed, that is a SoS RE CAx
3DP, within the PLM strategy framework. Figure 4 describes the workflow defined
for lower limb sockets development. This process starts with reverse engineering,
obtaining input data through the 3D scanner as a virtual stump reference model.
Subsequently, the list of requirements are defined based on prosthetic technician’s
specifications and a traditional mold definition technique was performed by emula-
tion. Thus, the socket was modeled in CAD software based on this reference model.
Finally, the sockets are taken to 3D printing. To carry out the verification of the
socket, adjustment and walking testing on the patient must be done.

There were 4 cases of sockets for lower limb, patients with amputations due to
accidents and victims of war. It was supported by the treatment of a case of a female
patient that required a transfemoral socket of quadrilateral type. The remaining 3
cases presented in adult patients requested transtibial sockets of type PTB and KBM.
These devices were assembled with standard mechanical components according to
the designation of an orthopedist and the concept of the prosthetist. The sockets were
prototyped in 3D printing. In the framework of the pilot study, the lace tests and the
walking tests were performed, obtaining satisfactory results from the first iteration.

During the pilot study, it was possible to verify the applicability of the conceptual
framework for the PLM strategy proposed in Fig. 2. According to this framework,
each case was developed from specific requirements in order to achieve a suitable
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product. Different formats were created for the evaluation and verification of the out-
puts of each activity, since in socket design it is necessary to verify patient measures.
This procedure was implemented in order to manage all the information generated
and control each one of the activities.

3.5 The Proposed Strategy

The strategy reference frame was defined relying on the experiences in the case
studies described in the previous section. The development of this research was

Fig. 5 Process and typology of specific medical devices developed
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based on Martinez’s visualization model [52] and the general process detailed by
Ngo et al. [13] represented in the framework conceptual of Fig. 2. The strategy was
concentrated in the first three stages of the product life cycle, establishing workflow
for the different specific medical devices, organizing the type and level of interaction
of the different roles according to the active process areas in the cycle development
stage. The structure flexibility of the strategy facilitated the development of the two
types of cases: lower limb sockets and specific medical devices [71].

Figure 5 shows that the different types of products (PSI and sockets) are guided by
a common general workflow. However, there are differences that lie in the inputs and
outputs that the products generate in the topological data acquisition activities and in
the intervention activity with the specific medical device. According to each activity,
a responsible role must interact with other roles to obtain or verify the information
needed to achieve each task. Those roles can be internal and external roles to the
organization and intervene in different stages of the life cycle of the product. Patient
data were derived from interactions. These data should be collected and safeguarded
as they are shared among the different areas of the process. In this way, the pieces of
information are centralized in a database that acts as a repository and a visualizer.

All the information generated and shared in each activity is managed, stored and
shared through the use of a web platform that permits different actors to be able to
edit or visualize the data according to their role. The technologies implemented and
integrated in the SoS RE-CAx-3DP are some tools of public access, free software,
or licensed for educational and demonstrative purposes, which has allowed the con-
solidation of an integration model that evolves as open type tools are developed and
adopted. This is evidenced in Figs. 1 and 2.

Although a general PLM strategy was proposed, different factors influenced the
generation of operational differences to obtain the products and the respective results.
Table 1 shows comparisons between two case types according to the process stages
in which the SoS RE-CAx-3DP are involved. The differences and similarities were
identified through four main components: actors involved, technologies, generated
information and verification formats in each stage.

The reconstruction stage contains differences between the 4 components. It was
observed that in terms of sockets, the patient and the prosthetist technician are present
in order to obtain data by means of 3D scanner technology. On the other hand, the
designer obtains patient’s data from computer tomographies or DICOM images in
specific medical devices. Verification by simulation could be another example. In
the case of implants, it is carried out by Finite Element Methods, but in the case
of sockets, the evaluation protocol has not yet been implemented. The similarities
presented in the two cases were found in the stage of modeling in CAD and 3D
printing, in which the role component does not exist since it is carried out by an
industrial designer in both cases.

It was possible to verify the applicability of the conceptual PLM strategy frame-
work proposed in Fig. 2 throughout the pilot study. In accordance with this frame-
work, each project was developed from case requirements to obtain a product.

For that purpose, different requests were received: definition of diagnostic proto-
cols using virtual biomodels for pre-planning and complexity analysis for surgical



214 J. M. Martínez Gómez et al.

Table 1 Case differences according to stage process

Stage Item Patient specific
devices [71]

Lower limb
prosthesis

Reconstruction—reverse
engineering RE

Role Design team Patient
Design team
Technician

Technology Image segmentation
from CT

Cloud points by a 3D
laser scanner

Information To generate and clean
the biomodel

To generate, repair
and clean the stump

Verification Surgery—post-
surgery

Measurement form
activity verification
form

Design by
CAD—computer-
aided design

Role Surgeon requirements Technician or
physiatrist
requirements

Technology CAD software to
virtual pre-planning

CAD software to
emulate traditional
technique

Information Topology biomodel
as reference

Virtual stump as
biomodel

Verification Requirement
accomplishment

Design assessment
form

Simulation
CAE—computer-
aided engineering

Role Development team Under definition

Technology Software CAE

Information Requirement
accomplishment

Verification Mechanical behavior
by material and static
loads

Manufacturing Role Manufacturer-
supplier

Technician-supplier

Technology Additive manufactur-
ing—commercial
fixation—steriliza-
tion

Additive manufactur-
ing—commercial
items for assembly

Information Technology and
material selection by
compliance

Technology and
material selection by
performance

Verification Surgeon satisfac-
tion—requirements
fulfillment

Lacing and walking
testing
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procedure, the design of PSI to evaluate biomechanical behavior by simulation. Fur-
thermore, there were personalized surgical guides for cutting, drilling, or positioning
in order to verify the capability to generate precise devices and therefore evaluate the
fit in the bone tissue during the surgical procedure. However, 3D virtual reference
biomodels were obtained regardless of the type of request in all cases and virtual
surgical pre-planning was carried out according to the surgical technique selected
for treatment implementation.

4 Discussion and Conclusions

In this chapter of the book, it was evidenced how it was possible to build a PLM
strategy integrating a digital manufacturing SoS for production in flexible factory
contexts. In fact, the development of the devices through digital manufacturing was
selected regarding the advantages presented by Jones in relation to: the decrease in
the cost of the additive manufacturing machinery, going from the industrial sector
to the desktop, the release of designs and open source programs RepRap for manu-
facturing by using fused deposition modelling, and the connectivity that makes the
design, modification and exchange of virtual information possible [72]. Thereby, the
final products can be manufactured anywhere, according to the user’s requirements,
obtaining a specific final product [36].

Hence, in the development of a complex product such as custommedical devices,
the process involves the exchange of ideas frommultiple sources, digital data volumes
and decisions that require administration [73]. In addition to collaboration between
distanced actors, different organizations try to configure their value proposition to
be more efficient when solving problems, using fewer resources, implementing new
technologies for product development and administration [74]. That is why industries
4.0 seek to digitize the supply chain that provides personalized treatments to the
patient in the health sector [75], taking advantage of additive manufacturing such as
reduction in distances, production times, material consumption, energy consumption
and part complexity [76].

In the present study, the evaluation of technologies allowed the identification and
selection of technological tools, following the vision proposed by Schuh et al. [54],
on the contribution of technologies to the PLM implementation objective, consider-
ing the processes, roles, availability and centralization of product information [77]
and the activities required to be performed, the control of engineering and quality
requirements [78], the complexity and technologicalmaturity of the prototype or final
product. In accordance with the above, when considering the importance of imple-
mentation costs, the low-cost strategy is highly relevant for countries with emerging
economies, as well as the reduction of development times and costs to guarantee
applicability, especially in the initial stages of development, where the organization
has more control [79].

The authors’ strategy is based on a close communication with the specialists
generating interactions and solutions in co-creation, involving the health expert, as
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an actor who is part of the solution. This strategy is related to the model proposed in
this book chapter, unlike Zdravković et al. [16]who articulated a network of providers
between the clinical system, the common or pre-planning system, the design system
and the manufacturing system specialized by request.

The decisions made regarding the definition of process areas, workflow, technolo-
gies, roles and defined tools to guarantee the control of the results and obtain precise
products, show that low cost PLM strategy built for the development of these devices
in specific patients and prostheses, meet the expectations. However, as Allanic et al.
[14] and Pham et al. [15] proposed, when given the volume of cases developed up
to now as shown in Table 1, it is necessary to continue working to increase the PDM
capacity in order to generate greater control in the interoperability between roles
and the data generated. So that with the proposed base strategy, it is possible to
achieve higher levels of maturity and control strategy processes in relation to the
performance of the roles involved, amount of information, information custody and
data traceability generated during the process.

The implementation of the PLM as a strategy based on the visualization model
proposed by Martínez [52], facilitated the definition and detailed organization of
the operational guidelines, both, process and information flow. This action involves
functional departments, activities, inputs and outputs. This is how the activities were
distributed [20] within 7 of the 8 visualizationmodel processing areas. However, four
of these process areas are: Product Requirements, where the guidelines for the device
design were established; Product Design, where these parameters were converted
into virtual or physical objects; Production Area, where the products were obtained
in 3DP; and Testing Area, in which the fulfillment of requirements was verified by
means of different tests. These were the areas of higher level of development in the
current strategy defined by the authors to guarantee the development of the precise
medical devices.

Nonetheless, other process areas were also intervened. From Marketing, a pro-
posal is prepared to delimit the scopes, delivery times and products requested, also
monitoring product satisfaction from a consumer. The Management Area is respon-
sible for synchronizing activities among the execution of different projects, while the
Configuration and Changes Area coordinate many change requests during the prod-
uct development from different sources. These previous departments functioned as
Cross-Cutting Areas and assumed a key role in the management of compliance with
requests at an appropriate development time. Mainly in the area of configuration and
change processes, from the defined low-cost SoS, the storage, management, evolu-
tion, and traceability of the project data were guaranteed in a safe manner to provide
information integrity and personal data anonymization from medical records.

The digitization of information and the use of 3D printing tools tie in with the
concept of Industry 4.0, with PLM defined as the strategy to orderly consolidate
the required procedures according to the product profile. The way in which the
cases were supported by the resources shared between the design, engineering and
medicine teamswithin the framework of the PLMstrategy, allowed obtaining specific
medical devices and precise sockets according to clinical requirements. The previous
statement is supported by the results obtained in the second stage of pilot studies.
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The tests implemented in surgery were the evidence of satisfactory results. These
tests verified if the implants and the guides fitted in during the surgical procedure. On
the other hand, there were socket and walking tests for the case of the amputations,
which meant good results as well.

Further projects require to strengthen manufacturing capabilities to comply reg-
ulatory procedures that permit to obtain end-user medical devices. It is necessary
to continue exploring low-cost software alternatives for obtaining or programming
a centralized PDM, in accordance with the needs of surgeons, orthopedists, pros-
thetists, designers, and engineers. In this way, the process performance in the product
development could be controlled, obtaining key performance indicators while differ-
ent case studies are carried out. Similarly, it is important to address the observations
of Ahmed, et al. [80] on collaborative work and linking in hospital centers through
PDM platforms and PLM strategies. This could improve articulation and coordina-
tion to access and monitor data from patient treatment, in a way that it facilitates
decision making in real time with respect to device design requirements.
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