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 Dietary Components, Immunity, 
and Cancer

Acetylsalicylic acid is a nonsteroidal anti- 
inflammatory drug (NSAID) that has shown che-
mopreventive effects in animal models and to 

Key Points
• Under special circumstances and defects 

in resolution process or if its underlying 
factors continue, then inflammation will 
turn into chronic inflammation.

• Chronic inflammation can increase the 
risk of cancer through promoting tumor 
initiation, the rate, and extent of cell 
division, neovascularization, and 
angiogenesis.

• Chronic inflammation results in an over-
load of reactive oxygen species (ROS), 
which, in turn, may lead to the develop-
ment and progression of cancer.
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• Immune escape mechanisms are a hall-
mark of tumor progression.

• Bioactive dietary components that antag-
onize immune escape mechanisms would 
have potential to prevent tumor develop-
ment or enhance tumor regression.
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reduce both inflammation and cancer risk in 
humans [1]. Salicylic acids exist in a wide range 
of fruits, vegetables, herbs, and spices. It has 
been shown that regular intake of salicylates may 
be causally associated with reduced incidence of 
certain cancers, especially colon cancer [2].

 Macronutrients and Immune System 
Modulation

 Amino Acids
Arginine and glutamine are depleted during the 
immune response. Arginine is a precursor of 
polyamine, which is necessary for fidelity of 
DNA transcription. In addition, arginine is the 
only substrate for iNOS.  Because of reduced 
arginine concentrations in plasma, T-cells are 
downregulated by the accumulation of myeloid- 
derived suppressor cells (MDSCs) and arginase-1 
secretion. Glutamine plays a role to sustain lym-
phocyte proliferation, increase phagocytosis by 
onocytes/macrophages, and enhance neutrophil 
cytotoxicity [3]. On the other hand, sulfur amino 
acids are essential for the generation of glutathi-
one, acting against prooxidant effects of inflam-
mation and aiding cytotoxic T (TC)-cell activation 
[4].Tryptophan is another important anti- 
inflammatory molecule, which is found in vari-
ous types of vegetables and fish. Tryptophan is 
converted into indole-3-aldehyde, the ligand of 
aryl hydrocarbon receptor (AhR), by bacterial 
enzymes (e.g., lactobacilli). AhR functions as a 
receptor for dietary components and as a tran-
scription factor expressed in epithelial and 
immune cells and some tumor cells. Several phy-
tochemicals and plants from the Brassicaceae 
family have been shown to influence AhR ligands. 
Anti-inflammatory effects of tryptophan can 
occur through conversion of indoleamine-2,3- 
dioxygenase to kynurenine. Both indoleamine- 
2,3-dioxygenase (IDO) and kynurenine modulate 
T-cell function. Moreover, kynurenine which is 
produced by cancer cells can suppress antitumor 
immune responses [5, 6]. AhR can mediate the 
effects of diet to produce anti-inflammatory 
effects by affecting microbiota and gut 
immunity.

 Lipids
Increasing the ratio of n-3 to n-6 polyunsaturated 
fatty acids (PUFA) (n-3/n-6) is generally in favor 
of human health. High n-3/n-6 ratio has been asso-
ciated with increased anti-inflammatory responses 
and decreased risk of cancer. Inflammatory cells 
display high proportions of n-6 PUFA and low 
proportions of n-3 PUFA; thus, enhancing the 
dietary intake of n-3 PUFA could affect the amount 
and type of endogenously produced eicosanoids 
[7]. High intake of n-3 PUFA causes replacement 
of arachidonic acid (AA) in inflammatory cell 
membranes by eicosapentaenoic acid (EPA) and 
decreased generation of AA-derived mediators 
that regulate the secretion of cytokines. Other pos-
sible effects may occur through modification of 
membrane fluidity and lipid rafts and also changes 
in the gene expression and antigen production 
associated with signal transduction [8]. For 
instance, a highly purified form of n-3 PUFA, doc-
osahexaenoic acid (DHA), not only altered the 
composition of T-cell membrane but also down-
regulated signaling pathways of activator protein-1 
(AP-1), NF-κB, and IL-2 and lymphoproliferation. 
Also, it has been reported that omega-3 can 
decrease the expression of pro-inflammatory adhe-
sion molecules, including vascular cell adhesion 
molecule (VCAM)-1, intracellular adhesion mol-
ecule (ICAM)-1, and E-selectin [9]. Short-chain 
fatty acids (SCFAs), e.g., acetate, butyrate, and 
propionate, which are produced by colonic bacte-
ria appear beneficial for regulatory T (Treg)-cell 
proliferation [10, 11]. Phase III clinical trials have 
been published confirming the efficacy of omega-3 
supplementation in some types of cancer.

 Minerals
Trace elements, in particular, zinc, iron, and sele-
nium, play a key role in the regulation of immune 
responses [12]. Zinc deficiency can cause a shift 
from TH1 to TH2 immune responses, result in the 
activation of macrophages and monocytes, and 
increase the production of pro-inflammatory 
cytokines (tumor necrosis factor-alpha (TNF-α), 
IL-1β, IL-6, and IL-8) [13, 14]. Selenium has 
been most strongly associated with cancer risk 
[15]. Selenium not only does act as an antioxi-
dant by participating in the structure of 
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 glutathione peroxidase but also can decrease the 
sensitivity of lymphocytes to oxidative stress 
(OS). Its deficiency decreases neutrophil chemo-
tactic activity and antibody generation by B-cells. 
By contrast, supplementation with selenium 
would increase phagocytosis, NK cell activity, 
and T-cell responses [16].

 Vitamins
Retinoic acid, the active metabolite of vitamin A, 
contributes to the activation of nuclear factor 
receptors-α (RARα), RARβ, and RARγ, which 
are essential for the stability of TH1 cells and for 
controlling conversion from TH1 cells to TH17 
cells. Antioxidant vitamins like vitamins C and E 
are able to scavenge free radicals [17]. Vitamin 
B6 significantly affects the expression of iNOS 
and COX-2 induced by lipopolysaccharide 
(LPS). This vitamin inhibits the induction of 
NF-κB by LPS and leads to a reduction of LPS- 
induced I-B degradation in RAW cells. Vitamin 
D and calcium deficiencies interfere with cellular 
functions in multiple tissues and organs, includ-
ing the immune system [18]. Betaine (trimethyl-
glycine) is a vitamin-like substance that acts as a 
methyl donor. Study of aged Sprague Dawley 
(SD) rats showed that this nutrient has the ability 
to reduce renal expression of genes encoding 
inflammatory mediators such as NF-κB, COX-2, 
iNOS, VCAM-1, and ICAM-1 [19].

The relation of vitamin D3 to immune func-
tion and cancer has been the subject of numerous 
studies. Besides immune cells (macrophages, 
monocytes, dendritic cells (DCs), and dermal 
cells), the 25-hydroxyvitamin D3 is metabolized 
to 1,25-dihydroxyvitamin D3  in the kidneys. 
Genes that show differential expression in 
response to vitamin D include nuclear factor of 
activated T-cells (NFAT), nuclear factor of acti-
vated B-cells (NFAB), epidermal growth factor 
receptor (EGFR), c-myc, and keratin (K16). 
Vitamin D as an alternative to classical immuno-
suppressive agents is used in secondary malig-
nancies. Vitamin D supplement has been 
beneficial for patients with prostate, breast, and 
colorectal cancer (CRC) and melanoma. Studies 
support its potential as an adjuvant for cancer 
[20, 21]. Vitamin D supplement improved 
disease- free survival in patients with early- 

diagnosed breast cancer and metastatic 
CRC. There was a positive association between 
disease-free survival and plasma 25-(OH) D3 
levels [22].

Vitamin E improves immune function through 
its antioxidant property. Antioxidant parameters 
including superoxide dismutase (SOD), catalase 
(CAT), glutathione (GSH) enzyme family, and 
vitamins C and E have the potential to serve as 
biomarkers of prostate cancer [23]. Daily intake 
of greater than 100 IU vitamin E has been dem-
onstrated to reverse T-cell function impaired by 
senescence [24]. Additionally, a Bayesian meta- 
analysis has clearly proved the safety of vitamin 
E [25]. In vitamin C deficiency, phagocytic activ-
ity is impaired because of low neutrophil num-
bers and reduced NK cell functions [26]. Results 
from a meta-analysis point to the benefit of 
decreased mortality that patients diagnosed with 
breast cancer obtain from vitamin C supplement.

 Dietary Bioactive Compounds 
and Cancer Prevention Through 
γδ-T-Cells

About 30% of all malignancies in the Western 
world are estimated to be diet related, where 
overconsumption of definite food items or not 
enough of others in whole diet may contribute to 
cancer incidence [27]. Thus, cancer appears to be 
potentially preventable or modifiable by suitable 
dietary interventions. For example, fruit and veg-
etable consumption reduces the risk of bladder 
[28, 29] and gastric cancer [30, 31]. Also, reduced 
risk of prostate cancer has been reported to be in 
association with cruciferous vegetable consump-
tion and high vitamin C intake [32, 33]. Dietary 
components can modify the risk of cancer by 
affecting various processes, including DNA 
repair, differentiation, apoptosis, angiogenesis, 
and modification of immune responses. As sup-
pression of immunity is associated with increased 
risk of cancer, maintenance of immune homeo-
stasis may have the potential to decrease cancer 
risk [34]. This part will address γδ-T-cells, their 
ability against malignant cells, and diet-mediated 
changes in γδ-T-cell function. Several in vivo and 
in  vitro studies reported that certain food 
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 components might modify γδ-T-cell differentia-
tion and function. We will discuss the possible 
effect of dietary bioactive compounds in prevent-
ing cancer through γδ-T-cell-based mechanisms.

Based on the T-cell receptor (TCR) on their 
surface, there are two main subgroups of T-cells: 
αβ-T-cells that account for about 95% of T-cells 
in peripheral blood and γδ-T-cells that account 
for 0.5–5% of all T-lymphocytes [35, 36]. αβ-T- 
cells commonly express CD4 or CD8 lineage 
markers [35]. αβ-T-lymphocytes mostly belong 
to helper or cytotoxic/effector subsets [37, 38]. 
On the contrary, γδ-T-cells do not generally 
express CD4 or CD8 lineage markers. 
T-lymphocytes usually recognize antigenic pep-
tides by major histocompatibility complex 
(MHC). However, γδ-T-cells do neither require 
conventional MHC antigen presentation [35] nor 
recognize peptide antigens on antigen-presenting 
cell (APC) surfaces. In fact, these cells are acti-
vated in the way similar to that of the innate 
immune cells, meaning through recognition of 
pathogen-associated molecular patterns (PAMPs) 
[39, 40], damaged tissue [41, 42], and targets of 
NK-associated receptors [43, 44]. Phosphorylated 
uridine and thymidine compounds [45], non- 
protein prenyl pyrophosphates [46, 47], bisphos-
phonates [47, 48], and alkylamines [49, 50] have 
all been reported to activate or prime γδ-T- 
lymphocytes. Alkylamines can be obtained from 
the diet and include compounds such as ethyl-
amine, butylamine, and propylamine. Other 
PAMPs include heat shock proteins [51] and 
intermediates from the mevalonate pathway 
which is induced in response to self’s distress 
signals [52]. The mevalonate pathway is common 
to all cells, particularly malignant cells, which 
can be influenced by several dietary factors such 
as cholesterol, isoprenoids, and genistein [53].

There are two main subsets of γδ-T-cells in 
mammalian species: Vδ2-T-cells which are 
mainly found in circulation and Vδ1-T-cells 
which are specific to mucosal surfaces lining the 
respiratory, gastrointestinal, urinary, and repro-
ductive tracts [54]. Circulating γδ-T-cells pro-
duce effector functions against invading 
pathogens and malignant cells and could migrate 
to sites of infection [55]. The mucosal population 
assists in the maintenance of epithelial barrier 

integrity through diminishing inflammatory 
responses and healing of the damaged tissue [56–
58]. γδ-T-cells are on the frontline to respond to 
invading pathogens and pave the way for the rest 
of the immune cells to participate in the elimina-
tion of invading pathogens.

γδ-T-cells share features of both innate and 
adaptive immune cells [59]. These cells produce 
high amounts of cytokines, chemokines, and 
growth factors. In this respect, the most impor-
tant cytokine is interferon (IFN)-γ which is 
involved in antitumor immune responses [60]. In 
addition, γδ-T-cells support humoral immunity 
by the production of IgA, IgM, and IgG antibod-
ies [61]. Other important roles include recruiting 
macrophages and inducing cytotoxicity in malig-
nancies by producing a variety of chemokines 
like perforin-granzyme and TNF-related 
apoptosis- inducing ligand (TRAIL)/TRAIL 
receptor (TRAILR) system [62].

 γδ-T-Cells in Cancer

γδ-T-cells can directly reject tumor cells through 
different ways. They have the ability to secrete 
cytokines such as IL-4, IL-10, TNF-α, and IFN-γ 
[61, 63, 64] which promote antitumor immunity. 
By increasing the expansion of CD8+ T-cell, 
monocytes, and neutrophils and upregulating the 
expression of Fas ligand (FasL) and TRAIL, 
γδ-T-cells enhance tumor killing activity in the 
Fas- or TRAIL receptor-sensitive tumors [65, 
66]. CD16 is a receptor for the Fc portion of 
immunoglobulin G (Fcγ receptors). γδ-T-cells by 
expression of CD16 can increase antibody- 
dependent cellular cytotoxicity (ADCC) [67]. In 
addition, γδ-T-cells elicit the release of gran-
zymes and perforin that mediate cellular apopto-
sis [68] and interact with professional APCs that 
process antigens important for the killing of tar-
get cells [69]. Another function of the γδ-T-cells 
is the ability to moderate or end inflammation by 
inhibition of macrophage activation [70, 71]. 
Interestingly, antigens in bioactive dietary com-
pounds that resemble PAMPs can prime 
 γδ-T- cells, thereby attenuating inflammation and 
cell damage, which have been implicated in 
cancer.

12 Nutrition, Immunity, and Cancer
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 Bioactive Dietary Compounds 
and Possible γδ-T-Cell Activity 
Against Cancer

The modified function of γδ-T-cells by dietary bio-
active compounds may cause favorable immuno-
logical response. Information regarding the effect 
of dietary compounds on differentiation of γδ-T-
cells is limited. Vitamins A and D have been 
reported to play a role in γδ-T-cell differentiation 
[72]. Vitamin D receptor on the surface of γδ-T- 
cells is upregulated via a protein kinase C (PKC)-
related mechanism [73]. The relationship between 
diet and γδ-T-cells was first drawn in 1999 [74], 
when drinking tea increased γδ-T-cell proliferation 
and IFN-γ secretion compared with coffee. 
L-Theanine is a bioactive compound available in 
tea. L-Theanine is hydrolyzed to glutamic acid and 
ethylamine, a nonmicrobial antigen that interacts 
with γδ-T-cells [75, 76]. Two classes of plant 
metabolites have been characterized with defined 
effects on γδ-T-cells, including non-protein prenyl 
pyrophosphates [77] and procyanidins [78] that 
induce Vδ2-T- and Vδ1-T- cells, respectively. Many 
other bioactive compounds are being investigated.

The hypothesis of nonmicrobial priming 
implies that though food phytochemicals cannot 
activate cells, they can prime the cells to respond 
better and more rapidly to a secondary antigen 
[79]. Previous in vitro experiments indicated that 
proanthocyanidins interact with γδ-T-cells and 
increase their proliferation and activation [80].

In a previous study, consumption of fruit and 
vegetable concentrate increased γδ-T-cells in the 
blood while decreasing circulating IFN-γ con-
centrations [81]. In another study, a capsule con-
taining a standardized mixture of tea components, 
L-theanine and catechins, was reported to influ-
ence γδ-T-cell function. People consumed a dis-
tinct amount of L-theanine and catechins for 
10  weeks. White blood cells (WBC) from the 
participants were incubated ex  vivo, with the 
compound responsible for priming, ethylamine. 
Greater activation and proliferation of γδ-T-cells 
and greater concentration of IFN-γ were observed 
in subjects consuming L-theanine compared with 
placebo. As a side note, subjects taking the cap-
sule experienced fewer cold and flu symptoms 
during the study [82, 83].

Mistletoe has been reported to increase levels 
of IL-12 [84], a cytokine that supports the prolif-
eration and cytotoxicity of γδ-T-cells [85]. In 
another study, mistletoe extracts (50–500 mg/L) 
increased proliferation of γδ-T-lymphocytes 
in vitro in a dose-dependent manner [86]. In two 
strains of mice, at first food allergy was estab-
lished with ovalbumin sensitization; and then 
feeding apple condensed tannins (ACT) resulted 
in much less severe anaphylaxis, lower histamine 
levels, and decreased serum levels of IgE, IgG1, 
and IgG2a. γδ-T-lymphocytes were significantly 
increased in the intestinal epithelium of those 
consuming ACT [87]. In another in vitro experi-
ment, a quite low concentration (20–40 mg/ml) 
of apple polyphenols upregulated CD11b on 
γδ-T-cells [88].

Dietary nucleotides have been indicated to 
change the percentage of intestinal intraepithelial 
γδ-T-cells [89]. Adding 0.4% nucleotides to the 
regular diets of weanling mice for 2  weeks 
increased γδ-T-cell proportion from 50.6% to 
58.7% and increased secretion of IL-7, but not 
IL-2 or IFN-γ.

Different dietary oils have been investigated 
regarding their possible effect on γδ-T-cells. In 
one study, splenic γδ-T-cells were statistically 
higher in the safflower oil diet compared with the 
fish oil diet. The possible response to n-6/n-3 
fatty acid ratio has been suggested [90]. 
Conjugated linoleic acid (CLA) has also been 
reported to almost double the number of γδ-T- 
cells in pigs fed 1.33  g CLA/100  g diet for 
72  days [91]. Vaccination combined with CLA 
increased γδ-T-cell numbers largely (sixfold).

Alkylamine compounds produced by gut 
microbiota have been shown to prime γδ-T-cells 
[50, 92]. Furthermore, they can be obtained from 
dietary sources, such as kola nuts [93], tea, apple 
skins, mushrooms, and cucumbers [92]. Drinking 
tea increases urinary ethylamine [75]. When 
mixed with peripheral blood mononuclear cells 
(PBMCs), ethylamine could cause a 15-fold 
increase in the number of γδ-T-cells [92]. In 
addition, the secretion of IFN-γ in PBMCs incu-
bated with ethylamine and challenged with bac-
teria was shown to be stimulated by alkylamines 
[50, 92]. Consumption of tea caused a two- to 
threefold increase in the capacity of γδ-T-cells to 
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secrete IFN-γ in response to bacterial pathogens 
or nonpeptide antigens.

A trial in healthy individuals showed that 
regular consumption of Concord grape juice for 
9  weeks significantly increased the number of 
circulating γδ-T-cells [94]. Consumption of 
Lentinula edodes (shiitake) mushrooms for 
4 weeks also led to an increase in ex vivo prolif-
eration of γδ-T- and NK T-cells and in sIgA pro-
duction [95]. Studies also investigated the 
effects of aged garlic extract (AGE) in healthy 
subjects [96] and patients with cancer [97]. 
Although not many γδ-T-cells were found in the 
serum, they were expanded in the epithelial lin-
ings of the gastrointestinal, respiratory, and gen-
itourinary tracts [96]. A trial in healthy subjects 
revealed that the proliferation index of γδ-T-
cells was almost five times increased after a 
10-week cranberry juice consumption [98]. 
Other plant preparations with γδ-T-cell agonist 
activity include compounds from Funtumia 
elastica bark, Angelica sinensis root, cocoa, 
cat’s claw bark, grape seed extract, and saf-
flower oil [99–102]. Recent evidence reveled 
that grape seed extract has potent γδ-T- cell ago-
nist activity. On the other hand, cocoa extracts 
caused expansion of rat γδ-T-cells in vivo [101] 
to some degree similar to that observed with 
apple-derived procyanidins [87]. Of note, the 
expansion of γδ-T-cell population particularly 
occurred in intestinal and Peyer’s patches after 
oral administration of procyanidins. Rats feed-
ing cocoa showed an increase in intestinal γδ-T-
cells and a decrease in production of secretory 
IgA [87, 101].

In one study in mice, the effect of methanol 
extract from Chelidonium majus was investigated 
in collagen-induced arthritis. Chelidonium majus 
decreased B-cell and γδ-T-cell numbers (in 
spleen) while increasing the proportion of 
CD4+CD25+ Treg cells [103]. The production of 
cytokines (TNF-α, IL-6, and IFN-γ) and the lev-
els of IgG and IgM RA factors were decreased as 
well [103]. One experiment showed that con-
densed tannins derived from the unripe peel of 
the apple fruit act as agonist for both human Vδ1- 
and Vδ2-T-cells and increase the expression of 
IL-2R and cell proliferation. Previous studies 
reported that glutamine prevents apoptosis of 

small intestinal γδ-T-cells and downregulates the 
expression of inflammatory mediators by γδ-T- 
cells in septic mice [104, 105].

However, it has been discussed that many of 
the bioactive compounds in diet are only absorbed 
minimally, and their ability to influence immune 
responses throughout the body is therefore 
argued. However, it must be noted that several 
bioactive compounds do not need to be absorbed 
by the body to modify immune cells. For exam-
ple, such compounds may be metabolized by the 
microbiota, and intermediates which are absorbed 
in the colon influence circulating immune cells. 
However, this has not been proven yet. 
Furthermore, Peyer’s patches and intraepithelial 
cells lining the microvilli contain several immune 
cells, many of which express γδ-TCR.  In addi-
tion, gut immune cells are able to move in and out 
of tissues via the circulation and the lymphatic 
system [106]. In this manner, blood-borne γδ-T- 
cells would be influenced by bioactive com-
pounds which have not yet been absorbed.

Although tumoricidal activity of bioactive 
food compounds has not been clearly shown, cer-
tain food components are known to prime γδ-T- 
cells. When primed cells encounter a malignant 
cell, they can respond faster and more efficiently 
in terms of increased production of cytokines. 
However, enhancement of immune function is 
not always favorable; it is associated with 
decreased risk of cancer on one side, and on the 
other side, it has the potential to increase the risk 
of autoimmune diseases such as inflammatory 
bowel disease [107] and celiac disease [108]. 
Further research is necessary to investigate the 
relevance of using bioactive food components as 
regulators of γδ-T-cell function. If results support 
the hypothesis of priming γδ-T-cells, then this 
would propose a mechanism by which dietary 
factors can reduce the risk of cancer.

 Cocoa, Immunity, and Cancer

Cocoa, the dried, roasted, and either unfermented 
or fermented seeds derived from Theobroma 
cacao tree, has been consumed by ancient civiliza-
tions such as the Mayans and Aztecs [109, 110]. 
Cocoa or cacao contains the highest flavanol 
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 content of all foods on a weight basis and is a sig-
nificant contributor to total dietary flavonoid intake 
[111]. It is worth mentioning that manufacturing 
processes increase flavonoid contents of cocoa 
four times greater than in conventional cocoa pow-
der [112]. In this respect, fermented cocoa con-
tains high quantities of flavonoids, flavanols (also 
called flavan-3-ols), (−)-epicatechin (EC), and 
(+)-catechin and to a lesser extent other polyphe-
nols such as quercetin, naringenin, luteolin, and 
apigenin [113]. When compared to other flavo-
noid-containing foodstuffs, cocoa and its deriva-
tives contain high concentrations of procyanidins, 
which are weakly absorbed through the gut barrier 
[114, 115]. The procyanidins in cocoa are unique 
because they exist as long polymers, prepared 
through polymeric condensation by two, three, or 
up to ten linked units of catechin or epicatechin 
[116] formed during fermentation [117]; thus, 
their favorable effects would be restricted to the 
gastrointestinal tract. These compounds represent 
60% of the total polyphenol content in cocoa prod-
ucts [118, 119]. Cocoa and its products are gener-
ally consumed around the world because of highly 
attractive organoleptic characteristics [118]. 
Absolutely, cocoa and its derivatives constitute a 
larger proportion of the diet of many individuals 
than green tea, wine, or soybeans [118]. However, 
health benefits of cocoa flavonoids depend on their 
bioavailability (absorption, metabolism, and elim-
ination) [120]. Of note, oligomers and polymers of 
flavanols that are not absorbed in the intestine can 
be metabolized by gut microbiota into various 
metabolites with low molecular weight, which 
tend to be well-absorbed through the colon and 
possess biological properties [121].

Intake of flavonoid-rich foods that possess 
antioxidant properties can have health effects 
[122]. Over the last few years, evidence emerged 
suggesting health benefits of cocoa phenolics, 
especially prominent for their metabolic and car-
diovascular effects. These effects may be due to 
antioxidant and antiradical properties of cocoa 
bioactive compounds. Along with their antiplate-
let effects [123], cocoa phenolics can be protec-
tive against heart diseases [124]. In addition, they 
have the capacity to modify the immune responses 
and produce anti-inflammatory and anticarcino-
genic effects [125].

Below is an overview of evidences suggesting 
cocoa products as a cancer-protective factor. In 
particular, data from epidemiological studies 
support protective effects of cocoa and chocolate 
against cancer. Then, it would be also interesting 
to unravel potential biologic mechanisms through 
which cocoa phenolics can modify immune pro-
cesses, thereby protecting against cancer. The 
focus is mainly to show anti-inflammatory and 
antioxidant effects of cocoa, which are known to 
decrease cancer risk. Inflammation provides a 
microenvironment appropriate for angiogenesis 
and therefore tumor growth [126]. Consistently, 
prospective studies have linked high levels of 
pro-inflammatory mediators such as IL-6, CRP, 
and TNF-α to increased risk of cancer in [127, 
128]. An inflammatory response can result in the 
overproduction of ROS, which, in turn, would 
exacerbate the condition through oxidative stress.

 Epidemiological Studies

Exposure to low doses of carcinogens may hap-
pen continuously during a lifetime. Furthermore, 
the body’s response to carcinogens and chemo-
protective agents depends upon several factors 
such as genetic polymorphisms and epigenetic 
modifications [129]. Few epidemiological stud-
ies have investigated the link between cancer- 
related mortality and cocoa, and consequently 
there is a limited support for the efficacy of 
cocoa for cancer-related mortality. Therefore, 
large- scale and long-term controlled trials are 
necessary to confirm cancer preventive effects 
of foodstuffs. Below provides a summary of 
existing studies by type. A review of epidemio-
logical studies on polyphenols has previously 
addressed the link between catechin intake and 
cancer risk [130].

 Case-Control Studies

Data supporting cancer preventive effects of 
cocoa in humans come mostly from the Kuna 
tribe in Panama. Kuna islanders drink flavanol- 
rich cocoa as their major cocktail. Studies have 
found lower mortality rates for cancer and other 
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chronic diseases among islanders than in main-
land Panama. However, the finding should be 
treated with caution due to uncertainties arising 
from confounding factors [131]. Case-control 
studies have frequently investigated the relation 
between cocoa and cancer. They linked flavo-
noid consumption and procyanidin intake to 
decreased risk of gastric cancer [132]. In addi-
tion, higher catechin intake reported to be asso-
ciated with lower rectal cancer incidence in 
postmenopausal women [133]; and higher con-
sumption of epicatechin, anthocyanidin, and 
procyanidin was protective against non- 
Hodgkin lymphoma [134]. Although intake of 
these phenolic compounds has been associated 
with reduced risk of cancers [130, 135], the 
nutrition source for these bioactive compounds 
remains to be identified. Moreover, there are 
studies that failed to show the efficacy of cocoa 
intake in decreasing risk of cancer. For exam-
ple, there was no relation between chocolate 
and cocoa intake and the incidence of any stage 
of colorectal diseases ranging from polyps and 
adenomas to CRC [136]. Lack of correlation 
might lie in the lower intake of flavanols (with 
a small percentage of cocoa-like milk choco-
late) and/or low study power [136]. In another 
study, CRC risk was decreased by about 26% 
for epicatechin and by about 22% for procyani-
dins [136]. In a case-control study, procyani-
dins were associated with a lower risk of 
CRC.  Interestingly, the higher the degree of 
polymerization of procyanidins, the lower the 
risk of CRC [137].

 Cohort Studies

Four prospective cohort studies assessed the 
effect of cocoa and chocolate intake on mortality 
and cancer outcomes: Iowa Women’s Study 
[133], the Zutphen Elderly Study from the 
Netherlands [138], the Harvard Alumni Study 
[139], and the Leisure World Cohort Study [140]. 
In the first study, no separate risk estimates of 
rectal cancer were shown for chocolate [133]. In 
the study [141], no association was found 
between chocolate intake and non-Hodgkin lym-
phoma, though total procyanidin consumption 

was protective, with a 30% lower hazard for the 
category with the highest consumption. Overall 
catechin consumption was associated neither 
with epithelial cancer nor with lung cancer after 
adjustment for confounders. However, nonsig-
nificant inverse association was present between 
intake of catechins from cocoa and chocolate and 
incidence of lung and all epithelial cancers. In the 
Harvard Alumni Study, individuals who con-
sumed candy 1–3 times per month had a 27% 
lower risk of mortality [139]. In the study [140], 
frequent chocolate consumption was not associ-
ated with lower mortality risk, but mortality 
seemed to decrease (about 6%) in people with 
occasional chocolate intake.

 Intervention Studies

To our knowledge, no clinical trial on the effec-
tiveness of cocoa and chocolate intake for cancer 
prevention is available. However, few human 
studies report that cocoa favorably affects inter-
mediary factors in cancer progression, in particu-
lar inflammation and oxidative stress [142–145]. 
Recent studies focused on the modification of 
antioxidant and anti-inflammatory status by con-
sumption of cocoa derivatives. One trial [146] 
has demonstrated that dark chocolate intake sig-
nificantly improved DNA resistance against oxi-
dative stress. Cocoa consumption reduced NF-κB 
activation in PBMCs of healthy volunteers [147]; 
but other biomarkers of inflammation, including 
IL-6, remained unaltered in a group of patients 
with cardiovascular diseases after cocoa powder 
intake [146].

Evidence for cancer chemoprevention by fla-
vonoids comes from different study types. 
Antitumoral effects of flavonoids occur through 
induction of apoptosis and inhibition of several 
kinases and transcription factors, angiogenesis, 
and cell proliferation. Further, cocoa and its bio-
active compounds have shown antitumoral effects 
independent of antioxidant function [115, 148, 
149]. However, whether it works in humans 
remains to be addressed. Below different path-
ways and molecular targets whereby cocoa and 
their bioactive compounds interfere with cancer 
cells are reviewed.
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 Antioxidant and Antiradical Activities 
of Cocoa

Polyphenols are able to capture ROS which have 
been implicated in carcinogenesis. One serving 
of cocoa or chocolate has antioxidant capacity 
(AOC) that exceeds the antioxidant capabilities 
of many foodstuffs [118]. The cocoa procyani-
dins, epicatechin, and catechin have important 
antioxidant abilities [150, 151]. Genome analysis 
of human colon adenocarcinoma cell line (Caco-2 
cells) revealed that polyphenolic cocoa extract 
can modulate the expression of numerous genes 
involved in cellular response to OS [152]. 
Phenolic compounds from cocoa inhibit lipid 
peroxidation in microsomes and liposomes. The 
polyphenolic cocoa extract increased mRNA lev-
els, protein levels, and enzymatic activity of 
CYP1A1  in MCF-7 and SKBR3 breast cancer 
cells [153]. The cocoa polyphenolic extract led to 
inhibition of ROS generation and xanthine oxi-
dase activity in stimulated myelocytic leukemia 
HL-60 cells [154]. In vivo studies also demon-
strated the protective effect of cocoa in rodent 
models of CRC and lung cancer and liver injury 
[155, 156]. In a lymphoma model, the albumin 
fraction of semifermented dry cacao showed free 
radical scavenging capacity [157]. The cacao is, 
therefore, the source of potential antitumor 
agents. Upregulation of cytoprotective enzymes 
like Kelch-like ECH-associated protein 1 (Keap1) 
and its binding partner, transcription factor 
NF-E2-related factor-2 (Nrf2), which are 
involved in antioxidant response element (ARE), 
by therapeutic agents like cocoa and its phenolic 
compounds can subsequently activate ARE 
[158]. Epicatechin has been described to act 
through this pathway as well [159]. Human stud-
ies also showed similar results with an increase in 
plasma AOC and a decrease in plasma lipid oxi-
dation [143, 160].

 Cocoa and Immunity

Several studies of cocoa’s effects on the immune 
system have been published in recent years. In 
vitro and in vivo models have investigated both 

the innate and adaptive immunity. Most in vitro 
experiments of cocoa and its components have 
focused on inflammatory mediators released by 
macrophages. Some studies tested the effects of 
cocoa administration in several models of inflam-
mation. Human studies investigating the relation 
between cocoa and innate immune responses are 
scarce and provide inconsistent results. One 
study showed no significant effect of cocoa on 
inflammatory markers in a group of healthy sub-
jects [142]. However, another study reported that 
regular intake of dark chocolate by healthy 
humans was inversely associated with serum 
C-reactive protein (CRP) concentrations [161]. 
In vitro, on cultured lymphoid cells or PBMCs, 
and in  vivo models also have investigated the 
influence of cocoa on adaptive immune response.

 An Overview of Inflammation 
in Cancer

Inflammation is a feature of innate immunity, and 
chronic inflammation is a contributing factor to 
the initiation and progression of cancer. Chronic 
inflammation acts as a trigger for premalignant 
and malignant transformation of cells. About 
20% of all cancers are related to chronic inflam-
mation resulting from infections and autoim-
mune diseases [162]. The association between 
inflammation and cancer involves key 
 inflammatory mediators. Several inflammatory 
mediators, like NF-κB, TNF-α, and COX-2, have 
been related to cell proliferation, antiapoptotic 
activity, angiogenesis, and metastasis [163, 164]. 
Inflammatory cytokines and cells have been 
broadly recognized in cancers of the stomach, 
colon, skin, liver, breast, lung, and head/neck 
[165]. Inhibition of COX-2 and iNOS has shown 
protective effects against tumor development in 
animal models, suggesting that they are crucial 
targets for tumorigenesis. Inflammation can 
enhance mutation rates and proliferation of 
mutated cells. Inflammatory cells are sources of 
ROS that are able to induce genomic instability 
and DNA damage. More precisely, cells may use 
cytokines such as TNF-α to increase ROS in 
adjacent epithelial cells [166, 167]. On the other 
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hand, NF-κB, which regulates the expression of 
iNOS and COX-2, is constitutively active in neo-
plastic cells, posing a hazard to the development 
of cancer. The pro-tumorigenic function of 
TNF-α and IL-6 released by immune cells is well 
established. The role of TNF-α and IL-6 as mas-
ter regulators of tumor-associated inflammation 
and tumorigenesis makes them striking targets 
for adjuvant therapy in cancer [163]. Diet can 
also contribute to chronic inflammation that facil-
itates the development of gastrointestinal can-
cers. Chronic consumption of alcohol activates 
mast cells, causes polyp formation, and enhances 
tumor formation and invasion in a mouse model 
of colon cancer. In addition, red meat contains 
high levels of N-glycolylneuraminic acid. This 
foreign antigen can get incorporated into tissue 
and attract inflammatory cells [165]. Inflammation 
can also modulate composition of the gut micro-
biota, assisting growth of harmful bacteria such 
as Escherichia coli, which are present in higher 
concentrations in patients with CRC. Colitis can 
cause tumorigenesis by changing microbiome 
toward a population more capable of inducing 
gene damage and mutagenesis [165]. Therefore, 
the use of chemopreventive substances that 
decrease inflammation seems to be a helpful 
approach to control the development and pro-
gression of cancers. For example, NSAIDs or 
selective blockers by inhibition of COX activity, 
which fuels cancer-related inflammation through 
prostaglandin E2, decrease the risk of some type 
of cancers including colon and lung cancer. 
However, further clinical studies are necessary to 
determine the possible benefits and risks of long- 
term NSAID use for cancer prevention and treat-
ment [165]. For more information about the role 
of inflammation in cancer, see comprehensive 
reviews [162, 164, 168].

 Anti-inflammatory Effects of Cocoa 
and Cancer

Different anti-inflammatory effects of cocoa 
extracts have been reported. Cocoa extract and 
EC decreased TNF-α, IL-1a, IL-6 expression and 
NO secretion in different cells. Cocoa phenolic 

extract inhibited phosphorylation of AKT and 
ERK induced by TNF-α and suppressed MEK1 
(mitogen-activated protein kinase kinase-1) and 
phosphatidylinositol-3-kinase (PI3K) activity 
induced by TNF-α, suggesting a potential che-
mopreventive effect against pro-inflammatory 
cytokine-mediated skin cancer and inflammation 
[169]. Cocoa polyphenols reduced phosphoryla-
tion of TNF-α-induced c-Jun N-terminal kinase 
(JNK) and nuclear translocation of NK-κB [170]. 
High-molecular-weight polymeric procyanidins 
from cocoa decreased TNF-α-induced IL-8  in 
human colon cancer HT-29 cells [171]. Cocoa 
flavanols have demonstrated a critical role in the 
prevention of neoplastic lesions in CRC [172]. 
Feeding animals with a 12% cocoa-enriched diet 
suppressed intestinal inflammation induced by 
AOM through the inhibition of NF-κB signaling 
and downregulation of COX-2 and iNOS [170]. 
These effects suggest the chemopreventive effect 
of a cocoa-rich diet on colon inflammation and 
preneoplastic lesions. In another study, supple-
mentation with dark chocolate decreased cell 
proliferation and downregulated transcription 
levels of COX-2 and RelA resulting in a lower 
number of preneoplastic lesions [173].

Other studies reported several possible immu-
nological effects of cocoa and cocoa flavonoids 
on cancer models.

 Cancer Immunity Cycle

The immune system is able to recognize tumor 
antigens. However, mechanisms for immune 
escape are a hallmark of cancer progression 
[174]. Antitumoral activity of the immune system 
involves different immune cells such as NK cells, 
dendritic cells (DCs), macrophages, and T-cells 
[175]. DCs capture tumor antigens, leading to 
activation and priming of effector T-cells (Teff) 
against tumor-specific antigens in lymph nodes 
[176]. DCs present antigens bound to major his-
tocompatibility complex (MHC) molecules. 
Activated Teff infiltrate in tumor, recognize 
malignant cells, and kill them. DCs capture anti-
gens from dying tumor cells, and this would trig-
ger the cycle over again. Naïve T-cells cannot be 
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activated exclusively by recognition of cancer- 
specific peptide-MHC I complexes by T-cell 
receptor (TCR). Additional activator signals must 
be present involving pro-inflammatory cytokines 
(e.g., TNF-α, IL-1, IFN-α) [177], factors released 
by killed cancer cells such as high mobility group 
box 1 (HMGB1) and cyclic dinucleotide (CDN) 
[178], and Toll-like receptor (TLR) signaling. 
Because killing of cancer cells is accompanied 
by release of tumor-associated antigens and 
increased activation of Teff, it is expected that 
antitumor responses should occur repeatedly. 
However, different mechanisms help tumor cells 
to escape the immune system. For example, many 
tumors suppress MHC expression, thus masking 
their presence from TCR. In addition, after infil-
tration of Teff into cancer cells, activation of 
inhibitory signaling pathways in local microenvi-
ronment would reduce T-cell function. Inhibition 
of these pathways by immunological drugs 
removes cell intrinsic inhibitory pathways that 
block effective antitumor cell response 
[179–181].

Recent studies have suggested paradoxical 
roles of regulatory T (TREG) cells in cancer [182]. 
FOXP3C CD4C CD25C/high TREG cells are 
involved in the modulatory action of the immune 
system and, in particular, are valuable for coordi-
nating control of peripheral immunological toler-
ance [183, 184]. The transcription factor FOXP3 
is a critical regulator of TREG cell function. TREG 
cells provide the machinery for immune homeo-
stasis during infections by inducing useful 
inflammatory responses while minimizing collat-
eral tissue injury. However, TREG cell function in 
cancers is widely regarded as negative [185–187]. 
In fact, an increased number of TREG cells have 
been reported in patients with head and neck, 
pancreatic, stomach, breast, and liver cancers 
[181]. Tumor-associated TREG cells pose a major 
challenge in vaccine therapy for cancers [185, 
187, 188]. Therefore, several anti-TREG regimens 
have been developed that rely on depletion of 
TREG cells and inhibition of their suppressive 
function, their residence into tumors, and/or their 
differentiation/proliferation [185, 186]. For 
instance, anti-CTLA-4 (cytotoxic T-lymphocyte- 
associated antigen-4) immunotherapy that has 

shown promising results [189] depletes TREG cells 
from tumor tissues [189]. Chronic inflammation 
mediated by cytokines and ROS may cause cell 
injury in target cells and therefore may contribute 
to cancer development. Mounting evidence sug-
gests that tumor-associated inflammation is a 
tumor-promoting event. The reason is that inflam-
mation can support cancer cell survival through 
DNA damage and development of a tumor 
stroma.

Almost immediately after birth, the gastroin-
testinal (GI) tract changes from sterility to a large 
ecosystem with hundred trillion microbial organ-
isms, representing the most densely populated 
ecosystem known so far [190]. The overall popu-
lation of intestinal colonies including bacterial, 
fungal, and viral communities is referred to as the 
gut microbiota. The microbiota include more 
than 1500 bacterial species, which are estimated 
to encode more than 150 times more genes than 
human genome. The gut microbiota is in intricate 
and reciprocal interaction with the human host 
and nutrients, providing a metabolic engine 
important for GI health and disease. This highly 
regulated and complex ecosystem plays an 
important role in priming the immune system and 
maintenance of intestinal immune homeostasis 
[191, 192]. Besides metabolic effects, the gut 
microbiota affects tissue development and 
inflammation [193–196]. Providing a physical 
barrier against pathogens and supplying 
 immunological surveillance signals are other 
functions of the gut microbiota. There should be 
an ability to maintain the balance between toler-
ance toward microbiota and surveillance against 
pathogens. Such ability comes from the cross talk 
between the intestinal microbiota and host that 
involves both innate and adaptive immunity 
[197–199]. The hygiene hypothesis reflects the 
fact that the lack of exposure of the gut to harm-
less microorganisms, called “old friends,” in 
infancy causes certain deficiencies in the immune 
system at later age. A number of immunological 
disorders such as allergic diseases, inflammatory 
bowel diseases, type 1 diabetes, and multiple 
sclerosis are thought to result from an imbalance 
in the function of the regulatory immune system. 
Proper discrimination between harmful and 
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harmless pathogens involves a family of cell sur-
face and cytosolic receptors of the innate immu-
nity, called pattern recognition receptors (PRRs). 
PRRs including Toll-like receptors (TLRs), 
C-type lectin receptors (CLRs), and nucleotide-
binding oligomerization domain proteins (NOD 
proteins) recognize PAMPs and damage-associ-
ated molecular pattern (DAMPs). Interestingly, 
both harmful and harmless bacteria express these 
PAMPs. In this manner, pathogenic bacteria can 
pass through the epithelial barrier and activate 
inflammatory cascade through increased NF-κB 
translocation, on one side, and on the other side, 
commensal bacteria do not invade epithelial cells 
and do not stimulate inflammatory responses 
[200–203].

Commensal bacteria colonization results in 
Paneth cell expression of an antimicrobial pep-
tide, regenerating islet-derived 3 gamma (Reg 
III-γ) [204, 205], which is involved in innate 
immune protection against enteric pathogens 
[206]. Moreover, the gut microbiota helps with 
maintaining the balance between Teff and Treg 
cell function. Expansion and differentiation of 
T-cells into TREG cells occur in the colon in the 
presence of microbiota. TREG cells suppress 
inflammatory response via the production of anti- 
inflammatory cytokines IL-10 and transforming 
growth factor (TGF)-β. A mixture of Clostridia 
strains induces the accumulation of TREG cells in 
the colon and expression of IL-10 and CTLA-4 
by Treg cells. Lactobacillus reuteri, L. murinus, 
and Helicobacter hepaticus have also been impli-
cated in TREG function [207–210].

 Cancer Prevention and Treatment, 
Immunity, and Probiotics

 Epidemiological Studies

The preventive effect of probiotics or fermented 
products containing probiotics on animal and 
human cancers has been frequently investigated. 
However, epidemiological evidence is scarce. 
Studies on humans showed a reverse association 
between yogurt intake and the risk of breast can-
cer [211]. In another case-control study in the 

United States, yogurt consumption was reported 
to be protective against colon cancer [212]. 
Similar results were found by Dutch researchers 
for breast cancer [213]. There are clinical trials 
investigating the possible role of probiotics in 
cancer prevention. In one trial, recurrence rate of 
superficial bladder cancer was lower in subjects 
who received L. casei Shirota (LcS) in compari-
son with subjects receiving placebo [214]. 
However, it must be clarified if long-term supple-
mentation of probiotics can significantly reduce 
the risk of CRC in humans. A cohort study with 
12 years of follow-up on 45,241 volunteers deter-
mined that high yogurt consumption was signifi-
cantly related to lower risk of CRC [215]. 
However, these studies have limitations concern-
ing selection and standardization of microorgan-
isms, control of food intake, time, and dosing of 
microorganism administration.

Clinical studies have also investigated the 
beneficial effect of probiotics in preventing GI 
disorders, including viral diarrhea and chemo-
therapy, radiotherapy, or antibiotic-associated 
diarrhea. In addition, chronic treatment with pro-
biotics effectively reduced the urinary excretion 
of aflatoxin B(1)-N(7)-guanine (AFB-N(7)-
guanine), a marker for hepatocyte carcinogene-
sis, and the risk of CRC [216]. It is commonly 
believed that probiotic supplementation can 
decrease the risk of breast cancer in perimeno-
pausal women. However, clinical studies report 
inconsistent results. It seems that long-term use 
of probiotics is needed to achieve chemopreven-
tive effect on the development of malignant 
tumors. For instance, L. casei supplementation 
for 4 years could prevent atypical CRC [217]. 
Usual consumption of L. casei Shirota (LcS) and 
soy isoflavone in adolescents was inversely 
related to the incidence of breast cancer in 
Japanese women [218]. In contrast, the 3-month 
yogurt consumption could not improve cell- 
mediated immune function in women [219]. 
Altogether, evidence for the efficacy of probiot-
ics in human tumorigenesis is ambiguous. 
However, there is mounting evidence from exper-
imental models indicating antineoplastic effects 
of probiotics. In addition, as shown through a 
meta-analysis study, data from epidemiological 
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studies reveal a decreased risk of CRC and pre-
cursor lesions in association with consumption of 
probiotics. However, interventional studies are 
necessary to confirm the efficacy of probiotics 
[220]. Coupled to the above is the need for long- 
term high-quality studies that assess the efficacy 
of probiotics in subjects with different types and 
stages of cancer.

 Cancer Prevention

Study of proto-oncogene human epidermal 
growth factor receptor-2 (HER2)/neu-driven 
transgenic mice showed that extended contact to 
metronidazole in combination with ciprofloxacin 
increases the risk of breast cancer [221]. In fact, 
altered composition of the gut microbiota may 
influence the development and progression of 
cancer through inflammatory and metabolic path-
ways [222, 223]. However, not all probiotics have 
the ability to modulate the immune system and 
thereby play a role in cancer prevention. 
Previously, it has been reported that a dose of 
108–109 colony-forming unit (CFU)/day of a 
strain with immunomodulatory effect and a dura-
tion of 48–72 h is required to influence the host 
immune homeostasis [224, 225].

 Maintenance and Enhancement 
of Intestinal Barrier Function

Mucin 2 (MUC2) is the main mucin secreted by 
intestinal goblet cells. MUC2-deficient mice 
have increased risk for CRC [226]. Treatment 
with probiotics was reported to be effective to 
promote the restoration of colonic tissue through 
an increased MUC2 expression, extracellular 
mucin secretion, and inhibition of enteropatho-
genic adherence. Increased epithelial permeabil-
ity has been implicated in early stages of CRC. L. 
plantarum MB452 was shown to enhance Caco-2 
tight junction (TJ) integrity, possibly through 
encoding TJ-related genes including occludin 
and scaffold protein zonula occludens [226–228]. 
Probiotics are also capable of preventing epithe-
lial barrier damage by stimulating the production 

of cytoprotective heat shock proteins in stressed 
epithelial cells to maintain hemostasis [229] and 
promote cell survival [230]. Components of E. 
coli strain Nissle 1917 can decrease intestinal 
permeability by restoring a disrupted epithelial 
barrier [231]. Combination of L. rhamnosus GG 
(LGG) and B. lactis Bb12 could also improve 
epithelial integrity in patients with CRC [232].

 Recognition of Probiotics by 
the Immune System: Toll-Like 
Receptors

TLR2 plays a protective role in colitis-associated 
CRC.  TLR2-deficient mice demonstrated 
increased inflammation and elevated serum lev-
els of inflammatory markers such as IL-6 and 
IL-17A. Probiotics can modify the risk of CRC 
through a TLR2-dependent pathway. TLR2 rec-
ognizes gram-positive bacteria, such as lactoba-
cilli and bifidobacteria [233, 234]. Peptidoglycan 
from lactobacilli blocks the production of pro- 
inflammatory cytokine IL-12 by macrophages 
via TLR2 [235]. In addition, mixture of L. plan-
tarum and L. casei synergistically stimulate 
IL-10 production in macrophages through a 
TLR2-dependent pathway [233].

 Modulation of DCs
IL-10 suppresses the production of pro- 
inflammatory cytokines while promoting the 
development of TREG cells. Studies showed a 
strong association between probiotics and induc-
tion of IL-10 by DCs [236]. Administration of 
probiotics also induced regulatory DCs, which, 
in turn, could promote the induction of 
CD4+Foxp3+ TREG cells in vivo [237]. Thereby, 
mice showed a reduction in the production of 
pro-inflammatory cytokines IL-17, IFN-γ, and 
TNF-α and an amelioration of disease progres-
sion. In the study [238], the authors investigated 
the ability of three Lactobacillus species to influ-
ence DC to drive TREG cell development. Human 
monocyte-derived DC matured in the presence of 
L. rhamnosus showed decreased capacity to sup-
port T-cell proliferation and attenuate CD3/
CD28-induced cytokine production.
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L. rhamnosus GG, B. lactis Bb12, and/or inu-
lin enriched with oligofructose demonstrated 
immune stimulatory effects by inducing the mat-
uration of DC [239], supporting the immune 
response against tumor cells [240]. Activation of 
IL-10-secreting cells was accompanied by the 
induction of apoptosis in colon cancer cells and 
suppression of pro-carcinogenic factors [241]. 
Bifidobacterium in a mice model has been shown 
to alter DC activity, leading to improved tumor- 
specific CD8+ T-cell function.

 NK Cell Proliferation and Activity
Probiotics are also able to increase NK cell num-
bers and their cytotoxic activity [242]. Oral 
administration of L. casei Shirota (LcS) to tumor- 
bearing mice stimulated splenic NK cell activity, 
thus leading to postponed tumor formation [243–
245]. Probiotics exert desmutagenic effects on 
myeloid DC maturation through IL-12 produc-
tion and shifting T-cell activity toward TH1, TH2, 
or even TREG type of responses [244, 246, 247]. 
Later, this molecule, IL-12, activates NK cells to 
produce IFN-γ [248]. In this manner, LcS is able 
to suppress murine tumorigenesis via increased 
IL-12 production by bone marrow-derived cells 
in vitro [249] and inhibition of IL-6 production in 
the colonic mucosa [250, 251]. Previous studies 
demonstrated that Lactobacillus strains with a 
firm cell wall resistant to intracellular digestion 
can stimulate high levels of IL-12 [252].

Lactobacillus and Bifidobacterium strains and 
their mixture differentially initiated NK/DC 
interactions via induction of DC maturation and 
cytolytic potential of NK cells [253]. NK cells 
play a critical role in tumor surveillance and pro-
duction of IFN-γ and TNF-α, which induce cell- 
mediated immunity and lead to further activation 
of APCs (DCs and macrophages) [248]. NK cells 
also are indirectly activated by DCs which secrete 
soluble factors, such as IL-12, IL-18, and type I 
interferons. Probiotic Lactobacillus strains can 
induce secretion of pro-inflammatory cytokines, 
IL-12 and TNFα [254], which are positively cor-
related with NK cell activity.

IL-12 produced by DC and APC primes NK 
cell activation and subsequent secretion of TNF- 
α. Therefore, LcS and Lactobacillus strains may 

indirectly activate NK effector cells through DCs 
and APCs, respectively. NK-derived IFN-γ secre-
tion has been implicated not only in innate antitu-
mor immune responses but also in cell-mediated 
antitumor immune responses [253, 255]. In one 
trial, intake of fermented milk containing LcS 
enhanced NF-κB activity in subjects. The effect 
was reduced in the presence of anti-IL-12 mono-
clonal antibody [256]. DCs, TREG cells, and NK 
cells are important immune cells in defense 
against cancer [251, 257]. However, supplemen-
tation with synbiotics containing LGG, B. lactis, 
and oligofructose for 12  weeks showed little 
effects on systemic immune responses in patients 
with CRC [239].

 Inhibitory Effect of Probiotics on TLR4 
and COX-2 Expression
COX-2 has been implicated in inflammatory dis-
eases and CRC.  TLR4 is mandatory for the 
induction of COX-2 and therefore CRC develop-
ment [258]. Overexpression of TLR4 upregulates 
NF-κB activation and COX-2 expression [259]. 
The probiotic combination VSL#3 has been 
reported to downregulate COX-2 expression in 
Colo320 and SW480 intestinal epithelial cells 
(IECs). COX-2 has been associated with an 
increased risk of CRC because it stimulates cell 
proliferation and triggers inflammatory pathways 
[35]. Milks fermented with different strains of 
probiotics have been investigated in HT-29 colon 
cancer cells. Almost all of them induced a signifi-
cant, although variable, reduction in the growth 
of HT-29 cells [260, 261].

 Probiotics Enhance Innate Immune 
Functions
Defensins through membrane lysis and DNA 
damage exert cytotoxic activity on tumor cells. 
Murine b-defensin 2 has been shown to promote 
DC maturation, which initiates type I polarized 
immune responses through the production of 
pro- inflammatory cytokines such as IL-12, 
IL-1α, IL-1β, and IL-6 [262]. Treatment of 
Caco-2 colorectal adenocarcinoma cells with L. 
plantarum through the induction of TLR2 sig-
nificantly upregulated the mRNA expression and 
secretion of human b-defensin 2 (HBD-2) in a 
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dose- dependent manner [263]. A probiotic mix-
ture, including several E. coli strains, VSL#3, 
and lactobacilli, increased HBD-2 synthesis in 
human and Caco-2 cells [264]. In addition, pro-
biotic products enhanced host immune function 
by increasing phagocytic activity of macro-
phages [265].

Immunoglobulins
IgA exerts anti-inflammatory and also cytotoxic 
effects on tumor cells [266]. It is resistant to prote-
olysis and can limit contact between potentially 
carcinogenic compounds and colon cells [225]. A 
study of mice treated with carcinogen showed that 
consumption of yogurt containing probiotics was 
efficient to downregulate cancer progression in the 
large intestine through upregulation of IgA, T-cell 
function, and colonic macrophage activities [234]. 
However, the effect of probiotic supplementation 
on the production of IgA remains controversial 
[265, 267]. LcS has been shown to inhibit tumor 
development and IgE production in mice [268].

Administration of L. acidophilus SNUL, L. 
casei YIT9029, and B. longum HY8001 
improved the survival of tumor-bearing mice. 
The effect was associated with enhanced cellu-
lar immune responses as reflected in increased 
numbers of total T-cells, NK cells and MHC 
class II+ cells, and CD4−CD8+ T-cells [269]. 
Lactobacillus rhamnosus strain GG (LGG) was 
reported to delay the onset of cancer through 
mitigating CD3 T-cell depletion in tumor-bear-
ing mice while enhancing activation of CD8 
and CD4− T-cells without significant effect on 
NK cell function [270]. Furthermore, L. aci-
dophilus suppressed MHC class I expression 
and also induced a decrease in mRNA expres-
sion of stromal-derived factor-1 receptor, 
CXCR4, suggesting a role in cancer metastasis 
prevention [271]. In DSS- induced CRC mice, 
Lactobacillus and the VSL#3 mixture increased 
levels of angiostatin, an endogenous inhibitor 
of angiogenesis and regulatory T-cells [272]. In 
contrast, there was an increase in the number of 
memory CD4+ T-cells and pro- inflammatory 
cytokines IL-17 and TNF-α [272].

Pre-inoculation with L. plantarum signifi-
cantly reduced tumor growth and activated innate 

immunity while increasing the intratumoral lev-
els of CD8+ T-cells and NK cells in the tumor 
microenvironment [273]. Probiotic administra-
tion significantly increased the CD8+/CD4+ 
T-lymphocyte ratio. CD4 cells induce production 
of cytokines such as IL-6 and IL-10. Thus, 
increasing the CD8+/CD4+ T-lymphocyte ratio 
might explain lowering of IL-6 and delayed 
tumor growth by probiotics [274]. Indeed, L. 
reuteri was shown to delay the onset of neoplas-
tic features through the induction of anti- 
inflammatory CD4+CD25+ TREG cells. Stimulated 
TREG cells would direct immune networks in a 
manner to resist against inflammatory diseases, 
including early stage of malignant transformation 
[275]. L. rhamnosus GG has been demonstrated 
to be effective in reducing the recurrence of blad-
der cancer [276]. The effect may be mediated by 
increased levels of chemokine (C motif) ligand 
(XCL1); this chemokine produced by activated 
CD8+ cells and γδ-T-cells, NK cells, and master 
cells, which helps in chemotaxis by T-cells and 
NK cells and thus assists in tumor regression 
[276]. Activation of phagocytes by probiotics can 
inhibit cancer cells in early stage. Kefir consump-
tion caused stimulation of phagocytes present in 
Peyer’s patches and in the peritoneum [277].

Researchers have argued that stimulation 
rather than suppression of the innate immune 
system can contribute to cancer development. 
Yogurt feeding was correlated with altered lev-
els of cytokines, such as TNF-α, IFN-γ, and 
interleukins [278, 279]. Intrapleural injection of 
LcS in mice could improve immunity against 
tumor development through release of TNF-α, 
an antitumor agent. In line with these observa-
tions, other studies also noted that intrapleural 
administration of LcS in tumor-bearing mice 
induced the production of IFN-γ, IL-1β, and 
TNF-α, leading to the inhibition of tumor 
growth and therefore an increased survival [280, 
281]. Similar results have been reported for L. 
acidophilus SNUL, L. casei YIT9029, and B. 
longum HY8001 strains [269]. Urbanska and 
colleagues [279] investigated the effect of 
microencapsulated probiotic Lactobacillus aci-
dophilus in a model of CRC. Daily oral admin-
istration of the microorganism significantly 
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induced suppression in tumor growth, tumor 
multiplicity, and tumor size. In a study by de 
Leblanc et al. [282], LcS induced the secretion 
of inflammatory cytokines such as TNF-α, IL-1β, 
and IFN-γ, resulting in reduced tumor develop-
ment and improved survival of mice treated with 
a carcinogen [281]. IFN-γ is involved in activa-
tion of NK cells and macrophages. Consequently, 
it plays a significant role in cancer prevention. 
Humans and animals continuously produce 
IFN-γ in the defense against cancer [283]. 
Excessive inflammatory response is not desir-
able, and probiotics are able to induce and con-
trol TREG cell function [284]. Direct immune 
modulatory effects of B. lactis and L. rhamnosus 
have been reported to be mediated through 
reduction of IL-2 and inducible NO synthase 
[285, 286]. Antitumoral and immunoregulatory 
effects of LcS have been investigated in various 
models. Of note, oral administration of LcS has 
demonstrated antitumoral activity against blad-
der cancer cells in clinical trials [287].

 Modulation of Inflammatory Response
Chronic inflammation has been recognized as a 
risk factor for cancer. Inflammation plays a caus-
ative role in colitis-associated colon cancer, spo-
radic colon cancer, and hepatocellular carcinoma 
(HCC) [288–290]. Previous studies have reported 
antitumoral and anti-inflammatory effects of pro-
biotics [291, 292]. LGG was reported to prevent 
colon cancer, accompanied by suppression of 
NF-κB pathway [293]. Li et al. showed a reduc-
tion in the level of IL-17 by probiotics in an HCC 
model. It suggests an association between immu-
nomodulatory and antitumoral effects of probiot-
ics [290]. Mounting evidence suggests the 
IL-6-lowering effect of L. casei CRL431. The 
proangiogenic role of IL-6 is consistent with 
impaired tumor growth by probiotic supplemen-
tation [274].

The Lactobacillus casei BL23, recognized for 
its anti-inflammatory characteristics, was tested 
for its protective effects on CRC in mice [294]. 
Mice in probiotic group substantially showed 
reduced levels of the monocyte chemoattractant 
protein-1 (MCP-1) and TNF-α with high levels of 
anti-inflammatory ones, such as IL-10 [294].

IL-17A produced by TH17 cells would assist 
angiogenesis. Although the role of TH17 cells and 
IL-17  in cancer is still inconsistent, but it has 
been suggested that reduction of TH17 cell popu-
lation and IL-17 level may inhibit progression of 
cancer [295, 296]. Noteworthy, ex vivo studies on 
splenic cells incubated with L. casei BL23 
showed reduced numbers of TREG cells and 
increased percentage of TH17 cells and higher 
production of IL-17, IL-6, and TGF-β, together 
providing a microenvironment favorable to TH17 
differentiation [294]. As mentioned before, a pro-
biotic mixture led to reduction in the proportion 
of TH17 cells and in the production of IL-17 in an 
HCC model. In contrast, L. casei BL23 caused an 
increase in the proportion of TH17 cells and in the 
production of IL-17  in a model of CRC [290]. 
However, both studies revealed an increase in the 
levels of anti-inflammatory cytokine IL-10 and 
anti-angiogenic cytokine IL-22. This would 
reflect a TH17-mediated response.

IFN-γ plays a role in cancer immunity by 
increasing MHC I expression, T-cell infiltration, 
differentiation to cytotoxic T-lymphocytes, and 
TH1 polarization, orchestrating different antitu-
moral immune responses [297, 298]. IFN-γ also 
has been used clinically for its antitumoral effect, 
leading to improved survival. Studies of mice 
reveal the role of IFN-γ in mediating the protec-
tive effect of probiotics against cancer [299, 300].

 Production of Active Compounds 
Which May Be Involved in Immunity
Short-chain fatty acids (SCFAs) are the products 
of bacterial fermentation of nondigestible carbo-
hydrates. Butyrate is a SCFA that can contribute 
to cancer prevention in different ways. It has the 
ability to increase mucus production and improve 
intestinal barrier function. It is also able to stimu-
late the production of anti-inflammatory cyto-
kines, such as IL-10, while decreasing the 
production of pro-inflammatory cytokines by 
inhibiting the activation of NF-κB. More interest-
ingly, butyrate can increase the immunogenicity 
of tumor cells by monitoring neutrophils and 
antigen-presenting cells and through regulation 
of chemotaxis by neutrophils, DCs, and macro-
phages [301] and suppressing COX-2 activity 
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[302, 303]. Other SCFAs like acetic and propi-
onic acids also exhibit the same anti- inflammatory 
activity through suppression of NF-κB signaling 
pathway [304, 305].

Some species of probiotic bacteria, such as 
Lactobacillus acidophilus, are able to produce 
conjugated linoleic acid (CLA) from linoleic 
acid. CLA can suppress the production of eico-
sanoids in colon cells through replacement of 
arachidonic acid by CLA in the cell membrane 
and through interference with cyclooxygenase 
and lipoxygenase (LOX) enzymes. Probiotic sup-
plementation can increase the production of CLA 
to promote antitumor immunity in a dose- 
dependent manner [241, 306].

 Immunological Effects of Probiotics 
Combined with Chemotherapy

Probiotics also can be used in combination with 
conventional cancer therapies. In particular, dis-
ruption of the gut microbiota can impair the can-
cer cell response to platinum salts as 
chemotherapy. Supporting this, mice treated with 
an antibiotic mixture (including vancomycin, 
imipenem, and neomycin) displayed reduced 
therapeutic response to oxaliplatin and cisplatin 
in a colon carcinoma (MC38) and lymphoma 
(EL4) model, respectively. Interestingly, it has 
been reported that combination antibiotic therapy 
reduces oxaliplatin-induced DNA damage and 
apoptosis in tumor-bearing mice. In addition, 
Ruminococcus, Alistipes, and Lactobacillus fer-
mentum are capable of affecting tumor response 
to CpG oligodeoxynucleotide (ODN), probably 
through regulation of TNF production [307, 308].

The study [309] proved that the efficacy of 
cyclophosphamide as an anticancer immuno-
modulatory agent, at least in part, relies on the 
gut microbiota. Tumor-bearing mice that were 
either germ-free or antibiotics-treated showed a 
reduction in “pathogenic” T-helper (pTH17) 
responses, and their tumors were more resistant 
to cyclophosphamide-based therapy. It seems 
that this cyclophosphamide would stimulate 
pTH17 cells through a complex circuitry that 
involves the gut microbiota [309]. More pre-

cisely, treatment with cyclophosphamide causes 
a reduction in the abundance of lactobacilli and 
enterococci in the gut [309]. Gram-positive bac-
teria, such as L. johnsonii and E. hirae, promote 
differentiation of CD4+ T-cells into TH1 and TH17 
cells. Broad-spectrum antibiotics suppressed 
cyclophosphamide-induced production of IL-17 
and IFN-γ [309]. Consistently, another study 
[310] showed that two bacterial species, 
Enterococcus hirae and Barnesiella intestini-
hominis, are involved in response to cyclophos-
phamide therapy. After cyclophosphamide 
treatment, E. hirae migrates to secondary lym-
phoid organs, followed by mounting pTH17 
immune responses and accumulation of IFN-γ+ 
IL-17+ cells and CCR6+ CXCR3+ CD4+ T-cells 
and TREG cells in the spleen [309].

Studies have demonstrated the significance of 
Bifidobacterium to natural antitumor immunity 
and also in response to anti-PD-L1 antibody ther-
apy and CTLA-4 therapy in tumor settings [311, 
312]. Furthermore, Bacteroides fragilis improved 
response to CTLA-4 blockade, by affecting 
IL-12-dependent TH1 immune response. 
Bifidobacterium in combination with anti-PD-L1 
antibody enhanced antitumor immunity through 
activation of DCs [312].

Altogether, finding bacterial genera linking 
intestinal immune homeostasis and anticancer 
immune responses is essential to shed light on 
the possibility of using selected bacteria to 
improve cancer therapy by enriching the gut 
microbiota. In patients with metastatic mela-
noma, an increased delivery of bacteria belong-
ing to the Bacteroidetes phylum is associated 
with an increased resistance to the development 
of checkpoint blockade-induced colitis [313]. 
Recent advances in this field such as fecal trans-
plant open up new avenues in cancer therapy 
[314, 315].

 Role of Microorganisms 
in the Development of Cancer

Tumorigenesis is a complex process. As a result, 
it is difficult to draw a direct association between 
dysbiosis, inflammation, and tumorigenesis. 
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Adherent/invasive E. coli strains are present in 
great quantity on the colonic mucosa of patients 
with CRC but not normal colonic mucosa. This 
indicates involvement of E. coli colonization in 
cancer pathophysiology [316]. Long-term colo-
nization of enterotoxigenic Bacteroides fragilis 
(ETBF) led to colitis and multiple intestinal neo-
plasia (MIN) in mice [317]. On the other side, 
IL-10-deficient mice colonized with Bacteroides 
vulgates displayed low-grade inflammation and 
more interestingly were less likely to develop 
colorectal tumors as compared with convention-
alized IL-10-deficient mice [318]. The results 
support the differential role of gut microorgan-
isms in intestinal immune homeostasis and 
CRC. There is a complex interaction between the 
gut microbiota and IECs, where innate immune 
receptors including Nod-like receptors (NLRs) 
and TLRs play a role. It has been reported that 
Nod1 pathway could increase tumor-promoting 
effect of attenuated Wnt signaling. Furthermore, 
gut microbiota depletion by antibiotics decreases 
tumor development in Nod1-deficient mice 
[319]. These data highlight the complicated inter-
action between the microbiota, inflammation, 
and cancer and support the hypothesis that sus-
ceptibility to cancer would be influenced by the 
composition of the gut microbiota and by the rep-
ertoire of host innate sensors as well. As a result, 
modification of the intestinal microbiota using 
probiotics or prebiotics may affect the develop-
ment of cancer.

 Gut Microbiota Induces Potent TREG 
Cells with Systemic Antineoplastic 
Properties

The association of tumor-associated cells 
expressing TREG cell markers including FOXP3 
with poor prognosis of human cancers remains 
inconsistent. Under certain conditions, microbial 
priming of TREG cells not only protects against 
cancer development but also helps remission of 
already established intestinal, mammary, and 
prostate cancers [320]. However, TREG cells play 
paradoxical roles in cancer [320, 321]. Actually, 
Treg-mediated decreased risk of cancer is depen-

dent on microbiota-induced IL-10, which acts to 
maintain immune system homeostasis and sup-
port a protective anti-inflammatory and antineo-
plastic TREG phenotype. Probiotic consumption in 
mice shifts immunity toward IFN-γ and CD25 to 
improve wound healing and promote systemic 
health [322]. IFN-γ levels increase during TREG- 
mediated tumor regression in mice. Recent find-
ings show that an unbalanced gut flora would 
weaken response to immune [307, 309] and non-
immune chemotherapeutic regimens such as cis-
platin and oxaliplatin [307].

Based on the “hygiene hypothesis,” hygienic 
subjects are vulnerable to a redirection of unbal-
anced resting peripheral TREG to TH17 immune 
responses, putting them at higher risk of autoim-
mune diseases and cancer [182]. Furthermore, 
consumption of beneficial probiotic bacteria led 
to the expansion of Foxp3+ cells in the periphery 
[275, 322], improving defense against mammary 
cancer [275]. Probiotics-induced enhancement of 
the TREG-dominated arm of the immune system 
did not interfere with the capability to respond 
against invading pathogens [322]. Altogether, the 
gut and its cross talk with the host determine the 
fate of preneoplastic and neoplastic lesions aris-
ing in epithelia throughout the body. It would 
open up a new avenue in cancer immunotherapy 
through modulation of beneficial TREG via diet. 
This concept not only could be considered for 
fighting cancer, but also arousing these dormant 
TREG-mediated capabilities may give an alterna-
tive approach to reduce cancer risk and promote 
overall good health and longevity [320].

 Lactoferrin, Immunity, and Cancer

Lactoferrin (Lf) is an iron-binding glycoprotein 
belonging to the transferring family. It contrib-
utes to the regulation of iron absorption in the 
bowel and immune responses, as well as is able 
to exert antimicrobial, antioxidant, antitumoral, 
and anti-inflammatory effects [323, 324]. Lf is 
produced by mucosal epithelial cells and is pres-
ent in most biological fluids, including tears, 
saliva, vaginal fluids, semen, and most abun-
dantly milk and colostrum [324]. Moreover, it is 
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present in considerable amounts in polymorpho-
nuclear granules [323]. Recent reports have 
shown that this multifunctional agent essentially 
exerts antimicrobial effect, which can be directed 
against bacteria, fungi, and viruses [325]. Other 
Lf-mediated activities include immune modula-
tory functions and tumor growth inhibition [325]. 
Its bacteriostatic effect is mediated through iron- 
binding ability, which consequently restricts the 
use of iron by bacteria and inhibits their growth 
systemically. Additionally, Lf damages the exter-
nal membrane of the gram-negative bacteria by 
interacting with the lipopolysaccharide (LPS) 
[323]. Therefore, knowledge of the physiological 
role and possible therapeutic implications of LF 
is hastily growing. Here, we present possible 
antitumoral effects of LF through immune modu-
latory activity.

 Antitumor Activity

The first reports suggesting that Lf may possess 
antitumor effects through depleting tumor cells 
of glutathione, making them more susceptible to 
chemotherapy, appeared in 1995 [326]. Since 
then, in  vitro studies have demonstrated antitu-
mor effects of Lf in different cancer cell lines 
such as breast cancer [327, 328], pancreatic can-
cer, colon cancer, and oral squamous cell carci-
noma [329–331]. Suggested mechanisms include 
increased NK cell cytotoxicity and inhibition of 
cell growth and metastatic colony formation. 
Chemopreventive effects of bovine Lf (bLf) also 
have been implicated in treatment of tumors of 
the colon, peritoneum, lung, esophagus, mouth, 
and neck. Moreover, the immune modulatory 
effect of Lf has been shown in mice [332–334]. 
Oral administration of recombinant human Lf 
has been investigated in head and neck squamous 
cell carcinoma in mice. Animals treated with Lf 
exhibited tumor growth inhibition of 75% con-
current with a 20-fold increase in lymphocyte 
ratio compared with controls. Of note, when mice 
were depleted of CD3+ cells, Lf-induced tumor 
inhibition was abrogated [335].

Other studies investigated the effects of iron- 
saturated (i-s) bLf on the augmentation of che-

motherapy. Results showed that chemotherapy 
eradicated large lymphomas only in mice fed 
100% i-s bLf for at least 2 weeks prior to chemo-
therapy, but not in mice fed lower saturated forms 
of bovine Lf or control mice fed no bLf. Lf was 
nevertheless effective in augmenting chemother-
apy at the lowest dose tested, equated to a 70 kg 
person ingesting 3 grams of Lf per day. In addi-
tion, 100% i-s bLf decreased angiogenesis, 
increased apoptosis, and supported immunomod-
ulation, as reflected in increased production of 
TH1 (TNF-α, IFN-γ, and IL-18) and TH2 (IL-4, 
IL-5, IL-6, and IL-10) cytokines, which are nec-
essary for optimal antitumor immune responses. 
Moreover, 100% i-s bLf also restored both RBC 
and WBC numbers depleted by chemotherapy 
[336]. However, the ability of Lf to exert a pro-
tective effect at sites far away from the GI tract is 
less understood [337].

 Evidence for Chemopreventive 
Potential

 Anti-inflammatory Activity
Lf possesses potent modulatory properties. It 
can decrease the production of pro-inflammatory 
cytokines (IFN-γ, TNF-α, IL-1β, IL-6, and 
granulocyte- macrophage colony-stimulating 
factor (GMCSF)) [335, 338–341] while upregu-
lating the levels of anti-inflammatory cytokines 
(IL-10) [342, 343]. However, other studies 
reported inconsistent results: (1) ex vivo upregu-
lation of TNF-α and IFN-γ concurrent with a 
reduction in IL-5 and IL-10 upon induction with 
the exotoxin toxic shock syndrome toxin-1 [344] 
and (2) enhanced IL-12 production and decreased 
IL-10 release in human immunodeficiency virus 
(HIV)-infected children [345]. Together, these 
results indicate that Lf affects the TH1/TH2 cyto-
kine balance independent of the host immune 
setting. Thus, Lf can increase the production of 
TH1 cytokines in settings requiring an augmented 
ability to control infection on one hand and on 
the other hand may decrease the production of 
TH1 cytokines to restrict excessive inflammatory 
responses [346]. Moreover, intravenous admin-
istration of bLf 24 h presurgery eased thymec-
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tomy- and splenectomy-induced TNF-α and 
IL-6 generation, suggesting that Lf may have 
therapeutic application in cases of shock syn-
dromes [347].

 Immune Modulatory Activity
As already discussed, Lf also possesses immune- 
modulating properties. In vivo studies on the oral 
administration of bLf in mice revealed increased 
levels of NK cells, CD4+ and CD8+ cells, and 
IFN-γ+ cells, in both the mucosal layer of the 
small intestine and the peripheral cells [348–
350]. In addition, NK cell cytotoxicity is 
increased both in  vitro and in  vivo [328, 351, 
352]. In humans, CD3+, CD4+, and CD8+ T-cell 
activation has been observed as well [353].

Endogenous Lf belongs to the innate nonspe-
cific immune system. However, mounting evi-
dence shows that it may also be attributed to 
acquired immunity and protection against inflam-
mation. As a powerful modulator of inflamma-
tory and immune responses, Lf supports 
protection against both microbial infections such 
as septic shock and inflammatory diseases such 
as arthritis, chronic hepatitis, and cancer [354–
356]. The modifying activity by Lf is connected 
to its capability to interfere with both specific cell 
receptors on a wide range of epithelial and 
immune cells [357] and pro-inflammatory bacte-
rial components like LPS [358].

At the molecular level, the modulatory charac-
teristics of Lf are mediated through iron binding 
and interactions with a multitude of compounds 
such as LPS. At the cellular level, Lf modifies the 
migration, maturation, differentiation, activation, 
proliferation, and function of immune cells. 
Some possible mechanisms include modulation 
of NF-κB and MAP kinase signaling [354]. Lf 
has been shown to increase the accumulation of 
neutrophils to sites of damage, support cell-to- 
cell interaction by promoting “stickiness,” pro-
mote phagocytosis by polymorphonuclear 
leukocytes (PMNs) and monocyte/macrophages, 
support motility and superoxide production, 
reduce the release of pro-inflammatory cyto-
kines, increase the number and activity of NK 
cells, and promote the maturation of lymphocytes 
[359–363].

In addition, a mechanism underlying antitumor 
effect of Lf is regulation of NK cell activity [328, 
364] and inhibition of vascular endothelial growth 
factor (VEGF)-mediated angiogenesis [365]. It 
was reported that Lf has a significant effect on NK 
cell cytotoxicity and target cell sensitivity to lysis 
in hematopoietic and breast epithelial cell [328]. 
Other studies reported inhibition of tumor growth 
and lung colonization by B16- F10 melanoma 
experimental metastasis in mice treated with 
human Lf through increased NK cell activity [351].

Rodent cancer models have shown enhance-
ment of intestinal immune homeostasis following 
oral administration of Lf. In particular, increased 
activation of NK cells, CD4+ T-cells, and CD8+ 
T-cells was demonstrated after Lf administration 
[348, 349].

In vivo oral administration of bLf enhanced 
NK cell activity and CD4+ and CD8+ T-cells in 
tumor-bearing mice [349, 350, 362] and also 
increased CD3+ and CD4+ T-cells in immuno-
compromised mice [366]. Activation of CD4+ 
T-cells induces the generation of plasma B-cells, 
memory B-cells, and antibodies [367, 368]. 
Moreover, CD4+ activation improves macro-
phage function, by inducing the release of 
 cytokines [346]. Further activation of CD4+ 
T-cells induces the generation of cytotoxic CD8+ 
T-cells, which would destroy virus-invaded cells, 
cancer cells, and intracellular bacteria, as indi-
cated in experimentally induced cancers [369].

 Inhibition of Angiogenesis
Administration of bLf was reported to inhibit 
angiogenesis in rats [365] and mice [370]. In con-
trast, human Lf promotes angiogenesis [371]. BLf 
may inhibit angiogenesis through inhibition of 
IL-18 production [372]. Moreover, increased lev-
els of IL-18 raise mucosal and systemic immune 
responses via cytokine secretion and NK cell acti-
vation [373]. In addition, Lf can reduce the levels 
of pro-inflammatory cytokines such as IL-6 and 
IL-1β as potent angiogenic inducers [374].

 Clinical Trials
Few studies investigated the effect of lactoferrin 
on the immune system. In one study, 2 g bLf/day 
for 4  weeks increased phagocytic activity of 
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PMNs in three participants and increased CD16+ 
T-cell counts in two of them. There was an aug-
mentation in the percentage of NK cells, the per-
centage of CD11b+ and CD56+ T-cells, and the 
CD16+ cell counts [375]. The oral administration 
of 40  mg bLf equivalent/day for 10  days in 
healthy participants resulted in an increased per-
centage of lymphocytes and immature cell forms, 
concurrent with a reduced percentage of neutro-
phils, eosinophils, and monocytes. Additionally, 
TNF-α levels were reduced, while changes in 
IL-6 were not significant [376]. The oral admin-
istration of placebo, 2, 10, or 50 mg of Lf daily, 
for 7 days in healthy subjects exhibited a signifi-
cant, though transient, increase in the number of 
immature neutrophils and a significant reduction 
in the release of IL-6 and TNF-α by peripheral 
blood cells [377]. It has been suggested that a 
function of Lf could be to modify inflammatory 
reactions through the regulation of cytokine gen-
eration [378, 379].

 Antitumor Immunity and Dietary 
Components

About ten plant-derived anticancer drugs are cur-
rently approved. They can be classified into four 
main classes of compounds: Vinca (or 
Catharanthus) alkaloids, epipodophyllotoxins, 
taxanes, and camptothecins. There are also a 
large number of phytochemicals subject to vari-
ous phases of clinical trials, such as curcumin, 
epigallocatechin gallate (EGCG), soy isofla-
vones, etc. These compounds have shown anti-
cancer effects both in vitro and in vivo. Some of 
them are discussed in the following section.

 Resveratrol

Resveratrol is a polyphenol belonging to the stil-
bene class of phytochemicals. It is found in sev-
eral plant species including grapes, peanuts, 
mulberries, cranberries, and other fruits [380, 
381]. Resveratrol was found to be most abundant 
in the skin of grapes. It has been reported to block 
various cancer-related proliferative pathways 

making it a hopeful anticancer therapeutic candi-
date [382, 383]. A plant with considerably high 
content of resveratrol, Polygonum cuspidatum, is 
highly used in traditional Chinese medicine 
(TCM) to treat inflammation and cancer [384]. In 
1997, resveratrol was first demonstrated to delay 
cancer initiation, promotion, and progression 
[385]. It is already used in clinical settings 
because of its antitumor cancer and chemopre-
ventive activities [386]. Ongoing trials are inves-
tigating the possible effect of resveratrol on 
human cancers. Most clinical trials are testing the 
anticancer effects of resveratrol in CRC includ-
ing NCT00256334, NCT00578396, 
NCT00920803, and NCT00433576. Two trials in 
GI cancers (NCT01476592) and thyroid cancers 
are assessing the effect of resveratrol on notch-1 
signaling. The anticancer effect of resveratrol has 
also been investigated in leukemia, lymphoma, 
multiple myeloma, and prostate, breast, brain, 
and other nervous system cancers. In a bone can-
cer pain model, resveratrol was recently proposed 
to have palliative effects by blocking spinal glial 
activation and downregulating CX3CR1 [387].

 Nuclear Factor-κB Pathway
Resveratrol has been shown to have anti- 
inflammatory and antitumor effects [388]. 
Resveratrol blocks cell proliferation and induces 
apoptosis in various cancer cell lines, such as 
breast, prostate, colon, and ovarian cancer cells 
[389]. The inhibitory effects of resveratrol on 
tumor growth have been attributed to its anti- 
inflammatory activity [389]. Aberrant regulation 
of NF-κB has been associated with cancer and 
autoimmune diseases. NF-κB is used by cells as 
a regulator of genes that control cell prolifera-
tion and cell survival. Many different types of 
human malignancies showed dysregulation of 
NF-κB.  Resveratrol suppresses NF-κB activity 
mainly through blocking NF-κB inhibitor kinase 
(IKK) in murine and human macrophage cells 
along with downregulation of AP-1 [390, 391]. 
Resveratrol can downregulate NF-κB-induced 
gene products involved in inflammation, such as 
iNOS and COX-2, matrix metalloproteinase 
(MMP)-3, MMP-9, and vascular endothelial 
growth factor (VEGF) in macrophages and vari-
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ous cancer cells [392, 393]. NF-κB-mediated 
transcriptional activity stimulated by EGF and 
TNF-α was effectively blocked by resveratrol in 
prostate cancer cell lines [394]. Resveratrol 
treatment in human multiple myeloma cell line 
inhibited proliferation by decreasing prolifera-
tive and antiapoptotic factors. The effect, which 
was mediated through suppression of NF-κB, 
potentiated the effects of bortezomib and thalid-
omide [395].

MAPK phosphatase 5 (MAPK5) is a potent 
inhibitor of cellular inflammatory responses 
because it can inhibit the enzymatic activation 
of MAPK, one of the upstream kinases that 
control the activation of NF-κB [396]. It has 
been reported that resveratrol could upregulate 
MAPK5 and block p38 pathway in prostate 
cancer cell lines [397]. Furthermore, resvera-
trol can inhibit NF-κB by blocking the upstream 
activator PKCδ and by activating the inhibitor 
SIRT1 [398].

 Anti-inflammatory Implications: Focus 
on COX-2
Resveratrol is a potent COX suppressor, which 
has been confirmed in different in  vivo and 
in  vitro studies. Resveratrol can inhibit COX-2 
activity through direct binding or suppression of 
transcription factors [399]. Resveratrol counter-
acts the proliferation of CRC and MCF-7 breast 
cancer cell line through affecting p53-COX-2 
pathway. In vivo studies confirmed that resvera-
trol in dietary levels leads to a reduction in the 
formation of DMBA-induced mammary tumors 
through inhibition of COX-2-, MMP-9-, and 
NF-κB-mediated tumor cell proliferation [400].

In an interesting study, resveratrol was shown 
to prevent apoptosis induced in human leukemia 
K562 cells by H202. In fact, resveratrol reversed 
the elevation of leukotriene B4 and prostaglandin 
E2 induced by H202 challenge through inhibition 
of 5-lipoxygenase, COX, and peroxidase activity 
of prostaglandin H synthase [401].

 Other Inflammatory Pathways
Resveratrol is also able to suppress the expres-
sion of hypoxia-inducible factor-1α (HIF-1α) 
through inhibition of MAPK and increased deg-

radation of HIF-1α protein via the proteasome 
pathway. Resveratrol also suppressed VEGF 
through inhibition of HIF-1α [402, 403].

Recent studies have discussed the role of 
microRNAs (miRNAs) in mediating the anti- 
inflammatory effects of resveratrol. Resveratrol 
can decrease the secretion of pro-inflammatory 
cytokines (e.g., IL-1, IL-6, IL-8, and TNF-α), 
the expression of adhesion proteins including 
intercellular adhesion molecule (ICAM)-1, and 
the expression of leukocyte chemoattractants, 
such as MCP-1 [404]. Resveratrol suppressed 
TNF-α- induced signaling pathways both via 
NF-κB activation and by increasing transcrip-
tional activity of p65 [405]. In addition, resvera-
trol induced the expression of Egr-1 from its 
chromosomal locus. Egr-1 has demonstrated 
antitumor effects upon experimental increase in 
TNF-α [406]. The control of transgenic expres-
sion via activation of Egr-1 promoter by resvera-
trol may sensitize cancer cells, expanding the 
use of adenovector Ad.Egr-TNF in patients 
resistant to radiation or chemotherapy, suggest-
ing a new means for development of inducible 
gene treatments [406]. In prostate cancer cell 
line, resveratrol increased the production of ROS 
and expression of pro- apoptotic factors includ-
ing TRAIL [383]. In a mouse model with pros-
tate cancer, resveratrol significantly reduced cell 
proliferation and the expression of growth fac-
tors and their receptors [383].

In human colon cancer cells resistant to the 
cytotoxic effect of resveratrol, resveratrol was 
able to sensitize tumor cells to TNF, anti-CD95 
antibody, and TRAIL-mediated apoptosis and 
led to activation of a caspase-dependent death 
pathway [407]. Indeed, resveratrol sensitized 
lung cell lines to TNF-induced apoptosis by 
modifying sirtuin effect, and this activity is con-
sistent with its ability to induce activity of Sirt1, 
a known NF-κB transcription repressor. 
Polyphenols can augment TRAIL expression in 
gastric cancer cell lines and are able to increase 
TRAIL-mediated apoptosis in various cancer 
types such as human melanoma, prostate carci-
noma, pancreatic cancer, malignant glioma, 
prostate carcinoma, hepatocellular carcinoma, 
gastric carcinoma, neuroblastoma cells, 
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Burkitt’s lymphoma, ovarian cancer cells, renal 
cancer cells, and colon cancer cells [408].

Resveratrol inhibited epithelial-mesenchymal 
transition (EMT) of pancreatic cancer cells by 
downregulating both the PI3K/AKT/NF-κB 
pathway and the EMT-related gene expression 
(E-cadherin, N-cadherin, vimentin, MMP-2, and 
MMP-9), which are essential for cancer cell 
motility and metastasis [409, 410]. In human 
pancreatic cancer cell, resveratrol treatment 
induced transcriptional upregulation of macro-
phage inhibitory cytokine-1 (MIC-1), which has 
antitumor activity [411]. Resveratrol is capable 
of blocking mediators of metastasis including 
lysophosphatidic acid (LPA), transforming 
growth factor (TGF), and focal adhesion kinase 
(FAK) in cancer cells like ovarian carcinoma cell. 
LPA induces the expression of HIF-1α and VEGF 
and thereby promotes cell migration [403]. 
Additionally, resveratrol can inhibit TGF-β1 and 
so cause inhibition of cell adhesion, migration, 
and invasion of lung cancer cells in A549 lung 
cancer cells [412, 413]. Resveratrol could dimin-
ish cell proliferation by influencing autocrine 
growth modulator pathways in breast cancer 
cells. For instance, it can increase the expression 
of the growth inhibitor TGF-ß2 without affecting 
the expression of TGF-ß1 and TGF-ß3 [414, 
415]. Resveratrol may be used to modify the 
immunological reaction in tumor microenviron-
ment, including inhibition of T-cell proliferation, 
reduction of IFN-γ and IL-4 secretion, downreg-
ulation of B-cell proliferation and therefore pro-
duction of IgG1 and IgG2a isotypes, and 
suppression of CD28 expression on CD4+ T-cells 
and CD80 on macrophages [416].

Other possible antitumor effects from an 
immunological viewpoint include downregula-
tion of MHC class I and II molecules; induction 
of tolerogenic DC phenotype; downregulation of 
the ability of bone marrow (BM)-derived DC to 
produce IL-12 p70 [417]; increasing the produc-
tion of TNF-α, IL-12, and IL-1β in response to 
LPS stimulation; enhancing the secretion of 
IL-10; suppression of mucosal and systemic 
CXCR3−-expressing effector T-cells and inflam-
matory cytokines in the colon [418]; and inhibi-
tion of the suppressive activity of 

FoxP3-expressing TREG cells among CD4+CD25+ 
cells [416, 419–423].

Low-dose resveratrol was able to enhance cell-
mediated immune responses by promoting TH1 
cytokine production, macrophage function, and 
also APC-induced IL-12 and IFN-γ production 
[424]. Resveratrol treatment downregulated the 
frequency of TREG cells in EG7-bearing C57BL/6 
mice. In addition, both CD4+CD25+FoxP3+ to 
CD4+CD25+ cell ratio and CD4+CD25+ to CD4+ 
cell ratio were reduced concurrently by resvera-
trol in a dose-dependent manner [425]. Resveratrol 
has been mostly investigated as an adjuvant agent 
combined with conventional chemotherapeutics 
to prevent or reduce the risk of multidrug resis-
tance. Resveratrol strengthened the antitumor 
effect of 5- fluorouracil (5-FU) on CRC cells, 
thereby enhancing chemosensitization and reduc-
ing drug resistance [426]. For example, resvera-
trol sensitized various human cancer cell lines to 
chemotherapeutic agents such as doxorubicin, 
cytarabine,  actinomycin D, Taxol, and methotrex-
ate by suppressing the expression of survivin and 
enhancing apoptosis. The mechanism by which 
resveratrol chemosensitizes cancer cells includes 
inhibition of tumor cell proliferation, metastasis, 
and angiogenesis and induction of tumor cell 
apoptosis through inhibition of related signaling 
pathways, such as SIRT1, signal transducers and 
activators of transcription 3 (STAT3), Hh, AMPK/
YAP, PTEN/PI3K/AKT, and NF-κB [427–430]. 
Moreover, NF-κB activation could upregulate the 
levels of some antiapoptotic genes, including 
TNF receptor-associated factor 1 (TRAF1) and 
TRAF2 [431]. Administration of resveratrol in 
IL-10−/− mice induced immunosuppressive 
CD11b+Gr−1+ MDSCs in the colon. The stimula-
tion of immunosuppressive CD11b+Gr−1+ cells by 
resveratrol during colitis is distinctive and offers a 
novel mode of anti-inflammatory action of resve-
ratrol [418].

 AhR and Nrf2 as Inflammation- 
Environment- Diet Molecular 
Crossroads
AhR functions as a modulator of immunity 
(inflammation) and reaction to xenobiotics on 
one hand and acts as a mediator of effect of res-
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veratrol on the other hand. Moreover, it is inter-
esting to mention that the effect of resveratrol is 
frequently associated with upregulation or activa-
tion of Nrf2 [432, 433]. Resveratrol also aug-
ments the activation of nuclear factor E2-related 
factor-2 (Nrf2), which is followed by activation 
of antioxidant response element (ARE). 
Resveratrol has been reported to increase the 
expression of heme oxygenase-1 (HO-1) via Nrf2 
activation in PC12 cells. In leukemia K562 cells, 
resveratrol increased NQO1 expression and stim-
ulated Nrf2/Keap1/ARE binding to NQO1 pro-
moter [434]. It also restored glutathione levels in 
human lung cancer A549 cells treated with ciga-
rette smoke extracts by increasing the Nrf2- 
induced GCL expression [435]. There are some 
dietary AhR antagonists such as genistein, 
kaempferol, and EGCG.  One recent agonist of 
AhR causes a number of anti-inflammatory 
responses in  vitro and in  vivo [436, 437]. 
Resveratrol assists Nrf2 and AhR in maintaining 
homeostasis against inflammatory insults, which 
may be involved in tumorigenesis. For instance, 
resveratrol caused inhibition of TCDD-induced 
recruitment of AhR and ARNT to the CYP1A1/
CYP1A2 and CYP1A1/CYP1B1 promoter in 
hepatic cancer (HepG2) and breast cancer cell 
(MCF-7), respectively [438]. Therefore, resvera-
trol could modulate the activity of some cyto-
chrome P450 enzymes and so act as 
chemopreventive compound by limiting activa-
tion of pro-carcinogens.

 Immune Surveillance
Downregulation of tumor immunosurveillance 
involves resistance to apoptosis, production of 
immunosuppressive cytokines, and reduced 
expression of MHC class I antigens. Particularly, 
macrophages inhibit or increase the growth and 
spread of cancer based on their activation state. 
Synthetic resveratrol analog, HS-1793, signifi-
cantly increased IFN-γ-secreting cells in spleno-
cytes and also decreased CD206+ macrophage 
infiltration [439]. The local augmentation of 
IFN-γ modified the status of tumor-associated 
macrophages (TAMs) associated with the cancer 
microenvironment that occurred coincident with 
increased levels of pro-inflammatory and immu-

nostimulatory cytokines (CD206, CD204, IL-10, 
TGF-β, EGF, and MMP-9) and decreased levels 
of IL-6 and immunosuppressive and tumor pro-
gressive mediators [439]. However, further stud-
ies are necessary to clarify the mechanism of 
action of resveratrol. Oral resveratrol significantly 
improved survival of lymphocytic leukemia 
L1210 cell-bearing mice through normalization 
of CD4/CD8 ratios and enhancement of NK cell 
activities and antisheep RBC titers. Furthermore, 
resveratrol suppressed cellular content, release, 
and mRNA expression of IL-6 [440].

 CD95 Signaling Pathway
The Fas receptor (FasR), also known as CD95, 
Apo-1, and tumor necrosis factor receptor super-
family member 6 (TNFRSf6), leads to apoptosis. 
Resveratrol induces tumor cell death by modify-
ing the levels of Fas and its ligand, FasL [441–
443]. Earlier studies have reported this effect in 
leukemia cell lines [441] and colon [442] and 
breast carcinoma cells [443]. A study in multiple 
myeloma and T-cell leukemia cells emphasized 
the role of Fas/CD95 signaling in lipid rafts in 
anti-myeloma and anti-leukemia chemotherapy 
[444]. Using leukemia lines derived from patients 
with malignancies pro-B t(4;l1), pre-B, and T-cell 
ALL, it has been demonstrated that resveratrol 
could induce extensive apoptotic cell death not 
only in CD95-sensitive leukemia lines but also in 
B-lineage leukemic cells that are resistant to 
CD95 signaling [445]. Altogether, the CD95- 
CD95L system and its chemotherapeutic and 
chemopreventive potential are interesting enough 
to be considered in anticancer drugs [446].

 Resveratrol and Its Interplay with NK 
Cells
Direct influence of resveratrol on NK cells and 
their killing ability on different levels has been 
reported in previous studies. Resveratrol exerts 
concurrent effects on NK cells and other immune 
cells like CD8+ and CD4+ T-cells [447]. The kill-
ing ability of NK cells against human immortal-
ized myelogenous leukemia K562 cells was 
increased after resveratrol treatment. 
Furthermore, a dose-related inhibition of lytic 
activity was reported at high concentrations of 
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resveratrol. Another study reported blocking of 
viability and enhanced apoptosis of NK cells 
upon incubation with high concentrations of res-
veratrol, whereas low concentrations of resvera-
trol resulted in upregulation of NKG2D and 
IFN-γ and increased killing of leukemia K562 
target cells by NK cells [448]. Higher vulnerabil-
ity of human lymphoblastoid T-cells (Jurkat 
cells) to cytotoxic effect of resveratrol also has 
been reported [449, 450]. Resveratrol in NK-92 
cells increased the expression of perforin and 
phosphorylation of ERK-1/ ERK-2 and JNK, 
which are known to contribute NKG2D-mediated 
cytotoxicity [450]. Intragastric administration of 
resveratrol enhanced the killing ability of iso-
lated spleen NK cells against mouse 51Cr-labeled 
lymphoma [451].

Furthermore, resveratrol increased the expres-
sion of NKG2D ligands on human promyeloblas-
tic leukemia KG-1a cells, thus offering two 
mechanisms to potentiate cytokine-induced killer 
cells (CIK, a mixed phenotype between T-cells 
and NK cells) [452]. Stimulation of KG-1a cells 
susceptible to CIK-mediated cytolysis occurs via 
an increase in cell surface expression of NKG2D 
ligands and receptor DR4 and also via suppres-
sion of DcR1 along with activation of the TRAIL 
pathway [452]. Resveratrol may modify this axis, 
thereby promoting tumor surveillance by the 
innate immune system. Resveratrol is further 
capable of sensitizing cells of various cancer 
types, including neuroblastoma, medulloblas-
toma, glioblastoma, melanoma, T-cell leukemia, 
and pancreatic, breast, and colon cancer, to 
TRAIL-induced apoptotic cell death [453, 454]. 
In essence, resveratrol can upregulate the expres-
sion of receptors DR4 and DR5 in human pros-
tate cells [455], thus enhancing TRAIL sensitivity 
and possibly facilitating NK cell-mediated kill-
ing activity. Resveratrol also considerably 
increased CD95L expression on HL-60 human 
leukemia cells and on T47D breast carcinoma 
cells [446], which would further help in NK cell- 
mediated apoptosis. Resveratrol has another ther-
apeutic potential in defeating aggressive NK cell 
leukemias and lymphomas through inhibition of 
constitutively active signal transducers and acti-
vators of transcription 3 (STAT3) signaling [456].

 Possible Interaction with TREG

Resveratrol is also able to decrease the cell num-
ber and function of immune TREG cells. High- 
dose IL-2 (HDIL-2) led to TREG expansion, but it 
was inhibited by resveratrol which could abro-
gate the toxic effects of HDIL-2 on endothelial 
cells [457]. Resveratrol was also involved in sup-
pression of TGF-β secretion from the spleen of 
tumor-bearing mice and concurrent increase in 
IFN-γ expression in CD8+ T-cells, together result-
ing in immune stimulation [423]. Despite its 
immunostimulatory activity, IFN-γ is also 
reported to induce T-cell inhibitory molecule 
IDO in many cell types, including APCs [458]. 
Resveratrol can inhibit IFN-γ-induced IDO 
expression in bone marrow-derived dendritic 
cells (BMDCs) [459]. Resveratrol-mediated inhi-
bition of EG7 thymoma tumor growth was depen-
dent on IDO through inhibition of the Jak/Stat 
pathway and protein kinase C-δ (PKCδ), which 
both need IFN-γ-mediated IDO expression [460]. 
Resveratrol combined with thymoquinone was 
reported to decrease tumor size and increase 
serum levels of INF-γ in breast cancer tumor- 
bearing mice [461].

 Regulatory B-Cells
The most fascinating antitumor immune mecha-
nism of action of resveratrol is through inhibition 
of tumor-induced regulatory B-cells (tBregs), 
which inhibit breast cancer metastasis [462, 463]. 
Low concentrations of resveratrol significantly 
decreased tBregs (defined as CD25+ CD81high 
cells within the CD19+ population) and Treg 
populations in mice. It must be emphasized that 
resveratrol had no effect on MDSCs in the tumor 
models [462, 463].

 Modulation of Mucosal Integrity: 
Implication of MUC2 and MUC1
Oral administration of resveratrol activated the 
expression of MUC2 and inhibited the expression 
of MUC1 through modification of the enzymes that 
initiate o-glycosylation of mucin in 1,2-dimethyl-
hydrazine (DMH)-treated rats. Therefore, resvera-
trol assists in maintaining integrity of the colon 
[464] through modification of enzymes that initiate 
o-glycosylation of mucin [465].
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 Curcumin

Curcumin is the active polyphenol derived from 
the Curcuma longa plant, which is also known as 
turmeric. Two curcuminoids, demethoxycur-
cumin and bisdemethoxycurcumin, exhibit antip-
roliferative activity on various cancer cells 
[466–468]. Curcumin has been reported to be 
effective as a therapeutic and preventive agent for 
cancer of the colorectum, liver, lung, pancreas, 
breast, ovary, uterine, bladder, prostate, kidney, 
and brain, non-Hodgkin lymphoma, and leuke-
mia [469–471]. It can exert effective immune 
responses and cytotoxic activity on different can-
cer cell lines, such as YAC-1 murine lymphoma, 
human HL-60 leukemia, and MDAMB breast 
carcinomas [472]. In vivo studies have shown 
immunostimulatory effects of curcumin [472, 
473].

 Mechanisms of Action of Curcumin: 
A Role for NF-ĸB
Inflammation has been implicated in the differ-
ent steps of tumorigenesis, including induction, 
survival, proliferation, invasion, and metastasis. 
Primary studies described curcumin as an effec-
tive modulator of inflammation [474]. The direct 
effect of curcumin on inflammation has been 
attributed to inhibition of NF-κB signaling. 
NF-ĸB is a transcription factor that controls the 
expression of several genes involved in growth, 
inflammation, carcinogenesis, and apoptosis 
[475]. Curcumin can inhibit this pathway 
through downregulation of the activation of 
IκBα kinase (IKK), phosphorylation and degra-
dation of IκBα, and phosphorylation and nuclear 
translocation of the p65 subunit [476, 477] in 
several cancer and premalignant cell types [478, 
479]. The results were confirmed in cells iso-
lated from patients with multiple myeloma 
[480] and advanced pancreatic cancer [481]. As 
NF-κB regulates several pathways like MMP, 
inhibition of NF-κB leads to downregulation of 
molecular events implicated in other signaling 
pathways and thus offers different opportunities 
for prevention and treatment [482] as indicated 
in several studies [483–485]. For instance, cur-
cumin suppresses the production of CXC che-

mokines through inhibition of the NF-κB 
pathway [486]. In addition, the expression of 
multiple NF-κB-regulated gene products, 
including IL-6, IL-8, MMP-9, COX-2, and 
CCL2, was reduced with curcumin. Furthermore, 
curcumin also affects other inflammatory mark-
ers and subsequent tumor promotion [474], such 
as inflammatory cytokines (TNFα, IL-1, IL-6, 
and IL-8) [487, 488], inflammatory transcrip-
tion factors (STATs), and inflammatory enzymes 
(COX-2, 5-lipoxygenase (LOX)) [489]. 
Curcumin can inhibit different invasion, cell 
adhesion, and extracellular matrix molecules, 
such as matrix metalloproteinase, CCRX4, 
COX- 2, ELAM1, and ECAM1 [490].

Curcumin can inhibit iNOS induction and 
scavenge NO radicals in breast cancer cells in the 
promotion phase of carcinogenesis [491, 492]. 
TNF-α is a direct stimulator of aerobic glycolysis 
in malignant breast epithelial cell lines, and inter-
estingly curcumin could reverse this effect of 
TNF-α [493].

Curcumin strongly prevents the generation of 
hematogenous metastases through suppression of 
the expression of NF-κB/activator protein-1 
(AP-1)-dependent MMP, Egr-1, [494], and other 
genes involved in cell adhesion (chemokines, 
TNF, and Cox-2) [495, 496]. On the other hand, 
inhibition of NF-κB reduced the expression of 
prometastatic chemokine (C-X-C motif) ligand 
(CXCL) 1 and 2, which, in turn, decreased the 
expression of chemotactic receptor CXCR4 
along with other prometastatic genes [486]. 
Decreased expression of matrix metalloprotein-
ases, ICAM-1, and CXCR4 along with sup-
pressed cell migration and invasion has been 
reported in breast cancer cell line [497].

 Effect of Curcumin on Matrix 
Metalloproteinase-9 (MMP-9)
MMPs have been considered as one of the impor-
tant molecules assisting tumor cells during 
metastasis [498, 499]. MMP-9 shows a major 
role in the breakdown of extracellular matrix in 
disease processes such as tumor metastasis [500]. 
However, curcumin shows a vital role in the inhi-
bition of MMP-9 activities and cell invasion 
through downregulating NF-κB [501].
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 Restoration of CD4+ and CD8+ T-Cell 
Populations and Increased TH1-Type 
Response
Curcumin could efficiently restore CD4+ and 
CD8+ T-cell populations in the tumor microenvi-
ronment and prevent depletion of central memory 
and effector memory T-cells in peripheral circu-
lating blood and lymph nodes and at the tumor 
site. In this manner, curcumin can drive TH2 cyto-
kine response toward a TH1-type response [502, 
503]. However, results regarding this point are 
not consistent. These contradicting reports sug-
gest that curcumin may be implicated in complex 
signaling pathways, leading to an enhanced anti-
tumor immunity. Curcumin is able to reverse the 
decrease in the levels of TH1 cytokines such as 
IFN-γ and the increase in TH2 cytokines such as 
IL-4 during cancer progression. Although some 
studies suggest different outcomes in which cur-
cumin favors a TH2-type response, there are stud-
ies reporting that curcumin supports cancer 
regression by restoring TH1 immune responses 
[504, 505]. The elevated population of tumor- 
infiltrating lymphocytes leads to increased tumor 
cell killing. A delayed NK cell cytotoxic response 
and a simultaneous increase in IL-12 secretion in 
the serum of treated mice were reported after cur-
cumin treatment [472]. Curcumin might prevent 
T-cell depletion by inhibiting secretion of sup-
pressive molecule PGE-2 by tumor cells [506]. 
PGE-2 inhibits expression of the cytokine recep-
tor gamma chain (γc) in T-cells, which causes 
deactivation of the Jak/Stat pathway and reduces 
expression of pro-survival protein Bcl-2  in 
T-cells. Curcumin through inhibition of PGE-2 
would restore γc and Bcl-2 expression in T-cells 
and so support T-cell survival and differentiation 
[507].

It has been reported that curcumin arrests mat-
uration of DCs and stimulates a tolerogenic phe-
notype that next promotes functional FoxP3+ 
TREG cells. It has been shown that DCs generated 
in the presence of curcumin had minimal CD83 
expression, suppressed levels of CD80 and 
CD86, and reduced expression of both MHC 
class II and CD40 in comparison with those DCs 
that were differentiated in the absence of cur-
cumin. Curcumin enabled arrested maturation of 

DCs and induced a tolerogenic phenotype [473, 
503, 508, 509]. An increase in the generation of 
CD4+CD25highCD127low FoxP3+ TREG cells that 
exert suppressive functions on naïve syngeneic 
T-cells has also been observed with curcumin 
treatment [508]. Curcumin prevented loss of 
effector and memory T-cells, extended central 
memory T-cell (TCM)/effector memory T-cell 
(TEM) populations, reversed TH2 immune 
response, and attenuated tumor-induced inhibi-
tion of T-cell proliferation in tumor-bearing hosts 
[510].

 Reduction of TREG Cell Population
CD4+CD25+FOXP3+ TREG cells play an important 
part in the tumor immune evasion process. 
Progression of tumor coincides with an elevation 
in TREG cells, which secrete immunosuppressive 
cytokines like TGF-β and IL-10 and express the 
high-affinity IL-2 receptor CD25, which seques-
ters IL-2 from the tumor milieu. It must be noted 
that IL-2 is necessary for proliferation of other 
T-cells, and so its reduction leads to effector 
T-cell apoptosis [511, 512].

Curcumin is able to block IL-2 signaling by 
decreasing accessible IL-2 and high-affinity 
IL-2R, as well as interfering with IL-2R signal-
ing. Curcumin has also been demonstrated to 
block IL-2-induced phosphorylation of STAT5A 
and Janus kinase (JAK), but not JAK1, suggest-
ing inhibition of critical proximal events in IL-2R 
signaling [513].

Curcumin can efficiently decrease TREG cell 
number and the levels of IL-10 and TGF-β [514]. 
Other studies also reported similar results, sug-
gesting that treatment of CD4+CD25+ TREG cells 
with curcumin decreased their immunosuppres-
sive activity [472, 515]. FOXP3 and CTLA-4 are 
essential for TREG function [516]. It has been 
shown that curcumin can reduce the expression 
of CTLA-4 and FOXP3, two key transcription 
factors that are involved in regulating transcrip-
tional program of TREG cells and are necessary for 
development and function of TREG [516]. 
Curcumin inhibited TREG function by blocking 
cell-cell contact [514].

Increased oxidative stress in tumor inhibits 
NF-κB activity in thymic T-cells, which makes 
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T-cells vulnerable to apoptosis by TNF-α secreted 
from tumor cells [517, 518]. Curcumin through 
inhibition of oxidative stress and reduction of 
surface expression of TNF-α receptor (TNFR1) 
on thymic T-cells of tumor-bearing mice [517] 
prevents reduction of NF-κB activity in thymic 
T-cells.

Curcumin treatment can inhibit the tumor sup-
pressor indoleamine-2,3-dioxygenase (IDO) as 
well as the immunosuppressive cytokine TGF-β, 
thereby promoting T-cell cytotoxic activity [519]. 
IDO exerts its immune suppressive effect by cat-
alyzing tryptophan, which is necessary for T-cell 
proliferation [520].

 Reduced T-Cell Apoptosis
Prolonged injections of curcumin maintained 
levels of TH1 cytokines, NK cell cytotoxic activ-
ity, and production of ROS and NO by macro-
phages [472]. Tumor-bearing mice treated with 
curcumin showed improvement in immune cell 
numbers and tumor regression, consistent with 
inhibition of apoptosis in thymocytes and spleno-
cytes [502]. Curcumin reduced T-cell apoptosis 
in tumor-bearing mice through activation of the 
JAK3-STAT5a pathway in T-cells and subsequent 
restoration of BCL-2 levels [506]. Inhibition of 
tumor-induced thymic atrophy by restoring the 
activity of NF-κB pathway also has been reported 
after curcumin treatment [517]. Eventually, 
although low dose of curcumin stimulated effec-
tive antitumor response by escalating CD8+ cyto-
toxic T-cells and IFN-γ production, higher dose 
of curcumin was harmful for T-cells [473].

 STAT Pathway
STATs modify tumor-promoting inflammation 
via collaboration of other transcription factors 
[474, 521]. Curcumin inhibits the expression of 
STATs, especially nuclear STAT3, STAT5a, and 
STAT5b in human chronic K562 leukemia cells. 
When used as a pretreatment, curcumin inhibited 
IFN-γ-induced phosphorylation of nuclear 
STAT1 and STAT3 [522, 523] in human K562 
leukemia cells and STAT1 in human lung A549 
carcinoma and melanoma cells [524]. Following 
treatment with curcumin and its analogs such as 
GO-Y030 [525], FLLL1, and FLLL12 [526], 

similar downregulation of STAT3 activation was 
also observed in Hodgkin’s lymphoma [483], 
T-cell leukemia [527], head and neck squamous 
cell carcinoma [528], multiple myeloma cells 
[529], and CD138+ cells derived from multiple 
myeloma patients [480].

Curcumin alone or in combination with epi-
gallocatechin gallate (EGCG) blocked STAT3 
phosphorylation and undermined the interaction 
between STAT3 and NF-κB through suppression 
of CD44 expression, together diminishing breast 
cancer stem cells (bCSCs) population [530, 531].

 COX-2
Curcumin is an effective inhibitor of COX-2  in 
several cancer types [532–535]. Moreover, cur-
cumin can inhibit COX-2 expression in PBMCs 
of patients with pancreatic cancer [481] and on 
oral premalignant cells [476]. Furthermore, fluo-
rocurcumin, a curcumin analog, has been reported 
to suppress NF-κB and PGE-2, and so it was sug-
gested to be a potential agent against COX-2- 
overexpressing tumors [536]. Curcumin 
downregulates the expression of EGFR in pan-
creatic and lung adenocarcinoma expressing 
COX-2 [537] through inhibition of ligand- 
induced activation of EGFR [538] or through 
decreasing the transcriptional activity of Egr-1.

 Synergy with Drugs
Several studies investigated the potential syner-
gistic activity of curcumin in combination with 
conventional chemotherapeutic agents. Curcumin 
combined with omega-3 fatty acid could suppress 
the expression and activity of iNOS, COX-2, and 
5-LOX and upregulation of p21 [534] and there-
fore prevent or even treat pancreatic tumor xeno-
grafts [534]. Curcumin would potentiate the 
effect of paclitaxel-mediated chemotherapy in 
advanced breast cancer in vitro and in vivo. This 
effect has been attributed to suppression of 
NF-κB and serine/threonine Akt pathways, COX- 
2, and MMP-9 [539, 540]. Reduction of COX-2 
is also reported in human colon cancer HT-29 cell 
lines treated with curcumin combined with 5-FU 
[541]. Although prostate and breast cancer cells 
(DU145, PC-3, and LNCaP) are typically resis-
tant to TRAIL-induced apoptosis, they can be 
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sensitized with curcumin. This mixture stimu-
lates inhibition of active NF-κB and other path-
ways that also were confirmed by preclinical 
studies performed in PC-3- and TRAIL-resistant 
LNCaP xenografts [542–545].

 Interleukins
M2 macrophages and TREG cells are two main leu-
kocytes that secrete the anti-inflammatory cyto-
kine IL-10 [546]. M2 macrophages play a critical 
role in tumor progression and development con-
sistent with increased IL-10 concentrations in 
various solid tumors. M1 macrophages produce 
IL-12, an antitumor chemokine. So, the IL-10/
IL-12 ratio might predict tumor progression 
[547]. IL-10 could inhibit several components 
of immunity, including co-stimulatory and adhe-
sion molecules (CD86 and CD54) that induce 
an inflammatory response in macrophages [548] 
and cytokines such as IL-12, IL-23, IL-1β, and 
TNF-α that are involved in inflammatory immune 
response [548–550]. IL-10 enhances the activa-
tion and proliferation of B-cells and antibody 
production. Maintaining the TH1/TH2 balance is 
one of the important facets of immunomodula-
tory action of IL-10. IL-10 has potential anti-
cancer effects which may be mediated through 
reductions in the production of pro- inflammatory 
cytokines such as IL-1β, TNF-α, and IL-6 that 
play important roles in neovascularization as well 
[551, 552].

Curcumin can increase the frequency of M1 
macrophages while decreasing the frequency of 
M2 macrophages, resulting in a decrease in the 
expression of STAT3, IL-10, and arginase-1  in 
mice with metastatic breast cancer. Through 
reduction in IL-10 levels, curcumin can also 
block Janus kinase-STAT signaling and increase 
tumor cell apoptosis [547].

Curcumin can act as an antitumor agent 
through prevention of tumor-induced T-cell 
depletion by increasing the production of IFN-γ, 
an important TH1 cytokine for the production and 
function of peripheral T-cells, and IL-2, which is 
crucial for differentiation of cytotoxic 
T-lymphocytes. Antitumor activity of curcumin 
could also be due to the restoration of activated/
effector CD4+ and CD8+ T-cells, induction of 

tumor-infiltrating lymphocytes (TILs), and 
upregulation of IFN-γ expression. Curcumin also 
reduces the levels of TGF-β and IL-10  in TREG 
cells and decreases the number of TREG cells in 
the tumor microenvironment [503].

IL-8 was overexpressed in ER-negative cancer 
cells and showed a potential correlation with 
tumor progression and invasiveness. 
Overexpression of IL-8 is linked to progression 
and metastasis of cancer cells in the colon [553]. 
Treatment of colon cancer cells with curcumin 
inhibited neurotensin-induced gene expression 
and protein secretion of IL-8, thereby preventing 
migration of cancer cells [554]. Curcumin also 
reduced the expression of IL-8 in human pancre-
atic cancer cell line [555].

 Exosomes and Immune Suppression 
in Cancer
Exosomes are small particles that are released 
from normal and neoplastic cells and are present 
in serum and other bodily fluids. Exosomes have 
various molecules including signal peptides, 
mRNA, and microRNA.  Tumors also secrete 
exosomes which are immune suppressive bodies 
containing a distinct set of proteins that can 
affect the immune system. In cancer, signaling 
via exosomes affects the immune system 
through inhibition of T-cell and NK cell func-
tions and an increase in the number and/or activ-
ity of immune suppressor cells, including 
myeloid-derived suppressor cells (MDSCs), 
TREG cells, and CD116+ HLA-DR−/low cells 
[556]. Curcumin reduces the inhibitory effects 
of exosomes on NK cytotoxicity [557]. Of note, 
curcumin can reverse the tumor exosome-medi-
ated inhibition of NK cell function via the ubiq-
uitin-proteasome pathway [558].

 Green Tea and Catechins

Several epidemiological and experimental stud-
ies have reported a negative correlation between 
green tea and development of cancers of the blad-
der, cervix, breast, esophagus, colorectum, stom-
ach, lung, liver, ovaries, oropharynx, pancreas, 
prostate, and skin [559]. The health benefits of 
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green tea could be mostly attributed to catechins, 
including catechin (C), epicatechin (EC), epigal-
locatechin (EGC), and epicatechin gallate 
(EGCG).

 Transcription Factors
EGCG has been found to suppress the expression 
and/or activity of many transcription factors, 
such as HIF-1α, nuclear STAT1 and STAT3, 
NF-κB, and AP-1. In addition, different MMPs, 
including MMP-2, MMP-9, and MMP-14/MT1- 
MMP, have been downregulated by EGCG [559]. 
EGCG has been reported to block angiogenesis 
and decrease xenograft tumor growth via inhibi-
tion of IGF-1 through downregulating the protein 
expression of HIF-1α and VEGF in A549 lung 
cancer cells [560, 561] and via inhibition of HIF- 
1α- dependent expression of VEGF, IL-8, and 
CD31  in other lung NCI-H460 cell lines [562]. 
EGCG blocked xenograft angiogenesis and 
tumor growth in gastric cancer cell line BGC-823 
[563]. EGCG is also able to inhibit IL-6-induced 
angiogenesis via inhibition of VEGF expression 
through downregulating Stat3 activity in human 
gastric carcinoma AGS cells and SGC-7901 can-
cer cells [564, 565]. In HeLa cervical cancer cell 
line, EGCG inhibited cell proliferation and inva-
sion through suppression of MMP-9 gene expres-
sion and upregulation of TIMP-1 gene expression 
[566]. In SW837 CRC cell line, EGCG inhibited 
tumor growth by downregulating HIF-1α and 
several major growth factors [567]. In T-24 blad-
der cancer cell line and SW620 cell line, EGCG 
inhibited cell adhesion, migration, and invasion 
through suppression of MMP-9 expression via 
inhibition of NF-κB signaling pathway [568]. In 
esophageal TE-8 and SKGT-4 cancer cells, 
EGCG reduced cell invasion through lessening 
p-ERK1/p-ERK2, c-Jun, and COX-2 [569].

Overexpression of the human epidermal growth 
factor receptor-2 (HER2/neu) is linked to poor 
prognosis in various types of cancer. EGCG blocks 
activation of these receptors by inhibiting STAT3 
and NF-κB activation. EGCG and Polyphenon E 
(PolyE) have been shown to decrease transcrip-
tional activity of AP-1 and NF-κB promoters and 
inhibit COX-2 transcription and PGE-2 produc-
tion in CRC cell lines [570].

 Effect of Green Tea on Nuclear 
Transcription Factor NF-κB
EGCG has been reported to inhibit the activation 
of NF-κB in H891 human HNSCC cells, 
MDA-MB-231 human breast cancer cells, PC-9 
human lung cancer cells, human colon cancer 
cells, A431 epidermoid carcinoma cells, and 
H891 head and neck cancer cells. EGCG 
decreased lipopolysaccharide (LPS)-induced 
TNF production in the RAW 264.7 macrophage 
cell line [571]. Treatment with EGCG and PolyE 
reduced the levels of inflammatory cytokines, 
such as TNF-α, in the colon epithelium and also 
inhibited inflammation-related colon carcinogen-
esis induced by AOM and DSS injection in a 
mouse colon cancer model [572].

Regulation of the NF-κB pathway may play a 
critical role in mediating chemopreventive prop-
erties of catechin in prostate cancer cells. 
Catechin treatment regulates NF-κB gene expres-
sion through accumulation of IκBα, repression of 
NF-κB phosphorylation [573], reduction in IKKα 
expression, inhibition of IKK activity [574] and 
proteasome and caspase cleavage of the p65 sub-
unit [575], and reduction in other signaling fac-
tors, including RANK and NIK [573]. NF-κB 
target genes involved in carcinogenesis, includ-
ing Bcl-2, Bcl-xL, survivin, MMPs, VEGF, uPA, 
and iNOS [576–578], are also decreased by cat-
echin treatment. Thus, one of the probable mech-
anisms by which EGCG can exert antitumor 
effects is through suppression of the NF-κB sig-
naling pathway.

EGCG treatment resulted in decreased COX-2 
promoter activity through inhibition of NF-κB 
activation [579]. AP-1 serves as another potential 
target for anticancer effects of EGCG [580]. 
EGCG has been demonstrated to interfere with 
AP-1-induced transcriptional activity through 
inhibition of a JNK-dependent pathway [581].

 Effect of Green Tea Catechins 
on Cyclooxygenase and Lipoxygenase
EGCG has been reported to inhibit mitogen- 
induced COX-2 expression in androgen-sensi-
tive LNCaP and androgen-insensitive PC-3 
human prostate carcinoma cells [582]. 
Pretreatment with green tea catechins inhibited 
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COX-2 expression induced by 
12-O-tetradecanoylphorbol-13-acetate (TPA) in 
mouse skin and reduced COX-2 expression in 
the SW837 human CRC cell line, colon epithe-
lium, and LPS-induced macrophages. It has been 
shown that EGCG decreases the activity of 
COX-2 after IL-1A stimulation of human chon-
drocytes [583]. Recent cancer research suggests 
that development of compounds, which can 
inhibit COX-2 expression preferably without 
affecting COX-1, is a hopeful approach for can-
cer chemoprevention. The inhibition of NF-κB is 
suggested as a possible mechanism for inhibition 
of COX-2 expression. EGCG, EGC, and ECG 
from green tea and theaflavins from black tea 
have been reported to inhibit lipoxygenase 
(LOX)-dependent activity by 30–75% [584]. 
Consumption of green tea and dietary fat modu-
lates 5-lipoxygenase-dependent pathway of ara-
chidonic acid metabolism throughout 
AOM-induced colon carcinogenesis [585].

 Effect of Green Tea on AP-1 
Transcription Factor
AP- 1 is another transcription factor including 
Jun and Fos protein families that regulates 
expression of gene associated with apoptosis 
and proliferation. AP-1 has been implicated in 
cancer development and progression. AP-1 is 
induced by TNF and IL-1 as well as by a variety 
of environmental stimulators like UV radiation. 
Theaflavins and EGCG inhibited ultraviolet B 
(UVB)-induced AP-1 activation [586] and 
AP-1- dependent transcriptional activity and 
DNA binding activity [587, 588]. A previous 
study in JB6 mouse epidermal cell line demon-
strated that EGCG treatment inhibits AP-1 acti-
vation and cell transformation and Ras-activated 
AP-1 activity in the H-ras-transformed cells. 
EGCG inhibits AP-1 activity through inhibition 
of JNK but not ERK activation [586]. EGCG or 
PolyE treatment causes inhibition of AP-1 and 
NF-κB luciferase reporter activity in the HT29 
human colon cancer cell line. These findings 
indicate that inhibition of the NF-κB and/or 
AP-1 pathways is a possible mechanism under-
lying anticancer effects of green tea catechins 
[589, 590].

 Effect of Green Tea on STAT3
EGCG inhibited phosphorylation of EGFR, 
Stat3, and ERK proteins in human HNSCC cell 
lines such as YCU-N861 and YCU-H891 [591]. 
Inhibition of activation of the EGFR, Stat3, and 
Akt by EGCG treatment has been shown in YCU- 
H891 HNSCC and MDA-MB-231 breast carci-
noma cell lines [592].

EGCG-induced increase in IFN-γ secretion in 
a previous study has been attributed to an increase 
in NK and NK T-cell numbers that could be due 
to induced STAT1 activity. A previous clinical 
trial on 20 patients with stage IV cancer with a 
special regime containing soy extract reported 
increased cytotoxic activity of NK cells and 
TNF-α secretion [593]. An aggressive combina-
tion of immunoactive nutraceuticals was efficient 
in significantly increasing NK function [593].

 Inflammatory Factors
Different studies reported that EGCG is able to 
inhibit the expression of various inflammatory fac-
tors in tumor cells including inflammatory cyto-
kines (IL-8), inflammatory growth factors 
(insulin-like growth factor 1 (IGF-1) and VEGF), 
and inflammatory mediators (COX-2 and iNOS). 
In addition, it can inhibit the expression of chemo-
kines, such as the colony-stimulating factor 1 
(CSF-1) and C-C motif chemokine ligand 2 
(CCL2). Therefore, targeting different inflamma-
tory factors might play an important role in EGCG-
mediated cancer inhibition [559, 594–597].

 Modulation of Antitumor Immunity
Green tea has been reported to enhance humoral 
and cell-mediated immunity, resulting in reduced 
risk of certain cancers [579]. IDO, an immune 
regulatory enzyme, is associated with tumor 
immune escape. EGCG has been reported to 
downregulate the expression of IDO in human oral 
and colorectal cancer cells by inhibition of STAT1 
function [579], concurrent with increased antitu-
mor immunity. This indicates that EGCG can be a 
potential regulator of tumor immunity [598, 599].

 Myeloid-Derived Suppressor Cells
MDSCs contribute to the negative regulation of 
immune responses. MDSCs downregulate T-cell 
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function through generation of arginase, NO, 
ROS, and peroxynitrate. However, in the tumor 
microenvironment, MDSCs are able to differen-
tiate into tumor-associated macrophages 
(TAMs) and express arginase and iNOS and 
suppress generation of ROS [600, 601]. Besides 
antigens and co-stimulation, cytokines are 
required for T-cell activation, proliferation, and 
maintenance. Recent studies have shown that 
cytokines (IL-12 or IFN-γ) released by DCs or 
other APCs can act as the third signal that is 
responsible for activation, expansion, and 
appropriate production of effector and memory 
T-cells [602]. However, the tumor microenvi-
ronment cannot supply such inflammatory sig-
nals, leading to inappropriate activation of DCs. 
Furthermore, tumors produce immunosuppres-
sive cytokines such as IL-10 and TGF-β and 
also increase TREG cell number, which both fur-
ther dampen proper DC activation [600].

Myeloid cells hamper the function of T- and 
NK cells. It is well known that tumor-induced 
TREG cells blunt NK and CD4+/CD8+ T-cell- 
mediated immune responses. PolyE is able to 
promote the differentiation of MDSCs into more 
mature neutrophil-like cells with hyperseg-
mented nuclei [603]. These cells are unable to 
inhibit the secretion of IFN-γ from CD3+ sple-
nocytes in  vitro. MDSCs were less infiltrated 
into the neuroblastomas of mice drinking PolyE 
in comparison with control group. This confirms 
the hypothesis that catechins hinder the migra-
tion of myeloid cells to the tumor site. MDSCs 
interfere with the antitumor activity of CD8+ 
T-cells. Intriguingly, another study has reported 
that EGCG enhances CD8+ T-cell-mediated 
antitumor immunity as obtained by DNA vacci-
nation. Depletion of immunosuppressive TREG 
cells by means of a CD4-specific antibody 
decreases the growth of neuroblastomas in A/J 
mice [604]. In another report, depletion of CD4+ 
cells failed to modify tumor growth in neuro-
blastoma cells of A/J mice, which received 
PolyE-pretreated MDSCs. These findings pos-
sibly show that MDSCs fail to stimulate CD4+ 
TREG cells when they have been exposed to 
PolyE. PolyE could be potentially beneficial in 
cancer patients by antagonizing cells that inter-

fere with antitumor immune responses elicited 
by immunotherapy [604, 605].

Other investigators suggest the role of immu-
noregulatory cytokine IL-12 in DNA repairs and 
induction of cytotoxic T-cells in the tumor micro-
environment in skin cancer models [606]. In fact, 
EGCG inhibits UVB-induced immunosuppres-
sion and induces repair in mice through stimula-
tion of IL-12. Mechanisms of green tea for 
chemoprevention in lung cancer include antioxi-
dant activity, phase II enzyme induction, and 
inhibition of TNF-α expression. EGCG also 
inhibits UVB-induced infiltration of leukocytes 
and APC depletion [603, 606, 607]. In addition, 
topical application of EGCG has been shown to 
inhibit UVB-induced angiogenesis while induc-
ing cytotoxic T-lymphocytes (CD8+ T-cells) in 
skin tumors on SKH-1 mice [608].

 Synergistic Effect of EGCG Combined 
with Other Bioactive Compounds 
and Chemotherapeutics
Recent studies have found synergistic antitumor 
effect of EGCG in combination with other dietary 
bioactive compounds like ascorbic acid, curcumin, 
6-gingerol, N-acetylcysteine, panaxadiol, pterostil-
bene, quercetin, sulforaphane, vitexin-2- o-xyloside, 
raphasatin, EPA-FFA, and proanthocyanidins. 
Combination of EGCG with these small molecules 
can synergistically inhibit cancer growth through 
enhanced bioavailability of EGCG.

Several studies reported that EGCG could 
sensitize cancer cells to X-irradiation and ioniz-
ing radiation in different cell lines like glioblasto-
mas and promyelocytic leukemia HL-60 cells. In 
addition, EGCG can also improve the chemother-
apeutic effect of various drugs such as paclitaxel, 
capecitabine, cisplatin, docetaxel, and doxorubi-
cin (DOX). Therefore, considering EGCG as an 
adjuvant therapy can be a practical and efficient 
approach for cancer treatment [559].

 Ginseng

Ginseng (the root of Panax ginseng) is a well- 
known herbal medicine for the treatment of vari-
ous disorders. The main active components of 
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ginseng include a series of tetracyclic triterpe-
noid saponins (ginsenosides), polyacetylenes, 
polyphenolic compounds, and acidic polysaccha-
rides [609]. Until now, 38 ginsenosides have been 
purified from ginseng roots, with seven major 
ones, namely, Rg1, Re, Rf, Rb1, Rc, Rb2, and 
Rd, comprising more than 80% of the total avail-
able ginseng [610]. Ginsenosides can be classi-
fied into three groups: the protopanaxadiol group 
(e.g., Rb1, Rb2, Rb3, Rc, and Rd), the pro-
topanaxatriol group (e.g., Re, Rf, Rg1, and Rg2), 
and the oleanane group (e.g., Ro) [611, 612]. The 
acidic polysaccharides are found to be more bio-
logically active. Preliminary studies showed that 
the neutral polysaccharides contain antitumor 
activity [613]. A case-control study in Korean 
population reported that long-term ginseng intake 
was associated with a decreased risk of different 
types of cancers [614]. The main active compo-
nents of red ginseng for cancer prevention are 
ginsenosides Rg3, Rh2, Rg5, and PPD, which 
work synergistically [615, 616].

Acidic polysaccharides of ginseng (ginsan) 
isolated from the ethanol-insoluble fraction of 
the P. ginseng root have also demonstrated anti-
cancer immune modulatory function [617, 618]. 
Treatment with ginsan (acidic polysaccharide 
fraction of ginseng) makes splenocytes isolated 
from unprimed normal mice to be converted into 
activated killer (AK) cells, which can induce 
cytotoxic activity on numerous tumor cells com-
prising NK-resistant murine mastocytoma cell 
line P815 and NK-sensitive murine lymphoma 
cell line YAC-1 [619, 620]. Ginsan can be com-
bined with other immunotherapeutics like IL-2 to 
enhance antitumor effect. Ginsan can stimulate 
the production of cytokines IFN-γ, IL-2, IL-1, 
TNF-α, IL-12, GMCSF, and IL-4 to modify the 
function of AK cells. Macrophages are also nec-
essary as accessory cells for the production of 
AK cells by ginsan [619]. The immune pheno-
type of these cells was described to be Thy1+ 
(thymocyte and peripheral T-cell marker), 
AsGM+ (NK cell and basophil marker), CD4+, 
and CD8+ [619].

Ginsan is able to convert macrophages into an 
M1 tumor inhibitory phenotype [617] as reported 
in peritoneal macrophages on murine B16 mela-

noma and fibroblast L929 cells. Generation of 
NO and ROS by macrophages is modified by 
inflammatory cytokines; and ginsan-treated peri-
toneal macrophages significantly enhance secre-
tion of IFN-γ, TNF-α, IL-1β, and IL-6 [617].

Red ginseng acidic polysaccharide (RGAP) 
increased cytokine secretion by macrophages but 
did not stimulate their tumoricidal activity on its 
own [618]. RGAP combined with recombinant 
IFN-γ possesses an increased synergistic effect 
on the cytokine production and phagocytic and 
cytotoxic capacity of macrophages against 
murine B16 melanoma cells. Activation of the 
NF-κB pathway has been postulated to be respon-
sible for this synergistic effect [618].

The red ginseng ginsenoside Rg3 also showed 
stimulatory effects on macrophages and increased 
the phagocytic index of peripheral blood macro-
phages resulting in an improved antitumor effect 
in a mice model of lung carcinoma [621]. Korean 
red ginseng (KRG) possesses no effect on the 
accumulation of MDSCs. However, it might 
inhibit suppressive function of these cells leading 
to immune activation mediated by T-cell prolif-
eration and cytokines IFN-γ and IL-2 [622]. 
Altogether, it must be mentioned that the bioac-
tive constituents of ginseng demonstrated favor-
able anticancer immunotherapeutic effects, 
which are mainly modified via production of 
tumoricidal macrophages and AK cells.

 Anti-inflammatory Effects
Several ginsenosides have been shown to affect 
inflammatory signaling pathways, thereby inhib-
iting cancer development [623]. In a chemically 
induced mouse model of skin carcinogenesis, 
topical administration of ginsenoside Rg3 sup-
pressed TPA-induced activation of NF-κB and 
AP-1 and COX-2 expression, accounting for its 
antitumor effects [624]. 20(S)-Rg3 can inhibit 
the production of ROS, but not that of NO, and 
decrease the production of cytokines, such as 
TNF-α, IL-1β, IL-6, and PGE-2  in LPS- 
stimulated Raw 264.7 murine macrophages and 
human keratinocyte (HaCaT) cells [625]. In 
MCF-7 cells, ginsenoside Rg1 inhibited MMP-9 
activity through NF-κB-mediated suppression of 
breast cell migration and invasion [626].

E. Ghaedi et al.



243

Ginsenoside Rg5 is also able to suppress 
NF-κB activity in a lung inflammation model. 
Rg5 reduced the expression of COX-2, iNOS, 
IL-1β, and TNF-α in LPS-stimulated alveolar 
macrophages through inhibition of IL-1 receptor- 
associated kinases (IRAKs) and IκB kinase-β 
(IKKβ), subsequently blocking the phosphoryla-
tion and nuclear accumulation of NF-κB [627]. 
Inhibition of NF-κB and subsequent reduction in 
IL-8 and PGE-2 also have been demonstrated in 
human embryonic kidney (HEK)-293 cells and 
HaCaT keratinocytes [628].

Treatment of human esophageal carcinoma cells 
with ginsenoside Rg3 reduced expression of VEGF, 
which was associated with the reduced expression 
of HIF-1α and COX-2 and diminished NF-κB 
activity [629]. Rg3 combined with gemcitabine sig-
nificantly reduced the growth rate of Lewis lung 
carcinoma cells transplanted in C57BL/6 mice by 
reducing the expression of VEGF [630].

P. ginseng can inhibit chemically induced 
aberrant crypt foci in mice maybe through anti- 
inflammatory activities like inhibition of COX-2. 
Ginseng can also inhibit MMPs and kinase path-
ways. In addition, it was demonstrated that gin-
seng activates PPAR-γ and TGF-β1, which are 
capable to interfere with the inflammation-to- 
cancer process. The following anti-inflammatory 
effects of ginsenosides have been reported in can-
cer models: inhibition of COX-2 and NF-κB in 
gastric cancer; inhibition of MAPK, NF-κB, and 
AP-1 in liver, lung, and breast cancer; and inhibi-
tion of iNOS, COX-2, and NF-κB in mammary 
and liver cancer [631].

Compound K (CK) significantly inhibited the 
secretion and protein expression of MMP-9. The 
inhibitory effect of compound K on MMP-9 
expression was correlated with decreased MMP-9 
mRNA levels and reduced MMP-9 promoter 
activity [632].

Red ginseng inhibited tumor growth by influ-
encing neovascularization and angiogenesis. The 
angiosuppressive effect of Rg3 could be due to 
the differential regulation of MMP-2 and MMP-9 
activities [633]. Dose-dependent downregulation 
of MMP-2 and MMP-9 production by Rg3 is 
thought to be responsible for the inhibition of 
endothelial cell invasiveness and angiogenesis 

[633]. Rg3 effectively abrogated the VEGF- 
dependent neovessel formation, leading to 
delayed tumor angiogenesis [634]. In a model for 
gastritis and gastric cancer, treatment of endothe-
lial cells with KRG significantly reduced the 
expression of inflammatory mediators, including 
iNOS, COX-2, IL-8, and IL-1β, and angiogenic 
factors including IL-6, VEGF, platelet-derived 
growth factor, and MMPs [618].

 Role of microRNA in Inflammation- 
Related Angiogenesis
Recent researches have highlighted a role for 
microRNAs (miRNAs) – noncoding short RNA 
molecules (18 to 23 nucleotides) – in controlling 
gene expression by directing mRNA degradation 
or repressing post-transcriptional translation, 
thereby silencing gene expression [635].

A recent study showed that ginsenoside Rh2 
caused upregulation of 44 miRNAs and down-
regulation of 24 miRNAs in human non-small 
cell lung cancer cells. Interestingly, affected 
miRNAs were mostly involved in angiogenesis, 
inflammation, and cell proliferation [636]. 
Furthermore, Rh2 suppressed miR-21, miR-27b, 
and miR-31, all of which exhibit pro-angiogenic 
effects consistent with the reported anti- 
angiogenic activities of Rh2 [637]. Ginsenoside 
Rg3 has been shown to regulate VEGF-induced 
angiogenic response via miRNA modulation 
[635]. Red ginseng caused a synergistic effect 
with drug 5-FU for antiproliferative impact on a 
human CRC model [638]. Red ginseng signifi-
cantly potentiated the anticancer activities of epi-
rubicin and paclitaxel; thus, their dose and 
adverse events could be decreased [639]. Rg3 has 
been demonstrated to block NF-κB signaling and 
improve the vulnerability of prostate cancer cells 
to docetaxel and other chemotherapeutics. Also, 
protective effect of red ginseng in anticancer 
drug-induced toxicity was reported to be medi-
ated via the regulation of NF-κB activities [640].

 Carotenoids

β-Carotene is the main carotenoid isolated from 
orange and yellow fruits and vegetables. 
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Lycopene is the main carotenoid found in red 
fruits and vegetables. The correlation between 
the high dietary consumption of carotenoids and 
low risk of prostate cancer has been frequently 
investigated. The inhibitory effect of β-carotene 
on the proliferation of human cancer cell lines 
(PC-3, DU 145, and LNCaP) has been previously 
demonstrated [641]. Carotenoids have been 
investigated for their immune-enhancing effects 
mostly via induction of NK cell activities and 
increasing leukocyte cell number, CD4/CD8 
ratio, and MHC I expression [642]. The antitu-
mor effect of dietary lutein has been investigated 
in a mammary tumor-bearing mice model. Lutein 
showed a stimulatory effect on IFN-γ expression 
while suppressing the expression of IL-10  in 
splenocytes [643, 644].

Lycopene is a potent antioxidant that can be 
used as a protective anticancer agent [645]. The 
antiproliferative and apoptotic effects of lyco-
pene have been shown in prostate cancer cell line 
(LNCaP) [646], colon cells (HT-29 and T84), and 
breast cancer cell lines [647]. Both lycopene and 
β-carotene have been shown to inhibit metastasis 
in experimental settings, for example, lung 
metastasis in B16F-10 melanoma cells in 
C57BL/6 mice and in human hepatoma 
SK-Hep1-1 cells. Lycopene also decreases the 
level of VEGF and MMP [648].

In vitro administration of lycopene effectively 
reduced inflammatory signaling. Lycopene was 
able to inhibit the mRNA and protein expression of 
the pro-inflammatory cytokine IL-8 via inactiva-
tion of the NF-κB transcription factor through inhi-
bition of the phosphorylation of IKK and IKB and 
by decreasing the translocation of the NF-Bp65 
subunit from the cytosol to the nucleus. Lycopene 
also decreased the production of TNF, COX-2, 
iNOS, and IL-6 [649, 650]. The effects of lycopene 
were correlated with reduced phosphorylation of 
COX-2, PGE-2, and ERK1/ERK2 [651]. Lycopene 
also decreased MMP-7 expression in colon cancer 
cells. The decrease of MMP-7 expression by lyco-
pene was associated with diminished stability and 
increased E-cadherin expression, showing that 
MMP-7 may hydrolyze this adhesion molecule. 
Furthermore, lycopene decreased MMP-7 and 
c-myc expression by blocking AKT, GSK3, and 
ERK1/ERK2 phosphorylation [652].

β-Cryptoxanthin was shown to reduce the 
gene expression of IL-1α in mouse macrophage 
RAW 264 cells [653]. Both astaxanthin and can-
thaxanthin exhibited inhibitory activity in rela-
tion to cancer development in the urinary bladder, 
tongue, and colorectum through downregulation 
of cell proliferation. Another study demonstrated 
the anti-inflammatory and antitumor effects of 
astaxanthin in inflamed colon due to modification 
of the expression of inflammatory cytokines that 
are involved in inflammation-associated carcino-
genesis [654]. Indeed, astaxanthin may aid 
COX-2 suppression [655]. Other studies reported 
that in 1,2-dimethylhydrazine (DMH)-induced 
colon carcinogenesis, daily administration of 
astaxanthin significantly blocked colon carcino-
genesis by modifying the expression of NF-κB, 
COX-2, MMP-2, MMP-9, ERK2, and protein 
kinase B (Akt) [656]. Lycopene decreased the 
invasive ability of hepatoma cells by downregu-
lating the activity of NF-κB [657], maybe through 
suppression of IGF-1 receptor. Lycopene could 
be efficient in treatment of benign prostate hyper-
plasia (BPH) via inhibition of NF-κB.  On the 
contrary of the inhibitory effect of lycopene on 
NF-κB activity, β-carotene stimulated NF-κB in 
human leukemic (HL-60) and colon adenocarci-
noma (LS-174 and WiDr) cells [658]. Astaxanthin 
attenuated the production of inflammatory mark-
ers and cytokines by LPS in  vitro (LPS-treated 
RAW 264.7 cells and primary macrophages) and 
in vivo (LPS-treated mice) through NF-κB inhi-
bition. Furthermore, astaxanthin thoroughly 
inhibited all the main signaling molecules 
involved in NF-κB activation, like IkB kinase 
phosphorylating activity, IkBa degradation, and 
the nuclear translocation of the NF-κB p65 sub-
unit [659]. Anti-angiogenic effect of β-carotene 
was investigated by an in vivo model of B16F-10 
melanoma in mice and by in vitro studies [660]. 
β-Carotene treatment significantly decreased the 
number of tumor-directed vessels concurrent 
with reduction of serum VEGF and pro- 
inflammatory cytokines, e.g., IL-1β, TNF-α, and 
IL-6. In addition, similar decrease of these cyto-
kines was detected after β-carotene treatment in 
melanoma cells and found to result from inhibi-
tion of c-Rel subunit of NF-κB and AP-1. AP-1 
transcription system has been shown to be 
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blocked by lycopene in MCF-7 mammary cancer 
cells [661]. The AP-1 complex comprises pro-
teins from the Jun (c-Jun, JunB, and JunD) and 
Fos (c-Fos, FosB, Fra-1, and Fra-2) families, 
which are connected as homo- (Jun/Jun) or het-
erodimers (Jun/Fos). It is probable that lycopene 
and retinoic acid decrease growth factor-induced 
induction of AP-1 transcriptional activity by 
changing the composition of AP-1 complexes 
that bind to DNA [662, 663]. There was a three- 
to fourfold increase in the expression of c-Jun 
and c-Fos genes in the lungs of ferrets, supple-
mented with high-dose β-carotene and exposed 
to tobacco smoke. This study suggested a possi-
ble explanation for the enhancing effect of 
β-carotene on lung carcinogenesis in smokers, as 
demonstrated in large intervention studies [664].

Under basal conditions, Nrf1 and Nrf2 are pres-
ent in the cytoplasm bound to the inhibitory pro-
tein Keap1. After challenge with stimulating 
agents, they are released from Keap1 and translo-
cated to the nucleus [665, 666]. Studies have 
shown that dietary antioxidants (terpenoids [667]), 
flavonoids (epigallocatechin gallate (EGCG) [668, 
669]), and isothiocyanates may function as anti-
cancer agents by activating this transcription sys-
tem. However, hydrophobic carotenoids such as 
lycopene lack any electrophilic group and, there-
fore, are unable to interact with Keap1. Thus, it 
seems that oxidative products actively play a role 
in the induction of the EpRE/ARE (electrophile/
antioxidant response element) transcription sys-
tem by carotenoids. It has been demonstrated that 
oxidized derivatives, isolated by ethanol from par-
tially oxidized lycopene, transactivated EpRE/
ARE in HepG2 human hepatocellular carcinoma 
cells [670] with a strength resembling to that 
observed with unextracted lycopene mixture. In 
contrast, the intact carotenoid exhibited a small 
insignificant effect [671].

 Isoflavones

Isoflavones, such as daidzein and genistein, are 
mostly found in soybeans. Previous experimental 
and epidemiological studies suggest cancer pro-
tective effects of isoflavones and their metabolites. 
Genistein was described to downregulate direct 

cellular cytotoxicity and ADCC. Genistein is able 
to inhibit tyrosine kinase activity, which is cru-
cially involved in NK cell activation in epidermoid 
carcinoma A431 cells [672]. Both genistein and 
daidzein are extensively metabolized in humans 
and found as conjugated metabolites, mainly gluc-
uronides [673, 674]. Genistein and daidzein gluc-
uronides could increase NK cell- mediated 
cytotoxicity in human PBMCs at nutritionally 
achievable concentrations, which were tenfold 
lower than concentrations of isoflavones used to 
inhibit tumor cell (MCF-7 and MDA-468 human 
breast cancer cells) growth in vitro [673, 675]. At 
higher concentrations, however, genistein 
decreased NK cell-mediated killing of K562 target 
cells. In the presence of IL-2, genistein increased 
NK cell activation at even lower concentrations. 
The existence of IL-2 may be essential for genis-
tein to increase NK cell activity, and this may be 
correct for other flavonoids too. Factors determin-
ing the effects of genistein on NK cell activity in 
mice include the duration of exposure, sex, and 
even generation. The described effects may be of 
nutritional relevance as isoflavone concentrations 
after soy consumption are within the range 
(<2 μmol/L) for which NK cell activation is antici-
pated. The glucuronides were generally less potent 
than genistein and daidzein [673]. Genistein 
administration by oral gavage for 1–4  weeks 
increased NK cell-mediated cytolysis and cyto-
toxic T-cell activity in B6C3F1 mice [676].

Moreover, increased host resistance was 
shown in adult B6C3F1 mice (intravenous injec-
tion of B16F10 melanoma cells) treated with 
genistein, as reflected in lung tumor weight and 
NK cell modulatory effects [676]. Increased 
intake of dietary soy has been reported to reduce 
the severity of macroscopic lung metastasis 
[677]. In a study in bladder cancer, isoflavone- 
rich soy phytochemical concentrate (SPC) was 
shown to have greater anti-metastatic effect in 
comparison with genistein. Particularly, SPC but 
not genistein significantly blocked lung metasta-
ses through suppression of NF-κB expression in 
tumor tissues and reduction of circulating IGF-1 
levels [678]. Besides decreasing the metastasis of 
breast cancer cell to lung [679], genistein has 
been shown to be a useful chemotherapeutic 
agent to inhibit the development and metastasis 
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of sex gland cancers such as prostate cancer 
[680]. Inhibition of MMP-9 by genistein also has 
been suggested as a possible mechanism for pre-
vention of prostate cancer to bone metastasis 
[681, 682]. Other genes targeted by genistein in 
primary stages of breast cancer include MMP-2, 
MMP-7, and CXCL12, which support invasion 
and metastasis [683, 684]. Genistein also inhib-
ited the activation of focal adhesion kinase [685] 
and HSP27 pathway [685], which regulate cancer 
cell detachment and invasion, respectively. 
Genistein has been reported for its cytotoxic 
effect in prostate cancer cell lines LNCaP and 
PC3 [686], hepatoma cancer cell lines (HepG2, 
Hep3B) [687], and A431 and Colo205 xenograft 
tumors, [688, 689]. Genistein can be used com-
bined with conventional therapy such as 5-FU, 
all-trans retinoic acid (ATRA), and trichostatin A 
to improve their cytotoxicity and apoptotic activ-
ity in human pancreatic cancer cell line (MIA 
PaCa-2) [690] and human lung cancer cell line 
(A549) [691, 692]. Genistein at very low concen-
trations stimulated the proteinase inhibitor 9 (PI- 
9), which is a granzyme B inhibitor and inhibits 
the capability of NK cells to lyse breast cancer 
cells [693] with an opposite activity in high con-
centrations [676]. Moreover, it seems that 
polyphenol- stimulated NK cytotoxicity depends 
on the cell type. Genistein has also shown to 
decrease in vitro cytotoxic activity of NK cells in 
melanoma and breast cancer cells [524, 693] and, 
in contrast, was found to increase NK-mediated 
cytotoxicity in in vitro and in vivo tumor models 
[676, 694, 695].

 Quercetin

Quercetin is a well-known flavanol, which has 
been shown to inhibit NK cell killing activity in 
peripheral blood lymphocytes from human 
donors. However, high doses of quercetin could 
cause pro-apoptotic or cytotoxic effects through 
the inhibition of Ca2+ channels and Na+/K+ 
ATPase activity [122, 696]. More clearly, indirect 
NK cell stimulation by quercetin resulting in 
augmented IFN secretion has been reported in 
low doses of quercetin. Quercetin improved NK 

cell activity in BALB/c mice treated with WEHI-3 
leukemia cells and oral quercetin [697].

Quercetin stimulated NK cell activity through 
inhibition of protein kinase C (PKC), PI3K, and 
HSP70 in target cells while increasing the expres-
sion of NKG2D ligands [698, 699]. Some che-
motherapeutics were reported to increase the 
expression of NKG2D and HSPs, thereby 
decreasing cell vulnerability to NK cell-mediated 
cytolysis. It has been reported that quercetin can 
induce the expression of NKG2D ligands, MHC 
class I-related chain B (MICB), UL16-binding 
protein 1 (ULBP1), and UL16-binding protein 2 
(ULBP2) while downregulating the expression of 
HSP70 in K562 (erythroleukemia), SNU-1 (gas-
tric carcinoma), SNU-C4 (colon cancer), and 
human Raji (Burkitt’s lymphoma) target cells, 
together reflected in increasing cell susceptibility 
to NK-92-mediated lysis [698]. It has been sug-
gested that increased NKG2D ligand expression 
was mostly responsible for the inhibitory effect 
of quercetin on NF-κB and PI3K [698]. Quercetin 
demonstrated an antiproliferative effect through 
the induction of apoptosis by disturbing the MMP 
system [700, 701]. In addition, quercetin can be 
administrated combined with other chemothera-
peutic agents such as doxorubicin to enhance 
their cytotoxic effects on liver cancer cells 
(SMMC7721 and QGY7701) as well as to pro-
vide protection for non-tumoral liver cells from 
toxic effects of free radicals [702].

Quercetin is able to reduce the number and size 
of polyp in the Apc (Min/+) mouse through reduc-
tion in macrophage infiltration [703]. In addition, 
treatment with quercetin prior to intraperitoneal 
injection of EAT tumor cells stimulated macro-
phage spreading, suggesting that this compound 
affects the tumoricidal activity of macrophages 
[704]. In vivo, tumor-bearing mice treated with 
quercetin showed an improvement in the phago-
cytic activity of peritoneal macrophages [697].

 β-Glucan

β-Glucan is a polymer made of D-glucose mole-
cules that are connected by linear β-glycosidic 
bond with side branches that are different based 
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on their sources [705]. β-Glucans, including 
zymosan, laminarin, lentinan, and pleuran, are 
found in mushroom, barley, cereals, and sea-
weeds as well as bacterial and fungal cell wall. 
The anticancer effect of β-glucan is chiefly 
because of its immunomodulatory effect rather 
than its direct cytotoxic activity. A range of 
β-glucans have been described as immunomodu-
lators [706]. β-Glucans are able to induce the 
immune system effector cells, mostly macro-
phages, monocytes, neutrophils, NK cells, and 
DCs via their interaction with glucan-specific 
receptors, such as dectin-1, TLR, and CR3 (com-
plement receptor 3 or CD11b/CD18), expressed 
by these cells [707]. In addition, they can increase 
the phagocytic effects of neutrophils, NK cells, 
and cytotoxic T-lymphocytes. β-D-Glucans have 
been demonstrated to stimulate the secretion of 
pro-inflammatory cytokines (IL-1α/IL-1β, TNF- 
α, IL-2, IFN-γ, and IL-12) that stimulate antitu-
mor immune response as well as NO and H2O2 by 
activated macrophages that demonstrated antitu-
mor effect [708]. The effect of natural β-glucan, 
schizophyllan, combined with chemotherapy was 
investigated on the survival rate of patients with 
ovarian cancer [709]. Furthermore, Maitake 
D-fraction found in Grifola frondosa (Maitake 
mushroom) has been reported to decrease the 
size of tumors, primarily in the lung, liver, and 
breast, in more than 60% of treated patients 
[710]. Moreover, supplementation with 5.4 grams 
Ganoderma polysaccharides per day for 12 weeks 
boosted immune responses in patients with lung 
and colorectal cancer [711, 712]. β-Glucans com-
bined with mAbs RMA-S-MUC1 subcutane-
ously implanted in C57Bl/6 mice improved 
complement receptor 3 (CR3)-mediated phago-
cytosis of ic3b (inactivated C3b)-opsonized 
tumor cells by effector granulocytes and enhanced 
tumor recession in treated animals [713]. 
Lentinan, derived from Lentinus edodes, was 
shown to induce apoptosis in hepatoma H22- 
bearing mice [714], cervical carcinoma HeLa 
cells, and hepatocellular carcinoma (HepG2 and 
SMMC-7721 cell). Furthermore, lentinan 
induced antitumor immune responses through 
enrollment of immune cells, mostly macrophages 
and T-lymphocytes, into TME to attack tumor 

cells and release inflammatory chemokines 
(TNF-α, IL-2, IL-1β, TGF-β, IP-10, M-CSF, and 
TREM-1). The immunomodulating effects of 
arabinogalactan (AG) and fucoidan (FU) in vitro 
have been investigated in mouse spleen lympho-
cytes, which turned cytotoxic after treatment 
with AG and FU.  Novel maloyl glucans have 
been isolated from aloe vera gel (Aloe barbaden-
sis)  – veracylglucan B possesses both anti- 
inflammatory and antiproliferative effects, while 
veracylglucan C has merely shown anti- 
inflammatory effects and appears to complement 
the actions of veracylglucan B [715].

 Withania somnifera

Withania somnifera (WS), also known as 
Ashwagandha, has been a part of Ayurvedic med-
icine for many centuries. WS has been reported 
to be efficient in arthritis, cancer, and mental dis-
orders [716, 717]. Steroidal lactones, including 
withanolides and withaferins, are the most bio-
logically active components [716]. Among them, 
withaferin A (WA) and withanolide A have been 
investigated for anticancer and immunomodula-
tory effects, respectively [718, 719].

Along with its antitumor effect, treatment of 
tumor-bearing mice with withanolide A led to the 
polarization of TH1 cells and subsequent increase 
in the production of pro-inflammatory cytokines 
(IFN-γ and IL-2) while reducing the polarization 
of TH2 cells [720]. Moreover, there was a signifi-
cant increase in the proliferative activity of CD4+ 
and CD8+ T-cells present in the serum of 
WS-treated mice. In response to stimulation with 
concanavalin A (Con A) and LPS, proliferation of 
T-cells and B-cells was also significantly increased 
with WS treatment. Treatment with WA not only 
increased NK cell population in one study but also 
increased its cytotoxic activity. In addition, APCs 
purified from blood samples of tumor-bearing 
mice showed an enhanced maturation and expres-
sion of co-stimulation markers (CD80, CD40, and 
CD40L) on T-cells [720], suggesting the effective 
role of WS in DC-mediated activation of T-cells – 
all of which may be involved in antitumor func-
tion of WS. WA treatment induced tumor rejection 
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and protection from rechallenge. This indicates 
that WA can build immunological memory in 
Ehrlich ascites carcinoma model. A possible 
mechanism of tumor rejection could be attributed 
to macrophages because WA increased the fre-
quency of peritoneal macrophages, and transfer of 
these macrophages from cured mice caused tumor 
rejection. In a breast cancer model, WA induced 
immunogenic cell death (ICD) in cancer cells 
through expression of HSPs such as HSP70, 
HSP90, and calreticulin on the membrane of 
tumoral cells. All of these ICD mediators bind to 
receptors on DCs, leading to activation and matu-
ration of DCs and the production of inflammatory 
cytokine IL-12 [721]. Of note, WA could diminish 
the function of the tumor inhibitory immune cell 
type, i.e., myeloid-derived suppressor cells 
(MDSCs), to generate ROS known to mediate the 
suppressive effect of MDSCs on T-cells [722].

 Flavone Acetic Acid (a Synthetic 
Flavonoid)

Synthetic flavone acetic acid (FAA) has been fre-
quently investigated for its antitumor activities. In 
particular, it has the ability to induce NK cell 
activity [723]. FAA increased NK cell-mediated 
killing activity in both healthy and tumor-bearing 
mice [723] as well as cancer patients [724]. It has 
been postulated that an indirect mechanism (e.g., 
induction of cytokines), rather than a direct inter-
action of FAA with NK cells [725], is responsible 
for the discovered effect. In mouse renal cancer, 
intravenous or intraperitoneal administration of 
FAA increased NK cell activity in the spleen, 
liver, lungs, and peritoneum and was synergisti-
cally enhanced by co-administration of IL-2 
[725]. The first report on the enhancing effect of 
FAA on NK cell function in humans came from a 
study with six cancer patients undergoing a 
weekly treatment with FAA. Three out of the six 
patients showed a considerably enhanced NK cell 
activity after treatment [724]. In another trial, NK 
cell activity not only remained unchanged after 
treatment with FAA in cancer patients but even 
significantly reduced 24 h after treatment [726]. 
The synergistic activity of FAA and IL-2 [725] 

was subsequently studied in 26 melanoma 
patients. In 23 of 26 patients, NK activity was sig-
nificantly enhanced (2–20-fold higher cytotoxic-
ity) during combined treatment with FAA and 
IL-2. However, large variations in NK cell activity 
were observed in patients over the duration of the 
trial [727]. Of nine cancer patients receiving 1–6 
courses of FAA infusions, enhanced NK cell 
activity was reported in only three patients, while 
six others were unresponsive to treatment [728].

However, intravenous FAA in the abovemen-
tioned trials differed completely from the oral 
intake of flavonoids through diet or supplements. 
After intravenous injection, compounds are 
100% bioavailable, which surpass the usual max-
imum plasma concentrations of dietary flavo-
noids. A possible mechanism of action by which 
FAA induces NK cell activity is through induc-
tion of cytokines, including IFN-α, thereby 
improving NK cell function.

 Phenoxodiol (a Synthetic Flavonoid)

Phenoxodiol is a synthetic analog of genistein 
[729]. Phenoxodiol could induce NK cell func-
tion and their perforin content in human PBMCs 
from healthy donors, thereby increasing cytotox-
icity of NK-sensitive K562 cells. The increased 
cytotoxicity of phenoxodiol-treated cells was 
more prominent in PBMCs from cancer patients 
than in those from healthy volunteers. On the 
contrary, genistein and daidzein only marginally 
stimulated PBMC cytotoxicity [675]. In a previ-
ous experimental in  vivo study, the effects of 
phenoxodiol genistein and daidzein were investi-
gated in tumor-bearing mice. Only phenoxodiol 
and only at high-dose of 20 mg/kg body weight 
was able to enhance the cytolytic activity of sple-
nocytes against NK-sensitive target cells (CT-26 
and YAC-1) [675].

 Polymethoxylated Flavones

Treatment with a mixture of polymethoxylated 
flavones derived from orange peel oil in high 
doses mildly downregulated NK cell activity 
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with no effect on humoral immunity [730]. These 
findings suggest that consumption of high-dose 
citrus fruit during certain conditions like tamoxi-
fen therapy of mammary tumors must be avoided. 
Polymethoxylated flavones, such as nobiletin, 
tangeretin, and sinensetin, from the peel of citrus 
fruits, have been reported to potentiate the cyto-
toxicity of KHYG-1 (NK leukemia cells that 
exhibit high cytolytic activity against K562 target 
cells [731]) by enhancing the expression of gran-
zyme B [731]. Among them, nobiletin was also 
able to increase the levels of IFN-γ, perforin, 
granzyme A, and granzyme B in KHYG-1 cells 
[731]. The important role of granzyme B in 
nobiletin- mediated cytolysis has been confirmed 
in that study. It must be noted that nobiletin 
increased phosphorylation of cAMP response 
element-binding protein (CREB) while control-
ling the phosphorylation of ERK1/ERK2 and p38 
MAPK [731].

 Apigenin and Amentoflavone

Apigenin is found in common fruits and vegeta-
bles, such as parsley, onions, oranges, tea, cham-
omile, wheat sprouts, apple, guava, tomato, and 
broccoli, and in some seasonings. Studies have 
reported its antitumor effects. Topical application 
of apigenin prior to UV irradiation prevents 
UV-induced tumorigenesis in mice. In addition, it 
exhibited antiproliferative effects on breast can-
cer cell lines that expressed different levels of 
HER2/neu. It induced apoptosis in HER2/neu- 
overexpressing breast cancer cells. Apigenin has 
been shown to inhibit cancer cell proliferation 
and transcriptional activation of VEGF in A549 
lung cancer cells [732–737]. Amentoflavone is a 
biflavonoid formed out of two apigenin units 
[738]. It is present in Ginkgo biloba, Saint John’s 
wort [739], and Nandina domestica [740]. 
Treatment with amentoflavone increased NK cell 
activity in splenocytes in control and 
 tumor- bearing BALB/c mice [741]. Tumor-
bearing controls showed weaker and delayed NK 
cell activity in comparison with amentoflavone-
treated mice [741]. NK cell activity was investi-
gated in splenocytes isolated from tumor-bearing 

mice incubated with K562 target cells. 
Furthermore, antibody-dependent cellular cyto-
toxicity (ADCC) was significantly improved in 
amentoflavone- treated mice [741]. Taken 
together, amentoflavone effectively increased 
lymphoid cell proliferation and effector cell func-
tions by inducing the production of IL-2 and 
IFN-γ in tumor-bearing mice [741].

 Proanthocyanidins

Proanthocyanidins derived from grape seeds 
have different strong immunomodulatory proper-
ties. Ultraviolet B (UVB), as a part of UV irradia-
tion, causes immunosuppression which can be 
inhibited by proanthocyanidins through the 
induction of IL-12  in mice [742]. In addition, 
proanthocyanidins can inhibit UVB-induced 
immunosuppression by inducing CD8+ effector 
T-cells and reducing regulatory CD4+ T-cells. 
Proanthocyanidins make UVB-exposed mice to 
secrete higher levels (five- to eightfold) of TH1 
cytokines from CD8+ T-cells and lower levels 
(80–100%) of TH2 cytokines from CD4+ T-cells 
[743]. Of note, proanthocyanidins increase the 
frequency of CD4+CD25+FoxP3+ regulatory 
T-cells while decreasing the frequency of 
CD4+IL-17+ pathogenic T-cells. Downregulation 
of IL-17 secretion and enhancement of Foxp3 
expression because of proanthocyanidin treat-
ment have been reported in vivo.

 Organosulfur Compounds

Garlic is a rich source of organosulfur com-
pounds (OSCs), including allicin, diallyl sulfide, 
and diallyl disulfide, which contain, respectively, 
mono-, di-, and polysulfide functional groups 
[744]. Garlic and its compounds are capable to 
facilitate stimulation of immune effector cells to 
promote antitumor immunity [745]. Aged garlic 
extract (AGE) has been reported to stimulate 
phagocytosis by macrophages and cytotoxic 
activities of T-lymphocytes [746] in sarcoma- 
180- bearing mice. In addition, it can increase the 
secretion of pro-inflammatory cytokines (IL-2, 
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IL-12, TNF-α, and IFN-γ) and the frequency of 
NK cells. However, diallyl disulfide, diallyl sul-
fide, and allyl methyl sulfide exhibited an inhibi-
tory effect on the release of TNF-α, IL-10, and 
NO generation in LPS-stimulated RAW 264.7 
macrophages [747]. Some dietary phytochemi-
cals like sulforaphane are powerful stimulators of 
phase II/detoxifying genes, and this effect is 
dependent on nuclear factor erythroid 2-related 
factor 2 (Nrf2) [748]. In fact, sulforaphane is able 
to stabilize Nrf2 [749].

 Capsaicin

Capsaicin is the dominant pungent component 
present in red chili pepper [750, 751]. The antip-
roliferative effects of capsaicin through several 
mechanisms including production of ROS and 
disruption of mitochondrial membrane and 
release of cytochrome c have been reported in 
some cancer cell lines, such as leukemic cells 
(NB4 and Kasumi-1 cells) [752], prostate cancer 
cell line PC-3 [753], and human colon adenocar-
cinoma Colo205 cells [754]. The anti-angiogenic 
effects of capsaicin have been shown via its sup-
pressive effects on VEGF.  Capsaicin is able to 
inhibit NF-кB and STAT3 transcriptional path-
way that play a vital role in inflammation and 
tumor growth [755, 756].

 Bromelain

Bromelain is a mixture of proteolytic enzymes 
purified from pineapple (Ananas comosus). It has 
been approved as an anti-inflammatory agent for 
post-surgical conditions and infection. 
Immunomodulatory effects of bromelain include 
(1) induction of CD2-mediated T-cell activation 
[757], (2) increasing T-lymphocyte proliferation 
in splenocytes without significant effect on puri-
fied CD4+ and CD8+ T-cells [758], and (3) 
decreasing the production of pro-inflammatory 
cytokines, such as IL-2, IL-6, IL-4, IFN-γ, and 
G-CSF, from inflamed tissues [759]. The immu-
nostimulatory effect of bromelain was only dem-
onstrated on the healthy immune system when 
combating foreign antigens [760, 761]. Also, bro-

melain is able to stimulate the oxidative explo-
sion in neutrophils by increasing intracellular 
ROS that induce DNA destruction, thereby 
enhancing the cytotoxic effect of neutrophils on 
tumor cells [762]. The antitumor and cytotoxic 
effect of bromelain has been shown in mouse 
skin papilloma through inhibition of NF-кB and 
COX-2 expression [763]. Its cytotoxic effect has 
been shown on melanoma B16F10-Nex2 cells 
[764] and human cholangiocarcinoma cell lines 
(TFK-1, SZ-1) as well [765]. Bromelain has the 
ability to decrease the expression of CD44 sur-
face marker, which is involved in tumor prolifer-
ation [766]. Of note, bromelain treatment led to a 
significant reduction in invasion, migration, and 
adhesion of glioma cells without any adverse 
effect on marginal cells [767].

 Betulinic Acid

Betulinic acid (Bet A) is a naturally occurring tri-
terpenoid present in several plant species such as 
the white birch (Betula pubescens). Bet A has 
been investigated for its cytotoxic effects on mel-
anoma cells [768], neuroblastoma tumor cells 
[769], glioma cells [770], human leukemia 
HL-60 cells [771], malignant head and neck 
squamous cell carcinoma SCC25 and SCC9 cell 
lines [772], and colon cancer cells [773]. Of note, 
Bet A is able to inhibit the secretion of IL-6, 
COX-2, and PGE-2 in LPS-induced PBMCs via 
downregulation of NF-кB signaling [774, 775].

 Zerumbone

Zerumbone is a sesquiterpene in the rhizomes of 
shampoo ginger. Zerumbone has immunomodu-
latory activity via modulation of MAPK and 
NF-кB pathways [776] and cytokine secretion 
[777]. It has been demonstrated to downregulate 
production of different inflammatory mediators, 
mainly NO, COX-2, PGE-2, and iNOS in macro-
phages [778]. Moreover, this potent immuno-
modulator has been investigated for its anticancer 
effects and suggested to be helpful in cancers of 
the breast, bone marrow, liver, lung, cervix, 
colon, prostate, pancreas, and skin [778–784].
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 Noni Fruit

Morinda citrifolia (noni) is a Hawaiian plant 
used for cancer. Its polysaccharide-rich substance 
has been shown to possess antitumor effect in the 
Lewis lung tumor model, resulting in improve-
ment of the host immune system through affect-
ing the production of cytokines (TNF-α and 
IFN-γ) and nitric oxide. Two glycosides, 6-O-(β-
d -  g lucopyranosy l ) -1 -O -oc t anosy l -β -d -
glucopyranose and asperulosidic acid, were 
purified as active compounds from noni juice. 
Both compounds were efficient in downregulat-
ing TPA- or EGF-induced cell transformation 
and associated AP-1 activity [785].

 Flavanols

Other flavanols like myricetin have been investi-
gated in the context of antitumor immunology. 
Myricetin potentiated the ability of NK-92 cells 
to lyse K562 erythroleukemia target cells [786].

 Naringenin

Naringenin is the major flavanone in grapefruit. It 
was reported to increase the expression of 
NKG2D ligands in human Raji (Burkitt’s lym-
phoma) cells [787]. MICA, MICB, ULBP1, and 
ULBP2 protein expressions were also increased 
compared with untreated control cells [787]. 
Although quercetin exhibited weaker but similar 
effect on NKG2D ligand expression, luteolin (fla-
vone), kaempferol (flavonol), taxifolin (flava-
nonol), apigenin (flavone), and hesperetin 
(flavanone) did not show modulation of NKG2D 
ligand expression [787].

 Chrysin

Chrysin is the main flavanone of Passiflora incar-
nata (also known as passion flower) [788]. It can 
be found in natural products like propolis and 
honey [789]. Chrysin has been reported to have 
anti-inflammatory, antioxidative, and chemopre-

ventive activities [789]. Oral administration of 
chrysin in a murine leukemia mouse model 
increased populations of T- and B-lymphocytes 
and enhanced phagocytosis by macrophages as 
well as NK cell-mediated cytotoxicity. After 
chrysin treatment, the viability of WEHI-3 cells 
(murine leukemia cells) was reduced. Splenocytes 
isolated from WEHI-3-injected leukemic 
BALB/c mice after chrysin treatment exhibited 
an enhanced NK cell toxicity toward YAC-1 tar-
get cells [789].

 Tangeretin

The flavone tangeretin is found in citrus fruit peel 
[790]. Tangeretin treatment in female C3H mice 
reduced lymphocyte counts, suggesting an inhib-
itory effect of tangeretin on cell proliferation and 
differentiation of NK cells [791]. Tangeretin also 
antagonized the tumor-suppressive effects of 
tamoxifen in MCF-7/MCF-6 tumor-bearing mice 
by reducing the number of NK cells and NK cell 
activation through lymphokines [790]. The 
in  vivo antitumor effect of tangeretin has been 
shown in DMBA (7,12-dimethylbenz(a)
anthracene)-induced breast cancer-bearing ani-
mals [792]. The antiproliferative and anti- 
angiogenic effects of tangeretin in A549 human 
lung cancer cell line have been attributed to 
downregulation of IL-1β-induced COX-2 expres-
sion. Moreover, it has the capability to enhance 
the levels of non-enzymatic antioxidants (ascor-
bic acid, vitamin E, and GSH) and reduce the 
serum levels of tumor markers [793, 794].

 Silymarin

Silymarin has shown both antitumoral and cyto-
protective effects. It has been reported that sily-
marin can inhibit NF-κB activation [795]. 
Another study has shown the biphasic effect of 
silymarin on Jurkat cells, a human peripheral 
blood leukemia T-cell line [796]. Low dose of 
silymarin increased cell proliferation, while high 
doses caused inhibition of DNA synthesis and 
significant cell death [797].
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 Alkaloids

Caffeine is a major phytochemical, which 
belongs to the alkaloid class. Using the B16F-10 
melanoma cell-induced experimental metastasis 
model, oral and intraperitoneal caffeine adminis-
tration significantly decreased tumor size [798]. 
Investigation using a spontaneous transgene- 
induced mammary tumor model provided fur-
ther evidence of inhibition of metastasis by 
caffeine [799].

 6-Gingerol

6-Gingerol is the pungent phenolic compound 
derived from ginger (Zingiber officinale). 
6-Gingerol demonstrated antiproliferative effect 
by stimulation of apoptosis against several tumor 
cell lines such as OSCC and cervical HeLa [800]. 
Moreover, 6-gingerol showed an anti-metastasis 
effect on lung B16F10 melanoma in  vivo. 
Inhibition of angiogenesis occurred through down-
regulation of VEGF. Also, it exhibited its inhibi-
tory effect on COX-2 expression by downregulation 
of p38 MAPK and NF-кB in vivo [801].

 Kaempferitrin

The antitumor and immunostimulatory effects of 
bioactive flavonoid kaempferitrin from Justicia 
spicigera have been reported in human cervical 
carcinoma cells (HeLa) [802]. More precisely, 
kaempferitrin is able to stimulate antitumor 
immune responses by inducing phagocytic activ-
ity of human macrophage in vitro, enhancing the 
levels of NO and generation of H2O2, and stimu-
lating NK activity.
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