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Abstract. Many real-world applications require decision-makers to
assess the quality of solutions while considering multiple conflicting
objectives. Obtaining good approximation sets for highly constrained
many-objective problems is often a difficult task even for modern mul-
tiobjective algorithms. In some cases, multiple instances of the problem
scenario present similarities in their fitness landscapes. That is, there are
recurring features in the fitness landscapes when searching for solutions
to different problem instances. We propose a methodology to exploit
this characteristic by solving one instance of a given problem scenario
using computationally expensive multiobjective algorithms to obtain a
good approximation set and then using Goal Programming with efficient
single-objective algorithms to solve other instances of the same problem
scenario. We use three goal-based objective functions and show that on
benchmark instances of the multiobjective vehicle routing problem with
time windows, the methodology is able to produce good results in short
computation time. The methodology allows to combine the effectiveness
of state-of-the-art multiobjective algorithms with the efficiency of goal
programming to find good compromise solutions in problem scenarios
where instances have similar fitness landscapes.
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1 Introduction

Tackling highly-constrained optimisation problems with many objectives is dif-
ficult even with modern multiobjective algorithms [1]. In real-world scenarios,
decision-makers often benefit from having a set of solutions representing a com-
promise between the multiple objectives so that they can choose the preferred
solution(s). It is often useful to use problem domain knowledge during the opti-
misation in order to obtain better sets of compromise solutions. For example,
in the context of continuous multiobjective optimisation problems, [2] estimated
Pareto fronts to then obtain values for the decision variables of interesting solu-
tions. Their technique allows to focus the search in sub-regions of the objective
space. Another example is the work by [3] using a Bayesian model to learn com-
putationally expensive objective functions to then use the estimation model to
explore the search space more quickly.

The multiobjective vehicle routing problem with time windows (MOVRPTW)
is a well-know difficult combinatorial optimisation problem that arises in many
real-world logistic scenarios [4]. This problem refers to creating a plan for a fleet of
identical vehicles to take goods from a depot and deliver them to customers at var-
ious locations. Each customer has certain demand level that needs to be satisfied
within a specified time window. Objectives usually considered in the MOVRPTW
include among others, the minimisation of number of vehicles and the minimisa-
tion of total travel distance by all vehicles.

Due to the high number of constraints and objectives in MOVRPTW scenar-
ios, even state-of-the-art multiobjective algorithms struggle to find good approx-
imations to the Pareto optimal front within reasonable computation time. In
logistic scenarios where problems like MOVRPTW arise, it is often the case
that problem instances corresponding to a different planning periods share parts
of the same data. For example, the same or very similar set of vehicles might
be available in each planning period. Also, there might be a set of recurring
customer orders that need to be satisfied in the different planning periods. This
results in the different problem instances presenting recurring features in their fit-
ness landscapes. Other problems like timetabling and personnel scheduling may
also have instances with recurring features resulting in similar fitness landscapes
(η-dimensional surface representing the Pareto front, where η is the number of
objectives).

Previous work proposed a technique to analyse and visualise complex objective
relationships and fitness landscapes in multiobjective problems [5,6]. Later, [7]
introduced a methodology to exploit the recurring similarity between instances of
a multiobjective workforce scheduling and routing optimisation problem, in order
to solve instances of the same problem scenario more efficiently. In this method-
ology, a pilot problem instance is solved first using some effective (but not neces-
sarily computationally efficient) multiobjective algorithm to produce an approxi-
mation to the Pareto optimal set. Such approximation set is given to the decision-
maker so that target solutions representing the desired trade-off between the mul-
tiple objectives are identified. Then, goal programming is applied with a compu-
tationally efficient single-objective solving method, in order to find solutions for
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other problem instances. In this paper, this methodology is applied to tackle the
MOVRPTW in order to further investigate its performance for solving multiob-
jective problem instances with recurring features. The methodology can be very
valuable to facilitate informed decision-making when searching solutions to mul-
tiobjective problems. Experiments in this paper are conducted on a set of bench-
mark instances of the MOVRPTW provided by [8].

Section 2 outlines the multiobjective vehicle routing problem with time win-
dows considered here while Sect. 3 outlines goal programming. Section 4 describes
the proposed methodology and Sect. 5 presents the experimental configuration.
Sections 6 and 7 present and discuss the results. Section 8 concludes the paper
and suggests related future research.

2 Multiobjective Vehicle Routing Problem with Time
Windows

A Multiobjective Vehicle Routing Problem with Time Windows (MOVRPTW)
is defined on a graph G = (V,E) where V is the set of vertices representing the
depot (vertex 0) and the customers (vertices 1 . . . n) where each customer has
a demand pi (i = 1, . . . , n). There are h identical vehicles available, each one
with capacity Q. In this MOVRPTW, h is considered large enough so that as
many vehicles as needed are available to create the routing plan. A set of routes
served by the set of vehicles should be created in order to satisfy all demands
from all customers. All routes must start and end in vertex 0. The edge set E
denotes all possible connections between all vertices. Each edge from vertex i to
vertex j has an associated cost, denoted by cij , that represents distance or time
for a vehicle to travel between vertices i and j. Each customer i must be served
during their corresponding time window [ai, bi]. A waiting time is incurred if a
vehicle arrives at time t < ai and hence it must wait until the start of the time
window to serve the customer. A delay time is incurred if a vehicle arrives at
time t > ai and hence it must start serving the customer immediately. Once the
vehicle starts serving the customer, it stays there for s time until the delivery is
completed, this is known as the service time.

[8] proposed a benchmark set of instances for the MOVRPTW with five min-
imisation objectives: number of vehicles (Z1), total travel distance by all vehicles
(Z2), makespan or travel time of the longest route (Z3), total waiting time for
all vehicles (Z4), and total delay time for all vehicles (Z5). They designed their
instances based on different characteristics of the problem and each instance is
a combination of these features. The features that constitute a problem instance
in these benchmarks are:

– Number of Customers: 50, 150 and 250 customers.
– Time Window: five different profiles (tw0, tw1, tw2, tw3, tw4) of time win-

dows across a planning period of eight hours. These profiles are defined in
terms of minutes from the start of the planning period 0 = 8:00 am, 480 =
4:00 pm, etc.). These five time-window profiles are defined as follows:
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• tw0: [0,480], all customers can be served at any time in the day.
• tw1: [0,160], [160,320], [320,480], refers to three types of customers (morn-

ing, midday and late).
• tw2: [0,130], [175,305], [350,480], also refers to three types of customers

as in profile tw1 but with shorter time windows.
• tw3: [0,100], [190,290], [350,480], also refers to three types of customers

as in profile tw1 but with longer time windows.
• tw4: includes all time-windows from tw0, tw1, tw2 and tw3, each customer

has one of the 10 time window types in the previous profiles.
– Demand Types: three types of demand (10, 20, 30) uniformly distributed.
– Vehicle Capacity: the capacity of the vehicles is calculated according to a δ

parameter such that Q = D + δ/100(D − D) where D is the maximum single
demand among all customers and D is the sum of all customer demands. The
dataset considers three δ values (δ0 = 60, δ1 = 20, δ2 = 5).

– Service Time: three values of service time (10, 20, 30) uniformly distributed.

For more details of the MOVRPTW described above and a comprehensive
study on the multiobjective nature of the problem, please refer to [9]. There
are 45 problem instances and a generator available from https://github.com/
psxjpc/MOVRPTW-Generator. The technique to analyse objective relationships
described in [6] was applied to these problem instances and results indicate that
indeed they have similar fitness landscapes. This is the case even for instances
that have different time window profiles, vehicle capacity and the number of
customers. However, in this work, we split the 45 problem instances into three
datasets according to the number of customers. This decision was taken because
even though the fitness landscapes are similar, the scale of the objective values
vary considerably according to the number of customers. Therefore, we have 3
datasets each with 15 problem instances, the set VRP-50 with 50 customers, the
set VRP-150 with 150 customers and the set of VRP-250 with 25 customers.

3 Goal Programming

Without loss of generality, a multiobjective optimisation problem can be written
as minimise F (x) = (f1(x), f2(x), ..., fn(x)) subject to x ∈ S, where x is a solu-
tion, S is the set of feasible solutions, n is the number of objectives in the prob-
lem, F (x) is the image of x in the k-objective space and each fi(x) is the value of
objective i in solution x. For two solutions x and y, it is said that x dominates y,
if ∀i : fi(x) ≤ fi(y) and ∃j : fj(x) < fj(y). Moreover, x is said to be Pareto Opti-
mal if it is not dominated by any other feasible solution. Then, the aim is to find
the set of Pareto Optimal solutions usually called Pareto Set. This set contains a
number of non-dominated points in the objective space creating the Pareto Front.

Goal programming is one of the earliest proposed approaches to tackle opti-
misation problems with multiple objective [10]. Basically, goal programming con-
sists of establishing a specific numeric goal for each of the objectives considered
in the problem. Then, search is conducted for a solution in which the weighted
sum of deviations in the objective values with respect to the goals is minimised.

https://github.com/psxjpc/MOVRPTW-Generator
https://github.com/psxjpc/MOVRPTW-Generator
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In order words, goal programming is about establishing a target for each objec-
tive and then searching for a solution with objective values as close as possible
to those targets. There are three types of goals in goal programming [11]:

– Lower bound: defines a lower value for an objective such that solutions that
fall below the lower value are penalised.

– Upper bound: defines an upper value for an objective such that solutions that
present higher values than the upper value are penalised. This is the type of
goals in the optimisation problem considered here, due to the minimisation
nature of all objectives.

– Strict bound: defines a specific target value such that solutions that present
values above or below are penalised. This is applicable when obtaining a
solution with a specific target value for a given objective is essential. For
example, in the case that solutions using exactly h number of vehicles were
required in the MOVRPTW.

Once the goals for each objective are set, goal programming techniques derive
problem models (LP, MIP, etc.) to find solutions that reach (or are close enough
to) the target goals. Several strategies, or goal programming variants, have been
presented in the literature. We briefly review the three most widely employed
variants [12]:

– Weighted GP [13]: used when the decision maker is able to assign an impor-
tance weight to each goal. The objective function for the problem is then a
weighted sum of the deviations from the goals.

– Lexicographic GP: when weighting the goals is difficult, but the decision
maker is able to prioritise them, the lexicographic GP technique is commonly
applied [14]. The deviations to the target goals are minimised according to
defined priority levels such that deviations from a higher level goal are con-
sidered infinitely more important that deviations from a lower level goal.

– Chebyshev GP [15]: consists of minimising the maximum weighted nor-
malised deviation from all the goals, hence promoting solutions that are well-
balanced regarding the achievement of the target values.

The weighting and lexicographic methods are considered ‘a priory’ approaches
in the sense that the decision maker should set a ranking between the objectives
before conducting the search for solutions. This is not the case in the Chebyshev
method which is an ‘a posteriori’ method because it seeks solutions that are well-
balanced in the attainment of all goals so that the decision maker can chose after-
wards. In this paper, it is assumed that the decision maker is able to choose a pre-
ferred solution from a set of trade-off solutions, instead of being able to establish
weights or ranking between the multiple objectives. Hence, only the Chebyshev
technique is used later in this work.
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A potential issue with goal programming is that it may produce solutions
that are not Pareto efficient [16]. This is especially true when the goals are ‘pes-
simistic’ and the objectives can be easily achieved. Several methods are proposed
to address the issue. Most methods rely on extra information from the decision
maker in order to promote the further improvement of certain objectives [17].
Other methods involve extending the search after the solution is found by the
goal programming in order to find dominating solutions [18].

Works in the literature usually describe the application of goal program-
ming using exact methods [12,16]. However, many works exist where metaheuris-
tics are employed to solve goal programming models. [19] presents a simulated
annealing approach to tackle several test problems of preemptive goal program-
ming. [20] employ a fast converging simulated annealing algorithm to solve a
machine-tool selection and operation allocations problem with fuzzy variables.
[21] propose a genetic algorithm to tackle a goal programming model for the
vehicle routing problem with time windows and [22] presents a genetic algo-
rithm to tackle a goal programming model for a transportation planning prob-
lem with three objectives. Goal programming is a sound approach to tackle
the MOVRPTW considered here because this technique has been successfully
applied to related scheduling and routing problems. For example, it has been
applied to nurse scheduling [23,24] and to a version of the vehicle routing prob-
lem with soft time-windows [25].

4 The Efficient GP Methodology

Figure 1 shows the overall concept of the methodology which was originally pro-
posed in [7]. Each of the steps is explained below in reference to the MOVRPTW
tackled in this paper. The overall idea is to find a set of compromise solutions
for a representative instance of the multiobjective problem in hand. The decision
maker then selects from this set a solution that exhibits the desirable qualities
in respect of the various objectives, without the need to set weights or priorities
for the objectives. The objective values in the selected solutions are set as the
targets for goal programming when searching for solutions to the other problem
instances (e.g. routing plans for other days in the same problem scenario).

1. A pilot instance from the dataset with recurring fitness landscape is selected
by the decision-maker and solved using multiobjective algorithms to obtain
the best possible non-dominated approximation set.

2. The decision-maker chooses a preferred solution t from the obtained non-
dominated set. This chosen solution is known as the target solution and its
objective-vector is denoted by

Zt = (Zt
1, Z

t
2, Z

t
3, Z

t
4, Z

t
5)

3. Each other instance in the dataset can now be solved with a faster single-
objective algorithm using a modified objective function (goal programming
variant) aiming to reach the target objective vector.
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Fig. 1. Overview of the methodology as in [7]. The numbered steps are explained in
the main text.

4. The final solution obtained in Step 3 is presented to the decision maker. The
overall advantage of this approach is that Step 1, which is typically computa-
tionally expensive, needs to be executed only once for a given representative
instance in the problem scenario. Then, other problem instances can be solved
faster after the target solution is chosen.

The modified objective function of Step 3 has an important role in the
methodology as it establishes the way in which the search will aim to attain
the goals. Three approaches are used here for determining the objective func-
tion. The first one is the well known Chebyshev approach. The second one is
to derive a weight-vector from the target solution and the approximation set of
the pilot instance. The third approach minimises the Euclidean distances to the
target objective-vector.

4.1 Chebyshev Goal Programming

Chebyshev goal programming aims to obtain a balanced solution by minimis-
ing the gap to the target of the objective that presents the highest gap, i.e. it
seeks to minimise the largest gap to the goals [15]. Hence, if the target goals for
the objectives are similarly difficult to attain, this technique can obtain a bal-
anced solution. However, if at least one target objective value is more difficult
to achieve (i.e. the target goal is too optimistic), the quality of that objective
can be a bottleneck for the other objectives because the search will solely focus
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on improving that objective. We define the Chebyshev objective function for the
MOVRPTW as follows:

Minimise λ (1)
Subject to

Z1

Zt
1

≤ λ (2)

Z2

Zt
2

≤ λ (3)

Z3

Zt
3

≤ λ (4)

Z4

Zt
4

≤ λ (5)

Z5

Zt
5

≤ λ (6)

The Chebyshev objective function given by Eq. (1) is used as the objective
function for the MOVRPTW. The main objective is now to minimise λ, thus
finding a well-balanced solution regarding reaching the target values. If all targets
are reached, λ can assume fractional values and a solution that shows balanced
improvements on all objectives may be obtained.

4.2 Derived Weight Vector

One problem with the Chebyshev approach is that it does not guarantee Pareto
efficiency. However, the optimal solution for a weighted sum objective function
(where weights are not simultaneously null) is always Pareto efficient. To derive
a weight vector from the target solution, we first convert the approximation
set of the pilot instance into a system of linear inequalities. Considering that
the approximation set is composed of k objective-vectors (Z1, Z2, . . . , Z5), the
linear inequalities system can be defined as follows where the aim is to determine
the values of w = (w1, w2, w3, w4, w5):

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

wZt ≤ wZ1

wZt ≤ wZ2

...
wZt ≤ wZk

(7)

There is no guarantee that the system of linear inequalities has a solution if
the fitness landscape is non-convex, i.e. if no set of weights can be set to achieve
some points in the Pareto optimal front. Therefore, instead of finding a solution
for the system, we aim to find a weight vector w that satisfies the largest number
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of inequalities. Hence, we define the problem of finding the best weight vector
as the following MIP (mixed-integer programming) minimisation problem.

Minimise
k∑

j=1

xj (8)

Subject to

wZt − wZj ≤ Mxj j = 1, . . . , k (9)

wi ∈ (0, 1], xj binary

{
i = 1, . . . , 5
j = 1, . . . , k

(10)

The objective function in Eq. (8) aims to find a weight vector w that min-
imises the number of linear inequalities in (7) which do not fulfill the condition
wZt ≤ wZi expressed by constraint (9), M is a large constant. Constraint (10)
guarantees that zero cannot be chosen as a weight-value (to avoid criteria being
removed).

Finally, the weight vector w obtained from the MIP model is used in the
objective function for the MOVRPTW as given by Eq. (11).

Minimise
5∑

i=1

wiZi (11)

4.3 Euclidean Distances

We propose an alternative based on the Euclidean distances to the target vector.
In essence, this is a method that considers all objectives as equally important.
Hence, minimising the Euclidean distances alone does not guarantee Pareto effi-
ciency. In order to mitigate this issue, the proposed method consists of minimis-
ing the distances to the target vector for the objectives that are worse than the
target. If the current distance for the objectives that are worse than the target
vector is small (<ε), then the aim is to maximise the distances of the objectives
that are better than the target vector.

Henceforth, the objective function in Eq. (12) becomes the objective function
for the optimisation problem in hand.

Minimize

{
z if z > ε

−z′ otherwise
(12)
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where

z =

√
√
√
√

5∑

i=1

zi (13)

z′ =

√
√
√
√

5∑

i=1

z′
i (14)

zi =

{
(Zi − Zt

i )
2 if Zi > Zt

i

0 otherwise
(15)

z′
i =

{
(Zi − Zt

i )
2 if Zi ≤ Zt

i

0 otherwise
(16)

In summary, when the Euclidean distances of the objectives that are worse
than the target vector are larger than the given parameter ε, the objective func-
tion consists of minimising the Euclidean distances (z). Otherwise, when z ≤ ε,
the objective consists of maximising the distances for the objectives that are
better than the target solution (z′). Thus, if the solution has not reached the
target, the objective function attempts to close the gap to the target. If the
solution is close or better than the target, the objective function attempts to
further improve it.

5 Experimental Configuration

We applied the proposed methodology to the MOVRPTW datasets. The
instances with δ0 and tw4 (50-δ0-tw4, 150-δ0-tw4, 250-δ0-tw4 were arbitrarily
selected as pilot instances (Step 1 of methodology). Once the Pareto approxima-
tion sets were obtained, k = 15 target vectors were randomly selected (uniformly
distributed) from each approximation set and the same target vectors were used
for the Derived Weight Vector (WV) objective function, the Euclidean Distances
(ED) objective function, and the Chebyshev (CV) objective function.

Multiobjective algorithms often struggle to find good approximation sets for
combinatorial problems with many objectives (more than three) [1]. Hence, we
resort to a tailored procedure to obtain an improved approximation set. [2] state
that most multiobjective algorithms can be classified as either Pareto-based
or decomposition-based. This study utilises NSGA-II [26] as the Pareto-based
algorithm and MOEA/D [27] as the decomposition-based one. Thus, for each
problem instance the approximation set was obtained (Step 1 of methodol-
ogy) as described below. The number of solution vectors obtained for each pilot
instance was 168 for 50-δ0-tw4, 215 for 50-δ0-tw4 and 206 for 250-δ0-tw4.

1. run both the NSGA-II and MOEA/D for one million objective evaluations
on each possible bi-objective vector (Z1, Z2), (Z1, Z3), . . . (Z4, Z5);
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2. run both the NSGA-II and MOEA/D for one million objective evaluations
on each possible three-objective vector (Z1, Z2, Z3), (Z1, Z2, Z4), . . . (Z3,
Z4, Z5);

3. run both the NSGA-II and MOEA/D for one million objective evaluations
on each possible four-objective vector (Z1, Z2, Z3, Z4), (Z1, Z2, Z3, Z5), . . .
(Z2, Z3, Z4, Z5);

4. create an archive composed of the non-dominated solutions found in the pre-
vious three steps;

5. generate a population of individuals where half of the elements are randomly
generated and the other half are randomly drawn from the archive built in
the previous step;

6. run both the NSGA-II and MOEA/D four times each, for two million objec-
tive evaluations, using the initial population generated in the previous step
and the five-objective vector; and

7. compile an approximation set with all non-dominated solutions found in all
steps.

[28] survey the literature on vehicle routing problem with time windows
and show that genetic algorithms are well suited for that problem. Also, our
early experiments showed that these algorithms present good enough solutions
on these datasets and are simple enough to allow easy replication by other
researchers. Hence, for Step 3 of the methodology, the other instances of the
MOVRPTW are tackled with a straightforward genetic algorithm (GA) using
a direct integer encoding of solutions, uniform crossover, 500 individuals popu-
lation with a 5% elite being kept across generations and a tournament of two
individuals employed for the selection mechanism.

6 Experimental Results

First, we show the effectiveness of the derived weight vector obtained from the
MIP model in Eqs. (8)–(10). The effectiveness of a weight vector w is given by
the percentage of solutions (in the approximation set for the pilot instance) in
which wZt ≤ wZi, i = 1, . . . , 5. Hence, if the effectiveness is 100%, it means
that the MIP model found a solution for the inequalities system in Eq. (7).

Figure 2 presents the results of the effectiveness analysis. As it was the case in
[7] for another problem, the overall effectiveness of the obtained weight vectors
here surpassed 90%. Pilot instance 50-δ0-tw4 presented the best average value of
96% and 250-δ0-tw4 presented the worst with 91.3%. Hence, in all cases, the MIP
model provided good weight vectors to be used by the WV objective function.

Next, we show the results for each group of instances (for 50, 150 and 250
customers) in three charts. The target achievement chart displays the percentage
of solutions, in the given dataset, that achieved the target value in each objective.
The gap to target chart contains the average gap to the target solutions for the
solutions that did not reach the target. Finally, the overall comparison chart
displays the average quality of solutions where positive values indicate that, on
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Fig. 2. Average percentage of the solutions in the approximation set of each pilot
instance in the MOVRPTW datasets such that wZt ≤ wZi.

average, the solutions found are better than the target solution and negative
values indicate that the solutions are worse than the target solution.

Figures 3, 4 and 5 display the results of applying the implemented GA with
all three objective functions (WV, ED and CV) to the other instances of dataset
VRP-50. Results comprise the average values of eight runs for each target vector
of each problem instance for each objective function.

Figure 3 shows that for Z1 and Z2 the target achievement is close to 100%
on all three objective functions. On Z3 the WV objective function noticeably
presents the worst results, with only 63% achievement while the ED and CV
objective functions both present similar results with near 80% achievement.
Finally, on Z4 and Z5 the ED objective function presents a small advantage
and the CV objective function is clearly the worst for Z5.

Z1 Z2 Z3 Z4 Z5

60

80

100

WV ED CV

Fig. 3. Dataset VRP-50 – target achievement.
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Z1 Z2 Z3 Z4 Z5

0

2

4

6

WV ED CV

Fig. 4. Dataset VRP-50 – gap to the target.

Figure 4 reflects the findings of the previous figure where Z3 shown the lowest
overall target achievement. Still, on that objective, the overall gap is below 6%
for the three objective functions, hence when the target was not met, the gap
still was small. Noticeably, the ED objective function presents the lowest gaps.
Moreover, Fig. 5 shows that except for WV on Z3, all objective functions on all
objectives present improvements over the target solution, noticeably on Z1, Z2

and Z4 where the solutions found are up to 58% better than the target.
Figures 6, 7 and 8 present the results for the larger set VRP-150. On Fig. 6,

we see that while on dataset VRP-50 the objective Z3 presents the worst results,
in this dataset the worst results appear on Z4 with an average of roughly 75%

Z1 Z2 Z3 Z4 Z5

0

20

40

60

WV ED CV

Fig. 5. Dataset VRP-50 – overall comparison.
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Z1 Z2 Z3 Z4 Z5
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100

WV ED CV

Fig. 6. Dataset VRP-150 – target achievement.

Z1 Z2 Z3 Z4 Z5

0

1

2

WV ED CV

Fig. 7. Dataset VRP-150 – gap to the target.

achievement and, again, the WV objective function presents the worst results.
On the other objectives, all objective functions present competitive results.

Figure 7 shows that the gap to the target on solutions that have not met the
target is very small – only on Z2 the gap is larger than 2% and only for the CV
objective function.

Figure 8 displays the overall quality of solutions. On average, the quality is
better on this dataset than on the previous one. With one or more objective
functions, on every objective, the overall quality is more than 20% better than
the target. This number increases to nearly 40% for the WV objective function
on Z1 and Z2.
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Fig. 8. Dataset VRP-150 – overall comparison.
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Fig. 9. Dataset VRP-250 – target achievement.

Finally, Figs. 9, 10 and 11 present the results for the largest dataset VRP-250.
Figure 9 presents the target achievement. It can be seen that there is a trend,
as the size of the datasets increases, the target achievement of Z1 decreases.
In this dataset, the objectives Z1 and Z4 presents the worst results. Regarding
the objective functions, WV presents the best results for Z1. On the remaining
objectives, the ED objective function presents the most competitive results.

Figure 10 shows the overall gaps to the target solutions. Clearly, the WV
approach gets the worst results, even though the gaps were always below 4.2%.
Noticeably, the CV objective function presents gaps always smaller than 1%.

Lastly, Fig. 11 shows the overall comparison of solutions with their targets.
Again, the results show that all objective functions achieved improved results,
with the ED edging Z3, Z4 and Z5 and the WV edging Z1 and Z2.
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Fig. 10. Dataset VRP-250 – gap to the target.

7 Discussion

While the WSRP datasets tackled in [7] arise from real-world scenarios, the
MOVRPTW datasets considered here were fabricated for benchmarking pur-
poses. Also, even the largest MOVRPTW scenario is considerably smaller than
a medium-sized WSRP. The target achievement for the MOVRPTW here was
larger than in the WSRP overall. The best results obtained here were for the
smaller MOVRPTW scenarios, while for the WSRP this happened in the larger
instances. We speculate that a reason for this is that the largest MOVRPTW
datasets are not large enough for the multiobjective algorithms to struggle in
finding good approximation sets (as it happened in the larger WSRP datasets).
Therefore, as the performance gap between single-objective algorithms and
multiobjective algorithms is considerably smaller in the MOVRPTW problem
instances, the difficulties of reaching the target vector becomes more evident.

However, the gaps to the targets of objectives that did not meet their targets
were considerably lower here than on the WSRP. Also, the CV objective func-
tion, while clearly producing the worst results on the WSRP, it achieves compet-
itive results on the MOVRPTW. This could be a consequence of the quality of
the target solutions. The multiobjective algorithms were able to obtain approx-
imation sets with fitness landscape closer the fitness landscape of the optimal
Pareto front. Also, there is a higher uniformity of the fitness landscapes across
instances for these datasets [6]. All this means that the identified target solu-
tions were realistic, so they could be achieved on every instance. Hence, the CV
objective function, which benefits from that, presented good results.

On the MOVRPTW datasets, except for a few exceptions, all objective func-
tions were able to not only reach the target but also to substantially improve all
objectives – also a reflection of the quality of the approximation set obtained by
the multiobjective algorithms.
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Fig. 11. Dataset VRP-250 – overall comparison.

Nonetheless, it is clear that estimating the Pareto front for problem instances
that have similar fitness landscape to the pilot instance, is an effective way to
tackle the problem. While the multiobjective algorithms required up to four
hours to obtain the approximation set for the pilot instance of a dataset, the
GA managed to find competitive solutions in minutes. For the majority of the
experiments, targets were achieved and the overall quality of results was high.

8 Conclusion

In this work, we applied a methodology based on goal programming to use effi-
cient single-objective algorithms to solve a multiobjective vehicle routing prob-
lem with time windows. The methodology was first presented in [7] and it consists
of: (1) solving a pilot instance of the problem using multiobjective algorithms
(which are typically computationally expensive) to obtain a good approxima-
tion set, (2) having the decision-maker to choose preferred target compromise
solutions, and then (3) employing goal programming to solve other instances of
the same dataset using the selected solutions in (2) as the target. Three differ-
ent objective functions were used to guide the search for the target solutions
with goal programming. One is the Chebyshev approach that seeks to achieve
a solution balanced on all the objective targets. Another one is minimising a
weighted function derived from the target solution. The third approach is to use
the Euclidean distance to drive the search guided by the target solution.

This methodology was first applied by [7] to real-world instances of a Work-
force Scheduling and Routing Problem (WSRP) in the home healthcare sector.
In the present paper, the methodology has been further tested by applying it to
a different multiobjective problem arising in logistic operational scenarios, the
Multiobjective Vehicle Routring Problem with Time Windows (MOVRPTW).
In both of these problem scenarios, instances usually arise from different plan-
ning periods and hence they present similarities in the fitness landscapes.
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This is because usually in this type of real-world problems, instances have the
same partial data (e.g. same fleet of vehicles or same set of workers). This paper
has shown that the proposed technique is an effective and efficient approach to
tackle real-world multiobjective highly-constrained combinatorial optimisation
problems, by combining the effectiveness (but often computationally expensive)
of state-of-the-art multiobjective algorithms with the efficiency of well-targeted
single-objective optimisation through goal programming. For this, the multi-
objective analysis technique proposed by [5,6] offers an effective tool to analyse
the relationships between objectives in multiobjective optimisation problems and
determine the degree of similarity in the fitness landscape of different problem
instances.

For future research, it would be interesting to investigate if other approaches
besides the Chebyshev, derived weighted function and Euclidean distance
approaches, would be more effective across different multiobjective problems.
Perhaps an even more interesting but also more challenging future research would
be to develop adaptive objective functions that change the search direction as
the search progresses and in reaction to the fitness landscape features.

References

1. Giagkiozis, I., Fleming, P.: Methods for many-objective optimization: an analysis.
Research Report No. 1030 (2012)

2. Giagkiozis, I., Fleming, P.: Pareto front estimation for decision making. Evol. Com-
put. 22, 651–678 (2014)

3. Feliot, P., Bect, J., Vazquez, E.: A Bayesian approach to constrained single-
and multi-objective optimization. J. Glob. Optim. 67(1–2), 97–133 (2017).
https://link.springer.com/article/10.1007/s10898-016-0427-3

4. Toth, P., Vigo, D.: The Vehicle Routing Problem. Monographs on Discrete Math-
ematics and Applications. Society for Industrial and Applied Mathematics (2002)

5. Pinheiro, R.L., Landa-Silva, D., Atkin, J.: Analysis of objectives relationships in
multiobjective problems using trade-off region maps. In: Proceedings of the 2015
Annual Conference on Genetic and Evolutionary Computation, GECCO 2015, pp.
735–742. ACM, New York (2015)

6. Pinheiro, R.L., Landa-Silva, D., Atkin, J.: A technique based on trade-off maps to
visualise and analyse relationships between objectives in optimisation problems. J.
Multi-Criteria Decis. Anal. 24, 37–56 (2017)

7. Pinheiro, R.L., Landa-Silva, D., Laesanklang, W., Constantino, A.A.: Using goal
programming on estimated pareto fronts to solve multiobjective problems. In: Pro-
ceedings of the 7th International Conference on Operations Research and Enter-
prise Systems - Volume 1: ICORES, INSTICC, pp. 132–143. SciTePress (2018)

8. Castro-Gutierrez, J., Landa-Silva, D., Moreno, P.J.: Nature of real-world multi-
objective vehicle routing with evolutionary algorithms. In: IEEE International
Conference on Systems, Man, and Cybernetics (SMC), pp. 257–264 (2011)

9. Castro-Gutierrez, J., Landa-Silva, D., Moreno Perez, J.: Movrptw dataset (2015).
https://github.com/psxjpc/ Accessed 24 Apr 2018

10. Charnes, A., Cooper, W.: Goal programming and multiple objective optimizations.
Eur. J. Oper. Res. 1, 39–54 (1977)

11. Kornbluth, J.: A survey of goal programming. Omega 1, 193–205 (1973)

https://springerlink.bibliotecabuap.elogim.com/article/10.1007/s10898-016-0427-3
https://github.com/psxjpc/


152 R. L. Pinheiro et al.

12. Jones, D., Tamiz, M.: A review of goal programming. In: Greco, S., Ehrgott, M.,
Figueira, J. (eds.) Multiple Criteria Decision Analysis. International Series in Oper-
ations Research & Management Science, pp. 903–926. Springer, New York (2016).
https://doi.org/10.1007/978-1-4939-3094-4 21

13. Romero, C.: Titles of related interest. In: Handbook of Critical Issues in Goal
Programming. Pergamon, Amsterdam (1991)

14. Tamiz, M., Jones, D.F., El-Darzi, E.: A review of goal programming and its appli-
cations. Ann. Oper. Res. 58, 39–53 (1995)

15. Flavell, R.B.: A new goal programming formulation. Omega 4, 731–732 (1976)
16. Jones, D., Tamiz, M.: Goal programming variants. In: Practical Goal Programming,

pp. 11–22. Springer, Boston (2010). https://doi.org/10.1007/978-1-4419-5771-9 2
17. Tamiz, M., Mirrazavi, S., Jones, D.: Extensions of pareto efficiency analysis to

integer goal programming. Omega 27, 179–188 (1999)
18. Hannan, E.: Nondominance in goal programming. INFOR Inf. Syst. Oper. Res. 18,

300–309 (1980)
19. Baykasoglu, A.: Preemptive goal programming using simulated annealing. Eng.

Optim. 37, 49–63 (2005)
20. Mishra, S., Prakash, Tiwari, M.K., Lashkari, R.S.: A fuzzy goal-programming

model of machine-tool selection and operation allocation problem in FMS: a quick
converging simulated annealing-based approach. Int. J. Prod. Res. 44, 43–76 (2006)

21. Ghoseiri, K., Ghannadpour, S.F.: Multi-objective vehicle routing problem with
time windows using goal programming and genetic algorithm. Appl. Soft Comput.
10, 1096–1107 (2010)

22. Leung, S.C.H.: A non-linear goal programming model and solution method for the
multi-objective trip distribution problem in transportation engineering. Optim.
Eng. 8, 277–298 (2007)

23. Azaiez, M.N., Al Sharif, S.S.: A 0-1 goal programming model for nurse scheduling.
Comput. Oper. Res. 32, 491–507 (2005)

24. Musa, A.A., Saxena, U.: Scheduling nurses using goal-programming techniques.
IIE Trans. 16, 216–221 (1984)
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