
An Efficient Heuristic for Pooled Repair
Shop Designs

Hasan Hüseyin Turan1, Shaligram Pokharel2(B), Tarek Y. ElMekkawy2,
Andrei Sleptchenko3, and Maryam Al-Khatib2

1 Capability Systems Centre, School of Engineering and Information Technology,
University of New South Wales, Canberra, Australia

2 Department of Mechanical and Industrial Engineering, College of Engineering,
Qatar University, Doha, Qatar

shaligram@qu.edu.qa
3 Department of Industrial and Systems Engineering, Khalifa University of Science

and Technology, Abu Dhabi, UAE

Abstract. An effective spare part supply system planning is essential to
achieve a high capital asset availability. We investigate the design prob-
lem of a repair shop in a single echelon repairable multi-item spare parts
supply system. The repair shop usually consists of several servers with
different skill sets. Once a failure occurs in the system, the failed part is
queued to be served by a suitable server that has the required skill. We
model the repair shop as a collection of independent sub-systems, where
each sub-system is responsible for repairing certain types of failed parts.
The procedure of partitioning a repair shop into sub-systems is known
as pooling, and the repair shop formed by the union of independent
sub-systems is called a pooled repair shop. Identifying the best partition
is a challenging combinatorial optimization problem. In this direction,
we formulate the problem as a stochastic nonlinear integer programming
model and propose a sequential solution heuristic to find the best-pooled
design by considering inventory allocation and capacity level designation
of the repair shop. We conduct numerical experiments to quantify the
value of the pooled repair shop designs. Our analysis shows that pooled
designs can yield cost reductions by 25% to 45% compared to full flexi-
ble and dedicated designs. The proposed heuristic also achieves a lower
average total system cost than that generated by a Genetic Algorithm
(GA)-based solution algorithm.

Keywords: Spare part logistics · Repair shop · Pooling · Heuristic ·
Genetic algorithm

1 Introduction

Service and manufacturing operations rely heavily on the availability of equip-
ment and assets. High availability of assets can be achieved with effective main-
tenance strategies. However, maintenance can be costly. For example, a recent
c© Springer Nature Switzerland AG 2019
G. H. Parlier et al. (Eds.): ICORES 2018, CCIS 966, pp. 102–118, 2019.
https://doi.org/10.1007/978-3-030-16035-7_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16035-7_6&domain=pdf
https://doi.org/10.1007/978-3-030-16035-7_6

An Efficient Heuristic for Pooled Repair Shop Designs 103

report of IATA’s Maintenance Cost Task Force points out that maintenance cost
can be anywhere between 10% to 15% of the total operation cost of a commer-
cial airline industry [1]. Similarly, for manufacturing firms, maintenance cost may
reach up to 60% of the production cost [2]. Hence, careful planning of mainte-
nance operations not only leads to a decrease in the total cost but also significant
improvements in the reliability of systems [3]. Maintenance planning includes
the determination of the maintenance strategy (e.g., failure-based/corrective,
preventive and condition-based), time interval between maintenance operations,
and quantity and quality of maintenance resources such as technicians, supplies
and spare parts [4].

In this paper, the corrective maintenance of high-valued assets in and par-
ticular the decisions regarding the amount of spare part inventory, capacity and
design of repair facilities are investigated. Corrective maintenance of assets is
usually done by replacing a failed part by a repaired part available in the stock.
If repairable spares are not in the stock, the asset goes down, and a downtime
cost is incurred till a sufficient number of spares are supplied to the system [5–7].
A large number of spares are required to ensure a high availability of the capital
asset. However, keeping a large number of repairable in inventory increases the
cost [8]. The decision on repair shop design heavily influences the number of
spares to be stocked. An optimal design of the repair shop can lead to a less
number of spare parts that are needed to achieve the same level of availability.
Thus, at the operational level, the inventory and repair shop decisions have to
be coordinated together to reduce downtimes.

There are different types of repair shop design alternatives, as illustrated
in Fig. 1. The two extremes are the full flexible (full cross-training) and the
dedicated designs. Figure 1(a) depicts a full cross-training design scheme in which
all of the servers are merged into a single cluster/sub-system. In this design
scheme, all servers are considered to have necessary skills to repair any type of
failed parts. On the contrary, in the dedicated design, each cluster of servers is
responsible for repairing a specific type of spare part as in Fig. 1(c).

λ1

λ2

λ3

λ4

S1

S2

S3

S4

(a) Full Flexible

λ1

λ2

λ3

λ4

S1

S2

S3

S4

(b) Pooled (Partial cross-training)

λ1

λ2

λ3

λ4

S1

S2

S3

S4

(c) Dedicated (No cross-training)

Fig. 1. Possible repair shop designs.

An intermediate level design scheme between the dedicated and the full flex-
ible system is the pooled design. In the pooled design, the repair shop is a union

104 H. H. Turan et al.

of independent clusters/sub-systems, where each sub-system is responsible for
repairing certain types of failed parts as in Fig. 1(b). In this study, we try to
find the best-pooled repair shop design that leads to minimum total system
cost. Nevertheless, identifying the best-pooled repair shop design is a challeng-
ing combinatorial optimization problem. Thus, we develop an efficient solution
heuristic to overcome computational complexity of the problem. The proposed
solution heuristic also computes the optimal amount of spare part inventories
to keep on stock and the number of servers (capacity) that have to be allocated
into each cluster.

The rest of the paper is organized as follows. In Sect. 2, a review of related lit-
erature is provided. In Sect. 3, problem definition and the mathematical model
are presented. The solution heuristic for the proposed model is discussed in
Sect. 4. Section 5 provides a comparative computational study under input set-
tings. Conclusions and future research directions are summarized in Sect. 6.

2 Literature Review

Some significant advances in optimization of spare part supply systems, capacity
and inventory theory and design of flexibility service/manufacturing systems can
be seen in the literature. However, research opportunities exist at the intersection
of these research areas. The optimization problem analyzed in this paper exploits
the intersection of the design of a flexible/cross-trained repair shop in a spare
part supply system and optimization of resource capacity of the repair shop and
inventory levels of spares.

The dominant model for repairable items, both in the literature and in the
practical applications, is METRIC (Multi-Echelon Technique for Recoverable
Item Control), developed by [5]. METRIC based models assume that the repair
capacity is infinite. This assumption may not be appropriate in most industrial
settings. Hence, some researchers have relaxed ample repair capacity assumption
by explicitly considering finite repair service capacity [9–13]. In addition to the
limited repair capacity assumption, integrated optimization of repair capacity
and maintenance policies are also studied extensively in the literature by [14–
17]. The work of [18] relaxes assumptions of stationary failure rates of spares and
finite repair capacity at the same time. Similarly, the model of [19] also optimizes
spare inventory levels under finite repair capacity together with nonstationary
failure rates of spares under a certain budget restriction or spending over certain
availability. The impact of limited but not constant (varying repair capacity on a
system for repairable items) is analyzed by [20]. We refer to the recent literature
review article of [21] for integrating decisions on spare parts inventories and
repair shops.

In [22] regarding the manufacturing resource flexibility, a comparison between
a totally dedicated system, a totally flexible system, and several intermediate
possibilities are provided. In the following years, several authors have extended
the work provided by [22] and some of them have also validated robustness
of “little or limited flexibility” being usually sufficient for optimal system per-
formance (see Ref. [23–30]). Cross-training is one of the more widely discussed

An Efficient Heuristic for Pooled Repair Shop Designs 105

capacity/workforce flexibility methods for complex systems [31]. Production lines
[32,33], job shops [34], flow/assembly shops [35–39], manufacturing [40–43], call
centers [44–47], health care [48,49], field services [50–53] and maintenance/repair
[54] are some examples of systems where cross-training is applied. The more
detailed discussions and classifications of flexibility and cross-training applica-
tions can be found in the recent review articles of [31,55].

A limited number of cross-training related studies also appears in the main-
tenance and spare part logistics literature. For example, [50–52] discuss the opti-
mal cross-training policies of technicians/service engineers in a field service set-
ting. Similarly, [53,54] address workforce management problems in corrective
repair/maintenance environments, in which repairmen are either cross-trained
or dedicated. The analysis of cross-training schemes in repair shop design is
discussed in [56–58] by using simulation-optimization techniques.

Even though pooling is considered as a partial cross-training of resources, to
the best of our knowledge, no results has been presented analyzing pooling in
spare part supply systems other than very recent works of [59–61]. Our work fills
the gap on pooled repair shops designs in spare part supply systems integrated
with capacity decision in the literature.

3 Problem Description and Formulation

We study the design problem of a repair shop in a single echelon repairable
multi-item spare part supply system. The repair shop may consist of several
parallel multi-skilled servers, and storage facilities for the repaired items. Once
a failed part is received from the technical system at the installed base, it is
queued to be served by a suitable server with the required skills. At the same
time, if a repaired (as-good-as-new) part is available in the inventory, it is sent
back to the installed base. If the item is not available in the stock, the request is
backordered. In this case, the technical system goes down and a downtime cost
occurs till the requested ready-for-use part is delivered.

The repair shop may have pooled structure with one or more cells/clusters
or an arbitrary structure. In arbitrary designs, not all servers in a cluster are
fully flexible; i.e., some servers are partially cross-trained to repair only a subset
of all stock keeping units (SKUs) in the cluster. In this paper, we restrict design
alternatives limited to only pooled repair shops as in Fig. 1(b), and formulate a
stochastic mixed-integer mathematical programming model to find the minimum
cost spare part supply system.

In this paper, we proceed from commonly used assumptions in a repairable
spare part supply system (see ref. [6,56] and assumption lists therein):

(a) The failures of spares occur according to a Poisson process and are mutually
independent from each other with constant rates.

(b) The repair times are exponentially distributed and mutually independent.
The expected repair times depend on the SKU type and are independent of
the processing server.

106 H. H. Turan et al.

(c) First come first served (FCFS) queuing discipline is adopted inside each and
every cluster, and no priorities exist among the failed spares.

(d) For all parts (s − 1, s) one-for-one replenishment policy is used. That is, the
stock level equals s and each demand immediately generates an order for a
replacement part; as a consequence, there is no batching.

(e) The total holding costs for every SKU per unit time are linear in the initial
inventory levels (initially acquired inventory).

(f) Penalty costs (or backorder costs) occur when the required part is not avail-
able and are paid per time unit per not available SKU.

(g) A positive cross-training (or flexibility) cost occurs whenever an additional
skill is assigned to a server. In other words, the cross-training cost is an
increasing function on the number of skills per server.

(h) Each cluster inside the repair shop is modeled as a multi-class multi-server
M/M/k queuing system with dedicated queues; i.e., every server inside a
cluster has the ability to repair all SKUs that are assigned to that cluster.

(i) The clusters inside the repair shop are mutually exclusive (disjoint) and
collectively exhaustive. That is, a particular failed SKU can be repaired at
exactly one cluster and each SKU is assigned to exactly one cluster.

The last two assumptions (h) and (i) restrict the repair shop design alternatives
to the pooled designs. These two assumptions also limit the computational com-
plexity of the system and enable using queue-theoretical approximations to find
steady-state probability distribution of items in the system.

We use the problem formulation presented in [61]. The sets, parameters and
decision variables for the developed formulations and solution procedures are
presented as follows.

Decision Variables

Si: Amount of initial inventory (basestock level) kept on stock for SKU type
i (i = 1, . . . , N), where S = (S1, . . . , SN).

zk: Number of the operational servers in the cluster k (k = 1, . . . , y), and where
Z = (z1, . . . , zy).

xik: Binary variable indicating that whether the cluster k has a skill to repair
SKU type i (i = 1, . . . , N) or not, where Xk = (x1k, . . . , xNk)T and X =
[X1| . . . |Xy].

y: Number of clusters in the repair shop.

Problem Parameters

N : Number of distinct types of repairables (SKUs).
λi: Failure rate of SKU type i (i = 1, . . . , N).
μi: Service rate of SKU type i (i = 1, . . . , N).
hi: Inventory holding cost of SKU type i per unit time per part (i = 1, . . . , N).
b: Penalty cost for each back ordered demand per unit time, which is equivalent

to paying per unit time per technical system that is down because of a lack
of spare parts.

An Efficient Heuristic for Pooled Repair Shop Designs 107

f : Operation cost of a server per unit time (e.g., annual wage).
ci: Cost of having skills to repair SKU type i per unit time per server

(i = 1, . . . , N) (e.g., annual qualification bonus).
ε: Very small positive real number.

The objective function in Eq. (1) has four cost terms namely, server (capac-
ity), cross-training, holding and backorder costs. Objective function considers
several trade-offs between the cost terms such as the cost of holding excess
inventory and the cost of downtime, and also the trade-off between the cost of
having single or several clusters that include dedicated or cross-trained servers.

min
S, X, Z

y∑

k=1

fzk +
y∑

k=1

zk

(
N∑

i=1

cixik

)
+

N∑

i=1

hiSi + b

N∑

i=1

EBOi [Si,X,Z] (1)

The penalty (backorder) cost term is calculated using the penalty cost b and
the expected total number of backordered parts EBOi [Si,X,Z] for each SKU
type i in the steady-state; under the given initial inventory level Si, pooling
scheme of the repair shop X and the server assignment policy Z. The variable X
represents the (N × y) matrix of the binary decision variables xik denoting how
SKUs are pooled in the repair shop, and the variable Z represents a (1 × y) row
matrix of integer decision variables zk denoting the number of servers in each
cluster of the repair shop.

Constraints (2) and (4) ensure that pooling scheme X satisfies mutually
exclusive and total exhaustive condition for each cluster, i.e., any SKU type
being repaired by exactly one cluster. Queues (number of waiting failed spares)
in each cluster have to have finite queue length at the steady-state to prevent
overloading of the repair shop. Thus, the stability of the system is guaranteed by
constraint (3) and (5) by assigning sufficient number of servers to each cluster.
Constraints (4–7) are required for non-negativity and integrality of the variables.
For a non-overloaded system, the overall utilization rate of a particular cluster
k (

∑N
i=1 xikλi/μi) must be strictly smaller than the capacity (total number of

servers in the cluster zk) of that cluster, which is ensured by the parameter, ε.

y∑

k=1

xik = 1 i = 1, . . . , N (2)

N∑

i=1

xik
λi

μi
≤ zk(1 − ε) k = 1, . . . , y (3)

xik ∈ {0, 1} i = 1, . . . , N k = 1, . . . , y (4)

zk ∈ Z
+ k = 1, . . . , y (5)

Si ∈ N0 i = 1, . . . , N (6)
y ∈ {1, . . . , N} (7)

108 H. H. Turan et al.

4 Solution Algorithm: Pooling Heuristic

We search for the optimal values of decision variables sequentially by fixing the
values of some decision variables and optimizing the remaining ones as discussed
in [61]. First, feasible partitions of SKUs, i.e., pooling policies/schemes X are
generated. Pooling schemes are generated either by pooling heuristic or by a
genetic algorithm as explained in the Subsect. 5.2. Then, capacity levels Z and
basestock inventory levels S are optimized under the given pooling scheme for
each cluster. The visual flow of the proposed solution heuristic(s) together with
its sub-routines and their interactions with each other are depicted in Fig. 2.

Pooling Scheme Generation

Capacity Optimization

Multi-Class Multi-Server
Solver

Z SX

Pooling Heuristic or
Genetic Algorithm

Solution
Database

Storing and retrieving

Optimal values of X,Z,S
Total Cost

Fig. 2. Flow of the solution algorithms.

In the pooling heuristic, to form partitions of SKUs into clusters, all SKUs are
sorted in ascending order by their service rates μi so that SKUs closer in service
rates are likely to be in the same cluster. This is expected to decrease variations
in the service times of SKUs in clusters. Decrease in the variation of service times
usually results in a decrease in the number of failed parts waiting for repair in
the cluster and eventually lowering the number of backorders and the total cost.
Afterward, sorted list of SKUs is divided into smaller lists that have a size of
nmax or less. The trade-off between the run time of algorithm and the output
solution quality are taken into account to determine the value of nmax. We set
nmax as 10 for our experimental runs. For the smaller list (N ≤ nmax), the total
enumeration function that is discussed in [61] is invoked. Total enumeration
function takes an array of SKU indexes as an input and slices it into sub-arrays
for given number of clusters y from 1 to the length of the input array. Each
slice/sub-array corresponds to a cluster in a pooled repair shop, and each slic-
ing scheme corresponds to a particular pooling policy X. For the larger sorted

An Efficient Heuristic for Pooled Repair Shop Designs 109

SKU index sets, it is not possible to enumerate all slicing schemes with total
enumeration function. Therefore, we divide the problem into sub-problems that
have the maximum size of nmax or less and call total enumeration function for
each sub-problem obtained after division. Then, we generate new sub-problems
by combining the last and the first elements of adjacent sub-problems. At each
iteration, we insert a new SKU index to newly generated sub-problem till the
size of the problem reaches nmax.

After the generation of the pooling policy X via above-described pooling
heuristic, capacity and inventory level optimization modules are called as shown
in Fig. 2. These modules rely on the fact that for every feasible policy X, each
cluster can be analyzed and optimized separately due to the clusters being
mutually exclusive and independent from each other. The decomposition of the
repair shop in sub-systems by pooling reduces the complexity of the problem
and enables the use of queue-theoretical approximations to optimize the inven-
tory S and capacity levels Z. Each cluster k in the repair shop for given number
of servers zk can be analyzed as a multi-class multi-server M/M/zk queuing
system.

The probability distribution of the number of failed SKU type i at the steady-
state, pi (q), is required to evaluate EBOi [Si,Z,X] in the objective function. To
calculate the probability distribution of the number of failed SKU type i, the
approach proposed by [62] is used. Nonetheless, computational burden arises
when the number of SKU types and the number of servers increases in the
cluster. To overcome this issue, the queuing approximation discussed in [63,64]
is used. In this approximation, marginal probability distribution (and several
performance characteristics) of SKU type i in cluster k is derived by aggregating
all other SKUs in the cluster k into a single SKU type (class). The procedure is
repeated to obtain the remaining distributions for other SKUs in the cluster.

Figure 3 visualizes how N -class M/M/zk system is decomposed into N inde-
pendent 3-class M/M/zk for approximation, where ΛA and ΛA′ denote the
arrival rates of aggregated classes.

λN

N -class M/M/zk system

λ1

⇒

Original System

ΛA
′

3-class M/M/zk system

λ1

ΛA + +

λN

3-class M/M/zk system

ΛA

ΛA
′

Decomposed Approximated System

Fig. 3. Approximation of a N -class M/M/zk queuing system with decomposition into
N 3-class M/M/zk sub-system.

110 H. H. Turan et al.

For the given pooling policy X and capacity levels for each cluster Z, the
problem can be reduced to the following one-dimensional optimization problem
for each SKU type i by using the independence of each cluster:

min
Si∈N0

(
hiSi + bEBOi [Si,X,Z]

)
(8)

The optimization problem in Eq. (8) takes into account the trade-off between
holding and backorder costs, which has similar structure as traditional newsboy
problem (see [60] for a detailed discussion). By using the approximated distri-
butions found by queuing approximation p̃i (q), the above optimization problem
can be minimized by the smallest Si for which Eq. (9) holds.

Si∑

q=0

p̃i (q) ≥ b − hi

b
i = 1, . . . , N (9)

5 Numerical Study

In this section, we present a computational study of the proposed solution algo-
rithm. First, in Subsect. 5.1, the experiment testbed used in analysis is given and
in Subsect. 5.2, details on benchmarking algorithm are provided. In Subsect. 5.3,
total system cost reductions achieved by different algorithms are analyzed. Addi-
tionally, comparison of cross-training schemes are also given. In Subsect. 5.4, run
times of the proposed optimization algorithms are provided.

5.1 Testbed

A full factorial design of experiment (DoE) with 7 factors and 2 levels per factor
is used to generate the testbed with total of 128 test instances as in [56,61]. The
number of SKUs, N , and the initial total number of servers, M , are the first two
DoE factors with levels 10 and 20 for the numbers of SKUs, and 5 and 10 for the
initial numbers of servers. The failure rates and the service rates are generated
based on the system (repair shop) utilization rate with an assumption that all
SKUs are processed on all servers, i.e., a repair shop design with one cluster and
fully flexible servers. The system utilization rate, ρ, is the third design factor
with levels 0.65 and 0.80. For the chosen utilization rate, we randomly generate
two sets of parameters:

(a) the failure rates λi, such that
∑N

i=1 λi = 1, and
(b) workload percentages δi, such that

∑N
i=1 δi = 1.

Using the generated λi and δi, we produce the service rates μi as μi = λi

δiρM ,
where δiρM is the total workload of SKU type i. The pattern of the holding costs,
hi, is the fourth design factor with two variants (levels): (i) IND: completely ran-
domly (independent) within a range [hmin, hmax], and (ii) HPB: hyperbolically
related to the workloads wi = λi/μi = δiρM :

hi =
hmax − hmin + 10
9 wi−wmin

wmax−wmin
+ 1

− 10 + hmin + ξi

An Efficient Heuristic for Pooled Repair Shop Designs 111

where
ξi ∈ U [−hmax − hmin

20
,
hmax − hmin

20
],

wmin = min
i=1,...,N

wi and wmax = max
i=1,...,N

wi

The parameters of the hyperbolic relation are chosen such that it replicates
some of the real-life scenarios where more expensive repairables are repaired less
frequently. The minimum holding cost, hmin, is the fifth factor with levels 1 and
100. The maximum holding cost is fixed at 1,000. The server cost, f , and the
skill cost, ci, are the last two factors in our DoE. The server cost levels are set as
10,000 and 100,000 (10hmax and 100hmax). The skill cost is assumed as 1% or
10% of the chosen server cost for all SKUs. The penalty cost, b, is set as fifty-fold
of the average holding cost so that about 98% of requests can be met from spare
stocks. That means the probability of backorder is only 0.02. The overview of
all factors and levels are presented in Table 1.

Table 1. Problem parameter variants for test bed [61].

Factors Levels

No. of SKUs (N) [10, 20]

No. of initial servers (M) [5, 10]

Utilization rate (ρ) [0.65, 0.80]

Minimum holding cost (hmin) [1, 100]

Maximum holding cost (hmax) 1000

Holding cost/Workload relation [IND, HPB]

Server cost (f) [10hmax, 100hmax]

Cross-training cost (ci) [0.01f, 0.10f]

Penalty cost (b) 50
∑N

i=1 λihi∑N
i=1 λi

5.2 The Benchmarking Algorithm: A Genetic Algorithm

We compare the performance of the proposed pooling heuristic with a Genetic
Algorithm (GA)-based methodology. In this method, a GA searches for the opti-
mal pooled repair shop design policy X as it is depicted in Fig. 2.

The GA is a stochastic optimization technique that is inspired by natural
selection and biological evolutionary philosophy. A population of individuals
(solutions) is represented by a chromosome, a string of information which is ran-
domly generated [57]. Each chromosome corresponds to a particular repair shop
design policy, X. Every chromosome in the population has N genes. The value
of the gene indicates the cluster that SKU is assigned into. Each chromosome
also carries information about the number of clusters exist in the repair shop.
The total number of distinct integer in the chromosome represents the number
of clusters.

112 H. H. Turan et al.

At each iteration, GA generates a set of feasible pooled repair shop design
policies. Afterward, these candidate feasible solutions (policies) are passed
through fitness evaluation function to find optimal values of server assignment
policy Z and inventory levels of spares S. In the fitness evaluation, capacity opti-
mization and multi-class multi-server solver sub-routines are invoked exactly
the same way as described for the pooling heuristic. GA runs till it reached
predefined generation number. The population size, the number of generations,
crossover probability, and mutation probability are the input parameters for any
GA implementation. We set the population size and the number of generations
at 100 and 25, respectively. Besides, the crossover and the mutation parameters
are chosen as 0.8 and 0.4, respectively.

5.3 Performance Comparison of Pooling Heuristic and GA

We find the optimal pooled designs together with optimal capacity and inven-
tory levels of spares for the cases described above by using the proposed pool-
ing heuristic. We compare the minimum total system cost achieved by pooling
heuristic with the cost obtained from GA-based pooling algorithm. We define a
cost-ratio metric Δ, a ratio of the total minimum cost obtained from the pooling
heuristic to the total minimum cost achieved by GA-based algorithm.

Table 2 presents average values of Δ under each problem factor and level.
First, on an average, pooling heuristic achieves around 3% lower total cost than
that of GA-based pooling algorithm. Second, the increasing size of the problem
(higher number of SKUs, N) leads to more substantial objective function value
gaps in favor of the pooling heuristic. It shows that the proposed pooling heuristic

Table 2. Total cost comparison of different solution algorithms under varying factors.

Factor Levels Cost-ratio # of the best cost

Δ GA-based pooling Pooling heuristic

Number of SKUs (N) 10 1.0009 17 47

20 0.9331 1 63

Number of initial servers (M) 5 0.9629 10 54

10 0.9711 8 56

Utilization rate (ρ) 0.65 0.9646 7 57

0.80 0.9694 11 53

Minimum holding cost (hmin) 1 0.9649 9 55

100 0.9691 9 55

Holding cost/Work load relation IND 0.9695 8 56

HPB 0.9645 10 54

Server cost (f) 10hmax 0.9563 5 59

100hmax 0.9776 13 51

Cross-training cost (ci) 0.01f 0.9600 5 59

0.1f 0.9740 13 51

Overall 0.9670 18 110

An Efficient Heuristic for Pooled Repair Shop Designs 113

conducts a more extensive search in a larger solution space (i.e., higher number
of SKUs, N). Lastly, the pooling heuristic outperforms the GA-based pooling
optimization in 86% of the cases (110 cases out of 128) in the testbed.

We also compare the total system cost with the costs obtained from fully
flexible (a single cluster where any SKU can be processed on any server) and
dedicated (where the number of clusters equal to the number of SKUs) designs.
Table 3 summarizes the cost reduction for both pooling heuristic and GA-based
pooling optimization under different problem factors. The repair shop designs
found by pooling heuristic can produce approximately 45% and 25% savings
on average in comparison with dedicated and fully flexible designs, respectively.
In some extreme settings, average cost reduction achieved by pooling heuristic
reaches to 55% to that of a dedicated design and 40% to that of a fully flexible
design. The repair shop designs suggested by GA-based pooling bring about
44% and 21% total cost reductions compared with dedicated and fully flexible
designs, respectively. When the cost of having an extra skill is relatively high
compared to that of having an additional server (i.e., the case of cross-training
cost being equal to 0.1f), fully flexible design becomes as good as dedicated
design. However, when cross-training cost is relatively small, both of the solution
algorithms exhibit worse performance with respect to fully flexible design.

Table 3. Average cost reductions in comparison with dedicated and fully flexible
systems.

Factor Levels GA-based pooling Pooling heuristic

Dedicated Fully Flexible Dedicated Fully Flexible

Number of SKUs (N) 10 35.93% 21.89% 35.19% 22.00%

20 52.40% 21.18% 55.65% 28.11%

Number of initial servers (M) 5 52.62% 19.37% 53.76% 23.43%

10 35.71% 23.70% 37.08% 26.68%

Utilization rate (ρ) 0.65 46.73% 23.36% 48.01% 24.30%

0.80 41.60% 19.71% 42.83% 25.81%

Minimum holding cost (hmin) 1 44.59% 21.58% 45.84% 24.81%

100 43.75% 21.49% 45.00% 25.30%

Holding cost/Work load relation IND 43.94% 21.29% 44.42% 24.04%

HPB 44.39% 21.79% 46.42% 26.08%

Server cost (f) 10hmax 38.63% 17.19% 39.95% 22.44%

100hmax 49.71% 25.89% 50.89% 27.67%

Cross-training cost (ci) 0.01f 48.81% 9.54% 50.22% 9.93%

0.1f 39.53% 33.53% 40.62% 40.18%

Average 44.16% 21.53% 45.42% 25.06%

Figure 4 shows distributions of the average percentage of cross-training per
server for all 128 instances investigated in this paper. We observe that, in most
of the instances, the average percentage of cross-training is less than 40%, which
shows that partial flexibility; i.e., partial cross-training is usually sufficient for
optimal system performance.

114 H. H. Turan et al.

20 40 60 80 100
0

10

20

30

40

50

Average % cross-training per server

Pooling heuristic

0 20 40 60 80 100
0

10

20

30

40

50

Average % cross-training per server

GA-based pooling

Fig. 4. Cross-training analysis of different solution algorithms.

5.4 Run Time Comparisons

All the experiments are implemented on a computer with 16 GB RAM and
2.8 GHz i7 CPU. Figure 5 shows boxplots of run time performances for both
algorithms. The pooling heuristic converges quite fast in most of the cases and
provides the final solution within 5000 cpu seconds with a median run time of
2000 s. GA-based pooling algorithm outperforms the pooling heuristic in terms
of run times by achieving under 1000 s median run time. Even the worst run time
performances of the algorithms are still acceptable for tactical and operational
level decisions in real-life spare part supply systems.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

·104

Pooling heuristic

GA-based pooling

Run Time (CPU seconds)

Fig. 5. Run time performance comparison of algorithms.

6 Conclusions

When designing a spare part supply network for repairable parts that balances
cost efficiency with effectiveness, several questions in both strategic and tactical
nature have to be answered. In this article, the joint problem of resource pooling,

An Efficient Heuristic for Pooled Repair Shop Designs 115

inventory allocation and capacity level designation of the repair shop is analyzed,
and solution heuristics are developed and compared with each other. From the
numerical experiments, it can be concluded that pooled designs result in cost
savings of around 45% and 25% in comparison to dedicated and fully flexible
designs, respectively. Besides, we observe that the optimal repair shop designs
can be achieved by partially cross-trained servers.

The results of this research are important to maintenance outsourcing com-
panies and large firms that operate and maintain their own repair facilities. In
both cases, the goal of decreasing maintenance costs and reducing the production
stoppages and losses would be accomplished.

As further research possibilities, testing the applicability of the methodology
with real-life cases (with larger problem sizes; i.e, a larger number of SKUs)
would be an invaluable contribution. We plan to develop novel clustering heuris-
tics or meta-heuristics that generate better pooling schemes with less computa-
tional complexity. It would be also worthwhile to integrate pooling decision with
static and dynamic routing and prioritization rules in the part repair processes.

Acknowledgement. This research was made possible by the NPRP award [NPRP
7-308-2-128] from the Qatar National Research Fund (a member of The Qatar Foun-
dation). The statements made herein are solely the responsibility of the author[s].

References

1. IATA’s Maintenance Cost Task Force: Airline maintenance cost: executive
commentary (2015). https://www.iata.org/whatwedo/workgroups/Documents/
MCTF/AMC-Exec-Comment-FY14.pdf. Accessed 30 Aug 2017

2. Keizer, M.C.O., Teunter, R.H., Veldman, J.: Clustering condition-based mainte-
nance for systems with redundancy and economic dependencies. Eur. J. Oper. Res.
251(2), 531–540 (2016)

3. López-Santana, E., Akhavan-Tabatabaei, R., Dieulle, L., Labadie, N., Medaglia,
A.L.: On the combined maintenance and routing optimization problem. Reliab.
Eng. Syst. Saf. 145, 199–214 (2016)

4. Duffuaa, S.O.: Mathematical models in maintenance planning and scheduling. In:
Ben-Daya, M., Duffuaa, S.O., Raouf, A. (eds.) Maintenance, Modeling and Opti-
mization, pp. 39–53. Springer, Boston (2000). https://doi.org/10.1007/978-1-4615-
4329-9 2

5. Sherbrooke, C.C.: Metric: a multi-echelon technique for recoverable item control.
Oper. Res. 16(1), 122–141 (1968)

6. Sherbrooke, C.C.: Optimal Inventory Modeling of Systems: Multi-echelon Tech-
niques, vol. 72. Springer, New York (2004). https://doi.org/10.1007/b109856

7. Basten, R., Van Houtum, G.: System-oriented inventory models for spare parts.
Surv. Oper. Res. Manag. Sci. 19(1), 34–55 (2014)

8. Arts, J.: A multi-item approach to repairable stocking and expediting in a fluctu-
ating demand environment. Eur. J. Oper. Res. 256(1), 102–115 (2017)

9. Diaz, A., Fu, M.C.: Models for multi-echelon repairable item inventory systems
with limited repair capacity. Eur. J. Oper. Res. 97(3), 480–492 (1997)

10. Rappold, J.A., Van Roo, B.D.: Designing multi-echelon service parts networks with
finite repair capacity. Eur. J. Oper. Res. 199(3), 781–792 (2009)

https://www.iata.org/whatwedo/workgroups/Documents/MCTF/AMC-Exec-Comment-FY14.pdf
https://www.iata.org/whatwedo/workgroups/Documents/MCTF/AMC-Exec-Comment-FY14.pdf
https://doi.org/10.1007/978-1-4615-4329-9_2
https://doi.org/10.1007/978-1-4615-4329-9_2
https://doi.org/10.1007/b109856

116 H. H. Turan et al.

11. Sleptchenko, A., Van der Heijden, M., Van Harten, A.: Trade-off between inventory
and repair capacity in spare part networks. J. Oper. Res. Soc. 54(3), 263–272 (2003)

12. Srivathsan, S., Viswanathan, S.: A queueing-based optimization model for planning
inventory of repaired components in a service center. Comput. Ind. Eng. 106, 373–
385 (2017)

13. Sleptchenko, A., Van der Heijden, M., Van Harten, A.: Effects of finite repair
capacity in multi-echelon, multi-indenture service part supply systems. Int. J. Prod.
Econ. 79(3), 209–230 (2002)

14. de Smidt-Destombes, K.S., van der Heijden, M.C., van Harten, A.: Joint opti-
misation of spare part inventory, maintenance frequency and repair capacity for
k-out-of-n systems. Int. J. Prod. Econ. 118(1), 260–268 (2009)

15. de Smidt-Destombes, K.S., van der Heijden, M.C., van Harten, A.: Availability
of k-out-of-n systems under block replacement sharing limited spares and repair
capacity. Int. J. Prod. Econ. 107(2), 404–421 (2007)

16. de Smidt-Destombes, K.S., van der Heijden, M.C., Van Harten, A.: On the inter-
action between maintenance, spare part inventories and repair capacity for a k-
out-of-n system with wear-out. Eur. J. Oper. Res. 174(1), 182–200 (2006)

17. de Smidt-Destombes, K.S., van der Heijden, M.C., van Harten, A.: On the availabil-
ity of a k-out-of-n system given limited spares and repair capacity under a condition
based maintenance strategy. Reliab. Eng. Syst. Saf. 83(3), 287–300 (2004)

18. Lau, H.C., Song, H.: Multi-echelon repairable item inventory system with limited
repair capacity under nonstationary demands. Int. J. Inventory Res. 1(1), 67–92
(2008)

19. Yoon, H., Jung, S., Lee, S.: The effect analysis of multi-echelon inventory models
considering demand rate uncertainty and limited maintenance capacity. Int. J.
Oper. Res. 24(1), 38–58 (2015)

20. Tracht, K., Funke, L., Schneider, D.: Varying repair capacity in a repairable item
system. Procedia CIRP 17, 446–450 (2014)

21. Driessen, M.A., Rustenburg, J.W., van Houtum, G.J., Wiers, V.C.S.: Connecting
inventory and repair shop control for repairable items. In: Zijm, H., Klumpp, M.,
Clausen, U., Hompel, M. (eds.) Logistics and Supply Chain Innovation, pp. 199–
221. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-22288-2 12

22. Jordan, W.C., Graves, S.C.: Principles on the benefits of manufacturing process
flexibility. Manage. Sci. 41(4), 577–594 (1995)

23. Jordan, W.C., Inman, R.R., Blumenfeld, D.E.: Chained cross-training of workers
for robust performance. IIE Trans. 36(10), 953–967 (2004)

24. Bassamboo, A., Randhawa, R.S., Mieghem, J.A.V.: A little flexibility is all you
need: on the asymptotic value of flexible capacity in parallel queuing systems.
Oper. Res. 60(6), 1423–1435 (2012)

25. Brusco, M.J., Johns, T.R.: Staffing a multiskilled workforce with varying levels
of productivity: an analysis of cross-training policies*. Decis. Sci. 29(2), 499–515
(1998)

26. Brusco, M.J.: An exact algorithm for a workforce allocation problem with appli-
cation to an analysis of cross-training policies. IIE Trans. 40(5), 495–508 (2008)

27. Chou, M.C., Chua, G.A., Teo, C.P., Zheng, H.: Design for process flexibility: effi-
ciency of the long chain and sparse structure. Oper. Res. 58(1), 43–58 (2010)

28. Pinker, E.J., Shumsky, R.A.: The efficiency-quality trade-off of cross-trained work-
ers. Manuf. Serv. Oper. Manag. 2(1), 32–48 (2000)

29. Tsitsiklis, J.N., Xu, K., et al.: On the power of (even a little) resource pooling.
Stoch. Syst. 2(1), 1–66 (2012)

https://doi.org/10.1007/978-3-319-22288-2_12

An Efficient Heuristic for Pooled Repair Shop Designs 117

30. Andradóttir, S., Ayhan, H., Down, D.G.: Design principles for flexible systems.
Prod. Oper. Manag. 22(5), 1144–1156 (2013)

31. Qin, R., Nembhard, D.A., Barnes II, W.L.: Workforce flexibility in operations
management. Surv. Oper. Res. Manag. Sci. 20(1), 19–33 (2015)

32. Hopp, W.J., Tekin, E., Van Oyen, M.P.: Benefits of skill chaining in serial produc-
tion lines with cross-trained workers. Manage. Sci. 50(1), 83–98 (2004)

33. Liu, C., Yang, N., Li, W., Lian, J., Evans, S., Yin, Y.: Training and assignment
of multi-skilled workers for implementing seru production systems. Int. J. Adv.
Manuf. Technol. 69(5–8), 937–959 (2013)

34. Sayın, S., Karabatı, S.: Assigning cross-trained workers to departments: a two-
stage optimization model to maximize utility and skill improvement. Eur. J. Oper.
Res. 176(3), 1643–1658 (2007)

35. Hopp, W.J., Oyen, M.P.: Agile workforce evaluation: a framework for cross-training
and coordination. IIE Trans. 36(10), 919–940 (2004)

36. Li, Q., Gong, J., Fung, R.Y., Tang, J.: Multi-objective optimal cross-training
configuration models for an assembly cell using non-dominated sorting genetic
algorithm-II. Int. J. Comput. Integr. Manuf. 25(11), 981–995 (2012)

37. Inman, R.R., Jordan, W.C., Blumenfeld, D.E.: Chained cross-training of assembly
line workers. Int. J. Prod. Res. 42(10), 1899–1910 (2004)

38. Tiwari, M., Roy, D.: Application of an evolutionary fuzzy system for the estimation
of workforce deployment and cross-training in an assembly environment. Int. J.
Prod. Res. 40(18), 4651–4674 (2002)

39. Vairaktarakis, G., Winch, J.K.: Worker cross-training in paced assembly lines.
Manuf. Serv. Oper. Manag. 1(2), 112–131 (1999)

40. Slomp, J., Bokhorst, J.A., Molleman, E.: Cross-training in a cellular manufacturing
environment. Comput. Ind. Eng. 48(3), 609–624 (2005)

41. Iravani, S.M., Van Oyen, M.P., Sims, K.T.: Structural flexibility: a new perspective
on the design of manufacturing and service operations. Manage. Sci. 51(2), 151–166
(2005)

42. Bokhorst, J.A., Slomp, J., Molleman, E.: Development and evaluation of cross-
training policies for manufacturing teams. IIE Trans. 36(10), 969–984 (2004)

43. Schneider, M., Grahl, J., Francas, D., Vigo, D.: A problem-adjusted genetic algo-
rithm for flexibility design. Int. J. Prod. Econ. 141(1), 56–65 (2013)

44. Wallace, R.B., Whitt, W.: A staffing algorithm for call centers with skill-based
routing. Manuf. Serv. Oper. Manag. 7(4), 276–294 (2005)

45. Ahghari, M., Balcioglu, B.: Benefits of cross-training in a skill-based routing con-
tact center with priority queues and impatient customers. IIE Trans. 41(6), 524–
536 (2009)

46. Legros, B., Jouini, O., Dallery, Y.: A flexible architecture for call centers with
skill-based routing. Int. J. Prod. Econ. 159, 192–207 (2015)

47. Tekin, E., Hopp, W.J., Van Oyen, M.P.: Pooling strategies for call center agent
cross-training. IIE Trans. 41(6), 546–561 (2009)

48. Harper, P.R., Powell, N., Williams, J.E.: Modelling the size and skill-mix of hospital
nursing teams. J. Oper. Res. Soc. 61(5), 768–779 (2010)

49. Li, L.L.X., King, B.E.: A healthcare staff decision model considering the effects of
staff cross-training. Health Care Manag. Sci. 2(1), 53–61 (1999)

50. Simmons, D.: The effect of non-linear delay costs on workforce mix. J. Oper. Res.
Soc. 64(11), 1622–1629 (2013)

51. Agnihothri, S.R., Mishra, A.K.: Cross-training decisions in field services with three
job types and server-job mismatch. Decis. Sci. 35(2), 239–257 (2004)

118 H. H. Turan et al.

52. Agnihothri, S., Mishra, A., Simmons, D.: Workforce cross-training decisions in field
service systems with two job types. J. Oper. Res. Soc. 54, 410–418 (2003)

53. Colen, P., Lambrecht, M.: Cross-training policies in field services. Int. J. Prod.
Econ. 138(1), 76–88 (2012)

54. Iravani, S.M., Krishnamurthy, V.: Workforce agility in repair and maintenance
environments. Manuf. Serv. Oper. Manag. 9(2), 168–184 (2007)

55. De Bruecker, P., Van den Bergh, J., Beliën, J., Demeulemeester, E.: Workforce
planning incorporating skills: state of the art. Eur. J. Oper. Res. 243(1), 1–16
(2015)

56. Sleptchenko, A., Turan, H.H., Pokharel, S., ElMekkawy, T.Y.: Cross training poli-
cies for repair shops with spare part inventories. Int. J. Prod. Econ. (2018). https://
doi.org/10.1016/j.ijpe.2017.12.018

57. Turan, H.H., Pokharel, S., Sleptchenko, A., ElMekkawy, T.Y.: Integrated opti-
mization for stock levels and cross-training schemes with simulation-based genetic
algorithm. In: International Conference on Computational Science and Computa-
tional Intelligence, pp. 1158–1163 (2016)

58. Sleptchenko, A., Elmekkawy, T.Y., Turan, H.H., Pokharel, S.: Simulation based
particle swarm optimization of cross-training policies in spare parts supply systems.
In: The Ninth International Conference on Advanced Computational Intelligence
(ICACI 2017), pp. 60–65 (2017)

59. Al-Khatib, M., Turan, H.H., Sleptchenko, A.: Optimal skill assignment with mod-
ular architecture in spare parts supply systems. In: 4th International Conference
on Industrial Engineering and Applications (ICIEA), pp. 136–140. IEEE (2017)

60. Turan, H.H., Sleptchenko, A., Pokharel, S., ElMekkawy, T.Y.: A clustering-based
repair shop design for repairable spare part supply systems. Comput. Ind. Eng.
125, 232–244 (2018)

61. Turan, H.H., Pokharel, S., Sleptchenko, A., ElMekkawy, T.Y., Al-Khatib, M.: A
pooling strategy for flexible repair shop designs. In: Proceedings of the 7th Inter-
national Conference on Operations Research and Enterprise Systems, pp. 272–278
(2018)

62. Van Harten, A., Sleptchenko, A.: On Markovian multi-class, multi-server queueing.
Queueing Syst. 43(4), 307–328 (2003)

63. Altiok, T.: On the phase-type approximations of general distributions. IIE Trans.
17(2), 110–116 (1985)

64. Van Der Heijden, M., Van Harten, A., Sleptchenko, A.: Approximations for Marko-
vian multi-class queues with preemptive priorities. Oper. Res. Lett. 32(3), 273–282
(2004)

https://doi.org/10.1016/j.ijpe.2017.12.018
https://doi.org/10.1016/j.ijpe.2017.12.018

	An Efficient Heuristic for Pooled Repair Shop Designs
	1 Introduction
	2 Literature Review
	3 Problem Description and Formulation
	4 Solution Algorithm: Pooling Heuristic
	5 Numerical Study
	5.1 Testbed
	5.2 The Benchmarking Algorithm: A Genetic Algorithm
	5.3 Performance Comparison of Pooling Heuristic and GA
	5.4 Run Time Comparisons

	6 Conclusions
	References

