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Abstract. The present paper highlights the impact of heuristic
hybridization on Vehicle Routing Problems (VRPs). More specifically, we
focus on the hybridization of the Iterated Local Search heuristic (ILS).
We propose different hybridization levels for ILS with two other heuris-
tics, namely a Variable Neighborhood Descent with Random neighborhood
ordering (RVND) and a Large Neighborhood Search heuristic (LNS). To
evaluate the proposed approaches, we test them on a variant of VRPs
called the Capacitated Profitable Tour Problem (CPTP). In a CPTP, the
visit of all customers is no longer required and the visit of each cus-
tomer generates a specific profit. The available fleet of vehicle is limited
and capacitated. The aim of the CPTP is to choose which set of cus-
tomers to visit and in which order to maximize the difference between
collected profits and routing costs. Our experiments show that the more
ILS is hybridized the better are the results. To bring out the effective-
ness of the proposed hybrid approach combining ILS, RVND and LNS,
a comparison is made between that proposed approach and three local
search heuristics from the literature of the CPTP. The obtained results
are competitive.

Keywords: Heuristics · Hybridization · Vehicle Routing Problem ·
Iterative local search

1 Introduction

In recent years, considerable attention has been paid to logistic problems in gen-
eral and to Vehicle Routing Problems (VRPs) in particular. Different method-
ologies have been adopted to “solve” that kind of problems. Among the proposed
methodologies, heuristic algorithms are particularly much studied. Researchers
in the fields of combinatorial optimization are trying their best to improve the
solution quality and the computing time of previously proposed heuristics, espe-
cially when it comes to solve difficult problems as VRPs.
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The present work aims at analyzing the impact of heuristic hybridization
on VRPs. More specifically, hybridizations of the Iterated Local Search heuristic
(ILS) with other single-solution based heuristics are considered.

We recall that ILS principle is to improve a given initial solution by alternat-
ing local search (LS) and perturbation procedures. The role of a LS is to improve a
given solution by performing a set of small modifications (or moves) to the studied
solution. One can say that the LS visits the neighborhood of the studied solution
and selects the best neighboring solution according to some criterion. After some
iterations, the LS is no longer able produce better quality solutions using the same
set of moves. We say that the heuristic is trapped in a local optimum.

To help LS to escape local optima, ILS provides a perturbation procedure.
The latter procedure performs some changes to the current local optimum, pro-
ducing thereby a new starting solution for the LS. The quality of that new
starting solution is generally not as good as the quality of the local optimum.
That decrease in the solution quality induced by the perturbation procedure
allows the LS to visit a larger search space area.

In the present paper, we attempt to improve a simple ILS heuristic by mod-
ifying its local search and perturbation procedures. Several ILS hybridizations
are implemented based on several simple LS heuristics, a Variable Neighborhood
Descent with Random neighborhood ordering (RVND) and a Large Neighborhood
Search heuristic (LNS).

To assess the performance of the studied heuristics, the latter are tested on
a VRP variant called Capacitated Profitable Tour Problem (CPTP).

The CPTP has been introduced by Archetti et al. [1] in order to deal with
empty returns, that trucks are facing after performing delivery operations (see
[1] for more details). The main difference between the CPTP and the classical
VRP is the relaxation of the constraints imposing a visit for each customer. In
addition, in a CPTP a profit is assigned to each customer and the objective
is to maximize the difference between collected profits and routing costs. The
number of available vehicles in a CPTP is supposed to be finite. These vehicles
are homogeneous with a fixed capacity bound. Each customer in a CPTP has
a given pickup demand that must be entirely fulffiled if the customer is visited.
Furthermore, if a customer is included in the solution, its demand has to be
satisfied by performing a single visit.

The rest of the paper is organized as follows. Section 2 presents some previous
works from the literature dealing with the application of ILS to combinatorial
optimization problems and VRPs. Hybridizations of ILS with other heuristics
are highlighted. A CPTP literature review is also given in that Section. Section 3
describes the proposed approaches. Section 4 discusses the computational results.
Finally, a conclusion is given in Sect. 5.

2 Literature Review

The present section is divided into two subsections. In the first subsection, we
provide the literature review of the Iterated Local Search (ILS) heuristic. While
the second subsection is devoted to the CPTP heuristic approaches proposed in
the literature.



82 H. Chentli et al.

2.1 Iterated Local Search Heuristic

According to Lourenço et al. [2], ILS is an efficient heuristic that has several
desirable features of a metaheuristic. The main features are the simplicity, the
high effectiveness, the robustness and the ease and the malleability of implemen-
tation (several implementation choices are left to the developer). The authors
also state that ILS effectiveness depends on the choice of the used modules: local
search, perturbation procedure and acceptance criterion.

In the literature, several researchers attempted the resolution of combinato-
rial optimization problems using hybridization of ILS with other heuristics. For
instance, Martins et al. [3] developed a Variable Neighborhood Descent (VND)
combined with an ILS for the Routing and Wavelength Assignment problem.
In that paper, VND plays the role of the local search procedure and uses three
neighborhood structures. When VND is blocked, ILS perturbs the so far obtained
solution and the process iterates until a stopping criterion is met.

Martins et al. [4] implemented a hybrid ILS and RVND heuristic for the Cell
Formation Problem. The proposed RVND uses three neighborhood structures.
In addition, three perturbation procedures are used in ILS.

Many researchers successfully applied hybrid ILS heuristics to VRP variants.
For example, Chen et al. [5] developed a hybridization of ILS with VND for the
Capacitated Vehicle Routing Problem. VND uses two inter- and two intra route(s)
operators consisting of intra-route relocation, 2-opt, inter-routes swap and 2-opt*.
The perturbation phase is performed using the cross-exchange operator.

Subramanian et al. [6] proposed a parallel algorithm combining an ILS with a
RVND for solving the Vehicle Routing Problem with Simultaneous Pick-up and
Delivery services. Five intra- and seven inter-route(s) neighborhood structures
are given together with three perturbation mechanisms.

Subramanian et al. [7] implemented a hybrid algorithm combining an exact
method with ILS and RVND for a class of VRPs with heterogeneous fleet. The
ILS and RVND heuristics are based on those presented in [6].

Assis et al. [8] presented a hybrid ILS using RVND in the local search phase.
The proposed RVND uses six inter- and six intra-route(s) neighborhood struc-
tures. That hybrid approach is tested on the multiobjective vehicle routing prob-
lem with fixed delivery and optional collections.

Another hybridization of ILS is implemented by Subramanian and Battarra
[9] to solve the Travelling Salesman Problem with Pickups and Deliveries. The
authors hybridized ILS with RVND. In RVND, four neighborhood structures are
given.

Hernández-Pérez et al. [10] studied a hybridization of ILS with VND. The
approach is applied to the multi-commodity Pickup-and-Delivery Traveling
Salesman Problem. The approach is tested with up to six neighborhood struc-
tures and a combination of three shaking procedures.
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Todosijević et al. [11] developed another hybrid approach using both ILS
and VND for the Swap-Body Vehicle Routing Problem. The used neighborhood
structures are 1-Opt, 2-Opt, Or-Opt, relocate and exchange. The shaking pro-
cedure is based on customer relocation.

The ILS and the VND heuristics also provide good quality solutions for
other variants of VRPs see [12–14]. In addition, the two heuristics perform well
on some Vehicle Routing Problems with Profits (see [15]). Furthermore, several
versions of VND are used to solve different variants of transportation problems
(see [16–18]).

As one can see from the literature review, several papers use combinations of
ILS and RVND for solving VRP variants. However, to the best of our knowledge,
only one work has been addressed using a hybridization of ILS with LNS [19].
ILS and LNS heuristics are nevertheless quite effective in solving VRP variants
as well as other transportation problems. For ILS, we refer the reader to the
papers [20–23], and for LNS, we refer the reader to the papers [24–28].

2.2 Capacitated Profitable Tour Problem

Despite its importance, the CPTP has not received a lot of attention from
researcher. Archetti et al. [1] introduced the CPTP and proposed three method-
ologies to solve that problem. The proposed methodologies are the Tabu Feasible
(TF), the Tabu Admissible (TA) and the Variable Neighborhood Search (VNS)
heuristics. Both TF and TA algorithms use two inter-route operators. The first
operator is called 1-move. 1-move either relocates a given customer in a different
route or deletes that customer completely from the solution. The second move-
ment is called swap-move. Swap-move either exchanges the positions of two given
customers from two different routes or deletes a customer and replaces it by an
unrouted one.

In order to deal with infeasible solutions obtained by the TA algorithm,
Archetti et al. proposed a repair heuristic based on series of 1-move. In addition,
the authors evaluated the solutions according to several criteria including the
difference between total profit and total distance, the number of routes, the route
duration and the maximum constraint violation.

The VNS algorithm uses the TF algorithm with a small iteration number,
which allows the visit of a larger area within the search space.

Some researchers proposed exact methods for the CPTP. As the present work
deals with heuristic approaches, we do not describe those exact methods.

3 The Proposed Methodology

In the present section, we describe the implemented construction heuristic and
the studied approaches: ILS, LNS and RVND. We also describe the tested
hybridizations.
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Note that a preliminary work dealing with ILS hybridization has been pre-
sented in [29]. The present work extends the one proposed in [29] by providing:
(i) other heuristic approaches combining ILS with other neighborhood opera-
tors, (ii) a hybridization of ILS with both LNS and a neighborhood operator,
(iii) a detailed comparison between the use of the basic greedy heuristic and
a random insertion heuristic within the perturbation procedure, (iv) detailed
results of the hybrid heuristic combining ILS, RVND and LNS compared with
Archetti et al. [1] results.

3.1 Construction Heuristic

The implemented construction heuristic is a sequential heuristic based on the I1
heuristic of Solomon [30]. I1 was first developed for the Vehicle Routing Problem
with Time Window. The pseudo-code of the construction heuristic is displayed
in Algorithm 1.

Algorithm 1. Construction heuristic for the CPTP.
1: Inputs:

A CPTP instance
A list Lunr containing all the unrouted customers
A number nbRoutes = 0 of the current solution routes

2: Outputs:

A feasible solution
3: while nbRoutes < vehicle number do
4: Generate a new route;
5: nbRoutes + +;
6: Add a seed customer to the new route;
7: while ∃u ∈ Lunr whose insertion leads to a feasible solution do
8: Evaluate the insertion of each unrouted customer u ∈ Lunr into the studied

route rstu;
9: Choose the best insertion position for each u using the criterion cr1(i, u, j);

10: Choose the customer u∗ that has the best value of cr1(i, u, j);
11: Insert the customer u∗ in its best insertion position within rstu;
12: Delete u∗ from Lunr;
13: end while
14: end while

An empty route is considered in the first iteration of the construction heuris-
tic. That empty route is first filled with a seed customer which is randomly cho-
sen. After that, the heuristic evaluates the insertion of the remaining unrouted
customers into the route. The best insertion position of each unrouted customer
u between customers i and j is selected. This is done according to a given crite-
rion denoted cr1(i, u, j). Among all the best insertion positions, the construction
heuristic chooses the one that optimizes the given criterion. That process iter-
ates until no customer can be inserted into the current route. If some customers
are still unrouted, a new route is generated and the process is repeated. The
heuristic stops either if there are no more unrouted customers or if the number
of generated routes exceeds the vehicle number.
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To describe cr1(i, u, j), let us consider (i0, i1, . . . , ih) as the current route
where iρ stands for the ρth position in the route if ρ /∈ {0, h}, iρ stands for the
depot otherwise (ρ ∈ {0, h}). The best insertion position of customer u within
the current route is selected according to Expressions (1)–(4) (Source [29]). In
these Equations cij refers to the distance between customers i and j, pru refers
to customer u profit, α1, α2 ≥ 0 with α1 + α2 = 1 are two parameters set by
the user.

cr1(i(u), u, j(u)) = max {cr1(iρ−1, u, iρ), ρ = 1, . . . , h} ; (Source [29]) (1)
cr1(i, u, j) = α1 · cr11(i, u, j) − α2 · cr12(i, u, j); (Source [29]) (2)

cr11(i, u, j) = pru; (Source [29]) (3)
cr12(i, u, j) = ciu + cuj − cij . (Source [29]) (4)

The Eqs. (1)–(4) have been already presented in [29] on page 117, Sect. 2.1.
Note that different values of parameters α1 et α2 can lead to different solu-

tions for the CPTP.

3.2 Iterated Local Search

ILS principle is described in Sect. 1. The pseudo-code of the ILS heuristic used
in the present paper is given in Algorithm 2. ILS starts from an initial solution
given by the construction heuristic presented in Sect. 3.1. Then a local search
procedure is executed for a given number of iterations. If the obtained solution
is better than the current best one, the best solution is replaced by the obtained
one. The solution is, after that, perturbed using a perturbation procedure. The
process is repeated until a stopping criterion is met. In the present work, the
stopping criterion stands for the completion of a given number of iterations
without improvement.

Algorithm 2. Iterated Local Search.
1: Inputs:

A CPTP instance
2: Outputs:

The best solution found
3: Generate an initial solution;
4: while stopping criterion is not met do
5: Execute a local search procedure;
6: Update the best solution;
7: Perturb the obtained solution;
8: end while
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Local Search. As mentioned by Talbi [31], any single-solution based meta-
heuristic can be used in the local search phase of an ILS.

In the present work, seven basic ILS versions are first tested. In each ILS
basic version, a different neighborhood structure (or neighborhood operator) is
used. The implemented neighborhood operators consist of four intra- and three
inter-route(s) operators. The latter are described in what follows. Examples of
neighborhood movements for each operator are given in Fig. 1. Figure 1 was first
given in [29] on page 118.

2-Opt introduces two new arcs and deletes two other arcs in a given route
by connecting two customers k and l and reversing the path between those
customers. In Fig. 1, the arcs (1, 4) and (2, 5) are deleted, the arcs (1, 2) and (4, 5)
are added, customers 1 and 2 are connected and the path (4− 3− 2) is reversed.
For maintaining the route connectivity, customers 4 and 5 are connected.

2-Opt* divides two given routes into four segments: initial and final segments.
Then, the operator connects each first segment from a route with a second seg-
ment from the other route. In Fig. 1, the first route (0−1−2−3−0) is disconnected
into a first segment (0 − 1) and a second segment (2 − 3 − 0). The second route
(0 − 4 − 5 − 6 − 0) is disconnected into a first segment (0 − 4 − 5) and a second
segment (6 − 0). After that, (0 − 1) is connected to (6 − 0) and (0 − 4 − 5) is
connected to (2 − 3 − 0).

Intra-route 1-0 Exchange relocates a customer l into a position k within a same
route. In Fig. 1, customer 2, which is in the 5th position of the route, is relocated
in the second position within the same route.

Inter-routes 1-0 Exchange relocates a customer l into a position k in a different
route. In Fig. 1, customer 3, which is in the third position of the first route, is
relocated in the 4th position of the second route.

Intra-route 1-1 Exchange exchanges the positions of two customers within a
same route. In Fig. 1, customer 2 is relocated at the position of customer 5, and
customer 5 is relocated at the position of customer 2. No path is reversed.

Inter-routes 1-1 Exchange exchanges the positions of two customers from two
different routes. In Fig. 1, customer 3 is relocated at the position of customer 6,
and customer 6 is relocated at the position of customer 3.

Or-Opt relocates two consecutive customers (or an arc) in a different position
within a same route. In Fig. 1, the arc (1, 2) is relocated between the depot and
customer 3.
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Fig. 1. Illustration of neighborhood movements in the RVND heuristic (Source [29]).

Each combination of ILS with a neighborhood operator is denoted by
ILS NeiOp where NeiOp stands for the used neighborhood operator. Thus, we
have: ILS 2-Opt, ILS 2-Opt*, ILS 1-0 Exchange-intra, ILS 1-0 Exchange-inter,
ILS 1-1 Exchange-intra, ILS 1-1 Exchange-inter and ILS Or-Opt.

Perturbation Mechanism. The perturbation procedure destroys the solution
obtained by the local search procedure to escape local optima. To do so, the ran-
dom removal operator described by Pisinger and Ropke [32] is used. Before re-
applying the local search procedure, some customers may be added to the obtained
solution using the basic greedy heuristic described by the same authors [32].

3.3 Hybrid Iterated Local Search Heuristic

In the present work, several hybridization of ILS are proposed. They are
described in what follows.
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Hybrid ILS LNS Heuristic. In [29], several versions of the LNS are tested.
The latter versions use a unique removal and a unique insertion operator. All
the removal/insertion operators proposed by Pisinger and Ropke [32] are tested
using the CPTP constraints and objective function. Each implemented LNS
version consists of a different couple of removal/insertion operators.

Each LNS version starts from a solution generated by the construction
heuristic. At each iteration, LNS deletes a given number of customers using its
removal operator. Then, LNS inserts a set of customers using its insertion operator.
LNS stops when a given number of iterations without improvement is reached.

After an experimental study, we choose the related removal and the regret
heuristic with a regret number equal to 4 as the couple of removal/insertion
operators used in LNS.

For more information regarding the selection of the removal/insertion couple,
we refer the reader to [29].

The hybrid ILS LNS heuristic is a multi-start heuristic that executes, at
each iteration, an ILS heuristic using LNS as a local search procedure. The
initial solutions are obtained by iteratively modifying parameter values of the
construction heuristic described in Sect. 3.1. All the possible combinations of α1

and α2 parameter values are considered. ILS LNS uses the same perturbation
procedure as the one described in Sect. 3.2.

As defined in Sect. 3.2, ILS stopping criterion consists in the completion of a
given number of iterations without improvement.

ILS LNS stops when all combinations of α1 and α2 parameter values are
tested.

Hybrid ILS RVND Heuristic. The RVND heuristic uses all the seven oper-
ators described in Sect. 3.2. At each iteration of RVND, the neighborhood oper-
ators are chosen in a random way. Actually, all the operators are put in a list
of available operators, and each time an operator is used, the heuristic deletes
that operator from the list. RVND stops when the list of available operators is
empty. Hence, each operator is executed only once.

The hybrid ILS RVND heuristic differs from the ILS LNS heuristic (pre-
sented above) in the use of RVND instead of LNS in the local search phase.

Hybrid LNS RVND Heuristic. LNS RVND is not a multi-start heuristic.
This hybrid heuristic begins with an initial solution obtained by the construction
heuristic given in Sect. 3.1 using random values for parameters α1 and α2. Then,
the LNS heuristic is run until reaching a given number of iterations. The obtained
solution is possibly improved using the RVND heuristic with some probability.
After that, the LNS RVND heuristic goes back again to LNS and that process
iterates until reaching a given number of iterations without improvement.
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Hybrid ILS NeiOp LNS Heuristic. ILS NeiOp LNS is a multi-start heuris-
tic that hybridizes ILS NeiOp with LNS. NeiOp is defined in a similar manner
as described in Sect. 3.2.

The neighborhood operator used in this heuristic is the one that gives the
best results with respect to other neighborhood operators when combined to
ILS.

In ILS NeiOp LNS, the construction heuristic is first run to generate different
initial solutions at each iteration. Then, for each initial solution, an ILS heuristic
is run until reaching a given number of iterations without improvement. In ILS,
a LNS heuristic is executed followed by the selected neighborhood operator. The
combination of LNS with the selected neighborhood operator plays the role of the
local search procedure in ILS. This combination of LNS with the neighborhood
operator is repeated for a given number of iterations. When the local search
stops, the perturbation procedure is run. The latter procedure is the same as
the one presented in Sect. 3.2. The pseudo-code of ILS NeiOp LNS is given in
Algorithm 3.

Algorithm 3. ILS NeiOp LNS.
1: Inputs:

A CPTP instance
2: Outputs:

The best encountered solution
3: while stopping criterion is not met do
4: Generate an initial solution;
5: while ILS stopping criterion is not met do
6: while stopping criterion is not met do
7: Run LNS;
8: Run NeiOp;
9: end while

10: Update the best encountered solution;
11: Perturb the current solution;
12: end while
13: end while

Hybrid ILS RVND LNS Heuristic. This hybrid heuristic is quite similar to
the one presented in Sect. 3.3. The only difference is that ILS RVND LNS uses
RVND instead of the neighborhood operator after LNS.

The pseudo-code of ILS RVND LNS is given in Algorithm 4.
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Algorithm 4. ILS RVND LNS.
1: Inputs:

A CPTP instance
2: Outputs:

The best encountered solution
3: while stopping criterion is not met do
4: Generate an initial solution;
5: while ILS stopping criterion is not met do
6: while stopping criterion is not met do
7: Run LNS;
8: Run RVND;
9: end while

10: Update the best encountered solution;
11: Perturb the current solution;
12: end while
13: end while

4 Computational Results

In the present Section, we begin by describing the CPTP instances proposed in
the literature and studied in the present work. After that, we analyze the results
of each proposed approach and we evaluate the impact of the hybridization.
Finally, the approach that provides the best results is compared to some CPTP
heuristics from the literature.

In order to quickly determine the best approach among the proposed ones,
each approach is executed using a relatively small number of iterations. However,
more iterations are used for the comparison between the best approach with the
literature ones.

Note that some of the experimental results/heuristic tuning details are not
given in the present work as they have already been published in the conference
paper [29]. Those experimental results/heuristic tuning details concern the cou-
ple of operators chosen for LNS, the comparison between LNS and ILS LNS and
the tuning of both ILS RVND and LNS RVND.

The new experimentations are implemented in C and performed on a personal
laptop with an Intel(R) Core (TM) i5-4210U CPU @ 1.70 GHz with 6.00 Gb
RAM and 64-bit operating system.

Due to the random aspect of the approaches, they all are executed 3 times for
each instance. We report the best encountered solutions in terms of percentage
deviation from the best solutions presented by Archetti et al. [1]. A percentage
deviation (gap) of a heuristic a from a heuristic b is computed according to the
following Expression

gap = 100 · zb − za

zb

where za and zb are the objective function values obtained by heuristics a and b
respectively.
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4.1 CPTP Instances

The CPTP instances studied in the present work were proposed by Archetti
et al. [1]. The authors modified the Capacitated Vehicle Routing Problem
instances (CVRP) described by Christofides et al. [33] with 50 to 199 customers.
Archetti et al. [1] generated three set of instances from the CVRP instances by
varying the capacity bounds and the number of vehicles.

The first set of CPTP instances consists of the original 10 CVRP instances in
which each customer i has a profit pri computed following the Expression pri =
(0.5 + h) · di, where di is the demand of i and h is randomly chosen from [0, 1].

The second set of CPTP instances consists of 90 different instances obtained
by modifying the first set of instances. Actually, Archetti et al. [1] consider the
cases Q = 50, Q = 75 and Q = 100, where Q stands for to the capacity bound. For
each case, three instances are generated using different vehicle numbers. The latter
numbers are chosen from the set {2, 3, 4}. In the second set of CPTP instances,
the profits are computed in the same manner as described for the first set.

The third set of CPTP instances consists of 30 different instances obtained
by modifying the first set of instances. Archetti et al. [1] maintain the same
capacity bounds as those presented for the CVRP. However, they consider three
cases for the vehicle numbers. The latter are chosen from the set {2, 3, 4}.

A total of 130 CPTP instances are thus proposed by Archetti et al. [1]. As
instance types p03 and p08 of Archetti et al. [1] are exactly the same, we do not
consider instances of type p03. Hence we obtain a total of 117 CPTP instances.

4.2 Study of Basic ILS Heuristics

As said in Sect. 3.2, seven basic version of ILS are tested. Each version dif-
fers from the others in the used neighborhood operator. The tested versions
are ILS 2-Opt, ILS 2-Opt*, ILS 1-0 Exchange-intra, ILS 1-0 Exchange-inter,
ILS 1-1 Exchange-intra, ILS 1-1 Exchange-inter and ILS Or-Opt.

As these basic ILS heuristics are quite fast, we decide to fix their number of
iterations without improvement in ILS to 500 instead of 50.

Table 1 displays the obtained results in terms of average gap (among all
instances) from Archetti et al. [1] results. That Table also displays the average
computing time (among all instances) in seconds (CPU).

Table 1. Comparison between basic ILS heuristics.

ILS 2-Opt ILS 2-Opt* ILS 1-0
Exchange-intra

ILS 1-0
Exchange-Inter

ILS Or-Opt ILS 1-1
Exchange-intra

ILS 1-1
Exchange inter

Gap 5.41 4.94 5.78 5.42 5.76 5.52 5.07

CPU 15.70 14.98 15.72 16.42 14.58 15.15 15.92

The results of Table 1 show that the 2-Opt* operator performs better than
the other operators in terms of solution quality and computing time.
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Hence, in the reminder of the present work, the basic ILS heuristic will refer
to the basic ILS heuristic using the 2-Opt* operator. That heuristic will be
compared to the other implemented heuristics.

4.3 Study of ILS LNS Heuristic

Several tests were performed in [29] to determine the best removal/insertion
couple of operators of LNS. In addition, LNS was compared with ILS LNS.
ILS LNS was able to reach better quality solutions and was faster than LNS.

In the present Section, we compare the results of ILS LNS using the selected
couple of removal/insertion operators (Source [29]) with those of the basic ILS
heuristic presented in Sect. 4.2.

ILS LNS is run until 50 iterations without improvement are reached. We
remarked that, with only 50 iterations, ILS LNS is more time consuming than
the above studied heuristics using 500 iterations. Hence, we maintain ILS LNS
iteration number to 50.

As one can see from Table 2, the average gap of ILS 2-Opt* is slightly bet-
ter that the average gap of ILS LNS. Regarding the average computing time,
ILS LNS appears to be slower than ILS 2-Opt*.

Table 2. Comparison between ILS LNS and ILS 2-Opt*.

ILS LNS ILS 2-Opt*

Gap 5.07 4.94

CPU 36.35 14.98

4.4 Study of ILS RVND Heuristic

As the basic ILS, ILS RVND is very fast in comparison with the ILS LNS heuris-
tic. Hence, we decide to fix the number of iterations without improvement in the
ILS embedded in ILS RVND to 500. Results of ILS RVND using 50 iterations
are provided in [29].

Table 3 compares the results of ILS RVND (Source [29]) with both ILS LNS
(Source [29]) and ILS 2-Opt*. We remark that the average gaps of ILS 2-Opt*
and ILS RVND are quite similar. In addition, the average computing time of
ILS RVND is slightly better than the average computing time of ILS 2-Opt*. We
think that difference between the two heuristics can be more evident if the itera-
tion number increases and/or if the heuristics are hybridized with other ones.

Table 3. Comparison between ILS LNS, ILS 2-Opt* and ILS RVND.

ILS LNS ILS 2-Opt* ILS RVND

Gap 5.07 4.94 4.95

CPU 36.35 14.98 10.57
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4.5 Study of LNS RVND Heuristic

LNS RVND is described in Sect. 3.3. The results related to this hybrid heuristic
are presented in [29].

We remark that the results of LNS RVND (Source [29]) are quite “disap-
pointing” in comparison with other approaches. Indeed, the heuristic obtains
the worst average gap and computing time. That can be seen in Table 4.

From the results displayed in Table 4, we conclude that the multi-start ILS
heuristic has a considerable impact on the solution quality and the speed of
finding solutions.

Table 4. Comparison between ILS LNS, ILS 2-Opt*, ILS RVND and LNS RVND.

ILS LNS ILS 2-Opt* ILS RVND LNS RVND

Gap 5.07 4.94 4.95 11.94

CPU 36.35 14.98 10.57 67.10

4.6 Study of ILS 2-Opt* LNS Heuristic

ILS 2-Opt* LNS is described in Sect. 3.3. In order to have a good balance
between solution quality and computing time, the 2-Opt* LNS heuristic is
repeated 7 times at each iteration of ILS. The number of iterations without
improvement of the embedded ILS heuristic maxOcc is set to 200. While the
number of iterations without improvement of LNS maxOccLNS is fixed to 20.

Table 5 presents the results of ILS 2-Opt* LNS compared with those of the
previously studied heuristics. We remark that ILS 2-Opt* LNS is able to reach
the best average gap in comparison with the other heuristics. ILS 2-Opt* LNS
seems to be relatively time consuming. However, the computing time of this
heuristic is still reasonable, especially if we take the solution quality into account.

Table 5. Comparison between ILS 2-Opt* LNS and the previously studied heuristics.

ILS LNS ILS 2-Opt* ILS RVND LNS RVND ILS 2-Opt* LNS

Gap 5.07 4.94 4.95 11.94 1.72

CPU 36.35 14.98 10.57 67.10 36.64

4.7 Study of ILS RVND LNS Heuristic

ILS RVND LNS is described in Sect. 3.3. As in ILS 2-Opt* LNS, the local search
phase of ILS RVND LNS, which consists in the RVND LNS heuristic, is repeated
7 times at each iteration of ILS. The numbers of iterations without improvement
in the ILS heuristic maxOcc and in the LNS heuristic maxOccLNS are set to
200 and 20 respectively.
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Note that, contrary to the LNS RVND studied in Sect. 3.3, the combina-
tion of LNS and RVND involved in ILS RVND LNS uses the RVND heuristic
with a probability equal to 1. That modification is motivated by the fact that
ILS RVND gives good quality solutions in comparison with both ILS LNS and
LNS RVND.

Table 6 compares the results of ILS RVND LNS (Source [29]) with those of the
other approaches presented in the present work. From that Table, we remark that
ILS RVND LNS provides the best average gap without being too time consum-
ing. When comparing ILS RVND LNS with ILS 2-Opt* LNS, we can see that
ILS RVND LNS is also better in terms of average results (gaps and computing
time). That confims our assumption that the use of RVND instead of a neighbor-
hood operator in the ILS heuristic can lead to better results when using more itera-
tions and/orwhen ILS is hybridizedwith other heuristics (more than twoheuristics
are involved).

We also remark that better average gaps are obtained when the heuristics
are hybridized. However, that hybridizations can lead to an increase of the com-
puting time. We think that the hybridized heuristics are more time consuming
because they are first trapped in local optima then they extract themselves from
these optima. That process is repeated several times. On the other hand, the
basic heuristic (with a basic level of hybridization or no hybridization at all) are
quickly trapped in local optima.

Table 6. Comparison between ILS RVND LNS and the other proposed heuristics.

ILS LNS ILS 2-Opt* ILS RVND LNS RVND ILS 2-Opt* LNS ILS RVND LNS

Gap 5.07 4.94 4.95 11.94 1.72 1.57

CPU 36.35 14.98 10.57 67.10 36.64 28.39

4.8 Study of the Perturbation Procedure

In all the studied approaches described so far, we use the random removal and
the basic greedy heuristic (both described in [32]).

Initially, we wanted to use the random removal combined to a random inser-
tion heuristic in order to change the characteristics of the solution after a local
search is performed. We thought that the two random heuristics can lead to a
more diversified search and thus, to better results.

In practice, we found that the use of the random removal combined to a
random insertion introduces too much diversification. That diversification could
not be correctly handled by the local search procedure. Hence, we decided to
use the random removal combined with the basic greedy heuristic instead.

Figure 2 describes the gaps obtained by both versions of the perturbation
procedure: with basic greedy and the random insertion. The tests are performed
using ILS RVND LNS.
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In Fig. 2, the gap for each instance is shown. From that Figure, we can
see that the perturbation using the basic greedy generally provides better gaps.
Actually the random insertion outperforms basic greedy in only 4 cases. The
average computing time reached when using basic greedy is slightly worse that
the average computing time reached when using the random insertion. Indeed,
the farmer is equal to 37.85 seconds while the latter is equal to 29.52 seconds.

Fig. 2. Comparison between the use of the basic greedy operator and the random
insertion for the perturbation procedure.

4.9 Comparison of ILS RVND LNS with Other Approaches from
the Literature

ILS RVND LNS gives the best results among all the implemented approaches.
Therefore, it is compared with other approaches from the literature.

ILS RVND LNS is compared with TF, TA and VNS heuristics proposed by
Archetti et al. [1].

In order to have relatively comparable results for the compared approaches
(in terms of solution quality and computing time), we execute ILS RVND LNS
20 times at each run.
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Table 7 provides the detailed results. In that Table, ins stands for the instance
name, where an instance pXY −m−Q refers to the original instance pXY of the
CVRP in which the vehicle number is fixed to m and the capacity bound is set to
Q. n stands for the customer number. VNS, TF, TA and ILS RVND LNS refer to
the objective values obtained by VNS, TF, TA and ILS RVND LNS respectively.
CPU is the computing time of ILS RVND LNS is seconds. CPU(min) stands
for the average computing time in minutes of all the heuristics among all the
instances.

Note that the detailed computing time of VNS, TF and TA can be found in [1].
From Table 7, we remark that ILS RVND LNS provides 6 new best solu-

tions. In addition, the heuristic reaches the literature solutions in 55 cases.
ILS RVND LNS is not able to reach the literature solutions in 56 cases. How-
ever, the average gap of ILS RVND LNS is relatively small. Indeed, it is equal
to 0.66%.

The computing time of ILS RVND LNS is reasonable.

Table 7. Detailed results for CPTP instances.

Ins n VNS TF TA ILS RVND LNS CPU

p06-10-160 50 258,97 258,97 255,38 259,12 356,73

p07-20-140 75 534,81 525,06 527,90 524,39 1006,98

p08-15-200 100 663,98 657,31 656,32 649,67 2330,63

p09-10-200 150 1189,33 1192,68 1143,65 1162,55 4194,31

p10-20-200 199 1773,65 1761,37 1759,81 1741,43 10736,14

p13-15-200 120 284,71 269,74 274,28 289,59 2417,94

p14-10-200 100 890,44 886,78 888,18 890,44 1283,71

p15-15-200 150 1168,63 1156,01 1134,17 1157,38 4945,23

p16-20-200 199 1791,78 1764,15 1776,41 1747,06 8435,07

p06-2-50 50 33,88 33,88 33,88 33,88 38,71

p07-2-50 75 49,18 49,18 49,18 49,18 51,73

p08-2-50 100 57,75 57,75 57,75 57,75 76,92

p09-2-50 150 65,03 63,89 65,03 65,03 97,6

p10-2-50 199 70,87 70,87 70,87 70,87 129,57

p13-2-50 120 64,12 64,12 64,12 64,12 129,66

p14-2-50 100 43,26 43,26 43,26 43,26 76,34

p15-2-50 150 64,98 64,98 64,98 64,98 107,39

p16-2-50 199 66,81 66,81 66,81 66,39 142,77

p06-3-50 50 40,95 40,95 40,95 40,95 56,78

p07-3-50 75 69,94 69,94 69,94 69,94 74,12

p08-3-50 100 80,82 80,82 80,82 80,82 121,37
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Table 7. (continued)

p09-3-50 150 96,16 96,16 96,16 96,16 162,38

p10-3-50 199 103,79 103,79 103,79 103,79 209,51

p13-3-50 120 87,25 87,25 87,25 87,25 207,5

p14-3-50 100 59,43 59,43 59,43 59,43 74,87

p15-3-50 150 96,42 96,42 96,42 96,42 173,42

p16-3-50 199 99,7 99,7 99,7 99,7 228,97

p06-4-50 50 45,43 45,43 45,43 45,43 77,98

p07-4-50 75 90,65 90,65 90,65 90,65 99,74

p08-4-50 100 100,36 98,47 100,36 99,76 174,71

p09-4-50 150 121,35 121,35 121,35 121,35 247,87

p10-4-50 199 134,81 134,81 134,81 134,81 297,66

p13-4-50 120 104,18 103,73 103,72 103,34 243,39

p14-4-50 100 68,63 68,63 68,63 68,63 133,17

p15-4-50 150 124,02 124,02 124,02 119,52 252,23

p16-4-50 199 131,37 131,37 131,37 131,37 327,39

p06-2-75 50 72,28 72,28 72,28 72,28 49,4

p07-2-75 75 92,44 92,44 92,44 92,44 69,34

p08-2-75 100 106,15 106,15 106,15 106,15 143,26

p09-2-75 150 117,66 117,66 117,66 117,66 136,25

p10-2-75 199 124,85 124,85 124,85 124,85 167,55

p13-2-75 120 110,12 110,12 110,12 110,12 155,25

p14-2-75 100 77,09 77,09 77,09 77,09 70,38

p15-2-75 150 120,93 120,93 120,93 120,93 144,84

p16-2-75 199 123,38 123,38 123,38 123,38 179,58

p06-3-75 50 92,32 92,32 92,32 92,32 75,7

p07-3-75 75 131,12 131,12 131,12 131,12 106,59

p08-3-75 100 147,55 147,55 145,87 147,55 238,69

p09-3-75 150 160,96 160,96 160,96 160,66 238,63

p10-3-75 199 177,9 177,9 176,50 176,22 263,4

p13-3-75 120 139,37 137,95 137,45 139,37 375,34

p14-3-75 100 112,56 112,51 112,56 112,56 104,9

p15-3-75 150 174,58 174,58 174,58 174,58 225,78

p16-3-75 199 179,55 179,55 179,23 177,35 279,69

p06-4-75 50 99,37 99,37 99,37 99,37 100,6

p07-4-75 75 158,11 158,11 158,11 158,11 147,84

p08-4-75 100 185,27 185,27 185,27 181,42 400,73

p09-4-75 150 204,25 203,24 203,24 201,47 335,87

p10-4-75 199 229,27 229,27 229,27 225,22 381,49
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Table 7. (continued)

p13-4-75 120 161,62 160,68 157,98 161,59 548,71

p14-4-75 100 139,88 139,67 139,83 139,88 187,11

p15-4-75 150 219,22 219,22 216,61 219,22 318,75

p16-4-75 199 235,03 235,03 235,03 228,49 392,83

p06-2-100 50 100,27 99,50 99,50 100,27 63,84

p07-2-100 75 132,7 132,7 132,7 132,7 103,65

p08-2-100 100 158,21 158,21 158,21 158,21 134,63

p09-2-100 150 161,23 161,23 161,23 161,15 176,16

p10-2-100 199 171,24 171,24 171,24 171,19 189,8

p13-2-100 120 145,75 145,67 145,67 145,75 248,41

p14-2-100 100 125,29 125,29 125,29 125,29 123,27

p15-2-100 150 169,71 169,71 169,71 169,71 181,41

p16-2-100 199 177,23 177,23 175,57 173,56 217,8

p06-3-100 50 134,72 134,72 134,72 134,72 93,74

p07-3-100 75 185,25 184,88 185,25 184,88 167,88

p08-3-100 100 218,63 218,63 218,33 218,43 284,91

p09-3-100 150 230,49 229,61 229,61 229,58 284,75

p10-3-100 199 250,18 246,56 246,95 246,56 316,77

p13-3-100 120 181,63 177,76 180,04 180,79 625,97

p14-3-100 100 182,31 179,48 182,31 182,31 195,82

p15-3-100 150 244,08 241,84 244,08 243,89 279,08

p16-3-100 199 258,07 257,10 252,44 255,38 333,9

p06-4-100 50 153,3 153,3 152,97 152,97 120,51

p07-4-100 75 233,4 233,4 232,05 226,61 225,8

p08-4-100 100 268,34 266,23 266,08 259,2 504,64

p09-4-100 150 290,54 290,54 290,15 285,3 433,15

p10-4-100 199 324,02 321,17 321,03 320,07 508,78

p13-4-100 120 200,62 178,82 183,66 202,21 1208,47

p14-4-100 100 237,68 236,50 237,68 237,68 251,91

p15-4-100 150 308,07 305,30 304,81 302,78 437,42

p16-4-100 199 336,24 328,20 329,53 328,29 515,7

p06-2-9 50 168,6 168,6 168,6 168,6 93,97

p07-2-9 75 199,97 199,97 199,97 199,97 131,79

p08-2-9 100 330,14 319,28 319,28 328,37 242,88

p09-2-9 150 347,9 347,43 347,9 343,72 299,39

p10-2-9 199 382,41 378,32 379,81 376,35 362,3

p13-2-9 120 239,57 238,58 230,59 238,58 1225,12

p14-2-9 100 303,17 302,94 303,17 303,14 201,63
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Table 7. (continued)

p15-2-9 150 378,09 378,09 378,09 376,16 322

p16-2-9 199 394,05 390,47 391,71 389,21 372,33

p06-3-9 50 219,36 218,96 218,96 218,67 153,06

p07-3-9 75 274,8 274,8 274,8 273,27 207,18

p08-3-9 100 447,15 444,82 433,38 444,87 538,03

p09-3-9 150 500,17 496,84 500,12 488,79 521,54

p10-3-9 199 559,8 549,83 551,44 533,15 608,92

p13-3-9 120 250,69 234,99 244,96 283,15 1955,02

p14-3-9 100 418,28 416,32 417,32 419,63 331,84

p15-3-9 150 519,39 517,18 512,83 513,09 534,16

p16-3-9 199 567,24 558,61 558,10 556,53 608,02

p06-4-9 50 258,97 258,97 254,47 258,97 213,45

p07-4-9 75 344,35 343,12 339,95 342,7 303,67

p08-4-9 100 536,64 537,66 536,13 535,26 902,31

p09-4-9 150 639,72 635,67 633,64 621,47 785,67

p10-4-9 199 723,47 710,59 719,13 684,68 904,46

p13-4-9 120 279,43 264,46 294,46 295,77 2016,09

p14-4-9 100 537,24 516,20 531,53 531,94 444,02

p15-4-9 150 653,22 654,94 652,58 651,14 803,79

p16-4-9 199 729,40 731,14 726,22 719,14 888,78

CPU(min) 10,3 2,83 8,54 9,94

5 Conclusion

In the present work, we propose a set of basic and hybrid heuristic approaches
based on the ILS heuristic. The basic heuristics combine ILS with seven neigh-
borhood operators which results in seven basic ILS heuristics. The hybrid ILS
heuristics use either LNS or RVND, or a combination of LNS and a neighbor-
hood operator, or a combination of LNS and RVND. A simple heuristic using
only LNS and RVND is also provided to highlight the importance of the ILS
heuristic. In addition, two perturbation procedures are tested.

The proposed approaches are evaluated on a variant of the Vehicle Routing
Problem called Capacitated Profitable Tour Problem. The obtained results show
that the more ILS is hybridized the better are the results.

The best implemented approach in term of average results is compared with
other approaches from the literature. The experimentations show that the pro-
posed heuristic is able to provide competitive results for the Capacitated Prof-
itable Tour Problem.

A future work may consists in evaluating the performance of the proposed
hybrid heuristic on other variants of the Vehicle Routing Problem.
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