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Abstract. We introduce two specific design problems of optical fiber
cable networks that differ by a practical maintenance constraint. An
integer programming based method including valid inequalities is intro-
duced for the unconstrained problem. We propose two exact solution
methods to tackle the constrained problem: the first one is based on
mixed integer programming including valid inequalities while the second
one is built on dynamic programming. We then provide a fully poly-
nomial time approximation scheme for the constrained problem. The
theoretical complexities of both problems in several cases are proven and
compared. Numerical results assess the efficiency of both methods in dif-
ferent contexts including real-life instances, and evaluate the effect of the
maintenance constraint on the solution quality.
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1 Introduction

Fiber To The Home (FTTH) networks are currently deployed by telecommunica-
tions operators, and require a huge capital expenditure (see [7], it can cost several
billion euros to connect one million households). The technological architecture
chosen by a majority of operators is to deploy passive optical networks, which
are based on passive optical splitters. A passive optical splitter connects several
fibers on one of its sides to one at the other side (divides or gathers the signal
depending on its origin), which leads to a tree topology of the FTTH networks
(illustrated in Fig. 1a). The design of such networks includes to decide the split-
ter locations, the civil engineering infrastructure used (see [4–6,8]). Finally, the
fiber cable network has to be designed to connect these equipment (see Fig. 1a).
These decisions are usually taken in different steps.

This paper focuses on the problem of fiber cable network design. This prob-
lem is highlighted in the survey [9] as an incomplete field of study, especially
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when cable separation techniques are considered. The work from [1] tackles the
issue including the selection of civil engineering infrastructure, but faces compu-
tational limits on real-life instances. The paper [12] excludes weld costs, which
are a significant expense source. The work from [2] deals with the issue of cable
backfeed, specific to the problem, but restricts the possible ways to serve the
demand. In the following we include several ways to serve the demand (with
fiber cables or fiber modules), and introduce a maintenance constraint which, to
our knowledge, is novel. What follows extends the work presented in [3].

The next section introduces two problems which differ by the introduction of
an Operation Administration & Maintenance constraint. We introduce an algo-
rithm based on integer programming for the unconstrained problem in Sect. 3.1.
Two solution methods are then proposed for the constrained problem, an integer
programming based solution in Sect. 3.2, and a dynamic programming based solu-
tion in Sect. 4.1. A fixed parameter tractable approximation scheme is introduced
for the constrained problem in Sect. 4.2. The theoretical complexities of both prob-
lems are proven and argued in Sect. 5. All solution methods are assessed numeri-
cally in Sect. 6.

Fig. 1. (a) Underlying optical architecture example. It has a tree topology; the splitter
location is connected to every client group [3]. (b) Underlying civil engineering tree
example. The ducts, cabinets, demands and number of fiber modules are known [3].

2 Problem Description

The general problem tackled in this paper consists in connecting one splitter
location to several client groups, using fiber cables, with minimal cost. It arises
several times in a given FTTH network, notably once for each splitter location.
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2.1 Unconstrained Problem

Cables are to be laid out in a civil engineering infrastructure (usually the one
used for the legacy copper network) with a tree topology, assumed chosen within
previous decision steps. The cables have an arborescent structure from the split-
ter location to the client groups. Along the ducts of this infrastructure are located
street cabinets, in which the demand lies. The civil engineering structure used is
supposed to be known due to previous decision making, as well as the demand
in each cabinet.

Fiber cables contain several fiber modules, and each fiber module contains
several fibers. Due to operational constraints, modules are not dividable, and
all modules on a given network are supposed to be identical. This allows us to
consider only fiber modules, and ignore the fiber level. Some of the modules are
connected to the fiber source on one of their ends, and on the fiber demand on
the other end. These are actually used, and are called “active modules”, the
other ones are called “dead modules”. The latter can arise due to cables not
matching exactly the demand or in the operations described below (example: a
4 module cable serving a cabinet which requires 3 modules). Since all the demand
is known and there is only one path from the source to a given demand point,
the number of active modules that must be deployed through a given duct is
known (see Fig. 1b).

Fig. 2. Left: Continued cables; Right: Splicing operation [3].

At a cabinet, cables can endure a splicing operation, which leads to two basic
configurations (see Fig. 2):

– All cables are continued. One only has to pay for the cost of laying out cables.
– One cable is spliced. It is cut at the cabinet, and its active modules are welded

to active modules of new cables, referred to as “born cables”. A protective
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box, the size of which depends on the spliced cable size, is installed. One has
to pay for the cables, the box and the welds.

There are two different ways to serve the demand that cannot be combined
(see Fig. 3):

– Cable-served. In this case, a single cable brings all the required active modules
to the demand cabinet.

– Module-served. In this case, a splicing operation is done in the cabinet, and
some modules from the spliced cable are used to serve the demand. No welds
are done on these modules.

Additional engineering rules have to be taken into account:

Fig. 3. Left: Module-served demand node; Right: Cable-served demand node [3].

– At most one cable can be spliced at a street cabinet. This is due to space
restrictions and regulatory constraints (protective boxes are large).

– The demand of a given cabinet must be served by at most one cable.

The cost elements are as follows:

– The cost of a cable is linear with respect to its length, and concave with
respect to its size (i.e. its number of modules). This derives from the cata-
logues of cable manufacturers, who propose a fixed price per length unit for
each cable size.

– The cost of a protective box depends on the size of the cable being spliced.
It is a piecewise constant function. This derives from the number of different
boxes sold by manufacturers.
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– The cost of welds depends on the number of welds to be done in a given
cabinet. It is piecewise linear concave, and derives from manpower cost con-
siderations.

This decision problem, referred to as FCNDA (Fiber Cable Network Design
in an Arborescence) in the following, can be formulated as follows: given a civil
engineering arborescence, demand nodes, a set of available cables and the asso-
ciated costs, design a minimum cost optical fiber cable network satisfying the
engineering rules listed above.

Section 2.2 introduces a restriction of the FCNDA problem.

2.2 Constrained Problem

We restrict the problem by imposing that all cables going through a given duct
are born in the same cabinet (eventually the fiber source). This restriction is
illustrated in Fig. 4. It is motivated by operations and maintenance consider-
ations. Indeed, assuming all the cables of a given duct are damaged, then an
intervention has to be done at the cabinets where each of these cables is born.
If the rule is respected, an intervention is necessary in only one cabinet.

The constrained decision problem, referred to as EFCNDA (Easy-
maintenance Fiber Cable Network Design in an Arborescence) in the following
consists in designing a FCNDA solution where cables on a same duct are born
in the same cabinet with minimal cost.

Fig. 4. Left: Allowed splicing configuration for EFCNDA. On all edges, cables are
born in the same cabinet; Right: Forbidden splicing configuration for EFCNDA. On
the bottom-right duct, two different cables are born in different cabinets [3].
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3 Integer Programming

3.1 SFCND

Notation and Formulation. The following notations will also be used in
Sect. 4.

An arborescence G = (V,A) describes the civil engineering infrastructure, V
the cabinets and A the ducts, and its root r ∈ V denotes the fiber source (CO or
splitter location). For any i ∈ V,Di ∈ N denotes the demand (number of active
modules required) in node i. We define V ∗ = V \ r, the set of demand nodes is
noted VD = {v ∈ V,Dv > 0}, the set of nodes without demand VN = V ∗ \ VD.
Each arc (i, j) ∈ A has a length Δ(i,j) > 0 and must contain mact

i,j active modules
(mact

i,j being known, since we are in an arborescence). For i ∈ V , we denote Γ+(i)
the set successors of i and γ(i) its predecessor.

We have L different cable types at our disposal, we note L = {1, .., L} the
set of cables. Cables of type l ∈ L have a size of Ml ∈ N modules, and for l ∈ L,
we note Ml = {1, ..,Ml} (the range of possible number of active modules in a
cable of type l).

For l ∈ L, let us define Cle
l the cost per length unit of a cable of size l, and PBl

the cost of a box of size l. For m ∈ ML, let us define the cost of the smallest cable
able to contain m active modules Cmin

m = Cle
l1

where l1 = min{l ∈ L,m ≤ Ml},
and PWm the cost for welding m modules.

We introduce P the set of directed paths of G, and for p ∈ P, we note by
s(p) its source node, t(p) its target node, and Δp its length (which extends Δ
from A to P).

We define the following variables:

– ∀l ∈ L,∀p ∈ P, kspl
p,l ∈ {0, 1} the binary variable equal to 1 iff there is a cable

of size l on path p spliced in t(p).
– ∀p ∈ P, kdem

p ∈ {0, 1} the binary variable equal to 1 iff there is a cable on
path p serving the demand in t(p) in a cable-served way. Its size is known, it
is min{l ∈ L|Ml ≥ Dt(p)}.

– ∀p ∈ P,mspl
p ∈ {0, ..,ML} the number of active modules of the cable on path

p spliced in t(p).
– ∀i ∈ V ∗,∀m ∈ ML, wi,m the binary variable equal to 1 iff m welds are done

in node i.

The problem can be formulated as follows:

min
∑

p∈P
Δp ·

(
Cmin

Dt(p)
· kdem

p +
∑

l∈L
Cle

l · kspl
p,l

)

+
∑

i∈VN

∑

m∈ML

PWm · wi,m +
∑

p∈P

∑

l∈L
PBl · kspl

p,l
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such that

∑

p∈P|t(p)=i

∑

l∈L
kspl

p,l ≤ 1 ∀i ∈ V ∗, (1)

∑

p∈P|t(p)=i

kdem
p ≤ 1 ∀i ∈ VD, (2)

∑

l∈L
Ml · kspl

p,l ≥ mspl
p ∀p ∈ P, (3)

∑

p∈P|t(p)=i

mspl
p = Di · (1 −

∑

p∈P|t(p)=i

kdem
p )

+
∑

p∈P|s(p)=i

(mspl
p + Dt(p)k

dem
p ) ∀i ∈ V ∗, (4)

∑

m∈ML

m · wi,m =
∑

p∈P|i=s(p)

(mspl
p + Dt(p) · kdem

p ) ∀i ∈ V ∗, (5)

∑

m∈ML

wi,m ≤ 1 ∀i ∈ VN ,

kdem, kspl, w ∈ {0, 1};mspl ∈ {0, ..,ML} (6)

In the cost function, the first term stands for the cost of cables, the second
term for the cost of welds, and the last term for the cost of boxes. Equations (1)
ensure at most one cable is spliced in a node. Constraints (2) a most one cable
serves the demand in a cable-served way. Equations (3) make sure that spliced
cables are large enough to contain their number of active modules. Constraints
(4) are active module conservation equations. The left hand side term stands for
the number of modules of the spliced cable. The first right side hand term is the
number of modules necessary to serve the demand, in case it is not cable-served.
The last term is the number of active modules of born cables. Finally, (5) and
(6) ensure that w counts the number of welds to be done in each node.

Remark 1. It is possible to fix the value of some variables. First, notice that
leaf nodes are demand nodes. These nodes will be served in a cable-served
way, and no operation will be done inside them. This gives, for all nodes
i ∈ VD such that |Γ+(i)| = 0:

∀m ∈ ML, wi,m = 0

∀p ∈ P|t(p) = i,∀l ∈ L, kspl
p,l = 0



Operations Administration and Maintenance Constraints 61

Furthermore, the number of welds done in a node cannot exceed the number
of active modules going out of this node. This gives:

∀i ∈ V ∗,∀m ∈ ML, if m >
∑

j∈Γ+(i)

mact
i,j , wi,m = 0

Valid Inequalities. We propose here several valid inequalities to tighten the
formulation.

Let us define, for all m ∈ N, the minimum cost per length unit of a set of
cables able to contain m active modules denoted by LB(m). For a given m,
LB(m) = {min

∑
l∈L Cle

l · nl|
∑

l∈L Ml · nl ≥ m,n ∈ N
L}.

Proposition 1. The following inequalities are valid for the ESFCND problem:

∀(i, j) ∈ A,
∑

p∈P|(i,j)∈p

( ∑

l∈L
(Cle

l · kspl
p,l )

+Cmin(Dt(p)) · kdem
p

) ≥ LB(mact
i,j ) (7)

The left hand side is the cost per length unit of the cables going through
(i, j).

Let us consider a path p ∈ P such that t(p) ∈ VD and s(p) �= r. If there
is a cable deployed on p, born in s(p) and serving the demand in t(p), then we
know there is a splicing operation done in s(p). Furthermore, there is at least
Dt(p) welds in this operation, since the cable serving t(p) contains Dt(p) active
modules.

Proposition 2. The following valid inequalities are valid for the ESFCND prob-
lem:

∀p ∈ P|t(p) ∈ VD and s(p) �= r, kdem
p ≤

∑

m≥Dt(p)

ws(p),m (8)

Proof. Let consider a path p ∈ P such that t(p) ∈ VD, s(p) �= r, and kdem
p = 1

(t(p) is cable served by a cable on p). By (5), it gives
∑

m∈ML
m ·wsp,m ≥ Dt(p)

(there are at least Dt(p) welds done in s(p)). Which means, with (6), ∃!m0 ≥
Dt(p), wsp,m0 = 1. Hence the result. �	
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3.2 ESFCND

ESFCND can be solved by using the same variables as in Sect. 3.1. The cost
function is the same, the set of feasible solutions is described by constraints (1)
to (6) to which we add the maintenance constraints described below:

∀(p, p′) ∈ P2 such that s(p) �= s(p′) and ∃a ∈ A, a ∈ p and a ∈ p′,
kdem

p + kdem
p′ ≤ 1 (9)

∑
l∈L

kspl
p,l +

∑
l∈L

kspl
p′,l ≤ 1 (10)

∑
l∈L

kspl
p,l + kdem

p′ ≤ 1 (11)

These constraints ensure that on two paths which have different origins but
an arc in common, there can be only one cable. Constraints (9) ensure it in the
case the two cables are serving the demand. Constraints (10) in the case both
cables are spliced (at most one term in the sum

∑
l∈L kspl

p,l is equal to 1, since
there can be at most one splicing operation in t(p), the same goes for p′). Finally,
constraints (11) in the case one of them is spliced and the other one serves the
demand.

The next section introduces an alternative mixed integer programming app-
roach for ESFCND, based on arcs rather than paths. It uses the properties of
the problem, and has less variables and less constraints.

Notations and Formulation. We keep the same notations for the problem
instance. In addition, let us define for (i, j) ∈ A,Ui,j an upper bound of the cost
per length unit of the cables going through duct (i, j).

We define the following variables:

– ∀(i, j) ∈ A, xi,j ∈ {0, 1} the binary variable equal to 1 iff the cables on arc
(i, j) are born in i.

– ∀(i, j) ∈ A, ci,j ∈ R the continuous variable equal to the cost per length unit
of the cables on arc (i, j).

– ∀(i, j) ∈ A, zi,j ∈ R the continuous variable equal to xi,j · ci,j .
– ∀i ∈ VD, ui ∈ {0, 1} the binary variable equal to 1 iff the node i is module-

served.
– ∀i ∈ V ∗,∀m ∈ ML, wi,m the binary variable equal to 1 iff m welds are done

in node i (since its meaning is identical to Sect. 3.1, we keep the same name).
– ∀i ∈ V ∗,∀l ∈ L, yi,l the binary variable equal to 1 iff a cable of size l is spliced

in i.

The problem can be formulated as follows:

min
∑

i∈V ∗

∑

m∈ML

PWm · wi,m

+
∑

(i,j)∈A

Δ(i,j) · ci,j +
∑

i∈V ∗

∑

l∈L
PBl · yi,l (12)
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such that

cγ(i),i =
∑

l∈L
Cle

l yi,l +
∑

j∈Γ+(i)

ci,j

−
∑

j∈Γ+(i)

zi,j + (1 − ui) · Cmin
Di

∀i ∈ VD, (13)

cγ(i),i =
∑

l∈L
Cle

l yi,l +
∑

j∈Γ+(i)

ci,j −
∑

j∈Γ+(i)

zi,j ∀i ∈ VN , (14)

∑

l∈L
Ml · yi,l ≥ Di · ui +

∑

j∈Γ+(i)

mact
i,j · xi,j ∀i ∈ VD, (15)

∑

l∈L
Ml · yi,l ≥

∑

j∈Γ+(i)

mact
i,j · xi,j ∀i ∈ VN , (16)

∑

l∈L
yi,l ≤ 1 ∀i ∈ V ∗, (17)

∑

m∈ML

m · wi,m =
∑

j∈Γ+(i)

mact
i,j · xi,j ∀i ∈ V ∗, (18)

∑

m∈ML

wi,m ≤ 1 ∀i ∈ V ∗, (19)

zi,j ≥ ci,j − Ui,j · (1 − xi,j) ∀(i, j) ∈ A, (20)
zi,j ≤ Ui,j · xi,j ∀(i, j) ∈ A, (21)
zi,j ≤ ci,j ∀(i, j) ∈ A, (22)
u,w, x, y ∈ {0, 1}; c, z ∈ R

The first term of the cost function denotes the cost of welds, the second term
stands for the cost of cables, and the last term stands for the cost of boxes.
Equations (13) ensure the cost per length unit of any arc is properly counted.
The term

∑
l∈L Cle

l yi,l stands for the cost of the cable spliced in i, if any. If for
some arc (i, j) ∈ A such that j ∈ Γ+(i) we have xi,j = 0, then the cables on (i, j)
come from (γ(i), i) unchanged. Otherwise, they come from the splicing operation
done in i. The last term stands for the cost of the cable serving the demand in i.
Equations (14) are the equivalent concerning nodes without demand. Equations
(15), (16) and (17) ensure the cable spliced in i is large enough to contain its
active modules. The first term of the right hand side of (15) stands for modules
serving the demand, the second term for modules of born cables. Constraints
(18) and (19) ensure the variable wi,m is equal to 1 iff there are m welds done in
node i. Finally, constraints (20), (21) and (22) ensure ∀(i, j) ∈ A, zi,j = xi,j · ci,j

(these are linearisation equations).

Remark 2. It is possible to fix the value of some variables. Assuming there exists
i ∈ V ∗ and m1 ∈ ML such that wi,m1 = 1, then by (18), we know there exists
S ⊆ Γ+(i) such that m1 =

∑
j∈S mact

i,j . This gives by contraposition ∀i ∈ V ∗,
∀m ∈ ML if m �∈ {∑j∈S mact

i,j |S ⊆ Γ+(i)} then wi,m = 0. It can be computed
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in O(|Γ+(i)|×ML) (which is not a polynomial with respect to the instance size,
provided ML is not coded in an unary system).

Valid Inequalities. The continuous relaxation of the formulation introduced
above shows is weak, mostly due to the linearisation of z. We propose here several
valid inequalities to tighten it.

In nodes without demand, if a cable of size l is spliced, then it has a number
of active modules between Ml and Ml−1+1; otherwise one could install a smaller
cable and obtain a cheaper solution. With the convention M0 = 0 and M0 = ∅,
this gives:

Proposition 3. Every optimal solution of the ESFCND problem verifies

∀i ∈ VN ,∀l ∈ L, yi,l =
∑

m∈Ml\Ml−1

wi,m (23)

Proof. Let us consider an optimal solution S of the ESFCND problem. Let us
consider i ∈ V ∗ and l ∈ L such that yi,l = 1 (a box of size l is installed in i).
This gives us 1 ≤ ∑

j∈Γ+(i) mact
i,j · xi,j (there are cables born in i); otherwise we

could obtain a cheaper solution by setting yi,l to 0.
Either (16) or (15) give us Ml ≥ ∑

j∈Γ+(i) mact
i,j ·xi,j . Furthermore, with (18)

and (19), we can obtain ∃m0 ∈ {1, ..,Ml}, wi,m0 = 1 (in other words, m0 ≤ Ml

welds are done in i).
If l = 1, we have the result.
Otherwise, let us assume m0 ≤ Ml−1. Then, the solution S′ identical to S

everywhere but in y′
i,l−1 = 1 and y′

i,l = 0 is a feasible cheaper solution (it is the
solution obtained by replacing the cable spliced in i by a smaller cable, leading
to a smaller cost for boxes and cables). Which contradicts our hypothesis.

Hence the result. �	
With a reasonment similar to the one from Proposition 1 (see definition of

LB), we can get a lower bound of the cost per length unit of the cables on each
arc.

Proposition 4. The following inequalities are valid for the ESFCND problem:

∀(i, j) ∈ A, ci,j ≥ LB(mact
i,j ) (24)

If the cables on some arc (i, j) ∈ A are born in i, then at least mact
i,j welds

are done in node i. This implies what follows.

Proposition 5. The following inequalities are valid for the ESFCND problem

∀(i, j) ∈ A, xi,j ≤
∑

m∈ML|m≥mact
i,j

wi,m (25)

Proof. Let us consider a solution of the ESFCND problem. Let us consider
(i, j) ∈ A such that xi,j = 1. This implies, by (18) that

∑
m∈ML

m ·wi,m ≥ mact
i,j .

Then, with (19), it follows that ∃!m0 ≥ mact
i,j , wi,m = 1 (only one of the variables

wi,m can be equal to 1). Hence the result. �	
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4 Dynamic Programming for ESFCND

For any node i ∈ V ∗, we introduce the additional notation V pr(i), which refers
to the set of nodes on the path from the root to i, excluding i and including r.

4.1 Exact Algorithm

The ESFCND problem can be solved by Algorithm 1. To each node i ∈ V ∗, and
for each node j ∈ V pr(i), we associate to i a label < j,C(i, j) >∈ V pr(i) × R

where C(i, j) is the minimum cost of the network rooted in i plus the cost of the
cables on the path from j to i, assuming these are born in node j.

Algorithm 1 . Exact Resolution Algorithm for ESFCND.

1: procedure INITIALISATION()
2: for i ∈ VD|Γ+(i) = ∅ do
3: for j ∈ V pr(i) do
4: Add to i the label < j, Cmin

Di
· Δp > where p ∈ P is the only path s.t.

s(p) = j and t(p) = i.
5: end for
6: Declare i labeled.
7: end for
8: end procedure
9: procedure RECURSION()

10: while ∃r′ ∈ Γ+(r) such that r′ has not been labeled do
11: for every node i ∈ V ∗ such that all nodes in Γ+(i) have been labeled do
12: for j ∈ V pr(i) do
13: � We select the operation in i minimizing the network cost.
14: Add the label < j, C(i, j) > to node i where

C(i, j) = min
S⊆Γ+(i),u∈{0,1}

∑

k∈S

C(k, i) +
∑

k∈Γ+(i)\S

C(k, j)

+PWm + Δp · Cle
l1 + Δp · Cmin

Di
· (1 − u) (26)

with

{
m =

∑
k∈S mact

i,k ; l1 = min{l ∈ L|Ml ≥ u · Di +
∑

k∈S mact
i,k }

p ∈ P is the only path such that s(p) = j, t(p) = i

15: end for
16: Declare i labeled.
17: end for
18: end while
19: end procedure
20: procedure TERMINATION()
21: return

∑
r′∈Γ+(r) C(r′, r)

22: end procedure

The algorithm is initialized at leaf nodes (line 4), which are cable-served
demand nodes, and where the size of the cable serving the demand is known.
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For a node i such that all nodes in Γ+(i) have been labeled, and for j ∈
V pr(i), (26) computes the minimum cost network if the next operation is done
in j. For i ∈ V ∗ and k ∈ Γ+(i), k ∈ S iff the cables going through arc (i, k) are
born in node i. Similarly, the boolean u is equal to 1 iff the node i is module-
served (its meaning is similar than the variable ui in Sect. 3.2).

We propose to compute it with a brute-search algorithm on the set S and on
u. For given nodes i ∈ V ∗, j ∈ V pr(i), it can be done in O(|Γ+(i)| × 2|Γ+(i)|+1).

Lemma 1. Algorithm 1 runs in time O(21+maxΓ × |V |2) where max Γ denotes
the maximal degree (number of successors) of a node in the graph.

This can be shown by summing the operations done for each loop.

Remark 3. This implies that if the maximal degree of nodes in the graph is
bounded by a constant, then Algorithm 1 runs in polynomial time.

For a non-leaf node i ∈ V ∗ and j ∈ V pr(i), when we compute (26), we do
not consider the cost of the welds done in j. This comes later, while j is being
labeled. It does not influence the network below, since all cables going through
(γ(i), i) are born in i. C∗ is the sum of the following elements:

– the cost of the network in the arborescence rooted in i, including the cost of
the welds and boxes in i (if any)

– the cost of cables deployed from i to j

This leads us to show the next proposition to show the validity of the algo-
rithm.

Proposition 6. Let us consider i ∈ V ∗. When i is declared labeled in Algorithm 1,
there exists a node j ∈ V pr(i) such that in the label < j,C(i, j) >, C(i, j) describes
the cost of the minimum ESFCND solution in the arborescence rooted in node i plus
the cost of the cables on the path from j to i.

We will start to prove it for leaf nodes, then recursively on higher nodes.

Proof. � Let us consider a leaf node i. In the minimum cost network, it is served
in a cable-served way with a cable of type l1 = min{l ∈ L|Ml ≥ Di}. This cable
is born in some node j ∈ V pr(i), eventually the root. Let us call p ∈ P the only
path such that s(p) = j and t(p) = i. The label < j,C(i, j) > of i has a cost of
Cmin

Di
· Δp.

� Let us consider a non-leaf node i ∈ V ∗ such that all nodes in Γ+(i) have
been labeled. In the minimal cost network, the cables going through arc (γ(i), i)
are all born in a node j ∈ V pr(i). Thanks to the maintenance constraint, we know
that they are all born in the same node. Since all nodes k ∈ Γ+(i) have been
labeled, for each of these nodes, there is a node jk ∈ V pr(k) such that in the
label < jk, C(k, jk) >, C(k, jk) describes the cost of the minimum cost network in
the arborescence rooted in k plus the cost of the cables on the path from jk to k.
Furthermore, since the cables going through arc (γ(i), i) are all born in j, we have
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either jk = j or jk = i. Let us consider the label <j,C(i, j)> of node i. If in the
minimal network i is module-served, then we will have u = 0 in the computation
of (26). Furthermore, let us consider k ∈ Γ+(i). If jk = i, we will have k ∈ S in
the computation of (26), and k ∈ Γ+(i) \ S otherwise. Hence the result. �	

The termination of the algorithm derives from Proposition 6. For each node
r′ ∈ Γ+(r), we have V pr(r′) = {r}. This implies, using this proposition, that in
the label < r,C(r′, r) >, C(r′, r) is the cost of the minimum network cost in the
arborescence rooted in r′ plus the cost of the cables on (r, r′). Summing these
values gives the minimum network cost.

The computation of (26) at each step is not done in polynomial time. There
are many algorithms able to tackle it (dynamic programming, brute search, ...).
We propose a way to tackle it in the next section which allows us to give an
approximation in polynomial time, thus providing a polynomial time approxi-
mation algorithm.

4.2 Approximation Algorithm

In this Section, we propose here a Fully Polynomial Time Approximation Scheme
(FPTAS) for ESFCND, in the case where:

– The height of the arborescence describing the civil engineering is upper
bounded by H ∈ N.

– The number of intervals on which the cost of the welds PW is a linear function
with respect to m is upper bounded by F ∈ N (recall that PW is defined to
be piecewise linear).

We introduce the following additional notation. PW is decomposed into its
linear components. For f ∈ {1, .., F}, we have successive integers Bf such that
∀m ∈ {Bf , .., Bf+1}, PWm = PW a,f × m + PW b,f .

A FPTAS for the knapsack problem is available in [11]. This algorithm A
gives, for an instance of the knapsack problem, and a number α > 1, a solution
S to the knapsack problem of cost Capprox where Capprox ≤ α×OPT and OPT
is the optimal solution cost (here, we consider the minimization version of the
knapsack problem, or “covering problem”).

In Algorithm 1, the computation of (26) is the only step which is not done in
polynomial time. We propose to solve it with Algorithm 2, which reformulates
it as a series of knapsack problems. Then, each of the knapsack problems can be
approximated thanks to the knapsack FPTAS.

The algorithms spans all possible cable sizes. For each cable size l, it computes
the minimum cost splicing operation in which a cable of size l is spliced in i.
(27) computes the minimal cost splicing in the case u = 0, and (28) computes
the minimal cost splicing in the case u = 1. Finally, in line 15, it compares the
best splicing obtained with the cost of continuing all cables.

The following lemma stems from the concavity of PW .

Lemma 2. ∀(f, f ′) ∈ {1, .., F}2, if f ≤ f ′, then ∀m ≥ Bf ′ , PW a,f ′ × m +
PW b,f ′ ≤ PW a,f × m + PW b,f
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Proof. Let us assume ∃(f1, f2) ∈ {1, .., F}2, with f1 ≤ f2 and ∃m ≥ Bf2 such
that PW a,f2 × m + PW b,f2 > PW a,f1 × m + PW b,f1 .

Since PW b,f is decreasing with respect to f , this means PW a,f2 > PW a,f1 ,
which contradicts the concavity of PW .

Hence the result. �	

Algorithm 2 . Computation of (26).

1: procedure C(i, j) calculation()
2: Define Cmin := +∞
3: for l ∈ L do
4: for f ∈ {1, .., F} do
5: if ({Ml−1 + 1, .., Ml}) ∩ {Bf , .., Bf+1} �= ∅ then
6: m1 := max(Ml−1 + 1, Bf )
7: Solve the following knapsack problems

C1 = min
∑

k∈Γ+(i)

(
xk · C(k, i) + (1 − xk) · C(k, j)

)

+PW a,f × ∑
k∈Γ+(i) xk · mact

i,k + PWb,f + Δ(i,j) · Cle
l

+Δ(i,j) · Cmin(Di) + PBl (27)
such that

∑
k∈Γ+(i) xk · mact

i,k ≥ m1

8: end if
9: if ({Ml−1 + 1 − Di, .., Ml − Di}) ∩ {Bf , .., Bf+1} �= ∅ then

10: m2 := max(Ml−1 + 1 − Di, Bf )

C2 = min
∑

k∈Γ+(i)

(
xk · C(k, i) + (1 − xk) · C(k, j)

)

+PW a,f × ∑
k∈Γ+(i) xk · mact

i,k + PW b,f + Δ(i,j) · Cle
l + PBl (28)

such that
∑

k∈Γ+(i) xk · mact
i,k ≥ m2

x ∈ {0, 1}|Γ+(i)|

11: end if
12: Cmin := min(Cmin, C1, C2)
13: end for
14: end for
15: Cmin := min(Cmin,

∑
k∈Γ+(i) C(k, j))

16: return Cmin

17: end procedure

From this lemma, we can get that if, for some l ∈ L and f ∈ F , C1 is reached
for values of xk such that

∑
k∈Γ+(i) mact

i,k xk > Bf+1 (the values returned by the
knapsack problem are higher than the range of welds we consider), then a lower
value of C1 can be reached for l and f +1. A similar reasoning can be done for C2.
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Let us consider H ∈ N. Let us consider an instance of ESFCND where the
civil engineering arborescence height is upper bounded by a constant H. We
propose the following FPTAS for ESFCND.

Let us consider α > 1. There is a polynomial time algorithm A which approx-
imates the knapsack within a ratio α

1
H . Run algorithm A′ which is a variant of

algorithm 1 where:

– Each computation of (26) is done with Algorithm 2.
– In Algorithm 2, each computation of (27) and (28) is approximated with

algorithm A.

This algorithm runs in polynomial time. Indeed, in Algorithm 1, the only step
which is not done in polynomial time is replaced by a polynomial time algorithm.

Proposition 7. Algorithm A′ returns a cost v of the ESFCND problem such
that v ≤ αv∗ where v∗ is the cost of optimal solution of ESFCND.

Proof. � Let us consider a leaf node i ∈ VD. The labels C(i, j) for j ∈ V pr(i)
have the same value in Algorithm 1 and algorithm A′.

� Let us consider a non-leaf node i ∈ V ∗ and j ∈ V pr(i). In the computation
of (26) by Algorithm 2, C∗ is approximated with a ratio of α

1
H . Its value is the

sum of welds and boxes costs and of a linear combination of the values of C(k, i)
and C(k, j) for k ∈ Γ+(i). So it multiplies the approximation ratios of the values
of C(k, i) and C(k, j). Hence, each time a node is labeled, the approximation
ratio of its labels are α

1
H time the approximation ratio of its children node.

Hence the global multiplicative ratio of this algorithm is α.

The next section assesses the complexity of SFCND and ESFCND.

5 Complexity

We show in Sect. 5.1 that SFCND is NP-hard even with 1 cable size and an
upper bound on the node degree of 2, and in Sect. 5.2 that ESFCND is NP-hard.

5.1 SFCND

Upper Bounded Degree. Let us consider the Number Partitioning Problem
(NPP), which is shown to be NP-complete in [10].
Instance: A set of N strictly positive integers {ni ∈ N|i ∈ {1, .., N}}.
Question: Is there a partition of the integers S ⊆ {1, .., N}} such that

∑
i∈S ni =∑

i�∈S ni ?
We consider an instance of the NPP and associate it to the following SFCND

instance: Let G = (V,A) be an arborescence describing the civil engineering struc-
ture, (V = {r, 0, 1} ∪ {vi|i ∈ {1, .., N}}, A = {(r, 0); (0, 1); (1, v1); (vi−1, vi)|i ∈
{2, .., N}}) (G is a chain graph), r is the fiber source. The demand nodes are
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{vi, i ∈ {1, .., N}} and have respective demands ni, i ∈ {1, .., N} modules. Only
one type of cable is available, with size M1 = 1

2

∑
i∈{1,..,N} ni. Its cost per length

unit is C1 = 1. The lengths of all arcs of the arborescence are null, except (r, 0)
which is of length 1. This means the cost of a cable born in r is 1, and the cost of
the other ones is 0. The cost of welds and boxes is null.

The question associated to this SFCND instance is “Is there a cabling solution
cheaper than 2 ?”.
� If (NPP) is feasible: ∃S ⊆ {1, .., N} such that

∑
i∈S ni =

∑
i�∈S ni. We then

build the following cabling solution:

– Two cables holding only active modules are installed on link (r, 0).
– In node 0, one incoming cable is spliced into N − |S| born cables. The born

cables have a number of active modules ni, i �∈ S and serve respectively the
demand nodes (vi)i�∈S .

– In node 1, the cable coming from the root with only active modules is spliced
into |S| born cables. The born cables have ni active modules and serve the
demand nodes (vi)i∈S .

Since the number of active modules is conserved in each splicing, the cabling
solution described above is feasible (it is illustrated in Fig. 5, as well as the
instance). Its cost is equal to 2.

Fig. 5. Instance and solution used in the complexity proof [3].

� If (NPP) is not feasible. Then, the solution described above is not possible
anymore. One cable is not large enough to cover link (r, 0). Two cables cannot
cover (r, 0) either, since they would both have only active modules, which would
mean that the (NPP) problem was feasible. Consequently, at least 3 cables need
to be installed on arc (r, 0), and such a solution has a cost of a least 3.

Remark 4. The solution illustrated in Fig. 5 is not valid for ESFCND, the main-
tenance rule is not respected in nodes 0 and 1.
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Upper Bounded Arborescence Height. We show in the following that the
problem is still NP-hard when restricted with:

– One cable size available.
– Civil engineering arborescence height of 3.
– Null welding cost.

We consider an instance of (NPP) that we associate to the following FCNDA
instance.

Let (V,A) be an arborescence describing the civil engineering structure (V =
{r, 0, 1} ∪ {vi|i ∈ {1, .., N}},

A = {(r, 0); (0, 1); (1, vi)|i ∈ {1, .., N}}); only one type of cable with a num-
ber of modules M1 = 1

2

∑
i∈{1,..,N} ni is available, its linear cost is C1 = 1.

The length of all arcs of the arborescence are zero, except (r, 0) which is of
length 1. This means the cost of a cable created in r is 1, and the cost of the
other ones is 0. The number of active modules associated with each arc are:
mact

(r,0) = mact
(0,1) =

∑N
i=1 ni;∀i ∈ {1, .., N},mact

(1,vi)
= ni, which means that the

demand points are the vi, i ∈ {1, .., N} and have respective demands ni. This
network is represented in Fig. 6. We consider a zero cost for welding and welding
boxes.

Fig. 6. Solution and instance considered in the NP-completeness proof.

The question associated to this FCNDA instance is “Is there a cabling solu-
tion cheaper than 2 ?”.

Let us first assume that (NPP) is feasible: ∃S ⊆ {1, .., N} such that∑
i∈S ni =

∑
i�∈S ni. We then build the following cabling solution:

– Two cables holding only active modules are installed on link (r, 0).
– In node 0, one incoming cable is spliced into N − |S| born cables. The born

cables have a number of active modules ni, i �∈ S and serve the demand nodes
(vi)i�∈S .

– On link (0, 1), one cable coming from r with only active modules, and N −|S|
cables serving demand nodes in {vi|i �∈ S} are installed.

– In node 1, the incoming cable with only active modules is spliced into |S|
born cables. The born cables have ni active modules and serve the demand
nodes (vi)i∈S .

– One cable is installed on each link (1, vi).
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Since the number of active modules is conserved in each splicing, the cabling
solution described above is feasible (it is illustrated in Fig. 6). Its cost is equal
to 2, as the cables created in r have a cost of 1, and the other ones have a cost
of 0.

Inversely, let us assume that (NPP) is not feasible: then, the solution
described above is not possible anymore. One cable is not large enough to cover
link (r, 0), it cannot contain all the required active modules. Let us assume there
is a solution with only two cables on (r, 0). Since their combined number of mod-
ules is

∑
i∈{1,..,N} ni, they both hold only active modules. If one of them directly

served the demand without enduring any operation, then the (NPP) instance
was trivially feasible (one of the ni is half the total sum). So both of them endure
a splicing operation, one in node 0, the other in node 1. Let us consider the cables
created in 1. They serve a subset S1 of the demand nodes, and have a respective
number of active modules of ni, i ∈ S1. Since the number of active modules in
a splicing operation is conserved, we have

∑
i∈S1

ni = 1
2

∑
i∈{1,..,N} ni and the

(NPP) instance was feasible.
Consequently, at least 3 cables need to be installed on arc (r, 0), and such

solution has a cost of at least 3.

5.2 ESFCND

ESFCND can be shown to be NP-complete by reduction from the (NPP). With
the same notations, let us consider an instance of the NPP and associate it to
the following ESFCND instance. The civil engineering structure is described by
the set of nodes is V = {r, 0}∪{vi|i ∈ {1, .., N}}; the set of arcs A = {(0, vi)|i ∈
{1, .., N}} ∪ {(r, 0)}; r is the fiber source, the nodes {vi|i ∈ {1, .., N}} have a
demand of ni modules. The length of all arcs except (r, 0) is null. We have N +1
cables available:

– N cables of sizes ni modules and cost per length unit ni

– A cable of size 1
2

∑N
i=1 ni and cost per length unit 1

2

∑N
i=1 ni − 1

The cost of welds and boxes is null.
The question we ask is “is there a solution of cost at most

∑N
i=1 ni − 1”?

� If (NPP) is feasible. Then, we have S ⊆ {1, .., N} such that
∑

i∈S ni =∑
i�∈S ni. We consider the solution of ESFCND where

– For i ∈ {1, .., N}, on each arc (0, vi), we lay down a cable of size ni

– In the node 0, a cable of size 1
2

∑
i∈{1,..,N} ni is spliced. Cables of size ni, i ∈ S

are born, and serve the demand of nodes vi, i ∈ S.
– On the arc (r, 0), a cable of size 1

2

∑
i∈{1,..,N} ni holding only active modules

is deployed (the one spliced in 0); as well as N − |S| cables of sizes ni, i �∈ S
which serve the demand in nodes vi, i �∈ S.
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The cost of this solution is the cost of cables on arc (r, 0) which is∑
i∈{1,..,N} ni − 1. It is illustrated in Fig. 7.

Fig. 7. Instance and solution used in the complexity proof for ESFCND [3].

� If (NPP) is not feasible. In a minimal cost solution, the size of cables serving
the demand is known. For a given i ∈ {1, .., N}, vi is served by a cable of size
ni. Which leaves three types of solutions to consider.

The solution without splicing has a cost
∑

i∈{1,..,N} ni. Each demand node
is served by a cable coming directly from the root r.

Any solution where a cable of size 1
2

∑
i∈{1,..,N} ni is spliced in 0 has a cost

at least equal to
∑

i∈{1,..,N} ni. Indeed, let us note E ⊆ {1, .., N} the set
such that cables of sizes ni, i ∈ E are born in 0. Since the NPP instance is
not feasible, we have

∑
i∈E ni < 1

2

∑
i∈{1,..,N} ni, so the cost of cables which

are continued in 0 is
∑

i�∈E ni > 1
2

∑
i∈{1,..,N} ni, and the total cost of the network is∑

i�∈E ni + 1
2

∑
i∈{1,..,N} ni − 1 ≥ ∑

i∈{1,..,N} ni.
Any solution where a smaller cable is spliced in 0 has a cost at least equal to∑

i∈{1,..,N} ni. Indeed, in any splicing of a cable of size ni for a given i ∈ {1, .., N},
the spliced cable is at least as expensive than the born cables.

5.3 Synthesis

To the results proven here, we can add those deducible from Sect. 4. The restric-
tion of ESFCND where there is an upper bound on the node degree can be solved
in polynomial time, since in that case the computation of (26) can be done in
polynomial time. This implies that it is also polynomial when more parameters
are fixed. Furthermore, we showed in Sect. 4.2 that the problem admits a FPTAS
under some conditions. As for SFCND, its NP-hardness in a restricted setting
implies its NP-hardness in the more general cases. These results are summed up
in Table 1.
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Table 1. Complexity of the two problems in different contexts.

Problem Complexity

Fixed elements None Maximum degree Maximum degree
L

F, H

SFCND NP-hard NP-hard NP-hard NP-hard

ESFCND NP-hard P P NP-hard, FPTAS

Table 1 shows a theoretical difference in the complexities of the two problems
ESFCND and SFCND. We assess the numerical aspect of this difference in the
next section.

6 Results

We assessed the solution methods on real-life instances taken from the city of
Arles (France).

The cables available have a size of 1, 2, 4, 6, 8, 12, 18 or 24 modules. The
resolution algorithm for the MIPs was the Cplex 12.6 default branch-and-bound
algorithm.

6.1 Models Comparison

The results of the numerical experiments regarding the SFCND and ESFCND
problem are displayed respectively in Tables 4 and 5, “base model” always refers
to the MIP without valid inequalities, and “enhanced model” to the MIP with
valid inequalities. The columns of both tables are labeled as follows: “time”
stands for the computation time; “CR” stands for the continuous relaxation as
a ratio of the optimal solution; “Br” stands for the number of explored branches
of the Branch and Bound algorithm.

Regarding SFCND, the valid inequalities have had a positive effect on the
average computation time, which went down from 546 to 62 s. However, on most
instances (8 out of 9), the MIP is solved faster without the valid inequalities. This
suggest that they are more useful for instances that are hard to solve. Regarding
the algorithm, the continuous relaxation goes from an average of 90.5% to 92.6%.
The high relaxation of the base model can explain the mitigated impact of the
inequalities on the performances (Table 2).

Regarding ESFCND, all instances were easier to solve (computation times are
displayed in milliseconds). The valid inequalities have had a beneficial effect on
the computation time, all instances are solved faster with the enhanced formula-
tion. The average computation time goes from 1730 to 329 ms. On an algorithmic
level, the initial relaxation goes from an average of 13.2% of the optimal solu-
tion cost to 87.3% of the optimal solution cost. This has a significant impact on
the number of nodes of the branch-and-bound algorithm, which goes from an
average of 1100 branches to an average of 4 branches; 7 instances out of 9 were
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Table 2. Key features of the real-life
instances.

Instance Features

Max
degree

Arcs Demand
nodes

Total
demand

Ar 1 4 113 45 61

Ar 2 6 103 38 55

Ar 3 5 103 35 66

Ar 4 6 123 43 80

Ar 5 7 129 44 68

Ar 6 6 137 43 67

Ar 7 4 139 35 68

Ar 8 5 163 41 63

Ar 9 4 219 68 78

Table 3. Key features of the fictive
instances.

Instance Features

Max
degree

Arcs Demand
nodes

Total
demand

Fi 10 11 20 15 71

Fi 11 12 22 16 84

Fi 12 13 24 18 97

Fi 13 14 26 19 112

Fi 14 15 28 21 112

Fi 15 16 30 22 127

Fi 16 17 32 24 144

Table 4. Results for SFCND.

Instance Base formulation Enhanced formulation

Time (s) CR (%) Time (s) CR (%)

Ar 1 8 90.3 16 91.0

Ar 2 9 83.7 24 92.4

Ar 3 17 92.2 22 93.3

Ar 4 19 89.2 46 90.0

Ar 5 1 94.9 2 95.2

Ar 6 2 92.5 3 94.7

Ar 7 13 92.4 29 93.7

Ar 8 8 89.6 12 91.7

Ar 9 4837 89.4 408 91.6

solved without branching. The exact dynamic programming approach was more
efficient than the enhanced integer programming formulation, it solved 7 out of
9 instances faster. The approximated algorithm was run with an approximation
ratio of 2. It was longer than Algorithm 1 on 8 instances out of 9. Despite their
similar structure, this can be explained by additional loops in the approximation
algorithm, which can increase its computation time.

6.2 Sensitivity Analysis

Section 5 points to the maximal node degree as a key element of the problems
complexity. Since the highest node degree of all real-life instances is between



76 V. Angilella et al.

Table 5. Results for ESFCND.

Instance Base formulation Enhanced formulation Dynamic
programming

FPTAS

Time
(ms)

CR
(%)

Br Time
(ms)

CR
(%)

Br Time
(ms)

Time
(ms)

Ar 1 1457 14.0 1191 305 89.2 0 324 454

Ar 2 1174 17.8 462 239 86.6 0 239 141

Ar 3 1317 13.6 153 318 81.7 0 66 203

Ar 4 742 15.7 72 268 86.8 0 87 168

Ar 5 746 18.2 0 477 89.2 0 88 120

Ar 6 1477 15.5 66 238 91.8 0 110 235

Ar 7 1667 9.7 1045 190 80.1 0 121 251

Ar 8 1786 9.4 414 344 89.8 21 103 121

Ar 9 5204 5.3 6302 507 90.8 9 306 446

Table 6. Computation time on fictive instances (ms).

Instance Enhanced model
SFCND

Enhanced model
ESFCND

Dynamic
programming

FPTAS

Fi 10 205 166 322 16

Fi 11 327 77 652 17

Fi 12 993 332 1409 19

Fi 13 1130 120 3800 15

Fi 14 1369 347 12 403 28

Fi 15 1450 98 39 654 38

Fi 16 2691 280 164 243 52

4 and 7, we used fictive instances to assess the performances of each resolu-
tion technique when some of the nodes have a high degree. Their features are
displayed in Table 3.

As expected, the dynamic programming algorithm was very sensitive to the
node degree, the computation time growing exponentially (it was multiplied
by over 500 between the smaller and larger instance). On the other hand, the
approximation algorithm was much less sensitive to the node degree, with an
average computation time of 26 ms. There was a smaller growth on the instances
considered (it was multiplied by less than 4 between the smaller and larger
instance). The enhanced MIP formulation for ESFCND was able to solve all
instances in less than one second, with an average of 200 ms. This is the opposite
of the results obtained on real-life instances, where the dynamic programming
was more efficient. As for SFCND, the MIP formulation proved to be efficient,
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with an average computation time of 900 ms. Although the instances with a
higher degree are harder to solve, it stays tractable in practice. One should favor
a MIP based approach, regardless of the problem, when dealing with high degree
nodes (Table 6).

6.3 Operational Considerations

We compared the optimal solutions of both problems, as well as the approxi-
mated solutions found. The approximation ratio selected was still of 2. Results
are displayed in Table 7, the column labeled “arcs with rule broken” denotes the
number of arcs where the maintenance rule (illustrated in Fig. 4) is broken.

Table 7. Optimal solution costs and characteristics.

Instance Approximated
solution
ESFCND

Optimal
solution
ESFCND

Optimal
solution
SFCND

Arcs with
rule broken

Ar 1 6156.6 6156.6 6087.3 6

Ar 2 10 382.1 10 357.3 9870.0 8

Ar 3 6568.6 6546.2 6125.8 14

Ar 4 6788.1 6720.8 6461.9 14

Ar 5 5081.8 5081.8 5081.8 0

Ar 6 6546.5 6546.5 6544.2 1

Ar 7 9734.6 9348.0 8638.6 18

Ar 8 12 328.3 12 328.3 12 248.4 4

Ar 9 26 309.7 25 619.1 24 422.8 15

The ESFCND solutions provided by the approximation algorithm were in
average 1% more expensive than the optimal solutions, with the two being equal
for 4 instances out of 9. This can be seen as a good performance, and is much
better than the worst case guarantee.

The optimal solution of ESFCND is in average 3.7% more expensive than the
optimal solution of SFCND. This can be seen as an acceptable loss in capital
expenditure if it is compensated by an easier maintenance, depending on the
importance accorded to it.

The maintenance rule is broken in almost every real-life instance we tried
(8 out of 9). In average, it is not respected in 6.2% of the arcs, which is significant.
This suggests that the optimal solutions of SFCND will be much harder to repair
in case of failure on one of the arcs. These elements can be taken into account to
establish a strategy in case of node failure.
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7 Conclusion

This chapter tackles two fiber cables network design problems, one uncon-
strained by maintenance consideration (SFCND) and the other one constrained
(ESFCND). Regarding the unconstrained problem, one integer programming
based solving algorithm was proposed. Associated valid inequalities make it
more tractable in practice. We proposed two exact solution methods for the
constrained problem. These methods are complementary, as they prove efficient
in different contexts: the dynamic programming approach is generally faster in
graphs where nodes have a small degree, whereas the mixed integer program-
ming, embedding efficient valid inequalities, is generally faster otherwise. An
FPTAS was also provided, which was faster in both cases, while providing good
quality solutions.

On a theoretical level, the unconstrained problem seems much more complex
to solve than the constrained problem. Fixing some parameters makes the con-
strained problem polynomial, or approximable, while the unconstrained problem
stays NP-hard. Our numerical experiments confirmed this tendency on real-life
instances.

As for the operational side, the maintenance rule can be considered as a
reasonable compromise between capital expenditure for the network deployment
and maintenance costs. Its implementation only increases the optimal solution
cost by 3.7% on our test instances.
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