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Abstract. Many markets are characterized by competitive settings and
incomplete information. While offer prices of sellers are often observable,
the competitors’ inventory levels are mutually not observable. In this
paper, we study stochastic dynamic pricing models in a finite horizon
duopoly model with partial information. To be able to derive effective
pricing strategies when the competitor’s inventory level is not observable,
we use a Hidden Markov Model. Our approach is based on feedback
pricing strategies that are optimal, if the competitor’s inventory level is
observable. Optimized price reactions are balancing two effects: (i) to
slightly undercut the competitor’s price to sell more items, and (ii) to
use high prices to promote a competitor’s run-out. For the case that a
competitor’s strategy is unknown, we derive robust heuristic strategies.
Comparing duopolies with different information structures, we find that
expected sales results are quite similar as long as the firms’ information
is symmetric. By evaluating asymmetric pairs of strategies, we study
to which extent the value of additional information is affected by the
consumers’ price sensitivity or the competitors’ price response times.

Keywords: Dynamic pricing · Duopoly competition ·
Response strategies · Hidden Markov Model · Asymmetric information

1 Introduction

In real-life applications, firms have to deal with competition and limited infor-
mation. Sellers are required to choose appropriate pricing decisions to maxi-
mize their expected profits. In e-commerce, it has become easy to observe and
to change prices. Hence, dynamic pricing strategies that take into account the
competitor’s strategies will be more and more applied.

However, optimal price reactions are not easy to find. Applications can be
found in a variety of domains that involve perishable (e.g., airline tickets, accom-
modation services, seasonal products) as well as durable goods (e.g., technical
devices, natural resources).

In this paper, we study duopoly pricing models in a stochastic dynamic frame-
work. We focus on perishable goods. In our model, sales probabilities are allowed
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to be an arbitrary function of time and the competitor’s prices. Our aim is to take
into account scenarios in which (i) the competitor’s inventory level is observ-
able, (ii) the competitor’s inventory level is not observable, and (iii) even the
competitor’s pricing strategy is unknown.

1.1 Literature Review

To optimally sell products is a classical application of revenue management the-
ory. The problem is closely related to the field of dynamic pricing, which is sum-
marized in books by Talluri, van Ryzin [1], Phillips [2], and Yeoman, McMahon-
Beattie [3]. The survey by Chen, Chen [4] provides an excellent overview of
recent pricing models under competition.

Gallego, Wang [5], consider a continuous time multi-product oligopoly for dif-
ferentiated perishable goods. They use optimality conditions to reduce the multi-
dimensional dynamic pure pricing problem to a one dimensional one. Gallego,
Hu [6] analyze structural properties of equilibrium strategies in more general
oligopoly models for the sale of perishable products. Martinez-de-Albeniz, Talluri
[7] consider duopoly and oligopoly pricing models for identical products. They use
a general stochastic counting process to model the demand of customers.

Further related models are studied by Yang, Xia [8] and Wu, Wu [9]. Dynamic
pricing models under competition that also include strategic customers are ana-
lyzed by Levin et al. [10] and Liu, Zhang [11]. Competitive pricing models with
limited demand information are studied by Tsai, Hung [12], Adida, Perakis [13],
and Chung et al. [14] using robust optimization and demand learning approaches.
The effects of strategic interaction of data-driven policies in competitive settings
are studied by, e.g., Kephart et al. [15] or Serth et al. [16], using interactive
simulation platforms.

In most existing models strong assumptions are made: (i) sales probabilities
are assumed to be of a highly stylized form, (ii) the competitors’ inventory lev-
els are assumed to be observable, and (iii) competitors adjust their prices at
the same point in time. While many papers concentrate on (the existence of)
equilibrium strategies, we look for applicable solution algorithms that allow to
compute effective response strategies in more realistic settings: Demand proba-
bilities are allowed to generally depend on time as well as prices of all market
participants. Inventory levels do not have to be mutually observable. As in prac-
tical applications, we assume sequential mutual price reactions with some delay.
We consider a discrete time model which is based on the infinite horizon model
described in [17]. We extend their model by additional inventory considerations
and a finite horizon setting.

1.2 Contribution

This paper is an extended version of [18]. The main contribution of [18] is three-
fold. We (i) derive optimal pricing strategies when the competitor’s inventory
level is observable, (ii) derive near-optimal pricing strategies for the case that
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the competitor’s inventory level is not observable, and (iii) we present a heuristic
for the case that competitors’ strategies are not known.

Compared to [18], in this paper, we present extended evaluation studies and
make the following contributions: First, to determine the value of information,
we let our three types of strategies play against each other in different duopoly
setups. We show that in different symmetric setups sales results are quite similar.
Our evaluations of asymmetric strategy setups show that additional informa-
tion leads to significantly higher profits (compared to the competitor). We also
observe that strategies that use more information tend to have higher standard
deviations of profits and a lower load factor. Second, we study to which extent
performance results of various competitive setups are affected by the consumers’
price sensitivity. We find that a higher price sensitivity (e.g., when customers are
less loyal) does not lead to a significant decrease in expected profits. Third, we
study the impact of price response times on our strategies’ performances under
various competitive setups. We observe that higher price reaction frequencies
can even overcompensate a lack of information.

The remainder of this paper is organized as follows. In Sect. 2, we describe the
stochastic dynamic duopoly model for the sale of a finite number of perishable
goods. We allow sales intensities to depend on the competitor’s price as well
as on time (cf. seasonal effects). The state space of our model is characterized
by time and the current competitors’ prices. The stochastic dynamic control
problem is expressed in discrete time.

In Sect. 3, we consider a duopoly competition, in which the inventory level of
the competitor is observable. We assume that both competitors act rationally.
We set up a firm’s Hamilton-Jacobi-Bellman equation and use recursive methods
(value iteration) to compute both firms’ value functions. Finally, we are able to
compute optimal feedback prices as well as expected profits of the two competing
firms. By using numerical examples, we investigate typical properties of optimal
pricing policies.

In Sect. 4, we analyze response strategies for cases where the inventory level
of the competitor is not observable. By using a Hidden Markov Model, we show
how to compute efficient pricing strategies and how to evaluate expected profits.
Our proposed solution approach is based on the results of the full information
model introduced in the previous section. The key idea is to let the competing
firms mutually estimate their competitor’s remaining inventory level. In Sect. 5,
we show how to derive applicable dynamic pricing heuristics for cases in which
the competitor’s inventory level as well as its pricing strategy are unknown.

In Sect. 6, we compare the different strategies derived in this paper using
various numerical experiments. We consider symmetric as well as asymmetric
combinations of strategies that use different information structures. Conclusions
and future work are given in the final section.

2 Model Description

We consider a situation in which a firm wants to sell a finite number of perish-
able goods (e.g., airline tickets, hotel tickets, etc.) on a digital market platform.
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We assume that a second seller competes for the same market. In our model, we
allow customers to compare prices of the two different competitors.

The initial numbers of items of firm 1 and firm 2 are denoted by N (1) and
N (2), respectively, N (1), N (2) < ∞. We assume that items cannot be reproduced
or reordered. The time horizon T is finite, T < ∞. If firm k sells one item, the
shipping costs c(k) have to be paid, k = 1, 2. A sale of one of firm k’s items at
price a leads to a net revenue of a − c(k). Discounting is also included in the
model. For the length of one period we use the discount factor δ, 0 < δ ≤ 1.

Due to customer choice the sales probabilities of a firm should depend on its
offer price a and the competitor’s price p. We also allow the sales probabilities
to depend on time.

The (joint) probability that between time t and t + Δ firm 1 can sell exactly
i items at a price a, a ≥ 0, while firm 2 can sell j items at price p, p ≥ 0, is
denoted by, 0 ≤ t < T , Δ > 0, i, j = 0, 1, 2, ...,

P
(Δ)
t (i, j, a, p).

Without loss of generality, in the following, we assume Poisson distributed
sales probabilities, i.e.,

P
(Δ)
t (i, j, a, p) :=

Λ
(1)
t,Δ(a, p)i

i!
· e−Λ

(1)
t,Δ(a,p)

·Λ
(2)
t,Δ(p, a)j

j!
· e−Λ

(2)
t,Δ(p,a),

(1)

where Λ
(k)
t,Δ(a, p) :=

∫ t+Δ

t
λ
(k)
s (a, p)ds, k = 1, 2, a, p ≥ 0; the sales intensity of a

firm k’s product is denoted by λ(k). In our model, the sales intensity of firm k,
k = 1, 2, t ∈ [0, T ], a ≥ 0, p ≥ 0,

λ
(k)
t (a, p) (2)

is a general function of time t, offer price a, and the competitor’s price p. The
random inventory level of firm k at time t is denoted by X

(k)
t , 0 ≤ t ≤ T . The

end of sale for firm k is the random time τ (k), when all of its items are sold, that
is τ (k) := min0≤t≤T {t : X

(k)
t = 0} ∧ T ; for all remaining t ≥ τ we let a firm’s

price at := 0 and λ
(k)
t (0, ·) := 0, k = 1, 2. As long as a firm has items left to sell,

for each period t, a price a has to be chosen.
We call strategies (at)t admissible if they belong to the class of Markovian

feedback policies; i.e., pricing decisions at ≥ 0 may depend on time t, the current
own inventory level, the current prices of the competitor, and (if observable) the
inventory level of the competitor. By A we denote the set of admissible prices.
A list of variables and parameters is given in the Appendix, see Table 7.

In some applications, sellers are able to anticipate transitions of the market
situation. In particular, the price responses of competitors as well as their reac-
tion time can be taken into account. In this case, a change of the competitor’s
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price p can take place within one period. A typical scenario is that a competitor
adjusts its price in response to another competitor’s price adjustment with a
certain delay.

In the following two sections, we assume that the pricing strategy and the
reaction time of competitors are known. We assume that choosing a price a at
time t is followed by a state transition (e.g., a competitor’s price reaction) and
the current price p changes to a subsequent price reaction, which may depend
on the current price decision a.

We assume that the state of the system is characterized by the inventory
levels of both firms and the current competitor’s price. In real-life applications,
a firm is not able to adjust its prices immediately after the price reaction of the
competing firm. Hence, we assume that in each period the price reaction of the
competing firm (firm 2) takes place with a delay of h periods, 0 < h < 1. After
an interval of size h the competitor adjusts its price, see Fig. 1. Firm 1 responds
to firm 2 with a delay of 1 − h.

In period t the probability to sell exactly i items during the first interval
of size h, i.e., [t, t + h], is P

(h)
t (i, j, at, pt−1+h), t = 0, 1, ..., T − 1. Due to the

competitor’s price reaction for the rest of the period [t + h, t + 1] the sales
probability changes to P

(1−h)
t+h (i, j, at, pt+h), t = 0, 1, ..., T − 1.

Fig. 1. Sequence of price reactions in a duopoly with reaction time h and 1 − h,
respectively, 0 < h < 1, cf. [18].

For single intervals [0, h] and [T, T + h], we assume that there is no demand
and we let P

(h)
0 (i, j, a0, p0) = P

(h)
T (i, j, aT , pT−1+h) := 1{i=j=0}.

The evolution of the accumulated profit of firm k, k = 1, 2, is connected to its
inventory process X

(k)
t and characterized by each period’s realized net revenues.

Depending on the chosen pricing strategy (at)t of firm 1 and the strategy (pt)t

of firm 2, the random accumulated profit of firm k from time t on (discounted
on time t) amounts to, 0 ≤ t ≤ T , k = 1, 2,

G
(k)
t :=

T−1∑

s=t

δs−t · (as − c(k)) ·
(
X(k)

s − X
(k)
s+1

)
. (3)

Each firm k seeks to determine a non-anticipating (Markovian) pricing policy
that maximizes its expected total profit, k = 1, 2,

E
(
G

(k)
0

∣
∣
∣X

(1)
0 = N (1),X

(2)
0 = N (2)

)
. (4)
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In the following sections, we solve dynamic pricing problems that are related
to (1)–(4). In the next section, we consider competitive duopoly markets with
complete information. In Sect. 4, we compute pricing strategies for scenarios with
incomplete information and partially observable states, i.e., we assume that the
competitor’s inventory level is not observable. In Sect. 5, we additionally assume
that the competitor’s strategy is unknown. In Sect. 6, we compare the results of
the three different models using extensive numerical experiments.

3 Optimal Dynamic Pricing Strategies in a Duopoly
with Observable States

In this section, we want to derive mutual optimal price response strategies. We
assume that both firms can mutually observe their inventory levels.

3.1 Solution with Full Knowledge

Following the Bellman approach, the best expected future profits of firm 1
and firm 2, i.e., E(G(1)

t |X(1)
t = n, X

(2)
t = m, pt = p) and E(G(2)

t+h|X(1)
t+h =

n, X
(2)
t+h = m, at+h = a), respectively, cf. (4), are described by the value func-

tions V ∗
t (n,m, p) and W ∗

t+h(n,m, a), t = 0, 1, ..., T . The set of admissible prices
A can be continuous or discrete. If either all items are sold or the time is up,
no future profits can be made, i.e., the natural boundary condition for the value
functions V and W are given by, n = 0, 1, ..., N (1), m = 0, 1, ..., N (2), a, p ∈ A,
t = 0, 1, ..., T − 1,

V ∗
t (0,m, p) = 0, and V ∗

T (n,m, p) = 0, (5)

W ∗
t+h(n, 0, a) = 0, and W ∗

T+h(n,m, a) = 0. (6)

We assume that in case of a run-out a firm sets its price equal to zero for the
rest of the time horizon. The Hamilton-Jacobi-Bellman (HJB) equation of firm
1 can be written as, t = 0, 1, ..., T −1, n = 1, ..., N (1), m = 0, ..., N (2), 0 < h < 1,
a, p ∈ A,

V ∗
t (n,m, p) = max

a∈A

⎧
⎨

⎩

∑

i1,j1≥0

P
(h)
t (i1, j1, a, p)

·
∑

i2,j2≥0

P
(1−h)
t+h

(
i2, j2, 1{n−i1>0} · a,

p∗
t+h

(
(n − i1)

+
, (m − j1)

+
, 1{n−i1>0} · a

))

·
(
(a − c(1)) · min(n, i1 + i2)

+ δ · V ∗
t+1

(
(n − i1 − i2)

+
, (m − j1 − j2)

+
, 1{m−j1−j2>0}

· p∗
t+h

(
(n − i1)

+
, (m − j1)

+
, 1{n−i1>0} · a

)))}
.

(7)
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Note, (7) mirrors all possible sales scenarios within one period of time and
takes the corresponding inventory transitions as well as the anticipated optimal
price reactions of the competitor into account.

The HJB of firm 2 is given by, t = 0, 1, ..., T − 1, n = 0, ..., N (1), m =
1, ..., N (2), 0 < h < 1, a, p ∈ A,

W ∗
t+h(n,m, a) = max

p∈A

⎧
⎨

⎩

∑

i2,j2≥0

P
(1−h)
t+h (i2, j2, a, p)

·
∑

i1,j1≥0

P
(h)
t+1 (i1, j1,

a∗
t+1

(
(n − i1)

+
, (m − j1)

+
, 1{m−j1>0} · p

)
, 1{m−j1>0} · p

)

·
(
(p − c(2)) · min(m, j1 + j2)

+ δ · W ∗
t+1+h

(
(n − i1 − i2)

+
, (m − j1 − j2)

+
,

1{n−i1−i2>0} · a∗
t+1

(
(n − i1)

+
, (m − j1)

+
, 1{m−j1>0} · p

)))}
.

(8)

The associated prices of both firms are given by the arg max of (7) and (8),
respectively, i.e., n,m > 0, t = 0, 1, ..., T − 1,

a∗
t (n,m, p) = arg max

a∈A
{...} , (9)

p∗
t+h(n,m, a) = arg max

p∈A
{...} . (10)

If a firm runs out of inventory, we set the price 0, i.e., for all m, p we let
a∗

t (0,m, p) = 0 and for all n, a, we let p∗
t+h(n, 0, a) = 0. The coupled value

functions and the optimal feedback policies of the two competing firms can be
computed in the following recursive order, cf. (5)–(6):

p∗
T−1+h(n,m, a), W ∗

T−1+h(n,m, a) →
a∗

T−1(n,m, p), V ∗
T−1(n,m, p)→ . . .

. . .→p∗
h(n,m, a), W ∗

h (n,m, a)
→a∗

0(n,m, p), V ∗
0 (n,m, p).

(11)

3.2 Numerical Examples

To illustrate the approach, cf. (5)–(11), we consider a numerical example.

Example 3.1. We assume a duopoly. Let T = 50, c(1) = c(2) = 10, N (1) =
N (2) = 10, δ = 1, h = 0.5, and a ∈ A := (10, 20, ..., 400). We assume
Poisson distributed sales probabilities P

(h)
t (i, j, a, p), which are determined by

t = 0, h, 1, ..., T , k = 1, 2, a, p ∈ A, cf. (1),

Λ
(k)
t,h(a, p) := h ·

(
1 − e−105·a−2.5+t/T

)
· β(a, p),
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and the competition factor β(a, p), a, p ∈ A,

β(a, p) := 1{a>0} · p − L · min(a, p)
a + p − 2 · L · min(a, p)

which is characterized by the competition parameter L, −∞ < L < 1. Note,
the price sensitivity of customers is increasing in L. For the time being, we let
L := 0.8.

Table 1 illustrates the expected profits of firm 1 for different inventory levels
n and different points in time t (for the case that firm 2’s price is p = 100 and
its inventory level is N (2) = 10). We observe that the expected future profits
are decreasing in time and increasing-decreasing in the number of items left to
sell. The optimal expected profits of the second firm have the same characteris-
tics. Compared to firm 1 the total expected profits of firm 2 are slightly larger
(W ∗

h (10, 10, a∗
0(10, 10, 0)) = 1769).

Table 1. Expected profits V ∗
t (n, 10, 100), Example 3.1, cf. [18].

n\t 0 10 20 30 40 45

1 363 362 359 348 306 252

2 654 652 640 601 494 368

3 877 872 852 788 628 423

5 1213 1202 1166 1056 782 381

7 1464 1449 1396 1233 737 381

10 1754 1726 1638 1348 723 381

Table 2 illustrates the feedback prices of firm 1 for different competitor’s
inventory levels m and different prices p (for the case that t = 20 and firm
1’s inventory level is N (1) = 10). We observe that optimal response prices are
decreasing-increasing in the competitor’s price and decreasing in the competitor’s
inventory level. I.e., in general, there is an incentive to (slightly) undercut the
competitor’s price.

However, if the competitor has a small price and a small inventory level then
it is more advantageous to set high prices such that the competitor is likely to
sell all of its remaining items, and in turn, our firm becomes a monopolist for the
rest of the time horizon. If the competitor’s inventory level is small, the optimal
price can even dominate the monopoly price, cf. a∗

20(10, 0, 0) = 260 in Table 2.

Remark 3.1

(i) The expected profits are increasing-decreasing in their own inventory level.
(ii) The expected profits are decreasing in the competitor’s inventory level.
(iii) If there is no discounting then the expected profits are increasing in the

time-to-go.
(iv) The expected profits are increasing-decreasing in the current competitor’s

price.
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Table 2. Expected profits a∗
20(10, m, p), Example 3.1, cf. [18].

p\m 0 1 2 3 5 7 10

0 260 . . . . . .

50 . 400 390 300 220 200 160

100 . 400 390 300 220 200 160

150 . 400 310 300 220 190 140

200 . 400 280 250 190 180 150

250 . 340 260 200 190 180 150

300 . 240 210 200 190 180 150

400 . 220 200 200 190 180 150

Remark 3.2

(i) The optimal prices are not necessarily decreasing in their own inventory
level.

(ii) The optimal prices are decreasing in the competitor’s inventory level.
(iii) If demand is not increasing in time then the optimal prices are decreasing

in the time.
(iv) The optimal prices are decreasing-increasing in the current competitor’s

price.

Fig. 2. Simulated price paths and associated inventory levels over time; Example 3.1,
cf. [18].

Figure 2 illustrates simulated sales processes in the context of Example 3.1.
Figure 2a illustrates the price trajectories of the two competing firms. Figure 2b
shows the associated evolutions of the inventory levels. As demand is increasing
in time, on average, prices as well as the number of sales increase at the end of
the time horizon.
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4 A Hidden Markov Model with Partially Observable
States

In this section, we assume that the competitor’s inventory level cannot be
observed. To derive feedback pricing strategies we use a Hidden Markov Model.
We will use probability distributions for the competitor’s inventory level, which
are based on the observable prices of both firms.

4.1 Theoretical Solution

Let πt(m) denote the (estimated) probability that firm 2 has exactly m items
left at time t; let 	t(n) denote the probability that firm 1 has exactly n items
left at time t. We assume that the initial inventory levels of both competitors
are common knowledge; i.e., the starting distributions are π0(m) = πh(m) =
1{m=N(2)} and ω0(n) = ωh(n) = 1{n=N(1)}. Furthermore, a run-out is observable,
since we assume that in case of a run-out a firm has to set its price equal to zero.
The evolutions of the probabilities πt(m) and 	t(n) are given by, n = 0, ..., N (1),
m = 0, ..., N (2), at, pt, at−1+h, pt−1+h ∈ A, t = 0, 1, ..., T ,

πt+h(m; at, pt) =
∑

i1,j1≥0,0≤m−≤N(2):
m=(m−−j1)+

P
(h)
t (i1, j1, at, pt) · πt(m−)

πt(m; at−1+h, pt−1+h) =
∑

i2,j2≥0,

0≤m−≤N(2):
m=(m−−j2)+

P
(1−h)
t−1+h (i2, j2, at−1+h, pt−1+h) · πt−1+h(m−) (12)

	t+h(n; at, pt) =
∑

i1,j1≥0,0≤n−≤N(1):
n=(n−−i1)+

P
(h)
t (i1, j1, at, pt) · 	t(n−)

	t(n; at−1+h, pt−1+h) =
∑

i2,j2≥0,

0≤n−≤N(1):
n=(n−−i2)+

P
(1−h)
t−1+h (i2, j2, at−1+h, pt−1+h) · 	t−1+h(n−). (13)

Note, (12) and (13) are relevant for both firms as they might try to esti-
mate (i) the competitor’s inventory level as well as (ii) the competitor’s beliefs
concerning the own inventory. This way the competitor’s price reactions can be
anticipated via a probability distribution.

Both firms are assumed to act rationally. Pricing decisions are such that no
firm has an advantage to deviate from its strategy. Due to the defined sequence
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of events, theoretically, optimal decisions can be recursively inferred. The corre-
sponding value functions of both firms, denoted by

V
(∗)
t (n, p,πt,ωt) (14)

W
(∗)
t+h(m,a,πt+h,ωt+h), (15)

are determined by the usual boundary conditions V
(∗)
t (0, ·, ·, ·) = 0,

V
(∗)
T (·, ·, ·, ·) = 0 (for firm 1) and W

(∗)
t+h(0, ·, ·, ·) = 0, W

(∗)
T+h(·, ·, ·, ·) = 0 (for

firm 2) as well as an associated system of Bellman equations similar to (7)–(8)
extended by transitions for the beliefs, cf. (12)–(13). The corresponding optimal
feedback policies a

(∗)
t (n, p,πt,ωt) and p

(∗)
t+h(m,a,πt+h,ωt+h) of the two com-

peting firms can be computed in recursive order (similar to (9)–(11)).
However, optimal policies cannot be computed in practical applications.

Note, the size of the state space is exploding as the probability distributions
π and ω are involved (cf. curse of dimensionality). Hence, heuristic solutions are
needed.

In the next subsection, we present an approach to compute viable
heuristic feedback pricing strategies for the model with partially observable
states. The key idea is to approximate the functions V

(∗)
t (n, p,πt,ωt) and

W
(∗)
t+h(m,a,πt+h,ωt+h) by using weighted expressions of the value functions

V ∗
t (n,m, p) and W ∗

t (n,m, a) (of the model with full knowledge) and their asso-
ciated policies a∗

t (n,m, p) and p∗
t (n,m, a) derived in the previous Sect. 3.

4.2 Solution with Partial Knowledge

Motivated by the Hidden Markov Model (HMM), cf. Sect. 4.1, in which the
competitor’s inventory level cannot be observed, we want to define viable heuris-
tic pricing strategies for the two competing firms. Based on the current beliefs
regarding the competitor’s inventory, we approximate the correct value func-
tions (14)–(15) (and related controls) using price reactions, cf. (9)–(10), and
future profits, cf. (7)–(8), of the fully observable model. As the value functions
of the fully observable model might systematically overestimate the correct val-
ues (14)–(15), we include an additional positive penalty factor z. If z is smaller
than 1, future profits (7)–(8) are reduced.

For firm 1 we define the feedback prices, t = 0, 1, ..., T − 1, n = 1, ..., N (1),
p ∈ A,
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ãt(n, p;πt,ωt) = arg max
a∈A

⎧
⎨

⎩

∑

i1,j1≥0

P
(h)
t (i1, j1, a, p)

·
∑

0≤m̃≤N(2)

πt(m̃) ·
∑

0≤ñ≤N(1)

	t(ñ) ·
∑

i2,j2≥0

P
(1−h)
t+h (i2, j2,

1{ñ−i1>0} · a, p∗
t+h

(
(ñ − i1)

+
, (m̃ − j1)

+
, 1{ñ−i1>0} · a

))

·
(
(a − c(1)) · min(n, i1 + i2) + δ · z

·V ∗
t+1

(
(n − i1 − i2)

+
, (m̃ − j1 − j2)

+
, 1{m̃−j1−j2>0}

· p∗
t+h

(
(ñ − i1)

+
, (m̃ − j1)

+
, 1{ñ−i1>0} · a

)))}
.

(16)

Note, (16) mirrors the beliefs for both inventory levels and the corresponding
transitions. For anticipated price reactions we use p∗, cf. (10). To estimate future
profits, we use z · V ∗, cf. (7).

Similarly, the prices of firm 2 are given by, t = 0, 1, ..., T − 1, m = 1, ..., N (2),
a ∈ A,

p̃t+h(m,a;πt,ωt) = arg max
p∈A

⎧
⎨

⎩

∑

i1,j1≥0

P
(1−h)
t+h (i1, j1, a, p)

·
∑

0≤m̃≤N(2)

πt+h(m̃) ·
∑

0≤ñ≤N(1)

	t+h(ñ) ·
∑

i2,j2≥0

P
(h)
t+1 (i2, j2,

a∗
t+1

(
(ñ − i1)

+
, (m̃ − j1)

+
, 1{m̃−j1>0} · p

)
, 1{m̃−j1>0} · p

)

·
(
(p − c(2)) · min(m, j1 + j2) + δ · z

·W ∗
t+1+h

(
(ñ − i1 − i2)

+
, (m − j1 − j2)

+
, 1{ñ−i1−i2>0}

· a∗
t+1

(
(ñ − i1)

+
, (m̃ − j1)

+
, 1{m̃−j1>0} · p

)))}
.

(17)

In each period, realized sales are used to update the beliefs π and ω such
that the prices (16) and (17) can be computed during the sales process, i.e.:

ã0(N
(1), 0;π0,ω0)→πh,ωh→p̃h(N (2), ah;πh,ωh)

→π1,ω1→ã1(X
(1)
1 , p1;π1,ω1)→ . . .

. . .ãT−1(X
(1)
T−1, pT−1;πT−1,ωT−1)→πT−1+h,ωT−1+h

→p̃T−1+h(X(2)
T−1+h, aT−1+h;πT−1+h,ωT−1+h).

(18)

By using simulations both firms’ expected profits as well as their distributions
can be easily approximated. Evaluating different z values makes it possible to
identify the (mutual) best z value.
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4.3 Numerical Example

To illustrate our approach, in this subsection, we consider a numerical example.

Example 4.1. We assume the setting of Example 3.1. Both firms use the heuris-
tic Hidden Markov strategies, cf. (16)–(18), for different parameter values z,
0.2 ≤ z ≤ 1.5.

We observe that z has an impact on the expected profits of both competing
firms. In our example, simulated average profits of both firms are maximized for
z = 0.8. Note, the lower z is the more risk averse are the pricing policies (see
standard deviations σ), cf. Table 3.

Table 3. Simulated expected profits and its standard deviations of both firms for
different z values, Example 4.1, cf. [18].

z EG
(1)
0 EG

(2)
0 EX

(1)
T EX

(2)
T σ(G

(1)
0 ) σ(G

(2)
0 )

0.2 1141 1104 0.00 0.00 209 188

0.5 1679 1701 0.44 0.42 249 258

0.6 1743 1741 0.70 0.57 320 283

0.7 1742 1756 0.89 0.79 351 338

0.8 1739 1770 1.15 0.90 397 359

0.9 1732 1753 1.19 1.29 393 420

1.0 1716 1748 1.43 1.40 419 426

1.1 1686 1740 1.72 1.39 452 417

1.2 1668 1715 1.90 1.59 456 427

1.5 1647 1639 2.07 2.31 454 470

Remark 4.1 (Parallelization). The computation of feedback policies and par-
ticularly extensive simulation studies can become CPU-intensive. Parallelization
can be used to compute results more efficiently:

(i) Feedback prices for the same point in time can run in parallel.
(ii) Simulations can be computed independent from each other.

Figure 3 illustrates simulated sales processes in the context of Example 4.1.
Figure 3a illustrates price trajectories of the two competing firms. Figure 3b
shows the associated evolutions of the inventory levels and the (mutually) esti-
mated inventory levels of the competitor (dashed lines).
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Fig. 3. Simulated price paths and associated (estimated) inventory levels over time,
z = 0.8; Example 4.1, cf. [18].

5 Unknown Strategies

In this section, we want to present another heuristic approach to derive effective
pricing strategies in competitive markets with limited information. We assume
that the strategy of the competitor is completely unknown.

Our key idea to deal with unknown price reactions is to assume sticky prices.
For firm 1, we define the following value function, p ∈ A, n ≥ 1, t = 0, 1, ..., T −1,
V̄t(0, p) = 0 for all t, p, V̄T (n, p) = 0 for all n, p,

V̄t(n, p) = max
a∈A

⎧
⎨

⎩

∑

i1,j1

P
(h)
t (i1, j1, a, p)

·
∑

i2,j2

P
(1−h)
t+h (i2, j2, a, p) ·

(
(a − c(1)) · min(n, i1 + i2)

+ δ · V̄t+1

(
(n − i1 − i2)

+
, p

))}
.

(19)

The heuristic strategy āt(n, p) – determined by the arg max of (19) – only
depends on t, n, and p. Similarly, the corresponding pricing strategy p̄t(m,a)
of firm 2 is determined by the arg max of, a ∈ A, m ≥ 1, t = 0, 1, ..., T − 1,
W̄t+h(0, a) = 0 for all t, a, W̄T+h(m,a) = 0 for all m,a,

W̄t+h(m,a) = max
p∈A

⎧
⎨

⎩

∑

i2,j2

P
(1−h)
t+h (i2, j2, a, p)

·
∑

i1,j1

P
(h)
t+1(i1, j1, a, p) ·

(
(p − c(2)) · min(m, j1 + j2)

+ δ · W̄t+1+h

(
(m − j1 − j2)

+
, a

))}
.

(20)

The advantage of this approach is that the value function does not need to
be computed for all competitors’ prices p in advance. The value function and the
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associated pricing policy can be computed separately for single prices p (e.g., just
when they occur). If the competitor’s strategy is not known (which is often the
case) it is not possible to anticipate potential price adjustments. This feedback
strategy is able to react immediately if a change of the competitor’s price takes
place. In such an event, the value functions (19)–(20) and the associated prices
have to be computed for the new state.

Remark 5.1 (Oligopoly competition). Note, due to the curse of dimensionality,
the strategies derived in Sects. 3 and 4 are just applicable when the number of
competitors is small. The heuristic strategy described above, however, can still be
applied if the number of competitors is large. In case of K competitors, the state
p in (19) just have to be replaced by p = (p(1), ..., p(K)), p(k) ∈ A, k = 1, ...,K.

Fig. 4. Simulated price paths and associated inventory levels over time; setting of
Example 3.1, cf. [18].

For the case that the competitor’s strategy is unknown, Fig. 4 illustrates
simulated sales processes based on the heuristic, cf. (19)–(20), in the context of
Example 3.1. Figure 4a illustrates price trajectories of the two competing firms.
We observe that firms either significantly raise the price or undercut the com-
petitor’s price. Figure 4b shows corresponding inventory levels.

6 Evaluation

In this section, we want to compare the outcome of our different solution strate-
gies, which take advantage of different kind of information.

6.1 Comparison of Strategies

If pricing strategies are allowed to use full information (i.e., the own inventory
level, the competitor’s inventory level, and the competitor’s price), the optimal
expected profits can be computed analytically, cf. Sect. 3. In case the competi-
tor’s inventory level is not known, we presented an approach to compute viable
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strategies via a Hidden Markov Model, cf. Sect. 4. If the competitor’s inventory
is not known and her pricing strategy as well as her reaction time is unknown,
we proposed an efficient heuristic.

By SFK , we denote the strategy derived in Sect. 3 (full knowledge). By SPK ,
we denote the response strategy derived in Sect. 4 (partial knowledge) with
z = 0.8. By SUK , we denote the heuristic strategy, cf. Sect. 5, in case that
the competitor’s strategy is unknown.

Considering the setting of Examples 3.1 and 4.1, the expected profits of
the different symmetric strategy combinations are summarized in Table 4. In
all cases, the expected total profits, the expected remaining inventory, and the
standard deviations of total profits have been derived using simulations.

Table 4. Strategy comparison (benchmark case h = 0.5, L = 0.8): Expected profits

EG
(1)
0 (of firm 1) and EG

(2)
0 (of firm 2), when firm 1 and firm 2 play different pairs of

strategies using SFK (full knowledge), SPK (partial knowledge), and SUK (unknown
strategies), cf. Examples 3.1–4.1.

Scenario EG
(1)
0 EG

(2)
0 EX

(1)
T EX

(2)
T σ(G

(1)
0 ) σ(G

(2)
0 )

FK vs. FK 1746 1764 1.55 1.52 470 461

PK vs. PK 1739 1770 1.15 0.90 397 359

UK vs. UK 1694 1696 0.37 0.37 373 374

FK vs. PK 1760 1702 1.40 1.13 493 399

PK vs. FK 1723 1810 0.45 2.16 269 588

FK vs. UK 1747 1733 2.16 0.49 574 326

UK vs. FK 1704 1732 0.57 2.07 350 576

PK vs. UK 1721 1603 0.77 0.56 413 331

UK vs. PK 1714 1733 0.40 1.10 305 429

In the first three cases, we observe that in all three symmetric scenarios both
firms can expect similar results, cf. Figs. 5, 6 and 7. It turns out that as long as
the information structure is identical, a lack of information does not necessarily
result in smaller expected profits.

The number of unsold items as well as the variance of profits, however,
have significant differences. In case of fully observable states (SFK vs. SFK)
the remaining inventory and the variance of profits is comparably high. Both
firms can expect almost equal results. In the second case with partially observ-
able states (SPK vs. SPK) we observe that the load factor of both firms is higher
and the variation of profits is much smaller. Since less information is available
the competition between both firms is less intense.

In case of mutual unknown strategies (SUK vs. SUK), we obtain similar
results. Furthermore, we can assume that the heuristic strategy SUK will yield
robust results when played against various other strategies. The other two strate-
gies are optimized to play against a specific strategy. Hence, they might perform
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Fig. 5. Simulated expected price paths, associated inventory levels, and accumulated
profits over time, full knowledge FK vs. FK; setting of Examples 3.1–4.1.

Fig. 6. Simulated expected price paths, associated inventory levels, and accumulated
profits over time, partial knowledge PK vs. PK; setting of Examples 3.1–4.1.

less well, when the competitor is playing a different strategy. Moreover, the effi-
cient computation of our heuristic SUK allows fast computation times and, in
turn, a high price reaction frequency, which is also a competitive advantage.

In the remaining cases of Table 4, we present the results of asymmetric strat-
egy pairs. As expected, we observe that strategies that have or use more infor-
mation beat strategies with less information. However, profit differences are rel-
atively small, which means that our strategies with incomplete information are
surprisingly competitive.

Further, the firm that has the final price adjustment (firm 2) has a slight
advantage. In general, we observe that strategies that use more information
tend to have higher standard deviations of profits and a lower load factor.

Fig. 7. Simulated expected price paths, associated inventory levels, and accumulated
profits over time, no knowledge UK vs. UK; setting of Examples 3.1–4.1.
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Note, in the asymmetric setups, both strategies are not optimal response
strategies; they are optimized to be played against their symmetric counterpart.
Hence, theoretically results could be worse (compared to the symmetric cases)
since in our asymmetric setups the competitor might not react as expected. How-
ever, we observe that profits are hardly lower. The reason is that the derived
strategies (SFK , SPK , SUK) are quite robust due to their feedback nature. Fur-
ther, in asymmetric setups the competition is less fierce as price reactions are not
optimized to be played against the competitor’s strategy. For optimized response
strategies against given strategies, see [17].

6.2 Impact of Customers Price Sensitivity

In this subsection, we study to which extent results, cf. Table 4, are affected if
customers are more price sensitive. Such cases can be modelled using a higher
competition factor L, cf. Example 3.1. Similarly, a lower factor L corresponds
to cases in which customers are more loyal and tend to stick to a certain firm
instead of steadily comparing prices.

Table 5 summarizes the performance results for all symmetric and asymmet-
ric duopoly scenarios for the case L := 0.95. Again, results were computed using
simulation studies.

In case of a higher price sensitivity, we again observe that strategies are more
successful if more information is used/available. More interestingly, we observe
that (compared to the benchmark case, cf. Table 4) due to fierce competition it is
more important whether a firm has the last move. One might think that in cases
with high price sensitivity profits are lower as products with the higher price
can hardly be sold, and in turn, both firms are forced to systematically undercut
the competitor’s price in order to sell items (race to the bottom). Surprisingly
profits are not necessarily lower! The reason is that the effects of a higher price
sensitivity are counterbalanced by the fact that the firm, which sells less fast is
likely to become a monopolist for the rest of the time horizon.

6.3 Impact of Reaction Time

In this subsection, we investigate the impact of reaction times on our strate-
gies’ performance results. In our model the reaction time can be varied via the
parameter h, 0 < h < 1. While firm 2 reacts on firm 1’s action with a delay of
h, firm 1’s reaction time on firm 2’s price adjustment is 1 − h. A reaction time
h = 0.2 corresponds to the case in which firm 1 has h = 20% of the time the
“fresh” price; firm 2’s share is 1 − h = 80%.

In real-life applications, firms often randomize their reaction time in order
not to act predictably. In this case, the ratio of the competing firms’ reaction
frequencies determines the share of time a firm has the most recent price update.
In [17] it is demonstrated that such scenarios can be effectively modelled via our
duopoly model with fixed reaction times h and 1 − h, respectively.
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Table 5. Impact of price sensitivity factor L (case h = 0.5, L = 0.95): Expected profits

EG
(1)
0 (of firm 1) and EG

(2)
0 (of firm 2), when firm 1 and firm 2 play different pairs of

strategies using SFK (full knowledge), SPK (partial knowledge), and SUK (unknown
strategies), cf. Example 3.1–4.1.

Scenario EG
(1)
0 EG

(2)
0 EX

(1)
T EX

(2)
T σ(G

(1)
0 ) σ(G

(2)
0 )

FK vs. FK 1784 1795 1.14 2.15 429 556

PK vs. PK 1696 1724 0.90 0.60 352 297

UK vs. UK 1574 1575 0.27 0.28 414 417

FK vs. PK 1757 1743 1.80 0.60 504 282

PK vs. FK 1639 1811 1.40 1.00 405 448

FK vs. UK 1741 1732 2.23 0.36 590 300

UK vs. FK 1697 1724 0.45 2.16 331 589

PK vs. UK 1716 1660 1.00 0.30 403 268

UK vs. PK 1658 1719 0.40 1.20 269 450

Table 6. Impact of reaction time (case h = 0.2 vs. h = 0.8, L = 0.8): Expected profits

EG
(1)
0 (of firm 1) and EG

(2)
0 (of firm 2), when firm 1 and firm 2 play different pairs of

strategies using SFK (full knowledge), SPK (partial knowledge), and SUK (unknown
strategies), cf. Examples 3.1–4.1.

Scenario h EG
(1)
0 EG

(2)
0 EX

(1)
T EX

(2)
T σ(G

(1)
0 ) σ(G

(2)
0 )

FK vs. FK 0.2 1734 1786 0.97 1.95 389 505

FK vs. FK 0.8 1782 1732 1.98 0.93 509 381

PK vs. PK 0.2 1675 1860 1.40 0.90 410 362

PK vs. PK 0.8 1858 1703 0.60 1.20 304 412

UK vs. UK 0.2 1677 1715 0.37 0.33 362 366

UK vs. UK 0.8 1712 1674 0.33 0.37 372 363

FK vs. PK 0.2 1730 1716 0.70 1.41 396 460

FK vs. PK 0.8 1876 1633 0.90 1.50 400 404

PK vs. FK 0.2 1616 1881 1.80 0.80 455 382

PK vs. FK 0.8 1749 1776 0.60 1.50 313 525

FK vs. UK 0.2 1721 1746 2.07 0.41 336 236

FK vs. UK 0.8 1724 1659 1.85 0.61 545 372

UK vs. FK 0.2 1648 1724 0.62 1.77 374 545

UK vs. FK 0.8 1741 1728 0.41 2.08 301 532

PK vs. UK 0.2 1758 1779 1.00 0.40 376 273

PK vs. UK 0.8 1744 1691 1.40 0.50 497 319

UK vs. PK 0.2 1627 1705 0.60 1.10 325 430

UK vs. PK 0.8 1722 1666 0.50 1.30 254 409



34 R. Schlosser and K. Richly

To this end, Table 6 shows simulated performance results for all duopoly
scenarios for two different (uneven) reaction times h = 0.2 and h = 0.8. The
price sensitivity factor is L = 0.8.

We observe that, in general, profits are significantly affected by response
times. Hence, price update frequencies are a competitive advantage. We find
that the competitor with a better (more frequent) reaction time can even beat
its opponent although a strategy with using less information is applied, i.e., a
better reaction time can overcompensate the lack of information.

7 Conclusion

In e-commerce, it has become easier to observe and adjust prices automatically.
Consequently, there exists an increased demand for dynamic pricing. The com-
putation of suitable pricing strategies is highly challenging as soon as strategic
competitors are involved and remaining inventory levels play a major role. In this
paper, we analyzed stochastic dynamic finite horizon duopoly models character-
ized by price responses in discrete time. We allow sales probabilities to generally
depend on time as well as the competitors’ prices. Further, we are able to model
different price reaction times.

We have considered three different types of information structures. In the
first setting, we assume that the inventory levels of the competing firms are
mutually observable. We show that optimal price reaction strategies – which are
based on mutual price anticipations – can be derived using standard methods
(e.g., backward induction). Examples are used to identify structural properties
of expected profits and feedback pricing strategies. Optimal prices are balancing
two effects: (i) slightly undercut the competitor’s price in order to sell more
items, and (ii) the use of high prices in order to promote a competitor’s run-out
and to act as a monopolist for the rest of the time horizon.

In the second setting, we assume that the inventory of the competitor is not
observable. Based on observable prices, we compute probability distributions
(beliefs) for the number of items the competitor might have left to sell. We
propose a Hidden Markov Model to be able to compute applicable feedback
pricing strategies. Our examples show that the resulting expected profits of both
firms are similar to those obtained in the model with full knowledge. The variance
of profits and the average number of remaining items, however, is significantly
lower.

In the third setting, we assume that the competitor’s strategy is completely
unknown, i.e., competitors cannot anticipate price responses. We propose an
efficient decomposition approach to circumvent the curse of dimensionality and
demonstrate how to compute powerful pricing strategies. We verify that – when
applied by both competitors – the heuristic yields the same expected profits as
in the two other settings, in which more information is available.

We have shown how to compute applicable reaction strategies for real-life
scenarios with different information structures. We find that sales results are
quite similar as long as the information structure is symmetric. Our numerical
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experiments of asymmetric strategy setups show that additional information
leads to significantly higher profits (compared to the competitor). Further, we
observe that a higher price sensitivity (e.g., when customers are less loyal) does
not lead to a significant decrease in expected profits. Moreover, we find that
higher price reaction frequencies can even overcompensate a lack of information.

In future research, the model could be extended to study scenarios with (i)
multiple products and substitution effects in demand, (ii) strategic customers
that anticipate typical price trends, or (iii) competitors that seek to learn the
competitors’ pricing strategy based on historic data.

Appendix

Table 7. Notation table.

t Time/Period

T Time horizon

c(k) Shipping costs of firm k, k = 1, 2

G
(k)
t Random future profits of firm k

N
(k)
t Initial number of sold items of firm k

X
(k)
t Random inventory level of firm k

δ Discount factor

h Reaction time (of firm 2)

P
(h)
t Sales probability for (t, t + h)

β Competition factor

L Price sensitivity factor

A Set of admissible prices

V Value function of firm 1

W Value function of firm 2

a Offer price of firm 1

p Offer price of firm 2

n Inventory state of firm 1

m Inventory state of firm 2

π(m) Beliefs of firm 1

ω(n) Beliefs of firm 2

a∗, p∗ Feedback prices (full knowledge model)

ã, p̃ Feedback prices (partial knowledge model)

ā, p̄ Feedback prices (no knowledge model)

FK Full knowledge

PK Partial knowledge

UK No knowledge (unknown)
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