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Abstract. Consider the air-cargo service chain which comprises a car-
rier and multiple forwarders. The carrier and each of the forwarders may
establish an allotment contract at the start of the season. We formulate
the contract design problem as a Stackelberg game, in which the carrier
is the leader and offers a contract to a forwarder. The contract parame-
ters may include the discount contract price and the penalty cost for the
unused allotment as well as the minimum allotment utilization. The car-
rier’s contract is accepted, if the forwarder earns at least its reservation
profit. Given the carrier’s offer, the forwarder decides how much to book
as an allotment, in order to maximize its own expected profit. We show
that the two-parameter contract suffices to coordinate the service chain,
and the carrier earns the maximum chain’s expected profit less the total
reservation profits of all forwarders. If the penalty cost is not imposed,
then the minimum allotment utilization is needed to construct an effi-
cient contract. On the other hand, if the penalty cost is strictly positive,
then there is no need to impose the minimum allotment requirement.

Keywords: Air-cargo · Capacity management ·
Stochastic model applications

1 Introduction

Air-cargo operations inarguably play a crucial role in the modern supply chain,
since they improve efficiency in logistics and increase competitive advantages.
Despite the 1% world trade by volume, airfreight represents more than 35% of
global trade by value [23]. The air-cargo growth is driven by global liberalization,
cross-border e-commerce, and the implementation of supply chain/logistics man-
agement strategies, which emphasize on short lead times, e.g., lean/agile man-
agement and just-in-time (JIT) production systems. With e-commerce boom,
airfreight has become a de facto mode of cross-border transportation, for the
customer centric businesses with fast delivery times. Air cargo consists of various
commodity types, e.g., pharmaceutical products, live animals, electronic devices,
human remains, dry ice, and gold bullion; some fastest-growing air-cargo per-
ishables in 2017 include seafood from Scotland, smoked meat and wines from
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Australia, clotted cream from the U.K., blueberries from Ukraine and medicinal
plants from Afghanistan [40]. Despite the sluggish growth in 2015 due to the
economy slowdown worldwide, air-cargo traffic is expected to gradually accel-
erate. The largest average annual growth rate is found in Asia-Pacific freight
market [11].

In an air-cargo service chain, a shipper can receive services directly from an
air-cargo carrier or delegate to a freight forwarder. A large portion of air cargo
volume is handled through freight forwarders. A freight forwarder acts as an
intermediary party, who connects a shipper to an airline. The forwarder con-
solidates shipments and handles various aspects of the shipping process, e.g.,
pickup and delivery services, insurance, customs clearance, import and export
documentation, cargo tracking and tracing, and interacting with multi-modal
carriers. Most forwarders do not own an airplane and obtain cargo space on
ad hoc basis or through a medium- or long-term capacity agreement, also known
as the allotment, with the carrier. The airline carries consolidated cargo in the
belly of a passenger plane or a freighter. Freighters are critical to compete in air
cargo markets, since they carry more than half of air-cargo traffic and airlines
operating freighters generate 90% of the industry revenues [11]. Capacity utiliza-
tion is one of the top operational problems, faced by the majority of the cargo
carriers [1]. The carrier offers a contract to the forwarder, hoping to increase its
capacity utilization. The forwarder wants to establish the contract, in order to
receive volume discounts or lower freight charges. The discount may depend on
the size of the allotment and the actual volume tendered by the forwarder [34].

Air-cargo spaces are perishable in the sense that they cannot be sold after the
flight departure. They are sold in two stages: In the first stage which happens a
few months before a season starts, a carrier allocates spaces to forwarders either
as part of a binding contract or as part of goodwill [10]. Each year comprises two
seasons, Winter and Summer schedules, specified by the International Air Trans-
port Association [35]. Through the allotment contract, the forwarder achieves
a more economical rate, compared to the so-called spot rates for ad hoc ship-
ments. The forwarder pre-books a certain amount of capacity at a pre-specified
rate, based on its anticipated demand on a given route and the contract terms.
The demand is forecasted based various factors such as the economic condition,
the competitors’ action, and the projected trend and seasonal patterns. About
50–70% of air-cargo space is sold to forwarders through a “hard” block space
agreement (BSA) at a negotiated price, a “soft” block permanent booking (PB)
or other forms of capacity agreements [33]. Carriers in Asia Pacific typically allo-
cate a large fraction, whereas those in North America allocate a small fraction of
their capacity [19]. After the forwarder collects and consolidates shipments from
its customers, and the actual allotment usage becomes known, the payment is
transferred between the carrier and the forwarder. If the forwarder’s customer
demand is smaller than previously anticipated, the allotment utilization by the
forwarder may be low. The carrier may impose some cancellation fee for the
unused allotment by the forwarder, or it may impose the minimum allotment
utilization and offer the refund up to a pre-specified portion, not all unused
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portion of the allotment. Nevertheless, for the airline’s most important for-
warders, the cancellation clause is rarely enforced; these powerful forwarders
pay only for their actual allotment usages. After the unused allotment is released
by the forwarder a few weeks before a flight departure, the carrier re-sells the
remaining capacity on a free-sale or ad hoc basis to direct shippers.

In this article, we develop a formulation for the study of contracts with three
parameters: (1) a discount contract price, (2) a refund (or penalty cost) for the
unused portion of the allotment, and (3) the minimum allotment utilization. Our
objective is to determine an optimal contract scheme, which allows the air-cargo
service chain to be efficient. To this end, we formulate a Stackelberg game, in
which the carrier is the leader and proposes a contract to each of the multiple
freight forwarders. Based on its anticipated demand and the contract parame-
ters, the forwarder determines the best allotment size, which maximizes its own
expected profit. Based on the forwarder’s best response, the carrier determines
the contract parameters in order to maximize its own expected profit. We ana-
lyze the sequential game of the allotment contract problem and identify sufficient
conditions under which the equilibrium contract is efficient. Our model benefits
the carrier by identifying a possible contract structure that it should strive for in
negotiating with the forwarders. The contract with only two parameters (either
the positive penalty cost or the minimum allotment utilization) is sufficient to
coordinate the air-cargo service chain.

Air-cargo capacity is perishable and can be sold at different prices to hetero-
geneous customers with different willingness to pay. Thus, it is a prime candi-
date for applying revenue management (RM) strategies. Overview of RM theory
and practice can be found in textbooks, e.g., [21,31,36,43], and journal articles,
e.g., [13,27,30]. Literature on air-cargo RM is fairly limited, in comparison to
the extensive literature on passenger RM. [16] provides a literature review on
air-cargo operations. [10,24] are among the early descriptive overview papers on
air-cargo RM. [8] describes the air-cargo system in the Asia Pacific. [35] describes
the implementation of air-cargo RM system at KLM and highlights key factors
that critically affect its performance. Air-cargo operations are presented in [33],
and air-cargo RM from business perspective is discussed in [9,14]. The air-cargo
industry outlook can be found in, e.g., [11,23]. Air-cargo training courses are
provided by several professional associations such as International Air Trans-
port Association (IATA), British International Freight Association (BIFA) and
International Association of Airport Executives Canada (IAAEC).

Key short-term air-cargo operations include aircraft loading (e.g., [37,41]),
shipment routing (e.g., [32,42]) and booking control (e.g., [3,7,20,45]). Allotment
contracts are medium-term decisions. Articles which combine both short-term
booking control and medium-term allotment decisions are, e.g., [25,28,44]. [25]
considers an airline which operates parallel flights between a given origin and
destination pair; the carrier’s medium-term decision is to choose allotment con-
tracts among available bids from forwarders, whereas the short-term decision
corresponds to the booking control problem, from which the expected contribu-
tion from the spot market can be determined. In [28], the carrier’s medium-term
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decision is to determine how much of the total weight and volume capacity to
sell as allotments. Unlike ours, these articles take the carrier’s perspective and
are concerned with a single decision maker.

In contrast to having a carrier as the single decision maker, the contract
design problem considers two or more decision makers, which typically include
the carrier and one or more forwarders, and the game theoretic approach is
often employed to find an optimal allotment contract scheme. [18] proposes
an options contract, similar to supply chain contracts in, e.g., electricity gen-
eration and semiconductor manufacturing, and investigates the suitability of
options contracts in the air-cargo industry. Under certain contract parameters
and a suitable spot market environment, the options contract outperforms the
fixed-commitment contract. The buy-back scheme is another prevalent contract
in supply chain (see, e.g., [12] for a review of supply contracts): [26] applies
this buy-back concept in the air-cargo service chain and shows that the buy-
back policy improves revenues of both players, namely the carrier and the for-
warder. [4] considers the carrier’s mechanism design problem, in which the other
player, namely the freight forwarder, possesses some private information on, e.g.,
its customer demand and operating cost. An optimal allotment scheme, which
maximizes the total contribution of the air-cargo service chain, is attainable
via a contract with an appropriate upfront and cancellation fees. [17] provides
conditions such that flexible contract schemes maximize the total profit in the
service chain. [2] proposes an allotment contract, which includes a discount con-
tract price, a penalty cost for an unused portion of the allotment, and an allot-
ment utilization requirement, and derives a sufficient condition for an optimal
contract.

This article extends [2] to include multiple freight forwarders. The carrier’s
capacity allocation problem with multiple forwarders is studied in [5]. The
expected contribution given a fixed allotment is obtained using a discrete Markov
chain, and the maximization of the total expected is formulated as a Markov deci-
sion process. [5] derives the optimal allotment from the carrier’s viewpoint, given
that the contractual agreement is exogenously given. [15] proposes the tying
capacity allocation mechanism, in which multiple routes with different capac-
ity utilization are included in the contract. The carrier allocates capacities to
multiple forwarders using their performances on different routes in the previous
year. [38] considers a multiple-forwarder setting and proposes an options con-
tract to mitigate the carrier’s capacity utilization risk. [15] solves for an optimal
solution using a dynamic programming, and [38] provides a numerical example
to show how to obtain an optimal contract, whereas we analytically derive a
sufficient condition for an optimal contract. With the exception of [6,39], which
consider risk-adverse party, these articles including ours assume that each player
is rational, risk-neutral and maximizes its expected profit. These papers employ
a mechanism design approach to find an optimal contract. Ours contributes to
this literature: We consider a different scheme and provide a sufficient condition
such that a two-parameter contract coordinates the chain.
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The rest of this article is organized as follows. Section 2 presents the Stackel-
berg game of the interaction between the carrier and multiple freight forwarders.
A sufficient condition for an equilibrium of the game is derived in Sect. 3. We
also provide an analysis for the centralized chain, in which all decision makers
are assumed to be owned by one single company. Section 4 provides some numer-
ical examples to illustrate our approach, and Sect. 5 gives a summary and a few
extensions.

2 Formulation

Consider an air-cargo service chain, which consists of an air-cargo carrier
endowed with cargo capacity of κ and m freight forwarders, referred to
as 1, 2, . . . ,m. At the beginning of the season, each forwarder and the carrier
independently negotiate the allotment contract. The freight forwarder wants to
pre-book capacity in bulk with the carrier to achieve the discount rate, which is
less than or equal to the spot rate. Let vi denote the spot rate that forwarder i
obtains on ad hoc shipments (without the allotment contract). Assume that the
forwarders are labeled such v1 ≥ v2 ≥ v3 · · · ≥ vm. In the strategic level, the
air-cargo capacity is assumed to be a one-dimensional quantity. In the opera-
tional level, the carrier charges the forwarder based on the chargeable weight,
which is the maximum between the volume weight and the gross weight. If the
shipment is measured in centimeter, then the volume weight is equal to the ship-
ment’s cubic centimeter divided by 6000. We concern with the carrier’s strategic
decisions, not operational.

The interaction between the carrier and the forwarders is modeled as a Stack-
elberg game. The sequence of events is as follows: The carrier offers forwarder i,
the three-parameter contract Ωi = (wi, hi, uri) where 0 < wi ≤ vi is the dis-
count rate, hi the penalty cost for unused portion of the allotment and uri is
the required expected allotment utilization rate. Forwarder i either rejects or
accepts the contract proposal. If the contract Ωi is accepted, then forwarder i
determines the size of the allotment, denoted by xi. The allotment decision
takes place before demands materialize. For each i = 1, 2, . . . ,m, let Di denote
the stochastic demand to forwarder i. During the season, forwarder i accepts all
demand Di at the per-unit price pi where we assume that pi ≥ vi. Given the
allotment xi, the expected contribution of forwarder i is as follows:

πi(xi, Ωi) = E[piDi − ti(xi,Di) − vi(Di − xi)+] (1)

where the transfer payment from forwarder i to the carrier is

t(xi,Di) = wi min(Di, xi) + hi(xi − Di)+. (2)

In (1), the first term is revenue forwarder i earns from its customer demand Di,
the second term the contract payment, and the third term the forwarder’s spot
purchase for the excess demand. In (2), the contract payment is the sum of the
payment for the actual allotment usage and the penalty cost associated with the
unused allotment.
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The first two contract parameters (wi, hi) can be interpreted differently as
follows: The transfer payment from forwarder i to the carrier can be written as

ti(xi,Di) = wi min(Di, xi) + hi(xi − Di)+

= wixi + (hi − wi)(xi − Di)+ (3)

= wixi − (wi − hi)(xi − Di)+ (4)

In (3) and (4), we can interpret wi as the wholesale price for the entire allot-
ment xi, paid upfront by the forwarder. If hi > wi, then the forwarder pays
for the allotment xi upfront at the wholesale price of wi, and after its demand
is realized, the penalty rate of (hi − wi) is charged for the unused portion of
the allotment; see (3). If hi < wi, then the forwarder pays for the allotment xi

upfront at the wholesale price of wi as before, but after its demand is realized,
the refund rate of (wi − hi) for the unused portion of the allotment is returned
from the carrier to the forwarder; see (4). In particular, the contract parame-
ter hi = 0 corresponds to the full refund; the forwarder pays for the allotment xi

upfront at the wholesale price wi and it gets a full refund rate of wi for the
unused portion of the allotment. Finally, if hi = wi, then the forwarder pays
for the entire allotment xi at the wholesale price wi upfront, and there are no
additional monetary transfers. Since the air-cargo selling season is so short that
monetary discount can be ignored, the expected profit is not affected by the tim-
ing in which the payment is collected. Our formulation subsumes both refund
(hi < wi) and penalty (wi < hi) rates for the unused portion of the allotment.
Furthermore, the full-refund contract (hi = 0) is not uncommon, especially when
the freight forwarder is very powerful and holds a large market share on a route.

The third contract parameter uri ensures that forwarder i maintains the
allotment utilization of at least uri; specifically,

ui(x) ≥ uri

where the allotment utilization is defined as the ratio of the expected actual
allotment usage to the allotment size x:

ui(x) =
1
x

E[min(Di, x)]. (5)

In practice, the forwarder generally needs to maintain the high utilization; oth-
erwise, the carrier may choose not to continue with this forwarder in the future
or may not offer a favorable contract term to the forwarder.

Forwarder i accepts the contract if the expected contribution exceeds the
forwarder’s reservation profit, denoted by εi. Let x∗

i (Ωi) denote forwarder i’s
best response to the contract parameter Ωi; i.e.,

x∗
i (Ωi) = argmax{πi(xi, Ωi) : ui(xi) ≥ uri}. (6)

The contract Ωi is accepted if πi(x∗
i (Ωi), Ωi) ≥ εi. If the reservation profit

were thought of as the expected contribution if the forwarder did not have an
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allotment contract, then we could set εi = E[(pi−vi)Di], the contribution margin
in the spot market multiplied by the expected demand. This quantity can be
viewed as the lower bound on the forwarder’s reservation profit.

Let H = ((wi, hi, uri) : i = 1, 2, . . . ,m) denote the contract parameters
offered by the carrier to forwarders 1, 2, . . . ,m, respectively, and x = (xi : i =
1, 2, . . . ,m) the allotments chosen by the forwarders. After all forwarders release
their unused allotments, the carrier re-sells this to direct shippers. Let p0 be the
carrier’s price charged to the direct-ship demand, denoted by D0. The carrier’s
expected profit is defined as:

ψ(x,H) = E[p0 min(D0, κ −
m∑

i=1

min(Di, xi))

+
m∑

i=1

ti(xi,Di)]. (7)

In (7), the first term is the carrier’s revenue from selling the remaining cargo
space to its own direct-ship customers, and the second term the sum of all
forwarders’ transfer payments.

At the equilibrium, the carrier anticipates the forwarders’ best responses
x∗(H) = (x∗

i (Ωi); i = 1, 2, . . . ,m) and chooses the best contract parameters, in
order to its own expected profit:

max
H

ψ(x∗(H),H) (8)

subject to:
m∑

i=1

x∗
i (Ωi) ≤ κ. (9)

In Sect. 3, we will determine the equilibrium of the game, in which each party
maximizes its own expected profit. We refer to this as the decentralized chain.

Finally, we consider the entire air-cargo service chain: Suppose that all for-
warders and the carrier are owned by the same firm, called the integrator. This
is referred to as the centralized chain. The total chain’s expected profit is defined
as the sum of the forwarders’ expected profits and that of the carrier:

τ(x) = E[
m∑

i=1

πi(xi, Ωi) + ψ(x,H)]

= E[
m∑

i=

(piDi − vi(Di − xi)+)

+ p0 min(D0, κ −
m∑

i=1

min(Di, xi))]. (10)

In (10), the first term is the total contribution from customers in need of dedi-
cated services as offered by the forwarder, and the second term the contribution
from the direct-ship customer. Note that in the integrator’s profit, there are no
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contract payment terms, because we assume that the forwarders and the carrier
belong to the same firm, and their transfer payments cancel out when we analyze
the entire service chain.

Assume that pi > p0 > vi for each i = 1, 2, . . . ,m. The first inequality
follows from the fact that the forwarder offers value-added service, e.g., customs
clearance and door-to-door service, whereas the carrier does not. The second
inequality follows from the observation that the direct-ship customer is typically
the last-minute customer, who could not obtain cargo space in the spot market.
Since pi > p0, we assume in (10) that the integrator accepts all demands for
dedicated services,

∑m
i=1 Di. The integrator could handle this demand using

either its cargo capacity or the space elsewhere. Since p0 > vi, the integrator
wants to reserve some capacity for the last-minute direct-ship customer D0; i.e.,
it handles xi units of demand Di using its own capacity and purchases from the
spot market for the excess demand (Di − xi)+ at the rate of vi. Specifically, the
expected contribution from demand Di to the carrier can be written as:

piDi − vi(Di − xi)+

= pi min(xi,Di) + (pi − vi)(Di − xi)+ (11)
= (pi − vi)Di + vi min(Di, xi). (12)

In (11), the margin for the portion handled by the carrier itself is pi, whereas
that by the spot market is pi − vi. It can be seen from (12) that the larger the
allotment xi, the greater the contribution from demand Di, but the smaller the
remaining capacity for the direct-ship demand D0 which generates higher margin
(since p0 > vi). In (10), the integrator needs to determine the allotment xi for
the demand i in order to maximize the expected total contribution from both
direct-ship customer and customers in need of dedicated services.

The service chain is said to be efficient if the total expected contribution of
the chain (the integrator’s expected profit) is equal to the sum of the profits of all
parties. The contract which allows the efficiency to occur is said to coordinate the
service chain [12]. The coordinating contract is desirable, since the service chain
risk is shared appropriately, and there is no efficiency loss in the decentralized
chain. In the analysis, we will find an equilibrium coordinating contract, if exists.

3 Analysis

For each i = 0, 1, 2, . . . ,m, assume that demand Di is a nonnegative continuous
random variable and is independent of one another. Let Fi be the distribution
function of Di, F̄i the complementary cumulative distribution function, F−1

i the
quantile function, and ξi the density function. Define υ−1

i : (0, 1) → (0,∞) as
the inverse function of the utilization function; i.e., ui(x) = t if and only if
υ−1

i (t) = x.

3.1 Centralized Chain

The integrator endowed with cargo capacity κ wants to choose allotments
x = (x1, x2, . . . , xm) for demands (D1,D2, . . . , Dm) so that the total expected
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profit of the chain τ(x) is maximized. The integrator’s problem can be formu-
lated as the finite-horizon Markov decision process (MDP). There are m periods,
and the integrator decides an allotment xn for demand Dn in period n. As in
most revenue management literature, we assume that the time periods are back-
ward from m,m−1,m−2, . . . , 3, 2, 1. In period n, let the state be the cumulative
allotment usage s up to now, and let gn(s) denote the value function. At the
beginning of the period, the integrator observes the state s and chooses an allot-
ment xn. The optimality equation is as follows:

gn(s) = max
0≤xn≤κ−s

E[vn min(xn,Dn)

+ gn−1(s + min(xn,Dn))] (13)

for n = 1, 2, . . . ,m. An allotment chosen by the integrator cannot be greater
than the remaining capacity, κ − s. In period n, the integrator wants to choose
an allotment xn, which maximizes the sum of the expected contribution from
demand Dn and the value function gn−1, the revenue to go from period (n−1) to
the end of the horizon. Recall from (12) that the contribution from demand Dn

is E[(pi − vi)Di + vi min(Di, xi)]: In the optimality Eq. (13), we ignore the first
term and account only for the second term, since the first term is constant and
does not depend on the allotment.

The boundary conditions are as follows:

gn(κ) = gn−1(κ) (14)
g0(s) = E[p0 min(D0, κ − s)]. (15)

In (14), the value function remains constant when the entire capacity κ has
been used as the allotment. In (15), the terminal value function corresponds to
the expected contribution from the direct-ship customer, when the remaining
capacity is

κ − s = κ −
m∑

n=1

min(xn,Dn).

Note that in the MDP, we assume that demands are materialized sequentially
and that the cumulative allotment usage is known at the beginning of each
period. Since the horizon is so short that there is no monetary discount, finding
the value function given that there is no initial allotment, gm(0), is equivalent
to maximizing the expected profit of the integrator, max{τ(x) :

∑m
i=1 xi ≤ κ}.

The MDP formulation (13)–(15) for the integrator’s problem is similar to the
MDP formulation of the capacity allocation problem for the passenger airline,
where the spot price vn corresponds to the class-n fare, and the allotment xn the
protection for class-n demand; see [36] Section 2.2.2 for the multi-class capac-
ity allocation problem for the passenger airline. If the capacity is large, directly
solving the MDP may be computationally intensive, and several efficient heuris-
tics, e.g., EMSR-A (expected marginal seat revenue-version A) and EMSR-B, are
reviewed in Section 2.2.4 in [36].
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Consider the special case when there is one forwarder. The integrator’s
expected profit becomes:

τ(x) = π1(x1, Ω1) + ψ(x1, Ω1)
= E[p1D1 + p0 min(D0, κ − min(D1, x1))

− v1(D1 − x1)+]. (16)

The integrator’s problem of choosing an allotment x1 in order to maximize the
expected profit (16) is presented in Proposition 1.

Proposition 1

1. If v1 > p0, then x0
1 = κ.

2. If v1 < p0, then

x0
1 =

[
κ − F−1

0

(
1 − v1

p0

)]+

. (17)

Proof. Proof can be found in Theorem 4 [2].

Recall that we assume p0 > v1. Without this assumption, the integrator’s prob-
lem becomes trivial; see the first result in Proposition 1.

The optimal allotment (17) can be found using the marginal analysis. The
integrator wants to find a protection for the direct-ship demand, D0. Suppose
that y units of capacity have been reserved for D0 and that at the beginning of
the season, there is a request from D1 for an allotment. If the integrator sells now
as an allotment, then it earns v1; see (12). On the other hand, if the integrator
does not sell now and reserves for the direct-ship customers, then it earns the
expected margin of p0P (D0 ≥ y). The integrator continues to protect for the
direct-ship customer until v1 = p0P (D0 ≥ y). Re-arranging the previous term,
we find that the optimal protection for the direct-ship customer is F−1

0 (1−v1/p0);
thus, the optimal allotment for D1 is given in (17).

3.2 Decentralized Chain

Given that the carrier offers the contract Ωi = (wi, hi, uri), forwarder i chooses
an optimal allotment x∗

i (Ωi) in (6), which maximized its own expected profit.

Lemma 1. Given the contract proposal Ωi, the forwarder’s best response allot-
ment x∗

i (Ωi) is as follows:

1. If wi ≥ vi, the forwarder’s expected profit is decreasing and maximized
at x∗

i (Ωi) = 0.
2. If wi < vi and hi = 0, the forwarder’s expected profit is increasing and maxi-

mized at x∗
i (Ωi) = υ−1

i (uri).
3. If wi < vi and hi > 0, the forwarder’s expected profit is concave, unimodal

and maximized at

x∗
i (Ωi) = min{F−1

i

(
1 − hi

vi − wi + hi

)
, υ−1

i (uri)}. (18)
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Proof. See the proof in [2].

The first part of Lemma 1 asserts that if the discount contract price is greater
than or equal to the spot price, the forwarder would not pre-book any allotment
at all. On the other hand, suppose that the contract price does not exceed the
spot price. If the carrier imposes no penalty cost or gives full refund for the
unused allotment (i.e., hi = 0), the forwarder’s expected profit is increasing, and
the forwarder would choose the largest allotment that satisfies the required allot-
ment utilization. The last part asserts that if there is a positive penalty cost or a
partial refund is given (i.e., hi > 0), the forwarder should pre-book the allotment,
which balances the cost associated with the unused allotment and the opportu-
nity cost from not having enough allotment. An optimal allotment in Lemma 1
bears a striking resemblance to the optimal order quantity in the newsvendor
(single-period) inventory model. In the newsvendor model, an optimal order
quantity is chosen such that the expected total cost E[cu(D − q)+ + co(q −D)+]
is minimized: q∗ = F−1(1−co/(cu +co)) where cu (resp., co) is the unit underage
(resp., overage) cost from ordering less (resp., more) than demand, and F is the
distribution of demand D; see a standard textbook in operations management
for the newsvendor model, e.g., chapter 5 in [29]. In ours, the overage corre-
sponds to the penalty cost for the unused allotment hi, and the underage is the
saving forgone vi − wi if the forwarder purchases from the spot market instead
of using the allotment. The critical ratio 1 − co/(cu + co) becomes as in (18).

Let x0 = (x0
i ; i = 1, 2, . . . ,m) be the integrator’s optimal allotment, which

maximizes the expected profit of the centralized chain. Recall that x∗(H) =
(x∗

i (Ωi); i = 1, 2, . . . ,m) denotes the optimal allotments chosen by the for-
warders, in order to maximizes their own profits. Below, we will determine the
equilibrium of the game, in which each party maximizes its own expected profit.
For shorthand, denote Λi = 1/Fi(x0

i ) − 1.

Theorem 1. Suppose that ūri = 0 for each i = 1, 2, . . . ,m and that there exists
0 < h̄i < viΛi such that πi(x0

i , Ω̄i) = εi where

w̄i = vi − h̄i/Λi (19)

Then, the contract H̄ = (Ω̄i; i = 1, 2, . . . ,m) where Ω̄i = (w̄i, h̄i, ūri) is an
equilibrium of the game and coordinates the service chain.

Proof. In the decentralized chain, the carrier wants to find H which maximizes

ψ(x∗(H),H) = τ(x∗(H)) −
m∑

i=1

πi(x∗
i (Ωi), Ωi) (20)

subject to: πi(x∗
i (Ωi), Ωi) ≥ εi; i = 1, 2, . . . ,m. (21)

The Karush-Kuhn-Tucker (KKT) conditions that are necessary for a point H̄ =
((w̄i, h̄i, 0); i = 1, 2, . . . ,m) to solve (20)–(21) are as follows: There exists a
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multiplier λ̄i ≥ 0 for i = 1, 2, . . . ,m satisfying

∂ψ

∂w̄j
−

m∑

i=1

λ̄i
∂πi

∂w̄j
= 0; j = 1, 2, . . . ,m (22)

∂ψ

∂h̄j
−

m∑

i=1

λ̄i
∂πi

∂h̄j
= 0; j = 1, 2, . . . ,m (23)

λ̄j(εj − πj) = 0; j = 1, 2, . . . ,m. (24)

Suppose that λ̄j > 0. It follows from (24) that

πj(x∗
j (Ω̄j), Ω̄j) = εj .

for each j = 1, 2, . . . ,m. The contract parameters are chosen such that the
forwarder earns exactly its reservation profit. Recall that ψ = τ − ∑

i πi. Note
that

∂ψ

∂w̄j
=

∂τ(x∗(H̄))
∂w̄j

− ∂πj(x∗(Ω̄i), Ω̄i)
∂w̄j

.

Equation (22) becomes

∂τ(x∗(H̄))
∂w̄j

− (1 + λ̄j)
∂πj(x∗

j (Ω̄j), Ω̄j)
∂w̄j

= 0. (25)

The contract parameter (19) is chosen such that

x∗
j (Ω̄j) = x0

j = F−1
i

(
1 − h̄j

vi − w̄j + h̄j

)
. (26)

(In other words, after terms are re-arranged, (26) becomes (19).) It follows
from (26) and Lemma 1 that the forwarders’ best responses also maximize the
integrator’s expected profit: The necessary conditions are as follows:

∂τ

∂xj
=

∂πj

∂xj
= 0 for j = 1, 2, . . . ,m. (27)

Applying the (multivariable) chain rule to (25) and invoking the necessary con-
ditions (27), we conclude that (22) holds. Similarly, we can show that (23) holds.
The KKT conditions are satisfied.

At the point H̄ = ((w̄i, h̄i, 0) : i = 1, 2, . . . ,m), the carrier receives the maxi-
mum chain’s expected profit less the total reservation profits of all forwarders:

ψ(x0, H̄) = τ(x0) −
m∑

i=1

εi.

The carrier cannot do better than this; thus, the point H̄ is an equilibrium
solution to our sequential game.
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At the equilibrium, the carrier offers a contract parameter H̄ so that the
forwarder’s best response is equal to the integrator’s optimal allotment. The
forwarder earns exactly its reservation profit. In this sequential game, the carrier
is the leader, and there is a so-called leader’s first-mover advantage.

In Theorem 1, the carrier imposes a strictly positive penalty cost for the
unused portion of the allotment. Theorem 2 presents an equilibrium coordinating
contract, in which no penalty cost is imposed.

Theorem 2. Suppose that h̄i = 0 for each i = 1, 2, . . . ,m and that there exists
0 < w̄i < vi such that πi(x0

i , Ω̄i) = εi where

ūri = ui(x0
i ). (28)

Then, the contract H̄ = (Ω̄i; i = 1, 2, . . . ,m) where Ω̄i = (w̄i, h̄i, ūri) is an
equilibrium of the game and coordinates the service chain.

Proof. Recall from Lemma 1 that if w̄i < vi, then x∗
i (Ω̄i) = υ−1

i (ūri). From the
assumption that Di is continuous, we have that υ−1

i is a one-to-one function and
conclude that x∗

i (Ω̄i) = x0
i . The rest of the proof is similar to that in Theorem 1.

Theorem 2 states that if the penalty cost for the unused allotment is zero and
that the contract price is less than the spot price, then the forwarder chooses the
largest allotment which satisfies the required utilization. In the carrier’s prob-
lem, the required utilization becomes the decision variable. Setting the required
utilization equal to the expected utilization evaluated at the integrator’s optimal
allotment, the chain becomes efficient.

In practice, it is uncommon to a full-refund contract (i.e., hi = 0). To ensure
its high customer service level, the forwarder may ask for a very large allot-
ment (much greater than its anticipated customer demand) and release the
unwanted allotment so late that the carrier might not have enough time to
re-sell to direct-ship customers. To prevent the forwarder to pre-book a large
allotment, Theorem 2 suggests that the carrier needs to impose the minimum
utilization requirement.

In Theorems 1 and 2, we present two contract schemes that can coordinate
the service chain, and the optimal contract has two parameters. The discount
contract price is included in the two optimal schemes. In Theorem 1, the other
contract parameter is the positive penalty cost, whereas in Theorem 2, the other
parameter is the required allotment utilization. We do not need to have a three-
parameter contract in order for the air-cargo service chain to be efficient. Our
result provides some managerial insights that can help the carrier to negotiate
the contractual terms with the forwarders.

4 Numerical Examples

We provide a numerical example to illustrate our approach of finding an equi-
librium in the air-cargo contract game. As an illustration, assume that there
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are m = 2 forwarders and that demands are independent. For each i = 0, 1, 2,
demand Di (in kilogram) follows the gamma distribution with the shape param-
eter αi and the rate parameter βi, shown in Table 1. The carrier’s cargo capacity
is assumed to be κ = 800 kg. The per-unit price (in THB/kilogram) the for-
warder charges its customer, the per-unit price the carrier charges its direct-ship
customer and the spot prices observed by the forwarders are also given in Table 1.
These parameters are similar to those on the Bangkok-Dublin (BKK-DUB) route
in the medium season in 2014.

Table 1. Parameters for the numerical example.

pi vi αi βi

AC (i = 0) 60.00 N/A 2.30 0.01

FF1 (i = 1) 69.00 55.00 5.10 0.01

FF2 (i = 2) 62.00 50.00 3.60 0.01

Calculation details are provided below. Recall the forwarder i’s expected
profit (1)

E[piDi − wi min(Di, xi) − vi(Di − xi)+ − hi(xi − Di)+]. (29)

For the first term in (29), the forwarder’s mean demand E[Di] is the expected
value of the gamma distribution:

E[Di] = αi/βi.

For the second term in (29), we evaluate the expected allotment usage
E[min(Di, x)] using the limited expected value (LEV) function. The LEV func-
tion for gamma random variable, Y , with the shape parameter α and the scale
parameter θ is

E[min(Y, x)] = αθΓ (α + 1;x/θ) + x[1 − Γ (α;x/θ]

where Γ (α;x) is the incomplete gamma function defined by

Γ (α;x) =
1

Γ (α)

∫ x

0

tα−1e−tdt

and Γ (α) is the gamma function, defined by

Γ (α) =
∫ ∞

0

xα−1e−xdx.

(For the gamma distribution, the scale parameter is equal to the reciprocal of
the rate parameter.) For the last two terms in (29), we use the following

E[(Di − x)+] = E[Di] − E[min(Di, x)]

E[(x − Di)+] = x − E[min(Di, x)]
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where the expected allotment usage is calculated previously using the LEV func-
tion. Recall the carrier’s expected profit (7):

E[p0 min(D0, κ −
m∑

i=1

min(Di, xi)) +
m∑

i=1

ti(xi,Di)].

To calculate the first term, we again make use of the LEV.

E[min(D0, κ −
m∑

i=1

min(Di, xi)]

=
∫ xm

0

· · ·
∫ x1

0

E[min(D0, κ −
m∑

i=1

ti)]Πm
i=1dFi(ti)

+
∫ ∞

xm

· · ·
∫ ∞

x1

E[min(D0, κ −
m∑

i=1

xi)]Πm
i=1dFi(ti)

=
∫ xm

0

· · ·
∫ x1

0

E[min(D0, κ −
m∑

i=1

ti)]Πm
i=1dFi(ti)

+ E[min(D0, κ −
m∑

i=1

xi)](Πm
i=1F̄i(xi)).

The integrator’s expected profit (10) can be found similarly. Throughout our
numerical examples, calculations are done in R. For instance, the cubature
package is used for numerical integration over simplexes, qgamma, dgamma and
pgamma return the quantile, density and cumulative distribution functions of the
gamma distribution.

4.1 Centralized Chain

Suppose that we use the variant of EMSR algorithm given in Section 5.2 [22].
The allotment xi for demand Di is given as follows:

x0
i = F−1

i (1 − vi+1/vi); i = 0, 1, 2, . . . ,m − 1 (30)

x0
m = (κ −

m−1∑

i=0

x0
i )

+ (31)

where v0 = p0 is the per-unit price to the direct-ship customer. Using (30)–(31),
we obtain that

x0 = (x0
0, x

0
1, x

0
2) = (63, 243, 494)

and the integrator’s expected profit is τ(x0) = 42458. The integrator would
allocate x0

1 = 243 kg to demand D1 and x0
2 = 494 to D2. The remaining capacity

of x0
0 = 63 is reserved for the direct-ship customer. The expected utilizations by

demands D1 and D2 are u1(x0
1) = 97.99% and ux(x0

2) = 66.30%, respectively.
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4.2 Decentralized Chain

Assume that the reservation profits are ε1 = 12000 and ε2 = 10000. (Note that
these two values are greater than the lower bounds, E[(p1 − v1)D1] = 7140 and
E[(p2 − v2)D2] = 4320, when the forwarders use only the spot markets.) We
illustrate how to find an equilibrium coordinating contract using Theorem 1 in
Example 1 and Theorem 2 in Example 2

Example 1. Consider the contract C1: The carrier offers the contract price w1 =
49.50 (resp., w2 = 49.00) and the penalty cost h1 = 55.00 (resp., h2 = 1.33) to
forwarder 1 (resp., 2). Note that the penalty cost is chosen such that hi = λiviΛi

where λi ∈ (0, 1) is given in Table 2, and that the contract price wi is given
by (19). (We want λi < 1 since we are trying to find h̄i < viΛi; see Theorem 1.)
If forwarder i were to accept the contract proposal, it would choose x∗

i (Ωi) = x0
i .

Nevertheless, both forwarders reject this contract C1, because their expected
profits given the contract parameters are less than their reservation profits.
On the other hand, both forwarders accept contract C2 in Table 2, since their
expected profits are greater than their reservation profits. Note that in contract
C2 when the larger discount is given to the forwarder (i.e., w1 decreases from
49.50 to 27.50), the penalty cost for the unused portion of the allotment also
becomes larger (i.e., h1 increases from 55 to 275). Both contracts C1 and C2
coordinate the chain; i.e., x∗

i (Ωi) = x0
i , and the total profit in the chain is max-

imized and equal the optimal integrator’s profit, Contract C1 is rejected by the
forwarders, whereas C2 is accepted: The expected profits of forwarders 1 and 2
are 12342 and 11407, respectively, and the carrier’s expected profit is 18709,
which is about 44% of the chain’s optimal profit. Contract C2 is not an equilib-
rium solution in our sequential game, since the carrier can still improve its profit
while giving the forwarders at least their reservation profits.

Theorem 1 states that at the equilibrium, the forwarders earn exactly their
reservation profits. Note that

(π1, π2) given C1 ≤ (ε1, ε2) ≤ (π1, π2) given C2.

We can use a bisection method to search for an optimal contract with (λ1, λ2)

(0.10, 0.10) ≤ (λ1, λ2) ≤ (0.50, 0.50)

such that the forwarders’ expected profits are equal to their reservation profits.
If we stop when |πi − εi| ≤ δi where δi is a pre-specified tolerance, say 100 THB,
then we obtain contract C3 in Table 2. The discount contract price for forwarder 1
(resp., 2) is 28.88 THB/kg (resp., 29.75 THB/kg), and the penalty cost for the
unused portion of the allotment is 261.25 THB/kg (resp., 5.38 THB/kg). The
forwarders earn (approximately) their reservation profits, and the carrier earns
the rest, about of 48% of the optimal integrator’s expected profit.

At the equilibrium contract with strictly positive penalty cost, the car-
rier does not need to impose the minimum utilization requirement. At the
equilibrium, the two-parameter contract is sufficient to coordinate the chain.
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The two contract parameters (wi, hi) can be interpreted differently using (3)–
(4). For forwarder 1, Ω̄1 = (w̄1, h̄1) = (28.88, 261.55), the wholesale price for
the allotment x∗

1(Ω̄1) = 243 is 28.88, and the payment upfront is 7014.90; after
demand D1 materializes, the unused allotment is charged at the penalty rate of
232.38. For forwarder 2, Ω̄2 = (w̄2, h̄2) = (29.75, 5.38), the wholesale price for
the allotment x∗

2(Ω̄1) = 494 is 29.75, and the payment upfront is 14704.32; after
demand D2 materializes, the unused allotment is returned at the refund rate of
24.37.

Table 2. Possible contracts with strictly positive penalty costs hi > 0.

Contract C1 C2 C3

λ1 0.10 0.50 0.48

λ2 0.10 0.50 0.41

h1 55.00 275.00 261.25

h2 1.33 6.64 5.38

w1 49.50 27.50 28.88

w2 45.00 25.00 29.75

x∗
1(Ω1) 243 243 243

x∗
2(Ω2) 494 494 494

π1(x
∗
1, Ω1) 8180 12342 12082

π2(x
∗
2, Ω2) 5737 11407 10060

ψ(x∗,H) 28541 18709 20316

Total expected profit 42458 42458 42458

Example 2. The equilibrium coordinating contract found in Theorem 1 corre-
sponds to the positive penalty cost (or partial refund payment) for the unused
allotment. In Example 2, we illustrate how to use Theorem 2 to find an equilib-
rium coordinating contract with no penalty cost (or full refund payment), hi = 0
for i = 1, 2. By solving for πi(x0

i , (w̄i, 0, ūri)) = εi as specified in Theorem 2, we
find the contract price as follows:

w̄i =
E[piDi − vi(Di − x0

i )
+] − εi

E[min(Di, x0
i )]

. (32)

Substituting all input parameters and the integrator’s optimal allotments
into (32), we obtain the equilibrium coordinating contract C4 in Table 3. With
contract C4, the carrier imposes no penalty cost on the unused allotment but
needs to impose the required allotment utilization of 97.99% and 66.30% for
forwarders 1 and 2, respectively. Also, observe that when the carrier imposes no
penalty cost, the discount terms in C4 are not as generous as those in C3.
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Table 3. Equilibrium coordinating contracts with two parameters.

Forwarder C3 C4

1 2 1 2

Disc. price 28.88 29.75 34.58 32.67

Penalty cost 261.55 5.38 N/A N/A

Req. Util. (%) N/A N/A 99.79 66.30

Our numerical examples illustrate how to construct equilibrium coordinating
contracts. Using Theorem 1, we construct a two-parameter contract C3 with the
discount contract price and the positive penalty cost. Using Theorem 2, we
construct another two-parameter contract C4 with the discount contract price
and the minimum allotment utilization requirement.

5 Concluding Remark

We consider the air-cargo service chain, which consists of the carrier and multi-
ple freight forwarders. Each of the forwarders and the carrier may enter into an
allotment contract before the selling season starts. We formulate the contract
design problem as the Stackelberg game, in which the carrier is the leader and
proposes the contract. The proposed contract in this article has three parame-
ters, namely the discount contract price, the penalty cost for the unused portion
of the allotment and the required allotment utilization. Each of the forwarders
responses by choosing the best allotment, which maximizes its expected profit,
given the carrier’s offered contract. We show that the two-parameter contract
is sufficient to coordinate the chain. At the equilibrium, the forwarders’ opti-
mal allotments correspond to the integrator’s optimal allotments that maximize
the total expected profit in the chain, and the forwarders receive exactly their
reservation profits.

A few extensions are as follows: When forwarders’ services are similar and
substitutable, the demand to a particular forwarder depends on both its price and
the competitors’ prices. Along the same lines, the carrier’s direct-ship demand
may depend on the carrier’s direct-ship price and the forwarders’ prices. We
can extend ours to include the price competition. For instance, suppose that the
pricing decision is made before the contract process begins. Then, the equilibrium
prices and the corresponding demands become our input parameters (i.e., pi

and Di for i = 0, 1, 2, . . . ,m) in this article. Another extension is to capture
asymmetric information between the carrier and the forwarder. The forwarder
may possess some private information, e.g., its customer demand, its spot price
and its reservation profit. We can study how to design an optimal contract. For
instance, the carrier may offer a menu of possible contracts, and the forwarder
optimally selects from the menu. Finally, we can apply our approach to other
RM industry, in which a portion of the perishable capacity is sold through a
medium- or long-term contract. For instance, in the passenger airline industry,
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the airline usually blocks a pre-specified number of seats to a wholesaler/agent
or other airlines under the interline or codeshare agreements, which are agreed
upon prior to the start of the selling season. We hope to pursue these or related
problems.
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