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Preface

This book includes extended and revised versions of selected papers from the
7th International Conference on Operations Research and Enterprise Systems
(ICORES 2018), held in Funchal, Madeira, Portugal, during January 24–26.

We received 59 paper submissions from 32 countries, of which 20% are included in
this book. These papers were selected based on several criteria including reviews
provided by Program Committee members, session chair assessments, and also pro-
gram chair perspectives across all papers included in the technical program. The
authors of these selected papers were then invited to submit revised and extended
versions of their papers for formal publication.

The purpose of the annual ICORES conferences is to bring together researchers,
engineers, and practitioners interested in both advances and applications in the
field of operations research. Two simultaneous tracks are held, one covering
domain-independent methodologies and technologies and the other practical work
developed in specific application areas.

The papers selected for this book contribute to current research in operations
research and a better understanding of complex enterprise systems. We commend each
of the authors for their contributions, and gratefully thank our many reviewers who
ensured the high quality of this publication.

January 2018 Greg H. Parlier
Federico Liberatore

Marc Demange
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A Stochastic Production Frontier Analysis
of the Brazilian Agriculture in the Presence

of an Endogenous Covariate

Geraldo da Silva e Souza(&) and Eliane Gonçalves Gomes

Secretaria de Inteligência e Relações Estratégicas – Embrapa,
Brasília, DF 70770-901, Brazil

{geraldo.souza,eliane.gomes}@embrapa.br

Abstract. Production frontier analysis aims at the identification of best pro-
duction practices and the importance of external factors, endogenous or not, that
affect the production function and the technical efficiency component. In par-
ticular, in the context of the Brazilian agriculture, it is desirable for policy
makers to identify the effect on production of variables related to market
imperfections. Market imperfections occur when farmers are subjected to dif-
ferent market conditions depending on their income. In general, large scale
farmers access lower input prices and may sell their production at lower prices,
thereby making competition harder for small farmers. Market imperfections are
typically associated with infrastructure, environment control requirements and
the presence of technical assistance. In this article, at county level, and using
agricultural census data, we estimate the elasticities of these variables on pro-
duction by maximum likelihood methods. Technological inputs dominate the
production response, followed by labor and land. Environment control has a
positive net effect on production, as well as technical assistance. The indicator of
infrastructure affects positively technical efficiency. There is no evidence of
technical assistance endogeneity.

Keywords: Stochastic frontier � Endogeneity � Agriculture

1 Introduction

As pointed out in other sources [1–3], Brazilian agriculture is highly concentrated.
Only five hundred thousand farmers, 11.4% of the total, produced 87% of the total
production value in 2006 (last agricultural census). These data motivate studies that
identify factors of importance for public policies leading to productive inclusion in
agriculture in Brazil. Indeed, the major (state) agricultural research company in Brazil
defines “productive insertion and poverty reduction” as one of the impact axes in its
strategic planning map. Access to technology is the main cause of production con-
centration and, very likely, of poverty in the fields. We see, in this context, that the
agricultural sector demands proper public policies in order to improve access to
technology and to increase productive insertion and reduce rural poverty.

As emphasized in Souza and Gomes [3], market imperfections are the main cause
of inhibition of the access of farmers to technology and, therefore, to productive

© Springer Nature Switzerland AG 2019
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inclusion. Market imperfections are the result of asymmetry in credit for production,
infrastructure, information availability, rural extension and technical assistance, among
others [4].

The lack of physical infrastructure and education make it difficult for the rural
extension to fulfill its role and, therefore, gain proper access to technology. Another
point to be emphasized is related to the imperfection of the production markets. Souza
et al. [5] highlight that small farmers sell their products at lower values and buy inputs
at higher prices. The large scale producers are able to negotiate better input and output
prices and the existence of these different prices characterizes a market imperfection.
Unfavorable negotiation may lead to higher prices for the adoption of better tech-
nologies and thus lead to difficulties in achieving higher economic efficiency.

We contribute to this literature modeling production value as a function of several
aggregates, reflecting, on a municipal level, the input usage, environment control,
technical assistance and the effect of market imperfection variables on the technical
efficiency of production. The modeling process postulates a Cobb-Douglas represen-
tation in a typical stochastic frontier approach and is carried out under the assumption
of endogeneity of technical assistance. The models we used follow the basic lines of
Karakaplan and Kutlu [6] and Karakaplan [7]. We extend Karakaplan’s approach to the
truncated normal and the exponential distributions. Alternatives to the approach are
also suggested, considering non-linear models with the Murphy and Topel [8] variance
correction. In this context we allow the use of fractional regressions [9, 10]. Our results
extend Souza and Gomes’ [3] findings.

2 Data

The data sources for this article are the Brazilian agricultural census of 2006, the
Brazilian demographic census of 2010, and municipal databases on education and
health.

We follow the approach of Souza et al. [2, 5] in the definition of production and
contextual variables.

Production (inputs and output) is defined using monetary values. The source is the
agricultural census of 2006 [11]. The output variable is the value of production and the
inputs are expenses on labor (labor), land (land) and technological inputs (techinputs),
which includes machinery, improvements in the farm, equipment rental, value of
permanent crops, value of animals, value of forests in the establishment, value of seeds,
value of salt and fodder, value of medication, fertilizers, manure, pesticides, expenses
with fuel, electricity, storage, services provided, raw materials, incubation of eggs and
other expenses. Value of permanent crops, forests, machinery, improvements on the
farm, animals and equipment rental were depreciated at a rate of 6% a year (machines –
15 years, planted forests – 20 years, permanent cultures – 15 years, improvements – 50
years, animals – 5 years). Farm data from the agricultural census were aggregated to
form totals for each county. A total of 4,965 counties (almost 90% of the total)
provided valid data for our analysis.

4 G. da Silva e Souza and E. G. Gomes



The contextual variables we chose are a performance municipal index of social
development (social), an index of demographic development (demog), the proportion
of farmers who received technical assistance (techassist), the proportion of non-
degraded areas (ndareas) and the proportion of forested areas (forest). The last two are
proxies for environment control. Market imperfections are mainly associated with the
social index.

The demographic index captures the population dynamics that tend to follow rural
development. The variables considered in this dimension of development are the
migration index (rural to urban areas), average number of farm dwellers, aging rate
(total municipal rural population over rural population over 60), dependency rate (ratio
of the rural population with age in the bracket 15–59 over the rural population with age
in the bracket of 0–14 plus over 60), ratio of urban to rural population in the munic-
ipality. The source is the demographic census of 2010 [12] in general, and the 2000 and
2010 census for the migration index. The demographic score was computed using the
ranks of these measurements, weighted by the relative multiple correlation coefficient.

The index of social development reflects the level of well-being, favored by factors
such as the availability of water and electric energy in the rural residences, and level of
education, health and poverty in the rural households. It was computed as a weighted
average of normalized ranks of the following variables: education (illiteracy rate),
poverty index, average gross per capita income of rural households, proportion of farms
with access to electricity and water, index of basic education, index of performance of
the public health system and vulnerability of children up to five years old. These
indicators were obtained from the Brazilian demographic census 2010 [12], from the
Brazilian agricultural census 2006 [11], and from the databases of the National Institute
of Research and Educational Studies (INEP), referring to education in 2009 [13], and of
the Ministry of Health 2011 data [14]. The social score was computed using the ranks
of these measurements, weighted by the relative multiple correlation coefficient.

3 Methodology

Our approach to assess production and efficiency of production follows along the lines
of Karakaplan and Kutlu [6] and Karakaplan [7]. The structural model for our appli-
cation is defined by (1) for municipality i, where techassist is assumed endogenous and
yi is the log of gross income.

yi ¼ b0 þ b1 log laborið Þþ b2 log landið Þþ b3 log techinputsið Þþ b4 forextið Þ
þ b5 ndareasið Þþ b6 techassistið Þþ vi � ui

vi; ui independent

vi �N 0; r2
� �

ð1Þ

The ui are non-negative inefficiency components and the vi are a random sample of
an idiosyncratic error component. We assume three possible distributions for the
inefficiency component: half-normal, exponential and truncated normal.

A Stochastic Production Frontier Analysis of the Brazilian Agriculture 5



For the half-normal we have ui �N þ 0; r2ui

� �
and r2ui ¼

exp
b7 þ b8 log laborið Þþ b9 log landið Þþ b10 log techinputsið Þþ b11 forextið Þþ
b512 ndareasið Þþ b13 socialið Þþ b14 demogið Þ

 !
. For

the exponential ui � exp fið Þ; f[ 0, we assume the variance r2ui ¼ f�2 with the same
representation as the half-normal. Finally, for the truncated normal ui �N þ li;r

2
u

� �
and

li ¼ b7 þ b8 log laborið Þþ b9 log landið Þþ b10 log techinputsið Þþ b11 forextið Þþ
b512 ndareasið Þþ b13 socialið Þþ b14 demogið Þ .

Endogeneity in Karakaplan and Kutlu [6] and Karakaplan [7] means correlation of
a variable with vi. This assumption invalidates the classic stochastic frontier analysis.
A classic approach for handling this issue is to use two stage least squares or the
general method of moments (GMM), as suggested in Amsler et al. [15]. On the other
hand, Karakaplan and Kutlu [6] and Karakaplan [7] suggest the use of instrumental
variables in a context of maximum likelihood estimation, resembling classical frontier
analysis. In our application, we follow this approach and the instruments considered for
techassist are the exogenous variables plus demographic and social indicators. The
instrumental variable regression is assumed to be linear but the idea can be easily
generalized to non-linear specifications techassisti ¼ f zi; dð Þþ ei. In this formulation, zi
is a vector of instrumental variables and e0 ¼ e1; . . .; enð Þ has mean zero and variance
matrix r2e I. Heteroskedastic formulations are possible assuming a general variance
matrix X. This formulation also allows for the Bernoulli specification described in
Papke and Wooldridge [9], which is particularly convenient if one is dealing with
fractions. In this instance, the model can be estimated assuming f :ð Þ to be a distribution
function.

Karakaplan [7] in its ‘sfkk’ module in the Stata software makes use of the half-
normal distribution and the linear instrumental variable regression.

Let q be the correlation between ei and vi. Endogeneity means q 6¼ 0. We assume
the bivariate normal distribution as in (2).

~ei
vi

� �
¼ ei=re

vi

� �
�N

0
0

� �
;

1 qr
qr r2

� �� 	
ð2Þ

Using a Cholesky decomposition we may write (3) and, therefore, we have (4).

~ei
vi

� �
¼ 1 0

qr r
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p� �
~ei
~wi

� �
ð3Þ

yi ¼ b0 þ b1 log laborið Þþ b2 log landið Þþ b3 log techinputsið Þþ b4 forextið Þ
þ b5 ndareasið Þþ b6 techassistið Þþ g~ei þwi � ui

wi ¼ r
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p
~wi

l ¼ qr

ð4Þ

6 G. da Silva e Souza and E. G. Gomes



Therefore, when the residual variance is constant, the component g~ei is the cor-
rection term for bias. The test of g ¼ 0 is an endogeneity test. The model is estimated
by maximum likelihood.

For the half-normal distribution, the likelihood function is given by (5).

log L hð Þ ¼
Xn
i¼1

ln 2=pð Þ � ln r2Si
� �� ei

�
r2Si

� �
2

þ lnU
kiei
rSi

� 	� 

þ
Xn
i¼1

ln 2p� ln re �
Pn

i¼1 e2i
�
r2e

� �
2

�  ð5Þ

Here ki ¼ rui=r and r2Si ¼ r2ui þ r2. Notice that ei is defined by (6).

ei ¼ yi �
b0 þ b1 log laborið Þþ b2 log landið Þþ b3 log techinputsið Þþ b4 forextið Þ
þ b5 ndareasið Þþ b6 techassistið Þþ g~ei

 !

ð6Þ

For the exponential model, the likelihood function becomes (7) and for the trun-
cated normal it is defined as in (8), where c ¼ r2u

�
r2S; r2S ¼ r2u þ r2.

log L hð Þ ¼
Xn
i¼1

� ln ruð Þþ r2

2r2u
þ lnU

�ei � r2
�
ru

r

� 	
þ ei

ru

� 

þ
Xn
i¼1

ln 2p� ln re �
Pn

i¼1 e2i
�
r2e

� �
2

�  ð7Þ

log L hð Þ ¼
Xn
i¼1

� ln 2pð Þ
2

� ln rS � lnU
li

rS
ffiffiffi
c

p
� 	

þ lnU
1� cð Þli � kei
rS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c 1� cð Þp

 !

� 1
2

ei þ li
rS

� 	2

8>>>><
>>>>:

9>>>>=
>>>>;

þ
Xn
i¼1

ln 2p� ln re �
Pn

i¼1 e2i
�
r2e

� �
2

� 

ð8Þ

Karakaplan and Kutlu [6] suggest an alternative to estimation easier to implement,
which can be extended to accommodate fractional regression models in the instru-
mental regression. The idea is to perform the estimation in two steps. Firstly, one fits

the instrumental variable regression and computes residuals êi ¼ techassist � f zi; d̂
� �

and then runs the standard stochastic frontier model (9).

A Stochastic Production Frontier Analysis of the Brazilian Agriculture 7



yi ¼ b0 þ b1 log laborið Þþ b2 log landið Þþ b3 log techinputsið Þþ b4 forextið Þ
þ b5 ndareasið Þþ b6 techassistið Þþ gêi þwi � ui

ð9Þ

The process will not produce the same results as the full maximum likelihood
estimation. Greene [4] names it limited information maximum likelihood. The variance
matrix of the estimator requires the Murphy and Topel [8] correction. Let d̂ be the
maximum likelihood estimate obtained from the instrumental variable regression with
variance matrix V̂1. The likelihood function is ln techassist; z; dð Þ. Let ĥ be the maxi-
mum likelihood of the resulting frontier model obtained when d ¼ d̂. The variance

matrix is V̂2 and the likelihood function is ln f2 y; x; d̂; h
� �

, where the vector x includes

inputs, technical assistance, non-degraded areas, forests, and the residual from the
instrumental variable regression. Following Greene [16], we may define the matrices
(10) and (11).

Ĉ ¼ 1
n

Xn
i¼1

@ ln f2i
@ĥ

� 	
@ ln f2i
@d̂0

� 	
ð10Þ

R̂ ¼ 1
n

Xn
i¼1

@ ln f2i
@ĥ

� 	
@ ln f1i
@d̂0

� 	
ð11Þ

The estimated variance matrix of the limited information maximum likelihood
estimator is defined as in (12).

V̂ ¼ 1
n

V̂2 þ V̂2 ĈV̂1Ĉ
0 � R̂V̂1Ĉ

0 � ĈV̂1R̂
0� �
V̂2

� � ð12Þ

In our exercise we used both methods, that is, full likelihood estimation as well as
the two-step procedure. Regression in the first step used both the fractional approach of
Papke and Wooldridge [9] and linear regression.

4 Statistical Results

Following the standard literature in stochastic frontier analysis we fitted 11 models to
the data described in Sect. 2, using the approaches of Sect. 3. The models considered
are: Case 1 – The full information maximum likelihood approach under the half-normal
and exponential inefficiency distributions, and the correspondent limited information
maximum likelihood for the best model under linear and fractional instrumental vari-
ables regressions. The only inefficiency effect considered is the social indicator; Case 2
– The limited information maximum likelihood assuming both instrumental variables’
regression assumptions, including as efficiency effects all independent factors for the
half-normal and truncated normal. Tables 1 and 2 show the goodness of fit measures
considered for model choice.
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We experienced convergence problems with some of the assumptions for the
inefficiency distribution, depending on the assumption itself and on the number of
variables included in the efficiency effect. The full information maximum likelihood
with all exogenous variable included in the effect did not converge, inhibiting the
application of the standard likelihood approach to test nested hypothesis. We see from
Tables 1 and 2 that the best fit is the full information estimator under the half-normal
distribution, reducing the set of inefficiency factor effects to the social indicator. The
models fitted in two stages using the linear and the non-linear binomial Papke and
Woodridge [12] assumptions indicate similar results, with a slight superiority for the
fractional regression. Correlations between actual and estimated values for the instru-
mental regressions are, respectively, 80.1% and 80.4%. Programming was carried out
using Stata 14 and SAS 9.2 software.

Table 3 shows statistical estimation for full information half-normal model
including a social effect for the inefficiency component. Table 4 shows the fractional
regression for technical assistance. Table 5 shows the limited information maximum
likelihood with the Murphy-Topel variance correction [8], under the binomial speci-
fication for the instrumental variable regression.

In the context of the full information maximum likelihood estimation correlation
between actual and predicted values of the frontier model, including efficiency effects,
is 88.6%. The component technical assistance affects significantly and positively the
response variable (log income). There is no evidence of endogeneity (p-
value = 0.1858).

Table 6 summarizes the relative importance of production factors, including returns
to scale. We see that technology dominates, followed by labor and land. The technology
shows decreasing returns to scale. These results fairly agree with Souza et al. [5].

Table 1. Fit statistics: Case 1 – Social indicator is the only inefficiency effect.

Model Inefficiency distribution Likelihood

Full information ML Half-normal −3041.3
Full information ML Truncated normal Do not converge
Full information ML Exponential −3042.8
Limited information ML – linear Half-normal −4663.3
Limited information ML – fractional Half-normal −4661.8

Table 2. Fit statistics: Case 2 – All exogenous variables are inefficiency effects.

Model Inefficiency distribution Likelihood

Limited information ML – fractional Half-normal −4603.4
Limited information ML – fractional Truncated normal −4607.4
Limited information ML – fractional Exponential Do not converge
Limited information ML – linear Half-normal −4603.4
Limited information ML – linear Truncated normal −4612.0
Limited information ML – linear Exponential Do not converge
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Technical assistance, non-degraded areas and the proportion of forested areas are all
statistically significant (Table 4). The former act favoring production and the latter
have a negative effect.

Table 7 shows 5-number summaries for technical efficiency. Figure 1 shows box
plots for the normalized ranks of the efficiency measurements. Efficiency differs sig-
nificantly by regional classification. There is a clear domination of South, Southeast,
and Center-West.

Table 3. Full information maximum likelihood estimation. Half-normal stochastic frontier
under endogeneity of technical assistance. Stata output.

Coefficient Std error z P > |z| [95% confidence
interval]

Frontier

labor 0.231137 0.011531 20.04 0.000 0.208536 0.253738
land 0.09003 0.013968 6.45 0.000 0.062653 0.117406
techinputs 0.45581 0.021104 21.6 0.000 0.414446 0.497173
forest −0.12398 0.032878 −3.77 0.000 −0.18842 −0.05954
ndareas 0.250139 0.036281 6.89 0.000 0.17903 0.321249
techassist 0.567809 0.140459 4.04 0.000 0.292514 0.843105
constant 2.736811 0.104023 26.31 0.000 2.53293 2.940691

Instrumental regression

labor −0.02131 0.003139 –6.79 0.000 −0.02747 −0.01516
land 0.007906 0.003929 2.01 0.044 0.000207 0.015606
techinputs 0.077737 0.004742 16.39 0.000 0.068443 0.087031
forest 0.020425 0.009285 2.2 0.028 0.002227 0.038624
ndareas 0.086496 0.008944 9.67 0.000 0.068967 0.104026
social 0.659066 0.015642 42.14 0.000 0.628409 0.689723
demog −0.12634 0.028992 −4.36 0.000 −0.18316 −0.06952
constant −0.44813 0.023053 −19.44 0.000 −0.49331 −0.40294

g

constant −0.1976 0.149364 −1.32 0.186 −0.49035 0.095144

ln r2u
social −2.17789 0.737983 −2.95 0.003 −3.62432 −0.73147
constant −2.47837 0.762352 −3.25 0.001 −3.97255 −0.98419

ln r2

constant –0.9899 0.027306 –36.25 0.000 –1.04341 –0.93638

g Endogeneity Test: Ho: Correction for endogeneity is not necessary; Ha:
There is endogeneity in the model and correction is needed.
ð1Þ g techassist½ � constant ¼ 0

v2ð1Þ ¼ 1:75
Prob[ v2 ¼ 0:1858

Result: Cannot reject Ho at 10% level.
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The social indicator positively affects technical efficiency, as reported in Table 4.
Regions that are to benefit the most from improvements in the social indicators are the
North and Northeast. The instrumental variable regression indicates a strong depen-
dence of technical assistance on the environment, demographics and the social con-
ditions. The increased population dynamics makes the presence of technical assistance
unnecessary, implying, therefore, a negative effect of the demographic index. The other
indices are positively related to technical assistance.

Table 4. Instrumental variable fractional regression. SAS output.

Parameter Estimate Error DF t Value Pr > |t| [95% confidence
interval]

Labor −0.0579 0.0244 4965 −2.37 0.0178 −0.1058 −0.0100
land 0.0160 0.0306 4965 0.52 0.6008 −0.0440 0.0761
techinputs 0.2375 0.0374 4965 6.35 <.0001 0.1642 0.3108
forest 0.0555 0.0718 4965 0.77 0.4394 −0.0853 0.1964
ndareas 0.2609 0.0692 4965 3.77 0.0002 0.1253 0.3965
social 1.8260 0.1217 4965 15.01 <0.0001 1.5874 2.0645
demog −0.4441 0.2226 4965 −2.00 0.0461 −0.8805 −0.0078
constant −2.7670 0.1840 4965 −15.04 <0.0001 −3.1277 −2.4063

Table 5. Limited Information maximum likelihood estimation. Half-normal stochastic frontier
under endogeneity of technical assistance and fractional regression. SAS output.

Parameter Estimate Std error
frontier
model

Std error
Murphy-
Topel

Murphy-Topel 95%
confidence interval

P > |z|

Frontier

labor 0.2320 0.01139 0.01023 0.21196 0.25204 0.00000
land 0.0880 0.01394 0.01108 0.06623 0.10967 0.00000v
techinputs 0.4522 0.02027 0.01829 0.41635 0.48805 0.00000
techassist 0.6050 0.12580 0.16852 0.27470 0.93530 0.00033
forest −0.1230 0.03280 0.03011 −0.18202 −0.06398 0.00004
ndareas 0.2424 0.03558 0.03517 0.17346 0.31134 0.00000
residual −0.2529 0.13590 0.17634 −0.59853 0.09273 0.15153
constant 2.7732 0.10250 0.12101 2.53602 3.01038 0.00000

ln r2u
social −2.0794 0.6869 2.47472 −6.92985 2.77105 0.40076
constant −2.4200 0.62090 0.83613 −4.05881 −0.78119 0.0038

ln r2

constant 0.3702 0.00955 0.01528 0.34026 0.40014 0.00000
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Table 6. Relative elasticities and returns to scale.

Production factor Relative elasticity Standard error

Labor 0.297 0.016
Land 0.116 0.018
Technology 0.587 0.022
Returns to Scale 0.777 0.014

Table 7. Normalized rank of technical efficiency – 5-number summary.

Region Minimum Q1 Median Q3 Maximum

North 0.000 0.192 0.313 0.425 0.957
Northeast 0.000 0.098 0.206 0.344 0.999
Southeast 0.004 0.502 0.695 0.854 1.000
South 0.055 0.618 0.744 0.866 1.000
Center-west 0.012 0.405 0.526 0.543 0.990

Fig. 1. Box plots of technical efficiency by region.
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The limited information maximum likelihood estimation agrees, in general, with
the full information maximum likelihood results. There is no evidence of technical
assistance endogeneity. See Table 5. The main difference regards the standard error of
the estimated coefficient of the social indicator in the inefficiency variance (Table 5).
The Murphy-Topel correction inflates the variance, forcing non-significance. However,
the coefficient values are similar. The fractional instrumental variables regression
indicates positive relation to the social indicator and to non-degraded areas (Table 4).
The demographic index is negatively related to the response and the proportion of
forested areas is not significant.

Limited information estimation, including all instrumental variables as technical
efficiency effects, is clearly inferior to the full information model estimated, including
only the social indicator (Tables 1 and 2). The interesting feature of these models is the
similarity of the results obtained with the linear and non-linear instrumental regression,
suggesting robustness of the linear instrumental regression.

5 Concluding Remarks

We fitted a stochastic frontier under endogeneity to municipal data using the Brazilian
agricultural census of 2006 – the last one available. The objective of this study, besides
assessing input elasticities, was to investigate effects of market imperfection variables
on production. Market imperfections come from different realities in production
experienced by small and large farmers. They relate to infrastructure, level of education
and access to credit, implying in different input and output prices for small and large
farmers. The presence of market imperfection makes it harder for rural extension and
technical assistance to promote productive inclusion.

For public policy decision-making, the identification of production function com-
ponents elasticities is of importance to guide rural governmental assistance. This is
critical for reducing poverty in the fields and for increasing production. We conclude
that technology is the main input factor for increasing income in rural Brazil. The social
indicator is the key variable to reducing inefficiency. The indicator is relatively too low
for the Northern and Northeastern regions. Values are less than half of the corre-
sponding values of other regions. Public policies should be oriented to improve this
indicator particularly in these regions.

Technical assistance is an important part of rural extension and has a direct positive
effect on income. Improvement of the social indicator will tend to facilitate the access
of technical assistance creating, in this way, a synergic positive effect on income.

Environment in our study was measured in two ways: non-degraded areas and the
proportion of forested areas. Keeping non-degraded areas relates to technology and has
a positive impact on production. On the other hand, keeping a relative large area of
uncultivated land in the farm will have a negative effect on income. Extension and
technical assistance may be the key factor to extract value from forests and properly
preserve these areas.
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Finally, we emphasize the fact that the use of limited information maximum
likelihood estimation indeed eases convergence in the stochastic frontier models. The
linear instrumental regression seems to be robust, but it produces inferior fits when
compared with fractional regressions. The Murphy-Topel variance matrix correction
may change the significance of important variables relative to the full information
maximum likelihood estimation.
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Abstract. Many markets are characterized by competitive settings and
incomplete information. While offer prices of sellers are often observable,
the competitors’ inventory levels are mutually not observable. In this
paper, we study stochastic dynamic pricing models in a finite horizon
duopoly model with partial information. To be able to derive effective
pricing strategies when the competitor’s inventory level is not observable,
we use a Hidden Markov Model. Our approach is based on feedback
pricing strategies that are optimal, if the competitor’s inventory level is
observable. Optimized price reactions are balancing two effects: (i) to
slightly undercut the competitor’s price to sell more items, and (ii) to
use high prices to promote a competitor’s run-out. For the case that a
competitor’s strategy is unknown, we derive robust heuristic strategies.
Comparing duopolies with different information structures, we find that
expected sales results are quite similar as long as the firms’ information
is symmetric. By evaluating asymmetric pairs of strategies, we study
to which extent the value of additional information is affected by the
consumers’ price sensitivity or the competitors’ price response times.

Keywords: Dynamic pricing · Duopoly competition ·
Response strategies · Hidden Markov Model · Asymmetric information

1 Introduction

In real-life applications, firms have to deal with competition and limited infor-
mation. Sellers are required to choose appropriate pricing decisions to maxi-
mize their expected profits. In e-commerce, it has become easy to observe and
to change prices. Hence, dynamic pricing strategies that take into account the
competitor’s strategies will be more and more applied.

However, optimal price reactions are not easy to find. Applications can be
found in a variety of domains that involve perishable (e.g., airline tickets, accom-
modation services, seasonal products) as well as durable goods (e.g., technical
devices, natural resources).

In this paper, we study duopoly pricing models in a stochastic dynamic frame-
work. We focus on perishable goods. In our model, sales probabilities are allowed
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to be an arbitrary function of time and the competitor’s prices. Our aim is to take
into account scenarios in which (i) the competitor’s inventory level is observ-
able, (ii) the competitor’s inventory level is not observable, and (iii) even the
competitor’s pricing strategy is unknown.

1.1 Literature Review

To optimally sell products is a classical application of revenue management the-
ory. The problem is closely related to the field of dynamic pricing, which is sum-
marized in books by Talluri, van Ryzin [1], Phillips [2], and Yeoman, McMahon-
Beattie [3]. The survey by Chen, Chen [4] provides an excellent overview of
recent pricing models under competition.

Gallego, Wang [5], consider a continuous time multi-product oligopoly for dif-
ferentiated perishable goods. They use optimality conditions to reduce the multi-
dimensional dynamic pure pricing problem to a one dimensional one. Gallego,
Hu [6] analyze structural properties of equilibrium strategies in more general
oligopoly models for the sale of perishable products. Martinez-de-Albeniz, Talluri
[7] consider duopoly and oligopoly pricing models for identical products. They use
a general stochastic counting process to model the demand of customers.

Further related models are studied by Yang, Xia [8] and Wu, Wu [9]. Dynamic
pricing models under competition that also include strategic customers are ana-
lyzed by Levin et al. [10] and Liu, Zhang [11]. Competitive pricing models with
limited demand information are studied by Tsai, Hung [12], Adida, Perakis [13],
and Chung et al. [14] using robust optimization and demand learning approaches.
The effects of strategic interaction of data-driven policies in competitive settings
are studied by, e.g., Kephart et al. [15] or Serth et al. [16], using interactive
simulation platforms.

In most existing models strong assumptions are made: (i) sales probabilities
are assumed to be of a highly stylized form, (ii) the competitors’ inventory lev-
els are assumed to be observable, and (iii) competitors adjust their prices at
the same point in time. While many papers concentrate on (the existence of)
equilibrium strategies, we look for applicable solution algorithms that allow to
compute effective response strategies in more realistic settings: Demand proba-
bilities are allowed to generally depend on time as well as prices of all market
participants. Inventory levels do not have to be mutually observable. As in prac-
tical applications, we assume sequential mutual price reactions with some delay.
We consider a discrete time model which is based on the infinite horizon model
described in [17]. We extend their model by additional inventory considerations
and a finite horizon setting.

1.2 Contribution

This paper is an extended version of [18]. The main contribution of [18] is three-
fold. We (i) derive optimal pricing strategies when the competitor’s inventory
level is observable, (ii) derive near-optimal pricing strategies for the case that
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the competitor’s inventory level is not observable, and (iii) we present a heuristic
for the case that competitors’ strategies are not known.

Compared to [18], in this paper, we present extended evaluation studies and
make the following contributions: First, to determine the value of information,
we let our three types of strategies play against each other in different duopoly
setups. We show that in different symmetric setups sales results are quite similar.
Our evaluations of asymmetric strategy setups show that additional informa-
tion leads to significantly higher profits (compared to the competitor). We also
observe that strategies that use more information tend to have higher standard
deviations of profits and a lower load factor. Second, we study to which extent
performance results of various competitive setups are affected by the consumers’
price sensitivity. We find that a higher price sensitivity (e.g., when customers are
less loyal) does not lead to a significant decrease in expected profits. Third, we
study the impact of price response times on our strategies’ performances under
various competitive setups. We observe that higher price reaction frequencies
can even overcompensate a lack of information.

The remainder of this paper is organized as follows. In Sect. 2, we describe the
stochastic dynamic duopoly model for the sale of a finite number of perishable
goods. We allow sales intensities to depend on the competitor’s price as well
as on time (cf. seasonal effects). The state space of our model is characterized
by time and the current competitors’ prices. The stochastic dynamic control
problem is expressed in discrete time.

In Sect. 3, we consider a duopoly competition, in which the inventory level of
the competitor is observable. We assume that both competitors act rationally.
We set up a firm’s Hamilton-Jacobi-Bellman equation and use recursive methods
(value iteration) to compute both firms’ value functions. Finally, we are able to
compute optimal feedback prices as well as expected profits of the two competing
firms. By using numerical examples, we investigate typical properties of optimal
pricing policies.

In Sect. 4, we analyze response strategies for cases where the inventory level
of the competitor is not observable. By using a Hidden Markov Model, we show
how to compute efficient pricing strategies and how to evaluate expected profits.
Our proposed solution approach is based on the results of the full information
model introduced in the previous section. The key idea is to let the competing
firms mutually estimate their competitor’s remaining inventory level. In Sect. 5,
we show how to derive applicable dynamic pricing heuristics for cases in which
the competitor’s inventory level as well as its pricing strategy are unknown.

In Sect. 6, we compare the different strategies derived in this paper using
various numerical experiments. We consider symmetric as well as asymmetric
combinations of strategies that use different information structures. Conclusions
and future work are given in the final section.

2 Model Description

We consider a situation in which a firm wants to sell a finite number of perish-
able goods (e.g., airline tickets, hotel tickets, etc.) on a digital market platform.
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We assume that a second seller competes for the same market. In our model, we
allow customers to compare prices of the two different competitors.

The initial numbers of items of firm 1 and firm 2 are denoted by N (1) and
N (2), respectively, N (1), N (2) < ∞. We assume that items cannot be reproduced
or reordered. The time horizon T is finite, T < ∞. If firm k sells one item, the
shipping costs c(k) have to be paid, k = 1, 2. A sale of one of firm k’s items at
price a leads to a net revenue of a − c(k). Discounting is also included in the
model. For the length of one period we use the discount factor δ, 0 < δ ≤ 1.

Due to customer choice the sales probabilities of a firm should depend on its
offer price a and the competitor’s price p. We also allow the sales probabilities
to depend on time.

The (joint) probability that between time t and t + Δ firm 1 can sell exactly
i items at a price a, a ≥ 0, while firm 2 can sell j items at price p, p ≥ 0, is
denoted by, 0 ≤ t < T , Δ > 0, i, j = 0, 1, 2, ...,

P
(Δ)
t (i, j, a, p).

Without loss of generality, in the following, we assume Poisson distributed
sales probabilities, i.e.,

P
(Δ)
t (i, j, a, p) :=

Λ
(1)
t,Δ(a, p)i

i!
· e−Λ

(1)
t,Δ(a,p)

·Λ
(2)
t,Δ(p, a)j

j!
· e−Λ

(2)
t,Δ(p,a),

(1)

where Λ
(k)
t,Δ(a, p) :=

∫ t+Δ

t
λ
(k)
s (a, p)ds, k = 1, 2, a, p ≥ 0; the sales intensity of a

firm k’s product is denoted by λ(k). In our model, the sales intensity of firm k,
k = 1, 2, t ∈ [0, T ], a ≥ 0, p ≥ 0,

λ
(k)
t (a, p) (2)

is a general function of time t, offer price a, and the competitor’s price p. The
random inventory level of firm k at time t is denoted by X

(k)
t , 0 ≤ t ≤ T . The

end of sale for firm k is the random time τ (k), when all of its items are sold, that
is τ (k) := min0≤t≤T {t : X

(k)
t = 0} ∧ T ; for all remaining t ≥ τ we let a firm’s

price at := 0 and λ
(k)
t (0, ·) := 0, k = 1, 2. As long as a firm has items left to sell,

for each period t, a price a has to be chosen.
We call strategies (at)t admissible if they belong to the class of Markovian

feedback policies; i.e., pricing decisions at ≥ 0 may depend on time t, the current
own inventory level, the current prices of the competitor, and (if observable) the
inventory level of the competitor. By A we denote the set of admissible prices.
A list of variables and parameters is given in the Appendix, see Table 7.

In some applications, sellers are able to anticipate transitions of the market
situation. In particular, the price responses of competitors as well as their reac-
tion time can be taken into account. In this case, a change of the competitor’s
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price p can take place within one period. A typical scenario is that a competitor
adjusts its price in response to another competitor’s price adjustment with a
certain delay.

In the following two sections, we assume that the pricing strategy and the
reaction time of competitors are known. We assume that choosing a price a at
time t is followed by a state transition (e.g., a competitor’s price reaction) and
the current price p changes to a subsequent price reaction, which may depend
on the current price decision a.

We assume that the state of the system is characterized by the inventory
levels of both firms and the current competitor’s price. In real-life applications,
a firm is not able to adjust its prices immediately after the price reaction of the
competing firm. Hence, we assume that in each period the price reaction of the
competing firm (firm 2) takes place with a delay of h periods, 0 < h < 1. After
an interval of size h the competitor adjusts its price, see Fig. 1. Firm 1 responds
to firm 2 with a delay of 1 − h.

In period t the probability to sell exactly i items during the first interval
of size h, i.e., [t, t + h], is P

(h)
t (i, j, at, pt−1+h), t = 0, 1, ..., T − 1. Due to the

competitor’s price reaction for the rest of the period [t + h, t + 1] the sales
probability changes to P

(1−h)
t+h (i, j, at, pt+h), t = 0, 1, ..., T − 1.

Fig. 1. Sequence of price reactions in a duopoly with reaction time h and 1 − h,
respectively, 0 < h < 1, cf. [18].

For single intervals [0, h] and [T, T + h], we assume that there is no demand
and we let P

(h)
0 (i, j, a0, p0) = P

(h)
T (i, j, aT , pT−1+h) := 1{i=j=0}.

The evolution of the accumulated profit of firm k, k = 1, 2, is connected to its
inventory process X

(k)
t and characterized by each period’s realized net revenues.

Depending on the chosen pricing strategy (at)t of firm 1 and the strategy (pt)t

of firm 2, the random accumulated profit of firm k from time t on (discounted
on time t) amounts to, 0 ≤ t ≤ T , k = 1, 2,

G
(k)
t :=

T−1∑

s=t

δs−t · (as − c(k)) ·
(
X(k)

s − X
(k)
s+1

)
. (3)

Each firm k seeks to determine a non-anticipating (Markovian) pricing policy
that maximizes its expected total profit, k = 1, 2,

E
(
G

(k)
0

∣
∣
∣X

(1)
0 = N (1),X

(2)
0 = N (2)

)
. (4)
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In the following sections, we solve dynamic pricing problems that are related
to (1)–(4). In the next section, we consider competitive duopoly markets with
complete information. In Sect. 4, we compute pricing strategies for scenarios with
incomplete information and partially observable states, i.e., we assume that the
competitor’s inventory level is not observable. In Sect. 5, we additionally assume
that the competitor’s strategy is unknown. In Sect. 6, we compare the results of
the three different models using extensive numerical experiments.

3 Optimal Dynamic Pricing Strategies in a Duopoly
with Observable States

In this section, we want to derive mutual optimal price response strategies. We
assume that both firms can mutually observe their inventory levels.

3.1 Solution with Full Knowledge

Following the Bellman approach, the best expected future profits of firm 1
and firm 2, i.e., E(G(1)

t |X(1)
t = n, X

(2)
t = m, pt = p) and E(G(2)

t+h|X(1)
t+h =

n, X
(2)
t+h = m, at+h = a), respectively, cf. (4), are described by the value func-

tions V ∗
t (n,m, p) and W ∗

t+h(n,m, a), t = 0, 1, ..., T . The set of admissible prices
A can be continuous or discrete. If either all items are sold or the time is up,
no future profits can be made, i.e., the natural boundary condition for the value
functions V and W are given by, n = 0, 1, ..., N (1), m = 0, 1, ..., N (2), a, p ∈ A,
t = 0, 1, ..., T − 1,

V ∗
t (0,m, p) = 0, and V ∗

T (n,m, p) = 0, (5)

W ∗
t+h(n, 0, a) = 0, and W ∗

T+h(n,m, a) = 0. (6)

We assume that in case of a run-out a firm sets its price equal to zero for the
rest of the time horizon. The Hamilton-Jacobi-Bellman (HJB) equation of firm
1 can be written as, t = 0, 1, ..., T −1, n = 1, ..., N (1), m = 0, ..., N (2), 0 < h < 1,
a, p ∈ A,

V ∗
t (n,m, p) = max

a∈A

⎧
⎨

⎩

∑

i1,j1≥0

P
(h)
t (i1, j1, a, p)

·
∑

i2,j2≥0

P
(1−h)
t+h

(
i2, j2, 1{n−i1>0} · a,

p∗
t+h

(
(n − i1)

+
, (m − j1)

+
, 1{n−i1>0} · a

))

·
(
(a − c(1)) · min(n, i1 + i2)

+ δ · V ∗
t+1

(
(n − i1 − i2)

+
, (m − j1 − j2)

+
, 1{m−j1−j2>0}

· p∗
t+h

(
(n − i1)

+
, (m − j1)

+
, 1{n−i1>0} · a

)))}
.

(7)
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Note, (7) mirrors all possible sales scenarios within one period of time and
takes the corresponding inventory transitions as well as the anticipated optimal
price reactions of the competitor into account.

The HJB of firm 2 is given by, t = 0, 1, ..., T − 1, n = 0, ..., N (1), m =
1, ..., N (2), 0 < h < 1, a, p ∈ A,

W ∗
t+h(n,m, a) = max

p∈A

⎧
⎨

⎩

∑

i2,j2≥0

P
(1−h)
t+h (i2, j2, a, p)

·
∑

i1,j1≥0

P
(h)
t+1 (i1, j1,

a∗
t+1

(
(n − i1)

+
, (m − j1)

+
, 1{m−j1>0} · p

)
, 1{m−j1>0} · p

)

·
(
(p − c(2)) · min(m, j1 + j2)

+ δ · W ∗
t+1+h

(
(n − i1 − i2)

+
, (m − j1 − j2)

+
,

1{n−i1−i2>0} · a∗
t+1

(
(n − i1)

+
, (m − j1)

+
, 1{m−j1>0} · p

)))}
.

(8)

The associated prices of both firms are given by the arg max of (7) and (8),
respectively, i.e., n,m > 0, t = 0, 1, ..., T − 1,

a∗
t (n,m, p) = arg max

a∈A
{...} , (9)

p∗
t+h(n,m, a) = arg max

p∈A
{...} . (10)

If a firm runs out of inventory, we set the price 0, i.e., for all m, p we let
a∗

t (0,m, p) = 0 and for all n, a, we let p∗
t+h(n, 0, a) = 0. The coupled value

functions and the optimal feedback policies of the two competing firms can be
computed in the following recursive order, cf. (5)–(6):

p∗
T−1+h(n,m, a), W ∗

T−1+h(n,m, a) →
a∗

T−1(n,m, p), V ∗
T−1(n,m, p)→ . . .

. . .→p∗
h(n,m, a), W ∗

h (n,m, a)
→a∗

0(n,m, p), V ∗
0 (n,m, p).

(11)

3.2 Numerical Examples

To illustrate the approach, cf. (5)–(11), we consider a numerical example.

Example 3.1. We assume a duopoly. Let T = 50, c(1) = c(2) = 10, N (1) =
N (2) = 10, δ = 1, h = 0.5, and a ∈ A := (10, 20, ..., 400). We assume
Poisson distributed sales probabilities P

(h)
t (i, j, a, p), which are determined by

t = 0, h, 1, ..., T , k = 1, 2, a, p ∈ A, cf. (1),

Λ
(k)
t,h(a, p) := h ·

(
1 − e−105·a−2.5+t/T

)
· β(a, p),
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and the competition factor β(a, p), a, p ∈ A,

β(a, p) := 1{a>0} · p − L · min(a, p)
a + p − 2 · L · min(a, p)

which is characterized by the competition parameter L, −∞ < L < 1. Note,
the price sensitivity of customers is increasing in L. For the time being, we let
L := 0.8.

Table 1 illustrates the expected profits of firm 1 for different inventory levels
n and different points in time t (for the case that firm 2’s price is p = 100 and
its inventory level is N (2) = 10). We observe that the expected future profits
are decreasing in time and increasing-decreasing in the number of items left to
sell. The optimal expected profits of the second firm have the same characteris-
tics. Compared to firm 1 the total expected profits of firm 2 are slightly larger
(W ∗

h (10, 10, a∗
0(10, 10, 0)) = 1769).

Table 1. Expected profits V ∗
t (n, 10, 100), Example 3.1, cf. [18].

n\t 0 10 20 30 40 45

1 363 362 359 348 306 252

2 654 652 640 601 494 368

3 877 872 852 788 628 423

5 1213 1202 1166 1056 782 381

7 1464 1449 1396 1233 737 381

10 1754 1726 1638 1348 723 381

Table 2 illustrates the feedback prices of firm 1 for different competitor’s
inventory levels m and different prices p (for the case that t = 20 and firm
1’s inventory level is N (1) = 10). We observe that optimal response prices are
decreasing-increasing in the competitor’s price and decreasing in the competitor’s
inventory level. I.e., in general, there is an incentive to (slightly) undercut the
competitor’s price.

However, if the competitor has a small price and a small inventory level then
it is more advantageous to set high prices such that the competitor is likely to
sell all of its remaining items, and in turn, our firm becomes a monopolist for the
rest of the time horizon. If the competitor’s inventory level is small, the optimal
price can even dominate the monopoly price, cf. a∗

20(10, 0, 0) = 260 in Table 2.

Remark 3.1

(i) The expected profits are increasing-decreasing in their own inventory level.
(ii) The expected profits are decreasing in the competitor’s inventory level.
(iii) If there is no discounting then the expected profits are increasing in the

time-to-go.
(iv) The expected profits are increasing-decreasing in the current competitor’s

price.



Dynamic Pricing Competition with Unobservable Inventory Levels 23

Table 2. Expected profits a∗
20(10, m, p), Example 3.1, cf. [18].

p\m 0 1 2 3 5 7 10

0 260 . . . . . .

50 . 400 390 300 220 200 160

100 . 400 390 300 220 200 160

150 . 400 310 300 220 190 140

200 . 400 280 250 190 180 150

250 . 340 260 200 190 180 150

300 . 240 210 200 190 180 150

400 . 220 200 200 190 180 150

Remark 3.2

(i) The optimal prices are not necessarily decreasing in their own inventory
level.

(ii) The optimal prices are decreasing in the competitor’s inventory level.
(iii) If demand is not increasing in time then the optimal prices are decreasing

in the time.
(iv) The optimal prices are decreasing-increasing in the current competitor’s

price.

Fig. 2. Simulated price paths and associated inventory levels over time; Example 3.1,
cf. [18].

Figure 2 illustrates simulated sales processes in the context of Example 3.1.
Figure 2a illustrates the price trajectories of the two competing firms. Figure 2b
shows the associated evolutions of the inventory levels. As demand is increasing
in time, on average, prices as well as the number of sales increase at the end of
the time horizon.
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4 A Hidden Markov Model with Partially Observable
States

In this section, we assume that the competitor’s inventory level cannot be
observed. To derive feedback pricing strategies we use a Hidden Markov Model.
We will use probability distributions for the competitor’s inventory level, which
are based on the observable prices of both firms.

4.1 Theoretical Solution

Let πt(m) denote the (estimated) probability that firm 2 has exactly m items
left at time t; let 	t(n) denote the probability that firm 1 has exactly n items
left at time t. We assume that the initial inventory levels of both competitors
are common knowledge; i.e., the starting distributions are π0(m) = πh(m) =
1{m=N(2)} and ω0(n) = ωh(n) = 1{n=N(1)}. Furthermore, a run-out is observable,
since we assume that in case of a run-out a firm has to set its price equal to zero.
The evolutions of the probabilities πt(m) and 	t(n) are given by, n = 0, ..., N (1),
m = 0, ..., N (2), at, pt, at−1+h, pt−1+h ∈ A, t = 0, 1, ..., T ,

πt+h(m; at, pt) =
∑

i1,j1≥0,0≤m−≤N(2):
m=(m−−j1)+

P
(h)
t (i1, j1, at, pt) · πt(m−)

πt(m; at−1+h, pt−1+h) =
∑

i2,j2≥0,

0≤m−≤N(2):
m=(m−−j2)+

P
(1−h)
t−1+h (i2, j2, at−1+h, pt−1+h) · πt−1+h(m−) (12)

	t+h(n; at, pt) =
∑

i1,j1≥0,0≤n−≤N(1):
n=(n−−i1)+

P
(h)
t (i1, j1, at, pt) · 	t(n−)

	t(n; at−1+h, pt−1+h) =
∑

i2,j2≥0,

0≤n−≤N(1):
n=(n−−i2)+

P
(1−h)
t−1+h (i2, j2, at−1+h, pt−1+h) · 	t−1+h(n−). (13)

Note, (12) and (13) are relevant for both firms as they might try to esti-
mate (i) the competitor’s inventory level as well as (ii) the competitor’s beliefs
concerning the own inventory. This way the competitor’s price reactions can be
anticipated via a probability distribution.

Both firms are assumed to act rationally. Pricing decisions are such that no
firm has an advantage to deviate from its strategy. Due to the defined sequence
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of events, theoretically, optimal decisions can be recursively inferred. The corre-
sponding value functions of both firms, denoted by

V
(∗)
t (n, p,πt,ωt) (14)

W
(∗)
t+h(m,a,πt+h,ωt+h), (15)

are determined by the usual boundary conditions V
(∗)
t (0, ·, ·, ·) = 0,

V
(∗)
T (·, ·, ·, ·) = 0 (for firm 1) and W

(∗)
t+h(0, ·, ·, ·) = 0, W

(∗)
T+h(·, ·, ·, ·) = 0 (for

firm 2) as well as an associated system of Bellman equations similar to (7)–(8)
extended by transitions for the beliefs, cf. (12)–(13). The corresponding optimal
feedback policies a

(∗)
t (n, p,πt,ωt) and p

(∗)
t+h(m,a,πt+h,ωt+h) of the two com-

peting firms can be computed in recursive order (similar to (9)–(11)).
However, optimal policies cannot be computed in practical applications.

Note, the size of the state space is exploding as the probability distributions
π and ω are involved (cf. curse of dimensionality). Hence, heuristic solutions are
needed.

In the next subsection, we present an approach to compute viable
heuristic feedback pricing strategies for the model with partially observable
states. The key idea is to approximate the functions V

(∗)
t (n, p,πt,ωt) and

W
(∗)
t+h(m,a,πt+h,ωt+h) by using weighted expressions of the value functions

V ∗
t (n,m, p) and W ∗

t (n,m, a) (of the model with full knowledge) and their asso-
ciated policies a∗

t (n,m, p) and p∗
t (n,m, a) derived in the previous Sect. 3.

4.2 Solution with Partial Knowledge

Motivated by the Hidden Markov Model (HMM), cf. Sect. 4.1, in which the
competitor’s inventory level cannot be observed, we want to define viable heuris-
tic pricing strategies for the two competing firms. Based on the current beliefs
regarding the competitor’s inventory, we approximate the correct value func-
tions (14)–(15) (and related controls) using price reactions, cf. (9)–(10), and
future profits, cf. (7)–(8), of the fully observable model. As the value functions
of the fully observable model might systematically overestimate the correct val-
ues (14)–(15), we include an additional positive penalty factor z. If z is smaller
than 1, future profits (7)–(8) are reduced.

For firm 1 we define the feedback prices, t = 0, 1, ..., T − 1, n = 1, ..., N (1),
p ∈ A,
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ãt(n, p;πt,ωt) = arg max
a∈A

⎧
⎨

⎩

∑

i1,j1≥0

P
(h)
t (i1, j1, a, p)

·
∑

0≤m̃≤N(2)

πt(m̃) ·
∑

0≤ñ≤N(1)

	t(ñ) ·
∑

i2,j2≥0

P
(1−h)
t+h (i2, j2,

1{ñ−i1>0} · a, p∗
t+h

(
(ñ − i1)

+
, (m̃ − j1)

+
, 1{ñ−i1>0} · a

))

·
(
(a − c(1)) · min(n, i1 + i2) + δ · z

·V ∗
t+1

(
(n − i1 − i2)

+
, (m̃ − j1 − j2)

+
, 1{m̃−j1−j2>0}

· p∗
t+h

(
(ñ − i1)

+
, (m̃ − j1)

+
, 1{ñ−i1>0} · a

)))}
.

(16)

Note, (16) mirrors the beliefs for both inventory levels and the corresponding
transitions. For anticipated price reactions we use p∗, cf. (10). To estimate future
profits, we use z · V ∗, cf. (7).

Similarly, the prices of firm 2 are given by, t = 0, 1, ..., T − 1, m = 1, ..., N (2),
a ∈ A,

p̃t+h(m,a;πt,ωt) = arg max
p∈A

⎧
⎨

⎩

∑

i1,j1≥0

P
(1−h)
t+h (i1, j1, a, p)

·
∑

0≤m̃≤N(2)

πt+h(m̃) ·
∑

0≤ñ≤N(1)

	t+h(ñ) ·
∑

i2,j2≥0

P
(h)
t+1 (i2, j2,

a∗
t+1

(
(ñ − i1)

+
, (m̃ − j1)

+
, 1{m̃−j1>0} · p

)
, 1{m̃−j1>0} · p

)

·
(
(p − c(2)) · min(m, j1 + j2) + δ · z

·W ∗
t+1+h

(
(ñ − i1 − i2)

+
, (m − j1 − j2)

+
, 1{ñ−i1−i2>0}

· a∗
t+1

(
(ñ − i1)

+
, (m̃ − j1)

+
, 1{m̃−j1>0} · p

)))}
.

(17)

In each period, realized sales are used to update the beliefs π and ω such
that the prices (16) and (17) can be computed during the sales process, i.e.:

ã0(N
(1), 0;π0,ω0)→πh,ωh→p̃h(N (2), ah;πh,ωh)

→π1,ω1→ã1(X
(1)
1 , p1;π1,ω1)→ . . .

. . .ãT−1(X
(1)
T−1, pT−1;πT−1,ωT−1)→πT−1+h,ωT−1+h

→p̃T−1+h(X(2)
T−1+h, aT−1+h;πT−1+h,ωT−1+h).

(18)

By using simulations both firms’ expected profits as well as their distributions
can be easily approximated. Evaluating different z values makes it possible to
identify the (mutual) best z value.
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4.3 Numerical Example

To illustrate our approach, in this subsection, we consider a numerical example.

Example 4.1. We assume the setting of Example 3.1. Both firms use the heuris-
tic Hidden Markov strategies, cf. (16)–(18), for different parameter values z,
0.2 ≤ z ≤ 1.5.

We observe that z has an impact on the expected profits of both competing
firms. In our example, simulated average profits of both firms are maximized for
z = 0.8. Note, the lower z is the more risk averse are the pricing policies (see
standard deviations σ), cf. Table 3.

Table 3. Simulated expected profits and its standard deviations of both firms for
different z values, Example 4.1, cf. [18].

z EG
(1)
0 EG

(2)
0 EX

(1)
T EX

(2)
T σ(G

(1)
0 ) σ(G

(2)
0 )

0.2 1141 1104 0.00 0.00 209 188

0.5 1679 1701 0.44 0.42 249 258

0.6 1743 1741 0.70 0.57 320 283

0.7 1742 1756 0.89 0.79 351 338

0.8 1739 1770 1.15 0.90 397 359

0.9 1732 1753 1.19 1.29 393 420

1.0 1716 1748 1.43 1.40 419 426

1.1 1686 1740 1.72 1.39 452 417

1.2 1668 1715 1.90 1.59 456 427

1.5 1647 1639 2.07 2.31 454 470

Remark 4.1 (Parallelization). The computation of feedback policies and par-
ticularly extensive simulation studies can become CPU-intensive. Parallelization
can be used to compute results more efficiently:

(i) Feedback prices for the same point in time can run in parallel.
(ii) Simulations can be computed independent from each other.

Figure 3 illustrates simulated sales processes in the context of Example 4.1.
Figure 3a illustrates price trajectories of the two competing firms. Figure 3b
shows the associated evolutions of the inventory levels and the (mutually) esti-
mated inventory levels of the competitor (dashed lines).
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Fig. 3. Simulated price paths and associated (estimated) inventory levels over time,
z = 0.8; Example 4.1, cf. [18].

5 Unknown Strategies

In this section, we want to present another heuristic approach to derive effective
pricing strategies in competitive markets with limited information. We assume
that the strategy of the competitor is completely unknown.

Our key idea to deal with unknown price reactions is to assume sticky prices.
For firm 1, we define the following value function, p ∈ A, n ≥ 1, t = 0, 1, ..., T −1,
V̄t(0, p) = 0 for all t, p, V̄T (n, p) = 0 for all n, p,

V̄t(n, p) = max
a∈A

⎧
⎨

⎩

∑

i1,j1

P
(h)
t (i1, j1, a, p)

·
∑

i2,j2

P
(1−h)
t+h (i2, j2, a, p) ·

(
(a − c(1)) · min(n, i1 + i2)

+ δ · V̄t+1

(
(n − i1 − i2)

+
, p

))}
.

(19)

The heuristic strategy āt(n, p) – determined by the arg max of (19) – only
depends on t, n, and p. Similarly, the corresponding pricing strategy p̄t(m,a)
of firm 2 is determined by the arg max of, a ∈ A, m ≥ 1, t = 0, 1, ..., T − 1,
W̄t+h(0, a) = 0 for all t, a, W̄T+h(m,a) = 0 for all m,a,

W̄t+h(m,a) = max
p∈A

⎧
⎨

⎩

∑

i2,j2

P
(1−h)
t+h (i2, j2, a, p)

·
∑

i1,j1

P
(h)
t+1(i1, j1, a, p) ·

(
(p − c(2)) · min(m, j1 + j2)

+ δ · W̄t+1+h

(
(m − j1 − j2)

+
, a

))}
.

(20)

The advantage of this approach is that the value function does not need to
be computed for all competitors’ prices p in advance. The value function and the
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associated pricing policy can be computed separately for single prices p (e.g., just
when they occur). If the competitor’s strategy is not known (which is often the
case) it is not possible to anticipate potential price adjustments. This feedback
strategy is able to react immediately if a change of the competitor’s price takes
place. In such an event, the value functions (19)–(20) and the associated prices
have to be computed for the new state.

Remark 5.1 (Oligopoly competition). Note, due to the curse of dimensionality,
the strategies derived in Sects. 3 and 4 are just applicable when the number of
competitors is small. The heuristic strategy described above, however, can still be
applied if the number of competitors is large. In case of K competitors, the state
p in (19) just have to be replaced by p = (p(1), ..., p(K)), p(k) ∈ A, k = 1, ...,K.

Fig. 4. Simulated price paths and associated inventory levels over time; setting of
Example 3.1, cf. [18].

For the case that the competitor’s strategy is unknown, Fig. 4 illustrates
simulated sales processes based on the heuristic, cf. (19)–(20), in the context of
Example 3.1. Figure 4a illustrates price trajectories of the two competing firms.
We observe that firms either significantly raise the price or undercut the com-
petitor’s price. Figure 4b shows corresponding inventory levels.

6 Evaluation

In this section, we want to compare the outcome of our different solution strate-
gies, which take advantage of different kind of information.

6.1 Comparison of Strategies

If pricing strategies are allowed to use full information (i.e., the own inventory
level, the competitor’s inventory level, and the competitor’s price), the optimal
expected profits can be computed analytically, cf. Sect. 3. In case the competi-
tor’s inventory level is not known, we presented an approach to compute viable
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strategies via a Hidden Markov Model, cf. Sect. 4. If the competitor’s inventory
is not known and her pricing strategy as well as her reaction time is unknown,
we proposed an efficient heuristic.

By SFK , we denote the strategy derived in Sect. 3 (full knowledge). By SPK ,
we denote the response strategy derived in Sect. 4 (partial knowledge) with
z = 0.8. By SUK , we denote the heuristic strategy, cf. Sect. 5, in case that
the competitor’s strategy is unknown.

Considering the setting of Examples 3.1 and 4.1, the expected profits of
the different symmetric strategy combinations are summarized in Table 4. In
all cases, the expected total profits, the expected remaining inventory, and the
standard deviations of total profits have been derived using simulations.

Table 4. Strategy comparison (benchmark case h = 0.5, L = 0.8): Expected profits

EG
(1)
0 (of firm 1) and EG

(2)
0 (of firm 2), when firm 1 and firm 2 play different pairs of

strategies using SFK (full knowledge), SPK (partial knowledge), and SUK (unknown
strategies), cf. Examples 3.1–4.1.

Scenario EG
(1)
0 EG

(2)
0 EX

(1)
T EX

(2)
T σ(G

(1)
0 ) σ(G

(2)
0 )

FK vs. FK 1746 1764 1.55 1.52 470 461

PK vs. PK 1739 1770 1.15 0.90 397 359

UK vs. UK 1694 1696 0.37 0.37 373 374

FK vs. PK 1760 1702 1.40 1.13 493 399

PK vs. FK 1723 1810 0.45 2.16 269 588

FK vs. UK 1747 1733 2.16 0.49 574 326

UK vs. FK 1704 1732 0.57 2.07 350 576

PK vs. UK 1721 1603 0.77 0.56 413 331

UK vs. PK 1714 1733 0.40 1.10 305 429

In the first three cases, we observe that in all three symmetric scenarios both
firms can expect similar results, cf. Figs. 5, 6 and 7. It turns out that as long as
the information structure is identical, a lack of information does not necessarily
result in smaller expected profits.

The number of unsold items as well as the variance of profits, however,
have significant differences. In case of fully observable states (SFK vs. SFK)
the remaining inventory and the variance of profits is comparably high. Both
firms can expect almost equal results. In the second case with partially observ-
able states (SPK vs. SPK) we observe that the load factor of both firms is higher
and the variation of profits is much smaller. Since less information is available
the competition between both firms is less intense.

In case of mutual unknown strategies (SUK vs. SUK), we obtain similar
results. Furthermore, we can assume that the heuristic strategy SUK will yield
robust results when played against various other strategies. The other two strate-
gies are optimized to play against a specific strategy. Hence, they might perform
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Fig. 5. Simulated expected price paths, associated inventory levels, and accumulated
profits over time, full knowledge FK vs. FK; setting of Examples 3.1–4.1.

Fig. 6. Simulated expected price paths, associated inventory levels, and accumulated
profits over time, partial knowledge PK vs. PK; setting of Examples 3.1–4.1.

less well, when the competitor is playing a different strategy. Moreover, the effi-
cient computation of our heuristic SUK allows fast computation times and, in
turn, a high price reaction frequency, which is also a competitive advantage.

In the remaining cases of Table 4, we present the results of asymmetric strat-
egy pairs. As expected, we observe that strategies that have or use more infor-
mation beat strategies with less information. However, profit differences are rel-
atively small, which means that our strategies with incomplete information are
surprisingly competitive.

Further, the firm that has the final price adjustment (firm 2) has a slight
advantage. In general, we observe that strategies that use more information
tend to have higher standard deviations of profits and a lower load factor.

Fig. 7. Simulated expected price paths, associated inventory levels, and accumulated
profits over time, no knowledge UK vs. UK; setting of Examples 3.1–4.1.
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Note, in the asymmetric setups, both strategies are not optimal response
strategies; they are optimized to be played against their symmetric counterpart.
Hence, theoretically results could be worse (compared to the symmetric cases)
since in our asymmetric setups the competitor might not react as expected. How-
ever, we observe that profits are hardly lower. The reason is that the derived
strategies (SFK , SPK , SUK) are quite robust due to their feedback nature. Fur-
ther, in asymmetric setups the competition is less fierce as price reactions are not
optimized to be played against the competitor’s strategy. For optimized response
strategies against given strategies, see [17].

6.2 Impact of Customers Price Sensitivity

In this subsection, we study to which extent results, cf. Table 4, are affected if
customers are more price sensitive. Such cases can be modelled using a higher
competition factor L, cf. Example 3.1. Similarly, a lower factor L corresponds
to cases in which customers are more loyal and tend to stick to a certain firm
instead of steadily comparing prices.

Table 5 summarizes the performance results for all symmetric and asymmet-
ric duopoly scenarios for the case L := 0.95. Again, results were computed using
simulation studies.

In case of a higher price sensitivity, we again observe that strategies are more
successful if more information is used/available. More interestingly, we observe
that (compared to the benchmark case, cf. Table 4) due to fierce competition it is
more important whether a firm has the last move. One might think that in cases
with high price sensitivity profits are lower as products with the higher price
can hardly be sold, and in turn, both firms are forced to systematically undercut
the competitor’s price in order to sell items (race to the bottom). Surprisingly
profits are not necessarily lower! The reason is that the effects of a higher price
sensitivity are counterbalanced by the fact that the firm, which sells less fast is
likely to become a monopolist for the rest of the time horizon.

6.3 Impact of Reaction Time

In this subsection, we investigate the impact of reaction times on our strate-
gies’ performance results. In our model the reaction time can be varied via the
parameter h, 0 < h < 1. While firm 2 reacts on firm 1’s action with a delay of
h, firm 1’s reaction time on firm 2’s price adjustment is 1 − h. A reaction time
h = 0.2 corresponds to the case in which firm 1 has h = 20% of the time the
“fresh” price; firm 2’s share is 1 − h = 80%.

In real-life applications, firms often randomize their reaction time in order
not to act predictably. In this case, the ratio of the competing firms’ reaction
frequencies determines the share of time a firm has the most recent price update.
In [17] it is demonstrated that such scenarios can be effectively modelled via our
duopoly model with fixed reaction times h and 1 − h, respectively.
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Table 5. Impact of price sensitivity factor L (case h = 0.5, L = 0.95): Expected profits

EG
(1)
0 (of firm 1) and EG

(2)
0 (of firm 2), when firm 1 and firm 2 play different pairs of

strategies using SFK (full knowledge), SPK (partial knowledge), and SUK (unknown
strategies), cf. Example 3.1–4.1.

Scenario EG
(1)
0 EG

(2)
0 EX

(1)
T EX

(2)
T σ(G

(1)
0 ) σ(G

(2)
0 )

FK vs. FK 1784 1795 1.14 2.15 429 556

PK vs. PK 1696 1724 0.90 0.60 352 297

UK vs. UK 1574 1575 0.27 0.28 414 417

FK vs. PK 1757 1743 1.80 0.60 504 282

PK vs. FK 1639 1811 1.40 1.00 405 448

FK vs. UK 1741 1732 2.23 0.36 590 300

UK vs. FK 1697 1724 0.45 2.16 331 589

PK vs. UK 1716 1660 1.00 0.30 403 268

UK vs. PK 1658 1719 0.40 1.20 269 450

Table 6. Impact of reaction time (case h = 0.2 vs. h = 0.8, L = 0.8): Expected profits

EG
(1)
0 (of firm 1) and EG

(2)
0 (of firm 2), when firm 1 and firm 2 play different pairs of

strategies using SFK (full knowledge), SPK (partial knowledge), and SUK (unknown
strategies), cf. Examples 3.1–4.1.

Scenario h EG
(1)
0 EG

(2)
0 EX

(1)
T EX

(2)
T σ(G

(1)
0 ) σ(G

(2)
0 )

FK vs. FK 0.2 1734 1786 0.97 1.95 389 505

FK vs. FK 0.8 1782 1732 1.98 0.93 509 381

PK vs. PK 0.2 1675 1860 1.40 0.90 410 362

PK vs. PK 0.8 1858 1703 0.60 1.20 304 412

UK vs. UK 0.2 1677 1715 0.37 0.33 362 366

UK vs. UK 0.8 1712 1674 0.33 0.37 372 363

FK vs. PK 0.2 1730 1716 0.70 1.41 396 460

FK vs. PK 0.8 1876 1633 0.90 1.50 400 404

PK vs. FK 0.2 1616 1881 1.80 0.80 455 382

PK vs. FK 0.8 1749 1776 0.60 1.50 313 525

FK vs. UK 0.2 1721 1746 2.07 0.41 336 236

FK vs. UK 0.8 1724 1659 1.85 0.61 545 372

UK vs. FK 0.2 1648 1724 0.62 1.77 374 545

UK vs. FK 0.8 1741 1728 0.41 2.08 301 532

PK vs. UK 0.2 1758 1779 1.00 0.40 376 273

PK vs. UK 0.8 1744 1691 1.40 0.50 497 319

UK vs. PK 0.2 1627 1705 0.60 1.10 325 430

UK vs. PK 0.8 1722 1666 0.50 1.30 254 409
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To this end, Table 6 shows simulated performance results for all duopoly
scenarios for two different (uneven) reaction times h = 0.2 and h = 0.8. The
price sensitivity factor is L = 0.8.

We observe that, in general, profits are significantly affected by response
times. Hence, price update frequencies are a competitive advantage. We find
that the competitor with a better (more frequent) reaction time can even beat
its opponent although a strategy with using less information is applied, i.e., a
better reaction time can overcompensate the lack of information.

7 Conclusion

In e-commerce, it has become easier to observe and adjust prices automatically.
Consequently, there exists an increased demand for dynamic pricing. The com-
putation of suitable pricing strategies is highly challenging as soon as strategic
competitors are involved and remaining inventory levels play a major role. In this
paper, we analyzed stochastic dynamic finite horizon duopoly models character-
ized by price responses in discrete time. We allow sales probabilities to generally
depend on time as well as the competitors’ prices. Further, we are able to model
different price reaction times.

We have considered three different types of information structures. In the
first setting, we assume that the inventory levels of the competing firms are
mutually observable. We show that optimal price reaction strategies – which are
based on mutual price anticipations – can be derived using standard methods
(e.g., backward induction). Examples are used to identify structural properties
of expected profits and feedback pricing strategies. Optimal prices are balancing
two effects: (i) slightly undercut the competitor’s price in order to sell more
items, and (ii) the use of high prices in order to promote a competitor’s run-out
and to act as a monopolist for the rest of the time horizon.

In the second setting, we assume that the inventory of the competitor is not
observable. Based on observable prices, we compute probability distributions
(beliefs) for the number of items the competitor might have left to sell. We
propose a Hidden Markov Model to be able to compute applicable feedback
pricing strategies. Our examples show that the resulting expected profits of both
firms are similar to those obtained in the model with full knowledge. The variance
of profits and the average number of remaining items, however, is significantly
lower.

In the third setting, we assume that the competitor’s strategy is completely
unknown, i.e., competitors cannot anticipate price responses. We propose an
efficient decomposition approach to circumvent the curse of dimensionality and
demonstrate how to compute powerful pricing strategies. We verify that – when
applied by both competitors – the heuristic yields the same expected profits as
in the two other settings, in which more information is available.

We have shown how to compute applicable reaction strategies for real-life
scenarios with different information structures. We find that sales results are
quite similar as long as the information structure is symmetric. Our numerical
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experiments of asymmetric strategy setups show that additional information
leads to significantly higher profits (compared to the competitor). Further, we
observe that a higher price sensitivity (e.g., when customers are less loyal) does
not lead to a significant decrease in expected profits. Moreover, we find that
higher price reaction frequencies can even overcompensate a lack of information.

In future research, the model could be extended to study scenarios with (i)
multiple products and substitution effects in demand, (ii) strategic customers
that anticipate typical price trends, or (iii) competitors that seek to learn the
competitors’ pricing strategy based on historic data.

Appendix

Table 7. Notation table.

t Time/Period

T Time horizon

c(k) Shipping costs of firm k, k = 1, 2

G
(k)
t Random future profits of firm k

N
(k)
t Initial number of sold items of firm k

X
(k)
t Random inventory level of firm k

δ Discount factor

h Reaction time (of firm 2)

P
(h)
t Sales probability for (t, t + h)

β Competition factor

L Price sensitivity factor

A Set of admissible prices

V Value function of firm 1

W Value function of firm 2

a Offer price of firm 1

p Offer price of firm 2

n Inventory state of firm 1

m Inventory state of firm 2

π(m) Beliefs of firm 1

ω(n) Beliefs of firm 2

a∗, p∗ Feedback prices (full knowledge model)

ã, p̃ Feedback prices (partial knowledge model)

ā, p̄ Feedback prices (no knowledge model)

FK Full knowledge

PK Partial knowledge

UK No knowledge (unknown)
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Abstract. In this study, a Causal Bayesian network (CBN) model of the causal
relationships between supply chain enablers, supply chain management prac-
tices and supply chain performances is empirically developed and analyzed.
Study data collected from a sample of 199 manufacturing firms producing the
most influential products in Iran’s economy. Resultant CBN model revealed
important causalities between study variables of interest. Afterwards, using
Dirichlet estimator of TETRAD 6-4-0 software, conditional probability esti-
mation with Bayesian networks, also known as Bayesian inference was devel-
oped. The outcomes of this study in general, support the idea that SC enablers,
especially IT technologies, don’t have direct impact on SC performance. Also
forward Bayesian inference provided deeper understanding of causal relation-
ships in supply chain context, such as what antecedents must be available to
reach better level at each critical supply chain performance measures. Also it is
found out that in any tier of supply chain concepts; there may be some important
intra-relations which worth of further studies.

Keywords: Supply chain management � Supply chain performance �
Causal Bayesian network � Bayesian inference

1 Introduction

Today’s business competition is mostly among supply chains and not just between
individual organizations. Supply chain (SC) enablers are required tools to practice
effective supply chain management. So, to improve SC performance, it is necessary to
study the impact of SC enablers and SCM practices on SC performance. As posited by
Hsu et al. [1], effective supply chain management practices are vital antecedents of
supply chain competitive advantage and performance. The existing literature provides
numerous examples of companies that have gained a competitive advantage by using
superior supply chain management practices [2]. As stated by Li et al. [3] despite the
importance of implementing SCM practices, organizations often do not know exactly
what to implement, due to a lack of understanding of what constitutes a comprehensive
set of SCM practices. In addition, organizations don’t know how practically can
increase their supply chain performance through these practices and what enablers are
exactly needed.
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The goal of this research is to develop a causal Bayesian network (CBN) model of
the relations between SC enablers, SCM practices and SC performance in supply chain
and then to analyze its conditional probabilities by means of Bayesian inference. The
reminder of this paper is as follows. In Sect. 2, influential papers about relationships
between SC enablers, SCM practices and performance reviewed. Then, the data col-
lection and measurement model development are discussed in Sect. 3. In Sect. 4,
causal Bayesian network development and Bayesian inference analysis is presented. In
Sect. 5, the results and implications are deliberated. Conclusions and study limitations
and also future research suggestions are discussed in Sect. 6.

2 Theoretical Background

2.1 Relationships Between SC Enablers, SCM Practices and SC
Performance

Studying the relationships between SC enablers and SCM practices and their effect on
performance is interesting to many academics and SCM practitioners. A review of
these works is presented in [4] which depicted in Table 1. As this table shows, the
authors of these studies were more focused on organizational performance [5–8].

In one of the first papers in this context that considers SC performance, Shin et al.
[9] worked on the effect of supply chain management orientations on SC performance.
They concluded that improvement in supply chain management orientation, including
some SC practices, can improve both the suppliers’ and buyers’ performance. In other
study, Lockamy and McCormack [10] investigated the relationships between SCOR
model planning practices with SC performance. They reported that planning processes
are critical in all SCOR supply chain planning decision areas and collaboration is the
most important factor in the plan, source and make planning decision areas. Lee et al.
[11] also studied the relationships between three SC practices, including supplier
linkage, internal linkage and customer linkage, and SC performance. They concluded
that internal linkage is a main factor of cost-containment performance and supplier
linkage is a crucial indicator of performance reliability as well as performance. In
another work, Sezen [12] investigated the relative effects of three SCM practices
including supply chain integration, supply chain information sharing and supply chain
design on supply chain performance. He concluded that the most important effect on
resource and output performances belongs to supply chain design. He also concluded
that information sharing and integration are correlated with performance, but their
effect strength are lower than supply chain design. In one of the newest works in this
area, Ibrahim and Ogunyemi [13] tested the effect of information sharing and supply
chain linkages on supply chain performance. Their results reveal that supply chain
linkages and information sharing, positively related to flexibility and efficiency of
supply chain.

Seemingly the first article, in which authors consider the effects of both SC enablers
and SCM practices on SC performance, is the study of Li et al. [14]. They investigated
the relations between three factors including IT implementation as an important SC
enabler, supply chain integration as an SCM practice, and SC performance. As a result,
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they suggested that IT implementation has no direct impact on SC performance, but it
improves SC performance through its positive impact on SC integration. In other work,
Zelbst et al. [15] theorized and assessed a structural model that includes RFID tech-
nology utilization and supply chain information sharing as antecedents to supply chain
performance. The results of their work show that although RFID technology does not
directly influence on SC performance, its utilization leads to improve information
sharing among supply chain members, which in turn leads to improve SC performance.

Table 1. Relationships between SC enablers, SCM practices and SC performance in the
literature [4].

References Scope of SC
enablers

Scope of
SCM
practices

Methodology Scope of
performance
measurement

Narasimhan and Jayanth [5] – Narrow SEMa Organization
Shin et al. [9] – Narrow SEM Supply chain
Frohlich and Westbrook [6] – Narrow ANOVAb Organization
Tan et al. [7] – Wide Correlation Organization
Lockamy III and McCormack
[10]

– Narrow Regression Supply chain

Li and Lin [8] Wide Wide Regression –

Li et al. [3] – Wide SEM Organization
González-Benito [16] Narrow Narrow SEM Organization
Sanders [17] Narrow Narrow SEM Organization
Zhou and Benton Jr. [18] Narrow Narrow SEM –

Li et al. [19] – Narrow SEM Organization
Lee et al. [11] – Narrow Multiple

regression
Supply chain

Johnson et al. [20] Wide – Regression Organization
Devaraj et al. [21] Narrow Narrow SEM Organization
Sezen [12] – Narrow Regression Supply chain
Li et al. [14] Wide Narrow SEM Supply chain
Bayraktar et al. [22] – Wide SEM Organization
Hsu [1] – Wide SEM Organization
Davis-Sramek et al. [23] Narrow – Regression Organization
Zelbst et al. [15] Narrow Narrow SEM Supply chain
Sundram et al. [24] – Wide PLSc Supply chain
Hamister [25] – Wide PLS Supply chain
Ibrahim and Ogunyemi [13] – Narrow Regression Supply chain
aStructural Equation Modeling
bAnalysis of variance
cPartial Least Squares
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2.2 Bayesian Inference in Supply Chain Management Studies

There is scarce papers which focus on Bayesian inference in supply chain management.
Ding et al. [26] in their paper, used Bayesian networks to model dependencies between
managed objects in distributed systems and backward inference to fault locating in supply
chain. In the other work, Antai [27], suggested a conceptualization of supply chain versus
supply chain competition using the Bayesian inference approach by simulated data.
Markis et al. [28] in their paper presented a Bayesian inference method of quantifying a
buyer’s likelihood to purchase a highly customized product in automotive industry. In the
last reviewed paper, Garvey et al. [29] utilized a Bayesian network approach to risk
propagation in a supply network, taking into account the inter-dependencies among
different risks, as well as the idiosyncrasies of a supply chain network structure.

2.3 Conceptual Model

Although there is no doubt about the importance of the relations between SC enablers,
SCM practices and SC performance, not many studies can be found in the literature
which cover these relations in a whole model. Thus, in this research a basic conceptual
model of relationships among SC enablers, SCM practices and SC performance
developed (Fig. 1). As depicted in this model, based on the literature [15, 30] this
research suggests that SC enablers have direct impact on SCM practices and no direct
impact on SC performance.

3 Research Methodology

3.1 Questionnaire

After a comprehensive supply chain management literature review, 20 articles that
indicate SCM practices or activities and 10 articles that indicate SC enablers have been
considered. Then 54 practices and 22 enablers cited in these articles were identified.

In order to achieve a valid list of SC enablers and SCM practices to include in the
questionnaire, Q-sort methodology was used. To apply Q-sort method, six researchers
and experts were asked to classify the specified initial items into SC enabler and SCM
practice categories. Q-sort resulted in 20 SC enablers out of 22 and 44 SCM practices
out of 54 initial items. The judges’ agreement for these items was more than 70%,
which is above the recommended value of 65% [31]. Towards a final list of SC
enablers and SCM practices, content analysis was used to identify similar statements
and merge some similar items to definitive ones. As a result, 7 SC enablers and 8 SCM

SC enablers SCM 
prac ces

SC 
performance

Fig. 1. The proposed basic conceptual model [4].
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practices were identified and they are shown in Table 2. In case of SCM practices the
respondents were asked to indicate that what extent these scale items were imple-
mented in SCM of their core products, relying on five-point scales ranging from
1 = ‘not at all implemented’ to 5 = ‘fully implemented’. In case of SC enablers, the
respondents were asked to indicate their perceptions of relative importance of these
enablers in SCM of their core products on five-point scales ranging from 1 = ‘of no
importance’ to 5 = ‘of major importance’.

To identify important SC performance measures, supply chain management pro-
cesses of SCOR model was used, including scale items for measuring ‘SCM planning’,
‘logistics performance’, ‘supply chain production performance’, ‘supply chain delivery
performance’, and ‘customer delight performance’. The respondents were asked to
indicate on a 6-point scale, ranging from 1 = ‘definitely worse’ to 6 = ‘definitely
better’, on how their core products supply chain had performed relative to their major
competitors or their overall industry on each of these supply chain performance criteria.

3.2 Data Collection

Before data collection, a panel of 4 researchers’ were asked to evaluate the question-
naire, regarding ambiguity, appropriateness, and completeness. By reviewing a few
resulted comments, the survey questionnaire was modified and finalized.

Target sample of study was collected from manufacturers of 10 products classes,
covered by IranCode® products classification system. These products are the most
influential in Iranian economy. It was suggested that the firms with more products have
more structured supply chain so more suitable to be included in the sample of this
study. Herein the firms were sorted, based on the number of their registered products in

Table 2. Final SC enablers and SCM practices [4].

Survey constructs

SC enabler e-supply chain portal
Performance measurement systems
Advanced manufacturing technology
Inter-organizational communication technology
Logistic infrastructure
e-commerce technologies
Unique identification and trace technologies

SCM practices Information sharing
Strategic view in supply chain management
Lean manufacturing practices
Supplier management
Performance management
Human resources management
Customer orientation
Supply chain integration
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IranCode®. Then, using stratified random sampling, a group of 2000 firms was selected
and were asked to fill out the questionnaire. After four weeks, as follow up procedure,
personalized reminder e-mails were sent to potential participants. Finally, out of 2000
surveys mailed, 199 valid responses were received, resulting in a response rate of
11.63%, which is acceptable as some other studies in this field [8, 32].

Non-response bias measured by applying a t-test on the scores of early and late
responses. The responses were divided into two groups: 142 responses (71.4%) received
within 3 weeks after mailing, and 57 ones (28.6%) received four weeks later and even
more. The result of this test indicated no significant difference between the two groups.

As this study based on single respondents and perceptual scales, the risk of com-
mon method variance was assessed, so a model was run without the method factor and
it was compared to the one with method factor added [32]. Since the method factor
failed to change substantive conclusions, it was concluded that the amount and extent
of method variance does not harm the validity of the measurement model.

Sample responses included 24% food products manufacturers, 19.8% road making
machinery and construction materials manufacturers, 12.8% chemical manufacturers,
11.2% medical and cosmetic manufacturers, 9.6% industries general necessities man-
ufacturers, 8.6% auto parts manufacturers and 13.8% other manufacturers. Of all
respondents, 28% were CEO, President, Vice President or Director, 22% were pro-
duction managers and R&D managers, 19% were sales managers, procurement man-
agers and supply managers, and remaining 17% of respondents were other manager. So
this composition reveals that most of respondents were knowledgeable about firm’s
supply chain management.

3.3 Missed Data

25% of received questionnaires included some missed data. So, an expectation maxi-
mization algorithm was used in Amelia II which is a recommended software for missed
data imputation [33]. Prior to using expectation maximization, it must be assured that
data were missing completely at random. Little’s test for data in SPSS software,
resulted in chai-sqare = 2385, df = 2428 and P = 0.725 which at confidence level of
0.05 means missing data were completely at random. So missed data were imputed
with Amelia II and complete dataset for further analysis provided.

3.4 Reliability and Validity

In addition to content validity, mentioned in previous sections, the adequacy of a
measure requires that three essential components be established: unidimensionality,
reliability and validity [34]. Validity itself includes convergent validity and discriminant
validity. So CFA was used for measurement model relevant tests. As the measurement
model had more than four-point scales, based on [35] recommendation, the maximum
likelihood method of LISREL was used for calculating model fit indexes, that is a more
common and reliable method [35]. For assessing model fitting, two critical indexes of
CFI and SRMR was used as recommended by [36] for less than 250 samples. The
models were identified with CFI � 0.95 and SRMR � 0.09 as acceptable [36].
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In the first stage, unidimensionality was tested, that involves establishment of a set
of empirical indicators relates to one and only one construct [34]. A single factor
LISREL measurement model was specified for all of constructs. If a construct had less
than four items, two-factor model were tested by adding the items of another construct,
making model fit indexes obtainable [31]. A CFA was conducted to separate mea-
surement models of each construct, such as information sharing, strategic view in
supply chain management and lean manufacturing practices. It was found that fitting
indexes of some constructs were unsatisfactory. Then, the standardized residuals matrix
of LISREL results were used to identify which items must be deleted to obtain better fit
indexes for each model. Large standardized residuals indicate that a particular rela-
tionship is not well accounted by the model [37]. During this iterative procedure, one
item out of measurement items of strategic view in supply chain management, lean
manufacturing practices, performance management, general enablers, logistics and
supply performance, and delivery performance were dropped. Also two items out of
eight measurement items of integration were dropped. Table 3 shows the analysis
results of the final structural model of all constructs.

In the second stage, the reliability analysis was conducted by using composite
reliability (1) which is less sensitive to number of items of constructs [38].

qg ¼
Pp

i¼1 ki
� �2

Pp
i¼1 ki

� �2 þ Pp
i¼1 Var eið Þ

; ð1Þ

As depicted in Table 3, all of model constructs have an acceptable level of reliability,
except production performance which its reliability index (q) is less than 0.7 cutoff
criteria. SCP31 item was dropped from SC production performance construct to improve
its reliability. So this construct finally reached the value of 0.9, which is a good level.

Table 3. Constructs properties for unidimesionality, reliability and convergent validity [4].

Constructs v2 Df CFI SRMR q AVE

General SC enablers 57.70 26 0.97 0.05 0.84 0.65
Information sharing 22.24 8 0.95 0.06 0.78 0.73
Strategic view in supply chain management 6.47 5 0.99 0.03 0.76 0.62
Lean manufacturing practices 0.57 2 1.00 0.01 0.82 0.72
Supplier management 22.24 8 0.95 0.07 0.70 0.66
Performance management 7.43 2 0.96 0.05 0.70 0.59
SC Human resources management 33.45 8 0.96 0.04 0.72 0.75
Customer orientation 33.45 8 0.96 0.04 0.89 0.82
Supply chain integration 31.84 9 0.97 0.05 0.89 0.75
SC planning performance 41.12 10 0.96 0.04 0.90 0.95
SC logistics and supply performance 41.12 10 0.96 0.04 0.80 0.82
SC production performance 41.12 10 0.96 0.04 0.42 0.51
SC delivery performance 41.12 10 0.96 0.04 0.90 0.95
SC customer delight
performance

41.12 10 0.96 0.04 0.86 0.89
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In the third stage for analyzing construct validity, the convergent validity and
discriminant validity were assessed. Convergent validity relates to the degree to which
multiple methods of measuring a variable provide the same results [34]. Based on
Fornell and Larcker [38] recommendation, the average variance extracted (AVE) was
used to analyze convergent validity. An AVE greater than 0.5 is desirable because it
suggests that on average, the latent construct accounts for a majority of the variance in
its indicators [39]. Based on this criterion, as shown in Table 3 all research constructs
have acceptable convergent validity.

For a measure to have discriminant validity, the variance in the measure should
reflect only the variance attributable to its intended latent variable and not to other
latent variables [34]. In analyzing discriminant validity for SC management practices,
as recommended by Shiu et al. [40] both procedures of Fornell and Larcker [38], and
Bagozzi and Phillips [41] were used. In doing first procedure, the squared correlation
between a pair of constructs against the average variance extracted (AVE) for each of
the two constructs was compared. For each pair of constructs, if the squared correlation
was smaller than both the AVEs, it was concluded that the constructs exhibit dis-
criminant validity. Based on the second procedure, the difference in chi-square value
between the unconstrained CFA model and the nested CFA model was examined
where the correlation between the target pair of constructs is constrained to unity.
Based on these two procedures it was found out that all constructs have discriminant
validity except the constructs of “Human resources management” and “Supplier
management” which is one of limitations of this study.

3.5 Building Causal Bayesian Network

In this study Bayesian network was used. As stated by Heckerman [42], a Bayesian
network can be used to learn causal relationships, and hence can be used to gain
understanding about a problem domain and to predict the consequences of intervention.
Furthermore, a Bayesian network model has both causal and probabilistic semantics,
which is an ideal representation for combining prior knowledge and data.

To build a Bayesian network the data needs to be categorical. This way, the
categorical measurements for each concept can be obtained by applying k-means
cluster analysis [43]. In this study, Two-state categorization for the constructs of SC
enabler and SCM practices, and three-state categorization for the constructs of SC
performance were applied. For Bayesian causal modeling, TETRAD 6-4-0 is a program
which creates, simulates data from, estimates, tests, predicts with, and searches for
causal and statistical models [44] that is developed at Carnegie Mellon University.

In causal modeling process, first the categorical data was entered to TETRAD 6-4-0
package. Then, by using its knowledge module, the order of variables was specified. In
Fig. 1, SC enablers are specified at first order and SCM practices at second and SC
performance measures at last. In addition, it was specified that in each group of SC
enablers and SCM practices, no inter-relationships be allowed by software, avoiding
hyper-complex network.
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4 Results

4.1 Causal Model

Running the PC algorithm with prior knowledge, as described in previous section,
resulted in the model of Fig. 2. This model has degree of freedom of 152, chi-square of
624, and BIC of –180. In this primary model, production flexibility and customer
satisfaction have no causal connection. It was suggested that some SC enablers may
have direct impact on SC performance and some SC performance aspects may have
effects on other SC performance aspects. Thus, the settings of the Search module of
TETRAD 6-4-0 were modified for allowing the PC algorithm to find any direct rela-
tionships between SC enablers and SC performance aspects and also any relations
between SC performance aspects. The resulted model (Fig. 3) has degree of freedom of
148, chi-square of 545 and BIC of –238.

At the first glance, it can be seen that advanced manufacturing technology such as
SC enabler has direct impact on SC performance (delivery flexibility). In this model,
delivery flexibility is antecedent of production flexibility and customer satisfaction. In
addition, production flexibility is antecedent of logistics performance. This research
suggests that the production flexibility must be antecedent of delivery performance, so
this relation in resultant model was modified. The resultant model (Fig. 4) have degree
of freedom of 148, chi-square of 546 and BIC of –236 which are totally better than
previous model fit indices, verifying our modifications.

Fig. 2. Output of PC algorithm depicting causal Bayesian network of study variables [4].
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Fig. 3. Output of PC algorithm with modified prior knowledge [4].

Fig. 4. Final bayesian network model with modified arrows of SC performance indices [4].
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4.2 Bayesian Inference

For deepening the understanding of causal relations of the final model, conditional
probability estimation with Bayesian networks, also known as Bayesian inference was
developed. Probabilistic inference is concerned with revising probabilities for a vari-
able or set of variables, called the query, when an intervention fixes the values of
another variable or set of variables, called the evidence [45]. To do this job the
maximum likelihood Bayes estimator module of TETRAD 6-4-0 software with its
Dirichlet estimator was used to develop tables of conditional probabilities for SC
enablers, SCM practices and SC performances of final CBN model. Dirichlet distri-
bution is a generalization of beta distribution which is frequently used in Bayesian
networks estimations.

Using the Dirichlet estimator, conditional tables for all of the model variables are
developed. Figure 5, depicts the output of TETRAD 6-4-0 software for Dirichlet
estimator which used for model variables. Some of the most important of them are
presented and analyzed below.

Information Sharing. Information sharing is the first supply chain practice which its
conditional table analyzed. As it can be seen in Table 4, information sharing as a SCM
practice is conditional on performance management systems and inter-organizational
communication technology as its enablers. Based on this table, when a supply chain has
performances management systems and inter-organizational communication technol-
ogy, it is more probable that an effective information sharing in that supply chain be
available.

Fig. 5. Dirichlet estimator output of TETRAD 6-4-0 software.
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Supply Chain Integration. Supply chain integration is one of the most discussed
SCM practices [1, 7, 25, 46, 47]. As depicted in conditional Table 5, when its enablers
are not present, there is a little chance for a supply chain to have effective supply chain
integration. Also, when a supply chain has an inter-organizational communication but
no effective performance management systems and unique identification and trace
technologies are implemented, just 30% is probable that the supply chain integration be
effective. But when all of the identified supply chain integration enablers are present, it
can be expected that nearly 70% the supply chain integration be effective.

Strategic View in Supply Chain Management. As another important SCM practices,
strategic view in supply chain analyzed, which its conditional table developed as
Table 6. Based on this table, strategic view in supply chain management is strictly
depend on performance management systems and inter-organizational communication
technology. When none of them are present, just about 10% effective strategic view is
expectable in supply chain. In contrast, when its two enablers are present, about 67%
strategic view in supply chain may be effective.

Table 4. Conditional table of information sharing.

Performance
management systems

Inter-organizational
communication technology

Information
sharing = 0

Information
sharing = 1

0 0 0.7241 0.2759
0 1 0.6429 0.3571
1 0 0.5974 0.4026
1 1 0.4138 0.5862

Table 5. Conditional table of supply chain integration.

Performance
management
systems

Inter-
organizational
communication
technology

Unique
identification
and trace
technologies

Supply chain
integration = 0

Supply chain
integration = 1

0 0 0 0.8077 0.1923
0 0 1 0.8000 0.2000
0 1 0 0.7000 0.3000
0 1 1 0.5000 0.5000
1 0 0 0.7069 0.2931
1 0 1 0.5238 0.4762
1 1 0 0.5405 0.4595
1 1 1 0.3077 0.6923
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Logistics Performance. Logistics performance is one of the most cited measures of
supply chain performance. As shown in final causal model, this performance is also
antecedent of other SC performance measures. This measure directly affected by per-
formance management system as enabler, and supply chain integration and strategic
view as SCM practices which related conditional probabilities are reported in Table 6.
It must be noted that performance measure in this study have three levels including 0 as
low level, 1 as mid-level and 2 as high or good level of performance.

At rows one to three in Table 7, strategic view isn’t present so as expected, there
are no good chance of high level performance of logistics. But at the forth row, when
strategic view not present but the other antecedents are, there is about 0.59% chance for
good logistics performance and in total 0.77 chance for acceptable logistics perfor-
mance. At the last four rows of Table 6, it’s clear that when strategic view in supply
chain is present, the chance of good logistics performance is high conditional on
presence of performance management systems (see row 7). It can be concluded that
towards a better logistics performance, presence of the three antecedents increase the
chance of good logistics performance to 69% and also its other affected performance
measures. Also when strategic view and supply chain integration are present but no
performance management systems, the chance of good logistics performance fall down
to 20% which highlight the importance of performance management systems.

Table 6. Conditional table of strategic view in supply chain management.

Performance
management systems

Inter-organizational
communication technology

Strategic
view = 0

Strategic
view = 1

0 0 0.8966 0.1034
0 1 0.7143 0.2857
1 0 0.5455 0.4545
1 1 0.3103 0.6897

Table 7. Conditional table of logistics performance.

Strategic
view

Supply
chain
integration

Performance
management
systems

Logistics
performance = 0

Logistics
performance = 1

Logistics
performance = 2

0 0 0 0.5161 0.2258 0.2581
0 0 1 0.3929 0.1607 0.4464
0 1 0 0.5556 0.1111 0.3333
0 1 1 0.2353 0.1765 0.5882
1 0 0 0.1667 0.1667 0.6667
1 0 1 0.3529 0.1765 0.4706
1 1 0 0.4000 0.4000 0.2000
1 1 1 0.1846 0.1231 0.6923
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5 Discussion and Implications

The resultant CBN model as discussed in work of Azhdari [4] in many aspects is
supported by supply chain literature. This model (Fig. 4) show that advanced manu-
facturing technology and performance systems as SC enablers, and information shar-
ing, SC integration and strategic view in supply chain as SCM practices have direct
impact on SC performance measures such as logistics performance.

Using Bayesian inference to probabilistically analyzing the CBN relations revealed
some interesting results. As it can be seen in Table 4, effective information sharing
implementation needs both performance management systems and inter-organizational
communication technologies in supply chain which the last was not considered before.
In case of supply chain integration posterior knowledge inference it’s found that when
performance management systems are not effective or available in a supply chain, the
chance of effective SC integration is just about 50%, despite of presence of inter-
organizational communication and unique identification technologies, which clarify the
importance of performance management systems. Also none of SC integration enablers
by itself can significantly improve the chance of effective SC integration. The condi-
tional table of strategic view (Table 6) discloses strategic view in supply chain can’t be
effective when its enablers including performance management systems and inter-
organizational communication technologies like extranets are not implemented
effectively.

Logistics performance is an important SC performance measure and also based on
Fig. 4, sequentially has impact on some other SC performance measures. As presented
in Table 7, when logistics performance antecedents including strategic view, supply
chain integration and performance management systems are available, its chance of
good performance is as high as about 70%. Also in total, it can be concluded that the
most influential antecedent of logistics performance is strategic view in supply chain.

6 Conclusion and Limitations

In this research a causal model of supply chain enablers, practices and performance is
developed and a Bayesian inference analysis used to deepen its results understandings.
This work is a development of earlier work of Azhdari [4].

This study has some limitations regarding methodologies and scopes. First, the
sample population was drawn from the members of the IranCode®. Although this
sample covered a wide range of firms in terms of industry, size, and geography, it
cannot be claimed that the results of this research can be wholly generalized, especially
because the response rate was not high and this study were based on a self-assessment
of the single participants from sample firms. So, further studies can be carried on for
narrower group of industries with larger sample sizes. Because of a limited sample,
some Bayesian inferences must be considered with caution. Causal sufficiency is a
determinant in probabilistic causal modeling and therefore in Bayesian inference
validity. Bayesian inference is based on conditional tables and when tables are more
comprehensive, backward and forward inferences are more valid. Thus, it is needed to
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identify if any other contributing variables are neglected, which considering them may
bring more valid causal models and related Bayesian inferences in this line of study.

In CBN model, some important intra-relations of SCM element’s tier worth of
further study, which ignoring them may blur the final results, especially weaken the
Bayesian inferences. Particularly studying intra-relations between SCM practices may
reveal many interesting results which contribute to more inclusive Bayesian inferences.

The set of SC performance measures were selected based on available data and
some others eliminated because of measurement model validity. Hereafter, more
definitive and comprehensive SC performance measurement may contribute to
attaining more valid and applicable results from Bayesian inferences in the future
studies.

Despite these limitations, this study has the following contributions in literature and
practice. The first contribution of this study is its comprehensive review of supply chain
enablers and supply chain management practices which as mentioned by [31], were not
realized before. Second, as mentioned by Azhdari [4], a causal Bayesian network
model is developed from field data and then using the TETRAD 6-4-0 tools, modified
to better fit indices. Such a logical modification towards a better model fit indices is a
new approach in methodology. At last, but the most important contribution of this
study is applying Bayesian inference in SCM knowledge context. It is a new approach
and its results contribute to deepening the knowledge of SCM dynamics and also make
it more practical to SCM practitioners. As SCM practitioners can know in advance,
which developments in SC enablers or SCM practices may result in which level of
improvements in supply chain outcomes and to what extent? Also they can identify any
SC performance weakness may due to which deficiencies in SC enablers or SCM
practices or some combinations of them?
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Abstract. We introduce two specific design problems of optical fiber
cable networks that differ by a practical maintenance constraint. An
integer programming based method including valid inequalities is intro-
duced for the unconstrained problem. We propose two exact solution
methods to tackle the constrained problem: the first one is based on
mixed integer programming including valid inequalities while the second
one is built on dynamic programming. We then provide a fully poly-
nomial time approximation scheme for the constrained problem. The
theoretical complexities of both problems in several cases are proven and
compared. Numerical results assess the efficiency of both methods in dif-
ferent contexts including real-life instances, and evaluate the effect of the
maintenance constraint on the solution quality.

Keywords: Optical networks · Network design ·
Mixed integer programming · Dynamic programming

1 Introduction

Fiber To The Home (FTTH) networks are currently deployed by telecommunica-
tions operators, and require a huge capital expenditure (see [7], it can cost several
billion euros to connect one million households). The technological architecture
chosen by a majority of operators is to deploy passive optical networks, which
are based on passive optical splitters. A passive optical splitter connects several
fibers on one of its sides to one at the other side (divides or gathers the signal
depending on its origin), which leads to a tree topology of the FTTH networks
(illustrated in Fig. 1a). The design of such networks includes to decide the split-
ter locations, the civil engineering infrastructure used (see [4–6,8]). Finally, the
fiber cable network has to be designed to connect these equipment (see Fig. 1a).
These decisions are usually taken in different steps.

This paper focuses on the problem of fiber cable network design. This prob-
lem is highlighted in the survey [9] as an incomplete field of study, especially
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when cable separation techniques are considered. The work from [1] tackles the
issue including the selection of civil engineering infrastructure, but faces compu-
tational limits on real-life instances. The paper [12] excludes weld costs, which
are a significant expense source. The work from [2] deals with the issue of cable
backfeed, specific to the problem, but restricts the possible ways to serve the
demand. In the following we include several ways to serve the demand (with
fiber cables or fiber modules), and introduce a maintenance constraint which, to
our knowledge, is novel. What follows extends the work presented in [3].

The next section introduces two problems which differ by the introduction of
an Operation Administration & Maintenance constraint. We introduce an algo-
rithm based on integer programming for the unconstrained problem in Sect. 3.1.
Two solution methods are then proposed for the constrained problem, an integer
programming based solution in Sect. 3.2, and a dynamic programming based solu-
tion in Sect. 4.1. A fixed parameter tractable approximation scheme is introduced
for the constrained problem in Sect. 4.2. The theoretical complexities of both prob-
lems are proven and argued in Sect. 5. All solution methods are assessed numeri-
cally in Sect. 6.

Fig. 1. (a) Underlying optical architecture example. It has a tree topology; the splitter
location is connected to every client group [3]. (b) Underlying civil engineering tree
example. The ducts, cabinets, demands and number of fiber modules are known [3].

2 Problem Description

The general problem tackled in this paper consists in connecting one splitter
location to several client groups, using fiber cables, with minimal cost. It arises
several times in a given FTTH network, notably once for each splitter location.
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2.1 Unconstrained Problem

Cables are to be laid out in a civil engineering infrastructure (usually the one
used for the legacy copper network) with a tree topology, assumed chosen within
previous decision steps. The cables have an arborescent structure from the split-
ter location to the client groups. Along the ducts of this infrastructure are located
street cabinets, in which the demand lies. The civil engineering structure used is
supposed to be known due to previous decision making, as well as the demand
in each cabinet.

Fiber cables contain several fiber modules, and each fiber module contains
several fibers. Due to operational constraints, modules are not dividable, and
all modules on a given network are supposed to be identical. This allows us to
consider only fiber modules, and ignore the fiber level. Some of the modules are
connected to the fiber source on one of their ends, and on the fiber demand on
the other end. These are actually used, and are called “active modules”, the
other ones are called “dead modules”. The latter can arise due to cables not
matching exactly the demand or in the operations described below (example: a
4 module cable serving a cabinet which requires 3 modules). Since all the demand
is known and there is only one path from the source to a given demand point,
the number of active modules that must be deployed through a given duct is
known (see Fig. 1b).

Fig. 2. Left: Continued cables; Right: Splicing operation [3].

At a cabinet, cables can endure a splicing operation, which leads to two basic
configurations (see Fig. 2):

– All cables are continued. One only has to pay for the cost of laying out cables.
– One cable is spliced. It is cut at the cabinet, and its active modules are welded

to active modules of new cables, referred to as “born cables”. A protective
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box, the size of which depends on the spliced cable size, is installed. One has
to pay for the cables, the box and the welds.

There are two different ways to serve the demand that cannot be combined
(see Fig. 3):

– Cable-served. In this case, a single cable brings all the required active modules
to the demand cabinet.

– Module-served. In this case, a splicing operation is done in the cabinet, and
some modules from the spliced cable are used to serve the demand. No welds
are done on these modules.

Additional engineering rules have to be taken into account:

Fig. 3. Left: Module-served demand node; Right: Cable-served demand node [3].

– At most one cable can be spliced at a street cabinet. This is due to space
restrictions and regulatory constraints (protective boxes are large).

– The demand of a given cabinet must be served by at most one cable.

The cost elements are as follows:

– The cost of a cable is linear with respect to its length, and concave with
respect to its size (i.e. its number of modules). This derives from the cata-
logues of cable manufacturers, who propose a fixed price per length unit for
each cable size.

– The cost of a protective box depends on the size of the cable being spliced.
It is a piecewise constant function. This derives from the number of different
boxes sold by manufacturers.
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– The cost of welds depends on the number of welds to be done in a given
cabinet. It is piecewise linear concave, and derives from manpower cost con-
siderations.

This decision problem, referred to as FCNDA (Fiber Cable Network Design
in an Arborescence) in the following, can be formulated as follows: given a civil
engineering arborescence, demand nodes, a set of available cables and the asso-
ciated costs, design a minimum cost optical fiber cable network satisfying the
engineering rules listed above.

Section 2.2 introduces a restriction of the FCNDA problem.

2.2 Constrained Problem

We restrict the problem by imposing that all cables going through a given duct
are born in the same cabinet (eventually the fiber source). This restriction is
illustrated in Fig. 4. It is motivated by operations and maintenance consider-
ations. Indeed, assuming all the cables of a given duct are damaged, then an
intervention has to be done at the cabinets where each of these cables is born.
If the rule is respected, an intervention is necessary in only one cabinet.

The constrained decision problem, referred to as EFCNDA (Easy-
maintenance Fiber Cable Network Design in an Arborescence) in the following
consists in designing a FCNDA solution where cables on a same duct are born
in the same cabinet with minimal cost.

Fig. 4. Left: Allowed splicing configuration for EFCNDA. On all edges, cables are
born in the same cabinet; Right: Forbidden splicing configuration for EFCNDA. On
the bottom-right duct, two different cables are born in different cabinets [3].
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3 Integer Programming

3.1 SFCND

Notation and Formulation. The following notations will also be used in
Sect. 4.

An arborescence G = (V,A) describes the civil engineering infrastructure, V
the cabinets and A the ducts, and its root r ∈ V denotes the fiber source (CO or
splitter location). For any i ∈ V,Di ∈ N denotes the demand (number of active
modules required) in node i. We define V ∗ = V \ r, the set of demand nodes is
noted VD = {v ∈ V,Dv > 0}, the set of nodes without demand VN = V ∗ \ VD.
Each arc (i, j) ∈ A has a length Δ(i,j) > 0 and must contain mact

i,j active modules
(mact

i,j being known, since we are in an arborescence). For i ∈ V , we denote Γ+(i)
the set successors of i and γ(i) its predecessor.

We have L different cable types at our disposal, we note L = {1, .., L} the
set of cables. Cables of type l ∈ L have a size of Ml ∈ N modules, and for l ∈ L,
we note Ml = {1, ..,Ml} (the range of possible number of active modules in a
cable of type l).

For l ∈ L, let us define Cle
l the cost per length unit of a cable of size l, and PBl

the cost of a box of size l. For m ∈ ML, let us define the cost of the smallest cable
able to contain m active modules Cmin

m = Cle
l1

where l1 = min{l ∈ L,m ≤ Ml},
and PWm the cost for welding m modules.

We introduce P the set of directed paths of G, and for p ∈ P, we note by
s(p) its source node, t(p) its target node, and Δp its length (which extends Δ
from A to P).

We define the following variables:

– ∀l ∈ L,∀p ∈ P, kspl
p,l ∈ {0, 1} the binary variable equal to 1 iff there is a cable

of size l on path p spliced in t(p).
– ∀p ∈ P, kdem

p ∈ {0, 1} the binary variable equal to 1 iff there is a cable on
path p serving the demand in t(p) in a cable-served way. Its size is known, it
is min{l ∈ L|Ml ≥ Dt(p)}.

– ∀p ∈ P,mspl
p ∈ {0, ..,ML} the number of active modules of the cable on path

p spliced in t(p).
– ∀i ∈ V ∗,∀m ∈ ML, wi,m the binary variable equal to 1 iff m welds are done

in node i.

The problem can be formulated as follows:

min
∑

p∈P
Δp ·

(
Cmin

Dt(p)
· kdem

p +
∑

l∈L
Cle

l · kspl
p,l

)

+
∑

i∈VN

∑

m∈ML

PWm · wi,m +
∑

p∈P

∑

l∈L
PBl · kspl

p,l
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such that

∑

p∈P|t(p)=i

∑

l∈L
kspl

p,l ≤ 1 ∀i ∈ V ∗, (1)

∑

p∈P|t(p)=i

kdem
p ≤ 1 ∀i ∈ VD, (2)

∑

l∈L
Ml · kspl

p,l ≥ mspl
p ∀p ∈ P, (3)

∑

p∈P|t(p)=i

mspl
p = Di · (1 −

∑

p∈P|t(p)=i

kdem
p )

+
∑

p∈P|s(p)=i

(mspl
p + Dt(p)k

dem
p ) ∀i ∈ V ∗, (4)

∑

m∈ML

m · wi,m =
∑

p∈P|i=s(p)

(mspl
p + Dt(p) · kdem

p ) ∀i ∈ V ∗, (5)

∑

m∈ML

wi,m ≤ 1 ∀i ∈ VN ,

kdem, kspl, w ∈ {0, 1};mspl ∈ {0, ..,ML} (6)

In the cost function, the first term stands for the cost of cables, the second
term for the cost of welds, and the last term for the cost of boxes. Equations (1)
ensure at most one cable is spliced in a node. Constraints (2) a most one cable
serves the demand in a cable-served way. Equations (3) make sure that spliced
cables are large enough to contain their number of active modules. Constraints
(4) are active module conservation equations. The left hand side term stands for
the number of modules of the spliced cable. The first right side hand term is the
number of modules necessary to serve the demand, in case it is not cable-served.
The last term is the number of active modules of born cables. Finally, (5) and
(6) ensure that w counts the number of welds to be done in each node.

Remark 1. It is possible to fix the value of some variables. First, notice that
leaf nodes are demand nodes. These nodes will be served in a cable-served
way, and no operation will be done inside them. This gives, for all nodes
i ∈ VD such that |Γ+(i)| = 0:

∀m ∈ ML, wi,m = 0

∀p ∈ P|t(p) = i,∀l ∈ L, kspl
p,l = 0
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Furthermore, the number of welds done in a node cannot exceed the number
of active modules going out of this node. This gives:

∀i ∈ V ∗,∀m ∈ ML, if m >
∑

j∈Γ+(i)

mact
i,j , wi,m = 0

Valid Inequalities. We propose here several valid inequalities to tighten the
formulation.

Let us define, for all m ∈ N, the minimum cost per length unit of a set of
cables able to contain m active modules denoted by LB(m). For a given m,
LB(m) = {min

∑
l∈L Cle

l · nl|
∑

l∈L Ml · nl ≥ m,n ∈ N
L}.

Proposition 1. The following inequalities are valid for the ESFCND problem:

∀(i, j) ∈ A,
∑

p∈P|(i,j)∈p

( ∑

l∈L
(Cle

l · kspl
p,l )

+Cmin(Dt(p)) · kdem
p

) ≥ LB(mact
i,j ) (7)

The left hand side is the cost per length unit of the cables going through
(i, j).

Let us consider a path p ∈ P such that t(p) ∈ VD and s(p) �= r. If there
is a cable deployed on p, born in s(p) and serving the demand in t(p), then we
know there is a splicing operation done in s(p). Furthermore, there is at least
Dt(p) welds in this operation, since the cable serving t(p) contains Dt(p) active
modules.

Proposition 2. The following valid inequalities are valid for the ESFCND prob-
lem:

∀p ∈ P|t(p) ∈ VD and s(p) �= r, kdem
p ≤

∑

m≥Dt(p)

ws(p),m (8)

Proof. Let consider a path p ∈ P such that t(p) ∈ VD, s(p) �= r, and kdem
p = 1

(t(p) is cable served by a cable on p). By (5), it gives
∑

m∈ML
m ·wsp,m ≥ Dt(p)

(there are at least Dt(p) welds done in s(p)). Which means, with (6), ∃!m0 ≥
Dt(p), wsp,m0 = 1. Hence the result. �	
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3.2 ESFCND

ESFCND can be solved by using the same variables as in Sect. 3.1. The cost
function is the same, the set of feasible solutions is described by constraints (1)
to (6) to which we add the maintenance constraints described below:

∀(p, p′) ∈ P2 such that s(p) �= s(p′) and ∃a ∈ A, a ∈ p and a ∈ p′,
kdem

p + kdem
p′ ≤ 1 (9)

∑
l∈L

kspl
p,l +

∑
l∈L

kspl
p′,l ≤ 1 (10)

∑
l∈L

kspl
p,l + kdem

p′ ≤ 1 (11)

These constraints ensure that on two paths which have different origins but
an arc in common, there can be only one cable. Constraints (9) ensure it in the
case the two cables are serving the demand. Constraints (10) in the case both
cables are spliced (at most one term in the sum

∑
l∈L kspl

p,l is equal to 1, since
there can be at most one splicing operation in t(p), the same goes for p′). Finally,
constraints (11) in the case one of them is spliced and the other one serves the
demand.

The next section introduces an alternative mixed integer programming app-
roach for ESFCND, based on arcs rather than paths. It uses the properties of
the problem, and has less variables and less constraints.

Notations and Formulation. We keep the same notations for the problem
instance. In addition, let us define for (i, j) ∈ A,Ui,j an upper bound of the cost
per length unit of the cables going through duct (i, j).

We define the following variables:

– ∀(i, j) ∈ A, xi,j ∈ {0, 1} the binary variable equal to 1 iff the cables on arc
(i, j) are born in i.

– ∀(i, j) ∈ A, ci,j ∈ R the continuous variable equal to the cost per length unit
of the cables on arc (i, j).

– ∀(i, j) ∈ A, zi,j ∈ R the continuous variable equal to xi,j · ci,j .
– ∀i ∈ VD, ui ∈ {0, 1} the binary variable equal to 1 iff the node i is module-

served.
– ∀i ∈ V ∗,∀m ∈ ML, wi,m the binary variable equal to 1 iff m welds are done

in node i (since its meaning is identical to Sect. 3.1, we keep the same name).
– ∀i ∈ V ∗,∀l ∈ L, yi,l the binary variable equal to 1 iff a cable of size l is spliced

in i.

The problem can be formulated as follows:

min
∑

i∈V ∗

∑

m∈ML

PWm · wi,m

+
∑

(i,j)∈A

Δ(i,j) · ci,j +
∑

i∈V ∗

∑

l∈L
PBl · yi,l (12)
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such that

cγ(i),i =
∑

l∈L
Cle

l yi,l +
∑

j∈Γ+(i)

ci,j

−
∑

j∈Γ+(i)

zi,j + (1 − ui) · Cmin
Di

∀i ∈ VD, (13)

cγ(i),i =
∑

l∈L
Cle

l yi,l +
∑

j∈Γ+(i)

ci,j −
∑

j∈Γ+(i)

zi,j ∀i ∈ VN , (14)

∑

l∈L
Ml · yi,l ≥ Di · ui +

∑

j∈Γ+(i)

mact
i,j · xi,j ∀i ∈ VD, (15)

∑

l∈L
Ml · yi,l ≥

∑

j∈Γ+(i)

mact
i,j · xi,j ∀i ∈ VN , (16)

∑

l∈L
yi,l ≤ 1 ∀i ∈ V ∗, (17)

∑

m∈ML

m · wi,m =
∑

j∈Γ+(i)

mact
i,j · xi,j ∀i ∈ V ∗, (18)

∑

m∈ML

wi,m ≤ 1 ∀i ∈ V ∗, (19)

zi,j ≥ ci,j − Ui,j · (1 − xi,j) ∀(i, j) ∈ A, (20)
zi,j ≤ Ui,j · xi,j ∀(i, j) ∈ A, (21)
zi,j ≤ ci,j ∀(i, j) ∈ A, (22)
u,w, x, y ∈ {0, 1}; c, z ∈ R

The first term of the cost function denotes the cost of welds, the second term
stands for the cost of cables, and the last term stands for the cost of boxes.
Equations (13) ensure the cost per length unit of any arc is properly counted.
The term

∑
l∈L Cle

l yi,l stands for the cost of the cable spliced in i, if any. If for
some arc (i, j) ∈ A such that j ∈ Γ+(i) we have xi,j = 0, then the cables on (i, j)
come from (γ(i), i) unchanged. Otherwise, they come from the splicing operation
done in i. The last term stands for the cost of the cable serving the demand in i.
Equations (14) are the equivalent concerning nodes without demand. Equations
(15), (16) and (17) ensure the cable spliced in i is large enough to contain its
active modules. The first term of the right hand side of (15) stands for modules
serving the demand, the second term for modules of born cables. Constraints
(18) and (19) ensure the variable wi,m is equal to 1 iff there are m welds done in
node i. Finally, constraints (20), (21) and (22) ensure ∀(i, j) ∈ A, zi,j = xi,j · ci,j

(these are linearisation equations).

Remark 2. It is possible to fix the value of some variables. Assuming there exists
i ∈ V ∗ and m1 ∈ ML such that wi,m1 = 1, then by (18), we know there exists
S ⊆ Γ+(i) such that m1 =

∑
j∈S mact

i,j . This gives by contraposition ∀i ∈ V ∗,
∀m ∈ ML if m �∈ {∑j∈S mact

i,j |S ⊆ Γ+(i)} then wi,m = 0. It can be computed
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in O(|Γ+(i)|×ML) (which is not a polynomial with respect to the instance size,
provided ML is not coded in an unary system).

Valid Inequalities. The continuous relaxation of the formulation introduced
above shows is weak, mostly due to the linearisation of z. We propose here several
valid inequalities to tighten it.

In nodes without demand, if a cable of size l is spliced, then it has a number
of active modules between Ml and Ml−1+1; otherwise one could install a smaller
cable and obtain a cheaper solution. With the convention M0 = 0 and M0 = ∅,
this gives:

Proposition 3. Every optimal solution of the ESFCND problem verifies

∀i ∈ VN ,∀l ∈ L, yi,l =
∑

m∈Ml\Ml−1

wi,m (23)

Proof. Let us consider an optimal solution S of the ESFCND problem. Let us
consider i ∈ V ∗ and l ∈ L such that yi,l = 1 (a box of size l is installed in i).
This gives us 1 ≤ ∑

j∈Γ+(i) mact
i,j · xi,j (there are cables born in i); otherwise we

could obtain a cheaper solution by setting yi,l to 0.
Either (16) or (15) give us Ml ≥ ∑

j∈Γ+(i) mact
i,j ·xi,j . Furthermore, with (18)

and (19), we can obtain ∃m0 ∈ {1, ..,Ml}, wi,m0 = 1 (in other words, m0 ≤ Ml

welds are done in i).
If l = 1, we have the result.
Otherwise, let us assume m0 ≤ Ml−1. Then, the solution S′ identical to S

everywhere but in y′
i,l−1 = 1 and y′

i,l = 0 is a feasible cheaper solution (it is the
solution obtained by replacing the cable spliced in i by a smaller cable, leading
to a smaller cost for boxes and cables). Which contradicts our hypothesis.

Hence the result. �	
With a reasonment similar to the one from Proposition 1 (see definition of

LB), we can get a lower bound of the cost per length unit of the cables on each
arc.

Proposition 4. The following inequalities are valid for the ESFCND problem:

∀(i, j) ∈ A, ci,j ≥ LB(mact
i,j ) (24)

If the cables on some arc (i, j) ∈ A are born in i, then at least mact
i,j welds

are done in node i. This implies what follows.

Proposition 5. The following inequalities are valid for the ESFCND problem

∀(i, j) ∈ A, xi,j ≤
∑

m∈ML|m≥mact
i,j

wi,m (25)

Proof. Let us consider a solution of the ESFCND problem. Let us consider
(i, j) ∈ A such that xi,j = 1. This implies, by (18) that

∑
m∈ML

m ·wi,m ≥ mact
i,j .

Then, with (19), it follows that ∃!m0 ≥ mact
i,j , wi,m = 1 (only one of the variables

wi,m can be equal to 1). Hence the result. �	
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4 Dynamic Programming for ESFCND

For any node i ∈ V ∗, we introduce the additional notation V pr(i), which refers
to the set of nodes on the path from the root to i, excluding i and including r.

4.1 Exact Algorithm

The ESFCND problem can be solved by Algorithm 1. To each node i ∈ V ∗, and
for each node j ∈ V pr(i), we associate to i a label < j,C(i, j) >∈ V pr(i) × R

where C(i, j) is the minimum cost of the network rooted in i plus the cost of the
cables on the path from j to i, assuming these are born in node j.

Algorithm 1 . Exact Resolution Algorithm for ESFCND.

1: procedure INITIALISATION()
2: for i ∈ VD|Γ+(i) = ∅ do
3: for j ∈ V pr(i) do
4: Add to i the label < j, Cmin

Di
· Δp > where p ∈ P is the only path s.t.

s(p) = j and t(p) = i.
5: end for
6: Declare i labeled.
7: end for
8: end procedure
9: procedure RECURSION()

10: while ∃r′ ∈ Γ+(r) such that r′ has not been labeled do
11: for every node i ∈ V ∗ such that all nodes in Γ+(i) have been labeled do
12: for j ∈ V pr(i) do
13: � We select the operation in i minimizing the network cost.
14: Add the label < j, C(i, j) > to node i where

C(i, j) = min
S⊆Γ+(i),u∈{0,1}

∑

k∈S

C(k, i) +
∑

k∈Γ+(i)\S

C(k, j)

+PWm + Δp · Cle
l1 + Δp · Cmin

Di
· (1 − u) (26)

with

{
m =

∑
k∈S mact

i,k ; l1 = min{l ∈ L|Ml ≥ u · Di +
∑

k∈S mact
i,k }

p ∈ P is the only path such that s(p) = j, t(p) = i

15: end for
16: Declare i labeled.
17: end for
18: end while
19: end procedure
20: procedure TERMINATION()
21: return

∑
r′∈Γ+(r) C(r′, r)

22: end procedure

The algorithm is initialized at leaf nodes (line 4), which are cable-served
demand nodes, and where the size of the cable serving the demand is known.
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For a node i such that all nodes in Γ+(i) have been labeled, and for j ∈
V pr(i), (26) computes the minimum cost network if the next operation is done
in j. For i ∈ V ∗ and k ∈ Γ+(i), k ∈ S iff the cables going through arc (i, k) are
born in node i. Similarly, the boolean u is equal to 1 iff the node i is module-
served (its meaning is similar than the variable ui in Sect. 3.2).

We propose to compute it with a brute-search algorithm on the set S and on
u. For given nodes i ∈ V ∗, j ∈ V pr(i), it can be done in O(|Γ+(i)| × 2|Γ+(i)|+1).

Lemma 1. Algorithm 1 runs in time O(21+maxΓ × |V |2) where max Γ denotes
the maximal degree (number of successors) of a node in the graph.

This can be shown by summing the operations done for each loop.

Remark 3. This implies that if the maximal degree of nodes in the graph is
bounded by a constant, then Algorithm 1 runs in polynomial time.

For a non-leaf node i ∈ V ∗ and j ∈ V pr(i), when we compute (26), we do
not consider the cost of the welds done in j. This comes later, while j is being
labeled. It does not influence the network below, since all cables going through
(γ(i), i) are born in i. C∗ is the sum of the following elements:

– the cost of the network in the arborescence rooted in i, including the cost of
the welds and boxes in i (if any)

– the cost of cables deployed from i to j

This leads us to show the next proposition to show the validity of the algo-
rithm.

Proposition 6. Let us consider i ∈ V ∗. When i is declared labeled in Algorithm 1,
there exists a node j ∈ V pr(i) such that in the label < j,C(i, j) >, C(i, j) describes
the cost of the minimum ESFCND solution in the arborescence rooted in node i plus
the cost of the cables on the path from j to i.

We will start to prove it for leaf nodes, then recursively on higher nodes.

Proof. � Let us consider a leaf node i. In the minimum cost network, it is served
in a cable-served way with a cable of type l1 = min{l ∈ L|Ml ≥ Di}. This cable
is born in some node j ∈ V pr(i), eventually the root. Let us call p ∈ P the only
path such that s(p) = j and t(p) = i. The label < j,C(i, j) > of i has a cost of
Cmin

Di
· Δp.

� Let us consider a non-leaf node i ∈ V ∗ such that all nodes in Γ+(i) have
been labeled. In the minimal cost network, the cables going through arc (γ(i), i)
are all born in a node j ∈ V pr(i). Thanks to the maintenance constraint, we know
that they are all born in the same node. Since all nodes k ∈ Γ+(i) have been
labeled, for each of these nodes, there is a node jk ∈ V pr(k) such that in the
label < jk, C(k, jk) >, C(k, jk) describes the cost of the minimum cost network in
the arborescence rooted in k plus the cost of the cables on the path from jk to k.
Furthermore, since the cables going through arc (γ(i), i) are all born in j, we have
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either jk = j or jk = i. Let us consider the label <j,C(i, j)> of node i. If in the
minimal network i is module-served, then we will have u = 0 in the computation
of (26). Furthermore, let us consider k ∈ Γ+(i). If jk = i, we will have k ∈ S in
the computation of (26), and k ∈ Γ+(i) \ S otherwise. Hence the result. �	

The termination of the algorithm derives from Proposition 6. For each node
r′ ∈ Γ+(r), we have V pr(r′) = {r}. This implies, using this proposition, that in
the label < r,C(r′, r) >, C(r′, r) is the cost of the minimum network cost in the
arborescence rooted in r′ plus the cost of the cables on (r, r′). Summing these
values gives the minimum network cost.

The computation of (26) at each step is not done in polynomial time. There
are many algorithms able to tackle it (dynamic programming, brute search, ...).
We propose a way to tackle it in the next section which allows us to give an
approximation in polynomial time, thus providing a polynomial time approxi-
mation algorithm.

4.2 Approximation Algorithm

In this Section, we propose here a Fully Polynomial Time Approximation Scheme
(FPTAS) for ESFCND, in the case where:

– The height of the arborescence describing the civil engineering is upper
bounded by H ∈ N.

– The number of intervals on which the cost of the welds PW is a linear function
with respect to m is upper bounded by F ∈ N (recall that PW is defined to
be piecewise linear).

We introduce the following additional notation. PW is decomposed into its
linear components. For f ∈ {1, .., F}, we have successive integers Bf such that
∀m ∈ {Bf , .., Bf+1}, PWm = PW a,f × m + PW b,f .

A FPTAS for the knapsack problem is available in [11]. This algorithm A
gives, for an instance of the knapsack problem, and a number α > 1, a solution
S to the knapsack problem of cost Capprox where Capprox ≤ α×OPT and OPT
is the optimal solution cost (here, we consider the minimization version of the
knapsack problem, or “covering problem”).

In Algorithm 1, the computation of (26) is the only step which is not done in
polynomial time. We propose to solve it with Algorithm 2, which reformulates
it as a series of knapsack problems. Then, each of the knapsack problems can be
approximated thanks to the knapsack FPTAS.

The algorithms spans all possible cable sizes. For each cable size l, it computes
the minimum cost splicing operation in which a cable of size l is spliced in i.
(27) computes the minimal cost splicing in the case u = 0, and (28) computes
the minimal cost splicing in the case u = 1. Finally, in line 15, it compares the
best splicing obtained with the cost of continuing all cables.

The following lemma stems from the concavity of PW .

Lemma 2. ∀(f, f ′) ∈ {1, .., F}2, if f ≤ f ′, then ∀m ≥ Bf ′ , PW a,f ′ × m +
PW b,f ′ ≤ PW a,f × m + PW b,f
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Proof. Let us assume ∃(f1, f2) ∈ {1, .., F}2, with f1 ≤ f2 and ∃m ≥ Bf2 such
that PW a,f2 × m + PW b,f2 > PW a,f1 × m + PW b,f1 .

Since PW b,f is decreasing with respect to f , this means PW a,f2 > PW a,f1 ,
which contradicts the concavity of PW .

Hence the result. �	

Algorithm 2 . Computation of (26).

1: procedure C(i, j) calculation()
2: Define Cmin := +∞
3: for l ∈ L do
4: for f ∈ {1, .., F} do
5: if ({Ml−1 + 1, .., Ml}) ∩ {Bf , .., Bf+1} �= ∅ then
6: m1 := max(Ml−1 + 1, Bf )
7: Solve the following knapsack problems

C1 = min
∑

k∈Γ+(i)

(
xk · C(k, i) + (1 − xk) · C(k, j)

)

+PW a,f × ∑
k∈Γ+(i) xk · mact

i,k + PWb,f + Δ(i,j) · Cle
l

+Δ(i,j) · Cmin(Di) + PBl (27)
such that

∑
k∈Γ+(i) xk · mact

i,k ≥ m1

8: end if
9: if ({Ml−1 + 1 − Di, .., Ml − Di}) ∩ {Bf , .., Bf+1} �= ∅ then

10: m2 := max(Ml−1 + 1 − Di, Bf )

C2 = min
∑

k∈Γ+(i)

(
xk · C(k, i) + (1 − xk) · C(k, j)

)

+PW a,f × ∑
k∈Γ+(i) xk · mact

i,k + PW b,f + Δ(i,j) · Cle
l + PBl (28)

such that
∑

k∈Γ+(i) xk · mact
i,k ≥ m2

x ∈ {0, 1}|Γ+(i)|

11: end if
12: Cmin := min(Cmin, C1, C2)
13: end for
14: end for
15: Cmin := min(Cmin,

∑
k∈Γ+(i) C(k, j))

16: return Cmin

17: end procedure

From this lemma, we can get that if, for some l ∈ L and f ∈ F , C1 is reached
for values of xk such that

∑
k∈Γ+(i) mact

i,k xk > Bf+1 (the values returned by the
knapsack problem are higher than the range of welds we consider), then a lower
value of C1 can be reached for l and f +1. A similar reasoning can be done for C2.
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Let us consider H ∈ N. Let us consider an instance of ESFCND where the
civil engineering arborescence height is upper bounded by a constant H. We
propose the following FPTAS for ESFCND.

Let us consider α > 1. There is a polynomial time algorithm A which approx-
imates the knapsack within a ratio α

1
H . Run algorithm A′ which is a variant of

algorithm 1 where:

– Each computation of (26) is done with Algorithm 2.
– In Algorithm 2, each computation of (27) and (28) is approximated with

algorithm A.

This algorithm runs in polynomial time. Indeed, in Algorithm 1, the only step
which is not done in polynomial time is replaced by a polynomial time algorithm.

Proposition 7. Algorithm A′ returns a cost v of the ESFCND problem such
that v ≤ αv∗ where v∗ is the cost of optimal solution of ESFCND.

Proof. � Let us consider a leaf node i ∈ VD. The labels C(i, j) for j ∈ V pr(i)
have the same value in Algorithm 1 and algorithm A′.

� Let us consider a non-leaf node i ∈ V ∗ and j ∈ V pr(i). In the computation
of (26) by Algorithm 2, C∗ is approximated with a ratio of α

1
H . Its value is the

sum of welds and boxes costs and of a linear combination of the values of C(k, i)
and C(k, j) for k ∈ Γ+(i). So it multiplies the approximation ratios of the values
of C(k, i) and C(k, j). Hence, each time a node is labeled, the approximation
ratio of its labels are α

1
H time the approximation ratio of its children node.

Hence the global multiplicative ratio of this algorithm is α.

The next section assesses the complexity of SFCND and ESFCND.

5 Complexity

We show in Sect. 5.1 that SFCND is NP-hard even with 1 cable size and an
upper bound on the node degree of 2, and in Sect. 5.2 that ESFCND is NP-hard.

5.1 SFCND

Upper Bounded Degree. Let us consider the Number Partitioning Problem
(NPP), which is shown to be NP-complete in [10].
Instance: A set of N strictly positive integers {ni ∈ N|i ∈ {1, .., N}}.
Question: Is there a partition of the integers S ⊆ {1, .., N}} such that

∑
i∈S ni =∑

i�∈S ni ?
We consider an instance of the NPP and associate it to the following SFCND

instance: Let G = (V,A) be an arborescence describing the civil engineering struc-
ture, (V = {r, 0, 1} ∪ {vi|i ∈ {1, .., N}}, A = {(r, 0); (0, 1); (1, v1); (vi−1, vi)|i ∈
{2, .., N}}) (G is a chain graph), r is the fiber source. The demand nodes are
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{vi, i ∈ {1, .., N}} and have respective demands ni, i ∈ {1, .., N} modules. Only
one type of cable is available, with size M1 = 1

2

∑
i∈{1,..,N} ni. Its cost per length

unit is C1 = 1. The lengths of all arcs of the arborescence are null, except (r, 0)
which is of length 1. This means the cost of a cable born in r is 1, and the cost of
the other ones is 0. The cost of welds and boxes is null.

The question associated to this SFCND instance is “Is there a cabling solution
cheaper than 2 ?”.
� If (NPP) is feasible: ∃S ⊆ {1, .., N} such that

∑
i∈S ni =

∑
i�∈S ni. We then

build the following cabling solution:

– Two cables holding only active modules are installed on link (r, 0).
– In node 0, one incoming cable is spliced into N − |S| born cables. The born

cables have a number of active modules ni, i �∈ S and serve respectively the
demand nodes (vi)i�∈S .

– In node 1, the cable coming from the root with only active modules is spliced
into |S| born cables. The born cables have ni active modules and serve the
demand nodes (vi)i∈S .

Since the number of active modules is conserved in each splicing, the cabling
solution described above is feasible (it is illustrated in Fig. 5, as well as the
instance). Its cost is equal to 2.

Fig. 5. Instance and solution used in the complexity proof [3].

� If (NPP) is not feasible. Then, the solution described above is not possible
anymore. One cable is not large enough to cover link (r, 0). Two cables cannot
cover (r, 0) either, since they would both have only active modules, which would
mean that the (NPP) problem was feasible. Consequently, at least 3 cables need
to be installed on arc (r, 0), and such a solution has a cost of a least 3.

Remark 4. The solution illustrated in Fig. 5 is not valid for ESFCND, the main-
tenance rule is not respected in nodes 0 and 1.
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Upper Bounded Arborescence Height. We show in the following that the
problem is still NP-hard when restricted with:

– One cable size available.
– Civil engineering arborescence height of 3.
– Null welding cost.

We consider an instance of (NPP) that we associate to the following FCNDA
instance.

Let (V,A) be an arborescence describing the civil engineering structure (V =
{r, 0, 1} ∪ {vi|i ∈ {1, .., N}},

A = {(r, 0); (0, 1); (1, vi)|i ∈ {1, .., N}}); only one type of cable with a num-
ber of modules M1 = 1

2

∑
i∈{1,..,N} ni is available, its linear cost is C1 = 1.

The length of all arcs of the arborescence are zero, except (r, 0) which is of
length 1. This means the cost of a cable created in r is 1, and the cost of the
other ones is 0. The number of active modules associated with each arc are:
mact

(r,0) = mact
(0,1) =

∑N
i=1 ni;∀i ∈ {1, .., N},mact

(1,vi)
= ni, which means that the

demand points are the vi, i ∈ {1, .., N} and have respective demands ni. This
network is represented in Fig. 6. We consider a zero cost for welding and welding
boxes.

Fig. 6. Solution and instance considered in the NP-completeness proof.

The question associated to this FCNDA instance is “Is there a cabling solu-
tion cheaper than 2 ?”.

Let us first assume that (NPP) is feasible: ∃S ⊆ {1, .., N} such that∑
i∈S ni =

∑
i�∈S ni. We then build the following cabling solution:

– Two cables holding only active modules are installed on link (r, 0).
– In node 0, one incoming cable is spliced into N − |S| born cables. The born

cables have a number of active modules ni, i �∈ S and serve the demand nodes
(vi)i�∈S .

– On link (0, 1), one cable coming from r with only active modules, and N −|S|
cables serving demand nodes in {vi|i �∈ S} are installed.

– In node 1, the incoming cable with only active modules is spliced into |S|
born cables. The born cables have ni active modules and serve the demand
nodes (vi)i∈S .

– One cable is installed on each link (1, vi).
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Since the number of active modules is conserved in each splicing, the cabling
solution described above is feasible (it is illustrated in Fig. 6). Its cost is equal
to 2, as the cables created in r have a cost of 1, and the other ones have a cost
of 0.

Inversely, let us assume that (NPP) is not feasible: then, the solution
described above is not possible anymore. One cable is not large enough to cover
link (r, 0), it cannot contain all the required active modules. Let us assume there
is a solution with only two cables on (r, 0). Since their combined number of mod-
ules is

∑
i∈{1,..,N} ni, they both hold only active modules. If one of them directly

served the demand without enduring any operation, then the (NPP) instance
was trivially feasible (one of the ni is half the total sum). So both of them endure
a splicing operation, one in node 0, the other in node 1. Let us consider the cables
created in 1. They serve a subset S1 of the demand nodes, and have a respective
number of active modules of ni, i ∈ S1. Since the number of active modules in
a splicing operation is conserved, we have

∑
i∈S1

ni = 1
2

∑
i∈{1,..,N} ni and the

(NPP) instance was feasible.
Consequently, at least 3 cables need to be installed on arc (r, 0), and such

solution has a cost of at least 3.

5.2 ESFCND

ESFCND can be shown to be NP-complete by reduction from the (NPP). With
the same notations, let us consider an instance of the NPP and associate it to
the following ESFCND instance. The civil engineering structure is described by
the set of nodes is V = {r, 0}∪{vi|i ∈ {1, .., N}}; the set of arcs A = {(0, vi)|i ∈
{1, .., N}} ∪ {(r, 0)}; r is the fiber source, the nodes {vi|i ∈ {1, .., N}} have a
demand of ni modules. The length of all arcs except (r, 0) is null. We have N +1
cables available:

– N cables of sizes ni modules and cost per length unit ni

– A cable of size 1
2

∑N
i=1 ni and cost per length unit 1

2

∑N
i=1 ni − 1

The cost of welds and boxes is null.
The question we ask is “is there a solution of cost at most

∑N
i=1 ni − 1”?

� If (NPP) is feasible. Then, we have S ⊆ {1, .., N} such that
∑

i∈S ni =∑
i�∈S ni. We consider the solution of ESFCND where

– For i ∈ {1, .., N}, on each arc (0, vi), we lay down a cable of size ni

– In the node 0, a cable of size 1
2

∑
i∈{1,..,N} ni is spliced. Cables of size ni, i ∈ S

are born, and serve the demand of nodes vi, i ∈ S.
– On the arc (r, 0), a cable of size 1

2

∑
i∈{1,..,N} ni holding only active modules

is deployed (the one spliced in 0); as well as N − |S| cables of sizes ni, i �∈ S
which serve the demand in nodes vi, i �∈ S.
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The cost of this solution is the cost of cables on arc (r, 0) which is∑
i∈{1,..,N} ni − 1. It is illustrated in Fig. 7.

Fig. 7. Instance and solution used in the complexity proof for ESFCND [3].

� If (NPP) is not feasible. In a minimal cost solution, the size of cables serving
the demand is known. For a given i ∈ {1, .., N}, vi is served by a cable of size
ni. Which leaves three types of solutions to consider.

The solution without splicing has a cost
∑

i∈{1,..,N} ni. Each demand node
is served by a cable coming directly from the root r.

Any solution where a cable of size 1
2

∑
i∈{1,..,N} ni is spliced in 0 has a cost

at least equal to
∑

i∈{1,..,N} ni. Indeed, let us note E ⊆ {1, .., N} the set
such that cables of sizes ni, i ∈ E are born in 0. Since the NPP instance is
not feasible, we have

∑
i∈E ni < 1

2

∑
i∈{1,..,N} ni, so the cost of cables which

are continued in 0 is
∑

i�∈E ni > 1
2

∑
i∈{1,..,N} ni, and the total cost of the network is∑

i�∈E ni + 1
2

∑
i∈{1,..,N} ni − 1 ≥ ∑

i∈{1,..,N} ni.
Any solution where a smaller cable is spliced in 0 has a cost at least equal to∑

i∈{1,..,N} ni. Indeed, in any splicing of a cable of size ni for a given i ∈ {1, .., N},
the spliced cable is at least as expensive than the born cables.

5.3 Synthesis

To the results proven here, we can add those deducible from Sect. 4. The restric-
tion of ESFCND where there is an upper bound on the node degree can be solved
in polynomial time, since in that case the computation of (26) can be done in
polynomial time. This implies that it is also polynomial when more parameters
are fixed. Furthermore, we showed in Sect. 4.2 that the problem admits a FPTAS
under some conditions. As for SFCND, its NP-hardness in a restricted setting
implies its NP-hardness in the more general cases. These results are summed up
in Table 1.
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Table 1. Complexity of the two problems in different contexts.

Problem Complexity

Fixed elements None Maximum degree Maximum degree
L

F, H

SFCND NP-hard NP-hard NP-hard NP-hard

ESFCND NP-hard P P NP-hard, FPTAS

Table 1 shows a theoretical difference in the complexities of the two problems
ESFCND and SFCND. We assess the numerical aspect of this difference in the
next section.

6 Results

We assessed the solution methods on real-life instances taken from the city of
Arles (France).

The cables available have a size of 1, 2, 4, 6, 8, 12, 18 or 24 modules. The
resolution algorithm for the MIPs was the Cplex 12.6 default branch-and-bound
algorithm.

6.1 Models Comparison

The results of the numerical experiments regarding the SFCND and ESFCND
problem are displayed respectively in Tables 4 and 5, “base model” always refers
to the MIP without valid inequalities, and “enhanced model” to the MIP with
valid inequalities. The columns of both tables are labeled as follows: “time”
stands for the computation time; “CR” stands for the continuous relaxation as
a ratio of the optimal solution; “Br” stands for the number of explored branches
of the Branch and Bound algorithm.

Regarding SFCND, the valid inequalities have had a positive effect on the
average computation time, which went down from 546 to 62 s. However, on most
instances (8 out of 9), the MIP is solved faster without the valid inequalities. This
suggest that they are more useful for instances that are hard to solve. Regarding
the algorithm, the continuous relaxation goes from an average of 90.5% to 92.6%.
The high relaxation of the base model can explain the mitigated impact of the
inequalities on the performances (Table 2).

Regarding ESFCND, all instances were easier to solve (computation times are
displayed in milliseconds). The valid inequalities have had a beneficial effect on
the computation time, all instances are solved faster with the enhanced formula-
tion. The average computation time goes from 1730 to 329 ms. On an algorithmic
level, the initial relaxation goes from an average of 13.2% of the optimal solu-
tion cost to 87.3% of the optimal solution cost. This has a significant impact on
the number of nodes of the branch-and-bound algorithm, which goes from an
average of 1100 branches to an average of 4 branches; 7 instances out of 9 were
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Table 2. Key features of the real-life
instances.

Instance Features

Max
degree

Arcs Demand
nodes

Total
demand

Ar 1 4 113 45 61

Ar 2 6 103 38 55

Ar 3 5 103 35 66

Ar 4 6 123 43 80

Ar 5 7 129 44 68

Ar 6 6 137 43 67

Ar 7 4 139 35 68

Ar 8 5 163 41 63

Ar 9 4 219 68 78

Table 3. Key features of the fictive
instances.

Instance Features

Max
degree

Arcs Demand
nodes

Total
demand

Fi 10 11 20 15 71

Fi 11 12 22 16 84

Fi 12 13 24 18 97

Fi 13 14 26 19 112

Fi 14 15 28 21 112

Fi 15 16 30 22 127

Fi 16 17 32 24 144

Table 4. Results for SFCND.

Instance Base formulation Enhanced formulation

Time (s) CR (%) Time (s) CR (%)

Ar 1 8 90.3 16 91.0

Ar 2 9 83.7 24 92.4

Ar 3 17 92.2 22 93.3

Ar 4 19 89.2 46 90.0

Ar 5 1 94.9 2 95.2

Ar 6 2 92.5 3 94.7

Ar 7 13 92.4 29 93.7

Ar 8 8 89.6 12 91.7

Ar 9 4837 89.4 408 91.6

solved without branching. The exact dynamic programming approach was more
efficient than the enhanced integer programming formulation, it solved 7 out of
9 instances faster. The approximated algorithm was run with an approximation
ratio of 2. It was longer than Algorithm 1 on 8 instances out of 9. Despite their
similar structure, this can be explained by additional loops in the approximation
algorithm, which can increase its computation time.

6.2 Sensitivity Analysis

Section 5 points to the maximal node degree as a key element of the problems
complexity. Since the highest node degree of all real-life instances is between
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Table 5. Results for ESFCND.

Instance Base formulation Enhanced formulation Dynamic
programming

FPTAS

Time
(ms)

CR
(%)

Br Time
(ms)

CR
(%)

Br Time
(ms)

Time
(ms)

Ar 1 1457 14.0 1191 305 89.2 0 324 454

Ar 2 1174 17.8 462 239 86.6 0 239 141

Ar 3 1317 13.6 153 318 81.7 0 66 203

Ar 4 742 15.7 72 268 86.8 0 87 168

Ar 5 746 18.2 0 477 89.2 0 88 120

Ar 6 1477 15.5 66 238 91.8 0 110 235

Ar 7 1667 9.7 1045 190 80.1 0 121 251

Ar 8 1786 9.4 414 344 89.8 21 103 121

Ar 9 5204 5.3 6302 507 90.8 9 306 446

Table 6. Computation time on fictive instances (ms).

Instance Enhanced model
SFCND

Enhanced model
ESFCND

Dynamic
programming

FPTAS

Fi 10 205 166 322 16

Fi 11 327 77 652 17

Fi 12 993 332 1409 19

Fi 13 1130 120 3800 15

Fi 14 1369 347 12 403 28

Fi 15 1450 98 39 654 38

Fi 16 2691 280 164 243 52

4 and 7, we used fictive instances to assess the performances of each resolu-
tion technique when some of the nodes have a high degree. Their features are
displayed in Table 3.

As expected, the dynamic programming algorithm was very sensitive to the
node degree, the computation time growing exponentially (it was multiplied
by over 500 between the smaller and larger instance). On the other hand, the
approximation algorithm was much less sensitive to the node degree, with an
average computation time of 26 ms. There was a smaller growth on the instances
considered (it was multiplied by less than 4 between the smaller and larger
instance). The enhanced MIP formulation for ESFCND was able to solve all
instances in less than one second, with an average of 200 ms. This is the opposite
of the results obtained on real-life instances, where the dynamic programming
was more efficient. As for SFCND, the MIP formulation proved to be efficient,
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with an average computation time of 900 ms. Although the instances with a
higher degree are harder to solve, it stays tractable in practice. One should favor
a MIP based approach, regardless of the problem, when dealing with high degree
nodes (Table 6).

6.3 Operational Considerations

We compared the optimal solutions of both problems, as well as the approxi-
mated solutions found. The approximation ratio selected was still of 2. Results
are displayed in Table 7, the column labeled “arcs with rule broken” denotes the
number of arcs where the maintenance rule (illustrated in Fig. 4) is broken.

Table 7. Optimal solution costs and characteristics.

Instance Approximated
solution
ESFCND

Optimal
solution
ESFCND

Optimal
solution
SFCND

Arcs with
rule broken

Ar 1 6156.6 6156.6 6087.3 6

Ar 2 10 382.1 10 357.3 9870.0 8

Ar 3 6568.6 6546.2 6125.8 14

Ar 4 6788.1 6720.8 6461.9 14

Ar 5 5081.8 5081.8 5081.8 0

Ar 6 6546.5 6546.5 6544.2 1

Ar 7 9734.6 9348.0 8638.6 18

Ar 8 12 328.3 12 328.3 12 248.4 4

Ar 9 26 309.7 25 619.1 24 422.8 15

The ESFCND solutions provided by the approximation algorithm were in
average 1% more expensive than the optimal solutions, with the two being equal
for 4 instances out of 9. This can be seen as a good performance, and is much
better than the worst case guarantee.

The optimal solution of ESFCND is in average 3.7% more expensive than the
optimal solution of SFCND. This can be seen as an acceptable loss in capital
expenditure if it is compensated by an easier maintenance, depending on the
importance accorded to it.

The maintenance rule is broken in almost every real-life instance we tried
(8 out of 9). In average, it is not respected in 6.2% of the arcs, which is significant.
This suggests that the optimal solutions of SFCND will be much harder to repair
in case of failure on one of the arcs. These elements can be taken into account to
establish a strategy in case of node failure.
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7 Conclusion

This chapter tackles two fiber cables network design problems, one uncon-
strained by maintenance consideration (SFCND) and the other one constrained
(ESFCND). Regarding the unconstrained problem, one integer programming
based solving algorithm was proposed. Associated valid inequalities make it
more tractable in practice. We proposed two exact solution methods for the
constrained problem. These methods are complementary, as they prove efficient
in different contexts: the dynamic programming approach is generally faster in
graphs where nodes have a small degree, whereas the mixed integer program-
ming, embedding efficient valid inequalities, is generally faster otherwise. An
FPTAS was also provided, which was faster in both cases, while providing good
quality solutions.

On a theoretical level, the unconstrained problem seems much more complex
to solve than the constrained problem. Fixing some parameters makes the con-
strained problem polynomial, or approximable, while the unconstrained problem
stays NP-hard. Our numerical experiments confirmed this tendency on real-life
instances.

As for the operational side, the maintenance rule can be considered as a
reasonable compromise between capital expenditure for the network deployment
and maintenance costs. Its implementation only increases the optimal solution
cost by 3.7% on our test instances.
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Abstract. The present paper highlights the impact of heuristic
hybridization on Vehicle Routing Problems (VRPs). More specifically, we
focus on the hybridization of the Iterated Local Search heuristic (ILS).
We propose different hybridization levels for ILS with two other heuris-
tics, namely a Variable Neighborhood Descent with Random neighborhood
ordering (RVND) and a Large Neighborhood Search heuristic (LNS). To
evaluate the proposed approaches, we test them on a variant of VRPs
called the Capacitated Profitable Tour Problem (CPTP). In a CPTP, the
visit of all customers is no longer required and the visit of each cus-
tomer generates a specific profit. The available fleet of vehicle is limited
and capacitated. The aim of the CPTP is to choose which set of cus-
tomers to visit and in which order to maximize the difference between
collected profits and routing costs. Our experiments show that the more
ILS is hybridized the better are the results. To bring out the effective-
ness of the proposed hybrid approach combining ILS, RVND and LNS,
a comparison is made between that proposed approach and three local
search heuristics from the literature of the CPTP. The obtained results
are competitive.

Keywords: Heuristics · Hybridization · Vehicle Routing Problem ·
Iterative local search

1 Introduction

In recent years, considerable attention has been paid to logistic problems in gen-
eral and to Vehicle Routing Problems (VRPs) in particular. Different method-
ologies have been adopted to “solve” that kind of problems. Among the proposed
methodologies, heuristic algorithms are particularly much studied. Researchers
in the fields of combinatorial optimization are trying their best to improve the
solution quality and the computing time of previously proposed heuristics, espe-
cially when it comes to solve difficult problems as VRPs.
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The present work aims at analyzing the impact of heuristic hybridization
on VRPs. More specifically, hybridizations of the Iterated Local Search heuristic
(ILS) with other single-solution based heuristics are considered.

We recall that ILS principle is to improve a given initial solution by alternat-
ing local search (LS) and perturbation procedures. The role of a LS is to improve a
given solution by performing a set of small modifications (or moves) to the studied
solution. One can say that the LS visits the neighborhood of the studied solution
and selects the best neighboring solution according to some criterion. After some
iterations, the LS is no longer able produce better quality solutions using the same
set of moves. We say that the heuristic is trapped in a local optimum.

To help LS to escape local optima, ILS provides a perturbation procedure.
The latter procedure performs some changes to the current local optimum, pro-
ducing thereby a new starting solution for the LS. The quality of that new
starting solution is generally not as good as the quality of the local optimum.
That decrease in the solution quality induced by the perturbation procedure
allows the LS to visit a larger search space area.

In the present paper, we attempt to improve a simple ILS heuristic by mod-
ifying its local search and perturbation procedures. Several ILS hybridizations
are implemented based on several simple LS heuristics, a Variable Neighborhood
Descent with Random neighborhood ordering (RVND) and a Large Neighborhood
Search heuristic (LNS).

To assess the performance of the studied heuristics, the latter are tested on
a VRP variant called Capacitated Profitable Tour Problem (CPTP).

The CPTP has been introduced by Archetti et al. [1] in order to deal with
empty returns, that trucks are facing after performing delivery operations (see
[1] for more details). The main difference between the CPTP and the classical
VRP is the relaxation of the constraints imposing a visit for each customer. In
addition, in a CPTP a profit is assigned to each customer and the objective
is to maximize the difference between collected profits and routing costs. The
number of available vehicles in a CPTP is supposed to be finite. These vehicles
are homogeneous with a fixed capacity bound. Each customer in a CPTP has
a given pickup demand that must be entirely fulffiled if the customer is visited.
Furthermore, if a customer is included in the solution, its demand has to be
satisfied by performing a single visit.

The rest of the paper is organized as follows. Section 2 presents some previous
works from the literature dealing with the application of ILS to combinatorial
optimization problems and VRPs. Hybridizations of ILS with other heuristics
are highlighted. A CPTP literature review is also given in that Section. Section 3
describes the proposed approaches. Section 4 discusses the computational results.
Finally, a conclusion is given in Sect. 5.

2 Literature Review

The present section is divided into two subsections. In the first subsection, we
provide the literature review of the Iterated Local Search (ILS) heuristic. While
the second subsection is devoted to the CPTP heuristic approaches proposed in
the literature.
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2.1 Iterated Local Search Heuristic

According to Lourenço et al. [2], ILS is an efficient heuristic that has several
desirable features of a metaheuristic. The main features are the simplicity, the
high effectiveness, the robustness and the ease and the malleability of implemen-
tation (several implementation choices are left to the developer). The authors
also state that ILS effectiveness depends on the choice of the used modules: local
search, perturbation procedure and acceptance criterion.

In the literature, several researchers attempted the resolution of combinato-
rial optimization problems using hybridization of ILS with other heuristics. For
instance, Martins et al. [3] developed a Variable Neighborhood Descent (VND)
combined with an ILS for the Routing and Wavelength Assignment problem.
In that paper, VND plays the role of the local search procedure and uses three
neighborhood structures. When VND is blocked, ILS perturbs the so far obtained
solution and the process iterates until a stopping criterion is met.

Martins et al. [4] implemented a hybrid ILS and RVND heuristic for the Cell
Formation Problem. The proposed RVND uses three neighborhood structures.
In addition, three perturbation procedures are used in ILS.

Many researchers successfully applied hybrid ILS heuristics to VRP variants.
For example, Chen et al. [5] developed a hybridization of ILS with VND for the
Capacitated Vehicle Routing Problem. VND uses two inter- and two intra route(s)
operators consisting of intra-route relocation, 2-opt, inter-routes swap and 2-opt*.
The perturbation phase is performed using the cross-exchange operator.

Subramanian et al. [6] proposed a parallel algorithm combining an ILS with a
RVND for solving the Vehicle Routing Problem with Simultaneous Pick-up and
Delivery services. Five intra- and seven inter-route(s) neighborhood structures
are given together with three perturbation mechanisms.

Subramanian et al. [7] implemented a hybrid algorithm combining an exact
method with ILS and RVND for a class of VRPs with heterogeneous fleet. The
ILS and RVND heuristics are based on those presented in [6].

Assis et al. [8] presented a hybrid ILS using RVND in the local search phase.
The proposed RVND uses six inter- and six intra-route(s) neighborhood struc-
tures. That hybrid approach is tested on the multiobjective vehicle routing prob-
lem with fixed delivery and optional collections.

Another hybridization of ILS is implemented by Subramanian and Battarra
[9] to solve the Travelling Salesman Problem with Pickups and Deliveries. The
authors hybridized ILS with RVND. In RVND, four neighborhood structures are
given.

Hernández-Pérez et al. [10] studied a hybridization of ILS with VND. The
approach is applied to the multi-commodity Pickup-and-Delivery Traveling
Salesman Problem. The approach is tested with up to six neighborhood struc-
tures and a combination of three shaking procedures.
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Todosijević et al. [11] developed another hybrid approach using both ILS
and VND for the Swap-Body Vehicle Routing Problem. The used neighborhood
structures are 1-Opt, 2-Opt, Or-Opt, relocate and exchange. The shaking pro-
cedure is based on customer relocation.

The ILS and the VND heuristics also provide good quality solutions for
other variants of VRPs see [12–14]. In addition, the two heuristics perform well
on some Vehicle Routing Problems with Profits (see [15]). Furthermore, several
versions of VND are used to solve different variants of transportation problems
(see [16–18]).

As one can see from the literature review, several papers use combinations of
ILS and RVND for solving VRP variants. However, to the best of our knowledge,
only one work has been addressed using a hybridization of ILS with LNS [19].
ILS and LNS heuristics are nevertheless quite effective in solving VRP variants
as well as other transportation problems. For ILS, we refer the reader to the
papers [20–23], and for LNS, we refer the reader to the papers [24–28].

2.2 Capacitated Profitable Tour Problem

Despite its importance, the CPTP has not received a lot of attention from
researcher. Archetti et al. [1] introduced the CPTP and proposed three method-
ologies to solve that problem. The proposed methodologies are the Tabu Feasible
(TF), the Tabu Admissible (TA) and the Variable Neighborhood Search (VNS)
heuristics. Both TF and TA algorithms use two inter-route operators. The first
operator is called 1-move. 1-move either relocates a given customer in a different
route or deletes that customer completely from the solution. The second move-
ment is called swap-move. Swap-move either exchanges the positions of two given
customers from two different routes or deletes a customer and replaces it by an
unrouted one.

In order to deal with infeasible solutions obtained by the TA algorithm,
Archetti et al. proposed a repair heuristic based on series of 1-move. In addition,
the authors evaluated the solutions according to several criteria including the
difference between total profit and total distance, the number of routes, the route
duration and the maximum constraint violation.

The VNS algorithm uses the TF algorithm with a small iteration number,
which allows the visit of a larger area within the search space.

Some researchers proposed exact methods for the CPTP. As the present work
deals with heuristic approaches, we do not describe those exact methods.

3 The Proposed Methodology

In the present section, we describe the implemented construction heuristic and
the studied approaches: ILS, LNS and RVND. We also describe the tested
hybridizations.
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Note that a preliminary work dealing with ILS hybridization has been pre-
sented in [29]. The present work extends the one proposed in [29] by providing:
(i) other heuristic approaches combining ILS with other neighborhood opera-
tors, (ii) a hybridization of ILS with both LNS and a neighborhood operator,
(iii) a detailed comparison between the use of the basic greedy heuristic and
a random insertion heuristic within the perturbation procedure, (iv) detailed
results of the hybrid heuristic combining ILS, RVND and LNS compared with
Archetti et al. [1] results.

3.1 Construction Heuristic

The implemented construction heuristic is a sequential heuristic based on the I1
heuristic of Solomon [30]. I1 was first developed for the Vehicle Routing Problem
with Time Window. The pseudo-code of the construction heuristic is displayed
in Algorithm 1.

Algorithm 1. Construction heuristic for the CPTP.
1: Inputs:

A CPTP instance
A list Lunr containing all the unrouted customers
A number nbRoutes = 0 of the current solution routes

2: Outputs:

A feasible solution
3: while nbRoutes < vehicle number do
4: Generate a new route;
5: nbRoutes + +;
6: Add a seed customer to the new route;
7: while ∃u ∈ Lunr whose insertion leads to a feasible solution do
8: Evaluate the insertion of each unrouted customer u ∈ Lunr into the studied

route rstu;
9: Choose the best insertion position for each u using the criterion cr1(i, u, j);

10: Choose the customer u∗ that has the best value of cr1(i, u, j);
11: Insert the customer u∗ in its best insertion position within rstu;
12: Delete u∗ from Lunr;
13: end while
14: end while

An empty route is considered in the first iteration of the construction heuris-
tic. That empty route is first filled with a seed customer which is randomly cho-
sen. After that, the heuristic evaluates the insertion of the remaining unrouted
customers into the route. The best insertion position of each unrouted customer
u between customers i and j is selected. This is done according to a given crite-
rion denoted cr1(i, u, j). Among all the best insertion positions, the construction
heuristic chooses the one that optimizes the given criterion. That process iter-
ates until no customer can be inserted into the current route. If some customers
are still unrouted, a new route is generated and the process is repeated. The
heuristic stops either if there are no more unrouted customers or if the number
of generated routes exceeds the vehicle number.
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To describe cr1(i, u, j), let us consider (i0, i1, . . . , ih) as the current route
where iρ stands for the ρth position in the route if ρ /∈ {0, h}, iρ stands for the
depot otherwise (ρ ∈ {0, h}). The best insertion position of customer u within
the current route is selected according to Expressions (1)–(4) (Source [29]). In
these Equations cij refers to the distance between customers i and j, pru refers
to customer u profit, α1, α2 ≥ 0 with α1 + α2 = 1 are two parameters set by
the user.

cr1(i(u), u, j(u)) = max {cr1(iρ−1, u, iρ), ρ = 1, . . . , h} ; (Source [29]) (1)
cr1(i, u, j) = α1 · cr11(i, u, j) − α2 · cr12(i, u, j); (Source [29]) (2)

cr11(i, u, j) = pru; (Source [29]) (3)
cr12(i, u, j) = ciu + cuj − cij . (Source [29]) (4)

The Eqs. (1)–(4) have been already presented in [29] on page 117, Sect. 2.1.
Note that different values of parameters α1 et α2 can lead to different solu-

tions for the CPTP.

3.2 Iterated Local Search

ILS principle is described in Sect. 1. The pseudo-code of the ILS heuristic used
in the present paper is given in Algorithm 2. ILS starts from an initial solution
given by the construction heuristic presented in Sect. 3.1. Then a local search
procedure is executed for a given number of iterations. If the obtained solution
is better than the current best one, the best solution is replaced by the obtained
one. The solution is, after that, perturbed using a perturbation procedure. The
process is repeated until a stopping criterion is met. In the present work, the
stopping criterion stands for the completion of a given number of iterations
without improvement.

Algorithm 2. Iterated Local Search.
1: Inputs:

A CPTP instance
2: Outputs:

The best solution found
3: Generate an initial solution;
4: while stopping criterion is not met do
5: Execute a local search procedure;
6: Update the best solution;
7: Perturb the obtained solution;
8: end while
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Local Search. As mentioned by Talbi [31], any single-solution based meta-
heuristic can be used in the local search phase of an ILS.

In the present work, seven basic ILS versions are first tested. In each ILS
basic version, a different neighborhood structure (or neighborhood operator) is
used. The implemented neighborhood operators consist of four intra- and three
inter-route(s) operators. The latter are described in what follows. Examples of
neighborhood movements for each operator are given in Fig. 1. Figure 1 was first
given in [29] on page 118.

2-Opt introduces two new arcs and deletes two other arcs in a given route
by connecting two customers k and l and reversing the path between those
customers. In Fig. 1, the arcs (1, 4) and (2, 5) are deleted, the arcs (1, 2) and (4, 5)
are added, customers 1 and 2 are connected and the path (4− 3− 2) is reversed.
For maintaining the route connectivity, customers 4 and 5 are connected.

2-Opt* divides two given routes into four segments: initial and final segments.
Then, the operator connects each first segment from a route with a second seg-
ment from the other route. In Fig. 1, the first route (0−1−2−3−0) is disconnected
into a first segment (0 − 1) and a second segment (2 − 3 − 0). The second route
(0 − 4 − 5 − 6 − 0) is disconnected into a first segment (0 − 4 − 5) and a second
segment (6 − 0). After that, (0 − 1) is connected to (6 − 0) and (0 − 4 − 5) is
connected to (2 − 3 − 0).

Intra-route 1-0 Exchange relocates a customer l into a position k within a same
route. In Fig. 1, customer 2, which is in the 5th position of the route, is relocated
in the second position within the same route.

Inter-routes 1-0 Exchange relocates a customer l into a position k in a different
route. In Fig. 1, customer 3, which is in the third position of the first route, is
relocated in the 4th position of the second route.

Intra-route 1-1 Exchange exchanges the positions of two customers within a
same route. In Fig. 1, customer 2 is relocated at the position of customer 5, and
customer 5 is relocated at the position of customer 2. No path is reversed.

Inter-routes 1-1 Exchange exchanges the positions of two customers from two
different routes. In Fig. 1, customer 3 is relocated at the position of customer 6,
and customer 6 is relocated at the position of customer 3.

Or-Opt relocates two consecutive customers (or an arc) in a different position
within a same route. In Fig. 1, the arc (1, 2) is relocated between the depot and
customer 3.
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Fig. 1. Illustration of neighborhood movements in the RVND heuristic (Source [29]).

Each combination of ILS with a neighborhood operator is denoted by
ILS NeiOp where NeiOp stands for the used neighborhood operator. Thus, we
have: ILS 2-Opt, ILS 2-Opt*, ILS 1-0 Exchange-intra, ILS 1-0 Exchange-inter,
ILS 1-1 Exchange-intra, ILS 1-1 Exchange-inter and ILS Or-Opt.

Perturbation Mechanism. The perturbation procedure destroys the solution
obtained by the local search procedure to escape local optima. To do so, the ran-
dom removal operator described by Pisinger and Ropke [32] is used. Before re-
applying the local search procedure, some customers may be added to the obtained
solution using the basic greedy heuristic described by the same authors [32].

3.3 Hybrid Iterated Local Search Heuristic

In the present work, several hybridization of ILS are proposed. They are
described in what follows.
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Hybrid ILS LNS Heuristic. In [29], several versions of the LNS are tested.
The latter versions use a unique removal and a unique insertion operator. All
the removal/insertion operators proposed by Pisinger and Ropke [32] are tested
using the CPTP constraints and objective function. Each implemented LNS
version consists of a different couple of removal/insertion operators.

Each LNS version starts from a solution generated by the construction
heuristic. At each iteration, LNS deletes a given number of customers using its
removal operator. Then, LNS inserts a set of customers using its insertion operator.
LNS stops when a given number of iterations without improvement is reached.

After an experimental study, we choose the related removal and the regret
heuristic with a regret number equal to 4 as the couple of removal/insertion
operators used in LNS.

For more information regarding the selection of the removal/insertion couple,
we refer the reader to [29].

The hybrid ILS LNS heuristic is a multi-start heuristic that executes, at
each iteration, an ILS heuristic using LNS as a local search procedure. The
initial solutions are obtained by iteratively modifying parameter values of the
construction heuristic described in Sect. 3.1. All the possible combinations of α1

and α2 parameter values are considered. ILS LNS uses the same perturbation
procedure as the one described in Sect. 3.2.

As defined in Sect. 3.2, ILS stopping criterion consists in the completion of a
given number of iterations without improvement.

ILS LNS stops when all combinations of α1 and α2 parameter values are
tested.

Hybrid ILS RVND Heuristic. The RVND heuristic uses all the seven oper-
ators described in Sect. 3.2. At each iteration of RVND, the neighborhood oper-
ators are chosen in a random way. Actually, all the operators are put in a list
of available operators, and each time an operator is used, the heuristic deletes
that operator from the list. RVND stops when the list of available operators is
empty. Hence, each operator is executed only once.

The hybrid ILS RVND heuristic differs from the ILS LNS heuristic (pre-
sented above) in the use of RVND instead of LNS in the local search phase.

Hybrid LNS RVND Heuristic. LNS RVND is not a multi-start heuristic.
This hybrid heuristic begins with an initial solution obtained by the construction
heuristic given in Sect. 3.1 using random values for parameters α1 and α2. Then,
the LNS heuristic is run until reaching a given number of iterations. The obtained
solution is possibly improved using the RVND heuristic with some probability.
After that, the LNS RVND heuristic goes back again to LNS and that process
iterates until reaching a given number of iterations without improvement.
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Hybrid ILS NeiOp LNS Heuristic. ILS NeiOp LNS is a multi-start heuris-
tic that hybridizes ILS NeiOp with LNS. NeiOp is defined in a similar manner
as described in Sect. 3.2.

The neighborhood operator used in this heuristic is the one that gives the
best results with respect to other neighborhood operators when combined to
ILS.

In ILS NeiOp LNS, the construction heuristic is first run to generate different
initial solutions at each iteration. Then, for each initial solution, an ILS heuristic
is run until reaching a given number of iterations without improvement. In ILS,
a LNS heuristic is executed followed by the selected neighborhood operator. The
combination of LNS with the selected neighborhood operator plays the role of the
local search procedure in ILS. This combination of LNS with the neighborhood
operator is repeated for a given number of iterations. When the local search
stops, the perturbation procedure is run. The latter procedure is the same as
the one presented in Sect. 3.2. The pseudo-code of ILS NeiOp LNS is given in
Algorithm 3.

Algorithm 3. ILS NeiOp LNS.
1: Inputs:

A CPTP instance
2: Outputs:

The best encountered solution
3: while stopping criterion is not met do
4: Generate an initial solution;
5: while ILS stopping criterion is not met do
6: while stopping criterion is not met do
7: Run LNS;
8: Run NeiOp;
9: end while

10: Update the best encountered solution;
11: Perturb the current solution;
12: end while
13: end while

Hybrid ILS RVND LNS Heuristic. This hybrid heuristic is quite similar to
the one presented in Sect. 3.3. The only difference is that ILS RVND LNS uses
RVND instead of the neighborhood operator after LNS.

The pseudo-code of ILS RVND LNS is given in Algorithm 4.
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Algorithm 4. ILS RVND LNS.
1: Inputs:

A CPTP instance
2: Outputs:

The best encountered solution
3: while stopping criterion is not met do
4: Generate an initial solution;
5: while ILS stopping criterion is not met do
6: while stopping criterion is not met do
7: Run LNS;
8: Run RVND;
9: end while

10: Update the best encountered solution;
11: Perturb the current solution;
12: end while
13: end while

4 Computational Results

In the present Section, we begin by describing the CPTP instances proposed in
the literature and studied in the present work. After that, we analyze the results
of each proposed approach and we evaluate the impact of the hybridization.
Finally, the approach that provides the best results is compared to some CPTP
heuristics from the literature.

In order to quickly determine the best approach among the proposed ones,
each approach is executed using a relatively small number of iterations. However,
more iterations are used for the comparison between the best approach with the
literature ones.

Note that some of the experimental results/heuristic tuning details are not
given in the present work as they have already been published in the conference
paper [29]. Those experimental results/heuristic tuning details concern the cou-
ple of operators chosen for LNS, the comparison between LNS and ILS LNS and
the tuning of both ILS RVND and LNS RVND.

The new experimentations are implemented in C and performed on a personal
laptop with an Intel(R) Core (TM) i5-4210U CPU @ 1.70 GHz with 6.00 Gb
RAM and 64-bit operating system.

Due to the random aspect of the approaches, they all are executed 3 times for
each instance. We report the best encountered solutions in terms of percentage
deviation from the best solutions presented by Archetti et al. [1]. A percentage
deviation (gap) of a heuristic a from a heuristic b is computed according to the
following Expression

gap = 100 · zb − za

zb

where za and zb are the objective function values obtained by heuristics a and b
respectively.
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4.1 CPTP Instances

The CPTP instances studied in the present work were proposed by Archetti
et al. [1]. The authors modified the Capacitated Vehicle Routing Problem
instances (CVRP) described by Christofides et al. [33] with 50 to 199 customers.
Archetti et al. [1] generated three set of instances from the CVRP instances by
varying the capacity bounds and the number of vehicles.

The first set of CPTP instances consists of the original 10 CVRP instances in
which each customer i has a profit pri computed following the Expression pri =
(0.5 + h) · di, where di is the demand of i and h is randomly chosen from [0, 1].

The second set of CPTP instances consists of 90 different instances obtained
by modifying the first set of instances. Actually, Archetti et al. [1] consider the
cases Q = 50, Q = 75 and Q = 100, where Q stands for to the capacity bound. For
each case, three instances are generated using different vehicle numbers. The latter
numbers are chosen from the set {2, 3, 4}. In the second set of CPTP instances,
the profits are computed in the same manner as described for the first set.

The third set of CPTP instances consists of 30 different instances obtained
by modifying the first set of instances. Archetti et al. [1] maintain the same
capacity bounds as those presented for the CVRP. However, they consider three
cases for the vehicle numbers. The latter are chosen from the set {2, 3, 4}.

A total of 130 CPTP instances are thus proposed by Archetti et al. [1]. As
instance types p03 and p08 of Archetti et al. [1] are exactly the same, we do not
consider instances of type p03. Hence we obtain a total of 117 CPTP instances.

4.2 Study of Basic ILS Heuristics

As said in Sect. 3.2, seven basic version of ILS are tested. Each version dif-
fers from the others in the used neighborhood operator. The tested versions
are ILS 2-Opt, ILS 2-Opt*, ILS 1-0 Exchange-intra, ILS 1-0 Exchange-inter,
ILS 1-1 Exchange-intra, ILS 1-1 Exchange-inter and ILS Or-Opt.

As these basic ILS heuristics are quite fast, we decide to fix their number of
iterations without improvement in ILS to 500 instead of 50.

Table 1 displays the obtained results in terms of average gap (among all
instances) from Archetti et al. [1] results. That Table also displays the average
computing time (among all instances) in seconds (CPU).

Table 1. Comparison between basic ILS heuristics.

ILS 2-Opt ILS 2-Opt* ILS 1-0
Exchange-intra

ILS 1-0
Exchange-Inter

ILS Or-Opt ILS 1-1
Exchange-intra

ILS 1-1
Exchange inter

Gap 5.41 4.94 5.78 5.42 5.76 5.52 5.07

CPU 15.70 14.98 15.72 16.42 14.58 15.15 15.92

The results of Table 1 show that the 2-Opt* operator performs better than
the other operators in terms of solution quality and computing time.
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Hence, in the reminder of the present work, the basic ILS heuristic will refer
to the basic ILS heuristic using the 2-Opt* operator. That heuristic will be
compared to the other implemented heuristics.

4.3 Study of ILS LNS Heuristic

Several tests were performed in [29] to determine the best removal/insertion
couple of operators of LNS. In addition, LNS was compared with ILS LNS.
ILS LNS was able to reach better quality solutions and was faster than LNS.

In the present Section, we compare the results of ILS LNS using the selected
couple of removal/insertion operators (Source [29]) with those of the basic ILS
heuristic presented in Sect. 4.2.

ILS LNS is run until 50 iterations without improvement are reached. We
remarked that, with only 50 iterations, ILS LNS is more time consuming than
the above studied heuristics using 500 iterations. Hence, we maintain ILS LNS
iteration number to 50.

As one can see from Table 2, the average gap of ILS 2-Opt* is slightly bet-
ter that the average gap of ILS LNS. Regarding the average computing time,
ILS LNS appears to be slower than ILS 2-Opt*.

Table 2. Comparison between ILS LNS and ILS 2-Opt*.

ILS LNS ILS 2-Opt*

Gap 5.07 4.94

CPU 36.35 14.98

4.4 Study of ILS RVND Heuristic

As the basic ILS, ILS RVND is very fast in comparison with the ILS LNS heuris-
tic. Hence, we decide to fix the number of iterations without improvement in the
ILS embedded in ILS RVND to 500. Results of ILS RVND using 50 iterations
are provided in [29].

Table 3 compares the results of ILS RVND (Source [29]) with both ILS LNS
(Source [29]) and ILS 2-Opt*. We remark that the average gaps of ILS 2-Opt*
and ILS RVND are quite similar. In addition, the average computing time of
ILS RVND is slightly better than the average computing time of ILS 2-Opt*. We
think that difference between the two heuristics can be more evident if the itera-
tion number increases and/or if the heuristics are hybridized with other ones.

Table 3. Comparison between ILS LNS, ILS 2-Opt* and ILS RVND.

ILS LNS ILS 2-Opt* ILS RVND

Gap 5.07 4.94 4.95

CPU 36.35 14.98 10.57
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4.5 Study of LNS RVND Heuristic

LNS RVND is described in Sect. 3.3. The results related to this hybrid heuristic
are presented in [29].

We remark that the results of LNS RVND (Source [29]) are quite “disap-
pointing” in comparison with other approaches. Indeed, the heuristic obtains
the worst average gap and computing time. That can be seen in Table 4.

From the results displayed in Table 4, we conclude that the multi-start ILS
heuristic has a considerable impact on the solution quality and the speed of
finding solutions.

Table 4. Comparison between ILS LNS, ILS 2-Opt*, ILS RVND and LNS RVND.

ILS LNS ILS 2-Opt* ILS RVND LNS RVND

Gap 5.07 4.94 4.95 11.94

CPU 36.35 14.98 10.57 67.10

4.6 Study of ILS 2-Opt* LNS Heuristic

ILS 2-Opt* LNS is described in Sect. 3.3. In order to have a good balance
between solution quality and computing time, the 2-Opt* LNS heuristic is
repeated 7 times at each iteration of ILS. The number of iterations without
improvement of the embedded ILS heuristic maxOcc is set to 200. While the
number of iterations without improvement of LNS maxOccLNS is fixed to 20.

Table 5 presents the results of ILS 2-Opt* LNS compared with those of the
previously studied heuristics. We remark that ILS 2-Opt* LNS is able to reach
the best average gap in comparison with the other heuristics. ILS 2-Opt* LNS
seems to be relatively time consuming. However, the computing time of this
heuristic is still reasonable, especially if we take the solution quality into account.

Table 5. Comparison between ILS 2-Opt* LNS and the previously studied heuristics.

ILS LNS ILS 2-Opt* ILS RVND LNS RVND ILS 2-Opt* LNS

Gap 5.07 4.94 4.95 11.94 1.72

CPU 36.35 14.98 10.57 67.10 36.64

4.7 Study of ILS RVND LNS Heuristic

ILS RVND LNS is described in Sect. 3.3. As in ILS 2-Opt* LNS, the local search
phase of ILS RVND LNS, which consists in the RVND LNS heuristic, is repeated
7 times at each iteration of ILS. The numbers of iterations without improvement
in the ILS heuristic maxOcc and in the LNS heuristic maxOccLNS are set to
200 and 20 respectively.
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Note that, contrary to the LNS RVND studied in Sect. 3.3, the combina-
tion of LNS and RVND involved in ILS RVND LNS uses the RVND heuristic
with a probability equal to 1. That modification is motivated by the fact that
ILS RVND gives good quality solutions in comparison with both ILS LNS and
LNS RVND.

Table 6 compares the results of ILS RVND LNS (Source [29]) with those of the
other approaches presented in the present work. From that Table, we remark that
ILS RVND LNS provides the best average gap without being too time consum-
ing. When comparing ILS RVND LNS with ILS 2-Opt* LNS, we can see that
ILS RVND LNS is also better in terms of average results (gaps and computing
time). That confims our assumption that the use of RVND instead of a neighbor-
hood operator in the ILS heuristic can lead to better results when using more itera-
tions and/orwhen ILS is hybridizedwith other heuristics (more than twoheuristics
are involved).

We also remark that better average gaps are obtained when the heuristics
are hybridized. However, that hybridizations can lead to an increase of the com-
puting time. We think that the hybridized heuristics are more time consuming
because they are first trapped in local optima then they extract themselves from
these optima. That process is repeated several times. On the other hand, the
basic heuristic (with a basic level of hybridization or no hybridization at all) are
quickly trapped in local optima.

Table 6. Comparison between ILS RVND LNS and the other proposed heuristics.

ILS LNS ILS 2-Opt* ILS RVND LNS RVND ILS 2-Opt* LNS ILS RVND LNS

Gap 5.07 4.94 4.95 11.94 1.72 1.57

CPU 36.35 14.98 10.57 67.10 36.64 28.39

4.8 Study of the Perturbation Procedure

In all the studied approaches described so far, we use the random removal and
the basic greedy heuristic (both described in [32]).

Initially, we wanted to use the random removal combined to a random inser-
tion heuristic in order to change the characteristics of the solution after a local
search is performed. We thought that the two random heuristics can lead to a
more diversified search and thus, to better results.

In practice, we found that the use of the random removal combined to a
random insertion introduces too much diversification. That diversification could
not be correctly handled by the local search procedure. Hence, we decided to
use the random removal combined with the basic greedy heuristic instead.

Figure 2 describes the gaps obtained by both versions of the perturbation
procedure: with basic greedy and the random insertion. The tests are performed
using ILS RVND LNS.
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In Fig. 2, the gap for each instance is shown. From that Figure, we can
see that the perturbation using the basic greedy generally provides better gaps.
Actually the random insertion outperforms basic greedy in only 4 cases. The
average computing time reached when using basic greedy is slightly worse that
the average computing time reached when using the random insertion. Indeed,
the farmer is equal to 37.85 seconds while the latter is equal to 29.52 seconds.

Fig. 2. Comparison between the use of the basic greedy operator and the random
insertion for the perturbation procedure.

4.9 Comparison of ILS RVND LNS with Other Approaches from
the Literature

ILS RVND LNS gives the best results among all the implemented approaches.
Therefore, it is compared with other approaches from the literature.

ILS RVND LNS is compared with TF, TA and VNS heuristics proposed by
Archetti et al. [1].

In order to have relatively comparable results for the compared approaches
(in terms of solution quality and computing time), we execute ILS RVND LNS
20 times at each run.
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Table 7 provides the detailed results. In that Table, ins stands for the instance
name, where an instance pXY −m−Q refers to the original instance pXY of the
CVRP in which the vehicle number is fixed to m and the capacity bound is set to
Q. n stands for the customer number. VNS, TF, TA and ILS RVND LNS refer to
the objective values obtained by VNS, TF, TA and ILS RVND LNS respectively.
CPU is the computing time of ILS RVND LNS is seconds. CPU(min) stands
for the average computing time in minutes of all the heuristics among all the
instances.

Note that the detailed computing time of VNS, TF and TA can be found in [1].
From Table 7, we remark that ILS RVND LNS provides 6 new best solu-

tions. In addition, the heuristic reaches the literature solutions in 55 cases.
ILS RVND LNS is not able to reach the literature solutions in 56 cases. How-
ever, the average gap of ILS RVND LNS is relatively small. Indeed, it is equal
to 0.66%.

The computing time of ILS RVND LNS is reasonable.

Table 7. Detailed results for CPTP instances.

Ins n VNS TF TA ILS RVND LNS CPU

p06-10-160 50 258,97 258,97 255,38 259,12 356,73

p07-20-140 75 534,81 525,06 527,90 524,39 1006,98

p08-15-200 100 663,98 657,31 656,32 649,67 2330,63

p09-10-200 150 1189,33 1192,68 1143,65 1162,55 4194,31

p10-20-200 199 1773,65 1761,37 1759,81 1741,43 10736,14

p13-15-200 120 284,71 269,74 274,28 289,59 2417,94

p14-10-200 100 890,44 886,78 888,18 890,44 1283,71

p15-15-200 150 1168,63 1156,01 1134,17 1157,38 4945,23

p16-20-200 199 1791,78 1764,15 1776,41 1747,06 8435,07

p06-2-50 50 33,88 33,88 33,88 33,88 38,71

p07-2-50 75 49,18 49,18 49,18 49,18 51,73

p08-2-50 100 57,75 57,75 57,75 57,75 76,92

p09-2-50 150 65,03 63,89 65,03 65,03 97,6

p10-2-50 199 70,87 70,87 70,87 70,87 129,57

p13-2-50 120 64,12 64,12 64,12 64,12 129,66

p14-2-50 100 43,26 43,26 43,26 43,26 76,34

p15-2-50 150 64,98 64,98 64,98 64,98 107,39

p16-2-50 199 66,81 66,81 66,81 66,39 142,77

p06-3-50 50 40,95 40,95 40,95 40,95 56,78

p07-3-50 75 69,94 69,94 69,94 69,94 74,12

p08-3-50 100 80,82 80,82 80,82 80,82 121,37
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Table 7. (continued)

p09-3-50 150 96,16 96,16 96,16 96,16 162,38

p10-3-50 199 103,79 103,79 103,79 103,79 209,51

p13-3-50 120 87,25 87,25 87,25 87,25 207,5

p14-3-50 100 59,43 59,43 59,43 59,43 74,87

p15-3-50 150 96,42 96,42 96,42 96,42 173,42

p16-3-50 199 99,7 99,7 99,7 99,7 228,97

p06-4-50 50 45,43 45,43 45,43 45,43 77,98

p07-4-50 75 90,65 90,65 90,65 90,65 99,74

p08-4-50 100 100,36 98,47 100,36 99,76 174,71

p09-4-50 150 121,35 121,35 121,35 121,35 247,87

p10-4-50 199 134,81 134,81 134,81 134,81 297,66

p13-4-50 120 104,18 103,73 103,72 103,34 243,39

p14-4-50 100 68,63 68,63 68,63 68,63 133,17

p15-4-50 150 124,02 124,02 124,02 119,52 252,23

p16-4-50 199 131,37 131,37 131,37 131,37 327,39

p06-2-75 50 72,28 72,28 72,28 72,28 49,4

p07-2-75 75 92,44 92,44 92,44 92,44 69,34

p08-2-75 100 106,15 106,15 106,15 106,15 143,26

p09-2-75 150 117,66 117,66 117,66 117,66 136,25

p10-2-75 199 124,85 124,85 124,85 124,85 167,55

p13-2-75 120 110,12 110,12 110,12 110,12 155,25

p14-2-75 100 77,09 77,09 77,09 77,09 70,38

p15-2-75 150 120,93 120,93 120,93 120,93 144,84

p16-2-75 199 123,38 123,38 123,38 123,38 179,58

p06-3-75 50 92,32 92,32 92,32 92,32 75,7

p07-3-75 75 131,12 131,12 131,12 131,12 106,59

p08-3-75 100 147,55 147,55 145,87 147,55 238,69

p09-3-75 150 160,96 160,96 160,96 160,66 238,63

p10-3-75 199 177,9 177,9 176,50 176,22 263,4

p13-3-75 120 139,37 137,95 137,45 139,37 375,34

p14-3-75 100 112,56 112,51 112,56 112,56 104,9

p15-3-75 150 174,58 174,58 174,58 174,58 225,78

p16-3-75 199 179,55 179,55 179,23 177,35 279,69

p06-4-75 50 99,37 99,37 99,37 99,37 100,6

p07-4-75 75 158,11 158,11 158,11 158,11 147,84

p08-4-75 100 185,27 185,27 185,27 181,42 400,73

p09-4-75 150 204,25 203,24 203,24 201,47 335,87

p10-4-75 199 229,27 229,27 229,27 225,22 381,49
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Table 7. (continued)

p13-4-75 120 161,62 160,68 157,98 161,59 548,71

p14-4-75 100 139,88 139,67 139,83 139,88 187,11

p15-4-75 150 219,22 219,22 216,61 219,22 318,75

p16-4-75 199 235,03 235,03 235,03 228,49 392,83

p06-2-100 50 100,27 99,50 99,50 100,27 63,84

p07-2-100 75 132,7 132,7 132,7 132,7 103,65

p08-2-100 100 158,21 158,21 158,21 158,21 134,63

p09-2-100 150 161,23 161,23 161,23 161,15 176,16

p10-2-100 199 171,24 171,24 171,24 171,19 189,8

p13-2-100 120 145,75 145,67 145,67 145,75 248,41

p14-2-100 100 125,29 125,29 125,29 125,29 123,27

p15-2-100 150 169,71 169,71 169,71 169,71 181,41

p16-2-100 199 177,23 177,23 175,57 173,56 217,8

p06-3-100 50 134,72 134,72 134,72 134,72 93,74

p07-3-100 75 185,25 184,88 185,25 184,88 167,88

p08-3-100 100 218,63 218,63 218,33 218,43 284,91

p09-3-100 150 230,49 229,61 229,61 229,58 284,75

p10-3-100 199 250,18 246,56 246,95 246,56 316,77

p13-3-100 120 181,63 177,76 180,04 180,79 625,97

p14-3-100 100 182,31 179,48 182,31 182,31 195,82

p15-3-100 150 244,08 241,84 244,08 243,89 279,08

p16-3-100 199 258,07 257,10 252,44 255,38 333,9

p06-4-100 50 153,3 153,3 152,97 152,97 120,51

p07-4-100 75 233,4 233,4 232,05 226,61 225,8

p08-4-100 100 268,34 266,23 266,08 259,2 504,64

p09-4-100 150 290,54 290,54 290,15 285,3 433,15

p10-4-100 199 324,02 321,17 321,03 320,07 508,78

p13-4-100 120 200,62 178,82 183,66 202,21 1208,47

p14-4-100 100 237,68 236,50 237,68 237,68 251,91

p15-4-100 150 308,07 305,30 304,81 302,78 437,42

p16-4-100 199 336,24 328,20 329,53 328,29 515,7

p06-2-9 50 168,6 168,6 168,6 168,6 93,97

p07-2-9 75 199,97 199,97 199,97 199,97 131,79

p08-2-9 100 330,14 319,28 319,28 328,37 242,88

p09-2-9 150 347,9 347,43 347,9 343,72 299,39

p10-2-9 199 382,41 378,32 379,81 376,35 362,3

p13-2-9 120 239,57 238,58 230,59 238,58 1225,12

p14-2-9 100 303,17 302,94 303,17 303,14 201,63
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Table 7. (continued)

p15-2-9 150 378,09 378,09 378,09 376,16 322

p16-2-9 199 394,05 390,47 391,71 389,21 372,33

p06-3-9 50 219,36 218,96 218,96 218,67 153,06

p07-3-9 75 274,8 274,8 274,8 273,27 207,18

p08-3-9 100 447,15 444,82 433,38 444,87 538,03

p09-3-9 150 500,17 496,84 500,12 488,79 521,54

p10-3-9 199 559,8 549,83 551,44 533,15 608,92

p13-3-9 120 250,69 234,99 244,96 283,15 1955,02

p14-3-9 100 418,28 416,32 417,32 419,63 331,84

p15-3-9 150 519,39 517,18 512,83 513,09 534,16

p16-3-9 199 567,24 558,61 558,10 556,53 608,02

p06-4-9 50 258,97 258,97 254,47 258,97 213,45

p07-4-9 75 344,35 343,12 339,95 342,7 303,67

p08-4-9 100 536,64 537,66 536,13 535,26 902,31

p09-4-9 150 639,72 635,67 633,64 621,47 785,67

p10-4-9 199 723,47 710,59 719,13 684,68 904,46

p13-4-9 120 279,43 264,46 294,46 295,77 2016,09

p14-4-9 100 537,24 516,20 531,53 531,94 444,02

p15-4-9 150 653,22 654,94 652,58 651,14 803,79

p16-4-9 199 729,40 731,14 726,22 719,14 888,78

CPU(min) 10,3 2,83 8,54 9,94

5 Conclusion

In the present work, we propose a set of basic and hybrid heuristic approaches
based on the ILS heuristic. The basic heuristics combine ILS with seven neigh-
borhood operators which results in seven basic ILS heuristics. The hybrid ILS
heuristics use either LNS or RVND, or a combination of LNS and a neighbor-
hood operator, or a combination of LNS and RVND. A simple heuristic using
only LNS and RVND is also provided to highlight the importance of the ILS
heuristic. In addition, two perturbation procedures are tested.

The proposed approaches are evaluated on a variant of the Vehicle Routing
Problem called Capacitated Profitable Tour Problem. The obtained results show
that the more ILS is hybridized the better are the results.

The best implemented approach in term of average results is compared with
other approaches from the literature. The experimentations show that the pro-
posed heuristic is able to provide competitive results for the Capacitated Prof-
itable Tour Problem.

A future work may consists in evaluating the performance of the proposed
hybrid heuristic on other variants of the Vehicle Routing Problem.
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Abstract. An effective spare part supply system planning is essential to
achieve a high capital asset availability. We investigate the design prob-
lem of a repair shop in a single echelon repairable multi-item spare parts
supply system. The repair shop usually consists of several servers with
different skill sets. Once a failure occurs in the system, the failed part is
queued to be served by a suitable server that has the required skill. We
model the repair shop as a collection of independent sub-systems, where
each sub-system is responsible for repairing certain types of failed parts.
The procedure of partitioning a repair shop into sub-systems is known
as pooling, and the repair shop formed by the union of independent
sub-systems is called a pooled repair shop. Identifying the best partition
is a challenging combinatorial optimization problem. In this direction,
we formulate the problem as a stochastic nonlinear integer programming
model and propose a sequential solution heuristic to find the best-pooled
design by considering inventory allocation and capacity level designation
of the repair shop. We conduct numerical experiments to quantify the
value of the pooled repair shop designs. Our analysis shows that pooled
designs can yield cost reductions by 25% to 45% compared to full flexi-
ble and dedicated designs. The proposed heuristic also achieves a lower
average total system cost than that generated by a Genetic Algorithm
(GA)-based solution algorithm.

Keywords: Spare part logistics · Repair shop · Pooling · Heuristic ·
Genetic algorithm

1 Introduction

Service and manufacturing operations rely heavily on the availability of equip-
ment and assets. High availability of assets can be achieved with effective main-
tenance strategies. However, maintenance can be costly. For example, a recent
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report of IATA’s Maintenance Cost Task Force points out that maintenance cost
can be anywhere between 10% to 15% of the total operation cost of a commer-
cial airline industry [1]. Similarly, for manufacturing firms, maintenance cost may
reach up to 60% of the production cost [2]. Hence, careful planning of mainte-
nance operations not only leads to a decrease in the total cost but also significant
improvements in the reliability of systems [3]. Maintenance planning includes
the determination of the maintenance strategy (e.g., failure-based/corrective,
preventive and condition-based), time interval between maintenance operations,
and quantity and quality of maintenance resources such as technicians, supplies
and spare parts [4].

In this paper, the corrective maintenance of high-valued assets in and par-
ticular the decisions regarding the amount of spare part inventory, capacity and
design of repair facilities are investigated. Corrective maintenance of assets is
usually done by replacing a failed part by a repaired part available in the stock.
If repairable spares are not in the stock, the asset goes down, and a downtime
cost is incurred till a sufficient number of spares are supplied to the system [5–7].
A large number of spares are required to ensure a high availability of the capital
asset. However, keeping a large number of repairable in inventory increases the
cost [8]. The decision on repair shop design heavily influences the number of
spares to be stocked. An optimal design of the repair shop can lead to a less
number of spare parts that are needed to achieve the same level of availability.
Thus, at the operational level, the inventory and repair shop decisions have to
be coordinated together to reduce downtimes.

There are different types of repair shop design alternatives, as illustrated
in Fig. 1. The two extremes are the full flexible (full cross-training) and the
dedicated designs. Figure 1(a) depicts a full cross-training design scheme in which
all of the servers are merged into a single cluster/sub-system. In this design
scheme, all servers are considered to have necessary skills to repair any type of
failed parts. On the contrary, in the dedicated design, each cluster of servers is
responsible for repairing a specific type of spare part as in Fig. 1(c).
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(a) Full Flexible
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(b) Pooled (Partial cross-training)
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(c) Dedicated (No cross-training)

Fig. 1. Possible repair shop designs.

An intermediate level design scheme between the dedicated and the full flex-
ible system is the pooled design. In the pooled design, the repair shop is a union
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of independent clusters/sub-systems, where each sub-system is responsible for
repairing certain types of failed parts as in Fig. 1(b). In this study, we try to
find the best-pooled repair shop design that leads to minimum total system
cost. Nevertheless, identifying the best-pooled repair shop design is a challeng-
ing combinatorial optimization problem. Thus, we develop an efficient solution
heuristic to overcome computational complexity of the problem. The proposed
solution heuristic also computes the optimal amount of spare part inventories
to keep on stock and the number of servers (capacity) that have to be allocated
into each cluster.

The rest of the paper is organized as follows. In Sect. 2, a review of related lit-
erature is provided. In Sect. 3, problem definition and the mathematical model
are presented. The solution heuristic for the proposed model is discussed in
Sect. 4. Section 5 provides a comparative computational study under input set-
tings. Conclusions and future research directions are summarized in Sect. 6.

2 Literature Review

Some significant advances in optimization of spare part supply systems, capacity
and inventory theory and design of flexibility service/manufacturing systems can
be seen in the literature. However, research opportunities exist at the intersection
of these research areas. The optimization problem analyzed in this paper exploits
the intersection of the design of a flexible/cross-trained repair shop in a spare
part supply system and optimization of resource capacity of the repair shop and
inventory levels of spares.

The dominant model for repairable items, both in the literature and in the
practical applications, is METRIC (Multi-Echelon Technique for Recoverable
Item Control), developed by [5]. METRIC based models assume that the repair
capacity is infinite. This assumption may not be appropriate in most industrial
settings. Hence, some researchers have relaxed ample repair capacity assumption
by explicitly considering finite repair service capacity [9–13]. In addition to the
limited repair capacity assumption, integrated optimization of repair capacity
and maintenance policies are also studied extensively in the literature by [14–
17]. The work of [18] relaxes assumptions of stationary failure rates of spares and
finite repair capacity at the same time. Similarly, the model of [19] also optimizes
spare inventory levels under finite repair capacity together with nonstationary
failure rates of spares under a certain budget restriction or spending over certain
availability. The impact of limited but not constant (varying repair capacity on a
system for repairable items) is analyzed by [20]. We refer to the recent literature
review article of [21] for integrating decisions on spare parts inventories and
repair shops.

In [22] regarding the manufacturing resource flexibility, a comparison between
a totally dedicated system, a totally flexible system, and several intermediate
possibilities are provided. In the following years, several authors have extended
the work provided by [22] and some of them have also validated robustness
of “little or limited flexibility” being usually sufficient for optimal system per-
formance (see Ref. [23–30]). Cross-training is one of the more widely discussed
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capacity/workforce flexibility methods for complex systems [31]. Production lines
[32,33], job shops [34], flow/assembly shops [35–39], manufacturing [40–43], call
centers [44–47], health care [48,49], field services [50–53] and maintenance/repair
[54] are some examples of systems where cross-training is applied. The more
detailed discussions and classifications of flexibility and cross-training applica-
tions can be found in the recent review articles of [31,55].

A limited number of cross-training related studies also appears in the main-
tenance and spare part logistics literature. For example, [50–52] discuss the opti-
mal cross-training policies of technicians/service engineers in a field service set-
ting. Similarly, [53,54] address workforce management problems in corrective
repair/maintenance environments, in which repairmen are either cross-trained
or dedicated. The analysis of cross-training schemes in repair shop design is
discussed in [56–58] by using simulation-optimization techniques.

Even though pooling is considered as a partial cross-training of resources, to
the best of our knowledge, no results has been presented analyzing pooling in
spare part supply systems other than very recent works of [59–61]. Our work fills
the gap on pooled repair shops designs in spare part supply systems integrated
with capacity decision in the literature.

3 Problem Description and Formulation

We study the design problem of a repair shop in a single echelon repairable
multi-item spare part supply system. The repair shop may consist of several
parallel multi-skilled servers, and storage facilities for the repaired items. Once
a failed part is received from the technical system at the installed base, it is
queued to be served by a suitable server with the required skills. At the same
time, if a repaired (as-good-as-new) part is available in the inventory, it is sent
back to the installed base. If the item is not available in the stock, the request is
backordered. In this case, the technical system goes down and a downtime cost
occurs till the requested ready-for-use part is delivered.

The repair shop may have pooled structure with one or more cells/clusters
or an arbitrary structure. In arbitrary designs, not all servers in a cluster are
fully flexible; i.e., some servers are partially cross-trained to repair only a subset
of all stock keeping units (SKUs) in the cluster. In this paper, we restrict design
alternatives limited to only pooled repair shops as in Fig. 1(b), and formulate a
stochastic mixed-integer mathematical programming model to find the minimum
cost spare part supply system.

In this paper, we proceed from commonly used assumptions in a repairable
spare part supply system (see ref. [6,56] and assumption lists therein):

(a) The failures of spares occur according to a Poisson process and are mutually
independent from each other with constant rates.

(b) The repair times are exponentially distributed and mutually independent.
The expected repair times depend on the SKU type and are independent of
the processing server.
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(c) First come first served (FCFS) queuing discipline is adopted inside each and
every cluster, and no priorities exist among the failed spares.

(d) For all parts (s − 1, s) one-for-one replenishment policy is used. That is, the
stock level equals s and each demand immediately generates an order for a
replacement part; as a consequence, there is no batching.

(e) The total holding costs for every SKU per unit time are linear in the initial
inventory levels (initially acquired inventory).

(f) Penalty costs (or backorder costs) occur when the required part is not avail-
able and are paid per time unit per not available SKU.

(g) A positive cross-training (or flexibility) cost occurs whenever an additional
skill is assigned to a server. In other words, the cross-training cost is an
increasing function on the number of skills per server.

(h) Each cluster inside the repair shop is modeled as a multi-class multi-server
M/M/k queuing system with dedicated queues; i.e., every server inside a
cluster has the ability to repair all SKUs that are assigned to that cluster.

(i) The clusters inside the repair shop are mutually exclusive (disjoint) and
collectively exhaustive. That is, a particular failed SKU can be repaired at
exactly one cluster and each SKU is assigned to exactly one cluster.

The last two assumptions (h) and (i) restrict the repair shop design alternatives
to the pooled designs. These two assumptions also limit the computational com-
plexity of the system and enable using queue-theoretical approximations to find
steady-state probability distribution of items in the system.

We use the problem formulation presented in [61]. The sets, parameters and
decision variables for the developed formulations and solution procedures are
presented as follows.

Decision Variables

Si: Amount of initial inventory (basestock level) kept on stock for SKU type
i (i = 1, . . . , N), where S = (S1, . . . , SN ).

zk: Number of the operational servers in the cluster k (k = 1, . . . , y), and where
Z = (z1, . . . , zy).

xik: Binary variable indicating that whether the cluster k has a skill to repair
SKU type i (i = 1, . . . , N) or not, where Xk = (x1k, . . . , xNk)T and X =
[X1| . . . |Xy].

y: Number of clusters in the repair shop.

Problem Parameters

N : Number of distinct types of repairables (SKUs).
λi: Failure rate of SKU type i (i = 1, . . . , N).
μi: Service rate of SKU type i (i = 1, . . . , N).
hi: Inventory holding cost of SKU type i per unit time per part (i = 1, . . . , N).
b: Penalty cost for each back ordered demand per unit time, which is equivalent

to paying per unit time per technical system that is down because of a lack
of spare parts.
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f : Operation cost of a server per unit time (e.g., annual wage).
ci: Cost of having skills to repair SKU type i per unit time per server

(i = 1, . . . , N) (e.g., annual qualification bonus).
ε: Very small positive real number.

The objective function in Eq. (1) has four cost terms namely, server (capac-
ity), cross-training, holding and backorder costs. Objective function considers
several trade-offs between the cost terms such as the cost of holding excess
inventory and the cost of downtime, and also the trade-off between the cost of
having single or several clusters that include dedicated or cross-trained servers.

min
S, X, Z

y∑

k=1

fzk +
y∑

k=1

zk

(
N∑

i=1

cixik

)
+

N∑

i=1

hiSi + b

N∑

i=1

EBOi [Si,X,Z] (1)

The penalty (backorder) cost term is calculated using the penalty cost b and
the expected total number of backordered parts EBOi [Si,X,Z] for each SKU
type i in the steady-state; under the given initial inventory level Si, pooling
scheme of the repair shop X and the server assignment policy Z. The variable X
represents the (N × y) matrix of the binary decision variables xik denoting how
SKUs are pooled in the repair shop, and the variable Z represents a (1 × y) row
matrix of integer decision variables zk denoting the number of servers in each
cluster of the repair shop.

Constraints (2) and (4) ensure that pooling scheme X satisfies mutually
exclusive and total exhaustive condition for each cluster, i.e., any SKU type
being repaired by exactly one cluster. Queues (number of waiting failed spares)
in each cluster have to have finite queue length at the steady-state to prevent
overloading of the repair shop. Thus, the stability of the system is guaranteed by
constraint (3) and (5) by assigning sufficient number of servers to each cluster.
Constraints (4–7) are required for non-negativity and integrality of the variables.
For a non-overloaded system, the overall utilization rate of a particular cluster
k (

∑N
i=1 xikλi/μi) must be strictly smaller than the capacity (total number of

servers in the cluster zk) of that cluster, which is ensured by the parameter, ε.

y∑

k=1

xik = 1 i = 1, . . . , N (2)

N∑

i=1

xik
λi

μi
≤ zk(1 − ε) k = 1, . . . , y (3)

xik ∈ {0, 1} i = 1, . . . , N k = 1, . . . , y (4)

zk ∈ Z
+ k = 1, . . . , y (5)

Si ∈ N0 i = 1, . . . , N (6)
y ∈ {1, . . . , N} (7)
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4 Solution Algorithm: Pooling Heuristic

We search for the optimal values of decision variables sequentially by fixing the
values of some decision variables and optimizing the remaining ones as discussed
in [61]. First, feasible partitions of SKUs, i.e., pooling policies/schemes X are
generated. Pooling schemes are generated either by pooling heuristic or by a
genetic algorithm as explained in the Subsect. 5.2. Then, capacity levels Z and
basestock inventory levels S are optimized under the given pooling scheme for
each cluster. The visual flow of the proposed solution heuristic(s) together with
its sub-routines and their interactions with each other are depicted in Fig. 2.

Pooling Scheme Generation

Capacity Optimization

Multi-Class Multi-Server
Solver

Z SX

Pooling Heuristic or
Genetic Algorithm

Solution
Database

Storing and retrieving

Optimal values of X,Z,S
Total Cost

Fig. 2. Flow of the solution algorithms.

In the pooling heuristic, to form partitions of SKUs into clusters, all SKUs are
sorted in ascending order by their service rates μi so that SKUs closer in service
rates are likely to be in the same cluster. This is expected to decrease variations
in the service times of SKUs in clusters. Decrease in the variation of service times
usually results in a decrease in the number of failed parts waiting for repair in
the cluster and eventually lowering the number of backorders and the total cost.
Afterward, sorted list of SKUs is divided into smaller lists that have a size of
nmax or less. The trade-off between the run time of algorithm and the output
solution quality are taken into account to determine the value of nmax. We set
nmax as 10 for our experimental runs. For the smaller list (N ≤ nmax), the total
enumeration function that is discussed in [61] is invoked. Total enumeration
function takes an array of SKU indexes as an input and slices it into sub-arrays
for given number of clusters y from 1 to the length of the input array. Each
slice/sub-array corresponds to a cluster in a pooled repair shop, and each slic-
ing scheme corresponds to a particular pooling policy X. For the larger sorted
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SKU index sets, it is not possible to enumerate all slicing schemes with total
enumeration function. Therefore, we divide the problem into sub-problems that
have the maximum size of nmax or less and call total enumeration function for
each sub-problem obtained after division. Then, we generate new sub-problems
by combining the last and the first elements of adjacent sub-problems. At each
iteration, we insert a new SKU index to newly generated sub-problem till the
size of the problem reaches nmax.

After the generation of the pooling policy X via above-described pooling
heuristic, capacity and inventory level optimization modules are called as shown
in Fig. 2. These modules rely on the fact that for every feasible policy X, each
cluster can be analyzed and optimized separately due to the clusters being
mutually exclusive and independent from each other. The decomposition of the
repair shop in sub-systems by pooling reduces the complexity of the problem
and enables the use of queue-theoretical approximations to optimize the inven-
tory S and capacity levels Z. Each cluster k in the repair shop for given number
of servers zk can be analyzed as a multi-class multi-server M/M/zk queuing
system.

The probability distribution of the number of failed SKU type i at the steady-
state, pi (q), is required to evaluate EBOi [Si,Z,X] in the objective function. To
calculate the probability distribution of the number of failed SKU type i, the
approach proposed by [62] is used. Nonetheless, computational burden arises
when the number of SKU types and the number of servers increases in the
cluster. To overcome this issue, the queuing approximation discussed in [63,64]
is used. In this approximation, marginal probability distribution (and several
performance characteristics) of SKU type i in cluster k is derived by aggregating
all other SKUs in the cluster k into a single SKU type (class). The procedure is
repeated to obtain the remaining distributions for other SKUs in the cluster.

Figure 3 visualizes how N -class M/M/zk system is decomposed into N inde-
pendent 3-class M/M/zk for approximation, where ΛA and ΛA′ denote the
arrival rates of aggregated classes.

λN

N -class M/M/zk system

λ1

⇒

Original System

ΛA
′

3-class M/M/zk system

λ1

ΛA + +

λN

3-class M/M/zk system

ΛA

ΛA
′

Decomposed Approximated System

Fig. 3. Approximation of a N -class M/M/zk queuing system with decomposition into
N 3-class M/M/zk sub-system.
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For the given pooling policy X and capacity levels for each cluster Z, the
problem can be reduced to the following one-dimensional optimization problem
for each SKU type i by using the independence of each cluster:

min
Si∈N0

(
hiSi + bEBOi [Si,X,Z]

)
(8)

The optimization problem in Eq. (8) takes into account the trade-off between
holding and backorder costs, which has similar structure as traditional newsboy
problem (see [60] for a detailed discussion). By using the approximated distri-
butions found by queuing approximation p̃i (q), the above optimization problem
can be minimized by the smallest Si for which Eq. (9) holds.

Si∑

q=0

p̃i (q) ≥ b − hi

b
i = 1, . . . , N (9)

5 Numerical Study

In this section, we present a computational study of the proposed solution algo-
rithm. First, in Subsect. 5.1, the experiment testbed used in analysis is given and
in Subsect. 5.2, details on benchmarking algorithm are provided. In Subsect. 5.3,
total system cost reductions achieved by different algorithms are analyzed. Addi-
tionally, comparison of cross-training schemes are also given. In Subsect. 5.4, run
times of the proposed optimization algorithms are provided.

5.1 Testbed

A full factorial design of experiment (DoE) with 7 factors and 2 levels per factor
is used to generate the testbed with total of 128 test instances as in [56,61]. The
number of SKUs, N , and the initial total number of servers, M , are the first two
DoE factors with levels 10 and 20 for the numbers of SKUs, and 5 and 10 for the
initial numbers of servers. The failure rates and the service rates are generated
based on the system (repair shop) utilization rate with an assumption that all
SKUs are processed on all servers, i.e., a repair shop design with one cluster and
fully flexible servers. The system utilization rate, ρ, is the third design factor
with levels 0.65 and 0.80. For the chosen utilization rate, we randomly generate
two sets of parameters:

(a) the failure rates λi, such that
∑N

i=1 λi = 1, and
(b) workload percentages δi, such that

∑N
i=1 δi = 1.

Using the generated λi and δi, we produce the service rates μi as μi = λi

δiρM ,
where δiρM is the total workload of SKU type i. The pattern of the holding costs,
hi, is the fourth design factor with two variants (levels): (i) IND: completely ran-
domly (independent) within a range [hmin, hmax], and (ii) HPB: hyperbolically
related to the workloads wi = λi/μi = δiρM :

hi =
hmax − hmin + 10
9 wi−wmin

wmax−wmin
+ 1

− 10 + hmin + ξi
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where
ξi ∈ U [−hmax − hmin

20
,
hmax − hmin

20
],

wmin = min
i=1,...,N

wi and wmax = max
i=1,...,N

wi

The parameters of the hyperbolic relation are chosen such that it replicates
some of the real-life scenarios where more expensive repairables are repaired less
frequently. The minimum holding cost, hmin, is the fifth factor with levels 1 and
100. The maximum holding cost is fixed at 1,000. The server cost, f , and the
skill cost, ci, are the last two factors in our DoE. The server cost levels are set as
10,000 and 100,000 (10hmax and 100hmax). The skill cost is assumed as 1% or
10% of the chosen server cost for all SKUs. The penalty cost, b, is set as fifty-fold
of the average holding cost so that about 98% of requests can be met from spare
stocks. That means the probability of backorder is only 0.02. The overview of
all factors and levels are presented in Table 1.

Table 1. Problem parameter variants for test bed [61].

Factors Levels

No. of SKUs (N) [ 10, 20 ]

No. of initial servers (M) [ 5, 10 ]

Utilization rate (ρ) [ 0.65, 0.80 ]

Minimum holding cost (hmin) [ 1, 100 ]

Maximum holding cost (hmax) 1000

Holding cost/Workload relation [ IND, HPB ]

Server cost (f) [ 10hmax, 100hmax ]

Cross-training cost (ci) [ 0.01f, 0.10f ]

Penalty cost (b) 50
∑N

i=1 λihi∑N
i=1 λi

5.2 The Benchmarking Algorithm: A Genetic Algorithm

We compare the performance of the proposed pooling heuristic with a Genetic
Algorithm (GA)-based methodology. In this method, a GA searches for the opti-
mal pooled repair shop design policy X as it is depicted in Fig. 2.

The GA is a stochastic optimization technique that is inspired by natural
selection and biological evolutionary philosophy. A population of individuals
(solutions) is represented by a chromosome, a string of information which is ran-
domly generated [57]. Each chromosome corresponds to a particular repair shop
design policy, X. Every chromosome in the population has N genes. The value
of the gene indicates the cluster that SKU is assigned into. Each chromosome
also carries information about the number of clusters exist in the repair shop.
The total number of distinct integer in the chromosome represents the number
of clusters.
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At each iteration, GA generates a set of feasible pooled repair shop design
policies. Afterward, these candidate feasible solutions (policies) are passed
through fitness evaluation function to find optimal values of server assignment
policy Z and inventory levels of spares S. In the fitness evaluation, capacity opti-
mization and multi-class multi-server solver sub-routines are invoked exactly
the same way as described for the pooling heuristic. GA runs till it reached
predefined generation number. The population size, the number of generations,
crossover probability, and mutation probability are the input parameters for any
GA implementation. We set the population size and the number of generations
at 100 and 25, respectively. Besides, the crossover and the mutation parameters
are chosen as 0.8 and 0.4, respectively.

5.3 Performance Comparison of Pooling Heuristic and GA

We find the optimal pooled designs together with optimal capacity and inven-
tory levels of spares for the cases described above by using the proposed pool-
ing heuristic. We compare the minimum total system cost achieved by pooling
heuristic with the cost obtained from GA-based pooling algorithm. We define a
cost-ratio metric Δ, a ratio of the total minimum cost obtained from the pooling
heuristic to the total minimum cost achieved by GA-based algorithm.

Table 2 presents average values of Δ under each problem factor and level.
First, on an average, pooling heuristic achieves around 3% lower total cost than
that of GA-based pooling algorithm. Second, the increasing size of the problem
(higher number of SKUs, N) leads to more substantial objective function value
gaps in favor of the pooling heuristic. It shows that the proposed pooling heuristic

Table 2. Total cost comparison of different solution algorithms under varying factors.

Factor Levels Cost-ratio # of the best cost

Δ GA-based pooling Pooling heuristic

Number of SKUs (N) 10 1.0009 17 47

20 0.9331 1 63

Number of initial servers (M) 5 0.9629 10 54

10 0.9711 8 56

Utilization rate (ρ) 0.65 0.9646 7 57

0.80 0.9694 11 53

Minimum holding cost (hmin) 1 0.9649 9 55

100 0.9691 9 55

Holding cost/Work load relation IND 0.9695 8 56

HPB 0.9645 10 54

Server cost (f) 10hmax 0.9563 5 59

100hmax 0.9776 13 51

Cross-training cost (ci) 0.01f 0.9600 5 59

0.1f 0.9740 13 51

Overall 0.9670 18 110



An Efficient Heuristic for Pooled Repair Shop Designs 113

conducts a more extensive search in a larger solution space (i.e., higher number
of SKUs, N). Lastly, the pooling heuristic outperforms the GA-based pooling
optimization in 86% of the cases (110 cases out of 128) in the testbed.

We also compare the total system cost with the costs obtained from fully
flexible (a single cluster where any SKU can be processed on any server) and
dedicated (where the number of clusters equal to the number of SKUs) designs.
Table 3 summarizes the cost reduction for both pooling heuristic and GA-based
pooling optimization under different problem factors. The repair shop designs
found by pooling heuristic can produce approximately 45% and 25% savings
on average in comparison with dedicated and fully flexible designs, respectively.
In some extreme settings, average cost reduction achieved by pooling heuristic
reaches to 55% to that of a dedicated design and 40% to that of a fully flexible
design. The repair shop designs suggested by GA-based pooling bring about
44% and 21% total cost reductions compared with dedicated and fully flexible
designs, respectively. When the cost of having an extra skill is relatively high
compared to that of having an additional server (i.e., the case of cross-training
cost being equal to 0.1f), fully flexible design becomes as good as dedicated
design. However, when cross-training cost is relatively small, both of the solution
algorithms exhibit worse performance with respect to fully flexible design.

Table 3. Average cost reductions in comparison with dedicated and fully flexible
systems.

Factor Levels GA-based pooling Pooling heuristic

Dedicated Fully Flexible Dedicated Fully Flexible

Number of SKUs (N) 10 35.93% 21.89% 35.19% 22.00%

20 52.40% 21.18% 55.65% 28.11%

Number of initial servers (M) 5 52.62% 19.37% 53.76% 23.43%

10 35.71% 23.70% 37.08% 26.68%

Utilization rate (ρ) 0.65 46.73% 23.36% 48.01% 24.30%

0.80 41.60% 19.71% 42.83% 25.81%

Minimum holding cost (hmin) 1 44.59% 21.58% 45.84% 24.81%

100 43.75% 21.49% 45.00% 25.30%

Holding cost/Work load relation IND 43.94% 21.29% 44.42% 24.04%

HPB 44.39% 21.79% 46.42% 26.08%

Server cost (f) 10hmax 38.63% 17.19% 39.95% 22.44%

100hmax 49.71% 25.89% 50.89% 27.67%

Cross-training cost (ci) 0.01f 48.81% 9.54% 50.22% 9.93%

0.1f 39.53% 33.53% 40.62% 40.18%

Average 44.16% 21.53% 45.42% 25.06%

Figure 4 shows distributions of the average percentage of cross-training per
server for all 128 instances investigated in this paper. We observe that, in most
of the instances, the average percentage of cross-training is less than 40%, which
shows that partial flexibility; i.e., partial cross-training is usually sufficient for
optimal system performance.
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Fig. 4. Cross-training analysis of different solution algorithms.

5.4 Run Time Comparisons

All the experiments are implemented on a computer with 16 GB RAM and
2.8 GHz i7 CPU. Figure 5 shows boxplots of run time performances for both
algorithms. The pooling heuristic converges quite fast in most of the cases and
provides the final solution within 5000 cpu seconds with a median run time of
2000 s. GA-based pooling algorithm outperforms the pooling heuristic in terms
of run times by achieving under 1000 s median run time. Even the worst run time
performances of the algorithms are still acceptable for tactical and operational
level decisions in real-life spare part supply systems.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

·104

Pooling heuristic

GA-based pooling

Run Time (CPU seconds)

Fig. 5. Run time performance comparison of algorithms.

6 Conclusions

When designing a spare part supply network for repairable parts that balances
cost efficiency with effectiveness, several questions in both strategic and tactical
nature have to be answered. In this article, the joint problem of resource pooling,
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inventory allocation and capacity level designation of the repair shop is analyzed,
and solution heuristics are developed and compared with each other. From the
numerical experiments, it can be concluded that pooled designs result in cost
savings of around 45% and 25% in comparison to dedicated and fully flexible
designs, respectively. Besides, we observe that the optimal repair shop designs
can be achieved by partially cross-trained servers.

The results of this research are important to maintenance outsourcing com-
panies and large firms that operate and maintain their own repair facilities. In
both cases, the goal of decreasing maintenance costs and reducing the production
stoppages and losses would be accomplished.

As further research possibilities, testing the applicability of the methodology
with real-life cases (with larger problem sizes; i.e, a larger number of SKUs)
would be an invaluable contribution. We plan to develop novel clustering heuris-
tics or meta-heuristics that generate better pooling schemes with less computa-
tional complexity. It would be also worthwhile to integrate pooling decision with
static and dynamic routing and prioritization rules in the part repair processes.
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7-308-2-128] from the Qatar National Research Fund (a member of The Qatar Foun-
dation). The statements made herein are solely the responsibility of the author[s].
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Abstract. A class of resource allocation problems is considered where
some quality of service measure is set against the agent related costs.
Three multiobjective minimization problems are posed, one for a system
of Erlang-C queues and two for systems of Erlang-A queues.

In the case of the Erlang-C systems we introduce a quality of service
measure based on the Conditional Value-at-Risk with waiting time as
the loss function. This is a risk coherent measure and is well established
in the field of finance. An algebraic proof ensures that this quality of
service measure is integer convex in the number of servers.

In the case of the Erlang-A systems we introduce two different quality
of service measures. The first is a weighted sum of fractions of abandoning
customers and the second is Conditional Value-at-Risk, with the waiting
time in queue for a customer conditioned on eventually receiving service.
Finally, numerical experiments on the two system types with the given
quality of service measures, are presented and the optimal solutions are
compared.

Keywords: Queueing · Queueing networks · Marginal allocation ·
Conditional Value-at-Risk · Abandonments

1 Introduction

This paper is an extended version of [5], which was presented at the ICORES2018
conference in Funchal, Madeira. The text formatting and the sections have been
reworked, additional references to previous works has been added and the opti-
mization formulation and the proof of Proposition 1 has been streamlined and
a new Quality of Service (QoS) measure has been introduced.

In this paper we consider networks of parallel queueing systems of multiclass
multiserver type and the server allocation problem where some QoS measure is
set against the agent related costs.
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The network consists of queueing systems of one of two types. The first
queueing system type is based on the Erlang-C model with Conditional Value-
at-Risk (CVaR) [14,15] as the QoS measure using the waiting time as the loss
function. In the second queueing system type we look at the Erlang-A model,
which includes abondonments, for two QoS measures. The measures used are the
weighted fraction of abandoning customers and the CVaR with the loss function
given by the waiting time of a customer conditioned on eventually receiving
service.

The network consists of a system of parallel server pools, see Fig. 1. Each
server pool consists of a set of agents (servers) that can serve a specific customer
class, and each server pool serves a different customer class. The parallel queueing
systems are bound together by one, or more, common budget constraints.

λ1

λN

M/M/c1

M/M/cN

Fig. 1. A system of N parallel M/M/c queues, [5, Fig. 1].

The resource allocation problems described above can be formulated as three
multiobjective optimization problems minimizing the different QoS measures
and agent cost structures. Using the Marginal Allocation (MA) algorithm [6], all
efficients solutions can easily be generated. Depending on the actual budget con-
straints the best solution on the efficient front can be found. The MA algorithm
requires that the agent cost structures and the QoS measure are separable and
(integer) convex functions.

Following in the footsteps of [4,16,18] we prove that the QoS measure deter-
mined by CVaR on the Erlang-C system is decreasing and convex in the number
of agents. A recent summary of other convexity proofs for different QoS measures
is given in [13].

The main contributions of this paper are the following. The introduction of
CVaR as a risk measure for these types of queueing problems, and the benefits
of the CVaR measure over VaR type measures is elaborated on. In connection to
this we prove that the CVaR measure, using the waiting time as the loss function,
is convex and nonincreasing in the number of servers for the Erlang-C type
system. We also show, via examples, the similarities between the multiobjective
solutions for the Erlang-A and Erlang-C systems.

2 Model Description

We consider a system of N ∈ N queues of either M/M/c type (as in Fig. 1) or of
M/M/c+M type (using the notation of [3]), i.e., Erlang-C or Erlang-A models.
Each server pool has a separate and infinite first-come-first-serve (FCFS) buffer.
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Introduce the index set I = {1, . . . , N}. Let ci denote the number of servers
in queue i ∈ I, and c = [c1 . . . cN ].

The arrival process to queue i ∈ I is modelled as a homogeneous Poisson
process with arrival rate parameter λi, which is often a realistic assumption. The
service rate of each server in queue i is denoted by μi and the service times are
exponentially distributed, which is a tractable model. In the case of the Erlang-
A type systems, the abandonment rates of customers is modelled. The time to
abandonment, depending on the individual patience, of a customer waiting for
service in queue i is exponentially distributed with rate parameter θi as in [12].
Hence, the customer may leave the system either due to service completion or
impatience, whichever occurs first. It is assumed that customers being served do
not defect. The arrival processes, the service times and the individual patience
are all independent and the system is in steady state.

The total cost of the agents is assumed to be a separable and increasing
integer convex function g(c) =

∑N
i=1 gi(ci), e.g., a linear cost function g(c) =

∑N
i=1 ciai where ai is a fixed cost for each agent of type i ∈ I. Furthermore,

the numbers of agents available for assignment to the different demands may be
limited. Let di ∈ N, be the maximum number of available agents of type i, and
�i ∈ N be a least requirement of agents. Limiting the number of agents can also
help avoiding probability issues for the CVaR type measures, see Remark 1.

Let b denote a budget constraint on the system, meaning that the total cost
of the assigned servers to the queueing network must be within budget. The
model may be extended to include several budget constraints, affecting only a
subset of the queues.

3 Quality of Service Measures

To promote a positive customer experience the queueing system is endowed with
a QoS measure. Typical QoS measures for contact centers include average speed
of answer (ASA) and the telephone service factor (TSF) [7], also known as service
level (SL). ASA measures the average time a customer spends waiting on service
while TSF considers the acceptable waiting time (AWT) that a certain percentile
of the customers have to wait before receiving service.

For the QoS measure to be suitable for optimization it is important that it
is convex. Many of the relevant QoS measures are convex, and then, for many
resource management problems, the “law of diminishing returns” hold. Even if
convexity has been shown for many cases, an example with varying buffer size
where it does not hold, is demonstrated in [10].

3.1 The Conditional Value-at-Risk Measure

In finance a measure akin to the TSF is used under the name of Value-at-Risk
(VaR), to quantify the risk of (large) losses for some given loss distribution
function. The CVaR measure is often preferred to the VaR type measure due to
convexity properties [14,15] and that it is a coherent risk measure [2]. The CVaR
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measure provide the mean of the extreme outcomes at quantile level β ∈ [0, 1).
For β = 0 it gives the expected value of the given loss function. In general,
β > 0, CVaR offers a means of controlling worst case outcomes, which might
be of great importance in fields like healthcare, as pointed out in [13]. It may
also be beneficial to use CVaR for any service system were all customers must
be handled within a reasonable amount of time.

The general expression for CVaR at quantile level β is

φ(x) =
1

1 − β

∫

f(x,y)≥αβ(x)

f(x,y)p(y) dy, (1)

where x is the decision vector, y the uncertainty, p is the density function, f the
loss function and αβ the VaR value for quantile β.

We consider two CVaR based QoS measures, one for the Erlang-C system
with the customers waiting time in the queue as the loss function, and the
measure for the Erlang-A system with loss function given by the waiting time
in the queue conditioned on that the customer eventually receive service. We
denote the first CVaR measure on the system of Erlang-C queues by CVaR-C
and the second on the system of Erlang-A queues by CVaR-A.

First some preliminary results for CVaR-C networks. The waiting time dis-
tribution for a M/M/c queue is given by [9]

Pr(Wq > t) = Πq(c, η)e−(cμ−λ)t = 1 − FWq
(t), (2)

where Wq is the random variable representing the waiting time (in queue) and
Πq(c, η) is the probability of delay, i.e., of having to wait when there are c
homogeneous agents working under load η = λ

μ . The probability of delay is
given by the Erlang-C formula [9],

Πq(c, η) =
ηc/c!

(1 − η/c)
c−1∑

i=0

ηi/i! + ηc/c!
. (3)

It can be calculated efficiently via the following recursion, similar to [19],

Πq(c + 1, η) =
λ

μ

(cμ − λ)Πq(c, η)
(
(c + 1)μ − λ

)
c − λΠq(c, η)

. (4)

The main advantage of this formula is that it leads to stable numerical calcu-
lations. We note that the recursion is initiated by Πq(1, η) = η, and any value
larger than one should be interpreted as one, since the larger values corresponds
to unstable queues when abandonments are excluded.

The different queues may have different QoS requirements, thus let βi denote
the quantile level for queue i ∈ I and ti be the VaR(AWT) value for queue i.
The QoS requirement for the VaR type measure is then given by

Pr(Wq,i ≤ ti) ≥ βi, i ∈ I, (5)
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and the corresponding βi-VaR is defined as

ti(ci) = min{t|FWq,i
(t) ≥ βi, ci} =

log Πq(ci, ηi) − log(1 − βi)
ciμi − λi

. (6)

Since the distribution FWq,i
(t) is known, from (2 and 3), and invertible it

is possible to determine this minimum explicitly. We use the notation of ti to
underscore that the VaR value is measured in units of time, in this case.

The corresponding β-CVaR is defined by

φβi
(ci) =

1
1 − βi

∞∫

ti(ci)

tdFWq,i
(t), i ∈ I, (7)

with explicit formulation for Πq(ci, ηi) ≥ 1 − βi:

φβi
(ci) =

1
ciμi − λi

(

log
(Πq(ci, ηi)

1 − βi

)
+ 1

)

= ti(ci) +
1

ciμi − λi
, i ∈ I. (8)

where ti(ci) is given by (6).

Remark 1 (Probability Atoms and CVaR). If β is small then a probability
atom might have to be handled. To avoid such an atom it is required that Πq ≥
1−β holds. For a complete treatment of CVaR in cases where there is a probability
atom see [15]. However, for many realistic choices of parameters this is not an
issue and will thus be ignored throughout the rest of the paper.

The QoS measure given by (6) of the β-CVaR is integer convex and decreasing
in the number of agents, c. The use of the MA algorithm rests on this fact. This
is formalized in Proposition 1.

Proposition 1 (Integer Convexity of β-CVaR). Consider a M/M/c queue
with constant rate parameters μ, λ > 0 such that cμ > λ and that K < β ≤ 1,
where K is large enough that there is no probability atom. Then

φβi
(ci) = ti(ci) +

1
ciμi − λi

, i ∈ I,

is a decreasing and integer convex function in ci ∈ N.

The proof is algebra based and is given in the Appendix.
In the case of the CVaR-A type system, the loss function is given by the

waiting time in queue for a customer that eventually gets served. This loss func-
tion may be easiest to obtain via simulation or approximation. In the examples a
simulation based approach is used since this immediately provides the probabil-
ity density for different quantiles. Simulating the model with ci servers K times,
the waiting times {w1

q , · · · , wK
q } are obtained, and the CVaR can be estimated

by

Φβi
(ci) =

1
K

1
1 − β

K∑

k=1

[
wk

q − ti
]+

(9)
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where ti, the VaR estimate, is determined by the β quantile of the waiting times.
The CVaR approach is more efficient when the distribution is known, even

if a numerical approach has to be used when the distribution function is not
invertible, see [14, Theorem 2].

Increasing the θ parameter leads to improvements of the QoS measure for
customers that get served, since the waiting time will be reduced due to an
increase in the fraction of abandonments. However, since more customers aban-
don the quality of service will most likely not be perceived as improved. Hence,
this QoS measure makes most sense under constant (or limited) abandonment
rate, and may be difficult to use for comparisons between systems with different
abandonment rates.

According to our numerical experiments we have no reason to believe that
this measure would not abide by the law of diminishing returns.

3.2 Probability of Abandonment

Systems of multiserver Erlang-A queues open up for other QoS measures. In [8,
11] different measures for queueing systems with abandonments are considered.
Erlang-A queues are stable for arbitrary loads, while Erlang-C queues are only
stable when cμ > λ. Here we consider systems in steady state, with constant
(random) demand. Perhaps the most obvious measure is the probability that a
customer will abandon the queue before receiving service. This may occur if the
arriving customer finds all servers occupied and thus have to wait in queue. Then
the customer will abandon if his/her patience runs out before a server becomes
available. Let the Erlang-A system with a QoS measure based on the fraction of
abandonments be denoted by Pr-A.

Let π
(i)
j denote the probability of queue i ∈ I being in state j ∈ N, where

the states are given by the number of customers in queue i. Furthermore, let
E

(i)
1,ci

denote the Erlang blocking formula of the i:th queue with ci servers. The
incomplete Gamma function is defined as

γ(x, y) =

y∫

0

tx−1e−tdt. (10)

Then, in accordance with [11], let

A(x, y) =
xey

yx
γ(x, y), x > 0, y ≥ 0. (11)

The probability of an arrival finding all servers busy is given by

Pr(Wq > 0) =
A( cμ

θ , λ
θ )E1,c

1 +
(
A( cμ

θ , λ
θ ) − 1

)
E1,c

. (12)

The fraction of customers abandoning, conditioned on having to wait on arrival,
is given by

Pr(Ab|Wq > 0) =
1

ρA( cμ
θ , λ

θ )
+ 1 − 1

ρ
, (13)
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where ρ = λ
cμ is the offered load per agent. Using the definition of conditional

probability yields the fraction of customers abandoning the queue:

Pr(Ab) = Pr(Ab|Wq > 0)Pr(Wq > 0)

=

(
1

ρA( cμ
θ , λ

θ )
+

ρ − 1
ρ

) (
A( cμ

θ , λ
θ )E1,c

1 +
(
A( cμ

θ , λ
θ ) − 1

)
E1,c

)

. (14)

The QoS measure given by the fraction of customers abandoning is decreasing
and proven to be integer convex in the number of servers for μ ≥ θ [1]. According
to numerical tests we have performed, which agree with the findings of [1,10],
we are convinced it is convex for general θ.

4 Optimization Formulation

We pose a general optimization framework based on the queueing systems and
the QoS measures defined in Sect. 3.

Consider the multiobjective problem that minimizes the total agent cost and
QoS measure for the corresponding queueing systems. The efficient solutions
are given by the solutions to the following optimization problem with weighted
objective function given in (15) with the weights ϕ,ψ > 0,

min
c

ϕ g(c) + ψ
N∑

i=1

ω(λi, μi)QoSk
i (ci),

Sub. to
N∑

i=1

gi(ci) ≤ b,

�i ≤ ci ≤ di, ∀i ∈ I,
ci ∈ N, ∀i ∈ I,

(15)

and where QoSk
i (ci) denotes the k:th QoS measure for the i:th queue. The

weights ϕ and ψ determine the relative importance of the two objectives, and
the larger ψ is chosen the larger the cost, and the smaller the QoS measure, will
be. The weights ω(λi, μi) can be used to scale the relative importance of the
queueing systems, and thus prioritize queues with higher traffic load or queues
where the customers have higher quality demands.

4.1 QoS: CVaR of Waiting Time (No Abandonment)

Consider the optimization problem (15), for the QoS measure defined for CVaR-C
discussed in Sect. 3.1, i.e., from (7)

QoS1
i (ci) = φ

(i)
βi

(ci). (16)

The weights ω = 1 will be used. The lower limits �i should be chosen so that
�iμi > λi in order to guarantee stability of queue i.
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4.2 QoS: Probability of Abandonment

Consider the optimization problem (15) for the QoS measure defined for Pr-A
discussed in Sect. 3.2, i.e., from (14)

QoS2
i = Pri{Ab|ci} (17)

For the weights ω we will use the offered load, i.e., ω(λi, μi) = ηi.
Since the M/M/c+M queues are always stable a lower limit �i is not neces-

sary, but in practice it is recommended to guarantee an acceptable abandonment
rate.

4.3 QoS: CVaR for Waiting Time with Abandonment

Consider the optimization problem (15) for the QoS measure defined for CVaR-A
discussed in Sect. 3.1, i.e., from (9)

QoS3
i = Φ

(i)
βi

(ci) (18)

The weights ω = 1 will be used. The lower limit �i can be chosen as for Pr-A.

4.4 The Marginal Allocation Algorithm

The MA algorithm is a powerful algorithm for finding the efficient points for two
integer convex and separable functions, described in [6,17].

In general when minimizing the multiobjective optimization problem for func-
tions f, g : NN → R where

Δfj(xj) ≤ Δfj(xj + 1) < 0 ∀j, xj ∈ N,
0 < Δgj(xj) ≤ Δgj(xj + 1) ∀j, xj ∈ N,

(19)

the optimal vector x∗ ∈ N
N minimizes ϕg(x)+ψf(x) if and only if the following

conditions are satisfied for each j = 1, . . . , N :
⎧
⎨

⎩

−Δfj(x
∗
j )

Δgj(x∗
j )

≤ ϕ
ψ ≤ −Δfj(x

∗
j −1)

Δgj(x∗
j −1) if x∗

j > 0,
−Δfj(0)
Δgj(0)

≤ ϕ
ψ if x∗

j = 0.
(20)

x∗
j is an efficient solution if and only if there are constants ϕ,ψ > 0 such that

the conditions (20) are satisfied for each j = 1, . . . , N .

Marginal Allocation Algorithm [17].

Step 0: Generate a table with N columns, fill the columns with the quotients
−Δfj(n)/Δgj(n) for n = 0, 1, 2, . . .
Set k = 0, x(0) = (0, . . . , 0), g(x(0)) = g(0) and f(x(0)) = f(0).

Step 1: Select the largest uncancelled quotient in the table.
Cancel it and let l be the corresponding column number.
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Step 2: Let k := k + 1 then let x
(k)
l = x

(k−1)
l and x

(k)
j = x

(k−1)
j ,∀j �= l.

Let f(x(k)) = f(x(k−1)) + Δfl(xk−1
l ) and g(x(k)) = g(x(k−1)) + Δgl(xk−1

l ).
Terminate algorithm if g(x(k)) ≥ gmax; otherwise go to Step 1.

We identify our budget constraint b to be gmax and the constraint on available
agents, di, i ∈ I, to be the number of quotients to calculate for column i. This
algorithm can now be applied to the optimization problem (15) where

g(c) =
N∑

i=1

aici (21)

with ai > 0, and

fi(ci) =

⎧
⎪⎨

⎪⎩

QoS1
i = φ

(i)
βi

(ci) from (16),
QoS2

i = Pri{Ab|ci} from (17).
QoS3

i = Φ
(i)
βi

(ci) from (18).
(22)

Given that the costs and the QoS measures in (15) are seperable integer
convex functions in the number of servers, the MA algorithm can be used to
generate the whole efficient front of the multiobjective optimization problem
up to the given upper bound b on the budget.

5 Numerical Examples

The main benefit of using the MA approach is that huge systems can be opti-
mized almost effortlessly. An example of the efficient front for a system of 100
M/M/c queues, with a (maximal) budget constraint of b = 3000, is shown in
Fig. 2. The input parameters, in terms of arrivals, service rates and agent costs,
were uniformly randomly generated with parameters λi ∈ [5, 15], μi ∈ [0, 2],
ai ∈ [0, 4] and with β = 0.8. Finding the whole efficient front took less than a
second to perform on a laptop.

To compare the Erlang-C and the Erlang-A based systems we look at a three
class multiserver system (i.e., three queues). First, find the efficient points for
the CVaR-C system, left graph in Fig. 3. Compute the probability of abandon-
ment for these points and compare to the efficient points of the Pr-A system,
as depicted in the middle and right graph of Fig. 3 for two different impatience
rates. The input parameters are βββ = [.95 .95 .95]T ,λλλ = [15 10 20]T ,μμμ =
[0.5 0.6 0.7]T and a = [12 15 18]T . The procedure was repeated for two sets
of impatience rates, θθθ = [0.25 0.25 0.25]T and θθθ = [10 10 10]T , respectively.
The weight function, ω(λi, μi), in (17) is chosen as the offered load, ηi.

A similar comparison is made between the solutions of the CVaR-C system
and the CVaR-A system. The parameters used were the same as for the previous
example except that the patience parameters used were θθθ = [0.25 0.25 0.25]T

and θθθ = [2 2 2]T . Since a simulation based approach was used the computational
time increased substantially. Simulations work well in an offline situation but
suffer in an online environment. The results are shown in Fig. 4.
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Fig. 2. Showing the efficient front for a system of 100 M/M/c-queues, using the mea-
sure from CVaR-C as the QoS measure and with a budget constraint of 3000. The
parameters where randomly generated. In the bottom figure some specific efficient
points are shown.
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Fig. 3. The left figure shows the CVaR-C solutions for a system of three queues. In
the middle and right figures the solutions under abandonments are shown, for patience
parameters θ = 0.25 and θ = 10. The Pr-A solutions for abandonments is compared to
the CVaR-C solutions in terms of probability of abandonments [5, Fig. 3].
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Fig. 4. The left figure shows the CVaR-C solutions for a system of three queues. In the
middle and right figures the solutions for CVaR-A is shown, for patience parameters
θ = 0.25 and θ = 2. The CVAR-A solutions for the CVAR-A system is compared to
the CVaR-C solutions in terms of the CVAR-A QoS measure.

Table 1. Showing the partial agent distributions over the three queues for the CVaR-
C solutions (left), for the Pr-A solutions (middle) and CVaR-A solutions (right). The
abandonment rate is θ = 0.25 for Pr-A and CVaR-A.

Agents CVaR-C Pr-A CVaR-A

77 31 17 29 32 17 28 31 19 27

78 31 18 29 33 17 28 32 19 27

79 31 18 30 33 17 29 32 20 27

80 32 18 30 33 18 29 32 21 27

81 32 19 30 34 18 29 32 21 28

82 33 19 30 34 18 30 33 21 28

83 33 19 31 34 19 30 33 21 29

84 33 20 31 35 19 30 33 22 29

85 34 20 31 35 19 31 34 22 29

86 34 20 32 36 19 31 34 23 29

87 35 20 32 36 19 32 35 23 29

88 35 21 32 36 20 32 35 24 29

89 36 21 32 36 20 33 36 24 29

90 36 21 33 37 20 33 37 24 29

91 36 22 33 37 21 33 37 24 30
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With respect to the patience parameter, for the example shown in Fig. 3,
the two solutions do not differ significantly. The given solutions are very sim-
ilar, which seem to hold for larger systems and for a wide range of parameter
values. A well calibrated CVaR-C measure might be a good alternative to using
abandonments, especially since the distribution is invertible and easy to work
with. In particular when the load per server is not close to one. The differences
between the CVaR-C solution and the CVaR-A solution are more varied. This
is to be expected since the load per server for the M/M/c-system will naturally
be higher.

In both examples the efficient points for the measures on the Erlang-A sys-
tem might lie close to the solutions generated using the efficient points for the
Erlang-C system, but still differ in the distribution of agents. Therefore, we con-
sider the optimal distributions in Table 1 to illustrate this for the examples seen
in Figs. 3 and 4. For the Pr-A system the first agent pool is prioritized over the
second and third, and receives one or two more agents compared to the CVaR-C
assignment. Using CVaR-A it is apparent that the agents in pool 2 are priori-
tized as compared to the solutions of the CVaR-C system and the opposite holds
for pool 3.

6 Summary and Conclusions

The class of resource allocation problems considered in this paper for networks
of parallel separable queues are solved using the MA algorithm for three different
QoS measures.

Introducing CVaR as a QoS measure for queueing systems allows us to miti-
gate the worst case service effects. Using the CVaR measure the expected value
of the worst outcomes is minimized. Therefore the CVaR measure is well suited
for systems where the service of all customers is of importance. For example the
TSF does not consider what happens to customers whose service time is longer
than the AWT. Another advantage is that the measure is risk coherent.

We provide an algebraic proof of convexity in terms of the number of servers
for the CVaR measure for an Erlang-C system with waiting time as the loss
function. This fits with “the law of diminishing returns” that holds intuitively
for many resource allocation problems. The convexity property is crucial for the
application of the MA algorithm, which enables fast solutions.

Examples comparing the performance of solutions determined under different
models and QoS measures show that there are variations in the optimal distribu-
tions of the servers, but the differences in the resulting QoS measures are relatively
minor. The results indicate that the CVaR solution for M/M/c systems may be
used to approximate the solutions for systems with abandonment.

Acknowledgements. The authors would like to thank Teleopti AB, Stockholm Swe-
den, for their support of our work.
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Appendix

Proof of Proposition 1
First note that β-CVaR satisfies φβ(c, λ, μ) = (1/λ)φβ(c, 1, μ/λ), so we can

without loss of generality assume that λ = 1 and cμ > 1.
Let Ck = (c + k)μ − 1, then Ck+1 = Ck + μ and Ck ≥ 0 for all k ≥ 0.

Then, from (7), φβ(c) = (log Πc +1− log(1−β))/C0, and the forward difference
Δφβ(c) = φβ(c + 1) − φβ(c) is given by

Δφβ(c) =
1
C1

[

log
Πc+1

Πc
− μφβ(c)

]

≤ 0 (23)

since Πc is non-increasing, hence φβ(c) is non-increasing.
The second forward difference is

Δ2φβ(c) =
1

C1C2

[
2μ2φβ(c) + G

]
(24)

and using (4)

G = C1 log
Πc+1

Πc

Πc+1

Πc+2
− 2μ log

Πc+1

Πc
(25)

= C1 log
(

C1

C0

C1c − Πc

C2(c + 1) − Πc+1

)

− 2μ log
(

C0

(C1c − Πc)μ

)

. (26)

Convexity of β-CVaR follows by showing that G ≥ 0.
Using that x/(1 + x) ≤ log(1 + x) ≤ x we have that

log
C1

C2(c + 1) − Πc+1
≥ − log(c + 1) − 1

c + 1
μ(c + 1) − Πc+1

C1
, (27)

and
log

C1c − Πc

C0
≥ log(c) +

cμ − Πc

cC0 + μc − Πc
. (28)

Then

G ≥ C1 log
c

c + 1
+ 2μ log(cμ) − μ +

Πc+1

c + 1
+

C3(cμ − Πc)
cC0 + (cμ − Πc)

. (29)

Applying log c
c+1 ≥ −1/c and log (cμ) ≥ (cμ − 1)/(cμ) on the first part and

(4) on the fourth term, it follows that

G ≥ C−1

c
+

Πc

(
C0

(c+1)μ − C2

)
+ 2μ2c

cC0 + (cμ − Πc)
. (30)

Note that cC0 + cμ − Πc > 0 since cμ > 1. Using that Πc ≤ 1
cμ+1

1
(c−1)μ+1 ,

G (cC0 + cμ − Πc) is bounded from below by
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C2
0 + μ2(2c − 1) − 1

cμ + 1

1

(c − 1)μ + 1

[
C0

(
c + 1

c
− 1

(c + 1)μ

)
+

μ

c
(2c − 1)

]
(31)

Rearranging, letting D = (cμ + 1)((c − 1)μ + 1) then (31) is

C0/D

[

C0D − c + 1
c

+
1

(c + 1)μ

]

+ μ
2c − 1

c

[

cμ − 1
D

]

. (32)

First consider the case c = 1. Then μ > 1, C0 = μ − 1, D = 1 + μ and (32) is
given by B1(μ) = 2μ3 − 4μ + 3 + 1/2(1 − 1/μ) which is greater than zero for
μ > 1. (B′

1(μ) ≥ 0 for μ ≥ 1 and B1(1) = 1)
Next consider the case c ≥ 2 and μ ≥ 1. Then C0 ≥ 1, D ≥ 2 and both terms

in (32) are greater than zero.
What remains is the case c ≥ 2 and μ < 1. Then C0 ≥ 0, D ≥ 2. Introduce

ε = cμ−1
μ , and eliminate c in (31) to obtain

μ2(ε2 + 2ε +
2
μ

− 1) − H

(2 + με)(2 + με − μ)
, (33)

where H = μ(2 + ε) + μ2 ε−1
1+με − 1

1+μ+με .
Consider two cases, ε ≥ 1 and ε < 1.

If ε ≥ 1, then (33) is greater than μ2(ε2 + 2ε + 2
μ − 1) − H/4 which, using

that 1
1+με ≤ 1 and 1

1+μ+με ≥ 1 − μ − με, is greater than

(εμ +
7μ − 2

8
)2 +

12 + 11μ + 97μ(1 − μ)
64

(34)

which is non-negative.
If ε < 1, then we write (33) on common denominator and use 1

1+με ≥ 1 − με

and 1
1+μ+με ≥ 1 − μ − με, to show that the numerator is bounded below by

(1 − μ)
[

1 − εμ + μ3 + 5μ(1 − μ) + μ(1 − ε) + 4εμ2

(
13
4

− μ + ε(1 + μ)
)]

+μ3ε3(4ε + με2 + 7) ≥ 0 (35)

for all ε, μ ∈ (0, 1).
Then

Δ2φβ(c, 1, μ) ≥ 2μ2φβ(c, 1, μ)
C2C1

≥ 0, (36)

and φβ is integer-convex, which concludes the proof.
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1 Introduction

Tackling highly-constrained optimisation problems with many objectives is dif-
ficult even with modern multiobjective algorithms [1]. In real-world scenarios,
decision-makers often benefit from having a set of solutions representing a com-
promise between the multiple objectives so that they can choose the preferred
solution(s). It is often useful to use problem domain knowledge during the opti-
misation in order to obtain better sets of compromise solutions. For example,
in the context of continuous multiobjective optimisation problems, [2] estimated
Pareto fronts to then obtain values for the decision variables of interesting solu-
tions. Their technique allows to focus the search in sub-regions of the objective
space. Another example is the work by [3] using a Bayesian model to learn com-
putationally expensive objective functions to then use the estimation model to
explore the search space more quickly.

The multiobjective vehicle routing problem with time windows (MOVRPTW)
is a well-know difficult combinatorial optimisation problem that arises in many
real-world logistic scenarios [4]. This problem refers to creating a plan for a fleet of
identical vehicles to take goods from a depot and deliver them to customers at var-
ious locations. Each customer has certain demand level that needs to be satisfied
within a specified time window. Objectives usually considered in the MOVRPTW
include among others, the minimisation of number of vehicles and the minimisa-
tion of total travel distance by all vehicles.

Due to the high number of constraints and objectives in MOVRPTW scenar-
ios, even state-of-the-art multiobjective algorithms struggle to find good approx-
imations to the Pareto optimal front within reasonable computation time. In
logistic scenarios where problems like MOVRPTW arise, it is often the case
that problem instances corresponding to a different planning periods share parts
of the same data. For example, the same or very similar set of vehicles might
be available in each planning period. Also, there might be a set of recurring
customer orders that need to be satisfied in the different planning periods. This
results in the different problem instances presenting recurring features in their fit-
ness landscapes. Other problems like timetabling and personnel scheduling may
also have instances with recurring features resulting in similar fitness landscapes
(η-dimensional surface representing the Pareto front, where η is the number of
objectives).

Previous work proposed a technique to analyse and visualise complex objective
relationships and fitness landscapes in multiobjective problems [5,6]. Later, [7]
introduced a methodology to exploit the recurring similarity between instances of
a multiobjective workforce scheduling and routing optimisation problem, in order
to solve instances of the same problem scenario more efficiently. In this method-
ology, a pilot problem instance is solved first using some effective (but not neces-
sarily computationally efficient) multiobjective algorithm to produce an approxi-
mation to the Pareto optimal set. Such approximation set is given to the decision-
maker so that target solutions representing the desired trade-off between the mul-
tiple objectives are identified. Then, goal programming is applied with a compu-
tationally efficient single-objective solving method, in order to find solutions for
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other problem instances. In this paper, this methodology is applied to tackle the
MOVRPTW in order to further investigate its performance for solving multiob-
jective problem instances with recurring features. The methodology can be very
valuable to facilitate informed decision-making when searching solutions to mul-
tiobjective problems. Experiments in this paper are conducted on a set of bench-
mark instances of the MOVRPTW provided by [8].

Section 2 outlines the multiobjective vehicle routing problem with time win-
dows considered here while Sect. 3 outlines goal programming. Section 4 describes
the proposed methodology and Sect. 5 presents the experimental configuration.
Sections 6 and 7 present and discuss the results. Section 8 concludes the paper
and suggests related future research.

2 Multiobjective Vehicle Routing Problem with Time
Windows

A Multiobjective Vehicle Routing Problem with Time Windows (MOVRPTW)
is defined on a graph G = (V,E) where V is the set of vertices representing the
depot (vertex 0) and the customers (vertices 1 . . . n) where each customer has
a demand pi (i = 1, . . . , n). There are h identical vehicles available, each one
with capacity Q. In this MOVRPTW, h is considered large enough so that as
many vehicles as needed are available to create the routing plan. A set of routes
served by the set of vehicles should be created in order to satisfy all demands
from all customers. All routes must start and end in vertex 0. The edge set E
denotes all possible connections between all vertices. Each edge from vertex i to
vertex j has an associated cost, denoted by cij , that represents distance or time
for a vehicle to travel between vertices i and j. Each customer i must be served
during their corresponding time window [ai, bi]. A waiting time is incurred if a
vehicle arrives at time t < ai and hence it must wait until the start of the time
window to serve the customer. A delay time is incurred if a vehicle arrives at
time t > ai and hence it must start serving the customer immediately. Once the
vehicle starts serving the customer, it stays there for s time until the delivery is
completed, this is known as the service time.

[8] proposed a benchmark set of instances for the MOVRPTW with five min-
imisation objectives: number of vehicles (Z1), total travel distance by all vehicles
(Z2), makespan or travel time of the longest route (Z3), total waiting time for
all vehicles (Z4), and total delay time for all vehicles (Z5). They designed their
instances based on different characteristics of the problem and each instance is
a combination of these features. The features that constitute a problem instance
in these benchmarks are:

– Number of Customers: 50, 150 and 250 customers.
– Time Window: five different profiles (tw0, tw1, tw2, tw3, tw4) of time win-

dows across a planning period of eight hours. These profiles are defined in
terms of minutes from the start of the planning period 0 = 8:00 am, 480 =
4:00 pm, etc.). These five time-window profiles are defined as follows:
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• tw0: [0,480], all customers can be served at any time in the day.
• tw1: [0,160], [160,320], [320,480], refers to three types of customers (morn-

ing, midday and late).
• tw2: [0,130], [175,305], [350,480], also refers to three types of customers

as in profile tw1 but with shorter time windows.
• tw3: [0,100], [190,290], [350,480], also refers to three types of customers

as in profile tw1 but with longer time windows.
• tw4: includes all time-windows from tw0, tw1, tw2 and tw3, each customer

has one of the 10 time window types in the previous profiles.
– Demand Types: three types of demand (10, 20, 30) uniformly distributed.
– Vehicle Capacity: the capacity of the vehicles is calculated according to a δ

parameter such that Q = D + δ/100(D − D) where D is the maximum single
demand among all customers and D is the sum of all customer demands. The
dataset considers three δ values (δ0 = 60, δ1 = 20, δ2 = 5).

– Service Time: three values of service time (10, 20, 30) uniformly distributed.

For more details of the MOVRPTW described above and a comprehensive
study on the multiobjective nature of the problem, please refer to [9]. There
are 45 problem instances and a generator available from https://github.com/
psxjpc/MOVRPTW-Generator. The technique to analyse objective relationships
described in [6] was applied to these problem instances and results indicate that
indeed they have similar fitness landscapes. This is the case even for instances
that have different time window profiles, vehicle capacity and the number of
customers. However, in this work, we split the 45 problem instances into three
datasets according to the number of customers. This decision was taken because
even though the fitness landscapes are similar, the scale of the objective values
vary considerably according to the number of customers. Therefore, we have 3
datasets each with 15 problem instances, the set VRP-50 with 50 customers, the
set VRP-150 with 150 customers and the set of VRP-250 with 25 customers.

3 Goal Programming

Without loss of generality, a multiobjective optimisation problem can be written
as minimise F (x) = (f1(x), f2(x), ..., fn(x)) subject to x ∈ S, where x is a solu-
tion, S is the set of feasible solutions, n is the number of objectives in the prob-
lem, F (x) is the image of x in the k-objective space and each fi(x) is the value of
objective i in solution x. For two solutions x and y, it is said that x dominates y,
if ∀i : fi(x) ≤ fi(y) and ∃j : fj(x) < fj(y). Moreover, x is said to be Pareto Opti-
mal if it is not dominated by any other feasible solution. Then, the aim is to find
the set of Pareto Optimal solutions usually called Pareto Set. This set contains a
number of non-dominated points in the objective space creating the Pareto Front.

Goal programming is one of the earliest proposed approaches to tackle opti-
misation problems with multiple objective [10]. Basically, goal programming con-
sists of establishing a specific numeric goal for each of the objectives considered
in the problem. Then, search is conducted for a solution in which the weighted
sum of deviations in the objective values with respect to the goals is minimised.

https://github.com/psxjpc/MOVRPTW-Generator
https://github.com/psxjpc/MOVRPTW-Generator
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In order words, goal programming is about establishing a target for each objec-
tive and then searching for a solution with objective values as close as possible
to those targets. There are three types of goals in goal programming [11]:

– Lower bound: defines a lower value for an objective such that solutions that
fall below the lower value are penalised.

– Upper bound: defines an upper value for an objective such that solutions that
present higher values than the upper value are penalised. This is the type of
goals in the optimisation problem considered here, due to the minimisation
nature of all objectives.

– Strict bound: defines a specific target value such that solutions that present
values above or below are penalised. This is applicable when obtaining a
solution with a specific target value for a given objective is essential. For
example, in the case that solutions using exactly h number of vehicles were
required in the MOVRPTW.

Once the goals for each objective are set, goal programming techniques derive
problem models (LP, MIP, etc.) to find solutions that reach (or are close enough
to) the target goals. Several strategies, or goal programming variants, have been
presented in the literature. We briefly review the three most widely employed
variants [12]:

– Weighted GP [13]: used when the decision maker is able to assign an impor-
tance weight to each goal. The objective function for the problem is then a
weighted sum of the deviations from the goals.

– Lexicographic GP: when weighting the goals is difficult, but the decision
maker is able to prioritise them, the lexicographic GP technique is commonly
applied [14]. The deviations to the target goals are minimised according to
defined priority levels such that deviations from a higher level goal are con-
sidered infinitely more important that deviations from a lower level goal.

– Chebyshev GP [15]: consists of minimising the maximum weighted nor-
malised deviation from all the goals, hence promoting solutions that are well-
balanced regarding the achievement of the target values.

The weighting and lexicographic methods are considered ‘a priory’ approaches
in the sense that the decision maker should set a ranking between the objectives
before conducting the search for solutions. This is not the case in the Chebyshev
method which is an ‘a posteriori’ method because it seeks solutions that are well-
balanced in the attainment of all goals so that the decision maker can chose after-
wards. In this paper, it is assumed that the decision maker is able to choose a pre-
ferred solution from a set of trade-off solutions, instead of being able to establish
weights or ranking between the multiple objectives. Hence, only the Chebyshev
technique is used later in this work.
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A potential issue with goal programming is that it may produce solutions
that are not Pareto efficient [16]. This is especially true when the goals are ‘pes-
simistic’ and the objectives can be easily achieved. Several methods are proposed
to address the issue. Most methods rely on extra information from the decision
maker in order to promote the further improvement of certain objectives [17].
Other methods involve extending the search after the solution is found by the
goal programming in order to find dominating solutions [18].

Works in the literature usually describe the application of goal program-
ming using exact methods [12,16]. However, many works exist where metaheuris-
tics are employed to solve goal programming models. [19] presents a simulated
annealing approach to tackle several test problems of preemptive goal program-
ming. [20] employ a fast converging simulated annealing algorithm to solve a
machine-tool selection and operation allocations problem with fuzzy variables.
[21] propose a genetic algorithm to tackle a goal programming model for the
vehicle routing problem with time windows and [22] presents a genetic algo-
rithm to tackle a goal programming model for a transportation planning prob-
lem with three objectives. Goal programming is a sound approach to tackle
the MOVRPTW considered here because this technique has been successfully
applied to related scheduling and routing problems. For example, it has been
applied to nurse scheduling [23,24] and to a version of the vehicle routing prob-
lem with soft time-windows [25].

4 The Efficient GP Methodology

Figure 1 shows the overall concept of the methodology which was originally pro-
posed in [7]. Each of the steps is explained below in reference to the MOVRPTW
tackled in this paper. The overall idea is to find a set of compromise solutions
for a representative instance of the multiobjective problem in hand. The decision
maker then selects from this set a solution that exhibits the desirable qualities
in respect of the various objectives, without the need to set weights or priorities
for the objectives. The objective values in the selected solutions are set as the
targets for goal programming when searching for solutions to the other problem
instances (e.g. routing plans for other days in the same problem scenario).

1. A pilot instance from the dataset with recurring fitness landscape is selected
by the decision-maker and solved using multiobjective algorithms to obtain
the best possible non-dominated approximation set.

2. The decision-maker chooses a preferred solution t from the obtained non-
dominated set. This chosen solution is known as the target solution and its
objective-vector is denoted by

Zt = (Zt
1, Z

t
2, Z

t
3, Z

t
4, Z

t
5)

3. Each other instance in the dataset can now be solved with a faster single-
objective algorithm using a modified objective function (goal programming
variant) aiming to reach the target objective vector.
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Fig. 1. Overview of the methodology as in [7]. The numbered steps are explained in
the main text.

4. The final solution obtained in Step 3 is presented to the decision maker. The
overall advantage of this approach is that Step 1, which is typically computa-
tionally expensive, needs to be executed only once for a given representative
instance in the problem scenario. Then, other problem instances can be solved
faster after the target solution is chosen.

The modified objective function of Step 3 has an important role in the
methodology as it establishes the way in which the search will aim to attain
the goals. Three approaches are used here for determining the objective func-
tion. The first one is the well known Chebyshev approach. The second one is
to derive a weight-vector from the target solution and the approximation set of
the pilot instance. The third approach minimises the Euclidean distances to the
target objective-vector.

4.1 Chebyshev Goal Programming

Chebyshev goal programming aims to obtain a balanced solution by minimis-
ing the gap to the target of the objective that presents the highest gap, i.e. it
seeks to minimise the largest gap to the goals [15]. Hence, if the target goals for
the objectives are similarly difficult to attain, this technique can obtain a bal-
anced solution. However, if at least one target objective value is more difficult
to achieve (i.e. the target goal is too optimistic), the quality of that objective
can be a bottleneck for the other objectives because the search will solely focus
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on improving that objective. We define the Chebyshev objective function for the
MOVRPTW as follows:

Minimise λ (1)
Subject to

Z1

Zt
1

≤ λ (2)

Z2

Zt
2

≤ λ (3)

Z3

Zt
3

≤ λ (4)

Z4

Zt
4

≤ λ (5)

Z5

Zt
5

≤ λ (6)

The Chebyshev objective function given by Eq. (1) is used as the objective
function for the MOVRPTW. The main objective is now to minimise λ, thus
finding a well-balanced solution regarding reaching the target values. If all targets
are reached, λ can assume fractional values and a solution that shows balanced
improvements on all objectives may be obtained.

4.2 Derived Weight Vector

One problem with the Chebyshev approach is that it does not guarantee Pareto
efficiency. However, the optimal solution for a weighted sum objective function
(where weights are not simultaneously null) is always Pareto efficient. To derive
a weight vector from the target solution, we first convert the approximation
set of the pilot instance into a system of linear inequalities. Considering that
the approximation set is composed of k objective-vectors (Z1, Z2, . . . , Z5), the
linear inequalities system can be defined as follows where the aim is to determine
the values of w = (w1, w2, w3, w4, w5):

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

wZt ≤ wZ1

wZt ≤ wZ2

...
wZt ≤ wZk

(7)

There is no guarantee that the system of linear inequalities has a solution if
the fitness landscape is non-convex, i.e. if no set of weights can be set to achieve
some points in the Pareto optimal front. Therefore, instead of finding a solution
for the system, we aim to find a weight vector w that satisfies the largest number
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of inequalities. Hence, we define the problem of finding the best weight vector
as the following MIP (mixed-integer programming) minimisation problem.

Minimise
k∑

j=1

xj (8)

Subject to

wZt − wZj ≤ Mxj j = 1, . . . , k (9)

wi ∈ (0, 1], xj binary

{
i = 1, . . . , 5
j = 1, . . . , k

(10)

The objective function in Eq. (8) aims to find a weight vector w that min-
imises the number of linear inequalities in (7) which do not fulfill the condition
wZt ≤ wZi expressed by constraint (9), M is a large constant. Constraint (10)
guarantees that zero cannot be chosen as a weight-value (to avoid criteria being
removed).

Finally, the weight vector w obtained from the MIP model is used in the
objective function for the MOVRPTW as given by Eq. (11).

Minimise
5∑

i=1

wiZi (11)

4.3 Euclidean Distances

We propose an alternative based on the Euclidean distances to the target vector.
In essence, this is a method that considers all objectives as equally important.
Hence, minimising the Euclidean distances alone does not guarantee Pareto effi-
ciency. In order to mitigate this issue, the proposed method consists of minimis-
ing the distances to the target vector for the objectives that are worse than the
target. If the current distance for the objectives that are worse than the target
vector is small (<ε), then the aim is to maximise the distances of the objectives
that are better than the target vector.

Henceforth, the objective function in Eq. (12) becomes the objective function
for the optimisation problem in hand.

Minimize

{
z if z > ε

−z′ otherwise
(12)
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where

z =

√
√
√
√

5∑

i=1

zi (13)

z′ =

√
√
√
√

5∑

i=1

z′
i (14)

zi =

{
(Zi − Zt

i )
2 if Zi > Zt

i

0 otherwise
(15)

z′
i =

{
(Zi − Zt

i )
2 if Zi ≤ Zt

i

0 otherwise
(16)

In summary, when the Euclidean distances of the objectives that are worse
than the target vector are larger than the given parameter ε, the objective func-
tion consists of minimising the Euclidean distances (z). Otherwise, when z ≤ ε,
the objective consists of maximising the distances for the objectives that are
better than the target solution (z′). Thus, if the solution has not reached the
target, the objective function attempts to close the gap to the target. If the
solution is close or better than the target, the objective function attempts to
further improve it.

5 Experimental Configuration

We applied the proposed methodology to the MOVRPTW datasets. The
instances with δ0 and tw4 (50-δ0-tw4, 150-δ0-tw4, 250-δ0-tw4 were arbitrarily
selected as pilot instances (Step 1 of methodology). Once the Pareto approxima-
tion sets were obtained, k = 15 target vectors were randomly selected (uniformly
distributed) from each approximation set and the same target vectors were used
for the Derived Weight Vector (WV) objective function, the Euclidean Distances
(ED) objective function, and the Chebyshev (CV) objective function.

Multiobjective algorithms often struggle to find good approximation sets for
combinatorial problems with many objectives (more than three) [1]. Hence, we
resort to a tailored procedure to obtain an improved approximation set. [2] state
that most multiobjective algorithms can be classified as either Pareto-based
or decomposition-based. This study utilises NSGA-II [26] as the Pareto-based
algorithm and MOEA/D [27] as the decomposition-based one. Thus, for each
problem instance the approximation set was obtained (Step 1 of methodol-
ogy) as described below. The number of solution vectors obtained for each pilot
instance was 168 for 50-δ0-tw4, 215 for 50-δ0-tw4 and 206 for 250-δ0-tw4.

1. run both the NSGA-II and MOEA/D for one million objective evaluations
on each possible bi-objective vector (Z1, Z2), (Z1, Z3), . . . (Z4, Z5);
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2. run both the NSGA-II and MOEA/D for one million objective evaluations
on each possible three-objective vector (Z1, Z2, Z3), (Z1, Z2, Z4), . . . (Z3,
Z4, Z5);

3. run both the NSGA-II and MOEA/D for one million objective evaluations
on each possible four-objective vector (Z1, Z2, Z3, Z4), (Z1, Z2, Z3, Z5), . . .
(Z2, Z3, Z4, Z5);

4. create an archive composed of the non-dominated solutions found in the pre-
vious three steps;

5. generate a population of individuals where half of the elements are randomly
generated and the other half are randomly drawn from the archive built in
the previous step;

6. run both the NSGA-II and MOEA/D four times each, for two million objec-
tive evaluations, using the initial population generated in the previous step
and the five-objective vector; and

7. compile an approximation set with all non-dominated solutions found in all
steps.

[28] survey the literature on vehicle routing problem with time windows
and show that genetic algorithms are well suited for that problem. Also, our
early experiments showed that these algorithms present good enough solutions
on these datasets and are simple enough to allow easy replication by other
researchers. Hence, for Step 3 of the methodology, the other instances of the
MOVRPTW are tackled with a straightforward genetic algorithm (GA) using
a direct integer encoding of solutions, uniform crossover, 500 individuals popu-
lation with a 5% elite being kept across generations and a tournament of two
individuals employed for the selection mechanism.

6 Experimental Results

First, we show the effectiveness of the derived weight vector obtained from the
MIP model in Eqs. (8)–(10). The effectiveness of a weight vector w is given by
the percentage of solutions (in the approximation set for the pilot instance) in
which wZt ≤ wZi, i = 1, . . . , 5. Hence, if the effectiveness is 100%, it means
that the MIP model found a solution for the inequalities system in Eq. (7).

Figure 2 presents the results of the effectiveness analysis. As it was the case in
[7] for another problem, the overall effectiveness of the obtained weight vectors
here surpassed 90%. Pilot instance 50-δ0-tw4 presented the best average value of
96% and 250-δ0-tw4 presented the worst with 91.3%. Hence, in all cases, the MIP
model provided good weight vectors to be used by the WV objective function.

Next, we show the results for each group of instances (for 50, 150 and 250
customers) in three charts. The target achievement chart displays the percentage
of solutions, in the given dataset, that achieved the target value in each objective.
The gap to target chart contains the average gap to the target solutions for the
solutions that did not reach the target. Finally, the overall comparison chart
displays the average quality of solutions where positive values indicate that, on
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Fig. 2. Average percentage of the solutions in the approximation set of each pilot
instance in the MOVRPTW datasets such that wZt ≤ wZi.

average, the solutions found are better than the target solution and negative
values indicate that the solutions are worse than the target solution.

Figures 3, 4 and 5 display the results of applying the implemented GA with
all three objective functions (WV, ED and CV) to the other instances of dataset
VRP-50. Results comprise the average values of eight runs for each target vector
of each problem instance for each objective function.

Figure 3 shows that for Z1 and Z2 the target achievement is close to 100%
on all three objective functions. On Z3 the WV objective function noticeably
presents the worst results, with only 63% achievement while the ED and CV
objective functions both present similar results with near 80% achievement.
Finally, on Z4 and Z5 the ED objective function presents a small advantage
and the CV objective function is clearly the worst for Z5.

Z1 Z2 Z3 Z4 Z5

60

80

100

WV ED CV

Fig. 3. Dataset VRP-50 – target achievement.
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Fig. 4. Dataset VRP-50 – gap to the target.

Figure 4 reflects the findings of the previous figure where Z3 shown the lowest
overall target achievement. Still, on that objective, the overall gap is below 6%
for the three objective functions, hence when the target was not met, the gap
still was small. Noticeably, the ED objective function presents the lowest gaps.
Moreover, Fig. 5 shows that except for WV on Z3, all objective functions on all
objectives present improvements over the target solution, noticeably on Z1, Z2

and Z4 where the solutions found are up to 58% better than the target.
Figures 6, 7 and 8 present the results for the larger set VRP-150. On Fig. 6,

we see that while on dataset VRP-50 the objective Z3 presents the worst results,
in this dataset the worst results appear on Z4 with an average of roughly 75%
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Fig. 5. Dataset VRP-50 – overall comparison.
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Fig. 6. Dataset VRP-150 – target achievement.
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Fig. 7. Dataset VRP-150 – gap to the target.

achievement and, again, the WV objective function presents the worst results.
On the other objectives, all objective functions present competitive results.

Figure 7 shows that the gap to the target on solutions that have not met the
target is very small – only on Z2 the gap is larger than 2% and only for the CV
objective function.

Figure 8 displays the overall quality of solutions. On average, the quality is
better on this dataset than on the previous one. With one or more objective
functions, on every objective, the overall quality is more than 20% better than
the target. This number increases to nearly 40% for the WV objective function
on Z1 and Z2.
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Fig. 8. Dataset VRP-150 – overall comparison.
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Fig. 9. Dataset VRP-250 – target achievement.

Finally, Figs. 9, 10 and 11 present the results for the largest dataset VRP-250.
Figure 9 presents the target achievement. It can be seen that there is a trend,
as the size of the datasets increases, the target achievement of Z1 decreases.
In this dataset, the objectives Z1 and Z4 presents the worst results. Regarding
the objective functions, WV presents the best results for Z1. On the remaining
objectives, the ED objective function presents the most competitive results.

Figure 10 shows the overall gaps to the target solutions. Clearly, the WV
approach gets the worst results, even though the gaps were always below 4.2%.
Noticeably, the CV objective function presents gaps always smaller than 1%.

Lastly, Fig. 11 shows the overall comparison of solutions with their targets.
Again, the results show that all objective functions achieved improved results,
with the ED edging Z3, Z4 and Z5 and the WV edging Z1 and Z2.
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Fig. 10. Dataset VRP-250 – gap to the target.

7 Discussion

While the WSRP datasets tackled in [7] arise from real-world scenarios, the
MOVRPTW datasets considered here were fabricated for benchmarking pur-
poses. Also, even the largest MOVRPTW scenario is considerably smaller than
a medium-sized WSRP. The target achievement for the MOVRPTW here was
larger than in the WSRP overall. The best results obtained here were for the
smaller MOVRPTW scenarios, while for the WSRP this happened in the larger
instances. We speculate that a reason for this is that the largest MOVRPTW
datasets are not large enough for the multiobjective algorithms to struggle in
finding good approximation sets (as it happened in the larger WSRP datasets).
Therefore, as the performance gap between single-objective algorithms and
multiobjective algorithms is considerably smaller in the MOVRPTW problem
instances, the difficulties of reaching the target vector becomes more evident.

However, the gaps to the targets of objectives that did not meet their targets
were considerably lower here than on the WSRP. Also, the CV objective func-
tion, while clearly producing the worst results on the WSRP, it achieves compet-
itive results on the MOVRPTW. This could be a consequence of the quality of
the target solutions. The multiobjective algorithms were able to obtain approx-
imation sets with fitness landscape closer the fitness landscape of the optimal
Pareto front. Also, there is a higher uniformity of the fitness landscapes across
instances for these datasets [6]. All this means that the identified target solu-
tions were realistic, so they could be achieved on every instance. Hence, the CV
objective function, which benefits from that, presented good results.

On the MOVRPTW datasets, except for a few exceptions, all objective func-
tions were able to not only reach the target but also to substantially improve all
objectives – also a reflection of the quality of the approximation set obtained by
the multiobjective algorithms.
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Fig. 11. Dataset VRP-250 – overall comparison.

Nonetheless, it is clear that estimating the Pareto front for problem instances
that have similar fitness landscape to the pilot instance, is an effective way to
tackle the problem. While the multiobjective algorithms required up to four
hours to obtain the approximation set for the pilot instance of a dataset, the
GA managed to find competitive solutions in minutes. For the majority of the
experiments, targets were achieved and the overall quality of results was high.

8 Conclusion

In this work, we applied a methodology based on goal programming to use effi-
cient single-objective algorithms to solve a multiobjective vehicle routing prob-
lem with time windows. The methodology was first presented in [7] and it consists
of: (1) solving a pilot instance of the problem using multiobjective algorithms
(which are typically computationally expensive) to obtain a good approxima-
tion set, (2) having the decision-maker to choose preferred target compromise
solutions, and then (3) employing goal programming to solve other instances of
the same dataset using the selected solutions in (2) as the target. Three differ-
ent objective functions were used to guide the search for the target solutions
with goal programming. One is the Chebyshev approach that seeks to achieve
a solution balanced on all the objective targets. Another one is minimising a
weighted function derived from the target solution. The third approach is to use
the Euclidean distance to drive the search guided by the target solution.

This methodology was first applied by [7] to real-world instances of a Work-
force Scheduling and Routing Problem (WSRP) in the home healthcare sector.
In the present paper, the methodology has been further tested by applying it to
a different multiobjective problem arising in logistic operational scenarios, the
Multiobjective Vehicle Routring Problem with Time Windows (MOVRPTW).
In both of these problem scenarios, instances usually arise from different plan-
ning periods and hence they present similarities in the fitness landscapes.
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This is because usually in this type of real-world problems, instances have the
same partial data (e.g. same fleet of vehicles or same set of workers). This paper
has shown that the proposed technique is an effective and efficient approach to
tackle real-world multiobjective highly-constrained combinatorial optimisation
problems, by combining the effectiveness (but often computationally expensive)
of state-of-the-art multiobjective algorithms with the efficiency of well-targeted
single-objective optimisation through goal programming. For this, the multi-
objective analysis technique proposed by [5,6] offers an effective tool to analyse
the relationships between objectives in multiobjective optimisation problems and
determine the degree of similarity in the fitness landscape of different problem
instances.

For future research, it would be interesting to investigate if other approaches
besides the Chebyshev, derived weighted function and Euclidean distance
approaches, would be more effective across different multiobjective problems.
Perhaps an even more interesting but also more challenging future research would
be to develop adaptive objective functions that change the search direction as
the search progresses and in reaction to the fitness landscape features.
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Abstract. We previously studied the capacitated arc routing problem
over sparse underlying graphs under travel costs uncertainty. In this
paper, we study the same problem by recalling the mathematical formu-
lation of the problem given in [29]. The problem is characterized by the
uncertainty of the travel costs and by the sparse network over which it is
defined. In fact, a Multiple-Scenario Min-Max CARP over sparse under-
lying graphs is studied. More numerical instances applying the greedy
heuristic algorithm developed in [29] and the adapted tabu-search algo-
rithm are introduced in which these computational experiments show the
effectiveness of these two algorithms.

Keywords: Robust CARP · Travel costs uncertainty ·
Robust optimization · Scenarios

1 Introduction

The prior knowledge of the data and the parameters of a combinatorial problem
are required by the combinatorial optimization. However, perturbations affecting
the input data of real life applications leading the data to be unpredictable affect
in turn the nature of the solution which will be consequently not optimal or
infeasible. For routing problems, this disturbance could be represented by the
uncertainty of travel times due to traffic [28], or by the required demands by
clients or by the arrivals of new clients for instance. In our work, we study the
sparse capacitated arc routing problem with uncertain travel costs by means of
a theoretical study and practical one as well.

For the uncertainty in the optimization problems, a contribution to solve
the problem has been done using stochastic programming where the uncertain
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data is modeled as random variable with known probability distribution [25,34].
Applying this type of programming requires two conditions: (1) the stochastic
nature of the uncertainties and (2) the possibility of identifying the probability
distribution. Heretofore, stochastic programming was the mostly used as in [12]
for example, in [9] where a Branch-and-Price algorithm for the capacitated arc
routing problem with stochastic demands has been presented and another study
is given in [35]. Nevertheless, the nature of the uncertainty in real life problems is
not always stochastic where it is not always possible to identify the probability
distribution of the data, thus stochastic programming is not always suitable
for such problems. As a result, this requires the utilization of an alternative
rather than the stochastic programming. In fact, robust optimization that allows
determining robust solutions is adaptable for our problem as it provides feasible
solutions despite the occurance of any inevitable event or any uncertainty of the
input data.

Providing robust solutions addresses three main challenges: (1) evaluation,
(2) adaptation of heuristic methods and (3) assessment of performance and this
criteria expands to identify (1) the modeling of the uncertain data (scenarios in
our study), (2) the selection of appropriate criteria (min-max in our study) and
(3) the mathematical model of the problem.

The remaining of the paper is organized as follows. A brief survey about
the robust optimization with its definitions and criteria is given in Sect. 2. We
introduce a min-max mathematical modeling of our problem which is proposed
to give a robust solution minimizing the worst scenario in Sect. 3. Section 4 is
consecrated about a heuristic algorithm and an adapted and metaheuristic algo-
rithm which are developed according to specific procedures to determine a solu-
tion of the problem and improve it. Computational experiments are performed
for the proposed greedy heuristics and metaheuristics in Sect. 5. We derive our
conclusions in the last section.

Throughout the whole paper, we work with a graph G whose number of
vertices is n, number of edges is n+α with 1 ≤ α ≤ n

2 , and the maximum vertex
degree held in G is 3.

2 Review About Robust Optimization

Robust optimization provides solution that can withstand any uncertainty of
the data. Perturbations may affect the data which could affect the optimal solu-
tion that is computed before to be infeasible or not optimal. The probabilistic
description of the uncertain data allows the use of the stochastic optimization
which has been given by Dantzig and Ramser in 1959 [11]. However, this type
of programming has two drawbacks:

1. The underlying probability distributions must be already known and this is
not always the case.

2. The solutions can become infeasible upon facing some random events or
disruptions.



An Efficient Algorithm Based Tabu Search for the Robust Sparse CARP 155

To the contrary, robust optimization which is not stochastic but rather deter-
ministic and set-based is considered to be the suitable alternative where it opti-
mizes the worst case value under all uncertain data. Representing uncertain data
is mostly done by a convex set as a polyhedron, a cone or an ellipsoid as seen by
Ben-Tal et al. in [2] and by Bertsimas et al. in [5]. Other structures of uncertain
data is done by assigning plausible values to each model parameter in which the
two common ways of such modeling are the interval or discrete scenarios. In our
work, we represent the uncertain data by generating discrete scenarios. In 2010,
Sbihi [22], has proposed a robust knapsack based on profits multiple scenario
discrete set. In our work, we represent the uncertain data by generating discrete
scenarios.

Robustness criteria include several families where the decisions can be made
according to max-min, min-max, min-max regret, min-max relative regret and
lexicographical min-max, etc. For more details about different robustness crite-
ria, the reader may refer to [10,14,16].

Bertsimas and Sim [6] proposed an alternative robust optimization criterion
to the min-max using discrete scenarios. In their paper, they proposed a budget
of uncertainty denoted by Γ to limit the number of uncertain parameters allowed
to deviate from their nominal values, and this proposition is to control the degree
of conservatism as robust solutions are often considered as conservative. They
applied their method to the cost and constraint coefficients of a linear or mixed
integer program which leads to a robust version with a moderate increase in
size. They presented a robust integer programming model that allows to control
the degree of conservatism of a solution using probabilistic bounds and violation
constraints, and they give an algorithm for the robust network flows using the
model that they have presented.

Most of the facility location problems test the min-max with discrete sce-
narios, for example, we may state here the robust prize-collecting Steiner tree
problems [1], robust knapsack problem [21] and robust network loading problem
with dynamic routing [19]. For more information about robustness criteria and
robust classification criteria, see [26].

In our work, the robustness criterion which we follow is the min-max criterion
in which we minimize the cost whenever the worst scenario occurs.

2.1 Stochastic Vehicle Routing Problem

A stochastic vehicle routing problem is a VRP where one or several of the com-
ponents of the problem are random, for instance VRPs with stochastic customers
where a customer needs to be serviced with a given probability [3,33], stochastic
demands where the demands of the customers are known as probability distribu-
tions ([8,18,23,24,27]) and this was deeply studied by Bertsimas [4], or stochastic
travel times in which the service or travel times are modeled by random vari-
ables (see, e.g., [15,17,32]). A major issue for using the stochastic optimization
is that the probability distributions which accurately model uncertainties must
be known.
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2.2 Robust Vehicle Routing Problem

As mentioned in the previous paragraph, same aspects of uncertainty are handled
with the robust vehicle routing problem with a main investigation of that with
uncertain demands which was firstly studied by Sungur et al. [28]. They derive
a robust counterpart for the vehicle routing problem with stochastic demands
(VRPSD) where they show that the robust solution is favorable on average com-
pared to the deterministic solution if the network structure allows a strategical
distribution of the slack in the vehicles i.e. in the case where vehicles can share
their slacks. Moreover, the authors show that the robust solution is superior to
simple strategies of distributing the excess capacity among the vehicles especially
when the network structure is more clustered. A limited work has been done for
the case of uncertain travel times or travel costs. A robust scenario approach for
the vehicle routing problem with uncertain travel times is studied by Han et al.
in 2013 [13]. The papers by Toklu et al. [30,31] handle the VRP with uncertain
travel costs. The total travel cost is minimized and uncertainty is expressed as
intervals.

For more details about the robust vehicle routing problems and their corre-
sponding methods of optimizations, the reader may refer to [26]. On the other
hand and to the most of our knowledge, there is no study about solving the arc
routing problems with the robust optimization method. In the next section, we
introduce a brief review about the capacitated arc routing problem under uncer-
tain environment and we present a mathematical formulation for the robust
sparse capacitated arc routing problem under travel costs uncertainty.

3 Capacitated Arc Routing Problem Under Uncertainty

Throughout the literature, the Uncertain Capacitated Arc Routing Problem has
been characterized by four stochastic factors: (1) the presence of tasks, (2) the
demands of the tasks, (3) the services costs and (4) the availability of a path
between each pair of vertices. Most research works consider these factors sepa-
rately or combine at most two of them together, for example the presence and
demands of the tasks are combined in [4]. Later, these four stochastic factors of
the problem were combined all together in [20] where the authors consider the
uncertainty of each of these factors with random variables and by a certain prob-
ability distribution as a function of an environmental parameter. Moreover, they
introduce a mathematical formulation for the problem. The developed algorithms
by them showed excellent performance for static CARP, however they were not
able to find robust solutions for the uncertain CARP. Therefore, we aim in this
work to design new algorithms that can find more robust solutions.
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3.1 Robust Capacitated Arc Routing Problem Under Sparse
Network and Under Travel Costs Uncertainty

The uncertain capacitated arc routing problem that we study is characterized
by the uncertainty in the travel costs and by the sparse network for which it is
defined over. This uncertainty is represented by a finite set of scenarios where
each required edge of the network has a different cost with respect to each sce-
nario. We aim at determining a robust solution i.e. in an uncertain environment,
the problem objective is no longer to find a single global optimal solution, but to
find a solution with the best expected quality under all possible environments. In
the following, we present a mathematical modeling of the capacitated arc rout-
ing problem over sparse graph under travel costs uncertainty. In other terms, we
are concerned with the Multiple-Scenario Min-Max Capacitated Arc Routing
Problem under sparse graphs.

Throughout the following, let G = (V,E) be a graph where V denotes the
set of vertices and E the set of edges. Denote by R ⊆ E the set of the required
edges i.e. the set of edges having strictly positive demands to be serviced.

Lets consider the following notations and variables:

– K: the total number of the vehicles.
– Q: the capacity of each vehicle.
– dem(e): the demand of the edge e.
– Δaccum(e): the total demand served by the vehicle arriving at the service e

including the demand of e itself which is by definition less than or equal to Q.
– cs

e: the cost of the edge e in the scenario s.
– N(e): the neighborhood of the edge e.
– S = {1, 2, . . . , P}: the set of scenarios.
– ωe: the capacity of edge e i.e. the maximum number of times for which an

edge can be traversed.
– xe′,f ′

e,f : a binary variable which is equal to 1 if and only if the service at f ′ is
successive to the service at e′ by the same vehicle, and the chosen shortest
path between e′ and f ′ includes the consecutive adjacent edges e and f , and
0 otherwise.

– ye′,f ′ : a binary variable equal to 1 if f ′ is serviced directly after e′, and 0
otherwise.

Recall that the graphs which we are working over are sparse with maximum
degree equal to 3. Denote by 0 and 1 two incident edges to the depot node. The
edge 0 denotes the edge of departure of the vehicle i.e. exit from the depot, and
1 denotes the edge of returning back of the vehicle i.e. entrance to the depot
after accomplishing all the services of the corresponding vehicle. Moreover, we
assume that these edges are required but with a null demand. In the following,
we detail the mathematical model of the problem.
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The Mathematical Formulation:

min max
s∈S

∑

e′,f ′∈R,e∈E,f∈N(e)

cs
e xe′,f ′

e,f (1)

Subject to:
ye′,f ′ + yf ′,e′ ≤ 1 ∀e′, f ′ ∈ R (2)

∑

f ′∈R

y0,f ′ = K (3)

∑

f ′∈R

y1,f ′ = 0 (4)

∑

e′∈R

ye′,1 = K (5)

∑

f ′∈R

ye′,0 = 0 (6)

∑

f ′∈R

ye′,f ′ = 1 if e′ �= {0, 1} (7)

∑

e′∈R

ye′,f ′ = 1 if f ′ �= {0, 1} (8)

Δaccum(f ′) ≥ Δaccum(e′)+ dem(f ′)+ (dem(f ′)+Q)× (ye′,f ′ − 1) ∀e′, f ′ ∈ R, e′ �= f ′ (9)

∑

f∈N(e)

xe′,f ′
e,f −

∑

f∈N(e)

xe′,f ′
f,e = 0 if e �= e′, e �= f ′, e′, f ′ ∈ R (10)

∑

f∈N(e)

xe′,f ′
e,f −

∑

f∈N(e)

xe′,f ′
f,e = ye′,f ′ if e = e′, e′, f ′ ∈ R (11)

∑

f∈N(e)

xe′,f ′
e,f −

∑

f∈N(e)

xe′,f ′
f,e = −ye′,f ′ if e = f ′, e′, f ′ ∈ R (12)

∑

e′,f ′∈R,f∈N(e)

xe′,f ′
e,f ≤ ωe with ωe ≥ 1 if e �= 0 (13)

∑

e′,f ′∈R,f∈N(0)

xe′,f ′
0,f = K (14)

∑

e′,f ′∈R,f∈N(e)

xe′,f ′
f,e ≤ ωe with ωe ≥ 1 if e �= 1 (15)
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∑

e′,f ′∈R,f∈N(1)

xe′,f ′
f,1 = K (16)

xe′,f ′
e,f , ye′,f ′ ∈ {0, 1} ,Δaccum(e′) ≤ Q ∀e′, f ′ ∈ R, e, f ∈ E (17)

The objective function (1) aims to minimize the total costs under the worst
case. Constraints (2) are trivial to show that either e′ is serviced before f ′ or
vice versa. Constraints (3) to (6) show that all the vehicles must depart from
the depot and all the vehicles must return back to the depot after serving the
required edges. The number of predecessors and the number of successors is given
by the constraints (7) and (8). Constraints (9) assure that if f ′ is served directly
after e′, then the total demand done at the level of f ′ is greater than or equal to
the total demand done at e′. Otherwise, the difference between these demands
is less than Q which is trivial. Shortest path constraints are represented from
(10) to (12). Constraints (13) to constraints (16) determine the capacity of each
edge in G i.e. the maximum number of times an edge can be traversed, where
this capacity is some ω for edges different from depot, and it is K for the edges
which are incident to the depot to assure the passage of all the vehicles from
and into the depot. Decision variables constraints are given in (17).

4 Efficient Algorithms for Solving Robust CARP

In this section, we present a heuristic algorithm for solving the robust sparse
capacitated arc routing problem under travel costs uncertainty. The initial solu-
tion which is obtained by this algorithm is then ameliorated by a well adapted
tabu search algorithm.

4.1 A Heuristic Algorithm for Solving the Robust Sparse CARP
Under Travel Costs Uncertainty

This heuristic ends with a feasible initial solution of the problem. The procedure
locates a worst scenario S̄ and computes Z(X̄) = max

x

∑
cS̄
e xe,f . Let e1, e2, . . . , er

be the required edges, and denote by λi the efficiency of each edge ei which is
given by the formula

λi =

∑
s∈S

cs
ei

dei

, (18)

where dei
denotes the demand of the required edge ei. This algorithm is valid

for the two cases of ω = 1, where each edge can be traversed one only time, and
ω > 1, where there is a constant maximal number for traversing an edge. The
only difference between the two cases lies mainly in the procedure Update.



160 S. Tfaili et al.

Fig. 1. A Greedy Heuristic Algorithm GH for determining a starting feasible solution
of the Robust CARP [29].

To build the solution, we used the service scheduling as to schedule which
services are to be scheduled regarding each vehicle for each destination. This
can be viewed in the solution representation where the services are arranged
according to their order of being done as shown in the following figure, see [29].



An Efficient Algorithm Based Tabu Search for the Robust Sparse CARP 161

Fig. 2. The Subpath procedure [29].

Fig. 3. The Complete procedure [29].

Fig. 4. The Update procedure for ω > 1 [29].
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Fig. 5. The Update procedure for ω = 1 [29].

A solution of the problem is formed first of the services according to their
order of being serviced, then we apply Dijkstra algorithm to determine a shortest
path between each couple of services as shown in Fig. 6.

Fig. 6. An example of the solution construction.

In the example of Fig. 6, we have 3 vehicles k1, k2, and k3 and each vehicle
has its corresponding services. For example, for vehicle k1, there are the services
serv1, serv2, and serv3 in which they are served in this order.

The vehicle k1 departs from the depot 0 and reaches to serv1 by applying
Dijkstra, then it applies Dijkstra to reach to serv2 and serves it, and so on until
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its capacity cannot be violated, then it moves from the last service to the depot
again represented by 1.

In the following, we explain the main steps of the GH algorithm (Fig. 1).

– Step 1: k ← 1 to start with the first vehicle.
– Step 2: while the set of the required edges is not empty, and the number of

the vehicles is less than or equal to the number of the available ones.
– Step 3: the total accumulated demand is fixed at the demand of the first

required edge with strictly positive demand and greatest efficiency. The first
edge in the path is the depot. The second edge in the path is the first required
edge with a strictly positive demand.

– Step 4: while the accumulated demand respects the capacity of the vehicle
and there are still required non-serviced edges.

– Step 5: call the procedure Subpath(), Fig. 2, that tests if adding the jth

required edge will not violate the capacity constraint. In this case, update
the accumulated demand to be the last one added to the demand of j, and
place this edge in the ith rank of the constructed subpath. Then, move to the
next rank and then to the next required edge.

– Step 7 to Step 9: Once adding a required edge could violate the capacity, go
back to the depot. The dimension of the constructed subpath is i where the
depot entrance is the ith-edge of this subpath i.e. the last edge. Assignment
of the dimension of P to an auxiliary variable l(i).

– Step 10: call the procedure Complete, Fig. 3. The procedure Complete
tests if the predecessor of each required edge in P say at rank l(i) is not the
required edge served in this path P and placed at the rank l(i) − 1, then call
Dijkstra and insert a shortest path of made of edges of NR between the
edge at rank l(i) and the edge at rank l(i)− 1. Each time an edge is inserted,
the dimension of the path P is incremented by 1 and each edge at rank j − 1
will be at the rank j to let the inserted edge compensate the emptied rank.

– Step 11: Update the constructed solution.
– Step 12: Determine the worst scenario that corresponds to the scenario giving

the maximal solution cost.
– Step 13: Update the sets NR and R: in the case where ω > 1, Fig. 4, the

capacity ω of any used edge in the path P is decremented by 1 each time the
edge is used. The same is applied to the edges of the set R with the additional
step that will be impose the removal of the used edges from R and then added
to NR. For the case of ω = 1, Fig. 5, the edges of both sets are removed once
traversed or served.

– Step 14: Move to the next vehicle.

We determine by this heuristic algorithm an initial robust solution of the
problem and a corresponding worst scenario.
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4.2 An Adapted Tabu Search Algorithm for Solving the Robust
Sparse CARP Under Travel Costs Uncertainty

In this part, we develop an adapted tabu search algorithm for the Robust Sparse
CARP under travel costs uncertainty. This algorithm starts with the initial solu-
tion that is determined by the above greedy heuristic. Consider the following
notations:

– X�: best feasible solution determined by the tabu search algorithm.
– L: the tabu list.
– Iter: number of iteration.
– MaxIter: maximum number of iterations.
– N(X�): neighborhood about the solution X�.
– S�: the worst scenario determined by the algorithm.
– Th: a certain threshold.

Fig. 7. A Tabu Search Algorithm TS for determining best solution of the robust CARP
[29].
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The algorithm contains several steps. Tabu search starts by an initial feasible
solution obtained thanks to the greedy heuristic algorithm. All the visited solu-
tions are feasible. The exploration of the solutions space is executed with some
swaps. The elite solutions list is generated by improving the objective value
where the worst scenario has already been identified. The core of the approach
is to build neighborhoods and perform several local searches in order to reach
a best solution. In Step 2 of the main steps of Fig. 7, if a certain threshold Th
is not attained, we diversify the search by using the procedure Build1 to build
the neighborhood. In this step, we choose randomly two vehicles, vehicle1 and
vehicle2, and we select two services of each chosen vehicle i.e. service11, service21,
service12 and service22. We check whether the swap of these services (the first
service of the first vehicle with the first service of the second vehicle, and the
second service of the first vehicle with the second service of the second vehi-
cle) respects the capacity of the vehicles, and we swap them as explained. In
this way, we explore the neighbors and we choose the best that minimizes the
cost for the worst scenario. The search progresses by iteratively moving from
the current solution to an improved solution. In Step 4 of the main steps of
this Figure, if the threshold Th is attained, we intensify the search by using the
procedure Build2 to build the neighborhood which allows the exchange of two
services of the same vehicle. The tabu based strategy incorporates a tabu list in
the selection mechanism that forbids the selection of the non-improving solution
for a certain tabu tenure. Each visited explored solution is then settled in the
tabu list L to not be visited again unless the tabu list reaches its expiration
point i.e. the tabu status of a move is removed if it belongs to the list L and it
exceeds MaxIter iterations.

For the intensification and the diversification of the search, both are achieved
via the procedures Build1 and Build2.

5 Computational Experiments

In this section, we introduce a set of computational experiments for which we
apply each of these algorithms; the heuristic algorithm and the tabu search one.
The benchmark of instances which we deal with has not been treated before.
We have run all these instances with different number of scenarios and different
densities of their corresponding networks in order to evaluate the performance of
each of the presented algorithms. The proposed algorithms are coded in C++ and
run on HP intel(R) Core(TM) i7 laptop (with 2.80 Ghz and 16 Go of Ram). These
test problem instances are studied for the first time and their optimal solution
values are not known. None of the previous algorithms in the literature deals
with such type of instances. We work with networks having a maximum degree
of 3 as we deal with a sparse network. Lets consider the following notations:

– WSH : the worst scenario which is determined by the heuristic algorithm.
– CostH : the cost of the solution which is determined by the heuristic algorithm.
– CPUH : the time needed by the heuristic algorithm to determine a solution.
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– WST : the worst scenario which is determined by the tabu algorithm.
– CostT : the cost of the solution which is determined by the tabu algorithm.
– CPUT : the time needed by the tabu algorithm to determine a solution.

The robust optimization that we apply via the developed algorithms allows
us not only to get a robust solution, but also it gives us the worst scenario that
may change upon the improvement of the solution as we observe in the following
tables. In other terms, a worst scenario of a solution determined by the heuristic
algorithm is not necessarily the same worst scenario of the solution obtained
by the tabu algorithm after improvement. As a result, an improvement comes
in two directions: (1) obtaining a better solution with a minimal cost and (2)
improving the corresponding worst scenario.

In what follows, we show the tables of the numerical results that we have
generated.

In Tables 1, 3, 5, 7, 9 and 11, we present sets of different families for the robust
CARP instances. The number of vertices, the number of edges, the number of

Table 1. A first set of different families of the robust CARP problem instances -
Group A0.

Instance |V (G)| |E(G)| |R| S K Q

1A0 10 13 5 10 2 30

2A0 20 27 10 10 3 40

3A0 50 70 25 10 5 60

4A0 100 150 59 10 5 120

5A0 231 331 121 10 10 130

6A0 257 362 191 10 12 190

7A0 307 439 260 10 12 225

8A0 400 600 350 10 15 240

Table 2. Results of Group A0 Instances by the heuristic algorithm and by the tabu
search algorithm (TS).

Instance WSH CostH CPUH(s) WST CostT CPUT (s)

1A0 9 1105 0.001 9 1105 0.001

2A0 10 3534 0.008 7 1943 1.6

3A0 9 11476 0.01 6 5025 15

4A0 2 27274 0.056 2 16037 41

5A0 8 71083 0.241 8 46302 218

6A0 4 120473 0.416 NI NI NI

7A0 3 183109 0.723 3 126440 640

8A0 2 255540 1.853 NI NI NI

NI: no improvement
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Table 3. A second set of different families of the robust CARP problem instances -
Group A.

Instance |V (G)| |E(G)| |R| S K Q

1A 10 13 5 10 2 15

2A 20 27 10 10 2 40

3A 50 70 25 10 3 50

4A 100 150 59 10 3 120

5A 231 331 121 10 4 120

6A 257 362 191 10 5 150

7A 307 439 260 10 7 150

8A 400 600 350 10 7 150

required edges (services), the number of scenarios, the number of the available
homogenous vehicles and their capacity are all given. The results in Tables 2, 4,
6, 8, 10 and 12 present the worst scenario determined by the heuristic, the cost
of the solution and the CPU consuming time of the heuristic too. Furthermore,
it gives the worst scenario determined by the tabu search algorithm, the cost
of the corresponding solution and the CPU consuming time of the tabu search
algorithm.

On one hand, we notice that our greedy heuristic succeeds to have the access
to all the studied instances with a very small CPU consuming time regardless
the quality of the found solution. On the other hand, the tabu algorithm did not
succeed to have the access to the big size instances.

Recall that G denotes a graph where V (G) denotes the set of vertices and
|V (G)| its cardinality, E(G) denotes the set of edges and |E(G)| its cardinality.
The set of required edges is represented by R, and the set of different scenarios
is represented by S. The used fleet of vehicles is homogeneous where K denotes

Table 4. Results of Group A Instances by the heuristic algorithm and by the tabu
search algorithm (TS).

Instance WSH CostH CPUH(s) WST CostT CPUT (s)

1A 10 1295 0.001 10 1059 0.5

2A 1 3104 0.008 1 2644 1.52

3A 6 10169 0.012 6 5658 8.326

4A 2 27370 0.056 10 17735 40.96

5A 3 46461 0.236 3 31074 124

6A 1 84875 0.392 5 50972 208

7A 5 124241 0.664 6 76389 357

8A 5 118039 1.168 5 71498 450
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Table 5. A third set of different families of the robust CARP problem instances -
Group B0.

Instance |V (G)| |E(G)| |R| S K Q

1B0 10 13 5 40 2 30

2B0 20 27 10 40 3 40

3B0 50 70 25 40 5 60

4B0 100 150 59 40 5 120

5B0 231 331 121 40 10 130

6B0 257 362 191 40 12 190

7B0 307 439 260 40 12 225

8B0 400 600 350 40 15 240

Table 6. Results of Group B0 Instances by the heuristic algorithm and by the tabu
search algorithm (TS).

Instance WSH CostH CPUH WST CostT CPUT

1B0 10 1273 0.001 10 1273 0.001

2B0 6 2650 0.0016 38 1927 6

3B0 30 9807 0.052 24 8206 33

4B0 30 28178 0.204 30 15802 287

5B0 8 66736 0.936 NI NI NI

6B0 10 118841 1.668 NI NI NI

7B0 23 178188 2.668 NI NI NI

8B0 12 242994 4.752 NI NI NI

NI: no improvement

the number of the available vehicles and Q represents the capacity of each one.
The different instances are generated randomly i.e. the sparse graph is generated
randomly but respecting that |E(G)| = |V (G)| + α with 1 ≤ α ≤ |V (G)|

2 and
that the maximum degree in this network is 3. The costs over the scenarios are
all generated randomly too.

The numerical instances are divided into 3 groups and each group into two
parts: Groups A0 and A with 10 scenarios (Tables 1 and 3 ), Groups B0 and
B with 40 scenarios (Tables 5, 7) and Groups C0 and C with 100 scenarios
(Tables 9 and 11). The reason beyond this decomposition of instances comes
after we have noticed that not all the available vehicles are used in the solution,
thus we generated instances with a smaller number of vehicles to observe whether
this factor may affect the solution.
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Table 7. A fourth set of different families of the robust CARP problem instances -
Group B.

Instance |V (G)| |E(G)| |R| S K Q

1B 10 13 5 40 2 15

2B 20 27 10 40 2 40

3B 50 70 25 40 3 50

4B 100 150 59 40 3 120

5B 231 331 121 40 4 120

6B 257 362 191 40 5 150

7B 307 439 260 40 7 150

8B 400 600 350 40 7 150

Table 8. Results of Group B Instances by the heuristic algorithm and by the tabu
search algorithm (TS).

Instance WSH CostH CPUH WST CostT CPUT

1B 20 1607 0.002 18 1529 2.216

2B 25 3594 0.052 15 1969 5.944

3B 1 9989 0.06 33 5439 35.152

4B 39 28120 0.305 37 16389 169

5B 22 43603 0.852 NI NI NI

6B 21 87199 1.723 NI NI NI

7B 8 119613 2.683 NI NI NI

8B 31 152818 2.8 NI NI NI

NI: no improvement

Table 9. A fifth set of different families of the robust CARP problem instances -
Group C0.

Instance |V (G)| |E(G)| |R| S K Q

1C0 10 13 5 100 2 30

2C0 20 27 10 100 3 40

3C0 50 70 25 100 5 60

4C0 100 150 59 100 5 120

5C0 231 331 121 100 10 130

6C0 257 362 191 100 12 190

7C0 307 439 260 100 12 225

8C0 400 600 350 100 15 240



170 S. Tfaili et al.

Comments: Consider the instances of Groups A0 and A where we have a rela-
tively small number of scenarios (10 scenarios). It is obvious that both algorithms
perform well whatever the size of the instance is i.e. Instances 1A0, 1A, 2A0, 2A,
3A0 and 3A which are considered as small size instances are solved rapidly
(Tables 2 and 4). The gap between the solution determined by the heuristic and
that determined by the tabu is relatively high (between 40% and 80%), and
this shows that the corresponding tabu search algorithm is efficient and it can
ameliorate the solution very well. We have to recall here that we aim at determin-
ing a robust solution for the problem despite of the high quality of this solution.
Medium size instances (Instances 4A0 and 4A, Tables 2 and 4) need a small CPU
consuming time to be solved by the heuristic, while they require more time to be
solved by the tabu. Big size instances (Instances 5A0, 5A, 6A0, 6A, 7A0, 7A, 8A0

and 8A, Tables 2 and 4) are solved rapidly by the heuristic just like the other
instances, while it is not the case for the tabu search algorithm that needs more
time to perform. As a brief conclusion for the first group of instances, the greedy

Table 10. Results of Group C0 Instances by the heuristic algorithm and by the tabu
search algorithm (TS).

Instance WSH CostH CPUH WST CostT CPUT

1C0 62 1250 0.016 62 1250 0.016

2C0 89 2746 0.028 89 1767 28

3C0 73 12762 0.144 29 6389 153

4C0 81 27257 0.472 29 15634 731

5C0 6 72386 2.264 NI NI NI

6C0 2 112454 3.94 NI NI NI

7C0 95 189989 6.556 NI NI NI

8C0 10 296212 12.196 NI NI NI

NI: no improvement

Table 11. A sixth set of different families of the robust CARP problem instances -
Group C.

Instance |V (G)| |E(G)| |R| S K Q

Instance 1C 10 13 5 100 2 15

Instance 2C 20 27 10 100 2 40

Instance 3C 50 70 25 100 5 60

Instance 4C 100 150 59 100 5 120

Instance 5C 231 331 121 100 7 120

Instance 6C 257 362 191 100 12 190

Instance 7C 307 439 260 100 12 225

Instance 8C 400 600 350 100 15 240
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Table 12. Results of Group C Instances by the heuristic algorithm and by the tabu
search algorithm (TS).

Instance WSH CostH CPUH WST CostT CPUT

1C 48 1548 0.007 48 1216 4.872

2C 49 3655 0.27 49 2520 15.556

3C 32 9924 0.241 79 5689 101.084

4C 42 27870 0.452 54 18180 441.576

5C 66 45412 1.624 NI NI NI

6C 44 91616 3.81 NI NI NI

7C 13 149114 5.318 NI NI NI

8C 79 108750 8.375 NI NI NI

NI: no improvement

heuristic algorithms behaves almost in the same way for all the instances where
it determines a solution of the problem within a very small consuming time.
However, as the size of the studied problem instance increases, the consuming
time needed by the tabu search algorithm increases too, though it ameliorates
the quality of the solution obviously. Concerning the effect of the number of the
available vehicles K on the solution, we observe that for some big size instances,
as K decreases, it becomes easier to ameliorate the initial solution as seen for
instances 6A0, 8A0, 6A and 8A. Moreover, the CPU consuming time of the tabu
algorithm decreases with the decrease of K.

For a medium number of scenarios (40 scenarios) represented by Groups
B0 and B instances (Tables 5 and 7), we observe that the performance of the
heuristic algorithm is almost the same for all the instances (Tables 6 and 8).
The performance of the tabu search algorithm differs according to the size of
the instance i.e. as the number of the vertices of the network increases, the
CPU consuming time of this algorithm increases too. Though there is a high
improvement of the quality of the solution. However, we see that there is no
rapid improvement for big size instances (Tables 6 and 8).

Concerning the last group of instances; Groups C0 and C with a big number
of scenarios (100 scenarios, Tables 9 and 11), the heuristic algorithm performs
rapidly and determines a solution within a very short time for all the instances,
while the performance of the tabu search algorithm is affected by the size of
the instance and it needs more time and memory to improve the solution found
by the heuristic (Tables 10 and 12). Furthermore, as the number of available
vehicles decreases, the tabu algorithm performs faster for the small size instances,
whereas it fails to improve for the medium and big size instances.

A general conclusion is drawn out. On one hand, the heuristic algorithm
is able to determine an initial solution for any problem instance and for any
number of scenarios within a very short CPU consuming time. On the other
hand, the performance of the developed tabu search algorithm is related to the
number of scenarios and to the size of the studied problem instance. In other
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terms, as the number of scenarios increases and as the size of the studied prob-
lem instance increases, the CPU consuming time of the tabu search algorithm
increases too. However, this algorithm is able to improve very well the solution
which is determined by the heuristic whenever it is able to improve.

6 Conclusion

Recent studies in the domain of routing problems are subjected towards the
robust optimization of these problems such as the robust vehicle routing prob-
lem. In this paper we study the robust sparse capacitated arc routing problem
under travel costs uncertainty. As real life applications may face a high degree of
uncertainty which stands against the feasibility or the optimality of the solution,
it is important to find a robust solution whatever the situation is. We choose the
robust optimization to address the travel costs uncertainty and we represent this
uncertainty by a set of scenarios. We solve the problem by a min-max approach
that it by minimizing the solution under the worst scenario. A mathematical
modeling of the robust problem is given and two algorithms are developed. A
greedy heuristic algorithm is constructed first to determine an initial feasible
solution of the problem, and then an adapted tabu search algorithm is devel-
oped. The tabu search algorithm starts with the initial solution determined by
the greedy heuristic and tries to improve the quality of this solution.

One more time we generate our own benchmark of instances respecting the
structure of the graphs which we are working over. The computational experi-
ments show the high effectiveness and robustness of the heuristic which is able to
find a feasible initial solution whatever the size of the instance is in a very small
CPU consuming time. The tabu algorithm improves the quality of the solution
obtained by the heuristic significantly for the small and medium size instances,
whereas it does not succeed to ameliorate that of the big size instances. However,
the main objective is to determine a robust solution with best expected quality
under several possible conditions and not to find a single global optimal solution.

As a future work, we aim at studying the robust sparse capacitated arc
routing problem under other forms of uncertainty such as demands uncertainty
as well at developing other algorithms to solve the robust problem such as genetic
algorithm which is worth to be tested. Another potential future research work
would be to use the high performance computing as known as HPC to solve very
large size instances with many scenarios and very small density. We think that
our approach if implemented with HPC would able to obtain very competitive
solutions.
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25. Shapiro, A., Dentcheva, S., Ruszczyński, A.: Lectures on Stochastic Programming:
Modeling and Theory, vol. 9 (2008)

26. Solano Charris, E.L.: Optimization methods for the robust vehicle routing problem.
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Abstract. Consider the air-cargo service chain which comprises a car-
rier and multiple forwarders. The carrier and each of the forwarders may
establish an allotment contract at the start of the season. We formulate
the contract design problem as a Stackelberg game, in which the carrier
is the leader and offers a contract to a forwarder. The contract parame-
ters may include the discount contract price and the penalty cost for the
unused allotment as well as the minimum allotment utilization. The car-
rier’s contract is accepted, if the forwarder earns at least its reservation
profit. Given the carrier’s offer, the forwarder decides how much to book
as an allotment, in order to maximize its own expected profit. We show
that the two-parameter contract suffices to coordinate the service chain,
and the carrier earns the maximum chain’s expected profit less the total
reservation profits of all forwarders. If the penalty cost is not imposed,
then the minimum allotment utilization is needed to construct an effi-
cient contract. On the other hand, if the penalty cost is strictly positive,
then there is no need to impose the minimum allotment requirement.

Keywords: Air-cargo · Capacity management ·
Stochastic model applications

1 Introduction

Air-cargo operations inarguably play a crucial role in the modern supply chain,
since they improve efficiency in logistics and increase competitive advantages.
Despite the 1% world trade by volume, airfreight represents more than 35% of
global trade by value [23]. The air-cargo growth is driven by global liberalization,
cross-border e-commerce, and the implementation of supply chain/logistics man-
agement strategies, which emphasize on short lead times, e.g., lean/agile man-
agement and just-in-time (JIT) production systems. With e-commerce boom,
airfreight has become a de facto mode of cross-border transportation, for the
customer centric businesses with fast delivery times. Air cargo consists of various
commodity types, e.g., pharmaceutical products, live animals, electronic devices,
human remains, dry ice, and gold bullion; some fastest-growing air-cargo per-
ishables in 2017 include seafood from Scotland, smoked meat and wines from
c© Springer Nature Switzerland AG 2019
G. H. Parlier et al. (Eds.): ICORES 2018, CCIS 966, pp. 177–197, 2019.
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http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16035-7_10&domain=pdf
https://doi.org/10.1007/978-3-030-16035-7_10


178 K. Amaruchkul

Australia, clotted cream from the U.K., blueberries from Ukraine and medicinal
plants from Afghanistan [40]. Despite the sluggish growth in 2015 due to the
economy slowdown worldwide, air-cargo traffic is expected to gradually accel-
erate. The largest average annual growth rate is found in Asia-Pacific freight
market [11].

In an air-cargo service chain, a shipper can receive services directly from an
air-cargo carrier or delegate to a freight forwarder. A large portion of air cargo
volume is handled through freight forwarders. A freight forwarder acts as an
intermediary party, who connects a shipper to an airline. The forwarder con-
solidates shipments and handles various aspects of the shipping process, e.g.,
pickup and delivery services, insurance, customs clearance, import and export
documentation, cargo tracking and tracing, and interacting with multi-modal
carriers. Most forwarders do not own an airplane and obtain cargo space on
ad hoc basis or through a medium- or long-term capacity agreement, also known
as the allotment, with the carrier. The airline carries consolidated cargo in the
belly of a passenger plane or a freighter. Freighters are critical to compete in air
cargo markets, since they carry more than half of air-cargo traffic and airlines
operating freighters generate 90% of the industry revenues [11]. Capacity utiliza-
tion is one of the top operational problems, faced by the majority of the cargo
carriers [1]. The carrier offers a contract to the forwarder, hoping to increase its
capacity utilization. The forwarder wants to establish the contract, in order to
receive volume discounts or lower freight charges. The discount may depend on
the size of the allotment and the actual volume tendered by the forwarder [34].

Air-cargo spaces are perishable in the sense that they cannot be sold after the
flight departure. They are sold in two stages: In the first stage which happens a
few months before a season starts, a carrier allocates spaces to forwarders either
as part of a binding contract or as part of goodwill [10]. Each year comprises two
seasons, Winter and Summer schedules, specified by the International Air Trans-
port Association [35]. Through the allotment contract, the forwarder achieves
a more economical rate, compared to the so-called spot rates for ad hoc ship-
ments. The forwarder pre-books a certain amount of capacity at a pre-specified
rate, based on its anticipated demand on a given route and the contract terms.
The demand is forecasted based various factors such as the economic condition,
the competitors’ action, and the projected trend and seasonal patterns. About
50–70% of air-cargo space is sold to forwarders through a “hard” block space
agreement (BSA) at a negotiated price, a “soft” block permanent booking (PB)
or other forms of capacity agreements [33]. Carriers in Asia Pacific typically allo-
cate a large fraction, whereas those in North America allocate a small fraction of
their capacity [19]. After the forwarder collects and consolidates shipments from
its customers, and the actual allotment usage becomes known, the payment is
transferred between the carrier and the forwarder. If the forwarder’s customer
demand is smaller than previously anticipated, the allotment utilization by the
forwarder may be low. The carrier may impose some cancellation fee for the
unused allotment by the forwarder, or it may impose the minimum allotment
utilization and offer the refund up to a pre-specified portion, not all unused
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portion of the allotment. Nevertheless, for the airline’s most important for-
warders, the cancellation clause is rarely enforced; these powerful forwarders
pay only for their actual allotment usages. After the unused allotment is released
by the forwarder a few weeks before a flight departure, the carrier re-sells the
remaining capacity on a free-sale or ad hoc basis to direct shippers.

In this article, we develop a formulation for the study of contracts with three
parameters: (1) a discount contract price, (2) a refund (or penalty cost) for the
unused portion of the allotment, and (3) the minimum allotment utilization. Our
objective is to determine an optimal contract scheme, which allows the air-cargo
service chain to be efficient. To this end, we formulate a Stackelberg game, in
which the carrier is the leader and proposes a contract to each of the multiple
freight forwarders. Based on its anticipated demand and the contract parame-
ters, the forwarder determines the best allotment size, which maximizes its own
expected profit. Based on the forwarder’s best response, the carrier determines
the contract parameters in order to maximize its own expected profit. We ana-
lyze the sequential game of the allotment contract problem and identify sufficient
conditions under which the equilibrium contract is efficient. Our model benefits
the carrier by identifying a possible contract structure that it should strive for in
negotiating with the forwarders. The contract with only two parameters (either
the positive penalty cost or the minimum allotment utilization) is sufficient to
coordinate the air-cargo service chain.

Air-cargo capacity is perishable and can be sold at different prices to hetero-
geneous customers with different willingness to pay. Thus, it is a prime candi-
date for applying revenue management (RM) strategies. Overview of RM theory
and practice can be found in textbooks, e.g., [21,31,36,43], and journal articles,
e.g., [13,27,30]. Literature on air-cargo RM is fairly limited, in comparison to
the extensive literature on passenger RM. [16] provides a literature review on
air-cargo operations. [10,24] are among the early descriptive overview papers on
air-cargo RM. [8] describes the air-cargo system in the Asia Pacific. [35] describes
the implementation of air-cargo RM system at KLM and highlights key factors
that critically affect its performance. Air-cargo operations are presented in [33],
and air-cargo RM from business perspective is discussed in [9,14]. The air-cargo
industry outlook can be found in, e.g., [11,23]. Air-cargo training courses are
provided by several professional associations such as International Air Trans-
port Association (IATA), British International Freight Association (BIFA) and
International Association of Airport Executives Canada (IAAEC).

Key short-term air-cargo operations include aircraft loading (e.g., [37,41]),
shipment routing (e.g., [32,42]) and booking control (e.g., [3,7,20,45]). Allotment
contracts are medium-term decisions. Articles which combine both short-term
booking control and medium-term allotment decisions are, e.g., [25,28,44]. [25]
considers an airline which operates parallel flights between a given origin and
destination pair; the carrier’s medium-term decision is to choose allotment con-
tracts among available bids from forwarders, whereas the short-term decision
corresponds to the booking control problem, from which the expected contribu-
tion from the spot market can be determined. In [28], the carrier’s medium-term
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decision is to determine how much of the total weight and volume capacity to
sell as allotments. Unlike ours, these articles take the carrier’s perspective and
are concerned with a single decision maker.

In contrast to having a carrier as the single decision maker, the contract
design problem considers two or more decision makers, which typically include
the carrier and one or more forwarders, and the game theoretic approach is
often employed to find an optimal allotment contract scheme. [18] proposes
an options contract, similar to supply chain contracts in, e.g., electricity gen-
eration and semiconductor manufacturing, and investigates the suitability of
options contracts in the air-cargo industry. Under certain contract parameters
and a suitable spot market environment, the options contract outperforms the
fixed-commitment contract. The buy-back scheme is another prevalent contract
in supply chain (see, e.g., [12] for a review of supply contracts): [26] applies
this buy-back concept in the air-cargo service chain and shows that the buy-
back policy improves revenues of both players, namely the carrier and the for-
warder. [4] considers the carrier’s mechanism design problem, in which the other
player, namely the freight forwarder, possesses some private information on, e.g.,
its customer demand and operating cost. An optimal allotment scheme, which
maximizes the total contribution of the air-cargo service chain, is attainable
via a contract with an appropriate upfront and cancellation fees. [17] provides
conditions such that flexible contract schemes maximize the total profit in the
service chain. [2] proposes an allotment contract, which includes a discount con-
tract price, a penalty cost for an unused portion of the allotment, and an allot-
ment utilization requirement, and derives a sufficient condition for an optimal
contract.

This article extends [2] to include multiple freight forwarders. The carrier’s
capacity allocation problem with multiple forwarders is studied in [5]. The
expected contribution given a fixed allotment is obtained using a discrete Markov
chain, and the maximization of the total expected is formulated as a Markov deci-
sion process. [5] derives the optimal allotment from the carrier’s viewpoint, given
that the contractual agreement is exogenously given. [15] proposes the tying
capacity allocation mechanism, in which multiple routes with different capac-
ity utilization are included in the contract. The carrier allocates capacities to
multiple forwarders using their performances on different routes in the previous
year. [38] considers a multiple-forwarder setting and proposes an options con-
tract to mitigate the carrier’s capacity utilization risk. [15] solves for an optimal
solution using a dynamic programming, and [38] provides a numerical example
to show how to obtain an optimal contract, whereas we analytically derive a
sufficient condition for an optimal contract. With the exception of [6,39], which
consider risk-adverse party, these articles including ours assume that each player
is rational, risk-neutral and maximizes its expected profit. These papers employ
a mechanism design approach to find an optimal contract. Ours contributes to
this literature: We consider a different scheme and provide a sufficient condition
such that a two-parameter contract coordinates the chain.
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The rest of this article is organized as follows. Section 2 presents the Stackel-
berg game of the interaction between the carrier and multiple freight forwarders.
A sufficient condition for an equilibrium of the game is derived in Sect. 3. We
also provide an analysis for the centralized chain, in which all decision makers
are assumed to be owned by one single company. Section 4 provides some numer-
ical examples to illustrate our approach, and Sect. 5 gives a summary and a few
extensions.

2 Formulation

Consider an air-cargo service chain, which consists of an air-cargo carrier
endowed with cargo capacity of κ and m freight forwarders, referred to
as 1, 2, . . . ,m. At the beginning of the season, each forwarder and the carrier
independently negotiate the allotment contract. The freight forwarder wants to
pre-book capacity in bulk with the carrier to achieve the discount rate, which is
less than or equal to the spot rate. Let vi denote the spot rate that forwarder i
obtains on ad hoc shipments (without the allotment contract). Assume that the
forwarders are labeled such v1 ≥ v2 ≥ v3 · · · ≥ vm. In the strategic level, the
air-cargo capacity is assumed to be a one-dimensional quantity. In the opera-
tional level, the carrier charges the forwarder based on the chargeable weight,
which is the maximum between the volume weight and the gross weight. If the
shipment is measured in centimeter, then the volume weight is equal to the ship-
ment’s cubic centimeter divided by 6000. We concern with the carrier’s strategic
decisions, not operational.

The interaction between the carrier and the forwarders is modeled as a Stack-
elberg game. The sequence of events is as follows: The carrier offers forwarder i,
the three-parameter contract Ωi = (wi, hi, uri) where 0 < wi ≤ vi is the dis-
count rate, hi the penalty cost for unused portion of the allotment and uri is
the required expected allotment utilization rate. Forwarder i either rejects or
accepts the contract proposal. If the contract Ωi is accepted, then forwarder i
determines the size of the allotment, denoted by xi. The allotment decision
takes place before demands materialize. For each i = 1, 2, . . . ,m, let Di denote
the stochastic demand to forwarder i. During the season, forwarder i accepts all
demand Di at the per-unit price pi where we assume that pi ≥ vi. Given the
allotment xi, the expected contribution of forwarder i is as follows:

πi(xi, Ωi) = E[piDi − ti(xi,Di) − vi(Di − xi)+] (1)

where the transfer payment from forwarder i to the carrier is

t(xi,Di) = wi min(Di, xi) + hi(xi − Di)+. (2)

In (1), the first term is revenue forwarder i earns from its customer demand Di,
the second term the contract payment, and the third term the forwarder’s spot
purchase for the excess demand. In (2), the contract payment is the sum of the
payment for the actual allotment usage and the penalty cost associated with the
unused allotment.
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The first two contract parameters (wi, hi) can be interpreted differently as
follows: The transfer payment from forwarder i to the carrier can be written as

ti(xi,Di) = wi min(Di, xi) + hi(xi − Di)+

= wixi + (hi − wi)(xi − Di)+ (3)

= wixi − (wi − hi)(xi − Di)+ (4)

In (3) and (4), we can interpret wi as the wholesale price for the entire allot-
ment xi, paid upfront by the forwarder. If hi > wi, then the forwarder pays
for the allotment xi upfront at the wholesale price of wi, and after its demand
is realized, the penalty rate of (hi − wi) is charged for the unused portion of
the allotment; see (3). If hi < wi, then the forwarder pays for the allotment xi

upfront at the wholesale price of wi as before, but after its demand is realized,
the refund rate of (wi − hi) for the unused portion of the allotment is returned
from the carrier to the forwarder; see (4). In particular, the contract parame-
ter hi = 0 corresponds to the full refund; the forwarder pays for the allotment xi

upfront at the wholesale price wi and it gets a full refund rate of wi for the
unused portion of the allotment. Finally, if hi = wi, then the forwarder pays
for the entire allotment xi at the wholesale price wi upfront, and there are no
additional monetary transfers. Since the air-cargo selling season is so short that
monetary discount can be ignored, the expected profit is not affected by the tim-
ing in which the payment is collected. Our formulation subsumes both refund
(hi < wi) and penalty (wi < hi) rates for the unused portion of the allotment.
Furthermore, the full-refund contract (hi = 0) is not uncommon, especially when
the freight forwarder is very powerful and holds a large market share on a route.

The third contract parameter uri ensures that forwarder i maintains the
allotment utilization of at least uri; specifically,

ui(x) ≥ uri

where the allotment utilization is defined as the ratio of the expected actual
allotment usage to the allotment size x:

ui(x) =
1
x

E[min(Di, x)]. (5)

In practice, the forwarder generally needs to maintain the high utilization; oth-
erwise, the carrier may choose not to continue with this forwarder in the future
or may not offer a favorable contract term to the forwarder.

Forwarder i accepts the contract if the expected contribution exceeds the
forwarder’s reservation profit, denoted by εi. Let x∗

i (Ωi) denote forwarder i’s
best response to the contract parameter Ωi; i.e.,

x∗
i (Ωi) = argmax{πi(xi, Ωi) : ui(xi) ≥ uri}. (6)

The contract Ωi is accepted if πi(x∗
i (Ωi), Ωi) ≥ εi. If the reservation profit

were thought of as the expected contribution if the forwarder did not have an



Optimal Air-Cargo Allotment Contract with Multiple Freight Forwarders 183

allotment contract, then we could set εi = E[(pi−vi)Di], the contribution margin
in the spot market multiplied by the expected demand. This quantity can be
viewed as the lower bound on the forwarder’s reservation profit.

Let H = ((wi, hi, uri) : i = 1, 2, . . . ,m) denote the contract parameters
offered by the carrier to forwarders 1, 2, . . . ,m, respectively, and x = (xi : i =
1, 2, . . . ,m) the allotments chosen by the forwarders. After all forwarders release
their unused allotments, the carrier re-sells this to direct shippers. Let p0 be the
carrier’s price charged to the direct-ship demand, denoted by D0. The carrier’s
expected profit is defined as:

ψ(x,H) = E[p0 min(D0, κ −
m∑

i=1

min(Di, xi))

+
m∑

i=1

ti(xi,Di)]. (7)

In (7), the first term is the carrier’s revenue from selling the remaining cargo
space to its own direct-ship customers, and the second term the sum of all
forwarders’ transfer payments.

At the equilibrium, the carrier anticipates the forwarders’ best responses
x∗(H) = (x∗

i (Ωi); i = 1, 2, . . . ,m) and chooses the best contract parameters, in
order to its own expected profit:

max
H

ψ(x∗(H),H) (8)

subject to:
m∑

i=1

x∗
i (Ωi) ≤ κ. (9)

In Sect. 3, we will determine the equilibrium of the game, in which each party
maximizes its own expected profit. We refer to this as the decentralized chain.

Finally, we consider the entire air-cargo service chain: Suppose that all for-
warders and the carrier are owned by the same firm, called the integrator. This
is referred to as the centralized chain. The total chain’s expected profit is defined
as the sum of the forwarders’ expected profits and that of the carrier:

τ(x) = E[
m∑

i=1

πi(xi, Ωi) + ψ(x,H)]

= E[
m∑

i=

(piDi − vi(Di − xi)+)

+ p0 min(D0, κ −
m∑

i=1

min(Di, xi))]. (10)

In (10), the first term is the total contribution from customers in need of dedi-
cated services as offered by the forwarder, and the second term the contribution
from the direct-ship customer. Note that in the integrator’s profit, there are no
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contract payment terms, because we assume that the forwarders and the carrier
belong to the same firm, and their transfer payments cancel out when we analyze
the entire service chain.

Assume that pi > p0 > vi for each i = 1, 2, . . . ,m. The first inequality
follows from the fact that the forwarder offers value-added service, e.g., customs
clearance and door-to-door service, whereas the carrier does not. The second
inequality follows from the observation that the direct-ship customer is typically
the last-minute customer, who could not obtain cargo space in the spot market.
Since pi > p0, we assume in (10) that the integrator accepts all demands for
dedicated services,

∑m
i=1 Di. The integrator could handle this demand using

either its cargo capacity or the space elsewhere. Since p0 > vi, the integrator
wants to reserve some capacity for the last-minute direct-ship customer D0; i.e.,
it handles xi units of demand Di using its own capacity and purchases from the
spot market for the excess demand (Di − xi)+ at the rate of vi. Specifically, the
expected contribution from demand Di to the carrier can be written as:

piDi − vi(Di − xi)+

= pi min(xi,Di) + (pi − vi)(Di − xi)+ (11)
= (pi − vi)Di + vi min(Di, xi). (12)

In (11), the margin for the portion handled by the carrier itself is pi, whereas
that by the spot market is pi − vi. It can be seen from (12) that the larger the
allotment xi, the greater the contribution from demand Di, but the smaller the
remaining capacity for the direct-ship demand D0 which generates higher margin
(since p0 > vi). In (10), the integrator needs to determine the allotment xi for
the demand i in order to maximize the expected total contribution from both
direct-ship customer and customers in need of dedicated services.

The service chain is said to be efficient if the total expected contribution of
the chain (the integrator’s expected profit) is equal to the sum of the profits of all
parties. The contract which allows the efficiency to occur is said to coordinate the
service chain [12]. The coordinating contract is desirable, since the service chain
risk is shared appropriately, and there is no efficiency loss in the decentralized
chain. In the analysis, we will find an equilibrium coordinating contract, if exists.

3 Analysis

For each i = 0, 1, 2, . . . ,m, assume that demand Di is a nonnegative continuous
random variable and is independent of one another. Let Fi be the distribution
function of Di, F̄i the complementary cumulative distribution function, F−1

i the
quantile function, and ξi the density function. Define υ−1

i : (0, 1) → (0,∞) as
the inverse function of the utilization function; i.e., ui(x) = t if and only if
υ−1

i (t) = x.

3.1 Centralized Chain

The integrator endowed with cargo capacity κ wants to choose allotments
x = (x1, x2, . . . , xm) for demands (D1,D2, . . . , Dm) so that the total expected
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profit of the chain τ(x) is maximized. The integrator’s problem can be formu-
lated as the finite-horizon Markov decision process (MDP). There are m periods,
and the integrator decides an allotment xn for demand Dn in period n. As in
most revenue management literature, we assume that the time periods are back-
ward from m,m−1,m−2, . . . , 3, 2, 1. In period n, let the state be the cumulative
allotment usage s up to now, and let gn(s) denote the value function. At the
beginning of the period, the integrator observes the state s and chooses an allot-
ment xn. The optimality equation is as follows:

gn(s) = max
0≤xn≤κ−s

E[vn min(xn,Dn)

+ gn−1(s + min(xn,Dn))] (13)

for n = 1, 2, . . . ,m. An allotment chosen by the integrator cannot be greater
than the remaining capacity, κ − s. In period n, the integrator wants to choose
an allotment xn, which maximizes the sum of the expected contribution from
demand Dn and the value function gn−1, the revenue to go from period (n−1) to
the end of the horizon. Recall from (12) that the contribution from demand Dn

is E[(pi − vi)Di + vi min(Di, xi)]: In the optimality Eq. (13), we ignore the first
term and account only for the second term, since the first term is constant and
does not depend on the allotment.

The boundary conditions are as follows:

gn(κ) = gn−1(κ) (14)
g0(s) = E[p0 min(D0, κ − s)]. (15)

In (14), the value function remains constant when the entire capacity κ has
been used as the allotment. In (15), the terminal value function corresponds to
the expected contribution from the direct-ship customer, when the remaining
capacity is

κ − s = κ −
m∑

n=1

min(xn,Dn).

Note that in the MDP, we assume that demands are materialized sequentially
and that the cumulative allotment usage is known at the beginning of each
period. Since the horizon is so short that there is no monetary discount, finding
the value function given that there is no initial allotment, gm(0), is equivalent
to maximizing the expected profit of the integrator, max{τ(x) :

∑m
i=1 xi ≤ κ}.

The MDP formulation (13)–(15) for the integrator’s problem is similar to the
MDP formulation of the capacity allocation problem for the passenger airline,
where the spot price vn corresponds to the class-n fare, and the allotment xn the
protection for class-n demand; see [36] Section 2.2.2 for the multi-class capac-
ity allocation problem for the passenger airline. If the capacity is large, directly
solving the MDP may be computationally intensive, and several efficient heuris-
tics, e.g., EMSR-A (expected marginal seat revenue-version A) and EMSR-B, are
reviewed in Section 2.2.4 in [36].
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Consider the special case when there is one forwarder. The integrator’s
expected profit becomes:

τ(x) = π1(x1, Ω1) + ψ(x1, Ω1)
= E[p1D1 + p0 min(D0, κ − min(D1, x1))

− v1(D1 − x1)+]. (16)

The integrator’s problem of choosing an allotment x1 in order to maximize the
expected profit (16) is presented in Proposition 1.

Proposition 1

1. If v1 > p0, then x0
1 = κ.

2. If v1 < p0, then

x0
1 =

[
κ − F−1

0

(
1 − v1

p0

)]+

. (17)

Proof. Proof can be found in Theorem 4 [2].

Recall that we assume p0 > v1. Without this assumption, the integrator’s prob-
lem becomes trivial; see the first result in Proposition 1.

The optimal allotment (17) can be found using the marginal analysis. The
integrator wants to find a protection for the direct-ship demand, D0. Suppose
that y units of capacity have been reserved for D0 and that at the beginning of
the season, there is a request from D1 for an allotment. If the integrator sells now
as an allotment, then it earns v1; see (12). On the other hand, if the integrator
does not sell now and reserves for the direct-ship customers, then it earns the
expected margin of p0P (D0 ≥ y). The integrator continues to protect for the
direct-ship customer until v1 = p0P (D0 ≥ y). Re-arranging the previous term,
we find that the optimal protection for the direct-ship customer is F−1

0 (1−v1/p0);
thus, the optimal allotment for D1 is given in (17).

3.2 Decentralized Chain

Given that the carrier offers the contract Ωi = (wi, hi, uri), forwarder i chooses
an optimal allotment x∗

i (Ωi) in (6), which maximized its own expected profit.

Lemma 1. Given the contract proposal Ωi, the forwarder’s best response allot-
ment x∗

i (Ωi) is as follows:

1. If wi ≥ vi, the forwarder’s expected profit is decreasing and maximized
at x∗

i (Ωi) = 0.
2. If wi < vi and hi = 0, the forwarder’s expected profit is increasing and maxi-

mized at x∗
i (Ωi) = υ−1

i (uri).
3. If wi < vi and hi > 0, the forwarder’s expected profit is concave, unimodal

and maximized at

x∗
i (Ωi) = min{F−1

i

(
1 − hi

vi − wi + hi

)
, υ−1

i (uri)}. (18)
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Proof. See the proof in [2].

The first part of Lemma 1 asserts that if the discount contract price is greater
than or equal to the spot price, the forwarder would not pre-book any allotment
at all. On the other hand, suppose that the contract price does not exceed the
spot price. If the carrier imposes no penalty cost or gives full refund for the
unused allotment (i.e., hi = 0), the forwarder’s expected profit is increasing, and
the forwarder would choose the largest allotment that satisfies the required allot-
ment utilization. The last part asserts that if there is a positive penalty cost or a
partial refund is given (i.e., hi > 0), the forwarder should pre-book the allotment,
which balances the cost associated with the unused allotment and the opportu-
nity cost from not having enough allotment. An optimal allotment in Lemma 1
bears a striking resemblance to the optimal order quantity in the newsvendor
(single-period) inventory model. In the newsvendor model, an optimal order
quantity is chosen such that the expected total cost E[cu(D − q)+ + co(q −D)+]
is minimized: q∗ = F−1(1−co/(cu +co)) where cu (resp., co) is the unit underage
(resp., overage) cost from ordering less (resp., more) than demand, and F is the
distribution of demand D; see a standard textbook in operations management
for the newsvendor model, e.g., chapter 5 in [29]. In ours, the overage corre-
sponds to the penalty cost for the unused allotment hi, and the underage is the
saving forgone vi − wi if the forwarder purchases from the spot market instead
of using the allotment. The critical ratio 1 − co/(cu + co) becomes as in (18).

Let x0 = (x0
i ; i = 1, 2, . . . ,m) be the integrator’s optimal allotment, which

maximizes the expected profit of the centralized chain. Recall that x∗(H) =
(x∗

i (Ωi); i = 1, 2, . . . ,m) denotes the optimal allotments chosen by the for-
warders, in order to maximizes their own profits. Below, we will determine the
equilibrium of the game, in which each party maximizes its own expected profit.
For shorthand, denote Λi = 1/Fi(x0

i ) − 1.

Theorem 1. Suppose that ūri = 0 for each i = 1, 2, . . . ,m and that there exists
0 < h̄i < viΛi such that πi(x0

i , Ω̄i) = εi where

w̄i = vi − h̄i/Λi (19)

Then, the contract H̄ = (Ω̄i; i = 1, 2, . . . ,m) where Ω̄i = (w̄i, h̄i, ūri) is an
equilibrium of the game and coordinates the service chain.

Proof. In the decentralized chain, the carrier wants to find H which maximizes

ψ(x∗(H),H) = τ(x∗(H)) −
m∑

i=1

πi(x∗
i (Ωi), Ωi) (20)

subject to: πi(x∗
i (Ωi), Ωi) ≥ εi; i = 1, 2, . . . ,m. (21)

The Karush-Kuhn-Tucker (KKT) conditions that are necessary for a point H̄ =
((w̄i, h̄i, 0); i = 1, 2, . . . ,m) to solve (20)–(21) are as follows: There exists a
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multiplier λ̄i ≥ 0 for i = 1, 2, . . . ,m satisfying

∂ψ

∂w̄j
−

m∑

i=1

λ̄i
∂πi

∂w̄j
= 0; j = 1, 2, . . . ,m (22)

∂ψ

∂h̄j
−

m∑

i=1

λ̄i
∂πi

∂h̄j
= 0; j = 1, 2, . . . ,m (23)

λ̄j(εj − πj) = 0; j = 1, 2, . . . ,m. (24)

Suppose that λ̄j > 0. It follows from (24) that

πj(x∗
j (Ω̄j), Ω̄j) = εj .

for each j = 1, 2, . . . ,m. The contract parameters are chosen such that the
forwarder earns exactly its reservation profit. Recall that ψ = τ − ∑

i πi. Note
that

∂ψ

∂w̄j
=

∂τ(x∗(H̄))
∂w̄j

− ∂πj(x∗(Ω̄i), Ω̄i)
∂w̄j

.

Equation (22) becomes

∂τ(x∗(H̄))
∂w̄j

− (1 + λ̄j)
∂πj(x∗

j (Ω̄j), Ω̄j)
∂w̄j

= 0. (25)

The contract parameter (19) is chosen such that

x∗
j (Ω̄j) = x0

j = F−1
i

(
1 − h̄j

vi − w̄j + h̄j

)
. (26)

(In other words, after terms are re-arranged, (26) becomes (19).) It follows
from (26) and Lemma 1 that the forwarders’ best responses also maximize the
integrator’s expected profit: The necessary conditions are as follows:

∂τ

∂xj
=

∂πj

∂xj
= 0 for j = 1, 2, . . . ,m. (27)

Applying the (multivariable) chain rule to (25) and invoking the necessary con-
ditions (27), we conclude that (22) holds. Similarly, we can show that (23) holds.
The KKT conditions are satisfied.

At the point H̄ = ((w̄i, h̄i, 0) : i = 1, 2, . . . ,m), the carrier receives the maxi-
mum chain’s expected profit less the total reservation profits of all forwarders:

ψ(x0, H̄) = τ(x0) −
m∑

i=1

εi.

The carrier cannot do better than this; thus, the point H̄ is an equilibrium
solution to our sequential game.
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At the equilibrium, the carrier offers a contract parameter H̄ so that the
forwarder’s best response is equal to the integrator’s optimal allotment. The
forwarder earns exactly its reservation profit. In this sequential game, the carrier
is the leader, and there is a so-called leader’s first-mover advantage.

In Theorem 1, the carrier imposes a strictly positive penalty cost for the
unused portion of the allotment. Theorem 2 presents an equilibrium coordinating
contract, in which no penalty cost is imposed.

Theorem 2. Suppose that h̄i = 0 for each i = 1, 2, . . . ,m and that there exists
0 < w̄i < vi such that πi(x0

i , Ω̄i) = εi where

ūri = ui(x0
i ). (28)

Then, the contract H̄ = (Ω̄i; i = 1, 2, . . . ,m) where Ω̄i = (w̄i, h̄i, ūri) is an
equilibrium of the game and coordinates the service chain.

Proof. Recall from Lemma 1 that if w̄i < vi, then x∗
i (Ω̄i) = υ−1

i (ūri). From the
assumption that Di is continuous, we have that υ−1

i is a one-to-one function and
conclude that x∗

i (Ω̄i) = x0
i . The rest of the proof is similar to that in Theorem 1.

Theorem 2 states that if the penalty cost for the unused allotment is zero and
that the contract price is less than the spot price, then the forwarder chooses the
largest allotment which satisfies the required utilization. In the carrier’s prob-
lem, the required utilization becomes the decision variable. Setting the required
utilization equal to the expected utilization evaluated at the integrator’s optimal
allotment, the chain becomes efficient.

In practice, it is uncommon to a full-refund contract (i.e., hi = 0). To ensure
its high customer service level, the forwarder may ask for a very large allot-
ment (much greater than its anticipated customer demand) and release the
unwanted allotment so late that the carrier might not have enough time to
re-sell to direct-ship customers. To prevent the forwarder to pre-book a large
allotment, Theorem 2 suggests that the carrier needs to impose the minimum
utilization requirement.

In Theorems 1 and 2, we present two contract schemes that can coordinate
the service chain, and the optimal contract has two parameters. The discount
contract price is included in the two optimal schemes. In Theorem 1, the other
contract parameter is the positive penalty cost, whereas in Theorem 2, the other
parameter is the required allotment utilization. We do not need to have a three-
parameter contract in order for the air-cargo service chain to be efficient. Our
result provides some managerial insights that can help the carrier to negotiate
the contractual terms with the forwarders.

4 Numerical Examples

We provide a numerical example to illustrate our approach of finding an equi-
librium in the air-cargo contract game. As an illustration, assume that there
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are m = 2 forwarders and that demands are independent. For each i = 0, 1, 2,
demand Di (in kilogram) follows the gamma distribution with the shape param-
eter αi and the rate parameter βi, shown in Table 1. The carrier’s cargo capacity
is assumed to be κ = 800 kg. The per-unit price (in THB/kilogram) the for-
warder charges its customer, the per-unit price the carrier charges its direct-ship
customer and the spot prices observed by the forwarders are also given in Table 1.
These parameters are similar to those on the Bangkok-Dublin (BKK-DUB) route
in the medium season in 2014.

Table 1. Parameters for the numerical example.

pi vi αi βi

AC (i = 0) 60.00 N/A 2.30 0.01

FF1 (i = 1) 69.00 55.00 5.10 0.01

FF2 (i = 2) 62.00 50.00 3.60 0.01

Calculation details are provided below. Recall the forwarder i’s expected
profit (1)

E[piDi − wi min(Di, xi) − vi(Di − xi)+ − hi(xi − Di)+]. (29)

For the first term in (29), the forwarder’s mean demand E[Di] is the expected
value of the gamma distribution:

E[Di] = αi/βi.

For the second term in (29), we evaluate the expected allotment usage
E[min(Di, x)] using the limited expected value (LEV) function. The LEV func-
tion for gamma random variable, Y , with the shape parameter α and the scale
parameter θ is

E[min(Y, x)] = αθΓ (α + 1;x/θ) + x[1 − Γ (α;x/θ]

where Γ (α;x) is the incomplete gamma function defined by

Γ (α;x) =
1

Γ (α)

∫ x

0

tα−1e−tdt

and Γ (α) is the gamma function, defined by

Γ (α) =
∫ ∞

0

xα−1e−xdx.

(For the gamma distribution, the scale parameter is equal to the reciprocal of
the rate parameter.) For the last two terms in (29), we use the following

E[(Di − x)+] = E[Di] − E[min(Di, x)]

E[(x − Di)+] = x − E[min(Di, x)]
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where the expected allotment usage is calculated previously using the LEV func-
tion. Recall the carrier’s expected profit (7):

E[p0 min(D0, κ −
m∑

i=1

min(Di, xi)) +
m∑

i=1

ti(xi,Di)].

To calculate the first term, we again make use of the LEV.

E[min(D0, κ −
m∑

i=1

min(Di, xi)]

=
∫ xm

0

· · ·
∫ x1

0

E[min(D0, κ −
m∑

i=1

ti)]Πm
i=1dFi(ti)

+
∫ ∞

xm

· · ·
∫ ∞

x1

E[min(D0, κ −
m∑

i=1

xi)]Πm
i=1dFi(ti)

=
∫ xm

0

· · ·
∫ x1

0

E[min(D0, κ −
m∑

i=1

ti)]Πm
i=1dFi(ti)

+ E[min(D0, κ −
m∑

i=1

xi)](Πm
i=1F̄i(xi)).

The integrator’s expected profit (10) can be found similarly. Throughout our
numerical examples, calculations are done in R. For instance, the cubature
package is used for numerical integration over simplexes, qgamma, dgamma and
pgamma return the quantile, density and cumulative distribution functions of the
gamma distribution.

4.1 Centralized Chain

Suppose that we use the variant of EMSR algorithm given in Section 5.2 [22].
The allotment xi for demand Di is given as follows:

x0
i = F−1

i (1 − vi+1/vi); i = 0, 1, 2, . . . ,m − 1 (30)

x0
m = (κ −

m−1∑

i=0

x0
i )

+ (31)

where v0 = p0 is the per-unit price to the direct-ship customer. Using (30)–(31),
we obtain that

x0 = (x0
0, x

0
1, x

0
2) = (63, 243, 494)

and the integrator’s expected profit is τ(x0) = 42458. The integrator would
allocate x0

1 = 243 kg to demand D1 and x0
2 = 494 to D2. The remaining capacity

of x0
0 = 63 is reserved for the direct-ship customer. The expected utilizations by

demands D1 and D2 are u1(x0
1) = 97.99% and ux(x0

2) = 66.30%, respectively.
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4.2 Decentralized Chain

Assume that the reservation profits are ε1 = 12000 and ε2 = 10000. (Note that
these two values are greater than the lower bounds, E[(p1 − v1)D1] = 7140 and
E[(p2 − v2)D2] = 4320, when the forwarders use only the spot markets.) We
illustrate how to find an equilibrium coordinating contract using Theorem 1 in
Example 1 and Theorem 2 in Example 2

Example 1. Consider the contract C1: The carrier offers the contract price w1 =
49.50 (resp., w2 = 49.00) and the penalty cost h1 = 55.00 (resp., h2 = 1.33) to
forwarder 1 (resp., 2). Note that the penalty cost is chosen such that hi = λiviΛi

where λi ∈ (0, 1) is given in Table 2, and that the contract price wi is given
by (19). (We want λi < 1 since we are trying to find h̄i < viΛi; see Theorem 1.)
If forwarder i were to accept the contract proposal, it would choose x∗

i (Ωi) = x0
i .

Nevertheless, both forwarders reject this contract C1, because their expected
profits given the contract parameters are less than their reservation profits.
On the other hand, both forwarders accept contract C2 in Table 2, since their
expected profits are greater than their reservation profits. Note that in contract
C2 when the larger discount is given to the forwarder (i.e., w1 decreases from
49.50 to 27.50), the penalty cost for the unused portion of the allotment also
becomes larger (i.e., h1 increases from 55 to 275). Both contracts C1 and C2
coordinate the chain; i.e., x∗

i (Ωi) = x0
i , and the total profit in the chain is max-

imized and equal the optimal integrator’s profit, Contract C1 is rejected by the
forwarders, whereas C2 is accepted: The expected profits of forwarders 1 and 2
are 12342 and 11407, respectively, and the carrier’s expected profit is 18709,
which is about 44% of the chain’s optimal profit. Contract C2 is not an equilib-
rium solution in our sequential game, since the carrier can still improve its profit
while giving the forwarders at least their reservation profits.

Theorem 1 states that at the equilibrium, the forwarders earn exactly their
reservation profits. Note that

(π1, π2) given C1 ≤ (ε1, ε2) ≤ (π1, π2) given C2.

We can use a bisection method to search for an optimal contract with (λ1, λ2)

(0.10, 0.10) ≤ (λ1, λ2) ≤ (0.50, 0.50)

such that the forwarders’ expected profits are equal to their reservation profits.
If we stop when |πi − εi| ≤ δi where δi is a pre-specified tolerance, say 100 THB,
then we obtain contract C3 in Table 2. The discount contract price for forwarder 1
(resp., 2) is 28.88 THB/kg (resp., 29.75 THB/kg), and the penalty cost for the
unused portion of the allotment is 261.25 THB/kg (resp., 5.38 THB/kg). The
forwarders earn (approximately) their reservation profits, and the carrier earns
the rest, about of 48% of the optimal integrator’s expected profit.

At the equilibrium contract with strictly positive penalty cost, the car-
rier does not need to impose the minimum utilization requirement. At the
equilibrium, the two-parameter contract is sufficient to coordinate the chain.
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The two contract parameters (wi, hi) can be interpreted differently using (3)–
(4). For forwarder 1, Ω̄1 = (w̄1, h̄1) = (28.88, 261.55), the wholesale price for
the allotment x∗

1(Ω̄1) = 243 is 28.88, and the payment upfront is 7014.90; after
demand D1 materializes, the unused allotment is charged at the penalty rate of
232.38. For forwarder 2, Ω̄2 = (w̄2, h̄2) = (29.75, 5.38), the wholesale price for
the allotment x∗

2(Ω̄1) = 494 is 29.75, and the payment upfront is 14704.32; after
demand D2 materializes, the unused allotment is returned at the refund rate of
24.37.

Table 2. Possible contracts with strictly positive penalty costs hi > 0.

Contract C1 C2 C3

λ1 0.10 0.50 0.48

λ2 0.10 0.50 0.41

h1 55.00 275.00 261.25

h2 1.33 6.64 5.38

w1 49.50 27.50 28.88

w2 45.00 25.00 29.75

x∗
1(Ω1) 243 243 243

x∗
2(Ω2) 494 494 494

π1(x
∗
1, Ω1) 8180 12342 12082

π2(x
∗
2, Ω2) 5737 11407 10060

ψ(x∗,H) 28541 18709 20316

Total expected profit 42458 42458 42458

Example 2. The equilibrium coordinating contract found in Theorem 1 corre-
sponds to the positive penalty cost (or partial refund payment) for the unused
allotment. In Example 2, we illustrate how to use Theorem 2 to find an equilib-
rium coordinating contract with no penalty cost (or full refund payment), hi = 0
for i = 1, 2. By solving for πi(x0

i , (w̄i, 0, ūri)) = εi as specified in Theorem 2, we
find the contract price as follows:

w̄i =
E[piDi − vi(Di − x0

i )
+] − εi

E[min(Di, x0
i )]

. (32)

Substituting all input parameters and the integrator’s optimal allotments
into (32), we obtain the equilibrium coordinating contract C4 in Table 3. With
contract C4, the carrier imposes no penalty cost on the unused allotment but
needs to impose the required allotment utilization of 97.99% and 66.30% for
forwarders 1 and 2, respectively. Also, observe that when the carrier imposes no
penalty cost, the discount terms in C4 are not as generous as those in C3.
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Table 3. Equilibrium coordinating contracts with two parameters.

Forwarder C3 C4

1 2 1 2

Disc. price 28.88 29.75 34.58 32.67

Penalty cost 261.55 5.38 N/A N/A

Req. Util. (%) N/A N/A 99.79 66.30

Our numerical examples illustrate how to construct equilibrium coordinating
contracts. Using Theorem 1, we construct a two-parameter contract C3 with the
discount contract price and the positive penalty cost. Using Theorem 2, we
construct another two-parameter contract C4 with the discount contract price
and the minimum allotment utilization requirement.

5 Concluding Remark

We consider the air-cargo service chain, which consists of the carrier and multi-
ple freight forwarders. Each of the forwarders and the carrier may enter into an
allotment contract before the selling season starts. We formulate the contract
design problem as the Stackelberg game, in which the carrier is the leader and
proposes the contract. The proposed contract in this article has three parame-
ters, namely the discount contract price, the penalty cost for the unused portion
of the allotment and the required allotment utilization. Each of the forwarders
responses by choosing the best allotment, which maximizes its expected profit,
given the carrier’s offered contract. We show that the two-parameter contract
is sufficient to coordinate the chain. At the equilibrium, the forwarders’ opti-
mal allotments correspond to the integrator’s optimal allotments that maximize
the total expected profit in the chain, and the forwarders receive exactly their
reservation profits.

A few extensions are as follows: When forwarders’ services are similar and
substitutable, the demand to a particular forwarder depends on both its price and
the competitors’ prices. Along the same lines, the carrier’s direct-ship demand
may depend on the carrier’s direct-ship price and the forwarders’ prices. We
can extend ours to include the price competition. For instance, suppose that the
pricing decision is made before the contract process begins. Then, the equilibrium
prices and the corresponding demands become our input parameters (i.e., pi

and Di for i = 0, 1, 2, . . . ,m) in this article. Another extension is to capture
asymmetric information between the carrier and the forwarder. The forwarder
may possess some private information, e.g., its customer demand, its spot price
and its reservation profit. We can study how to design an optimal contract. For
instance, the carrier may offer a menu of possible contracts, and the forwarder
optimally selects from the menu. Finally, we can apply our approach to other
RM industry, in which a portion of the perishable capacity is sold through a
medium- or long-term contract. For instance, in the passenger airline industry,



Optimal Air-Cargo Allotment Contract with Multiple Freight Forwarders 195

the airline usually blocks a pre-specified number of seats to a wholesaler/agent
or other airlines under the interline or codeshare agreements, which are agreed
upon prior to the start of the selling season. We hope to pursue these or related
problems.
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Abstract. Emergency medical service system structure is determined by
deployment of limited number of the service providing centers. The objective of
the designer is to minimize the total discomfort of all system users. Thus, the
problem often takes the form of the weighted p-median problem. Since popu-
lation and demands for service change in time and space, current service center
deployment may not meet the requirements of the users and service providers
neither. We suggest and discuss a mathematical model for system reengineering
under the generalized disutility. Formulation of the generalized disutility follows
from the idea that the individual user’s disutility is caused by positions of more
than one located service center. Generalized disutility enables to model the
system performance more realistically. It enables to take into account also such
situations in which the nearest service center may be temporarily unavailable
due to satisfying another demand. This approach represents an extension of our
previous research, in which only the nearest center was taken as a source of
individual user’s demand satisfaction.

Keywords: Emergency medical service � System reengineering �
Generalized disutility � Radial formulation

1 Introduction

An emergency service system as the medical emergency system, system of fire brigades
and system of police stations are designed for given geographical area to satisfy the
demand of population living in the area for more secure life. Associate service is
provided from a given number of service centers and the overwhelming objective used
for the design evaluation is the average time necessary to deliver service from a service
center to the user location, in which a demand for service has occurred.

Host of models assume that serviced population is concentrated to a finite number
of dwelling places of the considered area. Frequency of the demand occurrence at a
given place is proportional to the number of inhabitants of the given town or village.
A finite set of possible service center locations is assumed and also the assumption is
made that a user demand is serviced from the nearest located service center. This way,
the weighted p-median problem formulation is used to the emergency service system
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design and solving the underlying problem to optimality [2, 3, 6, 10]. The original way
of modelling was based on the location-allocation decision variables and constraints
[2], where an occurring demand is assigned to exactly one possible center location. As
concerns usage of a general IP-solver, the size of the solved integer programming
problem must be taken into account. In real problems, the number of serviced users
takes the value of several thousands, and the number of possible service center loca-
tions can take this value as well [1]. The number of possible service center locations
seriously impacts the computational time and the memory of computer due to used
branch-and-bound method, which stores the unfathomed nodes of the inspected
searching tree for the further processing. Therefore, the direct attempt at solving the
problem described by a location-allocation model often fails, when larger instances are
solved by a commercial IP-solver. Then, another approach using so-called radial for-
mulation was developed to avoid the particular assignment of user’s locations to the
located service centers. The radial approach successfulness is based on the fact that
there is only finite set of radii, which must be taken into account [4, 5, 7]. To accelerate
the p-median problem solving process performed by commercial IP-solvers, an
approximate approach has been developed [8]. This approach uses an approximation of
a common time distance between a service center location and a user by some pre-
determined time distances and gives near to optimal results in the case of integer time
distances. Accuracy of the resulting solution can be arbitrarily improved by usage of
smaller units for the time-distance evaluation.

A bit different situation occurs, when reengineering of a current emergency service
system is performed. The necessity of system updating usually follows from the fact
that distribution of demands for service has been developing in time and space and
thus, the originally determined center locations do not suit both serviced public and
providers operating the service centers. Contrary to the original system design, the
current service providers suggest changes in the center deployment and their suggestion
may be in a conflict with public interests. That is why the system administrator permits
system reengineering only subject to some formal rules, which are intended to prevent
worsening the service accessibility. The considered formal rules are quantified by a
maximal number of provider’s centers, which are allowed to change their locations and
by the maximal distance between a current center location and a possible new location.
Generally, addition of constraints may significantly spoil the computational time
necessary to obtain the optimal solution of the problem. The study [12] showed, that
they do not impact the computational time, when a user demand is serviced from the
nearest located center.

In this paper, we deal with more general model of the emergency medical system
design under reengineering. We assume that service of a user demand is provided from
the nearest center only in the case, when the center is not occupied by servicing a
former demand. Otherwise, the user’s demand is serviced from the nearest unoccupied
center. Initial emergency system design considering the failing centers was studied in
[14] and the associated radial formulation was presented in [11]. Nevertheless, the
reengineering of service system with failing centers has not been studied yet. There-
fore, we focus on the influence of the formal rule constraints on best possible service
availability in the service system and on the associated computational process
convergence.

Computational Study of Emergency Service System Reengineering 199



We provide a reader with a radial model of emergency service system reengi-
neering with failing centers under rules imposed by the system administrator. We
perform a computational study to find whether real-sized instances of the problem are
solvable using a common IP-solver.

The remainder of the paper is organized as follows. The next section is devoted to
the radial model formulation, in which temporarily failing centers are considered. In
Sect. 3, administrator’s auxiliary rules are introduced and various ways of their
implementation in the associated models are discussed. Section 4 consists of numerical
experiments focused on three goals. The first one is connected with optimization of
model parameters, which influence both model size and the result accuracy. The second
goal consists in answering the question: How do the individual parameters of the
administrator’s rules influence the resulting average response time of the emergency
service? The third portion of the numerical experiments aims at investigation of mutual
impact of the observed formal rules parameters. The conclusion summarizes obtained
findings and contains possible directions of a further research.

2 Reengineering of a Service System with Failing Centers

The emergency system reengineering was originally studied in [12], where the radial
model of the problem was introduced. The basic idea follows from the analysis of
current service center deployment, which may not be optimal due to changing demands
and development of the underlying transportation network. To explain the problem in
more details, consider the simple example depicted in Fig. 1. We assume that the left
graph represents current deployment of four service centers marked by blue color. All
the vertices represent possible demand points. To evaluate the current center deploy-
ment, the sum of distances from each network node to the nearest located center was
used as the quality criterion. Here, it takes the value of 66. If we allowed changes in
current service center locations and moved a service center from the node 2 to the node
6, we would perform system reengineering and we could achieve better value of the
criterion. The new system design is depicted on the right graph and its evaluation is 64.
By this small example we demonstrated the principle and goal of system reengineering.

Fig. 1. Simple example of emergency service system reengineering [12].
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In this paper, we study the reengineering problem under generalized disutility with
the assumption that the service is provided by more than one provider. We also extend
the research published in [13]. To describe the problem of the users’ disutility mini-
mization by changing the deployment of centers belonging to one considered provider,
we introduce several necessary notations. Let us denote J as a finite set of all users
(dwelling places), where bj denotes a volume of expected demand of user j 2 J. Let I be
a finite set of all possible center locations. We use the symbol dij to denote the integer
network time distance between locations i and j, where i, j 2 I [ J. The maximal
considered distance is m. The current emergency service center deployment is
described by union of two disjoint sets of located centers IL and IF, where IL contains
p centers of the considered provider and IF is the set of centers belonging to the other
providers. The considered provider performs updating of his part of the system by
changing locations of the centers from IL. The center locations from IL can be relocated
within the set IR = I – IF. Locations of centers from IF stay unchanged.

Let value qk represent probability of the case that the k – 1 nearest centers are
occupied and the k-th nearest center is the first one, which is available [9, 14].

The probabilities qk for k = 1, …, r are positive real values, which meet the fol-
lowing inequalities q1 � q2 � … � qr and depend only on the order of distances
from the user to the r nearest centers. In this paper, the generalized disutility perceived
by a user is modelled by a sum of weighted time distances from the r nearest located
centers. Mentioned concept of generalized disutility is depicted in the following Fig. 2.

To complete the following radial model, we introduce coefficients asij for each pair i,
j of possible center location and location of the user j. We define asij ¼ 1 if and only if
dij � s and asij ¼ 0 otherwise for each s = 0, 1, …, m – 1.

To describe decisions on new center deployment, we introduce location zero-one
variables yi defined for each i 2 IR. The variable yi takes the value of one, if a service
center is to be located at i and it takes the value of zero otherwise. To express the total
distance necessary for user demand satisfaction in the radial manner, we introduce
auxiliary zero-one variables xjsk for j 2 J, s 2 0 … m – 1, k 2 1 … r to model the
disutility contribution value of the k-th nearest service center to the user j. The variable

Fig. 2. Concept of generalized disutility, where the distances to the service centers are weighted
by probability coefficients qk. The shortest distance is weighted by the highest coefficient.
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xjsk takes the value of 1 if the k-th smallest disutility contribution for the user j 2 J is
greater than s and it takes the value of 0 otherwise. Then the expression xj0k +
xj1k+ … + xjm–1k constitutes the k-th smallest distance from the user j to a located
center. If this k-th smallest distance is denoted by dik(j), then the expression of dik(j) by
the auxiliary 0-1 variables xjsk is clearly shown in the following Fig. 3.

Using the above introduced coefficients, ranges and decision variables, we suggest
the following model [13].

Minimize
X

j2J
bj
Xm�1

s¼0

Xr

k¼1

qkxjsk ð1Þ

Subject to
X

i2IR
yi ¼ p ð2Þ

Xr

k¼1

xjsk þ
X

i2IR
asijyi þ

X

i2IF
asij � r for j 2 J; s ¼ 0 . . .m� 1 ð3Þ

yi 2 f0; 1g for i 2 IR ð4Þ

xjsk 2 f0; 1g for j 2 J; s ¼ 0 . . . m� 1; k ¼ 1 . . . r ð5Þ

The objective function (1) expresses the expected volume of generalized disutility.
Constraint (2) ensures that the number of centers belonging to the considered part of
the emergency service system under reengineering will be constant. For given pair of
user j and a distance value s, the constraint (3) expresses relation between the set of
location variables yi, i 2 IR and the sum of auxiliary variables xjsk over range 1 … r of
subscript k. If no center is located in the radius s, then the sum of auxiliary variables xjsk
equals to r. If exactly k � r centers are located in the radius s, then the sum of
variables equals to r – k due to minimization process, which presses down the values of
the variables xjsk. If the sum of variables xjsk equals to k < r, then the variables xjs1, …,
xjsr–k, equal to zero and remaining variables equal to one due to the used optimization
process and decreasing values of the coefficients q1, …, qr.

Fig. 3. Expression of the k-th smallest distance from the user j to a located center by the
auxiliary 0-1 variables xjsk for s 2 0 … m – 1 [13].
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Then, the objective function value of the optimal solution of the problem (1)–(5)
gives expected total length or time of trips from the service centers to the demand
locations necessary for satisfaction of all demands for service. This holds subject to
assumptions that the coefficients q1 … qr correspond to the probability values
expressing that the k-th nearest center is the first available (unoccupied) service center
and that demand volume bj is proportional to the number of trips necessary for the
demand satisfaction. The model (1)–(5) is much more realistic than the original
approach based on the simple weighted p-median problem, which corresponds to the
case of r = 1. The bigger accuracy of the model (1)–(5) is paid for by higher com-
plexity of the solved problem, which may issue to enormous increase of computational
time. We want to find, what limit of accuracy presented by the value of r pays off
regarding the increase of computational time. As a solution of the problem (1)–(5) is
discrete and the values of probabilities qk sharply decrease, we think that influence of
increasing value of r may appear negligible behind some limiting value r*.

3 Reengineering Under Auxiliary Constraints

As mentioned in Sect. 1 and in [12, 13], the administrator of the system sets up
parameters of rules to prevent a designer of new center deployment from increasing
provider’s benefit at the expense of the system users. The rules must have a simple
form to be easy to evaluated and checked. The first rule limits the total number w of the
provider’s centers, which locations can be changed. The second rule limits the distance
between current and newly suggested location of a service center.

To be able to formulate the rules in a concise way, we derive several auxiliary
structures using Fig. 4. We assume that all points 1–11 represent system users and the
black points 2, 3, 9 and 11 represent current service center locations.

Let Nt = {i 2 IR: dti � D} denote the set of all possible center locations, to which
the center t 2 IL can be moved subject to limited length of the move. If we consider the
example depicted in Fig. 4, we can observe that the center located at the point 9 can be
moved to 6, 8, 10 and 13 or stay unchanged. Thus, the set N9 = {6, 8, 9, 10, 13}.

Fig. 4. Simple example of reengineering restrictions [13].
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Similarly, N3 = {3, 4, 6}. Additionally, let Si = {t 2 IL: i 2 Nt} denote a set of all
centers of the considered provider, which can be moved to i 2 IR subject to the
mentioned limitation. Here S6 = {3, 9}. Realize that t 2 Nt and i 2 Si for t 2 IL and i 2
IR and thus IL � IR.

Now, we introduce series of decision reallocation variables, which model the
decisions on moving centers from their original positions to new ones. The variable
uti 2 {0, 1} for t 2 IL and i 2 Nt takes the value of one, if the service center at t is to be
moved to i and it takes the value of zero otherwise. Using the above introduced
structures and variables we suggest the following model extension.

X

i2IL
yi � p� w ð6Þ

X

i2Nt

uti ¼ 1 for t 2 IL ð7Þ

X

t2Si
uti � yi for i 2 IR ð8Þ

uti 2 f0; 1g for t 2 IL; i 2 Nt ð9Þ

Constraint (6) limits the number of changed center locations by the constant
w. Constraints (7) allow moving the center from the current location t to at most one
other possible location in the radius D. Constraints (8) enable to bring at most one
center to a location i subject to condition that the original location of the brought center
lies in the radius D. These constraints also assure consistency among the decisions on
move and decisions on center location.

Another simpler modelling approach to the formal rules implementation consists in
relaxation of the parameter D and associated constraints (7)–(9). Parameter D is used to
limit the radius, within which an existing service center can be relocated. The idea
introduced in [12] assumes that this limitation may represent too strict constraint. This
simplified approach enables us to exclude the variables uti 2 {0, 1} from the model.
The relaxation consists in the fact that the system reengineering is performed in such a
way that there must be at least one center located in the radius D from each existing
service center and the center relocation will not limited by any distance. Based on these
preliminaries, the constraints (7)–(9) may be replaced by the following expression (10),
which guarantees that there will be at least one service center located in radius D from
each currently located center. Then the associated simplified radial model takes the
form of (1)–(6) and (10).

X

i2Nt

yi � 1 for t 2 IL ð10Þ

The advantage of this simplified model consists in less number of decision vari-
ables and structural constraints. Thus, the problem is expected to be easily solvable due
to lower model complexity. Furthermore, this model allows such center relocation that
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is shown in Fig. 5. Consider a transportation network, in which we have two centers
(see the left part of the figure). If the optimal solution of the reengineering model places
one of the current centers (the green one) to the red node, all the structural constraints
stay met and the other center (the blue one) may be relocated anywhere without
additional restrictions. Such solution would not be feasible in the original approach
described by the model (1)–(9).

The simplified model (1)–(6), (9) provides bigger variety from the point of possible
center location changes in comparison to the original model (1)–(9) and thus it is
expected that it could bring better results concerning the optimization criterion. On the
other hand, even if this approach may bring better results concerning optimization, the
obtained system design can be bad from the point of real system performance. If too
many system users are assigned to the same service center, then it is obvious that the
service center will be mostly unavailable due to its limited capacity. Therefore, we do
not deal with this simplified model in our computational study and we take into account
the original formal rules given by parameters w and D.

We want to answer the question about technical solvability of the formulated
problem (1)–(9). We ask whether a common commercial integer programming solver
based on the branch-and-bound technique is able to find the exact solution of a real-
sized problem in acceptable time. Addition of new structural constraints to the original
radial model is always questionable from the point of problem solvability. It may
directly influence the computational process convergence. Furthermore, we have to
realize that even if the administrator’s rules are established to defend users’ interests,
they may represent a reduction of the set of feasible solutions. This phenomenon may
lead to a less possible benefit (higher disutility) for the average user. That is why, the
dependence of the optimal objective function value on setting of parameters w and D is
worth to study.

Fig. 5. Reengineering of current emergency system using the simplified model [12]. (Color
figure online)
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4 Numerical Experiments

4.1 Benchmarks and Preliminaries

The numerical experiments in this section were performed in the optimization software
FICO Xpress 8.3, 64-bit. The experiments were run on a PC equipped with the Intel®
Core™ i7 5500U 2.4 GHz processor and 16 GB RAM.

Used benchmarks were derived from real emergency health care system, which was
implemented in eight regions of Slovak Republic. For each self-governing region, i.e.
Bratislava (BA), Banská Bystrica (BB), Košice (KE), Nitra (NR), Prešov (PO), Trenčín
(TN), Trnava (TT) and Žilina (ZA), all cities and villages with corresponding number
of inhabitants bj were taken into account. The coefficients bj were rounded to hundreds.
The set of communities represents both the set J of users’ locations and the set I of
possible center locations as well. The cardinalities of these sets vary from 87 to 664
locations. The total number of possible service center locations for the individual self-
governing region is reported in Table 1 in the column denoted by |I|. Each self-
governing region emergency sub-system provides its user with emergency service from
the given number of service centers currently located at some of the possible locations
from I. The number of service centers of the individual region is reported in Table 1 in
the column denoted by TNC (the Total Number of located Centers). In all solved
instances, we consider that disutility perceived by a system user is represented by
response time and this response time is proportional to the network distance, which
must be traversed from the servicing center to the user locations. As the generalized
disutility according to the model in Sect. 2 is studied in this paper, associated
parameters r and qk for k = 1 … r must be established. For these numerical experi-
ments, the value of r was set to 7 and the associated coefficients qk for k = 1 … r were
set in percentage in the following way: q1 = 77.063, q2 = 16.476, q3 = 4.254,
q4= 1.593, q5 = 0.47, q6 = 0.126, and q7 = 0.018. These values were obtained from a
simulation model of existing emergency medical service system in Slovakia [9].

To enrich the pool of benchmarks, we created ten instances for each self-governing
region so that they differ in the list of located service centers operated by the considered
provider. The average percentage rate of the provider’s centers is reported in Table 1 in
the column denoted by “Prov. [%]”.

5 Basic Experiments

The basic experiments reported in this sub-section were originally published in [13].
An individual experiment was organized so that the optimal solution of the problem
(1)–(5) was obtained first. The solution does not represent reengineering subject to
auxiliary rules specified in Sect. 3, but it represents the best possible solution of the
emergency system design problem without any restrictions. The average results are
summarized in Table 1, where the right part of the table contains the average com-
putational times in seconds across the ten instances solved for each region. The average
computational times are reported in the column denoted by “CT [s]”. The last column
“ObjF” contains the average values of the objective function (1).
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The results indicate that the reengineering of the emergency service system under
generalized disutility for r = 7 from the point of service provider does not represent a
hard solvable problem. It can be observed that the radial formulation enables to get the
optimal solution within 1 min.

In spite of this useful feature, the following portion of experiments was performed to
find out, whether a lower value of r will have significant influence on the resulting
objective function value. As mentioned in Sect. 2, we assume that the influence of
increasing value of r may appear negligible behind some limiting value r*. To confirm
this hypothesis and to find a suitable value of r*, we have solved all instances with
different values of r. For bigger comfort of computation, we expressed the probabilities
qk in percentage, i.e. their sum equals to one hundred. If r < 7, then the coefficient qrwas
computed according to (11) as a complement of the coefficients qk for k = 1 … r – 1 to
the value of 100, i.e. the sum of qk for k = 1 … r must equal 100.

qr ¼ 100�
Xr�1

k¼1

qk ð11Þ

The dependency of average computational time on the value of r was studied first.
We assume that the computational time increases with growing value of r, because the
value of r affects the number of variables and the model size as well. Our expectation
has been confirmed by the results summarized in Table 2. Each row of the table
represents the average results of the ten instances for each region and the columns are
used for different setting of parameter r. The last row contains the average values of all
instances. The dependency of average computational time on the value of r is also
shown in Fig. 6.

Table 1. Average results of numerical experiments for each self-governing region. The value of
r was set to 7 [13].

Reg. |I| TNC Prov. [%] CT [s] ObjF

BA 87 14 55.1 0.5 28087.8
BB 515 36 44.9 43.6 47706.5
KE 460 32 46.0 30.4 48490.9
NR 350 27 50.7 10.8 52024.6
PO 664 32 44.3 50.5 61070.2
TN 276 21 52.9 5.1 36800.9
TT 249 18 49.6 6.1 43986.1
ZA 315 29 46.8 6.1 45341.2
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When we studied the impact of the number r of considered centers on the resulting
system design, we have evaluated Hamming distance of the vectors of resulting
location variables obtained for various values of the parameter r. The Hamming dis-
tance of two 0-1 vectors y and z is defined by the expression (12). The average results
are reported in Table 3.

HDðy; zÞ ¼
X

i2I
yi � zið Þ2 ð12Þ

The dependency of average Hamming distance from the optimal solution obtained
for r = 7 on the number r of service providing centers for each system user is also
shown in Fig. 7.

The reported results show that the suitable value of r* is 3. Thus, we proved that
three nearest located service centers are enough to be taken into account, when
emergency system reengineering under generalized disutility is performed. As shown

Table 2. Average computational time in seconds of the solving process depending on r for each
region [13].

Reg. r = 1 r = 2 r = 3 r = 4 r = 5 r = 6

BA 0.1 0.1 0.2 0.2 0.3 0.3
BB 6.5 8.3 11.5 19.3 27.1 33.7
KE 6.0 7.0 8.9 11.6 15.7 18.3
NR 2.1 2.6 3.6 6.7 6.8 8.4
PO 20.6 22.8 26.1 31.8 38.8 47.0
TN 1.4 1.8 3.2 2.8 3.4 4.3
TT 1.2 1.7 2.3 3.1 4.2 5.2
ZA 1.7 2.0 2.6 3.3 4.4 5.2
AVG 4.96 5.79 7.29 9.87 12.58 15.29

Fig. 6. Dependency of average computational time in seconds on the number r [13].
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in Table 3 and Fig. 7, the service center deployment for r = 3 differs from the service
center deployment obtained for r = 7 only in one center on the average. The difference
in one service center corresponds to Hamming distance equal to the value of two.

The last characteristics studied in this portion of experiments is the objective
function value. For each system design obtained for particular value of r = 1, …, 6, the
objective function (1) with r = 7 and the full set of coefficients qk was computed. This
value was compared to the objective function value obtained for r = 7 and the gap
between the objective values was evaluated. The gap is defined as a percentage dif-
ference of the two objective function values, where the objective function value for
r = 7 was taken as the base. The average values of gaps of the ten instances computed
for each self-governing region are reported in Table 4, which is organized in the same
manner as the previous tables. To enable finding a suitable value of r*, the gaps lower
than 0.1% are marked by grey color.

Table 3. Average Hamming distance from the optimal solution obtained for r = 7 computed for
each region [13].

Reg. r = 1 r = 2 r = 3 r = 4 r = 5 r = 6

BA 5.2 2.0 0.6 0.4 0.0 0.0
BB 12.6 11.0 3.6 0.6 0.4 0.0
KE 11.8 6.0 3.4 1.4 0.6 0.6
NR 10.2 6.6 2.0 0.4 0.0 0.0
PO 11.8 7.4 4.0 0.0 0.6 0.0
TN 8.0 2.6 0.6 0.2 0.0 0.0
TT 8.4 3.8 0.4 1.4 0.0 0.0
ZA 12.4 4.0 3.2 1.0 0.2 0.0
AVG 10.05 5.43 2.23 0.68 0.23 0.08

Fig. 7. Dependency of Hamming distance from the optimal solution obtained for r = 7 on the
number r of service providing centers for each system user [13].
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The dependency of average gap from the optimal solution obtained for r = 7 on the
number r of service providing centers for each system user is shown also in Fig. 8.

The detailed analysis of presented results shows that usage of the three nearest
service providing centers instead of the nearest seven centers leads to very similar
results and saves more than one half of computational time. That is why, the next
experiments were performed with the setting of r = 3.

The following table contains the final comparison of current service center
deployment to the results of suggested reengineering model, which was configured as
follows. Based on the above presented results, the parameter r was set to 1 (simple
disutility) and 3 (generalized disutility). In the experiments with the generalized
disutility, the associated probability coefficients q1 = 77.063, q2 = 16.476 and
q3 = 6.461 were used. The objective function values reported in the table was
recomputed for setting r = 7 and the original seven probability values. The maximal
number w of centers operated by the considered service provider, which are allowed to
change their current location, was set to the cardinality of the set IL, i.e. locations of all

Table 4. Average gap from the optimal solution obtained for r = 7 [13].

Reg. r = 1 r = 2 r = 3 r = 4 r = 5 r = 6
BA 2.52 0.23 0.02 0.01 0.00 0.00
BB 6.19 0.43 0.07 0.00 0.00 0.00
KE 2.88 0.21 0.11 0.01 0.00 0.00
NR 2.31 0.55 0.06 0.00 0.00 0.00
PO 5.19 0.62 0.04 0.00 0.00 0.00
TN 2.81 0.24 0.04 0.01 0.00 0.00
TT 2.60 0.32 0.01 0.02 0.00 0.00
ZA 4.33 0.69 0.05 0.00 0.00 0.00
AVG 3.73 0.43 0.05 0.01 0.00 0.00

Fig. 8. Dependency of average gap from the optimal solution obtained for r = 7 on the number
r of service providing centers for each system user [13].
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considered provider’s centers could be changed. The value 15 limited the radius D, in
which a center could be relocated. This initial value of D corresponds to the rule
applied in the emergency health care system of the Slovak Republic [12]. Table 5
contains the average results of the ten instances solved for each self-governing region.
The objective function value of the current service center deployment is reported in the
column denoted by “Current ObjF”. The right part of the table is dedicated to the
results of suggested reengineering problems. The abbreviation “ObjF” denotes the
objective function value of the emergency system design obtained by solving the
reengineering model. Finally, the value of Imp was computed to show possible
improvement of the objective function value expressed by the generalized disutility,
which can be achieved by relocating w = |IL| service centers. The value of possible
improvement was computed as a percentage difference between objective function
values of the current service center deployment and the new system design resulting
from optimal solution of the problem described by the associated model. The objective
function value of current deployment was taken as the base.

The reported results show that the emergency system reengineering can cause a
considerable improvement of service accessibility for system users expressed by
general disutility. The average values of the improvement (Imp) indicate that the
objective function value corresponding to the system design can be reduced up to 6%.
The achieved results also confirm the usefulness of suggested reengineering model,
because it enables us to obtain better system design from the point of service acces-
sibility. It is obvious from the comparison of the cases with r = 1 and r = 3 that the
usage of generalized disutility (r = 3) leads to such solutions, which are approximately
by 2% better than those, which can be obtained by usage of simple disutility model
(r = 1).

Table 5. Comparison of current service center deployment to the results of reengineering model
for r = 1 (simple disutility) and r = 3 (generalized disutility). The reengineering parameters were
set at w = p and D = 15 [13].

Reg. Current ObjF r = 1 r = 3
ObjF Imp. [%] ObjF Imp. [%]

BA 29792 28810 3.30 28335 4.89
BB 52510 51094 2.70 50430 3.96
KE 52786 51894 1.69 50913 3.55
NR 56759 54440 4.09 53472 5.79
PO 67037 65807 1.83 63526 5.24
TN 38625 38091 1.38 37226 3.62
TT 472163 45569 3.48 44734 5.25
ZA 49324 47566 3.56 46634 5.45
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5.1 Extended Experiments

This portion of experiments was devoted to observation of impact of the additional
constraints (6)–(9) on the solving process. We concentrated on the three parameters,
which may play role both in reengineering effectiveness and computational time. This
set of experiments was organized so that two of the parameters were fixed and the third
one was changed across a given range. The studied parameters were: p – the number of
centers supervised by the considered provider, w – the total number of provider’s
centers, which can be moved, and D – the maximal radius, in which a center can be
moved.

In the first part of this portion of experiments, the parameter p was set at the value
reported at the beginning of this section, i.e. p = |I|/2 and the experiments were per-
formed either with fixed parameter D or parameter w. This portion of experiments was
originally published in [13].

First, the maximal radius D was fixed at the value of 15 and the maximal number
w of centers allowed to change their locations was set to p/4, p/2, 3p/4, and p respec-
tively. Dependency of average computational time in seconds computed for the ten
instances of each region is reported in Table 6. Each row of the table represents one
region and the columns are devoted to different settings of w.

The reported results show that different settings of w do not significantly affect the
computational process, because the value of w limits only the number of possible
service center location changes and thus, the number of variables and constraints is
independent on w.

The objective function values can be studied in Table 7. Even if parameter r was set
to 3 in all solved models, the objective function values were computed for r = 7 based
on the resulting service center deployment.

Second, we fixed the parameter w to its maximal value p, i.e. all centers operated by
the provider could change their current locations. Then, we explored the impact of the
parameter D on the solving process complexity.

Table 6. Average computational time in seconds for each region and different values of
w. Parameter D was 15 [13].

Reg. w = p/4 w = p/2 w = 3p/4 w = p

BA 0.11 0.11 0.11 0.12
BB 4.36 6.40 5.36 5.32
KE 4.44 5.95 5.77 5.09
NR 2.02 2.20 2.75 2.78
PO 9.78 9.76 9.79 9.83
TN 1.55 1.64 1.68 1.73
TT 1.30 2.30 1.47 1.52
ZA 1.74 1.65 1.63 1.66
AVG 3.16 3.75 3.57 3.50
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The average computational times in seconds computed for each self-governing
region and given values of D across the range of 5, 10, 15, 20, and 25 are reported in
Table 8.

The results reported in Table 8 have confirmed our expectation that the parameter
D has a direct impact on the computational process. As it can be observed, the average
computational time grows with increasing value of D, i.e. with increasing radius, in
which current center can be removed. This phenomenon has a simple explanation. The
bigger is the radius for center location change, the higher is the number of its possible
new locations. As we can notice, this parameter defines the number of decision vari-
ables and it directly affects the model size. Therefore, the solving process takes longer
time for higher distance D. Finally, the dependency of objective function value on the
parameter D is shown in Table 9.

Table 7. Average objective function values for each region and different values of w. Parameter
D was 15. The objective function value was recomputed for r = 7 and the whole set of
probability coefficients qk [13].

Reg. w = p/4 w = p/2 w = 3p/4 w = p

BA 28607.0 28334.8 28334.8 28334.8
BB 50676.2 50433.7 50430.4 50430.4
KE 51141.3 50916.9 50913.4 50913.4
NR 53995.8 53482.7 53471.5 53471.5
PO 63791.3 63532.1 63526.0 63526.0
TN 37286.6 37225.5 37225.5 37225.5
TT 45670.3 44915.7 44733.6 44733.6
ZA 47278.1 46673.0 46634.3 46634.3

Table 8. Average computational time in seconds for each region and different values of
D. Parameter w was set to its maximal value, i.e. w = p [13].

Reg. D = 5 D = 10 D = 15 D = 20 D = 25

BA 0.04 0.08 0.12 0.16 0.17
BB 0.90 3.13 5.32 10.54 15.38
KE 1.02 2.61 5.09 7.41 8.81
NR 0.42 1.11 2.78 6.91 5.31
PO 1.91 4.93 9.83 15.85 19.06
TN 0.40 1.05 1.73 2.16 2.96
TT 0.28 0.79 1.52 1.99 2.44
ZA 0.45 0.97 1.66 2.14 2.81
AVG 0.68 1.83 3.50 5.89 7.12
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As far as the objective function value expressed by generalized disutility is con-
cerned, the achieved results indicate that the higher value of D is, the better solution can
be obtained. As the radius D defines the set of new possible center locations, its setting
affects the possibility for obtaining better results. More elements in the set Nt for each
t 2 IL causes more candidates for new center locations and bigger possible change of
current center deployment, which can be followed by better service accessibility for
system users.

To verify obtained results and to confirm observed dependences, another portion of
numerical experiments was suggested. This new set of experiments was performed for
a new set of benchmarks. The new instances were generated from the same trans-
portation networks as before, but these instances differ in the percentage of service
centers operated by the considered provider. While in the preliminary experiments, the
considered provider owned approximately half of all located centers, in these new
benchmarks the ratio is 25 and 75% respectively. The reported results represent the
average values of 10 problem instances. Since the self-governing region of Bratislava
(BA) is too small for such a study, it was excluded from this portion of experiments.

The main goal of these experiments was to study the impact of formal parameters
w and D on the computational time and the resulting system design quality measured
by the value of generalized disutility. The obtained results are summarized in the
following eight tables. Tables 10, 11, 12 and 13 contain the results aimed at studying
the impact of individual parameters w and D on the average computational time. The
structure of the tables is the same as used in Tables 6 and 8.

Finally, the last set of tables reports the studied impact of individual parameters
w and D on the optimization criterion, which consists in generalized disutility per-
ceived by an average system user. The obtained results are summarized in Table 14,
Table 15, Table 16 and Table 17, which follow the structure of Table 7 and Table 9
respectively.

Table 9. Average objective function values for each region and different values of D. Parameter
w = p. The objective function value was recomputed for r = 7 and the whole set of probability
coefficients qk [13].

Reg. D = 5 D = 10 D = 15 D = 20 D = 25

BA 29563.0 28798.3 28334.8 28255.0 28136.1
BB 52115.0 50635.4 50430.4 49429.6 49130.0
KE 52111.9 51398.4 50913.4 50412.6 49959.5
NR 56153.7 54360.2 53471.5 52674.5 52422.9
PO 66115.8 65081.5 63526.0 63070.1 62444.1
TN 37714.0 37320.5 37225.5 37148.4 37009.5
TT 46162.7 45395.9 44733.6 44114.7 44078.5
ZA 48712.7 47763.3 46634.3 46230.4 46115.0
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Table 10. Average computational time in seconds for each region and different values of
w. Parameter D was 15. The considered provider operated 25% of all located service centers.

Reg. w = p/4 w = p/2 w = 3p/4 w = p

BB 2.2 2.2 2.1 2.2
KE 2.1 3.0 3.1 2.7
NR 1.1 1.3 1.3 1.3
PO 4.9 5.0 5.0 5.2
TN 0.7 0.7 0.7 0.8
TT 0.7 0.7 0.8 0.8
ZA 0.9 0.9 0.9 0.9

Table 11. Average computational time in seconds for each region and different values of
w. Parameter D was 15. The considered provider operated 75% of all located service centers.

Reg. w = p/4 w = p/2 w = 3p/4 w = p

BB 22.7 29.1 13.2 13.0
KE 10.0 28.2 33.1 27.7
NR 7.8 9.4 9.2 10.9
PO 36.6 36.4 37.0 36.9
TN 3.3 3.5 3.6 3.6
TT 4.8 4.0 4.1 4.2
ZA 6.7 4.5 4.6 4.7

Table 12. Average computational time in seconds for each region and different values of
D. Parameter w = p. The considered provider operated 25% of all located service centers.

Reg. D = 5 D = 10 D = 15 D = 20 D = 25

BB 0.7 1.4 2.2 3.5 4.7
KE 0.7 1.3 2.7 4.4 6.0
NR 0.3 0.6 1.3 1.8 2.0
PO 1.4 2.8 5.2 9.0 12.1
TN 0.3 0.5 0.8 1.0 1.3
TT 0.2 0.4 0.8 1.1 1.5
ZA 0.3 0.6 0.9 1.2 1.5

Table 13. Average computational time in seconds for each region and different values of
D. Parameter w = p. The considered provider operated 75% of all located service centers.

Reg. D = 5 D = 10 D = 15 D = 20 D = 25

BB 1.4 6.1 13.0 48.4 48.8
KE 1.6 6.8 27.7 13.1 22.8
NR 0.7 10.5 10.9 26.4 28.8
PO 4.3 19.7 36.9 85.5 58.1
TN 0.6 2.1 3.6 6.2 6.8
TT 0.4 2.0 4.2 5.2 5.3
ZA 0.8 2.7 4.7 6.5 7.6
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Table 14. Average objective function values for each region and different values of w. Parameter
D was 15. The objective function value was recomputed for r = 7 and the whole set of
probability coefficients qk. The considered provider operated 25% of all located service centers.

Reg. w = p/4 w = p/2 w = 3p/4 w = p

BB 51867.3 51774.2 51774.1 51774.1
KE 52321.0 52168.6 52156.7 52142.6
NR 55479.0 55290.3 55291.7 55291.7
PO 65226.3 64901.0 64882.2 64882.2
TN 38140.5 38089.5 38089.5 38089.5
TT 46322.2 46009.7 45934.3 45920.1
ZA 48676.3 48448.5 48412.9 48412.9

Table 15. Average objective function values for each region and different values of w. Parameter
D was 15. The objective function value was recomputed for r = 7 and the whole set of
probability coefficients qk. The considered provider operated 75% of all located service centers.

Reg. w = p/4 w = p/2 w = 3p/4 w = p

BB 49801.2 49513.4 49512.0 49512.0
KE 50148.0 49918.1 49915.2 49915.2
NR 52756.2 51979.4 51969.4 51969.4
PO 62266.2 61691.3 61691.3 61691.3
TN 36987.9 36932.8 36932.8 36932.8
TT 44978.0 44017.9 44007.3 44007.3
ZA 45697.8 44883.3 44873.4 44873.4

Table 16. Average objective function values for each region and different values of
D. Parameter w = p. The objective function value was recomputed for r = 7 and the whole set
of probability coefficients qk. The considered provider operated 25% of all located service
centers.

Reg. D = 5 D = 10 D = 15 D = 20 D = 25

BB 52324.8 51838.4 51774.1 51374.3 51106.5
KE 52482.0 52346.0 52142.6 51892.2 51401.5
NR 56551.4 55592.9 55291.7 54573.7 54199.4
PO 66364.2 65718.3 64882.2 64501.3 63863.7
TN 38208.0 38089.5 38089.5 38087.1 38087.1
TT 46799.8 46175.2 45920.1 45570.9 45570.9
ZA 49007.2 48681.2 48412.9 48125.2 48055.8
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5.2 Mutual Relation of the Formal Rules

All the experiments presented above were aimed primarily at studying the model
solvability and the sensitivity of the associated computational process on different
model parameters. Besides some interesting findings and suitable settings of parame-
ters, we focused also on mutual combinations of the administrator’s rules and their
impact on the computational time and the quality of resulting solution given by gen-
eralized disutility. The considered rules are that at most given number of center
locations can be changed and each center location can be moved only in a given radius
from its original position. For these experiments, the self-governing region of Žilina
was used. Here, it was assumed that the considered provider operates half of all service
centers.

An individual experiment was organized so that the reengineering was performed
using the model (1)–(9) for different values of parameters w and D. The parameter
w expresses the number of service centers, which can change their current location.
Parameter D limits the radius, in which the service center can be relocated. This way,
20 problems for all combinations of mentioned parameters were solved for each
problem instance. The results obtained for the individual self-governing regions are
presented in Table 18 and Table 19 respectively. The first table contains the average
computational time in seconds. It must be noted that ten different instances were
generated randomly for each self-governing region as described in previous sections.
These instances differ in the list of located service centers operated by the considered
provider. The parameter w was set to 25, 50, 75 and 100% of the total number of
centers operated by the considered provider. The parameter D took the value 5, 10, 15,
20 and 25.

The results reported in Tables 18 and 19 have proved our expectations and con-
firmed previously observed trends. This new portion of experiments was focused on
studying the efficiency of the administrator’s rules imposed on provider’s changes. It
was found that the parameters w and D may directly influence the resulting system
design, because they affect possible changes in current service center deployment. As
far as computational time is concerned, parameter w does not have significant impact. It
is used as the right side of the constraint (6) and thus, its value does not change the

Table 17. Average objective function values for each region and different values of
D. Parameter w = p. The objective function value was recomputed for r = 7 and the whole set
of probability coefficients qk. The considered provider operated 75% of all located service
centers.

Reg. D = 5 D = 10 D = 15 D = 20 D = 25

BB 51954.4 49950.7 49512.0 48343.0 47849.3
KE 51716.4 50681.5 49915.2 48744.4 48558.1
NR 55850.9 53368.5 51969.4 51013.8 50878.2
PO 65139.8 63550.4 61691.3 60774.1 59844.4
TN 37409.3 36989.8 36932.8 36836.8 36629.7
TT 45987.3 45064.7 44007.3 43518.4 43369.4
ZA 48277.4 46159.8 44873.4 44563.7 44508.3
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model size. On the other hand, parameter D considerably affects the solving process. It
must be noted that the radius D defines the set of all new possible locations of a service
center and thus, it affects the number of decision variables and structural constraints as
well. More elements in the set Nt for each t 2 IL mean more candidates for new center
locations and higher computation time.

6 Conclusions

This paper deals with emergency medical system reengineering under consideration of
generalized disutility, which follows the idea that the associated service can be pro-
vided from given number of the nearest located centers. Application of the generalized
disutility makes the model more realistic by taking into account possible temporarily
unavailability of service centers. In our computational study we have found, that three
nearest located centers are enough to be considered in the objective function value,
because the accuracy of the result is satisfactory.

The next part of experiments was aimed at exploration of impact of additional con-
straints imposing new restrictions on service center location changes. The additional
constraints regulate extent of the permitted reengineering and the reported results give
deeper insight into their influence upon computational time of the solving process and
quality of the resulting service system design. Based on the results and obtained expe-
rience, we can conclude that we have constructed a very useful tool for emergency
medical system reengineering under generalized disutility performed by the system
administrator with service centers of a considered provider. Designed and investigated
model is easy to be implemented and solved in common optimization environment
equipped with the branch-and-bound method or other technique destined for integer
programming problems.

Table 18. Average computational times in seconds for different settings of parameters w and
D in the self-governing region of Žilina (ZA), in which the considered provider operates
approximately half of all located service centers.

D = 5 D = 10 D = 15 D = 20 D = 25

w = p/4 0.5 1.0 1.8 2.7 3.9
w = p/2 0.5 1.0 1.7 2.3 2.5
w = 3p/4 0.5 1.0 1.7 2.2 3.1
w = p 0.5 1.0 1.8 2.3 2.9

Table 19. Average objective function values for different settings of parameters w and D in the
self-governing region of Žilina (ZA), in which the considered provider operates approximately
half of all located service centers. The objective function value was recomputed for r = 7 and the
whole set of probability coefficients qk.

D = 5 D = 10 D = 15 D = 20 D = 25

w = p/4 48761.3 48043.0 47278.1 46984.8 46826.5
w = p/2 48712.7 47773.1 46673.0 46273.6 46159.3
w = 3p/4 48712.7 47763.3 46634.3 46230.4 46115.0
w = p 48712.7 47763.3 46634.3 46230.4 46115.0
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Future research in this field may be aimed at such system reengineering, which
takes into account uncertainty following from randomly occurring failures in the
underlying transportation network.
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Abstract. Many systems undergoing an optimisation process also
involve users which might be directly or indirectly impacted in differ-
ent ways. Fairly spreading this positive or negative impact is required
in specific contexts like critical healthcare or due to work regulation
constraints. It can also be explicitly requested by users. This papers con-
siders case studies from three different domains involving fairness: night
shift planning, clinical pathways and a shared shuttle system. Each case
is analysed to understand how fairness requirements were captured, how
the solution was designed and implemented. It also analyse how fairness
was perceived by the user using the deployed system. We also draw some
lessons learned and recommendations which are discussed in the light of
similar work reported in other domains.

1 Introduction

Fairness is a concept intuitively easy to understand because as human we have
a natural tend to compare with our pairs. We have experienced a lot “fair” or
“unfair” behaviours from early age (e.g. candy distribution at school) and are
regularly confronted to it in our personal lives (e.g. queuing to enter pass some
access control) and at work (e.g. time schedules for teachers, night shifts). It is
however difficult to give a precise definition because fairness is a generic name
for a multitude of concepts including socio-political ones involving impartiality,
justice and equity [12,29]. Fairness goes beyond the pure behaviour design of a
system but also involves people perception about its inner “rules” and how well
they are enforced. This means the need to give clear and transparent explana-
tions. For example a survey about an organ transplantation system reported it
was evaluated as fair by only 29% of the respondents while 29% were unsure and
41% believed it was not fair. However when questioned about their understand-
ing of the system about one third recognised they had a partial understanding
and another third not at all [4].

The scope of this paper is the optimisation of large and/or complex sys-
tems, typically involving resource allocation to people, hence quite systemati-
cally requiring to manage fairness issues, generally in a specific context (business
domain, existing work regulation or even company culture). Typical examples
c© Springer Nature Switzerland AG 2019
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are people scheduling problems (work shifts, patient planning, etc) or vehicle
routing problems (pick-up and delivery, dispatching of technical support, etc).

From the technical point of view, the optimisation of such systems is often
dealt with using local search (LS) techniques because of their better ability to
scale than other techniques like constraint programming (CP) especially when
using efficient incremental computation of invariants using constraint-based local
search (CBLS) [39]. Although LS do not provide guarantee of optimality, specific
meta-heuristics in the above domains generally result in solutions which are only
a few percents away from the optimal with also a trade-off between search time
and solution quality [38]. We will focus on such search techniques.

This paper does not propose a “one fits it all approach” to this complex
problem but takes a practical approach by analysing three case studies based on
real-world system. Those cases are from totally different domains but were quite
challenging w.r.t. fairness issues, more precisely:

– NiceWatch is a system to organise night watches among a pool of doctors [22].
Complex rule regulate night work. Moreover all night watches do not have
the same value for the doctors, e.g. resting period that follows the watch can
extend a week-end or result in an extra day off [17].

– PIPAS is an optimisation engine for managing clinical pathways supporting
chemotherapy cycles delivered in day clinic [35]. The fairness has here a crucial
medical meaning as the system must guarantee the timed treatment delivery
to a large pool of patients [34].

– SAMOBI is an optimisation engine for a sustainable shared shuttle service
[25,33]. Fairness is present at different levels: for the driver schedules but also
for user which will be priced against the level of sharing or delay/detour they
are ready to accept.

This paper focuses on the fairness viewpoint while our previous publication
[17,33,34] were concerned by reporting on a specific solution dealing with the
whole set of requirements, with fairness being one of the common requirements.
In this work, we analyse those previous case to understand how fairness was
identified, designed, implemented and most importantly how successful the pro-
posed approach was from the user perception point of view. Taking a step back,
we present our lessons learned and recommendations for others having to cope
with fairness issues in optimising their systems. In addition, we also take into
account techniques and experience reported in other domains, including specific
fairness indicators such as max-min (initially defined for fair bandwidth distri-
bution in computer networks) [3]), the Jain indicator reaching its maximal value
(1) when fair allocation is achieved [16] and the Global Gini Indicator (GGI)
from widely used in economics [41].

The paper is structured as follows. Sections 2, 3 and 4 present each case
study for the three domains described here above. Those sections share a similar
structure starting with a context presentation, then expressing the fairness con-
straint, designing a solution and finally analysing the resulting running system,
with a specific focus on the user perception. Then Sect. 5 formulates some lessons
learned and recommendations. Section 6 discusses them in the light of related
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work from other domains. Finally Sect. 7 concludes and highlight some future
work to further improve the management of fairness constraints.

2 Case Study 1 - Planning of Doctor Night Shifts

2.1 Context

In hospitals, coordination is of prime importance to ensure that necessary work-
force is available at the required time and with the required competences. This is
because an hospital has to cope with possibly large flows of patients that cannot
be interrupted, and medical care requires a set of specific competencies. Medical
workforce is needed at different roles throughout the week. These include regu-
lar working role, on-site night shifts, and on-call duty. Roles planning must obey
a given set of rules about resting time and cope with peoples’ unavailabilities.
Fairness in the way people are scheduled is also required to maintain a good
working atmosphere.

Setting up such planning is time consuming and can be the source of per-
sonal frustrations since planning composition, when is performed by a human
colleague, can always be perceived as not objective and thus unfair. Fairness in
duty rostering is emphasised in guidelines of many countries [27,28].

2.2 Problem Statement and Fairness Requirements

We detail here the considered rostering problem, with a focus on fairness aspects
that can cause doctor frustration.

A planning ranges over a given period of time, and defines, for each day of
this period of time and each role, who among the set of available doctors will
fill in this role. Roles can be regular workday at a given place (anaesthetist in
operating theatre no 2, emergencies), on-site night duty, or home based on-call
duty.

With respect to rostering, doctors are characterized by a set of legal and
organizational attributes such as contractual availability, qualification, max-
imal number of duty per month, degree of seniority and assignable duty roles.
Besides, there is also a set of personal constraints to be considered, including
personal days off that are considered as strong constraints as soon as they are
granted, and personal preferences regarding duty roles. These can be positive or
negative preferences.

Planning must also Obey a Set of Legal Rules w.r.t. Resting Times:

– a duty role at the hospital lasts for 24 or 25 h. If happening during the week, it
starts during the normal working hour starting at 8 am and lasts till 9 am the
next day. If it occurs on a Saturday, Sunday or legal holiday, it starts at 9 am
and ends at 9 am the next day. A duty role happening between and including
Sunday to Thursday is automatically followed by a day off. For a duty role
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occurring on a Friday, the doctor gets half a day off that can (s)he can place
anywhere. For a duty role happening on a Saturday, the next Monday is a
day off. Legal holidays are treated as Sundays, and days before legal holidays
as Fridays.

– A doctor can only fulfil a single role at a time.
– At any time, among all roles requiring a given qualification, one of them at

least must be occupied by a senior doctor. For instance, emergencies and
anaesthetist roles.

– A doctor cannot be working or on any form of duty when on holiday or when
off its contractual working days in case of part time contract.

– There must be at least five days between two consecutive duties of the same
doctor.

– In any period of four weeks, a doctor can have at most one duty occurring
during the weekend.

– In case of a part time worker, a resting time following a duty cannot happen
when the doctor is not working according to the contract.

– A resting time cannot occur during holiday.

A consequence of the compensation system for duty roles is that
some of them are more attractive than others. Duty roles happening on
a Thursday are the most attractive, since the doctor gets an extended weekend
of three consecutive days. The least attractive roles are the ones happening
during the weekend, since the compensation is smaller and they are not covering
regular working hours, so that the doctor loses half a day off at the end. Friday
and other week days duties are in between. This attractiveness is the main
cause of frustration with duty roles assignment. Planning composition should
therefore be fair among doctors about this attractiveness of duties.
Inside a large doctor’s team, it’s indeed impossible to set up a monthly planning
that takes into account all the loads or attractiveness of this peculiar month.
One must thus figure out a way to spread out the workload among individuals
and over longer time frames.

To summarize and prioritize, a planning must comply with the following
elements:

1. first, it must comply with the strong constraints here above;
2. then, the personal preferences must be considered;
3. finally, the attractiveness of the planning must be evenly spread across all

doctors.

Some inequities can be tolerated temporarily, but they must be
compensated the next month. As discussed in the introduction, the planning
must ensure some fairness between doctors, and must propose some mechanism
to ensure that doctor have a good perception that the algorithm was fair, even
though the planning might trigger some personal frustration.

There is also a requirement that the algorithm must be deterministic. This
ensures that the person in charge of triggering the runs of the algorithm does not
have the possibility to trigger the algorithm on demand to select a solution that
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better fits some non-expressed desires. As a consequence, all random functions
used in our algorithm, notably to break ties, rely on a deterministic pseudo-
random generator.

A last non-functional requirement is the efficiency of the planning engine: it
must be able to generate a complete schedule for a single month within a few
seconds.

2.3 Designing for Fairness

It is difficult to ensure a good comprehensibility of the algorithm and its exe-
cution using existing scheduling engines relying on state-of-the-art algorithms.
While those are efficient and can deal with fairness, they are also quite complex
and hard to understand for non computer scientists, and they are not designed
to provide a traceability of the resulting solution. In order to deal with this
issue, a key decision in this case was to implement a dedicated search
engine not relying on any framework such as Gecode, OR-tools, OscaR,
LocalSolver or any others [2,13,30,31].

Attractiveness of the planning is a key element of doctor satisfaction, so that
it must be quantified in order to reason upon it. The approach is to define a
score of discomfort for each doctor on a given planning. All duties get a score
of discomfort; the less attractive, the higher is this score. The discomfort of a
doctor for a given planning is the sum of the discomfort of all duties (s)he is
assigned to in this planning.

With this mechanism of discomfort score, we can model attractiveness, and
compensate inequities from one month to another one, by accumulating the score
of discomfort across months.

To find a solution, a greedy approach is used. Because it might fail to fill in a
role, we therefore introduced the notion for a role of being unassigned. The key
points are summarised here and detailed in the rest of this section.

– The main loop is a simple loop that allocates doctors to roles. It iterates onto
unassigned roles, and assigns them to a doctor.

– The role is selected to be among the unassigned ones, as the one that has the
fewest possible doctors, in view of the strong constraints and with an ordering
based on the expressed preferences (positive or negative). In case of equality,
a random role is selected.

– Relaxation is used in case the system reaches a step with no possible assign-
ment. In this case a role that was assigned to a doctor is unassigned to
generate the necessary degree of freedom.

– Diversification and cycle detection are also used to avoid the system iterating
over the same set of partial allocations, leading to a dead end.
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Listing 1.1. Greedy Algorithm for Role Assignment.

whi le ( roleToAsign i s not empty ){
va l currentRole =

s e l e c t r o l e in ro leToAss ign
minimizing degreeOfFreedom ( r o l e )

va l doctorToAssign =
s e l e c t doctor in admiss ib l eDoctor ( currentRole )

maximizing a f f i n i t y ( doctor , currentRole )
a s s i gn ( currentRole , doctorToAssign )
update degree o f freedom and admiss ib l eDoctor

}

Metaheuristic. The algorithm itself is a greedy approach, with possibility to
undo some of the greedy decisions. At each iteration a role is picked up, and a doc-
tor is selected for this role. The algorithm has the possibility to relax an assignment
in case of no doctor can be selected for the considered role. Finally, a tabu compo-
nent is added to prevent relaxing assignments too quickly, and help escape local
impossibilities. Basically, the greedy search iterates on roles is a well-chosen order,
and assign the current role to a doctor. It is summarised in Listing 1.1.

The iteration on roles is based on the degree of freedom of the role. Roles
with the smallest degree of freedom are assigned first. The degree of freedom of
a role is the number of doctors that can be assigned to this role, given the strong
constraints and the existing assignments. It is updated every time an assignment
is performed, or relaxed. A role assignment may impact the degree of freedom
of another role because some constraints impose a minimal delay between shifts,
notably through a resting period.

Ties for roles as well as doctor selection are broken based on a deterministic
pseudo-random selection. We deliberately use a deterministic generator because
we want several runs of the algorithm to produce the same output, i.e. to avoid
the operator to run the tool several time until some untold constraint is met.

The affinity between a doctor and a role is a weighted sum involving the
following elements:

– the preference (positive or negative) between the role and the doctor.
– the attractiveness of the considered role, based on weighting along the features

of the role.
– a cumulated satisfaction score of the considered doctor that sums up the

attractiveness of the past and already assigned role to this doctor.

Two more technical aspects must be considered to ensure the algorithm can
reach a solution:

– Relaxing in Case of Impossibility. In case the algorithm reaches a point
where the current role cannot be fulfilled by any doctor, one or more assign-
ments are relaxed to provide the necessary freedom to the considered role.
The doctor is selected such that he can be assigned to the role after some
other assignments are relaxed. This excludes all doctors that are not avail-
able this day, based on their contract, for instance. The selected doctor also
minimizes the number of assignments that are to be relaxed. Ties are broken
based on a deterministic pseudo-random selection, again to ensure that the
algorithm is deterministic.
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– Dealing with Allocation and Deallocation Cycles. The relaxation per-
formed in case of a role cannot be assigned can lead to the algorithm oscillat-
ing in a closed loop: a role “a” cannot be assigned, so an assignment involving
role “b” is relaxed. In turn to assign role “b” the algorithm can relax role
“a”, etc. To prevent this, each assignment is added to a “tabu list”. This tabu
list is determined by setting a number of iterations during which the assigned
role cannot be relaxed by the relaxation procedure.

2.4 Validating Fairness

The proposed algorithm was implemented for MedErgo, a Belgian company pro-
vides a web-based software application for doctor planning, called NiceWatch
[22]. The system is composed of a global database containing the actual planning,
and a web-based user interface in which doctors can post their own constraints,
query their planning, interact with other doctors to barter duty roles, etc. A
specific interface is also available to the coordinator to visualize all individual
constraints, and set up the planning. This interface is depicted in Fig. 1.

Fig. 1. Planning interface with possible constraints and allocations types [17].
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The tool was deployed in production in August 2016 in different Belgian
hospitals, as part of the NiceWatch web-based platform [22]. Although our solver
is not has been developed using standard data structures, the overall performance
is quite good as scheduled can be produced within a few seconds and allow the
user to wait for the result.

Shifts are typically scheduled each month based on the available doctor staff.
The validation example presented here is composed of about 50 doctors which
needs to ensure 5 simultaneous watch roles, some at every day, some only on
week days. Table 1 shows the staff request for a typical month of 31 days.

Table 1. Typical role request for different watches [17].

Watch role # days

1 Intensive care 31

2 Anesthetist – 1st watch 31

3 Anesthetist – 2nd watch 31

4 Anesthetist – 1st watch (recall) 31

5 Anesthetist – 2nd watch (recall) 22

6 Day hospital 22

Figure 1 shows the planning interface displaying both the constraints
(coloured square without number) and the proposed allocation (coloured square
with number). The legend details the full set of possible constraints and allo-
cations. During the planning process a full allocation trace is generated and
available for checking the allocation process. A typical trace is displayed in List-
ing 1.2 for the first two slots of some allocated day.

Listing 1.2. Justification Trace.

4/0/4 Pref=1 P=6.53 Av=30 DDC| Unavai lab le ( o f f )
1/0/1 Pref=1 P=5.90 Av=27 MAF
4/0/4 Pref=1 P=5.74 Av=31 MH
4/0/5 Pref=1 P=8.03 Av=31 DL
4/0/4 Pref=1 P=8.15 Av=31 KS
. . .
Day X − S lo t 1 − Al located to : MAF

4/0/4 Pref=1 P=8.72 Av=30 CC | Unavai lab le ( o f f )
4/0/4 Pref=1 P=9.11 Av=31 KB | minDistanceKO
1/0/2 Pref=1 P=3.94 Av=21 RCA| minUnfavDistanceKO
1/0/2 Pref=1 P=4.15 Av=27 SC | minDistanceKO
1/0/2 Pref=1 P=4.44 Av=18 WM
1/0/2 Pref=1 P=4.52 Av=22 VN
2/0/3 Pref=1 P=4.86 Av=31 VRP
. . .
Day X − S lo t 2 − Al located to : WM
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For each slot, a list reviewing possible doctor allocations can be compiled. The
list starts with doctors that cannot be allocated with a justification code whose
explanation is detailed in Table 2. It is followed by a prioritised list of doctors
using the ranking procedure described in the previous section. According to this
clear ranking, the first available doctor is the allocated one and the reason can
be easily traced using the justification table.

Table 2. List of Justification in Allocation Traces [17].

Justification Description

Unavailable Date is within the strong constraints of the doctor
(according to work contract and vacations)

Unwanted Date is within the doctor’s wishes not to be on duty

MaxFrequency Reached Maximum quota is reached for doctor’s wanted watches

MaxFrequency
ReachedOutside

Maximum quota is reached for doctor’s unwanted watches

RecoveryRule Broken This day is already assigned or is a recovery day

MinDistanceKO The minimal delay between two wanted watches cannot be
respected

MinDistance
UnwantedKO

The minimal delay between two unwanted watches cannot
be respected

MinUnfavourable
DistanceKO

The minimal delay between two unfavourable dormant
watches cannot be respected

MinUnfavourable
DistanceOutside KO

The minimal delay between two unfavourable dormant
watches cannot be respected

NoSenior No senior doctor would have been assigned to a set of
paired roles

BlackListed This doctor cannot be assigned here because it will lead to
an impossibility to complete the schedule later

3 Case Study 2 - Clinical Pathways for Oncology

3.1 Context

In Western countries, the progress in medical care and the ageing of the popula-
tion is putting more pressure on hospitals which have to face a growing number
of patients. They also need to manage medical procedures of growing complexity
and often in a multidisciplinary context. Difficulties to address those challenges
can decrease the quality of care received by patients or impact the fairness treat-
ment. A survey of 30 pathologies ranging from osteoarthritis to breast cancer,
observed that, on average, only half of the patients received the recommended
medical care [21].



Dealing with Scheduling Fairness in Local Search 229

To gain better control on care quality, a level of standardisation was proposed
through clinical (or care) pathways. A clinical pathway is defined as a multi-
disciplinary specification of the treatment process required by a group of patients
presenting the same medical condition with a predictable clinical course [7]. It
describes concrete treatment activities for patients having identical diagnoses or
receiving the same therapy.

The goals followed by care pathways are to reach an quality assurance level,
keep delays under control but also to reduced operation costs. Because they are
strongly process orientated, clinical pathways also provide a global dashboard on
the patient journey which overcome the limitation of a collection of specialisation
oriented viewpoints gathered through medical records [9].

Clinical pathways have been successfully used for many therapies, such as
arthroplasty [40] and breast cancer [9]. In an al oncology context, they require a
precise description of the therapeutic workflow and all related activities. Figure 2
depicts a typical workflow for a chemotherapy. It is composed of a sequence of
drugs deliveries or cures, usually delivered in day hospital. Each cure is followed
by a resting period at home for a duration of some days to some weeks. This
resting period is required because a chemotherapy has adverse effect on the
whole body with secondary effects like fatigue, pain, mouth and throat sores. If
the ideal treatment protocol is followed, the number of cancerous cells should
decrease until reaching a where there are no traces of them in the body.

Fig. 2. A typical chemotherapy workflow [35].

If for some reason, chemotherapy cures do not closely follow the intended
periodicity or if doses are significantly reduced, the treatment efficiency may be
suboptimal. In such conditions, cancerous cells may multiply again, which can
result in a cancer relapse.

As a consequence, it is very important to make sure that the care protocol is
enforced to a very good level. In order to measure the quality of chemotherapeu-
tic cares, a quantifiable indicator called the “Relative Dose Intensity” (RDI) [19]
was defined. It measures both the level of compliance to the required dose and the
timing of the delivery, on a scale ranging from 0% (no treatment) to 100% (total
conformance).
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RDI = planned dose
delivered dosex

real duration
planned duration

To emphasise the importance of adhering to the process, medical survyes
have have reported, for a number of cancers, a strong correlation between this
RDI and the relapse-free survival time. For breast cancer, a key threshold is
85% [32].

Care pathways are part of a more general evolution toward process-oriented
health information systems [15]. To support this evolution, it is necessary to rely
on a dedicated scheduling of these workflows because scheduling a large pool of
patients in an hospital with limited resources raises a lot of trade-off concerns
which are beyond the reach of a human dispatcher [20]. Of course, such concerns
should not impact the quality of care of individual patient: the planning should
ensure fairness.

3.2 Problem Statement and Fairness Requirements

The problem considered here is the continuous schedule optimisation of an evolv-
ing set of patients engaged in a specific chemotherapy process as described in
the previous section. The goals are to:

– maintain the best quality of care measured in term of RDI indicator
– meet the resources constraints: available treatment rooms and nurses.
– respect service opening days (weekends, holidays) and hours.
– take into account strong unavailabilities of patients, when known.
– when possible, distribute the workload evenly over time to avoid work peaks.

A clinical pathway is composed of many events that must be managed:

– patients entering and leaving the pathway
– delivery event with possible deviation that can impact the care quality such

as partial delivery, advanced/delayed/cancelled delivery, no show...
– medical staff (and possibly rooms) availability

These events are communicated by different actors to the system (e.g. nurses
monitoring the drugs delivery, doctors checking the patient condition, adminis-
trative staff registering the arrival or non-attendance of a patient). When enter-
ing his chemotherapy pathway, a patient is typically given an indicative optimal
schedule based on what is known at that time and a confirmation of the first
appointment.

To maintain optimality, the occurrence of pathway related events will trigger
a re-scheduling. Consequently, the considered scheduling is an on-line problem
which should meet the following additional constraints:

– the recorded past is of course irreversible: this makes any deviation to the
ideal care delivery schedule hard to reverse.

– confirmed appointments for other patients should preferably not be changed
because it requires administrative work and can induce a cascading effect.
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Fig. 3. Problem context diagram [34].

A key actor in charge of activity re-planning is the administrative nurse.
He/She is frequently in contact with the patient and acts as a relay between
the patient and the system, e.g. to identify and and confirming future delivery
dates. A contextual diagram of the information flow between the patient and
the pathway management system is depicted in Fig. 3. The required informa-
tion for the scheduling requires to capture all the required resources needs for
the Chemotherapy Deliveries (CD) (i.e. room time, staff intervention, pharmacy,
etc) and also a description of the care pathway workflow. In addition, instance
level information is required to run one or possibly several care pathways simul-
taneously: the CD appointments and the services availabilities, according to a
weekly pattern with some exceptions (e.g. public holidays).

Concerning fairness, basic ethical principles state that every
patient deserves optimal care regardless of his medical condition or
prognosis. This means that the scheduling must avoid degrading RDI. In the
case an external event results in RDI degradation, more attention is paid to
it to avoid further degradation. In case of resource shortage, this can become
unachievable. However, the system should be able to detect and report such
situations ahead of time to allow the management team to take corrective mea-
sures, like a transient increase of staffing or redirecting new patients to another
unit. Note that we did not consider the nurse scheduling aspect which can be
considered as independent and was covered by techniques presented in the can
be first case study.

3.3 Designing for Fairness

Our approach is about scheduling the care of all patients together in such a way
that some global time constraints are enforced. The actual situation in most day
hospitals is that patients are scheduled on a first-come first-serve basis. With
such a policy, in case of resource shortage (beds, nurses), the treatment of a
patient might be postponed by some days. For some patients, such a delay can
result in great harm in terms of chance of healing.
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In contrast, our solution avoids resource shortage by smartly spreading over
time the start date of the chemotherapy pathways. However, if resources were
still limited, the system will smartly select patients to postpone by limiting the
impact on their time constraints and thus their RDI.

The objective function to maximize is the global RDI over the pool of
patients. We have developed two global criteria:

The first considered criterion was to maximize the minimal RDI among
the whole pool of patients. It is implemented by minimizing the schedules
makespan among all patients using iFlatRelax [24]. The schedule of a patient is
an interleaving of appointments and resting periods, followed by a “stub” activity
at the end. This stub is needed because all patients do not start their treatment
at the same time. That stub activity enables us to consider their treatment
duration instead of reasoning on their ending date. The implementation was
carried out using the OscaR.CBLS engine by extending an available iFlatRelax
for non-moveables tasks, forbidden zones and a more flexible model of resources.
This criteria may look fair but patients with the highest “healing chances at
start” (e.g. with no dose reduction) could be considered as “neglected”.

Consequently, we considered a second criterion: the maximisation of the
summed RDI of all patients in the pool. This can be modelled as a tardiness
problem, i.e. overshot of a given point in time (patient dependent) multiplied by
a constant. This problem is widely studied and was solved using a task swapping
neighbourhood starting from a solution provided by iFlatRelax because it was
tightly packed and computed very quickly.

3.4 Validating Fairness

Achieving a good level of validation of care pathways in a real day hospital setting
environment is tricky not only because of organisational complexity but also
because the collected data fall usually within a few standard scenarios. In order
to understand the system under stressed conditions, we designed a complete
simulation environment [34]. It has the ability to run over accelerated time. It is
composed of a scenario driver able to execute scenario with specific profiles (e.g.
adverse unexpected events, high load, etc). Event can also be injected through
the standard web-based nurse interface. In addition, a KPI component records
all important indicators such as RDI for all patients and the system load.

Several simulation sessions were organised together with oncology practition-
ers involving three hospitals (UCL/Cancer Institute, Grand Hospital of Charleroi
and UZ Leuven). Typical simulation setting is a realistic unit of 10 bed capacity
per day, i.e. 50 beds per week resulting in a 150 beds theoretical pathway capac-
ity. We report here about the following two scenarios more specifically related
to fairness:

– progressive load increase until reaching service saturation
– adverse serie of event systematically targeting the same subset of patients
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Scenario 1 - Progressive Load Increase. The scenario is to progressively
increase the load starting from an empty pathway until overflowing the unit
capacity after about 40 weeks as a result of a greater number of patient entering
the pathway than those leaving it. This capacity is about 80% due to the fact
that treatment time is actually less than one day and the remaining time is not
enough to fit an extra patient.

Figure 4 confirms the good stability of the system: the minimal RDI is kept
constant as well as the foreseen load over the next weeks.

Fig. 4. Statistics for a long run simulation reaching saturation.

When looking at the variability in RDI across the patient pool, one can see
the variability is quite contained and all RDI are kept above 90%. This vari-
ability usually result for single days of delay accumulating. Once the saturation
is reached, however the system clearly shows it cannot cope anymore with RDI
degrading below the acceptable 85% threshold and a wider variation (Fig. 5).

Fig. 5. KPIs for a long run simulation reaching saturation (about at tick 500 of the
scheduler, each tick is a replanning event).

Scenario 2 - Adverse Events of a Defined Patient Subset. In this scenario,
a patient is declared unavailable at the ideal delivery date and also at the three
following days, as depicted in Fig. 6 showing the nurse interface.
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Fig. 6. User interface for managing patient constraints and appointments.

Figure 7 shows that in this case, the system will plan the patient directly after
its unavailability period, resulting of course in an inevitable degradation of its
KPI (about at tick 7). However other patient in the workflow are not impacted
by this delay.

Fig. 7. Effect of a delay on the RDI of the patient pool.

4 Case Study 3 - Shared Shuttle System

4.1 Context

We consider here the problem of organising a shared pick-up and delivery service
for the Sam-Drive company (or just “Sam” in short) located in the suburbs of
Brussels in Belgium [8,25]. The Sam system has strong sustainability goals as
mobility is a big challenge [1]. Before introducing the software, it was managed
almost entirely manually.

However a number of key development goals required to consider introducing
automated optimisation tools such as:

– Decreasing operating costs by minimising time on road (including traffic jams)
and minimising driver idle time. This process will also decrease carbon emis-
sions resulting in a positive environmental impact.
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– Empowering the dispatching team. The previous situation was a poor IT solu-
tion (i.e. Excel sheets) putting stress on the team and also limiting the oper-
ational and growth capabilities.

– Implementing more complex pricing models. A key point is to encourage
ride sharing with a decreasing pricing model for people accepting to travel
with others and with some limited detour. This rewarding associated to this
behaviour is a form of fairness.

– Produce balance schedules for drivers. The company use low-qualified labour,
often unemployed people as drivers and offers them a secure job, in contrast
to precarious jobs proposed by the “app-driven” new economy, like Uber [42].
Related to fairness, optimisation is better than humans to meet driver pref-
erences and reach well-balanced schedules

4.2 Problem Statement and Fairness Requirements

Sam has two kind of clients, either for recurrent trips (typically for driving
kids to/from school or extra-scholar activities) and “one-shot” trips (e.g. air-
port shuttle). As a result different optimisation functions are necessary: build a
completely new schedule at the start of a semester, introduce extra trips in a
schedule (mainly acceptance check) and reoptimise trips before producing the
driver sheets.

For customers, the above two categories are not treated equally because there
is a long term commitment for recurring drives. However this does not impact
the quality of the schedule as it is managed before accepting a drive. Customers
constraints are mainly time windows for departure and arrival, the former being
generally more flexible. Customer may accepting a maximal detour. Its accept-
able value is still evolving but its is expressed as an extra fraction of the direct
drive time (like 50%) and possibly higher for short trips (e.g. 10 min for trips
under 10 min). The rule is of course unique and the point is that people gets a
discount proportional to the experienced detour time. Note recurring drives are
carried out with the same passengers and usually the same driver (except in case
of unavailability) because ruling out variability reduces risk of error/misunder-
standing and gives more trust.

For drivers, the following requirements are taken into account for planning
their schedules:

– working hours are defined for customers and are driver specific, e.g. some
drivers accept to work at night while other no.

– for night work, a (legal) recovery time is enforced
– work time is based on unit of minimal 4 h (i.e. 4 h are paid even if there is

only one drive). The scheduler must of course try to fill those minimal units
as much as possible for the company profitability.

A resulting schedule will be more or less satisfied by its schedules based on
different criteria such as how much it is paid for the time away from home,
number of unpaid pauses (i.e. for slots exceeding 4 h), tight schedules with no
time to come back home.
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4.3 Designing for Fairness

For customers, fairness is achieved through the following techniques:

– time windows are always respected for all customers through the use of strong
constraints

– the sharing behaviour is the default behaviour. The solver will decide on the
amount of detour and the client will be rewarded according to the rule. Trav-
elling alone is treated using an extra constraint. It is systematically applied
for some time critical cases like going to an airport to catch a flight.

– global schedulability is (roughly speaking) achieved in two phases: recurring
drives are planned two times a year (September, January: its is driven by the
school agenda) and fills up the capacity at specific times (mainly start/end of
day) leaving unallocated time for other drives (e.g. 9AM to 4PM). This drive
time is then allocated incrementally based on incoming requests. Of course
recurring drives can also evolve but in a smooth way.

For drivers, fairness among driver is not enforced by the engine itself given
the drivers have very different profiles. Of course, legal constraints such as off
time and rest time are enforced. Perceived fairness is tracked using specific KPI
measuring the day “compactness”, the presence or absence of unpaid pauses
and other elements that can positively or negatively contribute to satisfaction.
Those KPIs are available in a global dashboard for the dispatchers who can take
specific preventive or corrective measures. At some point it could also become
become part of the objective function.

4.4 Validating Fairness

This project is still in early validation phase and at this point the optimisa-
tion engine is only partly supporting the above fairness design and was not yet
specifically validated for fairness. This also includes discussion with customers
and drivers. For customers, surveys are currently ongoing to decide about the
choice of the maximal detour a passenger is ready to accept and about the
associated incentive. The idea is that the economic gain for sharing a ride is
substantially redistributed to customers and not kept as an extra profit. So far
this principle seems more important than the fine details of the redistribution
itself.

5 Some Lessons Learned and Recommendations

5.1 Identifying Fairness Requirements in the Application Domain

As stressed in the introduction, the concept of fairness is difficult to define pre-
cisely. It should always be investigated within the scope of a given system or
domain. Based on our experience, there a few entry points to identify fairness
requirements and more importantly the need to address them.
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– analysing the resource/task allocation process and related rules which may
have legal roots (e.g. rest time for night work) or be company specific (e.g.
permission to take break time at home for drivers). Starting from this, one
should try to understand if it results in a specific advantage or disadvantage
for the employee.

– the level of homogeneity of worker profile is also important to see if there is
or not a competition for getting the advantage or avoiding disadvantage. In
the Sam case, some drivers are interested by night work for the rest time or
extra money they get while others will prefer to stay within working hours
for health or family reasons. On the customer side, some can accept a detour
while others not and get a reward on the ride price. In this case fairness is
achieved through respecting preference as much as possible and/or enforcing
compensation. In the case of competition among more homogeneous profiles
(e.g. doctors having to perform a night shift once a month) then fairness
should be more carefully enforced in the allocation process itself as described
in the NiceWatch case. Other similar problems are scheduling shifted work in
continuous production environment or for train drivers.

– the process might also express fairness requirements in explicit terms, e.g.
patient equal access to care for ethical reasons. However this can translate
in more complex technical requirements when considering the global organi-
sation process like a clinical pathway because it needs to be combined with
complex dose delivery requirements required for example for a chemotherapy.

5.2 Validating Fairness Through Quantitative Indicators

Given fairness requirements are quite fuzzy and that is it difficult to understand
their impact, it is a good idea to try to quantify them through specific indicators.
This is not only interesting to define them but it makes also possible to deploy
some kind of monitoring before considering the need to take them into account
in the scheduling process itself.

For example, in the Sam case, the driver satisfaction is still being defined and
monitored. This process allows us to refine the definition in terms of positive and
negative factor to consider and their relative importance/impact. In the case of
NiceWatch, the indicators are integrated into the local search optimisation engine
and also clearly reported at a very detailed level.

In some case, standard indicator might also exist and they are naturally
adopted. For example, for cancer treatment the RDI has received been proposed
and validated in medical journals.

5.3 Capturing Fairness in Local Search

A local search solution is composed of a model and a search procedure. Con-
straints to be optimised can be captured either as part of the state (stronger
approach, not allowing violation) or has part of the objective function has pref-
erence and also allowing violations. Fairness is captured using the second mech-
anisms because they are not usually part of “core” constraints and also often
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added later in an improvement phase. Validated indicators easily translate into
specific contribution for the objective function like the patient RDI or driver
satisfaction.

In order to make the search more efficient, the search procedure might use
specific neighbourhoods that will prioritise the search to favour fairness. For
example, in the NiceWatch case, the affinity function is exactly that: it will select
a doctor matching the preference but also favouring a deficit in fulfilling those
preference in the past (to compensate on the long term). Although implemented
in an ad-hoc way in this case, CBLS frameworks such as OscaR.CBLS offers
facilities (invariants) to easily implement such selection in a very efficient way.

5.4 Evidencing Fairness

Claiming fairness is not enough: a system must be able to generate convincing
evidence to people challenging it is achieved. In order to achieve this, one can
either use a black box or white box techniques.

The black box approach is to just look at the result and check the claimed
indicator without looking inside the optimisation process. This also require to
monitor on a longer period if fairness is achieved over time (e.g. a few month
for night watches). It does also not provide evidence the process will continue to
behave as expected.

The white box approach is to be able to provide full transparency of the
optimisation process itself. The process should provide an explanation of how it
took a decision according to well defined rules and that is was not manipulated.
This approach was taken for NiceWatch and also was one of the motivation for
using an ad-hoc solver. While a off-the self solution could achieve higher quality
results (i.e. less discomfort) than our approach and also cope with fairness, it is
hard to achieve a good level of transparency with them and hence there is a risk
of early rejection. Our approach on the contrary is able to achieve transparency
about “even discomfort”. It has also the capability to evolve to reduce the level
of discomfort. In the end, the overhead of having to implement the algorithms
without relying on a framework is also not so high when balanced with those
advantages.

Other important related points are:

– in order to be easy to understand, the rules should not be overly complex,
otherwise the explanation will be difficult to understand and people will not
trust the system to be fair.

– the explanations generated by the solver should processed for maximising
their understanding by the users: raw “listing” should be avoided and graphics
should be favoured over tables aligning numbers.

– execution should be deterministic to make sure it is not altered by repeated
runs.
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5.5 Anticipating Fairness Issues

In specific cases, an on-line interface might help in critical process which may
alter fairness. An example for care pathway is to fix the next appointment
date for a patient with some unavailability: the system can provide a direct
feedback on a safe date range for the patient and not altering other sched-
ules. On the day clinic side, resource availability should also be secured (nurses,
rooms) and checked as early as possible in specific application (e.g. holiday and
cleaning/maintenance). Another example for the Sam system is that an incoming
request is first examined for feasibility before being accepted and fully optimised.

6 Related Work

In this section, we review experiences reported by other in the same domains
as our case study (hospital, routing) but also other domains like airlines, com-
munication networks, education. We also consider other optimisation techniques
than local search.

6.1 Doctor and Nurse Scheduling Problems

In DSP, fairness constraints are identified along other constraints and typically
formulated as the fair distribution of different types of shifts among doctors with
the same experience in [14]. Fairness received specific attention in the emergency
room context [10,11,36].

MIP based heuristics have been used to create balanced scheduling from the
set of doctors [10]. Integer programming has also been used to take into account
constraints of the schedule, different preference ranks w.r.t. shifts, and the histor-
ical data of previous schedule periods to maximize the global satisfaction about
the proposed shift schedule [18]. The resulting shifts and days-off were fair and
met the staff satisfaction.

In local search, an objective function is expressed as a weighted sum of soft
constraint violations. Such an objective function has the advantage of being
both easy to understand and to implement. However, they can produce unfair
solutions because some high quality allocations can compensated low quality
ones. A solution proposed by [37] is to use a function where the quality of the
worst individual allocation will directly impact the overall solution quality. In
doing so, a planing will not be improved at the expense of the worst individual
case. Experimental results have confirmed the resulting solution is more fair,
nevertheless a drawback is that the search seems less efficient given the new
structure of the function. In addition to the lack of explanation traceability, this
reinforces us about our dedicated approach.

A complete overview of techniques for NSP with some hint about how to
come with personal constraints is presented in [5]. Evolutionary algorithms are
quite commonly used and an approach for the formulation of the fitness function
has proven to be very powerful both to enable extendibility and to provide a
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quick and explanatory mechanism. We achieved the same results using our own
approach and our belief is that the technique used is not the key point but
rather the ability to take into account the right set of constraints, including
historical data as well as the ability to produce justifications. The requirement
for traceability also favour better architecture which in turn ease the ability to
deal with more complex real-world constraints.

6.2 Fairness Indicator and Strategies

A number of fairness indicators (or metrics) have been defined, often in the
context of economics for measuring the distribution of wealth or more technically
in computer networks for solving the problem of bandwidth allocation.

– the Max-Min Fairness (MMF) is achieved if trying to “favour” (i.e. allocate
more resource) someone can only be achieved by “defavouring” someone else.
As a result, resources are optimised by raising priority to smaller demands [3].

– the Jain Fairness Indicator (JFI) is a way to rate fairness of allocation
between n users. It maximal value is 1 is reached upon equal allocation while
its worst value (1/n) means a single user gets all the resource [16].

– the Generalized Gini Indicator (GGI) is a well-know inequality measure
defined in economics and used both for fairness and Pareto-efficiency [26,41].
It is a weighted sum of function measuring the deviation from the point of
equality for each element. It is suitable to use in multi-objective optimisation
because it can achieved a balanced cost vector [6].

Such indicators have also been used in other domains. For example, the
curriculum-based course timetabling (CB-CTT) considers the problem of cre-
ating fair course timetables in an university context. To manage fairness, a key
idea is that violations of soft constraints in the produced timetables, should be
distributed in a fair way among the stakeholders. The above approaches based
of max–min fairness and Jain’s fairness index have both been studies [23]. In
aircraft landing, the fairness can be measured through comparing against the
initial schedule either on a relative scale or as absolute deviation. The fairness is
then achieved by minimising the maximal deviation, which has similarities with
max-min approach and GGI.

In our case studies we have not explicitly used those indicators. However our
initial strategy for fair scheduling of care pathway was actually close to a max-
min criteria over the patient RDI. For night watches, we use a domain specific
affinity indicator which includes a fairness component. At this point with have
not used multi-objective techniques and not considered the GGI.
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7 Conclusion

In the paper, we investigated about how to cope with fairness while optimising
systems. We took a practical approach based on the analysis of three cases studies
in different domains. We analysed how fairness requirements could be identified,
modelled, implemented and validated, in the specific local search context. By
putting together those cases and looking at related work, we could produce a set
of recommendations aiming at providing some guidance across the full lifecycle
from capturing fairness within a specific domain to presenting how they are
addressed in an effective way. While not exhaustive, we believe our work can
help practitioners having to address fairness requirements. For example, we got
interesting feedback about the importance of perceived fairness over the level of
quality of a solution, which motivated the choice to design a less efficient but
highly adaptable and traceable solution for the NiceWatch case [33].

As future work, we plan to keep elaborating a more structured and complete
knowledge body for this important kind of constraint, possibly also attract-
ing other contributors to this effort. A first task is to enrich our guidelines by
analysing more cases from our own experience and from the literature (with
some of them already highlighted in our related work section). Based on this,
we also plan to provide a more complete taxonomy of fairness from the require-
ments engineering point of view. Finally, we also plan to consider a wider range
of implementation techniques than the current scope limited to local search.
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