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Abstract This paper is a surveyon the theoryof knotoids andbraidoids.Knotoids are
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1 Introduction

The theory of knotoids was introduced by Turaev [31] in 2012. A surface knotoid is
an oriented curve with two endpoints, in an oriented surface, having finitely many
self-intersections that are endowed with under/over data. The endpoints can be in
different regions of the diagram. This definition extends the notion of (1, 1)-tangle
whose endpoints can assumed to be fixed at the boundary of the disk where the tangle
lives. The theory of knotoids in the 2-sphere extends the theory of classical knots
and also proposes a new diagrammatic approach to classical knot theory [31]. In [31]
basic notions of knotoids were studied comprehensively, including the introduction
of several invariants of knotoids in the 2-sphere, such as the complexity (or height)
and the Jones/bracket polynomial. Knotoids in S2 were classified by Bartholomew
in [5] and up to 5 crossings by using a generalization of the bracket polynomial for
knotoids that was defined by Turaev. There is also a recent classification table for
prime knotoids of positive height with up to 5 crossings [23] given by Korablev,
May and Tarkaev, obtained by using the correspondence between the knotoids in S2

and the knots in thickened torus. The first and the second listed authors introduced
several new invariants in [12, 14] in analogy with invariants from virtual knot theory.
Recently, knotoids have been studied in the field of biochemistry as they suggest
new topological models for open linear protein chains. The invariants introduced in
[12, 14, 31] have been used for determining the topological entanglement of open
protein chains in [10, 11]. Some other recent works on knotoids are on biquandle
coloring invariants, by the first listed author and Nelson [18], and on the study of
knots that are knotoid equivalent, by Adams, Henrich, Kearney and Scoville [1]. See
further [15, 19, 22].

Further, in [12, 16, 17] the theory of braidoids is initiated by the first and the last
authors in relation to the theory of planar knotoids. A braidoid diagram extends the
notion of classical braid diagram [3, 4] with extra ‘free’ strands that initiate/terminate
at two endpoints located anywhere in the plane of the diagram. The closure operation
for braidoids requires special attention due to the presence of the endpoints and
their forbidden moves, while a ‘braidoiding’ algorithm turning any planar knotoid
diagram into a braidoid diagram is the proof of an analogue of the classical Alexander
theorem [2, 7, 9, 20, 25, 26, 29, 32, 35] for knotoids. With the introduction of L-
moves on braidoids, which were originally defined for classical braids by the last
author [24–26], a geometric analogue of the classical Markov theorem [6–8, 24–26,
28–30, 33] for braidoids is enabled. In [12, 13, 16] a set of combinatorial elementary
blocks for braidoids is also introduced, which are proposed in [16] for an algebraic
encoding of the entanglement of open protein chains in 3-dimensional space.

The outline of the paper is as follows. In Sect. 2 we review the basic notions of
knotoids and in Sect. 3 we present closure types for knotoids for obtaining knots.
In Sect. 3.3 we focus on the spherical knotoids and how they extend the classical
knot theory. In Sect. 4 we present geometric interpretations for spherical and planar
knotoids. In Sect. 5 we survey through the existing works and results on the invariants
of knotoids. In Sect. 6 we review the fundamental notions of braidoids. In Sects. 6.3
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and 6.4, we present the key elements for proving an analogue of the Alexander
theorem for knotoids/multi-knotoids. In Sect. 6.5 we reprise the definition of the L-
moves on braidoid diagrams that give rise to an analogue of the Markov theorem for
braidoids. Finally, in Sect. 7 we present the applications of knotoids to the study of
proteins where we also review the building blocks for braidoid diagrams, which is
proposed to be used in encoding open protein chains by algebraic expressions.

2 Knotoids and Knotoid Isotopy

2.1 Knotoid Diagrams

Let � be an oriented surface. A knotoid diagram K in � [31] is an immersion of
the unit interval [0, 1] in � with a finite number of double points each of which is a
transversal self-intersection endowed with over/under data. Such self-intersections
of K are called crossings of K . The images of 0 and 1 are two distinct points called the
endpoints of K and are specifically called the leg and thehead, respectively.Aknotoid
diagram is naturally oriented from its leg to its head. The trivial knotoid diagram is
assumed to be an immersed curvewithout any self-intersections as depicted in Fig. 1a.

The notion of knotoid can be extended to include more components. A multi-
knotoid diagram in � is a union of a knotoid diagram and a finite number of knot
diagrams [31].

2.2 Moves on Knotoid Diagrams

Planar isotopy moves generated by the �0-move and the Reidemeister moves �1,
�2,�3 (see Fig. 2) that take place in a local disk free of any endpoints are allowed on
knotoid diagrams. A special case of planar isotopymoves that involves an endpoint is
a swing move, whereby an endpoint can be pulled within its region, without crossing
any other arc of the diagram, as illustrated in Fig. 2. We refer to all these moves as
�-moves of knotoids.

(a) (b) (c) (d) (e)

Fig. 1 Examples of knotoid diagrams
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Fig. 2 The moves generating isotopy on knotoid diagrams

Fig. 3 Forbidden knotoid
moves

The moves consisting of pulling the arc adjacent to an endpoint over or under a
transversal arc, as shown in Fig. 3, are the forbidden knotoid moves and are denoted
by �+ and �−, respectively. Notice that, if both �+ and �−-moves were allowed,
any knotoid diagram in any surface could be clearly turned into the trivial knotoid
diagram.

2.3 Knotoids

The �-moves generate an equivalence relation on knotoid diagrams in �, called
knotoid isotopy. Two knotoid diagrams are isotopic to each other if there is a finite
sequence of �-moves that takes one to the other. The isotopy classes of knotoid
diagrams in � are called knotoids. The equivalence relation defined on knotoid
diagrams applies also to multi-knotoid diagrams, and the corresponding equivalence
classes are called multi-knotoids.

Let K(R2) and K(S2) denote the set of all knotoids in R2 and S2, respectively.
We shall call knotoids in K(R2) planar and knotoids in K(S2) spherical.

There is a surjective map [31]

ι : K(R2) ↪→ K(S2),
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induced by the inclusion R2 ↪→ S2 = R2 ∪ {∞}. However, the map ι is not injective.
Indeed, there are knotoid diagrams in the plane representing a nontrivial knotoid
while they represent the trivial knotoid in S2. For an example, see Fig. 1b. It is well-
known that the knot theory of the plane coincideswith the knot theory of the 2-sphere,
while the non-injectivity of the map ι implies that the theory of knotoids in R2 differs
from the theory of knotoids in S2, also yields a more refined theory than the theory
of spherical knotoids.

3 Knotoids, Classical Knots and Virtual Knots

3.1 Classical Knots via Knotoids

In [31] the study of knotoid diagrams is suggested as a new diagrammatic approach to
the study of knots in three-dimensional space, as any classical knot can be represented
by a knotoid diagram in R2 or in S2. More precisely, the endpoints of a knotoid
diagram can be connected with an arc in S2 that goes either under each arc it meets
or over each arc it meets, as illustrated in Fig. 4. This way we obtain an oriented
classical knot diagram in S2 representing a knot in R3. The connection types are
called the underpass closure and the overpass closure, respectively. The knot that is
represented by a knotoid diagram may differ depending on the type of the closure.
For example, the knotoid in Fig. 4 represents a trefoil via the underpass closure and
the trivial knot via the overpass closure.

In order to have a well-defined representation of knots via knotoids, we should
fix the closure type for knotoid diagrams. When we choose the underpass closure as
closure type, we have the following proposition. The statement of the proposition is
symmetric for the overpass closure.

Proposition 1 ([31]) Two knotoid diagrams in S2 orR2 represent the same classical
knot if and only if they are related to each other by finitely many �-moves, swing
moves and the forbidden �−-moves.

Given aknot in S3.Wecan also consider cuttingout anunderpassingor anoverpassing
strand of an oriented diagram of the knot. The resulting diagram is clearly a knotoid

Fig. 4 The overpass and the
underpass closures of a
knotoid diagram resulting in
different knots
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diagram in the plane or the 2-sphere. In fact we can obtain a set of knotoid diagrams
by cutting out different strands and the resulting knotoid diagrams all represent the
given knot via the underpass or the overpass closure. Knotoid representatives of a
knot in S3 clearly have less number of crossings than any of the diagrams of the knot.
For this reason, use of knotoid diagrams to study knots in S3 provides a considerable
amount of simplification for computing knot invariants, such as the knot group [31].

Another interesting question in relationwith the knotoid closures has been recently
worked in [1]. Two knots K1, K2 in S3 are said to be knotoid equivalent if there exists
a knotoid κ such that K1 is the underpass closure of κ and K2 is the overpass closure
of κ . So the question is: Which pairs of knots are knotoid equivalent? The authors
proved the following theorem.

Theorem 1 ([1, Theorem 2.3]) Given any two knots K1, K2 in S3, K1 is knotoid
equivalent to K2.

3.2 Virtual Knots via Knotoids

The endpoints of a knotoid diagram in S2 can be tied up also in the virtual way.
Namely, the endpoints of a knotoid diagramcan be connectedwith an arc by declaring
each intersection of the arc with the diagram as a virtual crossing, as illustrated in
Fig. 5. This induces a non-injective (e.g. the knotoids in Fig. 5 are different) and
non-surjective mapping from the set of knotoids in S2 to the set of virtual knots of
genus 1, called the virtual closure map [15]. Being a well-defined map, the virtual
closure map provides a way to extract invariants for knotoids from the virtual knot
invariants. In fact, most of the new invariants of knotoids that the first and the second
authors have discovered in [14] and we briefly mention in Sect. 3.3, are the result of
using the principle that the virtual knot class of the virtual closure of a knotoid is an
invariant of the knotoid.

Fig. 5 The virtual closure of
two knotoids



A Survey on Knotoids, Braidoids and Their Applications 395

3.3 Spherical Knotoids Extend the Classical Knot Theory

There is awell-defined injectivemap from the set of oriented classical knots toK(S2)
[31]. This map is induced by specifying an oriented diagram for a given oriented
knot in S3 and cutting out an open arc from this diagram that does not contain any
crossings. The resulting diagram is a knotoid diagram in S2 with its endpoints lying
in the same local region of S2. Such a knotoid diagram is a knot-type knotoid diagram
and the isotopy class of the diagram is a knot-type knotoid. Figure1a, b and e are some
examples of knot-type knotoid diagrams. It is clear that this map gives a one-to-one
correspondence between the set of oriented classical knots and the set of knot-type
knotoids in S2. There are also knotoids that do not lie in the image of this map. They
are called proper knotoids. The endpoints of any of the representative diagram of a
proper knotoid can lie in any but different local regions of the diagram. Figure1c, d
illustrate some examples of proper knotoids.

3.3.1 The Monoid of Knotoids

As Turaev explains in [31], two knotoids K1, K2 in S2 can be concatenated end-to-
end in the following way. One can cut out regular disk-neighborhoods of the head
of K1 and the leg of K2 and identify the remaining surfaces with boundary along
their boundaries with an orientation-reversing homeomorphism carrying the unique
intersection point of K1 with the regular neighborhood of the head of K1 to the unique
intersection point of K2 with the regular neighborhood of the leg of K2. The resulting
diagram is a composite knotoid diagram in S2, denoted by K1#K2. Equippedwith the
binary operation #, the set of spherical knotoids, K (S2), carries a monoid structure
[31].

4 Geometric Interpretations of Knotoids

4.1 A Geometric Interpretation of Spherical Knotoids

A �-graph is a spatial graph with two vertices v0, v1, called the leg and the head
respectively, and three edges, e+, e0, e− connecting v0 to v1, as exemplified in Fig. 6.
The isotopy on �-graphs is defined to be the ambient isotopy of the 3-dimensional
space preserving the labeling of vertices and the edges, and the set of �-graphs
consists of the isotopy classes of �-graphs.

There is a binary operation on the set of�-graphs, called the vertex multiplication
[34] given as follows. Let �1 and �2 be two �-graphs, take out an open 3-disk
neighborhood of the head of �1 and an open 3-disk neighborhood of the leg of
�2, each intersecting with the graphs along 3-radii (simple parts from e0, e+, e−).
Then identify the remaining manifolds with boundary along their boundaries with
an orientation-reversing homeomorphism. With the vertex multiplication, the set of
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Fig. 6 A knotoid and the corresponding simple �-graph

�-graphs forms a monoid. A �-graph is called simple �-graph if the union of its
edges, e+ and e− (the upper and the lower edge, respectively) is the trivial knot.
Simple �-graphs form a submonoid [31].

Turaev showed the following correspondence between the spherical knotoids and
the simple �-graphs that gives also rise to a geometric interpretation of spherical
knotoids via �-curves.

Theorem 2 ([31, Theorem 6.2]) There is an isomorphism of monoids of spherical
knotoids and of simple �-graphs.

4.2 A Geometric Interpretation of Planar Knotoids

It is explained in [14] that the theory of planar knotoids is related naturally to open
space curves on which an appropriate isotopy is defined. An open curve located
in R3 corresponds to a planar knotoid diagram when projected regularly along the
two lines passing through its endpoints and are perpendicular to a chosen projection
plane. View Fig. 7. Conversely, an open space curve with two specified parallel lines
passing from its endpoints can be viewed as a lifting of the related knotoid diagram.
A line isotopy [14] between two open space curves is an ambient isotopy of R3

transforming one curve to the other one in the complement of the lines, keeping the
endpoints on the lines and fixing the lines. The isotopy classes of planar knotoids
(considered in the chosen projection plane) are in one-to-one correspondence with
the line isotopy classes of open space curves [14]. Furthermore, in [21] Kodokostas
and the third author make the observation that this interpretation of planar knotoids
as space curves is related to the knot theory of the handlebody of genus two and they
propose the construction of knotoid invariants through this connection. These ideas
are further explored in [22].

5 Invariants of Knotoids

In [14, 31] several invariants for knotoids are introduced. One of the first invariants
introduced by Turaev [31] was the the bracket and the Jones polynomial for kno-
toids. The bracket polynomial extends to spherical knotoids in the natural way. More
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Fig. 7 Projections of an
open space curve as a
knotoid diagram

precisely, the bracket expansion is directly applied to knotoid diagrams as shown in
Fig. 8, and in each state we observe a single long segment component with endpoints
and a finite number of circular components. Each circular component contributes to
the polynomial by the value −A−2 − A2. The initial conditions given in Fig. 8 are
sufficient for the computation of the bracket polynomial of a knotoid. The closed
formula for the bracket polynomial of knotoids is as follows.

Definition 1 The bracket polynomial of a knotoid diagram K is defined as

< K >= ∑
S A

σ(S)d‖S‖−1,

where the sum is taken over all states, σ(S) is the sum of the labels of the state S,
‖S‖ is the number of components of S, and d = −A2 − A−2.

The bracket polynomial of knotoids in S2 normalized by the writhe factor,
(−A3)−wr(K ), generalizes the Jones polynomialwith the substitution A = t−1/4.Note
that the Jones polynomial of the trivial knotoid is trivial. Furthermore, the following
conjecture [14] extends the long-standing Jones polynomial conjecture.

Conjecture 1 The Jones polynomial of spherical knotoids detects the trivial knotoid.

Some other generalizations of the Jones polynomial are: Turaev’s 2-variable
bracket polynomial [31] that is obtained by a use of the intersection number of the
connection arc used in the underpass closure with the rest of the diagram and also
with the state components, and the arrow polynomial [14] that keeps track of the
cusp-like structure (see Fig. 11) arising in the oriented bracket expansion (see Fig. 10
for the oriented state expansion) by assigning new variables namely 
i ’s to zig-zag
components. There is a special generalization of the bracket polynomial for planar
knotoids induced by distinguishing the circular state components nested around the
long segment component from the circular state components that do not nest around
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Fig. 8 State expansion of the bracket polynomial

Fig. 9 An affine biquandle
coloring on knotoid
diagrams

the long segment component. Turaev defined the 3-variable bracket polynomial [31]
for planar knotoids based on this idea and the loop bracket polynomial, which is a
specialization of the 3-variable bracket polynomial, was utilized in [11] to classify
the knotoid models of protein chains (see Sect. 7). Similarly the first and the second
listed authors introduce the arrow loop polynomial in [15].

Furthermore, the affine index polynomial, given in [14], is induced by a non-trivial
biquandle structure on knotoid diagrams (see Fig. 9), and a number of biquandle
coloring invariants were studied in [18].

There is also a well-defined parity assigned to crossings of (planar or spherical)
knotoid diagrams. The Gaussian parity is a mapping that assigns each crossing of a
knotoid diagram to either 0 or 1. The importance of an existing parity for knotoids
comes from the fact that there is no nontrivial parity for classical knot diagrams.
Some parity based invariants for knotoids such as the odd writhe and the parity
bracket polynomial [27] were studied in [14].
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Fig. 10 Arrow state sum
expansion

Fig. 11 Cusps

Proper knotoids give rise to interesting questions related to their intrinsic nature,
such as the crossing-wise distance between the endpoints, the so-called height. More
precisely, the height of a knotoid diagram in S2 [31] is the least number of crossings
created when the endpoints are joined up by an underpassing strand. The height of
a knotoid is the minimum of the height of knotoid diagrams in its equivalence class
and so forms an invariant for knotoids.

The first and the second listed authors showed that the affine index polynomial and
the arrow polynomial establish lower bound estimations for the height of a knotoid.
More precisely we have the following lower bound estimations for the height of a
knotoid.
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Theorem 3 ([14, Theorem 4.12]) The height of a knotoid is greater than or equal
to the maximum degree of its affine index polynomial.

Theorem 4 ([14, Theorem 5.1]) The height of a knotoid is greater than or equal to
the 
-degree of its arrow polynomial.

The interested reader is referred to [15, 19] for ongoing works on knotoids regard-
ing the parity aspect of knotoids and a Khovanov homology construction in analogy
with the Khovanov homology for virtual knots/links [19], respectively.

6 The Theory of Braidoids

In this section we reprise the fundamental notions of braidoids introduced by the first
and the last listed authors. Braidoids are defined as to form a braided counterpart
theory to the theory of planar knotoids.

6.1 Braidoid Diagrams

Let I denote the unit interval [0, 1] ⊂ R. A braidoid diagram B is an immersion
of a finite union of arcs into I × I ⊂ R2. The images of arcs are called strands of
B. There are only finitely many intersection points among the strands of B which
are transversal double points endowed with over/under data, the crossings of B.
We identify R2 with the xt-plane with the t-axis directed downward. Following the
orientation of I , each strand is naturally oriented downward, with no local maxima
or minima, so that it intersects a horizontal line at most once.

A braidoid diagram has two types of strands, the classical strands and the free
strands. A classical strand is as a braid strand with two ends, one lying in I × {0}
and the other lying in I × {1}. A free strand is a strand that either has one of its ends
lying in I × {0} or in I × {1} and the other end lying anywhere in I × I or it has
two of its ends lying anywhere in I × I . There are two such free ends, called the
endpoints of B and are denoted by a vertex to be distinguished from the fixed ends.
For examples see Fig. 12. The two endpoints are called the leg and the head and are
denoted by l and h respectively, in analogy with the endpoints of a knotoid diagram.
The head is the endpoint that is terminal for a free strand while the leg is the starting
endpoint for a free strand, with respect to the orientation.

The other ends of the strands of B are named braidoid ends. Each braidoid end is
numbered accordingly to its order from left to right. Braidoid ends lie equidistantly
and two braidoid ends having the same order on {t = 0} and {t = 1} are vertically
aligned. Two braidoid ends whose orders coincide are called corresponding ends.
See the examples in Fig. 12.
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(a) (b) (c) (d)

Fig. 12 Some examples of braidoid diagrams

6.2 Isotopy Moves on Braidoid Diagrams

We allow on braidoid diagrams the oriented Reidemeister moves �2 and �3 (recall
Fig. 2), which preserve the downward orientation of the arcs in the move patterns. In
addition to thesemoves, the endpoints of a braidoid diagram can be pulled up or down
in the vertical direction by a vertical move, and right or left in the horizontal direction
by a swing move in the vertical strip determined by the neighboring corresponding
ends, as long as they do not intersect or cross through any strand of the diagram.
That is, the pulling of the leg or the head over or under any strand is forbidden. It is
clear that allowing both forbidden moves cancels any braiding of the free strands.

The braidoid isotopy is induced by keeping the braidoid ends fixed on the top and
bottom lines (t = 0 and t = 1, respectively) but allowing the Reidemeister moves
�2 and �3 and planar �-moves, as well as the swing and the vertical moves for the
endpoints. Two braidoid diagrams are isotopic if one can be obtained from the other
by a finite sequence of the above moves. An equivalence class of isotopic braidoid
diagrams is a braidoid.

6.3 A Closure on Braidoids

One way to define a closure operation on braidoid diagrams in order to obtain planar
(multi)-knotoid diagrams is by adding an extra property to braidoid diagrams. More
precisely, each pair of the corresponding ends in a braidoid diagram is labeled either
o or u, standing for ‘over’ or ‘under’, respectively. We attach the labels next to the
braidoid ends lying at the top line and call the diagram a labeled braidoid diagram.
Two labeled braidoid diagrams are called isotopic if their braidoid ends possess
the same labeling and they are isotopic as unlabeled diagrams. The corresponding
equivalence classes are called labeled braidoids.

Let B be a labeled braidoid diagram. The closure of B, denoted B̂, is a planar
(multi)-knotoid diagram that results from B by the following topological operation:
each pair of corresponding braidoid ends of B is joined up with a straight arc (with
slightly tilted extremes) that lies on the right of the line of the corresponding braidoid
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Fig. 13 The closure of an
abstract labeled braidoid
diagram

ends in a distance arbitrarily close to this line so that none of the endpoints is located
between the line and the closing arc. The closing arc goes entirely over or entirely
under the rest of the diagram according to the label of the ends. See Fig. 13 for an
abstract illustration of the closure of a labeled braidoid diagram.

Proposition 2 ([16, 17]) The closure operation induces a well-defined map from
the set of labeled braidoids to the set of planar (multi)-knotoids.

6.4 How to Turn a Knotoid into a Braidoid?

J.W.Alexander proved in 1923 that anyoriented classical knot/link canbe represented
by an isotopic knot/link diagram in braided form [2]. See also [9]. The proof of the
Alexander theorem by the last listed author [24–26] utilizes the L-braiding moves.
In [16, 17] the first and the last listed authors proved the following analogue of the
Alexander theorem for (multi)-knotoids by utilizing these moves.

Theorem 5 ([16, 17]) Any (multi)-knotoid diagram in R2 is isotopic to the closure
of a labeled braidoid diagram.

Let K be a (multi)-knotoid diagram whose plane is equipped with the top-to-
bottom direction. The basic idea for turning K into a braidoid diagram is to keep the
arcs that are oriented downward, with respect to the top-to-bottom direction, and to
eliminate the ones that are oriented upward (up-arcs), producing at the same time
pairs of corresponding braidoid strands, such that the (multi)-knotoid resulting after
closure is isotopic to K . The elimination of the up-arcs is done by the braidoiding
moves.

An L-braidoiding move consists in cutting an up-arc at a point and pulling the
resulting two pieces, the upper upward to the line t = 1 and the lower downward
to the line t = 0, both entirely over or under the rest of the diagram. The resulting
pieces are pulled so that their ends are kept aligned vertically with the cut-point.
Finally the lower piece is turned into a braidoid strand by �-moves. See Fig. 14. For
the purpose of closure, the resulting pair of strands is labeled o or u depending on our
choice we make for pulling the upper and lower pieces during the braidoiding move.
The reader is referred to Fig. 14 for an illustration of an L-braidoiding move where
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Fig. 14 An L-braidoiding move

it can be also verified that the closure of the resulting strands labeled o is isotopic to
the initial up-arc.

Theorem 5 is proved by applying any one of the braidoiding algorithms. These
algorithms are both based on the L-braidoiding moves. In Fig. 15 we illustrate the
steps of the algorithm that is given in [17]. As for the algorithm in [20] turning
any virtual knot/link diagram into a virtual braid diagram, we start by rotating each
crossing containing one or two up-arcs by π

2 or π , respectively, so that we end up
with a knotoid diagramwhose up-arcs are all free of any crossings. All of these ‘free’
up-arcs are given an order and a labeling of o or u each, and are eliminated by the L-
braidoidingmoves one by one. The algorithm terminates in finite steps and results in a
labeled braidoid diagram inFig. 15. The algorithm in [17]which is based on [26], uses
braidoiding moves for up-arcs in crossings and is more appropriate for establishing
Markov-type theorems for braidoids (see Theorem 6). Yet, an added value of the first
algorithm is the following consequence: Any (multi)-knotoid diagram is isotopic to
the uniform closure of a braidoid diagram [12, 17].

6.5 L-Equivalence

It is clear that due to the choices made in order to prepare a (multi)-knotoid diagram
for a braidoiding algorithm (such as subdivision and labeling of the up-arcs) as
well as knotoid isotopy moves, we obtain different braidoid diagrams with possibly
different numbers of strands and labels. The question that would lead to a Markov-
like theorem for braidoids is to ask how these braidoid diagrams are related to each
other. Clearly, the braidoid isotopy does not change the number of strands nor the
labeling, so braidoid isotopy is not sufficient for determining such relations. The first
and the last listed authors showed in [16, 17] that the L-moves on braidoid diagrams
provide an answer to this question.

An L-move on a braidoid diagram B consists in cutting a strand of B at an interior
point, not vertically aligned with a braidoid end or an endpoint or a crossing, and
then pulling the resulting ends away from the cutpoint to the top and bottom of B
respectively, keeping them aligned with the cutpoint, and so as to create a new pair of
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Fig. 15 An example showing how the algorithm works

Fig. 16 L-moves

corresponding braidoid strands. See Fig. 16 for an illustration of an L-move. There
are two types of L-moves, namely Lo and Lu . For an Lo-move the pulling of the
resulting new strands is entirely over the rest of the diagram. For an Lu-move the
pulling of the new strands is entirely under the rest of the diagram. The two resulting
strands are both labelled according to the type of the L-move. See Fig. 16.

The above definition provides us with the following result, which is an analogue
of the classical Markov theorem.
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Fig. 17 The configuration
of the backbone of the
protein 3KZN in 3D and its
simplified configuration;
image from Dimos
Goundaroulis, private
communication

Theorem 6 ([12, Theorem 13]) The closures of two labeled braidoid diagrams are
isotopic (multi)-knotoids inR2 if and only if the labeled braidoid diagrams are related
to each other by a finite sequence of L-moves and braidoid isotopy moves.

7 Applications

7.1 Applications to the Study of Proteins

The correspondence of line isotopy classes of open space curves and isotopy classes
of planar knotoids suggests that a topological analysis of linear physical structures
lying in 3-dimensional space can be done by simulating them by open space curves
and by taking their orthogonal projections. Through this idea, knotoids, both in S2

and R2, have found important applications in the study of open protein chains [10]
(see Fig. 17 for an example), aswell as of open protein chainswith chemical bonds via
introducing the notion of bonded knotoids [11]. In these papers, open protein chains
are studied via their projections into planes. The corresponding knotoid classes are
considered in the 2-sphere and in the plane, and they are classified by using the
(normalized) bracket polynomial and the Turaev’s loop bracket polynomial [11, 31],
respectively. In Fig. 18we see three atlases that contain colored regions. Each of these
colored regions corresponds to one topological class of the protein 3KZN when it is
closed to some knot, and when it is projected to a knotoid, a spherical knotoid and
a planar knotoid, respectively. As seen from Fig. 18, the number of colors increases
as we go from the knot representation to the planar knotoid representation. By this
data, the authors concluded that planar knotoids yield a more refined analysis for
understanding the topological structure of open protein chains than knots or spherical
knotoids [11]. This is due to the facts that more knotoids close to the same knot and
that the classification of knotoids in the plane ismore refined than the classification of
spherical knotoids. For example a trivial knotoid in S2 may happen to be a non-trivial
knotoid when considered in R2 as we discussed in Sect. 2.3.
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(a)

(b)

(c)

Fig. 18 Atlases showing the topological analysis of 3KZN via knots, spherical knotoids and planar
knotoids, image from [11]
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Fig. 19 Elementary k-blocks

7.2 Elementary Blocks and a Proposed Application of
Braidoids

As demonstrated in [13, 16], any braidoid diagram can be divided into a finite number
of horizontal stripes, each containing one of the blocks that are depicted in Fig. 19.
The blocks consist of the classical braid generators, the identity elements containing
one endpoint, along with their extensions by the implicit points, which are empty
nodes put along the vertical direction of the endpoints, and along with the shifting
blocks, which result from the change of positioning of strands before or after the
appearance of an endpoint. A product on the set of elementary n-blocks and relations
with respect to this product, induced by the isotopy moves of the braidoid diagrams,
is further explored in [13]. Then, any braidoid diagram on n strands can be read,
from top to bottom, as a word that corresponds to a combination of finitely many
elementary n- or (n + 1)-blocks.

Any planar knotoid diagram can be turned into a (labeled) braidoid diagram by
Theorem 5, so it can be represented by an expression in terms of elementary blocks.
This suggests an algebraic encoding for open protein chains or, in general, for linear
polymer chains: they can be projected to planes and the resulting knotoid diagrams
can be turned into braidoid diagrams that have algebraic expressions. An example is
illustrated in Fig. 20, where the knotoid corresponding to protein 3KZN is turned into
a braidoid diagram, which is represented by the word l2σ 3

1 h2 in elementary blocks.
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Fig. 20 The knotoid of the
protein 3KZN and a
corresponding braidoid
diagram with algebraic
expression l2σ 3

1 h2
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