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Preface

This collection of papers originates from the conference: International Conference
on Knots, Low-Dimensional Topology and Applications—Knots in Hellas 2016.
The conference was held at the International Olympic Academy, Ancient Olympia,
Greece from July 17–23, 2016. The conference was an occasion to celebrate the
70th birthday of Louis H. Kauffman.

The website for the conference is: https://toce27.wixsite.com/knotsinhellas2016.
The link includes detailed information on the organization of the conference,

such as copies of talks given at the conference, photos and videos, as well as the
members of the International and Local Committees, to all of whom, as well as to
the staff of the International Olympic Academy, we are indebted for their work
toward the realization and the success of the Conference.

The goal of this international cross-disciplinary conference was to enable
exchange of methods and ideas as well as exploration of fundamental research
problems in the fields of knot theory and low-dimensional topology, from theory to
applications in sciences like biology and physics, and to provide high-quality
interactions across fields and generations of researchers, from graduate students to
the most senior researchers. In this sense, this volume is one of the few published
books covering and combining these topics.

This volume features cutting-edge research papers written by conference par-
ticipants. The authors were asked to include illuminating state-of-the-art surveys
and overviews of their research fields and of the topics they presented in the
conference. The book is expected to be most useful for researchers who wish to
expand their research to new directions, to learn about new tools and methods in the
area, and need to find relevant and recent bibliography.

The focal topics include the wide range of classical and contemporary invariants
of knots and links and related topics such as three- and four-dimensional manifolds,
braids, virtual knot theory, quantum invariants, braids, skein modules and knot
algebras, link homology, quandles, and their homology; hyperbolic knots and
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geometric structures of three-dimensional manifolds; and the mechanism of topo-
logical surgery in physical processes, knots in nature in the sense of physical knots
with applications to polymers, DNA enzyme mechanisms, and protein structure and
function.

We proceed now to give summaries of the chapters.
The chapter “A Survey of Hyperbolic Knot Theory” by David Futer, Efstratia

Kalfagianni, and Jessica S. Purcell surveys tools and techniques for determining
geometric properties of a link complement from a link diagram. In particular, it
examines the tools used to estimate geometric invariants in terms of basic dia-
grammatic link invariants. The focus is on determining when a link is hyperbolic,
estimating its volume, and bounding its cusp shape and cusp area. Sample appli-
cations are given, and open questions and conjectures are discussed.

The chapter “Spanning Surfaces for Hyperbolic Knots in the 3-Sphere” by Colin
Adams studies surfaces with boundary a given knot in the 3-sphere. The paper
considers such surfaces, both embedded and singular, for hyperbolic knots and
discusses how the hyperbolic invariants affect the surfaces and how the surfaces
affect the hyperbolic invariants.

The chapter “On the Construction of Knots and Links from Thompson’s Groups”
by Vaughan F. R. Jones reviews recent developments in the theory of Thompson
group representations related to knot theory. It is a readable introduction to the
topology of these new relationships.

The chapter “Virtual Knot Theory and Virtual Knot Cobordism” by Louis H.
Kauffman is an introduction to virtual knot theory and virtual knot cobordism.
Nontrivial examples of virtual slice knots are given and determinations of the
four-ball genus of positive virtual knots are explained in relation to joint work with
Dye and Kaestner. The paper studies the affine index polynomial, proves that it is a
concordance invariant, shows that it is invariant also under certain forms of labeled
cobordism, and studies a number of examples in relation to these phenomena. In
particular, the paper shows how a mod-2 version of the affine index polynomial is a
concordance invariant of flat virtual knots and links, and explores a number of
examples in this domain.

The chapter “Knot Theory: From Fox 3-Colorings of Links to Yang–Baxter
Homology and Khovanov Homology” by Józef H. Przytycki is an introduction to
knot theory from the historical perspective. The chapter describes how the work of
Ralph H. Fox was generalized to distributive colorings (rack and quandle) and
eventually in the work of Jones and Turaev to link invariants via Yang-Baxter
operators. By analogy to Khovanov homology, the paper builds homology of
distributive structures (including homology of Fox colorings) and generalizes it to
homology of Yang-Baxter operators.

The chapter “Algebraic and Computational Aspects of Quandle 2-Cocycle
Invariant” by W. Edwin Clark and Masahico Saito studies quandle homology
theories. These theories have been developed and their cocycles have been used to
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construct invariants in state-sum form for knots using colorings of knot diagrams by
quandles. In this chapter, recent developments in these matters, as well as com-
putational aspects of the invariants, are reviewed. Problems and conjectures perti-
nent to the subject are discussed.

The chapter “A Survey of Quantum Enhancements” by Sam Nelson is a survey
article that summarizes the current state of the art in the nascent field of quantum
enhancements, a type of knot invariant defined by collecting values of quantum
invariants of knots with colorings by various algebraic objects over the set of such
colorings. This class of invariants includes classical skein invariants and quandle
and biquandle cocycle invariants as well as new invariants.

The chapter “From Alternating to Quasi-Alternating Links” by Nafaa Chbili
introduces the class of quasi-alternating links and reviews some of their basic
properties. In particular, the paper discusses the obstruction criteria for link
quasi-alternateness introduced recently in terms of quantum link invariants.

The chapter “Hoste’s Conjecture and Roots of the Alexander Polynomial” by
Alexander Stoimenov studies the Alexander polynomial. The Alexander polyno-
mial remains one of the most fundamental invariants of knots and links in 3-space.
Its topological understanding has led a long time ago to a complete understanding
about what (Laurent) polynomials can occur as the Alexander polynomial of an
arbitrary knot. Ironically, the question to characterize the Alexander polynomials of
alternating knots turns out to be far more difficult, even though in general alter-
nating knots are much better understood. Hoste, based on computer verification,
made the following conjecture about 15 years ago: If z is a complex root of the
Alexander polynomial of an alternating knot, then Rez� � 1. This paper discusses
some results toward this conjecture, about 2-bridge (rational) knots or links, 3-braid
alternating links, and Montesinos knots.

The chapter “A Survey of Grid Diagrams and a Proof of Alexander’s Theorem”
by Nancy Scherich studies grid diagrams in relation to classical knot theory and
computer coding of knots and links. Grid diagrams are a representation of knot
projections that are particularly useful as a format for algorithmic implementation
on a computer. This paper gives an introduction to grid diagrams and demonstrates
their programmable viability in an algorithmic proof of Alexander’s theorem.
Throughout, there are detailed comments on how to program a computer to encode
the diagrams and algorithms.

The chapter “Extending the Classical Skein” by Louis H. Kauffman and Sofia
Lambropoulou summarizes the skein-theoretic and combinatorial approaches to the
new generalizations of skein polynomials for links. The first one of these gener-
alizations, the invariant H that generalizes the HOMFLYPT polynomial, was dis-
covered by Chlouveraki, Juyumaya, Karvounis, and the second author, and it has its
roots in the Yokonuma–Hecke algebra of type A and a Markov trace defined on this
algebra. The authors gave a skein-theoretic proof of the existence of H, while W.B.
R. Lickorish gave a closed combinatorial formula for H. The authors also extend
the Kauffman (Dubrovnik) polynomial to a new skein invariant for links and
provide a Lickorish-type closed formula for this extension.

Preface vii



The chapter “From the Framisation of the Temperley–Lieb Algebra to the Jones
Polynomial: An Algebraic Approach” by Maria Chlouveraki proves that the
Framisation of the Temperley–Lieb algebra is isomorphic to a direct sum of matrix
algebras over tensor products of classical Temperley–Lieb algebras. This result is
used to obtain a closed combinatorial formula for the invariant for classical links
obtained from a Markov trace on the Framisation of the Temperley–Lieb algebra.
For a given link L, this formula involves the Jones polynomials of all sublinks of L,
as well as linking numbers.

The chapter “A Note on glmjn Link Invariants and the HOMFLY–PT
Polynomial” by Hoel Queffelec and Antonio Sartori presents a short and unified
representation-theoretical treatment of type A link invariants (that is, the
HOMFLY-PT polynomials, the Jones polynomial, the Alexander polynomial, and,
more generally, the glmjn quantum invariants) as link invariants with values in the
quantized oriented Brauer category.

The chapter “On the Geometry of Some Braid Group Representations” by
Mauro Spera reports on recent differential geometric constructions that can produce
representations of braid groups, together with applications in different domains of
mathematical physics. The classical Kohno construction for the 3- and 4-strand pure
braid groups is explicitly implemented by resorting to the Chen–Hain–Tavares
nilpotent connections and to hyperlogarithmic calculus, yielding unipotent repre-
sentations able to detect Brunnian and nested Brunnian phenomena. Physically
motivated unitary representations of Riemann surface braid groups are then
described, relying on Bellingeri’s presentation and on the geometry of Hermitian–
Einstein holomorphic vector bundles on Jacobians, via representations of Weyl–
Heisenberg groups.

The chapter “Towards a Version of Markov’s Theorem for Ribbon Torus-Links
in R

4” by Celeste Damiani studies ribbon torus-links embedded in R
4. In classical

knot theory, Markov’s theorem gives a way of describing all braids with isotopic
closures as links in R

3. This paper presents a version of Markov’s theorem for
extended loop braids with closure in B3 � S1, as a first step toward a Markov’s
theorem for extended loop braids and ribbon torus-links in R

4.
The chapter “An Alternative Basis for the Kauffman Bracket Skein Module

of the Solid Torus via Braids” by Ioannis Diamantis gives an alternative basis for
the Kauffman bracket skein module of the solid torus. The new basis is obtained
with the use of the Temperley–Lieb algebra of type B and it is appropriate for
computing the Kauffman bracket skein module of the lens spaces Lðp; qÞ via braids.

The chapter “Knot Invariants in Lens Spaces” by Bostjan Gabrovsek and Eva
Horvat summarizes results regarding the Kauffman bracket skein module, the
HOMFLYPT skein module, and the Alexander polynomial of links in lens spaces,
represented as mixed link diagrams. These invariants generalize the classical
Kauffman bracket, the HOMFLYPT, and the Alexander polynomials, respectively.
We compare the invariants by means of their ability to distinguish between some
difficult cases of knots with certain symmetries.
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The chapter “Identity Theorem for Pro-p-groups” by Andrey M. Mikhovich
studies algebra related to knot theory and combinatorial group theory. The concept
of schematization consists in replacing simplicial groups by simplicial affine group
schemes. A schematic approach makes it possible to consider the problems of
pro-p-group theory through the prism of Tannaka duality, concentrating on the
category of representations.

The chapter “A Survey on Knotoids, Braidoids and Their Applications” by
Neslihan Gügümcü, Louis H. Kauffman, and Sofia Lambropoulou is a survey of
knotoids and braidoids, their theory and invariants, as well as their applications in
the study of proteins. Knotoids were introduced by Turaev and they are represented
by knot diagrams with ends such that the ends can inhabit different regions in the
diagram. Equivalence is generated by Reidemeister moves that do not slide arcs
across these free ends. New invariants of knotoids are constructed using the virtual
closure and corresponding invariants in virtual knot theory. A version of the theory
of braids is formulated for knotoids and applications of these structures to the study
of proteins are described.

The chapter “Regulation of DNA Topology by Topoisomerases: Mathematics at
the Molecular Level” by Rachel E. Ashley and Neil Osheroff studies the topology
of DNA. Even though genetic information is encoded in a one-dimensional array of
nucleic acid bases, three-dimensional relationships within DNA play a major role in
how this information is accessed and utilized by living organisms. Because of the
intertwined nature of the DNA 2-braid and its extreme length and compaction in the
cell, some of the most important three-dimensional relationships in DNA are
topological in nature. This article reviews the mathematics of DNA topology,
describes the different classes of topoisomerases, and discusses the mechanistic
basis for their actions in both biological and mathematical terms. It also discusses
how topoisomerases recognize the topological states of their DNA substrates and
products and how some of these enzymes distinguish supercoil handedness during
catalysis and DNA cleavage.

The chapter “Topological Entanglement and Its Relation to Polymer Material
Properties” by Eleni Panagiotou reviews recent results that show how measures of
topological entanglement can be used to provide information relevant to dynamics
and mechanics of polymers. The paper uses molecular dynamics simulations of
coarse-grained models of polymer melts and solutions of linear chains in different
settings. The paper applies the writhe to give estimates of the entanglement length
and to study the disentanglement of polymer melts in an elongational flow.

The chapter “Topological Surgery in the Small and in the Large” by Stathis
Antoniou, Louis H. Kauffman, and Sofia Lambropoulou directly connects topo-
logical changes that can occur in mathematical three-space via surgery, with black
hole formation, the formation of wormholes, and new generalizations of these
phenomena. This work enhances the bridge between topology and natural sciences
and creates a new platform for exploring geometrical physics.
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We hope the reader finds in this small collection of excellent papers a sense
of the spirit of our conference and of the creativity of this topological subject.

Williamstown, USA Colin C. Adams
Austin, USA Cameron McA. Gordon
Nashville, USA Vaughan F. R. Jones
Chicago, USA Louis H. Kauffman
Athens, Greece Sofia Lambropoulou
Santa Barbara, USA Kenneth C. Millett
Washington, USA Jozef H. Przytycki
Milan, Italy Renzo Ricca
Raleigh, USA Radmila Sazdanovic

x Preface



Contents

A Survey of Hyperbolic Knot Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 1
David Futer, Efstratia Kalfagianni and Jessica S. Purcell

Spanning Surfaces for Hyperbolic Knots in the 3-Sphere . . . . . . . . . . . 31
Colin C. Adams

On the Construction of Knots and Links from Thompson’s
Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Vaughan F. R. Jones

Virtual Knot Theory and Virtual Knot Cobordism . . . . . . . . . . . . . . . . 67
Louis H. Kauffman

Knot Theory: From Fox 3-Colorings of Links to Yang–Baxter
Homology and Khovanov Homology . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Józef H. Przytycki

Algebraic and Computational Aspects of Quandle 2-Cocycle
Invariant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
W. Edwin Clark and Masahico Saito

A Survey of Quantum Enhancements . . . . . . . . . . . . . . . . . . . . . . . . . . 163
Sam Nelson

From Alternating to Quasi-Alternating Links . . . . . . . . . . . . . . . . . . . . 179
Nafaa Chbili

Hoste’s Conjecture and Roots of the Alexander Polynomial . . . . . . . . . 191
Alexander Stoimenov

A Survey of Grid Diagrams and a Proof of Alexander’s Theorem . . . . 207
Nancy C. Scherich

Extending the Classical Skein . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
Louis H. Kauffman and Sofia Lambropoulou

xi



From the Framisation of the Temperley–Lieb Algebra to the Jones
Polynomial: An Algebraic Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
Maria Chlouveraki

A Note on glmjn Link Invariants and the HOMFLY–PT
Polynomial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
Hoel Queffelec and Antonio Sartori

On the Geometry of Some Braid Group Representations . . . . . . . . . . . . 287
Mauro Spera

Towards a Version of Markov’s Theorem for Ribbon Torus-Links
in R

4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309
Celeste Damiani

An Alternative Basis for the Kauffman Bracket Skein Module
of the Solid Torus via Braids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
Ioannis Diamantis

Knot Invariants in Lens Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347
Boštjan Gabrovšek and Eva Horvat

Identity Theorem for Pro-p-groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363
Andrey M. Mikhovich

A Survey on Knotoids, Braidoids and Their Applications . . . . . . . . . . 389
Neslihan Gügümcü, Louis H. Kauffman and Sofia Lambropoulou

Regulation of DNA Topology by Topoisomerases: Mathematics
at the Molecular Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411
Rachel E. Ashley and Neil Osheroff

Topological Entanglement and Its Relation to Polymer Material
Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435
Eleni Panagiotou

Topological Surgery in the Small and in the Large . . . . . . . . . . . . . . . . 449
Stathis Antoniou, Louis H. Kauffman and Sofia Lambropoulou

Conference Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457

List of Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 467

xii Contents



A Survey of Hyperbolic Knot Theory

David Futer, Efstratia Kalfagianni and Jessica S. Purcell

Abstract We survey some tools and techniques for determining geometric proper-
ties of a link complement from a link diagram. In particular, we survey the tools used
to estimate geometric invariants in terms of basic diagrammatic link invariants. We
focus on determining when a link is hyperbolic, estimating its volume, and bound-
ing its cusp shape and cusp area. We give sample applications and state some open
questions and conjectures.

Keywords Hyperbolic knot · Hyperbolic link · Volume · Slope length · Cusp
shape · Dehn filling

2010 Mathematics Subject Classification 57M25 · 57M27 · 57M50

1 Introduction

Every link L ⊂ S3 defines a compact, orientable 3-manifold boundary consisting
of tori; namely, the link exterior X (L) = S3\N (L), where N (L) denotes an open
regular neighborhood. The interior of X (L) is homeomorphic to the link comple-
ment S3\L . Around 1980, Thurston proved that link complements decompose into
pieces that admit locally homogeneous geometric structures. In the most interest-
ing scenario, the entire link complement has a hyperbolic structure, that is a metric
of constant curvature −1. By Mostow–Prasad rigidity, this hyperbolic structure is

D. Futer
Department of Mathematics, Temple University, Philadelphia, PA 19122, USA
e-mail: dfuter@temple.edu

E. Kalfagianni (B)
Department of Mathematics, Michigan State University, East Lansing, MI 48824, USA
e-mail: kalfagia@math.msu.edu

J. S. Purcell
School of Mathematical Sciences, Monash University, Clayton, VIC 3800, Australia
e-mail: jessica.purcell@monash.edu

© Springer Nature Switzerland AG 2019
C. C. Adams et al. (eds.), Knots, Low-Dimensional Topology
and Applications, Springer Proceedings in Mathematics & Statistics 284,
https://doi.org/10.1007/978-3-030-16031-9_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16031-9_1&domain=pdf
mailto:dfuter@temple.edu
mailto:kalfagia@math.msu.edu
mailto:jessica.purcell@monash.edu
https://doi.org/10.1007/978-3-030-16031-9_1


2 D. Futer et al.

unique up to isometry, hence geometric invariants of S3\L give topological invariants
of L that provide a wealth of information about L to aid in its classification.

An important and difficult problem is to determine the geometry of a link com-
plement directly from link diagrams, and to estimate geometric invariants such as
volume and the lengths of geodesics in terms of basic diagrammatic invariants of L .
This problem often goes by the namesWYSIWYG topology1 or effective geometriza-
tion [60]. Our purpose in this paper is to survey some results that effectively predict
geometry in terms of diagrams, and to state some open questions. In the process,
we also summarize some of the most commonly used tools and techniques that have
been employed to study this problem.

1.1 Scope and Aims

This survey is primarily devoted to three main topics: determining when a knot or
link is hyperbolic, bounding its volume, and estimating its cusp geometry. Our main
goal is to focus on the methods, techniques, and tools of the field, in the hopes that
this paper will lead to more research, rather than strictly listing previous results.

This focus overlaps significantly with the list of topics in Adams’ survey article
Hyperbolic knots [2]. That survey, written in 2003 and published in 2005, came out
just as the pursuit of effective geometrization was starting to mature. Thus, although
the topics are quite similar, both the results and the underlying techniques have
advanced to a considerable extent. This is especially visible in efforts to predict
hyperbolic volume (Sect. 4), where only a handful of the results that we list were
known by 2003. The same pattern asserts itself throughout.

Aswith all survey articles, the list of results and open problems thatwe can address
is necessarily incomplete.We are not addressing the very interesting questions on the
geometry of embedded surfaces, lengths and isotopy classes of geodesics, exceptional
Dehn fillings, or geometric properties of other knot and link invariants. Some of the
results and techniques we have been unable to cover will appear in a forthcoming
book in preparation by Purcell [76].

1.2 Originality, or Lack Thereof

With one exception, all of the results presented in this survey have appeared elsewhere
in the literature. For all of these results, we point to references rather than giving
rigorous proofs. However, we often include quick sketches of arguments to convey
a sense of the methods that have been employed.

The one exception to this rule is Theorem 4.11, which has not previously appeared
inwriting. Even this result cannot be described as truly original, since the proofworks
by assembling a number of published theorems.We include the proof to indicate how
to assemble the ingredients.

1WYSIWYG stands for “what you see is what you get”.
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1.3 Organization

We organize this survey as follows: Sect. 2 introduces terminology and background
that we will use throughout. Section3 is concerned with the problem of determining
whether a given link is hyperbolic. We summarize some of the most commonly
used methods used for this problem, and provide examples. In Sects. 4 and 5, we
address the problem of estimating important geometric invariants of hyperbolic link
complements in terms of diagrammatic quantities. In Sect. 4, we discuss methods
for obtaining two sided combinatorial bounds on the hyperbolic volume of link
complements. In Sect. 5, we address the analogous questions for cusp shapes and for
lengths of curves on cusp tori.

1.4 Acknowledgements

Futer is supported in part by NSF grant DMS–1408682. Kalfagianni is supported in
part by NSF grants DMS–1404754 and DMS–1708249. Purcell is supported in part
by the Australian Research Council. All three authors acknowledge support from
NSF grants DMS–1107452, 1107263, 1107367, “RNMS: Geometric Structures and
Representation Varieties” (the GEAR Network).

2 Definitions

In this section, we gather many of the key definitions that will be used throughout the
paper. Most of these definitions can be found (and are better motivated) in standard
textbooks on knots and links, and on 3–manifolds and hyperbolic geometry. We list
them briefly for ease of reference.

2.1 Diagrams of Knots and Links

Some of the initial study of knots and links, such as the work of Tait in the late
1800s, was a study of diagrams: projections of a knot or link onto a plane R2 ⊂ R

3,
which can be compactified to S2 ⊂ S3. We call the surface of projection the plane of
projection for the diagram.Wemay assume that a link has a diagram that is a 4-valent
graph on S2, with over-under crossing information at each vertex. When studying a
knot via diagrams, there are obvious moves that one can make to the diagram that do
not affect the equivalence class of knot; for example these include flypes studied by
Tait, shown in Fig. 1, and Reidemeister moves studied in the 1930s. Without going
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Fig. 1 A flype

into details on these moves, we do want our diagrams to be “sufficiently reduced,”
in ways that are indicated by the following definitions.

Definition 2.1 A diagram of a link is prime if for any simple closed curve γ ⊂ S2,
intersecting the diagram transversely in exactly two points in the interior of edges
edges, γ bounds a disk D2 ⊂ S2 that intersects the diagram in a single arc with no
crossings.

Two non-prime diagrams are shown in Fig. 2, left. The first diagram can be sim-
plified by removing a crossing. The second diagram cannot be reduced in the same
way, because the knot is composite; it can be thought of as composed of two simpler
prime diagrams by joining them along unknotted arcs. Prime diagrams are seen as
building blocks of all knots and links, and so we restrict to them.

Definition 2.2 Suppose K is a knot or link with diagram D. The crossing number
of the diagram, denoted c(D), is the number of crossings in D. The crossing number
of K , denoted c(K ), is defined to be the minimal number of crossings in any diagram
of K .

Removing a crossing as on the left of Fig. 2 gives a diagram that is more reduced.
The following definition gives another way to reduce diagrams.

Definition 2.3 Let K be a knot or link with diagram D. The diagram is said to
be twist reduced if whenever γ is a simple closed curve in the plane of projection
intersecting the diagram exactly twice in two crossings, running directly through the
crossing, then γ bounds a disk containing only a string of alternating bigon regions
in the diagram. See Fig. 2, right.

Any diagram can be modified to be twist reduced by performing a sequence of
flypes and removing unnecessary crossings.

Definition 2.4 Two crossings in a diagram D are called twist equivalent if they are
connected by a string of bigons, as in the far right of Fig. 2. A twist region in D is

Fig. 2 Left: two diagrams that are not prime. Right: a twist reduced diagram
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an equivalence class. We always require twist regions to be alternating (otherwise,
D can be simplified by removing crossings).

The number of twist regions in a prime, twist reduced diagram is the twist number
of the diagram, and is denoted t (D). The minimum of t (D) over all diagrams of K
is denoted t (K ).

2.2 The Link Complement

Rather than study knots exclusively via diagrams and graphs, we typically consider
the knot complement, namely the 3–manifold S3\K . This is homeomorphic to the
interior of the compact manifold X (K ) := S3\N (K ), called the knot exterior, where
N (K ) is a regular neighborhood of K .Whenwe consider knot complements and knot
exteriors, we are able to apply results in 3–manifold topology, and consider curves
and surfaces embedded in them. The following definitions apply to such surfaces.

Definition 2.5 An orientable surface S properly embedded in a compact orientable
3–manifold M is incompressible if whenever E ⊂ M is a disk with ∂E ⊂ S, there
exists a disk E ′ ⊂ S with ∂E ′ = ∂E . S is ∂-incompressible if whenever E ⊂ M is
a disk whose boundary is made up of an arc α on S and an arc on ∂M , there exists a
disk E ′ ⊂ S whose boundary is made up of the arc α on S and an arc on ∂S.

Definition 2.6 Let M be a compact orientable 3–manifold. A two–sphere S ⊂ M is
called essential if it does not bound a 3–ball.

Consider a (possibly non-orientable) properly embedded surface S ⊂ M . Let ˜S
be the boundary of a regular neighborhood N (S) ⊂ M . If S �= S2, it is said to be
essential if ˜S is incompressible and ∂-incompressible.

We will say that M is Haken if it is irreducible and contains an essential surface
S. In this case, we also say the interior M is Haken.

Finally, we will sometimes consider knot complements that are fibered, in the
following sense.

Definition 2.7 A 3–manifold M is said to be fibered if it can be written as a fiber
bundle over S1, with fiber a surface. Equivalently, M is the mapping torus of a
self-homeomorphism f of a (possibly punctured) surface S. That is, there exists
f : S → S such that

M = S × I/(x, 0) ∼ ( f (x), 1).

The map f is called the monodromy of the fibration.



6 D. Futer et al.

2.3 Hyperbolic Geometry Notions

The knot and link complements that we address in this article also admit geometric
structures, as in the following definition.

Definition 2.8 A knot or link K is said to be hyperbolic if its complement admits
a complete metric of constant curvature −1. Equivalently, it is hyperbolic S3\K =
H

3/Γ , where H
3 is hyperbolic 3–space and Γ is a discrete, torsion-free group of

isometries, isomorphic to π1(S3\K ).

Thurston showed that a prime knot in S3 is either hyperbolic, or it is a torus
knot (can be embedded on an unknotted torus in S3), or it is a satellite knot (can
be embedded in the regular neighborhood of a non-trivial knot) [81]. This article is
concerned with hyperbolic knots and links.

Definition 2.9 SupposeM is a compact orientable 3–manifold with ∂M a collection
of tori, and suppose the interior M ⊂ M admits a complete hyperbolic structure. We
say M is a cusped manifold.

Moreover, M has ends of the form T 2 × [1,∞). Under the covering projection
ρ : H3 → M , each end is geometrically realized as the image of a horoball Hi ⊂ H

3.
The preimage ρ−1(ρ(Hi )) is a collection of horoballs. By shrinking Hi if necessary,
we can ensure that these horoballs have disjoint interiors inH3. For such a choice of
Hi , ρ(Hi ) = Ci is said to be a horoball neighborhood of the cusp Ci , or horocusp in
M .

Definition 2.10 The boundary of a horocusp inherits a Euclidean structure from the
hyperbolic structure on M . This Euclidean structure is well defined up to similarity.
The similarity class is called the cusp shape.

Definition 2.11 For each cusp of M there is an 1–parameter family of horoball
neighborhoods obtained by expanding the horoball Hi while keeping the same lim-
iting point on the sphere at infinity. In the preimage, expanding Hi expands all
horoballs in the collection ρ−1(Ci ). Expand each cusp until the collection of horoballs
ρ−1(∪Ci ) become tangent, and cannot be expanded further while keeping their inte-
riors disjoint. This is a choice of maximal cusps. The choice depends on the order
of expansion of cusps C1, . . . ,Cn . If M has a single end C1 then there is a unique
choice of expansion, giving a unique maximal cusp referred to as the the maximal
cusp of M .

Definition 2.12 For a fixed set of embedded horoball neighborhoods C1, . . . ,Cn of
the cusps of a cusped hyperbolic 3–manifold M , we have noted that the torus ∂Ci

inherits a Euclidean metric. Any isotopy class of simple closed curves on the torus
is called a slope. The length of a slope s, denoted �(s), is defined to be the length of
a geodesic representative of s on the Euclidean torus ∂Ci .
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3 Determining Hyperbolicity

Given a combinatorial description of a knot or link, such as a diagram or braid
presentation, one of the first things we would often like to ascertain is whether
the link complement admits a hyperbolic structure. In this section, we describe the
currently available tools to check this and give examples of knots to which they apply.

There are three main tools used to prove a link or family of links is hyperbolic.
The first is direct calculation, for example using gluing and completeness equations,
often with the help of a computer. The second is Thurston’s geometrization theorem
for Haken manifolds, which says that the only obstruction to X (K ) being hyperbolic
consists of surfaces with non-negative Euler characteristic. The third is to perform a
long Dehn filling on a manifold that is already known to be hyperbolic, for instance
by one of the previous two methods.

3.1 Computing Hyperbolicity Directly

FromRiemannian geometry, amanifoldM admits a hyperbolic structure if and only if
M = H

3/Γ , where Γ ∼= π1(M) is a discrete subgroup of Isom+(H3) = PSL (2,C).
See Definition 2.8.

Therefore one way to find a hyperbolic structure on a link complement is to find
a discrete faithful representation of its fundamental group into PSL (2,C). This is
usually impractical to do directly. However, note that if a manifold M can be decom-
posed into simply connected pieces, for example a triangulation by tetrahedra, then
these lift to the universal cover. If this cover is isometric toH3, then the lifted tetrahe-
dra will be well-behaved in hyperbolic 3–space. Conversely, if the lifted tetrahedra fit
together coherently in H

3, in a group–equivariant fashion, one can glue the metrics
on those tetrahedra to obtain a hyperbolic metric on M . This gives a condition for
determining hyperbolicity, which is often implemented in practice.

Gluing and Completeness Equations for Triangulations

The first method for finding a hyperbolic structure is direct, and is used most fre-
quently by computer, such as in the software SnapPy that computes hyperbolic struc-
tures directly from diagrams [29]. The method is to first decompose the knot or link
complement into ideal tetrahedra, as in Definition 3.1, and then to solve a system of
equations on the tetrahedra to obtain a hyperbolic structure. See Theorem 3.6.

This method is most useful for a single example, or for a finite collection of
examples. For example, it was used by Hoste, Thistlethwaite, and Weeks to classify
all prime knots with up to 16 crossings [55]. Of the 1, 701, 903 distinct prime knots
with at most 16 crossings, all but 32 are hyperbolic.

Wewill give a brief description of themethod. For further details, there are several
good references, including notes of Thurston [80] where these ideas first appeared,
and papers by Neumann and Zagier [71], and Futer and Guéritaud [35]. Purcell is
developing a book with full details and examples [76].
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Definition 3.1 An ideal tetrahedron is a tetrahedron whose vertices have been
removed. When a knot or link complement is decomposed into ideal tetrahedra,
all ideal vertices lie on the link, hence have been removed.

There are algorithms for decomposing knot and link complements into ideal tetra-
hedra. For example, Thurston decomposes the figure–8 knot complement into two
ideal tetrahedra [80]. Menasco generalizes this, describing how to decompose a link
complement into two ideal polyhedra, which can then be subdivided into tetrahedra
[67]. Weeks uses a different algorithm in his computer software SnapPea [84].

Assuming we have a decomposition of a knot or link complement into ideal
tetrahedra, we now describe how to turn this into a complete hyperbolic structure.
The idea is to associate a complex number to each ideal edge of each tetrahedron
encoding the hyperbolic structure of the ideal tetrahedron. The triangulation gives a
complete hyperbolic structure if and only if these complex numbers satisfy certain
equations: the edge gluing and completeness equations.

Consider H3 in the upper half space model, H3 ∼= C × (0,∞). An ideal tetrahe-
dron Δ ⊂ H

3 can be moved by isometry so that three of its vertices are placed at
0, 1, and ∞ in ∂H3 ∼= C ∪ {∞}. The fourth vertex lies at a point z ∈ C\{0, 1}. The
edges between these vertices are hyperbolic geodesics.

Definition 3.2 The parameter z ∈ C described above is called the edge parameter
associated with the edge from 0 to ∞. It determines Δ up to isometry.

Notice if z is real, then the ideal tetrahedron is flat, with no volume. We will
prefer to work with z with positive imaginary part. Such a tetrahedronΔ is said to be
geometric, or positively oriented. If z has negative imaginary part, the tetrahedron Δ

is negatively oriented.
Given a hyperbolic ideal tetrahedron embedded in H

3 as above, we can apply
(orientation–preserving) isometries of H3 taking different vertices to 0, 1, ∞. By
taking each edge to the geodesic from 0 to ∞, we assign edge parameters to all six
edges of the ideal tetrahedron. This leads to the following relations between edge
parameters:

Lemma 3.3 Suppose Δ is a hyperbolic ideal tetrahedron with vertices at 0, 1, ∞,
and z. Then the edge parameters of the six edges of Δ are as follows:

• Edges [0,∞] and [1, z] have edge parameter z.
• Edges [1,∞] and [0, z] have edge parameter 1/(1 − z).
• Edges [z,∞] and [0, 1] have edge parameter (z − 1)/z.

In particular, opposite edges in the tetrahedron have the same edge parameter.

Suppose an ideal tetrahedron Δ with vertices at 0, 1, ∞ and z is glued along the
triangle face with vertices at 0, ∞, and z to another tetrahedron Δ′. Then Δ′ will
have vertices at 0, ∞, z and at the point zw, where w is the edge parameter of Δ′
along the edge [0,∞]. When we glue all tetrahedra in H

3 around an ideal edge of
the triangulation, if the result is hyperbolic then the product of all edge parameters
must be 1 with arguments summing to 2π. More precisely, the sum of the logs of the
edge parameters must be 0 + 2π i .
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Definition 3.4 (Gluing equations) Let e be an ideal edge of a triangulation of a
3–manifold M , for example a knot or link complement. Let z1, . . . , zk be the edge
parameters of the edge of the tetrahedra identified to e. Thegluing equation associated
with the edge e is:

k
∏

i=1

zi = 1 and
k

∑

i=1

arg(zi ) = 2π. (1)

Writing this in terms of logarithms, (1) is equivalent to:

k
∑

i=1

log(zi ) = 2π i. (2)

A triangulation may satisfy all gluing equations at all its edges, and yet fail to give
a complete hyperbolic structure. To ensure the structure is complete, an additional
condition must be satisfied for each torus boundary component.

Definition 3.5 (Completeness equations) Let T be a torus boundary component of
a 3–manifold M whose interior admits an ideal triangulation.

Truncate the tips of all tetrahedra to obtain a triangulation of T . Letμbe anoriented
simple closed curve on T , isotoped to meet edges of the triangulation transversely,
and to avoid vertices. Each segment of μ in a triangle cuts off a single vertex of the
triangle, which comes from an edge of the ideal triangulation and so has an associated
edge parameter zi . If the vertex lies to the right of μ, let εi = +1; otherwise let
εi = −1. The completeness equation associated to μ is:

∑

i

εi log(zi ) = 0, which implies
∏

i

zεi
i = 1. (3)

With these definitions, we may state the main theorem.

Theorem 3.6 Suppose M is a 3-manifold with torus boundary, equipped with an
ideal triangulation. Suppose for some choice of positively oriented edge parameters
{z1, . . . , zn}, the gluing equations are satisfied for each edge, and the completeness
equations are satisfied for homology generators μ, λ on each component of ∂M.
Then the interior of M, denoted by M, admits a complete hyperbolic structure.
Furthermore, the unique hyperbolicmetric on M is given by the geometric tetrahedra
determined by the edge parameters.

In fact, the hypotheses of Theorem 3.6 are stronger than necessary. If M has k
torus boundary components, then only n − k of the n gluing equations are necessary
(see [71] or [28]). In addition, only one of μ or λ is required from each boundary
component [28].

Some classes of 3–manifolds that can be shown to be hyperbolic using Theo-
rem 3.6 include the classes of once-punctured torus bundles, 4-punctured sphere
bundles, and 2–bridge link complements [49]. (In each class, some low-complexity
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Fig. 3 Left: a diagram of a knot K . Center: adding a crossing circles for each twist region of K
produces a link J . Right: removing full twists produces a fully augmented link L with the property
that S3\J is homeomorphic to S3\L

examples must be excluded to ensure hyperbolicity.) These manifolds have natural
ideal triangulations guided by combinatorics. In the case of 2–bridge knot and link
complements, the triangulation is also naturally adapted to a planar diagram of the
link [78]. Once certain low-complexity cases (such as (2, q) torus links) have been
excluded, one can show that the gluing equations for these triangulations have a
solution. This gives a direct proof that the manifolds are hyperbolic.

Circle Packings and Right Angled Polyhedra

Certain link complements have very special geometric properties that allow us to
compute their hyperbolic structure directly, but with less work than solving nonlinear
gluing and completeness equations as above. These include the Whitehead link,
which can be obtained from a regular ideal octahedron with face-identifications
[80]. They also include an important and fairly general family of link complements
called fully augmented links, which we now describe.

Starting with any knot or link diagram, identify twist regions, as in Definition 2.4.
The left of Fig. 3 shows a knot diagram with two twist regions. Now, to each twist
region, add a simple unknotted closed curve encircling the two strands of the twist
region, as shown in the middle of Fig. 3. This is called a crossing circle. Because
each crossing circle is an unknot, we may perform a full twist along a disk bounded
by that unknot without changing the homeomorphism type of the link complement.

This allows us to remove asmany pairs of crossings as possible from twist regions.
An example is shown on the right of Fig. 3. The result is the diagram of a fully
augmented link.

Provided the original link diagram before adding crossing circles is sufficiently
reduced (prime and twist reduced; see Definitions 2.1 and 2.3), the resulting fully
augmented link will be hyperbolic, and its hyperbolic structure can be completely
determined by a circle packing. The procedure is as follows.

Replace the diagramof the fully augmented linkwith a trivalent graph by replacing
each neighborhood of a crossing circle (with or without a bounded crossing) by a
single edge running between knot strands, closing the knot strands. See Fig. 4, left.
Now take the dual of this trivalent graph; this is a triangulation of S2. Provided the
original diagram was reduced, there will be a circle packing whose nerve is this
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Fig. 4 Left: Obtain a 3-valent graph by replacing crossing circles with edges. Middle: The dual is
a triangulation of S2. Right: The nerve of the triangulation defines a circle packing that cuts out a
polyhedron in H3. Two such polyhedra glue to form S3\L

triangulation of S2. The circle packing and its orthogonal circles cut out a right
angled ideal polyhedron in H

3. The hyperbolic structure on the complement of the
fully augmented link is obtained by gluing two copies of this right angled ideal
polyhedron. More details are in [44, 75].

3.2 Geometrization of Haken Manifolds

The methods of the previous section have several drawbacks. While solving gluing
and completeness equationsworkswell for examples, it is difficult to use themethods
to find hyperbolic structures for infinite classes of examples. The method that has
been most useful to show infinite examples of knots and links are hyperbolic is
to apply Thurston’s geometrization theorem for Haken manifolds, which takes the
following form for manifolds with torus boundary components.

Theorem 3.7 (Geometrization of Haken manifolds) Let M be the interior of a com-
pact manifold M, such that ∂M is a non-empty union of tori. Then exactly one of the
following holds:

• M admits an essential torus, annulus, sphere, or disk, or
• M admits a complete hyperbolic metric.

Thus the method to prove M is hyperbolic following Theorem 3.7 is to show
M cannot admit embedded essential surfaces of nonnegative Euler characteristic.
Arguments ruling out such surfaces are typically topological or combinatorial in
nature.

Some sample applications of thismethod are as follows.Menasco used themethod
to prove any alternating knot or link, aside from a (2, q)-torus link, is hyperbolic
[68]. Adams and his students generalized Menasco’s argument to show that almost
alternating and toroidally alternating links are hyperbolic [8, 9]. There are many
other generalizations, e.g. [43].

Menasco’s idea was to subdivide an alternating link complement into two balls,
above and below the plane of projection, and crossing balls lying in a small neigh-
borhood of each crossing, with equator along the plane of projection. An essential
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surface can be shown to intersect the balls above and below the plane of projection in
disks only, and to intersect crossing balls inwhat are called saddles. These saddles act
as fat vertices on the surface, and can be used to obtain a bound on the Euler charac-
teristic of an embedded essential surface. Combinatorial arguments, using properties
of alternating diagrams, then rule out surfaces with non-negative Euler characteristic.

More generally, classes of knots and links can be subdivided into simpler pieces,
whose intersection with essential surfaces is then examined. Typically, surfaces with
nonnegative Euler characteristic can be restricted to lie in just one or two pieces, and
then eliminated.

Thurston’s Theorem 3.7 can also be used to show that manifolds with certain
properties are hyperbolic. For example, consider again the gluing equations. This
gives a complicated nonlinear system of equations. If we consider only the imaginary
part of the logarithmic gluing equation (2), the system becomes linear: the sums of
dihedral angles around each edgemust be 2π. It is much easier to solve such a system
of equations.

Definition 3.8 SupposeM is the interior of a compactmanifoldwith torus boundary,
with an ideal triangulation.A solution to the imaginarypart of the (logarithmic) gluing
equations (2) for the triangulation is called a generalized angle structure on M . If
all angles lie strictly between 0 and π, the solution is called an angle structure. See
[35, 66] for background on (generalized) angle structures.

Theorem 3.9 (Angle structures and hyperbolicity) If M admits an angle structure,
then M also admits a hyperbolic metric.

The proof has been attributed to Casson, and appears in Lackenby [62]. The idea
is to consider how essential surfaces intersect each tetrahedron of the triangulation.
These surfaces can be isotoped into normal form. A surface without boundary in
normal form intersects tetrahedra only in triangles and in quads. The angle structure
onM can be used to define a combinatorial area on a normal surface. An adaptation of
the Gauss–Bonnet theorem implies that the Euler characteristic is a negative multiple
of the combinatorial area. Then one shows that the combinatorial area of an essential
surfacemust always be strictly positive, hence Euler characteristic is strictly negative.
Then Theorem 3.7 gives the result.

Knots and links that can be shown to be hyperbolic using the tools of Theorem 3.9
include arborescent links, apart from three enumerated families of non-hyperbolic
exceptions. This can be shown by constructing an ideal triangulation (or a slightly
more general ideal decomposition) of the complement of an arborescent link, and
endowing it with an angle structure [34].

Conversely, every hyperbolic knot or link complement in S3 admits some ideal
triangulationwith an angle structure [52]. However, this triangulation is not explicitly
constructed, and need not have any relation to the combinatorics of a diagram.



A Survey of Hyperbolic Knot Theory 13

3.3 Hyperbolic Dehn Filling

Another method for proving that classes of knots or links are hyperbolic is to use
Dehn filling. Thurston showed that all but finitely many Dehn fillings on a hyperbolic
manifold with a single cusp yield a closed hyperbolic 3–manifold [80].

More effective versions of Thurston’s theorem have been exploited to show hyper-
bolicity for all but a bounded number of Dehn fillings. Results in this vein include the
2π–theorem that yields negatively curved metrics [21], and geometric deformation
theorems of Hodgson and Kerckhoff [51]. The sharpest result along these lines is
the 6–Theorem, due independently to Agol [11] and Lackenby [62]. (The statement
below assumes the geometrization conjecture, proved by Perelman shortly after the
papers [11, 62] were published.)

Theorem 3.10 (6–Theorem) Suppose M is a hyperbolic 3–manifold homeomorphic
to the interior of a compact manifold M with torus boundary components T1, . . . , Tk.
Suppose s1, . . . , sk are slopes, with si ⊂ Ti . Suppose there exists a choice of disjoint
horoball neighborhoods of the cusps of M such that in the induced Euclidean metric
on Ti , the slope si has length strictly greater than 6, for all i . Then the manifold
obtained by Dehn filling along s1, . . . , sk , denoted M(s1, . . . , sk), is hyperbolic.

Theorem 3.10 can be used to prove that a knot or link is hyperbolic, as follows.
First, show the knot complement S3\K is obtained by Dehn filling a manifold Y that
is known to be hyperbolic. Then, prove that the slopes used to obtain S3\K from Y
have length greater than 6 on a horoball neighborhood of the cusps of Y . See also
Sect. 5 for ways to prove that slopes are long.

Some examples of links to which this theorem has been applied include highly
twisted links, which have diagrams with 6 or more crossings in every twist region.
(See Definition 2.4.) These links can be obtained by surgery, as follows. Start with a
fully augmented link as described above, for instance the example shown in Fig. 3.
Performing a Dehn filling along the slope 1/n on a crossing circle adds 2n crossings
to the twist region encircled by that crossing circle, and removes the crossing circle
from the diagram. When |n| ≥ 3, the result of such Dehn filling on each crossing
circle is highly twisted.

Using the explicit geometry of fully augmented links obtained from the circle
packing, we may give a lower bound on the lengths of the slopes 1/ni on cross-
ing circles. Then Theorem 3.10 shows that the resulting knots and links must be
hyperbolic [44].

Other examples can also be obtained in this manner. For example, Baker showed
that infinite families of Berge knots are hyperbolic by showing they are Dehn fillings
of minimally twisted chain link complements, which are known to be hyperbolic,
along sequences of slopes that are known to grow in length [18].

The 6–Theorem is sharp. This was shown by Agol [11], and by Adams and his
students for a knot complement [5]. The pretzel knot P(n, n, n), which has 3 twist
regions, and the same number of crossings in each twist region, has a toroidal Dehn
filling along a slope with length exactly 6.
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3.4 Fibered Knots and High Distance Knots

We finish this section with a few remarks about other ways to prove manifolds are
hyperbolic, and give references for further information. However, these methods
seem less directly applicable to knots in S3 than those discussed above, and the full
details are beyond the scope of this paper.

Recall Definition 2.7 of a fibered knot. When the monodromy is pseudo-Anosov,
the knot complement is known to be hyperbolic [82]. The figure–8 knot complement
can be shown to be hyperbolic in this way; see for example [80, p. 70]. Certain links
obtained as the complement of closed braids and their braid axis have also been
shown to be hyperbolic using these methods [50]. It seems difficult to apply these
methods directly to knots, however.

Another method is to consider bridge surfaces of a knot. Briefly, there is a notion
of distance that measures the complexity of the bridge splitting of a knot. Bachman
and Schleimer proved that any knot whose bridge distance is at least 3 must be
hyperbolic [17]. It seems difficult to bound bridge distance for classes of examples
directly from a knot diagram. Recent work of Johnson and Moriah is the first that
we know to obtain such bounds [61].

4 Volumes

Asmentioned in the introduction, the goal of effective geometrization is to determine
or estimate geometric invariants directly from a diagram. As volume is the first and
most natural invariant of a hyperbolic manifold, the problem of estimating volume
from a diagram has received considerable attention. In this section, we survey some
of the results and techniques on both upper and lower bounds on volume.

4.1 Upper Bounds on Volume

Many bounds in this section involve constants with geometric meaning. In particular,
we define

vtet = volume of a regular ideal tetrahedron in H
3 = 1.0149 . . .

and
voct = volume of a regular ideal octahedron in H3 = 3.6638 . . .

These constants are useful in combinatorial upper bounds on volume because every
geodesic tetrahedron in H

3 has volume at most vtet , and every geodesic octahedron
has volume at most voct. See e.g. Benedetti and Petronio [19].
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Bounds in Terms of Crossing Number
The first volume bounds for hyperbolic knots are due to Adams [1]. He showed that,
if D = D(K ) is a diagram of a hyperbolic knot or link with c ≥ 5 crossings, then

vol (S3\K ) ≤ 4(c(D) − 4)vtet. (4)

Adams’ method of proof was to use the knot diagram to divide S3\K into tetrahedra
with a mix of ideal and material vertices, and to count the tetrahedra. Since the sub-
division contains at most 4(c(D) − 4) tetrahedra, and each tetrahedron has volume
at most vtet , the bound follows.

In a more recent paper [3], Adams improved the upper bound of (4):

Theorem 4.1 Let D = D(K ) be a diagram of a hyperbolic link K , with at least 5
crossings. Then

vol (S3\K ) ≤ (c(D) − 5)voct + 4vtet.

Again, the method is to divide the link complement into a mixture of tetrahedra
and octahedra, and to bound the volume of each polyhedron by vtet or voct respectively.
The subdivision into octahedra was originally described by D. Thurston.

The upper bound of Theorem 4.1 is known to be asymptotically sharp, in the sense
that there exist diagrams of knots and links Kn with vol (S3\Kn)/c(Kn) → voct as
n → ∞; see [26]. On the other hand, this upper bound can be arbitrarily far from
sharp. A useful example is the sequence of twist knots Kn depicted in Fig. 5. Since
the number of crossings is n + 2, the upper bound of Theorem 4.1 is linear in n.
However, the volumes of Kn are universally bounded and only increasing to an
asymptotic limit:

vol (S3\Kn) < voct, lim
n→∞ vol (S3\Kn) = voct

This holds as a consequence of the following theorem of Gromov and Thurston [80,
Theorem 6.5.6].

Theorem 4.2 Let M be a finite volume hyperbolic manifold with cusps. Let N =
M(s1, . . . , sn) be a Dehn filling of some cusps of M. Then vol (N ) < vol (M).

Fig. 5 Every twist knot Kn has two twist regions, consisting of 2 and n crossings. Every Kn can
be obtained by Dehn filling the red component of the Whitehead link L , depicted on the right



16 D. Futer et al.

Returning to the case of twist knots, every Kn can be obtained by Dehn filling on
one component of the Whitehead link L , depicted in Fig. 5, right. Thus Theorem 4.2
implies vol (S3\Kn) < vol (S3\L) = voct.

Bounds in Terms of Twist Number

Following the example of twist knots in Fig. 5, it makes sense to seek upper bounds
on volume in terms of the twist number t (K ) of a knot K (see Definition 2.4), rather
than the crossing number alone.

The following result combines the work of Lackenby [63] with an improvement
by Agol and D. Thurston [63, Appendix].

Theorem 4.3 Let D(K ) be a diagram of a hyperbolic link K . Then

vol (S3\K ) ≤ 10(t (D) − 1)vtet.

Furthermore, this bound is asymptotically sharp, in the sense that there exist knot
diagrams Dn = D(Kn) with vol (S3\Kn)/t (Dn) → 10vtet.

Themethodof proof is as follows. First, one constructs a fully augmented link L , by
adding an extra component for each twist region of D(K ) (see Fig. 3). As described in
Sect. 3.1, the link complement S3\L has simple and explicit combinatorics, making
it relatively easy to bound vol (S3\L) by counting tetrahedra. Then, Theorem 4.2
implies that the same upper bound on volume applies to S3\K .

As a counterpart to the asymptotic sharpness of Theorem4.3, there exist sequences
of knots where t (Kn) → ∞ but vol (S3\Kn) is universally bounded. One family of
such examples is the double coil knots studied by the authors [40].

Subsequent refinements or interpolations between Theorems 4.1 and 4.3 have
been found by Dasbach and Tsvietkova [30, 31] and Adams [4]. These refinements
produce a smaller upper bound compared to that of Theorem 4.3 when the diagram
D(K ) has both twist regions with many crossings and with few crossings. However,
the worst case scenario for the multiplicative constant does not improve due to the
asymptotic sharpness of Theorems 4.1 and 4.3.

4.2 Lower Bounds on Volume

By results of Jorgensen and Thurston [80], the volumes of hyperbolic 3–manifolds
are well-ordered. It follows that every family of hyperbolic 3–manifolds (e.g. link
complements; fiberedknot complements, knot complements of genus 3, etc.) contains
finitely many members realizing the lowest volume. Gabai, Meyerhoff, and Milley
[46] showed that the three knot complements of lowest volume are the figure-8 knot,
the 52 knot, and the (−2, 3, 7) pretzel, whose volumes are

vol (41) = 2vtet = 2.0298 . . . , vol (52) = vol (P(−2, 3, 7)) = 2.8281 . . . .

(5)
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Agol [12] showed that the two multi-component links of lowest volume are the
Whitehead link and the (−2, 3, 8) pretzel link, both of which have volume voct =
3.6638 . . .. Yoshida [86] has identified the smallest volume link of 4 components,
with volume 2voct. Beyond these entries, lower bounds applicable to all knots (or all
links) become scarce. Not even the lowest volume link of 3 components is known to
date.

Nevertheless, there are several practical methods of obtaining diagrammatic lower
bounds on the volume of a knot or link, each of which applies to an infinite family
of links, and each of which produces scalable lower bounds that become larger as
the complexity of a diagram becomes larger. We survey these methods below.

Angle Structures

Suppose that S3\K has an ideal triangulation τ supporting an angle structure θ.
(Recall Definition 3.8.) Every ideal tetrahedron of τ , supplied with angles via θ, has
an associated volume. As a consequence, one may naturally define a volume vol (θ)
by summing the volumes of the individual tetrahedra.

Conjecture 4.4 (Casson) Let τ be an ideal triangulation of a hyperbolic manifold
M, which supports an angle structure θ. Then

vol (θ) ≤ vol (M),

with equality if and only if θ solves the gluing equations and gives the complete
hyperbolic structure on M.

While Conjecture 4.4 is open in general, it is known to hold if the triangulation
τ is geometric, meaning that some (possibly different) angle structure θ′ solves the
gluing equations on τ . In this case, a theorem of Casson and Rivin [35, 77] says that
θ′ uniquely maximizes volume over all angle structures on τ , implying in particular
that vol (θ) ≤ vol (θ′) = vol (M).

In particular, the known case of Conjecture 4.4 has been applied to the family of
2–bridge links. In this case, the link complement has a natural angled triangulation
whose combinatorics is closely governed by the link diagram [49, Appendix]. It
follows that, for a sufficiently reduced diagram D of a 2–bridge link K ,

2vtett (D) − 2.7066 ≤ vol (S3\K ) ≤ 2voct(t (D) − 1), (6)

which both sharpens the upper bound of Theorem 4.3 and proves a comparable lower
bound.

There are rather few other families where this method has been successfully
applied. One is the weaving knots studied by Champanerkar, Kofman, and
Purcell [27].

In the spirit of open problems, we mention the family of fibered knots and links.
Agol showed that these link complements admit combinatorially natural veering
triangulations [13], which have angle structures with nice properties [36, 53]. A
proof of Conjecture 4.4, even for this special family, would drastically expand the list
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of link complements for which we have practical, combinatorial volume estimates.
See Worden [85] for more on this problem.

Guts

Onepowerfulmethodof estimating the volumeof aHaken3–manifoldwas developed
by Agol, Storm, and Thurston [14], building on previous work of Agol [10].

Definition 4.5 Let M be a Haken hyperbolic 3–manifold and S ⊂ M a properly
embedded essential surface. We use the symbol M\\S to denote the complement in
M of a collar neighborhood of S. Following the work of Jaco, Shalen, and Johannson
[58, 59], there is a canonical way to decompose M\\S along essential annuli into
three types of pieces:

• I–bundles over a subsurface Σ ⊂ S,
• Seifert fibered pieces, which are necessarily solid tori when M is hyperbolic,
• All remaining pieces, which are denoted guts (M, S).

Thurston’s hyperbolization theorem (a variant of Theorem 3.7) implies that guts
(M, S) admits a hyperbolic metric with totally geodesic boundary. By Miyamoto’s
theorem [70], this metric with geodesic boundary has volume at least
voct |χ(guts (M, S))|, where χ denotes Euler characteristic.

Agol, Storm, and Thurston showed [14]:

Theorem 4.6 Let M be a Haken hyperbolic 3–manifold and S ⊂ M a properly
embedded essential surface. Then

vol (M) ≥ voct |χ(guts (M, S))| .

The proof of Theorem 4.6 relies on geometric estimates due to Perelman. Agol,
Storm, and Thurston double M\\S along its boundary and apply Ricci flow with
surgery. They show that the metric on guts (M, S) converges to the one with totally
geodesic boundary, while volume decreases, and while the metric on the remaining
pieces shrinks away to volume 0.

Theorem 4.6 has been applied to several large families of knots. For alternat-
ing knots and links, Lackenby computed the guts of checkerboard surfaces in an
alternating diagram [63]. Combined with Theorems 4.3 and 4.6, this implies:

Theorem 4.7 Let D be a prime alternating diagram of a hyperbolic link K in S3.
Then voct

2
(t (D) − 2) ≤ vol (S3\K ) ≤ 10vtet(t (D) − 1),

Thus, for alternating knots, the combinatorics of a diagramdetermines vol (S3\K )

up to a factor less than 6. Compare (6) in the 2–bridge case. The authors of this
survey have extended the method from alternating links to the larger family of semi-
adequate links, and the even larger family of homogeneously adequate links. We
refer to [41] and the survey paper [42] for definitions of these families and for the
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precise theorem statements. The method gives particularly straightforward estimates
in the same vein as Theorem 4.7 for positive braids [41, 47] and for Montesinos
links [33, 41]. In another direction, Howie and Purcell generalized the method from
alternating links in S3 to alternating links on surfaces in any compact 3-manifold and
obtained generalizations of Theorem 4.7 in this setting [57].

Question 4.8 Does every knot K ⊂ S3 admit an essential spanning surface S such
that the Euler characteristic χ(guts (S3\K , S)) can be computed directly from dia-
grammatic data?

The answer to Question 4.8 is “yes” whenever K admits a homogeneously ade-
quate diagram in the terminology of [41]. However, it is not knownwhether K always
admits such a diagram. This is closely related to [41, Question 10.10].

Dehn Filling Bounds

A powerful method for proving lower bounds on the volume of N = S3\K involves
two steps: first, prove a lower bound on vol (M) for some surgery parent M of N ,
using one of the above methods; and second, control the change in volume as we
Dehn fill M to recover N .

The following theorem, proved in [37], provides an estimate that has proved useful
for lower bounds on the volume of knot complements.

Theorem 4.9 Let M be a cusped hyperbolic 3–manifold, containing embedded
horocusps C1, . . . ,Ck (plus possibly others). On each torus Ti = ∂Ci , choose a
slope si , such that the shortest length of any of the si is �min > 2π. Then the manifold
M(s1, . . . , sk) obtained by Dehn filling along s1, . . . , sk is hyperbolic, and its volume
satisfies

vol (M(s1, . . . , sk)) ≥
(

1 −
(

2π

�min

)2
)3/2

vol (M).

Earlier results in the same vein include an asymptotic estimate by Neumann and
Zagier [71], as well as a cone-deformation estimate by Hodgson and Kerckhoff [51].

The idea of the proof of Theorem 4.9 is as follows. Building on the proof of
the Gromov–Thurston 2π-Theorem, construct explicit negatively curved metrics on
the solid tori added during Dehn filling. This yields a negatively curved metric on
M(s1, . . . , sk) whose volume is bounded below in terms of vol (M). Then, results
of Besson, Courtois, and Gallot [20, 22] can be used to compare the volume of the
negatively curved metric on M(s1, . . . , sk) with the true hyperbolic volume.

Theorem 4.9 leads to diagrammatic volume bounds for several classes of hyper-
bolic links. For example, the following theorem from [37] gives a double-sided
volume bound similar to Theorem 4.7.

Theorem 4.10 Let K ⊂ S3 be a link with a prime, twist–reduced diagram D(K ).
Assume that D(K ) has t (D) ≥ 2 twist regions, and that each region contains at

least 7 crossings. Then K is a hyperbolic link satisfying

0.70735 (t (D) − 1) < vol (S3\K ) < 10 vtet (t (D) − 1).
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The strategy of the proof of Theorem 4.10 is to view S3\K as a Dehn filling
on the complement of an augmented link obtained from the highly twisted diagram
D(K ). The volume of augmented links can be bounded below in terms of t (D)

using Miyamoto’s theorem [70]. The hypothesis that each region contains at least 7
crossings ensures that the filling slopes are strictly longer than 2π, hence Theorem4.9
gives the result.

Similar arguments using Theorem 4.9 have been applied to links obtained by
adding alternating tangles [38], closed 3–braids [39] and weaving links [27].

Knots with Symmetry Groups

We close this section with a result about the volumes of symmetric knots. Suppose
K ⊂ S3 is a hyperbolic knot, and G is a group of symmetries of K . That is, G acts
on S3 by orientation–preserving homeomorphism that send K to itself. It is a well-
known consequence of Mostow rigidity that G is finite and acts on M = S3\K by
isometries [80, Corollary 5.7.4]. Furthermore, G is cyclic or dihedral [55].

Define n = n(G) to be the smallest order of a subgroup StabG(x) stabilizing a
point x ∈ S3\K , or else n = |G| if the group acts freely.While this definition depends
on how G acts, it is always the case that n(G) is at least as large as the smallest prime
factor of |G|.

The following result follows by combining several statements in the literature.
Since it has not previously been recorded, we include a proof.

Theorem 4.11 Let K ⊂ S3 be a hyperbolic knot. Let G be a group of orientation–
preserving symmetries of S3 that send K to itself. Define n = n(G) as above. Then

vol (S3\K ) ≥ |G| · xn,

where xn = 2.848 if n > 10 and n �= 13, 18, 19 and xn takes the following values
otherwise.

voct/12 = 0.30532 . . . n = 2 2.16958 n = 7, 8
vtet/2 = 0.50747 . . . n = 3 2.47542 n = 9
0.69524 n = 4 2.76740 n = 10
1.45034 n = 5 vol (m011) = 2.7818 . . . n = 13
2.00606 n = 6 vol (m016) = 2.8281 . . . n = 18, 19

Proof First, suppose that G acts on M = S3\K with fixed points. Then the quotient
O = M/G is a non-compact, orientable hyperbolic 3–orbifold whose torsion orders
are bounded below by n. We need to check that vol (O) ≥ xn . If n = 2, this result is
due to Adams [7, Corollary 8.2]. If n = 3, the result is essentially due to Adams and
Meyerhoff; see [15, Lemma 2.2] and [16, Lemma 2.3]. If n ≥ 4, the result is due to
Atkinson and Futer [16, Theorem 3.8]. In all cases, it follows that vol (M) ≥ |G| · xn .

Next, suppose that G acts freely on M = S3\K . Then the quotient N = M/G
is a non-compact, orientable hyperbolic 3–manifold. If vol (N ) ≥ 2.848, then the
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theorem holds automatically because xn ≤ 2.848 for all n. If vol (N ) < 2.848, then
Gabai, Meyerhoff, and Milley showed that N is one of 10 enumerated 3–manifolds
[46, Theorem 1.2]. In SnapPy notation, these are m003, m004, m006, m007, m009,
m010, m011, m015, m016, and m017. We restrict attention to these manifolds.

Since G acts freely on M , the solution to the Smith conjecture implies that G
also acts freely on S3. By a theorem of Milnor [69, p. 624], G contains at most one
element of order 2, which implies that it must be cyclic. Thus P = S3/G is a lens
space obtained by a Dehn filling on N .

An enumeration of the lens space fillings of the 10 possible manifolds N appears
in the table on [38, p. 243]. This enumeration can be used to show that all possibilities
satisfy the statement of the theorem.

Suppose that a lens space L(p, q) is a Dehn filling of N . If N actually occurs
as a quotient of M = S3\K , then M must be a cyclic p–fold cover of N . We may
rigorously enumerate all cyclic p–fold covers using SnapPy [29]. In almost all cases,
homological reasons show that these covers are not knot complements. For instance,
N = m003 has two lens space fillings: L(5, 1) and L(10, 3). This manifold has six
5–fold and six 10–fold cyclic covers, none of which has first homology Z. Thus
m003 is not a quotient of a knot complement. The same technique applies to 8 of
the 10 manifolds N .

The two remaining exceptions determine several values of xn . Themanifoldm011
has 9–fold and 13–fold cyclic covers that are knot complements in S3. The value of x9
is already smaller than vol (m011), but the value of x13 is determined by this example.
Similarly, the manifold m016, which is the (−2, 3, 7) pretzel knot complement, has
18–fold and 19–fold cyclic covers that are knot complements, determining the values
of x18 and x19. �

5 Cusp Shapes and Cusp Areas

Several results discussed above, such as Theorems 3.10 and 4.9, require the slopes
used in Dehn filling along knot or link complements to be long. To obtain lower
bounds for lengths of slopes, we consider an additional invariant of hyperbolic knots
and links, namely their cusp shapes and cusp areas.

Definition 5.1 Let C1, . . . ,Cn be a fixed choice of maximal cusps for a link com-
plement M , as in Definition 2.11. The cusp area of a component Ci , denoted by
area (∂Ci ), is the Euclidean area of ∂Ci . The cusp volume, denoted by vol (Ci ), is
the volume of Ci . Note that area (∂Ci ) = 2 vol (Ci ). When M has multiple cusps,
the cusp area and cusp volume depend on the choice of maximal cusp.

This section surveys some methods for estimating the area of a maximal cusp and
the length of slopes on it, and poses some open questions.
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5.1 Direct Computation

Similar to the techniques in Sect. 3, if we can explicitly determine a geometric trian-
gulation of a hyperbolic 3–manifold, then we can determine its cusp shape and cusp
area. This is implemented in SnapPy [29].

For fully augmented links, whose geometry is completely determined by a circle
packing, the cusp shape is also determined by the circle packing. The cusp area
can be computed by finding an explicit collection of disjoint horoballs in the fully
augmented link, as in [44].

Under very strong hypotheses, it is possible to apply the cone deformation tech-
niques of Hodgson and Kerckhoff [51] to bound the change in cusp shape under
Dehn filling. Purcell carried this out in [74], starting from a fully augmented link.
However, the results only apply to knots with at least two twist regions and at least
116 crossings per twist region.

To obtain more general bounds for larger classes of knots and links, additional
tools are needed. The main tools are pleated surfaces and packing techniques.

5.2 Upper Bounds and Pleated Surfaces

If M is a hyperbolic link complement, then for any choice of maximal cusp, there is
a collection of slopes whose Dehn fillings gives S3. These are the meridians of M .
Because S3 is not hyperbolic, the 6–Theorem implies that in any choice of maximal
cusp for M , one or more of these slopes must have length at most 6. Indeed, the
6–Theorem is proved by considering punctured surfaces immersed in M and using
area arguments to bound the length of a slope.

Definition 5.2 Let M be a hyperbolic 3–manifold with cusps a collection of cusps
C , and let S be a hyperbolic surface. A pleated surface is a piecewise geodesic, proper
immersion f : S → M . Properness means that any cusps of S are mapped into cusps
of M . The surface S is cut into ideal triangles, each of which is mapped into M by
a local isometry. In M , there may be bending along the sides of the triangles. See
Fig. 6.

An essential surface S in a hyperbolic 3–manifold M can always be homotoped
into a pleated form. The idea is to start with an ideal triangulation of S, then homotope
the images of the edges in M to be ideal geodesics in M . Similarly, homotope the
ideal triangles to be totally geodesic, with sides the geodesic edges in M . This gives
S a pleating. See [25, Theorem 5.3.6] or [62, Lemma 2.2] for proofs.

The main result on slope lengths and pleated surfaces is the following, which is
a special case of [11, Theorem 5.1] and [62, Lemma 3.3]. The result is used in the
proof of the 6–Theorem.
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Fig. 6 The lift of a pleated
surface to the universal cover
H

3 of M . The piecewise
linear zig-zag lies in a single
horosphere

Theorem 5.3 Let M = S3\K be a hyperbolic knot complement with a maximal
cusp C. Suppose that f : S → M is a pleated surface, and let �C(S) denote the total
length of the intersection curves in f (S) ∩ ∂C. Then

�C(S) ≤ 6|χ(S)|.

The idea of the proof of Theorem 5.3 is to find disjoint horocusp neighborhoods
H = ∪Hi in S such that f (Hi ) ⊂ C , and such that �(∂Hi ) is at least as big as the
length of f (∂Hi ) measured on C . This allows us to compute as follows:

�C(S) ≤
s

∑

i=1

�(∂Hi ) =
s

∑

i=1

area (Hi ) ≤ 6

2π
area (S) = 6

2π
· 2π|χ(S)|.

Here, the first inequality is by construction. The second equality is a general fact
about hyperbolic surfaces, proved by a calculation in H

2. The third inequality is
a packing theorem due to Böröczky [23]. The final equality is the Gauss–Bonnet
theorem.

Sample Applications

As noted above, the 6–Theorem implies that the length of a meridian is at most 6.
Theorem 5.3 has also been used to estimate the lengths of other slopes. For example,
a λ–curve is defined to be a curve that intersects the meridian μ exactly once. The
knot-theoretic longitude, which is null-homologous in S3\K , is one example of a
λ–curve, and need not be the shortest λ–curve. There may be one or two shortest
λ–curves. For any λ–curve λ, note that �(μ)�(λ) gives an upper bound on cusp area.

By applying Theorem 5.3 to a singular spanning surface in a knot complement,
the authors of [6] obtain the following upper bounds on meridian, λ–curve, and cusp
area.

Theorem 5.4 Let K be a hyperbolic knot in S3 with crossing number c = c(K ). Let
C denote the maximal cusp of S3\K. Then, for the meridian μ and for the shortest
λ–curve,
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�(μ) ≤ 6 − 7

c
, �(λ) ≤ 5c − 6, and area (∂C) ≤ 9c

(

1 − 1

c

)2

.

Another instance where Theorem 5.3 applies is to knots with a pair of essential
spanning surfaces S1 and S2; in this case the surface S is taken to be the disjoint
union of the two spanning surfaces. The following appears in [24].

Theorem 5.5 Let K be a hyperbolic knot with maximal cusp C. Suppose that S1 and
S2 are essential spanning surfaces in M = S3\K and let i(∂S1, ∂S2) �= 0 denote the
minimal intersection number of ∂S1, ∂S2 in ∂C. Finally, let χ = |χ(S1)| + |χ(S2)|.
Then, for the meridian μ and the shortest λ–curve,

�(μ) ≤ 6χ

i(∂S1, ∂S2)
, �(λ) ≤ 3χ, and area (∂C) ≤ 18χ2

i(∂S1, ∂S2).

Theorem 5.5 is useful because the checkerboard surfaces of many knot diagrams
are known to be essential. For instance, the checkerboard surfaces of alternating
diagrams are essential. Indeed, in [6] the authors use pleated checkerboard surfaces
to prove themeridianof an alternatingknot satisfies �(μ) < 3 − 6/c.Other knotswith
essential spanning surfaces include adequate knots, which arose in the study of Jones
type invariants. Ozawa first proved that two surfaces in such links are essential [73];
see also [41]. More generally, Theorem 5.5 applies to knots that admit alternating
projections on surfaces so that they define essential checkerboard surfaces. These
have been studied by Ozawa [72] and Howie [56].

All the results above indicate that meridian lengths should be strictly less than 6.
For knots in S3, no examples are known with length more than 4.

Question 5.6 Do all hyperbolic knots in S3 satisfy �(μ) ≤ 4?

For links in S3, Goerner showed there exists a link in S3 with 64 components, and
a choice of cusps for which each meridian length is

√
21 ≈ 4.5826 [48].

Question 5.7 Given a hyperbolic link L ⊂ S3, consider the shortestmeridian among
the components of L . What is the largest possible value of the shortest meridian? Is
it

√
21?

The 6–Theorem gives a bound on the length of any non-hyperbolic Dehn fillings.
By geometrization, non-hyperbolic manifolds are either reducible (meaning they
contain an essential 2–sphere), or toroidal (meaning the contain an essential torus),
or small Seifert fibered. The 6–Theorem is only known to be sharp on toroidal fillings.
Thus one may ask about the maximal possible length for the other types of fillings.
See [54] for related questions and results.

Upper Bounds on Area Via Cusp Density

The cusp density of a cusped 3–manifold M is the volume of a maximal cusp
divided by the volume of M . Böröczky [23] showed that cusp density is uni-
versally bounded by

√
3/2vtet , with the figure–8 knot complement realizing this
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bound. Recall from Theorem 4.3 that every hyperbolic knot K ⊂ S3 satisfies
vol (S3\K ) ≤ 10 vtet(t − 1), where t = t (D) is the twist number of any diagram.
Combining this with Böröczky’s theorem shows that a maximal cusp C ⊂ S3\K
satisfies

area (∂C) ≤ 10
√
3 · (t − 1) ≈ 17.32 · (t − 1).

We note that this bound can be arbitrarily far from sharp. This is already true
for Theorem 4.3. In addition, Eudave-Muñoz and Luecke [32] showed that the cusp
density of a hyperbolic knot complement can be arbitrarily close to 0.

5.3 Lower Bounds via Horoball Packing

Theorems 5.3 and 5.4 givemethods for bounding cusp area from above. To give lower
bounds on slope lengths, for example to apply the 6–Theorem, we must bound cusp
area or cusp volume from below. The main tool for this is to use packing arguments:
find a disjoint collection of horoballs with Euclidean diameters bounded from below
in a fundamental region of the cusp. Take their shadows on the cusp torus. The area
of the cusp torus must be bounded below by the areas of the shadows.

One sample result that has been used to bound cusp shape is the following, from
[64].

Lemma 5.8 Suppose that a one-cusped hyperbolic 3–manifold M contains at least
p homotopically distinct essential arcs, each with length at most L measured with
respect to the maximal cusp H of M. Then the cusp area area (∂H) is at least
p

√
3 e−2L .

Similar techniques were also used to bound cusp areas in [39] and in [45].
The idea of the proof is that an arc from the cusp to itself of length L lifts to an arc

in the universal cover between two horoballs. We may identify the universal cover
of M with the upper half-space model of H3, so that the boundary of one cusp in M
lifts to a horosphere at Euclidean height 1. The Euclidean metric on this horosphere
coincides with the hyperbolicmetric. Arcs of bounded length lead to horoballs whose
diameter is not too small, and whose shadows have a definite area.

At this writing there is no general lower bound of cusp shapes for all hyperbolic
knots. However, for alternating knots, Lackenby and Purcell found a collection of
homotopically distinct essential arcs of bounded length, then applied Lemma 5.8 to
to show the following [64].

Theorem 5.9 Let D be a prime, twist reduced alternating diagram of some hyper-
bolic knot K and let t = t (D) be the twist number of D. Let C be the maximal cusp
of M = S3\K. Then

A(t − 2) ≤ area (∂C) ≤ 10
√
3(t − 1),
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where A is at least 2.278 × 10−9.

For 2–bridge knots there is a much sharper lower bound [39]:

8
√
3

147
(t − 1) ≤ area (∂C) ≤

√
3voct
vtet

(t − 1).

Note that Theorem 5.9, along with Theorem 4.7 implies that the cusp density of
alternating knots is universally bounded below. This is not true for non-alternating
knots [32]. It would be interesting to study the extent to which Theorem 5.9 can be
generalized.

In general, we would like to know how to obtain many homotopically distinct
arcs that can be used in Lemma 5.8. The arcs used in the proof of Theorem 5.9 lie
on complicated immersed essential surfaces, described in [65]. It is conjectured that
much simpler crossing arcs should play this role.

Definition 5.10 Let K be a knot with diagram D(K ). A crossing arc is an embedded
arc α in S3 with ∂α ⊂ K , such that in D(K ), α projects to an unknotted embedded
arc running from an overstrand to an understrand in a crossing.

The following conjecture is due to Sakuma and Weeks [78].

Conjecture 5.11 In a reduced alternating diagram of a hyperbolic alternating link,
every crossing arc is isotopic to a geodesic.

Conjecture 5.11 is known for 2–bridge knots [49, Appendix] and for classes of
closed alternating braids [83].

Computer experiments performed by Thistlethwaite and Tsvietkova [79] also
support the following conjecture, which would give more information on the lengths
of crossing arcs, hence more information on cusp areas.

Conjecture 5.12 Crossingarcs in alternating knots have lengthuniversally bounded
above by log 8.
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Spanning Surfaces for Hyperbolic Knots
in the 3-Sphere

Colin C. Adams

Abstract We consider results and questions related to both the geometry and topol-
ogy of surfaces that span hyperbolic knots, including embedded orientable and
nonorientable surfaces as well as singular punctured surfaces.

Keywords Hyperbolic knot complement · Seifert surface · Totally geodesic
surface · Quasi-Fuchsian surface
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1 Introduction

In the 1970s, W. Thurston proved that knots in the 3-sphere fall into three disjoint
classes: torus knots, satellite knots and hyperbolic knots. A torus knot Tp,q lives on
the surface of an unknotted torus, wrapping p timesmeridianally and q times longitu-
dinally. A satellite knot K lives in a tubular neighborhood of another nontrivial knot
K ′ such that it cannot be isotoped within the neighborhood to miss any meridianal
disks of the tube neighborhood. Note that all composite knots fall into the satellite
knot category by using the so-called swallow-follow torus that swallows one factor
knot and follows the other.

A knot K is hyperbolic if its complement possesses a metric of constant curva-
ture−1. This is equivalent to there being a coveringmap from hyperbolic 3-spaceH3

to S3 \ K such that the covering transformations form a discrete group of fixed-point
free isometries ofH3. By theMostow-Prasad Rigidity Theorem, the hyperbolic knots
have a unique hyperbolic volume associated with the complement. Moreover, one
can also obtain a variety of hyperbolic invariants, each uniquely determined for the
knot.
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Thurston’s groundbreaking result revolutionized knot theory. In this paper, we
discuss its implications for spanning surfaces, which are surfaces in S3 such that
their boundary is a given knot. In particular, most of the time, we will look at Seifert
surfaces, which are embedded orientable surfaces in S3 with boundary equal to the
knot, and the nonorientable versions, known as nonorientable Seifert surfaces, though
we will also discuss certain singular punctured spanning surfaces as well. We do not
in general distinguish between isotopy classes of surfaces and a given representative
of the isotopy class except where necessary for clarity.

Note that when a knot K is hyperbolic, we can think of its complement S3 \ K
as the hyperbolic manifold M . We can also consider the manifold M ′ = S3 \ N (K ),
where N (K ) is an open neighborhood of K . Then M ′ has a single torus boundary
and the interior of M ′ is homeomorphic to M . When considering spanning surfaces,
it is often convenient to think of them as living in M ′ so we can talk about them
being properly embedded. We will jump back and forth between these viewpoints as
appropriate.A cuspof a hyperbolic knot complement is a neighborhoodof themissing
knot that lifts to a collection of horoballs in hyperbolic space H3. A maximal cusp
is a cusp that has been expanded until it touches itself on the boundary. Throughout
this paper, c(K ) denotes the minimal number of crossings in any projection of K .
If R is a submanifold of M or M ′ of dimension 1, 2, or 3, N (R) denotes an open
regular neighborhood.

In Sect. 2,we discuss Seifert surfaces and nonorientable Seifert surfaces, including
state surfaces and checkerboard surfaces. In Sect. 3, we delineate the three possibil-
ities for spanning surfaces with regard to hyperbolic knots: virtual fibers, accidental
parabolic surfaces and quasi-Fuchsian surfaces. We then focus on totally geodesic
(Fuchsian) surfaces, which are special cases of quasi-Fuchsian surfaces. Section4 is
devoted to quasi-Fuchsian surfaces and a measure of how far they are from being
Fuchsian. Section5 discusses singular punctured disks with boundary the knot, and
how they impact hyperbolic invariants. A method for generating these surfaces from
D. Thurston’s octahedral decomposition of a knot complement is included.

2 Seifert Surfaces

Given any knot in S3, one can obtain a Seifert surface by applying Seifert’s algo-
rithm to an oriented projection. Traveling along the knot, we split it at each crossing
and reglue so that the orientations of the resulting strands match. Then each of the
disjoint simple closed curves that result is spanned with a disk. Half-twisted bands
are attached to the boundaries of the disk at each crossing. One can check this always
results in an orientable surface. We call a surface obtained in this manner a canonical
Seifert surface for the knot.

In fact, the resulting surface is not uniquely determined. If, for instance the Seifert
circles are nested, one can place the disks that span them at certain alternative heights
relative to one another and obtain non-isotopic surfaces. And of course, different
projections of the same knot can result in additional surfaces.
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Fig. 1 A knot that has both a totally knotted Seifert surface and a disjoint semi-free Seifert surface.
(Figure from [8], used with permission)

For any canonical Seifert surface S, S3 \ (N (S) ∪ N (K )) is a handlebody. More
generally, we can define any Seifert surface to be free if S3 \ (N (S) ∪ N (K )) is a
handlebody. (We call it free since the fundamental group of a handlebody is free.)

We can now define three invariants. The canonical genus gc(K ) is the least genus
of any canonical Seifert surface for K . The free genus g f (K ) is the least genus of
any free Seifert surface. And the genus g(K ) is the least genus of any Seifert surface
for K . It is immediate that g(K ) ≤ g f (K ) ≤ gc(K ). Although for many knots, they
are all equal, there are examples of knots where they can be arbitrarily far part.

We define a totally knotted Seifert surface to be the opposite extreme from a free
Seifert surface in the sense that ∂(N (S) ∪ N (K )) is incompressible in S3 \ (N (S) ∪
N (K )). We define a semi-free Seifert surface to be one where ∂(N (S) ∪ N (K )) is
compressible in S3 \ (N (S) ∪ N (K )). So a free Seifert surface is also semi-free.

Wewill be particularly interested inminimal genus Seifert surfaces. Such a surface
must be incompressible or we could compress and lower genus.

In 1992, Kakimizu [13] defined theKakimizu complex associated to a knot, which
is a simplicial complex that has a vertex for every isotopy class of a minimal genus
Seifert surface and an n-simplex spanning n + 1 vertices if the corresponding col-
lection of Seifert surfaces can be made pairwise disjoint. In the case that a knot is
hyperbolic, it is known that the Kakimizu complex is finite (due to Jaco–Sedgwick
(see [14, 19]), connected [13, 16] and contractible [15].

In [8], it was shown that there exist hyperbolic knots that have n pairwise disjoint
totally knotted surfaces for any positive integer n. There are also hyperbolic knots
with one semi-free Seifert surface and n totally knotted surfaces, again all pairwise
disjoint. As an example of the techniques for proving this, in Fig. 1, we see a knot and
a spanning surface with four punctures. We then glue in either of the two surfaces
from Fig. 2 at the punctures. This generates both a totally knotted Seifert surface and
a disjoint semi-free Seifert surface. We will see later that if we restrict the geometry
of the surfaces, this cannot happen.

A generalization of Seifert’s algorithm allows us to make an arbitrary choice of
how to split each crossing in either of the two possible ways. The resulting collection
of circles is called a state. Again, by adding a disk spanning each circle and adding
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Fig. 2 Gluing on two options to create the two surfaces. (Figure from [8], used with permission)

twisted bands at each crossing, we obtain what is called the corresponding state
surface, again keeping in mind that the surface is not uniquely determined if there is
nesting of state circles. A state surface need not be orientable.

Another type of spanning surface is obtained by taking a projection of the knot
and shading in alternate regions, to obtain a checkerboard surface. Each projection
yields two such. The two checkerboard surfaces correspond to two particular states,
both with no nested circles and with opposite choice of splittings at each crossing.
These are usually not orientable, and it can never be the case that both are orientable.
In fact a checkerboard surface S is orientable if and only if all complementary regions
in the projection have an even number of edges.

3 The Trichotomy of Surfaces in Hyperbolic 3-Manifolds

For a hyperbolic knot, work of [17] (see also [4, 5]) implies that a Seifert surface of
minimal genus must have one of the following three behaviors:

1. S is a virtual fiber, meaning that a finite cover of the manifold is fibered with S
as a fiber. This causes a connected lift of the surface to H

3 to have limit set the
entire boundary of H3.

2. There is an accidental parabolic in S, which is to say, a simple closed loop in S
that is not parallel to the boundary of S but can be homotoped into the boundary
of M .

3. S is quasi-Fuchsian,meaning that the limit set of a connected lift of S to hyperbolic
3-space is a quasi-circle.

In [10] (see also [7]), it was proved that in a non-fibered hyperbolic knot com-
plement, a minimal genus Seifert surface cannot possess accidental parabolics and
hence must be quasi-Fuchsian. We now focus on this case.

We are particularly interested in the subset of quasi-Fuchsian spanning surfaces
called either Fuchsian or totally geodesic surfaces. Such a surface lifts to a collection
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Table 1 Table of rigid 2-orbifolds

Hyperbolic rigid 2-orbifolds Exceptions (these are not hyperbolic)

S2(n,m, p) S2(2, 2, n), S2(2, 3, 3), S2(2, 3, 4), S2(2, 3, 5),
S2(2, 3, 6), S2(2, 4, 4), S2(3, 3, 3)

D2(n;m) D2(2; n), D2(3; 2), D2(3; 3), D2(4; 2)
D2(; n,m, p) D2(; 2, 2, n), D2(; 2, 3, 3), D2(; 2, 3, 4), D2(; 2, 3, 5),

D2(; 2, 3, 6), D2(; 2, 4, 4), D2(; 3, 3, 3)

n

p

n

p

Fig. 3 A totally geodesic Seifert surface for the (n, n, . . . , n)-pretzel knot

of geodesic planes in hyperbolic 3-space. In [2, 3], examples of such surfaces were
produced using the following method. Certain hyperbolic 2-orbifolds are rigid, as
appear in Table 1. This means that they have a unique hyperbolic structure and they
are themselves totally geodesic. The integers before the semi-colon are the orders of
cone points in the interior of the 2-orbifold, and the integers after the semi-colon are
the orders of corners on the boundary of the 2-orbifold.

If one can find a knot or link in the 3-sphere with a spanning surface, such that they
have certain symmetries, the quotient under which is a spherical 3-orbifold such that
the surface projects to a rigid 2-orbifold, then the surface must be totally geodesic in
the hyperbolic structure on the knot or link complement.

Example 1

The (n, n, . . . , n)-pretzel knot possesses a totally geodesic Seifert surface. On the
left in Fig. 3, we see a spherical 3-orbifold with a single circular singular set of order
p.We have removed a knot from it that bounds a rigid 2-orbifold of type S2(p, p,∞),
such that the 2-orbifold lifts to the totally geodesic Seifert surface for the knot on the
right.
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Example 2

We can also obtain totally knotted totally geodesic Seifert surfaces as in Fig. 4.

3

8

Fig. 4 A totally knotted totally geodesic Seifert surface

Example 3

If we allow ourselves to leave the category of knots in the 3-sphere momentarily, we
note that there are examples of links such that both checkerboard surfaces are totally
geodesic (Fig. 5).

3
4

8

Fig. 5 A link with two embedded totally geodesic checkerboard surfaces

It remains an open question as to whether any knot has a projection with both
checkerboard surfaces totally geodesic. See also the comment after the next example.
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Note that in [6], the authors provide examples of two links living in T × I where
T is the torus, namely the triaxial link and the square-weave link, such that both
checkerboard surfaces on the torus are totally geodesic.

Example 4

Again leaving the category of knots for just another moment, an example of a nonori-
entable totally geodesic checkerboard surface in a link complement is found in the
Whitehead link, shown in Fig. 6. This construction generalizes to (2p, 2q + 1, 2p)-
pretzel links. It is not known whether nonorientable totally geodesic Seifert surfaces
exist in knot complements.

8

8

Fig. 6 A rigid 2-orbifold yielding a nonorientable totally geodesic spanning surface for the White-
head link

Note that for any knot, at least one of the two checkerboard surfaces must be
nonorientable. (This follows by showing via Euler characteristic that at least one of
the faces in the projection plane has an odd number of edges, forcing the checkerboard
surface that does not contain that face to be nonorientable.)

Although knots can have arbitrarily many different Seifert surfaces, when we
restrict to certain kinds of totally geodesic surfaces, this is no longer true. For instance,
in [2], it was proved that when a semi-free totally geodesic surfaces exists for a
given knot in S3, it must be the only totally geodesic Seifert surface for the knot. In
particular, this means that if there is a vertex of the Kakimizu complex corresponding
to a semi-free totally geodesic Seifert surface, then no other vertex can correspond
to a totally geodesic Seifert surface. Thus a (n, n, . . . , n)-pretzel knot has exactly
one totally geodesic Seifert surface.

Totally geodesic Seifert surfaces appear to be relatively rare. For example, in [3],
it was proved that 2-bridge knots never have totally geodesic Seifert surfaces.

Onemethod for restricting totally geodesic surfaces utilizes a new invariant. Given
a nontrivial, minimal length closed curve γ representing the boundary of a surface
S on the boundary of a maximal cusp C of the complement of a hyperbolic knot K ,
we call the length of the shortest path in ∂C which starts and ends on γ , but which
is not isotopic into γ , the width of S, denoted w(S). In the case that the surface is
orientable, γ will be a longitude, and we say this width is the width of the knotw(K ).
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In [2], it is proved that for a totally geodesic Seifert surface in a knot complement
to exist, 1 ≤ w(K ). Moreover, if such as surface is semi-free, then w(K ) < 2. This
upper bound cannot be improved as thewidths of the (p, p, p)-pretzel knots approach
2 as p grows.

Then, if two oppositely oriented strands in a knot projection are twisted around
each other to obtain a sequence of bigons, and if the resulting sequence of knots is
hyperbolic, the widths of these knots approach 0. Thus, all but finitely many of the
knots in the sequence cannot possess totally geodesic Seifert surfaces.

4 Quasi-Fuchsian Seifert Surfaces

Assuming a given hyperbolic knot is not fibered, it must possess at least one quasi-
Fuchsian Seifert surface. So it is useful to understand such surfaces. We would like
to have a measure of how far a given quasi-Fuchsian Seifert surface is from being
Fuchsian.

Given a properly embedded quasi-Fuchsian Seifert surface S for a hyperbolic
knot K and a maximal cusp C for the complement of K , lift to the upper-half-space
model ofH3 such that ∂C lifts to a horosphere H centered at ∞, which appears as a
horizontal plane. A topological plane P covering S has a limit point at ∞. The limit
set L of P is a quasi-line in the xy-plane. Let P1 and P2 be two vertical planes such
that they sandwich the limit set L between them and the Euclidean distance between
their boundary lines in the xy-plane is as small as possible. Note that their boundary
lines will be parallel. The cusp thickness of S, denoted ct (S), is then defined to be
the distance between P1 and P2 as measured in the horizontal plane H covering the
boundary of the cusp C , as in Fig. 7.

There is no corresponding measure in the case of a closed quasi-Fuchsian surface.
Note that if S is Fuchsian (totally geodesic), then ct (S) = 0. In [1], the previously
mentioned results on width of Fuchsian surfaces are extended to quasi-Fuchsian sur-
faces. In particular, w(S) + ct (S) ≥ 1 and if S is semi-free, then w(S) − ct (S) < 2.
This allows one to restrict the types of quasi-Fuchsian surfaces that can be present
in a given hyperbolic knot complement.

In [11], it is proved that for a hyperbolic alternating link, the checkerboard surfaces
are quasi-Fuchsian. (The proof that appears in [1] is incomplete.) From additional
results in [1], this implies that every hyperbolic alternating knot or link possesses a
quasi-Fuchsian spanning surface, which is one of the checkerboard surfaces, with
w(S) − ct (S) ≤ 1.

In [9], cusp thicknesses of certain checkerboard surfaces were approximated. In
Fig. 8, the limit set for a checkerboard surface S for the figure-eight knot is shownwith
a cusp thickness of approximately 1.06824. (The checkerboard surfaces for thefigure-
eight are equivalent under a symmetry, so they both have the same cusp thickness.)
Thewidth of this checkerboard surface isw(S) ≈ 0.65465.Hencew(s) − ct (S) < 1.
In fact, in this case, it is less than 0, which will always be the case whenever there is
a bigon in the complement of the checkerboard surface in the projection sphere.
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5 Punctured Immersed Spanning Sufaces

In [12], the author introduced an immersed punctured disk with boundary equal to
the knot or link obtained in the following manner. We take a projection of the knot
or link and we cone the projection up to a point U above the projection plane. The
result is a singular disk that is punctured by the knot at each crossing. The singular
set consists of double point arcs running from the top of each crossing toU . A similar
construction works if we cone to a point D below the projection plane.

Z.-X. He used these surfaces to obtain lower bounds on the crossing number of
satellite knots of hyperbolic knots. In [2], these surfaces were used to find bounds
on cusp invariants for hyperbolic manifolds. For example, it was proved that the
meridian length of a hyperbolic knot as measured in a maximal cusp is at most
6 − 7/c(K ) and the longitude length is at most 5c(K ) − 6.

We now provide an alternative method for obtaining these surfaces. A construc-
tion originally due to D. Thurston [18] allows the decomposition of a knot or link
complement into octahedra, with a mixture of ideal and finite vertices. Again, we
choose points U and D above and below the projection plane. Then we insert an
octahedron between the top and bottom strand at each crossing as in Fig. 9.

Of the equatorial vertices, two are lifted up to the finite point U above the pro-
jection plane, causing the identification of two edges of the octahedron, and two are
pulled down to the vertex D below the projection plane, again identifying two edges
of the octahedron. Gluing the faces of the various octahedra at each crossing together

ct(K)ct(K)

L

P2

Boundary of
hyperbolic 3-space 

P1

H

Fig. 7 The cusp thickness of a quasi-Fuchsian surface
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Fig. 8 The limit set for a
checkerboard surface of the
figure-eight knot. (Figure
from [9], used with
permission)

appropriately, as demonstrated in Fig. 10 for two octahedra sharing a bigon, yields
the knot complement.

11

22

3

4

5

6 7

810

9

D
D

U
U

Fig. 9 Insert an octahedron at each crossing, with a mix of finite and ideal vertices
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Fig. 10 Glue adjacent octahedra together along the appropriate faces
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Fig. 11 Cross sections of
octahedra that yield
interesting surfaces

D

D

U
U

D

D

U
U

(a) (b)

This construction has been helpful in proving theVolumeConjecture for a handful
of knots, which relates the hyperbolic volume to the asymptotic behavior of the
colored Jones polynomial. It also gives an upper bound on volume for knots.

vol(K ) < c(K )(3.6638 . . .)

This follows because any hyperbolic octahedron has volume at most the volume of
an ideal regular tetrahedron, which is 3.6638 . . . .

But now, we consider some surfaces that come out of this octahedral construction.
We first take the surfaces that result by taking the two vertical cross sections of each
octahedron as shown in Fig. 11a.

Clearly, the result is a surface that self intersects along the vertical edges that
connect the top strand of a crossing to the bottom strand of a crossing. In fact, this
results in two embedded surfaces intersecting along these edges, those being the
checkerboard surfaces of the projection. So we see that the checkerboard surfaces
are a natural byproduct of the octahedral decomposition.

Now take the the vertical cross section of each octahedron that passes through the
top and bottom ideal vertices and through the two vertices labelled D as in Fig. 11b.

If we glue these cross sections of all of the octahedra together, we obtain the
punctured immersed disk obtained in He’s construction by coning the projection to
the point D. If instead, we take vertical cross sections that contain the two points
labelledU , then they glue up to form the immersed disk inHe’s construction obtained
by coning the projection to the point U . So once again, we see an important surface
as a natural byproduct of the octahedral decomposition.

There are still many interesting open questions as to the geometric behavior of
surfaces in hyperbolic knot complements. Understanding their behavior will lead to
further understanding of hyperbolic knots.
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On the Construction of Knots and Links
from Thompson’s Groups

Vaughan F. R. Jones

Abstract We review recent developments in the theory of Thompson group
representations related to knot theory.

Keywords Thompson group · Knot · Link · Braid · Representation · Skein theory
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22D10

1 Introduction

The Thompson group F is the group of all piecewise linear homeomorphisms g of
[0, 1] with g(0) = 0, g(1) = 1, which are smooth except at finitely many dyadic
rationals, and whose slopes, when defined, are powers of 2. The bigger Thompson
group T has the same definition except that its elements act on the circle R/Z and
need not preserve 0 or 1. A few years ago in [17] a method of geometric origin was
introduced for constructing representations of F and T . The construction involved
a target category which was in the first instance a tensor category. Applying this
construction to the category of Conway tangles gave a way of constructing a link
from a Thompson group element. It was shown in [17] that all links arise in this
fashion. The knot theoretic outcome of this construction can be summed up by a
four step procedure going from an element g ∈ F to an unoriented link L(F). Let
us describe this procedure.

As in [7] any element g ∈ F can be represented as a pair of binary planar rooted
trees with the same number of leaves. Let us explain how. By successively splitting
in half intervals of [0, 1] according to the tree, the leaves of such a tree are natu-

rally identified with intervals with dyadic rational endpoints of the form [ a

2n
,

a + 1

2n
].
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The g defined by such a pair of trees sends the intervals/leaves of the first tree to
the intervals/leaves of the second tree (from left to right), with constant slope. For
reasons explained in this paper wewill draw the pair of trees as a fraction-an example
is given below:

(Just to make sure what we have said is clear, the leaves (from left to right) of
the denominator tree correspond to the intervals [0, 1

8 ], [ 18 , 3
16 ], [ 3

16 ,
1
4 ], [ 14 , 1

2 ], and
[ 12 , 1], and for the numerator tree, [0, 1

4 ], [ 14 , 1
2 ], [ 12 , 5

8 ], [ 58 , 3
4 ], and [ 34 , 1].)

The first step in the construction of L(g) is to flip the numerator upside down and
join its leaves to those of the denominator:

Now each vertex of the top tree shares a region with a unique vertex of the bottom
tree. Join them with an edge in that region:
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All vertices are now 4-valent. Replace them all with crossings with the vertical

edges going under: which gives:

Finally tie the top edge to the bottom to obtain the link L(g):

Note that the pair of trees defining g is not quite unique but there is a unique pair
with no “cancelling carets” so for L(g) to be well defined, use this pair. Cancelling
carets are quite innocent on the knot theory side, they just give unknots which do not
link with the rest of the diagram.

For details consult [17].
Our example fairly visibly gives a 2 component unlink and the reader is likely

to struggle to obtain a nontrivial knot. Indeed even the number of components of
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the link determined by the pair of trees is obscure. However we have the following
result:

Theorem 1.1 Let R be the ring of formal linear combinations (over Z) of isotopy
classes of unoriented link diagrams with multiplication given by distant union and
conjugation given by mirror image. There is an R-moduleV with R-valued sesquilin-
ear inner product 〈, 〉, together with a privileged element � ∈ V , and a 〈, 〉-preserving
R-linear action π of Thompson’s group F on V such that for g ∈ F,

〈π(g)�,�〉 = L(g)

Moreover any unoriented link in R
3 can be realised as L(g) for some g ∈ F .

Since [17] this construction has been better understood, considerably simplified and
generalised, though admittedly at the cost of geometric understanding. In this largely
expository paper we will first describe the new simplified version of the construction
of the action of the Thompson groups with a few new examples. We will then explain
the particular context that leads to the theorem above-further simplified by the use
of the Thompson groups F3 and T3 rather than F2 and T2. Finally we will list a few
obvious questions that remain open at this stage.

2 The Directed Set/Functor Method

A planar k-forest is the isotopy class of a disjoint union of planar rooted trees all of
whose vertices are adjacent to k + 1 edges, embedded in the strip (R, [0, 1]) ⊂ R

2

with roots lying on (R, 0) and leaves lying on (R, 1). Edges connected to roots and
leaves meet the boundaries of the strip transversally and only the leaves and the roots
meet the boundary. The isotopies preserve the strip but may act nontrivially on the
boundary. Planar k-forests form a category in the obvious way with objects being N

(whose elements are identified with isotopy classes of sets of points on a line) and
whose morphisms are the planar k-forests themselves, which can be composed by
stacking a forest in (R, [0, 1]) on top of another, lining up the leaves of the one on
the bottom with the roots of the other by isotopy then rescaling the y axis to return
to a forest in (R, [0, 1]).

We will call this category Fk . For k = 2 and k = 3 we will use the terms binary
and ternary forest respectively.

The set of morphisms from 1 to n in Fk is the set of k-ary planar rooted trees Tk

and is a directed set with s ≤ t iff there is and f ∈ F with t = f s.
It is useful to know the number of k-ary planar rooted trees.

Proposition 2.1 There are FC(k, n) k-ary planar rooted trees with n vertices where

FC(k, n) is the Fuss–Catlan number
1

(k − 1)n + 1

(
kn

n

)
.
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Proof By attaching k new trees to the root vertex we see that the number of k-ary
planar rooted trees with n vertices satisfies the same recursion relation:

FC(k, n + 1) =
∑

�1,�2,···�k ,
∑

�i =n

n∏
i=1

FC(k, �i ).

See [10] for details about the Fuss–Catalan numbers. �

Given a functor � : F → C to a category C whose objects are sets, we define the
direct system S� which associates to each t ∈ T, t : 1 → n, the set �(target (t)) =
�(n). For each s ≤ t we need to give ιts . For this observe that there is an f ∈ F for
which t = f s so we define

ιts = �( f )

which is an element of MorC(�(target (s)),�(target (t))) as required. The ιts triv-
ially satisfy the axioms of a direct system.

As a slight variation on this theme, given a functor � : F → C to any category C,
and an object ω ∈ C, form the category Cω whose objects are the sets MorC(ω, obj)
for every object obj in C, and whose morphisms are composition with those of C.
The definition of the functor �ω : F → Cω is obvious. Thus the direct system S�ω

associates to each t ∈ T, t : 1 → n, the set MorC(ω,�(n)). Given s ≤ t let f ∈ F
be such that t = f s. Then for κ ∈ MorC(ω,�(target (s))),

ιts(κ) = �( f ) ◦ κ

which is an element of MorC(ω,�(target (t))).
As in [14] we consider the direct limit:

lim→ S� = {(t, x) with t ∈ T, x ∈ �(target (t))}/ ∼

where (t, x) ∼ (s, y) iff there are r ∈ T, z ∈ �(target (z)) with t = f r, s = gr and
�( f )(x) = z = �(g)(y).

We use
t

x
to denote the equivalence class of (t, x) mod ∼.

The limit lim→ S� will inherit structure from the category C. For instance if the

objects of C are Hilbert spaces and the morphisms are isometries then lim→ S� will be

a pre-Hilbert space which may be completed to a Hilbert space which we will also
call the direct limit unless special care is required.

As was observed in [14], if we let� be the identity functor and choose ω to be the

tree with one leaf, then the inductive limit consists of equivalence classes of pairs
t

x
where t ∈ T and x ∈ �(target (t)) = Mor(1, target (t)). But Mor(1, target (t))

is nothing but s ∈ T with target (s) = target (t). So a fraction
s

t
is an equivalence
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class of pairs of trees with the same number of leaves. Thus the inductive limit is
nothing but the (Brown-)Thompson group Fk if we equip it with the group law

r

s

s

t
= r

t
.

(Just as with the multiplication of the rational numbers as fractions of integers, it

is important to note that it is the equivalence class
s

t
that is used in the above formula.

Particular pairs of trees representing the equivalence classes will not in general have
the denominator of the first pair equal to the numerator of the second, but they can
be stabilised so that this is true.)

For instance the following tree fraction gives an element of F3:

This explains the notation we used for F in the introduction. The equivalence class
s

t
for a pair of trees s and t is the set of all other pairs which are related to s and t

by cancelling carets as in [7]. It is part of the philosophy of this paper to think of
s

t
also as the diagram obtained by flipping the numerator upside down and attaching
its leaves to those of the denominator so that, for instance, the above element can
equally be written

For F3 cancelling a caret is just the removal of from a diagram consisting
of the “upside down numerator” picture of a pair of trees.

(Geometrically this makes sense-F3 is a group of piecewise linear homeomor-
phisms constructed from intervals which are sent by scaling transformations to other
intervals. If we associate an interval with each leaf of a tree by the rule that each



On the Construction of Knots and Links … 49

vertex of the tree splits an interval up into three adjacent intervals of equal width,
then the element of F3 given by a diagram as above maps an interval of a leaf of the
bottom tree to the interval of the leaf of the top tree to which it is attached. A pair
of cancelling carets is just the subdivision of an interval on which the homeomor-
phism is already linear into intervals of equal length, which obviously does not
change the homeomorphism coded for by the pair of trees.)

With this definition of the group we may construct actions in a simple way. For
any functor �, lim→ S� carries a natural action of Fk defined as follows:

s

t

(
t

x

)
= s

x

where s, t ∈ Tk with target (s) = target (t) = n and x ∈ �(n). A Thompson group
element given as a pair of trees withm leaves, and an element of lim→ S� given as a pair

(tree with n leaves, element of �(n)), may not be immediately composable by the
above formula, but they can always be “stabilised” to be so within their equivalence
classes.

The Thompson group action preserves the structure of lim→ S� so for instance in

the Hilbert space case the representations are unitary.

3 The Connection with Knots

AConway tangle is an isotopy class of rectangleswithm “top” andn “bottom”bound-
ary points, containing smooth curves called strings with under and over crossings
which meet the boundary transversally in the m + n boundary points. The isotopies
are considered to contain the three Reidemeister moves but must fix the top and
bottom edges of the rectangles. Conway tangles form a category whose objects are
0 ∪ N with the non-negative integer n being identified with isotopy classes of sets of
n points in an interval. The morphisms are then the Conway tangles with the obvious
stacking as composition:

Of course the set of morphisms from m to n is empty if m + n is odd.

Definition 3.1 The Conway tangles defined above will be called the category of
tangles C.
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We will apply the construction of the previous section to the ternary Thompson
group F3 to obtain actions of it on spaces of tangles. We distinguish three slightly
different ways to do this.

(1) Set theoretic version:
To perform the construction of the previous section we need to define a functor
from ternary forests to C.

Definition 3.2 The functor � : F3 → C is defined as follows:

(a) On objects �(n) = n so that the roots of a planar forest are sent to the boundary
points at the bottom of a tangle, from left to right.

(b) On morphisms (i.e. forests), �( f ) is defined to be the tangle obtained by iso-
toping the forest to be in a rectangle with roots on the bottom edge and leaves
on the top edge, and replacing each vertex of the forest with a crossing thus:

Thus for instance if f is the forest then

Φ(f) =

The well definedness and functoriality of � are obvious.
By the machinery of the previous section we obtain an action of F3 on a set C̃,

the direct limit of sets of tangles. An element of the set C̃ is the equivalence class of
a pair (t, T ) where t is a ternary planar rooted tree with n leaves and T is a (1, n)

Conway tangle. Adding a single vertex to t corresponds to adding a single crossing
to T and this generates the equivalence relation. Thus an element of C̃ can be thought
of as an infinite tangle with one boundary point at the bottom and eventually ending
up with a lot of simple crossings organised as below:
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tangle

The original geometric intuition of our construction was to think of a Thompson
group element as giving a piecewise linear foliation of a rectangle attaching points
at the bottom to their images on the top, and stacking it on top of the above picture
to give a new such picture. See [15].

(2) Linearised version:
Recall that R is the ring of formal linear combinations (over Z) of (three dimen-
sional) isotopy classes of unoriented links with distant union as multiplication.
An unoriented link acts on a tangle simply by inserting a diagram for it in any
region of the tangle containing no strings.

Definition 3.3 We use δ to denote the element of R given by a single unknotted
circle.

One may alter construction 1 by replacing the set of (1, 2k + 1) tangles by the
free R-module RC1,k having those tangles as a basis. This way the direct limit V is
also an R-module. More importantly mirror image defines an involution on R and
there is a sesquilinear form 〈S, T 〉 on each RC1,k obtained by reflecting the tangle
T about the top side of its rectangle, then placing it above S and connecting all the
boundary points in the obvious way to obtain an element of R.

For instance if S = and T = then
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〈S, T 〉 =

Unfortunately the connecting maps ιts of the direct system do not preserve 〈, 〉.
But this is easily remedied by adjoining a formal square root

√
δ and its inverse

to R to obtain R[√δ,
1√
δ
]. One then modifies the functor � by multiplying the

R[√δ,
1√
δ
]-linear map induced by � in (i) above (by its action on a the basis of

tangles) by ( 1√
δ
)p where p is the number of vertices in the forest. Then the connecting

maps preserve the sesquilinear form which thus passes to a sesquilinear form on the

direct limit R[√δ,
1√
δ
]-module which is tautologically preserved by the action of

F3. To simplify notation we will continue to use R for R[√δ,
1√
δ
].

Now we are finally at the interesting bit. Given a representation of a group G on
an R-module V , g �→ ug , preserving a sesquilinear form 〈, 〉, the coefficients of the
representation are the functions

g �→ 〈ug(ξ), η〉

as ξ and η vary in V .
But our construction of the direct limit gives us a privileged vector � ∈ V , namely

the equivalence class of the (1, 1) tangle ω consisting of a single straight string
connecting the boundary points of a rectangle with two boundary points, one at the
bottom and one at the top. (Recall that the (1, 1) tangles span the space right at the
bottom of the direct limit-namely the space assigned by the functor to the object 1.)
We will call this vector �. With the notation we have established,

� = 1

ω
.

Intuitively, if we want to think of � as an element of V thought of as an infinite
tangle, it is just:
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(normalised by the appropriate power of δ for a given finite approximation).
Since � is a privileged vector, we would like to know the function on F3 given by

the coefficient 〈ug(�),�〉, g being an element of F3 and ug being the representation
we have constructed. It is tempting to call the vector � the “vacuum vector” so that
by analogy with physics (strengthened by the next section on topological quantum
field theory) we offer the following:

Definition 3.4 The element 〈ug(�),�〉 of R[√δ,
1√
δ
] is called the vacuum expec-

tation value of g ∈ F3. (It is just a power of δ times a tangle.)

It is not hard to calculate this element of R if we follow the definitions carefully.

Let g = s

t
be an element of F3 where s and t are planar rooted ternary trees with

the same number of leaves. � ∈ V is given by 1
ω
where 1 is the tree with no vertices.

To calculate ug(�) we need to stabilise 1 so that we can apply the formula defining

the representation. Thus we write
1

ω
= t

�(t)(ω)
-recall that �(t), for a tree with n

leaves, is defined by changing all the vertices to crossings to get a tangle then using
the stacking of tangles to go from�(1) to�(n). (One must also multiply by a power
of δ.) Thus by definition

ug(�) = s

�(t)(ω)
.

To evaluate the sesquilinear form we must write � in the form
s

something
and

by what he have just said, that something is �(s)(ω).
We conclude that

〈ug(�),�〉 = 〈�(s)(ω),�(t)(ω)〉.

More explicitly the coefficient is obtained by attaching s to an upside down copy of
t , joining the top vertex to the bottom one and replacing vertices by crossings, thus:
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If s = and t = then

〈ugΩ, Ω〉 =
1
δ2

The factor 1
δ2

comes innocently from the normalisation of the functor �. The
picture is fairly obviously a trefoil.

Definition 3.5 If g ∈ F3 we call L(g) the link δn〈ug�,�〉 for the unique represen-
tation of g as a pair of trees each with a minimal number n of vertices.

Then we have:

Theorem 3.1 Any knot or link can be obtained as L(g) for some g ∈ F3.

These vacuum expectation values are inherently unoriented. There are two ways
to handle oriented links, the most powerful of which is presented in [5]. But the
easiest way is to use the following.

Definition 3.6 Let
→
F3 < F3 be the subgroup of elements for whose pair of trees

presentation the chequerboard shading gives a Seifert surface.

For F2 this subgroup was identified in [9] as being isomorphic to F3! See also
[20].

(3) Skein theory version.
In the simple linearised version one may easily specialise δ to some non-zero
number and use the complex numbers as coefficients. But each approximating
space to the inductive limit is infinite dimensional. This can be remedied by
taking a skein theory relation [8, 19] and applying it to the approximating vector
spaces spanned by tangles. This is entirely compatible with the Thompson group
action. The vacuum expectation value will then be (up to a power of δ) the link
invariant of the skein theory for the link L(g) of Definition 3.5. Since we are
dealing with an unoriented theory the skein theories will have to be unoriented
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also and we will have to play the usual regular isotopy game. Indeed the vacuum
expectation value will be an invariant of regular isotopy if we use the Kauffman
bracket or the Kauffman polynomial. Moreover the diagram for L(g) can be
considered up to regular isotopy. Since the proof below of the realisation of all
links as L(g) actually uses a lot of type I Reidemeister moves, one may ask
whether all regular isotopy classes of link diagrams actually arise as L(g).

(4) TQFT version: We may “apply a (unitary) TQFT” at any stage in the above pro-
cedures, provided it is unoriented. This means that the approximating subspaces
for the direct limit are finite dimensional Hilbert spaces and the connecting maps
ιts are isometries so the direct limit vector space is a pre-Hilbert space on which
the Thompson group acts by isometries so we can complete and obtain a unitary
representation of the Thompson group.

The vacuum expectation values of the unitary representation can then always be
calculated as statistical mechanical sums as in [16].

4 Relationship with the Original Construction-Proof of
Theorem 3.1.

It is possible to understand the construction of [17],whichwegave in the introduction,
in terms of a natural embedding φ of F2 in F3. Take a binary rooted planar tree and
simply attach another leaf to the middle of each vertex thus:

g = φ(g) =

By construction 〈uφ(g)�,�〉 is the same as the coefficient of g ∈ F2 defined in
[17]. When there is no ambiguity we will identify F2 with φ(F2) as a subgroup of
F3.

Since F3 is much bigger than F2 it should be possible to find a simpler proof of
the “Alexander” Theorem 3.1 that all links can be obtained as vacuum expectation
values for elements of F3. We will see that, if we try to imitate the proof of [17] we
run into a problem with signs so that the proof of the weaker theorem seems harder
than that of the stronger one! So we will sketch a slightly improved version of the
proof of [17], pointing out the difference between the F2 and F3 cases.

Proof of Theorem 3.1:
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Proof Given a link diagram L for an unoriented link L we start by forming the edge-
signed planar graph (L) given by a chequerboard shading of L as usual, thus:

L =

−

+
+

+

+ − = Γ(L)

Where we have adopted the sign convention of [17]:

−+

This process may be extended to Conway tangles, moving the vertices for boundary-
touching faces to the boundary thus:

T =

−

−
+

+ −+

−
−

= Γ(T )

It is important to note that this process is reversible, a tangle can be obtained from
any planar graph  with some vertices on the boundary, by putting little crossings in
the middle of the edges of  and connecting them up around the faces of  with the
faces meeting the boundary having two points on the boundary rather than a little
crossing. (Or equivalently define the tangle as the intersection of some smooth disc
with the link defined by .) This means that the map from Conway tangles to planar
graphs in a disc is injective.

Observe that if the link diagram is of the form L(g) (see Definition 3.5) then (L)

has a special form, e.g.
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The diagram consists of two (not necessarily ternary) trees, one above and one
below the line where the two (ternary) trees of g meet. The strategy of the proof is
to take a link diagram L and modify it by planar isotopies and Reidemeister moves
so that (L) looks like a graph as above.

Definition 4.1 A rooted planar/linear n-treewill be the isotopy class of a planar tree
with all vertices being points on the x-axis, the isotopies being required to preserve
the x axis. The root is then the leftmost point on the straight line which might as well
be taken as 0.

We see that an element g ∈ F3 (defined as a pair of ternary trees) has trees T +
and T − above and below the x axis respectively with the x axis as boundary. The
signed graphs(T +) and(T −) are both rooted planar/linear n-trees where the trees
defining g have 2n − 1 leaves.

Remark 4.1 Here there is a new pheomenon compared to the F2 case of [17]. If
g ∈ F2 < F3 (and there are no cancelling carets) all the edges of (T +) have a plus
sign and all the edges of(T −) have aminus sign. This is no longer true for a general
element of F3. In fact each edge of (T +) and (T −) can be oriented pointing away
from the root of the tree. For (T +), if the x co-ordinate of the first vertex of the
edge is less than the x co-ordinate of the second then the sign of the edge is plus,
and in the opposite case it is minus. And the other way round for (T −).

(*) The diagrams of elements of F2 are characterised among all those of F3 by
the fact that the x coordinate increases along the oriented edges.

Proposition 4.1 There are FC(3, n − 1) = 1

2n − 1

(
3n − 3

n − 1

)
rooted planar/linear

n-trees with n vertices.

Proof We need to establish the recurrence relation in the proof of Proposition 2.1
for k = 3. Let pln be the number of rooted planar/linear n-trees and take a rooted
planar/linear n-tree t with 2 vertices. Then given 3 rooted planar/linear n-trees t1, t2
and t3 one may form another rooted planar/linear n-tree by attaching t1 to the right
of the root of t , the reflection of t2 in the y axis to the left of the non-root vertex of
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t and t3 to the right of the non-root vertex of t . Moreover any rooted planar/linear
n + 1-tree can be decomposed in this way. Thus pln+1 =

∑
�1+�2+�3=n

pl�1 pl�2 pl�3 . �

By Propositions 2.1, 4.1 and the injectivity of the map from trees to tangles, or
directly, there are the same number of rooted planar/linear n + 1-trees as there are
ternary n-trees, and given two rooted planar/linear n + 1-trees ± we can construct
an element of F3 by flipping − upside down and attaching it underneath 1 to form
a planar graph and signing all the edges according to whether their end points have
smaller or larger x coordinate, we obtain a signed planar graph + ∪ − from which
we get a link L with (L) = + ∪ −.

By Remark 4.1, if g ∈ F2, any tree in+ ∪ − that arises at this point were rooted
planar/linear n-trees of a special kind-namely any vertex is connected by exactly one
edge to a vertex to the left of it. Such trees are counted by the usual Catalan numbers.

To prove Theorem 3.1, we see that it suffices to find rooted planar/linear n + 1-
trees ± so that + ∪ − differs from (L) by planar isotopies and Reidemeister
moves. We will give a slightly improved version of the argument of [17] which will
give us elements of F2. Surprisingly, we will only use Reidemeister moves of types
I and II.

Note that we may suppose the link diagram L is connected so that (L) is too.
First isotope (L) so that all its vertices are on the x axis. Unless there is a

Hamiltonian path through the vertices of (L), there will be edges of (L) crossing
the x axis. Taking care of these edges is very simple and is described in lemma 5.3.6
of [17], but some previous versions of [17] are missing this point. Near where the
offending edge cross the x axis, just add two vertices to (L) on the x axis and join
them with an edge signed ± according to the sign of the offending edge. Continue
to call this graph (L). See [17].

At this stagewe have a lot of the ingredients of an edge-signed rooted planar/linear
graph of the form (L(g)). (L) consists of two graphs, (L)+ and (L)− in the
upper and lower half-planes respectively, with vertices all lying on the x axis. The
root is the vertex with smallest x coordinate. We will make a series of modifications
and continue to call the graph (L) after each modification since it will represent
the same link.

The first thing we will take care of is the signs. Since we are trying to produce
an element of F2, we must end up with all (L)+ signs positive and all (L)−
signs negative. This may not yet be the case. But we may change (L) by type II
Reidemeister moves so as to correct the bad signs one at a time. Here is how-in the
diagram below the dashed lines are edges of indeterminate sign, the solid lines with
no signs are positive edges if they are above the x axis and negative if below, except
for a solid line with a sign next to it which is an edge with that sign.
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Here we have started with a “bad” edge above the x axis and changed the graph
near one end of that edge. The two small added edges in the lower half plane cancel
(type II Reidemeister move) with the solid edge above to recreate the bad edge. The
other two added edges just cancel to return the picture to its original form. Thus that
part of the graph (L) shown on the left gives the same link after being replaced by
the figure on the right.

We now need to alter the graph so that if we orient the edges away from the root
then the x coordinate of their sources are less than that of their targets. We can say
this informally as: “each vertex is hit exactly once from the left”, top and bottom. If
we do this with local changes in accordance with out convention that edges in the
upper and lower half planes are positive and negative respectively, we will be done.

First let us make sure that every (non root) vertex is hit from the left, top and
bottom. If there is one that is not, simply join it to its neighbour on the left with a
pair of cancelling edges thus:

(Recall that the edges all get their signs from being in the upper or lower half
plane.)

Now our only remaining problem is that vertices may have multiple hits from the
left. We only need to show how to get rid of the leftmost one at each vertex, wolog
in the upper half plane. Proceed thus:

The two edges hitting the vertex from the left have been replaced by one. A lot
of type I and II Reidemeister moves shows that replacing the picture on the left by



60 V. F. R. Jones

the one on the right preserves the link L . And all the added vertices are hit exactly
once, top and bottom, from the left.

Continuing in this way one obtains a (L) consisting of two rooted planar/linear
n-trees top and bottom from which an element of F3 (in fact it’s in F2) may be
reconstructed by the method we described for going from a signed planar graph back
to a link diagram.

This ends the proof of Theorem 3.1. �
The algorithm for constructing Thompson group elements from links in the above

proof is of theoretical interest only. In particular the sign correcting move is very
inefficient. Even for the Hopf link, if one starts with the following (L) and applies
the algorithm, the Thompson group element is very complicated (remember that the
top edge is a positive one by convention):

+

5 The Annular Version, Thompson’s Groups Tn

There are two other well known versions of the Thompson groups Fn , namely Tn and
Vn . Tn is a group of PL homeomorphisms of the circle (rather than the interval) with

slopes all powers of n and non smooth points all of the form
a

nb
where a and b are

integers. Tn contains an obvious copy of Fn and can be obtained from it by adding

rotations of the circle by angles
2πa

nb
. Vn is even bigger, allowing discontinuous

permutations of the intervals on the circle.
Both Tn and Vn can be constructed from our category of forestsmethod by suitably

decorating the forests with cyclic and general permutations respectively-see [14].
But the functor to tangles only works for Tn because of the discontinuities in Vn .
Obviously all knots and links can be obtained from T3 from this functor since they
can already be made from F3, but some links may be much easier to realise using T3.

There is a bigger group called the “braided Thompson group” [12] which should
have all the advantages of both braids and the Thompson groups.

6 The Group Structure-Analogy with Braid Groups

We are promoting the Thompson groups as groups from which links can be con-
structed, like the braid groups. In this section we will establish a strong, albeit not
always straightforward, analogy between the two groups and their relationships with
links.
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The most obvious first thing missing from our construction of the Thompson
groups in Sect. 2, which is front and centre in the braid groups, is a geometric under-
standing of the group law. But this is supplied by work of Guba and Sapir in [13]
and Belk in [6]. Here is how to compose two F3 elements, given as pairs of rooted

planar ternary ternary trees
s

t
as usual, from this point of view.

Given
r

s
and

s

t
, draw them as we have with the denominator on the bottom and

the numerator, upside down, on the top, joined at the leaves, thus:

Now arrange the picture of
s

t
underneath that of

r

s
with the top vertices aligned,

and fuse the top edges thus:

Now apply the following two cancellation moves:

(i) and (ii)

until they can no longer be applied. It is easy enough to see that at this point the
remaining diagram can be decomposed into a pair of ternary planar trees, thus another
element of F3. We illustrate with the above example:
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Now we draw in a curve showing the split between the top and bottom trees, and
redraw as a standard picture.

N.B. It is important to note that of the vacuum expectation value of the
composition- by replacing the vertices of the diagrams by crossings- cannot be done
until all the cancellations have been made.

This is because the knot theoretic move is NOT an isotopy. It

is what we call and “elementary cobordism”.

Definition 6.1 Changing to in a link diagram is called an “elementary

cobordism”.

Thus each time we apply the cancellation move (ii) above we are changing the
underlying link by an elementary cobordism. In particular we see that the first cancel-
lation applied in the sequence of moves in the Guba-Sapir-Belk composition method
actually transforms the underlying link almost into the connect sum-it differs from
it by a single elementary cobordism.

Let us call H the subgroup of F3 consisting of all elements of the form
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(Obviously H ∼= F3.) For h ∈ H , L(h) always contains a distant unknot sitting on top
of another link. Let L̃(h) be L(h)with this distant unknot removed. Let us also define
the size |g| of an element g ∈ F3 to be the number of vertices in a tree of a minimal
pair of trees picture of g, not counting the root vertex. Then |gh| ≤ |g| + |h| with
equality only if there is only the first cancellation when using the Guba–Sapir–Belk
composition.

Proposition 6.1 Let g and h be elements of H < F3 with |gh| = |g| + |h|. Then

L̃(gh) = L̃(g)#L̃(h)

Proof This is immediate on drawing a picture of gh. �

Thus group composition in F3 can be directly related to the connected sum of the
links.

We now remind the reader of the two ways links can be obtained from the braid

groups Bn . They are the trace closure: and the plat clo-

sure . The first produces oriented links and the second is

inherently unoriented. (We call the first the “Trace” closure rather than just the closure
to distinguish it from the plat closure. Both closures will produce an arbitrary link
for a sufficiently large n. (The closure result is a theorem of Alexander [2], the plat
closure existence follows fairly obviously from an n-bridge picture of a link.) In both
cases it is known exactly when two different braids give the same link-for the closure
this is a theorem ofMarkov (see [3]) and for the plat closure a theorem of Birman [4].

We can now create a table comparing and contrasting the braid groups and
Thompson group as link constructors:

One could argue that it is the inductive limit B∞ of the braid groups that is the
correct analogue of a Thompson group, but even then there is a strong contrast in
that B∞ is not finitely generated. Also the annular version of B∞ is not clear.
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Braid groups Thompson group
Two versions: Two versions
Unoriented (Plat closure) Unoriented (all of F3)

Oriented (Trace closure) Oriented (The subgroup
→
F3 < F3 of definition 3.6.)

All knots and links as closure: All knots and links as L(g):
Alexander theorem “Alexander theorem”. Theorem 3.1

Braid index, plat index (=bridge number)
→
F3 index, F3 index,

→
F2 index, F2 index

Markov, Birman theorems, conjugation,
double cosets, stabilisation

??,??,??

Group law: Group law:
Many cobordisms applied to
- connected sum

Connected sum directly

No changes but isotopy after these
cobordisms

More cobordisms needed after connected sum

?? L(gh) = L(g)#L(h) ⇐⇒ |gh| = |g| + |h|
All Bn’s needed to get all knots and links. One finitely presented group gives all knots and links.
Contains free groups Doesn’t contain free groups

Non-amenable ??
Annular version available see [11] Annular version available

7 Questions

We give a list of questions which arise naturally in this work. Some are probably
quite easy to answer.

(1) “Markov theorem.”
Our theorems concerning the realisation of all links from Thompson group ele-
ments are analogous to Alexander’s theorem [2] which asserts that any (oriented)
link may be obtained by closing a braid. Markov’s theorem answers the question
of exactly when two braids give the same closure, in terms of simple changes
on the braid group elements. It should be possible to give such a theorem for the
Thompson groups F3 and F2. It is easy enough to get moves on group elements
that preserve the link, but proving sufficiency of these moves has not yet been
achieved.

(2) A detail about oriented links.
Theorem3.1 is very precise-one obtains linkswithout any ambiguity up to distant
unlinks (or powers of δ). But the oriented version, as proved in [17], produces
in general links that differ from the desired one by distant unlinks. So is it true
that the Alexander-type theorem for oriented links from a subgroup of F2 or F3

is true on the nose?
(3) A detail about regular isotopy.

Do all regular isotopy classes of link diagrams arise as L(g)? (See item 3 of
Sect. 3.)

(4) Number of components.
The number of components of the trace of a braid is just the number of orbits of
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the corresponding permutation. One way to extract the number of components
of L(g) is to apply the TQFT functor for q = 1 and take the logarithm of the
vacuum expectation value. Is there a simple group theoretic formula for the
number of components of L(g)?

(5) Other Thompson groups.
It is possible to represent links as plane projections with singularities higher than
double points (see, e.g. [1]), e.g. triple and quadruple points. Such projections
naturally arise if one considers the Thompson groups F2k−2 as coming from the
category of forests F2k−1. Does Theorem 3.1 extend to all k?

(6) Proof of Theorem 3.1.
Find a proof more adapted to F3, making the different sign configurations a
virtue rather than a vice.

(7) Thompson index.
The Fk index of a link L is the smallest number of vertices of a tree such that L
is represented as the vacuum expectation value of an element of Fk given by a
pair of trees with n leaves. Given that the number of trees with n leaves is finite
and the identification of links is algorithmically solvable, this is a finite problem
for a given L . Problem: calculate the F3 and F2 indices of the Borromean rings.
(The diagram just before Definition 3.5 shows that the F3 index of the trefoil
is 3, its F2 index is more than 3 as can be seen by enumerating all the 25 pairs
of binary planar rooted trees with 3 vertices each. So the F3 and F2 indices are
different in general.)

(8) Irreducibility.
When are the unitary representations of the Thompson groups coming from
unitary TQFT’s irreducible? (On the closed Fn-linear span of the vacuum.) Some
progress wasmade on this in [18] where a family of unitary representations using
the construction of Sect. 2 for a TQFT with a slightly different functor � were
shown to be irreducible.

(9) Flat connections.
TQFT braid group representations are known to come from monodromy of flat
connections on a classifying space (KZ connection). Can we exhibit the repre-
sentations of this paper, or at least some of them, as coming from flat connections
on Belk’s (or some other) classifying space [6]?
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Virtual Knot Theory and Virtual Knot
Cobordism

Louis H. Kauffman

Abstract This paper is an introduction to virtual knot theory and virtual knot cobor-
dism [37, 39].Non-trivial examples of virtual slice knots are given anddeterminations
of the four-ball genus of positive virtual knots are explained in relation to joint work
with Dye and Kaestner [12]. We study the affine index polynomial [38], prove that
it is a concordance invariant, show that it is invariant also under certain forms of
labeled cobordism and study a number of examples in relation to these phenomena.
In particular we show how a mod-2 version of the affine index polynomial is a con-
cordance invariant of flat virtual knots and links, and explore a number of examples
in this domain.

Keywords Knot · Link · Virtual knot · Graph · Invariant · Bracket polynomial ·
Parity bracket polynomial · Arrow polynomial · Affine index polynomial ·
Cobordism · Concordance
AMS Subject Classification 57M25

1 Introduction

This paper is an introduction to virtual knot theory and to virtual knot cobordism. It
is organized as follows. In Sect. 2 we include a description of basics in virtual knot
theory and the problems that arise from it. This section includes different interpreta-
tions of virtual knot theory including flat virtual knot theory, problems related to the
Kauffman bracket and Jones polynomial for the theory, a discussion of parity, the odd
writhe and a description of the parity bracket polynomial formulated by Manturov
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[48] and a small introduction to quandles and virtual quandles. All of this back-
ground material is used in the remainder of the paper where we apply these ideas and
techniques to virtual knot cobordism. Section3 gives the definitions for cobordism
of virtual knots and the definition of virtual Seifert surfaces. We define the (virtual)
four-ball genus g4(K) for virtual knots and links, and show that every virtual link K
bounds a virtual surface that is a natural generalization of the Seifert surface for a
classical link. We state our result [12] determining the four-ball genus for positive
virtual knots.We give many properties of a key example, the virtual stevedore’s knot.
We then discuss the affine index polynomial [38], prove that it and a relative of it for
flat virtual knots are concordance invariants. Many examples are given.

This paper describes a study of knot cobordism at the level of virtual knot theory.
One can develop other combinatorial variants of virtual knot theory by giving upmore
structure. One can use Gauss codes or Gauss diagrams to represent virtual knots, and
release certain structures related to the codes to make combinatorial theories (such
as free knots) that inform the virtual knot theory. Such work has been initiated by
Turaev [57] and carried further by Manturov [21, 49, 50]. We should also mention
the following papers on virtual knot theory that provide useful background, but not
cited directly in the present paper [5, 8, 11, 18, 19, 31, 33, 35, 37, 37, 38, 46, 53].
In particular, we mention the following papers related to the theory of virtual braids,
a topic fundamental to virtual knots and links that is not covered in the present paper.
The interested reader will enjoy consulting these papers [1, 41–45].

Note that the work [50] can be used to prove that many virtual knots are not
concordant to any slice classical knot. That paper is focused on the cobordism of free
knots. Results about free knots (undecorated Gauss diagrams taken up Reidemeister
move equivalence) are often applicable to standard virtual knots by simply forgetting
some of the structure. An important question about our formulation of virtual knot
cobordism is: If two classical knots are concordant in the virtual category, are they
concordant in the usual sense? This is now answered in the affirmative by Boden,
Chrisman and Gaudreau in [4].

2 Virtual Knot Theory

Virtual knot theory [31–33, 37] studies a generalization of classical knot theory
described by diagrams that include a virtual crossing (see Fig. 1) that is neither over
nor under. Such a diagram can be regarded as an abstract knot diagram, determined
by the cyclic ordered structure of its crossing data. Virtual crossings are the result of
immersing the abstract diagram into the plane. A diagrammatic theory with general-
ized Reidemeister moves defines this virtual theory. Virtual knots can be studied by
examining embeddings of curves in thickened surfaces of arbitrary genus, up to the
addition and removal of empty handles from the surface. Surface representations of
this kind give topological meaning to the theory. This paper will concentrate on the
diagrammatic point of view and will utilize the combinatorics of the virtual crossing
structure. Classical knot theory embeds in virtual knot theory. The theory of virtual
cobordism developed here is formulated in terms of diagrams.
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Fig. 1 Virtual moves

Moves on virtual diagrams generalize the Reidemeister moves for classical knot
and link diagrams. See Fig. 1. Classical crossings interact with one another according
to the usual Reidemeister moves, while virtual crossings are artifacts of the structure
of the diagram in the plane.Adding the global detourmove to theReidemeistermoves
completes the description of moves on virtual diagrams. In Fig. 1 we illustrate a set
of local moves involving virtual crossings. The global detour move is a consequence
of moves (B) and (C) in Fig. 1. The detour move is illustrated in Fig. 2. Virtual knot
and link diagrams that can be connected by a finite sequence of these moves are
said to be equivalent or virtually isotopic. Figure5 illustrates how a virtual knot can
be interpreted in terms of the Gauss code (indicating a sequence of over and under
crossings with signs that determine the diagram) and via an embedded curve in a
thickened surface.

Wealso studyflat virtual knots and linkswhere the structure of the virtual crossings
is the same, but the classical crossings are transverse intersection points of locally
immersed curves in the plane without over or under crossing data. These are referred
to as flat crossings. As we shall see, the theory of flat virtual knots and links governed
by the moves in Fig. 3 is highly non-trivial and worth a study in parallel with the
regular theory of virtual knots and links.

Virtual knot diagrams are usually represented as diagrams in the plane, but the
theory is not changed if one regards the diagram as drawn on the surface of a two
dimensional sphere. Moves that swing an arc around the two-sphere can be accom-
plished in the plane by using the detour move. Again, we refer to the reference papers
at the beginning of this section for the reader who is interested in more details about
the foundations of virtual knot and link theory.

Another way to understand virtual diagrams is to regard them as representatives
for oriented Gauss codes [17], [31, 32] (Gauss diagrams). Such codes do not always
have planar realizations. An attempt to embed such a code in the plane leads to the
production of the virtual crossings. The detour move makes the particular choice of
virtual crossings irrelevant. Virtual isotopy is the same as the equivalence relation
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Fig. 2 Detour move
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Fig. 4 Forbidden moves
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generated on the collection of oriented Gauss codes by abstract Reidemeister moves
on these codes. Similar remarks hold for flat virtual diagrams.

Figure4 illustrates the two forbidden moves. Neither of these follows from Rei-
dmeister moves plus detour move, and indeed it is not hard to construct examples
of virtual knots that are non-trivial, but will become unknotted on the application of
one or both of the forbidden moves. The forbidden moves change the structure of
the Gauss code and, if desired, must be considered separately from the virtual knot
theory proper.

2.1 Interpretation of Virtuals Links as Stable Classes
of Links in Thickened Surfaces

There is a useful topological interpretation [31, 33] for virtual knot theory in terms
of embeddings of links in thickened surfaces (equivalently, diagrams for links drawn
on surfaces without the use of virtual crossings). One way to represent the virtual
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diagram on a surface is to regard each virtual crossing as a shorthand for a detour
of one of the arcs in the crossing through a 1-handle that has been attached to the
2-sphere of the original diagram. By interpreting each virtual crossing in this way,
we obtain an embedding of a collection of circles into a thickened surface Sg × R
where g is the number of virtual crossings in the original diagram L, Sg is a compact
oriented surface of genus g and R denotes the real line.

Another way to put the virtual diagram in a surface is shown in Fig. 5. There
we illustrate how to construct an abstract knot diagram associated with the virtual
diagram. The abstract knot diagram is a surface with boundary that forms a neigh-
borhood of the diagram, lifting the virtual crossings into disjoint ribbons that locally
project to the virtual crossing in the plane. A closed surface is obtained by adding
disks to the boundary components of the abstract link diagram. The result is a surface
of least genus supporting that initial diagram.

We say that two such surface embeddings are stably equivalent if one can be
obtained from another by isotopy in the thickened surfaces, homeomorphisms of
the surfaces and the addition or subtraction of empty handles. Equivalently, the
stabilization can be obtained by taking an abstract knot diagram neighborhood of
the given knot or link diagram K in a given surface. Remove this abstract diagram
and add any orientable surfaces with boundary to the boundary circles of the abstract
diagram. Let K ′ denote this new knot or link in the resulting closed surface. Then K ′
is stably equivalent to the original knot or link K, and this notion of cutting out the
knot and reembedding it is equivalent to the handles definition of stable equivalence.

Theorem 1 ([31, 33, 55]) Two virtual link diagrams are isotopic if and only if their
corresponding surface embeddings are stably equivalent.

The reader will find more information about this correspondence [31, 33] in other
papers by the author and in the literature of virtual knot theory. Flat virtual knots
and links correspond to stabilized classes of immersed curves in surfaces in a form
exactly analogous to our statements about the virtual knot theory.
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2.2 Review of the Bracket Polynomial for Virtual Knots

In this section we recall how the bracket state summation model [28] for the Jones
polynomial is defined for virtual knots and links.

The bracket polynomial [28] model for the Jones polynomial [22–24, 58] is usu-
ally described by the expansion

(1)

and we have
〈K ©〉 = (−A2 − A−2)〈K〉 (2)

(3)

(4)

We call a diagram in the plane purely virtual if the only crossings in the diagram
are virtual crossings. Each purely virtual diagram is equivalent by the virtual moves
to a disjoint collection of circles in the plane.

A state S of a link diagram K is obtained by choosing a smoothing for each
crossing in the diagram and labelling that smoothing with either A or A−1 according
to the convention indicated in the bracket expansion above. Then, given a state S, one
has the evaluation < K |S > equal to the product of the labels at the smoothings, and
one has the evaluation ||S|| equal to the number of loops in the state (the smoothings
produce purely virtual diagrams). One then has the formula

< K >= �S < K |S > d ||S||−1

where the summation runs over the states S of the diagram K , and d = −A2 − A−2.

This state summation is invariant under all classical and virtual moves except the
first Reidemeister move. The bracket polynomial is normalized to an invariant fK (A)

of all the moves by the formula fK (A) = (−A3)−wr(K) < K > where wr(K) is the
writhe of the (now) oriented diagram K . The writhe is the sum of the orientation
signs (±1) of the crossings of the diagram. To fix the convention of orientation sign,
note that the signs of crossings are indicated in Fig. 5. Letting sgn(c) = ±1 denote
the sign of a classical crossing in an oriented link diagram, we have the formula for
the writhe:

wr(K) =
∑

c∈Cr(K)

sgn(c)

where Cr(K) denotes the collection of classical crossings of the diagram K .
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The Jones polynomial, VK (t) is given in terms of this model by the formula

VK (t) = fK (t−1/4).

This definition is a direct generalization to the virtual category of the state summodel
for the original Jones polynomial. It is straightforward to verify the invariances stated
above. In this way one has the Jones polynomial for virtual knots and links.

We have [33] the

Theorem 2 To each non-trivial classical knot diagramof one componentK there is a
corresponding non-trivial virtual knot diagram V irt(K) with unit Jones polynomial.

The main ideas behind this Theorem are indicated in Figs. 6 and 7. In Fig. 6 we
indicate the virtualization operation that replaces a given classical crossing by using
two virtual crossings and changing the implicit orientation of the classical crossing.
We also show how the bracket polynomial sees this operation as though the crossing
had been switched in the classical knot. (Take the formulas in Fig. 6 as exercises in
applying the expansion formula for the bracket.) If we virtualize a set of classical
crossings whose switching will unknot the knot, then the virtualized knot will have
unit Jones polynomial.

To see that the resulting virtualized knot is non-trivial, we use the involutory
quandle of K , denoted IQ(K). When we write the word quandle below, it will refer
to the involutory quandle. This is an algebraic invariant (of all three Reidemeister
moves)with one binary operation. The quandlewas invented byDavid Joyce [25] and
independently by Sergei Matveev [51]. See Fig. 7 for an illustration of the formalism
of the quandle. Each arc in the diagram is assigned a generator of the quandle. If
a and c are undercrossing arcs at a crossing, and b is an overcrossing arc at the
crossing, then ab = c and cb = a. Multiplication in the quandle is not associative
and it satisfies the rules aa = a, (ab)b = a and (ab)c = (ac)(bc) for all elements
a, b, c in the quandle. It is known that the involutory quandle of a non-trivial knot
is itself non-trivial. That is, it is not isomorphic with the quandle of the unknot. The
involutory quandle detects the unknot. The involutory quandle is extended to virtual
knots by using the same relations on the classical crossings and introducing no new
relations at the virtual crossings. The virtualization operation does not change this
extended quandle, as is shown in Fig. 7. This implies that virtual knots obtained by
virtualization from classical non-trivial knots will themselves be non-trivial.

It is an open problem whether there are classical knots (actually knotted) having
unit Jones polynomial. (There are linked links whose linkedness is unseen by the
Jones polynomial [13].) We do know that the knots V irt(K) produced by this The-
orem for non-trivial classical knots K are never isotopic to a classical knot. Such
examples are guaranteed to be non-trivial, and are not classical [12].

The involutory quandle is generalized to the quandle, an algebraic structure with
two binary operations that are inverses of each other and satisfying the axioms indi-
cated in Fig. 8. In this Figure we illustrate how the operations and labellings are
associated with the classical and virtual crossings to form the virtual quandle of an
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The Virtual Oriented Quandle
v is an extra free generator so that the 
virtual quandle of an unknot is the free
quandle on two generators.

oriented virtual knot of link diagram. The virtual quandle has an extra free generator
v that acts at the virtual crossings in the diagram. One can define just the quandle
of a virtual diagram, but the virtual quandle is a stronger invariant of virtual knots
and links. See [2, 47] for more information about the virtual quandle. At this writing
it is not known whether the virtual quandle detects the virtual unknot. In [3] it is
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Fig. 9 The virtual quandle
of the virtual trefoil a
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shown that the Kishino knot (see the next section) is detected by the group associ-
ated with the virtual quandle. This proves that the Kishino knot is detected by the
virtual quandle. More examples need to be explored in this domain.

There are many examples of virtual knots with trivial ordinary quandles. For
example, the virtual trefoil in Figs. 5 and 9 has a trivial standard quandle, but a
non-trivial virtual quandle. In Fig. 9 we illustrate the equations for the relations in
the virtual quandle of the virtual trefoil knot K . One way to see the non-triviality
of this virtual quandle is to use the Alexander representation given by x ∗ y =
tx + (1 − t)y, x�y = t−1x + (1 − t−1)ywith x ∗ v = sx + (1 − s)v, x�v = s−1x +
(1 − s−1)v. This defines a Generalized Alexander Module over Z[t, t−1, s, s−1]. The
relations then reduce it to a module generated by a and v with relation

((1 − s2) + (s − 1)t + (s2 − s)t−1)(a − v) = 0.

The polynomial SK (s, t) = (1 − s2) + (s − 1)t + (s2 − s)t−1 is the Sawollek poly-
nomial [54] of the virtual knot K . For more information about the Sawollek poly-
nomial and for other approaches to algebraic invariants of virtual knots such as the
biquandle and the definitions of these structures, see the papers [14, 15]. These papers
discuss unsolved problems in virtual knot theory and combinatorial knot theory.

2.3 Parity, Odd Writhe and the Parity Bracket Polynomial

Parity is an important theme in virtual knot theory and figures in many investigations
of this subject. In a virtual knot diagram there can be both even and odd crossings.
A crossing is odd if it flanks an odd number of symbols in the Gauss code of the
diagram. A crossing is even if it flanks an even number of symbols in the Gauss code
of the diagram. For example, in Fig. 5 we illustrate the virtual knotK with bare Gauss
code 1212. Both crossings in the diagram K are odd. In any classical knot diagram
all crossings are even.
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In [34] we introduced a numerical invariant of virtual knots, the odd writhe J (K)

defined for any virtual knot diagram K . J (K) is the sum of the signs of the odd
crossings. Classical diagrams have zero odd writhe. Thus if J (K) is non-zero, then
K is not equivalent to any classical knot. For the mirror image K∗ of any diagram
K, we have the formula J (K∗) = −J (K). Thus, when J (K) �= 0, we know that the
knot K is not classical and not equivalent to its mirror image. Parity does all the
work in this simple invariant. For example, if K is the virtual knot in Fig. 5, then we
have J (K) = 2. Thus K, the simplest virtual knot, is non-classical and it is chiral
(inequivalent to its mirror image).

In this section we introduce the Manturov Parity Bracket [48]. This is a form of
the bracket polynomial defined for virtual knots and for free knots (unlabeled Gauss
diagrams taken up to abstract Reidemeister move equivalence) that uses the parity
of the crossings. To compute the parity bracket, we first make all the odd crossings
into graphical vertices. Then we expand the resulting diagram on the remaining even
crossings. The result is a sum of graphs with polynomial coefficients.

More precisely, let K be a virtual knot diagram. Let E(K) denote the result of
making all the odd crossings in K into graphical nodes as illustrated in Fig. 10.
Let SE(K) denote the set of all bracket states of E(K) obtained by smoothing each
classical crossing in E(K) in one of the two possible ways. Then we define the parity
bracket

< K >P= (1/d)�S∈SE(K)A
i(S)[S]

where d = −A2 − A−2, i(S) denotes the product of A or A−1 from each smoothing
site according to the conventions of Fig. 10, and [S] denotes the reduced class of the
virtual graph S. The graphs are subject to a reduction move that eliminates bigons
as in the second Reidemeister move on a knot diagram as shown in Fig. 10. Thus [S]
represents the unique minimal representative for the virtual graph S under virtual
graph isotopy coupled with the bigon reduction move. A graph that reduces to a
circle (the circle is a graph for our purposes) is replaced by the value d above. Thus
< K >P is an element of a module generated by reduced graphs with coefficients
Laurent polynomials in A.

Fig. 10 Parity bracket
expansion
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Fig. 11 Kishino diagram

Fig. 12 Z-move and
graphical Z-move
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With the usual bracket polynomial variable A, the parity bracket is an invariant
of standard virtual knots. With A = ±1 it is an invariant of flat virtual knots. Even
more simply, with A = 1 and taken modulo two, we have an invariant of flat knots
with loop value zero. See Fig. 11 for an illustration of the application of the parity
bracket to theKishino diagram illustrated there. TheKishino diagram is notorious for
being hard to detect by the usual polynomial invariants such as the Jones polynomial.
It is a perfect example of the power of the parity bracket. All the crossings of the
Kishino diagram are odd. Thus there is exactly one term in the evaluation of the
Kishino diagram by the parity bracket, and this term is the Kishino diagram itself,
with its crossings made into graphical nodes. The resulting graph is irreducible and
so the Kishino diagram becomes its own invariant. We conclude that this diagram
will be found from any isotopic version of the Kishino diagram. This allows strong
conclusions about many properties of the diagram. For example, it is easy to check
that the least surface on which this diagram can be represented (with the given planar
cyclic orders at the nodes) is genus two. Thus we conclude that the least genus for a
surface representation of the Kishino diagram as a flat knot or virtual knot is two.

In Fig. 12 we illustrate the Z-move and the graphical Z-move. We say that two
virtual link diagramsK andK ′ are Z-equivalent ifK ′ can be obtained fromK by some
finite sequence ofReidemeistermoves, detourmoves andZ-moves. Two virtual knots
or links that are related by a Z-move have the same standard bracket polynomial.
This follows directly from our discussion in the previous section. We would like to
analyze the structure of Z-moves using the parity bracket. In order to do thiswe need a
version of the parity bracket that is invariant under the Z-move. In order to accomplish
this, we need to add a corresponding Z-move in the graphical reduction process
for the parity bracket. This extra graphical reduction is indicated in Fig. 12 where
we show a graphical Z-move. The reader will note that graphs that are irreducible
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Fig. 13 A knot KS with unit
Jones polynomial
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without the graphical Z-move can become reducible if we allow graphical Z-moves
in the reduction process. For example, the graph associated with the Kishino knot is
reducible under graphical Z-moves. However, there are examples of graphs that are
not reducible under graphical Z-moves and Reidemeister two moves. An example of
such a graph occurs in the parity bracket of the knotKS shown in Figs. 13 and 14. This
knot has one even classical crossing and four odd crossings. One smoothing of the
even crossing yields a state that reduces to a loop with no graphical nodes, while the
other smoothing yields a state that is irreducible even when the Z-move is allowed.
The upshot is that this knot KS is not Z-equivalent to any classical knot. Since one
can verify that KS has unit Jones polynomial, this example is a counterexample to a
conjecture of Fenn, Kauffman and Maturov [14] that suggested that a knot with unit
Jones polynomial should be Z-equivalent to a classical knot.

Some further remarks should be made about the structure of the parity bracket
for flat virtual knots. In Fig. 15 we illustrate the structure of the flat virtual two-move
in the framework of a Gauss diagram. The move requires oppositely oriented arcs
(chords of the Gauss diagram) in the pattern shown where the endpoints of the paired
arcs are adjacent along the circle of the Gauss diagram. Then Fig. 16 illustrates that
there is no such two-move available in the flat Kishino diagram. It is on this basis
that we know that the graph diagram for the parity bracket of the flat Kishino knot is
irreducible and so can conclude that this is a non-trivial flat virtual knot. The same
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Fig. 15 Flat Gauss two
move

1 2 1

2

a

b

a

b

ba...ba ba,,,ab

Fig. 16 Flat Kishino

a

b

c

d

<babacdcd>

b

a

b
a c

d

c

d

kind of argument applies to other examples. In Figs. 17 and 18 we show examples of
flat virtual knots with all odd crossings such that the graph diagrams are irreducible.

In the Fig. 18 an infinite class of examples is indicated by recursively continuing
the indicated construction. Since the graphs of these examples are distinct, the corre-
sponding flat virtuals are distinct. These examples are of interest in relation to pass
equivalence, an equivalence relation on oriented knot and link diagrams generated
by isotopy and the pass-move indicated in Fig. 19 [27, 39]. In classical knot theory
any knot is pass equivalent either to the trefoil knot or to the unknot. Via the structure
of the generating pass move, it follows that the flat projection F(K), for any virtual
knot or link K, is an invariant (as a flat virtual link) of the pass equivalence class of
K . It follows that there are an infinite number of distinct pass classes among virtual
knots.
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2.4 The Arrow Polynomial for Virtual and Flat Virtual Knots
and Links

This section describes an invariant for oriented virtual knots and links, and for flat
oriented virtual knots and links that we call the arrow polynomial [11, 37]. This
invariant is considerably stronger than the Jones polynomial for virtual knots and
links, and is a natural extension of the Jones polynomial, using the oriented diagram
structure of the state summation. The construction of the arrow polynomial invariant
begins with the oriented state summation of the bracket polynomial. This means that
each local smoothing is either an oriented smoothing or a disoriented smoothing as
illustrated in Figs. 20 and 21. In [11] we show how the arrow polynomial can be used
to estimate virtual crossing numbers.

In Fig. 20 we illustrate the oriented bracket expansion for both positive and nega-
tive crossings in a link diagram. An oriented crossing can be smoothed in the oriented
fashion or the disoriented fashion as shown in Fig. 20. We refer to these smoothings
as oriented and disoriented smoothings. To each smoothing we make an associated
configuration that will be part of the arrow polynomial state summation. The con-
figuration associated to a state with oriented and disoriented smoothings is obtained
by applying the reduction rules described below. See Fig. 21. The arrow polynomial
state summation is defined by the formula:

A[K] = �S〈K |S〉d ||S||−1[S]

where S runs over the oriented bracket states of the diagram, 〈K |S〉 is the usual
product of vertex weights as in the standard bracket polynomial, and [S] is a product
of extra variablesK1,K2, . . . associatedwith the stateS.These variables are explained
below.

Due to the oriented state expansion, the loops in the resulting states have extra
combinatorial structure in the form of paired cusps as shown in Fig. 20. Each disori-
ented smoothing gives rise to a cusp pair where each cusp has either two oriented
lines going into the cusp or two oriented lines leaving the cusp. We reduce this struc-
ture according to a set of rules that yields invariance of the state summation under

Fig. 20 Oriented bracket
expansion for the arrow
polynomial

2 -2
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Fig. 21 Reduction relation
for the arrow polynomial

K1

K2

the Reideimeister moves. The basic conventions for this simplification are shown in
Fig. 21. Each cusp is denoted by an angle with arrows either both entering the vertex
or both leaving the vertex. Furthermore, the angle locally divides the plane into two
parts: One part is the span of an acute angle; the other part is the span of an obtuse
angle. We refer to the span of the acute angle as the inside of the cusp.

Remark on State Reduction. Figure21 illustrates the basic reduction rule for the
arrow polynomial. The reduction rule allows the cancellation of two adjacent cusps
when they have insides on the same side of the segment that connects them.When the
insides of the cusps are on opposite sides of the connecting segment (a “zig-zag”),
then no cancellation is allowed. Each state circle is seen as a circle graph with extra
nodes corresponding to the cusps. All graphs are taken up to virtual equivalence, as
explained earlier in this paper. Figure21 illustrates the simplification of two circle
graphs. In one case the graph reduces to a circle with no vertices. In the other case
there is no further cancellation, but the graph is equivalent to one without a virtual
crossing. The state expansion forA[K] =	 K 
 is exactly as shown in Fig. 20, but
we use the reduction rule of Fig. 21 so that each state is a disjoint union of reduced
circle graphs. Since such graphs are planar, each is equivalent to an embedded graph
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(no virtual crossings) via the detour move, and the reduced forms of such graphs have
2n cusps that alternate in type around the circle so that n are pointing inward and n
are pointing outward. The circle with no cusps is evaluated as d = −A2 − A−2 as is
usual for these expansions, and the circle is removed from the graphical expansion.
We let Kn denote the circle graph with 2n alternating cusps types as shown in Fig. 21
for n = 1 and n = 2. Each circle graph contributes d = −A2 − A−2 to the state sum
and the graphs Kn for n ≥ 1 remain in the graphical expansion. Each Kn is an extra
variable in the polynomial. Thus a product of the Kn’s corresponds to a state that
is a disjoint union of copies of these circle graphs. By evaluating each circle graph
as d = −A2 − A−2 (as well as taking its arrow variable Kn) we guarantee that the
resulting polynomial will reduce to the original bracket polynomial when each of the
new variables Kn is set equal to unity. Note that we continue to use the caveat that an
isolated circle or circle graph (i.e. a state consisting in a single circle or single circle
graph) is assigned a loop value of unity in the state sum. This assures that A[K] is
normalized so that the unknot receives the value one.

We have the following Proposition, showing that the phenomenon of cusped states
and extra variables Kn only occurs for virtual knots and links.

Proposition 1 In a classical knot or link diagram, all state loops reduce to loops
that are free from cusps.

Proof See [11, 37].

Theorem 3 With the above conventions, the arrowpolynomialA[K] is a polynomial
in A,A−1 and the graphical variables Kn (of which finitely many will appear for any
given virtual knot or link). A[K] is a regular isotopy invariant of virtual knots and
links. The normalized version

W[K] = (−A3)−wr(K)A[K]

is an invariant virtual isotopy. If we set A = 1 and d = −A2 − A−2 = −2, then the
resulting specialization

F [K] = A[K](A = 1)

is an invariant of flat virtual knots and links.

Proof [11, 37].

Here is a first example of a calculation of the arrow polynomial invariant. View
Fig. 22. The virtual knot K in this figure has two crossings. One can see that this
knot is a non-trival virtual knot by simply calculating the odd writhe J (K) (defined
in Sect. 2.3). We have that J (K) = 2, proving that K is non-trivial and non-classical.
This is the simplest virtual knot, the analog of the trefoil knot for virtual knot theory.
The arrow polynomial gives an independent verification that K is non-trivial and
non-classical.
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Fig. 22 Arrow polynomial
of the virtual trefoil knot
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The next example is given in Fig. 23. Here we calculate the arrow polynomial for a
non-trivial virtual knot with unit Jones polynomial. Specialization of the calculation
to A = 1 shows that the corresponding flat knot is non-trivial as well.

Figure24 exhibits the calculation of the arrowpolynomial for theKishinodiagram,
showing once again that the Kishino knot is non-trivial and that its underlying flat
diagram is also non-trivial.
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Fig. 25 The 1-virtualization
of a classical diagram (A)
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The example shown in Figs. 25 and 26 shows the result of expanding a virtualized
classical crossing using the arrow polynomial state sum. Virtualization of a crossing
was described in Sect. 2.2. In a virtualized crossing, one sees a classical crossing
that is flanked by two virtual crossings. In Sect. 2.2 we showed that the standard
bracket state sum does not see virtualization in the sense that it has the same value
as the result of smoothing both flanking virtual crossings that have been added to
the diagram. The result is that the value of the bracket polynomial of the knot with
a virtualized classical crossing is the same as the value of the bracket polynomial
of the original knot after the same crossing has been switched (exchanging over and
under crossing segments).

As one can see from the formula in Fig. 25, this smoothing property of the bracket
polynomial will not generally be the case for the arrow polynomial state sum. In
Fig. 28 we show that this difference is indeed the case for an infinite collection
of examples. In that figure we use a tangle T that is assumed to be a classical
tangle. Arrow polynomial expansion of this tangle is necessarily of the form shown
in that figure: a linear combination of an oriented smoothing and a reverse oriented
smoothing with respective coefficients a(T ) and b(T ) in the Laurent polynomial ring
Q[A,A−1]. We leave the verification of this fact to the reader. In Fig. 26 we show a
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generic diagram that is obtained by a single virtualization from a classical diagram,
and we illustrate the calculation of its arrow polynomial invariant. As the reader can
see from this Figure, there is a non-trivial graphical term whenever b(T ) is non-
zero. Thus we conclude that the single virtualization of any classical link diagram
(in the form shown in this figure) will be non-trivial and non-classical whenever
b(T ) in non-zero. This is an infinite class of examples, and the result can be used to
recover the results about single virtualization that we obtained in a previous paper
with Heather Dye [10] using the surface bracket polynomial.

For more information about the arrow polynomial, we refer the reader to our
paper [11] where we prove that the maximal monomial degree in the Kn variables is
a lower bound for the virtual crossing number of the virtual knot or link. There are
many open problems associated with this estimate for the virtual crossing number.
Also the reader of [11] will encounter examples of virtual knots and links that are
undetectable by the arrow polynomial.

3 Virtual Knot Cobordism and Concordance

Definition 1 Two oriented virtual knots or links K and K ′ are virtually cobordant if
one may be obtained from the other by a sequence of virtual isotopies (Reidemeister
moves plus detourmoves) plus births, deaths and oriented saddle points, as illustrated
in Fig. 27. A birth is the introduction into the diagram of an isolated unknotted
circle. A death is the removal from the diagram of an isolated unknotted circle. A
saddle point move results from bringing oppositely oriented arcs into proximity and
resmoothing the resulting site to obtain two new oppositely oriented arcs.

See Fig. 27 for an illustration of the process. Figure27 also illustrates the schema
of surfaces that are generated by cobordism process. These are abstract surfaces with
well defined genus in terms of the sequence of steps in the cobordism. In the Figure
we illustrate two examples of genus zero, and one example of genus 1. We say that
a cobordism has genus g if its schema has genus g. Two virtual knots or links are
virtually concordant if there is a cobordism of genus zero connecting them. Note
that virtual concordance is a special case of virtual cobordism. We shall often just
say cobordant or concordant with the word virtual assumed.

Definition 2 A virtual knot is said to be a slice knot if it is virtually concordant to
the unknot, or equivalently if it is virtually concordant to the empty knot (The unknot
is concordant to the empty knot via one death). As we shall see below, every virtual
knot or link is cobordant to the unknot. Another way to say this, is to say that there
is a virtual surface (schema) whose boundary is the given virtual knot. The reader
should note that when we speak of a virtual surface, we mean a surface schema that
is generated by saddle moves, maxima and minima as described above.

The reader should note the sharp difference between the concepts of cobordism
of virtual knots and concordance of virtual knots. Two knots that are cobordant can
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Fig. 27 Saddles, births and
deaths

g=0 g=1g=0

saddle birth deathsaddle

g=0 g=0

mutually bound a virtual surface of arbitrary genus. Two knots that are concordant
must mutually bound a surface of genus zero. Just as in the classical case of knot
concordance, this is a highly restricted relationship and one wants to be able to
determine whether two knots are concordant, whereas any two knots are cobordant.
On the other hand, the least genus for a cobordism surface between two knots or
between a knot and the unknot is of great interest.

Definition 3 The four-ball genus g4(K) of a virtual knot or link K is the least genus
among all virtual surfaces obtained by virtual cobordism that bound K . As we shall
see below, there is a simple upper bound on the four-ball genus for any virtual knot
or link and a definite result for the four-ball genus of positive virtual knots [12]. Note
that in this definition of four-ball genus we have not made reference to an embedding
of the surface in the four-ball D4. The surface constructed by a virtual cobordism
is, for this paper, an abstract surface with a well-defined genus. This same surface
can be given the structure of virtual surface diagram analogous to a virtual knot or
link diagram (see [56]) but we will not discuss this aspect of virtual surfaces in the
present paper. Note that virtual slice knots are virtual knots K with g4(K) = 0.

In Fig. 28 we illustrate the virtual stevedore’s knot that we will denote by VS, and
show that it is a slice knot in the sense of the above definition. This figure illustrates
how the surface schema whose boundary in the virtual stevedore is evolved via the
saddle point that produces two virtually unlinked curves that are isotopic to a pair
of curves that can undergo deaths to produce the genus zero slicing surface. We will
use this example to illustrate our theory of virtual knot cobordism, and the questions
that we are investigating.
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Fig. 28 Virtual Stevedore is
slice

(detour move)

VS

death

saddle Virtual Stevedore
Slice Schema gives 
genus 0 surface bounding VS.

saddle

death

VS

We prove that VS is not classical by showing that it is represented on a surface of
genus one and no smaller. The reader should note the difference between representa-
tion of a virtual knot or link on a surface (as an embedding into the thickened surface)
and the concept of spanning surface that will be discussed in the next section.

The technique for finding this virtual surface genus for the virtual stevedore is to
use the bracket expansion on a toral representative of VS and examine the structure
of the state loops on that surface. See Fig. 29. Note that in this figure the virtual
crossings correspond to parts of the diagram that loop around the torus, and do not
weave on the surface of the torus. An analysis of the homology classes of the state
loops shows that the knot cannot be isotoped off the handle structure of the torus.
See [10, 36] for more information about using the surface bracket.

Next we examine the bracket polynomial of the virtual stevedore, and show by
a direct calculation (omitted here) that it has the same bracket polynomial as the
classical figure eight knot. This calculation shows that VS is not a connected sum of
two virtual knots. Thus we know that VS is a non-trivial example of a virtual slice
knot.

In Fig. 30 we illustrate a connected sum of a virtual knot K and its vertical mirror
image K !. The vertical mirror image is obtained by reflecting the diagram in a plane
perpendicular to the plane of the diagramand reversing the orientation of the resulting
diagram. We indicate this particular connected sum by K�K !. While connected sum
of virtual knots is not in general defined except by a diagrammatic choice, we do
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Fig. 29 Virtual Stevedore is
not classical

AAAA AAAB AABA AABB

ABAA ABAB ABBA ABBB

BAAA BAAB BABA BABB

BBAA BBAB BBBA BBBB

have a diagrammatic definition of this connected sum and it is the case that K�K ! is
a slice knot for any virtual diagram K . The idea behind the proof of this statement is
illustrated in Fig. 31. Saddle points can be made by pairing arcs across the mirror and
the diagram resolves into a collection of virtual trivial circles. We omit the detailed
proof of this fact about virtual concordance. This result is a direct generalization of
the corresponding result for classical knots and links [16].

3.1 Spanning Surfaces for Knots and Virtual Knots and the
Four-Ball Genus of Positive Virtual Knots

Every oriented classical knot or link bounds an embedded orientable surface in three-
space. A representative surface of this kind can be obtained by Seifert’s algorithm
(See [27, 29, 30]). We illustrate Seifert’s algorithm for a trefoil diagram in Fig. 32.
The algorithm proceeds as follows: At each oriented crossing in a given diagram K,

smooth that crossing in the oriented manner (reconnecting the arcs locally so that the
crossing disappears and the connections respect the orientation). The result operation
is a collection of oriented simple closed curves in the plane, usually called the Seifert
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Fig. 30 Vertical mirror
image

K K!

K#K!

Fig. 31 Connected sum with
vertical mirror image is slice

K#K!

saddle

saddle

isotopy

trivial virtual
link

circles. To form the Seifert surface F(K) for the diagram K, attach disjoint discs
to each of the Seifert circles, and connect these discs to one another by local half-
twisted bands at the sites of the smoothing of the diagram. This process is indicated
in Fig. 32. In that figure we have not completed the illustration of the outer disc.
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Fig. 32 Classical Seifert
surface

T

Seifert Circles

Seifert Surface
         F(T)

Lemma 1 Let K be a classical knot diagram with n crossings and r Seifert circles.
Then the genus of the Seifert surface F(K) is given by the formula

g(F(K)) = (1/2)(−r + n + 1).

Proof See [39].

For any classical knot K, there is a surface bounding that knot in the four-ball
that is homeomorphic to the Seifert surface. One constructs this surface by pushing
the Seifert surface into the four-ball keeping it fixed along the boundary. A differ-
ent description of this surface is indicated in Fig. 33. We perform a saddle point
transformation at every crossing of the diagram. The result of these operations is a
collection of unknotted and unlinked curves. We then bound each of these curves by
discs (via deaths of circles) and obtain a surface S(K) embedded in the four-ball with
boundaryK .As the reader can easily see, the curves produced by the saddle transfor-
mations are in one-to-one correspondence with the Seifert circles for K and S(K) is
homeomorphic with the Seifert surface F(K). Thus g(S(K)) = (1/2)(−r + n + 1).

Wegeneralize the Seifert surface to a surface S(K) for virtual knotsK by perform-
ing exactly these saddle moves at each classical crossing of the virtual knot. View
Fig. 34. The result of these operations is a collection of unknotted curves that are
isotopic (by the first classical Reidemeister move) to curves with only virtual cross-
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Fig. 33 Classical cobordism
surface

T

Every classical knot diagram bounds a surface in the four-ball
whose genus is equal to the genus of its Seifert Surface.

Fig. 34 Virtual cobordism
Seifert surface

Seifert Circle(s) for K

K

Every virtual diagram K bounds a virtual orientable surface of
genus g = (1/2)(-r + n +1) where r is the number of Seifert circles,
and n is the number of classical crossings in K.
This virtual surface is the cobordism Seifert surface when K
is classical.
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ings. Once the first Reidemeister moves are performed, these curves are identical
with the virtual Seifert circles obtained from the diagram K by smoothing all of its
classical crossings. We can isotope these circles into a disjoint collection of circles
and cap them with discs in the four-ball. The result is a virtual surface S(K) whose
boundary is the given virtual knot K . We will use the terminology virtual surface
in the four-ball for this surface schema. In the case of a virtual slice knot, the knot
bounds a virtual surface of genus zero. We have the following lemma.

Lemma 2 Let K be a virtual knot, then the virtual Seifert surface S(K) constructed
above has genus given by the formula

g(S(K)) = (1/2)(−r + n + 1)

where r is the number of virtual Seifert circles in the diagram K and n is the number
of classical crossings in the diagram K .

Proof See [39].

Remark. Note that it follows from the above discussion that if a diagram K ′ is
obtained from a diagram K by replacing a crossing in K by its oriented smoothing,
thenK ′ is cobordant toK via a single saddle point move.Wewill use this observation
repeatedly in the rest of the paper.
Remark. For the virtual stevedore in Fig. 35 there is a lower genus surface (genus
zero as we have already seen) than can be produced by cobordism using the virtual
Seifert surface. In that same figure we have illustrated a diagram D with the same
projected diagram as the virtual stevedore, but D has all positive crossings. In this
case we can prove that there is no virtual surface for this diagramD of four-ball genus
less than 1. In fact, we have the following result. This theorem is a generalization of
a corresponding result for classical knots due to Rasmussen [52].

Theorem 4 (On Four-Ball Genus for PositiveVirtual Knots [12])Let K be a positive
virtual knot (i.e. all classical crossings in K are positive), then the four-ball genus
g4(K) is given by the formula

g4(K) = (1/2)(−r + n + 1) = g(S(K))

where r is the number of virtual Seifert circles in the diagram K and n is the number
of classical crossings in this diagram. In other words, the virtual Seifert surface for
K represents its minimal four-ball genus.

Remark. This theorem is proved by using a generalization of integral Khovanov
homology to virtual knot theory originally devised by Manturov [49]. In [12] we
reformulate this theory and show that it generalizes to the Lee homology theory (a
variant of Khovanov homology) as well. With this theorem, we know the genus for
an infinite class of virtual knots and can begin the deeper exploration of genus for
non-positive virtual knots and links.
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Fig. 35 Virtual Stevedore
cobordism Seifert surface VS

g = (1/2)(-r + n + 1) = (1/2)(-3 +4 + 1) = 1.

Seifert Cobordism for the Virtual Stevedore
and for a corresponding positive diagram D.

D

3.2 The Affine Index Polynomial Invariant

The purpose of this section is to show that the affine index polynomial invariant [38]
of virtual knots is a concordance invariant (see Definition3.1), and to extend this
invariant and its properties to virtual links. To this purpose, we begin by reviewing
the definition of the affine index polynomial and recall its basic properties. We use
the diagrammatic point of view in this section and do not use Gauss codes for the
definitions and constructions.

We first describe how to calculate the affine index polynomial, then prove invari-
ance under virtual link equivalence, and then prove concordance invariance. Calcu-
lation begins with a flat oriented virtual knot diagram (the classical crossings in a
flat diagram do not have choices made for over or under). An arc of a flat diagram
is an edge of the 4-regular graph that represents the diagram. An edge extends from
one classical crossing to the next in orientation order. An arc may have many virtual
crossings, but it begins at a classical crossing and ends at another classical crossing.
We label each arc c in the diagram with an integer λ(c) so that an arc that meets a
classical crossing and crosses to the left increases the label by one, while an arc that
meets a classical crossing and crosses to the right decreases the label by one. See
Fig. 36 for an illustration of this rule. Such integer labeling can always be done for any
virtual or classical link diagram [38]. In a virtual diagram the labeling is unchanged
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Fig. 36 Labeled flat
crossing and an example
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at a virtual crossing, as indicated in Fig. 36. One can start by choosing some arc to
have an arbitrary integer label, and then proceed along the diagram labeling all the
arcs via this crossing rule. We call such an integer labeling of a diagram an affine
labeling of the diagram and sometimes just a labeling of the diagram. In [38] we use
the equivalent term Cheng labeling for the affine labeling.
Remark.We discuss the algebraic background to this invariant in [38]. Oncewe have
a labeled flat diagram, we assign two weights, W+ and W− to each of its crossings
according to the definition below. Then given a diagram with classical crossings j
we assign a weight W (j) to be W+ if c is a positive classical crossing, and W− if j is
a negative classical crossing.

Definition 4 Given a labeled flat diagram we define two numbers at each classical
crossing:W− andW+ as shown in Fig. 36. If we have a labeled classical crossingwith
left incoming arc a and right incoming arc b then the right outgoing arc is labeled
d = a − 1 and the left outgoing arc is labeled c = b + 1 as shown in Fig. 36. We
then define W+ = a − (b + 1) and W− = b − (a − 1). Note that W− = −W+ in all
cases.

Definition 5 Given a crossing c in a diagram K,we let sgn(c) denote the sign of the
crossing. The sign of the crossing is plus or minus one according to the convention
shown in Fig. 37. The writhe, wr(K), of the diagram K is the sum of the signs of
all its crossings. For a virtual link diagram, labeled in the integers according to the
scheme above, and a crossing c in the diagram, define the weight of the crossing
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Fig. 37 Crossing signs

c d
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Fig. 38 Labels for crossings
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independent
of crossing type.

WK (c) by the equation (Fig. 38)

WK (c) = Wsgn(c)(c)

where Wsgn(c)(c) refers to the underlying flat diagram for K . Thus WK (c) is W±(c)
according as the sign of the crossing is plus or minus. We shall often indicate the
weight of a crossing c in a knot diagram K by W (c) rather than WK (c).

Remark. Note that in Fig. 36 we have flat crossings A,B,C and corresponding
crossings in the virtual knot K . The Figure illustrates that WK (A) = −2,WK (B) =
+2,WK (C) = 0.

Definition 6 Let K be a virtual knot diagram. Define the Affine Index Polynomial of
K by the equation

PK =
∑

c

sgn(c)(tWK (c) − 1) =
∑

c

sgn(c)tWK (c) − wr(K)

where the summation is over all classical crossings in the virtual knot diagram K .

The Laurent polynomial PK is an invariant of virtual knots, as we shall recall below,
and we shall show that it is a concordance invariant. Note that we can rewrite this
definition as follows:

PK =
∞∑

n=1

wrn(K)(tn − 1)
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where

wrn(K) =
∑

c:WK (c)=n

sgn(c).

We can think of these numbers wrn(K) as special writhes for the virtual knot
diagram, similar in spirit to the odd writhe. Each wrn(K) for n = 1, 2, . . . is an
invariant of the virtual knot K . Note also that a crossing c in K is odd (by our
previous definition) if and only ifWK (c) is odd. Thus, if J (K) denotes the odd writhe
of K, then

J (K) =
∑

c:WK (c) odd

sgn(c) =
∑

n odd

wrn(K).

Definition 7 In a flat virtual link the classical crossings are immersion crossings,
neither over nor under, Reidemeister moves are allowed independent of over and
under, but virtual crossings still take detour precedence over classical crossings [31]
(See Sect. 2 of the present paper). We define the Flat Affine Index Polynomial, PFK ,
for a flat virtual knot K by the formula

PFK (t) =
∑

c

(t|WK (c)| + 1)

where the polynomial is taken over the integers modulo two, but the exponents (the
absolute values of the weights at the crossings) are integral. It is not hard to see that
PFK (t) is an invariant of flat virtual knots, and that the concordance results of the
present paper hold in the flat category for this invariant.

Remark. In Figs. 39 and 40 we indicate the affine index polynomials for examples
of links. In this case the exponents in the polynomials contain a generic integer N
that can be taken to be much greater than zero. Then the corresponding flat affine
polynomial for Fig. 39 is PF = tN−1 + tN + t + 1 (mod 2), and in Fig. 40 it is PF =
tM + tN + tM−1 + tN−1 (mod 2). This shows that the flat versions of these links are
non-trivial and that they are (using the results of the next section) not cobordant to
the corresponding unlinks. See also Figs. 54 and 56 for examples of non-trivial flat
affine polynomials, and the later discussion related to these figures.
Remark. In Fig. 36 we show the computation of the weights for a given flat diagram
and the computation of the polynomial for a virtual knot K with this underlying
diagram. The knot K is an example of a virtual knot with unit Jones polynomial. The
polynomial PK for this knot has the value

PK = t−2 + t2 − 2,

showing that this knot is not isotopic to a classical knot.
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Fig. 39 Affine index
invariant of a virtual link
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3.3 Invariance of PK(t)

In order to show the invariance and well-definedness of PK (t) we must first show the
existence of affine labelings of flat virtual knot diagrams. We do this by showing that
any virtual knot diagram K that overlies a given flat diagram D can be so labeled.

Proposition 2 Any flat virtual knot diagram has an affine labeling.

Proof This proposition is proved in [38]. The main point is that on traversing the
entire diagram, one goes through each crossing twice. The combination of these two
operations results in a total change of zero. Hence, whatever label one begins with,
the return label after a complete circuit of a diagram component will be the same as
the start label.

Definition 8 Not all multi-component virtual diagrams can be labeled. See Fig. 41
for such an example. We call a multi-component diagram D compatible if every
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Fig. 41 Possible and
impossible labels for links

impossible to label

a bb+1

can be labeled

a-1

component of the diagram has algebraic intersection number zero (taking signed
intersection numbers in the plane) with the other components in D.

We observe the following

Lemma 3 Let D be a multi-component virtual diagram. Then D can be given an
affine labeling if and only if it is compatible.

Proof In any traverse of a given component of D one will meet external crossings
each once, and increment or decrement the labeling according as the crossing has
positive or negative sign with respect to this component. Self-crossings are met
twice, once as an increment and once as a decrement. Thus the total traverse will
not change the initial label if and only if the algebraic intersection number of the
given component with the rest of the diagram is zero. Since this must hold for each
component of the diagram D, we conclude that D can be labeled if and only if D is
compatible.

Remark. If we follow the algorithm described in Fig. 36 to compute a labeling, using
a different starting value, the resulting labeling will differ from the first labeling by
a constant integer at every label. Since the polynomial is defined in terms of the
differences W±(c) at each classical crossing c of K, it follows that the weights W±
as described above are well-defined.We can now state a result about the weights. See
[38] for the proof. Let K̄ denote the diagram obtained by reversing the orientation of
K and let K∗ denote the diagram obtained by switching all the crossings of K . K̄ is
called the reverse of K, and K∗ is called the flat mirror image of K . We let K ! denote
the vertical mirror image of K as shown in Fig. 30.

The following proposition and its proof will be mostly found in [38] except for
the statements about the vertical mirror image K !. These statements are easily seen
from the discussion here and so we do not give a proof of this proposition here.
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Proposition 3 Let K be a virtual knot diagram and W±(c) the crossing weights as
given in Definitions5 and 6. If α is an arc of K, let ᾱ denote the corresponding arc
of K̄ , the result of reversing the orientation of K .

1. Let c be a crossing of K and let c̄ denote the corresponding crossing of K̄ , then
W (c̄) = −W (c). Hence,

PK̄ (t) = PK (t−1).

Similarly, for the flat mirror image we have

PK∗(t) = −PK (t−1),

and for the vertical mirror image

PK !(t) = −PK (t).

Thus this invariant changes t to t−1 when the orientation of the knot is reversed,
and it changes global sign and t to t−1 when the knot is replaced by its flat mirror
image.

2. If K is a classical knot diagram, then for each crossing c in K, W (c) = 0 and
PK (t) = 0.

3. If K�L denotes a connected sum (the diagrams are joined by removing an arc
from each, and connecting them) of K and L, then

PK�L = PK + PL.

Thus, if K�K ! denotes a connected sum of a virtual knot with its vertical mirror
image (see Fig.30), then it follows from the above that

PK�K ! = PK − PK ! = 0.

We will now state the invariance of PK (t) under virtual isotopy. The reader will
recall that virtual isotopy consists in the classical Reidemeister moves plus virtual
moves that are all generated by one generic detour move. The (unoriented) virtual
isotopy moves are illustrated in Figs. 1 and 2. In Figs. 42 and 43 we show the relevant
information for verifying that PK (t) is an invariant of oriented virtual isotopy. The
reader can find the details of this proof for virtual knots in [38].

Theorem 5 Let K be a virtual knot diagram. Then the polynomial PK (t) is invariant
under oriented virtual isotopy and is hence an invariant of virtual knots.

Proof See [38].

Generalization of the Affine Index Polynomial fromKnots to Links. We are now
in a position to generalize the invariant PK (t) to cases of virtual and classical link
diagrams. Some of the material in this discussion can be found in embryonic form in
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Fig. 42 Reidemeister moves
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W+(y) = a-c-2 = a-1-c-1 = W+(y')
W+(z) = b-c-1 = b-1-c = W+(z')

[38]. Special link diagrams can be affine colored according to our rules. For example,
view Fig. 44 to see a labeling of the classical Hopf link. Before analyzing this figure,
consider the proof for the invariance of the polynomial PK (t). Affine coloring is
uniquely inherited under Reidemeister moves and the weights at the three crossings
of the third Reidemeister move are permuted under the move. See Figs. 42 and 43.
These properties are true for the polynomial that we write for any affine-colored link.
Thus we can conclude that if we are given a pair (L,C) where L is a link diagram
and C is an affine-coloring of this diagram, then the polynomial PL(t), defined just
as before, is an invariant of the pair (L,C) where a Reidemeister move applied to
(L,C) produces (L′,C ′) where L′ is the diagram obtained from L by the move, and
C ′ is the coloring uniquely obtained from C by the move. The resulting polynomial
is an invariant of the link itself.

Now go back to Fig. 44 and note that we have given arbitrary labels p and q to
arcs on the two components and obtained weights of the form −N − 1 and −N + 1
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Fig. 44 Invariant for the
Hopf link
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-N-1
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where N = p − q. If we regard N as an integer variable in the polynomial PH =
t−N−1 + t−N+1 − 2 (H is a positive Hopf link), then this polynomial is an invariant
of the link. This can be verified by applying Reidemeister moves to the link and
showing that the value of N is preserved.

In working with the invariant for a link we choose an algebraic starting value for
each component of the link, using a different algebraic symbol for each component.
It is convenient in displaying the weights to use new variables corresponding to
the differences between algebraic labels. Thus in Fig. 39 we have a two component
virtual link with labels a and b for each component and we define N = a − b. At a
crossing between two components the weights will be expressed uniquely in terms
ofN (the difference between their algebraic labels). The invariant polynomial for the
link has algebraic exponents involving these differences. In Fig. 39 the polynomial
is PK = tN−1 + t−N + t − 3.

In Fig. 40 we illustrate a link L that is a virtual Borromean rings. No two com-
ponents are linked but the triple is linked. The algebraically weighted affine index
polynomial detects the linkedness of these rings. Note that in this case we have two
algebraic exponents N andM . We leave it to the reader to examine Fig. 40 for more
details about this example.

We have defined compatibility (Definition8) of multi-component diagrams above
and proved that a multi-component diagram can be affine labeled if and only if it is
compatible (Lemma3). Therefore compatible links have affine index polynomials.
Just as we have remarked, such polynomials will in general have exponents that are
new variables and that can be specialized to polynomials of labeled pairs. It is useful
to have both the absolute link invariants and the labeled pair invariants. We shall use
both types of invariant in the discussion to follow.



Virtual Knot Theory and Virtual Knot Cobordism 103

3.4 Concordance Invariance of the Affine Index Polynomial

We now study the concordance invariance of the affine index polynomial following
our work in [40]. This invariant is also called the writhe polynomial, WK (t), in the
context of Gauss diagrams, see [4] where the W notation is used and where a proof
or the concordance invariance in the case of knots is given using Gauss diagrams.
The main result of this section is the

Theorem 6 The affine index polynomial PK (t) is a concordance invariant of virtual
knots K and compatible virtual links (the links for which the invariant is defined).
In the case of links we use integral affine labelings for the link, just as in the case
of knots. For links, the genus zero concordance is restricted to one where all critical
points can be paired in canceling maxima and saddles and canceling saddles and
minima. Note that this condition is automatically satisfied in the case of concordance
of knots.

Proof This proof is given in [40]. We include it here for the sake of completeness.
Suppose that K is concordant to K ′. Then there is a genus zero sequence of births
deaths and saddles connecting K to K ′. Genus zero implies that the core structure
of this sequence is a tree of saddles, births and deaths. The genus zero surface is
constructed from a sequence of pairings of births with saddles, and saddles with
deaths. In other words, the basic operation that constructs the concordance consists
in the splitting off from, or amalgamation of a trivial knot with the body of the
concordance via a birth and saddle, or a saddle and a death. Thus we can consider an
elementary genus zero concordance consisting in a virtual knot K and a trivial circle
C, disjoint from K, such that the link diagram L consisting of the disjoint union
of K and C undergoes virtual isotopy to a diagram D. One oriented saddle point
move on D forms a new knot K ′. It is sufficient to prove that PK = PK ′ . To prove
this fact, note that by taking a constant labeling of C, we have a defined polynomial
PL with PK = PL. Then L is isotopic to D, and so by invariance of the affine index
polynomial, PK = PL = PD. At the place of the saddle point move there is a label
a on the K component of D and a label b on the C component of D. We can add
a − b to the labels on all arcs of the C component of D and retain a legal coloring
of D that does not change its polynomial evaluation (This is a general property of
the labelings—they can always be shifted by a constant). Thus we may assume that
D is prepared with a labeling so that PK = PD, and the labels at the saddle point are
the same. Then the saddle move can be performed, and the new diagram K ′ inherits
the same labeling. Hence PD = PK ′ . We have proved that PK = PK ′ . This completes
the proof of the case of a birth followed by a saddle point. The remaining case is a
saddle point followed by a death. In this case the link obtained after the saddle point
inherits a labeling from the original knot and, given that the resulting link is isotopic
to a disjoint union of a knot and a trivial circle, the argument proceeds as before.
For links the criterion for the invariant to be defined is the existence of a labeling for
the link diagram. Once we know that the labeling exists, the above arguments apply
equally well to the case of links.
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Fig. 45 Single saddle genus
one surface

K K'

P     + P     = 0K K'

Fig. 46 Double saddle
genus zero concordance

K
K'

P     + P     = 0K K'

K''

K

K''
P     + P     = 0K' K''

P   = K
P   K''

To complete the proof, we note that an elementary genus zero concordance from
a link L of two components K and K ′ with one saddle point as shown in Fig. 45
has the property that PL = PK + PK ′ = 0. The proof is by a labeling amalgamation
argument as above. Similarly, if a concordance from knots K to K ′ consists in two
saddle points as shown inFig. 46, thenPK = PK ′ by two applications of the one saddle
point observation. These two types of saddle point interaction combined with the
maximum and minimum cancellations with saddle points discussed above constitute
a complete list of the possibilities in an arbitrary concordance. See Fig. 47 for a typical
example of a concordance schema. One sees, using the facts we have indicated here,
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Fig. 47 Concordance
schema

K

K'

that on passing through a critical level in the concordance, the value of the polynomial
sum of the components of the link at that level is not changed. Thus the value of P
at the beginning of the concordance and the value of P at the end are equal. This
completes the proof that the affine index polynomial is an invariant of concordance
of virtual knots and links.

Remark. In Fig. 48 we illustrate an elementary concordance, as discussed in the
proof above. The diagram K ′ is transformed by a single saddle point move to the
diagramD, which is isotopic to a diagram that is the disjoint union ofK andC where
C is an unknotted circle. Letting C undergo death, we have a concordance from K ′
to K . We leave labeling this figure to the reader. It is clear that the crossings of the
component of D that becomes C in the isotopy will have a total contribution of zero
to the polynomial and that their contribution to D is identical to their contribution to
K ′. Thus we see directly in this case how PK = PK ′ . In Fig. 49 we show the weight
calculation for the first part of the concordance in the previous figure. Note that
the total weight contribution to the affine index polynomial from the unkotted and
unlinked component (after the saddle move) is zero. This is in accord with our proof
of concordance invariance.
Remark. Any virtual slice knot K will have PK (t) = 0 since K is concordant to
the unknot. In the case of the virtual stevedore knot, we see in Fig. 50 that all the
weights are zero. We can ask when a virtual knot will have all of its weights equal to
zero. It is certainly not the case that any virtual slice knot will have null weights. For
example, view Fig. 51 where we show the knot K�K ! where K is the virtual trefoil,
and K ! denotes the vertical mirror image of K . We know that PK !(t) = −PK (t) for
any virtual knot K . And so PK�K ! = 0 for any virtual knot K . In fact, as remarked
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Fig. 48 An elementary
concordance between K
and K ′ K'
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Fig. 49 An elementary
labeled concordance
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Fig. 50 Virtual Stevedore
has a null labeling
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Fig. 51 A virtual slice knot
with non-zero but canceling
weights
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in the previous section, it is the case that K�K ! is virtually slice for any virtual knot
K . In such examples it is often the case that PK is non-trivial and so the diagram
has canceling but non-null weights. This is the case in this specific example, where
PK = t−1 + t − 2.

Wefinish this paperwith a process that applies tomost examples of the affine index
polynomial. Taking a knot or link diagram K with a labeling, some of the weights
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Fig. 52 Basic labeled cobordism
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Fig. 53 Labeled cobordism of a knot to a link

may be zero. At each crossing with weight zero, we can smooth the crossing to obtain
a link L that is cobordant to K (recall that smoothing a crossing can be accomplished
by one saddle move). Thus we can smooth all crossings with null weights and obtain
a knot or link K ′ such that K is cobordant to K ′, K ′ has only non-zero weights (or
it is an unknot or unlink) and PK = PK ′ . This process of removing crossings and
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Fig. 54 Polynomial
calculation for two knots
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Fig. 55 The knot K has
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making a cobordism that does not change the polynomial is particularly interesting
in many examples. The link K ′ in its way, contains the core of the invariant for K and
the remaining obstruction to making a concordance. Here are descriptions of some
examples of this phenomenon (Figs. 52, 53, 54, 55, 56, 57, 58).
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Fig. 56 Two flats differing
by virtual crossing placement
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Fig. 57 A diagram with
vanishing flat polynomial
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In Figs. 52 and 53 we illustrate how the appearance of zeroes in the list of vertex
weights for the polynomial can be used to produce labeled knots and links where
the crossings with null weights have been smoothed. We will call the smoothing
indicated in Fig. 52 a basic labeled cobordism. Thus if a knot has crossings with
null weights, then it is labeled cobordant to a link with only non-zero weights (or
an empty set of weights). While not all links can be labeled, this form of cobordism
does produce labeled links, and the affine Index Invariant can be extended to such
links as indicated in Fig. 44. Here we write down the most general labeling for the
link, and then deduce a set of variable integer exponents for the polynomial invariant.
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Fig. 58 A flat ink diagram
that is not concordant to the
unlink
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In Fig. 54 we illustrate the calculation of the affine index polynomial for two
knots K+ and K . The knot K+ is positive and by our theorem on the genus of positive
virtual knots, it has genus two. The knot K is obtained from K+ by switching one
crossing. The affine index polynomial shows that it is not slice, and Fig. 55 shows
that K bounds a genus one virtual surface. Thus we know, using the affine index
polynomial, that K has genus equal to one.

Note that in this same Fig. 54 we can consider the corresponding flat virtuals for
K+ and K . Since P(K+) = 2t−1 + t2 − 3 and P(K) = t2 − 1 we conclude that the
corresponding mod 2 flat polynomial is PF(D) = t2 + 1 for the flat diagram that
they both overlie. We conclude that this flat diagram is not concordant to the unknot.

In Fig. 56 we give an examples of two flat diagrams K and K ′ such that the mod-2
affine Index invariant PF(K) = t2 + 1 (mod 2) but PF(K ′) = 0 (mod 2). Thus we
know that K is not concordant to the unknot, but the affine Index invariant does
not indicate that K ′ is non-trivial as a flat virtual. An independent calculation of the
Arrow polynomial for the flat K ′ shows that it is a non trivial virtual flat knot with
flat arrow polynomial 3 + 2K2 − 2K2

3 (see Sect. 2.4 for a discussion of the arrow
polynomial). We conjecture that K ′ is not concordant to the unknot as a flat virtual
knot.

In Fig. 57we give an example of a flat knotK that has vanishing index polynomial.
The reader can verify that the virtual Seifert surface for this knot has genus two. It
appears that this flat knot is not concordant to the unknot andmay even have four-ball
genus two. Our techniques allow some explorations, but we do not have an answer
to this question yet. An example of an exploration is shown in Fig. 58. The flat link
in this figure is obtained from the flat knot in the previous figure by one saddle point
move (by smoothing crossing A of Fig. 57). However this flat link has a non-trivial
affine invariant and hence is not concordant to the unlink. We conclude that this
saddle move on the knot of Fig. 57 cannot be part of the production of a slice surface
for K .
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Knot Theory: From Fox 3-Colorings
of Links to Yang–Baxter Homology
and Khovanov Homology

Józef H. Przytycki

Dedicated to Lou Kauffman for his 70th birthday.

Abstract This paper is an extended account of my “Introductory Plenary talk at
Knots in Hellas 2016” conference. We start from the short introduction to Knot The-
ory from the historical perspective, starting fromHeraclas text (the first century AD),
mentioning R. Llull (1232–1315), A. Kircher (1602–1680), Leibniz idea of Geome-
tria Situs (1679), and J.B. Listing (student of Gauss) work of 1847. We spend some
space on Ralph H. Fox (1913–1973) elementary introduction to diagram colorings
(1956). In the second section we describe how Fox work was generalized to distribu-
tive colorings (racks and quandles) and eventually in the work of Jones and Turaev to
link invariants via Yang–Baxter operators; here the importance of statistical mechan-
ics to topology will be mentioned. Finally we describe recent developments which
started with Mikhail Khovanov work on categorification of the Jones polynomial.
By analogy to Khovanov homology we build homology of distributive structures
(including homology of Fox colorings) and generalize it to homology ofYang–Baxter
operators. We speculate, with supporting evidence, on co-cycle invariants of knots
coming from Yang–Baxter homology. Here the work of Fenn–Rourke–Sanderson
(geometric realization of pre-cubic sets of link diagrams) and Carter–Kamada–Saito
(co-cycle invariants of links) will be discussed and expanded. No deep knowledge of
Knot Theory, homological algebra, or statistical mechanics is assumed as we work
from basic principles. Because of this, some topics will be only briefly described.

I decided to keep the original abstract of the talk omitting only the last sentence “But I believe in
Open Talks, that is I hope to discuss and develop above topics in an after-talk discussion over coffee
or tea with willing participants”, which applies to a talk but not a paper.
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1 Knot Theory Started in Peloponnese

As the popular saying goes “All science started in Ancient Greece”. Knot Theory
is not an exception. We have no proof that ancient Greeks thought of Knot Theory
as a part of Mathematics but surgeons for sure thought that knots are important: a
Greek physician named Heraklas, who lived during the first century AD is our main
example (see Sect. 1.2). Even before, in pre-Hellenic times, there is mysterious stamp
from Lerna, the place famous in classical times as the scenes of Herakles’ encounter
with the hydra [18, 72, 73].

1.1 Seal-Impressions from Lerna, About 2200 BC

Excavations at Lerna by the American School of Classical Studies under the direc-
tion of Professor J.L. Caskey (1952–1958) discovered two rich deposits of clay
seal-impressions. The second deposit dated from about 2200 BC contains several
impressions of knots and links1 [18, 21, 72] (see Fig. 1).

I have chosen two more patterns from seals of Lerna; these are not knots or links
but “pseudoknots” which I will mention later with respect to extreme Khovanov
homology and RNA (Fig. 2).

1.2 Heraklas Slings, First Century AD

A Greek physician named Heraklas, who lived during the first century AD and who
was likely a pupil or associate ofHeliodorus,2 wrote an essay on surgeon’s slings [19].

1The early Bronze Age in Greece is divided, as in Crete and the Cyclades, into three phases. The
second phase lasted from 2500 to 2200BC, andwasmarked by a considerable increase in prosperity.
There were palaces at Lerna, Tiryns, and probably elsewhere, in contact with the Second City of
Troy. The end of this phase (in the Peloponnese) was brought about by invasion and mass burnings.
The invaders are thought to be the first speakers of the Greek language to arrive in Greece.
2Heliodorus was a surgeon in the 1st century AD, probably from Egypt, and mentioned in the
Satires of Juvenal. ThisHeliodoruswrote several books onmedical techniquewhich have survived in
fragments and in the works of Oribasius [39]. It is worth to citeMiller: “In the ‘Iatrikon Synagogos,’
amedical treatise of Oribasius of Pergamum (...) Heliodorus, who lived at the time of Trajan (Roman
Emperor 98–117 AD), also mentions in his work knots and loops” [39, 57].
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Fig. 1 A seal-impression from the House of the Tiles in Lerna (c. 2200 BC)

Fig. 2 Pseudoknots from Lerna

Heraklas explains, giving step-by-step instructions, eighteen ways to tie orthopedic
slings. Here alsoHippocrates “the father ofwesternmedicine” should bementioned.3

Heraklas work survived because Oribasius of Pergamum (c. 325–400; physician of

3Hippocrates of Cos (c. 460–375 BC). A commentary on the Hippocratic treatise on Joints was
written by Apollonios of Citon (in Cypros), who flourished in Alexandria in the first half of the
first century BC. That commentary has obtained a great importance because of an accident in its
transmission. A manuscript of it in Florence (Codex Laurentianus) is a Byzantine copy of the ninth
century, including surgical illustrations (for example, with reference to reposition methods), which
might go back to the time of Apollonios and even Hippocrates. Iconographic tradition of this kind
are very rare, because the copying of figures was far more difficult than the writing of the text and
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the emperor Julian the Apostate) included it toward the end of the fourth century in
his “Medical Collections”.4 The oldest extant manuscript of “Medical Collections”
was made in the tenth century by the Byzantine physician Nicetas. The Codex of
Nicetas was brought to Italy in the fifteenth century by an eminent Greek scholar,
J. Lascaris, a refugee from Constantinople. Heraklas’ part of the Codex of Nicetas
has no illustrations5 and around 1500 an anonymous artist depicted Heraklas’ knots
in one of the Greek manuscripts of Oribasius “Medical Collections” (in Fig. 3 we
reproduce, after Day and with his comments the first page of drawings [11]). Vidus
Vidius (1500–1569), a Florentine who became physician to Francis I (king of France,
1515–1547) and professor ofmedicine in the Collège de France, translated the Codex
of Nicetas into Latin; it contains also drawings of Heraklas’ surgeon’s slings by the
Italian painter, sculptor and architect Francesco Primaticcio (1504–1570); [11, 53].

Heraklas’ essay is the first surviving text on Knot Theory even if it is not proper
Knot Theory but rather its application. The story of the survival ofHeraklas’work and
efforts to reconstruct his knots in Renaissance is typical of all science disciplines and
efforts to recover lost Greek books provided the important engine for development
of modern science. This was true in Mathematics as well: the beginning of modern
calculus in XVII century can be traced to efforts of reconstructing lost books of
Archimedes and other ancientGreekmathematicians. It was only thework ofNewton
and Leibniz which went much farther than their Greek predecessors.

On a personal note: When I started to be interested in History of Knot Theory, the
texts of Heraklas or Oribasius were unknown to Knot Theory community. It was by
chance that when in 1992 I had a job interview at Memphis State University I had
a meeting with a Dean, an English professor. Learning that I work on Knot Theory
he mentioned that he had a friend C.L.Day6 who wrote a “humanistic” book about
knots and their “classical” beginnings. Thus I learned about the book of Day [11]
and Heraclas slings.

was often abandoned [57]. The story of the illustrations to Apollonios’ commentary is described in
[58].
4From [59]: “The purpose of Oribasios Medical Collection is so well explained at the beginning
of it that it is best to quote his own words”: Autocrator Iulian, I have completed during our stay in
Western Gaul the medical summary which your Divinity had commanded me to prepare and which
I have drawn exclusively from the writings of Galen. After having praised it, you commanded me
to search for and put together all that is most important in the best medical books and all that
contributed to attain the medical purpose. I gladly undertook that work being convinced that such
a collection would be very useful. (...) As it would be superfluous and even absurd to quote from the
authors who have written in the best manner and then again from those who have not written as
careful, I shall take my material exclusively from the best authors without omitting anything which
I first obtained from Galen....
5Otherwise the Codex of Nicetas is the earliest surviving illustrated surgical codex, containing
30 full page images illustrating the commentary of Appolonios of Kition and 63 smaller images
scattered through the pages.
6Cyrus Lawrence Day (Dec. 2, 1900–July 5, 1968) was (in 1967) Professor Emeritus of English
of the University of Delaware. A graduate of Harvard, he took an M.A. degree at Columbia and
returned to Harvard for his PhD degree. (...) Mr. Day, a yachtsman since his boyhood, is the author,
also, of a standard book on sailor’s knots [10–12].
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Fig. 3 Slings of Heraklas, c. 100 AD, [11]
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Fig. 4 Combinatorial
machine of Ramon Llull
from his Ars Generalis
Ultima

1.3 Ramon Llull, Leonardo da Vinci, and Albert Dürer

Let us mention in passing the work of Ramon Llull (1232–1315) and his combina-
torial machines which greatly influenced Leibniz and his idea of Geometria Situs
(Fig. 4).

The drawing of knots by Leonardo da Vinci and Albert Dürer should be also
acknowledged (see Figs. 5 and 6).

Here the anecdote: are this knots really knots or maybe links of more than one
component? What is the structure of these links? The graph theorist of note, Frank
Harary, took a task of checking it and made precise analysis of Leonardo and Dürer
links7 [17] (compare also [20, 22]). This paper is based on my Knots in Hellas talks,
taking place in ancient Olympia; such a venue is temptingme towritemore of history,
but I am already straying too far. I would refer to Chapter II of my Book [48] where
I describe the early Knot Theory and the work of Kircher, Leibniz, Vandermonde,
Gauss, and Listing; the Chapter is based on my papers [41, 42].

Engraving by Leonardo da Vinci8 (1452–1519) [37].

7Only after Knots in Hellas conference (July 2016) I learned about the paper by Hoy and Millett
[22] with very detailed discussion of Leonardo and Dürer knots, see also [20].
8Giorgio Vasari writes in [66]: “[Leonardo da Vinci] spent much time in making a regular design
of a series of knots so that the cord may be traced from one end to the other, the whole filling a
round space. There is a fine engraving of this most difficult design, and in the middle are the words:
Leonardus Vinci Academia.”
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Fig. 5 Leonardo da Vinci,
Leonardus Vinci Academia

1.4 Fox and Fox-Trotter Colorings

My space is finite so let us jump to the second part of XX century, as I promised, to
connect Fox colorings with Yang–Baxter invariants (and Khovanov homology).

Yes we all know about Fox colorings; in Fig. 7 we have iconic nontrivial Fox
3-coloring of the trefoil knot. The rule of 3-coloring is that we color arcs of a diagram
using three colors, say red, blue, and yellow in such a way that at each crossing either
all colors are used or only one color is used.

One also can play the coloring game with the link from Lerna, and yes it has
nontrivial Fox 3-coloring as illustrated in Fig. 8. Indeed Fox 3-colorings motivated
many popular, school level articles, notable of them is [67]. I also wrote about Fox
colorings for middle school children [44, 45].

Still there is some controversy who really invented them.9 I think it was as fol-
lows (I describe likely story based on facts but also my experience with teaching in
America). In 1956 Ralph Fox spent a sabbatical at Haveford College as it is explained
in the Preface to his book [9]: “This book, which is an elaboration of a series of

9Reidemeister was considering homomorphisms of the fundamental group of the knot complement
into n-dihedral groups. This easily leads to nth Fox coloring [54, 55].
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Fig. 6 Dürer’s knots, 1505/6
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Fig. 7 Nontrivial Fox
3-coloring of the trefoil knot

Fig. 8 Nontrivial Fox
3-coloring of the Lerna link.
Numbers on the picture
describe Fox 15-coloring. In
fact the space of colorings of
this link is ColZ(L) =
Z ⊕ Z2 ⊕ Z3 ⊕ Z

2
5 ⊕ Z7

where Z can be represented
by trivial (monochromatic)
colorings; compare [43]

1 10 0

− 1 0
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6 −9
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21

 modulo 15
−20  −5 −5  10 21  6 6   −9

lectures given by Fox at Haveford College while a Philips Visitor there in the spring
of 1956, is an attempt to make the subject accessible to everyone. Primarily it is a
textbook for a course at the junior-senior level”.

It is curious that 3-coloring and n-coloring are mentioned only in Exercises:
For instance Exercises 6 and 7 in Chapter VI are about Fox 3-colorings:
“Exercise 6. Let us say that a knot diagram has property � if it is possible to color

the projected overpasses in three colors, assigning a color to each edge in such a way
that
(a) the three overpasses that meet at a crossing are either all colored the same or are
all colored differently;
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Fig. 9 Nontrivial Fox
11-coloring of the knot 62 0

1
2

4

7

−1  10

15   4

−4  7

(b) all three colors are actually used.
Show that a diagram of a knot K has property � if and only if K can be mapped
homomorphically onto the symmetric group of degree 3.
Exercise 7. Show that property � is equivalent to the following: It is possible to assign
an integer to each edge in such a way that the sum of the three edges that meet at any
crossing is divisible by 3.”

Fox 3-coloring can be naturally extended to n-coloring, again already hidden in
Reidemeister work as homomorphisms of the fundamental group of link comple-
ment to the nth dihedral group D2n , sending meridians to reflections. The diagram-
matic definition is hidden in Exercises of Chap. VIII of [9], in particular Exercise
8 for k = n − 1 and then −(b − a) = b − c(mod n) that is around a crossing Fox

n-coloring looks like
b

modulo n

c   2b−a
a b

.

Fox 11-coloring of the knot 62 of the Rolfsen tables [56] is shown in Fig. 9.
Interestingly when Richard Crowell, a student of Ralph Fox, was talking about

Fox colorings to teachers in 1961, he referred to Fox as an inventor of 3-colorings
but he said that he learned n-coloring from Halle Trotter [8]. I asked the question to
Trotter and he remembers discussions with Crowell but not inventing n-colorings;
he kindly answered my inquiry: “I am afraid my historical recollection is now very
vague. Dick Crowell and I had many discussions of various things, and if he says so,
I perhaps said something to suggest n-coloring before he did. He worked out all the
details – I did not know even that he was writing the NCTM paper until he sent me
a reprint.”
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2 From Arc Colorings to Yang–Baxter Weighted Colorings

2.1 Magma Colorings

Fox n-coloring had to wait for its direct generalization (at least in print, discussion
of the Conway-Wraith correspondence of 1959 would take another lecture [74])
for quarter of century. These, despite the fact that Wirtinger coloring, giving the
fundamental group of a link complement or Alexander coloring, giving Alexander
module and Alexander polynomial, were known from 1905 and 1928, respectively
[1, 70].10

With Fox n-colorings, an orientation of a diagram is not needed. To save time I
will move immediately to oriented diagrams but start naively from a fixed finite set
X and coloring arcs of a diagram11 by elements of X . Then we can ask under which
conditions the set of such colorings is a link invariant. The simplest approach is now
to think that at a crossing colorings change according to some operation. Because we
can have positive and negative crossings, we need two operations ∗, ∗̄ : X × X → X .
The convention for coloring by (X, ∗, ∗̄) (called 2-magma) is given in Fig. 10.

The set of 2-magma colorings is denoted by ColX (D) and its cardinality by
colX (D) = |ColX (D)|. Of course colX (D) is not necessary a link invariant and in
next subsection we analyze when Reidemeister moves are preserving it.

2.2 Reidemeister Moves and Quandles

If we want colX (D) to be a link invariant, we check Reidemeister moves and obtain,
after Joyce and Matveev [26, 38], the algebraic structure satisfying conditions (1),
(2), (3) below, which Joyce in his 1979 PhD thesis named a quandle [25].

Definition 2.1

(1) a ∗ a = a, for any a ∈ X (idempotence condition).
(2) There is the inverse binary operation12 ∗̄, to ∗, that is for any pair a, b ∈ X we

have

10The year 1928 is the year of publication of the Alexander’s paper, however already in 1919
he discusses in a letter to Oswald Veblen, his former Ph.D. adviser, “a genuine and rather jolly
invariant” which we call today the determinant of the knot. It is this construction which Alexander
extends later to the Alexander polynomial �D(t) (determinant is equal to �D(t) for t = −1). In
fact the Alexander letter contains more: Alexander constructs the space which we call often today
the space of nontrivial Fox Z-colorings or the first homology of the double branched cover of S3

along the knot [2].
11We consider arcs from undercrossing to undercrossing and semi-arcs from crossing to crossing.
12We can think of “inverse” formally: we introduce the monoid of binary operations on X , Bin(X),
with composition given by a(∗1∗2)b = (a ∗1 b) ∗2 b and identity element ∗0 given by a ∗0 b = a,
then the inverse means the inverse in the monoid, that is ∗∗̄ = ∗0 = ∗̄∗; see [46].
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*=c b  a*a  b

b aa b

c= bb

Fig. 10 Convention for a 2-magma coloring, f : Arcs(D) → X , of a crossing

(a ∗ b) ∗̄ b = a = (a ∗̄ b) ∗ b (invertibility condition).

Equivalentlywedefine∗b : X → X by∗b(a) = a ∗ b, and invertibility condition
means that ∗b is invertible; we denote ∗−1

b by ∗̄b.
(3) (a ∗ b) ∗ c = (a ∗ c) ∗ (b ∗ c) (distributivity), for any a, b, c ∈ X . Figure14

illustrates how the third Reidemeister move leads to right selfdistributivity, and
in fact can be taken as a “proof without words” that colX (D) is preserved by the
positive third Reidemeister move if and only if ∗ is right self-distributive.

If only conditions (2) and (3) hold, then (X; ∗, ∗̄) is called a rack (or wrack); the
name coined by J.H. Conway in 1959.

If ∗ = ∗̄ in the condition (2), that is (a ∗ b) ∗ b = a then the quandle is called an

involutive quandle or kei (the last term coined in 1942 by M. Takasaki [64]).

Before we show how quandle axioms are motivated by Reidemeister moves it is
worth making metamathematical remark:

We have two equivalent approaches to quandle definition. The first approach starts
from a magma (X, ∗) and because the second condition says that ∗ is invertible we
can introduce the inverse operation ∗̄. The second approach uses only equations,
thus we start from a set X with two binary operations ∗ and ∗̄ and in the second
axiom we assume that equations (a ∗ b)̄ ∗ b = a and (a¯ ∗ b) ∗ b = b hold. In
both approaches axioms (1) and (3) are given by equations. The algebraic structure
in which conditions are given by identities is called variety and G. Birkhoff proved
that a class of algebras is a variety if and only if it is closed under homomorphic
images, subalgebras, and arbitrary direct products [4]. On the other hand the first
nonequational approach to a quandle allows that homomorphic image of a quandle is
not a quandle (only spindle – the name used for magmas (X, ∗) satisfying conditions
(1) and (3)). See the discussion in Sect. 1.2 of [63] about combinatorial and equational
definitions of quasigroup.

After this detour we go back to Reidemeister moves (Fig. 11).
First Reidemeister Move and Idempotence
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a

a

a
a

*a  a = a

a

x

a
x

x=a  x   so x=a*

x=a  x   so x=a*

a

a  a = a

a

*

Fig. 11 First Reidemeister move leads to idempotent conditions a ∗ a = a and a¯ ∗ a = a. It gives
also the stronger condition that a is the only solution of the equation a ∗ x = x and a¯ ∗ x = x ;
However this follows from the idempotent condition and the condition (2) (that ∗̄ is the inverse
of ∗)

First Reidemeister Move As Framing Change
For many considerations it is important to observe that the first Reidemeister move
can be interpreted as a framing change of a framed diagram; Fig. 12.

Fig. 12 First Reidemeister move can be interpreted as a framing change
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Second Reidemeister Move and Invertibility

Fig. 13 Second
Reidemeister move and
magma coloring

a= *c  b

*a  b

(a  b)  b=a* *

b

ab

c

*a= c  b

(a  b)  b=a* *

a b

b c

c=
c= *a  b

The cardinality colX (D) is preserved by the second Reidemeister move if ∗ is
invertible (Fig. 13).

Third Reidemeister Move and Distributivity

Fig. 14 Third Reidemeister
move leads to right
selfdistributivity.
(a ∗ b) ∗ c =
(a ∗ c) ∗ (b ∗ c)

R3

a b c a b c

c c

a  c

b  ca  b

b  c b  c (a  c) (b  c)(a  b)  c

2.3 2-(Co)Cycle Invariants

Let X be a finite set and ∗ and ∗̄ two binary operations. We define, after Carter–
Kamada–Saito [7], 2-(co)cycle invariants of links:

(1) A 2-chain, �(D,φ) associated to the diagram D and coloring of its arcs by
φ : arcs(D) → X is an element of ZX2 defined as a sum over all crossings of
D of the pair ±(a, b) according to conditions in figure below, that is �(D,φ) =∑

v sgn(v)(a, b), where the sum is taken over all crossings of D.
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Fig. 15 Convention for the
2-chain

(a,b) −(a,b)

a b

a b

+ −

(2) A 2-cochain with coefficients in an abelian group A is a function α : X2 → A or
equivalently an element of Hom(ZX2, A).A2-cochain associated to the diagram
D and coloring of its arcs by φ : arcs(D) → X is an element of Hom(ZX2, A),
defined by �(D,φ,α) = �vsgn(v)α(a, b) (Fig. 14).

In order to have Knot Theory applications one would like to have the chain �(D,φ)

(resp. cochain α) to be a 2-cycle (resp. cocycle) in some homology (resp. cohomol-
ogy) theory. Further wewould like to have Reidemeistermoves preserving homology
(resp. cohomology) class. This motivated initially authors of [6] and led to the dis-
covery that what they need is essentially rack homology introduced around 1990 by
Fenn, Rourke and Sanderson [14, 15] but taking into account the first Reidemeister
move and degeneracy. We explain more in next subsections (Fig. 15).

2.4 Presimplicial Sets and Modules

Let Xn , n ≥ 0 be a sequence of sets and di = di,n : Xn → Xn−1, 0 ≤ i ≤ n maps
(called face maps) such that:

(1) did j = d j−1di for any i < j.

Then the system (Xn, di ) satisfying the above equality is called a presimplicial set.13

Similarly if Cn , n ≥ 0 is a sequence of k-modules, for fixed commutative ring k (e.g.
Cn = kXn) and di = di,n : Cn → Cn−1, 0 ≤ i ≤ n are homomorphisms satisfying

(1) did j = d j−1di for any i < j,

then (Cn, di ) satisfying the above equality is called a presimplicial module. The
important basic observation is that if (Cn, di ) is a presimplicial module then (Cn, ∂n),
for ∂n = ∑n

i=0(−1)i di , is a chain complex.

13The concept was introduced in 1950 by Eilenberg and Zilber under the name semi-simplicial
complex [13].
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2.5 One-Term Distributive Homology

Definition 2.2 ([46]) We define a (one-term) distributive chain complex C(∗) as
follows: Cn = ZXn+1 and the boundary operation ∂(∗)

n : Cn → Cn−1 is given by:

∂(∗)
n (x0, ..., xn) = (x1, ..., xn)+

n∑

i=1

(−1)i (x0 ∗ xi , ..., xi−1 ∗ xi , xi+1, ..., xn).

The homology of this chain complex is called a one-term distributive homology
of (X; ∗) (denoted by H (∗)

n (X)).
We directly check that ∂(∗)∂(∗) = 0, however it is useful to note that (Xn+1, di ) is a

presimplicial (semi-simplicial) set with di (x0, ..., xn) = (x0 ∗ xi , ..., xi−1 ∗ xi , xi+1,

..., xn).

2.6 Two-Term Rack (Spindle) Homology

The trivial quandle (X, ∗0), is defined by a ∗0 b = a. The 2-term rack homology of a
spindle (right self-distributive system (RDS)) is defined by the presimplicial module
(Cn, dR

i ) with dR
i = d(∗)

i − d(∗0)
i . One can recognize here a precubic set (Xn, dε

i )

(compare [47]). This precubic set and its geometric realization were important in the
initial approach in [14, 15].

2.7 More General Colorings

We can consider more general colorings when we allow two parts of an over-
crossing to have different colors. Namely, we start from the set of colors X and
consider a function R : X × X → X × X such that for any coloring of semi-arcs
by colors from X at any crossing the convention given in Fig. 16 holds (here
R(a, b) = (R1(a, b), R2(a, b)).

If R is invertible and the number of colorings (for finite X ) is preserved by a
braid like oriented third Reidemeister move, we call R a set theoretic Yang–Baxter
operator which can be used to construct link invariants (e.g. 2-cocycle invariants)
[5, 51].

Before we move to general Yang–Baxter operators and their invariants, I would
suggest the reader the following simple but important exercise:

Exercise 2.3 Let D be an oriented link diagram, X a finite set of colors, and R :
X × X a set theoreticYang–Baxter operator. Letφbe a coloring of semi-arcs of D sat-
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Fig. 16 General semi-arc
colorings

a b

c d

a b

1 2R  (a,b) R  (a,b)

with

1 2R  (a,b) R  (a,b)

a b

with

c d

b a

isfying rules of Fig. 16. Following Sect. 2.3, we define�(D,φ) = ∑
v sgn(v)(a, b).

Let us consider ∂2(a, b) = a + b − R1(a, b) − R2(a, b). Show that �(D,φ) is a
cycle, that is ∂2(�(D,φ)) = 0 for every diagram D and coloring φ.

3 Yang–Baxter Homology

In quandle coloring and set-theoretic Yang–Baxter coloring of an oriented link dia-
gram we are assuming that at every crossing a coloring of the input semi-arcs defines
uniquely coloring of the output semi-arcs. We can however, in a natural way, relax
this condition by allowing any coloring and then for a crossing to associate a weight
from a fixed commutative ring (for set-theoretic Yang–Baxter operator this weight
is 0 if coloring is not allowed and 1 if it is allowed). The details are as follows.

Fix a finite set X and color semi-arcs of an oriented diagram D by elements
of X allowing different weights from a fixed ring k for every crossing. Following
statistical mechanics terminology we call these weights Boltzmann weights. We
allow also differentiating between a negative and a positive crossing; see Fig. 17.

We can now generalize the number of colorings to state sum (basic notion of
statistical physics) by multiplying Boltzmann weight over all crossings and adding
over all colorings [24, 65]:

col(X;BW )(X) =
∑

φ∈colX (D)

∏

p∈{crossings}
R̂a,b
c,d (p)

Fig. 17 Boltzmann weights
Ra,b
c,d and R̄c,d

a,b for positive
and negative crossings

R

a

c d

b

c
a b

d R a b
c d

d

a

c

b
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R

R R

R

R

IdR R

R

R2 R2

Fig. 18 Invertibility of R and the parallel second Reidemeister move

where R̂a,b
c,d is Ra,b

c,d or R̄a,b
c,d depending on whether p is a positive or negative crossing.

Our state sum is an invariant of a diagram but to get a link invariant we should test it
on Reidemeister moves. To get analogue of a shelf invariant we start from the third
Reidemeister move with all positive crossings. Recall that in the distributive case,
passing through a positive crossing was coded by a map R : X × X → X × X with
R(a, b) = (b, a ∗ b). Thus in the general case passing through a positive crossing is
coded by a linear map R : kX ⊗ kX → kX ⊗ kX and in basis X the map R is given
by the |X |2 × |X |2 matrix with entries (Ra,b

c,d ), that is R(a, b) = ∑
(c,d) R

a,b
c,d · (c, d).

The third Reidemeister move leads to the equality of the following maps V ⊗ V ⊗
V → V ⊗ V ⊗ V where V = kX :

(R ⊗ I d)(I d ⊗ R)(R ⊗ I d) = (I d ⊗ R)(R ⊗ I d)I d ⊗ R),

as illustrated in Fig. 19. This is called the Yang–Baxter equation14 and R is called a
pre-Yang–Baxter operator. If R is additionally invertible it is called a Yang–Baxter
operator. If entries of R−1 are denoted by R̄a,b

c,d then the state sum is invariant under
“parallel” (directly oriented) second Reidemeister move, see Fig. 18.15

14Older names include: the star-triangle relation, the triangle equation, and the factorization
equation [23].
15We should stress that to find link invariants it suffices to use directly oriented second and third
Reidemeister moves in addition to both first Reidemeister moves, as we can restrict ourselves to
braids and use the Markov theorem. This point of view was used in [65].
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Fig. 19 Yang–Baxter
equation. From the positive
third Reidemeister move R   Id

R   Id Id    R

Id    R

R   IdId    R
R3

Examples leading to the Jones polynomial [24, 65] start from a 2-dimensional set
X and the free k-module over X , V = kX2 and R : V ⊗ V → V ⊗ V is given by:

⎛

⎜
⎜
⎝

−q 0 0 0
0 q−1 − q 1 0
0 1 0 0
0 0 0 −q

⎞

⎟
⎟
⎠

or using column unital (i.e. entries of each column adds to 1) matrix [52, 71]
⎛

⎜
⎜
⎝

1 0 0 0
0 1 − y2 1 0
0 y2 0 0
0 0 0 1

⎞

⎟
⎟
⎠

Graphical Visualization of Yang–Baxter Face Maps

The presimplicial set corresponding to a (two term) Yang–Baxter homology has
the following visualization. In the case of a set-theoretic Yang–Baxter equation we
recover the homology of J.S. Carter, M. Elhamdadi, M. Saito [5]; compare [31, 32,
47, 51] (Fig. 20).

In particular for a Yang–Baxter operator R given by

R(a, b) =
∑

(c,d)∈X2

Ra,b
c,d · (c, d)

we have

∂2(a, b) = (d�
1(a, b) − dr1(a, b)) − (d�

2(a, b) − dr2(a, b)) =

((b) −
∑

c,d

Ra,b
c,d · (c)) − (

∑

c,d

Ra,b
c,d · ((d) − (a)) =
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iDiagramatic interpretation of a face map d Y−B

M 0 M n+1VVV i i V

Fig. 20 Graphical interpretation of the face map di

(a) + (b) −
∑

c,d

Ra,b
c,d · ((c) + (d)).

Exercise 3.1 Consider a Yang–Baxter operator R and a coloring φ such that asso-
ciated to a diagram elements Ra,b

c,d are all different than zero. Find when the 2-chain
�(D,φ) = ∑

v sgn(v) · (a, b) is a 2-cycle.

Decomposition of the Third Reidemeister Move into Cubic Face Maps

The main idea is illustrated by the following picture, we can contemplate a precubic
structure of the third Reidemeister move (Fig. 21):

The idea leads to (co)cycle invariants of links, at least for stochastic (or more
generally column unital) Yang–Baxter matrices. An example was given in the Knot
in Hellas talk by Xiao Wang (compare [52] and Wang’s PhD thesis [71]).

4 Khovanov Homology After Oleg Viro

One of the biggest discovery (or construction) in Topology after the first Knots in
Hellas conference16 was that of Khovanov homology [30].

We start from the description of the Khovanov homology for framed links, after
[68, 69].

Definition 4.1 ([27–29]) The unreduced Kauffman polynomial is defined by initial
conditions

[Un] = (−A2 − A−2)n,

16The conference Knots in Hellas I took place in Delphi, Greece in August of 1998, while the e-print
of Khovanov work was put on arXiv in August of 1999. However Mikhail Khovanov had already
an idea of Khovanov homology in summer of 1997.
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a b

R(a,b)

contributes (a,b) to a 2−chain

d r
3

d 2

d r
1

d
1

d r
2

d 3

d r
3 d r

1d 2 d 3d
1

d r
2

i=1

3

i
r
i− d   )(−1)   (di

Thus we need:

and this is given by 3 (a,b,c)

 (a,b,c)= 3  (a,b,c) 

We illustrate here the fact that the third Reidemeister move  preserves 
homology classes, that is changes any chain by a boundary

Yang−Baxter operator  with  R=(R     )c,d
a,b and fixed semi−arc coloring

Fig. 21 Reidemeister third move and face maps dε
i

whereUn is the crossingless diagram of a trivial link of n components, and the skein
relation:

[ ] A[ ] A 1[ ]

AKauffman state is a function froma set of crossings to the twoelement set {A, B},
that is s : cr(D) → {A, B}, see Fig. 22. We denote by Ds the diagram (system of
circles) obtained from D by smoothing all crossings of D according to s; |Ds | denotes
the number of circles in Ds .
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v

A− marker

B− marker

s(v)= B

s(v)= A

Fig. 22 Interpretation of Kauffman states

Proposition 4.2 (Kauffman) The unreduced Kauffman bracket polynomial can be
written as the state sum (over all Kauffman states):

[D] =
∑

s∈K S

A|s−1(A)|−|s−1(B)|(−A2 − A−2)|Ds |,

where K S is the set of all Kauffman states of the diagram D.

Notice that the Kauffman bracket associates to every trivial circle the polynomial
−(A2 + A−2). In order to have state sum with monomial entries Viro considers two
type of circles: positive with A2 associated to it, and negative with A−2 associated
to it. These lead to Enhanced Kauffman States (EKS).

Definition 4.3

(i) An enhanced Kauffman state, S, is a Kauffman state s together with a function
h : Ds → {+1,−1}.

(ii) The enhanced Kauffman state formula for the unreduced Kauffman bracket is
the Kauffman state formula written using the set of enhanced Kauffman states
EKS:

[D] =
∑

S∈EK S

(−1)|Ds |Aσ(s)+2τ (S),

where the signature of s isσ(s) = |s−1(A)| − |s−1(B)| and τ (S) = |h−1(+1)| −
|h−1(−1)| that is the number of positive circles minus the number of negative
circles in Ds with enhanced Kauffman state function h of S.

With the above preparation we can define the Khovanov chain complex and Kho-
vanov homology of a diagram.

Definition 4.4 Consider bidegree on the Enhanced Kauffman States as follows:

Sa,b = {S ∈ EK S | σ(s) = a, σ(s) + 2τ (S) = b}



Knot Theory: From Fox 3-Colorings of Links … 137

(a) The chain groups are free abelian groups with basis Sa,b, that is Ca,b(D) =
ZSa,b.

(b) Boundary maps are ∂a,b : Ca,b(D) → Ca−2,b(D) given by the formula:

∂a,b(S) =
∑

S′∈Sa−2,b

(−1)t (S,S′)[S; S′]S′

where [S, S′] is 1 or 0 and it is 1 if and only if the following two conditions hold:
(i) S and S′ differ at exactly one crossings, say v, at which s(v) = A and

s ′(v) = B. In particular σ(s ′) = σ(s) − 2.
(ii) τ (S′) = τ (S) + 1 and common circles to Ds and Ds ′ have the same sign.

The possible signs of circles around the crossing v is shown in Fig. 23.

To define the sign (−1)t (S,S′) we need to order crossings of D. Then t (S, S′) is
equal to the number of crossings with label A smaller than the crossing v in the
chosen ordering.

(c) TheKhovanovhomology is defined in the standardwayas:Ha,b(D) = ker(∂a,b)/

im(∂a+2,b).

For every diagram D we check easily that Ca,b(D) = 0 for a > cr(D) or a <

−cr(D), or b > cr(D) + 2|DsA |, or b < −cr(D) − 2|DsB |.
These justify notation amax = cr(D), bmax = cr(D) + 2|DsA |, amin = −cr(D),

and bmin = −cr(D) − 2|DsB |.
We always have Camax ,bmax = Z = Camin ,bmin but it often happens that H∗,bmax = 0

or H∗,bmin = 0. To say more we recall, after Lickorish and Thistlethwaite [36], the
concept of adequate diagrams.

Definition 4.5 ([3, 36]) We say, that a diagram D is s-adequate for a Kauffman
state s if circles of Ds have no self-touchings. Equivalently, D is s-adequate if any
diagram D′

s obtained from D by smoothing according to s all but one crossing has
smaller number of components than Ds . In particular, D is said to be A-adequate if
the state sA having all marker A is adequate. Similarly, D is said to be B-adequate if
sB is adequate.

We have classical observation [30, 49]:

Proposition 4.6 For an A-adequate diagram D we have:

H∗,cr(D)+2|DsA | = Hcr(D),cr(D)+2|DsA | = Z

Similarly for a B-adequate diagram D we have:

H∗,−cr(D)−2|DsB | = H−cr(D),−cr(D)−2|DsB | = Z

In the case of any diagram D the groups H∗,cr(D)+2|DsA | and H∗,−cr(D)−2|DsB | were
studied in the PhD thesis ofMarithania Silvero [62]. In particular she conjectures that
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vv

0
v

v

v
v

v
v

v

vv

vv

S S’ S S’

Fig. 23 List of neighboring states with [S, S′] = 1

these groups have no torsion. More on these groups and their geometric realization
(conjectured to be of homotopy type of wedge of spheres) can be read in [16, 50].We
propose to call diagrams with nonzero Khovanov homology at H∗,cr(D)+2|DsA | Kho-
vanov A-adequate. Similarly Khovanov B-adequate diagram has to have nonzero
groups H−cr(D),−cr(D)−2|DsB |. We proved, playing odd Khovanov homology versus
even Khovanov homology that there are links without A-Khovanov adequate dia-
grams. The simplest such example, we were able to find is the torus knot of type
T (4,−5).

Being in Greece let us look at some properties of Khovanov homology for the
link of Lerna. Below is the table of its Khovanov homology computed by Sujoy
Mukherjee using KhoHo program [60]. Since in tables one uses original oriented
version of Khovanov (co)homology recall that if 
D is any oriented diagram of D and
w( 
D) its writhe or Tait number then Hi, j ( 
D) = Ha,b(D) for i = w−a

2 and j = 3w−b
2 .

TheLerna linkhas twocomponents, andwecanorient it so it has eitherw( 
D) = 16
and all crossings positive (as in Fig. 25) or w( 
D) = −4. We use the second case in
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table calculation (Fig. 24). With this convention we get the following unreduced
Jones polynomial of the Lerna link17:

q8 − 5q6 + 12q4 − 20q2 + 27 − 29q−2 + 26q−4 − 18q−6 + 4q−8 + 11q−10 − 21q−12 +

29q−14 − 27q−16 + 23q−18 − 16q−20 + 10q−22 − 4q−24 + q−26) =

(q + q−1)

(

q7 − 6q5 + 18q3 − 38q + 65q−1 − 94q−3 + 120q−5 − 138q−7+

142q−9 − 131q−11 + 110q−13 − 81q−15 + 54q−17 − 31q−19 + 15q−21 − 5q−23 + q−25
)

.

The second factor of the product is the reduced Jones polynomial of the Lerna link.
Thus we notice that the coefficients alternate in signs, as the Lerna link is alternating.
Furthermore the absolute values of the coefficients form a strictly unimodal sequence

1 < 6 < 18 < 38 < 65 < 94 < 120 < 138 < 142

142 > 131 > 110 > 81 > 54 > 31 > 15 > 5 > 1

which is also strictly logarithmically concave (i.e. c2i > ci−1ci+1).
As the Lerna link is a non-split alternating link the nontrivial entries of Khovanov

Homology are on two diagonals of slope 2 and torsion is on the lower one (Eun Soo
Lee [33–35]. Furthermore we observed that there is only Z2 torsion. It agrees with
a general, but yet not published, result of Alexander Shumakovitch that alternating
links can have onlyZ2-torsion [61]. The adequacy ofLerna link is reflected in extreme
coefficients H−10,−26 = Z = H 6,8 if w( 
D) = −4. Furthermore by results of [3, 40,
49] and the fact that D(Lerna) is strongly A-adequate we know that H−10,−24 = Z

and H−9,−24 = Z
5 (the Tait diagrams of the Lerna link are shown in Fig. 25; notice

that the A-smoothing diagram has no odd cycles).
H−8,−22 = Z

10 ⊕ Z
5
2 and tor H 5,4 = Z

5
2. To compute torsion here we use the

following result from [49]. To formulate Theorem 4.8 we need to recall the notion
of a state graph (Definition 2.1 of [3]):

Definition 4.7 ([3, 40]) Given a diagram D and a Kauffman state s, we define an
associated state graph Gs with vertices in bijection with circles of Ds and edges in
bijection with crossings of D. An edge connects given vertices if the corresponding
crossing connects circles of Ds corresponding to the vertices.

Theorem 4.8 ([49]) For a given loopless graph G let G ′ denote the simple graph
obtained from G by replacing a multiple edge by a single one (see Fig.25).

(A) Let D be an A-adequate diagram of n crossings and GsA associated graph
Assume that GsA is connected then:

17To get the classical Jones notation we put q = −t1/2.
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j i −10 −9 0−8 −7 −6 −5 −4 −3 −2 −1 2 3 4 5 6

8

−2

−4

−6

−8

−10

6

4

2

0

−12

−14

−16

−18

−20

−22

−26

−24

1

1 5

5

10,5 2

21,10 2

10 233,21

21 2

33
48,33

262,48

48 2

62
69,62

2

69
73,69

2

73 2

2

2

2

2

66

54

40

25

13

65,73

55,65

40,54

25,40

13,25

 5,13

5

1

1

 1,5 2

 1 2

Fig. 24 Table of Khovanov homology for the Lerna link

tor Hn−4,n+2|DsA |−8 =
{
Z

p1(G ′
sA

(D))−1

2 i f G ′
sA(D) has an odd cycle

Z
p1(G ′

sA
(D))

2 i f G ′
sA(D) is a bipartite graph

(B) Let D be an B-adequate diagram of n crossings and GsB associated graph, then:

tor H−n+2,−n−2|DsB |+8 =
{
Z

p1(G ′
sB

(D))−1

2 i f G ′
sB (D) has an odd cycle

Z
p1(G ′

sB
(D))

2 i f G ′
sB (D) is a bipartite graph
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+

+

+ +

+

Fig. 25 Checkerboard coloring of Lerna diagram and Tait’s graphs GsA and GsB

A

A

Fig. 26 Links whose A Kauffman states are Lerna pseudoknots

Proof Part (A) is Proposition 4.8(i) of [49] and part (B) follows from (A) by Kho-
vanov duality and universal coefficient theory. That is if D̄ denotes the mirror image
of D then H−a,−b(D) = Ha,b(D̄) = f ree(Ha,b(D̄)) ⊕ tor(Ha−2,b(D̄)).

Notice that these links, closed 3-braids (σ1σ2)
−3 and (σ1σ2)

−4, respectively, are
very far from being A-adequate but they are Khovanov A-adequate (see [16, 50, 62])
(Fig. 26).

5 Summary

We discussed historical ramifications of the beginning of Knot Theory. For the paper
based on talks in Greece it is a natural turn. The reader can ask however what is a
relation between distributive andYang–Baxter homology on one hand andKhovanov
homology on the other. The answer is simple: a connection is not yet found but my
feeling is that we are only a step away. Maybe by the next Knots in Hellas III
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conference a link will be established and use of Khovanov homology in statistical
physics will be demonstrated.
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Algebraic and Computational Aspects
of Quandle 2-Cocycle Invariant
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Abstract Quandle homology theories have been developed and cocycles have been
used to construct invariants in state-sum form for knots using colorings of knot
diagrams by quandles. Quandle 2-cocycles can be also used to define extensions as
in the case of groups. There are relations among algebraic properties of quandles, their
homology theories, and cocycle invariants; certain algebraic properties of quandles
affect the values of the cocycle invariants, and identities satisfied by quandles induce
subcomplexes of homology theory. Recent developments in these matters, as well
as computational aspects of the invariant, are reviewed. Problems and conjectures
pertinent to the subject are also listed.
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1 Introduction

Quandle homology theories have been developed and cocycles have been used to
construct invariants of knots in state-sum form using colorings of knot diagrams by
quandles (see [4], for example). It is known [18, 20] that the fundamental quandles of
K and K ′ are isomorphic if and only if K = K ′ or K = rm(K ′), the reversed mirror
of K ′. This implies that colorings alone do not distinguish all oriented knots. On the
other hand, it is known that the cocycle invariant can distinguish K from rm(K ) for
some knots K . In fact, the following fundamental conjecture on the quandle cocycle
invariant was stated in [6] (notation and definitions will be presented in Sect. 2):
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Conjecture 1 The 2-cocycle invariant�φ is a complete invariant for oriented knots,
that is, if K1 and K2 are non-isotopic oriented knots, then there exists a finite quandle
Q and a 2-cocycle φ such that �φ(K1) �= �φ(K2).

This conjecture could have been stated, of course, at the time when the invariant
was defined [3], since it is one of the most fundamental questions for any knot
invariant. At that time, however, computing the invariant was difficult. It took a
while to get better algorithms for computing the invariant. Extensive studies of the
invariant over the years, both theoretical and computational, havemade the conjecture
plausible (see Remarks1, 2 in Sect. 4).

Recent studies also have revealed relations among algebraic properties of quan-
dles, their homology theories, and cocycle invariants; certain algebraic properties of
quandles affect the values of the cocycle invariants, and identities satisfied by quan-
dles induce subcomplexes of homology theory. In this paper, recent developments in
these matters, as well as computational aspects of the invariant, are reviewed, mostly
from the results in [6, 8–10].

After a brief review of definitions and examples in Sect. 2, a few algebraic aspects
are discussed in Sect. 3. How certain sequences of quandles affect the values of
the cocycle invariant, and how quandle properties persist in cocycle extensions, are
described in Sects. 3.1 and 3.2, respectively. Certain quandle identities and their
relations to homology are presented in Sect. 3.3. The current status of computer
calculations using the invariant �e

Q(K ), a generalization of the cocycle invariant, is
discussed in Sect. 4.

2 Preliminary

In this section,weprovide preliminarymaterial, definitions andnotation.Moredetails
can be found, for example, in [4, 14].

2.1 Definitions and Examples of Quandles

A rack X is a set with a binary operation (a, b) �→ a ∗ b satisfying the following
conditions.

(1) For all b ∈ X , the map Rb : X → X defined by Rb(a) = a ∗ b for a ∈ X is a
bijection.

(2) For all a, b, c ∈ X , we have (a ∗ b) ∗ c = (a ∗ c) ∗ (b ∗ c).

The map Rb in the first axiom is called the right translation by b. By the axioms
Rb is a rack isomorphism. A quandle X is a rack with idempotency: a ∗ a = a for all
a ∈ X . A quandle homomorphism between two quandles X,Y is a map f : X → Y
such that f (x ∗X y) = f (x) ∗Y f (y),where∗X and∗Y denote the quandle operations
of X and Y , respectively. A few definitions and conventions follow.
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• The subgroup of Sym(X) generated by the permutations Ra , a ∈ X , is called
the inner automorphism group of X , and is denoted by Inn(X). The map inn : X →
Inn(X), inn(a) = Ra , is a quandle homomorphism, with the conjugation quandle
structure on Inn(X).

• A quandle is connected if Inn(X) acts transitively on X .
• A quandle is faithful if inn is injective.
• An epimorphism p : E → X of quandles is called a covering [12] if p(x) =

p(y) implies Rx = Ry for all x, y ∈ E .
• A generalized Alexander quandle, denoted by GAlex(G, f ), is defined by a

pair (G, f ) where G is a group, f ∈ Aut(G), and the quandle operation is defined
by x ∗ y = f (xy−1)y. If G is abelian, this is called an Alexander quandle.

• Let X be a rack. For brevity we sometimes omit ∗ and parentheses, so that
for xi ∈ X , x1x2 = x1 ∗ x2, x1x2x3 = (x1x2)x3, and inductively, x1 . . . xk−1xk =
(x1 . . . xk−1)xk .

• We also use the notation x ∗n y = x ∗ y ∗ · · · ∗ y where y is repeated n times.
A rack X is said to be of type n (cf. [17]) if n is the least positive integer such that
x ∗n y = x holds for all x, y ∈ X , and we write type(X) = n. A type 1 quandle is
said to be trivial, and a type 2 quandle is called a kei or an involutory quandle.

Computations usingGAP [25] significantly expanded the list of small connected
quandles. These quandles, called Rig quandles, may be found in the GAP package
Rig [24]. Rig includes all connected quandles of order less than 48, at this time.
Properties of some of Rig quandles, such as homology groups and cocycle invariants,
are also found in [24]. We use the notation Q(n, i) for the i-th quandle of order n
in the list of Rig quandles, denoted in [24] by SmallQuandle(n, i). Note, however,
that in [24] quandles are left distributive, so that as a matrix, Q(n, i) is the transpose
of the quandle matrix SmallQuandle(n, i) in [24]. Determination of the quandles
order less than 48 is also accomplished in [16].

2.2 Quandle Homology Theory and 2-Cocycle Extensions

The rack chain group Cn(X) = CR
n (X) for a rack X is defined [15] to be the

free abelian group generated by n-tuples (x1, . . . , xn), xi ∈ X for i = 1, . . . , n. Let
d(n)
h , δ

(n)
h : Cn(X) → Cn−1 be defined by

d(n)
h (x1, . . . , xh, . . . , xn) = (x1, . . . , x̂h, . . . , xn),

δ
(n)
h (x1, . . . , xh, . . . , xn) = (x1 ∗ xh, . . . , xh−1 ∗ xh, x̂h, . . . , xn),

respectively, where ˆ denotes deleting the entry. Then the boundary map is defined
by ∂n = ∑n

h=2(−1)h[d(n)
h − δ

(n)
h ]. The subcomplex CD(X) was defined [3] for a

quandle X with generating terms (x1, . . . , xn) ∈ Cn(X) with x j = x j+1 for some
j = 1, . . . , n − 1, and the quotient complex {CQ

n (X) = CR
n (X)/CD

n (X), ∂n} was
defined [3] as the quandle homology.
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The corresponding 2-cocycle is formulated as follows. A quandle 2-cocycle is
regarded as a function φ : X × X → A for an abelian group A, written multiplica-
tively, that satisfies

φ(x, y)φ(x ∗ y, z) = φ(x, z)φ(x ∗ z, y ∗ z)

for all x, y, z ∈ X and φ(x, x) = 1 for all x ∈ X . For a quandle 2-cocycle φ, E =
A × X becomes a quandle under the binary operation

(a, x) ∗ (b, y) = (aφ(x, y), x ∗ y)

for x, y ∈ X , a, b ∈ A, denoted by E(X, A, φ) or simply E(X, A), and it is called
an abelian extension of X by A. Two epimorphisms pi : Ei → Xi , i = 0, 1, are
equivalent if there exist isomorphisms g : E0 → E1 and f : X0 → X1 such that
p1g = f p0. The epimorphism given by the projection to the second factor p :
E(X, A, φ) → X , or an epimorphism equivalent to p, is also called an abelian
extension. See [2, 4] for more details. Any abelian extension p is a covering. This
construction also works when A is not necessarily abelian, see [6].

In [1], a different type of non-abelian extension by a constant cocyclewas defined
as follows: It was proved in [1] Proposition2.11 that if Y is a connected quandle
and X = inn(Y ) ⊂ Inn(Y ), then each fiber has the same cardinality, and if S is a
set with the same cardinality as a fiber, then there is a constant cocycle β : X ×
X → Sym(S) such that Y is isomorphic to X ×β S, defined by (x, a) ∗ (y, b) =
(x ∗ y, β(x, y)(a)).

2.3 Quandle Colorings and the Cocycle Invariant

Let D be a diagram of a knot K , and A(D) be the set of arcs of D. A coloring of a
knot diagram D by a quandle Q is a map C : A(D) → Q satisfying the condition
depicted in Fig. 1 at every positive (left) and negative (right) crossing τ , respectively.
The pair (xτ , yτ ) of colors assigned to a pair of nearby arcs of a crossing τ is called
the source colors, and the third arc is required to receive the color xτ ∗ yτ .

We recall the definition from [3] of the 2-cocycle invariant �φ(K ) of a knot K .
Let X be a quandle, and φ be a 2-cocycle with finite abelian coefficient group A. The

Fig. 1 Colored crossings
and cocycle weights
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2-cocycle invariant (or state-sum invariant) is the element of the group ring Z[A]
defined by

�φ(K ) =
∑

C

∏

τ

φ(xτ , yτ )
ε(τ ),

where the product ranges over all crossings τ , the sum ranges over all colorings
of a given knot diagram, (xτ , yτ ) are source colors at the crossing τ , and ε(τ ) is
the sign of τ as specified in Fig. 1. For a given coloring C , we write Bφ(K ,C) =
∏

τ φ(xτ , yτ )
ε(τ ) ∈ A. Thus we may write

�φ(K ) =
∑

a∈A

na a

where na is the number of colorings of K by X such that Bφ(K ,C) = a. We say
that �φ(K ) is constant if na = 0 when a is not the identity.

A 1-tangle (also called a long knot) is a properly embedded arc in a 3-ball, and
the equivalence of 1-tangles is defined by ambient isotopies of the 3-ball fixing the
boundary (cf. [11]). A diagram of a 1-tangle is defined in a manner similar to a
knot diagram, from a regular projection to a disk by specifying crossing information.
We assume that the 1-tangles are oriented from top to bottom. See Fig. 2a. A knot
diagram is obtained from a 1-tangle diagram by closing the end points by a trivial
arc outside of a disk. This procedure is called the closure of a 1-tangle. If a 1-tangle
is oriented, then the closure inherits the orientation. See Fig. 2b. Two diagrams of
the same 1-tangle are related by Reidemeister moves. As indicated, for example in
[12], there is a bijection from isotopy classes of knots to those of the 1-tangles,
corresponding to the closure. Thus an invariant of a 1-tangle T corresponding to a
knot K is an invariant of K .

For simplicity we often identify a 1-tangle T with a diagram of T and similarly
for knots. A quandle coloring of an oriented 1-tangle diagram is defined in a manner
similar to those for knots. We do not require that the end points receive the same
color for a quandle coloring of 1-tangle diagrams. As in [10] we say that a quandle
Q is end monochromatic for a tangle diagram T if any coloring of T by Q assigns
the same color on the two end arcs.

Fig. 2 A 1-tangle and its
closure

(a) (b)
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3 Algebraic Aspects

In this section we review relations between algebraic properties of quandles and
quandle cocycle invariants.

3.1 Sequences of Quandles and Values of Cocycle Invariants

LetG be a finite group. For a, b ∈ G wewrite ab = b−1ab and denote the conjugacy
class ofG containing x by xG . The conjugacy class xG under conjugation,a ∗ b = ab,
is a quandle. Here we call such a quandle a conjugation quandle. We note that such
a quandle need not be connected. In general, a subquandle of a group G under
conjugation need not be a conjugacy class. But it is easy to see that if X is a subset
of a group G closed under conjugation and if X under conjugation is a connected
quandle then X is a conjugacy class of the group 〈X〉 generated by X. Let p : E =
E(X, A, φ) → X be an abelian extension of quandles. Then we have the following.

Proposition 1 ([9]) If there is a quandle Y with the quandle epimorphism inn : Y →
E, or E is a conjugation quandle, then �φ(K ) is constant for all classical knots K .

For all examples we computed for Rig quandles Q such that E(Q, A, φ) is a
conjugation quandle, the coefficient groupwas A = Z2. Thuswe raised the following
question.

Problem ([9]) Is there a connected quandle Q and a 2-cocycle φ : Q × Q → A
with |A| > 2 such that Image(φ) generates A that is not null-cohomologous, such
that E(Q, A, φ) is a connected conjugation quandle?

David Stanovsky [23] has shown us how to find a connected quandle Q such that
E(Q, A, φ) is a conjugation quandle, where φ is a trivial cocycle and |A| > 2. Note
that E(Q, A, φ) is isomorphic to the product quandle Q × T where T is the trivial
quandle of order |A| if and only if φ is trivial. Note also that if Q is a conjugation
quandle xG for some group G and x ∈ G and T is a conjugation quandle yH for
some group H and y ∈ H then the quandle Q × T is the conjugation quandle in the
group G × H on the conjugacy class of (x, y). We note that it is possible to find for
any positive integer n, a group H and y ∈ H so that yH is a trivial quandle of order
n. For a specific example take G = S3, x = (1, 2) and H = S4, y = (1, 2)(3, 4). In
this case xG is the dihedral quandle R3 and yH is the trivial quandle of order 3.

Let X = Q(12, 5) or Q(12, 6). Then the second quandle cohomology group
H 2

Q(X, Z4) is known [24] to be isomorphic to Z4. See [3, 4], for example, for details
on quandle cohomology. Let ψ : X × X → Z4 be a 2-cocycle which represents a
generator of H 2

Q(X, Z4) ∼= Z4. Let u denote a multiplicative generator of A = Z4.
The cocycle invariants�ψ(K ) for X = Q(12, 5) or Q(12, 6)with respect toψ , com-
puted for some knots in the table in [24] up to 9 crossing knots, contain non-constant
values, while for A = Z2 the invariant is constant by Proposition1 (computations
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showed [9] that there are epimorphisms Y
inn→ E → X ). In addition, it was proved

that the values of the invariant with ψ take the following restricted form.

Corollary 1 ([9]) Let X = Q(12, 5) or Q(12, 6), and ψ : X × X → A = Z4 be a
2-cocycle which represents a generator of H 2

Q(X, Z4) ∼= Z4. Let

�ψ(K ) =
3

∑

j=0

a j (K ) u j ∈ Z[A]

be the cocycle invariant. Then a1(K ) = a3(K ) = 0 for all classical knots K .

This is a corollary to the following theorem, which formulates a general case of
this phenomenon.

Theorem 1 ([9]) Let X be a quandle and n,m, d > 1 be positive integers such that
n = md. Letψ be a 2-cocycle of X with values inZn, and�ψ(K ) = ∑n−1

j=0 a j (K ) u j

be the cocycle invariant of a knot K with respect to ψ .
Let E = E(X, Zm, φ)

α→ X be the abelian extension corresponding to φ = ψd ,

and suppose that there is a sequence of quandles Y
inn−→ E

α→ X. Then ak(K ) = 0
for all k that are not divisible by m, for all classical knots K .

This situation is also found for X = Q(18, 1) or Q(18, 8), where H 2
Q(X, Z6) ∼=

Z6. Let u be a multiplicative generator of A = Z6. Then the invariant values are
restricted to the following form.

Corollary 2 ([10]) Let X = Q(18, 1) or Q(18, 8), and ψ : X × X → Z6 be a
2-cocycle which represents a generator of H 2

Q(X, Z6) ∼= Z6. Let �ψ(K ) = ∑5
j=0

a j (K ) u j be the cocycle invariant. Then ak(K ) = 0 for k = 1, 3, 5 for all classical
knots K .

The cocycle invariants for connected quandles of order 18 are computed in [24]
for up to 7 crossing knots at the time of writing. The invariant values for Q(18, 8) do
contain non-constant values of the above form. For Q(18, 1), the invariant is constant,
and we do not know whether this is an artifact of limited number of knots or it is
constant for all classical knots. Other questions/conjectures for specific quandles can
be found in [10], and we include unsolved cases:

Problem 1 Determine possible values of the cocycle invariants. In particular, the
following specific questions remain unsolved, and we state them as conjectures.

• The invariant with Q(18, 1) with a generating cocycle is constant for all classical
knots.

• Let X = Q(12, 10) and φ be the 2-cocycle chosen in Example 5.11 in [10].
For eachknot K write�φ(K ) = a + bu + cu2 + du3 + eu4 + f u5,wherea, b, c,
d, e, f ∈ Z. Then b = f = 0 for all K .
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We note that the condition that K is a classical knot is critical. Indeed, this theorem
can be used as obstruction for virtual knots being classical [9].

Theorem1 can be applied contrapositively to derive the following result:

Corollary 3 ([9]) For the following Rig quandles E, there is no finite quandle Y
such that inn(Y ) = E:

Q(8, 1), Q(12, 2), Q(24, 1), Q(24, 7), Q(32, 1), Q(32, 9).

The quandle Q(36, 1) listed in [9], Corollary 3.9 and its proof, is a typographic error
and should be Q(32, 1), which is already listed.

3.2 Sequences of Abelian Extensions

Wehave seen that certain sequences of quandles imply restricted forms in the quandle
cocycle invariant. In addition, abelian extensions canbe used in the followingmanner:
(1) non-triviality of the second cohomology group can be confirmed, (2) knots and
their reversedmirrorsmay be distinguished by colorings of composite knots [10], and
(3) they are useful in computing cocycle knot invariants via colorings of 1-tangles [6].

We summarize findings on extensions of Rig quandles in this section. There are
35 non-faithful connected quandles of order less than 48. All but 5 are extensions by
Z2. In [10], the following facts were found.

• Among the non-faithful Rig quandles (of order less than 48), Q(30, 4), Q(36, 58),
and Q(45, 29) are the only quandles that are not abelian extensions.

• The quandles Q(30, 4), Q(36, 58), and Q(45, 29) are non-abelian extensions by
constant 2-cocycles of the quandles Q(10, 1), Q(12, 10) and Q(15, 7), respec-
tively.

Some sequences of quandles correspond to sequences of coefficient groups as
follows.

Proposition 2 Let X be a finite quandle,and 0 → C
ι−→ A

pB−→ B → 0 be an
exact sequence of finite abelian groups. Let φ : X × X → A be a quandle 2-cocycle.
Then E(X, A, φ) is an abelian extension of E(X, B, pBφ) with coefficient group C.

The proof utilizes projections and their sections. If we suppress the 2-cocycle in
the notation E(X, A, φ) and write merely E(X, A) then the above Proposition2 may
be stated more simply.

Corollary 4 (i) If E(X, B)and E(X,C)are abelian extensions, then so is E(X, B ×
C), and

E(X, B × C) = E(E(X, B),C).
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(ii) If E(X, A) is a finite abelian extension of a quandle X and C is a subgroup
of the finite abelian group A then

E(X, A) = E(E(X, A/C),C).

We note that if E(X, A) is connected, then E(X, A/C) is connected since the
epimorphic image of a connected quandle is connected.

Connected abelian extensions of Rig quandles of order up to 12 were examined
in [10]. In the following, we use the notation E

n−→ X if E = E(X, Zn, φ) for some

2-cocycle φ such that E is connected. E2
m=⇒ E1

d=⇒ X if there is a short exact
sequence 0 → Zm → Zn → Zd → 0 such that Zn ⊂ H 2

Q(X, Zn) and E1, E2 are

corresponding extensions as in Proposition2. In this case E2
n−→ X where n = md.

The notation ∅ 1−→ X indicates that H 2
Q(X, A) = 0 for any coefficient group A, and

hence there is no non-trivial abelian extension. It is noted to the left when all quandles
in question are keis.

∅ 1−→ Q(8, 1)
2−→ Q(4, 1)

(Kei) ∅ 1−→ Q(24, 1)
2−→ Q(12, 1)

2−→ Q(6, 1)

∅ 1−→ Q(24, 2)
2=⇒ Q(12, 2)

2=⇒ Q(6, 2)

(Kei) ∅ 1−→ Q(27, 1)
3−→ Q(9, 2) = Q(3, 1) × Q(3, 1)

∅ 1−→ Q(27, 6)
3−→ Q(9, 3) = Z3[t]/(t2 + 1)

∅ 1−→ Q(27, 14)
3−→ Q(9, 6) = Z3[t]/(t2 + 2t + 1)

∅ 1−→ Q(24, 8) = Q(3, 1) × Q(8, 1)
2−→ Q(12, 4) = Q(3, 1) × Q(4, 1)

In the following, we list abelian extensions of Rig quandles that contain quandles
of order higher than 35. The notation Q(n,−) indicates that it is a quandle of order
n > 35 and is not a Rig quandle. The notation ? −→ Q(n,−) indicates that we do
not know if non-trivial abelian extension exists for the quandle Q(n,−) in question.
Except for the quandle Q(120,−) in the third line,we have explicit quandle operation
tables for the quandles appearing in the list and hence we can prove by computer
that such quandles are connected.

? −→ Q(120,−)
6−→ Q(20, 3)

2−→ Q(10, 1)

? −→ Q(120,−)
5=⇒ Q(24, 7)

2=⇒ Q(12, 3)

? −→ Q(120,−)
2=⇒ Q(60,−)

5=⇒ Q(12, 3)

? −→ Q(48,−)
2=⇒ Q(24, 4)

2=⇒ Q(12, 5)

? −→ Q(48,−)
2=⇒ Q(24, 3)

2=⇒ Q(12, 6)

It is interesting to remark that all quandles appearing in the first and the last lines are
keis. These observations raised the following questions.
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Problem 2 What is a condition on cocycles for abelian, or non-abelian extensions
to be connected?

In [1], a condition for an extension to be connected was given in terms of elements
of the inner automorphism group.

More generally, one could ask for properties of quandles that persist in extensions.
In this context, the followingwas conjectured in [10], and proved byDavid Stanovský
[23]: If Q is connected then type(Q) = type(inn(Q)).

In the following an arrow Y → X represents an abelian extension.

Problem 3 Is there an infinite sequence of abelian extensions of connected quandles
· · · → Qn → · · · → Q1?

We note that sequences of abelian extensions of connected quandles terminate as
much as we were able to compute.

We noticed [10] that some non-cohomologous cocycles give isomorphic exten-
sions, as summarized below.

• Let X = Q(12, 8). Then H 2
Q(X, Z2) ∼= (Z2)

3. There are three epimorphisms
from Rig quandles of order less than 36:

Q(24, 5) → X, Q(24, 16) → X, Q(24, 17) → X

and their cohomology groups with A = Z2 are (Z2)
3, (Z2)

2, and (Z2)
2, respectively.

We note that there are 7 cocycles that are not cohomologous to each other, yet there
are only 3 extensions.

• Let X = Q(12, 9). Then H 2
Q(X, Z4) ∼= Z4 × Z4. There are two extensions in

Rig quandles of order less than 36:

Q(24, 6) → Q(12, 9), Q(24, 19) → Q(12, 9)

and with A = Z4 their cohomology groups are Z2 × Z2 × Z4 and Z2 × Z4, respec-
tively. There are 3 cocycles that give order 2 extensions, yet there are two extensions.

• Let X = Q(12, 10). Then H 2
Q(X, Z6) ∼= Z6. There is one extension among Rig

quandles of order less than 36, Q(24, 20) → Q(12, 10) and we have

H 2
Q(Q(24, 20), Z3) ∼= Z3 × Z3.

One of the order 3 cocycle corresponds to an extension of X of order 6.
•Let X = Q(15, 2), which has cohomologygroup H 2

Q(X, Z2) ∼= Z2 × Z2.Hence
there are three 2-cocycles that are non-trivial and pairwise non-cohomologous. There
are, however, only two non-isomorphic abelian extensions of X by Z2, Q(30, 1) and
Q(30, 5). Then calculations show that two non-cohomologous cocycles define the
extension Q(30, 5).
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3.3 Identities and Homology

It is observed in [10] by a straightforward calculation that if X is a kei,φ is a 2-cocycle
with coefficient group A, and E is the abelian extension of X with respect to φ, then
E is a kei if and only if φ(x, y) + φ(x ∗ y, y) = 0 ∈ A for all x, y ∈ X . This can be
written as φ(c) = 0, for a 2-chain c = (x, y) + (x ∗ y, y). By direct calculation we
find that ∂(c) = 0, so that c is a 2-cycle. This suggests a relation between the identity
x ∗ y ∗ y = x and a 2-cycle c. Such a relation was studied in [8], and also in [26]. We
summarize this phenomenon in this section through the example of type 3 quandles.
We note that a subcomplex for type 2 quandles, or keis, is defined in [19] as a special
case of their subcomplex. Recall that a rack X is of type 3 if it satisfies the identity
S: x ∗ y ∗ y ∗ y = x for all x, y ∈ X . We observe the following three properties.

(i) From this identity S we form a 2-chain

L = LS = (x, y) + (x ∗ y, y) + (x ∗ y ∗ y, y).

We check that L is a 2-cycle:

∂(L) = [ (x) − (x ∗ y) ] + [ (x ∗ y) − (x ∗ y ∗ y) ]
+ [ (x ∗ y ∗ y) − (x ∗ y ∗ y ∗ y) ]

= 0,

using the identity S.

(ii) Let φ ∈ Z2
R(X, A) be a rack 2-cocycle with the coefficient abelian group A

such that φ(L) = 0. Then for E(X, A, φ) = X × A, one computes

(x, a) ∗ (y, b) ∗ (y, b) ∗ (y, b)

= (x ∗ y, a + φ(x, y)) ∗ (y, b) ∗ (y, b)

= (x ∗ y ∗ y ∗ y, a + φ(x, y) + φ(x ∗ y, y) + φ(x ∗ y ∗ y, y))

= (x, a).

Hence E(X, A, φ) is of type 3.

(iii) Define, for each n, a subgroup CS
n (X) ⊂ Cn(X) generated by

n−1
⋃

j=1

{ (x1, . . . , x j , y, x j+2, . . . , xn)

+(x1 ∗ y, . . . , x j ∗ y, y, x j+2, . . . , xn)

+(x1 ∗ y ∗ y, . . . , x j ∗ y ∗ y, y, x j+2, . . . , xn)

| xi , y ∈ X, i = 1, . . . , ĵ + 1, . . . , n }.

For a fixed j , y is positioned at ( j + 1)-th entry. Then {CS
n , ∂n} is a subcomplex.



158 W. E. Clark and M. Saito

This phenomenon was generalized in [8] to the identities satisfied in quan-
dles of the following type. For brevity we sometimes omit ∗ and parentheses, so
that for xi ∈ X , x1x2 = x1 ∗ x2, x1x2x3 = (x1x2)x3, and inductively, x1 . . . xk−1xk =
(x1 . . . xk−1)xk .

Definition 1 Fix a surjection τ : {1, . . . , k} → {1, . . . ,m}, where k ≥ m are posi-
tive integers.

We call an identity S of the form xyτ(1) . . . yτ(k) = x as described above a (τ, k,m)

inner identity.
If an inner identity S above holds for all x, y j ∈ X , j = 1, . . . ,m, then we say

that X satisfies the (τ, k,m) inner identity S.

For this type of identity, we obtained the following.

Theorem 2 Let X be a rack. Let S be a (τ, k,m) inner identity xyτ(1) . . . yτ(k) = x
that X satisfies. Then the following holds.

(i) The 2-chain LS is a 2-cycle, LS ∈ Z2(X).

(ii) For an abelian group A and a 2-cocycle φ, E(X, A, φ) satisfies S if and only
if φ(LS) = 0.

(iii) The sequence of subgroups CS
n (X) ⊂ Cn(X) forms a subcomplex

{CS
n (X), ∂n}, n ∈ Z.

Here, the groups CS
n (X) are defined for an inner identity S: xyτ(1) . . . yτ(k) = x

as follows. Set ωi = yτ(1) . . . yτ(i), when i > 0. Then CS
n (X) ⊂ Cn(X), n ∈ Z, are

subgroups generated by

k−1
⋃

j=1

{ (x1, . . . , x j , yτ(1), x j+2, . . . , xn)

+
k−1
∑

i=1

(x1ωi , . . . , x jωi , yτ(i+1), x j+2, . . . , xn)

| xh, yτ(i) ∈ X, h = 1, . . . , ĵ + 1, . . . , n, i = 1, . . . , k − 1 }.

We also observed the following.

Proposition 3 For all m, n ∈ Z such that m > 0 and n > 1, there exist infinitely
many connected quandles that satisfy the identity xw = x for

w = y1 ∗ · · · ∗ ym ∗ y1 · · · ∗ ym ∗ · · · y1 · · · ∗ ym
︸ ︷︷ ︸

n repetitions

,

where y1, . . . , ym are distinct letters.

In computing whether various identities are satisfied among Rig quandles, we
found some identities that are not satisfied by any. The following conjecture was
made in [8]:
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Conjecture 2 No connected quandle satisfies an identity of the form xw = x where
w is one of the following words:

abaab, ababa, abbaa, ababb, abbab.

A few similar conjectures were made in [8] for identities of lengths 6.

4 Computational Aspects

In this sectionwe review developments in computational methods of quandle cocycle
invariants.

In [6] Conjecture1 was examined computationally for prime knots with at most
12 crossings using colorings of 1-tangles to compute 2-cocycle invariants without
explicitly finding 2-cocycles. Let G = {1,m, r, rm} be the group of symmetries of
knots, where m and r denote taking the mirror image and the reversed orientation,
respectively. Since ColQ(K ) is equal to the 2-cocycle invariant for a coefficient group
of order 1, it follows from the results of [7] that the conjecture holds when K1 and K2

are prime knots with crossing number at most 12 that lie in distinct G-orbits. Thus
we need only consider the cases where K1 and K2 lie in the same G-orbit. For this
purpose, effective ways of constructing abelian extensions by generalized Alexander
quandles were found, and a set of 60 quandles is presented in [6] that distinguishes
all distinct K1 and K2 in the same G-orbit for all except 13 prime knots with up to
12 crossings.

For knots K and K ′, we write K = K ′ to denote that there is an orientation
preserving homeomorphism of S

3 that takes K to K ′ preserving the orientations of
K and K ′. We say that a knot has symmetry s ∈ {m, r, rm} if K = s(K ). As in the
definition of symmetry type in [5] we say that a knot K is

1. reversible if the only symmetry it has is r ,
2. negative amphicheiral if the only symmetry it has is rm,
3. positive amphicheiral if the only symmetry it has is m,
4. chiral if it has none of these symmetries,
5. fully amphicheiral if has all three symmetries m, r, rm.

The symmetry type of each prime oriented knot on at most 12 crossings is given at
[5]. Thus each of the 2977 knots K given there represents 1, 2 or 4 knots depending
on the symmetry type. Among the 2977 knots, there are 1580 reversible, 47 negative
amphicheiral, 1 positive amphicheiral, 1319 chiral, and 30 fully amphicheiral knots.

For s ∈ G letKs denote the set of prime oriented knots K with atmost 12 crossings
such that K �= s(K ). From the above we have

1. |Km | = 1319 + 47 + 1580 = 2946,
2. |Kr | = 1319 + 1 + 47 = 1367,
3. |Krm | = 1319 + 1 + 1580 = 2900.
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We have been able to find 60 connected quandles which will distinguish via the
cocycle invariant the following.

1. K from m(K ) for all K in Km ,
2. K from rm(K ) for all K inKrm except 12a0427, the single positive amphicheiral

prime knot with at most 12 crossings. Note that for this knot rm(K ) = r(K ).
3. K from r(K ) for all K in Kr , except the following 13 prime knots:

12a0059, 12a0067, 12a0292, 12a0427, 12a0700, 12a0779, 12a0926,

12a0995, 12a1012, 12a1049, 12a1055, 12n0180, 12n0761

all of which are chiral except for the positive amphicheiral knot 12a0427.

For these computations, we used colorings of 1-tangles by abelian extensions: Let
T be a 1-tangle of a knot K . Let Q be a connected quandle. For arbitrary fixed e ∈ Q
denote the set of colorings C : A(T ) → Q such that C(b0) = e by ColeQ(T ). It is
known (see for example [6, 21, 22]), forC ∈ ColeQ(T ), b = C(b1) satisfies Rb = Re,
where b0 and b1 denote the top and bottom arc of T , respectively. That is, b lies the
the fiber Fe = inn−1(Re). Thus we define the following invariant.

Definition 2 ([6, 13]) For arbitrary fixed e ∈ Q denote the set of colorings C :
A(T ) → Q by quandle Q such that C(b0) = e by ColeQ(T ). Define

�e
Q(K ) =

∑

C∈ColeQ(T )

C(b1).

We think of �e
Q(K ) as lying in the free Z-module Z[Fe] with basis Fe.

The relation to the cocycle invariant is stated as follows.

Theorem 3 ([6]) Let Q = E(X, A, φ) be a connected abelian extension of quandle
X corresponding to the 2-cocycle φ. If the projection π : Q → X, (a, x) �→ x, is
equivalent to inn : Q → inn(Q), then for e = (1, x0) we have for all knots K :

�e
Q(K ) = 1

|X |�φ(K )

if one identifies the fiber Fe with A via a �→ (a, x0).

To find more non-faithful connected quandles we constructed using GAP several
thousand connected generalized Alexander quandles. As shown in [6], it suffices to
run through the small groups G in GAP, for each group G compute representatives f
of the conjugacy classes inAut(G), and construct GAlex(G, f ).WhenGAlex(G, f )
is connected then as shown in [6], it is an abelian extension of inn(GAlex(G, f )) if
and only if the subgroup Fix(G, f ) = {x ∈ G | f (x) = x} is abelian.
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Theorem 4 ([6]) If Q = GAlex(G, f ) and A = Fix(G, f ) is abelian, where f ∈
Aut(G) then

Q = GAlex(G, f ) ∼= E(inn(Q), A, φ)

for some 2-cocycle φ.

This allows us to compute many cocycle invariants �φ(K ) = �e
GAlex(G, f )(K )

inn(GAlex(G, f )) without finding explicit cocycles.

We recall the following.

Conjecture 3 ([7]) If K and K ′ are any two knots such that K ′ �= K and K ′ �=
rm(K ) then there is a finite quandle Q such that ColQ(K ) �= ColQ(K ′).

In [10] the conjecture was proved when K ′ is the unknot.

Remark 1 It was shown in [10] that given two oriented knots K1 and K2 such that
K1 �= K2, there is a knot P such that K2#P �= rm(K1#P), where # denotes the
connected sum. If Conjecture3 is true then ColQ(K1#P) �= ColQ(K2#P) for some
finite quandle Q. It was proved in [6] that if for knots K1 and K2 there is a quandle
Q and a knot P such that ColQ(K1#P) �= ColQ(K2#P), then �e

Q(K1) �= �e
Q(K2).

This leads to some hope that �e
Q may be a complete invariant.

Remark 2 The knot coloring polynomial Px
G was defined in [13], and shown to

generalize �φ . The invariant �e
Q is closely related to Px

G . In particular, if Q is a
connected generalized Alexander quandle, e ∈ Q, G = Inn(Q) and x = Re then Px

G
and �e

Q distinguish the same pairs of knots. As noted by Eisermann [13], since knot
groups are residually finite, and the peripheral system characterizes a knot, that his
knot coloring polynomial distinguishes all knots “is not completely hopeless”.
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A Survey of Quantum Enhancements

Sam Nelson

Abstract In this short survey article we collect the current state of the art in the
nascent field of quantum enhancements, a type of knot invariant defined by collecting
values of quantum invariants of knotswith colorings by various algebraic objects over
the set of such colorings. This class of invariants includes classical skein invariants
and quandle and biquandle cocycle invariants as well as new invariants.

Keywords Biquandle brackets · Quantum invariants · Quantum enhancements of
counting invariants
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1 Introduction

Counting invariants, also called coloring invariants or coloring-counting invariants,
are a type of integer-valued invariant of knots or other knotted objects (links, braids,
tangles, spatial graphs, surface-links etc.). They are defined by attaching elements of
some algebraic structure, envisioned as “colors”, to portions of diagrams according to
rules, typically stated in the form of algebraic axioms, which ensure that the number
of such colorings is unchanged by the relevant diagrammatic moves. Underlying this
simplistic combinatorial picture of diagrams and colorings lurks amore sophisticated
algebraic structure, a set of morphisms from a categorical object associated to the
knotted object to a (generally finite) coloring object. Perhaps the simplest nontrivial
example is Fox tricoloring, where the simple rule of making all three colors match or
all three differ at each crossing secretly encodes group homomorphisms from the fun-
damental group of the knot complement to the group of integers modulo 3. Examples
of coloring structures include groups, kei, quandles, biquandles and many more.
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An enhancement of a counting invariant is a stronger invariant from which the
counting invariant can be recovered [3]. One strategy which has proven successful
for defining enhancements is to seek invariants φ of colored knots; then for a given
φ, the multiset of φ values over the set of colorings of our knot is a new invariant
of knots whose cardinality is the original counting invariant but which carries more
information about the original knot. One of the first such examples was the quandle
cocycle invariant introduced in [2], in which integer-valued invariants of quandle-
colored knots known as Boltzmann weights are defined using a cohomology theory
for quandles. The multiset of such Boltzmann weights is then an invariant of the
original uncolored knot; it is stronger than the quandle counting invariant in question
since different multisets of Boltzmann weights can have the same cardinality.

A quantum enhancement, then, is a quantum invariant of X -colored knots for
some knot coloring structure X . In [9] these are conceptualized as X -colored tangle
functors, i.e. assignments of matrices of appropriate sizes to the various X -colored
basic tangles (positive and negative crossings, maximum, minimum and vertical
strand) which make up tangles via sideways stacking interpreted as tensor product
and vertical stacking as matrix composition. In [6] some examples are found via
structures known as biquandle brackets, skein invariants modeled after the Kauffman
bracket but with coefficients which depend on biquandle colorings at crossings. In
[7] biquandle brackets are generalized to include a virtual crossing as a type of
smoothing. A special case of biquandle brackets was described independently in
[1]. In [4] a type of biquandle bracket whose skein relation includes a vertex is
considered. In [8] biquandle brackets are defined using trace diagrams in order to
allow for recursive expansion as opposed to the state-sum definition in [6].

This paper is organized as follows. In Sect. 2 we survey some knot coloring struc-
tures and look in detail at one such structure, biquandles. In Sect. 3 we see the defini-
tion and examples of biquandle brackets as an example of a quantum enhancement.
In Sect. 4 we summarize a few other examples of quantum enhancements, and we
end in Sect. 5 with some questions for future research.

2 Biquandles and Other Coloring Structures

A knot coloring structure is a set X whose elements we can think of as colors or
labels to be attached to portions of a knot or link diagram, together with coloring
rules chosen so that the number of valid colorings of a knot diagram is not changed
by Reidemeister moves and hence defines an invariant. In this section we will look
in detail at one such structure, known as biquandles, and then briefly consider some
other examples. For more about these topics, see [3].

Definition 1 Let X be a set. A biquandle structure on X is a pair of binary operations
� , � : X × X → X satisfying the following axioms:

(i) For all x ∈ X , we have x � x = x � x ,
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(ii) The maps S : X × X → X × X and αx , βx : X → X for each x ∈ X defined
by

αx (y) = y � x, βx (y) = x � y and S(x, y) = (y � x, x � y)

are invertible, and
(iii) For all x, y, z ∈ X , we have the exchange laws:

(x � y) � (z � y) = (x � y) � (z � y) (i i i.i)
(x � y) � (z � y) = (x � y) � (z � y) (i i i.i i)
(x � y) � (z � y) = (x � y) � (z � y) (i i i.i i i).

The biquandle axioms encode the Reidemeister moves using a coloring scheme
with elements of X coloring semiarcs in an oriented link diagram with the pictured
coloring rules at crossings:

Then using the following generating set of oriented Reidemeister moves,
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the following theorem is then easily verified:

Theorem 1 Given an oriented link diagram D with a coloring by a biquandle X, for
any diagram D′ obtained from D by a single Reidemeister move, there is a unique
coloring of D′ by X which agrees with the coloring on D outside the neighborhood
of the move.

Hence we obtain:

Corollary 1 The number of colorings of a knot or link diagram D by a biquandle
X is an integer-valued invariant of the knot or link K represented by D, called the
biquandle counting invariant and denoted by ΦZ

X (K ).

Example 1

(Alexander biquandles) A straightforward example of a biquandle structure is to let
X be any commutative ring with identity R with choice of units s, t and define binary
operations

x � y = t x + (s − t)y
x � y = sx .

For instance, setting X = Z5 with t = 3 and s = 2, we obtain biquandle operations

x � y = 3x + (2 − 3)y = 3x + 4y
x � y = 2x .

To compute the biquandle counting invariant ΦZ

X (K ) for an oriented knot or link K
represented by a diagram D, we can then solve the system of the linear equations
obtained from the crossings of D using the coloring rule above. For example, the
(4, 2)-torus link has system of coloring equations below.
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3x1 + 4x8 = x2
2x8 = x7

3x8 + 4x1 = x5
2x1 = x4

3x3 + 4x6 = x4
2x6 = x5

3x6 + 4x3 = x7
2x3 = x2

Then row-reducing over Z5 we have

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 4 0 0 0 0 0 4
0 0 0 0 0 0 4 2
4 0 0 0 4 0 0 3
2 0 0 4 0 0 0 0
0 0 3 4 0 4 0 0
0 0 0 0 4 2 0 0
0 0 4 0 0 3 4 0
0 4 2 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∼

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 4
0 1 0 0 0 0 0 3
0 0 1 0 0 0 0 4
0 0 0 1 0 0 0 3
0 0 0 0 1 0 0 3
0 0 0 0 0 1 0 4
0 0 0 0 0 0 1 3
0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and the space of colorings is one-dimensional, so ΦZ

X (K ) = |Z5| = 5. This distin-
guishes K from the unlink of two components, which has ΦZ

X (U2) = |Z5|2 = 25
colorings by X .

A coloring of a diagram D representing an oriented knot or link K by biquan-
dle X determines a unique homomorphism f : B(K ) → X from the fundamental
biquandle of K , B(K ), to X. Hence the set of colorings may be identified with the
homset Hom(B(K ), X). In particular, an X -labeled diagram D f can be identified
with an element of Hom(B(K ), X), and we have

ΦZ

X (K ) = |Hom(B(K ), X)|.

See [3] for more about the fundamental biquandle of an oriented knot or link.
The key idea behind enhancements of counting invariants is the observation that

it’s not just the number of colorings of a diagram which is invariant, but the set of
colored diagrams itself. More precisely, given a biquandle X and an oriented knot
or link diagram D, the set of X -colorings of D is an invariant of K in the sense that
changing D by a Reidemeister move yields a set of colorings of D′ in one-to-one
correspondence with the set of colorings of D. Then any invariant φ of X -colored
oriented knot or link diagrams can give us a new invariant of the original knot or
link, namely the multiset of φ-values over the set of colorings of D. We call such an
invariant an enhancement of the counting invariant.
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Example 2

Perhaps the simplest enhancement is the image enhancement, which sets φ for a
coloring of a diagram to be the size of the image sub-biquandle of the coloring. For
example, the trefoil knot has nine colorings by the Alexander biquandle X = Z3 with
t = 2 and s = 1. Three of these colorings aremonochromatic, while six are surjective
colorings. Then the counting invariant value ΦZ

X (31) = 9 is enhanced to the multiset
Φ

Im,M
X (31) = {1, 1, 1, 3, 3, 3, 3, 3, 3}. For convenience, we can convert the multiset

to a polynomial by converting the multiplicities to coefficients and the elements to
powers of a formal variable u, so the image enhanced invariant becomesΦ

Im,M
X (31) =

3u + 6u3. This notation, adapted from [2], has the advantage that evaluation of the
polynomial at u = 1 yields the original counting invariant. See [3] for more about
enhancements.

Example 3

The earliest example of an enhancement of the counting invariant is the family of
quandle 2-cocycle invariants, introduced in [2]. In this type of enhancement, we
consider biquandles X with operation x � y = x , known as quandles, and consider
maps φ : X × X → A where A is an abelian group. For each X -coloring of an
oriented knot or link diagram D, we obtain a contribution +φ(x, y) at positive
crossings and −φ(x, y) at negative crossings as depicted:

The sumof such contributions over the all crossings in an X -colored diagram is called
the Boltzmann weight of the colored diagram. The conditions on φ which make the
Boltzmann weight unchanged by X -colored Reidemeister moves can be expressed
in terms of a cohomology theory for quandles: the Boltzmann weight is preserved
by Reidemeister III moves if φ is a rack 2-cocycle and preserved by Reidemeister
I moves if φ evaluates to zero on degenerate cochains, which form a subcomplex;
invariance under Reidemeister II moves is automatic from the way the Boltzmann
weights are defined. The quotient of rack cohomology by the degenerate subcomplex
yields quandle cohomology. In particular, 2-coboundaries always yield a Boltzmann
weight of zero, so cohomologous cocycles define the same enhancement. See [2, 3]
for more.

Other examples of knot coloring structures include but are not limited to the
following:
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• Groups. Any finite group G defines a counting invariant consisting of the set of
group homomorphisms from the knot group, i.e., the fundamental group of the
knot complement, to G.

• Quandles. Quandles are biquandles whose over-action operation is trivial, i.e. for
all x, y ∈ X we have x � y = x . Introduced in [5], the fundamental quandle of
a knot determines both the knot group and the peripheral structure, and hence
determines the knot up to ambient homeomorphism.

• Biracks. Biracks are biquandles for framed knots and links, with the Reidemeister
I move replaced with the framed version. To get invariants of unframed knots and
links using biracks, we observe that the lattice of framings of a link is an invariant
of the original link; then the lattice of, say, birack colorings of the framings of an
unframed link L forms an invariant of L .

For each of these and other coloring structures, enhancements can be defined, result-
ing in new invariants.

3 Biquandle Brackets

A biquandle bracket is a skein invariant for biquandle-colored knots and links. The
definition was introduced in [6] (and independently, a special case was introduced
in [1]) and has only started to be explored in other recent work such as [4, 7, 8].

Definition 2 Let X be a biquandle and R a commutative ringwith identity.A biquan-
dle bracket β over X and R is a pair of maps A, B : X × X → R× assigning units
Ax,y and Bx,y to each pair of elements of X such that the following conditions hold:

(i) For all x ∈ X , the elements −A2
x,x B

−1
x,x are all equal, with their common value

denoted by w,
(ii) For all x, y ∈ X , the elements −Ax,y B−1

x,y − A−1
x,y Bx,y are all equal, with their

common value denoted by δ, and
(iii) For all x, y, z ∈ X we have

Ax,y Ay,z Ax � y,z � y = Ax,z Ay � x,z � x Ax � z,y � z

Ax,y By,z Bx � y,z � y = Bx,z By � x,z � x Ax � z,y � z

Bx,y Ay,z Bx � y,z � y = Bx,z Ay � x,z � x Bx � z,y � z

Ax,y Ay,z Bx � y,z � y = Ax,z By � x,z � x Ax � z,y � z

+Ax,z Ay � x,z � x Bx � z,y � z

+δAx,z By � x,z � x Bx � z,y � z

+Bx,z By � x,z � x Bx � z,y � z

Bx,y Ay,z Ax � y,z � y

+Ax,y By,z Ax � y,z � y

+δBx,y By,z Ax � y,z � y

+Bx,y By,z Bx � y,z � y = Bx,z Ay � x,z � x Ax � z,y � z .
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We can specify a biquandle bracket β over a ring R and finite biquandle X =
{x1, . . . , xn} by giving an n × 2n block matrix with entries in R whose left block
lists the Ax,y values and whose right block lists the Bx,y values:

β =

⎡
⎢⎢⎢⎣

Ax1,x1 Ax1,x2 . . . Ax1,xn Bx1,x1 Bx1,x2 . . . Bx1,xn
Ax2,x1 Ax2,x2 . . . Ax2,xn Bx2,x1 Bx2,x2 . . . Bx2,xn
...

...
. . .

...
...

...
. . .

...

Axn ,x1 Axn ,x2 . . . Axn ,xn Bxn ,x1 Bxn ,x2 . . . Bxn ,xn

⎤
⎥⎥⎥⎦ .

The biquandle bracket axioms are the conditions required for invariance of the
state-sum value obtained by summing the products of smoothing coefficients and
powers of δ andw for eachKauffman state of an X -colored diagram under X -colored
Reidemeister moves. More precisely, we write skein relations

and assign δ to be the value of a component in a smoothed state, w the value of a
positive kink and w−1 the value of a negative kink.

More formally, we have:

Definition 3 Letβ be a biquandle bracket over a finite biquandle X and commutative
ring with identity R and let D be an oriented knot or link diagram. Then for each
X -coloring D f of D, let β(D f ) be the state-sum value obtained by summing over the
set of Kauffman states the products of smoothing coefficients φx,y ∈ {A±1

x,y, B
±1
x,y} at

each crossing as determined by the colors and smoothing type times δkwn−p where
k is the number of components in the state, n is the number of negative crossings and
p is the number of positive crossings. That is, for each X -coloring D f of D, we have
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β(D f ) =
∑

Kauffman States

⎛
⎝

⎛
⎝ ∏

crossings

φx,y

⎞
⎠ δkwn−p

⎞
⎠ .

Then the multiset of β(D f )-values over the set of X -colorings of D is denoted

Φ
β,M
X (D) = {β(D f ) | D f ∈ Hom(B(K ), X)}.

The same data may be expressed in “polynomial” form (scare quotes since the expo-
nents are not necessarily integers but elements of R) as

Φ
β

X (D) =
∑

D f ∈Hom(B(K ),X)

uβ(D f ).

Hence we have the following theorem (see [6]):

Theorem 2 Let X be a finite biquandle, R a commutative ring with identity and β

a biquandle bracket over Xand R. Then for any oriented knot or link K represented
by a diagram D, the multiset Φ

β,M
X (D) and the polynomial Φ

β

X (D) are unchanged
by Reidemeister moves and hence are invariants of K .

Example 4

A biquandle bracket in which Ax,y = Bx,y for all x, y ∈ X defines a biquandle 2-
cocycle φ ∈ H 2

B(X). In this case the polynomial invariant Φ
β

X (D) is the product of
the biquandle 2-cocycle enhancementΦφ

X (K )with theKauffman bracket polynomial
of K evaluated at A = −1. See [6] for more details.

Example 5

Abiquandle bracketβ over the biquandle of one element X = {x1} is a classical skein
invariant. For example, the biquandle bracket β over R = Z[A±1] with Ax1,x1 =
A and Bx1,x1 = A−1 (and hence δ = −A2 − A−2 and w = −A3) is the Kauffman
bracket polynomial.

Thus, biquandle brackets provide an explicit unification of classical skein invari-
ants and biquandle cocycle invariants. Even better though, there are biquandle brack-
ets which are neither classical skein invariants nor cocycle invariants, but some-
thing new.
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Example 6

Let R = Z7 and X = Z2 = {1, 2} with the biquandle operations x � y = x � y =
x + 1 (note that we are using the symbol 2 for the class of zero in Z2 so that our row
and column numberings can start with 1 instead of 0). Then via a computer search,
one can check that

β =
[
1 5 3 1
4 1 5 3

]

defines a biquandle bracket, with δ = −1(3)−1 − 1−13 = −5 − 3 = −1 = 6 and
w = −(1)2(3)−1 = −5 = 2. The skein relations at positive crossings are as shown:

Let us illustrate in detail the computation of Φ
β,M
X (L) where L is the oriented Hopf

link with two positive crossings. There are four X -colorings of the Hopf link and
indeed of every classical link – the unenhanced counting invariant with this choice
of coloring biquandle X can detect component number of classical links and noth-
ing else.

However, the biquandle bracket enhancement gives us more information. For each
coloring, we compute the state-sum value:
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yields [(1)(1)62 + (1)(3)6 + (3)(1)6 + (3)(3)62]2−2 = (1 + 4 + 4 + 2)2 = 1;

yields [(5)(4)62 + (1)(4)6 + (5)(5)6 + (1)(5)62]2−2 = (6 + 3 + 3 + 5)2 = 6;

yields [(4)(5)62 + (5)(5)6 + (4)(1)6 + (5)(1)62]2−2 = (6 + 3 + 3 + 5)2 = 6, and

yields [(1)(1)62 + (3)(1)6 + (1)(3)6 + (3)(3)62]2−2 = (1 + 4 + 4 + 2)2 = 1.
Then the multiset form of the invariant is Φ

β,M
X (L) = {1, 1, 6, 6}, or in polyno-

mial form we have Φ
β

X (L) = 2u + 2u6. Since the unlink of two components has
invariant value Φ

β,M
X (U2) = {6, 6, 6, 6}, the enhanced invariant is stronger than the

unenhanced counting invariant.
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Example 6 ismerely a small toy examplemeant to illustrate the computation of the
invariant, of course. Biquandle brackets over larger biquandles and larger (finite or
infinite) rings have already proved their utility as powerful knot and link invariants,
with cocycle invariants at one extreme (information concentrated in the coloring)
and skein invariants at the other (information concentrated in the skein relations).
So far, the known examples of biquandle brackets which are neither classical skein
invariants nor cocycle invariants have been largely found by computer search; it is
our hope that other examples can be found by more subtle methods.

4 Other Quantum Enhancements

Biquandle brackets are one example of a more general phenomenon known as quan-
tum enhancements, broadly defined as quantum invariants of X -colored knots or
other knotted structures for an appropriate coloring structure X . In this section we
collect a few other recent examples of quantum enhancements.

In [7], the author together with coauthors K. Oshiro, A. Shimizu and Y. Yaguchi
defined biquandle virtual brackets, a generalization of biquandle brackets which
includes a virtual crossing as a type of smoothing, i.e.,

A biquandle bracket is then a biquandle virtual bracket in which the virtual coeffi-
cients are all zero. This framework gives another way of recovering the biquandle
cocycle invariants, this time without the factor of the Kauffman bracket evaluated at
−1, by having classical smoothing coefficients all zero. Examples of these invariants
are shown to be able to detect mirror image and orientation reversal. In particu-
lar, these are examples of invariants of classical knots and links which are defined
in a way that fundamentally requires virtual knot theory; it is our hope that these
invariants can provide a reason for classical knot theorists to care about virtual knot
theory.

In [8], the author together with coauthor N. Oyamaguchi addressed the issue of
how to compute biquandle brackets in a recursive term-by-term expansion as opposed
to the state-sum approach described in Sect. 3. Ourmethod uses trace diagrams, triva-
lent spatial graphs with decorations carrying information about smoothings which
enable maintaining a biquandle coloring throughout the skein expansion.
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These are equivalent to the original state-sum biquandle brackets but can allow for
faster hand computation as well as for allowing moves and diagram reduction during
the course of the expansion. Technical conditions are identified forwhich tracemoves
(e.g., moving a strand over, under or through a trace) are permitted depending on
certain algebraic conditions being satisfied by the bracket coefficients.

In [4], another skein relation is used in the biquandle bracket setting, superfi-
cially similar to the biquandle virtual brackets described above but with the virtual
smoothing replaced with a 4-valent vertex.

This family of quantum enhancements includes Manturov’s parity bracket invariant
as special case, as well as the biquandle brackets defined in Sect. 3.

In [9], the author together with coauthor V. Rivera (a high school student at the
time) introduced the notion of quantum enhancements in the form of X -colored
TQFTs or X -colored tangle functors for the case of involutory biracks X . These
are given by matrices X±1

x,y, I,U and N over a commutative ring with identity R
corresponding to the basic X -colored tangles
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such that the tensor equations representing the X -colored Reidemeister moves and
planar isotopy moves are satisfied, where we interpret vertical stacking as matrix
product and horizontal stacking as tensor (Kronecker) product. Computer searches
for solutions to these equations proved inefficient even for small rings, so we consid-
ered X -colored braid group representations as a first step. Indeed, biquandle brackets
have so far been the best method for producing examples of this type of quantum
enhancement. For example, the biquandle bracket in Example 6 defines the following
quantum enhancement:

X11 = X22 =

⎡
⎢⎢⎣
1 0 0 0
0 0 3 0
0 3 6 0
0 0 0 1

⎤
⎥⎥⎦ , X12 =

⎡
⎢⎢⎣
5 0 0 0
0 0 1 0
0 1 2 0
0 0 0 5

⎤
⎥⎥⎦ , X21 =

⎡
⎢⎢⎣
4 0 0 0
0 0 5 0
0 5 3 0
0 0 0 4

⎤
⎥⎥⎦ ,

I =
[
1 0
0 1

]
, N = [

0 1 4 0
]
, U =

⎡
⎢⎢⎣
0
5
1
0

⎤
⎥⎥⎦ .

To compute a quantum enhancement in this format, our X -colored oriented diagrams
D f are decomposed into matrix products of tensor products of the five basic tangles
which are then replaced with the appropriate matrices and multiplied to obtain 1 × 1
matrices, i.e., ring elements. These are then multiplied by the appropriate writhe
correction factorwn−p and collected into a multiset. For example, the Hopf link with
pictured coloring decomposes as

(U ⊗U )(I ⊗ Xyx ⊗ I )(I ⊗ Xxy ⊗ I )(N ⊗ N )

The enhanced invariant for the Hopf link in Example 6 is then the multiset

⎧⎪⎪⎨
⎪⎪⎩

(U ⊗U )(I ⊗ X11 ⊗ I )2(N ⊗ N )w−2,

(U ⊗U )(I ⊗ X22 ⊗ I )2(N ⊗ N )w−2,

(U ⊗U )(I ⊗ X12 ⊗ I )(I ⊗ X21 ⊗ I )(N ⊗ N )w−2,

(U ⊗U )(I ⊗ X21 ⊗ I )(I ⊗ X12 ⊗ I )(N ⊗ N )w−2

⎫⎪⎪⎬
⎪⎪⎭

= {3(2), 3(2), 4(2), 4(2)} = {1, 1, 6, 6}

as in Example 6.
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5 Questions

We end this short survey with some questions and directions for future research.

• As mentioned in [6], biquandle 2-cocycles define biquandle brackets, and the
operation of componentwise multiplication of the biquandle bracket matrix of a
2-cocycle with a bracket representing a 2-coboundary yields a biquandle bracket
representing a cohomologous 2-cocycle. Weirdly, this also works with biquandle
brackets which do not represent 2-cocycles, extending the equivalence relation of
cohomology to the larger set of biquandle brackets.What exactly is going on here?

• So far, biquandle brackets over finite biquandles have been found primarily by
computer search using finite coefficient rings. We would like to find examples of
biquandle brackets over larger finite biquandles and over larger rings, especially
infinite polynomial rings.

• The first approach for generalization, examples of which have been considered in
[4, 7], is to apply the biquandle bracket idea to different skein relations. One may
find that skein relations which do not yield anything new in the uncolored case
can provide new invariants in various biquandle-colored cases.

• In addition to biquandle brackets, we would like to find other examples of
quantum enhancements. Possible avenues of approach include representations of
biquandle-colored braid groups, biquandle-colored Hecke algebras, biquandle-
colored TQFTs and many more.

• Like the Jones, Homflypt and Alexander polynomials, every biquandle bracket
should be susceptible to Khovanov-style categorification, providing another infi-
nite source of new knot and link invariants.

• Since biquandle brackets contain both classical skein invariants and cocycle
enhancements as special cases, we can ask which other known (families of) knot
and link invariants are also describable in this way or recoverable from biquandle
bracket invariants. For example, can every Vassiliev invariant be obtained as a
coefficient in some biquandle bracket invariant over a polynomial ring, like the
coefficients of the Jones polynomial?

• Finally, we can define quantum enhancements for coloring structures other than
biquandles and for knotted objects other than classical knots. The possibilities are
limitless!
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From Alternating to Quasi-Alternating
Links

Nafaa Chbili

Abstract In this short survey, we introduce the class of quasi-alternating links and
review some of their basic properties. In particular, we discuss the obstruction cri-
teria for links to be quasi-alternating introduced recently in terms of quantum link
invariants.

Keywords Alternating links · Quasi-alternating links · Quantum invariants ·
Link homology
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1 Introduction

Alternating links represent an important class of links in the three-sphere which
admit a simple diagrammatic definition. They have been subject to extensive study.
In particular, the study of their Jones polynomials led to the proof of old challenging
conjectures in knot theory, see [15, 27, 38]. Their Khovanov homologies are quite
simple and depend only on the Jones polynomial and the signature of the link [20].
Similarly, their link Floer homologies are determined by the Alexander polynomial
and the signature of the link [31]. In addition, the Heegaard Floer homology of their
branched double covers �L depends only on the determinant of the link, det(L).
In this context, an interesting generalization of alternating links has been obtained by
Ozsváth and Szabó [31]. They proved that this homological property of �L extends
to a wider class of links, that they called quasi-alternating links. Unfortunately,
unlike alternating links which admit a simple definition, quasi-alternating links are
defined in a recursive way. The recursive nature of the definition makes it difficult to
decide whether a given link is quasi-alternating by using only the definition. Over the
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past decade, several obstruction criteria have been developed to characterize quasi-
alternating links, see [23, 28, 31] for instance. The purpose of this paper is to give
a short introduction to the subject, focusing on the obstruction criteria introduced
recently in terms of quantum invariants of links.
This paper is organized as follows. InSect. 2,we review someproperties of alternating
links relevant to our subject. In Sect. 3, we introduce the class of quasi-alternating
links and review their basic properties. Finally, Sect. 4 will discuss some results on
the polynomial invariants of quasi-alternating links.

2 Alternating Links

A link diagram is said to be alternating if the underpass and the overpass alternate
when one travels along any component of the diagram. The alternating diagram is
reduced if it contains no nugatory crossing, see Fig. 1. A link L is alternating if it
admits an alternating diagram. Well-known examples of alternating links are two-
bridge links.While the (p, q)-torus links with p, q ≥ 3 are examples non-alternating
links.

The class of alternating links has played an important role in the development
of knot theory since its early age. This section is devoted to briefly review some
results concerning the polynomial invariants of alternating links. In 1928, Alexan-
der introduced an invariant of isotopy classes of oriented links [1]. This polynomial
invariant�L(t)which is related to the Seifert matrix can be defined in several equiv-
alent ways. In [24, 25], Murasugi proved that �L(t) for alternating knots satisfies
interesting properties. Indeed, the degree of �L(t) is equal to the genus of the knot.
Moreover, if the knot is alternating then so is the polynomial �L(t). More precisely,

if for a knot K we write �K (t) =
m∑

−m

αi t
i with α−m �= 0 and αm �= 0, then we have

the following.

Theorem 1 ([24, 25]) Suppose that K is an alternating knot, then:

1. The genus of the knot g(K ) is equal to the degree of �K (t).
2. For all i , αi �= 0 and αiαi+1 < 0, for all −m ≤ i ≤ m − 1.

In addition to the theorem above, the coefficients of the Alexander polynomial of
an alternating knot are believed to satisfy Fox trapezoidal conjecture. We refer the

Fig. 1 A link diagram with
a nugatory crossing
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Fig. 2 L+, L− and L0, respectively

reader to [11] for more details.

In 1984, Jones discovered a new polynomial invariant VL(t) of ambient isotopy
of oriented links in the three-sphere. This invariant VL(t) admits several equivalent
definitions. The simplest is the following recursive definition on link diagrams:

VU (t) = 1,

tVL+(t) − t−1VL−(t) = (
√
t + 1√

t
)VL0(t),

whereU is the unknot and L+, L− and L0 are three links which are identical except
in a small ball where they are as pictured in Fig. 2. It is worth mentioning here that
the Jones polynomial takes values in Z[t±1/2] and that for any link L , we can write

VL(t) = t s
m∑

i=0

ai t
i , where 2s ∈ Z, m ≥ 0, a0 �= 0 and am �= 0.

Kauffman [16] introduced a two-variable generalization of the Jones polynomial
which can be defined as follows. Let �(a, z) be the invariant of regular isotopy of
un-oriented link diagrams defined by the following relations:

where L+, L−, L0 and L∞ are four links which are identical except in a small ball
where they are as displayed in Fig. 3.

Let D be an oriented link diagram of a link L andw(D) its writhe. Then, the two-
variableKauffman polynomial of L is defined by FL (a, z) = a−w(D)�D(a, z), where
�D is obtained by forgetting the orientation of D. The polynomial FL is an invari-
ant of ambient isotopy of links which specializes to the Jones polynomial. Another
interesting specialization of theKauffman polynomial is the Brandt-Lickorish-Millet
polynomial Q(x), known also as the Q-polynomial [3]. This invariantwas introduced
shortly after the discovery of the Jones polynomial and it can be obtained from the
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Fig. 3 L+, L−, L0 and L∞, respectively

Kauffman polynomial as Q(x) = F(1, x).

The determinant is a numerical invariant of oriented links that was first defined
from the Seifert matrix as det(L) = |�L(−1)|. It is well known that det(L) =
|VL(−1)| = √

Q(2) and that if �L is the branched double cover of L , then det(L) is
equal to the order of the first homology group of �L . If a link L is alternating with
an alternating connected diagram D, then det(L) is known to be equal to the number
of spanning trees in the Tait graph associated with L .

Now, let us fix some notation needed in the sequel. The breadth of the Jones
polynomial of an oriented link breadthVL(t) is defined to be the difference between
the highest and the lowest power of t that appear in VL(t). We denote by degQL

the highest power of x that appears in QL(x) and by degzFL the highest power
of the variable z that appears in FL(a, z). It is well known that we have always
0 ≤ degQL ≤ degzFL. Finally, for any link L we denote by σ(L) the signature of L .
It was shown that the Jones polynomial of alternating links satisfies the following
properties [38].

Theorem 2 ([38]) If L is a non-split alternating link, then:

1. breadthVL = c(L), where c(L) is the crossing number of L.

2. VL(t) = t s
m∑

i=0

ai t
i is an alternating polynomial and if L is a prime link, other

that (2, n)-torus link, then aiai+1 < 0, for all 0 ≤ i ≤ m − 1.
3. The coefficients of the highest and lowest degree in VL(t) are both ∓1.

Inspired by this relationship between alternating diagrams and the Jones polyno-
mial, Kidwell [19] studied the Q-polynomial of alternating links and showed that if
L is a prime non-split alternating link, then degQL = c(L) − 1. Yokota [43] studied
the two-variable Kauffman polynomial of alternating links and proved that if L is
a non-split alternating link, then the reduced degree of FL(a, z), with respect to the
variable a, is equal to the crossing number of L .

The conditions on the Jones polynomials of alternating links mentioned above
led to the solution of two intriguing questions in classical knot theory asked by Tait
in the nineteenth century [39].
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1. Does a reduced alternating link diagram has minimal number of crossings?
2. Is the writhe of a reduced alternating diagram of an alternating link L an isotopy

invariant of L?

Recently, Greene, Juhász and Lackenby gave new proofs to these results using
geometric characterization of alternating links by definite spanning surfaces [9].

In 1999, Khovanov introduced a bi-graded link homology theory whose Euler
characteristic is the Jones polynomial [17]. Let L be an l-component oriented link

and K̃ H
∗,∗

be its reduced Khovanov homology, then

VL(t) =
∑

i∈Z, j∈Z+ l−1
2

(−1)i t j rank (̃K H
i, j

(L)).

Few years later, another link homology theory Ĥ FK
∗,∗

called link Floer homol-
ogy was introduced by Ozsváth and Szabó in [29] and independently by Rasmussen

in [36]. For any link L , the graded Euler characteristic of Ĥ FK
∗,∗

(L) is, up to the
multiplication by a factor, the Alexander-Conway polynomial of L . More precisely,
we have

(t−1/2 − t1/2)l−1�L(t) =
∑

j∈Z,i∈Z+ l−1
2

(−1)i+
l−1
2 t j rank(Ĥ FK

i, j
(L)).

If L is an alternating link, then the Khovanov homology of L is determined by the
Jones polynomial VL(t) and the signature of the link, σ(L). Similarly, the link Floer
homology of an alternating link depends only on the Alexander polynomial and the
signature of the link. Indeed, these links are homologically thin in both Khovanov

and link Floer homologies. In other words, both K̃ H
i, j

(L) (over Z) and Ĥ FK
i, j

(L)

(over Z2) are trivial whenever i − j �= σ(L)

2 .

3 Quasi-Alternating Links

Ozsváth and Szabó studied the Heegaard Floer homology of the branched double
cover �L of S3 branched over a link L [31]. They proved that if L is a non-split
alternating link then the homology of �L is determined by the determinant of the
link, det(L). Rational homology spheres with such simple Heegaard Floer homology
are called L-spaces. Examples of such 3-manifolds include lens spaces and Seifert
fibered manifolds with finite fundamental group. In the same paper, it was proved
that this homological property of �L extends to a wider class of links, which the
authors called quasi-alternating links. These links are defined recursively as follows.

Definition 1 The set Q of quasi-alternating links is the smallest set satisfying the
following properties:
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Fig. 4 The diagram of the
link L at the crossing c and
its smoothings L0 and L∞,
respectively

1. The unknot belongs to Q.
2. If L is a link with a diagram D containing a crossing c such that

a. both smoothings of the diagram D at the crossing c, L0 and L∞ as in Fig. 4
belong to Q;

b. det(L0), det(L∞) ≥ 1;
c. det(L) = det(L0) + det(L∞);

then L is in Q. In this case we say that L is quasi-alternating with quasi-
alternating diagram D at the crossing c.

Here are some facts about this class of links. These facts can be obtained easily
from the definition and an elementary induction on the determinant of the link.

• The determinant of a quasi-alternating link is always positive and it is equal to 1
if and only if L is the unknot.

• Any non-split alternating link is quasi-alternating at any crossing of any reduced
alternating diagram [31].

• If K1 and K2 are twoquasi-alternating knots, then so is their connected sum K1�K2,
[4].

• If L is quasi-alternating, then so is its mirror image L!
In [31], the authors used the definition to show that the non-alternating knot 947

is quasi-alternating by giving a quasi-alternating 11-crossing diagram of the knot.
A minimal quasi-alternating diagram of the knot is given below. We present 947 as
the closure of the 4-braid σ−1

1 σ2σ
−1
1 σ2σ3σ2σ

−1
1 σ2σ3, see Fig. 5. If we smooth at the

crossing c, then L0 will be the closure of the 3-braid σ−1
1 σ2σ

−1
1 σ 2

2 σ−1
1 σ2. It is indeed

the link L7a1{1} which is alternating with determinant 24. However, L∞ is the tre-
foil knot whose determinant is 3. Both L0 and L∞ are quasi-alternating and their
determinants sum to det (947) = 27.

A simple way to produce new examples of quasi-alternating links from old ones
was introduced by Champanerkar and Kofman [4]. Given a link L with quasi-
alternating diagram D at a crossing c, any link diagram obtained by replacing the
crossing c by an alternating rational tangle of the same type is quasi-alternating at
any of the new crossings. This construction was applied to prove that pretzel links
of type P(p1, . . . , pn,−q), where n ≥ 1, pi ≥ 1 for all i , and q ≥ min{p1, . . . , pn}
are quasi-alternating.
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Fig. 5 A minimal
quasi-alternating diagram of
the knot 947

c

Ozsváth and Szabó proved that if L is quasi-alternating, then �L is an L-space
which bounds a negative definite 4-manifold W with H1(W ) = 0. The Khovanov
and link Floer homologies of quasi-alternating links have been computed in [23].

Theorem 3 ([23]) If L is a quasi-alternating link, then:
(i) The reduced Khovanov homology of L is σ -thin (over Z);
(ii) The link Floer homology of L is σ -thin (over Z2);

It is worth mentioning here that the previous theorem extends to odd Khovanov
homology as well [28]. Among the 85 knots with up to 9 crossings only the two
knots 819, which is indeed the (3, 4)-torus knot, and 942 don’t satisfy the conditions
of the previous theorem. So they are not quasi-alternating. The knot 946 is odd
Khovanov homology thick, hence not quasi-alternating. All the other 82 knots are
quasi-alternating, see [2, 22, 31]. Among these 82 knots there are only 8 which are
quasi-alternating non-alternating knots:

820, 821, 943, 944, 945, 947, 948, 949.

Note that quasi-alternating diagrams of all these knots except 820 are given in
[22]. In that paper, the diagram of 946 seems to be included by mistake as it was
pointed by the author in the Arxiv version of the same paper. A quasi-alternating
diagram of 820 can be given by presenting the knot as the closure of the 3-braid
σ 5
1 σ 2

2 σ−2
1 σ−2

2 σ−1
1 σ−3

2 σ−1
1 .

For p, q ≥ 3, the (p, q)-torus knot is Khovanov homology thick, so not quasi-
alternating [37]. So are adequate non-alternating knots [18]. In general, these homo-
logical properties have been of great help in the characterization of quasi-alternating
links. However, Greene proved the existence of homologically thin non quasi-
alternating knots by showing that the knot 11n50 is homologically thin in reduced
Khovanov, odd Khovanov and link Floer homology but not quasi-alternating [7].
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Moreover, the knot 11n50 represents an example of a non-quasi-alternating knot
whose double branched cover is an L-space. This example was generalized to an
infinite family of homologically thin, hyperbolic non-quasi-alternating knots in [10].
Namely, the family of Kanenobu knots of type K (−10n, 10n + 3), for n ≥ 0. Dif-
ferent other techniques have been used to find obstructions for a link to be quasi-
alternating and led to the complete characterization of certain classes of quasi-
alternating links. In particular:

1. Quasi-alternating pretzel links have been determined, see [4, 7]. The classification
of quasi-alternating Montesinos links has been first conjectured in [5, 33], see
also [42]. Then, a complete classification has been obtained by Issa in [12].
Furthermore, Issa proved that a Montesinos link L is quasi-alternating if and
only if its double branched cover �L is an L-space and there exist a smooth
negative definite 4-manifold W1 and a smooth positive definite 4-manifold W2

whose boundaries is �L and H1(W1) = H1(W2) = 0.
2. Quasi-Alternating links of braid index atmost 3 have been determined byBaldwin

[2] based on Murasugi’s classification of 3-braids [26].

Finally, we would like to mention that as a result of careful combination of all the
above, the list of quasi-alternating knots with 10-crossings has been determined. In
addition to alternating knots, the list includes the 31 non-alternating knots below.

• 10125, 10126, 10127, 10141, 10143, 10148, 10149, 10155, 10157 and 10159 which are
closed 3-braids, see [2];

• 10150, 10151, 10156, 10158, 10162, 10163, 10164 and 10165, see [8];
• 10129, 10130, 10131, 10133, 10134, 10135, 10137, 10138, 10142, 10144, 10146, 10147 and
10160, see [4].

More comprehensive tables of quasi-alternating knots are to be found in [13].

4 Polynomial Invariants of Quasi-alternating Links

The properties of the Alexander and the Jones polynomials of alternating links sug-
gest that these polynomials might be a useful tool for the study of quasi-alternating
links as well. Since the Jones polynomial is obtained as the Euler characteristic of
the Khovanov homology, the σ−thinness of this homology implies that the Jones
polynomial of a quasi-alternating link is alternating [18]. A similar conclusion can be
made for the Alexander polynomial of quasi-alternating knots. Moreover, according
to [30] the genus of any quasi-alternating knot is equal to the degree of its Alexander
polynomial. This is indeed true for any knot whose Heegaard Floer homology is thin.
We will postpone the discussion of the Jones polynomial of quasi-alternating links to
the end of this section and start by looking at this simple obstruction defined in terms
of the Q-polynomial. Actually, by studying the relationship between the degree of
the Q-polynomials of the quadruplet L+, L−, L0 and L∞, Qazaqzeh and the author
[32] proved the following:
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Theorem 4 ([32]) If L is a quasi-alternating link, then: deg QL ≤ det(L) − 1.

Aslightlymore precise condition has been obtained byTeragaito [40] in the following
theorem:

Theorem 5 ([40]). Let L be a quasi-alternating link, then either:
(i) L is the (2, n)-torus link, or
(ii) deg QL < det(L) − 1.

These conditions are easy to test since they relay only on the computation of the
Q-polynomials. They can be used to rule out the quasi-alternating property of sev-
eral knots and links. By considering the figure eight knot, Teragaito showed that the
condition given by Theorem 5 is sharp. A nice application of Theorem 4 shows
that there are only finitely many Kanenobu knots which are quasi-alternating. The
Kanenobu knot K (p, q) is known to have determinant equal to 25 regardless of the
values of the two integers p and q, see [14]. According to [34], the degree of QK (p,q)

is |p| + |q| + 6 if pq ≥ 0 and |p| + |q| + 5 otherwise. Thus, if K (p, q) is quasi-
alternating then |p| + |q| < 19. This gives a simple proof that the interesting family
of homologically thin knots introduced in [10] is non-quasi-alternating.

Teragaito proved a similar necessary condition for links to be quasi-alternating
using the two-variable Kauffman polynomial:

Theorem 6 ([41]) Let L be a quasi-alternating link, then either:
(i) L is a (2, n)-torus link for n �= 0, and degz FL = det(L) − 1;
(ii) L is the figure-eight knot or the connected sum of two Hopf links, and degz FL =
det(L) − 2; or
(iii) degz FL ≤ det(L) − 3.

These results are stronger than the ones obtained in terms of the Q-polynomials.
Teragaito gave an infinite family of links where the condition on degQL fails to
decide on the quasi-alternateness of the link, while the condition on degz FL does.
As a consequence of the results above, Teragaito determined all the quasi-alternating
links with determinant 5 and conjectured results for those of determinant 4, [41].
Quasi-alternating links of determinant 2 and 3 have been classified earlier by Greene
[7]. Table1 summarizes the situation for quasi-alternating links with determinant at
most 5. Note that for any integers p and q, T (p, q) denotes the (p, q)-torus link.

More recently, these results about quasi-alternating links with small determinants
have been extended by Lidman and Sivek, who characterized all quasi-alternating
links with determinants less than 8, [21].

Theorem 7 ([21]) Let L be a quasi-alternating link such that det(L) ≤ 7. Then L
is either a two-bridge link or a connected sum of two-bridge links. Consequently, if
L is a non-alternating quasi-alternating link then det(L) ≥ 8.

Weclose this discussionwith the following conjecture about the Jones polynomial
of quasi-alternating links. This conjecture is obviously true for non-split alternating
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Table 1 Quasi-alternating
links with determinant less
than or equal 5

n quasi-alternating links with det (L) = n

1 01
2 21
3 31 and 31!
4 21#21 and T (2,±4)

5 41 and T (2,±5)

links. It was also proved to be true in the case of links with braid index at most 3, see
[32]. A more general conjecture has been stated in [35].

Conjecture If Lis a quasi-alternating link, then: breadthVL ≤ det(L).

Partial results related to the conjecture above and more discussions about the
Jones polynomial of quasi-alternating links can be found in [6].
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Hoste’s Conjecture and Roots
of the Alexander Polynomial

Alexander Stoimenov

Abstract The Alexander polynomial remains one of the most fundamental invari-
ants of knots and links in 3-space. Its topological understanding has led a long time
ago to the insight of what (Laurent) polynomials occur as Alexander polynomials of
arbitrary knots. Ironically, the question to characterize the Alexander polynomials of
alternating knots turns out to be far more difficult, even although in general alternat-
ing knots are much better understood. J. Hoste, based on computer verification, made
the following conjecture about 15 years ago: If z is a complex root of the Alexander
polynomial of an alternating knot, then �e z > −1. We discuss some results toward
this conjecture, about 2-bridge (rational) knots or links, 3-braid alternating links, and
Montesinos knots.

Keywords Alternating knot · Alexander polynomial · Skein polynomial ·
Rational link · 3-braid link · Polynomial root
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1 Links and Alexander Polynomial

We consider a knot S1 ↪→ S3 or (more generally) link S1 ∪ · · · ∪ S1 ↪→ S3. The
Alexander polynomial

� : { knots and links } → Z[t±1/2]
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is one of the most fundamental invariants of knots and links in 3-space. It is deter-
mined by (and studied below using) the skein relation

�
( )

− �
( )

= (
t1/2 − t−1/2

)
�

( )
, (1)

and here with the common normalization

�
(©)

= 1 .

(There is an alternative approach using Seifert matrices, Fox calculus, etc.)

Remark 1 We have �(L) ∈ Z[t±1] for links L of odd (number of) components (in
particular, for knots), and �(L) ∈ t1/2Z[t±1] for even components.

Due to its profound importance, many features of the polynomial have been stud-
ied over the years in a variety of contexts. Roots of the polynomial are related, among
others, to

• the monodromy and dynamics of surface homeomorphisms [27, 30],
• divisibility [23] and orderability [26] of knot groups, and
• statistical mechanical models of the Alexander polynomial [18].
• They are also studied in connection to Lehmer’s question on the existence of a
Mahler measure minimizing polynomial [4, 6, 29].

Remark 2 The Alexander polynomial is a priori an oriented link invariant. It is
invariant when the orientation of all components is reversed, and so for knots orien-
tation does not matter, but is does a lot for links.

There is a Conway version of �, the Conway polynomial ∇(z) ∈ Z[z]:

∇(L)(t1/2 − t−1/2) = �(L)(t) .

For an n-component link,
∇(L) ∈ zn−1

Z[z2] . (2)

The topological understanding of the Alexander polynomial has led long ago—
some time in the late 60s—to the insight of what (Laurent) polynomials occur for an
arbitrary knot.

Theorem 1 (Levine [15], Kondo [10], …) A polynomial� ∈ Z[t±1] is the Alexan-
der polynomial of a knot if and only if � satisfies

(1) �(t) = �(1/t) (reciprocity), and
(2) �(1) = 1 (unimodularity).

There is also a corresponding theorem for n-component links, which is an easy
consequence of Kondo’s proof for knots [10]. The conditions are superreciprocity
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�(t) = (−1)n−1�(1/t) ,

and a divisibility property, following from (2).
Our attention will turn now to alternating knots and links. Hoste, based on com-

puter verification, made a conjecture about 15years ago. (I learned about it from
personal communication with Murasugi.)

Conjecture 1 (Hoste’s conjecture) If z ∈ C is a root of the Alexander polynomial
� of an alternating knot, then �e z > −1.

The main goal of this note is to present, and somewhat substantiate, the content
of the author’s talk at Knots in Hellas, with strong emphasis on this conjecture. This
paper differs from the talk by leaving out the discussion of positive knots, but includes
instead a treatise of the skein polynomial. The author’s results are mostly included in
the papers [39, 40]. See also the paper by M. Hirasawa in these same Proceedings.

2 Alexander Polynomial of Alternating Links

Hoste’s conjecture fits into the more general

Problem 1 Characterize the Alexander polynomials of alternating knots (or links).

Even though in many aspects alternating knots are much better understood than
general knots, this problem seems very difficult. A complete solution is likely impos-
sible. Here is a summary of what is known.

Below are some classes of knots in relation to alternating knots (similarly links).

rational
(2-bridge)
knots

⊂ Montesinos
knots

⊂
algebraic

(arborescent)
knots

∩

alternating
knots

⊃
special

alternating
knots

Positive knots are knots with diagrams in which all crossings are positive (that
is, like the leftmost diagram in (1)). Special alternating knots are knots which are
simultaneously positive and alternating. (There are other descriptions, like saying
that in an alternating diagram, one of the checkerboard surfaces is orientable, etc.)

Let [�]k for k ∈ Z · 1

2
be the coefficient of t k in �. Define further

maximal degree max deg� = max { k ∈ Z · 1
2 : [�]k �= 0 } ,

minimal degree min deg� = min { k ∈ Z · 1
2 : [�]k �= 0 } .
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Remark 3 Degrees make sense if � �= 0. Unimodularity implies that � �= 0 for all
knots (�(−1) �= 0, because it is odd). But there are links with � = 0. However, for
an alternating link L ,

�(L) �= 0 ⇐⇒ L non-spli t (table).

(Split means that there is a sphere in S3 which separates the components of L non-
trivially.) We thus assume alternating links are non-split.

Note that (super)reciprocity implies that min deg� = −max deg�.

Definition 1 • Wecall a coefficient [�]k admissible ifmin deg� ≤ k ≤ max deg�

and k − min deg� (or max deg� − k) is an integer.
• We call � positive/negative if all its admissible coefficients are positive/negative
(and in particular non-zero).

• We call �(t) alternating if �(−t) is positive or negative.

Remark 1 implies that [�]k �= 0 only if [�]k is admissible.

Theorem 2 (Crowell-Murasugi [2, 21]) If L is an alternating knot or (non-split)
alternating link, then �L(t) is alternating.

Crowell-Murasugi prove also that if K is an alternating knot, then max deg� =
g(K ), the genus of K .

(
For a link L , it is

1 − χ(L)

2
.

)

Fox conjectured more:

Conjecture 2 (Fox’s Trapezoidal conjecture) If K is an alternating knot, then there
is a number 0 ≤ n ≤ g(K ) such that for �[k] := ∣∣[�K ]k

∣∣ we have

�[k] = �[k−1] for 0 < |k| ≤ n,

�[k] < �[k−1] for n < |k| ≤ g(K ) .
(3)

(The number n can be regarded as the half-length of the ‘upper base of the trape-
zoid’. In particular, n = 0 if the ‘trapezoid’ is a ‘triangle’.)

The Trapezoidal conjecture was verified for

• rational (2-bridge) knots [7] (and later [1]), and
• some more algebraic knots [24].

The signature of a knot σ(K ) is even and satisfies

|σ(K )| ≤ 2g(K ) . (4)

There are two extensions of the Trapezoidal conjecture. The first (made by the
author in [32]) states that for n in (3),

n ≤ |σ(K )|/2 .
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We call this the Extended Trapezoidal conjecture.
(In particular σ(K ) = 0 implies that n = 0, i.e., � is a ‘triangle’; Murasugi inde-

pendently conjectured this special case.)
There are some recent partial results toward the (Extended) Trapezoidal conjec-

ture:

• The paper [37] proves the Extended form for knots of genus g(K ) ≤ 4, using a
combinatorial method developed from Stoimenov-Vdovina [41] (and Jong [12,
13] in the ordinary form for genus g ≤ 2 using [33] and the same method);

• Ozsváth-Szabó prove the (Extended) Trapezoidal conjecture for g(K ) ≤ 2, and
|k| = g(K ) in (3) for the general case. (Using knot Floer homology [25], they
obtainmore generally certain inequalities on the coefficients of� for an alternating
knot. The Extended form follows easily in the stated special cases, even if not
explicitly treated there.)

For the second extension of the Trapezoidal conjecture [32], call a polynomial X
log-concave, if [X ]k are log-concave, i.e.

[X ]2k ≥ [X ]k+1[X ]k−1 ≥ 0 (5)

for all k ∈ Z. (We wrote ‘≥ 0’, because we want to regard only positive and alter-
nating polynomials as log-concave.)

Conjecture 3 (Log-concavity conjecture, [32]) If K is an alternating knot, then
�K (t) is log-concave.

It can be easily seen that the Log-concavity conjecture implies the Trapezoidal
conjecture. Again there is a slight refinement.

Conjecture 4 (Refined log-concavity conjecture) Equality in the left inequality of
(5) occurs for admissible [�]k only if

[�]k = [�]k−1 = [�]k+1 .

Using a method related to Stoimenov-Vdovina, I verified the (refined) log-
concavity conjecture for genus g(K ) ≤ 4 (and χ(L) ≥ −7 for links L) in [37].

3 Hoste’s Conjecture

We return to Hoste’s Conjecture 1. Still not too much is known.

1. Crowell-Murasugi: Since� is alternating, a real negative number is never a root.
Thus Hoste’s conjecture is true if all roots of � are real.
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2. Let
S1 := { t ∈ C : |t | = 1 } .

There is the following ‘folklore’ inequality:

# { zeros t of�on S1 withm t > 0} ≥ |σ(K )|
2

. (6)

Using this inequality, and work of Murasugi [22], we have that when K is
alternating,

K special alternating ⇐⇒ (4) is an equality

=⇒ all roots of� are on S1

=⇒ Hoste’s conjecture holds for special alternating knots.

3. Using (6), Stoimenov–Vdovina, and a test based onRouché’s theorem, the author
verified Hoste’s conjecture for g(K ) ≤ 4 [37].

Remark 4 ‘Folklore’ is a synonym of something everyone believes to be true, but no
one properly writes down. The history of (6) is long and confusing, but here is not
the place to get into it. See [36] for some account on this history, and ultimately the
appendix (joint with Feller) of L. Liechti’s paper [16], and Gilmer-Livingston [5] for
a (finally) written proof.

Example 1 (Mizuma, as orally quoted by Murasugi; see [35]) The (unimodular
reciprocal) polynomial

t−6 − 2t−5 + 4t−4 − 8t−3 + 16t−2 − 32t−1 + 43 − 32t + 16t2 − 8t3 + 4t4 − 2t5 + t6

is trapezoidal (and log-concave), but has the zero t ≈ −1.17597 + 1.4979i with
�e t < −1.

Thus trapezoidality (or log-concavity) of � does not imply Hoste’s conjecture. In
fact, they are almost unrelated:

Theorem 3 ([35]) Zeros of log-concave (even monic) alternating Alexander knot
polynomials are dense in C.

Monicmeans that the leading coefficient is ±1; such polynomials can be realized
by a fibered (hyperbolic) knot [34].

Remark 5 There are minor relations, e.g.,

• An alternating polynomial cannot have a real negative root.
• There are conditions when restricting the degree. For example, whenmax deg� =
2, then � alternating implies Hoste’s conjecture (Murasugi).
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4 Results for 2-Bridge Links

Rational (2-bridge) links are one important class of alternating links. Schubert’s form
[28] L = S(q, p), for p and q coprime integers with 0 < p < q, determines L up to
mirror image up to the ambiguity

± p±1 ∈ Z
∗
q . (7)

There is a continued fraction expansion of p/q ∈ Q:

p

q
= (b1, . . . , bn) = 1

b1 + 1

b2 + · · · 1

bn

(8)

Here is how to join twists into a rational tangle and close up. (Twists are composed
in a non-alternating way when the sign of bi changes.)

rational tangle rational link

(1,2,4,−4) =
34
49

S(49,34)

The ambiguity (7) allows for special types of continued fractions (8): a positive
fraction expansion (all bi > 0, giving an alternating diagram), or an even fraction
expansion (all bi �= 0 even, as used below).

Lyubich-Murasugi [19] examine the roots of � of a 2-bridge (rational) knot or
link, by studying the stability of the Seifert matrix. One of their results is:

Theorem 4 (Lyubich-Murasugi) If L is a 2-bridge knot or link, and t a root of�(L),
then −3 < �e t < 6.

One of the first results in [39] improves this as follows.

Theorem 5 ([39]) If L is 2-bridge, and �(L)(t) = 0, then

∣∣t1/2 − t−1/2
∣∣ < 2, (9)

or:
∇(L)(z) = 0 ⇒ |z| < 2 . (10)
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The author subsequently found that Theorem 5 was independently obtained by
Koseleff and Pecker [14].

Let
t ∈ C \ {0} internal : ⇐⇒ t satisfies (9),

external otherwise.
D := { t ∈ C \ {0} : t internal }.

The domain D (see [17]) is bounded by the graphs of the four functions

± f±(x) = ±
√

−x2 + 2x + 7 ± 4
√
2x + 3 .

f± is defined on
[
−3

2
, 3 ± 2

√
2
]
.

-2 2 4 6

-4

-2

2

4

A few special values are

f±
(

−3

2

)
=

√
7

2
,

f−(−1) = 0 ,

f+(−1) = √
8 ,

f±
(
3 ± 2

√
2
) = 0 . (11)

Thus (9) implies

•
− 3

2
< �e t . (12)

(improves lower bound in Lyubich-Murasugi);
•

(�e t ≤) |t | < 3 + 2
√
2 ≈ 5.8284 (13)

(improves upper bound in Lyubich-Murasugi).

Lyubich-Murasugi prove Hoste’s conjecture for certain 2-bridge links:

Theorem 6 (Lyubich-Murasugi) Consider the even expansion (8), with

bi = 2ai (ai ∈ Z \ {0}) . (14)
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• If no two consecutive ai = ±1, then Hoste’s conjecture holds.
• If no ai = ±1, then −1 < �e t < 3.

One of the advantages of the skein relation is that such a result can be improved
quite easily (proof is 1 page).

Proposition 1 ([39]) Under the previous assumption,

• if no three consecutive ai = ±1, then Hoste’s conjecture holds;
• if no ai = ±1, then |z| < 1 in (10). In particular,

3

8
< �e t and |t | <

3 + √
5

2
.

Interestingly, the two approaches—Seifert matrix (Lyubich-Murasugi) and skein
relation (the author)—meet similar difficulties.

Here the skein relation does better, but Lyubich-Murasugi have further results,
not skein theoretically recovered. For example:

Proposition 2 (Lyubich-Murasugi) If all ai > 0 in (14), then all zeros of � are real
(and in particular, Hoste’s conjecture holds).

Many related statements and special cases of the conjecturewere treated by similar
methods in Hirasawa-Murasugi’s long monograph [8] (which Hirasawa discussed in
his talk at the conference).

On the other hand, the skein approach does more. With (embarrassingly, see last
section) no reasonable class of alternating knots fully resolved, the authorwas pushed
to finally get at least one major piece done.

Theorem 7 ([40]) Hoste’s conjecture is true for rational knots (and links).

Another (purely algebraic) way of saying it is: for every sequence of polynomials

P0 = 0, P1 = 1, Pn(z) = anzPn−1(z) + Pn−2(z)

for integers an , the roots of Pn(t1/2 − t−1/2) satisfy �e t > −1.
The proof is a numero-trigonometric marathon (40–60 pages; contrast with above

Proposition 1). One (if not the) central reason is overcoming the singular behaviour
in the limiting process t → −1. One has to separate between t close to and far from
−1, which roughly results in doubling the length of the proof.

The skein approach does a few other things:

• it gives a condition on the zeros of the skein (HOMFLY-PT) polynomial of a
2-bridge link (see Sect. 7), and

• for � of more general links (below).
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5 3-Braid Alternating Links

Definition 2 The braid group Bn on n strands is given by

〈
σ1, . . . , σn−1

∣∣∣∣
[σi , σ j ] = 1 |i − j | > 1
σ jσiσ j = σiσ jσi |i − j | = 1

〉
,

with σi being the Artin standard generators. An element β ∈ Bn is an n-braid.

σi = . . .

i i + 1

σ−1
i = . . .

i i + 1

α · β =
α

β

The braid closure β̂

β −→ β = β̂

is a knot or link. (Alexander’s theorem states that all links arise this way.)

We say that a braid (word)

β =
n∏

i=1

σ qi
pi (15)

(with qi �= 0) is alternating if qiq j · (−1)pi−p j > 0 whenever i �= j .
We consider here β ∈ B3.

Theorem 8 ([31]) If an alternating link L is a closed 3-braid, then L is either
(a) a closed alternating 3-braid, or
(b) a (special alternating) pretzel link P(1, p, q, r) (p, q, r > 0; see (17) below).

For special alternating links, Hoste’s conjecture is true, so let us consider alter-
nating 3-braids. (We stipulate that all decimal constants are rounded.)
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Theorem 9 ([39]) If L is a closed alternating 3-braid, and �(L)(t) = 0, then

∣∣t1/2 − t−1/2
∣∣ < 2.45317 ,

i.e., |z| < 2.45317 in (10).

The proof (like the constant) is more technical than for Theorem 5, and is some-
what tricky, but manageable.

A discourse on non-alternating braids (and links) is:

Proposition 3 If L is a closed positive 3-braid (in (15) all qi > 0), then

∣∣t1/2 − t−1/2
∣∣ < 3.274601 .

Remark 6 It was shown in [38] that if L is a closed positive braid and closed 3-
braid, then L is a closed positive 3-braid. This is not true for 4-braids (there are
counterexamples).

Example 2 (Hirasawa) The knot 10152 is a closed positive 3-braid, but � has the
(real) root t ≈ −1.85, and therefore Hoste’s conjecture (and (9)) fails for positive
3-braid links.

6 Montesinos Links

A Montesinos link has the presentation

L = M(e, p1/q1, . . . , pn/qn) . (16)

M(4,3/11,−1/4,2/5)

In our terminology, e is the integer part, and pi/qi the fractional parts. Their
number n is called the length.
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Special cases:

• If n ≤ 2, the Montesinos link is rational.
• When e = 0 and all pi = ±1, we can sign qi so that pi = 1, and have a pretzel
link

L = M(1/q1, . . . , 1/qn) = P(q1, . . . , qn) . (17)

We accordingly call a fractional part with pi = ±1 a pretzel part.

The defining convention is that all qi > 0 and if pi < 0, then the tangle is com-
posed so as to give a non-alternating sum with a tangle with pi±1 > 0. This defines
the diagram up to mirroring. Thus one can find an alternating diagram from the pre-
sentation (16) if and only if e (when non-zero) and all pi/qi have the same sign,which
we call accordingly an alternating presentation. We call an alternating Montesinos
link to be simply alternating, if it has an alternating presentation with all fractional
parts being pretzel parts except at most one.

Here orientation issues become essential, and we distinguish:

e
p1
q1

p2
q2

pn
qn

reverse Montesinos link

e
p1
q1

p2
q2

pn
qn

parallel Montesinos link

The author’s result regarding Montesinos links is:

Theorem 10 Let L be a simply alternatingMontesinos link,�(L)(t) = 0 and t /∈ D
(i.e., t external). Then:

• If L is reverse, then �e t > 0.
• If L is parallel, then �e t > −1 and t satisfies (13).

Corollary 1 If L is a simply alternating Montesinos link, Hoste’s conjecture holds
for external zeros; in particular �(L)(t) = 0 implies (12).

One more specific statement is possible for reverse links (works also for many
non-alternating ones):

if t /∈ D, then
∣∣�e

(
z2

) ∣∣ < |z| (with z = t1/2 − t−1/2) ,

i.e., (roughly) when |t | is large, |m t | or |�e t | is small.
But there is no bound on |t |. (Murasugi has non-simply alternating examples,

where t ∈ R, t → ∞.)
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The proof is 20+ pages: still not deep, but very painful. I went into the proof for
simply alternatingMontesinos links originallymotivated to prove it for all alternating
Montesinos links, until at a very late stage I realized that the proof works only in this
restricted class…

7 Extensions to the Skein Polynomial

An advantage of using the skein relation (1), in contrast to the Seifert matrix, is that,
to a limited extent, it offers some information beyond the Alexander polynomial.
One goal is to address the skein (HOMFLY-PT) polynomial P . I report on partial
progress, although much work remains ahead.

We use the convention of P with the variables v,w, the unknot having polynomial
P = 1, and the skein relation

v−1 P
( )

− v P
( )

= w P
( )

.

Theorem 11 Let L be a 2-bridge link, and (v,w) ∈ C
2, v,w �= 0 be a root of

PL(v,w) with |v| �= 1. Then

|w| < max
k>0

(|v|2k + 1
) |v − v−1|

|1 − v2k | . (18)

Remark 7 One can restrict the maximum in (18) further to those k being a divisor
of the leading coefficient μ of the Alexander-Conway polynomial ∇(w) = P(1,w).
This is because in the presentation (8) for evenbi = 2ai �= 0, the coefficient expresses

as μ = ±
n∏

i=1
ai . In such a way, we can make sense of (18) also when |v| = 1, except

for the 2μ-th roots of unity. (Note that when v = ±1, we have theAlexander-Conway
polynomial, for which the recursion works in a slightly different way.) In particular,
for a fibered 2-bridge link (μ = ±1) one needs to take only k = ±1, and obtains

|w| < |v| + 1

|v|
instead of (18) (which is then valid except if v = ±1).

Example 3 We tested the condition (18) for several values of v on the alternating
Rolfsen [27, appendix] knots. It can identify as non-rational at least the following
ones: 815, 935, 938, 939, 941, 1049, 1053, 1063, 1069, 1078, 1096, 1097, 10101, and 10120.
The improvement explained in Remark 7 rules further out from being rational 925,
1055, 1058, 1066, and 1080.
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The complexity of (18), compared to (9), already suggests that statements about
the skein polynomial become increasingly technical. We have one (technical) result
about 3-braids.

Proposition 4 Let L be an alternating 3-braid link, and (v,w) ∈ C
2, v,w �= 0 be a

root of PL(v,w). Let l = max± |1 − v±2|.
(a) If l ≤ 1, then |w| < 3.15393.
(b) If 1 < l ≤ 1.40819, then |w| < 3.44984.

Proposition 4 has a far more limited scope, and the author does not know if it can
be ofmuch practical use. The proof is a tedious reworking of the proof for Theorem 9.
There are other strong restrictions on the skein polynomial of (even general) 3-braids,
most obviously from the Morton-Franks-Williams (MFW) inequality [3, 20], with
some refinements found in [31]. Experiments with knots in the tables of KnotScape
[9] whose skein polynomial passes the 3-braid test of the MFW inequality have not
turned up any examples interesting with regard to Proposition 4.

I have not attempted a refinement of the Montesinos link calculation, which
appears too technical.

Moreover, the recursive skein approach is difficult to use for another important
special case of P , the Jones polynomial V . This expresses as V (z) = P(z,w), with
w related to z by

w = z1/2 − z−1/2 .

(Note, for example, that under this relation, the restriction (18) is always satisfied,
and so Theorem 11 is useless.) There is indeed a denseness result in [11] about Jones
polynomial roots of alternating pretzel links. Thus caution is needed among what
classes of links the question about location of roots makes sense.

8 Further Open Questions

Apart from the classical problems mentioned earlier, several questions are related
to use of the skein method with regard to Hoste’s conjecture, and link polynomial
properties more broadly.

• A problem forMontesinos links, formulated in [34]: Is there a condition (and what
is it?) on theAlexander polynomial of an arbitraryMontesinos link?Whatever zero
location technique is used, it must naturally bypass, at least, Montesinos links with
vanishing polynomial (which—unlike among 3-braid links, for example—are not
completely described).

• Finally, Hoste’s conjecture remains also open for 3-braids. A computer test of
alternating 3-braids of even length up to 18 determined the maximum of the left
hand-side of (9) to be ≈ 1.94, which suggests that (9) may still be true. However,
as in the remark below Theorem 7, again there are serious problems in (and close
to) t = −1. See also Example 2.



Hoste’s Conjecture and Roots of the Alexander Polynomial 205

•> Important

As this material went to press, the author has learned that an alternative proof of
Theorem 7 was given by K. Ishikawa, who also announced counterexamples to
Hoste’s conjecture.

Acknowledgements The author thanks the referee and the Knots in Hellas organizers. It was a
pleasure to attend the conference.
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A Survey of Grid Diagrams and a Proof
of Alexander’s Theorem

Nancy C. Scherich

Abstract Grid diagrams are a representation of knot projections that are particularly
useful as a format for algorithmic implementation on a computer. This paper gives an
introduction to grid diagrams and demonstrates their programmable viability in an
algorithmic proof of Alexander’s Theorem. Throughout, there are detailed comments
on how to program a computer to encode the diagrams and algorithms.
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1 Introduction

Grid diagrams were first introduced by Cromwell, Dynnikov and Brunn [2–4] and
have gained popularity since the use of grids to give a combinatorial definition of knot
Floer homology [13]. They have also proved useful in determining themosaic number
of knot mosaics [9] and understanding arc index [3]. Additionally, grid diagrams
can further simplify knot invariance arguments as there are only two required grid
moves in contrast to the three required Reidemeister moves [3, 4]. The purpose
of this paper is to provide an introduction to grid diagrams and grid moves with
a focus on computer implementation. The main result of this paper is a computer
implemented, grid diagrammatic proof of the Alexander Theorem, based on the work
of Lambropoulou [7, 8, 10] and its variations by Kauffman and Lambropoulou [6].
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1.1 Grid Diagrams

A grid diagram is a square grid such that each square within the grid is decorated
with an x , o or is left blank. This is done in a manner such that every column and
every row has exactly one x and one o, see Fig. 1 for an example. The choice of x
and o decorations is a convention to mirror a tic tac toe game; one can define a grid
diagram using only a single x decoration if desired. However, using two decorations
can be useful when considering the orientation of the grid. The grid number (or
index) of a grid diagram is the number of columns (or rows) in the grid. This paper
follows the grid notation used by [13] which usesmatrix notationwith the convention
that the rows and columns are numbered top to bottom and left to right.

A grid diagram is associated with a knot by connecting the x and o decorations in
each column and row by a straight line with the convention that vertical lines cross
over horizontal lines. These lines form arcs of the knot, and removing the grid leaves
a diagram of the knot. Figure1 shows an example of this process. As a result, grid
diagrams represent particular planar projections of knots. Note that grid diagrams
are equivalent to arc presentations as representations of knots, which was originally
discovered by Brunn [2].

Here we use the word knot synonymously for a knot or link. The knot type of a
grid is the knot type of the knot associated with the grid. The arc of the grid or arc
of the knot refers to a portion of the knot that is represented in a single column or
row of the grid. There are some instances where the distinction between the x and o
decorations is important. However, for the results in this paper, it is only the location
of the decorations, and not the actual decoration that is needed.

1.1.1 Computer Implementation

Each x and o decoration has a location (row, column) which will be called a node
of the grid. We can define an object grid as a set of 2n nodes.

grid = {(r1, c1), . . . , (r2n, c2n)}

For the example grid in Fig. 1, we get the grid

{(1,2), (1,7), (2,7), (2,6), (3,3), (3,7), (4,2), (4,4), (5,3), (5,5), (6,4), (6,6), (7,1), (7,5)} .

Fig. 1 An example of a grid diagram and the process to obtain the associated knot of the grid
diagram



A Survey of Grid Diagrams and a Proof of Alexander’s Theorem 209

The notation node.row and node.column will be used to collect either the row
or column number of the node. Here are some helper functions that can be defined
on a grid diagram. To locate an arc of the knot in a row or column, one needs
to find the corresponding nodes in the same row or same column; this is accom-
plished by the function find-row-neighbor, or analogously find-column-neighbor.

find-row-neighbor
Input: node
for node in grid do

if node.row == input.row and node.column �= input.column then
return node

end if
end for

Drawing a diagram of the knot represented by the grid is as easy as plotting
lines between the nodes in each row and column. This will not encode the cross-
ing information, but it is understood that vertical lines cross over horizontal lines.
Be aware that the nodes in the grid are of the form (row, column) which is not in
Euclidean (x, y) coordinates (i.e. columns are labeled top to bottomwhich is reversed
from the standard Euclidean y-coordinate increasing bottom to top).

Euc
Input: node
return (n+node.row+1, node.column)

graph
Input: grid
for node in grid do

plot line from Euc(node) to Euc(find-row-neighbor(node))
plot line from Euc(node) to Euc(find-column-neighbor(node))

end for

1.2 Grid Moves

Thanks to the work of Cromwell and Dynnikov [3, 4], there are two grid moves
used to relate grid diagrams: (de-)stabilization and commutation. These play a role
analogous to the Reidemeister moves for knot diagrams [14]. Following the notation
from [13, 15], these grid moves are are defined below.
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Fig. 2 (de)-stabilization, or kink addition

Fig. 3 An example of an admissible column commutation

(de-)Stabilization: Stabilization is the addition of a kink while destabilization is the
removal of a kink. The term (de-)stabilization is used to describe this move without
specifying whether a kink is being added or removed. It is important to note that
(de-)stabilization does not preserve the grid number, but simply corresponds to an
isotopy of the underlying knot. A kink may be added to the right or left of a column,
above or below a row, and at any point along the arc of the knot in any row or column.
For one example, Fig. 2 shows a kink addition to row c. To do this, insert an empty
column between the x and o markers of row c. Then insert an empty row above or
below row c. Move either the x or o decoration in row c into the adjacent grid square
in the added row. Complete the added row and column with x and o decorations
appropriately.

To add a kink to a column, switch the notions of column and row. To remove
a kink, follow these instructions in reverse order. Stabilization increases the grid
number by 1 while de-stabilization reduces the grid number by 1.
Commutation: Commutation interchanges two consecutive rows or columns of a
grid diagram. This move preserves the grid number, but does not always preserve
the knot type. See Fig. 3 for an example column commutation.

When a commutation preserves the knot type of the grid, it will be called an
admissible commutation, which is explained in more detail in Sect. 1.3. The fol-
lowing theorem, due to Cromwell [3] and Dynnikov [4], see also [15], explains the
relationship between grid diagrams, knots and the two grid moves.
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Fig. 4 Reidemeister I move via grid moves

Theorem 1 Two grid diagrams have the same knot type if and only if there exists
a finite sequence of admissible commutation and (de-)stabilization grid moves to
relate one grid to the other.

One way to see this theorem is to accomplish all of the Reidemeister moves using
the two grid moves. For example, the Reidemeister I move can by done by adding a
kink and then commuting the new column, shown in Fig. 4.

1.2.1 Computer Implementation

While the commutation grid move has subtleties when admissible, it is very
straightforward to implement. Either two rows or two columns can be commuted.

column-commutation
Input: grid, column numbers i and i + 1
for node in grid with node.column i or i + 1 do

if node.column == i then
increase node.column to i + 1

else if node.column == i + 1
decrease node.column to i

end if
end for

return grid

On the other hand, (de)-stabilization is always admissible, but muchmore compli-
cated to implement. There are many different ways a kink can be added or removed,
each of which requires a separate implementation. The following algorithm will
implement the specific kink addition depicted in Fig. 2 which adds a kink below an
indicated row. This function can be gently altered to accomplish the other types of
kink addition.

specific-kink-addition
Input: grid, nodes (i, j), (i, k) with j < k
for node in grid do

if node.column > j then
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increase node.column by 1
end if
if node.row > i then

increase node.row by 1
end if

end for
replace (i, j) by (i + 1, j)
add nodes to grid: (i, j + 1), (i + 1, j + 1)

return grid

1.3 Commutation; A Closer Look

The commutation grid move is defined to interchange any two consecutive rows or
columns in a grid. Depending on the relative positions of the x and o decorations
in the columns or rows to be commuted, a commutation could change the knot type
of the grid. This section will establish some conditions under which commutation is
admissible. The results of this section focus on column commutation, but conditions
for row commutation are analogous. For a more detailed discussion, see [15].

Figure5 shows the four possible relative positions of two consecutive columns,
up to different x and o labeling and exact positioning. Denote these possibilities as
dis joint , nested, point-shared and interlocked. The terminology is justified by
observing the four instances of Fig. 5.

(a) (b) (c) (d)

Fig. 5 Consecutive columns that are: a disjoint, b nested, c point-shared, d interlocked
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Proposition 1 ([15]) Commutation of columns that are disjoint, nested or point-
shared are admissible commutations.

Proof This can be quickly proven by considering the different arc configurations of
the underlying knot diagrams, all of which commutations correspond to an isotopy
and Reidemeister I or II move. �

Depending on the arc configuration of the underlying knot, commutation of inter-
locked columns can change the knot type of the grid. So as long as the two columns
are not interlocked, then commutation is admissible.

Corollary 1 A column that has the x and o in adjacent grid squares or in outermost
grid squares can be admissibly commuted with any other column.

Proof This column can never be interlocked with another column. �

2 From Knot Diagram to Grid Diagram; An Algorithm

Cromwell proved in [3] that every knot can be represented by a grid diagram. Shown
below is a detailed algorithm of a process to create a grid diagram for a knot.
This 6 step algorithm is easy to implement and an example is shown for the Trefoil
knot in Fig. 7.
Step 1: Start with a projection of the knot in general position. Locally isotope each
crossing by a rotation so that the vertical arcs crosses over the horizontal arcs, as
show in Fig. 6.
Step 2: Rectalinearize or polygonalize the knot.
Step 3: Isotope the rectangular knot so that no two arcs are colinear.
Step 4: Superimpose a grid on top of the knot so that there is one column for every
vertical arc and one row for every horizontal arc.
Step 5: Place an x or an o on the corners of the knot in an alternating fashion so that
every row and every column of the grid has exactly one x and one o.
Step 6: Remove the arcs of the knot leaving only the grid diagram behind.

Fig. 6 Local isotopy of Step 1
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Fig. 7 An example of applying the 6 step algorithm to construct a grid diagram representing the
Trefoil knot

3 Braids and Alexander’s Theorem; A Review

Geometrically, a braid on n strands is a vertical stack of pictures of the form σi and
σ−1
i as shown in Fig. 8.
Here, σi has the strand in the i th position cross downwards behind the strand in

the (i + 1)st position, and σ−1
i has the strand in the i th position cross downwards in

front of the strand in the (i + 1)st position. A braid can be described by listing the
σi ’s that occur in order from top to bottom. Conversely, given a word in σi ’s, one can
recreate a braid by stacking the diagrams in order from top to bottom. Importantly,
what distinguishes a braid from a more general tangle is the monotonicity of the
strands and, by general position, the crossings occur at distinct heights in the braid.
This is best seen by orienting the strands with a downward flow. Braids are only

Fig. 8 A geometric visualization of the generating crossing diagrams within a braid
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Fig. 9 An example braid closure

considered up to isotopy of the strands relative to the endpoints, which preserves the
monotonicity of the strands. To get a knot from a braid, one takes the braid closure
by connecting the top endpoints of the braids to the bottom endpoints of the braid
without adding extra crossings. By convention, these new arcs wrap around the right
side of the braid, as in Fig. 9.

It is important to understand exactly what a braid closure looks like. In Fig. 9, the
knot on the right has all of its crossings on the left side, and the rest of the arcs wrap
around on the right. The crossings on the left occur as a braid, namely the crossings
occur at distinct heights and the arcs flow monotonically downward. It is clear that
some knots can be represented as the closure of a braid, but Alexander’s Theorem
gives the full result.

Alexander’s Theorem [1] Every knot diagram is isotopic to a braid closure.

There are many proofs of Alexander’s theorem, including Yamada and Vogel’s
algorithm in [16], Morton’s algorithm by threading [12], Lambropoulou’s algorithm
by eliminating upward arcs using braiding moves/L-moves [7, 8, 10] and Jones’
more casual algorithm in [5] by “throwing the bad parts over one’s shoulder”. At
first glance, one might naively try to prove Alexander’s theorem by isotoping all the
crossing of an oriented knot diagram into a bounded region, in a way that resembles
a braid closure. It is easy to force the crossings to occur at distinct heights, but the
problem that quickly arises is the arcs may not be monotone. Now Kauffman and
Lambropoulou in [6] offer a solution to fix this monotonicity by using L-moves. The
idea behind the L-move is to break an arc with the wrong orientation and replace it
by two arcs with correct orientations, as shown in Fig. 10.

Fig. 10 An abstract illustration of the L-move
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Fig. 11 An example using a sequence of L-moves to find a braid for the Fig. 8 knot

After applying an L-move, the two new vertical arcs either both lie above the
entire knot diagram, or both below. This is determined visually by the crossings of
the arc on either side of where the move is applied. The algorithm suggested by
Kauffman and Lambropoulou is to choose an orientation of the knot diagram and
apply L-moves to the upwards oriented arcs. This leaves a resulting diagram isotopic
to a braid, and the closure of this braid is isotopic the original knot. One downfall of
this procedure is the amount of visual decisions and isotopy to choose where to apply
the L-moves, and then to finally adjust the diagram to look like a braid. Figure11
shows an example of this algorithm to find a braid for the Fig. 8 knot.

4 Mid-Grid Moves and Main Result

In the closure of the braid, all of the arcs in the braid flow downward, while the
arcs in the closure flow monotonically upward. These upward arcs lie on the outside
righthand side of the braid. The idea of the mid-grid move is to move arcs of the
knot represented in the middle of a grid to the outside of the grid. This move, when
applied to an oriented knot will lead to a shape similar to the braid closure. If applied
to an arc with an upwards orientaion, this move changes the orientation of the arc to
have two downwards oriented arcs in the middle of grid, and one upward oriented
arc on the outside right of the grid.
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Fig. 12 Mid-grid move on column i

This move is the grid analogue of the L-move. There are several benefits of
interpreting this move in the grid environment. The mid-grid move can be concretely
described by a sequence of admissible commutation and (de)-stabilization gridmoves
giving a clear proof that the knot type is preserved.Additionally, there is no ambiguity
on whether the new vertical arcs will lie above or below the entire knot. Since
within the constraints of a grid, all vertical arcs cross over horizontal arcs, the new
vertical arcs can be seen as lying entirely above without question or need of visual
determination.

4.1 Mid-Grid Move on Column i

Starting with a grid diagram for the knot, keep the arcs of the knot pictured in the
grid. The mid-grid move will increase the grid size by 2 and is shown in Fig. 12 (up to
x and o labeling).

Proposition 2 The mid-grid move preserves the knot type of the grid.

Proof It suffices to show that the mid-grid move can be accomplished by a sequence
of admissible commutation and (de)-stabilization grid moves. The following fives
steps accomplish the mid-grid move and are demonstrated in Fig. 13.

Let j be the row of the top decoration and k be the row of the bottom decoration of
the arc in column i . In Fig. 13, the specific decorations have been omitted for clarity.
1. Add a kink above and to the left of row j . The new row and column are shaded

in Fig. 13.
2. The horizontal portion lying in the new row j has its endpoints in adjacent grid

squares. By Corollary 1 this row can be admissibly commuted with any other row.
So commute row j upwards j − 1 times until it is the new top row. The vertical
arc that was in column i has been shifted to column i + 1 and the bottom entry
has been shifted to row k + 1.

3. Add a kink below and to the left of the bottom endpoint of the arc in column
i + 1.
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Fig. 13 Steps 1 through 5

4. The horizontal portion of the new row is now in row k + 2. Since the horizontal
endpoints are in adjacent grid squares, again Corollary 1 gives that this row
admissibly commutes with any other row. So commute row k + 2 downwards
n − k times until it is the new bottom row.

5. The vertical arc that was originally in column i is now in column i + 2 and extends
the entire height of the grid. By Corollary 1 column i + 2 can be admissibly
commuted to the right n − i until it is the right-most column. �

4.1.1 Computer Implementation

The midgrid move, while a complicated list of commutation and (de)-stabilizations,
can be described very succinctly.
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midgrid
Input: grid, column number i
for node in grid do

increase node.row by 1
if node.column > i then

increase node.column by 1
else

if node.column= i and node.row> (find-column-neighbor(node)).row then
increase node.column by 1

end if
end if

end for
add nodes to grid: (1, i), (1, n + 2), (n + 2, i + 1), (n + 2, n + 2)
increase n by 2

return grid

4.2 A Proof of Alexander’s Theorem

Proof Start with the an oriented diagram of the knot. Follow the algorithm in Sect. 2
to get a grid diagram for the knot, but leave the arcs of the knot on the grid. Locate
the columns where the orientation is upwards. Perform mid-grid moves on those
columns in successive order starting with the furthest right column and work one by
one to the left. This will leave a grid diagram so that all the crossings are on the left
side with orientations flowing downwards, pictured in Fig. 14.

Now that all of the crossings have been grouped together with the appropriate
downward orientation, the last hurdle is to create monotonicity of the crossings; each
row needs to have only one crossing. To achieve this, working from top to bottom,
identify the first row that has more than one crossing. Because of the downward
orientation, there are only two possibilities for how the horizontal arc in the row
enters and exists the row.

Fig. 14 Resulting grid format after performing all necessary mid-grid moves
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Fig. 15 Adding downward kinks

Fig. 16 Adding upward kinks

Fig. 17 Assignment rules for σi and σ−1
i

One possibility is that the arc enters the row on the left of the crossings and exists
on the right.Working from left to right, add a kink downward in between each vertical
arc passing through the row, shown in Fig. 15. This forces each crossing to happen
in a separate row.

The other possibility is that the horizontal portion of the arcs enters the row on the
right and exists on the left. Working form left to right, add a kink upwards between
each vertical stand, as in Fig. 16, again forcing each crossing to happen in a separate
row.

At this point, you can read off the desired braid word by assigning a braid element
to each row and listing the elements from top to bottom. Rows with out a crossing get
assigned the identity braid element. Each row with a crossing gets assigned either a
σi or σ−1

i using the rules in Fig. 17.
The index i depends only on the number of vertical arcs passing through the row

to the left of the crossing. Notice that it is not enough to just consider the column
number of the crossing. There may be many columns to the left of the crossing
without a vertical arc and these columns do not count towards the index of the σi .
Whether you assign a generator σi or its inverse depends only on where (to the left
or right of the crossing) the end of the horizontal arc enters the row. �
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Fig. 18 Algorithm result for the Trefoil knot

Example: Starting with the grid diagram of a trefoil knot described earlier, this
algorithm finds the braid σ 3

1 , shown in Fig. 18.

4.2.1 Computer Implementation

A working implementation in Python can be found in [11].
The first step in this algorithm is to fix an orientation of the knot within the grid.

Because this implementation utilizes object oriented design, we define a new object
type OrientedGrid which adds two attributes to the nodes:

(row, column, in-orientation, out-orientation).

Here the in/out-orientations are above, below, le f t or right . These correspond to
the in-orientation flowing in from left, in from above, or the out-orientation is flowing
to the left, to the box above etc.

For example, the oriented node (1, 2, below, right) shows: .

Every grid has many different associated OrientedGrids. However, there are
only two OrientedGrids that give rise to an orientation of the associated knot.
The in and out orientations must agree on every row, column and node. The
following algorithm systematically traverses the grid to produce an Oriented-
Grid that does gives rise to one choice of orientation for the associated knot.

orient
Input: grid, start= first node in grid
if find-row-neighbor(start).column > start.column then

set out-orientation of start to “right”
else

set out-orientation of start to “left”
end if
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previous-node = start
current-node = find-row-neighbor(start)
while True do

if previous-node.row == current-node.row then
if previous-node.column > current-node.column then

set in-orientation of current-node to “left”
else:

set in-orientation of current-node to “right”
end if
next = find-col-neighbor(current-node)
if next.row > current-node.row then

set out-orientation of current-node to “below”
else

set out-orientation of current-node to “above”
end if

else
if previous-node.col == current-node.col then

if previous-node.row > current-node.row then
set in-orientation of current-node to “above”

else
set in-orientation of current-node to “below”

end if
next = find-row-neighbor(current-node)
if next.column > current-node.column then

set out-orientation of current-node to “right”
else

set out-orientation of current-node to “left”
end if
break if current-node=start

end if
end if

end while
return OrientedGrid

Now, all of the machinery is in place to implement the algorithm described in
the proof of Alexander’s Theorem, which we will call grid-to-braid. As written, the
grid-to-braid algorithm will not output a braid word, but will output a diagram of the
knot represented by the grid after the appropriate midgrid moves are applied. The
user then would have to manually make the crossings monotone and assign braid
elements to each row, which is a simple visual process.
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Fig. 19 Computer generated output grid diagram

grid-to-braid
Input: grid
OrientedGrid = orient(grid)
for node in OrientedGrid do

mark node if out-orientation is “above”
end for
for marked nodes in OrientedGrid do

if node.column is largest column of marked nodes then
OrientedGrid = midgrid(node, node.column)

end if
end for
return graph(OrientedGrid)

Example: The code in [11] when applied to the grid in Fig. 1 outputs the diagram in
Fig. 19.

This diagram requires two adjustments because rows 6 and 10 each have two cross-
ings. After adjusting, this diagramgives the braidword σ2σ1σ

−1
2 σ−1

1 σ−1
1 σ−1

2 σ−1
2 σ−1

1 .
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Extending the Classical Skein

Louis H. Kauffman and Sofia Lambropoulou

Abstract We summarize the theory of a new skein invariant of classical links H [H ]
that generalizes the regular isotopy version of the Homflypt polynomial, H . The
invariant H [H ] is based on a procedure where we apply the skein relation only to
crossings of distinct components, so as to produce collections of unlinked knots
and then we evaluate the resulting knots using the invariant H and inserting at the
same time a new parameter. This procedure, remarkably, leads to a generalization of
H but also to generalizations of other known skein invariants, such as the Kauffman
polynomial. We discuss the different approaches to the link invariant H [H ], the
algebraic one related to its ambient isotopy equivalent invariant�, the skein-theoretic
one and its reformulation into a summation of the generating invariant H on sublinks
of a given link. We finally give examples illustrating the behaviour of the invariant
H [H ] and we discuss further research directions and possible application areas.
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Introduction

In this expository paper we summarize the theory of the new generalized skein
invariant of links H [H ] based on the regular isotopy version H of the 2-variable
Jones or Homflypt polynomial P . Recall that regular isotopy refers to invariance
under the second and the third Reidemeister moves, while ambient isotopy refers to
invariance under all three Reidemeister moves. We assume that the reader is familiar
with the Reidemeister moves. Recall also that a skein invariant can be computed on
each link diagram solely by the use of skein relations and a set of initial conditions.

The invariant H [H ] in its ambient isotopy versionwas originally discovered in [9]
viaYokonuma–Hecke algebra traces andwas named�. As shown in [9], the invariant
� depends on three variables, and it is stronger than the Homflypt polynomial on
links and different from theKauffman polynomial. It was shown in [9] that� satisfies
the skein relation of P , but only if it is applied on mixed crossings, that is, crossings
formed by distinct components, or else if it is applied on a single knot. Then � is
evaluated via a two-level procedure: for a given link we first untangle its compound
knots using the skein relation of P and only then we evaluate on unions of unlinked
knots by applying a new rule which is based on the evaluation of P on each knot,
introducing at the same time a new variable, E . On knots the invariant � has the
same evaluation as P . In [9] a list of six 3-component links are given, which are
Homflypt equivalent but are distinguished by the invariant� and thus also by H [H ].
See Table1 in Sect. 1.

It was further discovered by W. B. R. Lickorish [9, Appendix] that the invariant
� on a given link can be expressed by the closed combinatorial formula (1) given
in Sect. 1, which is a summation over products of linking numbers and Homflypt
evaluations of sublinks. The Lickorish formula can, thus, serve as a definition for �.

In [46] we give for the first time a self-contained skein theoretic proof for the
invariant �.

A succinct exposition of the above can be found in [40]. These constructions
opened the way to new research directions, cf. [1–3, 8–15, 19, 22–26, 28, 32–37,
45, 46, 53].

More precisely, let L denote the set of classical oriented link diagrams. Let also
L+ be an oriented diagram with a positive crossing specified and let L− be the same
diagram but with that crossing switched. Let also L0 indicate the same diagram but
with the smoothing which is compatible with the orientations of the emanating arcs
in place of the crossing, see (1). The diagrams L+, L−, L0 comprise a so-called
oriented Conway triple.

(1)

L+ L− L0

We then have the following:
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Theorem 1 (cf. [46]) Let H(z, a) denote the regular isotopy version of theHomflypt
polynomial. Then there exists a unique regular isotopy invariant of classical oriented
links H [H ] : L → Z[z, a±1, E±1], where z, a and E are indeterminates, defined by
the following rules:

1. On mixed crossings the following mixed skein relation holds:

where denote an oriented Conway triple,
2. For a union of r unlinked knots, Kr := �r

i=1Ki , with r ≥ 1, it holds that:

H [H ](Kr ) = E1−r H(Kr ).

We recall that the invariant H(z, a) is determined by the following rules:

(H1) For L+, L−, L0 an oriented Conway triple, the following skein relation holds
for mixed or self-crossings:

H(L+) − H(L−) = z H(L0),

(H2) The indeterminate a is the positive curl value for H :

H( ) = a H( ) and H( ) = a−1 H( ),

(H3) On the standard unknot:
H(©) = 1.

We also recall that the above defining rules imply the following:
(H4) For a diagram of the unknot, U , H is evaluated by taking:

H(U ) = awr(U ),

where wr(U ) denotes the writhe of U –instead of 1 that is the case in the
ambient isotopy category.

(H5) H being the Homflypt polynomial, it is multiplicative on a union of unlinked
knots, Kr := �r

i=1Ki . Namely, for η := a−a−1

z we have:

H(Kr ) = ηr−1�r
i=1H(Ki ).

Consequently, the evaluation of H [H ] on the standard unknot is H [H ](©) =
H(©) = 1.

In [46], we give for the first time a self-contained skein theoretic proof of the
existence of � (in the form of H [H ]), which was missing in the literature. We work
out the skein theory from first principles, in order to investigate how it applies to this
new invariant.
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Recall further that one can obtain the classical Homflypt polynomial P from its
regular isotopy counterpart H via the formula:

P(L) := a−wr(L)H(L),

where wr(L) is the total writhe of the oriented diagram L . Analogously, from our
generalized regular isotopy invariant H [H ] one can derive an ambient isotopy invari-
ant P[P], which is precisely the invariant � mentioned earlier, via the formula
[45, 46]:

� = P[P](L) := a−wr(L)H [H ](L). (2)

Furthermore, for an oriented link L on n components, we have the Lickorish-type
combinatorial formula for H [H ]:
Theorem 2 (cf. [45, 46]) Let L be an oriented link with n components. Then

H [H ](L) =
n∑

k=1

ηk−1Ek

∑

π

H(πL) (3)

where the second summation is over all partitions π of the components of L into
k (unordered) subsets and H(πL) denotes the product of theHomflypt polynomials of
the k sublinks of L defined by π . Furthermore, Ek = (E−1 − 1)
(E−1 − 2) . . . (E−1 − k + 1) and η = a−a−1

z .

The reader should note that the formula above (the right hand side) is, by its very
definition, a regular isotopy invariant of the link L . This follows from the regular
isotopy invariance of H and the well-definedness of summing over all partitions of
the link L into k parts. In fact the summations Ik(L) = ∑

π H(πL), where π runs
over all partitions of L into k parts, are each regular isotopy invariants of L . What
is remarkable here is that these all assemble into the new invariant H [H ](L) with
its striking two-level skein relation. We see from this combinatorial formula how
the extra strength of H [H ](L) comes from its ability to detect certain sublinks of
Homflypt-equivalent links. It further becomes clear from (3) that the linking numbers
of sublinks, appearing in formula (1), do not play an intrinsic role in the theory.

In Sect. 3 of this paperwe give the proof of Theorem2 by proving by induction that
it satisfies the two-tiered skein relations. Hence, formula (3) can be used as a math-
ematical basis for H [H ] and one could understand the skein relations on that basis.

In [46] we develop the skein theory for H [H ] in its full generality, namely by
considering a 4-variable invariant H [R], where we separate the two types of skein
operations and which allows for R to be either H or any specialization of H . Yet, as it
was observed by Karvounis [39], the full invariant H [R] is topologically equivalent
to the 3-variable invariant H [H ]. The 4-variable formulation is, nevertheless, useful
for clarifying the logic of the skein theoretic proofs of invariance. It could also be
useful in some specific applications.

In [45]weuse the 3-variable formulation exclusively andweproceedwith defining
associated state sum models for the new invariants. These state sums have a double
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level due to the combination in our invariants of a skein calculation combined with
the evaluation of a specific invariant on the knots that are at the bottom of the skein
process. In [45] we discuss the context of statistical mechanics models and partition
functions in relation to multiple level state summations and we speculate about
possible applications for these ideas.

The skein-theoretic method generalizes also the Kauffman (Dubrovnik) polyno-
mial to a new invariant of links in a completely analogous manner. The same is true
for the Lickorish formula [45, 46] and the two-tiered state sum model construction
[45]. This paper concentrates only on the Homflypt polynomial.

We note that there are only a few known skein invariants in the literature for
classical knots and links. Skein invariants include: the Alexander–Conway polyno-
mial [4, 5], the Jones polynomial [29], and the Homflypt polynomial [20, 30, 50,
52, 54], which specializes to both the Alexander–Conway and the Jones polynomial;
there is also the bracket polynomial [41], the Brandt–Lickorish–Millett–Ho poly-
nomial [6], the Dubrovnik polynomial, and the Kauffman polynomial [42], which
specializes to both the bracket and the Brandt–Lickorish–Millett–Ho polynomial.
More recently, we have the Juyumaya–Lambropoulou family of invariants �d,D

[34] and the analogous Chlouveraki–Juyumaya–Karvounis–Lambropoulou family
of invariants �d(q, λd) and their generalization �(q, λ, E) [9], which specializes
to the Homflypt polynomial. Finally, we have the regular isotopy analogue H [H ] of
�(q, λ, E) and the Kauffman–Lambropoulou generalizations K [K ] and D[D] of
the Kauffman and the Dudrovnik polynomials [45, 46]. These recent constructions
alter the philosophy of classical skein-theoretic techniques, whereby mixed as well
as self-crossings in a link diagram would get indiscriminately switched. In the skein
approach to the invariants �d , �, H [H ], K [K ] and D[D] one first unlinks all com-
ponents using the skein relation of a known skein invariant and then one evaluates
that skein invariant on unions of unlinked knots, introducing at the same time a new
variable.

The paper is organized as follows: In Sect. 1 we detail on the initial algebraic
construction of the recently discovered skein invariants �d and �. In Sect. 2 we
present the main ideas for the skein-theoretic proof of the existense of the invariant
H [H ] (Theorem 1). In Sect. 3 we prove the Lickorish-type closed combinatorial
formula for H [H ] (Theorem 2). In Sect. 4 we give two key examples illustrating the
behaviour of the invariant H [H ]. In the first example we show by direct calculation
how H [H ], specialized to directly generalize the Jones polynomial, detects a link (the
Thistlethwaite Link) whose linking is invisible to the Jones polynomial. In the second
example we detail how to specialize H [H ] so that it generalizes and strengthens
the Kauffman bracket polynomial. Finally, in Sect. 5 we discuss further theoretical
research directions emanating from the results presented in this paper, as well as
possible relationships with two-tiered physical processes, such as strand switching
and replication of DNA, particularly the possible relations with the replication of
Kinetoplast DNA.
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1 The Discovery of the Invariant �

Our motivation for the above generalization H [H ] of the invariant H as well as of
the Kauffman polynomial [45, 46] is the following: In [34] 2-variable framed link
invariants �d,D were constructed for each d ∈ N via the Yokonuma–Hecke algebras
Yd,n(u), the Juyumaya trace and specializations imposed on the framing parameters
of the trace, where D is any non-empty subset of Z/dZ. When restricted to classical
links, seen as links with zero framings on all components, these invariants give rise to
ambient isotopy invariants for classical links�d,D .We note that for d = 1 the algebra
Y1,n coincides with the Iwahori–Hecke algebra of type A, the trace coincides with
the Ocneanu trace and the invariant �1,{1} coincides with the Homflypt polynomial,
P . The invariants �d,D were studied in [10, 35], especially their relation to P , but
topological comparison had not been possible due to algebraic and diagrammatic
difficulties.

Eventually, in [9, 15] another presentation using a different quadratic relation for
the Yokonuma–Hecke algebra was adopted from [13] and the classical link invari-
ants related to the new presentation of the Yokonuma–Hecke algebras were now
denoted �d,D . For d = 1, �1,{1} also coincides with P with variables related to the
corresponding different presentation of the Iwahori–Hecke algebra. Consequently,
in [9] a series of results were proved, which led to the topological identification of
the invariants �d,D and to their generalization to a new 3-variable ambient isotopy
invariant�. Firstly, it was shown that the invariants�d,D can be enumerated only by
d and so they were denoted as �d . It was also shown that on knots the invariants �d

are topologically equivalent to the Homflypt polynomial. Namely, if K is a knot, then

�d(q, z)(K ) = P(q, dz)(K ).

The above result was generalized to unions of unlinked knots. Namely, if Kr :=
�r
i=1Ki is a union of r unlinked knots, we have

�d(q, z)(Kr ) = 1/d1−r P(q, dz)(Kr ).

It was further shown in [9] that the invariants �d satisfy on any oriented link
diagram L a mixed skein relation on mixed crossings of L:

where L+, L−, L0 is an orientedConway triple andλd := dz−(q−q−1)

dz . The above skein
relation is identical to the skein relation of the Homflypt polynomial P considered
at variables (q, λd). As a consequence, the invariants �d can be computed directly
from the diagram L by applying the mixed skein relation between pairs of different
components and gradually decomposing L into unions of unlinked knots that result
as mergings of components of L via the smoothings in the mixed skein relation.
Then, one has to evaluate the Homflypt polynomials of the unions of unlinked knots.
Namely:
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�d(L) =
c∑

k=1

1

d1−k

∑

	∈K k

p(	) P(	),

where c is the number of components of the link L ,K k denotes the set of all split links
	with k split components, obtained from L by applying the mixed skein relation, for
k = 1, . . . , c, and p(	) are the coefficients coming from the application of the mixed
skein relation. Finally, the above enabled in [9] the topological distinction of the
invariants �d from the Homflypt polynomial on Homflypt-equivalent pairs of links.
Indeed, we present below data from [9]. Out of 4188 links (with up to 11 crossings),
there are 89 pairs of P-equivalent links that do not differ just by orientation, that
is, they are different links if considered as unoriented links. Using the data from
LinkInfo [7], the invariants �d were computed in [9] on all of them. Out of these 89
P-equivalent pairs of links, 83 are still�d -equivalent for generic d, yet we found that
the following six pairs of 3-component P-equivalent links are not �d -equivalent
for every d ≥ 2:
The reader is referred to [9] or http://www.math.ntua.gr/~sofia/yokonuma for details
of the computations.

To summarize, the family of invariants {�d(q, λd)}d∈N is a family of relatively
new skein invariants for links that includes the Homflypt polynomial P for d = 1
and are distinct from P for each d > 1. The invariants �d are also distinct from the
Kauffman polynomial, since they are topologically equivalent to P on knots [9, 15].

In [9] it is further proved that the family of invariants {�d(q, λd)}d∈N generalizes to
a new 3-variable skein link invariant�(q, λ, E), which is defined skein-theoretically
on link diagrams by the following inductive rules:

1. On mixed crossings the following skein relation holds:

2. For Kr := �r
i=1Ki , a union of r unlinked knots, with r ≥ 1, it holds that:

�(Kr ) = E1−r P(Kr ).

The invariant � specializes to P for E = 1 and to �d for E = 1/d, and thus is
stronger than P . Further, � satisfies the same properties as the invariants �d and P ,
namely:multiplicative behaviour on connected sums, inversionof certain variables on
mirror images, non-distinction of mutants. For details see [15]. The well-definedness
of � is proved in [9] by comparing it to an invariant � for tied links, constructed

Table 1 Six P-equivalent pairs of 3-component links that are not �-equivalent

L11n358{0, 1} L11n418{0, 0} L10n79{1, 1} L10n95{1, 0}
L11a467{0, 1} L11a527{0, 0} L11a404{1, 1} L11a428{0, 1}
L11n325{1, 1} L11n424{0, 0} L10n76{1, 1} L11n425{1, 0}

http://www.math.ntua.gr/~sofia/yokonuma
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from the algebra of braids and ties [1], but using now the new quadratic relation
for it. The invariant � is analogous but, as computational evidence indicates, not
the same as the invariant � for tied links of Aicardi and Juyumaya [2]. In Sect. 2
belowwe sketch an independent purely skein-theoretic proof for thewell-definedness
of �.

Finally, in [9, Appendix B]W.B.R. Lickorish proved the following closed combi-
natorial formula for the invariant� on an oriented link L with n components (proved
also in [53] with different methods), showing that it is a mixture of Homflypt poly-
nomials and linking numbers of sublinks of a given link:

�(L) =
n∑

k=1

μk−1Ek

∑

π

λν(π)P(πL), (1)

where the second summation is over all partitions π of the components of L into k
(unordered) subsets and P(πL) denotes the product of the Homflypt polynomials
of the k sublinks of L defined by π . Furthermore, ν(π) is the sum of all linking
numbers of pairs of components of L that are in distinct sets of π , Ek = (E−1 −
1)(E−1 − 2) . . . (E−1 − k + 1), with E1 = 1, and μ = λ−1/2−λ1/2

q−q−1 . We see from this
combinatorial formula that the extra strength of �d and � comes from its ability
to detect linking numbers and non-triviality of certain sublinks of the link L . In
our regular isotopy formulation [45, 46], see Sect. 3 below, the linking numbers are
eventually irrelevant.

2 Sketch of the Proof of Theorem 1

In this section we present the main ideas for proving Theorem 1 by skein-theoretic
methods applied on link diagrams. The full details can be found in [46].

Assuming Theorem 1, one can compute H [H ] on any given oriented link diagram
L by applying the following two-level procedure: skein rule (1) of Theorem 1 can
be used to give an evaluation of H [H ](L+) in terms of H [H ](L−) and H [H ](L0)

or of H [H ](L−) in terms of H [H ](L+) and H [H ](L0). We choose to switch mixed
crossings so that the switched diagram is more unlinked than before. Applying this
principle recursively we obtain a sum with polynomial coefficients and evaluations
of H [H ] on unions of unlinked knots. These knots are formed by the mergings of
components caused by the smoothings in the skein relation (1). To evaluate H [H ]
on a given union of unlinked knots we then use the invariant H according to rule
(2) of the Theorem. Note that the appearance of the indeterminate E in rule (2) for
H [H ] is the critical difference between H [H ] and H . Finally, formula (H5) after
Theorem 1 allows evaluations of the invariant H on individual knotted components
and knowledge of H provides the basis for this.

More precisely, we apply the following algorithm for computing H [H ](L):
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Step 1: Order the components of L and choose a basepoint on each component.
Then L becomes a generic diagram.

Step 2: Start from the chosen point of component no. 1 and go along it in the direction
of its orientation. When arriving at a mixed crossing for the first time along
an under-arc switch it by rule (1), so that we pass by the mixed crossing
along the over-arc. At the same time smooth the mixed crossing, obtaining
a new diagram in which the two components of the crossing merge into one.
Repeat for all mixed crossings of the first component. In the end, among
all resulting diagrams there is only one with the same number of crossings
as the initial diagram and in this one this component gets unlinked from
the rest and lies above all of them. The other resulting diagrams have one
less crossing and have the first component fused together with some other
component. All resulting diagrams become generic by inheriting the choices
made on L .

Step 3: Proceed similarly with the second component of the maximal crossing dia-
gram of Step 1, switching all its mixed crossings except for crossings involv-
ing the first component. In the end the second component gets unliked from
all the rest and lies below the first one and above all others in the maximal
crossing diagram, while we also obtain diagrams containing mergings of the
second component with others (except component one). Again all resulting
diagrams inherit the generic choices from the starting one.

Step 4: Continue in the same manner with all components in order, starting each
time from the maximal crossing diagram of the previous step.

Step 5: Apply the same procedure to all product diagrams coming from smoothings
of mixed crossings. In the end we obtain a maximal crossing diagram which
is a descending stack of knots, dL , the unlinked version of L , plus a linear
sum of generic link diagrams 	 with unlinked components resulting from
the mergings of different components.

Step 6: After all applications of rule (1) of Theorem 1 we have a linear sum of
evaluations on split links 	. The evaluation of H [H ] on each 	 reduces to the
evaluation H(	) by rule (2), where r is the number of knotted components
of 	. In the end we obtain a linear sum of the values of the H [H ] on all
resulting split links 	:
H [H ](L) = ∑c

k=1 E
1−k

∑
	∈K k p(	) H(	), where p(	) are the coefficients

coming from the applications of the mixed skein relation. Then, on each
H(	) rule (H5) applies and then rules (H1)–(H5) are employed.

The evaluation H [H ](L) is an element in the ring of finite Laurent polynomials
Z[z, a±1, E±1] in three variables z, a, E .

For proving Theorem 1 one has to show that for any generic link diagram L
the evaluation of H [H ](L) is independent of the choices made and invariant under
regular isotopy moves, that is, Reidemeister moves II and III.

Our proof [46] follows in principle the logic of Lickorish–Millett of the well-
definedness of the Homflypt polynomial [50] but with the necessary adaptations
and modifications, taking for granted the well-definedness of H . The fact that the



234 L. H. Kauffman and S. Lambropoulou

+

ji

+
ji ji ij

Fig. 1 Changing the sequence of switching mixed crossings

process treats self-crossings and mixed crossings differently is the main difference
from [50] and it causes the need of special arguments. The main difficulty lies in
proving independence of the computations under the sequence of mixed crossing
switches.

Take for example the case where two mixed crossings need to be switched, which
are shared between the same components, as abstracted in Fig. 1. Then, switching the
first one causes the second one to become a self-crossing in the smoothed diagram,
so we cannot operate on it. Changing now the order of switches results in different
diagrams, which are not comparable in an obvious way, as is the case in [50]. In
order to compare the polynomials before and after one needs first to reach down
to the unlinked components of the diagrams and then apply the skein relation of
the invariant H on the self-crossings in question. The complexity of the argument
depends on the number of mixed crossings shared by the same components that need
to be switched. So, our proof is done by induction on the distance of a generic diagram
from its associated descending stack and not on the total number of crossings as in
the classical argument [50].

A generic diagram on r components is said to be a descending stack if, when
walking along the components of Kr in their given order following the orientations
and starting from their basepoints, every mixed crossing is first traversed along its
over-arc. Clearly, the structure of a descending stack no longer depends on the choice
of basepoints; it is entirely determined by the order of its components. Note also that
a descending stack is isotopic to the corresponding split link Kr comprising the r
knotted components of the initial diagram. The descending stack of knots associated
to a given generic link diagram L by applying the computing algorithm on L is
denoted dL .

The distance of L from dL is the number of mixed crossing switches needed to
arrive at dL by applying the computing algorithm. Clearly, the distance of a generic
diagram is well-defined. We note that, if the generic diagram L has distance n from
dL and rule (1) is applied on L within the computing algorithm, then the other
two resulting diagrams have distances less than n from their associated descending
stacks, if we assume that they are generic and their generic choices are inherited
from L . Note finally that the distance of a descending stack is zero. The same is
true for knots, on which we assume the well-definedness of H . Clearly, the basis of
the induction is the set of all descending stacks, and rule (2) of Theorem 1 applies.
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Namely, for a descending stack of knots Kr we define H [H ](Kr ) := E1−r R(Kr ).
We then assume that the statement is valid for all generic link diagrams of distance
less than n. Our aim is to prove that the statement is valid for all diagrams of distance
n, independently of choices and Reidemeister II and III moves. More precisely, we
prove for a generic diagram L of distance n:

• If the mixed crossings of L that differ from those of dL are switched in any
sequence to achieve dL , then the corresponding polynomial H [H ](L) does not
change.

• The polynomial H [H ](L) does not depend on the choice of basepoints (which is
an immediate consequence of the above).

• The polynomial H [H ](L) satisfies the skein relation (1) of Theorem 1 on mixed
crossings not increasing the distance.

• The polynomial H [H ](L) is invariant under Reidemeister II and Reidemeister III
moves.

• The polynomial H [H ](L) is independent of the order of the components of L .

The proof of Theorem 1 then follows from the above. Once this Theorem is in
place and by normalizing H [H ] to obtain its ambient isotopy counterpart (recall
(2)), we have a direct skein-theoretic proof of the well-definedness of the invariant
�, without the need of algebraic tools or the theory of tied links.

3 The Proof of Theorem 2

In this section we prove the closed combinatorial formula (3) for our regular iso-
topy invariant H [H ]. See also [45, 46]. As we mentioned in the Introduction, in
[9, Appendix B] W. B. R. Lickorish provides an analogous closed combinatorial
formula for the definition of the invariant � = P[P], that uses the Homflypt poly-
nomials and linking numbers of sublinks of a given link.
Proof of Theorem 2 We present the proof in full detail, as we believe it is instructive
and it proves the existence of H [H ]. Before proving the result, note the following
equalities:

H(L1 � L2) = η H(L1) H(L2),

H [H ](L1 � L2) = η

E
H [H ](L1) H [H ](L2).

In the case where both L1 and L2 are knots the above formuli follow directly from
rule (H5) and rule (2) of Theorem 1. If at least one of L1 and L2 is a true link, then
the formuli follow by doing independent skein processes on L1 and L2 for bringing
them down to unlinked components, and then using the defining rules above.

Suppose now that a diagram of L is given. The proof is by induction on the number
n of the components of L and on the number u of crossing changes between distinct
components required to change L to n unlinked knots. If n = 1 there is nothing to
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prove. So assume the result true for n − 1 components and u − 1 crossing changes
and prove it true for n and u.

The induction starts when u = 0. Then L is the union of n unlinked compo-
nents L1, . . . , Ln . A classic elementary result concerning the Homflypt polyno-
mial shows that H(L) = ηn−1H(L1) . . . H(Ln). Furthermore, in this situation, for
any k and π , H(πL) = ηn−k H(L1) . . . H(Ln). Note that H [H ](L) = E1−nH(L) =
ηn−1E1−nH(L1) . . . H(Ln). So, it is required to prove that:

ηn−1E1−n = ηn−1
n∑

k=1

S(n, k)(E−1 − 1)(E−1 − 2) . . . (E−1 − k + 1), (1)

where S(n, k) is the number of partitions of a set of n elements into k subsets. Now
it remains to prove that:

E1−n =
n∑

k=1

S(n, k)(E−1 − 1)(E−1 − 2) . . . (E−1 − k + 1). (2)

However, in the theory of combinatorics, S(n, k) is known as a Stirling number of the
second kind and this required formula is a well-known result about such numbers.

Now let u > 0. Suppose that in a sequence of u crossing changes that changes L
into unlinked knots, the first change is to a crossing c of sign ε between components
L1 and L2. Let L ′ be L with the crossing changed and L0 be L with the crossing
annulled. Now, from the definition of H [H ],

H [H ](L) = H [H ](L ′) + εz H [H ](L0).

The induction hypotheses imply that the result is already proved for L ′ and L0 so:

H [H ](L) =
n∑

k=1

ηk−1Ek

∑

π ′
H(π ′L ′) + εz

n−1∑

k=1

ηk−1Ek

∑

π0

H(π0L0), (3)

where π ′ runs through the partitions of the components of L ′ and π0 through those
of L0.

A sublink X0 of L0 can be regarded as a sublink X of L containing L1 and L2 but
with L1 and L2 fused together by annulling the crossing at c. Let X ′ be the sublink
of L ′ obtained from X by changing the crossing at c. Then

H(X) = H(X ′) + εz H(X0).

This means that the second (big) term in (3) is
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n−1∑

k=1

ηk−1Ek

∑

ρ

(
H(ρL) − H(ρ ′L ′)

)
, (4)

where the summation is over all partitions ρ of the components of L for which L1

and L2 are in the same subset and ρ ′ is the corresponding partition of the components
of L ′.

Note that, for any partition π of the components of L inducing partition π ′ of L ′,
if L1 and L2 are in the same subset then we can have a difference between H(πL)

and H(π ′L ′), but when L1 and L2 are in different subsets then

H(π ′L ′) = H(πL). (5)

Thus, substituting (4) in (3) we obtain:

H [H ](L) =
n∑

k=1

ηk−1Ek

(∑

π ′
H(π ′L ′) +

∑

ρ

(
H(ρL) − H(ρ ′L ′)

))
, (6)

where π ′ runs through all partitions of L ′ and ρ through partitions of L for which L1

and L2 are in the same subset. Note that, for k = n the second sum is zero. Therefore:

H [H ](L) =
n∑

k=1

ηk−1Ek

(∑

π ′
H(π ′L ′) +

∑

ρ

H(ρL)

)
, (7)

where π ′ runs through only partitions of L ′ for which L1 and L2 are in different
subsets and ρ through all partitions of L for which L1 and L2 are in the same
subset. Note that in the transition from (6) to (7) the partition set π ′ changes from all
partitions of L ′ to only partitions of L ′ for which L1 and L2 are in different subsets.
The equality in (7) follows from the equality in (6) once this difference in partitions
is appreciated. Hence, using (7) and also (5), we obtain:

H [H ](L) =
n∑

k=1

ηk−1Ek

∑

π

H(πL)

and the induction is complete. �
The combinatorial formula (3) shows that the strength of H [H ] against H comes

from its ability to distinguish certain sublinks of Homflypt-equivalent links. Note
that in the formula no linking numbers of sublinks are involved.

The formula (3) can be regarded by itself as a definition of the invariant H [H ], in
the same way that the original Lickorish formula (1) can be regarded as a definition
for the invariant � = P[P]. Clearly, the two formulae, for H [H ] and for �, are
intechangeable by writhe normalization, recall (2).
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4 Examples

As pointed out in the Introduction, in Theorem 1 we could specialize the z, the a
and the E in any way we wish. For example, if a = 1 then H(z, 1) becomes the
Alexander–Conway polynomial, while if z = √

a − 1/
√
a then H(

√
a − 1/

√
a, a)

becomes the unnormalized Jones polynomial V ′. Furthermore, for the ambient iso-
topy version P[P] of H [H ], which coincides with the invariant � [9], we have for
E = 1/d that P[P] coincides with the invariant �d (for E = 1 it coincides with
P), recall Sect. 1. For z = √

a − 1/
√
a the invariant P[P] is renamed to V [V ], V

denoting the ambient isotopy version of the Jones polynomial, and it coincides with
the 2-variable specialization of �, θ(a, E) [26]. The invariant θ generalizes V and
is stronger than V .

We shall now present two examples illustrating the behaviour and strength of the
invariant H [H ], also presented in [26, 45, 46].

Example 1

Here is an example, worked by L. Kauffman and D. Goundaroulis, showing how
H [H ] and the combinatorial formula give extra information in the case of a
2-component link. We will use the ambient isotopy version of the Jones polyno-
mial V and so first work with a skein calculation of V and then with a calculation
of the generalized invariant V [V ]. We use the link ThLink first found by Morwen
Thisthlethwaite [58] and generalized by Eliahou, Kauffman and Thistlethwaite [17].
This link of two components is not detectable by the Jones polynomial, but it is
detectable by our extension of the Jones polynomial. In doing this calculation, Louis
Kauffman and Dimos Goundaroulis used Dror Bar Natan’s Knot Theory package for
Mathematica. In this package the Jones polynomial is a function of q and satisfies
the skein relation:

q−1VK+(q) − qVK−(q) = (q1/2 − q−1/2)VK0(q)

where K+, K−, K0 is a usual skein triple. Let

a = q2, z = (q1/2 − q−1/2), b = qz, c = q−1z.

Then we have the skein expansion formulae:

VK+ = aVK− + bVK0 and VK− = a−1VK+ − cVK0 .

In Fig. 2 we show the Thistlethwaite link that is invisible to the Jones polynomial. In
the same figure we show an unlink of two components obtained from the Thisthleth-
waite link by switching four crossings. In Fig. 3 we show the links K1, K2, K3, K4

that are intermediate to the skein process for calculating the invariants of L by first
switching only crossings between different components. From this it follows that the
knots and links in the figures indicated here satisfy the formula
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ThLink UnLink

Fig. 2 The Thistlethwaite Link and Unlink

K1 2 3 4
K K K

Fig. 3 The links K1, K2, K3, K4

VThLink = bVK1 + abVK2 − ca2VK3 − acVK4 + VUnlinked .

This can be easily verified by the specific values computed in Mathematica:

VThLink = −q−1/2 − q1/2

VK1 = −1 + 1

q7
− 2

q6
+ 3

q5
− 4

q4
+ 4

q3
− 4

q2
+ 3

q
+ q

VK2 = 1 − 1

q9
+ 3

q8
− 4

q7
+ 5

q6
− 6

q5
+ 5

q4
− 4

q3
+ 3

q2
− 1

q

VK3 = 1 − 1

q9
+ 2

q8
− 3

q7
+ 4

q6
− 4

q5
+ 4

q4
− 3

q3
+ 2

q2
− 1

q

VK4 = −1 − 1

q6
+ 2

q5
− 2

q4
+ 3

q3
− 3

q2
+ 2

q
+ q

VUnlinked = 1

q13/2
− 1

q11/2
− 1

q7/2
+ 1

q3/2
− 1√

q
− q3/2

This is a computational proof that the Thistlethwaite link is not detectable by the
Jones polynomial. If we compute V [V ]ThLink then we modify the computation to:

V [V ]ThLink = bVK1 + abVK2 − ca2VK3 − acVK4 + E−1VUnlinked .
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and it is quite clear that this is non-trivial when the new variable E is not equal to 1.
On the other hand, the Lickorish formula for this case tells us that, for the regular

isotopy version of the Jones polynomial V ′[V ′]ThLink ,

V ′[V ′]ThLink = η(E−1 − 1)V ′
K1
V ′
K2

+ V ′
ThLink(q)

whenever we evaluate a 2-component link. Note that η(E−1 − 1) is non-zero when-
ever E 	= 1. Thus it is quite clear that the Lickorish formula detects the Thisthleth-
waite link since the Jones polyomials of the components of that link are non-trivial.
We have, in this example, given two ways to see how the extended invariant detects
the link ThLink. The first way shows how the detection works in the extended skein
theory. The second way shows how it works using the Lickorish formula.

Example 2

In this example, we point out how to see a generalization of the Jones polynomial (in
Kauffman bracket form) as a specialization of our invariant H [H ]. We begin with an
expansion formula for the bracket polynomial that is adapted to our situation. View
Fig. 4. At the top of the figurewe show the standard oriented expansion of the bracket.
If the reader is familiar with the usual unoriented expansion [43], then this oriented
expansion can be read by forgetting the orientations. The oriented states in this state
summation contain smoothings of the type illustrated in the far right hand terms of the
two formulas at the top of the figure. We call these disoriented smoothings since two
arrowheads point to each other at these sites. Then by multiplying the two equations
by A and A−1 respectively, we obtain a difference formula of the type: A < K+ >

−A−1 < K− >= (A2 − A−2) < K0 >, where K+ denotes the local appearance of
a positive crossing, K− denotes the local appearance of a negative crossing and K0

denotes the local appearance of standard oriented smoothing. The difference equation

Fig. 4 Oriented bracket
with Homflypt skein relation A A

-1

A A
-1

{K} = A      <K>
wr(K)

Define

A - A
-1

(A   - A2 -2 )

(A   - A2 -2 )

.
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eliminates the disoriented terms. It then follows easily from this difference equation
that if we define a curly bracket by the equation

{K } = Awr(K ) < K >

where wr(K ) is the diagram writhe, then we have a Homflypt type relation for {K }
as follows:

{K+} − {K−} = (A2 − A−2){K0}. (1)

This means that we can regard {K } as a specialization of the Homflypt polynomial
and so we can use it as the invariant H for H [H ].

From Fig. 4 it is not difficult to see that

{K+} = A2{K0} + {K∞} (2)

and
{K−} = A−2{K0} + {K∞}. (3)

Here K∞ denotes the disoriented smoothing shown in the figure. These formulas
then define the skein expansion for the curly bracket. The reader should note that the
difference of these two expansion Eqs. (2) and (3) is the skein relation (1) for the
curly bracket in Homflypt form.

5 Discussing Mathematical Directions and Applications

We shall now discuss some possible research directions emanating from the results
presented in the paper. We further contemplate how these new ideas can be applied
to physical situations. For more discussion and new research problems the interested
reader is directed to [46].

1. The categorification of the new skein invariants is another interesting problem.
For the invariant θ(q, E), which generalizes the Jones polynomial and is a spe-
cialization of �(q, z, E) this is accomplished in [8].

2. While the Homflypt polynomial is linked with the knot algebras discussed in
Sect. 1, it is an open and interesting question to have a similar full connection to
an appropriate knot algebra for the generalization of the Kauffman polynomial
[45, 46], such as the framization of the BMW algebra proposed in [36, 37]. See
also [3].

3. Another direction for further research is to extend the results in [9, 45, 46] to the
area of skein modules and invariants of links in three-manifolds, and invariants
of three-manifolds (see for example [14, 16, 19, 21, 27, 48, 49, 55, 59]).
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4. In [45] we give state summation models for the new invariants, based on the
skein process for computing them. That is, we use the skein process that first
unlinks links and then computes invariants on stacks of knots.We systematize this
process and write it as a state summation that is a version of the skein template
algorithm explained in [44]. The interest in rewriting as a state summation is
that we can then interface our work with ideas from both statistical mechanics
and from state models for knot invariants. We also can examine how this state
summation process with its multiple levels may be analogous to the way certain
physical systems have structural levels. These matters are discussed in detail in
[45]. We will return to these themes in subsequent papers on the subject.

5. In DNA, strand switching using topoisomerases of types I and II is vital for the
structure of DNA recombination and DNA replication [18]. The mixed interac-
tion of topological change and physical evolution of the molecules in vitro may
benefit from a mixed state summation that averages quantities respecting the
hierarchy of interactions.

6. Remarkably, the process of separation and evaluation described in [9, 45, 46] and
also here is analogous to proposed processing of Kinetoplast DNA [51] where
there are huge links of DNA circles and these must undergo processes that both
unlink them from one another and produce new copies for each circle of DNA.
The double-tiered structure of DNA replication for the Kinetoplast appears to
be related to the mathematical patterns of our double state summations. For
chainmail DNA, if the reader examines the Wiki on Kinetoplast DNA, he/she
will note that Topoisomerase II figures crucially in the self-replication [47].
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From the Framisation
of the Temperley–Lieb Algebra
to the Jones Polynomial: An Algebraic
Approach
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Abstract We prove that the Framisation of the Temperley–Lieb algebra is
isomorphic to a direct sum of matrix algebras over tensor products of classical
Temperley–Lieb algebras.We use this result to obtain a closed combinatorial formula
for the invariants for classical links obtained from aMarkov trace on the Framisation
of the Temperley–Lieb algebra. For a given link L, this formula involves the Jones
polynomials of all sublinks of L, as well as linking numbers.
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1 Introduction

The Temperley–Lieb algebra was introduced by Temperley and Lieb [33] for its
applications in statistical mechanics. Jones later showed that the Temperley–Lieb
algebra can be seen as a quotient of the Iwahori–Hecke algebra of type A [15, 16].
He defined a Markov trace on it, now known as the Jones–Ocneanu trace, and used it
to construct his famous polynomial link invariant, the Jones polynomial. This trace
is also obtained as a specialisation of a trace defined directly on the Iwahori–Hecke
algebra of type A, which in turn yields another famous polynomial link invariant, the
HOMFLYPT polynomial (also known as the 2-variable Jones polynomial) [13, 30].

Yokonuma–Hecke algebras were introduced byYokonuma [34] as generalisations
of Iwahori–Hecke algebras. In particular, the Yokonuma–Hecke algebra of type A
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is the centraliser algebra associated to the permutation representation with respect
to a maximal unipotent subgroup of the general linear group over a finite field. In
later years, Juyumaya transformed its presentation to “almost” the one we use in
this paper and defined a Markov trace on it [17–19]. Following Jones’s method,
Juyumaya and Lambropoulou used this trace to construct invariants for framed [20,
21], classical [22] and singular [23] links. The exact presentation for the Yokonuma–
Hecke algebra used in this paper is due to the author and Poulain d’Andecy, who
modified Juyumaya’s generators in [6].Although the constructionof theMarkov trace
with the new generators remains similar, the invariants for framed and classical links
obtained from it are not topologically equivalent to the Juyumaya–Lambropoulou
ones. This was shown in [1], where the new invariants were constructed and studied.
From then on, these are the “standard” link invariants obtained from the Yokonuma–
Hecke algebra of type A. As was shown in [1], they are not topologically equivalent
to the HOMFLYPT polynomial and they can be generalised to a 3-variable skein link
invariant which is stronger than the HOMFLYPT. In the Appendix of [1], Lickorish
gave a closed combinatorial formula for the value of these invariants on a linkLwhich
involves the HOMFLYPT polynomials of all sublinks of L and linking numbers. The
same formula was obtained independently by Poulain d’Andecy and Wagner [29]
with a method that we will discuss at the end of the introduction.

However, even prior to these recent results, there has been algebraic and topologi-
cal interest in finding the analogue of the Temperley–Lieb algebra in the Yokonuma–
Hecke algebra context. On the one hand, it would be a quotient of the Yokonuma–
Hecke algebra of type A such that the Markov trace on it would yield a link invariant
more general (and now known to be stronger) than the Jones polynomial. On the
other hand, it would be an example of the “framisation technique” proposed in [24],
according to which known algebras producing invariants for classical links can be
enhanced with extra generators to produce invariants for framed links; the foremost
example is the Yokonuma–Hecke algebra of type A which can be seen as the “frami-
sation” of the Iwahori–Hecke algebra of type A.

Goundaroulis, Juyumaya, Kontogeorgis and Lambropoulou defined and studied
three quotients of the Yokonuma–Hecke algebra of type A as potential candidates
[10, 11]. The onewith the biggest topological interest was named “Framisation of the
Temperley–Lieb algebra” and it is the one that produces the suitable generalisation
of the Jones polynomial. The claim that this algebra is the natural analogue of the
Temperley–Lieb algebra in this context is backed up algebraically by our findings
in [4, 5], where we studied the representation theory of this algebra and we proved
the isomorphism theorem that we present in the current article (we also studied
similarly the other two candidates in [3, 5]). This isomorphism theorem states that
the Framisation of the Temperley–Lieb algebra is isomorphic to a direct sum of
matrix algebras over tensor products of Temperley–Lieb algebras. This result makes
the Framisation of the Temperley–Lieb algebra the ideal analogue of the Temperley–
Lieb algebra in view of Lusztig’s isomorphism theorem [27], later reproved by Jacon
and Poulain d’Andecy [14], Espinoza and Ryom–Hansen [8] and Rostam [31], that
states that the Yokonuma–Hecke algebra of type A is isomorphic to a direct sum
of matrix algebras over tensor products of Iwahori–Hecke algebras of type A. To



From the Framisation of the Temperley–Lieb Algebra … 249

prove our result we use the exposition by Jacon and Poulain d’Andecy, where the
presentation of the Yokonuma–Hecke algebra of [6] is used. In fact, in the current
article we do not use the modified presentation that we used in [4, 5], but we reprove
the results with the presentation of [6] in order to be with agreement with the most
recent topologically oriented papers on the subject (for example, [1, 12, 28], etc.).
Finally, our isomorphism theorem allows us to determine a basis for the Framisation
of the Temperley–Lieb algebra.

In the second part of the paper, we discuss the Markov traces on the Temperley–
Lieb algebra and its Framisation, and explain howwecanuse them todefine invariants
for classical links from the former and for framed and classical links from the latter.
We give several definitions of the traces. First, for the Jones–Ocneanu trace, we give
the original definition of [16] of a trace that needs to be normalised and re-scaled to
produce a link invariant, and another one which is already invariant under positive
and negative stabilisation. As far as the Juyumaya trace is concerned, the original
definition of [18] is also of a trace that needs to be normalised and re-scaled to
produce a link invariant (under certain conditions discussed in detail in Sect. 4.3),
and its stabilised version appears as a particular case of theMarkov traces defined and
classified by Jacon and Poulain d’Andecy in [14]. Using these stabilised traces and
the isomorphism theorem for the Yokonuma–Hecke algebra, Poulain d’Andecy and
Wagner in [29] obtained closed formulas that connect the values of these traces on a
link L with the values of the HOMFLYPT polynomials of all sublinks of L, as well as
their linking numbers. For a certain choice of parameters (see [28, Remarks 5.4] for
details), they obtain Lickorish’s formula. Here, we consider stabilisedMarkov traces
on the Framisation of the Temperley–Lieb algebra, and thanks to our isomorphism
theorem, we obtain an analogue of this formula for the link invariants obtained in this
case; for a given link L, this formula involves the Jones polynomials of all sublinks
of L and linking numbers. This formula has been obtained independently in [12] as
a specialisation of Lickorish’s formula.

2 The Temperley–Lieb Algebra and Its Framisation

In this section, we give the definition of the Temperley–Lieb algebra as a quotient of
the Iwahori–Hecke algebra of type A given by Jones [16], as well as the definition of
the Framisation of the Temperley–Lieb algebra as a quotient of theYokonuma–Hecke
algebra of type A given by Goundaroulis–Juyumaya–Kontogeorgis–Lambropoulou
[11]. From now on, let n ∈ N, d ∈ N

∗, and let q be an indeterminate. Set R :=
C[q, q−1].
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2.1 The Iwahori–Hecke Algebra Hn(q)

The Iwahori–Hecke algebra of type A, denoted byHn(q), is an R-associative algebra
generated by the elements

G1, . . . , Gn−1

subject to the following braid relations:

GiGj = GjGi for all i, j = 1, . . . , n − 1 with |i − j| > 1,
GiGi+1Gi = Gi+1GiGi+1 for all i = 1, . . . , n − 2,

(1)

together with the quadratic relations:

G2
i = 1 + (q − q−1)Gi for all i = 1, . . . , n − 1. (2)

Remark 1 If we specialise q to 1, the defining relations (1)–(2) become the defining
relations for the symmetric group Sn. Thus, the algebra Hn(q) is a deformation of
C[Sn], the group algebra of Sn over C.

Remark 2 The relations (1) are defining relations for the classical braid group Bn on
n strands. Thus, the algebra Hn(q) arises naturally as a quotient of the braid group
algebra R[Bn] over the quadratic relations (2).

Let w ∈ Sn and let w = si1si2 . . . sir be a reduced expression for w, where si

denotes the transposition (i, i + 1). We define �(w) := r to be the length of w. By
Matsumoto’s lemma, the element Gw := Gi1Gi2 . . . Gir is well defined. It is well-
known that the setBHn(q) := {Gw}w∈Sn forms a basis ofHn(q) overR, which is called
the standard basis. One presentation of the standard basis BHn(q) is the following:

{
(Gi1Gi1−1 . . . Gi1−k1) . . . (Gip Gip−1 . . . Gip−kp)

∣∣∣∣ 1 ≤ i1 < · · · < ip < n
ij − kj ≥ 1 ∀ j = 1, . . . , p

}

In particular, Hn(q) is a free R-module of rank n!.

2.2 The Temperley–Lieb Algebra TLn(q)

Let i = 1, . . . , n − 2. We set

Gi,i+1 := 1 + qGi + qGi+1 + q2GiGi+1 + q2Gi+1Gi + q3GiGi+1Gi =
∑

w∈〈si,si+1〉
q�(w)Gw.

We define the Temperley–Lieb algebra TLn(q) to be the quotient Hn(q)/In, where
In is the ideal generated by the element G1,2 (if n ≤ 2, we take In = {0}). We have
Gi,i+1 ∈ In for all i = 1, . . . , n − 2, since

Gi,i+1 = (G1G2 . . . Gn−1)
i−1 G1,2 (G1G2 . . . Gn−1)

−(i−1).



From the Framisation of the Temperley–Lieb Algebra … 251

Jones [15] has shown that the set BTLn(q) defined as:

{
(Gi1Gi1−1 . . . Gi1−k1) . . . (Gip Gip−1 . . . Gip−kp )

∣∣∣∣ 1 ≤ i1 < · · · < ip < n
1 ≤ i1 − k1 < · · · < ip − kp < n

}

is a basis of TLn(q) as an R-module. In particular, TLn(q) is a free R-module of rank
Cn, where Cn denotes the n-th Catalan number, that is,

Cn = 1

n + 1

(
2n

n

)
= 1

n + 1

n∑
k=0

(
n

k

)2

.

2.3 The Yokonuma–Hecke Algebra Yd,n(q)

The Yokonuma–Hecke algebra of type A, denoted by Yd ,n(q), is an R-associative
algebra generated by the elements

g1, . . . , gn−1, t1, . . . , tn

subject to the following relations:

(b1) gigj = gjgi for all i, j = 1, . . . , n − 1 with |i − j| > 1,
(b2) gigi+1gi = gi+1gigi+1 for all i = 1, . . . , n − 2,
(f1) titj = tjti for all i, j = 1, . . . , n,

(f2) tjgi = gitsi(j) for all i = 1, . . . , n − 1 and j = 1, . . . , n,

(f3) td
j = 1 for all j = 1, . . . , n,

(3)

where si denotes the transposition (i, i + 1), together with the quadratic relations:

g2
i = 1 + (q − q−1) ei gi for all i = 1, . . . , n − 1, (4)

where

ei := 1

d

d−1∑
s=0

ts
i td−s

i+1 . (5)

Note that we have e2i = ei and eigi = giei for all i = 1, . . . , n − 1. Moreover, we
have

tiei = ti+1ei for all i = 1, . . . , n − 1. (6)

Remark 3 If we specialise q to 1, the defining relations (3)–(4) become the defining
relations for the complex reflection group G(d , 1, n) ∼= (Z/dZ) 
 Sn. Thus, the alge-
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bra Yd ,n(q) is a deformation of C[G(d , 1, n)]. Moreover, for d = 1, the Yokonuma–
Hecke algebra Y1,n(q) coincides with the Iwahori–Hecke algebra Hn(q) of type A.

Remark 4 The relations (b1), (b2), (f1) and (f2) are defining relations for the classical
framed braid group Fn

∼= Z 
 Bn, where Bn is the classical braid group on n strands,
with the tj’s being interpreted as the “elementary framings” (framing 1 on the jth
strand). The relations td

j = 1 mean that the framing of each braid strand is regarded
modulo d . Thus, the algebra Yd ,n(q) arises naturally as a quotient of the framed braid
group algebra R[Fn] over the modular relations (f3) and the quadratic relations (4).
Moreover, relations (3) are defining relations for the modular framed braid group
Fd ,n

∼= (Z/dZ) 
 Bn, so the algebra Yd ,n(q) can be also seen as a quotient of the
modular framed braid group algebra R[Fd ,n] over the quadratic relations (4).
Remark 5 The generators gi satisfying the quadratic relation (4) were introduced in
[6]. In all the papers [2, 10, 11, 18, 21–23] prior to [6], the authors consider the
braid generators gi := gi + (q − 1) eigi (and thus, gi = gi + (q−1 − 1) eigi), which
satisfy the quadratic relation

g2
i = 1 + (q2 − 1) ei + (q2 − 1) ei gi , (7)

and the Yokonuma–Hecke algebra is defined over the ring C[q2, q−2]. Note that

eigi = qeigi for all i = 1, . . . , n − 1. (8)

Remark 6 In [4, 5], we consider the braid generators g̃i := qgi, which satisfy the
quadratic relation

g̃2
i = q2 + (q2 − 1) ei g̃i , (9)

and the Yokonuma–Hecke algebra is defined over the ring C[q2, q−2]. Note that

ei g̃i = qeigi for all i = 1, . . . , n − 1. (10)

Let w ∈ Sn and let w = si1si2 . . . sir be a reduced expression for w. By Mat-
sumoto’s lemma, the element gw := gi1gi2 . . . gir is well defined. Juyumaya [18] has
shown that the set

BYd ,n(q) := {ta1
1 ta2

2 . . . tan
n gw | 0 ≤ a1, a2, . . . , an ≤ d − 1, w ∈ Sn}

forms a basis of Yd ,n(q) over R, which is called the standard basis. In particular,
Yd ,n(q) is a free R-module of rank dnn!.



From the Framisation of the Temperley–Lieb Algebra … 253

2.4 The Framisation of the Temperley–Lieb Algebra
FTLd,n(q)

Let i = 1, . . . , n − 2. We set

gi,i+1 := 1 + qgi + qgi+1 + q2gigi+1 + q2gi+1gi + q3gigi+1gi =
∑

w∈〈si,si+1〉
q�(w)gw.

We define the Framisation of the Temperley–Lieb algebra to be the quotient
Yd ,n(q)/Id ,n, where Id ,n is the ideal generated by the element e1e2 g1,2 (if n ≤ 2, we
take Id ,n = {0}). Note that, due to (6), the product e1e2 commutes with g1 andwith g2,
so it commutes with g1,2. Further, we have eiei+1gi,i+1 ∈ Id ,n for all i = 1, . . . , n − 2,
since

eiei+1gi,i+1 = (g1g2 . . . gn−1)
i−1 e1e2 g1,2 (g1g2 . . . gn−1)

−(i−1).

Remark 7 The ideal Id ,n is also generated by the element
∑

0≤a,b≤d−1 ta
1 tb

2 t−a−b
3 g1,2.

Remark 8 For d = 1, the Framisation of the Temperley–Lieb algebra FTL1,n(q)

coincides with the classical Temperley–Lieb algebra TLn(q).

Remark 9 In [11], the Framisation of the Temperley–Lieb algebra is defined to be
the quotient Yd ,n(q)/I d ,n, where I d ,n is the ideal generated by the element e1e2 g1,2,
where

g1,2 = 1 + g1 + g2 + g1g2 + g2g1 + g1g2g1.

Due to (8) and the fact that the ei’s are idempotents, we have e1e2 g1,2 = e1e2 g1,2,
and so Id ,n = I d ,n.

Remark 10 In [4, 5], we define the Framisation of the Temperley–Lieb algebra to be
the quotient Yd ,n(q)/̃Id ,n, where Ĩd ,n is the ideal generated by the element e1e2 g̃1,2,
where

g̃1,2 = 1 + g̃1 + g̃2 + g̃1g̃2 + g̃2g̃1 + g̃1g̃2g̃1.

Due to (10) and the fact that the ei’s are idempotents, we have e1e2 g̃1,2 = e1e2 g1,2,
and so Id ,n = Ĩd ,n

3 An Isomorphism Theorem for the Framisation
of the Temperley–Lieb Algebra

Lusztig has proved that Yokonuma–Hecke algebras are isomorphic to direct sums
of matrix algebras over certain subalgebras of classical Iwahori–Hecke algebras
[27, §34]. For the Yokonuma–Hecke algebras Yd ,n(q), these are all tensor products
of Iwahori–Hecke algebras of type A. This result was reproved in [14] using the
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presentation of Yd ,n(q) given by Juyumaya. Since we use the same presentation, we
will use the latter exposition of the result in order to prove an analogous statement
for FTLd ,n(q).

3.1 Compositions and Young Subgroups

Let μ ∈ Compd (n), where

Compd (n) = {μ = (μ1, μ2, . . . , μd ) ∈ N
d | μ1 + μ2 + · · · + μd = n}.

We say that μ is a composition of n with d parts. The Young subgroup Sμ

of Sn is the subgroup Sμ1 × Sμ2 × · · · × Sμd , where Sμ1 acts on the letters
{1, . . . , μ1}, Sμ2 acts on the letters {μ1 + 1, . . . , μ1 + μ2}, and so on. Thus, Sμ

is a parabolic subgroup of Sn generated by the transpositions sj = (j, j + 1) with
j ∈ J μ := {1, . . . , n − 1} \ {μ1, μ1 + μ2, . . . , μ1 + μ2 + · · · + μd−1}.

We have an Iwahori–Hecke algebra Hμ(q) associated with Sμ, which is the
subalgebra of Hn(q) generated by {Gj | j ∈ J μ}. The algebra Hμ(q) is a free R-
module with basis {Gw | w ∈ Sμ}, and it is isomorphic to the tensor product (over
R) of Iwahori–Hecke algebrasHμ1(q) ⊗ Hμ2(q) ⊗ · · · ⊗ Hμd (q) (withHμi (q) ∼= R
if μi ≤ 1).

For i = 1, . . . , d , we denote by ρμi the natural surjectionHμi (q) � Hμi (q)/Iμi
∼=

TLμi (q), where Iμi is the ideal generated by Gμ1+···+μi−1+1,μ1+···+μi−1+2 if μi > 2 and
Iμi = {0} if μi ≤ 2. We obtain that ρμ := ρμ1 ⊗ ρμ2 ⊗ · · · ⊗ ρμd is a surjective R-
algebra homomorphismHμ(q) � TLμ(q), whereTLμ(q) denotes the tensor product
of Temperley–Lieb algebras TLμ1(q) ⊗ TLμ2(q) ⊗ · · · ⊗ TLμd (q).

3.2 An Isomorphism Theorem for the Yokonuma–Hecke
Algebra Yd,n(q)

Let {ξ1, . . . , ξd } be the set of all d -th roots of unity (ordered arbitrarily). Let χ

be an irreducible character of the abelian group Ad ,n
∼= (Z/dZ)n generated by the

elements t1, t2, . . . , tn. There exists a primitive idempotent of C[Ad ,n] associated
with χ defined as

Eχ :=
n∏

j=1

(
1

d

d−1∑
s=0

χ(ts
j )t

d−s
j

)
=

n∏
j=1

(
1

d

d−1∑
s=0

χ(tj)
std−s

j

)
.

Moreover, we can define a composition μχ ∈ Compd (n) by setting

μ
χ

i := #{j ∈ {1, . . . , n} | χ(tj) = ξi} for all i = 1, . . . , d .
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Conversely, given a composition μ ∈ Compd (n), we can consider the subset
Irrμ(Ad ,n) of Irr(Ad ,n) defined as

Irrμ(Ad ,n) := {χ ∈ Irr(Ad ,n) | μχ = μ}.

There is an action of Sn on Irrμ(Ad ,n) given by

w(χ)(tj) := χ(tw−1(j)) for all w ∈ Sn, j = 1, . . . , n.

Let χμ
1 ∈ Irrμ(Ad ,n) be the character given by

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

χ
μ
1 (t1) = · · · = χ

μ
1 (tμ1) = ξ1

χ
μ
1 (tμ1+1) = · · · = χ

μ
1 (tμ1+μ2) = ξ2

χ
μ
1 (tμ1+μ2+1) = · · · = χ

μ
1 (tμ1+μ2+μ3) = ξ3

...
...

...
...

...
...

...

χ
μ
1 (tμ1+···+μd−1+1) = · · · = χ

μ
1 (tn) = ξd

The stabiliser of χ
μ
1 under the action of Sn is the Young subgroup Sμ. In each left

coset inSn/Sμ, we can take a representative ofminimal length; such a representative
is unique (see, for example, [9, §2.1]). Let

{πμ,1, πμ,2, . . . , πμ,mμ
}

be this set of distinguished left coset representatives of Sn/Sμ, with

mμ = n!
μ1!μ2! . . . μd !

and the convention that πμ,1 = 1. Then, if we set

χ
μ

k := πμ,k(χ
μ
1 ) for all k = 1, . . . , mμ,

we have
Irrμ(Ad ,n) = {χμ

1 , χ
μ
2 , . . . , χμ

mμ
}.

We now set

Eμ :=
∑

χ∈Irrμ(Ad ,n)

Eχ =
mμ∑

k=1

Eχ
μ

k
.

Since the set {Eχ | χ ∈ Irr(Ad ,n)} forms a complete set of orthogonal idempotents
in Yd ,n(q), and

tjEχ = Eχ tj = χ(tj)Eχ and gwEχ = Ew(χ)gw (11)
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for all χ ∈ Irr(Ad ,n), j = 1, . . . , n and w ∈ Sn, we have that the set {Eμ | μ ∈
Compd (n)} forms a complete set of central orthogonal idempotents in Yd ,n(q)

(cf. [14, §2.4]). In particular, we have the following decomposition of Yd ,n(q) into a
direct sum of two-sided ideals:

Yd ,n(q) =
⊕

μ∈Compd (n)

EμYd ,n(q).

We can now define an R-linear map

�μ : EμYd ,n(q) → Matmμ
(Hμ(q))

as follows: for all k ∈ {1, . . . , mμ} and w ∈ Sn, we set

�μ(Eχ
μ

k
gw) := Gπ−1

μ,k wπμ,l
Mk,l ,

where l ∈ {1, . . . , mμ} is uniquely defined by the relation w(χ
μ

l ) = χ
μ

k and Mk,l is
the elementary mμ × mμ matrix with 1 in position (k, l). Note that π−1

μ,kwπμ,l ∈ Sμ.
We also define an R-linear map

	μ : Matmμ
(Hμ(q)) → EμYd ,n(q)

as follows: for all k, l ∈ {1, . . . , mμ} and w ∈ Sμ, we set

	μ(GwMk,l) := Eχ
μ

k
gπμ,k wπ−1

μ,l
Eχ

μ

l
.

Then we have the following [14, Theorem3.1]:

Theorem 1 Let μ ∈ Compd (n). The linear map �μ is an isomorphism of R-algebras
with inverse map 	μ. As a consequence, the map

�d ,n :=
⊕

μ∈Compd (n)

�μ : Yd ,n(q) →
⊕

μ∈Compd (n)

Matmμ
(Hμ(q))

is also an isomorphism of R-algebras, with inverse map

	d ,n :=
⊕

μ∈Compd (n)

	μ :
⊕

μ∈Compd (n)

Matmμ
(Hμ(q)) → Yd ,n(q).

Remark 11 In [5], we show that we can construct similar isomorphisms over the
smaller ring C[q2, q−2] when we consider the generators g̃i := qgi and G̃i := qGi.
Note that

�μ(Eχ
μ

k
g̃w) := q�(w)−�(π−1

μ,k wπμ,l)G̃π−1
μ,k wπμ,l

Mk,l
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and
	μ(G̃wMk,l) := q�(w)−�(π−1

μ,k wπμ,l)Eχ
μ

k
g̃πμ,k wπ−1

μ,l
Eχ

μ

l
.

In order to do this, we make use of Deodhar’s lemma (see, for example, [9,
Lemma2.1.2]) about the distinguished left coset representatives of Sn/Sμ:

Lemma 1 (Deodhar’s lemma) Let μ ∈ Compd (n). For all k ∈ {1, . . . , mμ} and i =
1, . . . , n − 1, let l ∈ {1, . . . , mμ} be uniquely defined by the relation si(χ

μ

l ) = χ
μ

k .
We have

π−1
μ,ksiπμ,l =

⎧⎨
⎩

1 if k = l;

sj if k = l,

for some j ∈ J μ.

Deodhar’s lemma implies that, for all i = 1, . . . , n − 1, �μ(Eμg̃i) is a symmetric
matrix whose diagonal non-zero coefficients are of the form G̃j with j ∈ J μ, while
all non-diagonal non-zero coefficients are equal to q. Thus, if consider the diagonal
matrix

Uμ :=
mμ∑

k=1

q�(πμ,k )Mk,k ,

the coefficients of the matrix Uμ�μ(Eμg̃i)U−1
μ satisfy:

(Uμ�μ(Eμg̃i)U
−1
μ )k,l = q(�(πμ,k )−�(πμ,l))(�μ(Eμg̃i))k,l ,

for all k, l ∈ {1, . . . , mμ}. Therefore, following the definition of �μ and Deodhar’s
lemma, the matrix Uμ�μ(Eμg̃i)U−1

μ is a matrix whose diagonal coefficients are the
same as the diagonal coefficients of�μ(Eμg̃i) (and thus of the form G̃j with j ∈ J μ),
while all non-diagonal non-zero coefficients are equal to either 1 or q2. Moreover,
since, for all j = 1, . . . , n,

�μ(Eμtj) =
mμ∑

k=1

χ
μ

k (tj)Mk,k

is a diagonal matrix, we have Uμ�μ(Eμtj)U−1
μ = �μ(Eμtj). We conclude that the

map
�̃μ : EμYd ,n(q) → Matmμ

(Hμ(q))

defined by
�̃μ(Eμa) := Uμ�μ(Eμa)U−1

μ ,

for all a ∈ Yd ,n(q), is an isomorphism of C[q2, q−2]-algebras. Its inverse is the map

	̃μ : Matmμ
(Hμ(q)) → EμYd ,n(q)
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defined by
	̃μ(A) := 	μ(U−1

μ AUμ),

for all A ∈ Matmμ
(Hμ(q)). As a consequence, the map

�̃d ,n :=
⊕

μ∈Compd (n)

�̃μ : Yd ,n(q) →
⊕

μ∈Compd (n)

Matmμ
(Hμ(q))

is also an isomorphism of C[q2, q−2]-algebras, with inverse map

	̃d ,n :=
⊕

μ∈Compd (n)

	̃μ :
⊕

μ∈Compd (n)

Matmμ
(Hμ(q)) → Yd ,n(q).

3.3 From FTLd,n(q) to Temperley–Lieb

Recall that FTLd ,n(q) is the quotient Yd ,n(q)/Id ,n, where Id ,n is the ideal generated
by the element e1e2 g1,2 (with Id ,n = {0} if n ≤ 2). Letμ ∈ Compd (n). We will study
the image of e1e2 g1,2 under the isomorphism �μ.

By (11), for all i = 1, . . . , n − 1 and χ ∈ Irr(Ad ,n), we have

eiEχ = Eχei = 1

d

d−1∑
s=0

χ(ti)
sχ(ti+1)

d−sEχ =
⎧⎨
⎩

Eχ if χ(ti) = χ(ti+1);

0 if χ(ti) = χ(ti+1).

(12)

We deduce that, for all k = 1, . . . , mμ,

Eχ
μ

k
e1e2g1,2 =

⎧⎨
⎩

Eχ
μ

k
g1,2 if χ

μ

k (t1) = χ
μ

k (t2) = χ
μ

k (t3);

0 otherwise .

(13)

Proposition 1 Let μ ∈ Compd (n) and k ∈ {1, . . . , mμ}. We have

�μ(Eχ
μ
k

e1e2g1,2) =
⎧⎨
⎩

Gi,i+1Mk,k for some i ∈ {1, . . . , n − 2} if χ
μ

k (t1) = χ
μ

k (t2) = χ
μ

k (t3);

0 otherwise .

Thus, �μ(Eμe1e2g1,2) is a diagonal matrix in Matmμ
(Hμ(q)) with all non-zero coef-

ficients being of the form Gi,i+1 for some i ∈ {1, . . . , n − 2}.
Proof If χ

μ

k (t1) = χ
μ

k (t2) = χ
μ

k (t3), then w(χ
μ

k ) = χ
μ

k for all w ∈ 〈s1, s2〉 ⊆ Sn,
and so

�μ(Eχ
μ

k
g1,2) =

∑
w∈〈s1,s2〉

�μ(Eχ
μ

k
gw) =

∑
w∈〈s1,s2〉

Gπ−1
μ,k wπμ,k

Mk,k . (14)
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We will show that there exists i ∈ {1, . . . , n − 2} such that
∑

w∈〈s1,s2〉
Gπ−1

μ,k wπμ,k
= Gi,i+1.

By Lemma1, there exist i, j ∈ J μ such that

π−1
μ,ks1πμ,k = si and π−1

μ,ks2πμ,k = sj.

Consequently, π−1
μ,ks1s2πμ,k = sisj, π

−1
μ,ks2s1πμ,k = sjsi and π−1

μ,ks1s2s1πμ,k = sisjsi.
Moreover, since s1 and s2 do not commute, si and sj do not commute either, so we
must have j ∈ {i − 1, i + 1}. Hence, if j = i − 1, then

∑
w∈〈s1,s2〉

Gπ−1
μ,k wπμ,k

= Gi−1,i,

while if j = i + 1, then ∑
w∈〈s1,s2〉

Gπ−1
μ,k wπμ,k

= Gi,i+1.

We conclude that there exists i ∈ {1, . . . , n − 2} such that
∑

w∈〈s1,s2〉
Gπ−1

μ,k wπμ,k
= Gi,i+1,

whence we deduce that
�μ(Eχ

μ

k
g1,2) = Gi,i+1Mk,k .

Combining this with (13) yields the desired result. �

Example 1

Let us consider the case d = 2 and n = 4. We have

(μ, mμ) ∈ {((4, 0), 1), ((3, 1), 4), ((2, 2), 6), ((1, 3), 4), ((0, 4), 1)}.

Then

�μ(Eχ
μ

k
e1e2g1,2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

G1,2 if μ = (4, 0) or μ = (0, 4),

G1,2 M1,1 if μ = (3, 1) and k = 1,

G2,3 M4,4 if μ = (1, 3) and k = 4,

0 otherwise ,

where we take π(1,3),4 = s3s2s1.
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Now, recall the surjectiveR-algebra homomorphismρμ : Hμ(q) � TLμ(q)defined
inSect. 3.1.Themapρμ induces a surjectiveR-algebra homomorphismMatmμ

(Hμ(q)) �
Matmμ

(TLμ(q)), which we also denote by ρμ. We obtain that

ρμ ◦ �μ : EμYd ,n(q) → Matmμ
(TLμ(q))

is a surjective R-algebra homomorphism.
In order for ρμ ◦ �μ to factor through EμYd ,n(q)/EμId ,n

∼= EμFTLd ,n(q), all ele-
ments of EμId ,n have to belong to the kernel of ρμ ◦ �μ. Since Id ,n is the ideal gen-
erated by the element e1e2g1,2, it is enough to show that (ρμ ◦ �μ)(e1e2g1,2) = 0.
This is immediate by Proposition1. Hence, if we denote by 
μ the natural sur-
jection EμYd ,n(q) � EμYd ,n(q)/EμId ,n

∼= EμFTLd ,n(q), there exists a unique R-
algebra homomorphism

ψμ : EμFTLd ,n(q) → Matmμ
(TLμ(q))

such that the following diagram is commutative:

EμYd ,n(q)


μ

��

�μ �� Matmμ
(Hμ(q))

ρμ

��
EμFTLd ,n(q)

ψμ �� Matmμ
(TLμ(q))

(15)
Since ρμ ◦ �μ is surjective, ψμ is also surjective.

3.4 From Temperley–Lieb to FTLd,n(q)

We now consider the surjective R-algebra homomorphism:


μ ◦ 	μ : Matmμ
(Hμ(q)) → EμFTLd ,n(q),

where	μ is the inverse of�μ. In order for
μ ◦ 	μ to factor throughMatmμ
(TLμ(q)),

we have to show that Gi,i+1Mk,l belongs to the kernel of 
μ ◦ 	μ for all i =
1, . . . , n − 2 such that Gi,i+1 ∈ Hμ(q) (that is, {i, i + 1} ⊆ J μ) and for all k, l ∈
{1, . . . , mμ}. Since

Gi,i+1Mk,l = Mk,1Gi,i+1M1,1M1,l

and 
μ ◦ 	μ is an homomorphism of R-algebras, it is enough to show that (
μ ◦
	μ)(Gi,i+1M1,1) = 0.

Let i = 1, . . . , n − 2 such that Gi,i+1 ∈ Hμ(q). By definition of 	μ, and since
πμ,1 = 1, we have
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	μ(Gi,i+1M1,1) = Eχ
μ
1

gi,i+1Eχ
μ
1
. (16)

Now, since Gi,i+1 ∈ Hμ(q), there exists j ∈ {1, . . . , d} such thatμj > 2 and Gi,i+1 ∈
Hμj (q), that is, i ∈ {μ1 + · · · + μj−1 + 1, . . . , μ1 + · · · + μj−1 + μj − 2}. By defi-
nition of χ

μ
1 , we have

χ
μ
1 (tμ1+···+μj−1+1) = · · · = χ

μ
1 (tμ1+···+μj−1+μj ) = ξj,

whence
χ

μ
1 (ti) = χ

μ
1 (ti+1) = χ

μ
1 (ti+2) = ξj.

Following (12), we obtain

	μ(Gi,i+1M1,1) = Eχ
μ
1

gi,i+1Eχ
μ
1

= Eχ
μ
1

eiei+1gi,i+1Eχ
μ
1
.

Since eiei+1gi,i+1 ∈ Id ,n, we deduce that (
μ ◦ 	μ)(Gi,i+1M1,1) = 0, as desired.
We conclude that there exists a unique R-algebra homomorphism

φμ : Matmμ
(TLμ(q)) → EμFTLd ,n(q)

such that the following diagram is commutative:

EμYd ,n(q)


μ

��

	μ�� Matmμ
(Hμ(q))

ρμ

��
EμFTLd ,n(q)

φμ�� Matmμ
(TLμ(q))

(17)
Since 
μ ◦ 	μ is surjective, φμ is also surjective.

3.5 An Isomorphism Theorem for the Framisation of the
Temperley–Lieb Algebra FTLd,n(q)

We are now ready to prove the main result of this section.

Theorem 2 Let μ ∈ Compd (n). The linear map ψμ is an isomorphism of R-algebras
with inverse map φμ. As a consequence, the map

ψd ,n :=
⊕

μ∈Compd (n)

ψμ : FTLd ,n(q) →
⊕

μ∈Compd (n)

Matmμ
(TLμ(q))

is also an isomorphism of R-algebras, with inverse map
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φd ,n :=
⊕

μ∈Compd (n)

φμ :
⊕

μ∈Compd (n)

Matmμ
(TLμ(q)) → FTLd ,n(q).

Proof Since the diagrams (15) and (17) are commutative, we have

ρμ ◦ �μ = ψμ ◦ 
μ and 
μ ◦ 	μ = φμ ◦ ρμ.

This implies that

ρμ ◦ �μ ◦ 	μ = ψμ ◦ φμ ◦ ρμ and 
μ ◦ 	μ ◦ �μ = φμ ◦ ψμ ◦ 
μ.

By Theorem1, �μ ◦ 	μ = idMatmμ (Hμ(q)) and 	μ ◦ �μ = idEμYd ,n(q), whence

ρμ = ψμ ◦ φμ ◦ ρμ and 
μ = φμ ◦ ψμ ◦ 
μ.

Since the maps ρμ and 
μ are surjective, we obtain

ψμ ◦ φμ = idMatmμ (TLμ(q)) and φμ ◦ ψμ = idEμFTLd ,n(q),

as desired. �

Remark 12 In [5], we show that we can construct similar isomorphisms over the
smaller ringC[q2, q−2]whenwe consider the generators g̃i = qgi and G̃i = qGi. For
this, we use the presentation of FTLd ,n(q) given in Remark10 and the isomorphisms
�̃μ and 	̃μ defined in Remark11.

3.6 A Basis for the Framisation of the Temperley–Lieb
Algebra FTLd,n(q)

We recall that in Sect. 2.2 we defined a basis BTLn(q) for the Temperley–Lieb algebra
TLn(q). Thanks to Theorem2, we obtain the following basis for FTLd ,n(q) as an
R-module:

Proposition 2 The set

{
φμ(b1b2 . . . bd Mk,l) | μ ∈ Compd (n), bi ∈ BTLμi (q) ∀ i = 1, . . . , d , 1 ≤ k, l ≤ mμ

}

is a basis of FTLd ,n(q) as an R-module. In particular, FTLd ,n(q) is a free R-module
of rank ∑

μ∈Compd (n)

m2
μ Cμ1Cμ2 · · · Cμd .
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4 Markov Traces and Link Invariants

The presentation for the Temperley–Lieb algebra given in Sect. 2.2 is due to Jones,
who used a Markov trace defined on it, the Jones–Ocneanu trace, to construct his
famous polynomial invariant for classical links, the Jones polynomial [16]. A similar
construction on the Framisation of the Temperley–Lieb algebra yields invariants for
framed and classical links [11]. In this section, we will relate the latter to the Jones
polynomial using the isomorphism of Theorem2.

4.1 The Inductive Jones–Ocneanu Trace

Using the natural algebra inclusionsHn(q) ⊂ Hn+1(q) for n ∈ N (settingHn(q) :=
R for n ≤ 1), we can define the Jones–Ocneanu trace on

⋃
n≥0 Hn(q) as follows [16,

Theorem5.1]:

Theorem 3 Let z be an indeterminate over C. There exists a unique linear Markov
trace

τz :
⋃
n≥0

Hn(q) −→ R[z]

defined inductively on Hn(q), for all n ≥ 0, by the following rules:

τz(1) = 1 1 ∈ Hn(q)

τz(ab) = τz(ba) a, b ∈ Hn(q)

τz(aGn) = z τz(a) a ∈ Hn(q).

It is easy to check (by solving the equation τz(G1,2) = 0) that the trace τz passes
to the quotient Temperley–Lieb algebra TLn(q) if and only if

z = − 1

q2(q + q−1)
= − 1

q3 + 1
or z = −q−1 .

The second value is discarded as not being topologically interesting. For z = −(q3 +
1)−1, we will simply denote τz by τ .

Recall that we denote by ρn the natural surjectionHn(q) � Hn(q)/In
∼= TLn(q).

Let us denote by σ1, . . . , σn−1 the generators of the classical braid groupBn, such that
the natural epimorphism δn : RBn � Hn(q) is given by δn(σi) = Gi. Then ρn ◦ δn :
RBn � TLn(q) is also an epimorphism.

Let nowL denote the set of oriented links. For any α ∈ Bn, we denote by α̂ the link
obtained as the closure of α. By the Alexander Theorem, we have L = ∪n{̂α | α ∈
Bn}. Further, by theMarkov Theorem, isotopy of links is generated by conjugation in
Bn (αβ ∼ βα) and by positive and negative stabilisation (α ∼ ασ±1

n ). Jones’smethod
for constructing polynomial link invariants consists of normalising and re-scaling τ
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Fig. 1 The Hopf link with
two positive crossings

with respect to the latter: For any α ∈ Bn, let

Vq(̂α) := (−q − q−1)n−1q2ε(α) (τ ◦ ρn ◦ δn)(α) ,

where ε(α) is the sum of the exponents of the braiding generators σi in the word α.
Then the map

Vq : L → R, α̂ �→ Vq(̂α)

is an 1-variable ambient isotopy invariant of oriented links, known as the Jones
polynomial (cf. [16]).

Example 2

We consider the Hopf link with two positive crossings (Fig. 1), which is the closure
of the braid σ 2

1 ∈ B2. We have

Vq(σ̂2
1 ) = (−q − q−1)q4τ(G2

1) = −(q + q−1)q4
(
1 − q − q−1

q2(q + q−1)

)
= −(q + q−1)q4 + (q − q−1)q2 = −q5 − q.

Remark 13 More generally, for any value of z, the trace τz can be normalised and re-
scaled with respect to positive and negative stabilisation as follows: For any α ∈ Bn,
let

Pq,z (̂α) := �n−1
H (

√
λH )ε(α) (τz ◦ δn)(α) ,

where

λH := z − (q − q−1)

z
and �H := 1

z
√

λH
.

Then the map

Pq,z : L → R[z±1,
√

λH
±1], α̂ �→ Pq,z (̂α)

is a 2-variable invariant of oriented links, known as the HOMFLYPT polynomial
(cf. [13, 30]). For z = −(q3 + 1)−1, we get λH = q4 and �H = −q − q−1, whence
Pq,z = Vq.
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4.2 The Stabilised Jones–Ocneanu Traces

Instead of normalising and re-scaling the Jones–Ocneanu trace τ , we can consider a
family of traces τ n : Hn(q) → R for n ∈ N that are stabilised by definition. However,
for any a ∈ Hn(q), we have τ n(a) = τ n+1(a).

More specifically, let us consider the Iwahori–Hecke algebra Hn(q) with braid
generators G ′

i := q2Gi. These satisfy the quadratic relation

G ′
i
2 = q4 + q2(q − q−1)G ′

i. (18)

We then have the following (see, for example, [9, Theorem4.5.2]):

Theorem 4 There exists a unique family of R-linear Markov traces τ n : Hn(q) → R
such that

τ 1(1) = 1
τ n(ab) = τ n(ba) a, b ∈ Hn(q)

τ n+1(aG ′
n) = τ n+1(aG ′

n
−1

) = τ n(a) a ∈ Hn(q).

Moreover, we have τ n+1(a) = (−q − q−1)τ n(a) for all a ∈ Hn(q).

We observe that

G1,2 = 1 + q−1G ′
1 + q−1G ′

2 + q−2G ′
1G ′

2 + q−2G ′
2G ′

1 + q−3G ′
1G ′

2G ′
1.

We have

τ 3(1) = (−q − q−1)2τ 1(1) = q2 + 2 + q−2

τ 3(G ′
1) = (−q − q−1)τ 2(G ′

1) = (−q − q−1)τ 1(1) = −q − q−1

τ 3(G ′
2) = τ 2(1) = (−q − q−1)τ 1(1) = −q − q−1

τ 3(G ′
1G ′

2) = τ 2(G ′
1) = τ 1(1) = 1

τ 3(G ′
2G ′

1) = τ 2(G ′
1) = τ 1(1) = 1

τ 3(G ′
1G ′

2G ′
1) = τ 2(G ′

1
2
) = q4τ 2(1) + q2(q − q−1)τ 2(G ′

1) = −q5 − q

whence

τ 3(G1,2) = q2 + 2 + q−2 − 2 − 2q−2 + 2q−2 − q2 − q−2 = 0.

Since we have
τ n(G1,2) = (−q − q−1)n−3τ 3(G1,2),

the trace τ n factors through theTemperley–Lieb algebraTLn(q) for alln ∈ N. Further,
if we consider the natural epimorphism δ′

n : RBn � Hn(q) given by δ′(σi) = G ′
i, we

have [16, §11]:
(τ n ◦ ρn ◦ δ′

n)(α) = Vq(̂α) for all α ∈ Bn. (19)
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Example 3

We have
(τ 2 ◦ ρ2 ◦ δ′

2)(σ
2
1 ) = τ 2(G ′

1
2
) = −q5 − q.

Remark 14 More generally, for any value of z, if we consider the braid generators
G ′

i := √
λH Gi, where λH = z−(q−q−1)

z , and we define a family of stabilised Jones–
Ocneanu traces (τ n

z )n∈N as in Theorem4, with τ n+1
z (a) = (

√
zλH )−1τ n

z (a) and with

values in R[z±1,
√

λH
±1], then we have [16, (6.2)]:

(τ n
z ◦ δ′

n)(α) = Pq,z (̂α) for all α ∈ Bn.

4.3 The Inductive Juyumaya Trace

An important property of the Yokonuma–Hecke algebra is that it also supports a
Markov trace defined for all values of n. More precisely, due to the inclusions
Yd ,n(q) ⊂ Yd ,n+1(q) (setting Yd ,0(q) := R), we obtain (cf. [17, Theorem12]):

Theorem 5 Let z, x1, . . . , xd−1 be indeterminates over C. There exists a unique
linear Markov trace

trd ,z :
⋃
n≥0

Yd ,n(q) −→ C[z, x1, . . . , xd−1]

defined inductively on Yd ,n(q), for all n ≥ 0, by the following rules:

trd ,z(1) = 1 1 ∈ Yd ,n(q)

trd ,z(ab) = trd ,z(ba) a, b ∈ Yd ,n(q)

trd ,z(agn) = z trd ,z(a) a ∈ Yd ,n(q)

trd ,z(atk
n+1) = xk trd ,z(a) a ∈ Yd ,n(q) (1 ≤ k ≤ d − 1).

Remark 15 Note that, for d = 1, the trace tr1,z is defined by only the first three rules.
Thus, tr1 coincides with the Jones–Ocneanu trace τz on the Iwahori–Hecke algebra
Hn(q) ∼= Y1,n(q).

The values of the parameters for which the trace trd ,z passes to the quotient algebra
FTLd ,n(q) are given in [11, Theorem6]; their determination is not straightforward
as in the classical case. However, not all of them are topologically interesting.

First, let us denote by 
d ,n the natural surjection Yd ,n(q) � Yd ,n(q)/Id ,n
∼=

FTLd ,n(q). Recall that we denote by Fn the classical framed braid group. We have
Fn

∼= Z 
 Bn, and there exists a natural epimorphism γd ,n : RFn � Yd ,n(q) given
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by γd ,n(σi) = gi and γd ,n(tk
j ) = tk(mod d)

j for all k ∈ Z. The map 
d ,n ◦ γd ,n : RFn �
FTLd ,n(q) is also an algebra epimorphism.

Let now Lf denote the set of oriented framed links. By the Alexander Theorem,
we have Lf = ∪n{̂α | α ∈ Fn}. Further, by the Markov Theorem for framed links
[26, Lemma1], isotopy of framed links is generated by conjugation inFn (αβ ∼ βα)
and by positive and negative stabilisation (α ∼ ασ±1

n ), for any n. In view of all this,
Juyumaya and Lambropoulou [21] attempted to normalise and re-scale the trace trd ,z

in order to obtain invariants for framed knots and links following Jones’s method;
they discovered that this is the only Markov trace known in literature that cannot be
re-scaled directly. They showed that trd ,z re-scales when the parameters (xk)1≤k≤d−1

satisfy the following system of equations, known as the E-system:

d−1∑
s=0

xk+sxd−s = xk

d−1∑
s=0

xsxd−s (1 ≤ k ≤ d − 1), (20)

with x0 = xd = 1. The solutions of the E-system where computed by Gérardin in the
Appendix of [11] and they are parametrised by the non-empty subsets of Z/dZ: If
D is such a subset, then

xk = 1

|D|
∑
j∈D

exp

(
2π ijk

d

)
(1 ≤ k ≤ d − 1).

For the rest of the paper, D will denote a non-empty subset of Z/dZ and
(x1, . . . , xd−1)will be the corresponding solution of the E-system.We will denote by
trd ,D,z the Juyumaya trace with these parameters and we will call it the specialised
Juyumaya trace.We have trd ,D,z(ei) = 1/|D| =: ED for all i. According to [11, (7.7)],
the trace trd ,D,z passes to the quotient algebra FTLd ,n(q) if and only if

z = − ED

q2(q + q−1)
= − ED

q3 + 1
or z = −ED

q
.

The second value is discarded as not being topologically interesting. For z =
−ED(q3 + 1)−1, we will simply denote trd ,D,z by trd ,D. Normalising and re-scaling
trd ,D with respect to positive and negative stabilisation yields the following: For any
α ∈ Fn, let

φd ,D,q(̂α) :=
(

−q + q−1

ED

)n−1

q2ε(α) (trd ,D ◦ 
d ,n ◦ γd ,n)(α) ,

where ε(α) is the sum of the exponents of the braiding generators σi in the word α.
Then the map

φd ,D,q : Lf → R, α̂ �→ φd ,D,q(̂α)

is an 1-variable ambient isotopy invariant of oriented framed links [11, (7.8)].
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We denote by θd ,D,q the restriction of φd ,D,q to the set L of classical links; the
map θd ,D,q is an 1-variable ambient isotopy invariant of oriented classical links.

Example 4

We consider the classical Hopf link with two positive crossings. We have

θd ,D,q(σ̂
2
1 ) =

(
− q + q−1

ED

)
q4trd ,D(g2

1) =
(

− q + q−1

ED

)
q4

(
1 − (q − q−1)ED

q2(q + q−1)

)
= − q5 + q3

ED
+ q3 − q.

We now consider the framed Hopf link with framings 0 and 1. This is the clo-
sure of the framed braid t2σ 2

1 . Note that (trd ,D ◦ 
d ,n ◦ γd ,n)(t2σ 2
1 ) = trd ,D(t2g2

1) =
trd ,D(g1t1g1) = trd ,D(t1g2

1) = (trd ,D ◦ 
d ,n ◦ γd ,n)(t1σ 2
1 ). We have

trd ,D(t1g2
1) = trd ,D(t1) + (q − q−1)trd ,D(t1e1g1) = trd ,D(t1)

(
1 − (q − q−1)ED

q2(q + q−1)

)
= x1trd ,D(g2

1).

We deduce that

φd ,D,q(
̂t2σ 2

1 ) =
(

−q + q−1

ED

)
q4trd ,D(t2g2

1) = x1θd ,D,q(σ
2
1 ) = x1

(
−q5 + q3

ED
+ q3 − q

)
.

Remark 16 More generally, for any value of z, the trace trd ,D,z can be normalised
and re-scaled with respect to positive and negative stabilisation as follows: For any
α ∈ Fn, let

	d ,D,q,z (̂α) := �n−1
D (

√
λD)ε(α) (trd ,D,z ◦ γd ,n)(α) ,

where

λD := z − (q − q−1)ED

z
and �D := 1

z
√

λD
.

Then the map

	d ,D,q,z : Lf → R[z±1,
√

λD
±1], α̂ �→ 	d ,D,q,z (̂α)

is a 2-variable invariant of oriented framed links [1, Theorem3.1]. For z = −ED(q3 +
1)−1, we get λD = q4 and �D = −(q + q−1)/ED, whence 	d ,D,q,z = φd ,D,q.

We denote by �d ,D,q,z the restriction of 	d ,D,q,z to the setL of classical links; the
map �d ,D,q,z is a 2-variable invariant of oriented classical links. For z = −ED(q3 +
1)−1, we have �d ,D,q,z = θd ,D,q.

Remark 17 Using the same construction, but replacing the generators gi with the
generators gi := gi + (q − 1) eigi, Juyumaya and Lambropoulou defined 2-variable
invariants for framed [21] and classical [22] links from the specialised Juyumaya
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trace on the Yokonuma–Hecke algebra Yd ,n(q). Considering the specialised Juyu-
maya trace on FTLd ,n(q), but replacing again gi with gi, Goundaroulis, Juyumaya,
Kontogeorgis and Lambropoulou defined 1-variable invariants for framed and clas-
sical links in [11]. As shown in [1, Sect. 8], these invariants are not topologically
equivalent to the ones we define in this paper. There is no such issue when replacing
gi with g̃i := qgi or with g′

i := q2gi.

Remark 18 For d = 1, we have θ1,{0},q = Vq and �1,{0},q,z = Pq,z . More generally,
when |D| = 1, it was shown in [2] that the invariants θd ,D,q and�d ,D,q,z are equivalent
to the Jones and HOMFLYPT polynomials respectively.

4.4 The Stabilised Jacon–Poulain d’Andecy Traces

Similarly to the Jones–Ocneanu trace, instead of normalising and re-scaling trd ,D,
we can consider a family of traces trn

d ,D : Yd ,n(q) → R for n ∈ N that are stabilised
by definition. However, for any a ∈ Yd ,n(q), we have trn

d ,D(a) = trn+1
d ,D (a).

More specifically, let us consider theYokonuma–Hecke algebraYd ,n(q)with braid
generators g′

i := q2gi. These satisfy the quadratic relation

g′
i
2 = q4 + q2(q − q−1)eig

′
i . (21)

We then have the following (see also [14, §5.2], [28, §5.2]):

Theorem 6 There exists a unique family of R-linear Markov traces trn
d ,D :

Yd ,n(q) → R such that

tr1d ,D(1) = 1
trn

d ,D(ab) = trn
d ,D(ba) a, b ∈ Yd ,n(q)

trn+1
d ,D (ag′

n) = trn+1
d ,D (ag′

n
−1

) = trn
d ,D(a) a ∈ Yd ,n(q)

trn+1
d ,D (atk

n+1) = xk tr
n+1
d ,D (a) a ∈ Yd ,n(q) (1 ≤ k ≤ d − 1).

Moreover, we have trn+1
d ,D (a) = (−q − q−1)E−1

D trn
d ,D(a) for all a ∈ Yd ,n(q).

First of all, note that

q4g′
n
−1 = g′

n − q2(q − q−1)en.

Therefore, for all a ∈ Yd ,n(q), we have

q2(q − q−1)trn+1
d ,D (aen) = trn+1

d ,D (ag′
n) − q4trn+1

d ,D (ag′
n
−1

) = (1 − q4)trn
d ,D(a),

whence
trn+1

d ,D (aen) = (−q − q−1)trn
d ,D(a) = EDtr

n+1
d ,D (a). (22)
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Moreover,

trn+1
d ,D (aeng′

n) = 1

d

d−1∑
s=0

trn+1
d ,D (ats

ng′
ntd−s

n ) = 1

d

d−1∑
s=0

trn
d ,D(ats

ntd−s
n ) = trn

d ,D(a). (23)

Now, we observe that

g1,2 = 1 + q−1g′
1 + q−1g′

2 + q−2g′
1g′

2 + q−2g′
2g′

1 + q−3g′
1g′

2g′
1.

We have

tr3d ,D(e1e2) = (−q − q−1)tr2d ,D(e1) = (−q − q−1)2tr1d ,D(1) = q2 + 2 + q−2

tr3d ,D(e1e2g′
1) = (−q − q−1)tr2d ,D(e1g′

1) = (−q − q−1)tr1d ,D(1) = −q − q−1

tr3d ,D(e1e2g′
2) = tr2d ,D(e1) = (−q − q−1)tr1d ,D(1) = −q − q−1

tr3d ,D(e1e2g′
1g′

2) = tr2d ,D(e1g′
1) = tr1d ,D(1) = 1

tr3d ,D(e1e2g′
2g′

1) = tr2d ,D(e1g′
1) = tr1d ,D(1) = 1

tr3d ,D(e1e2g′
1g′

2g′
1) = tr2d ,D(e1g′

1
2
) = q4tr2d ,D(e1) + q2(q − q−1)tr2d ,D(e1g′

1) = −q5 − q

whence

tr3d ,D(e1e2g1,2) = q2 + 2 + q−2 − 2 − 2q−2 + 2q−2 − q2 − q−2 = 0.

Since we have

trn
d ,D(e1e2g1,2) =

(
−q + q−1

ED

)n−3

tr3d ,D(e1e2g1,2),

the trace trn
d ,D factors through the Framisation of the Temperley–Lieb algebra

FTLd ,n(q) for all n ∈ N. Further, if we consider the natural epimorphism γ ′
d ,n :

RFn � Yd ,n(q) given by γ ′
d ,n(σi) = g′

i and γ ′
d ,n(t

k
j ) = tk(mod d)

j for all k ∈ Z, we have
[28, Remarks5.4]:

(trn
d ,D ◦ 
d ,n ◦ γ ′

d ,n)(α) = φd ,D,q(̂α) for all α ∈ Fn. (24)

Example 5

We have

(tr2d ,D ◦ 
d ,2 ◦ γ ′
d ,2)(σ

2
1 ) = tr2d ,D(g′

1
2
) = tr2d ,D(q4 + q2(q − q−1)e1g′

1) = −q5 + q3

ED
+ q3 − q.
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and

(tr2d ,D ◦ 
d ,2 ◦ γ ′
d ,2)(t2σ

2
1 ) = tr2d ,D(t1g′

1
2
) = q4tr2d ,D(t1) + q2(q − q−1)tr1d ,D(t1) = x1

(
− q5 + q3

ED
+ q3 − q

)
.

Remark 19 More generally, for any value of z, if we consider the braid generators
g′

i := √
λDgi, where λD = z−(q−q−1)ED

z , and we define a family of stabilised Jones–
Ocneanu traces (trn

d ,D,z)n∈N as in Theorem6, with trn+1
d ,D,z(a) = (

√
zλD)−1trn

d ,D,z(a)

and with values in R[z±1,
√

λD
±1], then we have [28, Remarks5.4]:

(trn
d ,D,z ◦ γ ′

d ,n)(α) = 	d ,D,q,z (̂α) for all α ∈ Fn.

4.5 Connecting the Invariants with the Use of the
Isomorphism Theorem

In this last subsection, we will only be interested in invariants of classical links.
The invariants �d ,D,q,z and θd ,D,q of Sect. 4.3 have been further studied in [1, 12]
respectively. where their following properties have been proved:

(P1) They do not depend on d and D, but only on the cardinality of D (and equiva-
lently on ED).

(P2) They can be generalised to skein link invariants where ED is taken to be an
indeterminate.

(P3) They are not topologically equivalent to the HOMFLYPT polynomial and the
Jones polynomial respectively.

We will illustrate point (P3) for the invariant θd ,D,q with the following example.

Example 6

We consider the link L := LLL(0) of [7] with the orientation of Fig. 2. This is a
3-component link, whose components are one left-handed trefoil (T) and 2 unknots
(U1 and U2). The link L has the same Jones polynomial as the disjoint union of 3
unknots, even though it is not topologically equivalent to it. We have:

Vq(L) = (q + q−1)2 = Vq(̂1B3)

Now, the link L is the closure of the following braid:

σ−1
1 σ 2

2 σ−1
3 σ−1

2 σ−1
4 σ−2

3 σ−1
2 σ−1

1 σ2σ3σ
−3
2 σ3σ2σ4σ3σ2 ∈ B5.
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Fig. 2 The link LLL(0)

In order to compute θd ,D,q on the closure of this braid, we used the program designed
for this reason by Karvounis [25], which is available at http://www.math.ntua.gr/
~sofia/yokonuma. We have that θd ,D,q(L) is equal to:

Vq(L) + (ED − 1)
q + q−1

E2
Dq11

(
ED

(
q16 − 3q14 + 2q12 − 5q10 + 6q8 − 4q6 + 4q4 − 5q2 + 2

) − q10 − q8 − q6 + q2
)
.

We observe that for ED = 1, θd ,D,q(L) = Vq(L). Moreover,

θd ,D,q(̂1B3) =
(

−q + q−1

ED

)2

= E−2
D Vq(̂1B3),

and so θd ,D,q distinguishes two links that the Jones polynomial cannot distinguish.

In the Appendix of [1], Lickorish gave a closed combinatorial formula for com-
puting the value of�d ,D,q,z on a link L which involves the HOMFLYPT polynomials
of all sublinks of L and linking numbers [1, TheoremB.1]. A specialisation of the
above formula for z = −ED(q3 + 1)−1 yields a similar result for the invariant θd ,D,q

[12, Corollary 2]. Lickorish’s formula for �d ,D,q,z was independently obtained by
Poulain d’Andecy and Wagner [29] with the use of Theorem1. In this section, we
will obtain the corresponding formula for θd ,D,q with the use of our Theorem2.

First of all, due to property (P1), we can restrict our study to θd ,q := θd ,Z/dZ,q.
In this case, ED = 1/d . We have already seen that the stabilised Jones–Ocneanu
traces defined in Theorem4 factor through the Temperley–Lieb algebra. Thus, one
can define on

⊕
μ∈Compd (n)

Matmμ(TLμ(q)) =
⊕

μ∈Compd (n)

Matmμ(TLμ1(q) ⊗ TLμ2 (q) ⊗ · · · ⊗ TLμd (q))

the trace ∑
μ∈Compd (n)

(τμ1 ⊗ τμ2 ⊗ · · · ⊗ τμd ) ◦ TrMatmμ

http://www.math.ntua.gr/~sofia/yokonuma
http://www.math.ntua.gr/~sofia/yokonuma
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where TrMatmμ
denotes the usual trace of a matrix. By [14, §6], the map

Td ,q : L → R, α̂ �→
∑

μ∈Compd (n)

(τμ1 ⊗ τμ2 ⊗ · · · ⊗ τμd ) ◦ TrMatmμ
◦ (ψd ,n ◦ 
d ,n ◦ γ ′

d ,n)(α)

is an 1-variable invariant of oriented classical links. This in turn implies that, for a
given oriented link L, we have [29, Corollary4.2]:

Td ,q(L) = d !
∑
π

q4ν(π)Vq(πL) (25)

where the sum is over all partitions π of the components of L into d (unordered)
subsets, Vq(πL) is the product of the Jones polynomials of the d sublinks of L defined
by π and ν(π) is the sum of all linking numbers of pairs of components that are in
distinct sets of π .

Remark 20 Note that the sum of linking numbers appearing in [29, Corollary 4.2]
is twice the sum of linking numbers ν(π), as defined in [1, TheoremB.1] and here.

We then obtain the following closed combinatorial formula for θd ,q.

Proposition 3 Let L be an oriented link with m components. Then

θd ,q(L) =
m∑

k=1

(d − 1)(d − 2) · · · (d − k + 1)

k! (−q − q−1)k−1Tk,q(L) (26)

Proof Recall that θd ,q(L) = (trn
d ,Z/dZ ◦ 
d ,n ◦ γ ′

d ,n)(α), where α ∈ Bn is such that
α̂ = L. Then, by [28, Proposition5.5], we have

θd ,q(L) = 1

d

m∑
k=1

(
d

k

)
(−q − q−1)k−1Tk,q(L) =

m∑
k=1

(d − 1)!
k!(d − k)! (−q − q−1)k−1Tk,q(L),

and so (26) holds. �
Remark 21 Because of property (P2), Formula (26) is still valid if we replace the
integer d by an indeterminate (corresponding to E−1

D ). The standard notation used
for this generalised invariant is θ (cf. [12]).

Example 7

We will use Formula (26) to compute the value of θd ,q on the Hopf link with two
positive crossings. TheHopf link has two components, each of them being an unknot,
and linking number ln(Hopf ) = 1. Formula (26) in combination with Eq. (25) reads:

θd ,q(Hopf ) = Vq(Hopf ) + (d − 1)(−q − q−1)q4ln(Hopf )Vq(Unknot)2

= −q5 − q + d(−q5 − q3) + q5 + q3 = q3 − q − d(q5 + q3)
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since Vq(Unknot) = 1. This coincides with the value that we found in Example4 for
ED = 1/d .

Example 8

We will now use Formula (26) to compute the value of θd ,q on L := LLL(0) of
Fig. 2. We will denote by TU1 (respectively TU2) the 2-component link obtained
when removing the component U2 (respectively U1) from L, and by U1,2 the 2-
component link obtained when removing the component T from L. We have used the
programming language SAGE [32] to compute the Jones polynomials of these three
2-component links, while it is easy to determine their linking numbers by hand. We
have:

Vq(TU1) = −q−3(q10 + q6 + q2 − 1) and ln(TU1) = 2
Vq(TU2) = −q−15(q10 + q6 + q2 − 1) and ln(TU2) = −2
Vq(U1,2) = q−3(q10 + q6 + q2 − 1) − 2(q5 + q) and ln(U1,2) = 0.

(27)

Formula (26) in combination with Eq. (25) reads:

θd ,q(L) = Vq(L)+
+(d − 1)(−q − q−1)q4(ln(TU2)+ln(U1,2))Vq(TU1)Vq(U2)+
+(d − 1)(−q − q−1)q4(ln(TU1)+ln(U1,2))Vq(TU2)Vq(U1)+
+(d − 1)(−q − q−1)q4(ln(TU1)+ln(TU2))Vq(U1,2)Vq(T)+
+(d − 1)(d − 2)(−q − q−1)2q4(ln(TU1)+ln(TU2)+ln(U1,2))Vq(T)Vq(U1)Vq(U2)

Using the fact that Vq(U1) = Vq(U2) = 1, since U1 and U2 are unknots, and replac-
ing the linking numbers with their values from (27), we obtain that θd ,q(L) is equal
to:

Vq(L) − (d − 1)(q + q−1)(q−8Vq(TU1) + q8Vq(TU2) + Vq(U1,2)Vq(T)) + (d − 1)(d − 2)(q + q−1)2Vq(T).

Moreover, since T is a left-handed trefoil knot, we have Vq(T) = q−2 + q−6 − q−8.
Using also the values for Vq(TU1), Vq(TU2) and Vq(U1,2) from (27), we calculate:

θd ,q(L) = Vq(L) − (d − 1)(q + q−1)(q5 − 3q3 + 2q − 7q−1 + 4q−3 − 6q−5 + 4q−7 − 3q−9 + 2q−11)

+(d − 1)(d − 2)(q + q−1)(q−1 + q−3 + q−5 − q−9)

which in turn is equal to:

Vq(L) − (d − 1)(q + q−1)q−11 (
q16 − 3q14 + 2q12 − 5q10 + 6q8 − 4q6 + 4q4 − 5q2 + 2 − d(q10 + q8 + q6 − q2)

)
.

This coincides with the value that we found in Example6 for ED = 1/d .
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Remark 22 It is obvious from the examples that, as the number of components
becomes larger, the algebraic definition of θd ,q directly from the Markov trace (or
traces) on FTLd ,n(q) is more efficient computationally than its combinatorial defini-
tion with the use of Formula (26).
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A Note on glm|n Link Invariants
and the HOMFLY–PT Polynomial

Hoel Queffelec and Antonio Sartori

Abstract Wepresent a short and unified representation-theoretical treatment of type
A link invariants (that is, the HOMFLY–PT polynomials, the Jones polynomial, the
Alexander polynomial and, more generally, the quantum glm|n invariants) as link
invariants with values in the quantized oriented Brauer category.

Keywords Reshetikhin-Turaev link invariants · Alexander polynomial ·
HOMFLY-PT polynomial · Brauer category
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1 Introduction

The HOMFLY–PT polynomial [6, 14] is a 2-variable polynomial link invariant
generalizing the Jones polynomial [10], the Alexander polynomial [2] and the slk
Reshetikhin–Turaev link invariant [16]. These polynomials can be even further gen-
eralized to invariants of colored links, i.e. links whose components are labeled by
integer partitions. All these link invariants arise from the representation theory of the
Lie superalgebra glm|n , and because of this we call them invariants of type A. To elab-
orate, link invariants of type A can be constructed as equivariant homomorphisms
under the action of the quantum enveloping algebra of glm|n .

In this short note we present a unified approach to such link invariants by
seeing them as invariants with values in the quantized oriented Brauer category,
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a universal category describing intertwiners of Uq(glm|n)-representations. We also
define reduced link invariants by the usual trick of cutting open one of the strands.

This approach enables us to give an easy construction of link invariants of type
A, which does not directly require the knowledge of R-matrices. Moreover, our
approach allows for short and self-contained proofs of some well-known properties,
which are interesting for categorification problems (see [8]). In particular, we prove
that colored glm|n polynomials of links only depend on the difference d = m − n (see
Theorem1 and, in the reduced case, Proposition2), and we use an automorphism of
the Brauer category to prove the symmetry property of the HOMFLY–PT polynomial
(Theorem2).

2 Notation and Conventions

We will work over a field k containing the complex numbers C and two elements q
and qt which are not roots of the unity. The first main case we are interested in is
k = C(q, qβ), i.e. a transcendental extension ofC(q) by a formal variable qβ . In this
case we say that β is generic. The second main example is when t is some integer
d and k = C(q). As a convention, we use the letter t for encompassing both cases
above, while we will use β when we will assume that we are in the first case and we
will use d when we will assume that we are in the second case.

For x ∈ Zt + Z we define

[x] = qx − q−x

q − q−1
∈ k. (1)

2.1 Tangles

Let Tangles be the monoidal category of oriented, framed tangles. Its objects are
generated by {↑,↓}, and its morphisms are (diagrams of) oriented, framed tangles
modulo isotopy [11, Sect.XII]. Let also Tanglesk be its k-linear version, with the
same objects but with morphisms being k-vector spaces

Tanglesk(η, η′) = spank Tangles(η, η′). (2)

2.2 Partitions

We denote by λ � N a partition λ of N ≥ 0, which is a non-increasing sequence
λ = (λ1, λ2, . . . )of non-negative integers such that |λ| = ∑

λi = N . The transposed
partitionλ� is defined byλ�

i = #{h | λh ≥ i}. Partitions can be identifiedwithYoung
diagrams, as exemplified in the picture below. The only partition of 0 is the empty
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partition ∅, and the only partition of 1 is the one-box partition . Transposition of
partitions corresponds to transposition of diagrams.

...

λ1
λ2

λ�

2.3 Labeled Tangles

We let Tangles�ab be the monoidal category of oriented, framed tangles whose con-
nected components are labeledbypartitions.Wewill regard amorphism inTangles�ab

as a pair consisting of a tangle T and a labeling � of its strands. Given a tangle T and a
partition λ, we denote by (T, λ) the labeled tangle T such that all strands are labeled
by λ. There is an obvious inclusion Tangles ↪→ Tangles�ab, given by T 
→ (T, ).
We will use color and label interchangeably.

3 The Quantized Oriented Brauer Category

We define the quantized oriented Brauer algebra/category, following [5].1

Definition 1 The quantized oriented Brauer category Br(t) is the quotient of
Tanglesk modulo the following relations

− = (q−1 − q) , = = [t], (3a)

= = q−t , = = q+t . (3b)

Being a quotient of the ribbon category Tanglesk (see [11, Chap.XIV.5.1] for
more details on the ribbon structure), the category Br(t) inherits a ribbon structure.
We denote by Qt : Tangles → Br(t) the composition of the inclusion Tangles ↪→
Tanglesk with the quotient functor Tanglesk → Br(t). Note that EndBr(t)(↑⊗r↓⊗s)

is free of rank (r + s)!, cf. [5, Lemma2.4]. In particular, for the monoidal unit ∅ we
have EndBr(t)(∅) ∼= k.

1Note that to precisely match the definitions, one should replace q by q−1 and qβ by q−β .
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3.1 The Hecke Algebra

There is a clear algebra morphism HN → EndBr(t)(↑⊗N ), where HN is the Hecke
algebra over k, sending crossings to crossings. This is easily shown to be onto. One
way to prove it to be an isomorphism is to introduce a functor Gm|n between Br(d)

and Repm|n , the category of representations ofUq(glm|n). Since we will use this as a
tool, we refer to [15, Sect. 3] for references and details. By all means, restricting to
the n = 0 case, this yields the following commuting triangle:

EndBr(d)(↑⊗N )

HN EndRepd|0((C(q)d)⊗N )

Gd|0

where the bottom arrow is the usual map involved in generic quantum Schur–Weyl
duality (see for example [3, Theorem10.2.5]). In particular, it is faithful for d ≥ N ,
proving that HN  EndBr(t)(↑⊗N ).

The algebraHN is a finite-dimensional semisimple algebra. Its finite-dimensional
simple representations up to isomorphism are parametrized by partitions λ of N , and
we denote themby S(λ) for λ � N (we refer to [12, Chap.3] for details). In particular,
HN decomposes as

HN =
⊕

λ� N

eλHNeλ, (4)

where the eλ’s are central idempotents, HNeλ
∼= S(λ)⊕ dimk S(λ) as a left module

and eλHNeλ is isomorphic to a matrix algebra. We note that one can write explicit
formulas for the idempotents eλ, similarly as for the symmetric group, see [9].

For each λ � N , we choose a primitive idempotent pλ in eλHNeλ. Unless eλ itself
is primitive (and this happens if and only if λ is a row or a column partition, see for
example [9, Theorem3.10]), the element pλ is not uniquely determined. But any two
choices are conjugated in eλHr eλ, and hence also inHN .

3.2 Cabling

We adopt the following graphical convention for picturing morphisms in the Brauer
category: when we draw a thick strand labeled by λ, then this stands for |λ| parallel
strands, next to each other and intertwined by the idempotent pλ as illustrated by the
following picture:

λ = pλ

· · ·
· · ·

(5)
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Since the Brauer category is a ribbon category, all morphisms obtained from a given
diagram by placing the same idempotent at different positions on the same strand are
equal (pλ can be “slid around”). Furthermore, itmight be easier in some computations
to make use of the idempotent property and put more than one copy of pλ along the
strands.

This procedure allows us to define amonoidal functorQ�ab
t : Tangles�ab → Br(t).

Remark 1 One can also make sense of this cabling procedure more formally in the
category-theoretical setting. Namely, one can construct the Karoubi envelope of the
additive closure of Br(t), as explained for example in [4, Sect. 2]. This enlarged
category is monoidally generated by primitive idempotents in Br(t). In fact, for our
purposes it would be sufficient to consider a partial Karoubi envelope B̃r(t) which
is the smallest additive monoidal category containing all images of the primitive
idempotents pλ. The ribbon structure of Br(t) induces a ribbon structure on B̃r(t),
and one obtains immediately a functorQ�ab

t : Tangles�ab → B̃r(t).

4 Link Invariants of Type A

Definition 2 Let L be an oriented, framed link.

• The HOMFLY–PT polynomial of L , denoted by Pβ(L), is the image of L under
the functor Qβ , i.e.Qβ(L) ∈ EndBr(β)(∅) = k.

• Let d ∈ Z. The d –polynomial of L , denoted by Pd(L), is the image of L under
the functor Qd , i.e. Qd(L) ∈ EndBr(d)(∅) = k.

Remark 2 It follows from the fact that Br(d) is defined over k that Pd(L) is actually
a Laurent polynomial in the variable q. Similarly, one sees that Pβ(L) is an element
of C

[
q, q−1, qβ, q−β, [β]].

Definition 3 Let L be an oriented, framed link and � be a labeling of its strands.

• The � –labeled HOMFLY–PT polynomial of L , denoted by P�
β (L), is the image

of (L , �) under the functor Q�ab
β , i.e.Q�ab

β (L , �) ∈ EndBr(β)(∅) = k.
• Let d ∈ Z. The � –labeled d –polynomial of L , denoted by P�

d (L), is the image
of (L , �) under the functor Q�ab

d , i.e.Q�ab
d (L , �) ∈ EndBr(d)(∅) = k.

Lemma 1 The definition above does not depend on the choice of the elements pλ.

Proof Suppose λ � N , and let p′
λ another choice for a primitive idempotent in

eλHNeλ. Then there is an invertible element x ∈ HN such that xp′
λx

−1 = pλ. Since
we can slide x around on the cabled strands and cancel it with x−1, the independence
on the particular choice for pλ follows. �

Remark 3 In the general case, it is not clear to us how one can deduce from this
definition that P�

d (L) is a Laurent polynomial. If � labels every strand by a one-
column partition, then this can be deduced using the category Sp(β), introduced by
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the two authors in [15], which is defined over C[q, q−1]. One can argue analogously
if � labels every strand by a one-row partition.

Note that it follows immediately that the β = d specialization of the (labeled)
HOMFLY–PT polynomial yields the (labeled) d–polynomial. We stress that Defini-
tion3 is just a reformulation of Reshetikhin–Turaev’s construction [16]:

Proposition 1 Let m, n ∈ Z≥0 and let d = m − n. Then P�
d (L) is the labeled glm|n

link invariant (given by the Reshetikhin–Turaev construction).

Proof In this proof,we assume familiaritywith theReshetikhin–Turaev construction,
for which we refer to [16] or [13].

LetRepm|n denote the category of finite-dimensional representations of the quan-
tum group Uq(glm|n) (we refer to [15] for detailed definitions and references).
Note that one can make sense of this also for m = n = 0: in this case, gl0|0 is
the trivial (zero-dimensional) Lie algebra, and Rep0|0 is equivalent to the cate-
gory of finite-dimensional C(q)–vector spaces. The Reshetikhin–Turaev functor
RT m|n : Tangles�ab → Repm|n factors as

Br(d)

Tangles�ab Repm|n

Q�ab
d

RT m|n

Gm|n (6)

For this, one only has to check that the relations (3) are satisfied in Repm|n , and this
is well-known, see for example [15, Sect. 3] and references therein. Moreover, after
extension of scalars fromk toC(q), it is easy to see thatGm|n induces an isomorphism
between EndBr(d)(∅) and EndUq (glm|n)(C(q)), which are both naturally identifiedwith
k. Hence, we have Gm|n ◦ Q�ab

d (L , �) = RT m|n(L , �). �

As an immediate consequence, we obtain the following well-known important
result:

Theorem 1 The glm|n Reshetikhin–Turaev invariant of links colored by partitions
only depends on the difference m − n.

In particular, since the d = 2 case of [16] is the Jones polynomial, P2(L) is the
Jones polynomial of L .

5 Symmetry for the HOMFLY–PT Polynomial

In this section, we give an easy proof of a classical symmetry of the HOMFLY–PT
polynomial, which follows immediately from the existence of an automorphism of
the quantized oriented Brauer category. Another proof of this symmetry (although in
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a slightly different formulation) has been given using web categories in [18, Propo-
sition4.4] (see also references therein for previous discussions).

Theorem 2 Let (L , �) be a labeled link, and let �� denote the transpose labeling
(which labels each strands by the transpose partition). We have

P�
β (L)(q, qβ) = P��

β (L)(−q−1, qβ). (7)

Proof In the case β generic, we can define a C-linear involution τ of the quantized
walled Brauer category. On objects, τ is simply the identity functor. On each mor-
phism space, τ is the unique C-linear involution which fixes Tangles and acts on k
via τ(q) = −q−1 and τ(qβ) = qβ . It is immediate to check that the defining relations
are satisfied. By applying τ to the Hecke algebra HN one interchanges the simple
representations S(λ) and S(λT ) (this is easily checked on exterior and symmetric
powers and then extends for example using Gyoja-Aiston idempotents [1, 9]). In
particular, τ(pλ) is conjugated to pλ� . Hence P��

β (L)(q, qβ) = τ(P�
β (L)(q, qβ)) =

P�
β (L)(−q−1, qβ). �

For the usual (uncolored) HOMFLY–PT polynomial we get the following
property:

Corollary 1 We have Pβ(L)(q, qβ) = Pβ(L)(−q−1, qβ).

Remark 4 From the proof above it is also clear why this symmetry holds for the
HOMFLY–PT polynomial but fails for the d–polynomial.

6 Reduced Link Invariants of Type A

In this sectionwe discuss reduced link invariants, following ideas from [7] and related
works. The main goal is to get non-trivial invariants also in the case d = 0, and in
particular to define the Alexander polynomial. Indeed, we have:

Lemma 2 If d = 0, then P�
0 (L) = 0 for all links L and non-trivial labelings �.

Proof This follows immediately fromTheorem1, since the gl0|0 link invariant is zero
if at least one strand is labeled by a non-empty partition. �

Given a link L with a labeling � of its strands and a chosen strand labeled by λ,
we can cut open this strand and obtain a tangle T ∈ EndTangles�ab(↑). The link L is
obtained as closure of the tangle T :

L = λ
T (8)
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Note that, since the Hecke algebra is semisimple and pλ is a primitive idempotent,
we have pλ EndBr(t)(↑|λ|)pλ

∼= kpλ. This allows us to give the following definition:

Definition 4 Let L be an oriented, framed link and � be a labeling of its strands.
Regard L as closure of a tangle T obtained by cutting open a strand labeled by λ, as
in (8).

• The � –labeled λ –reduced HOMFLY–PT polynomial of L , denoted by P�,λ
β (L),

is the scalar α such that Q�ab
β (T, �) = αpλ ∈ pλ EndBr(β)(↑⊗|λ|)pλ.

• Let d ∈ Z. The � –labeled λ –reduced d –polynomial of L , denoted by P�,λ
d (L),

is the scalar α such that Q�ab
d (T, �) = αpλ ∈ pλ EndBr(d)(↑⊗|λ|)pλ.

Of course, we have to check that the definition does not depend on the chosen
strand labeled by λ (and on the particular point where we cut the strand). This is
implied by Lemma3 below. First, notice that by applying Q�ab

t to both sides of (8)
we get

P�
t (L) = trBr(t) pλ · P�,λ

t (L), (9)

where
trBr(t) pλ =

λ

= Pλ
t (©) ∈ EndBr(t)(∅). (10)

In particular, if trBr(t) pλ is non-zero then P�,λ
t (L) is well-defined and can be obtained

by division by P�
t (L), whence the name “reduced”.

Lemma 3 The invariants P�,λ
β (L) and P�,λ

d (L) are well-defined.

Proof Note first that, if d > 0 and λ is a partition with at most d rows, then trBr(d) pλ

is the quantum dimension of the irreducible Uq(gld)-module with highest weight
corresponding to λ, hence it is nonzero. (This can be seen for example by application
of the functorGd|0, afterwhich this is a consequence of quantumSchur–Weyl duality.)

Now, for β generic, trBr(β) pλ is always non-zero (since it has to specialize for
β = d to trBr(d)(pλ), which for d � 0 is non-zero). Hence, P�,λ

β (L) is equal to P�
β (L)

divided by trBr(β) pλ, and so it is well-defined.
In the case t = d ∈ Z, by construction, P�,λ

d (L) is the specialization of P�,λ
β (L)

at β = d, hence also P�,λ
d (L) is well-defined. �

Note that, as follows from the proof of the previous lemma, for β generic the
reduced invariants do not give any more information, since we always have

P�,λ
β (L) = P�

β (L)

trBr(β) pλ

. (11)

On the other hand, in the specialized case t = d it often happens that trBr(d) pλ = 0,
and hence the invariant P�

d (L) is zero as long as one of the strands is labeled by such
a λ, while the reduced invariant P�,λ

d (L)may be non-zero (cf. also Remark 5 below).
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Let us denote by Hookm|n the set of hook partitions of typem|n (i.e. the partitions
λ with λm+1 ≤ n). Then we have the following analog of Proposition1:

Proposition 2 Let m, n ∈ Z≥0 and let d = m − n. Suppose λ ∈ Hookm|n. Then
P�,λ
d (L) is the λ–reduced �–labeled glm|n link invariant (given by the Reshetikhin–

Turaev construction). In particular, this link invariant only depends on m − n.

Proof The proof is analogous to the proof of Proposition1. Since λ ∈ Hookm|n , the
image of pλ inRepm|n is non-zero (it projects onto one copy of the simpleUq(glm|n)-
module L(λ) labeled by λ). In particular, Gm|n induces an isomorphism between the
idempotent truncation pλ EndBr(d)(↑⊗|λ|)pλ and EndUq (glm|n)(L(λ)), which are both
naturally identified with C(q). Hence, the claim follows from the commutativity
of (6). �

Corollary 2 The link invariant P ,
0 (L) is (up to rescaling) the Alexander poly-

nomial of L.

Proof This follows from Proposition2 above together with [17, Theorem4.10].
Alternatively, one can argue that, up to rescaling, P ,

0 satisfies the skein relations
of the Alexander polynomial. �

Remark 5 In Proposition2 it is crucial to assume that m, n are big enough so that
λ ∈ Hookm|n . This makes a big difference with the situation of Proposition1. Indeed,
Proposition1 implies that the labeled glm|n link invariant vanishes as long as one
strand is labeled by a partition λ such that λ /∈ Hm−k|n−k for some k ≥ min{m, n}.
For example, the gl2|1 link invariant always vanishes if one strand is labeled by a
partition with more than one row. On the other hand, Proposition2 does not imply
that the λ–reduced glm|n link invariant vanishes if the glm−1|n−1 does.
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On the Geometry of Some Braid Group
Representations

Mauro Spera

Abstract In this note we report on recent differential geometric constructions aimed
at devising representations of braid groups in various contexts, together with some
applications in different domains of mathematical physics. First, the classical Kohno
construction for the 3- and 4-strand pure braid groups P3 and P4 is explicitly
implemented by resorting to the Chen-Hain-Tavares nilpotent connections and to
hyperlogarithmic calculus, yielding unipotent representations able to detect Brun-
nian and nested Brunnian phenomena. Physically motivated unitary representations
of Riemann surface braid groups are then described, relying on Bellingeri’s presen-
tation and on the geometry of Hermitian–Einstein holomorphic vector bundles on
Jacobians, via representations of Weyl-Heisenberg groups.

Keywords Braid groups · Chen iterated integrals · Hermitian–Einstein bundles ·
Weyl-Heisenberg groups
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58B34

1 Introduction

Braid groups, with their multifaceted incarnations, play a prominent role throughout
mathematics and enter in an essential way in the formulation of various physical
theories [17, 18, 30, 40, 41, 80]. The present note is devoted to surveying some
recent geometric approaches for constructing braid group representations, building
on [10, 70]. We first discuss low-dimensional matrix representations of pure braid
groups (on three and four strands) obtained via holonomy of suitable nilpotent flat
connections [10]. Flatness is directly enforced by means of the Arnol’d relations,
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and computations heavily rely on hyperlogarithmic calculus [79]. These explicit
representations were used in [10] for the investigation of Brunnian and “nested”
Brunnian phenomena.

Subsequently we review the construction of unitary representations of Riemann
surface braid groups of [70], obtained by resorting to Bellingeri’s presentation [8]
and to the geometry of Hermitian–Einstein holomorphic vector bundles on Jacobians
(à la Matsushima [51]), also commenting on the noncommutative geometric route
outlined in [70] and concisely portraying the motivating physical background.

2 Braid and Pure Braid Groups

2.1 Standard Braid and Pure Braid Groups

This subsection is meant to provide a minimal background on standard braid and
pure braid groups and to establish notation. For a full account see e.g. [3, 10, 17, 18,
40, 47, 53] as well.

The Artin braid group Bn is the group generated by n − 1 generators
b1, b2, . . . , bn−1 subject to the braid relations

bib j = b jbi

for all i, j = 1, 2, . . . , n − 1 with |i − j | ≥ 2, and

bibi+1bi = bi+1bibi+1

for i = 1, 2, . . . , n − 2.
The pure (or coloured) braid group Pn is the kernel of the natural projection

π : Bn → Sn where Sn is the symmetric group:

Pn = Ker(π : Bn → Sn)

(the symmetric group itself being obtained from Bn by adding the extra relations
σ 2
i = 1). The n-strand pure braid group on Pn is the fundamental group of the

configuration space Con f (n,C) of n distinct points on the complex plane C. We
take its base point at (1, 2, . . . , n) ∈ Con f (n,C).

The pure braid group Pn is generated by the n(n − 1)/2 elements {Ai j }1≤i< j≤n

subject to the so-called Artin relations, which will be written down explicitly only for
n = 3 below. One sets, Ai j = A ji , for i �= j . The generators Ai j can be represented
(up to isotopy) by downward directed geometric braids such that strand i (starting
from and ending at z = i) winds clockwise around strand j or conversely. We do not
need their expression in terms of the b’s. In what follows we shall blur the distinction
between a geometric braid and the element of the braid group it represents. Concretely
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(and with an abuse of language) the product b1 · b2 is given by juxtaposition, drawing
b2 below b1.

The Artin relations for P3 read

A−1
12 A23A12 = A13A23A

−1
13

A−1
12 A13A12 = A13A23A13A

−1
23 A

−1
13

whereas the centre of P3 is generated by �2
3 = A12A13A23.

The (co)homology ring of the coloured braid group (namely, that of Con f (n,C))
is isomorphic to the exterior graded ring generated by one-dimensional elements
ωi j = ω j i , 1 ≤ i �= j ≤ n satisfying the Arnol’d relations [2] (i , j , k distinct)

Ii jk := ωi j ∧ ω jk + ω jk ∧ ωki + ωki ∧ ωi j = 0

Concretely, one takes the logarithmic 1-forms

ωi j := 1

2π
√−1

d log(zi − z j ) = 1

2π
√−1

d (zi − z j )

zi − z j

(for zi �= z j ,
√−1 = +i). Thus there are

(
n
3

)
independent Arnol’d relations.

Specifically, the Arnol’d identity for P3 reads

I1 := ω12 ∧ ω23 + ω23 ∧ ω31 + ω31 ∧ ω12 = 0

whereas one gets three additional Arnol’d identities for P4.
Let us also recall for completeness the definition of the holonomy algebra Pn (see

e.g. [58]), generated (over C), by elements ti j , i, j = 1, 2, . . . , n, i < j , fulfilling
the so-called infinitesimal pure braid relations:

ti j = t ji

[tik, ti j + t jk] = [ti j , tik + t jk] = 0, i, j, k all distinct

[ti j , thk] = 0 if i, j, k, h all distinct

It is actually the universal enveloping algebra of the Lie algebra generated by the t’s
subject to the infinitesimal braid relations. It is well known that ti j can be depicted as
a set of n parallel vertical strings together with a horizontal string connecting string
i with string j (with the product defined by juxtaposition).
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2.2 Riemann Surface Braid Groups

The braid group on n strands B(X, n) pertaining to a topological space X is
by definition the fundamental group of the associated configuration space Cn(X)

consisting of all n-ples of distinct points, up to order or, equivalently, of all
n-point subsets of X . Here we take X = �g , a closed orientable surface (actually,
a Riemann surface) of genus g ≥ 1. Its associated braid group B(�g, n) admits,
among others, the following presentation due to Bellingeri [8]. The generators are
σ1, . . . , σn−1; a1, . . . , ag, b1, . . . , bg (the former are the standard braid group gener-
ators previously generically denoted by b, the latter have a simple geometric inter-
pretation, in terms of the natural dissection of the surface by means of a 4g-gon, see
[8]). The presence of the extra generators is natural: if, say, two points loop around
each other, their trajectories can at the same time wind around the handles of the
surface.

In the presentation, in addition to the ordinary braid relations

(B1) : σ jσ j+1σ j = σ j+1σ jσ j+1 j = 1, 2, . . . n − 2

(B2) : σiσ j = σ jσi , |i − j | > 1

one has “mixed” relations

(R1) : arσi = σi ar , 1 ≤ r ≤ g, i �= 1
brσi = σi br , 1 ≤ r ≤ g, i �= 1

(R2) : σ−1
1 arσ

−1
1 ar = arσ

−1
1 arσ

−1
1 , 1 ≤ r ≤ g,

σ−1
1 brσ

−1
1 br = brσ

−1
1 brσ

−1
1 , 1 ≤ r ≤ g,

(R3) : σ−1
1 asσ1ar = arσ

−1
1 asσ1, s < r

σ−1
1 bsσ1br = brσ

−1
1 bsσ1, s < r

σ−1
1 asσ1br = brσ

−1
1 asσ1, s < r

σ−1
1 bsσ1ar = arσ

−1
1 bsσ1, s < r

(R4) : σ−1
1 arσ

−1
1 br = brσ

−1
1 arσ1, 1 ≤ r ≤ g

(T R) : [a1, b−1
1 ] · · · [ag, b−1

g ] = σ1σ2 · · · σ 2
n−1 · · · σ2σ1

with the usual group theoretical convention [a, b] = aba−1b−1.

3 Unipotent Representations of the Pure Braid Group
via Differential Geometry

3.1 Overview

This section summarises the content of the (purelymathematical) paper [10], devoted
to elaboration of quite concrete instances of the abstract general frameworkdeveloped
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in [44–47] (see also [1, 6, 48, 50, 58]). We eventually obtain fully explicit families
of pure braid invariants by a systematic approach resting on a vivid differential
geometric principle. These topological invariants turn out to be able to distinguish,
at least partially, pure braids with three or four strands, especially those exhibiting
a Brunnian-like character, namely, those which become trivial after removing some
strands therefrom in an arbitrary way (see below for precise definitions).

First notice that the general theory already tells us that the Kohno monodromy
representations exhaust all unipotent representations on Pn , ([46], Theorem 1.2.6,
see also [1], Théorème 1); nevertheless explicit calculations are unavoidable if one
aims at getting more detailed information.

Thus, specifically, the procedure expounded in [10] is the following: recall, in
general, the abstract Kniznik–Zamolodchikov-Kohno (KZK) connection [44–47]

v =
∑
i< j

ti jωi j

defined on Con f (n,C), with the t’s fulfilling the infinitesimal braid relations and
the ω’s fulfilling, in turn, Arnol’d’s relations. The KZK connection is flat, namely

dv + v ∧ v = v ∧ v = 0

Then, its parallel transport, defined by a time-ordered exponential involving Chen
iterated path integrals [22, 23]

ρ(γ ) = T exp
∫

γ

v

(γ being a path in Con f (n,C)), gives rise to a representation (call again it ρ) of
Pn via the holonomy algebra Pn discussed above. This is the crucial ingredient in
Kontsevich’s universal knot invariant construction [6, 48, 58]. In what follows we
aim at finding concrete nilpotent matrix valued Hain–Tavares connections [32, 71],
enforcing flatness via the Arnol’d relations (in this manner, the infinitesimal braid
relations for the ensuing t’s will then be automatically fulfilled). The Chen series then
becomes a finite sum. It is then clearly enough to calculate holonomies around the
(Artin) generators, a non trivial task, which can be achieved in principle by resorting
to hyperlogarithms and their monodromy [79]; in our setting, it will be enough to
compute suitable double iterated integrals. In the following subsections we shall
outline such a programme for P3 and P4. It should be noticed from the outset that
the specific method illustrated here does not produce non trivial representations for
Pn , n > 4 [10].
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3.2 Representations of P3

We are going to discuss P3-representations manufactured through the method
described above. For the sake of clarity, we shall give a few details, which, on the
contrary, will be omitted when dealing with P4.

In this specific case we look for 1−forms vk

vk := t12k ω12 + t13k ω13 + t23k ω23 k = 1, 2, 3 t i jk (= t jik ) ∈ C

such that v1 ∧ v2 = λ(ω12 ∧ ω23 + ω23 ∧ ω31 + ω31 ∧ ω12) with λ ∈ C. We take the
following connection 1-form

v =
⎛
⎝ 0 v1 v3
0 0 v2
0 0 0

⎞
⎠

with curvature


 = dv + v ∧ v =
⎛
⎝ 0 0 v1 ∧ v2
0 0 0
0 0 0

⎞
⎠

to be set equal to zero, this leading to the conditions:

t121 t232 − t122 t231 = t231 t312 − t232 t311 = t311 t122 − t312 t121

Upon interpreting 1-forms as geometric vectors (so long as their coefficients are
real), together with their wedge products (which, in turn, become ordinary vector
products), the above condition tells us that the two vectors (t12k , t13k , t23k ), k = 1, 2 lie
on the plane x + y + z = 0:

t12k + t23k + t31k = 0 k = 1, 2

(slight abuses of language and obvious notation), so long as they are real, that is,
linear conditions. The geometric picture persists algebraically for complex t’s as
well. So we get parametric solutions (with α, β, γ, δ, x12, x23, x31 complex; we also
set xi j = x ji throughout):

v1 = α (ω12 − ω13) + β (ω12 − ω23)

v2 = γ (ω12 − ω13) + δ (ω12 − ω23)

v3 = x12 ω12 + x23 ω23 + x31 ω31

or
v1 = (α + β)ω12 − α ω13 − β ω23

v2 = (γ + δ) ω12 − γ ω13 − δ ω23

v3 = x12 ω12 + x23 ω23 + x31 ω31
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with the only condition αδ �= βγ in order to avoid trivialities in

v1 ∧ v2 = −(αδ − βγ ) · I1
In order to calculate the holonomy (parallel transport)

ρ(b) =
⎛
⎝1

∫
b v1

∫
b v1v2 + v3

0 1
∫
b v2

0 0 1

⎞
⎠

for a generic pure braid b written as a word in the Artin generators Ai j , we must
use the following easily established results involving hyperlogarithms (

∫
Ai j

meaning
Chen integration along the geometric pure braid Ai j , see [10]):

∫
Ai j

ωkh = −δ(i j),(kh),

∫
Ai j

(ωi j )
n = (−1)n

n!

Also, upon moving “1” around “2” clockwise:

∫
A12

ω12 = −1
∫
A12

ω12ω12 = +1

2

∫
A12

ω12ω13 = +
√−1

2π
log 2

∫
A12

ω13ω12 = −
√−1

2π
log 2

and similar results for the other generators (see [10] for complete details).
Thus we eventually find

ρ3(A12) =
⎛
⎝ 1 −α − β 1

2 (α+β)(γ+δ)+(αδ−βγ )

√−1
2π log 2+x12

0 1 −γ − δ

0 0 1

⎞
⎠

ρ3(A13) =
⎛
⎝1 +α 1

2 αγ+ 1
2 (αδ−βγ )+x13

0 1 +γ

0 0 1

⎞
⎠

ρ3(A23) =
⎛
⎝1 +β 1

2 βδ+(αδ−βγ )
−√−1
2π log 2+x23

0 1 +δ

0 0 1

⎞
⎠
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The central element reads,

ρ3(�
2
3) =

⎛
⎝1 0 x12 + x13 + x23
0 1 0
0 0 1

⎞
⎠

Now, if we observe that the xi j ’s are arbitrary, one gets the following

Theorem 1 (i) There exists a 7-complex parameter family of 3 × 3 nilpotent repre-
sentations ρ3 of P3 reading, on Artin’s generators:

ρ3(A12) =
⎛
⎝1 −α − β X12

0 1 −γ − δ

0 0 1

⎞
⎠

ρ3(A13) =
⎛
⎝1 +α X13

0 1 +γ

0 0 1

⎞
⎠

ρ3(A23) =
⎛
⎝ 1 +β X23

0 1 +δ

0 0 1

⎞
⎠

(ii) The central element reads, in turn, with respect to the new parameters:

ρ3(�
2
3) =

⎛
⎝ 1 0 −αδ − βδ − αγ + X12 + X13 + X23

0 1 0
0 0 1

⎞
⎠

Remarks 1. It is important to notice that when computing the holonomy of a generic
braid b, the representation matrices for the generators entering the word giving b
must be written in the reverse order: in a product b1 · b2, b1 comes first, so ρ(b1)
must accordingly act first. It is readily checked, retrospectively (by hand or by a
computer algebra system, e.g. Mathematica®) that the Artin relations are fulfilled
with the above convention.

2. Strictly speaking, in view of the arbitrary character of xi j , the computation of
double iterated integrals turns out to be unnecessary in this case, however we carried
it out since it was actually needed for further calculations in [10].

3. The above representation is actually a Heisenberg group one.

3.3 Representations of P4

More refined arguments along the lines of those previously given and computation
of further double iterated integrals (there is no need to calculate an a priori present
triple integral) lead in [10] to the following result:
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Theorem 2 ([10]) (i) There exists a 16-complex parameter family of 4 × 4 nilpotent
representations �4 of P4 reading, on Artin’s generators:

�4(A12) =

⎛
⎜⎜⎝
1 −α − β 1

2 (α+β)(γ+δ)+(αδ−βγ )(

√−1
2π log 4

3 )−(σ+τ) X12

0 1 −γ − δ 1
2 (γ+δ)(η+ξ)+(γ η−δξ)(

√−1
2π log 4

3 )−(ζ+λ)

0 0 1 −η − ξ

0 0 0 1

⎞
⎟⎟⎠

�4(A13) =

⎛
⎜⎜⎝
1 α αγ

2 +(αδ−βγ )

(
+ 1

2 +
√−1
2π log 3

)
+σ X13

0 1 γ γξ
2 +(γ η−δξ)

(
+ 1

2 +
√−1
2π log 3

)
+ζ

0 0 1 ξ

0 0 0 1

⎞
⎟⎟⎠

�4(A14) =

⎛
⎜⎜⎝
1 β βδ

2 +(αδ−βγ )

(
−

√−1
π log 2

)
+τ X14

0 1 δ δη
2 +(γ η−δξ)

(
−

√−1
π log 2

)
+λ

0 0 1 η

0 0 0 1

⎞
⎟⎟⎠

�4(A23) =

⎛
⎜⎜⎝
1 β βδ

2 +(αδ−βγ )

(
−

√−1
π log 2

)
+τ X23

0 1 δ δη
2 +(γ η−δξ)

(
−

√−1
π log 2

)
+λ

0 0 1 η

0 0 0 1

⎞
⎟⎟⎠

�4(A24) =

⎛
⎜⎜⎝
1 α αγ

2 +(αδ−βγ )

(
− 1

2 +
√−1
2π log 3

)
+σ X24

0 1 γ γξ
2 +(γ η−δξ)

(
− 1

2 +
√−1
2π log 3

)
+ζ

0 0 1 ξ

0 0 0 1

⎞
⎟⎟⎠

�4(A34) =

⎛
⎜⎜⎝
1 −α − β 1

2 (α+β)(γ+δ)+(αδ−βγ )

( √−1
2π log 4

3

)
−(σ+τ) X34

0 1 −γ − δ 1
2 (γ+δ)(η+ξ)+(γ η−δξ)

( √−1
2π log 4

3

)
−(ζ+λ)

0 0 1 −η − ξ

0 0 0 1

⎞
⎟⎟⎠

(ii) The central element reads, in turn

�4(�
2
4) =

⎛
⎜⎜⎝
1 0 0 W
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠

where

W = −(αλ+βζ+ξτ+ησ)−2(αζ+βλ+ξσ+ητ)+ 1
2 γ η(α+β)+ 1

2 βγ (η+ξ)−
−

√−1
2π (αη−βξ)(γ log 9

4 −δ log 16
3 )+X12+X13+X14+X23+X24+X34
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Remarks 1. Matrices are again written in the reverse order; fulfilment of the Artin
relations can be again readily checked.
2. Notice that, upon restriction to P3 ↪→ P4 (obvious inclusion) one has

�4|P3 �= ρ3

3.Also observe that,whereas the P3 case could be dealtwith completely algebraically,
in the P4 case the geometric interpretation seems to be unavoidable.
4. (Important). The above 7-parameter and 13-parameter families of representa-
tions exhaust the unipotent representations of P3 in view of Kohno’s general theory
[44–46] (see also [1]). The fundamental theorem of Kohno [46], Theorem 1.2.6—see
also Aomoto’s Théorème 1 in [1]—shows in particular that every unipotent repre-
sentation of the pure braid group can be realised as a monodromy representation.
A simple general argument for constructing unipotent representations of P3 can be
outlined as follows. One looks for n × n-nilpotent matrices t12, t13, t23 fulfilling the
infinitesimal braid relations: therefore, two of them can be chosen arbitrarily, the third
one can be chosen to be central. In total we have 2 × n(n − 1)/2 + 1 = n(n − 1) + 1
parameters, yielding 7 and 13 for n = 3, 4, respectively (adhering to [10]). Of course
one has to explicitly solve the iterated integrals involving the Artin generators if one
looks for concrete formulae.

3.4 Braids of Brunnian Type

In this subsection we wish to compute our representations on Brunnian type pure
braids, showing that they are indeed able to detect this phenomenon, in the sense
that, in general, evaluating the monodromy (parallel transport) matrix on such braids
yields a non trivial result whereby they can be (partially) distinguished. We do not
attempt to give a systematic classification but provide specific significant examples.
See the remarks in [10] (and [16, 50] as well).

In analogy to the link case, a pure braid is called Brunnian if upon removing
any strand therefrom, it becomes trivial (cf. [59, 60] for the analogous notion for
knots). One may also think of stratified Brunnian braids Bn

k , k = 0, 1, . . . , n − 2, i.e.
those n-strand braids which become trivial after (and only after) arbitrarily removing
k strands therefrom (so Brunnian braids yield Bn

1 , and the trivial braid is the only
element of Bn

0 ). Removal of a strand, the j-th, say, of a braid b, is obtained by erasing
the generators containing the index j in any word representing b.

An immediate example of Brunnian braid is the following:

b = [A12, [A13, [. . . , [A1,n−1, A1n] . . . ]]]

generalizing the pigtail braid b = [A12, A13] = A12A13A
−1
12 A

−1
13 which, upon clo-

sure, provides a realization of the Borromean rings. More generally, the Brunnian
braid [An

12, A
m
13], n,m ∈ Z can be represented, via ρ3, as follows:
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ρ3
([An

12, A
m
13]

) =
⎛
⎝ 1 0 mn(αδ − βγ )

0 1 0
0 0 1

⎞
⎠

The “mirror-inverse” a b c d . . . (. . . d c b a)−1 words, using the six generators of
P4 (and any permutation thereof) give rise to braids of type B4

2 : indeed, upon deleting
a strand, we easily see that the remaining braid is of type B3

1 . For instance, take

b′′ = A12A13A14A23A24A34A
−1
12 A

−1
13 A

−1
14 A

−1
23 A

−1
24 A

−1
34

with �4-representation

�4(b
′′) =

⎛
⎜⎜⎝
1 0 0 −(αδ−βγ )(2η+ξ)+(α+2β)(γ η−δξ)

0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠

This does not exhaust all possibilities since, for instance, the “shorter” braid b′′′ =
A12A24A13A34A

−1
12 A

−1
24 A

−1
13 A

−1
34 is also of type B4

2 , and differs from b′′:

�4(b
′′′) =

⎛
⎜⎜⎝
1 0 0 ξ(αδ−βγ )+α(δξ−γ η)

0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠

Notice that, in dealing with Brunnian phenomena, the parameters σ , τ , ζ , λ and Xi j

play no role.
Additional representations are extensively studied in [10]. For related approaches

see e.g. [13–15, 27].

4 Geometric Representations of Riemann Surface Braid
Groups

4.1 Overview

In the paper [70], which we closely follow from now on, we studied the simplest uni-
tary representations of the braid group associated to a general Riemann surface from
a geometrical standpoint. Besides being interesting in itself, such an investigation
could prove useful in topological quantum computing [56, 78], where unitary braid
group representations are employed for constructing quantum gates (topology would
then automatically enforce robustness and fault tolerance), with the Fractional
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Quantum Hall Effect (FQHE) possibly yielding the physical clue to its practical
implementation [56].

Recall that theFQHEarises for a (Coulomb) interacting spin-polarised2d-electron
gas, at low temperature and in the presence of a strong magnetic field. It is usually
observed in semiconductor structures, such as electrons trapped in a thin layer of
GaAs surrounded by AlGaAs, Si-MOSFETs (see e.g. [21]) and it has been recently
detected in graphene [20] as well. The ground state of such a system can be approx-
imately (but most effectively) described by a Laughlin wave function of the form (in
a plane geometry, [21, 49]):

∏
i< j

(zi − z j )
me− ∑N

i=1 |zi |2 (L)

Here N is the number of electrons in the sample, m is an odd integer (this ensuring
Fermi statistics). One notes the appearance of the ground state of a quantumharmonic
oscillator (also cf. [12, 69]). The quantity ν = 1

m is the filling factor intervening in
the fractional quantization of the Hall conductance:

σH = ν
e2

h

and, in the limit N → ∞, equals the electron density per state: ν = N
NS

with NS the
number of magnetic flux quanta: NS = B · A/�0 (B is the modulus of the constant
magnetic field, acting perpendicularly to the layer,A is the area of the given sample,
whereas�0 := hc/e is the flux quantum). The number NS also gives the degeneracy
of the lowest Landau level (for the free system), which appears as a degenerate
ground state of a quantum harmonic oscillator.

On the mathematical side, Landau levels admit elegant algebraic-geometric
descriptions along the lines of geometric quantization (see e.g. [28, 42, 74, 81]):
for instance, if the layer is a (closed) Riemann surface of genus g, the lowest Landau
level is the space of holomorphic sections of a suitable holomorphic line bundle
[37, 72]; on a torus (g = 1) it can be realised as a space of theta functions, see e.g.
[31, 57], and also [65] and below.

Now, on the one hand, it turns out that the elementary excitations around
the Laughlin ground state are quasiparticles/holes having fractional charge ±νe
[21, 49] and anyon statistics (−1)ν [21, 34], and this leads to considering the braid
group associated to the N -point configuration space of the given layer (N now being
the number of quasiparticles/holes). Wave functions for quasiparticles/holes can be
cast in the form (L), with ν replacing m (see [21, 34]).

On the other hand, the filling factor ν = 1/m (together with others) for a torus
sample has been interpreted as the slope (that is, degree over rank) of a stable
holomorphic vector bundle over the corresponding “spectral”, or “Brillouin man-
ifold” (which is again a torus, parametrising all admissible boundary conditions, see
[31, 33, 76]); therefore, the filling factor has a topological meaning. (For ν integral
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one recovers the interpretation of the integral QuantumHall Effect via the first Chern
class of a line bundle over the Brillouin manifold, see e.g. [21, 52, 73].)

It turns out [70] that the above coincidence has an abstract braid group theoretical
origin: we consider a general closed Riemann surface—so that the role of the Bril-
louin manifold is played by the Jacobian of the surface (cf. [72])—and its associated
braid group, with the Bellingeri presentation [8]; then the equalities, in the genus
one case (cf. [76])

ν := filling factor = statistical parameter = slope of a stable vector bundle

can be derived from a group theoretical perspective, and can be suitably generalised.
In brief, this runs as follows: first of all, braiding can approached via repre-

sentations of the Weyl-Heisenberg group corresponding to the (rational) statistical
parameter ν, both infinite dimensional and finite dimensional (see [9] for an abstract
manifestation of this phenomenon).

Then, generalising [65], we observe that the infinite dimensional representa-
tions can be constructed geometrically on L2-sections of holomorphic Hermitian
stable bundles over the Jacobian of the Riemann surface under consideration. Stable
bundles are irreducible holomorphic vector bundles over Kähler manifolds admit-
ting a Hermitian–Einstein structure (HE)—namely a (unique) Hermitian connection
with central constant curvature—in view of the Donaldson–Uhlenbeck–Yau theorem
[26, 43, 55, 75]. Specifically, the representation of the Weyl-Heisenberg group
we look for stems from suitable parallel transport operators associated to the HE-
connection (which will have constant curvature, essentially given by the statistical
parameter ν). The solution is actually reduced to finding suitable projectively flat HE-
bundles over Jacobians, which can be obtained via a classical construction devised by
Matsushima [35, 43, 51]. In particular, we get a “slope-statistics” formula μ = νg!
(with μ denoting the slope of a holomorphic vector bundle). The other important
geometrical ingredient needed to describe the statistical behaviour governing “parti-
cle” exchange is the Klein prime form on a Riemann surface, manufactured via theta
function theoretic tools. The problem of extracting general roots of a line bundle then
arises and it is circumvented by exploiting a universal property of the prime form.
Then we define, following Halperin [21, 34, 49], (Laughlin type) vector valued wave
functions obeying, in general, fractional statistics and having their “centre of mass”
part represented by holomorphic sections of the above bundles (see also [12, 33, 37,
76]). In the following sections we shall develop the programme outlined above.

4.2 The Simplest Unitary Representations of the Riemann
Surface Braid Group

We shall restrict ourselves to unitary representations

ρ : B(�g, n) → U (H)
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(U (H) being the unitary group on a complex separable Hilbert space H) with
ρ(σ j ) = σ I , j = 1, . . . , n − 1 (I being the identity operator on H). One writes

σ = e2π
√−1θ ≡ eπ

√−1ν = (−1)ν

and calls θ (a priori defined up to integers) the statistics parameter (same for ν = 2θ ,
with abuse of language). Referring to Sect. 2.2, we see that the relations B1, B2, R1
and R2 are automatically fulfilled, the relations R3 become:

[ρ(as), ρ(ar )] = [ρ(bs), ρ(br )] = I, r, s = 1, . . . , g (�)

whereas R4 yields:

[ρ(ar ), ρ(br )] = σ 2 I, r = 1, . . . , g

Condition TR gives, in turn, after checking that

[ρ(ar ), ρ(b−1
r )] = σ−2 I (��)

the constraint
σ 2(n−1+g) = 1

furnishing (for n − 1 + g �= 0)

θ = q

2(n − 1 + g)
, q ∈ Z or, equivalently ν = q

n − 1 + g
,

that is, fractional statistics, in general.Notice that ifσ 2 = 1, that is θ ∈ 1/2 · Z (slight
abuse of notation) we recover ordinary Fermi-Bose statistics (see also below).

Next we introduce the following tensor product Hilbert space:

H := H1 ⊗ H2

with H1 carrying a representation of the Weyl-Heisenberg Canonical Commuta-
tion Relations (CCR) ([77], see also e.g. [61]) up to obvious inessential notational
changes:

V (β)U (α) = e2π
√−1·ν α·βU (α) V (β)

with α, β ∈ R
g , and where H2 is one-dimensional. Clearly H1 ⊗ H2

∼= H1, but we
keep the distinction in view of our subsequent physical applications. Now take, after
denoting by (e1, e2, . . . eg) the canonical basis of Rg:

ρ1(ar ) = U (er ), ρ1(b
−1
r ) = V (er ), r = 1, 2, . . . g
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Upon setting

ρ(ar ) = ρ1(ar ) ⊗ IH2 , ρ(b−1
r ) = ρ1(b−1

r ) ⊗ IH2 , r = 1, . . . , g
ρ(σ j ) = IH1 ⊗ σ IH2 ≡ IH2 ⊗ ρ2(σ j ), j = 1, . . . , n − 1

and in view of (�) and (��), we have:

Theorem 3 ([70]) (i) Any representation of the Weyl-Heisenberg Commutation
relations yields, via the map

ρ : B(�g, n) → U (H)

defined above, an infinite dimensional unitary representation of the Riemann surface
braid group B(�g, n) on the Hilbert space H .

(ii) Irreducible finite dimensional unitary RS-braid group representations ρ̂ also
exist, stemming from the finite version of Weyl-Heisenberg commutation relations.

The representations in (ii) correspond in fact to particular rationalnoncommutative
tori (see also below).

4.3 The Matsushima Construction

We shall now outline a geometric construction of the Hilbert spaces Hj , j = 1, 2
and of the representation ρ. See e.g. [54] for the relevant background on Riemann
surface theory.

Concerning the space H1, in [70], taking inspiration from [65], we were naturally
led to look for a Hermitian holomorphic vector bundleE → J (�g) over the Jacobian
J (�g) of the Riemann surface in question, equipped with a HE-connection∇ having
constant curvature equal (up to a 2π

√−1 factor) to 2θ = ν, and this will give rise
to a holomorphic stable bundle with slope μ(E) ∝ ν.

The construction of such bundles over a generic Abelian variety is classical (cf.
in particular [35, 43, 51, 70] as well). It turns out that the space of holomorphic
sections H 0(Eν) is q-dimensional and, in the case r = 1, we retrieve the so-called q-
level theta functions. Therefore, the conclusion is that a projectively flat HE-bundle
on the Jacobian J (�g) with HE-connection with curvature−2π

√−1ν ω can be
manufactured via the Matsushima construction, and, by a result of Hano [35], this
is essentially the only way to achieve this (one uses the Riemann-Roch-Hirzebruch
(RRH) theorem, together with a cohomology vanishing theorem, plus the fact that
the Todd class is trivial for tori. We refer to [11, 36] for background and full details).
The precise statement is the following:

Theorem 4 ([70]) (i) Let E be a projectively flat holomorphic vector bundle over
J (�g) (or, more generally, over an Abelian variety) carrying a HE-connection ∇
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with constant curvature 
∇ = −2π
√−1 ν · ω := −2π

√−1 q/r · ω, (with r > 0,
q > 0 and g.c.d(r, q) = 1). Then one has,

R := rk(E) = k r g, h0(E) = k qg

with k a positive integer.
(ii) The following slope-statistics formula holds:

μ(E) = ν g!

RemarkVarnhagen’s result [76] is recovered for g = 1. The general factor g! comes
from the application of the RHH formula with a specific connection (the result is
independent of the latter, since it is topological in nature). So, in a nutshell, the thread
of the argument is the following: statistical parameter → CCR → curvature of the
Chern–Bott connection on a HE-vector bundle (more details below) → slope.

4.4 Construction of ρ1

Now consider the projectively flat HE-vector bundles E of the preceding Subsec-
tion and take H1 := L2(E), namely the L2-sections of E obtained by completing its
smooth sections with respect to the inner product

〈· , ·〉 :=
∫
J (�g)

h(· , ·)ω
g

g!

(h being the HE-metric). The braid generators ai and bi , i = 1, 2, . . . g, can be
realised as parallel transport operators pertaining to the Hermitian connection with
constant curvature∇, and actually will yield a representation of theWeyl-Heisenberg
Commutation Relations as above. (Indeed, there exists a family of such connec-
tions parametrized by the Jacobian itself.) Specifically, with respect to the standard
(Darboux) symplectic coordinates (q1, p1, q2, p2, . . . qg, pg) of J (�g), we have

[∇ ∂
∂q j

,∇ ∂
∂qk

] = [∇ ∂
∂p j

,∇ ∂
∂pk

] = 0; [∇ ∂
∂q j

,∇ ∂
∂pk

] = −2π
√−1 ν δ jk · I

for j, k = 1, 2 . . . g (we tacitly switched to operator commutators).
Notice in fact that, by periodicity and the compatibility of ∇ with h, one has

0 =
∫
J (�g)

X h(· , ·)ω
g

g! =
∫
J (�g)

[
h(∇X ·, ·) + h(·,∇X ·)]ωg

g!

with X = ∂/∂q j , ∂/∂p j , thus the operators ∇ ∂
∂q j

, ∇ ∂
∂p j

are formally skew-hermitian.

By classical functional analytic arguments they are skew-adjoint (cf. [63]).
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Thus, under the above assumptions, taking the von Neumann uniqueness the-
orem [77] into due account, we get an infinite dimensional representation of the
Weyl-Heisenberg Commutation relations (generalising [65]) with multiplicity qg .

The braid group generators ai and bi , i = 1, . . . , g are then represented as

ρ1(ar ) := exp(∇ ∂
∂qr

), ρ1(b
−1
r ) := exp(∇ ∂

∂pr
), r = 1, 2, . . . g

Remark The holomorphic hermitian stable bundle (E, h,∇) → J (�g) can be

pulled-back to �g via the Abel map to

(A∗E,A∗h,A∗∇) → Cn(�g)

equipped with the pulled-back metric A∗h and connection A∗∇. The correspond-
ing pulled-back representation is well defined on pulled-back sections. The Hilbert
space H1 will be the receptacle, because of the Abel map, of “centre of mass” wave
functions, cf. [31, 33, 76], and below.

4.5 Construction of H2 and Generalised Laughlin Wave
Functions

Anatural ingredient of the construction would be Klein’s prime form on the Riemann
surface in question (see e.g. [54]). The analysis carried out in [70] showed that if
one wished to implement fractional statistics then one would face the problem of
extracting roots of suitable line bundles and this cannot be achieved in general for non
trivial one. Thus, in order to circumvent this difficulty, we adopted a “minimalistic”
approach and resorted to a local description, which however retains an intrinsic
character with respect to braiding: define the Hilbert space

H2 =< ψν =
∏
i< j

(ζi − ζ j )
ν >

with ζ being a local coordinate (the behaviour of the prime form near the diagonal is
however independent of the choice of the local coordinate). Branching is then pro-
duced. Actually,ψν is the “topological” part of the Laughlin wave function discussed
in [12], upon regarding the coordinates ζi as global coordinates on the configuration
space Cn(C).

A scalar product can be introduced in H2 in an obvious manner. The function
ψν then manifestly enjoys the correct transformation law under the exchange of two
points xi ↔ x j :

ψν �→ (−1)ν ψν = σ ψν
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The upshot is that we may devise generalised “ground state” Laughlin wave
functions [33, 34, 37, 49] inH = H1 ⊗ H2, possessing, in general “anyon statistics”
as follows:

�(x1, . . . xn) := ψν · ξ

where x1, . . . xn are distinct points in �g , and ξ is a holomorphic section—when
existing—of the stable bundle entering the construction (depending on a centre of
mass coordinate). These holomorphic sections play the role of the ground states, or
fundamental Landau levels, see also Sect. 5. Notice that they are not invariant under
the action of the “full” braid group, since parallel transport does not preserve the
holomorphic structure, in general.

In thiswaywe have also generalised the geometric treatment given for the standard
braid group by A. Besana and the author [12] as well.

We summarise the above developments through the following:

Theorem 5 ([70])LetE → J (�g) be aMatsushimaHE-holomorphic vector bundle
with slope μ(E) = νg! = q/r · g!. The representation ρ1 of the CCR on the Hilbert
space H1 = L2(E)—built up as above via parallel transport operators associated
with the canonical HE-connection ∇—together with the position

ρ2(σ j )ψ := (−1)νψ, ψ ∈ H2

gives rise to a unitary representation

ρ : B(�g, n) → U (H)

where n=r+1−g,H=H1 ⊗ H2. The representation ρ1 has multiplicity h0(E) = qg.

The vectors ψ = ψν ξ , ξ ∈ H 0(E) (ξ is then a Matsushima theta vector) are called
Laughlin generalised wave functions.

Remarks 1. Notice that, in general, one indeed deals with genuine vector-valued
sections. In fact the case ν = 2θ = 1 gives back Fermi-Dirac statistics, and one can
safely employ the prime form bundle (actuallyL → Cn(�g)) as it stands. Of course
one may take tensor powers thereof as well. As for the centre of mass part, one
retrieves the ordinary theta line bundle, having first Chern class (and slope) equal to
one, together with the geometric theory of Landau levels discussed in [31, 57], see
also [65]. This matches the analysis carried out in [38].

2. The problem of root extraction deserves further scrutiny: an important step would
be the determination of the second cohomology group H 2(Cn(�g),Z). The rational
cohomology groups of configuration spaces of surfaces have been studied in [19].
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5 Final Remarks and Outlook

The successive developments in [70] portray a possibly interesting “braid duality”.
Specifically, focussing in particular on the g = 1 case, we demonstrated how every-
thing can be made even more explicit by resorting to A. Connes’ noncommutative
geometric setting [24, 25] for noncommutative tori (see also [4, 62, 66–68]) and to
the notion of noncommutative theta vector introduced by A. Schwarz [64], encom-
passing the classical notions. The upshot is that the “centre ofmass” parts of Laughlin
wave functions are precisely the Schwarz theta vectors. A notable feature is now the
following: the space of theta vectors naturally determines a finite dimensional braid
group representation corresponding to the reciprocal parameter ν ′ = 1/ν, which, via
Matsushima, gives rise to a projectively flat HE-bundle with the corresponding slope.
Therefore a (Matsushima-Connes (MC)) “duality” emerges and it is essentially the
one provided by the so-called Fourier-Mukai-Nahm (FMN) transform (see e.g. [7]).
In particular, the noncommutative theta vector approach can be effortlessly used
to calculate the Nahm-transformed connection explicitly ([70], see also [28] for an
application to Landau levels).

More precisely, and as a sort of recap, the “ν-anyon/ν ′-anyon duality” presented
in [70] runs as follows: starting from a ν-anyon representation, we found that the q-
dimensional ground state space H 0(Eν) has a dual braid symmetrywhich gives rise to
a ν ′-anyon representation, via Matsushima-Connes/Fourier-Mukai-Nahm. The cru-
cial physical issue is that the change in the holomorphic structure of the Matsushima
bundle Eν and the ensuing variation of the ground state spaces H 0(Eν) involved
in the FMN transform can be interpreted as an adiabatic motion of the ν ′-anyons,
encoded in the centre ofmass coordinate. The FMN-transform (plus dualization) ulti-
mately creates an effective ν ′-anyon wave function. See [70] for further discussion
and physical examples.

Among the possible future research directions, it would be interesting to find a
connection with the work [29], also unveiling an interesting connection (different
from ours) between theta function theory and knots, via Przytycki skein modules.
A recent intriguing geometrically flavoured approach to anyons has been proposed
in [5]. See also [39] for further interesting applications of particular braid groups
(cyclotronic braid groups) to 2d Hall systems.
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Abstract In classical knot theory, Markov’s theorem gives a way of describing all
braidswith isotopic closures as links inR

3.We present a version ofMarkov’s theorem
for extended loop braids with closure in B3 × S1, as a first step towards a Markov’s
theorem for extended loop braids and ribbon torus-links in R

4.
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1 Introduction

In the classical theory of braids and links, Alexander’s theorem allows us to represent
every link as the closure of a braid.Moreover,Markov’s theorem states that two braids
(possibly with different numbers of strings) have isotopic closures in a 3-dimensional
space if and only if one can be obtained from the other after a finite number ofMarkov
moves, called conjugation and stabilization. This theorem is a tool to describe all
braids with isotopic closures as links in a 3-dimensional space. Moreover, these two
theorems allow us to recover certain link invariants as Markov traces.

When considering extended loop braids as braided annuli in a 4-dimensional
space on one hand, and ribbon torus-links on the other hand, we have that a version
ofAlexander’s theorem is a direct consequence of three facts. First of all, every ribbon
torus-link can be represented by a welded braid [22]. Then, a version of Markov’s
theorem is known for welded braids and welded links [14, 17]. Finally, welded braid
groups and loop braid groups are isomorphic [8], and loop braids are a particular
class of extended loop braids.
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In this paper we take a first steps in formulating a version ofMarkov’s theorem for
extended loop braids with closure in the space B3 × S1. We show that two extended
loop braids have closures that are isotopic in B3 × S1 if and only if they are conjugate
in the extended loop braid groups. The reason for considering extended loop braid
groups instead of loop braid groups is because this allows to prove a result that is
exactly the analogous of the result that we have for 1-dimensional braids and knots
in a 3-dimensional space. In fact, if we consider two loop braids in the first place, we
have that their closures are isotopic as ribbon torus-knots in B3 × S1 if and only if
the pair of loop braids are conjugate in the extended loop braid group. This is due to
the fact that isotopies of ribbon torus-links can introduce a phenomenon called wen,
which we discuss in Sect. 2.4, on the components of the closed braided objects. Wens
are natural phenomena in the context of ribbon torus-links in R

4, but they are not
encoded in the theory of loop braids. Then, extended loop braids, who encode wens,
seem to be the most natural analogue of classical braids, and the most appropriate
notion that we need to consider.

1.1 Structure of the Paper

In Sect. 2 we give an overview of the many equivalent interpretations of extended
loop braid groups, which are the braided objects coming to play in our main result.
An expanded version of this overview can be found in [8].1 A particular focus will be
placed on the definition of extended loop braids as braided annuli in a 4-dimensional
space. When we want to make clear that we are using this interpretation for extended
loop braids, we use the terminology ribbon braids. We recall several results on these
objects, and we use them to prove that every ribbon braid can be parametrized by a
normal isotopy (Proposition 1).

In Sect. 3 we introduce the knotted counterpart of ribbon braids, which are ribbon
torus-links.

In Sect. 4 we present the main result of this paper. This is a version of Markov’s
theorem for ribbon torus-links living in the space B3 × S1 (Theorem 8).

Finally, in Sect. 5 we discuss possible ideas to complete the main result of this
paper to a complete Markov’s theorem for ribbon torus-links in R

4.

2 Extended Loop Braid Groups and Their
Equivalent Definitions

Loop braid groups were introduced under this name for the first time by Xiao-Song
Lin in 2007 [21], although they had been considered before in other contexts and
with other terminologies, for instance groups of conjugating automorphisms in [23]
and welded braid groups in [9].

1Notations are slightly changed: differences will be pointed out along this text.
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The groups we call extended loop braid groups appeared sooner in the literature,
in [6, 11], who called themmotion groups of a trivial link of unknotted circles in R

3,
but since then have been less treated.

In terms of configuration spaces, both groups appear in [5], loop braid groups
as untwisted ring groups, and extended loop braid groups as ring groups. In this
paper we focus on extended loop braid groups, for which we choose to adapt Lin’s
notation because it gives a good visual idea of the considered objects, while being
more compact. In fact, the elements of both these groups can be seen as trajectories
travelled by loops as they move in a 3-dimensional space to exchange their posi-
tions under some admissible motions. The “extended” attribute highlights the fact
that in extended loop braid groups we admit an extra motion that can be described
as a 180◦-flip of a loop. For a detailed survey on loop braid groups, extended
loop braid groups and the explicit equivalences among the different definitions, we
refer to [8].

We dedicate this section to recall several definitions of extended loop braid groups,
and give the terminology used in the different contexts. The diversity of points of
view will be useful in the proof of the main result of this paper (Theorem 8), since
it provides many approaches and tools to tackle problems involving extended loop
braid groups and other knotted objects in the 4-dimensional space.

2.1 Extended Loop Braids as Mapping Classes

We present here a first definition for extended loop braid groups in terms of mapping
classes of a 3-ball with n circles that are left setwise invariant in its interior.

Let usfixn ∈ N, and letC = C1 � · · · � Cn be a collection ofn disjoint, unknotted,
oriented circles, that forma trivial link of n components in the interior of the 3-ball B3.
A self-homeomorphism of the pair (B3,C) is an homeomorphism f : B3 → B3 that
fixes ∂B3 pointwise, preserves orientation on B3, and globally fixes C . Every self-
homeomorphism of (B3,C) induces a permutation on the connected components
of C in the natural way. We consider the mapping class group of B3 with respect
to C to be the group of isotopy classes of self-homeomorphisms of (B3,C), with
multiplication determined by composition. We denote it by MCG(B3,C∗).

Remark 1 The “∗” on the submanifold C is to indicate that homeomorphisms do not
preserve the orientation of the connected components of C . This is the difference
between extended loop braid groups and loop braid groups in this context. In fact, in
the latter, the homeomorphisms preserve orientation on C .

Remark 2 A map f from a topological space X to Homeo(B3;C∗) is continuous if
and only if the map X × B3 → B3 sending (x, y) �→ f (x)(y) is continuous [20].
Taking X equal to the unit interval I , we have that two self-homeomorphisms
are isotopic if and only if they are connected by a path in Homeo(B3;C∗).
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Therefore MCG(B3,C∗) = π0(Homeo(B3;C∗)). The same can be said for the pure
groups, PMCG(B3,C∗) = π0(PHomeo(B3;C∗)).

Definition 1 For n ≥ 1, the extended loop braid group, denoted by LBext
n , is the

mapping class group MCG(B3,C∗).

2.2 Extended Loop Braids as Loops in a Configuration Space

The second interpretation of extended loop braid groups LBext
n thatwe give is in terms

of configuration spaces, and has been introduced in [5]. Let n ≥ 1, and consider the
space of configurations of n Euclidean, unordered, disjoint, unlinked circles in B3,
denoted by Rn . The ring group Rn is its fundamental group.

Remark that in Sect. 2.1 we were not considering Euclidean circles as moving
objects, but the components of a trivial link. We shall see now that these two fam-
ilies of objects are deeply related. Let Ln be the space of configurations of smooth
trivial links with n components in R

3: the following result allows us to consider the
fundamental group of Ln as being isomorphic to Rn .

Theorem 1 ([5, Theorem 1]) For n ≥ 1, the inclusion ofRn into Ln is a homotopy
equivalence.

As anticipated, the groups Rn are isomorphic to the groups LBext
n , as stated in

the next theorem. Its proof heavily relies on Wattenberg’s results [25, Lemma 1.4
and Lemma 2.4] implying that the topological mapping class groups of the 3-ball
with respect to an n-components trivial link are isomorphic to the C∞-mapping
class groups of the same pair. In other terms, we have that π0(Homeo(B3;C∗)) ∼=
π0(Diffeo(B3;C∗)). We can define an evaluation map from Diffeo(B3) to the space
of configurations of a smooth trivial link with n ordered components in R

3, that we
denote by PLn . We can refer to PLn as to the pure configuration space of a smooth
trivial link. Fixed the n components of a trivial link in the interior of the 3-ball, this
evaluation map sends self-diffeomorphisms of B3 to the image of the n components
through the considered self-diffeomorphism:

ε : Diffeo(B3) −→ PLn. (1)

This map can be proved to be a locally trivial fibration [8, Lemma 3.8]. This fibration
is then used as the main ingredient to prove the following, through the construction
of exact sequences and a commutative diagram.

Theorem 2 ([8, Theorem 3.10]) For n ≥ 1, there is a natural isomorphism between
ring group Rn and the extended loop braid group LBext

n .

Brendle and Hatcher, in [5, Proposition 3.7], give a presentation for the ring
groups Rn , and so, for LBext

n .
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Proposition 1 For n ≥ 1, the group LBext
n admits the presentation given by gener-

ators {σi , ρi | i = 1, . . . , n − 1} and {τi | i = 1, . . . , n}, subject to relations:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σiσj = σjσi for |i − j | > 1

σiσi+1σi = σi+1σiσi+1 for i = 1, . . . , n − 2

ρiρj = ρjρi for |i − j | > 1

ρiρi+1ρi = ρi+1ρiρi+1 for i = 1, . . . , n − 2

ρ2i = 1 for i = 1, . . . , n − 1

ρiσj = σjρi for |i − j | > 1

ρi+1ρiσi+1 = σiρi+1ρi for i = 1, . . . , n − 2

σi+1σiρi+1 = ρiσi+1σi for i = 1, . . . , n − 2

τiτ j = τ jτi for i �= j

τ 2
i = 1 for i = 1, . . . , n

σiτ j = τ jσi for |i − j | > 1

ρiτ j = τ jρi for |i − j | > 1

τiρi = ρiτi+1 for i = 1, . . . , n − 1

τiσi = σiτi+1 for i = 1, . . . , n − 1

τi+1σi = ρiσ
−1
i ρiτi for i = 1, . . . , n − 1.

(2)

The elements σi , ρi , and τi of the presentation represent the following loops in Rn:
if we place the n rings in a standard position in the yz-plane with centers along the
y-axis, then σi is the loop that permutes the i th and the (i + 1)st circles by passing the
i th circle through the (i + 1)st; ρi permutes them passing the i th around the (i + 1)st,
and τi is the loop that flips by 180◦ the i th circle, see Fig. 1.

2.3 Extended Loop Braids as Automorphisms
of the Free Groups

We now give an interpretation of extended loop braids in terms of automorphisms
of Fn , the free groups of rank n. Fixing n ≥ 1, we consider the automorphisms that

i i+ 1 i i+ 1 i

σi ρi τi

Fig. 1 Elements σi , ρi and τi
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send each generator of Fn to a conjugate of some generator, or its inverse: these are in
bijection with elements of LBext

n . We start recalling a result of Dahm’s unpublished
thesis [6], that appears in the last section of Goldsmith’s paper [11].

Theorem 3 ([11, Theorem 5.3]) For n ≥ 1, there is an injective map from the
extended loop braid group LBext

n into Aut(Fn), where Fn is the free group on
n generators {x1, . . . , xn}, and its image is the subgroup PCn, consisting of all
automorphisms of the form α : xi �→ w−1

i x±1
π(i)wi where π is a permutation and

wi is a word in Fn. Moreover, the group PCn is generated by the automorphisms
{σ1, . . . ,σn−1, ρ1, . . . , ρn−1, τ1, . . . , τn} defined as:

σi :

⎧
⎪⎨

⎪⎩

xi �→ xi+1;
xi+1 �→ x−1

i+1xi xi+1;
x j �→ x j , for j �= i, i + 1.

(3)

ρi :

⎧
⎪⎨

⎪⎩

xi �→ xi+1;
xi+1 �→ xi ;
x j �→ x j , for j �= i, i + 1.

(4)

τi :
{
xi �→ x−1

i ;
x j �→ x j , for j �= i.

(5)

This result is the analogue of Artin’s characterization of usual braids as automor-
phisms of the free group. In an intuitive way, we use for the automorphisms of PCn

the notations of the corresponding elements of the mapping class group.2

In [9] Fenn, Rimányi and Rourke consider the subgroups of Aut(Fn) generated
only by the sets of elements {σi | i = 1, . . . , n − 1} and {ρi | i = 1, . . . , n − 1}. They
call these groups by the name braid-permutation groups, and they prove indepen-
dently from Dahm and Goldsmith that they are isomorphic to the groups of all auto-
morphisms of Aut(Fn) of the form α : xi �→ w−1

i xπ(i)wi where π is a permutation
and wi is a word in Fn .

2.4 Extended Loop Braids as Ribbon Braids

The next interpretation of extended loop braids will be the one that we will focus on
in the main result of this paper. This is an approach in terms of braided objects in a
4-dimensional space. Extended loop braids in this context are called ribbon braids,
when we want to specify the used interpretation.3

2In [8] these groups are denote by PC∗
n , while PCn is used for the groups of automorphisms of the

form α : xi �→ w−1
i xπ(i)wi .

3In the survey [8] the terminology ribbon braids refers to loop braids seen as braided objects in the
4-dimensional braid, while the terminology extended ribbon braids refers to extended loop braids.
We chose to simplify.
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We need some notation before giving the definition of ribbon braids and their
equivalence to extended loop braids. Let n ≥ 1, and let D1, . . . , Dn be a collection
of disks in the 2-ball B2. Let Ci = ∂Di be the oriented boundary of Di . Let us
consider the 4-ball B4 ∼= B3 × I , where I is the unit interval. For any submanifold
X ⊂ Bm ∼= Bm−1 × I , with m = 3, 4, we use the following dictionary. To keep the
notation readable, here we denote the interior of a topological space by “int( )”,
whereas anywhere else it is denoted by “˚”.

• ∂εX = X ∩ (Bm−1 × {ε}), with ε ∈ {0, 1};
• ∂∗X = ∂X \

(
int(∂0X) � int(∂1X)

)
;

• ∗
X = X \ ∂∗X .

The image of an immersion Y ⊂ X is said to be locally flat if and only if it is
locally homeomorphic to a linear subspace R

k in R
m for some k ≤ m, except on ∂X

and/or ∂Y , where one of the R summands should be replaced by R+. Let Y1,Y2 be
two submanifolds of Bm . The intersection Y1 ∩ Y2 ⊂ X is called flatly transverse if
and only if it is locally homeomorphic to the transverse intersection of two linear
subspaces R

k1 and R
k2 in R

m for some positive integers k1, k2 ≤ m except on ∂X ,
∂Y1 and/or ∂Y2, where one of the R summands should be replaced by R+. In the
next definition we introduce the kind of singularities we consider.

Definition 2 Let Y1,Y2 be two submanifolds of B4. Ribbon disks are intersections
D = Y1 ∩ Y2 that are isomorphic to the 2-dimensional disk, such that D ⊂ Y̊1, D̊ ⊂
Y̊2 and ∂D is an essential curve in ∂Y2.

These singularities are the 4-dimensional analogues of the classical notion of
ribbon singularities introduces by Fox in [10].

Definition 3 Let A1, . . . , An be locally flat embeddings in
∗
B4 of n disjoint copies

of the oriented annulus S1 × I . We say that

b =
⊔

i∈{1,...,n}
Ai

is a geometric ribbon braid if:

1. the boundary of each annulus ∂Ai is a disjoint union Ci � C j , for Ci ∈ ∂0B4 and
for some C j ∈ ∂1B4. The orientation induced by Ai on ∂Ai coincides with the
one of the two boundary circles Ci and C j ;

2. the annuli Ai are fillable, in the sense that they bound immersed 3-balls ⊂ R
4

whose singular points consist in a finite number of ribbon disks;
3. it is transverse to the lamination

⋃
t∈I B3 × {t} of B4, that is: at each parameter t ,

the intersection between b and B3 × t is a collection of exactly n circles;

The group of ribbon braids, denoted by r Bn , is the group of equivalence classes of
geometric ribbon braids up to continuous deformations through the class of geometric
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ribbon braids fixing the boundary circles, equipped with the natural product given by
stacking and reparametrizing. The unit element for this product is the trivial ribbon
braid U = ⊔

i∈{1,...,n} Ci × [0, 1].
The monotony condition allows us to consider the interval I in B4 = B3 × I as a

time parameter, and to think of a ribbon braid as a trajectory β = (
C1(t), . . . ,Cn(t)

)

of circles in B3 × I . This trajectory corresponds to a parametrization of the ribbon
braid. This interpretation is also referred to in terms of flying rings in [3]. When one
of the n circles that we have at each time t makes a half-turn, we have what is called
a wen on the corresponding component. One can think of a wen as an embedding in
R

4 of a Klein bottle cut along a meridional circle. A detailed treatment of wens can
be found in Kanenobu and Shima’s paper [15].

The following result states the equivalence of the interpretations of LBext
n as map-

ping class groups and as ribbon braid groups. Its proof consists in explicitly defining
an isomorphism between r Bn and Rn , and composing it with the isomorphism from
Theorem 2.

Theorem 4 ([8, Theorem 5.17]) For n ≥ 1, there is an isomorphism between the
ribbon braid group r Bn and the extended loop braid group LBext

n .

We can show that when two ribbon braids are equivalent in the sense of
Definition 3, there is an ambient isotopy of R

4 bringing one to the other.

Theorem 5 ([8, Theorem 5.5]) Every relative isotopy of a geometric ribbon braid
in B3 × I extends to an isotopy of B3 × I in itself constant on the boundary.

This result is true also for surface links, which are closed surfaces locally flatly
embedded in R

4 [13, Theorem 6.7].
With the results we recalled, we prove now that given a geometric ribbon braid

b and its set of starting set of circles, we can find a normal isotopy parametrizing it.
We take C = (C1, . . . ,Cn) to be an ordered tuple of n disjoint, unlinked, unknotted
circles living in B3.We consider the space of configurations of ordered smooth trivial
links of n components PLn introduced in Sect. 2.2. As mentioned above, we have
an evaluation map

ε : Diffeo(B3) −→ PLn

sending a self-diffeomorphism f to f (C). We remark that f (C) is an ordered tuple
of n disjoint, unlinked, trivial, smooth knots living in B3, which is a locally triv-
ial fibration with fibre the group of self-diffeomorphisms of the pair (B3,C) that
send each connected component of C to itself. Composing ε with the covering map
PLn → Ln , seeing Ln as the orbit space with of the action of the symmetric group
of PLn , we define a locally trivial fibration

ε̃ : Diffeo(D3) −→ Ln

sending f to f (C). More details on this construction can be found in [8].
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Lemma 1 Let n ≥ 1. For every geometric ribbon braid b ⊂ B4 on n components,
there is a normal isotopy parametrizing b.

Proof Let us consider a geometric ribbon braid b, through the isomorphism between
r Bn and Rn (Theorem 4). This gives rise to a loop f b : I → PLn ⊂ Ln sending
t ∈ I into the unique n-circles set bt such that

b ∩ (B3 × I ) = bt × {t}.

This loop begins and ends at the point ε̃(idB3) ∈ Ln represented by C . Being ε̃ a
fibration, we apply the homotopy lifting property, and lift f b to a path f̂ b : I →
Diffeo(B3) beginning at ε̃−1(C) = Diffeo(B3;C∗) and ending at idB3 . The path
f̂ b is a normal isotopy. The commutativity ε̃ ◦ f̂ b = f b means that this isotopy
parametrizes b. �

2.5 Extended Loop Braids as Extended Welded Braids

In this part we discuss 1-dimensional diagrams immersed in a 2-dimensional space
for extended loop braids. An extended welded braid diagram on n strings is a planar
diagram composed by a set of n oriented and monotone 1-manifolds immersed in R

2

starting from n points on a horizontal line at the top of the diagram down to a similar
set of n points at the bottom of the diagram. The 1-manifolds are allowed to cross in
transverse double points, which will be decorated in three kinds of ways, as shown in
Fig. 2. Depending on the decoration, double points will be called: classical positive
crossings, classical negative crossings and welded crossings. On each 1-manifold
there can possibly be marks as in Fig. 3, which we will call wen marks.

Fig. 2 a Classical positive
crossing, b classical negative
crossing, c welded crossing

(c)(a) (b)

Fig. 3 A wen mark on a
strand
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Remark 3 The inclination of the wen mark on the strand is not fixed, and does not
carry any information.

Let us assume that the double points occur at different y-coordinates. Then an
extended welded braid diagram determines a word in the elementary diagrams illus-
trated in Fig. 4. We call σi the elementary diagram representing the (i + 1)th strand
passing over the i th strand, ρi the welded crossing of the strands i and (i + 1), and
τi the wen mark diagram.

Definition 4 An extended welded braid is an equivalence class of extended welded
braid diagrams under the equivalence relation given by isotopy of R

2 and the fol-
lowing moves:

• classical Reidemeister moves (Fig. 5);
• virtual Reidemeister moves (Fig. 6);
• mixed Reidemeister moves (Fig. 7);

1 i n1 i i+ 1 n1 i i+ 1 n

Fig. 4 Elementary diagrams σi , ρi , and τi

Fig. 5 Classical
Reidemeister moves for
braid-like objects

(R2) (R3)

Fig. 6 Virtual Reidemeister
moves for braid-like objects (V 2) (V 3)

Fig. 7 Mixed Reidemeister
moves (M)

Fig. 8 Welded Reidemeister
moves (F1)



Towards a Version of Markov’s Theorem for Ribbon Torus-Links in R
4 319

(T1) (T2) (T3) (T4)

Fig. 9 Extended Reidemeister moves

• welded Reidemeister moves (Fig. 8);
• extended Reidemeister moves (Fig. 9).

This equivalence relation is called (braid) generalized Reidemeister equivalence.
For n ≥ 1, the extended welded braid group on n strands WBext

n is the group of
equivalence classes of extended welded braid diagrams by generalized Reidemeister
equivalence. The group structure on these objects is given by: stacking and rescaling
as product, braid mirror image as inverse, and the trivial diagram as identity.

Remark 4 If wen marks were not allowed, the group defined would be the group of
welded braids W Bn , introduced by Fenn, Rimányi and Rourke in [9]. This group is
isomorphic to loop braid groups LBn .

In [22] the author defines a surjective map Tube from welded knotted objects
to ribbon knotted objects in dimension 4. This map Tube can be easily defined on
extended welded braids and extended loop braids, in their interpretation as ribbon
braids. Its definition uses as a stepping stone a projection of ribbon braids onto a
certain class of 3-dimensional surfaces, called broken surface diagrams. We do not
treat them in this paper since they are not relevant to the main result. However they
are an interesting way of representing ribbon braids, and more detail can be found
in [2]. In the framework of extendedwelded braids and ribbon braids, it can be proved
that the Tube map is an isomorphism [8, Theorem 6.12]. Hence, we have the last
isomorphism that we recall in this overview on extended loop braids.

Theorem 6 For n ≥ 1, there is an isomorphism between the extended welded braid
group W Bext

n and the extended loop braid group LBext
n .

2.6 Pure Subgroups

As in the case of classical braid groups Bn , we have a notion of pure subgroups for
the extended loop braid groups LBext

n . Let us consider the first definition we gave
for extended loop braids, as elements of MCG(B3,C∗), where C = C1 � · · · � Cn

is a collection of n disjoint, unknotted, oriented circles, that form a trivial link of
n components. Let p : LBext

n → Sn be the homomorphism that forgets the details
of the braiding, remembering only the permutation of the circles. Then the pure
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extended loop braid group PLBext
n is the kernel of p. In each one of the approaches

to extended loop braid groups that we exposed, such subgroups can be defined with
tools inherent to the particular context. We will not dwell on these groups here,
but they are discussed in all the references we gave on extended loop braid groups
throughout this section.

3 Ribbon Torus-Links

In this part we introduce the knotted counterpart of extended loop braid groups:
ribbon torus-links. Classical references for these objects are [13, 18, 27].

Definition 5 A geometric ribbon torus-knot is an embedded oriented torus S1 ×
S1 ⊂ R

4 which is fillable, in the sense that it bounds a ribbon torus. A ribbon torus
is an oriented immersed solid torus D2 × S1 ⊂ R

4 whose singular points consist
in a finite number of ribbon disks (see Definition 2, and compare with point 2 of
Definition 3). Ribbon torus-knots are equivalence classes of geometric ribbon torus-
knots defined up to ambient isotopy.

Remark 5 Wens can appear on portions of a ribbon knot, but for an argument of
coherence of the co-orientation, there are an evennumber of themoneach component,
and they cancel pairwise, as remarked in [1, proof of Proposition 2.4].

Definition 6 A geometric ribbon torus-link with n components is the embedding of
a disjoint union of n oriented fillable tori. The set of ribbon torus-links is the set of
equivalence classes of geometric ribbon torus-knots defined up to ambient isotopy.

3.1 Extended Welded Diagrams for Ribbon Torus-Links

An extended welded link diagram is the immersion in R
2 of a collection of disjoint,

closed, oriented 1-manifolds such that allmultiple points are transverse double points.
Double points are decorated with classical positive, classical negative, or welded
information as in Fig. 2. On each 1-manifold there can possibly be an even number
of wen marks as in Fig. 3, the motivation for this lying in Remark 5. We assume
that extended welded link diagrams are the same if they are isotopic in R

2. Taken an
extended welded link diagram K , we call real crossings its set of classical positive
and classical negative crossings.

Definition 7 An extended welded link is an equivalence class of extended welded
link diagrams under the equivalence relation given by isotopies of R

2, moves from
Definition 4, and classical and virtual Reidemeister moves (R1) and (V 1) as in
Fig. 10. This equivalence relation is called generalized Reidemeister equivalence.
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Fig. 10 Reidemeister moves
of type I (V 1)(R1)

Fig. 11 Closure of an
extended welded braid
diagram

β

The closure of an extended welded braid diagram is obtained as for usual braid
diagrams (see Fig. 11), with the condition that extended welded braids can be closed
only when they have an even number of wen marks on each component.

For completeness we recall that for extendedwelded diagramswe have two results
that are analogous to Alexander’s and Markov’s theorems, that we state here in the
following.

Proposition 2 ([7, Proposition 3.3]) Any extended welded link can be described as
the closure of an extended welded braid diagram which is generalized Reidemeister
equivalent to a welded braid diagram.

Theorem 7 ([7, Theorem 4.1]) Two extended welded braid diagrams that admit
closure have equivalent closures as extended welded link diagrams if and only if they
are related by a finite sequence on the following moves:

(M0) isotopy of R
2 and generalized Reidemeister moves;

(M1) conjugation in the extended welded braid group W Bext
n ;

(M2) a right stabilization of positive, negative or welded type, and its inverse oper-
ation.

The Tubemapwe briefly discussed in Sect. 2.5 can be defined also from extended
welded links to ribbon torus-links, thanks to the intermediate passage through broken
surfaces, and to the fact that the map is defined locally, for details see [8, Sect. 6.3].
On link-like objects there is no result stating that themap is an isomorphism, however
we have the following result, which is a direct consequence of [1, Proposition 2.5].
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Proposition 3 The map Tube, defined on extended welded links, with values in the
set of ribbon torus-links, is a well-defined surjective map.

We will not linger on this construction, but we remark that the importance of
this result is that it allows us to associate an extended welded link to every ribbon
torus-link.

3.2 Closed Ribbon Braids in V = B3 × S1

We introduce a particular kind of ribbon torus-links in the space V = B3 × S1.

Definition 8 A torus-link L in V is called a closed n-ribbon braid with n ≥ 1 if L
meets each ball B3 × {t}, for t ∈ S1, transversely in n circles.

Remark 6 Two closed ribbon braids in V are isotopic if they are isotopic as ori-
ented torus-links. This implies that the tubes don’t necessarily stay transverse to the
lamination during the isotopy.

Remark 7 In general a torus-link in V is not isotopic to a closed ribbon braid in V .
For instance a torus link lying inside a small 4-ball in V is never isotopic to a closed
braid.

Definition 9 Given an n-ribbon braid β, its tube closure is the ribbon torus-knot β̂
obtained by gluing a copy of the trivial ribbon braid U along β, identifying the pair
(B3 × {0}, ∂0β) with (B3 × {1}, ∂1U ) and (B3 × {1}, ∂1β) with (B3 × {0}, ∂0U ).

On the diagrammatical side: an extended welded link diagram for β̂ in S1 × I is
obtained by closing a diagram for β.

4 A Version of Markov’s Theorem in B3 × S1

In classical braid theory, closed braids in the solid torus are classified up to isotopy
by the conjugacy classes of braids in Bn . We give here a classification of this kind
for closed ribbon braids: their closures will be classified, up to isotopy in B3 × S1,
by conjugacy classes of ribbon braids. The proof is inspired by the one given for the
classical case in [16, Chap. 2]. In the following statement we will consider extended
loop braids in their interpretation as braided annuli in the 4-dimensional space, so
we will use the terminology “ribbon braids” which is inherent to this approach.

Theorem 8 Let n ≥ 1 and β,β′ ∈ r Bn a pair of ribbon braids. The closed ribbon
braids β̂, β̂′ are isotopic in B3 × S1 if and only if β and β′ are conjugate in r Bn.
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Proof We begin with the “if” part. Suppose first the case that β and β′ are con-
jugate in r Bn . We recall that r Bn is isomorphic to the group of extended welded
braids WBext

n . We call with the same name an element in r Bn and a diagram for
it as a representative of the corresponding class in WBext

n . Conjugate elements of
WBext

n give rise to isotopic closed welded braid, which correspond to isotopic closed
ribbon braids. This means that, since β and β′ are conjugate in WBext

n , β′ = αβα−1

with α ∈ WBext
n , and we have that α̂βα−1 = β̂. To see this, it is enough to stack the

diagrams of α, β and α−1, close the composed welded braid diagram, and push the
upper diagram representing α along the parallel strands until α and α−1 are stacked
one next to the other at the bottom of the diagram.

Let us now prove the converse, which is: any pair of ribbon braids with isotopic
closures in V = B3 × S1 are conjugate in r Bn . Passing through the isomorphism
between r Bn and PCn , it will be enough to prove the following: any pair of ribbon
braidswith isotopic closures inV = B3 × S1 have associated automorphisms of PCn

that are conjugate. Set V = B3 × R. Considering the cartesian product of (B3, idB3)

and the universal covering (R, p) of S1 given by

p : R −→ S1

t �−→ exp(2πi t)

we obtain a universal covering (V , idB3 × p) of V . Denote by T the covering trans-
formation

T : V −→ V

(x, t) �−→ (x, t + 1)

for all x ∈ B3 and t ∈ R. If L is a closed n-ribbon braid in V , then its preimage L ⊂ V
is a 2-dimensional manifold meeting each 3-ball B3 × {t}, for t ∈ R, transversely
in n disjoint pairwise unlinked circles. This implies that L consists of n fillable
components homeomorphic to S1 × R.

Being L a closed ribbon braid, we can present it as a closure of a geomet-
ric ribbon braid b ⊂ B4 = B3 × I where we identify ∂0B4 with ∂1B4. Then L =⋃

m∈Z Tm(b), i.e., we can see L as a tiling of an infinite number of copies of b.
For n ≥ 1, let C = (C1, . . . ,Cn) be a family of n disjoint, pairwise unlinked,

euclidean circles in B̊3, lying on parallel planes. We consider a parametrization for
b, i.e., a family {αt : B3 → B3}t∈I such that α0(C) = C , α1 = idB3 , all αt fix ∂B3

pointwise, and b = ⋃
t∈I (αt (C), t) (see Lemma 1).

We take the self-homeomorphism of V = B3 × R given by

(x, t) �−→ (αt−�t�α
−�t�
0 (x), t)
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Fig. 12 A homeomorphism
between (B3 × R,C × R)

and (B3 × R, L)

b

b

∼=

b

b

where x ∈ B3, t ∈ R, and �t� is the greatest integer less than or equal to t . This
homeomorphism fixes ∂V = S2 × R pointwise and sendsC × R onto L , see Fig. 12
for an intuitive (although necessarily imprecise) idea.

The induced homeomorphism (B3 \ C) × R ∼= V \ L shows that B3 \ C = (B3 \
C) × {0} ⊂ V \ L is a deformation retract of V \ L . Pick a point d ∈ ∂0B4 = B3

and set d = (d, 0) ∈ V ; them the inclusion homomorphism

i : π1(B
3 \ C, d) −→ π1(V \ L, d)

is an isomorphism.
By definition the image of d by the covering transformation T is T (d) = (d, 1);

the covering transformation T restricted to V \ L induces an isomorphism π1(V \
L, d) → π1(V \ L, T (d)). Let T∗ be the composition of this isomorphism with the
isomorphism π1(V \ L, T (d)) → π1(V \ L, d) obtained by conjugating the loops
by the path d × [0, 1] ⊂ ∂B3 × R ⊂ V \ L . Then T∗ is an automorphism of π1(V \
L, d). Therefore the following diagram commutes:
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π1(B3 \ C, d) i−−−−→ π1(V \ L, d)

β̃

⏐
⏐
�

⏐
⏐
�T∗

π1(B3 \ C, d) i−−−−→ π1(V \ L, d)

where β̃ is the automorphism induced by the restriction of α0 to B3 \ C . The iso-
morphism between r Bn and MCG(B3,C∗) allows us to send the ribbon braid β,
represented by b, to the isotopy class of α0.

Identifying π1(B3 \ C, d) with the free group Fn with generators x1, x2, . . . , xn ,
we conclude that the automorphism β̃ is equal to ν(b), where ν : r Bn → PCn is
the isomorphism between the group of ribbon braids r Bn and PCn , the subgroup
of Aut(Fn) generated by the automorphisms of the form α : xi �→ w−1

i x±1
π(i)wi where

π is a permutation and wi is a word in Fn . Then it is the automorphism of Fn

corresponding to β, the ribbon braid represented by b. Thus i−1T∗i = β̃.
Suppose now that β,β′ ∈ r Bn are two ribbon braids with isotopic closures in V ,

and that b and b′ ⊂ B4 = B3 × I are two geometric ribbon braids that represent
them. Let L and L ′ ⊂ V = B3 × S1 be their respective closures.

Then there is a homeomorphismg : V → V such that gmaps L onto L ′, preserving
their canonical orientation along the annuli, but possibly reversing the orientation of
the circles at some instant (for example when Reidemeister moves of type I occur).
Note that a Reidemeister move of type I is isotopic to the composition of twowens [1,
Corollary 3.3], so globally the orientation of the circles at the starting and ending time
parameter is preserved. In fact the orientation of the ambient V is preserved by g, but
when considering a section B3 × {t} the orientation of the circles can be concordant
or not concordant with the one induced by V . In addition the restriction of g to ∂V
is isotopic to the identity idV . This fact, plus the isomorphism of the map induced by
the inclusion π1(∂V ) = π1(S2 × S1) → π1(V ) = π1(B3 × S1) ∼= Z implies that g
induces an identity automorphism of π1(V ). Therefore g lifts to a homeomorphism
g : V → V such that g is isotopic to the identity on ∂V , gT = T g, and g(L) = L ′.

Hence g induces an isomorphism

g∗ : π1(V \ L, d) −→ π1(V \ L ′, d)

commuting with T∗. The following diagram commutes:

π1(B3 \ C, d) i−−−−→ π1(V \ L, d)

ϕ

⏐
⏐
�

⏐
⏐
�g∗

π1(B3 \ C, d) i ′−−−−→ π1(V \ L ′, d).

Consider the automorphism ϕ = (i ′)−1g∗i of Fn = π1(B3 \ C, d), where:
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i : π1(B
3 \ C, d) −→ π1(V \ L, d) and

i ′ : π1(B
3 \ C, d) −→ π1(V \ L ′, d)

are the inclusion isomorphisms.
Applying the same arguments to β′, we have β̃′ = (i ′)−1T∗i ′, and from the pre-

ceding commutative diagram we have:

ϕβ̃ϕ−1 = (
(i ′)−1g∗i

) (
i−1T∗i

) (
i−1g∗−1i ′

) = (i ′)−1T∗i ′ = β̃′

Weclaim thatϕ is an element of the subgroupofAut(Fn) consistingof all automor-
phisms of the form xi �→ qi x

±1
j (i)q

−1
i , where i = 1, . . . , n, j (i) is some permutation

of the numbers 1, . . . , n, and qi a word in x1, . . . , xn . Then the isomorphism between
this subgroup and r Bn implies that β and β′ are conjugate in r Bn .

We prove this claim. The conjugacy classes of the generators x1, x2, . . . , xn in
Fn = π1(B3 \ C, d) are represented by loops encircling the circles Ci . The inclu-
sion B3 \ C = (B3 \ C) × {0} ⊂ V \ L maps these loops to some loops in V \ L
encircling at each parameter t the rings that form the components of L . The homeo-
morphism g : V → V transforms these loops into loops in V \ L ′ encircling the com-
ponents of L ′. The latter represent the conjugacy classes of the images of x1, . . . , xn
under the inclusion B3 \ C = (B3 \ C) × {0} ⊂ V \ L ′.

The automorphism ϕ transforms the conjugacy classes of x1, . . . , xn into them-
selves, up to permutation and orientation changes. This verifies the condition. The
possible orientation changes are due to the fact that the isotopy of closed braid is
not monotone with respect to the time parameter as ribbon braid isotopy is, thus
Reidemeister moves of type I can occur. �

When one ribbon braid is a conjugate of another ribbon braid, we can describe
the form of the conjugating element.

Lemma 2 Let n ≥ 1 and β,β′ ∈ r Bn a pair of ribbon braids. They are conjugates
in r Bn if and only if β′ = πταβα−1π−1

τ , where πτ is composed only by wens and α
does not contain any wen. Speaking in terms of presented group, πτ is represented
by a word in the τi generators of presentation (2).

Proof Takeβ andβ′ in r Bn conjugate by another element in r Bn . Then there exists an
element γ in r Bn such thatβ = γβ′γ−1. Consider γ as an element of the configuration
space of n circles Rn . We can use relations from presentation (2) to push to the right
of the word the generators τi , to obtain an equivalent element γ′ = πτα, where πτ

is a word in the τi s and α only contains generators σi and ρi . This means that α is in
fact an element that can be written without τ generators. Finally, when considering
γ−1 for the conjugacy, we remark that π−1

τ is just the mirror image word of πτ . �
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5 Ideas for Further Developments

To extend the result in R
4 we shall prove the invariance of isotopy classes of closed

ribbon braids under the operation known as stabilisation. The approaches used for
usual knotted objects, for instance those of [4, 24], rely on the bijection given by
Reidemeister theorem between knots and knot diagrams up to Reidemeister moves.
We do not have such a result for ribbon torus-links. In fact, as Proposition 3 points
out, the injectivity of the map Tube between extended welded links and ribbon
torus-links is an open question. When applied to welded links (not extended), we
know that the Tube map is not injective: for instance, it is invariant under the hor-
izontal mirror image on welded diagrams ([12, Proposition 3.3], see also [22, 26]),
while welded links in general are not equivalent to their horizontal mirror images.
However, extended welded links are equivalent to their horizontal mirror image ([7,
Proposition 5.1]). This fact suggest they could be good candidates to be in bijection
with ribbon torus-links. Of course, other obstructions to injectivity may exist, so the
relation between extended welded links and ribbon torus-links shall be investigated.
It is worth noticing that an alternative approach to solve the problem of establishing
a bijection between welded diagrams and ribbon torus-links has been suggested by
Kawauchi in [19, Problem, Sect. 2].
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Abstract In this paper we give an alternative basis,BST, for the Kauffman bracket
skein module of the solid torus, KBSM (ST). The basisBST is obtained with the use
of the Tempereley–Lieb algebra of type B and it is appropriate for computing the
Kauffman bracket skein module of the lens spaces L(p, q) via braids.
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1 Introduction and Overview

Skein modules were independently introduced by Przytycki [15] and Turaev [16]
as generalizations of knot polynomials in S3 to knot polynomials in arbitrary 3-
manifolds. The essence is that skein modules are quotients of free modules over
ambient isotopy classes of links in 3-manifolds by properly chosen local (skein)
relations.

Definition 1 Let M be an oriented 3-manifold andLfr be the set of isotopy classes
of unoriented framed links in M . Let R = Z[A±1] be the Laurent polynomials in A
and let RLfr be the free R-module generated by Lfr. Let S be the ideal generated
by the skein expressions L − AL∞ − A−1L0 and L

⊔
O − (−A2 − A−2)L , where

L∞ and L0 are represented schematically by the illustrations in Fig. 1. Note that
blackboard framing is assumed.
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Fig. 1 The links L , L0 and L∞ locally

Fig. 2 The Turaev basis of KBSM(ST)

Then the Kauffman bracket skein module of M , KBSM(M), is defined to be:

KBSM (M) = RL /S.

�

In [16] the Kauffman bracket skein module of the solid torus, ST, is computed
using diagrammatic methods by means of the following theorem:

Theorem 1 ([16]) The Kauffman bracket skein module of ST, KBSM(ST), is freely
generated by an infinite set of generators {xn}∞n=0, where x

n denotes a parallel copy
of n longitudes of ST and x0 is the affine unknot (see Fig.2). �

In [11] the most generic analogue of the HOMFLYPT polynomial, X , for links
in the solid torus ST has been derived from the generalized Hecke algebras of type
B, H1,n , which is related to the knot theory of the solid torus and the Artin group
of Coxeter group of type B, B1,n , via a unique Markov trace constructed on them.
As explained in [3, 12], the Lambropoulou invariant X recovers the HOMFLYPT
skein module of ST, S (ST), and is appropriate for extending the results to the lens
spaces L(p, q), since the combinatorial setting is the same as for ST, only the braid
equivalence includes the braid band moves (abbreviated to bbm), which reflect the
surgery description of L(p, q). In [8] the same procedure is applied for the case of
Temperley–Lieb algebras of type B and an invariant V B for knots and links in ST
is constructed, via a unique Markov trace constructed on them, and which is the
analogue of the Kauffman bracket polynomial for knots and links in ST.
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In this paper the Kauffman bracket skein module of ST, KBSM (ST), is computed
usingbraids and algebraic techniques developed in [2, 3, 5–8, 11–14]. Themotivation
of this work is the computation of KBSM (L(p, q)) via algebraic means. The new
basic set is described in Eq.1 in terms of mixed braids (that is, classical braids with
the first strand identically fixed). For an illustration see bottom part of Fig. 5.

Our main result is the following:

Theorem 2 The following set forms a basis for KBSM(ST):

BST = {tn, n ∈ N}. (1)

The method for obtaining the basis BST, is the following:

• We start from elements in the standard basis of KBSM(ST), B′
ST, presented in

[16]. Then, following the technique in [3], we express these elements into sums
of elements in Λ, using conjugation and stabilization moves. As shown in [3],
the set Λ (see Remark 3) forms a basis for the HOMFLYPT skein module of the
solid torus.

• We then express elements in Λ as sums of elements in BST, using conjugation,
stabilization moves and the Kauffman bracket skein relation.

• We relate the two sets B′
ST and BST via an infinite lower triangular matrix and

conclude that the setBST forms a basis for KBSM(ST).

It is worth mentioning that in [9], Theorem 2 was obtained via diagrammatic
methods.

The paper is organized as follows: In Sect. 2 we recall the setting and the essential
techniques and results from [2, 11–14]. More precisely, we present isotopy moves
for knots and links in ST and we then describe braid equivalence for knots and links
in ST. We also present results from [8, 12] and in particular we present the basis of
the Kauffman bracket skein module of ST in terms of braids and braid groups of type
B. In Sect. 3 we present results from [3] that are crucial for this paper, and using these
results, in Sect. 3.4 we present a new basis for the Kauffman bracket skein module
of the solid torus ST, BST. As explained in the beginning of Sect. 3, the importance
of the basisBST lies in the fact that the braid band moves or slide moves (that reflect
isotopy in the lens spaces L(p, q)) are naturally described via BST. Finally in [1]
and starting from BST, the computation of the Kauffman bracket skein module of
the lens spaces is presented.

2 Preliminaries

2.1 Mixed Links and Isotopy in ST

We consider ST to be the complement of a solid torus in S3. As explained in [2, 13,
14], an oriented link L in ST can be represented by an orientedmixed link in S3, that is
a link in S3 consisting of the unknotted fixed part Î representing the complementary



332 I. Diamantis

Fig. 3 The closure of a
mixed braid to a mixed link

solid torus in S3 and the moving part L that links with Î . A mixed link diagram is
a diagram Î ∪ L̃ of Î ∪ L on the plane of Î , where this plane is equipped with the
top-to-bottom direction of I (see right hand side of Fig. 3).

Consider now an isotopy of an oriented link L in ST. As the link moves in ST, its
corresponding mixed link will change in S3 by a sequence of moves that keep the
oriented Î point-wise fixed. This sequence of moves consists in isotopy in the S3 and
themixed Reidemeister moves. In terms of diagrams we have the following result for
isotopy in ST:

The mixed link equivalence in S3 includes the classical Reidemeister moves and
the mixed Reidemeister moves, which involve the fixed and the standard part of the
mixed link, keeping Î pointwise fixed.

2.2 Mixed Braids and Braid Equivalence for Knots
and Links in ST

By the Alexander theorem for knots and links in the solid torus (cf. Thm. 1 [11]),
a mixed link diagram Î ∪ L̃ of Î ∪ L may be turned into a mixed braid I ∪ β with
isotopic closure. This is a braid in S3 where, without loss of generality, its first strand
represents Î , the fixed part, and the other strands, β, represent the moving part L .
The subbraid β is called the moving part of I ∪ β (see left hand side of Fig. 3).

The sets of braids related to ST form groups, which are in fact the Artin braid
groups of type B, denoted B1,n , with presentation:

B1,n =
〈

t, σ1, . . . , σn−1

∣
∣
∣
∣
∣
∣
∣
∣

σ1tσ1t = tσ1tσ1

tσi = σi t, i > 1
σiσi+1σi = σi+1σiσi+1, 1 ≤ i ≤ n − 2
σiσ j = σ jσi , |i − j | > 1

〉

,

where the generators σi and t are illustrated in Fig. 4i (see also [11] and references
therein).
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Let now L denote the set of oriented knots and links in ST. Then, isotopy in ST
is translated on the level of mixed braids by means of the following theorem:

Theorem 3 (Theorem 3, [11]) Let L1, L2 be two oriented links in ST and let I ∪
β1, I ∪ β2 be two corresponding mixed braids in S3. Then L1 is isotopic to L2 in
ST if and only if I ∪ β1 is equivalent to I ∪ β2 inB by the following moves:

(i) Conjugation : α ∼ β−1αβ, if α, β ∈ B1,n.

(i i) Stabili zation moves : α ∼ ασ±1
n ∈ B1,n+1, if α ∈ B1,n.

2.3 The Kauffman Bracket Skein Module of ST via Braids

In [12] the most generic analogue of the HOMFLYPT polynomial, X , for links in
the solid torus ST has been derived from the generalized Iwahori–Hecke algebras
of type B, H1,n , via a unique Markov trace constructed on them. This algebra was
defined by Lambropoulou as the quotient ofC

[
q±1

]
B1,n over the quadratic relations

g2i = (q − 1)gi + q . Namely:

H1,n(q) = C
[
q±1

]
B1,n

〈σ 2
i − (q − 1) σi − q〉 .

It is also shown that the following sets form linear bases for H1,n(q) ([12, Propo-
sition 1 & Theorem 1]):

(i) Σn = {t k1i1 . . . t krir · σ }, where 0 ≤ i1 < . . . < ir ≤ n − 1,
(i i) Σ ′

n = {t ′i1 k1 . . . t ′ir
kr · σ }, where 0 ≤ i1 < . . . < ir ≤ n − 1,

(2)

where k1, . . . , kr ∈ Z, t ′0 = t0 := t, t ′i = gi . . . g1tg
−1
1 . . . g−1

i and ti =
gi . . . g1tg1 . . . gi are the ‘looping elements’ in H1,n(q) (see Fig. 4ii) and σ a basic
element in the Iwahori–Hecke algebra of type A, Hn(q), for example in the form of
the elements in the set [10]:

Sn = {
(gi1gi1−1 . . . gi1−k1)(gi2gi2−1 . . . gi2−k2) · · · (gip gi p−1 . . . gip−kp )

}
,

for 1 ≤ i1 < · · · < i p ≤ n − 1 . In [12] the bases Σ ′
n are used for constructing a

Markov trace on H := ⋃∞
n=1 H1,n , and using this trace, a universal HOMFLYPT-

type invariant for oriented links in ST is constructed.

Theorem 4 ([12, Theorem 6 and Definition 1]) Given z, sk with k ∈ Z specified
elements in R = C

[
q±1

]
, there exists a unique linear Markov trace function onH :

tr : H → R (z, sk) , k ∈ Z



334 I. Diamantis

Fig. 4 The generators of B1,n and the ‘looping’ elements t ′i and ti

determined by the rules:

(1) tr(ab) = tr(ba) for a, b ∈ H1,n(q)

(2) tr(1) = 1 for all H1,n(q)

(3) tr(agn) = ztr(a) for a ∈ H1,n(q)

(4) tr(at ′n
k
) = sk tr(a) for a ∈ H1,n(q), k ∈ Z

Then, the function X : L → R(z, sk)

X α̂ = �n−1 ·
(√

λ
)e

tr (π (α)) ,

is an invariant of oriented links in ST, where � := − 1−λq√
λ(1−q)

, λ := z+1−q
qz , α ∈ B1,n

is a word in the σi ’s and t ′i ’s, α̂ is the closure of α, e is the exponent sum of the σi ’s
in α, π the canonical map of B1,n to H1,n(q), such that t �→ t and σi �→ gi . �

Remark 1 As shown in [3, 12] the invariant X recovers the HOMFLYPT skein
module of ST. For a survey on the HOMFLYPT skein module of the lens spaces
L(p, 1) via braids, the reader is referred to [4].

Following the same idea as in [12], in [8] the analogue of the normalizedKauffman
bracket polynomial, V , for links in the solid torus ST has been derived from the
Temperley–Lieb algebra of type B, TLB

n . This algebra is defined as a quotient of the
generalized Iwahori–Hecke algebra of type B, H1,n(q), over the ideal generated by
the elements:

h1,2 := 1 + u (σ1 + σ2) + u2 (σ1σ2 + σ2σ1) + u3 σ1σ2σ1,

hB := 1 + u σ1 + v t + uv (σ1t + tσ1) + u2v σ1tσ1 + uv2 tσ1t + (uv)2 σ1tσ1t
(3)

Note that in [8] a different presentation for H1,n is used, that involves the param-
eters u, v and the quadratic equations

σ 2
i = (u − u−1)σi + 1. (4)
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One can switch from one presentation to the other by a taking σi = uσi , t = vt and
q = u2.

Since the Temperley–Lieb algebra of type B is a quotient of the Iwahori–Hecke
algebra of type B, in [8] the authors present the necessary and sufficient conditions
so that the Markov trace factors through to TLB

n . Indeed:

Theorem 5 ([8, Theorem 4]) The trace defined in Hn(1, q) factors through to TLB
n

if and only if the trace parameters take the following values:

z = − 1

u(1 + u2)
, s1 = −1 + v2

(1 + u2)v
. (5)

It is worth mentioning that in [8] more values of the trace parameters that allow
the trace to factor through to TLB

n are presented, but as explained in [8], only the
values in (5) are of topological interest. Moreover, for those values of the parameters
one deduces λ = u4. We have the following:

Theorem 6 ([8]) The following is an invariant for knots and links in ST:

V B
α̂ (u, v) :=

(

−1 + u2

u

)n−1

(u)2e tr (π (α)) ,

where α ∈ B1,n is a word in the σi ’s and t ′i ’s, α̂ is the closure of α, e is the exponent
sum of the σi ’s in α, π the canonical map of B1,n to TLB

n , such that t �→ t and
σi �→ gi . �

In the braid setting of [12], the elements of KBSM(ST) correspond bijectively to
the elements of the following set:

B′
ST = {t t ′1 . . . t ′n, n ∈ N}. (6)

The set B′
ST forms a basis of KBSM(ST) in terms of braids (see also [16]) (Fig. 5).

Note that B′
ST is a subset of H and, in particular, B′

ST is a subset of Σ ′ = ⋃
n Σ ′

n .
Note also that in contrast to elements in Σ ′, the elements inB′

ST have no gaps in the
indices, the exponents are all equal to one and there are no ‘braiding tails’.

Remark 2 The invariant V B recovers KBSM(ST). Indeed, it gives distinct values to
distinct elements of B′

ST, since tr(t t
′
1 · · · t ′n) = sn1 .

3 The BasisBST of KBSM(ST)

In this section we prove the main result of this paper, Theorem 2. Before proceeding
with the proofwepresent themotivation that lead to the newbasisBST ofKBSM(ST):
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The relation between KBSM (L(p, 1)) and KBSM(ST) is presented in [15] and
it is shown that:

KBSM (L(p, 1)) = KBSM(ST)

< a − bbm(a) >
, a in the basis of KBSM(ST).

In order to extend V B to an invariant of links in L(p, q) we need to solve an
infinite system of equations resulting from the braid band moves. Namely we force:

V B
α̂ = V B

̂bbm(α)
, (7)

for all α in the basis of KBSM(ST).

The above equations have particularly simple formulations with the use of the new
basis, BST, for the Kauffman bracket skein module of ST. This is a very technical
and difficult task and is the subject of a sequel paper.

We now recall results from [3] that we will use throughout the paper.

3.1 An Ordering in the Bases of S (ST)

In [3] an ordering relation is defined on the sets Σ and Σ ′ which plays a crucial role
in this paper. Before presenting this ordering relation, we first introduce the sets Λ′
and Λ and the notion of the index of a word w, denoted ind(w), in any of these sets.

Definition 2 We define the following subsets of Σn and Σ ′ respectively:

Λ(k) := {t k00 t k11 . . . t kmm | ki ≥ ki+1,
∑m

i=0 ki = k, ki ∈ Z \ {0}, ∀i},

Λ′
(k) := {t ′0k0 t ′1k1 . . . t ′m

km | ki ≥ ki+1,
∑m

i=0 ki = k, ki ∈ Z \ {0}, ∀i},

Λ
aug
(k) := {t k00 t k11 . . . t kmm | ∑m

i=0 ki = k, ki ∈ Z \ {0}, ∀i},

Λ′
(k)

aug := {t ′0k0 t ′1k1 . . . t ′m
km | ∑m

i=0 ki = k, ki ∈ Z \ {0}, ∀i}.

(8)

Note that elements in the setΛ(k) have ordered exponents, while elements inΛ
aug
(k)

have arbitrary exponents. Obviously, Λ(k) ⊂ Λ
aug
(k) ⊂ Σn .

Remark 3 In [3] the set Λ := ⋃

k
Λ(k) is showed to be a basis for the HOMFLYPT

skein module of ST.
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Fig. 5 Elements in the different bases of KBSM(ST)

Definition 3 ([3, Definition 1]) Let w be a word inΛ. Then, the index of w, ind(w),
is defined to be the highest index of the ti ’s in w. Similarly, in Σ ′ or Σ , ind(w) is
defined as above by ignoring possible gaps in the indices of the looping generators
and by ignoring the braiding parts in the algebras Hn(q). Moreover, the index of a
monomial in Hn(q) is equal to 0. �
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We now proceed with presenting an ordering relation in the sets Σ and Σ ′, which
passes to their respective subsetsBST and B′

ST.

Definition 4 ([3, Definition 2]) Let w = t ′i1
k1 . . . t ′iμ

kμ · β1 and u = t ′j1
λ1 . . . t ′jν

λν · β2

inΣ ′, where kt , λs ∈ Z for all t, s and β1, β2 ∈ Hn(q). Then, we define the following
ordering in Σ ′:

(a) If
∑μ

i=0 ki <
∑ν

i=0 λi , then w < u.
(b) If

∑μ

i=0 ki = ∑ν
i=0 λi , then:

(i) if ind(w) < ind(u), then w < u,
(ii) if ind(w) = ind(u), then:

(α) if i1 = j1, . . . , is−1 = js−1, is < js , then w > u,
(β) if it = jt for all t and kμ = λμ, kμ−1 = λμ−1, . . . , ki+1 = λi+1, |ki | < |λi |, then

w < u,
(γ ) if it = jt for all t and kμ = λμ, kμ−1 = λμ−1, . . . , ki+1 = λi+1, |ki | = |λi | and

ki > λi , then w < u,
(δ) if it = jt ∀t and ki = λi , ∀i , then w = u.

The ordering in the set Σ is defined as in Σ ′, where t ′i ’s are replaced by ti ’s. �

3.2 FromB′
ST to Λ

In this subsection we recall a series of results from [3] in order to convert elements
in B′

ST to elements in Λ. In order to simplify the algebraic expressions obtained
throughout this procedure and throughout the paper in general, we first introduce the
following notation:

Notation 1 We set τ
ki,i+m

i,i+m := t kii . . . t ki+m

i+m ∈ Σ and τ ′ki,i+m

i,i+m := t ′kii . . . t ′ki+m

i+m ∈ Σ ′
n , for

m ∈ N, k j �= 0 for all j . �

Remark 4 Using Notation 1, elements in B′
ST are of the form τ ′

0,n := t t ′1 . . . t ′n ,
for n ∈ N, that is B′

ST = {
τ ′
0,n

}∞
n=0

. Moreover, we set KST = {
τ0,n

}∞
n=0, and so

elements inKST are of the form τ0,n := t t1 . . . tn , for n ∈ N.
Moreover,

Λ′
(k) =

{

τ ′k0,n
0,n | ki ≥ ki−1,

n∑

i=0
ki = k, ki ∈ Z\{0}

}

, Λ′ = ⊕
k∈Z

Λ′
(k)

Λ(k) =
{

τ
k0,n
0,n | ki ≥ ki−1,

n∑

i=0
ki = k, ki ∈ Z\{0}

}

, Λ = ⊕
k∈Z

Λ(k)

We also introduce the notion of homologous words, which is crucial for relating
the setsB′

ST and KST via a triangular matrix.
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Definition 5 ([3, Definition 4]) We say that two words w′ ∈ Σ ′ and w ∈ Σ are
homologous, denoted w′ ∼ w, if w is obtained from w′ by changing t ′i into ti for all
i and ignoring the braiding parts. �

We now recall a result from [3] in order to convert monomials in the t ′i ’s in general
to monomials in the ti ’s in Σn . More precisely:

Theorem 7 ([3, Theorem 7]) The following relations hold:

τ ′k0,n
0,n = τ

k0,n
0,n + A · τ0,n · w +

∑

j

B jτ j · β j ,

where w, β j ∈ Hn+1(q),∀ j , τ j ∈ Σn, such that τ j < τ0,n,∀ j and A, Bj

coefficients. �

Since now we are only interested in converting elements in the set B′
ST to sums

of monomials in the ti ’s, we have the following corollary:

Corollary 1 The following relations hold:

τ ′
0,n = τ0,n + A · τ0,n · w +

∑

j

B jτ j · β j , (9)

where w, β j ∈ Hn+1(q),∀ j , τ j ∈ Σn, such that τ j < τ0,n,∀ j and A, Bj coefficients.

After expressing an element τ ′
0,n ∈ B′

ST as sums of elements in Σn , we obtain
the homologous word τ0,n , the homologous word again followed by a ‘braiding
tail’ w ∈ TLn and elements in Σn with possible ‘gaps’ in the indices. In [3], using
conjugation, monomials in the ti ’s with ‘gaps’ in the indices are expressed as sums
of monomials in Λ, followed by ‘braiding tails’. For the expressions that we obtain
after appropriate conjugations we shall use the notation =̂. We recall the following
result from [3]:

Theorem 8 ([3, Theorem 8]) Let T be a monomial in the ti ’s with ‘gaps’ in the
indices. The following relations hold:

T =̂
∑

i

Ai · Ti · wi , (10)

where Ti ∈ Λ(n), such that Ti < T,∀i , wi ∈ TLn+1,∀i , and Ai coefficients. �

As shown in [3], elements in the setΛ followed by ‘braiding tails’ can be expressed
as sums of elements in Λaug by using conjugation and stabilization moves. For the
expressions that we obtain after appropriate conjugations and stabilization moves we
shall use the notation �̂. Indeed, we have the following:
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Theorem 9 ([3, Theorem 10]) Let τ ∈ Λ andw ∈ TLn. Then, applying conjugation
and stabilization moves, we have that:

τ · w �̂
∑

j

A j · τ j , (11)

where Λ(n) � τ j < τ , for all j . �

Combining now Theorems 7, 8 and 9 and Corollary 1 we have that an element
τ ′ ∈ B′

ST can be expressed as a sum of the homologous word τ ∈ KST and lower
order terms in Λ(n). More precisely, we have the following:

Corollary 2 Let τ ′
0,n ∈ B′

ST. The following relations hold:

τ ′
0,n �̂ τ0,n +

∑

i

Ai · τi , (12)

where τi ∈ Λ such that τi < τ0,n ∼ τ ′
0,n for all i .

From Corollary 2 we have that monomials τ ′
0,n ∈ B′

ST can be expressed as sums
of their corresponding homologous word τ0,n ∈ KST with invertible coefficients, and
elements τi ∈ Λ of lower order than τ0,n . The point now is that the elements τi do
not necessarily belong to BST, but using conjugation and stabilization moves, we
will show that these elements can be expressed as monomials inBST of lower order
than τ0,n , and thus, BST spans KBSM(ST). We deal with these elements in the next
subsection.

3.3 From Λ toBST

As explained in the Introduction, our goal is to relate the sets B′
ST and BST via an

infinite block diagonal, invertible matrix. From Corollary 2 we have that an element
inB′

ST can be expressed as a sum of the homologous word inKST ⊂ Λ and elements
in Λ of lower order. In this subsection we convert elements in Λ to sums of elements
in BST. We first deal with the homologous word τ0,n ∈ Λ of τ ′

0,n ∈ B′
ST. We have

the following:

Proposition 1 Applying conjugation, stabilization moves and relations (3), the fol-
lowing relations hold:

Λ � τ0,n �̂ A · t ind(τ0,n)+1 +
ind(τ0,n)∑

i=0

Ai · t i , (13)

where Ai coefficients in the ground ring for all i . �
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Proof We prove Proposition 1 by strong induction on the order of τ0,n .

The base of the induction is the monomial t t1 ∈ Λ of index 1. We have that:

t t1 = tσ1tσ1 = σ1tσ1t =

= − 1
(uv)2 (1 + uσ1 + vt + uv(σ1t + tσ1) + u2vσ1tσ1 + uv2tσ1t) �̂

�̂ − 1
(uv)2 (1 + uz + v t + 2uvzt + u2v tσ 2

1 + uv2 t2σ1) �̂

�̂ − 1
(uv)2 (1 + uz + v t + 2uvzt + u2v t + u2vz(u − u−1) t + uv2z t2) =

= (−u−1z) t2 +
1∑

i=0
Ai · t i .

So, Proposition 1 holds for t t1.

Assume now that Proposition 1 holds for all monomials τi of lower order than
τ0,n . Then, we have:

τ0,n := t t1 (τ2,n) = (tσ1tσ1) (τ2,n) = (σ1tσ1t) (τ2,n) =

= − 1
(uv)2

[
1 + uσ1 + vt + uv(σ1t + tσ1) + u2vσ1tσ1 + uv2tσ1t

]
(τ2,n) �̂

�̂ − 1
(uv)2

[
τ2,n + uτ2,nσ1 + vtτ2,n + 2uvtτ2,nσ1 + u2vtτ2,nσ 2

1 + uv2t2τ2,nσ1
] �̂

�̂ − 1
u t2τ2,nσ1 + ∑

i
Ai · τi , where τi < τ, ∀ i.

According to the ordering relation, on the right hand side of this equation we
have the element t2τ2,nσ1 and a sum of elements of lower order than τ0,n , since the
sums of the exponents in the ti ’s in these elements are less than n + 1. Moreover, the
monomial t2τ2,nσ1 contains a gap in the indices, and thus it is of lower order than
τ0,n (recall Definition 4). Moreover, this monomial is followed by the ‘braiding tail’
σ1. According now to Theorems 8 and 9, this element can be expressed as a sum of
elements in Λ(n) of lower order than t2τ2,nσ1 and hence, of lower order than τ0,n . By
the induction hypothesis the proof is now concluded. �

We now deal with arbitrary elements in Λ and convert them to sums of elements
inB(ST). We will need the following lemmas:

Lemma 1 The following relations hold for all n ∈ N:

tnt1 �̂ − 1

u
z tn+1 +

n∑

i=n−1

Ai t
i ,

where Ai coefficients for all i .
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Proof We prove Lemma 1 by induction on n. For n = 1 we have: t t1 = − 1
u z t

n+1 +
1∑

i=0
Ai t i (relations (3)). Assume now that the relation is true for n. Then for n + 1 we

have:

tn+1t1 = t · (tnt1)
ind.�̂
hyp.

− 1

u
z tn+2 +

n∑

i=n−1

Ai t
i+1 = −1

u
z tn+2 +

n+1∑

i=n

Ai t
i .

The following lemma will serve as a basis for the induction hypothesis applied in
the proof of the main result of this section.

Lemma 2 The following relations hold for n,m ∈ N:

tntm1 �̂ A · tn+m +
n+m−1∑

i=0

Ai t
i ,

where A, Ai coefficients for all i .

Proof We prove Lemma 2 by strong induction on the order of tntm1 ∈ Λaug . The
base of the induction is Lemma 1 for n = 1. Assume that the relations are true for
all elements in Λaug of lower order than tntm1 . Then, for t

ntm1 we have:

tntm1 = tn−1(t t1)t
m−1
1 =

= − 1
u2v2 t

n−1(1 + uσ1 + vt + uv
(
σ1t + tσ1) + u2vσ1tσ1 + uv2tσ1t

)
tm−1
1 =̂

=̂ − 1
u2v2 t

n−1tm−1
1 − 1

uv2 t
n−1tm−1

1 σ1 − 1
u2v t

ntm−1
1 − 2

uv t
ntm−1

1 σ1

− 1
v t

n−1tm1 − 1
u t

n+1tm−1
1 σ1.

The sum of the exponents in the elements tn−1tm−1
1 , tntm−1

1 and tn−1tm1 on the
right hand side of the relation are less than n + m, and thus, these elements are of
lower order than tntm1 (recall Definition 4). Applying now Theorem 9 on the elements
tn−1tm−1

1 σ1, tnt
m−1
1 σ1 and tn+1tm−1

1 σ1, we convert them to sums of elements in Λaug

of lower order than tntm1 . The proof is concluded by the induction hypothesis. �

Theorem 10 Let τ ∈ Λ
aug
(k) . The following relations hold:

τ �̂
k∑

i=0

Ai t
i ,

where Ai coefficients. �
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Proof Consider a monomial τ = t k0 t k11 . . . t knn ∈ Λaug . We prove the relations by
strong induction on the order of τ . The basis of the induction is Lemma 2, since
it deals with the monomials of type tntm1 , which are of minimal order among all
non-trivial monomials in Λaug . We assume that the statement of Theorem 10 is true
for all elements in Λaug of lower order than τ and we will show that it is true for τ .
We have that:

τ = tk0 tk11 . . . tknn = tk0−1 (t t1) t
k1−1
1 . . . tknn =

= tk0−1
[ −1

(uv)2
(1 + uσ1 + vt + uv(σ1t + tσ1) + u2vσ1tσ1 + uv2tσ1t)

]
tk1−1
1 . . . tknn =̂

=̂ − 1
(uv)2

tk0−1tk1−1
1 . . . tknn − 1

uv2
tk0−1tk1−1

1 . . . tknn σ1 − 1
u2v

tk0 tk1−1
1 . . . tknn −

− 1
uv tk0 tk1−1

1 . . . tknn σ1 − 1
v tk0−1tk11 . . . tknn − 1

u tk0+1tk1−1
1 . . . tknn σ1 =

= − 1
(uv)2

tk0−1tk1−1
1 τ

k2,n
2,n − 1

uv2
tk0−1tk1−1

1 τ
k2,n
2,n σ1 − 1

u2v
tk0 tk1−1

1 τ
k2,n
2,n −

− 1
uv tk0 tk1−1

1 τ
k2,n
2,n σ1 − 1

v tk0−1tk11 τ
k2,n
2,n − 1

u tk0+1tk1−1
1 τ

k2,n
2,n σ1.

On the right-hand side of this relation we have the following monomials in Λaug:

t k0−1t k1−1
1 τ

k2,n
2,n < t k0 t k1−1

1 τ
k2,n
2,n < t k0−1t k11 τ

k2,n
2,n < τ

k0,n
0,n = τ,

and the monomials t k0−1t k1−1
1 τ

k2,n
2,n σ1, t k0 t

k1−1
1 τ

k2,n
2,n σ1 and t k0+1t k1−1

1 τ
k2,n
2,n σ1 in the

Hn(q)-module Λaug . Applying Theorem 9 on these monomials we have that:

t k0−1t k1−1
1 τ

k2,n
2,n σ1 �̂ ∑

i
Ai τi , such that τi < t k0−1t k1−1

1 τ
k2,n
2,n < τ

k0,n
0,n , for all i

t k0 t k1−1
1 τ

k2,n
2,n σ1 �̂ ∑

j
B j τ j , such that τ j < t k0 t k1−1

1 τ
k2,n
2,n < τ

k0,n
0,n , for all j

t k0+1t k1−1
1 τ

k2,n
2,n σ1 �̂ ∑

i
Ci τm, such that τm < t k0+1t k1−1

1 τ
k2,n
2,n < τ

k0,n
0,n , for all m

and thus, from the induction hypothesis the relation hold.

3.4 Proof of Theorem 2

Let τ ′
0,n ∈ B′(ST) ⊂ Λ(k) ⊂ Λ

aug
(k) . Then:
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τ ′
0,n �̂

Cor.2
τ0,n + ∑

i=0
Ai · τi �̂

Prop. 1
A · t index(τ+1) +

ind(τ )∑

i=0
Ai · t i + ∑

i=0
Ai · τi

�̂
Thm.10

A · t index(τ+1) +
ind(τ )∑

i=0
Ai · t i +

k∑

i=0
Bi · t i = ∑

i
Ci · t i ⇒

τ ′
0,n �̂

n+1∑

i=0
Ci · t i ,

where Ai , Bi ,Ci coefficients. Thus, elements in B′(ST) can be expressed as sums
of elements inB(ST), that is:

The set B(ST) spans the Kauffman bracket skein module of the solid torus.

We now prove linear independence of the set B(ST):

The tn’s geometrically consist of closed loops in the fundamental group of ST.
Since π1(ST) = Z, tn �= tm for n �= m on the level of π1(ST). This fact factors
through to the Kauffman bracket skein module of ST, since the tn’s can not be
simplified neither by applying braid relations, nor by conjugation and stabilization
moves. Moreover, the Temperley-Lieb type crossing switches cannot be applied on
the tn’s, since they contain no classical crossings in our setting. Thus, the value of
the KBSM(ST) on these elements remains the same as the value of the invariant V B

on these elements.

The proof of Theorem 2 is now concluded.
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Knot Invariants in Lens Spaces

Boštjan Gabrovšek and Eva Horvat

Abstract In this survey we summarize results regarding the Kauffman bracket,
HOMFLYPT,Kauffman 2-variable andDubrovnik skeinmodules, and theAlexander
polynomial of links in lens spaces, whichwe represent bymixed link diagrams. These
invariants generalize the corresponding knot polynomials in the classical case. We
compare the invariants by means of the ability to distinguish between some difficult
cases of knots with certain symmetries.

Keywords Knot invariants · Skein modules · Alexander polynomial · Lens spaces
2010 Mathematics Subject Classification 57M25 (primary) · 57M05 (secondary)

1 Introduction

By the Lickorish-Wallace theorem, any closed, connected, orientable 3-manifold M
can be obtained by performingDehn surgeries on a framed link L0 in S3, furthermore,
each component of L0 can be assumed to be unknotted. Fixing L0 pointwise, we can
present every link L in M by a mixed link L0 ∪ L , where we call L0 the fixed
component and L the moving component, see also [5, 20]. If we take the regular
projection of L0 ∪ L to the plane of L0, we obtain a mixed link diagram.

In particular, if we perform −p/q surgery on the unknot U , we obtain the
lens space L(p, q). In more detail, remove the regular neighbourhood ν(U ) of U
from S3 and attach to the solid torus V1 = S3 \ ν(U ) the solid torus V2 = S1 × D2

by the boundary homeomorphism h : ∂V2 → ∂V1 that maps the meridian m2 of
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Fig. 1 The boundary
homeomorphism h for p = 3
and q = 1

Fig. 2 The diagram of
L(p, q) and a mixed link,
representing a knot in
L(p, q)

Fig. 3 The slide move SL5,2
in L(5, 2)

∂V2 ≈ S1 × S1 to the (p,−q)-curve on ∂V1 ≈ S1 × S1, which is the curve that
wraps p-times around the longitude and −q-times around the meridian of ∂V1 as
illustrated in Fig. 1.

A link L in L(p, q) can thus be represented by the mixed link diagram ofU ∪ L .
When appropriate, we will emphasize that surgery has been performed on U by
equipping the diagram with surgery coefficients as in Fig. 2 and we will denote such
a link in L(p, q) by U− p

q ∪ L . Note that even when dealing with unoriented links,
the fixed component should be oriented, since the ambient manifold depends on this
orientation.

If we approach the meridian disk of V2 with an arc of L , we can slide the arc along
the disk bounded by m2 (the 2-handle in the CW decomposition of L(p, q)), which
has the effect of making a connected sum with the (p,−q)-curve representing ∂m2

on ∂V1 [5, 17, 21]. This isotopy move, called the slide move (or in some literature the
band move), is illustrated in Fig. 3 and we denote it by SLp,q . If we consider oriented
links, we often differentiate between two variants of the slide move, one where the
curve travels along the orientation of U and the other one where we travel in the
opposite direction, depending on how the approaching arc is oriented with respect
to the orientation of U . The two oriented flavours of SLp,q are illustrated in Fig. 4.
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Fig. 4 Two oriented slide moves in L(5, 2)

Fig. 5 Classical Reidemeister moves

The slide move, together with the planar Reidemeister moves in Fig. 5 are suffi-
cient to describe isotopy in L(p, q) as the following theorem states.

Theorem 1 ([17]) Two mixed link diagrams represent the same link in L(p, q) if
and only if one can be transformed into the other by a finite sequence of Reidemeister
moves �1, �2, �3, and SLp,q .

Remark 1 SinceU is fixed, the arcs involved in�1 belong to themoving component,
in �2 at most one of the arcs can belong to the fixed component and in �3 at most
two arcs can belong to the fixed component.

2 The Kauffman Bracket Skein Module

Let be the (oriented) skein triple and the (unoriented)
Kauffman triple, i.e., links that are the same everywhere except inside a small 3-ball
where they differ as the notation suggests.

Skein modules have their origin in the observation made by J. W. Alexander that
the Alexander polynomials are linearly related by the skein

relation

J. H. Conway pursued this idea by taking z = t1/2 − t−1/2 and considering the free
Z[z]-module over the set of isotopy classes of links in S3 modulo the Z[z]-module
generated by the skein relation of the Alexander–Conway polynomial [19, 27, 29].
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Fig. 6 The mixed link xn

By formalizing such a construction and generalizing it for arbitrary 3-manifolds,
J. H. Przytycki and V. G Turaev introduced the theory of skein modules in [28, 32].

The Kauffman bracket skein module generalizes the Kauffman bracket in the
following sense.

Take a coefficient ring Rwith A ∈ R being a unit (an element with amultiplicative
inverse). Since, as in the case of the Kauffman bracket, wewould like to study framed
links, we set Lfr(M) to be the set of isotopy classes of framed links in M , including
the empty link ∅. Let RLfr(M) be the free R-module spanned by Lfr(M).

We would like to impose the Kauffman relation and the framing relation in
RLfr(M). We therefore take the submodule S(M) of RLfr(M) generated by

The Kauffman bracket skein module S2,∞(M) is RLfr(M) modulo these two
relations:

S2,∞(M) = RLfr(M)/S(M).

Let U be a fixed unknot in S3 and let xn be the mixed link where the moving
components consist of n parallel copies of the unknot linked with U as in Fig. 6.
Separately, we denote by x0 the affine unknot (the unknot contained inside a 3-ball
in M).

If we remove a tubular neighbourhood ν(U ) of U , we can think of U ∪ L as a
link in the solid torus T = V1.

The Kauffman bracket skein module of the solid torus T has been calculated by
Turaev:

Theorem 2 (Turaev [32]) S2,∞T is a free R-module generated by the set {xn}∞n=0.

If, instead of removing U , we perform −p/q surgery on U , we can think of xn

as a link in L(p, q).

Theorem 3 (Hoste, Przytycki [17])S2,∞(L(p, q)) is a free R-module generated by
{xn}�p/2	n=0 .

These generating sets are just natural choices, for alternative bases see [15]. The
KBSM has been calculated for several other classes of manifolds, see for exam-
ple [23–25].
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3 The HOMFLYPT Skein Module

The HOMFLYPT skein module of a 3-manifold M generalizes the HOMFLYPT
polynomial. Let the ring R this time have two units v, z ∈ R. Let Lor(M) be the set
of isotopy classes of oriented links inM , including the empty link ∅ and let RLor(M)

be the free R-module spanned by Lor(M).
We impose the HOMFLYPT skein relation in RLor(M) by taking the submodule

S(M) of RLor(M) generated by the expressions

We also add to S(M) the HOMFLYPT relation involving the empty knot,

The HOMFLYPT skein module S3(M) of M is RLor(M) modulo the above rela-
tions:

S3(M) = RLor(M)/S(M).

Let U be a fixed unknot and let tk , k ∈ Z \ {0}, be the oriented link that wraps
k times around U as in Fig. 7a, b (note that t−k is tk with reversed orientation). We
define the product tk1 tk2 . . . tks , s ∈ N, as the links tki placed consecutively along U
as illustrated in Fig. 7c.

Theorem 4 (Turaev [32]) S3(T ) is a free R-module generated by

{t i1k1 . . . t isks | s ∈ N, k j ∈ Z \ {0}, k1 < · · · < ks, i j ∈ N} ∪ {∅}.

Fig. 7 Generators of S3(T )
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Theorem 5 ([14]) S3(L(p, 1)) is a free R-module generated by

{t i1k1 . . . t isks | s ∈ N, k j ∈ Z \ {0},− p

2
< k1 < · · · < ks ≤ p

2
, i j ∈ N}.

For alternative bases see [15] and [6]. The proof of Theorem 5 in [14] is based on a
diagrammatic approach, but the problem can be also attacked using a braid approach,
see [7, 8].

The case of S3(L(p, q)), q ≥ 2, is still an open question, but it is believed that
the following conjecture holds.

Conjecture 1 S3(L(p, q)) is a free R-module generated by

{t i1k1 . . . t isks | s ∈ N, k j ∈ Z \ {0},− p

2
< k1 < · · · < ks ≤ p

2
, i j ∈ N}.

Related to this invariant, in [4] Cornwell constructed a 2-variable polynomial in
L(p, q) that satisfies the skein relation (but is in essenceweaker than theHOMFLYPT
skein module), see also [2], where this invariant has been studied.

4 The Kauffman and Dubrovnik Skein Modules

The Kauffman and Dubrovnik skein modules generalize the Kauffman 2-variable
and Dubrovnik polynomials of unoriented links.

Let the ring R have two units z, a ∈ R. Take the submodule S(M) of RLfr(M)

generated by the expressions

We add to S(M) the relation involving the empty knot,

We define the module

Sε
3,∞(M) = RL(M)/S(M).

Taking ε = +1, we obtain the Kauffman skein module S3,∞(M) and for ε = −1,
we obtain the Dubrovnik skein module S−1

3,∞(M).
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Fig. 8 Generators of
S±1
3,∞(T )

Let tk , k ∈ N \ {0}, be the unoriented knot that wraps k times around U as in
Fig. 8a.As in the previous section, the product tk1 tk2 . . . tks , s ∈ N is the link consisting
of tki ’s placed along U as illustrated in Fig. 8b.

For the solid torus, both modules have been calculated by Turaev:

Theorem 6 (Turaev [32]) S±1
3,∞(T ) are free R-modules generated by

{t i1k1 . . . t isks | s, k j ∈ N, 0 < k1 < · · · < ks, i j ∈ N} ∪ {∅}.

For the lens spaces L(p, 1), the modules have been calculated by Mroczkowski:

Theorem 7 (Mroczkowski [26]) S3,∞(L(p, 1)) is generated by

{t i1k1 . . . t isks | s, k j ∈ N, 0 < k1 < · · · < ks ≤ � p
2

	, i j ∈ N} ∪ {∅}.

The modules are free if p is odd and contain torsion if p is even.

Theorem 8 (Mroczkowski [26]) S−1
3,∞(L(p, 1)) is a free R-module generated by

{t i1k1 . . . t isks | s, k j ∈ N, 0 < k1 < · · · < ks ≤ � p
2

	, i j ∈ N} ∪ {∅}.

5 Alexander Polynomial

In this section we describe a Torres-type formula (see [31]), constructed in [16] for
the Alexander polynomial of links in lens spaces defined by Fox’s free differential
calculus [9, 22, 33].

Recall that the fundamental group of a classical link admits a well-known
Wirtinger presentation

π1(S
3\L , ∗) = 〈x1, . . . , xn | r1, . . . , rn〉 ,

obtained from a link diagram. Generators xi correspond to the simple closed loops
based at ∗ and winding around the over-arcs of the diagram and ri is the Wirtinger
relation, xi1xi3x

−1
i2

x−1
i3

if the crossing is positive or xi1x
−1
i3

x−1
i2

xi3 if the crossings is
negative, corresponding to the i th crossing of the diagram, see Fig. 9.
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Fig. 9 Wirtinger relations

Given a mixed link diagram of U−p/q ∪ L , the following proposition allows us
to describe the fundamental group of L(p, q) \ L (cf. [1, 12]).

Proposition 1 ([30]) Let 〈x1, . . . , xn | r1, . . . , rn〉 be the Wirtinger presentation for
π1(S3\(U ∪ L), ∗) obtained from a mixed link diagram. Denote by m1 and l1 the
meridian and longitude of the regular neighbourhood of S3\U, written in terms of
the generators x1, . . . , xn. The presentation for the link group is given by

π1(L(p, q)\L , ∗) =
〈
x1, . . . , xn | w1, . . . ,wn,m

p
1 l

−q
1

〉
.

We briefly recall the construction of the Alexander polynomial using Fox calculus
[16, 33]. Suppose

P = 〈x1, . . . , xn | r1, . . . , rm〉

is a presentation of a group G. Denote by H = G/G ′ its abelianization and by
F = 〈x1, . . . , xn | 〉 the corresponding free group. Apply the chain of maps

ZF
∂
∂x−→ ZF

γ−→ ZG
α−→ ZH ,

where ∂
∂x denotes theFoxdifferential,γ is the quotientmapby the relations r1, . . . , rm

and α is the abelianization map.
The Alexander-Fox matrix of P is the matrix A = [

ai, j
]
, where ai, j = α(γ ( ∂ri

∂x j
))

for i = 1, . . . ,m and j = 1, . . . n. The first elementary ideal E1(P) is the ideal of
ZH , generated by the determinants of all the (n − 1) minors of A.

For a link L in S3, let E1(P) be the first elementary ideal obtained from a pre-
sentation P of π1(S3\L , ∗). The Alexander polynomial 	(L) is the generator of the
smallest principal ideal containing E1(P). The abelianization of π1(S3\L , ∗) is a
free abelian group, whose generators correspond to the components of L .

For a link in L(p, q), the abelianization of its link group may also contain torsion,
see [16, Corollary 2.10]. In this case, we need the notion of a twisted Alexander
polynomial. We recall the following from [1].

Let G be a group with a finite presentation P and abelianization H = G/G ′
and denote K = H/Tors(H). Then every homomorphism σ : Tors(H) → C

∗ =
C\{0} determines a twisted Alexander polynomial 	σ(P) as follows. Choosing a
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splitting H = Tors(H) × K , σ defines a ring homomorphism σ : Z[H ] → C[K ]
sending ( f, g) ∈ Tors(H) × K to σ( f )g. Thus we apply the chain of maps

ZF
∂
∂x−→ ZF

γ−→ ZG
α−→ ZH

σ−→ C[K ]

and obtain the σ -twisted Alexander matrix Aσ =
[
σ(α(γ ( ∂ri

∂x j
)))

]
. The twisted

Alexander polynomial is then defined by 	σ(P) = gcd(σ (E1(P))).
TheAlexander polynomial ofU−p/q ∪ L , which we denote by	U−p/q∪L or simply

	L if the context is clear, is defined to be the generator of the smallest principal ideal
containing E1(P).

We continue by describing how to obtain theAlexander polynomial forU−p/q ∪ L
from the Alexander polynomial of U ∪ L ⊂ S3.

Let D be the disk bounded byU . We may assume that L intersects D transversely
in k intersection points with algebraic intersection signs ε1, . . . , εk ∈ {−1, 1}. We
define [L] = ∑k

i=1 εi , which corresponds to the integer representing the homology
class of L in H1(S3 \U ) ∼= Z.

By Proposition 1, the presentation of π1(L(p, q) \ L , ∗) is obtained from the
presentation of the link group π1(S3 \ (U ∪ L), ∗) by adding one relation. The
Alexander-Fox matrices are thus closely related and consequently so are the Alexan-
der polynomials, as the following theorem states.

Theorem 9 ([16]) Let p′ = p
gcd{p,[L]} and [L]′ =

{
1, if [L] = 0

[L]
gcd{p,[L]} , if [L] �= 0

. The

Alexander polynomial of U−p/q ∪ L and the (classical) two-variable Alexander
polynomial 	U∪L(u, t), where variable u corresponds to the moving components
and variable t corresponds to the fixed component, are related by

	U−p/q∪L(t) = t − 1

t [L]′ − 1
	U∪L(t

p′
, tq[L]′) . (1)

It is also shown in [16] that it is possible to normalize 	U−p/q∪L and obtain a
normalized version of the Alexander polynomial in lens spaces, ∇(L)(t), which
satisfies the skein relation

This result may be compared to the skein relation for links in the projective space
L(2, 1), obtained in [18]:

Theorem 10 (Huynh, Le [18]) Let be a skein triple in the projective

space. If and belong to the same torsion class, then the normalized

one variable twisted Alexander function satisfies the skein relation
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6 Examples

We finish by presenting some explicit calculations of difficult cases of links in
L(p, 1), where the mentioned invariants fail to detect inequivalent links. The knot
notations are taken from the lens space knot table constructed in [11]. The Kauffman
bracket skein modules and HOMFLY-PT skein modules (evaluated in the standard
basis) were computed by the C++ program available in [10] (the algorithm itself is
presented in [11]). The Alexander polynomials were computed using SnapPy and
SageMath and applying equation (1). The Kauffman skein modules and Dubrovnik
skein modules were computed by hand (for the solid torus and by linearity, substi-
tuting the solid torus generators by the lens space generators).

Example 1

Consider the knots 576 and 576 in Fig. 10. The knot 576 differs from 576 by exchanging
the crossing on the moving component, which can be interpreted as 576 being the
mirror image of 576 under the self-homeomorphism of T that reverses the orientation
of the meridian, but keeps the orientation of the longitude. Amphichirality of 576 is
not detected by the Kauffman bracket skein module for any value of p, but detected
by the other skein modules and the Alexander polynomial.

p S2,∞(576) = S2,∞(576)
2 x
3 A13 + A + x(−A8 + A4)

4 x(−A11 + A7 + A5 − A3 − A)

≥5 x(2A7 − A3 + 2A−1) + x3(−A7 + A3 − A−1)

Fig. 10 The knot 576 and its
mirror image
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p S3(576)
2 t1
3 −v−1z−1 + v−3z−1 − t−1t1 v−1z
4 t−1 (−z2 + v−2) − t1t2 vz
5 −t−1t−2 vz + t2 (−z2 + v−2)

≥6 −t1t2 vz + t3 (−z2 + v−2)

p S3(576)

2 t1 (2v−2z2 + 3v−2 − 2v−4z4 − 4v−4z2 − 3v−4 + 2v−6z2 + v−6)

+ t31 (z2 − v−2z4 − v−2z2)
3 −2v−1z − v−1z−1 + 2v−3z3 + 4v−3z + v−3z−1 − 2v−5z3 − 2v−5z

+ t3−1 (z2 − v−2z4 − v−2z2) + t−1t1 (−2v−3z + 2v−5z3 + v−5z)
4 t3−1 (z2 − v−2z4 − v−2z2) + t1 (2v−2z2 + v−2 − 2v−4z4 − 2v−4z2)

+ t−1t2 (−2v−3z + 2v−5z3 + v−5z)
5 t−2t−1 (−2v−1z + 2v−3z3 + v−3z) + t3−1 (z2 − v−2z4 − v−2z2) + t2 (v−2 − v−4z2)
≥6 t−3 (v−2 − v−4z2) + t−2t−1 (−2v−1z + 2v−3z3 + v−3z)

+ t3−1 (z2 − v−2z4 − v−2z2)

p S3,∞(576)

2 t1 (−z + a−1 + za2)
3 za2 + a3 + za4 − a2z−1 − a4z−1 − a3z2 + t1 (−z − az2 + a−1z2 + z3 − a2z3)

+ t21 (za2 + a3z2)
4 t1 (−z − a5 + a−1z2 + a3z2 + a5z2 + z3 + a4z3) + t1t2 (−z − az2)
5 t1 (−z + a−1z2 + z3) + t2 (−a7 + a5z2 + a7z2 + a6z3) + t1t2 (−z − az2)
≥6 t1 (−z + a−1z2 + z3) + t1t2 (−z − az2) + t3 (−a3 + az2 + a3z2 + a2z3)

p S3,∞(576)

2 t1 (−3 + 2az − 2za−1 − 2a2 − 2za2 − a3 − a5 + 8z2 + 5a2z2 + 4a3z2 + 2a4z2

+ 3az3 + 2a−1z3 + 3a2z3 − 3z4 − 7a2z4 − 5az5) + t21 (−a3z2 − a2z3)
+ t31 (−z2 − a3z2 − a2z3 + z4 + a2z4 + az5)

3 3az + a2 + 4za3 + za4 + za5 + za6 − az−1 − a3z−1 − 2a2z2 + a3z2 − 2az3 − 5a3z3

− a4z3 − 2a5z3 + 2a3z5 + t1 (−2za−1 − za2 + z2 + 2a2z2 + a3z2 + a5z2 + 2az3

+ 2a−1z3 + a2z3 + a4z3 + z4 − 3a2z4 − 2a4z4 − az5 − 2a3z5)
+ t21 (−2za3 − za6 − a3z2 − a5z2 − a2z3 + 2a3z3 + 2a5z3 + 2a4z4)
+ t31 (−z2 − a3z2 − a2z3 + z4 + a2z4 + az5)

4 t1 (−2za−1 − za2 − a4 + z2 + a3z2 + a4z2 + a6z2 + 2az3 + 2a−1z3 + a2z3 + a5z3

+ z4 − a2z4 − az5) + t21 (−a3z2 − a2z3) + t1t2 (2az + za4 + a3z2 − 2az3 − 2a3z3

− 2a2z4) + t31 (−z2 − a3z2 − a2z3 + z4 + a2z4 + az5)
5 t1 (−2za−1 − za2 + z2 + a3z2 + 2az3 + 2a−1z3 + a2z3 + z4 − a2z4 − az5)

+ t21 (−a3z2 − a2z3) + t2 (−a6 + a6z2 + a8z2 + a7z3) + t1t2 (2az + za4 + a3z2

− 2az3 − 2a3z3 − 2a2z4) + t31 (−z2 − a3z2 − a2z3 + z4 + a2z4 + az5)
≥6 t1 (−2za−1 − za2 + z2 + a3z2 + 2az3 + 2a−1z3 + a2z3 + z4 − a2z4 − az5)

+ t21 (−a3z2 − a2z3) + t31 (−z2 − a3z2 − a2z3 + z4 + a2z4 + az5)
+ t1t2 (2az + za4 + a3z2 − 2az3 − 2a3z3 − 2a2z4) + t3 (−a2 + a2z2 + a4z2 + a3z3)
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p S−1
3,∞(576)

2 t1 (z + a−1 − za2)
3 −za2 + a3 + za4 − a2z−1 + a4z−1 + a3z2 + t1 (z − az2 + a−1z2 + z3 − a2z3)

+ t21 (−za2 − a3z2)
4 t1 (z + a5 + a−1z2 − a3z2 + a5z2 + z3 − a4z3) + t1t2 (−z − az2)
5 t1 (z + a−1z2 + z3) + t2 (a7 − a5z2 + a7z2 − a6z3) + t1t2 (−z − az2)
≥6 t1 (z + a−1z2 + z3) + t1t2 (−z − az2) + t3 (a3 − az2 + a3z2 − a2z3)

p S−1
3,∞(576)

2 t1 (3 − 2az + 2za−1 − 2a2 − a3 + a5 + 2z2 − 5a2z2 + 2a4z2 − az3 + 2a−1z3 − a2z3

+ z4 − a2z4 − az5) + t21 (a3z2 − a2z3) + t31 (z2 − a3z2 + a2z3 + z4 − a2z4 + az5)
3 −3az + a2 + 4za3 + za4 − za5 − za6 − az−1 + a3z−1 + 2a2z2 − a3z2 − 2az3

+ 5a3z3 + a4z3 − 2a5z3 + t1 (2za−1 − za2 − z2 − 2a2z2 + a3z2 + a5z2 − 2az3

+ 2a−1z3 − a2z3 − a4z3 + z4 − a2z4 + 2a4z4 − az5 − 2a3z5)
+ t21 (−2za3 + za6 + a3z2 − a5z2 − a2z3 − 2a3z3 + 2a5z3 − 2a4z4) + 2a3z5

+ t31 (z2 − a3z2 + a2z3 + z4 − a2z4 + az5)
4 t1 (2za−1 − za2 + a4 − z2 + a3z2 + a4z2 − a6z2 − 2az3 + 2a−1z3 − a2z3 + a5z3

+ z4 + a2z4 − az5) + t21 (a3z2 − a2z3) + t1t2 (−2az + za4 − a3z2 − 2az3 + 2a3z3

− 2a2z4) + t31 (z2 − a3z2 + a2z3 + z4 − a2z4 + az5)
5 t1 (2za−1 − za2 − z2 + a3z2 − 2az3 + 2a−1z3 − a2z3 + z4 + a2z4 − az5)

+ t21 (a3z2 − a2z3) + t2 (a6 + a6z2 − a8z2 + a7z3) + t1t2 (−2az + za4 − a3z2 − 2az3

+ 2a3z3 − 2a2z4) + t31 (z2 − a3z2 + a2z3 + z4 − a2z4 + az5)
≥6 t1 (2za−1 − za2 − z2 + a3z2 − 2az3 + 2a−1z3 − a2z3 + z4 + a2z4 − az5)

+ t21 (a3z2 − a2z3) + t31 (z2 − a3z2 + a2z3 + z4 − a2z4 + az5)
+ t1t2 (−2az + za4 − a3z2 − 2az3 + 2a3z3 − 2a2z4) + t3 (a2 + a2z2 − a4z2 + a3z3)

	(576) = −t2p−1 − 2t3p−2 + t4p−2 − 2t p + 1.

	(576) = −t2p+1 − 2t3p+2 + t4p+2 − 2t p + 1.

Example 2

The knots 526 and 527 in Fig. 11 differ by exchanging both the orientation of the fixed
and mixed sublinks, which can be interpreted as 527 being the image of 526 under the
self-homeomorphism of the torus T that reverses both the meridian and the longitude
(a so-called flip in the language of [13], see also [3]). The question whether 526 �= 527
is equivalent to the question whether the links are non-invertible.

Non-invertible links were studied by Whitten [35] and are hard to detect,
although in the case when the links are hyperbolic (most are), modern com-
putational techniques using canonical triangulations of the link complements
enable us to verifiably recognize them [34].
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Fig. 11 The knots 526 and
its flip 527

It is shown in [11] that 526 and 527 are non-isotopic in any lens space L(p, 1), but
due to the symmetric nature of the two knots, none of our invariants are able to
detect this.

p S2,∞(526) = S2,∞(527)

2 x (−A24 + 3A20 − 2A16 + 3A12 − 3A8 + 2A4 − 1)

3 A17 − A13 + A5 − A − x A8(A16 − 3A12 + 2A8 − 2A4 + 1)

4 −x (A18 − 3A14 − A12 + 2A10 + 2A8 − 2A6 − 2A4 + A2 + 1)

5 A16 − A12 + A4 − 1 + x (A21 − 3A17 + 2A13 − 2A9 + A5)

+ x2 (−A16 + 2A12 − 2A8 + A4)

≥6 x (A21 − A17 − A13 + A5 − A) + x3 (−A17 + 2A13 − 2A9 + A5)

p S3(526) = S3(527)

2 t31 (−v6z4 − v6z2) + t1 (v4z6 + 3v4z4 + 2v4z2 − v4 − v2z4 + 2v2)

3 t2−1 (v3z3 + v3z) + t−1t21 (−v2z4 − v2z2) + t1 (v4z2 + v2z4 + v2z2 + v2)

≥4 t−1t21 (−v2z4 − v2z2) + t−1t2 (vz3 + vz) + t1 (v4z2 + v2)

p S3,∞(526) = S3,∞(527)

2 −az2 − a−1z2 + 2z3 + a2z3 − az4 + t1 (−2a − z + 2az − za−2 + za2 − a3 + za3

− 2az2 − 2a−1z2 − 2a2z2 + z3 − 2az3 + 2a−2z3 − a2z3 + 2az4 + 4a−1z4 + 2z5)

+ t21 (−az2 + a2z3 + az4) − t31 az
2

3 −z + a2 − za2 − za3 + a4 − a2z2 − a3z2 − a4z2 + 2z3 + 3a2z3 + a3z3 − az4 + a3z4

− a2z5 + t1 (−a − az2 − a2z2 + a3z2 + 2z3 − a3z3 + 3az4 + a3z4 + a2z5)

+ t21 (−za4 − 2az2 + a4z2 − a2z3 + az4 − a3z4) − t31 az
2

4 −az2 − a−1z2 + z3 + t1 (−a + za5 − az2 − a2z2 − a3z2 − a5z2 + z3 − a4z3 + az4)

+ t21 (−az2 + a2z3 + az4) + t2 az4 − t31 az
2 + t1t2 (za2 + a−1z2 − a2z2 + 2z3 + az4)

5 −az2 − a−1z2 + z3 + t1 (−a − az2 − a2z2 + z3 + az4) + t21 a(−z2 + az3 + z4) + t2
(za7 − a5z2 − a7z2 − a6z3 + az4) − t31 az

2 + t1t2(za2 + a−1z2 − a2z2 + 2z3 + az4)

≥6 −az2 − z2/a + z3 + t1 (−a − az2 − a2z2 + z3 + az4) + t21a(−z2 + az3 + z4) + t2az4

− t31 az
2 + t1t2 (za2 + a−1z2 − a2z2 + 2z3 + az4) + t3 (za3 − az2 − a3z2 − a2z3)
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p S−1
3,∞(526) = S−1

3,∞(527)

2 −az2 + a−1z2 − 2z3 + a2z3 + az4 + t1 (z + 2az − za−2 + za2 + a3 − za3 + 2az2

− 2a−1z2 − z3 + a2z3) + t21 (az2 + a2z3 − az4) − t31 az
2

3 z − a2 − za2 + za3 + a4 − 2az2 + 2a−1z2 − a2z2 − a3z2 + a4z2 − 3a2z3 + a3z3

− az4 − a3z4 − a2z5 + t1 (a − az2 + a2z2 + a3z2 − a3z3 + az4 + a3z4 + a2z5)

+ t21 (za4 + 2az2 − a4z2 + 3a2z3 − az4 + a3z4) − t31 az
2

4 −az2 + a−1z2 − z3 + t1 (a + za5 − az2 + a2z2 − a3z2 + a5z2 − z3 − a4z3 − az4)

+ t21 (az2 + a2z3 − az4) + t2 az4 + t1t2 (za2 + a−1z2 − a2z2 + 2z3 + az4) − t31 az
2

5 −az2 + a−1z2 − z3 − t31 az
2 + t1 (a − az2 + a2z2 − z3 − az4) + t21 a(z2 + az3 − z4)

+ t1t2 (za2 + a−1z2 − a2z2 + 2z3 + az4) + t2 (za7 − a5z2 + a7z2 − a6z3 + az4)

≥6 −az2 + a−1z2 − z3 + t1 (a − az2 + a2z2 − z3 − az4) + t21 a(z2 + az3 − z4) + t2 az4

− t31 az
2 + t1t2 (za2 + a−1z2 − a2z2 + 2z3 + az4) + t3 (za3 − az2 + a3z2 − a2z3)

	(526) = 	(527) = (t2 − t + 1)(t p+1 − t + 1)(t p+1 − t p + 1).
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Identity Theorem for Pro- p-groups

Andrey M. Mikhovich

Abstract The concept of schematization consists in replacing simplicial groups
by simplicial affine group schemes. In the case when the coefficient field has zero
characteristic, there is a prominent theory of simplicial prounipotent groups, the
origins of which lead to the rational homotopy theory of D. Quillen. It turns out that
schematization reveals the profound properties ofFp-prounipotent groups, especially
in connection with prounipotent groups in zero characteristic and in the study of
quasirationality. In this paper, using results on representations and cohomology of
prounipotent groups in characteristic 0, we prove an analogue of Lyndon Identity
theorem for one-relator pro-p-groups (question posed by J.P. Serre) and demonstrate
the application to one more problem of J.-P. Serre concerning one-relator pro-p-
groups of cohomological dimension 2. Schematic approach makes it possible to
consider the problems of pro-p-groups theory through the prism of Tannaka duality,
concentrating on the category of representations. In particular we attach special
importance to the existence of identities in free pro-p-groups (“conjurings”).

Keywords Relation module · Cohomology groups · Identities in prounipotent
groups
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1 Introduction

Part 1.1 of the introduction contains a brief review of a modern paradigm (as it seen
by the author) of the pro-p-group theory and an explanation of the importance of
one-relator pro-p-groups. In Sect. 1.2 we remind basic definitions of prounipotent
group theory, those we need in the sequel. Section1.3 provides condensed introduc-
tion to the results on quasirational presentations and their schematization. We also
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include the proof of quasirationality for presentations of one-relator pro-p-groups.
Section1.4 will help to understand the motivations for our main result (Theorem 1),
elucidating why one should consider it as an analog of Lyndon Identity theorem. We
explain the importance of Tannakian philosophy in Sect. 1.5 presenting the construc-
tion of “conjurings”.

Let p ≥ 2 be a prime. We use the standard notations: Zp for p-adic integers; Qp

for rational p-adic numbers; Fp for the prime field of positive characteristics.

1.1 Pro- p-groups with a Single Defining Relation

By a pro-p-group one calls a group isomorphic to an inverse limit of finite p-groups.
This is a topological group (with the topology of inverse limit) which is compact and
totally disconnected. For such groups one has a presentation theory similar in many
aspects to the combinatorial theory of discrete groups [13, 31].

Let us say that a pro-p-group G is defined by a finite type pro-p-presentation if
G is included into an exact sequence

1 → R → F
π−→ G → 1 (1)

in which F = F(X) is the free pro-p-group with a finite set X of generators, and R
is a closed normal subgroup topologically generated by a finite set Y of elements in
F , contained in the Frattini subgroup of F [13, 31].

Let A = lim←− Aα, where Aα are finite rings, be a profinite ring (typically Zp or
Fp in the sequel), we denote by AG the completed group algebra of a (pro-p) group
G. By the completed group algebra we understand the topological algebra AG =
lim←− Aα[Gμ] [31], where G = lim←−Gμ is a decomposition of the pro-p-group G into
an inverse limit of finite p-groups Gμ.

The interest to pro-p-groups in the recent years is related, first of all, to problems
which arose in a joint area of noncommutative geometry, topology, analysis, and
group theory. They play an important role in papers on the problems of Kadison–
Kaplansky [3], Atiyah [15], and Baum–Connes [33]. Let us mention the concept
of cohomological p-completeness and a program (following from these problems)
of studying pro-p-groups whose discrete and continuous cohomologies with coeffi-
cients in Fp are isomorphic [2, Chap. 5], [6].

Complete group rings of pro-p-groups over the field Fp are complete Fp-Hopf
algebras [30], and pro-p-groups themselves are analogs ofMalcev groups in positive
characteristics, hence the theory of presentations of pro-p-groups can be considered
as two-dimensional p-adic homotopy theory. By p-adic homotopy theory we mean
the analog of Quillen’s rational homotopy theory in positive characteristics. Despite
the papers published already (for instance [18, 20]), such theory remains mostly
conjectural, hence the potential of combinatorial pro-p-group theory is firstly in that
we can check rightness of new concepts in application to solving open problems (in
particular listed above).
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The origins of cohomological and combinatorial theory of pro-p-groups lie in the
early papers of J.-P. Serre and J. Tate, and they took themodern form in themonograph
[35]. Some important results in discrete group theory arose as analogs of similar
statements on pro-p-groups [16]. For example, the celebrated Stallings theorem,
stating that a discrete group is free if and only if its cohomological dimension equals
one, arose from the analogy, proposed by J.-P. Serre, with the known result from
pro-p-group theory [35, Corollary 2, p. 30]. Nevertheless, after first bright successes
of the theory such as the Shafarevich theorem on existence of infinite tower of class
fields [35, I.4.4, Theorem 2] (proof uses the Golod–Shafarevich inequality [35, I.4.4,
Theorem 1]) and the Demushkin–Labute classification of Galois groups of maximal
p-extensions of p-adic fields in terms of generators and relations [35, II.5.6], [36], it
became clear that the study of pro-p-groups given combinatorially sometimes leads
to more complicated structures than in the case of similar discrete presentations.
Thus, the first nontrivial question of J.-P. Serre on the structure of relation modules
of pro-p-groups with one relation, stated at the Bourbaki seminar 1962/63 [36, 10.2],
still waits for a final answer (we expect a counterexample).

Understandingpro-p-groupswith one relation r ∈ R ⊆ F p[F, F]plays an impor-
tant role since they potentially may provide examples of nontrivial zero divisors
in complete group rings of torsion-free pro-p-groups. Actually, suppose there is
Gr = F/(r)F a pro-p-group with one relation (in the notations (1)) which have
no torsion but its cohomological dimension is greater than two. In this situation,
∂r
∂xi

∈ ZpG the images of the Fox partial derivatives ∂r
∂xi

∈ ZpF with respect to the
homomorphism of completed group rings ZpF � ZpG (induced by the homomor-
phism π from (1)) are divisors of 0 in the completed group ring ZpG of the torsion
free pro-p-group. Indeed, the Crowell–Lyndon sequence [11, Theorem 2.2] ofZpG-
modules takes the form

0 → π2 → ZpG
ψ−→ ZpG

|X | → IG → 0,

where IG is the augmentation ideal in ZpG, and π2 = kerψ . Here ψ is defined by
the rule

ψ(α) =
(

α
∂r

∂x1
, . . . , α

∂r

∂xi
, . . .

)
, i = 1 . . . | X |= dimFp H

1(G,Fp).

By the Koch theorem [13, Prop. 7.7], cohomological dimension of a pro-p-group G
equals 2 if and only if π2 = 0. Therefore the assumption that cd(G) > 2 for one-
relator pro-p-group is equivalent to the statement that for all i ∈ I the images of Fox

partial derivatives ∂r
∂xi

∈ ZpG are right zero divisors of some nontrivial elements of
ZpG.

We can study discrete subgroups Γ ⊂ G (for example, take Φ ⊂ F a free dis-
crete subgroups of F and study its images under homomorphism π from (1)), we
expect that ordinary group rings Zp[Γ ] of such subgroups could have zero divisors,
providing counterexamples to the problems listed above.
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1.2 Prounipotent Groups

By an affine group scheme over a field k one calls a representable functor G from the
category Algk of commutative k-algebras with unit to the category of groups. If G is
representable by the algebraO(G), then as a functorG is given, for any commutative
k-algebra A, by the formula

G(A) = HomAlgk (O(G), A).

We assume that the considered homomorphisms HomAlgk take the unit of the algebra
O(G) to the unit of the k-algebra A. The algebraO(G) representing the functor G is
usually called the algebra of regular functions of G. The Yoneda lemma implies the
anti-equivalence of the categories of affine group schemes and commutative Hopf
algebras [39, 1.3]. Let us say that an affine group scheme G is algebraic if its Hopf
algebra of regular functionsO(G) is finitely generated as the commutative k-algebra.

Definition 1 By a unipotent group over a field k one calls an affine algebraic group
scheme G whose Hopf algebra of regular functions O(G) is conilpotent (or cocon-
nected, for equivalent definitions see [39, 8.3], [38, Proposition 16]). An affine group
schemeG is called a prounipotent group if there is a decomposition into inverse limit
G = lim←−Gα of unipotent groups Gα over the field k.

There is also the well known correspondence between unipotent groups over
a field k of characteristics 0 and nilpotent Lie algebras over k, which assigns to
a unipotent group its Lie algebra. This correspondence is easily extended to the
correspondence between prounipotent groups over k and pronilpotent Lie alge-
bras over k [30, Appendix A.3]. Functoriality of the correspondence enables one,
when it is convenient, to interpret problems on unipotent groups in the language
of Lie algebras. For example, the image of a closed subgroup under a homomor-
phism of prounipotent groups will be always a closed subgroup. The main the-
orems on the structure of normal series, nontriviality of the center of a unipo-
tent group [10, VII, 17] are transferred from the corresponding statements for Lie
algebras [34, Part 1, Chap. V, §3]. By the Quillen theorem [30, A.3, Theorem
3.3], reconstruction of the algebra of regular functions O(G) of a prounipotent
group G from the group of k-points G(k) is made through the dual algebra by
the formula O(G)∗ ∼= k̂G(k), where O(G)∗ = Homk(O(G), k) and k̂G(k) is the
group algebra completed with respect to the augmentation ideal. Recall also that
G(k) ∼= GO(G)∗ [38, Prop. 18], where G is the functor of group-like elements in
CHA. By the Campbell–Hausdorff formula [34, Part 1, Chap. IV, §7], [30, A.1] we
have G(k) = expPO(G)∗,PO(G)∗ = logGO(G)∗, where P is the functor of
primitive elements, which gives the associated Lie algebra of G.

Let A be a Hopf algebra over a field k of characteristics 0, in which: (1) the
product is commutative; (2) the coproduct is conilpotent. Then, as an algebra, A is
isomorphic to a free commutative algebra [4, Theorem 3.9.1]. Thus, A is the algebra
of functions on an affine space, and we can use results from the theory of linear
algebraic groups in characteristics 0.
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As in [9, 2], let us call by the Zariski closure of a subset S ⊆ G(k) the least affine
subgroup H in G such that S ⊆ H(k) is the inverse limit lim←− Hα, where we have
denoted by Hα the closure of the image of S in Gα(k).

Pro-p-groups are Fp-points of prounipotent affine group schemes defined over
the field Fp. Indeed, consider the complete group algebra FpG = lim←−Fp[Gα] of a
pro-p-groupG = lim←−Gα,whereGα are finite p-groups. Each group algebraFp[Gα]
is obviously a cocommutative Hopf algebra over the field Fp. Then the dual Hopf
algebra Fp[Gα]∗ [26, 3] is a finitely generated commutative Hopf algebra, and there-
fore it defines certain affine algebraic group scheme. Let G be the functor of group
like elements of a Hopf algebra. Note that [38, Proposition 18]

Gα = GFp[Gα] ∼= HomAlgFp (Fp[Gα]∗,Fp),

where HomAlgFp (Fp[Gα]∗, _) is the functor from the category of commutative
Fp-algebras with unit to the category of sets which assigns to each commuta-
tive Fp-algebra A with unit the set HomAlgFp (Fp[Gα]∗, A) of homomorphisms
φ : Fp[Gα]∗ → A of commutative Fp-algebras with unit. But

G ∼= GFpG ∼= lim←−GFp[Gα] ∼= lim←− HomAlgFp (Fp[Gα]∗,Fp) ∼= HomAlgFp (FpG
∨,Fp),

whereFpG∨ is the continuous dual ofFpG [38], [26, 3.1] (which is the commutative
Hopf algebra representing the functor).

Since the action of a finite p-groupG on aFp-vector space V of a finite dimension
say n always has a fixed point, then there is a basis of V such that G ↪→ U (n)

(see the proof of “Kolchin theorem” [39, Theorem 8.2]). It remains to note, that
the corresponding affine algebraic group scheme represented by the commutative
Hopf algebra Fp[G]∗ = Fp[G]∨ is unipotent [39, Theorem 8.3] and therefore it is
prounipotent if G is a pro-p-group.

1.3 QR-Presentations and Their Schematization

For discrete groups, p ≥ 2 will run over all primes, and for pro-p-groups p is fixed.
LetG be a (pro-p)group with a finite type (pro-p)presentation (1), R = R/[R, R] be
the corresponding relation module, where [R, R] is the commutant, and the action of
G is induced by conjugation of F on R. For each prime number p ≥ 2 denote by Δp

the augmentation ideal of the ring FpG. In the pro-p-case, by Δn we understand the
closure of the module generated by nth powers of elements fromΔ = Δp, and in the
discrete case it is the nth power of the ideal Δp [28]. The properties of this filtration
in the pro-p-case are exposed in [13, 7.4]; in the discrete case, the properties of the
Zassenhaus filtration are similar [28, Chap. 11], the difference is in the use of the
usual group ring instead of the complete one.
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Denote by Mn, n ∈ N its Zassenhaus p-filtration in F with coefficients in the
field Fp, defined by the rule Mn,p = { f ∈ F | f − 1 ∈ Δn

p}. We shall denote these
filtrations simply by Mn , omitting p, since its choice will be always clear from the
context. Let us introduce the notation Z((p)) for Z in the case of discrete groups and
for Zp in the case of pro-p-groups.

Definition 2 We shall call presentation (1) quasirational (QR-presentation) if one
of the following three equivalent conditions holds:

(i) for each n > 0 and for each prime p ≥ 2, the F/RMn-module R/[R, RMn]
has no p-torsion (p is fixed for pro-p-groups and runs over all prime numbers
p ≥ 2 and the corresponding Zassenhaus p-filtrations in the discrete case).

(ii) the quotient module of coinvariants RG = RF = R/[R, F] is torsion free.
(iii) H2(G,Z((p))) is torsion free.

Proof of equivalence of conditions (i)–(iii) is contained in [24, Proposition 4]
and [25, Proposition 1]. QR-presentations are curious in particular by the fact that
they contain aspherical presentations of discrete groups and their subpresentations,
and also pro-p-presentations of pro-p-groups with one relation. For the sake of
completeness we present the proof of quasirationality for one-relator pro-p-groups.

Proposition 1 A pro-p-presentation (1) of a pro-p-group G with one relator is
quasirational.

Proof First note, that R = (r)F has a basis I converging to 1, which consist of ele-
ments f r = f −1r f, { f } ∈ F and also contain r . Indeed, since F is finitely generated
pro-p-group it has a countable basis of neighbourhood of identity which consist of
open normal subgroups [13, 7.4], sayUn and F ∼= lim←−n∈N F/Un . Since R is the closed
subgroup of F , then subgroups R ∩Un � R are the countable basis of neighborhood
of identity of R and R ∼= lim←−n∈N R/R ∩Un . Since elements f r = f −1r f, f ∈ F
generate R, then their images will generate the quotient R � R/R ∩Un and we can
always choose minimal set of generators among such images (it is enough to take
a basis in the quotient of R/R ∩Un by Frattini subgroup which is the Fp-vector
space containing the image of r and then lift it as in [31, Corollary 7.6.10]), we
can always assume that the image of r is not identity in R/R ∩Un by taking n ∈ N

sufficiently large (see also [31, 7.6–7.8] for details). We shall denote such minimal
system of generators by In . It is straightforward to lift In to the system of genera-
tors In+1 of R/R ∩Un+1 with the same properties and therefore (In, φn+1

n ), where
φn+1
n : In+1 � In are projections, is the inverse system. It turns out that I = lim←−n∈N In

is the convergent basis (since it is minimal by construction and convergent to 1 by
construction as well).

Now we consider I the image of I under the homomorphism of Abelianization
R � R = R/[R, R]. I is the basis of free Abelian pro-p-group R (as a consequence
of [31, 7.6.9]), I is also convergent to 0 since I is convergent to 1. Since R acts trivially
on R we see that elements of I could be written in the form gr , g = f = π( f ) ∈ G,
where we denote r the image of r in R.
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Now we shall prove that R/[R, RF] ∼= Zp. Indeed, the map τI of I into Zp

which sends I into one point (the topological generator 1 of Zp) is continuous and
convergent to identity inZp [31, 3.3]. Therefore the universal property of freeAbelian
pro-p-group R [31, Lemma 3.3.4] gives the extension of τI to the epimorphism of
pro-p-groups τ : R � Zp, which sends the basis I = 〈gr , {g} ∈ G〉 of R into the
element ψ(1), 1 ∈ G, where ψ : ZpG → Zp be the map of taking coinvariants.

ZpG
φ

ψ

R

τ

Zp

The composition of τ and φ (φ(1) = r ) equals ψ as the homomorphism of free
Abelian pro-p-groups (we regard ZpG as free Abelian pro-p-group with G as the
basis convergent to 0). Since φ is epi, then τ must be G-module homomorphism.
Indeed, finite sums a = ∑

i∈I a
gi
i r generate the dense subgroup of R, and therefore

the identities τ(g · a) = g · τ(a) imply that τ is the module homomorphism (for
profinite modules one should know the action on its finite factors):

g · τ(a) = τ(a) =
∑
i∈I

ai

τ(g · a) = τ

(
g ·

∑
i∈I

ai ·gi r
)

= τ

(∑
i∈I

ai ·g·gi r
)

=

(commutativity of the diagram) = ψ

(∑
i∈I

ai (g · gi )
)

=
∑
i∈I

ai .

We have proved that there is the ZpG-module epimorphism τ : R/[R, F] � Zp.
But since R is generated as ZpG-module by the single element r , then R/[R, F]
is generated by the single element (the image of r ) as the Zp-module and therefore
R/[R, F] ∼= Zp.

Definition 3 ([9, A.2.]) Let us fix a group G (with the pro-p-topology). Define the
(continuous) prounipotent completion of G as the following universal diagram, in
which ρ is a (continuous) Zariski dense homomorphism from G to the group of
Qp-points of a prounipotent affine group G∧

w:

G∧
w(Qp)

τG

ρ

χ

H(Qp)
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We require that for each continuous and Zariski dense homomorphism χ : G →
H(Qp), where H be a prounipotent affine group scheme, there exist a unique homo-
morphism τ of prounipotent groups, making the diagram commutative.

If we consider a finitely generated free group F(X), then, as it is easy to see, its
continuous prounipotent completion possesses the universal properties inherent to a
free object [26, Sect. 2], and by analogy with the discrete or pro-p cases, we shall call
such prounipotent group free and denote it by Fu(X). Interesting relations between
completions in positive and zero characteristics are obtained in [29].

In simplicial group theory, by analogy with gluing two-dimensional cells, it is
convenient to identify presentation (1) with the second step of construction of free
simplicial (pro-p)resolution F• of a (pro-p)groupG by the “pas-à-pas”method going
back to Andre [1]:

F(X ∪ Y )
d0
d1 F(X)

s0

G, (2)

here d0, d1, s0 for x ∈ X, y ∈ Y, ry ∈ R are defined by the identities d0(x) = x,
d0(y) = 1, d1(x) = x, d1(y) = ry, s0(x) = x .

Recall [26] that (2) is a free finite type simplicial (pro-p) group, degenerate in
dimensions greater than two. If the pro-p-presentation (1) is minimal, then

|Y | = dimFp H
2(G,Fp), |X | = dimFp H

1(G,Fp).

Let us assign to a finite type simplicial presentation (2) a presentation of prounipo-
tent groups as follows (this construction will be called below by the schematiza-
tion of a presentation). First, consider the corresponding diagram of group rings

kF(X ∪ Y )
d0
d1 kF(X)

s0

. Then we obtain from (2), taking into account finite gen-

eration of groups, using the I -adic completion, the following diagram of complete
linearly compact Hopf algebras:

k̂ F(X ∪ Y )
d0
d1 k̂ F(X)

s0

,

where k̂ F(X) = lim←− kF(X)/I n, I is the augmentation ideal in kF(X). Applying
continuous duality (we mention that some authors [38] also use the term “Pontryagin
duality” for the duality between discrete and linearly compact vector spaces, this
duality always assumes the discrete topology of the base field) and antiequivalence
of the categories of commutative Hopf algebras and affine group schemes, we obtain
the diagram of free prounipotent groups

Fu(X ∪ Y )
d0
d1 Fu(X)

s0

.
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Definition 4 Let us say that we are given a finite type presentation of a prounipotent
group Gu if there exist finite sets X and Y such that Gu is included into the following
diagram of free prounipotent groups:

Fu(X ∪ Y )
d0
d1 Fu(X)

s0

Gu , (3)

in which the identities similar to (2) and Gu
∼= Fu(X)/d1(kerd0) hold.

Denote Ru = d1(kerd0), this is a normal subgroup in Fu(X), and hence we
obtain the analog of the notion of presentation (1) for a prounipotent group Gu, to
which we shall refer also, for uniformity, as to a presentation of type (1).

By analogy with the discrete and pro-p cases, the set of rational points of the
relation module Ru(Qp) = Ru/[Ru, Ru](Qp) ∼= Ru(Qp)/[Ru(Qp), Ru(Qp)] of the
prounipotent presentation (3) is endowed with a structure of topological O(Gu)

∗-
module [26, Prop. 3.13].

QR-presentations can be studied by passing to the rationalized completion
R⊗̂Qp = lim←−n

R/[R, RMn] ⊗ Qp. It turns out [26, Lemma 3.14] that the topo-

logicalQp-vector space R⊗̂Qp is identified with R∧
w (Qp) (where R∧

w is the Abelian-
ization of R∧

w which has been introduced in Definition 3) and one can define on it the
structure of topological G-module (Definition 5 below), where G is the pro-p-group
given by the pro-p-presentation (1). Moreover, these modules can be included into
the exact sequence related with the prounipotent module of relations [26, Theorem
3.16].

1.4 Relation Modules of Prounipotent Groups

The celebrated Lyndon Identity theorem states that the relation modules of a discrete
group with one defining relation is induced from a cyclic subgroup. That is, let (1)
be a presentation of a group with one relation, then

R = R/[R, R] ∼= Z ⊗〈u〉 ZG,

where R = (um)F and u is not a nontrivial power, 〈u〉—the cyclic subgroup generated
by u.

Presentations of pro-p-groups with one relation such that their mod(p) mod-
ules of relations R/pR = R/Rp[R, R] are induced, R/Rp[R, R] ∼= Fp ⊗〈u〉 FpG,

are (of course) permutational in the sense of the paper [22] (see also [25, Def. 4]),
i.e. R/pR = R/Rp[R, R] ∼= Fp(T, t0), where (T, t0) is a profinite G-space with
a marked point. O.V. Melnikov shows [22, Theorem 3.2] that relation modules of
aspherical pro-p-groups with one defining relation are induced from cyclic sub-
groups, as in the Lyndon Identity theorem.
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In [36, 10.2] J.-P. Serre asks: “Let r ∈ F p[F, F], and let Gr = F/(r)F . Can one
extend to Gr the results proved by Lyndon in the discrete case?”

We see that this question (in the modern settings of [22]) is equivalent to the
following one: “Is it true that relation modules of pro-p-groups with one defining
relation are permutational?”

If the answer to this question were true, then each pro-p-group with one relator,
such that in its presentation (1) the normal subgroup R = (r)F is not generated by a
p-th power, would have, by [22, Theorem 3.2], cohomological dimension 2.

Shift of dimension enables one to calculate cohomology of a pro-p-group H as
invariants of certain modules. From the viewpoint of the category of representations,
in order to look similar to a group with elements of finite order, it suffices for the
elements of the group H to act as elements of finite order, although these elements
can be actually not of finite order. Using multiplication of the defining relator r = y p

in the free pro-p-group by elements ζ p of special kind, in the next subsection we
shall obtain the defining relations y p · ζ p, which act on finite dimensional modules
of arbitrarily high given dimension exactly as the initial relation r , but are not pth
powers themselves. This observation is in favor of the assumption that pro-p-groups
with one relator, which are not generated by a p-th power, in contrast to the discrete
case, can have cohomological dimension greater than 2.

Nevertheless, we can construct, as in Sect. 1.3, schematization of a pro-p-
presentation (3) (for details see [26, 3.1]). For such prounipotent presentation we
shall prove the following prounipotent analog of Lyndon’s result, which can be inter-
preted as an answer to Serre’s question [36, 10.2]. We need the following definition
[26, 3.12].

Definition 5 Let A be a complete linearly compact Hopf algebra over a field k (the
field is considered with discrete topology). By a left (or equivalently right) complete
topological A-module we shall call a linearly compact topological k-vector space M
with a structure of A-module such that the corresponding k-linear action A⊗̂M → M
is continuous. We assume that the topology on M is given by a fundamental system
of neighborhoods of zero M = M0 ⊇ M1 ⊇ M2 ⊇ · · · , where M j are topological
A-submodules in M of finite codimension (finiteness of type) and M ∼= lim←− M/M j .

By a homomorphism of topological A-modules one calls a continuous A-module
homomorphism.

If the filtration M j admits a compression such that for each j the compression
quotients M ji

i /M ( j+1)i
i+1 are trivial A-modules (i.e. the action of A is trivial), then we

shall call such topological A-module prounipotent.

In what follows, prounipotent topological modules will take its origin from pre-
sentations of a prounipotent groupsG acting by conjugations on its normal subgroup.
And we use the I -adic filtration, that is M j = I j · M, where by I j we denote close
of the powers of augmentation ideal of A = O(G)∗ and M j are topological (closed)
submodules of M generated by elements of the form a · m, where a ∈ I j ,m ∈ M
[26, Prop. 3.12].
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Theorem 1 (Identity theorem for pro-p-groups) Let G be a pro-p-group with one
defining relation given by a finite presentation (1) in the category of pro-p-groups.
Then one has the isomorphism of prounipotent left topological O(Gu)

∗-modules
Ru(Qp) ∼= O(Gu)

∗, where the prounipotent groups Gu and Ru are obtained from
the schematization of the initial pro-p-presentation.

The analogywith the celebrated Lyndon Identity theorem comes from the fact that
if the natural homomorphism G → Gu(Qp) is embedding then G generatesO(Gu)

∗
as the topological vector space and therefore should be considered as a permutational
basis of Ru(Qp) [26, Prop. 3]. We can always identify Gu with the continuous Qp-
prounipotent completion of G [26, (3.3)]. Theorem 1 has been announced in [23,
Cor. 12] and used in [26, Prop. 3, Cor. 3] for proof of the criterion of cohomological
dimension equal to 2, providing a relation with the known group theory results (see
[8, 14, 32, 37] and other papers cited there). Let us recall the results of [26, Prop.
3.19, Cor. 3.21], since they shed light on the following Serre’s question from [36].

Let Gr = F/(r)F , where (r)F is the normal closure of r ∈ F p[F, F] in a free
pro-p-group F of finite rank, then J.-P. Serre asks: “Can it be true that cd(Gr ) = 2,
if only Gr is torsion free (and r �= 1)?”

By the well known Malcev theorem, a finitely generated discrete nilpotent group
without torsion is embedded [38, 4] into its rational prounipotent completion. ForFp-
prounipotent groups, whose instances are pro-p-groups, it would be too optimistic
to hope for a similar statement (there are counterexamples in [26]), however we have

Proposition 2 ([26, Prop. 3.19]) Let G be a finitely generated pro-p-group given by
presentation (1)with one defining relation r �= 1, and assume that the natural homo-
morphism from G to the group of Qp-points G∧

w(Qp) of its prounipotent completion
is an embedding, then cd(G) = 2.

For given discrete or pro-p-groups G1 and G2, where G1 (typically G1 is finitely
generated) acts on G2. We shall call the action prounipotent [26] if there exists a
chain {Ni }i∈N ofG1-invariant normal subgroups inG2 withAbelian graded quotients,
such that∩Ni = 1, Ni/Ni+1 have no torsion, finitely generated and the induced action
of G1 is trivial on graded quotients Ni/Ni+1.

We shall say that a finitely generated pro-p-group G is p-regular if the conjuga-
tion action of G on itself is prounipotent.

The following Corollary 3 generalizes and explains group theory results (see, for
instance [14, 32]), where absence of zero divisors in graded algebras of special filtra-
tions has been used. If finitely generated pro-p-group G has some central filtration
Gi with torsion free factors, then G/Gi are nilpotent and therefore G is p-regular.
It turns out, that p-regularity imply the required embedding G ↪→ G∧

w(Qp) from
Proposition 2.

Proposition 3 ([26, Cor. 3.21]) Let G be a p-regular pro-p-group with one relation,
then cd(G) = 2.
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1.5 Tannaka Duality and Conjurings

Letω : Repk(G) → Veck be the erasing functor from the category of representations
of an affine group scheme G to the category of vector spaces. Then by definition
elements of Aut⊗(ω)(A), for any k-algebra A, are families (λX ), X ∈ ob(Repk(G)),

where (λX ) are A-linear automorphisms of A-modules X ⊗ A such that

(i) λX⊗Y = λX ⊗ λY .
(ii) λ1 = idA.
(iii) λY ◦ (α ⊗ 1) = (α ⊗ 1) ◦ λX for any G-equivariant k-linear maps α : X → Y .

The Tannaka duality establishes [5, Prop. 2.8] the isomorphism of functors
G → Aut⊗(ω) on the category of k-algebras. Thus, an affine group scheme can
be reconstructed from its category of representations, and hence the properties of an
affine group scheme are determined by its representations.

Pro-p-groups areFp-points of prounipotentFp-group schemes Sect. 1.2. Our con-
jecture states that among pro-p-groups G with one relator, which are not embed-
ded into their prounipotent completions, there are those which are torsion free but
cd(G) > 2. It turns out that one can hide torsion of relations without changing the
behavior of any unipotent representation F → GLn(Qp) and F → GLn(Fp) for
arbitrarily large fixed n ∈ N. To be more precise, one has the following

Theorem 2 Let r = wpl , l ∈ N be an element of the free pro-p-group F = Fp(d)

of rank d ≥ 2 which is a pl th power and fix n ∈ N. Then there exist elements zn ∈ F
(“conjurings”) with the following properties:

(a) for any unipotent representations φ : F → GLn(Qp) and ψ : F → GLn(Fp),
one has φ(zn) = 1, ψ(zn) = 1.

(b) r · z pn is not a pth power.

In Sect. 4 we give, following the ideas of [19], a construction of Magid identities
for free prounipotent groups over p-adic fields of zero characteristics and prove
Theorem 2. In the presented article only the construction of conjurings is described,
we plan to return to applications in subsequent works.

2 Cohomology and Presentations

Cohomology theory of prounipotent groups over the algebraically closed field k
has been developed by Lubotzky and Magid [17], when k has zero characteristics.
This theory closely parallels that of the cohomology of pro-p-groups [35, I, 4]: the
free prounipotent groups turn out to be those of cohomological dimension ones, the
dimension of the first and second cohomology groups give numbers of generators
and defining relations. In addition, authors have proved that one-relator prounipotent
groups turn out to have cohomological dimension two, similar to discrete one-relator
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groups defined by relations r which are not powers r �= uk . Schematization leads
to prounipotent groups over not algebraically closed fields (k = Qp in our case)
and hence we want to develop a similar theory. As was rigorously pointed out the
author by Richard Hain, nothing new in this case can happen. Indeed, let k be a non
algebraically closed field of zero characteristics with algebraic closure k and consider
unipotent group Gk over k. We already know that G(k) ∼= kα for some α ∈ N and
[39, 4.1] imply that the closure Gk of Gk in k

α
is just k

α
. It turns out that O(Gk)

∼=
O(Gk) ⊗k k and [12, Proposition 4.18] imply that H∗(Gk, k) ∼= H∗(Gk, k) ⊗k k.
Below we introduce necessary notions for defining Hochschild cohomology groups
of affine group schemes in themodern setting [12]. In the case of algebraically closed
field they coincide [12, p. 28] with the ones defined in [17].

2.1 Modules and Cohomology

Let G be an affine group scheme over a field k, and let Rep(G) be the corresponding
category of left G-modules [12, I, 2.7, 2.8], identified using the Yoneda lemma with
the category of leftO(G)-comodules [12, I, 2.8]. EachG-module M is representable
as the inductive limit of its finite dimensional submodules [12, I, 2.13(1)].

Recall, following [12, I, 2.2], that a finite-dimensional module over k gives rise
to the group-valued functor on commutative k-algebras. To this end, let us define
for each finite dimensional k-vector space M certain k-group functor Ma by the rule
Ma(A) = (M ⊗ A,+) for all k-algebras A. In our case, namely when k is a field,
and dimension of M is finite, Ma is representable by the symmetric algebra of the
dual k-module M∗, which we denote by S(M∗), then O(Ma) = S(M∗) [27, 3.6],
therefore Ma is an affine group scheme.

Denote byMor(G, Ma) the k-vector space of natural transformations of set valued
functors. On Mor(G, Ma) one has left regular action of G, given by the formula
(x · fR)(g) = fR(gx),where g ∈ G(R), fR ∈ Mor(G(R), Ma(R)), x ∈ G(R).Let
us introduce also right regular action, given by the formula fR · x = fR(xg). If
M = ka is the additive group of the field k [27, 3.1], then Mor(G, ka) ∼= O(G) is
the coordinate ring of the affine group schemeG [27, 2.15]. For constructing injective
envelopes we shall need the notion of induced module. Thus, let H be a subgroup of
the affine group scheme G. For each H -module M define the induced module M ↑G

H
as follows:

M ↑G
H= { f ∈ Mor(G, Ma) | f (gh) = h−1 f (g),∀g ∈ G(A), h ∈ H(A), A ∈ Algk},

where G acts regularly on the left. In [12, I, 3.3], using the identification M ↑G
H
∼=

(M ⊗ O(G))H , M ⊗ O(G) is endowed with a structure of (G × H)-module, where
the left action of H on M is given, and the action on O(G) is through the right
regular representation; G acts on Ma trivially and onO(G) from the left through the
left regular representation; one takes the tensor product of representations, and it is



376 A. M. Mikhovich

shown that M ↑G
H is indeed the left G-module. From now and on we do not specify

which G-module structure (left or right) is used since the theories are equivalent.
For arbitrary k-module M , let εM : M ⊗ O(G) → M be a linear map εM =

idM ⊗ εG .

Proposition 4 (Frobenius Reciprocity) [12, I, 3.4] Let H be a closed subgroup of
an affine group scheme G and M be an H-module.

(a) εM : M ↑G
H→ M is a homomorphism of H-modules

(b) For each G-module N the map ϕ �→ εM ◦ ϕ defines an isomorphism

HomG(N , M ↑G
H ) ∼= HomH (N ↓G

H , M).

Proposition 5 (The Tensor Identity) [12, I, 3.6] Let H be a closed subgroup of an
affine group scheme G and M be an H-module. If N is a G-module, then there is a
canonical isomorphism of G-modules

(M ⊗ N ↓G
H ) ↑G

H
∼= M ↑G

H ⊗N .

Following [12, I, 3.7], let us discuss some useful corollaries from the propositions
given above. Assume that H = 1, then M ↑G

1 = M ⊗ O(G), for any k-module M ,
and in particular k ↑G

1 = O(G).

Combining the latter identity with the Frobenius reciprocity (b) we obtain, for
each G-module M ,

HomG(M,O(G)) ∼= M∗.

If we put M = ka in the tensor identity, then for each G-module N we obtain the
remarkable isomorphism

N ⊗ O(G) ∼= N ↑G
1 = Ntr ⊗ O(G),

given by the formula x ⊗ f �→ (1 ⊗ f ) · (idN ⊗ σG) ◦ ΔN (x), where we have
denoted by Ntr the k-module N with the trivial action of G, and σG is the antipode
in O(G).

We shall need MG , the submodule of fixed points of a G-module M :

MG = {m ∈ M | g(m ⊗ 1) = m ⊗ 1,∀g ∈ G(A), A ∈ Algk}.

If in the definition we take g = idO (G) ∈ G(O(G)), then we obtain

MG = {m ∈ M | ΔM(m) = m ⊗ 1}.

We remind also, that the regular representation of an affine group scheme G arise
from comultiplication

Δ : O(G) → O(G) ⊗ O(G).
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Let H is a closed subgroup of G, then O(H) = O(G)/IH , where IH is the Hopf
ideal defining the subgroup H , and let M be a G-module, whence we obtain the
k-linear map

μ : M → O(G) ⊗ M → O(H) ⊗ M

which defines the H -module structure on M .
Since the category ofG-modules isAbelian [12, I, 2.9] and since, due to [12, I, 3.9],

it contains enough injective objects, one can define cohomology groups Hn(G, M)

of an affine group scheme G with coefficients in a G-module M as the nth derived
functors of the fixed points functor ()G computed for M . Note the possibility of
computing Hn(G, M) by means of the Hochschild complexC∗(G, M) [12, I, 4.14].

Cohomology well behaves with respect to limits. Let us represent the affine
group scheme G as G ∼= lim←−Gα , where Gα are affine algebraic group schemes.
Since O(G) ∼= lim−→O(Gα) and each G-module V can be represented as a direct
limit of its finite-dimensional G-submodules V = lim−→ Vβ, we can construct (using
Vβ and O(Gα)) following [5, Prop. 2.3, 2.6] or [39, 3.3] a direct system Vγ

of finite dimensional Gγ -submodules, where Gγ are also affine algebraic group
schemes, such that O(G) ∼= lim−→O(Gγ ), V = lim−→ Vγ . Then (V ⊗ O(G)⊗n

)G ∼=
lim−→(Vγ ⊗ O(Gγ )⊗n

)Gγ . Homology commutes with direct limits, therefore

Hn(G, V ) ∼= lim−→ Hn(Gγ , Vγ ).

Note that pro-p-groups can be considered as Fp-points of prounipotent groups over
the field Fp (for constructing the Fp-Hopf algebra it suffices to consider the decom-
position of the Fp-group ring of a pro-p-group into the inverse limit of the group
rings of finite p-groups, consider the dual Hopf algebras, and take their direct limit),
then cohomology groups of a pro-p-group in the sense of [31, 6.6] with coefficients
in discrete module coincide with the cohomology of the corresponding affine group
scheme (just explore the Hochschild complex).

Proposition 6 ([17, 1.10]) Let 1 → H → K → G → 1 be an exact sequence of
affine group schemes, and let M be a G-module. Then there exists a spectral sequence
with the initial term E p,q

2 = H p(G, Hq(H, N )), converging to H p+q(K , M).

In the case the affine group scheme G is prounipotent, there is a more precise
description of injective modules.

Proposition 7 ([17, 1.11]) Let G be a prounipotent group, and let V be a G-module.
Then V G ⊗ O(G) is an injective G-module containing V . Each injective G-module
containing V contains a copy of V G ⊗ O(G).

Due to the previous statement we can define the injective envelope of aG-module
V by the formula E0(V ) = VG ⊗ O(G). Put E−1(V ) = V , and let d−1 : E−1(V ) →
E0(V ) be the corresponding inclusion.

Proposition 8 ([17, 1.12]) Let G be a prounipotent group and V be a G-module.
Define the minimal resolution Ei (V ) and di : Ei (V ) → Ei+1(V ) inductively,
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Ei+1(V ) = E0

(
Ei (V )

di−1(V ))

)
di = Ei (V ) → Ei (V )

di−1(Ei−1(V ))
→ Ei+1.

Then {Ei (V ), di } is an injective resolution of V and Hi (G, V ) = Ei (V )G .

We shall say that an affine group scheme G has cohomological dimension n
and write cd(G) = n, if for any G-module V and for each i > n, Hi (G, V ) = 0 and
Hn(G, V ) �= 0. IfG is prounipotent, then cd(G) ≤ n if and only if Hn+1(G, ka) = 0,
since ka is the only simple G-module.

Proposition 9 ([17, 1.14]) Let G be a prounipotent group and H be a subgroup.
For any H-module V there is an isomorphism Hn(G, V ↑G

H ) ∼= Hn(H, V ) for all
n ∈ N. In particular, cd(H) ≤ cd(G).

Since the following statement is important for the succeeding exposition and for
example of how to transfer arguments from [17] into our situation, let us give the
following statement with a full proof. Denote by Hom(G, ka) the set of affine group
scheme homomorphisms from G to ka .

Proposition 10 ([17, 1.16]) Let G be a prounipotent group, then:
(1) there is an isomorphism of O(G)-comodules H 1(G, ka) ∼= Hom(G, ka);
(2) if G is Abelian, then there is a natural identification of discrete k-vector spaces

G(k)∨ = Homcts(G(k), k) ∼= Hom(G, ka).

Proof (1) Proposition 7 shows that the beginning of the minimal injective resolution
of the trivial G-module ka (or equivalently of the trivial O(G)-comodule) has the
form ka → O(G), andhence, due to triviality of differentials on thefixedpoints of the
minimal resolution (Proposition 8), elements of H 1(G, ka) correspond toG-invariant
modulo ka elements of O(G). The Yoneda lemma arguments [27, 2.15] enables one
to consider an element ã ∈ O(G) as a natural transformation of underlying set-valued
functors i.e. an element of Mor(G, ka), which of course could be factored through
some morphism of Affine group schemes τ : G → Gτ and a morphism of Affine
algebraic schemes κτ : Gτ → ka , where Gτ is a unipotent group scheme.

Recall that the regular action of g ∈ G(k) on a ∈ Mor(G(k), k) is the action
defined by the formula (g · a)(x) = a(x · g), x ∈ G(k). Then G(k)-invariance mod-
ulo ka is written in the form g · a(x) − a(x) = const ∈ k for ∀x ∈ G(k). Without
loss of generality one can normalize a putting a(1) = 0. Now, since a is continuous
in Zariski topology of Gτ (k) we can define a homomorphism of Affine algebraic
groups f : Gτ (k) → ka for g ∈ G(k) by the formula f (g) = g · a(x) − a(x) and
therefore the homomorphism of Affine group schemes G → ka .

Conversely, if we are given a homomorphism of prounipotent groups f : G → ka
thenwe have some a f ∈ O(G). Such a f is the invariant modulo elements of the field.
Indeed,

(g · f )(x) = f (x · g) = f (x) + f (g) = f (x) mod(ka).

(2) Since G is Abelian, the functorial correspondence between prounipotent
groups and pronilpotent Lie algebras gives rise to the isomorphism
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Hom(G, ka) ∼= HomLie(log(G(k)), k).

But commutative pro-finite dimensional Lie algebra log(G(k)) and G(k) are the
same as linearly compact topological vector spaces, hence HomLie(log(G(k), k) ∼=
Homcts(G(k), k) = G(k)∨.

2.2 Presentations of Prounipotent Groups

Below let k = Qp and let us identify prounipotent groupswith their groups of k-points
(see Sect. 1.2). Let Z be a convergent basis in a free pro-p-group F(Z). Denote by
F(Z)∧w its continuous k-prounipotent completion and ρ : Z → F(Z)∧w be the natural
embedding (it is shown in [29] that the natural homomorphism F(Z) ↪→ F(Z)∧w is
embedding). Let us construct a prounipotent group Fu(Z) equippedwith an inclusion
i : Z → Fu(Z), which will be called the free prounipotent group on Z .

LetL be the set of all normal subgroups H � F(Z)∧w of finite codimension and
such that the set {x ∈ Z | ρ(x) /∈ H} is finite. If H1, H2 ∈ L , then H1 ∩ H2 ∈ L .
Let K = ∩{H | H ∈ L }, then put Fu(Z) = F(Z)∧w/K . The definition shows that

Fu(Z) ∼= lim←−
{
F(Z)∧w
H

| H ∈ L

}
.

Put i : Z → Fu(Z); this is the composition of ρ with the canonical homomorphism
F(Z)∧w → Fu(Z). It is not difficult to check [17, p. 83] that i is a monomorphism.

Definition 6 Let Z be a convergent basis, then the prounipotent group Fu(Z) will
be called the free prounipotent group on Z . Using i we identify Z with a subset of
Fu(Z).

Proposition 11 Let Z be a convergent set, and G be a unipotent group. Then there
is a bijection between the homomorphisms f : Fu(Z) → G and the sequences of
elements xi ∈ G : Card({i ∈ Z | xi �= e}) < ∞, so that the homomorphisms corre-
spond to the sequences of elements { f (i) | i ∈ Z}.

Proposition 11 implies that the free prounipotent group Fu(Z) has the following
lifting property: let

1 → ka → E
g−→ U → 1

be an exact sequence of unipotent groups and f : Fu(Z) → U be a homomorphism,
then there exists a homomorphism h : Fu(Z) → E : gh = f.

Proposition 12 ([17, Th. 2.4]) Let G be a prounipotent group, then the following
conditions are equivalent:

(a) If

1 → K → E
g−→ F → 1
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is an exact sequence of prounipotent groups and f : G → F is a homomorphism,
then there exists a homomorphism h : G → E such that gh = f .

(b) If

1 → ka → E
g−→ F → 1

is an exact sequence of prounipotent groups and f : G → F is a homomorphism,
then there exists a homomorphism h : G → E such that gh = f .

If a group satisfies the conditions of the previous Proposition, then we shall say
that such prounipotent group has the lifting property.

Lemma 1 ([17, Prop. 2.8]) Let G be a prounipotent group, then there exists a free
prounipotent group Fu(Z) and an epimorphism f : Fu(Z) → G. The data Z and f
can be chosen so that Homcts(G, ka) has the dimension equal to the cardinality of
Z. Assume that Y is a set and g : Fu(Y ) → G is an epimorphism, then Card(Y ) ≥
Card(Z) = Homcts(G, ka). If G has the lifting property then f is an isomorphism.

The lifting property described above yields the following cohomological description
of free prounipotent groups.

Lemma 2 ([17, Th. 2.9]) A prounipotent group G is free if and only if cd(G) � 1.

Now it is not difficult to obtain the statement used in [26, Corollary 3.18].

Proposition 13 ([17, Cor. 2.10]) Let H be a subgroup of a free prounipotent group
G, then H is free.

Definition 7 A prounipotent group G is called finitely generated if there exists a
set of elements {g1, . . . , gn} in G such that the abstract subgroup in G generated
by g1, . . . , gn is Zariski dense in G. In this case we say that {g1, . . . , gn} is a set
of generators in G. If G is finitely generated, then by the rank of G we mean the
minimal cardinality of a set of generators.

Theorem 3 ([17, Theorem 3.2]) A prounipotent group G is finitely generated if and
only if H 1(G, ka) has finite dimension. If G is finitely generated then the rank of G
equals the dimension of H 1(G, ka).

Definition 8 Let G be a prounipotent group and N be its normal subgroup. Let
us say that N is finitely related (as a normal subgroup) if there exists a set of ele-
ments {g1, . . . , gn} in N such that the abstract subgroup of N generated by all G-
conjugations of gi is Zariski dense. If n is minimal then n is called the minimal
number of relators of N .

Definition 9 Let us call by a proper presentation of a prounipotent groupG an exact
sequence (1) of prounipotent groups in which F is free, and the homomorphism
H 1(G, ka) → H 1(F, ka) is an isomorphism. Let us say that G is given by a finite
number of relations if there exists such a sequence in which R is finitely related as
a normal subgroup of F .
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Definition 10 We shall say that a prounipotent group G has n relations if in any
proper presentation (1) the normal subgroup R is finitely related as the normal sub-
group of F with the minimal number of relators equal to n.

Theorem 4 ([17, Th. 3.11]) The prounipotent group G has a finite number of rela-
tions if and only if H 2(G, ka) is finite dimensional. If G has a finite number of
relations and if (1) is any proper presentation of G, then R is finitely related as
a normal subgroup of F, and its minimal number of relators is the dimension of
H 2(G, ka).

Proposition 14 ([17, Cor. 3.13]) A prounipotent group G has n relations if and
only if H 2(G, ka) has dimension n.

Proposition 15 ([17, Theorem 3.14]) Let G be a prounipotent group, and assume
that for some n > 1, Hn(G, ka) has dimension one, then cd(G) = n.

Proof Let Ei , i ∈ N be a minimal injective G-module resolution of ka , then Propo-
sition 8 yields Hi (G, ka) ∼= E G

i and by Proposition 7 Ei ∼= Hi (G, ka) ⊗ O(G). In
particular, En = O(G). Since En �= 0, then dn−1 : En−1 → En is a nonzero map. Any
nonzeroG-endomorphism ofO(G) is onto, since this is true for prounipotent groups
obtained by extending scalars to the algebraic closure k [17, Theorem 5.2] and
O(Gk)

∼= O(Gk) ⊗k k. Therefore dn−1 is an epimorphism, and hence En+1 = 0 and
cd(G) = n.

3 Proof of Theorem 1

Consider a proper (dimFp H
1(G,Fp) = dimFp H

1(F,Fp)) presentation (1) of a pro-
p-group G with one defining relation. A proper presentation of G can give rise to
a non-proper (Definition 9, dimQp H

1(Gu,Qp) < dimQp H
1(Fu,Qp).) presentation

of the prounipotent group Gu = Fu(X)/Ru, where Ru = (r)Fu(X) is the Zariski clo-
sure of the normal subgroup abstractly generated by the element r. Non-properness
of the presentation is equivalent to the statement that the element r is a genera-
tor of the free prounipotent group Fu = Fu(X)(Qp) (here we have identified the
prounipotent group Fu(X) with its group ofQp-points, which is correct by the argu-
ments from Sect. 1.2). But Theorem 3 (see also [17, pp. 85–86]) implies that this is
equivalent to non-triviality of the image φ(r) of the relation r ∈ Fp ⊂ Fu under the
homomorphism φ : Fu → Fu/[Fu, Fu].
Proof (of Theorem 1)

(1) Consider the degenerate case. Without loss of generality we can assume that
the prounipotent presentation Definition 4 has the following form:

1 → Ru = (z)Fu(X∪{z}) → Fu(X ∪ {z}) d0−→ Fu(X) → 1,

where X is the free basis of Fu . Consider the 2-reduced simplicial group
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Fu(X ∪ {z}) d0
d1 Fu(X)

s0

Gu
∼= Fu(X),

here d0, d1, s0 are defined on x ∈ X, z by the identities: d0(x) = x, d0(z) = 1,
d1(x) = x, d1(z) = 1, s0(x) = x .

It is clear that Ru
∼= kerd0, Fu(X ∪ {z}) ∼= kerd0 � Fu(X). Finally, we can apply

the arguments from [26, Prop. 3.9], showing that (kerd0, Fu(X), d1|kerd0 = 1) is a
free prounipotent pre-crossed module. It remains to note that kerd1 = kerd0, and
hence Cu = kerd0/[kerd0, kerd0kerd1] = kerd0/[kerd0, kerd0] ∼= Ru . It remains
to use [26, Cor. 3.18], which implies the required isomorphism of topological
O(Gu)

∗-modules Cu(Qp) ∼= O(Gu)
∗.

(2) Now consider the case in which the pro-p-presentation (2) yields a proper
prounipotent presentation (3) of the prounipotent group Gu . Now r ∈ Fp ⊂ Fu :=
Fu(X)(Qp) is not a generator in Fu . Let us perform the proof by a series of reductions.

First, note that the proof of isomorphism of left topological O(Gu)
∗-modules

Ru(Qp) ∼= O(Gu)
∗, by continuous duality [26, 3.1], is equivalent to the proof of the

isomorphism of O(Gu)-comodules Homcts(Ru(Qp), k) ∼= O(Gu).

Proposition 10 states that there is an isomorphism of O(Gu)-comodules

H 1(Ru, ka) ∼= Hom(Ru, ka) ∼= Homcts(log(Ru(Qp)), k) ∼= Ru(Qp)
∨.

Thus, we need to prove the isomorphism of O(Gu)-comodules H 1(Ru, ka) ∼=
O(Gu).

Let us study the minimal injective O(Gu)-resolution of the trivial O(Gu)-
comodule ka . Proposition 8 implies that since the cohomological dimension of Fu

equals one (Lemma 2), then the minimal O(Fu)-resolution of ka will have the form

0 → ka → O(Fu) → O(Fu)
dimk H 1(Fu ,ka) → 0.

Reference [12, I, Proposition 4.12, Proposition 3.3] implies that we can consider
this resolution as an injective resolution consisting of O(Ru)-comodules. Applying
the functor of Ru-fixed points, we obtain an exact sequence (since Ru-fixed points
of O(Fu) coincide with O(Gu) [39, 16.3])

0 → ka → O(Gu) → O(Gu)
dimk H 1(Fu ,ka) → H 1(Ru, ka) → 0.

Taking into account that the presentation is proper, in small dimensions the
Grothendieck spectral sequence (Proposition 6) is written in the form

1 → H1(Gu , ka) → H1(Fu , ka) → H1(Ru , ka)
F → H2(Gu , ka) → H2(Fu , ka) = 1,

which yields an isomorphism H 1(Ru, ka)G ∼= H 2(Gu, ka). Hence, Proposition 7
shows that the injective envelope of H 1(Ru, ka) coincides with O(Gu)

dimk H 2(Gu ,ka).
Now, considering the composition of the map O(Gu)

dimk H 1(Gu ,ka) → H 1(Ru, ka)
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with the inclusion of H 1(Ru, ka) into its injective envelope, we obtain the beginning
of the minimal injective O(Gu)-resolution

0 → ka → O(Gu) → O(Gu)
dimk H 1(Gu ,ka) → O(Gu)

H 2(Gu ,ka)

of the trivial comodule ka . In particular, one has an isomorphism of O(Gu)-
comodules H 1(Ru, ka) ∼= im{O(Gu)

dimk H 1(Gu ,ka) → O(Gu)
H 2(Gu ,ka)}. Therefore

conditions (a) H 1(Ru, ka) is G-injective and (b) cd(Gu) = 2 are equivalent.
It remains to prove that a prounipotent group given by a proper presentation with

one relation has cohomological dimension equal to two, but this is a particular case
of Proposition 7, since Proposition 14 implies the equality dimkH 2(Gu, ka) = 1.

4 Identities in Free Pro- p-groups

Definition 11 By an admissible ring of coefficients one calls a commutative com-
plete local k-algebra R without divisors of zero and with the maximal idealm = mR

such that R/m = k and l = dimk(m/m2) < ∞.

Note that the decomposition R = lim←− R/mi enables one to consider GLn(R) ∼=
lim←−GLn(R/mi ) as the inverse limit of linear algebraic groups GLn(R/mi ) and
therefore it is the k-affine group scheme. One has the Levi decomposition into the
semidirect product GLn(R/mi ) ∼= (I + Mn(m/mi )) � GLn(k) of the linear alge-
braic (reductive) group GLn(k) and the unipotent group I + Mn(m/mi ).

Let Ki = ker{GLn(R) → GLn(R/mi )}, then Ki
∼= I + Mn(mi ) and

K1/Ki
∼= I + Mn(m/mi ) ∼= ker{GLn(R/mi ) → GLn(k)}.

Since I + Mn(m/mi ) are unipotent linear algebraic groups, then K1
∼= lim←−(K1/Ki )

is a prounipotent group, and in particular one has the Levi decompositionGLn(R) =
K1 � GLn(k).

Definition 12 Let R be an admissible ring of coefficients, then by an R-admissible
representation of a prounipotent groupU one calls a homomorphism of affine group
schemes ρ : U → GLn(R).

Let ρ : U → GLn(R) ∼= K1 � GLn(k) be an admissible representation. Then
ρ−1K1 is a closed normal prounipotent subgroup of U of finite codimension, such
that the quotient group Ũ = U/ρ−1K1 has a faithful representation inGLn(k). Since
U is unipotent, this means that its image is conjugate to a subgroup consisting of
upper triangular matrices, hence U has the rank no more than n. Therefore, an (n +
1)-multiple commutator from U belongs to ρ−1K1, and hence from the viewpoint
of identities the study of representations into K1 and into GLn(R) are equivalent.
Hence below in the existence questions of identities we shall restrict ourselves by
representations into K1.
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Definition 13 By an identity of d ≥ 2 variables with values in a prounipotent group
G one calls an element u of the free prounipotent group F = F(x1, . . . , xd) with
d generators, which lies in the kernel of any homomorphism f : F → G. The set
of all identities of d variables with values in G forms a closed normal subgroup
I (d,G) in F . The set of identities of d variables with values in a set of prounipotent
groups G = Gα is the normal prounipotent subgroup I (d,G ) = ∩G I (d,Gα) in F .
If G = {GLn(R) | R is admissible}, then I (d,G ) is called the group of identities in
n × n matrices, which is denoted I (d, n). If G = {I + Mn(mR) | R is admissible},
then we say that this is the group of restricted identities for n × n matrices, denoted
by I r (d, n).

Definition 14 Let d ≥ 2 and n be natural numbers. The prounipotent group
UG(n, d) of d, n × n general matrices is the closed subgroup in I + Mn(mS) gen-
erated by X p, 1 � p � d, where S = k[[x (p)

i j |1 � i, j � n, 1 � p � d]] is the ring
of formal power series of dn2 commuting variables, and X p = I + (x (p)

i j ).

There is a natural homomorphism F(x1, . . . , xd) → UG(n, d) given on gener-
ators by the rule xi �→ Xi , whose kernel contains I r (d, n). In [19] one proved the
following proposition, which is an analog of earlier results of Amitsur (see for exam-
ple [7, Prop. 19] and further references there).

Proposition 16 ([19, Theorem 2.5]) The natural homomorphism F(x1, . . . , xd) →
UG(n, d) induces the isomorphism of prounipotent groups F(x1, . . . , xd)/I r (d, n)

→ UG(n, d).

The following theorem on non-triviality of identities will be needed below for
constructing conjurings. Recall that in free discrete groups there are no identities,
they are linear.

Proposition 17 ([19, Theorem 2.6]) If d, n � 2, then I r (d, n) �= {e}.

4.1 Proof of Theorem 2

Proof Since GLn(Fp) is a finite group, the set M(n, d) of homomorphisms ψ :
Fp(d) → GLn(Fp) is also finite. Then M(n, d) = ∩ψ∈M(n,d)kerψ is a normal sub-
group of finite index in the free pro-p-group Fp(d), and any element g ∈ M(n, d) is
an identity, in the sense that in any n-dimensional representation of the pro-p-group
Fp(d) over the field Fp the action of g is trivial.

In free prounipotent groups there are identities (Proposition 17). Also I r (d, n) �
Fu(d) := Fu(d)(Qp) can be described (Proposition 16) as the kernel of the homo-
morphism γn onto GU (n, d). Denote by γ̃n the restriction of γn to the Zariski dense
free pro-p-subgroup Fp(d) ⊆ Fu(d).
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I r (d, n) Fu(d)
γn

GU (n, d)

Z(d, n) Fp(d)
γ̃n

GU p(n, d)

Assume the contrary, i.e. that ker(γ̃n) = 1, then γ̃n is an isomorphism. It is clear
that any central filtration W̃ in Fu induces a central filtration W on Fp(d). On the
other hand, by [9, Lemma 7.5] one has the isomorphism of graded quotients, where˜̃W = γn(W̃ ) is a central filtration in GU (n, d):

GrW̃m Fu(d) ∼= GrWm Fp(d) ⊗Zp Qp
∼= GrŴm GU p(n, d) ⊗Zp Qp

∼= Gr
˜̃W
m GU (n, d).

Thus, γn provides an isomorphismof graded quotientsGrW̃m Fu(d) ∼= Gr
˜̃W
m GU (n, d),

hence ker(γn) = 1 (∩W̃n = 1). But this is not so by Proposition 17 (I r (d, n) �= 1).
Therefore Z(d, n) �= 1 and sinceM(n, d)has afinite index in Fp(d), thenZ (d, n) =
Z(d, n) ∩ M(n, d) �= 1. Let us call nontrivial elements of Z (d, n) by conjurings.

Assume that r = wpl . Since d ≥ 2, for any r one can choose an conjuring zn ∈
Z (d, n), not lying in the centralizer of wpl (since I r (d, n) � Fu(d) and since d ≥ 2,
it is not cyclic, hence non-Abelian, and therefore for any r ∈ Fu there exists an
conjuring zn ∈ Z(d, n),not lying in the centralizer of r (zn /∈ Z(r)).Now the “Fermat
equality”

wpl · z pn = u p

leads to a contradiction. Indeed, according to the pro-p-analog of the Lyndon–
Schützenberger theorem [21, Theorem 1], the rank of the free pro-p-subgroup gener-
ated by 〈wpl−1

, zn, u〉 equals one, and hence zn and wpn commute, which contradicts
to the choice of zn , and therefore wpl · z pn is not a pth power.

Property (b) follows by construction of zn , since zn ∈ Z (d, n).
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1 Introduction

The theory of knotoids was introduced by Turaev [31] in 2012. A surface knotoid is
an oriented curve with two endpoints, in an oriented surface, having finitely many
self-intersections that are endowed with under/over data. The endpoints can be in
different regions of the diagram. This definition extends the notion of (1, 1)-tangle
whose endpoints can assumed to be fixed at the boundary of the disk where the tangle
lives. The theory of knotoids in the 2-sphere extends the theory of classical knots
and also proposes a new diagrammatic approach to classical knot theory [31]. In [31]
basic notions of knotoids were studied comprehensively, including the introduction
of several invariants of knotoids in the 2-sphere, such as the complexity (or height)
and the Jones/bracket polynomial. Knotoids in S2 were classified by Bartholomew
in [5] and up to 5 crossings by using a generalization of the bracket polynomial for
knotoids that was defined by Turaev. There is also a recent classification table for
prime knotoids of positive height with up to 5 crossings [23] given by Korablev,
May and Tarkaev, obtained by using the correspondence between the knotoids in S2

and the knots in thickened torus. The first and the second listed authors introduced
several new invariants in [12, 14] in analogy with invariants from virtual knot theory.
Recently, knotoids have been studied in the field of biochemistry as they suggest
new topological models for open linear protein chains. The invariants introduced in
[12, 14, 31] have been used for determining the topological entanglement of open
protein chains in [10, 11]. Some other recent works on knotoids are on biquandle
coloring invariants, by the first listed author and Nelson [18], and on the study of
knots that are knotoid equivalent, by Adams, Henrich, Kearney and Scoville [1]. See
further [15, 19, 22].

Further, in [12, 16, 17] the theory of braidoids is initiated by the first and the last
authors in relation to the theory of planar knotoids. A braidoid diagram extends the
notion of classical braid diagram [3, 4] with extra ‘free’ strands that initiate/terminate
at two endpoints located anywhere in the plane of the diagram. The closure operation
for braidoids requires special attention due to the presence of the endpoints and
their forbidden moves, while a ‘braidoiding’ algorithm turning any planar knotoid
diagram into a braidoid diagram is the proof of an analogue of the classical Alexander
theorem [2, 7, 9, 20, 25, 26, 29, 32, 35] for knotoids. With the introduction of L-
moves on braidoids, which were originally defined for classical braids by the last
author [24–26], a geometric analogue of the classical Markov theorem [6–8, 24–26,
28–30, 33] for braidoids is enabled. In [12, 13, 16] a set of combinatorial elementary
blocks for braidoids is also introduced, which are proposed in [16] for an algebraic
encoding of the entanglement of open protein chains in 3-dimensional space.

The outline of the paper is as follows. In Sect. 2 we review the basic notions of
knotoids and in Sect. 3 we present closure types for knotoids for obtaining knots.
In Sect. 3.3 we focus on the spherical knotoids and how they extend the classical
knot theory. In Sect. 4 we present geometric interpretations for spherical and planar
knotoids. In Sect. 5 we survey through the existing works and results on the invariants
of knotoids. In Sect. 6 we review the fundamental notions of braidoids. In Sects. 6.3
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and 6.4, we present the key elements for proving an analogue of the Alexander
theorem for knotoids/multi-knotoids. In Sect. 6.5 we reprise the definition of the L-
moves on braidoid diagrams that give rise to an analogue of the Markov theorem for
braidoids. Finally, in Sect. 7 we present the applications of knotoids to the study of
proteins where we also review the building blocks for braidoid diagrams, which is
proposed to be used in encoding open protein chains by algebraic expressions.

2 Knotoids and Knotoid Isotopy

2.1 Knotoid Diagrams

Let � be an oriented surface. A knotoid diagram K in � [31] is an immersion of
the unit interval [0, 1] in � with a finite number of double points each of which is a
transversal self-intersection endowed with over/under data. Such self-intersections
of K are called crossings of K . The images of 0 and 1 are two distinct points called the
endpoints of K and are specifically called the leg and thehead, respectively.Aknotoid
diagram is naturally oriented from its leg to its head. The trivial knotoid diagram is
assumed to be an immersed curvewithout any self-intersections as depicted in Fig. 1a.

The notion of knotoid can be extended to include more components. A multi-
knotoid diagram in � is a union of a knotoid diagram and a finite number of knot
diagrams [31].

2.2 Moves on Knotoid Diagrams

Planar isotopy moves generated by the �0-move and the Reidemeister moves �1,
�2,�3 (see Fig. 2) that take place in a local disk free of any endpoints are allowed on
knotoid diagrams. A special case of planar isotopymoves that involves an endpoint is
a swing move, whereby an endpoint can be pulled within its region, without crossing
any other arc of the diagram, as illustrated in Fig. 2. We refer to all these moves as
�-moves of knotoids.

(a) (b) (c) (d) (e)

Fig. 1 Examples of knotoid diagrams
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Fig. 2 The moves generating isotopy on knotoid diagrams

Fig. 3 Forbidden knotoid
moves

The moves consisting of pulling the arc adjacent to an endpoint over or under a
transversal arc, as shown in Fig. 3, are the forbidden knotoid moves and are denoted
by �+ and �−, respectively. Notice that, if both �+ and �−-moves were allowed,
any knotoid diagram in any surface could be clearly turned into the trivial knotoid
diagram.

2.3 Knotoids

The �-moves generate an equivalence relation on knotoid diagrams in �, called
knotoid isotopy. Two knotoid diagrams are isotopic to each other if there is a finite
sequence of �-moves that takes one to the other. The isotopy classes of knotoid
diagrams in � are called knotoids. The equivalence relation defined on knotoid
diagrams applies also to multi-knotoid diagrams, and the corresponding equivalence
classes are called multi-knotoids.

Let K(R2) and K(S2) denote the set of all knotoids in R2 and S2, respectively.
We shall call knotoids in K(R2) planar and knotoids in K(S2) spherical.

There is a surjective map [31]

ι : K(R2) ↪→ K(S2),
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induced by the inclusion R2 ↪→ S2 = R2 ∪ {∞}. However, the map ι is not injective.
Indeed, there are knotoid diagrams in the plane representing a nontrivial knotoid
while they represent the trivial knotoid in S2. For an example, see Fig. 1b. It is well-
known that the knot theory of the plane coincideswith the knot theory of the 2-sphere,
while the non-injectivity of the map ι implies that the theory of knotoids in R2 differs
from the theory of knotoids in S2, also yields a more refined theory than the theory
of spherical knotoids.

3 Knotoids, Classical Knots and Virtual Knots

3.1 Classical Knots via Knotoids

In [31] the study of knotoid diagrams is suggested as a new diagrammatic approach to
the study of knots in three-dimensional space, as any classical knot can be represented
by a knotoid diagram in R2 or in S2. More precisely, the endpoints of a knotoid
diagram can be connected with an arc in S2 that goes either under each arc it meets
or over each arc it meets, as illustrated in Fig. 4. This way we obtain an oriented
classical knot diagram in S2 representing a knot in R3. The connection types are
called the underpass closure and the overpass closure, respectively. The knot that is
represented by a knotoid diagram may differ depending on the type of the closure.
For example, the knotoid in Fig. 4 represents a trefoil via the underpass closure and
the trivial knot via the overpass closure.

In order to have a well-defined representation of knots via knotoids, we should
fix the closure type for knotoid diagrams. When we choose the underpass closure as
closure type, we have the following proposition. The statement of the proposition is
symmetric for the overpass closure.

Proposition 1 ([31]) Two knotoid diagrams in S2 orR2 represent the same classical
knot if and only if they are related to each other by finitely many �-moves, swing
moves and the forbidden �−-moves.

Given aknot in S3.Wecan also consider cuttingout anunderpassingor anoverpassing
strand of an oriented diagram of the knot. The resulting diagram is clearly a knotoid

Fig. 4 The overpass and the
underpass closures of a
knotoid diagram resulting in
different knots
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diagram in the plane or the 2-sphere. In fact we can obtain a set of knotoid diagrams
by cutting out different strands and the resulting knotoid diagrams all represent the
given knot via the underpass or the overpass closure. Knotoid representatives of a
knot in S3 clearly have less number of crossings than any of the diagrams of the knot.
For this reason, use of knotoid diagrams to study knots in S3 provides a considerable
amount of simplification for computing knot invariants, such as the knot group [31].

Another interesting question in relationwith the knotoid closures has been recently
worked in [1]. Two knots K1, K2 in S3 are said to be knotoid equivalent if there exists
a knotoid κ such that K1 is the underpass closure of κ and K2 is the overpass closure
of κ . So the question is: Which pairs of knots are knotoid equivalent? The authors
proved the following theorem.

Theorem 1 ([1, Theorem 2.3]) Given any two knots K1, K2 in S3, K1 is knotoid
equivalent to K2.

3.2 Virtual Knots via Knotoids

The endpoints of a knotoid diagram in S2 can be tied up also in the virtual way.
Namely, the endpoints of a knotoid diagramcan be connectedwith an arc by declaring
each intersection of the arc with the diagram as a virtual crossing, as illustrated in
Fig. 5. This induces a non-injective (e.g. the knotoids in Fig. 5 are different) and
non-surjective mapping from the set of knotoids in S2 to the set of virtual knots of
genus 1, called the virtual closure map [15]. Being a well-defined map, the virtual
closure map provides a way to extract invariants for knotoids from the virtual knot
invariants. In fact, most of the new invariants of knotoids that the first and the second
authors have discovered in [14] and we briefly mention in Sect. 3.3, are the result of
using the principle that the virtual knot class of the virtual closure of a knotoid is an
invariant of the knotoid.

Fig. 5 The virtual closure of
two knotoids
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3.3 Spherical Knotoids Extend the Classical Knot Theory

There is awell-defined injectivemap from the set of oriented classical knots toK(S2)
[31]. This map is induced by specifying an oriented diagram for a given oriented
knot in S3 and cutting out an open arc from this diagram that does not contain any
crossings. The resulting diagram is a knotoid diagram in S2 with its endpoints lying
in the same local region of S2. Such a knotoid diagram is a knot-type knotoid diagram
and the isotopy class of the diagram is a knot-type knotoid. Figure1a, b and e are some
examples of knot-type knotoid diagrams. It is clear that this map gives a one-to-one
correspondence between the set of oriented classical knots and the set of knot-type
knotoids in S2. There are also knotoids that do not lie in the image of this map. They
are called proper knotoids. The endpoints of any of the representative diagram of a
proper knotoid can lie in any but different local regions of the diagram. Figure1c, d
illustrate some examples of proper knotoids.

3.3.1 The Monoid of Knotoids

As Turaev explains in [31], two knotoids K1, K2 in S2 can be concatenated end-to-
end in the following way. One can cut out regular disk-neighborhoods of the head
of K1 and the leg of K2 and identify the remaining surfaces with boundary along
their boundaries with an orientation-reversing homeomorphism carrying the unique
intersection point of K1 with the regular neighborhood of the head of K1 to the unique
intersection point of K2 with the regular neighborhood of the leg of K2. The resulting
diagram is a composite knotoid diagram in S2, denoted by K1#K2. Equippedwith the
binary operation #, the set of spherical knotoids, K (S2), carries a monoid structure
[31].

4 Geometric Interpretations of Knotoids

4.1 A Geometric Interpretation of Spherical Knotoids

A �-graph is a spatial graph with two vertices v0, v1, called the leg and the head
respectively, and three edges, e+, e0, e− connecting v0 to v1, as exemplified in Fig. 6.
The isotopy on �-graphs is defined to be the ambient isotopy of the 3-dimensional
space preserving the labeling of vertices and the edges, and the set of �-graphs
consists of the isotopy classes of �-graphs.

There is a binary operation on the set of�-graphs, called the vertex multiplication
[34] given as follows. Let �1 and �2 be two �-graphs, take out an open 3-disk
neighborhood of the head of �1 and an open 3-disk neighborhood of the leg of
�2, each intersecting with the graphs along 3-radii (simple parts from e0, e+, e−).
Then identify the remaining manifolds with boundary along their boundaries with
an orientation-reversing homeomorphism. With the vertex multiplication, the set of
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Fig. 6 A knotoid and the corresponding simple �-graph

�-graphs forms a monoid. A �-graph is called simple �-graph if the union of its
edges, e+ and e− (the upper and the lower edge, respectively) is the trivial knot.
Simple �-graphs form a submonoid [31].

Turaev showed the following correspondence between the spherical knotoids and
the simple �-graphs that gives also rise to a geometric interpretation of spherical
knotoids via �-curves.

Theorem 2 ([31, Theorem 6.2]) There is an isomorphism of monoids of spherical
knotoids and of simple �-graphs.

4.2 A Geometric Interpretation of Planar Knotoids

It is explained in [14] that the theory of planar knotoids is related naturally to open
space curves on which an appropriate isotopy is defined. An open curve located
in R3 corresponds to a planar knotoid diagram when projected regularly along the
two lines passing through its endpoints and are perpendicular to a chosen projection
plane. View Fig. 7. Conversely, an open space curve with two specified parallel lines
passing from its endpoints can be viewed as a lifting of the related knotoid diagram.
A line isotopy [14] between two open space curves is an ambient isotopy of R3

transforming one curve to the other one in the complement of the lines, keeping the
endpoints on the lines and fixing the lines. The isotopy classes of planar knotoids
(considered in the chosen projection plane) are in one-to-one correspondence with
the line isotopy classes of open space curves [14]. Furthermore, in [21] Kodokostas
and the third author make the observation that this interpretation of planar knotoids
as space curves is related to the knot theory of the handlebody of genus two and they
propose the construction of knotoid invariants through this connection. These ideas
are further explored in [22].

5 Invariants of Knotoids

In [14, 31] several invariants for knotoids are introduced. One of the first invariants
introduced by Turaev [31] was the the bracket and the Jones polynomial for kno-
toids. The bracket polynomial extends to spherical knotoids in the natural way. More
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Fig. 7 Projections of an
open space curve as a
knotoid diagram

precisely, the bracket expansion is directly applied to knotoid diagrams as shown in
Fig. 8, and in each state we observe a single long segment component with endpoints
and a finite number of circular components. Each circular component contributes to
the polynomial by the value −A−2 − A2. The initial conditions given in Fig. 8 are
sufficient for the computation of the bracket polynomial of a knotoid. The closed
formula for the bracket polynomial of knotoids is as follows.

Definition 1 The bracket polynomial of a knotoid diagram K is defined as

< K >= ∑
S A

σ(S)d‖S‖−1,

where the sum is taken over all states, σ(S) is the sum of the labels of the state S,
‖S‖ is the number of components of S, and d = −A2 − A−2.

The bracket polynomial of knotoids in S2 normalized by the writhe factor,
(−A3)−wr(K ), generalizes the Jones polynomialwith the substitution A = t−1/4.Note
that the Jones polynomial of the trivial knotoid is trivial. Furthermore, the following
conjecture [14] extends the long-standing Jones polynomial conjecture.

Conjecture 1 The Jones polynomial of spherical knotoids detects the trivial knotoid.

Some other generalizations of the Jones polynomial are: Turaev’s 2-variable
bracket polynomial [31] that is obtained by a use of the intersection number of the
connection arc used in the underpass closure with the rest of the diagram and also
with the state components, and the arrow polynomial [14] that keeps track of the
cusp-like structure (see Fig. 11) arising in the oriented bracket expansion (see Fig. 10
for the oriented state expansion) by assigning new variables namely 
i ’s to zig-zag
components. There is a special generalization of the bracket polynomial for planar
knotoids induced by distinguishing the circular state components nested around the
long segment component from the circular state components that do not nest around
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Fig. 8 State expansion of the bracket polynomial

Fig. 9 An affine biquandle
coloring on knotoid
diagrams

the long segment component. Turaev defined the 3-variable bracket polynomial [31]
for planar knotoids based on this idea and the loop bracket polynomial, which is a
specialization of the 3-variable bracket polynomial, was utilized in [11] to classify
the knotoid models of protein chains (see Sect. 7). Similarly the first and the second
listed authors introduce the arrow loop polynomial in [15].

Furthermore, the affine index polynomial, given in [14], is induced by a non-trivial
biquandle structure on knotoid diagrams (see Fig. 9), and a number of biquandle
coloring invariants were studied in [18].

There is also a well-defined parity assigned to crossings of (planar or spherical)
knotoid diagrams. The Gaussian parity is a mapping that assigns each crossing of a
knotoid diagram to either 0 or 1. The importance of an existing parity for knotoids
comes from the fact that there is no nontrivial parity for classical knot diagrams.
Some parity based invariants for knotoids such as the odd writhe and the parity
bracket polynomial [27] were studied in [14].
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Fig. 10 Arrow state sum
expansion

Fig. 11 Cusps

Proper knotoids give rise to interesting questions related to their intrinsic nature,
such as the crossing-wise distance between the endpoints, the so-called height. More
precisely, the height of a knotoid diagram in S2 [31] is the least number of crossings
created when the endpoints are joined up by an underpassing strand. The height of
a knotoid is the minimum of the height of knotoid diagrams in its equivalence class
and so forms an invariant for knotoids.

The first and the second listed authors showed that the affine index polynomial and
the arrow polynomial establish lower bound estimations for the height of a knotoid.
More precisely we have the following lower bound estimations for the height of a
knotoid.
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Theorem 3 ([14, Theorem 4.12]) The height of a knotoid is greater than or equal
to the maximum degree of its affine index polynomial.

Theorem 4 ([14, Theorem 5.1]) The height of a knotoid is greater than or equal to
the 
-degree of its arrow polynomial.

The interested reader is referred to [15, 19] for ongoing works on knotoids regard-
ing the parity aspect of knotoids and a Khovanov homology construction in analogy
with the Khovanov homology for virtual knots/links [19], respectively.

6 The Theory of Braidoids

In this section we reprise the fundamental notions of braidoids introduced by the first
and the last listed authors. Braidoids are defined as to form a braided counterpart
theory to the theory of planar knotoids.

6.1 Braidoid Diagrams

Let I denote the unit interval [0, 1] ⊂ R. A braidoid diagram B is an immersion
of a finite union of arcs into I × I ⊂ R2. The images of arcs are called strands of
B. There are only finitely many intersection points among the strands of B which
are transversal double points endowed with over/under data, the crossings of B.
We identify R2 with the xt-plane with the t-axis directed downward. Following the
orientation of I , each strand is naturally oriented downward, with no local maxima
or minima, so that it intersects a horizontal line at most once.

A braidoid diagram has two types of strands, the classical strands and the free
strands. A classical strand is as a braid strand with two ends, one lying in I × {0}
and the other lying in I × {1}. A free strand is a strand that either has one of its ends
lying in I × {0} or in I × {1} and the other end lying anywhere in I × I or it has
two of its ends lying anywhere in I × I . There are two such free ends, called the
endpoints of B and are denoted by a vertex to be distinguished from the fixed ends.
For examples see Fig. 12. The two endpoints are called the leg and the head and are
denoted by l and h respectively, in analogy with the endpoints of a knotoid diagram.
The head is the endpoint that is terminal for a free strand while the leg is the starting
endpoint for a free strand, with respect to the orientation.

The other ends of the strands of B are named braidoid ends. Each braidoid end is
numbered accordingly to its order from left to right. Braidoid ends lie equidistantly
and two braidoid ends having the same order on {t = 0} and {t = 1} are vertically
aligned. Two braidoid ends whose orders coincide are called corresponding ends.
See the examples in Fig. 12.
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(a) (b) (c) (d)

Fig. 12 Some examples of braidoid diagrams

6.2 Isotopy Moves on Braidoid Diagrams

We allow on braidoid diagrams the oriented Reidemeister moves �2 and �3 (recall
Fig. 2), which preserve the downward orientation of the arcs in the move patterns. In
addition to thesemoves, the endpoints of a braidoid diagram can be pulled up or down
in the vertical direction by a vertical move, and right or left in the horizontal direction
by a swing move in the vertical strip determined by the neighboring corresponding
ends, as long as they do not intersect or cross through any strand of the diagram.
That is, the pulling of the leg or the head over or under any strand is forbidden. It is
clear that allowing both forbidden moves cancels any braiding of the free strands.

The braidoid isotopy is induced by keeping the braidoid ends fixed on the top and
bottom lines (t = 0 and t = 1, respectively) but allowing the Reidemeister moves
�2 and �3 and planar �-moves, as well as the swing and the vertical moves for the
endpoints. Two braidoid diagrams are isotopic if one can be obtained from the other
by a finite sequence of the above moves. An equivalence class of isotopic braidoid
diagrams is a braidoid.

6.3 A Closure on Braidoids

One way to define a closure operation on braidoid diagrams in order to obtain planar
(multi)-knotoid diagrams is by adding an extra property to braidoid diagrams. More
precisely, each pair of the corresponding ends in a braidoid diagram is labeled either
o or u, standing for ‘over’ or ‘under’, respectively. We attach the labels next to the
braidoid ends lying at the top line and call the diagram a labeled braidoid diagram.
Two labeled braidoid diagrams are called isotopic if their braidoid ends possess
the same labeling and they are isotopic as unlabeled diagrams. The corresponding
equivalence classes are called labeled braidoids.

Let B be a labeled braidoid diagram. The closure of B, denoted B̂, is a planar
(multi)-knotoid diagram that results from B by the following topological operation:
each pair of corresponding braidoid ends of B is joined up with a straight arc (with
slightly tilted extremes) that lies on the right of the line of the corresponding braidoid
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Fig. 13 The closure of an
abstract labeled braidoid
diagram

ends in a distance arbitrarily close to this line so that none of the endpoints is located
between the line and the closing arc. The closing arc goes entirely over or entirely
under the rest of the diagram according to the label of the ends. See Fig. 13 for an
abstract illustration of the closure of a labeled braidoid diagram.

Proposition 2 ([16, 17]) The closure operation induces a well-defined map from
the set of labeled braidoids to the set of planar (multi)-knotoids.

6.4 How to Turn a Knotoid into a Braidoid?

J.W.Alexander proved in 1923 that anyoriented classical knot/link canbe represented
by an isotopic knot/link diagram in braided form [2]. See also [9]. The proof of the
Alexander theorem by the last listed author [24–26] utilizes the L-braiding moves.
In [16, 17] the first and the last listed authors proved the following analogue of the
Alexander theorem for (multi)-knotoids by utilizing these moves.

Theorem 5 ([16, 17]) Any (multi)-knotoid diagram in R2 is isotopic to the closure
of a labeled braidoid diagram.

Let K be a (multi)-knotoid diagram whose plane is equipped with the top-to-
bottom direction. The basic idea for turning K into a braidoid diagram is to keep the
arcs that are oriented downward, with respect to the top-to-bottom direction, and to
eliminate the ones that are oriented upward (up-arcs), producing at the same time
pairs of corresponding braidoid strands, such that the (multi)-knotoid resulting after
closure is isotopic to K . The elimination of the up-arcs is done by the braidoiding
moves.

An L-braidoiding move consists in cutting an up-arc at a point and pulling the
resulting two pieces, the upper upward to the line t = 1 and the lower downward
to the line t = 0, both entirely over or under the rest of the diagram. The resulting
pieces are pulled so that their ends are kept aligned vertically with the cut-point.
Finally the lower piece is turned into a braidoid strand by �-moves. See Fig. 14. For
the purpose of closure, the resulting pair of strands is labeled o or u depending on our
choice we make for pulling the upper and lower pieces during the braidoiding move.
The reader is referred to Fig. 14 for an illustration of an L-braidoiding move where
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Fig. 14 An L-braidoiding move

it can be also verified that the closure of the resulting strands labeled o is isotopic to
the initial up-arc.

Theorem 5 is proved by applying any one of the braidoiding algorithms. These
algorithms are both based on the L-braidoiding moves. In Fig. 15 we illustrate the
steps of the algorithm that is given in [17]. As for the algorithm in [20] turning
any virtual knot/link diagram into a virtual braid diagram, we start by rotating each
crossing containing one or two up-arcs by π

2 or π , respectively, so that we end up
with a knotoid diagramwhose up-arcs are all free of any crossings. All of these ‘free’
up-arcs are given an order and a labeling of o or u each, and are eliminated by the L-
braidoidingmoves one by one. The algorithm terminates in finite steps and results in a
labeled braidoid diagram inFig. 15. The algorithm in [17]which is based on [26], uses
braidoiding moves for up-arcs in crossings and is more appropriate for establishing
Markov-type theorems for braidoids (see Theorem 6). Yet, an added value of the first
algorithm is the following consequence: Any (multi)-knotoid diagram is isotopic to
the uniform closure of a braidoid diagram [12, 17].

6.5 L-Equivalence

It is clear that due to the choices made in order to prepare a (multi)-knotoid diagram
for a braidoiding algorithm (such as subdivision and labeling of the up-arcs) as
well as knotoid isotopy moves, we obtain different braidoid diagrams with possibly
different numbers of strands and labels. The question that would lead to a Markov-
like theorem for braidoids is to ask how these braidoid diagrams are related to each
other. Clearly, the braidoid isotopy does not change the number of strands nor the
labeling, so braidoid isotopy is not sufficient for determining such relations. The first
and the last listed authors showed in [16, 17] that the L-moves on braidoid diagrams
provide an answer to this question.

An L-move on a braidoid diagram B consists in cutting a strand of B at an interior
point, not vertically aligned with a braidoid end or an endpoint or a crossing, and
then pulling the resulting ends away from the cutpoint to the top and bottom of B
respectively, keeping them aligned with the cutpoint, and so as to create a new pair of
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Fig. 15 An example showing how the algorithm works

Fig. 16 L-moves

corresponding braidoid strands. See Fig. 16 for an illustration of an L-move. There
are two types of L-moves, namely Lo and Lu . For an Lo-move the pulling of the
resulting new strands is entirely over the rest of the diagram. For an Lu-move the
pulling of the new strands is entirely under the rest of the diagram. The two resulting
strands are both labelled according to the type of the L-move. See Fig. 16.

The above definition provides us with the following result, which is an analogue
of the classical Markov theorem.
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Fig. 17 The configuration
of the backbone of the
protein 3KZN in 3D and its
simplified configuration;
image from Dimos
Goundaroulis, private
communication

Theorem 6 ([12, Theorem 13]) The closures of two labeled braidoid diagrams are
isotopic (multi)-knotoids inR2 if and only if the labeled braidoid diagrams are related
to each other by a finite sequence of L-moves and braidoid isotopy moves.

7 Applications

7.1 Applications to the Study of Proteins

The correspondence of line isotopy classes of open space curves and isotopy classes
of planar knotoids suggests that a topological analysis of linear physical structures
lying in 3-dimensional space can be done by simulating them by open space curves
and by taking their orthogonal projections. Through this idea, knotoids, both in S2

and R2, have found important applications in the study of open protein chains [10]
(see Fig. 17 for an example), aswell as of open protein chainswith chemical bonds via
introducing the notion of bonded knotoids [11]. In these papers, open protein chains
are studied via their projections into planes. The corresponding knotoid classes are
considered in the 2-sphere and in the plane, and they are classified by using the
(normalized) bracket polynomial and the Turaev’s loop bracket polynomial [11, 31],
respectively. In Fig. 18we see three atlases that contain colored regions. Each of these
colored regions corresponds to one topological class of the protein 3KZN when it is
closed to some knot, and when it is projected to a knotoid, a spherical knotoid and
a planar knotoid, respectively. As seen from Fig. 18, the number of colors increases
as we go from the knot representation to the planar knotoid representation. By this
data, the authors concluded that planar knotoids yield a more refined analysis for
understanding the topological structure of open protein chains than knots or spherical
knotoids [11]. This is due to the facts that more knotoids close to the same knot and
that the classification of knotoids in the plane ismore refined than the classification of
spherical knotoids. For example a trivial knotoid in S2 may happen to be a non-trivial
knotoid when considered in R2 as we discussed in Sect. 2.3.
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(a)

(b)

(c)

Fig. 18 Atlases showing the topological analysis of 3KZN via knots, spherical knotoids and planar
knotoids, image from [11]
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Fig. 19 Elementary k-blocks

7.2 Elementary Blocks and a Proposed Application of
Braidoids

As demonstrated in [13, 16], any braidoid diagram can be divided into a finite number
of horizontal stripes, each containing one of the blocks that are depicted in Fig. 19.
The blocks consist of the classical braid generators, the identity elements containing
one endpoint, along with their extensions by the implicit points, which are empty
nodes put along the vertical direction of the endpoints, and along with the shifting
blocks, which result from the change of positioning of strands before or after the
appearance of an endpoint. A product on the set of elementary n-blocks and relations
with respect to this product, induced by the isotopy moves of the braidoid diagrams,
is further explored in [13]. Then, any braidoid diagram on n strands can be read,
from top to bottom, as a word that corresponds to a combination of finitely many
elementary n- or (n + 1)-blocks.

Any planar knotoid diagram can be turned into a (labeled) braidoid diagram by
Theorem 5, so it can be represented by an expression in terms of elementary blocks.
This suggests an algebraic encoding for open protein chains or, in general, for linear
polymer chains: they can be projected to planes and the resulting knotoid diagrams
can be turned into braidoid diagrams that have algebraic expressions. An example is
illustrated in Fig. 20, where the knotoid corresponding to protein 3KZN is turned into
a braidoid diagram, which is represented by the word l2σ 3

1 h2 in elementary blocks.
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Fig. 20 The knotoid of the
protein 3KZN and a
corresponding braidoid
diagram with algebraic
expression l2σ 3

1 h2
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Regulation of DNA Topology
by Topoisomerases: Mathematics
at the Molecular Level

Rachel E. Ashley and Neil Osheroff

Abstract Although the genetic information is encoded in a one-dimensional array
of nucleic acid bases, three-dimensional relationships within DNA play a major role
in how this information is accessed and utilized by living organisms. Because of
the intertwined nature of the DNA two-braid and its extreme length and compaction
in the cell, some of the most important three-dimensional relationships in DNA are
topological in nature. Topological linkages within the two-braid and between dif-
ferent DNA segments can be described in simple mathematical terms that account
for both the twist and the writhe in the double helix. Topoisomerases are ubiquitous
enzymes that regulate the topological state of the genetic material by altering either
twist or writhe. To do so, these enzymes transiently open the topological system by
breaking one or both strands of the two-braid. This article will review the mathemat-
ics of DNA topology, describe the different classes of topoisomerases, and discuss
the mechanistic basis for their actions in both biological and mathematical terms.
Finally, it will discuss how topoisomerases recognize the topological states of their
DNA substrates and products and how some of these enzymes distinguish supercoil
handedness during catalysis and DNA cleavage. These latter characteristics make
topoisomerases well suited for their individual physiological tasks and impact their
roles as targets of important anticancer and antibacterial drugs.
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1 DNA Topology

DNA (deoxyribonucleic acid) encodes all the inheritable genetic information that
makes us what we are. Thus, it is arguably the most important biomolecule in the
cell. The structure of DNA represents a perfect biological relationship between form
and function. The genetic material is contained in a plectonemically coiled two-braid
in which the two strands of the double helix are antiparallel and complementary [1].
This structure serves not only as a framework for the organization and expression of
the genetic information, but also provides an elegant mechanism for self-replication
and repair [1].

The amount of DNA in a human is staggering. The human genome is encoded in
~3 billion base pairs that are contained on 23 individual chromosomes [2]. Because
humans are diploid, each of our cells contains ~6 billion base pairs and 46 chromo-
somes. At actual size, the DNA in a human cell is ~2 m in length and is compressed
into a nucleus that is ~5–10 μm in diameter [3]. The human body is comprised of
~30 trillion cells [4, 5] and therefore contains ~180 sextillion base pairs of DNA that
would stretch ~60 billion kilometers in length if laid end-to-end.

Although the human genome is linear, the extreme length and cellular compaction
of DNA, the high frictional forces associated with a two-braid of that length, and
the fact that the DNA is anchored to cellular scaffolds preclude torsional stress from
being translated throughout the genetic material by rotation of DNA ends. Therefore,
for all practical purposes, human DNA can be considered to be a closed topological
system [6–16]. As long as the ends of DNA are “fixed,” topological relationships are
defined as those that can be altered only by breaking one or both strands of the double
helix. Even though the genetic information contained within DNA is encoded within
a linear sequence of bases, the topological structure of the molecule has profound
effects on how this information is accessed and used in the cell.

2 Mathematical and Biological Implications of DNA
Topology

DNA topology can be defined mathematically by three straightforward concepts:
twist (Tw), writhe (Wr), and linking number (Lk) [8–11, 17–22]. Twist is the total
number of double helical turns in a defined DNA segment. By convention, positive
twist is defined as the right-handed twist observed in the normal Watson-Crick DNA
structure. Twist represents torsional stress in the double helix. Writhe is defined as
the number of times the double helix crosses itself if the DNA segment is projected in
two dimensions and represents axial stress in the molecule. Each writhe is assigned
an integral value of –1 or +1 based on the handedness of the crossover, which is
determined by the direction of rotation that would be required to align the front DNA
segment with the back segment without rotating the DNA more than 180° [8, 9].
If the front segment must be rotated clockwise, the writhe is negative (i.e., right-
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Fig. 1 Topological relationships in DNA. DNA molecules are drawn as circles for simplicity.
Top: DNA that is not under torsional stress is referred to as “relaxed” (middle) and is represented
as an unknot (or trivial knot). Underwinding or overwinding the DNA results in negatively super-
coiled (left) or positively supercoiled (right) DNA, respectively. Supercoiling is depicted here as
writhe (DNA crossovers) for visual clarity, but it should be noted that twist and writhe are inter-
convertible within these molecules. Bottom: Intramolecular knots (left) and intermolecular tangles
(catenanes, shown as a hopf link, right) can also form in DNA. In these cases, twist and writhe are
not interconvertible

handed); conversely, if it must be rotated counterclockwise, the writhe is positive
(i.e., left-handed) (Fig. 1).

Mathematically, DNA twist andwrithe are related, and the sumof these two values
is expressed as the linking number (Lk):

Lk = Tw + Wr (1)

Two key concepts associated with this equation should be emphasized. First, in a
topologically closed system, the linking number is invariant [8–11, 17–21]. The only
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way to alter this value is to open the system by breaking one or both chains of the
DNA double helix. Second, in the absence of knots or tangles, twist and writhe are
fluid and interconvertible. The classic means of demonstrating this fluidity (although
it is becoming increasingly more dated) is a telephone cord [8–11, 17–21]. Another
example could be a coiled lock of hair such as those seen on a Greek statue. In
its unstretched configuration, the cord (or hair) writhes about itself, forming coils
without visible twisting. However, when the cord (or hair) is stretched, the writhes
are lost and the cord is visibly twisted. Although the coiled and stretched structures
are homeomorphic, they contain very different levels of twist and writhe.

When DNA is not under torsional stress, as observed in the canonical Watson-
Crick structure, it is said to be “relaxed.” In this form, the double helix makes one
helical turn for every 10.5 base pairs (bp) [23]. Therefore, the linking number of a
relaxed DNA molecule of 1050 bp would be 100. The magnitude to which topology
has the potential to affect the biological function of DNA becomes obvious in the
context of the human organism. Considering only links formed between the strands
of the DNA two-braid, there are ~600 million links within the ~6 billion bp genome.
Every time the genetic information is duplicated, the cell must remove every one
of these links. If even one link remains (or if an additional link is generated), two
daughter chromosomes will remain intertwined and will not be properly segregated.
In total, the ~30 trillion cells of the human body contain ~18 sextillion DNA links!

2.1 DNA Supercoiling

DNA can contain two different kinds of links: those that are formed between the two
strands of the DNA two-braid and those that are formed between two separate seg-
ments of double helical DNA. This section will address the topological ramifications
of links formed between the strands of the two-braid.

The linking number for a right-handed plectonemically coiled double helix is
always positive [8, 9, 11, 18]; Lk = 0 would mean that the DNA was completely
unwoundwith no crossings between the two strands of the helix, yielding a paranemic
structure. Therefore, DNA topology is often expressed as the change in linking
number, �Lk, which is defined as the difference between the actual Lk of a DNA
molecule and the Lk if the molecule were completely relaxed (Lk0).

�Lk = Lk−Lk0 (2)

For example, if the 1050-bp molecule above had an actual Lk of 94, then
�Lk = 94 − 100 = –6, which would mean that the molecule had 6% fewer links
than in relaxed DNA.

A DNA molecule with a �Lk �= 0 is under stress, which can be distributed over
the molecule as a combination of torsional and axial stress [8, 9, 11, 18]. Axial stress
results in the superhelical twists depicted as crossovers in Fig. 1. Consequently, DNA
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in which �Lk �= 0 is referred to as being “supercoiled.” DNA with a negative �Lk
is referred to as “underwound” or “negatively supercoiled,” and DNAwith a positive
�Lk is referred to as “overwound” or “positively supercoiled.”

Because the number of links between the two strands in the DNA two-braid is
dependent on the lengthof a givenmolecule,�Lk is also lengthdependent. Therefore,
the term σ (specific linking difference or, more commonly, superhelical density) is
utilized to compare levels of supercoiling between DNAmolecules of different sizes
[8, 9, 11, 18]. The σ value is independent of DNA length and is calculated using the
equation

σ = �Lk ÷ Lk0 (3)

Thus, for the example discussed above, σ = �Lk( − 6) ÷ Lk0(100) = −0.06.
The σ value is always negative for underwound DNA and is always positive for
overwound DNA.

Although DNA is typically drawn as a relaxed molecule, this topological form
does not usually exist in nature. Organisms generally maintain their genome in an
~6% underwound state [8, 11, 15, 16, 18–20], which puts energy into DNA and
enhances the opening of the double helix. This negative supercoiling is important
because the two-braid is the storage form for the genetic material, and the two strands
must be separated in order to express (i.e., transcribe) and duplicate (i.e., replicate)
the information encoded in DNA.

While negative supercoiling is beneficial to the cell,DNAoverwinding is problem-
atic. Positively supercoiled DNA is generated ahead of replication and transcription
machinery, because these tracking systems move through the DNA without rotating
[7, 8, 24, 25], thereby pushing extra twists ahead of the replication or transcription
bubble (Fig. 2). This overwinding makes it increasingly more difficult to open the
double helix and, if unresolved, can block the progression of the tracking system
[6–8, 11, 14, 15, 24, 25].

2.2 DNA Knotting and Tangling

This section will address the topological ramifications of links formed between two
separate segments of double helical DNA.

As described above, human cells contain ~2 m of DNA (on 46 chromosomes)
that is packed into a nucleus that is only 5–10 μm in diameter [3]. Thus, the DNA
two-braid falls prey to the same problems as would be expected if a large number of
very long ropes were constrained in a small space. Upon movement or manipulation
of the ropes, knots (i.e., links formed within a single rope) and tangles (i.e., links
formed between different ropes) are routinely formed. Similarly, biological processes
that move or manipulate the double helix often induce the formation of knots and



416 R. E. Ashley and N. Osheroff

Fig. 2 Moving DNA tracking machinery creates topological problems. As tracking systems
move through theDNA, twists are pushed ahead of the fork, resulting in the accumulation of positive
supercoils. In the case of replication, precatenanes (links between newly synthesized daughter
chromosomes) form behind the fork. Artwork by Ethan Tyler, National Institutes of Health Medical
Arts

tangles into the DNA (Fig. 1). If unresolved, DNA knots and tangles can have lethal
consequences.

Knots are formed as a result of recombination pathways that are used to increase
genetic diversity and repair some types of DNA damage [6, 8, 11, 12, 24, 26, 27]. The
presence of knots does not allow the two strands of the double helix to be separated
and therefore prevents essential DNA processes such as replication and transcription
from taking place.

DNA tangles are routinely formed during replication when some of the torsional
stress in front of the fork redistributes behind it, resulting in links between the two
newly synthesized DNA molecules (Fig. 2) [6, 8, 12, 24, 26, 27]. This tangling
prevents the linked chromosomes from being properly segregated into daughter cells
during mitosis or meiosis. Because DNA tangles are most easily represented as
concatenated circles (shown in Fig. 1 as a hopf link), tangled DNA molecules are
often referred to as being “catenated.”

The �Lk in DNA knots and tangles is caused by the introduction of writhe. It is
notable that these writhes are fundamentally different than those present in super-
coiled DNA.Whereas writhes generated during supercoiling can be freely converted
to twists, the crossovers observed inDNAknots and tangles are constrained aswrithes
[10, 11].

2.3 Alteration of DNA Topology by Strand Breakage

Assuming a closed topological system, the linking number of DNA can only be
changed if one or both strands of the two-braid are cut [6, 8, 11, 12, 15, 24, 26, 27].
Cutting a single strand can alleviate (or, under some circumstances, induce) torsional
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stress or twist within themolecule. Conversely, cutting both strands can alter the axial
stress or writhe in the DNA.

In supercoiled DNA, the�Lk is caused by a change in the number of links formed
between the two strands of the double helix, resulting in a molecule in which twist
and writhe are interconvertible. Therefore, supercoils within DNA can be removed
by cutting either one or both strands of the two-braid [6, 8, 11, 12, 15, 24, 26–28].
In DNA knots and tangles, however, the �Lk is the result of links between separate
segments of DNA two-braids. Thus, the writhes in knots and tangles can only be
removed if both strands are broken.

3 Topoisomerases

Cells express multiple enzymes known as topoisomerases that regulate the topo-
logical state of the genome [6, 9, 13, 15, 27, 29, 30]. Because DNA topology pro-
foundly affects fundamental cellular processes, topoisomerases are encoded by all
species. For simplicity, this article will focus primarily on topoisomerases expressed
in humans and bacteria. These enzymes alter the superhelical density of DNA and
resolve knots and tangles by creating transient breaks in the DNA backbone, which
opens the topological system (Fig. 3) [6, 9, 13, 15, 27–32].

Topoisomerases are divided into two major classes based on how many DNA
strands they cut to carry out their functions: type I topoisomerases cut one strand,
and type II topoisomerases cut both strands of the two-braid [6, 9, 13, 15, 27, 29,
30]. In order to maintain the integrity of the genetic material while the DNA is
cut, topoisomerases remain attached to the newly generated termini until they reseal
the strand break(s). The stable complexes formed when these enzymes covalently
attach to DNA are called “cleavage complexes” and are a hallmark of topoisomerase
activity.

3.1 Type I Topoisomerases

There are two subclasses of type I topoisomerases in humans and bacteria: type IA
and IB [8, 9, 22, 29, 33–37]. Type I enzymes are denoted by odd numerals and are
grouped into the subclasses based on homology and enzymatic mechanism. Type
IA topoisomerases use a “single-strand passage” mechanism in which they break
one strand of the DNA two-braid, pass the opposite strand through the break, and
rejoin the original strand (Fig. 4) [28, 29, 38]. When the enzyme cleaves the DNA,
the energy of the broken sugar-phosphate bond is conserved by the formation of a
new covalent bond between a tyrosyl residue in the active site of the enzyme and
the newly generated 5’-terminal phosphate of the DNA. (DNA strands have a direc-
tionality defined by the linkages between the sugar and phosphate groups that make
up their backbones. Each phosphate connects the 3′-carbon of one sugar to the 5’
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Fig. 3 Actions of type I and type II topoisomerases. The different cleavage activities of type I
and type II topoisomerases allow them to work on different topological structures within double-
stranded DNA. Because type I enzymes only cut one strand of the DNA, they are restricted to
working on twist. Because type II enzymes cut both strands of the DNA, they are able to work on
writhe

carbon of the following sugar in the chain.) The corresponding 3′-DNA terminus gen-
erated by the cleavage event is prevented from rotating by non-covalent interactions
with the enzyme. As a result of the single-strand passage mechanism, every cat-
alytic event mediated by type IA topoisomerases changes the linking number by one
[13, 28, 29, 38].

Even though type IB topoisomerases also cut one strand of the DNA two-braid,
they act by a very different mechanism than the type IA enzymes. Type IB topoiso-
merases alter DNA topology using a “controlled rotation” mechanism (Fig. 5) [13,
28, 29, 38]. These enzymes covalently attach to the 3’-terminal phosphate during the
cleavage event and allow the 5’-DNA terminus of the cleaved strand to rotate about
the intact strand. Each rotation changes the linking number by one. The number
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Fig. 4 “Single-strand passage” mechanism of type IA topoisomerases. The two strands of the
DNA two-braid are depicted in red and black. The enzyme is drawn as a yellow circle.One enzymatic
cycle is shown, during which one negative supercoil is relaxed, causing a change from �Lk = −1
to �Lk = 0

Fig. 5 “Controlled rotation”mechanismof type IB topoisomerases. The two strands of theDNA
two-braid are depicted in red and black. The enzyme is drawn as a yellow circle. One enzymatic
cycle is shown, during which one positive supercoil is relaxed, causing a change from �Lk = + 1
to �Lk = 0

of strand rotations that occur per catalytic event depends on a number of factors,
including the superhelical density of the DNA substrate.

Irrespective of the mechanism used (single-strand passage versus controlled rota-
tion), type I topoisomerases always function by changing the number of links formed
between the two strands of the DNA two-braid [13, 28, 29, 38]. Therefore, these
enzymes alter DNA topology by changing twist. Consequently, they can alter the
superhelical density of DNA, but they cannot resolve DNA knots or tangles formed
within double-stranded DNA (Fig. 3).

Humans encode both type IA (topoisomerases IIIα and IIIβ) and type IB (topoi-
somerase I) enzymes [6, 13, 14, 28, 29, 38]. Human topoisomerase III contributes
to genomic stability and prevents inappropriate recombination by relaxing hyper-
negatively supercoiled DNA [29, 33–37]. It also works with other proteins to resolve
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recombination intermediates and stalled replication forks [9, 22, 29, 33–37]. In mice,
deletion of the α isoform is lethal, while deletion of the β isoform shortens life span
and has deleterious effects on fertility. In humans, deletion of topoisomerase IIIβ is
also associated with schizophrenia and neurodevelopmental disorders [39].

Themajor role of topoisomerase I is likely to remove torsional stress that accumu-
lates ahead of replication forks and other DNA tracking systems [6, 13, 14, 28, 29,
38]. Although the enzyme is dispensable at the cellular level (presumably because
of functional redundancies with type II topoisomerases), it appears to be necessary
for proper development in multicellular organisms [6, 40–42].

Bacteria encode primarily type IA enzymes, topoisomerase I and topoisomerase
III. Bacterial topoisomerase I is also known as ω protein and is unrelated to human
topoisomerase I. (Unfortunately, a common name was assigned to both proteins
before the differenceswere realized.) Bacterial topoisomerase Iworks in concert with
gyrase (a type II topoisomerase discussed below) to regulate the overall superhelical
state of the bacterial chromosome [22, 29, 38]. Bacterial topoisomerase III is a
homolog of human topoisomerase IIIα and IIIβ and also plays important roles in
maintaining genomic stability [29, 43].

3.2 Type II Topoisomerases

There are two subclasses of type II topoisomerases: type IIA and IIB [9, 12, 29,
33–35, 44, 45]. Type II enzymes are denoted by even numerals (with the exception
of gyrase, which is discussed below) and are grouped into the subclasses based on
homology and reactionmechanism. To date, functional type IIB topoisomerases have
been found only in plant and archaeal species. Therefore, only the type IIA enzymes,
which are found in humans and bacteria, will be discussed in this article.

Type IIA topoisomerases alter DNA topology by using a “double-strand passage”
mechanism in which they cleave both strands of the DNA two-braid, pass a sec-
ond intact double-helical segment through the break, and rejoin the cleaved strands
(Fig. 6) [12, 15, 26, 27, 29–31, 46]. The cleaved DNA is known as the “gate-” or
“G-segment,” and the intact segment that is transported through the break is known
as the “transport-” or “T-segment.” Type IIA enzymes in humans function as homod-
imers, whereas those in bacteria are A2B2 heterotetramers (the A and B subunits have
fused to form the protomer subunit in the human enzyme) [12, 15, 26, 27, 29–31,
34, 44–46]. The structures of the enzymes have bilateral symmetry that allow for
the formation of gated protein annuli at opposite ends. This permits the T-segment
to be captured by the protein above the G-segment and exit the protein below it in a
controlled fashion (Fig. 6). The double-strand passage reaction involves a series of
coordinated protein movements that are coupled to the binding and hydrolysis of the
high-energy cofactor ATP.

Due to their bilateral symmetry, type IIA topoisomerases have two active-site
tyrosyl residues [29]. When the enzymes cut the double helix, these residues form
covalent bonds with the newly generated 5’-terminal phosphates on opposite strands
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Fig. 6 “Double-strand passage” mechanism of type IIA topoisomerases. The two DNA two-
braids are shown in green (the G-segment) and yellow (the T-segment). The enzyme is shown in
blue. One enzymatic cycle is shown, during which two negative supercoils are relaxed, causing a
change from �Lk = −2 to �Lk = 0

of the DNA. The two scissile bonds are located across the major groove of the DNA,
resulting in the formation of 4-base-long single-stranded chains on the 5’-end of each
strand [26, 27, 29–31, 46–48]. As with the type I enzymes, this linkage preserves
both genomic integrity and the energy of the broken sugar-phosphate bond.

Because type IIA topoisomerases act on two distinct DNA segments, they modu-
late DNA topology by altering writhe (Figs. 3 and 6) [9]. As a result of their reaction,
they invert the sign of thewrithe formed by theDNAcrossover (for example, convert-
ing a –1 link to a +1 link). Thus, each event catalyzed by type IIA topoisomerases
changes the linking number by two. The ability to work on writhe allows type II
enzymes to modulate DNA superhelical density. More importantly, it allows them to
remove DNA knots and tangles (in which writhe and twist are not interconvertible).

Humans encode two type IIA topoisomerases, topoisomerase IIα and topoiso-
merase IIβ, which are closely related isoforms [6, 27, 29, 49–57]. (It is notable that
vertebrates encode two isoforms of topoisomerase II, while invertebrates and lower
eukaryotes encode only a single type II enzyme.) Topoisomerase IIα and IIβ share
~70% of their amino acid sequence, but are encoded by separate genes. Although
both use the double-strand passage reaction, they differ in their patterns of expres-
sion and their cellular functions [12, 27, 35, 44, 45, 54, 58]. Topoisomerase IIα
is essential for the survival of proliferating cells (its loss cannot be compensated
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for by the β isoform), and its expression increases over the cell cycle, peaking in
G2/M [59–61]. Rapidly growing cells contain ~500,000 copies of topoisomerase
IIα, while quiescent cells and differentiated tissues contain virtually none of the
α isoform. Topoisomerase IIα is associated with DNA replication complexes and
remains bound to chromosomes throughout mitosis, suggesting that it has important
functions in growth-related processes such as replication and chromosome segrega-
tion [6, 62].

Topoisomerase IIβ is required for neural development in mammals, but is oth-
erwise dispensable at the cellular level [12, 14, 35, 45, 54, 58, 60, 63]. Unlike
topoisomerase IIα, topoisomerase IIβ is expressed at high concentrations in most
cell types independent of proliferation status. The physiological functions of the β

isoform are not yet fully defined. However, it dissociates from chromosomes during
mitosis and seems to have an important role in the transcription of developmentally
and hormonally regulated genes [35, 63–65].

With the exception of a few species, bacteria encode two type IIA topoisomerases,
gyrase and topoisomerase IV [31, 46, 66, 67]. Gyrase is the only known topoiso-
merase that is able to introduce negative supercoils into DNA [29, 33, 35, 58]. To
accomplish this task, gyrase wraps the DNA around the C-terminal domain of its A
subunit in a right-handed fashion, thereby generating a constrained positive supercoil
on the enzyme. (It should be noted that, similar to DNA, proteins have directional-
ity. In this case, directionality is defined by the peptide bonds that link the amino
acids in the protein chain and goes from the amino- or N-terminus of the protein
to the carboxy- or C-terminus.) In mathematical terms, gyrase performs a type I
Reidemeister move on the DNA [68, 69]. Because the DNA wrapping does not
change the linking number of the molecule, a compensatory (equal but opposite)
type I Reidemeister move is induced elsewhere in the DNA molecule [10, 68, 69],
which introduces an unconstrained negative supercoil into the unbound portion of
the two-braid.When strand passage occurs, the sign of the induced positive supercoil
is inverted, causing a net introduction of two negative supercoils per catalytic cycle
[8, 9, 12, 58]. Another important implication of this wrapping mechanism is that the
G- and T-segments are on the same DNA molecule and are in close proximity [70].
Consequently, even though gyrase works only on writhe, it is much more efficient at
relaxing positive supercoils and introducing negative supercoils than it is at decate-
nating or unknotting DNA, because these latter reactions require the use of G- and
T-segments that are on different DNA molecules or are distal to each other on the
same DNA molecule [29, 33, 35, 46, 58].

The major cellular roles of gyrase stem from the ability of the enzyme to carry out
intramolecular reactions and to actively underwind DNA. Gyrase functions ahead
of replication forks and transcription complexes to alleviate torsional stress induced
by DNA overwinding [31, 35, 71]. Additionally, acting in conjunction with bacterial
topoisomerase I, gyrase modulates the overall level of DNA supercoiling in the
bacterial genome by introducing negative supercoils to maintain the genetic material
in an underwound state [31, 35, 71].
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Topoisomerase IV uses a “canonical” (i.e., non-wrapping) double-strand passage
reaction similar to that utilized by the human type II enzymes [9, 29, 31, 46]. Conse-
quently, topoisomerase IV is able to modulate superhelical density and is also able to
carry out the intermolecular strand passage reactions required for decatenation and
unknotting. Topoisomerase IV and gyrase display sequence homology. However,
due to the differences between the canonical and wrapping mechanisms, they have
distinct functions in the bacterial cell [12, 29, 31, 33, 35, 46, 58, 72]. While topoi-
somerase IV may be involved in regulating DNA over- and underwinding [73–75],
its primary function is to remove knots and tangles formed by recombination and
replication [31, 76–78].

4 Recognition of DNA Topology by Topoisomerases

Early studies on the recognition of DNA topology by topoisomerases were con-
cerned with the ability of the enzymes to differentiate between their substrates and
products. Consequently, these studies focused primarily on the distinction between
negatively supercoiled and relaxed DNA. All of these studies demonstrated that
topoisomerases interacted more tightly with their DNA substrates. For example,
gyrase (which introduces negative supercoils into relaxed substrates) binds relaxed
DNA ~10-fold more tightly than negatively supercoiled molecules [79]. Conversely,
human topoisomerase IB [80] and eukaryotic topoisomerase IIA [81] display much
higher affinities for supercoiled compared to relaxed DNA. Topoisomerase IIA also
hydrolyzes its ATP cofactormore rapidlywith negatively supercoiled substrates [81].

The first evidence for the mechanism by which topoisomerases distinguish super-
coiled from relaxedDNAcame from an electronmicroscopy study of topoisomerase-
DNAcomplexes, which demonstrated that eukaryotic topoisomerase II binds at DNA
crossovers [82]. A later study showed that topoisomerase II simultaneously binds two
double-strandedDNA segments [83]. These findings are consistent with the facts that
helix-helix juxtapositions are more prevalent in supercoiled molecules and that the
type IIA enzyme acts on DNA writhes.

A surprising result of the electron microscopy study was that mammalian topoi-
somerase IB also binds at DNA crossovers, despite the fact that the enzyme works on
twist [82]. The binding of crossovers as a means to differentiate between relaxed and
supercoiled molecules was supported by a later study that demonstrated that the type
IB enzyme bound equally well to positively and negatively supercoiled DNA, which
eliminated topology recognition based on twist [80]. The binding site for the sec-
ond DNA helix on type IB topoisomerases was later identified by a crystallographic
study [84].

In contrast to topoisomerase IB, bacterial topoisomerase I (a type IA enzyme),
which recognizes its supercoiled substrate by the single-strand character of the
twist associated with negatively supercoiled DNA [85], does not bind at DNA
crossovers [82].
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5 Recognition of DNA Supercoil Geometry
by Topoisomerases

Whereas the studies described above focused on the ability of topoisomerases to
discern DNA substrates from reaction products, later studies recognized the fact that
topoisomerases work on two very different supercoiled substrates: positively and
negatively supercoiled molecules. As discussed above, DNA in organisms ranging
frombacteria to humans is globally underwound by~6% [8, 15, 16, 18–20].However,
the torsional stress generated by DNA tracking systems such as replication forks
and transcription complexes acutely overwinds the DNA ahead of these molecular
machines [6–8, 14, 15, 24, 25]. Therefore, these later studies focused on the ability
of topoisomerases to discern the geometry (i.e., handedness) of DNA supercoils.

Two different aspects of supercoil geometry recognition by topoisomerases have
been examined: the ability to discern supercoil handedness over the entire catalytic
event and, more specifically, during the formation of cleavage complexes. Because
the mechanisms and ramifications of geometry recognition during these processes
differ significantly, they will be discussed separately below.

5.1 Recognition of DNA Supercoil Geometry During
Catalysis

This section will discuss the ability of topoisomerases to discern supercoil hand-
edness during catalysis (i.e., the process of changing DNA linking number). For
enzymes other than gyrase, studies have examined the removal of positive versus
negative supercoils. In the case of gyrase, the removal of positive supercoils has
been compared to the introduction of negative supercoils into relaxed DNA.

5.1.1 Type I Topoisomerases

As a result of their mechanisms of action, type IA and type IB topoisomerases recog-
nize DNA supercoil handedness in very different manners. Type IA topoisomerases
will not relax positively supercoiled two-braids because they require substantial
single-stranded character in their DNA substrate in order to carry out the single-
strand passage reaction [85]. The overwinding associated with positive supercoiling
impedes this necessary strand separation, whereas negative supercoiling naturally
enhances opening of the two strands.

Conversely, type IB topoisomerases, which use a controlled rotation mechanism,
can remove both positive and negative supercoils [86]. In fact, human topoisomerase
I relaxes positively supercoiled DNA an order of magnitude faster than it does nega-
tively supercoiled substrates [87]. This finding is consistent with simulation studies
that suggest mechanistic differences between the removal of positive and negative
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supercoils, which require the DNA to rotate in opposite directions within the active
site of the enzyme [88]. It is also consistent with the primary physiological function
of type IB topoisomerases, which is to remove the positive supercoils that accumulate
ahead of DNA tracking systems [6, 13, 14, 28, 29, 38].

5.1.2 Type IIA Topoisomerases

All type IIA topoisomerases that use a canonical double-strand passage reaction (as
opposed to wrapping) examined to date can remove both positive and negative super-
coils. Topoisomerase IV [75, 89–91] and human topoisomerase IIα [92, 93] both relax
positively supercoiled DNA considerably faster than they do negatively supercoiled
molecules. There are two significant differences between positively and negatively
supercoiled DNA that could serve as the basis for this chiral recognition. First, the
�Tw (i.e., the difference in twist between the supercoiled and relaxed molecule) is
opposite in positively and negatively supercoiled DNA. As discussed above, the dif-
ferences in �Tw that accompany over- and underwinding have significant effects on
DNA strand separation. Second, the DNA crossings formed in positive and negative
writhes occur with different angles (~60° and ~120°, respectively) [94]. The devel-
opment of single-molecule systems in which two DNA segments can be interwound
without altering twist allowed the mechanism of chiral recognition to be addressed.
Both topoisomerase IV and human topoisomerase IIα appear to distinguish between
positively and negatively supercoiled substrates based on differences in writhe [90,
93]. This finding suggests that these enzymes can discern crossover angles formed
at DNA nodes. Elements in the C-terminal domain of both enzymes are required for
this recognition [94, 95].

In contrast to topoisomerase IV and human topoisomerase IIα, a number of type
IIA topoisomerases cannot discern DNA supercoiling geometry during catalysis and
relax positive and negative supercoils at similar rates. Among these are human topoi-
somerase IIβ and the type IIA enzymes found in yeast, Drosophila, and some viral
species [89, 92, 95–97]. It is not obvious why these enzymes do not recognize super-
coil geometry.However, this once again seems to be related to theC-terminal domains
of the type IIA enzymes, which vary widely between species and are lacking in the
viral proteins. As further evidence for the role of this protein domain, replacement
of the C-terminal domain of topoisomerase IIβwith that of topoisomerase IIα results
in a chimeric enzyme that is capable of distinguishing DNA geometry and relaxes
positive supercoils an order of magnitude faster than it does negative supercoils [95].

Gyrase differs from other type IIA topoisomerases in that it does not normally
relax negatively supercoiled DNA. Therefore, geometry recognition studies with
gyrase have compared its abilities to remove positive supercoils and to introduce
negative supercoils into relaxed DNA. These processes correspond to the major cel-
lular roles of the enzyme: to remove positive supercoils ahead of DNA tracking
systems and to maintain the negative superhelical density of the bacterial chromo-
some [31, 35, 71].Gyrase relaxes positive supercoils ~10-fold faster than it negatively
supercoils relaxed DNA [91, 98]. The rapid removal of positive supercoils by gyrase
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reflects its acute function of relaxing overwound DNA ahead of tracking systems
and once again requires elements in the C-terminal domain of the enzyme. In this
case, it is the specific amino acid residues responsible for DNA wrapping that are
necessary [91].

5.2 Recognition of Supercoil Geometry During DNA
Cleavage

Although critical to the catalytic function of topoisomerases, the formation of DNA
cleavage complexes poses a potential danger to the cell (Fig. 7) [9, 14, 44, 57, 99].
When DNA tracking systems attempt to traverse covalent topoisomerase-cleaved
DNA roadblocks in the two-braid, strand breaks can no longer be rejoined by the
enzyme and require cellular repair pathways to re-establish the integrity of the double
helix. If the strand breaks overwhelm the repair processes, they can inducemutations,
chromosomal rearrangements, and cell death pathways. Thus, the enzymes that are
necessary for modulating the topological state of DNA also have the potential to
fragment the genome.

The inherent danger of cleavage complexes has been exploited for the develop-
ment of important anticancer and antibacterial drugs that act by stabilizing these
complexes. Camptothecin-based drugs that target human topoisomerase I are used
to treat ovarian, colorectal, and small-cell lung cancers [100]. Etoposide, doxoru-

Decreasing Cleavage
Slow growth rates

Mitotic failure

Cell death
Balanced Cleavage/Religation

Appropriate chromosome segregation
Genome maintenance

Normal cell growth

Increasing Cleavage
DNA damage response

Mutagenesis
Recombination
Translocations

Cell death

Anticancer Drugs
Quinolone Antibacterials

Intact DNA

Cleaved DNA

Fig. 7 Critical balance ofDNAcleavage and resealing by topoisomerases. The activity of topoi-
somerases must be tightly controlled in the cell. When an appropriate level of cleavage complexes
is maintained, topological problems are resolved and the cell can grow normally. If the levels of
cleavage complexes decrease, slow growth rates andmitotic failure can cause cell death. Conversely,
if the levels of cleavage complexes are too high, DNA damage can overwhelm the cell and also lead
to cell death. Figure adapted from Pendleton et al. [57]
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bicin, and mitoxantrone, which are used to treat a wide variety of blood-borne and
solid tumors, target human topoisomerase IIα and topoisomerase IIβ [44, 57, 99,
101, 102]. Finally, quinolones, such as ciprofloxacin and levofloxacin, which target
gyrase and topoisomerase IV, are among the most widely prescribed antibacterial
drugs worldwide [46, 67, 103, 104].

Because DNA cleavage complexes formed ahead of tracking systems are the most
likely to be converted to permanent strand breaks, topoisomerase-mediated DNA
cleavage events that occur on positively supercoiled DNA pose the greatest danger
to the cell. Therefore, the ability of topoisomerases to discern supercoil geometry
during the cleavage event has been addressed.

5.2.1 Type I Topoisomerases

No data has been reported for the cleavage of positively supercoiled DNA by type IA
topoisomerases (presumably because these enzymes do not function on positively
supercoiled molecules).

The only type IB topoisomerase for which geometry recognition during cleavage
has been investigated is human topoisomerase I [105, 106]. In both the absence and
presence of anticancer drugs, this enzyme maintains ~3-fold higher levels of cleav-
age complexes on positively as compared to negatively supercoiled DNA. Currently,
there are no data that address the mechanistic basis for this distinction. However, this
result implies that, while type IB topoisomerases work faster on positively super-
coiled DNA, they are also inherently more dangerous to the cell while acting on this
substrate.

5.2.2 Type IIA Topoisomerases

Even though human topoisomerase IIα is the only eukaryotic type IIA topoisomerase
that can recognize supercoil handedness during catalysis, human topoisomerase IIα
and IIβ can both discern supercoil geometry during DNA cleavage [105]. A similar
result has been found for viral type IIA topoisomerases [96]. All of these enzymes
maintain 2–4-fold lower levels of cleavage complexes with positively as compared
to negatively supercoiled substrates. Similar results have been found in the absence
and presence of anticancer drugs. While this characteristic makes these enzymes
safer while operating ahead of DNA tracking systems, it also reduces the potential
lethality of chemotherapeutics.

The differential abilities of type IIA enzymes to discern supercoil geometry during
catalysis versus cleavage indicates that this recognitionmust be bimodal in nature. To
this point, removal of the C-terminal domain, which is crucial for geometry recogni-
tion during catalysis, has no effect on supercoil handedness recognition during cleav-
age [96, 105]. A later study demonstrated that the ability of human topoisomerase IIα
to discern supercoil geometry is embedded within its catalytic core (which contains
only the elements needed for the enzyme to cleave and rejoin DNA and does not
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include either the N-terminal gate or the C-terminal domain) [107]. At the present
time, it is not known whether the mechanistic basis for the recognition of supercoil
geometry during cleavage is related to the crossover angle of the writhes or the sign
of the �Tw in the DNA.

The effects of supercoil geometry on DNA cleavage mediated by the bacterial
type II topoisomerases, gyrase and topoisomerase IV, differ substantially from one
another.Gyrase, like the human and viral type IIA enzymes,maintains 2–4-fold lower
levels of cleavage complexes on positively supercoiled DNA both in the absence and
presence of antibacterial drugs [91, 98, 108]. This recognition is independent of the
ability of the enzyme to wrap DNA, which suggests that gyrase also uses a bimodal
mechanism to recognize supercoil handedness during catalysis and cleavage. In con-
trast, topoisomerase IV is the only type IIA enzyme examined to date that does not
maintain lower levels of cleavage complexes on positively supercoiled substrates.
One study indicated that topoisomerase IVmaintains similar levels of cleavage com-
plexes on positively and negatively supercoiled DNA [91], while another suggested
that it maintains higher levels of cleavage complexes on overwound substrates [75].

The differential abilities of gyrase and topoisomerase IV to recognize super-
coil handedness during cleavage may impact their relative efficacies as targets for
quinolone antibacterials. Because gyrase must operate on the overwound DNA
formed ahead of replication forks and transcription complexes, it is perfectly posi-
tioned to generate cleavage complexeswith the potential to be converted to permanent
DNA damage. However, the diminished levels of cleavage complexes generated by
the enzyme on positively supercoiled DNA may partially abrogate the cytotoxic
effects of quinolones. Conversely, topoisomerase IV maintains high levels of cleav-
age complexes on overwound substrates, but typically acts behind the fork, where
cleavage complexes are less likely to be disrupted by tracking systems.

6 Conclusions

DNA topology has a profound effect on how the genetic information is expressed,
passed from generation to generation, and recombined in the cell. Topological
linkages within the DNA two-braid and between different DNA segments can be
described in simple mathematical terms that account for both the twist and the writhe
in the double helix. Topoisomerases are enzymes that function as “molecular math-
ematicians” that regulate the topological state of the genetic material by altering
either twist or writhe. To do so, type I and type II topoisomerases transiently open
the topological system by breaking one or both strands of the two-braid, respectively.

The importance of topoisomerases is underscored by the fact that they are
expressed in all cells and in all species. Topoisomerases can distinguish between
the topological states of their substrates and products, which makes them more effi-
cient enzymes. Furthermore, many topoisomerases can distinguish DNA supercoil
handedness during catalysis and DNA cleavage, which makes them well suited to
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their individual physiological tasks and also impacts their roles as targets of important
anticancer and antibacterial drugs.
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Topological Entanglement and Its
Relation to Polymer Material Properties

Eleni Panagiotou

Abstract In this manuscript we review recent results that show how measures of
topological entanglement can be used to provide information relevant to dynamics
and mechanics of polymers. We use Molecular Dynamics simulations of coarse-
grained models of polymer melts and solutions of linear chains in different settings.
We apply the writhe to give estimates of the entanglement length and to study the
disentanglement of polymer melts in an elongational flow. Our results also show that
our topological measures correlate with viscoelastic properties of the material.
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1 Introduction

Polymers are macromolecules which cannot cross each other without breaking their
bonds. This uncrossability constraint has a significant impact on the mechanical
properties of polymeric material and its effects are called polymer entanglement
[8, 11, 46]. Edwards suggested that entanglements restrict individual chains in a
curvilinear tubelike region enclosing each chain [37]. The axis of the tube is a coarse-
grained representation of the chain and it is called the primitive path (PP). There are
several methods for extracting the PP network, such as the Z1-code [1, 21, 28, 47]
and the CReTA algorithm [3, 50, 51]. Edwards also pointed out that one could see
the polymer chains as mathematical curves in space and proposed to use topology to
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study polymer entanglement [12, 13]. However, the connection between topological
entanglement and polymer entanglement remains elusive and the use of topological
tools in the study ofmaterial properties has not been fully exploited. In this reviewwe
present a series of computer simulations of polymeric material which are analyzed
using topological tools to provide evidence that they capture information relevant to
polymer mechanics.

One of the difficulties in studying topological entanglement in polymers, is that
tools of topological complexity traditionally refer to closed curves. A knot (resp.
link) is one (or more resp.) simple closed curve(s) in space without intersections. The
complexity of these knots or links can be measured by using topological invariants
[15, 22, 43]. The topological invariants are properties of knots or links, which remain
invariant for isotopic configurations. In the case of linear polymers, the notion of
topological invariant does not apply, since linear chains canbe continuously deformed
to attain any configuration [35, 37]. Recent advances havemade it possible to identify
knots and links in linear polymers (open chains) [18, 19, 32, 34, 49]. Even though
very helpful, it is not known how these methods could be applied to a system of open
chains evolving in time. An alternative approach is provided using the Gauss linking
integral [35]. For two closed chains (ring polymers) the Gauss linking integral is a
topological invariant that measures the algebraic number of times one chain turns
around the other. For two open chains (linear polymers), it is a real number that
is a continuous function of the chain coordinates. The Gauss linking integral can
be also applied to one chain in order to provide measures of self-entanglement of
a chain, called writhe [2, 7, 9, 25, 30, 31] and average crossing number [4–6, 9,
10]. Moreover, the simulation of polymers requires the use of Periodic Boundary
Conditions (PBC) to avoid boundary effects, which creates periodic entanglement
[35]. For this reason, a new measure of entanglement, the periodic linking number,
was introduced in [35] to study linking in PBC. It is an extension of the Gauss linking
integral in systems employing PBC that gives a topological invariant in the case of
closed chains and a continuous function of the chain coordinates in the case of open
chains. In this review we present a series of studies of entanglement in polymers
using the Gauss linking integral and the periodic linking number which make a clear
connection between polymer entanglement and topological entanglement.

First, we discuss how the writhe of the chains in a melt can be combined with the
Z1 algorithm to provide a new estimator of the entanglement length, a key parameter
in the tube model [38] and it was shown that this estimator has several advantages
compared to estimators based on the output of Z1 only. The Gauss linking integral
was used in combination with the Z1 algorithm to understand how the entanglement
network deformswith the chains under the influence of a strong deformation [36] and
revealed a different local and global behavior of the chains. In [39] we used computer
simulations of polymeric weave material in an oscillatory shear experiment and
studied their mechanical response and compared it to the complexity of the weaves,
as it was measured by the Gauss linking integral. The results therein showed that
there is a correlation between the viscoelasticity of the polymeric materials and the
writhe and the periodic linking number of the chains. This suggests that one could
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control the viscocelastic response of material by controlling the linking and writhe
of the original chain conformations.

This paper is organized as follows. In Sect. 2 we introduce approaches to study
the topology/geometry of the polymeric chains in a melt. In Sect. 3 we show how
topological tools can be combined with contour reduction algorithms to provide
information relevant to the tube model. In Sect. 4 we show how the combination of
topological measures of entanglement with contour reduction algorithms can pro-
vide more insight in the conformational properties of chains under deformation. In
Sect. 5 we present results that reveal the relation between the topology of the polymer
entanglements and the bulk material mechanics.

2 Measures of Entanglement

2.1 The Gauss Linking Integral and the Periodic Linking
Number

A measure of the degree to which polymer chains interwind and attain complex
configurations is the Gauss linking integral:

Definition 2.1 (Gauss Linking Number) The Gauss Linking Number of two disjoint
(closed or open) oriented curves l1 and l2, whose arc-length parametrizations are
γ1(t), γ2(s) respectively, is defined as the following double integral over l1 and l2
[17]:

L(l1, l2) = 1

4π

∫
[0,1]

∫
[0,1]

(γ̇1(t), γ̇2(s), γ1(t) − γ2(s))

||γ1(t) − γ2(s)||3 dtds, (1)

where (γ̇1(t), γ̇2(s), γ1(t) − γ2(s)) is the scalar triple product of γ̇1(t), γ̇2(s) and
γ1(t) − γ2(s).

The Gauss Linking Number is a topological invariant for closed chains and a
continuous function of the chain coordinates for open chains.

We also define a measure for the degree of intertwining of a chain around itself.

Definition 2.2 (Writhe) For a curve � with arc-length parameterization γ(t) is the
double integral over l:

Wr(l) = 1

4π

∫
[0,1]

∫
[0,1]

(γ̇(t), γ̇(s), γ(t) − γ(s))

||γ(t) − γ(s)||3 dtds. (2)

The Writhe is a continuous function of the chain coordinates for both open and
closed chains. The Average Crossing Number (ACN) is obtained when we consider
the absolute value of the integrand in the Writhe.
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For systems employing Periodic Boundary Conditions (PBC), the linking that is
imposed from one simulated chain on another chain propagates in three dimensional
space by the images of the other chain. In other words, for a system with PBC each
simulated chain gives rise to a free chain in the periodic system which consists of an
infinite number of copies of the simulated chain.Wecall each copyof a chain an image
of the free chain. It has been shown that a measure of entanglement that can capture
the global linking in a periodic system is the periodic linking number LKP [35].

Definition 2.3 (Periodic Linking Number) Let I and J denote two (closed, open or
infinite) free chains in a periodic system. Suppose that Iu is an image of the free
chain I in the periodic system. The Periodic Linking Number, LKP , between two
free chains I and J is defined as:

LKP(I, J ) =
∑

v

L(Iu, Jv), (3)

where the sum is taken over all the images Jv of the free chain J in the periodic
system.

The Periodic Linking Number is a topological invariant for closed chains and a
convergent series for open chains that changes continuously with the chain coordi-
nates. For its computation, we use a cutoff, the local Periodic Linking Number[35,
40].

2.2 Z1 Algorithm

The Z1 algorithm [1, 28, 47], given a polymer melt configuration, minimizes the
total contour length of all chains, while all chain ends remain fixed in space, by
moving the beads sequentially in space while maintaining the noncrossability of the
chains. In this way the chains become rectilinear strands coming together at kinks
where the entanglements occur.

A direct consequence of the specific mathematical formulation is that the Z1
algorithm provides as output the average contour length of a PP, L pp and, bymapping
the extracted interior nodes of each PP into kinks, it also returns the average number
of interior kinks (entanglements) per chain, Z .

3 A New Method to Compute Ne-estimators via Writhe
and Z

In the core of the tubemodel is the notion of entanglement strand, Ne. This is a portion
of a polymer chain in-between topological constraints in a melt. This length is also
related to the radius of the surrounding tube. Ne is very important in characterizing
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polymeric material [46] and estimates of Ne from low molecular weight simulations
are needed. In this section we suggest a new Ne-estimator for polymer chains in a
melt.

To do this, we combine the local entanglement information, provided by the Z1
algorithm, with the global entanglement information given by the writhe of a chain
and its primitive path. In [38] a semi-analytical formula for the mean squared writhe
of an entanglement strand,W2

e , using only the writhe of the chain and the writhe of
its PP was obtained:

W2
e ≈

〈 [W (I ) − Wpp(I )]2
Z + 1

〉
. (4)

where W (I ) denotes the writhe of the chain I , Wpp(I ) denotes the writhe of the PP
of the chain I and Z denotes the number of kinks in the PP of I . The average is taken
over all chains in a melt.

We find that the mean squared writhe as a function of the length of the chains is
very well approximated by:

〈W 2〉 ≈ 0.03
(N

κ

)1.18
. (5)

where κ is the stiffenss parameter of the chains [38].
Since W2

e is the mean squared writhe of polymer chains of length Ne, one can
obtain an estimator of Ne by comparing W2

e to the values of the left hand side of
Eq.5.

Thus, a new Ne-estimator is given by the solution of the following equation:

〈W 2〉 ≈ 0.03
(Ne

κ

)1.18
. (6)

for some stiffness parameter κ that depends on the system under study.
We apply the new Ne-estimator to amelt of multibead linear chains interacting via

a repulsive Lennard-Jones (LJ) potential by molecular dynamics (MD) and compare
our results to those obtained by other Ne-estimators for the same system. This is a
classical multibead FENE chain system with a dimensionless number density 0.84
at temperature T = 1 [27]. We use a time step �t = 0.005 within a velocity Verlet
algorithmwith temperature control. All samples were pre-equilibrated using a hybrid
algorithm [26]. We apply the Z1 algorithm and compute the writhe of the chains and
their PPs for various molecular weights N .

The Z1 code returns values for Z , Lpp and Ree (end-to-end distance), by which,
various estimatorsNe(N ) can be computed [20]. These are the classical S-coil esti-
mator, the M-coil estimator, classical S-kink estimator and the modified S-kink esti-
mator [20], shown in Fig. 1.

For our systems, where the corresponding stiffness parameter is κ ≈ 2.34, Eq.
(6) gives a new Ne-estimator by the solution of the following equation
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Fig. 1 Ne(N ) obtained by counting beads, N (1)
e ,N (2)

e and via writhe, NW2
e

e . We observe that

N (1)
e (N ) := 〈〈Ne〉I 〉 ≈ 〈Ne〉 + 5 := N (2)

e (N ) + 5. Also, we observe that NW2
e

e (N ) gives a larger

estimate. The data for NW2
e

e (N ) is compatible with a limiting value of Ne ≈ 80 obtained by the
M-coil estimator [20]

W2
e (N ) = 0.01N 1.18

e (N ). (7)

We denote this estimator by NW2
e

e , shown in Fig. 1. The data suggests a limiting
value of Ne ≈ 80, which agrees with the known Ne value reported in experiments

[44, 48].We notice thatNW2
e

e is not an ideal estimator, since it converges quite slowly.
However, it approaches the M-coil estimator faster than any of the other estimators.
We note that the estimates of Ne based on counting the number of beads between
kinks and the M-kink estimators give an estimate Ne ≈ 45 that is almost half of
the one reported by using our topological/geometrical methods and that reported
in rheological experiments [20, 29, 50, 51]. Our results indicate a transition to the
presence of kinks for chains with N > 45. These findings suggest that Ne is related

to the global topological entanglement of the chains, captured byNW2
e

e , while only a
fraction of this value, approximately half, seems to be related to the number of local
obstacles restricting the local motion of the chains, and is captured by the number of
beads between kinks and the M-kink estimators.

4 Topological Entanglement and Disentanglement
of Polymer Chains with an Elongational Force

In this work we study the entanglement characteristics of linear chains in a melt
under the action of directed forces [36]. We obtain information about the motion
of the chains, their PPs and the entanglement strands. To study the pulling-force
induced flow behavior of model polymer melts, we have performed nonequilibrium
molecular dynamics (NEMD) computer simulations at constant bead number density,
volume, and temperature (NVT ensemble) in a cubic cell with PBC. More precisely,
we study a classical multibead FENE chain system with a dimensionless number
density 0.84 at temperature T = 1, with M = 100 linear chains, where each chain
consists of N = 100 beads. All the beads interact with a purely repulsive part of the
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Fig. 2 Selected sequences of snapshots for individual chains contained in the melt, artificially
shifted vertically with time. The marked head groups experience a constant force in x-direction.
Chains tend to either unravel completely, or to tighten existing knots. The absolute displacement of
the force-bearing bead in x-direction for the two chains shown in (a,b), as well as 〈|x(t) − x(0)|〉
obtained as an average over all chains is shown in the last figure

Fig. 3 Visualization of the final elongated melt state. Only the parent images of the in total 100
chains are shown. Left: Subset of chains with |W | < 0.5 and Right: |W | ≥ 0.5. As expected, most
of the chains with |W | > 0.5 contain local tight knots [42]

Lennard-Jones potential, and all dimensionless values are given in Lennard-Jones
(LJ) units. To create samples that largely differ in their number of entanglements,
while N and the simulation box size remain constant, we apply a constant force
of magnitude F = 50 pointing into the negative (positive) x–direction to all those
terminal beads (a randomly selected one for each chain) that are initially located in
the left (right) half of the simulation box.

With time the chains tend to be pulled straight (while remaining within the peri-
odic simulation box) as a result of the enforced overall deterministic motion of their
selected ends (Figs. 2 and 3). A peculiarity of this simulation setup is that one can
reach a state of almost fully elongated chains, while going through all intermedi-
ate states of partial elongation quickly compared with the situation encountered in
conventional elongational flows, where the flow-induced alignment is caused by
thermostatting with respect to an affine deformation.

The end-to-end distance,Ree = 〈R2
ee〉1/2, as function of time is shown in Fig. 4a.

The plateau value is Ree ≈ 93, ie. ∼ 93% of the value corresponding to the fully
aligned conformation whose bonds remain at the equilibrium bond length ≈ 1. We
observe that Ree initially increases rapidly with time, in analogy to the case of
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Fig. 4 a Square-root of the mean squared end-to-end distance, Ree = 〈R2
ee〉1/2, as a function of

time. b Number of entanglements computed by the Z1 algorithm. The vertical dashed line is at
t = 150. c Mean absolute writhe, 〈|W |〉 vs time. The vertical dashed line is at t = 150. d Mean
absolute writhe of the PPs, 〈|Wpp|〉 versus time. The two vertical dashed lines are at t = 50 and
t = 300, respectively

an applied shear or elongational flow. A simultaneous chain alignment is visually
obvious from the snapshots in Figs. 2 and 3.

The mean number of kinks Z as a function of time is shown in Fig. 4b. We
observe an initial increase of Z followed by a decrease until all the kinks are lost.
The increase of Z is a surprising result since one expects that the network will
disentangle as the chains stretch in time [23]. This has been observed also before
for knotted configurations [24]. The excess in Z may be an effect of the particular
protocol, where the chain ends are pulled into the initially stationary matrix of the
other chains and, thus, as the chains stretch out, there is more available length where
contacts with other chains can occur.

Themean absolute writhe averaged over all chains in themelt as a function of time
is shown in Fig. 4c. The mean absolute writhe of the original FENE chains decreases
monotonically with time. This is expected, since the chains stretch and the writhe
gives on average smaller absolute value for more extended configurations [45].

The mean absolute writhe of all PPs in the PP network obtained by the application
of the Z1 algorithm as a function of time is shown in Fig. 4d. The increase of 〈|Wpp|〉
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for t < 50 and the decrease for t > 300 is in accordance with the behavior ofZ in the
same time intervals. This indicates that the created entanglements are not all simple
contacts, but that the conformations of the PPs get indeed more complex. But, for
50 < t < 150, 〈|Wpp|〉 remains almost constant, while Z continuously increases in
this time. In other words, the creation of new kinks in this interval does not affect
the global self-entanglement of the PPs. Our results thus demonstrate that only a
portion of the newly created entanglements contribute to a more complex global
conformation of the tube.

It isworth emphasizing that the behaviors of 〈|W |〉 and 〈|Wpp|〉differ substantially.
For t < 150, 〈|W |〉 decreases while 〈|Wpp|〉 increases. This indicates that the chains
continuously stretch out while the tube gets more entangled. For t < 350, 〈|W |〉
decreases while 〈|Wpp|〉 is almost constant. During that period, the chains continue
being stretchedwhile the tube remains in anunaltered conformation. For t > 450both
〈|W |〉 and 〈|Wpp|〉 follow the same scaling, both decreasing. Interestingly, 〈|W (t)|〉 >

〈|Wpp(t)|〉, for all t . This suggests that even at large t , when the PPs have stretched
out, chains have eventually not stretched out in a comparable fashion due to self-
entanglement/knotting of the original chains (chain B in Fig. 2 and also chains shown
in Fig. 3).

5 Topological Entanglement and Viscoelastic Properties
of Polymers

We investigate the relationship between the writhe and the periodic linking num-
ber of the chains in a melt with the viscoelastic parameters of the material, using
an oscialltory shear simulation. In order to better control the effects of entangle-
ment and show that the topological measures can reflect material properties even in
weakly entangled systems, we use very particular initial configurations. We consider
materials that have polymer chains entangled in a weave-like topology, see Fig. 5.
We consider weave topologies given by aligned (w0), orthogonal non-interlaced at
different densities (wI, wII) and alternating interlacing (wIII). By subjecting the
material to oscillatory shear deformations, we can measure the extent the density or
the topological complexity affect mechanical responses.

The polymers are treated as elastic macromolecules modeled with harmonic bond
potential of energy E = Kb(r − r0)2, Kb = 250, r denotes the length of extension
of the polymer bonds and r0 = 1 denotes the rest length of the bond. The polymer
bending stiffness is controlled with a harmonic angle potential with energy E =
Kθ(1 − cos(θ − θ0)), with Kθ = 8, where θ is the angle between two consecutive
bonds. The rest angle is θ0 = π. The length of the simulation box is approximately
20σ. Each polymer chain has approximately 20 monomers inside the simulation box.
The beads of our polymers interact through the Lennard-Jones (LJ) potential with a
cutoff of 2.5σ. We simulate the finite temperature and kinetics of the polymer chain
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Fig. 5 Left: The different weaves we consider in our studies labelled as weave0 (w0), weaveI (wI),
weaveII (wII) andweaveIII (wIII). Shown from top (left to right), bottom (left to right). Right:Writhe
and Loss Tangent of open chains for small frequencies of oscillation (frequencies corresponding to
periods T > 6τD). We find a linear behavior of the Writhe as a function of the Loss Tangent. The
data points corresponding to the different weaves form clusters. As the topological complexity of
the weave decreases both the Writhe and Loss Tangent increase

dynamics using the Langevin Thermostat [16]. We perform these simulations using
LAMMPS [41].

To study the bulk mechanics of the polymeric system, we perform rheolog-
ical studies using oscillatory shearing motions based on Lees-Edwards bound-
ary conditions [33]. We use a sinusoidal oscillation of the displacement L(t) =
L0 + A sin(2πt/Tp) with amplitude A and time periodicity Tp. This corresponds
to a cosine oscillation of the strain with rate γ̇ = γ̇0 cos(ωt) where ω = 2π/Tp and
γ̇0 = Aω. As ameasure ofmaterial response,we consider the dynamic complexmod-
ulus G(ω) = G1(ω) + iG2(ω). The components are defined from measurements of
the stress as the least-squares fit of the periodic stress component σxy by the function
g(t) = G1(ω)γ0 sin(ωt) + G2(ω)γ0 cos(ωt). The G1 is referred as the Elastic Stor-
age Modulus and G2 is described as the Viscous Loss Modulus. The loss tangent,
tan(δ), is the ratio of G2 over G1 and can be interpreted as reflecting the strength
of what is sometimes called “colloidal forces”. In other words, if tan δ < 1 then the
particles are highly associated and sedimentation could occur, representative of a
solid-like material. If tan δ > 1, the particles are highly unassociated, representative
of a liquid-like material.

We show themean absoluteWrithe of open chains as a function of the loss tangent
for small frequencies of oscillation in Fig. 5. We find a decay of the mean absolute
Writhewith the loss tangent and a clustering of the data for each system. These results
show a relationship between Writhe and tan δ that scales like 〈|Wr |〉 ∼ tan δ6/5. The
responses at small frequencies are clustered and orderedwith theirWrithe decreasing
asw0 > w I > w I I > w I I I . The increase of thewrithewith the loss tangent occurs
since for less complex weaves, the chains are free from entanglements and can
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attain conformations of random coils. On the other hand, the more complex woven
configurations, significantly restrict the motion of the chains and keep them together.

Similar results were reported in [39] for the mean absolute Periodic Linking
Number of the open systems at small frequencies as a function of the loss tangent.
The mean absolute Periodic Linking Number decreases with the loss tangent for
tan δ > 1. For tan δ > 1 the responses of the open systems are fitted to a relation
of the form 〈|LKP |〉 ∼ tan δ−5/4. These results show that interactions underlying
mechanical responses can be effectively captured by the Periodic Linking Number.

6 Conclusions

The results presented in this review provide strong evidence that topological tools
can provide information relevant to polymer mechanics. We showed that the writhe
and the periodic linking number are correlate with the viscoelasticity of the mate-
rial in simple, weakly entangled polymer conformations. Our topological tools can
be applied to different length scales to provide information about local and global
entanglement. We saw that the writhe in combination with the output of the Z1 code
gives an estimator of the entanglement length, a characteristic length scale in polymer
physics. Moreover, using the writhe, we were able to better understand the disen-
tanglement process of polymers in a melt. It would be interesting to further explore
this in more complicated, realistic systems of polymer melts. Ideally, we would like
to include topological parameters in theories of polymer entanglement with the goal
of creating new material with desired macroscopic properties by controlling their
entanglement [14, 46].
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1 Introduction

The universe undergoes topological and geometrical changes at all scales. This paper
goes to the foundations of these changes by offering a novel topological perspec-
tive. The common features of these changes are described via topological surgery,
a manifold-changing process which has been used in the study and classification
of manifolds. We briefly address small and large scale phenomena exhibiting 1 and
2-dimensional surgery and then focus on large scale cosmic phenomena exhibiting
3-dimensional surgery. More precisely, we describe the formation of black holes
and wormholes. Our surgery approach allows the formation of a black hole from
the collapse of a knotted cosmic string, without ending up in a singular manifold.
It further describes Einstein-Rosen bridges (wormholes) linking the two black holes
through a singularity where the disconnected black holes collapse to each other, and
the bridge is born topologically. The collapse of a cosmic string can be viewed as
an orchestrated creation of bridges that is topologically equivalent to 3-dimensional
surgery. We present a rich family of 3-manifolds that can occur and the possible
implications of these constructions in quantum gravity and general relativity.

2 The Topological Process of Surgery

Topological surgery is a mathematical technique introduced by Wallace [1] and
Milnor [2] which creates newmanifolds out of known ones in a controlledway. Given
an m-manifold M , an m-dimensional n-surgery consists of removing a thickened
sphere Sn × Dm−n and gluing back another thickened sphere Dn+1 × Sm−n−1 using
a gluing homeomorphism along the common boundary Sn × Sm−n−1, see [3] for
details. This operation produces a new m-manifold M ′ which may, or may not, be
homeomorphic toM . Since (Sn × Dm−n) ∪ (Dn+1 × Sm−n−1) = ∂(Dn+1 × Dm−n) ∼=
Dm+1, an m-dimensional n-surgery can be seen as the process of passing from one
boundary component of handle Dm+1 to the other. The extra dimension of the (m +
1)-dimensional handle leaves room for continuously passing from one boundary
component of the handle to the other.

For example, the process of 1-dimensional 0-surgery shown in Fig. 1(1) removes
the 1-dimensional thickening of a 0-sphere (represented by the two red points) and

Fig. 1 (1) 1-dimensional surgery (2) 2-dimensional handle
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replaces it with the thickening of another 0-sphere (represented by the two green
points). Starting with the circle M = S1, this process produces two circles M ′ =
S0 × S1. This global change of topology is induced by the local process of collapsing
the cores of two segments (the two red points) and uncollapsing the core of the other
two segments (the two green points), see Fig. 1(2). As also shown in the figure, this
local process happens within a 2-dimensional handle D1 × D1. One can provide a
algebraic description of this dynamic process by using the local form of a Morse
function, see Lemma 2.19 of [3]. For instance, in dimension 1, the local process
is described by varying parameter t of the level curves −x2 + y2 = t in the range
t ∈ (−1, 1).

3 Small Scale Surgery in Nature

We will briefly present some natural phenomena exhibiting topological surgery in
dimensions 1 and 2. All these phenomena happen in small scales, meaning that their
characteristic lengths range from the size of a molecule to a few meters.

The process of 1-dimensional surgery is exhibited in various natural phenomena
where segments are detached and rejoined such as the crossing over of chromosomes
during meiosis, viscous vortex reconnection and site-specific DNA recombination.
These phenomena have been detailed in [4–6] where we show that although they are
quite different, they undergo a similar topological change which is described using
our surgery approach.

If the initial manifold is an embedding of the circle, 1-dimensional 0-surgery
can create or destroy a crossing hence producing new knots or links. For example,
starting with the circular DNA molecule of Fig. 2, with the help of certain enzymes,
site-specific recombination performs a 1-dimensional 0-surgery on the molecule and
produces the Hopf link.

Nature is filled with 2-dimensional surgeries too, see [4–6] for details. Examples
comprise gene transfer in bacteria, where the donor cell produces a connecting tube
called a ‘pilus’ which attaches to the recipient cell, the biological process of mitosis,
where a cell splits into two new cells, and the formation Falaco Solitons. We will
describe how surgery is exhibited in Falaco Solitons, the dynamics of which are
visible to the naked eye. Each Falaco soliton consists of a pair of contra-rotating
identations in the water-air surface of a swimming pool, see Fig. 3(1) and [7]. From
the topological viewpoint the surgery consists in taking disk neighborhoods of two
points S0 × D2 (the identations in Fig. 3(1)) and joining them via a tube (which is

Fig. 2 DNA recombination
as an example of
1-dimensional 0-surgery



452 S. Antoniou et al.

Fig. 3 (1) Falaco
topological defects (2)
3-dimensional handle

a thickened circle D1 × S1), see Fig. 3(2). Here the tube is the cylindrical vortex
made from the propagation of the torsional waves around the singular thread. The 3-
dimensional handle containing all the 2-dimensional temporal ‘slices’ of this process
is shown Fig. 3(2).

4 Large Scale Surgery in Nature

Large scale phenomena can also exhibit 1- or 2-dimensional surgery. For instance,
1-dimensional surgery happens in magnetic reconnection, the phenomena whereby
cosmic magnetic field lines from different magnetic domains are spliced to one
another, changing their pattern of conductivity with respect to the sources, see [4]
for details. Moving up to 3-dimensional surgery, we have two types of surgery, both
of which require four dimensions to be visualized. Aswewill see, both types describe
large scale cosmic phenomena. The first type is exhibited in the creation of entangled
black holes while the second one describes the formation of black holes from cosmic
strings.

4.1 Types of 3-Dimensional Surgery

Starting with a 3-manifold M , we first have the 3-dimensional 0-surgery, whereby
two 3-balls S0 × D3 are removed from M and are replaced in the closure of the
remaining manifold by a thickened sphere D1 × S2:

χ(M ) = M \ h(S0 × D3) ∪h (D1 × S2)

Next, for m = 3 and n = 2, we have the 3-dimensional 2-surgery, which is the
reverse (dual) process of 3-dimensional 0-surgery. Hence we will not consider it a
different type of 3-dimensional surgery.

Finally, for m = 3 and n = 1, we have the 3-dimensional 1-surgery, whereby
a solid torus S1 × D2 is removed from M and is replaced by another solid torus
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D2 × S1 (with the factors now reversed) via a homeomorphism h of the common
boundary:

χ(M ) = M \ h(S1 × D2) ∪h (D2 × S1)

This type of surgery is clearly self-dual.

4.2 3-Dimensional 0-Surgery and Entangled Black Holes

The process of 3-dimensional 0-surgery joins the spherical neighborhoods of two
points via a tube D1 × S2 which is one dimension higher than the one shown in
Fig. 3(2). If we consider that our initial manifold is the 3-dimensional spatial section
of the 4-dimensional spacetime, this tube is what physicists call a wormhole. A con-
nection between Falaco solitons and wormholes has been conjectured by Kiehn [8].
Our surgery description reinforces this connection. Moreover, this change of topol-
ogy, which, according to J. A. Wheeler, results from quantum fluctuations at the
Planck scale [9], can now also be viewed as a result of a ‘classical’ continuous
topological change of 3-space.

Let us now consider the ER = EPR hypothesis of Susskind [10], which says that
a wormhole is equivalent to the quantum entanglement of two concentrated masses
that each forms its own black hole. Adding this hypothesis to our description, the two
sites in space are the singularities of the two black holes, shown in red in Fig. 4(1),
which will not collapse individually but will become the ends of the wormhole,
shown in green in Fig. 4(1). We cannot visualize this process directly but it can be
understood by considering that the green arc is the coreD1 of the higher dimensional
handle D1 × D3 for the wormhole. Note that an observer in our initial 3-space M 3

would not be able to detect the topological change, which occurs across the event
horizons.

4.3 3-Dimensional 1-Surgery and Cosmic String Black Holes

The other type of 3-dimensional surgery describes a more subtle topological change.
It collapses a solid torus (which is a thickened circle) to a point and uncollapses
another solid torus in such way that the meridians are glued to the longitudes and

Fig. 4 (1) Pair of entangled
black holes (2) String of
entangled black holes
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Fig. 5 3-dimensional
1-surgery inside the event
horizon

vice-versa. This type of surgery is also called ‘knot surgery’ as the circle can be a
knot. Knot surgery is an ideal candidate for describing black holes that are formed
via the collapse of cosmic strings. This idea is based on [11] where S.W. Hawking
estimates that a fraction of cosmic string loops can collapse to a small size inside
their Schwarzschild radius. As cosmic strings are hypothetical topological defects of
small (but non-zero) diameter, a cosmic string loop can be considered as a knotted
solid torus. As described in [11], the loop collapses to a point thus creating a black
hole the center of which contains the singularity. At that point, the 3-space becomes
singular, see the passage from Fig. 5(1) to Fig. 5(2).

Our surgery description says more [12]. According to it the process doesn’t stop
at the singularity, but continues with the uncollapsing of another cosmic string loop
from the singularity, see Fig. 5(3). Thus, the creation of a cosmic string black hole
is a 3-dimensional 1-surgery that continuously changes the initial 3-space to another
3-manifold. The process goes through the singular point of the black hole without
having a singular manifold in the end. Instead, one ends up with a topologically new
universe with a local topology change in the 3-space, which happens within the event
horizon.

This type of surgery is also related to theER = EPR hypothesis. Consider a cosmic
string made of pairs of entangled concentrated masses. When each pair of masses
collapse, they become connected by a wormhole as previously shown in Fig. 4(1).
Given that all these pairs of masses have started on the same cosmic string, the
distinct wormholes merge and the entire collection of wormhole cores (the green
arcs in Fig. 4(1)) forms a 2-disc D2, see Fig. 4(2), which is the core of the higher
dimensional handle D2 × D2 containing the temporal ‘slices’ of the process. Our
surgery description generalizes having a separate Einstein-Rosen bridge for each
pair of black holes and amalgamates these bridges to form a new manifold in three
dimensions. The effect of surgery is that, from any black hole location on the cosmic
string to any other, there is a ‘bridge’ through the new 3-manifold. As this process
joins the neighborhood of a circle instead of two points, one can rotate Fig. 4(1) to
receive Fig. 4(2).

Another advantage of knot surgery is that it is able produce a great variety of
3-manifolds. In fact, according to a theorem by Wallace [1] and Lickorish [13]
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Fig. 6 Observer 1 in S3 and
Observer 2 in the Poincaré
dodecahedral space

knot surgery can create all closed, connected, orientable 3-manifolds. One such
3-manifold, which is of great interest to physicists, is the Poincaré dodecahedral
space, that has been proposed as possible shape for the geometric universe [14–16].
This manifold can be obtained by doing knot surgery on the trefoil knot (with the
right framing, see [17]). Did the shape of the universe come about via the collapse
of a trefoil cosmic string?!

Suppose there are observers in an initial spherical universe M 3 = S3 containing
a trefoil cosmic string. After surgery, a ‘mathematical’ observer would be able to
see the Poincaré dodecahedral space and detect the topology change. However, a
physical observer, who is subject to the restrictions of physical laws, would only see
towards the event horizon in which the trefoil cosmic string has collapsed. Let us call
this observer, Observer 1, see Fig. 6. After surgery, Observer 1 would see the same
universe S3, the only change being the formation of the event horizon. On the other
side of the event horizon, a new universe emerges in which new observers might
evolve. Such an observer, say Observer 2, will see a Poincaré dodecahedral space
and the event horizon from the other side, unaware that the original S3 universe is
behind it, see Fig. 6. Finding the Poincaré dodecahedral space (or some other non-
trivial 3-manifold) in our universe may indicate that we are observers that evolved
inside the event horizon of a collapsed trefoil cosmic string (or some other cosmic
string).

5 Conclusion

The surgery approach provides continuous paths towormhole and cosmic string black
hole formation. If one adds the ER = EPR hypothesis, surgery also describes the
entanglement of a pair or a string of black holes. Our topological perspective offers
a process producing black holes and new non-singular 3-manifolds from cosmic
strings, binding entanglement and the connectivity of space with the rich structure
of three- and four-dimensional manifolds.
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