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Chapter 3
Tracking India Within Precambrian 
Supercontinent Cycles

Sarbani Patranabis-Deb, Dilip Saha, and M. Santosh

Abstract  The term supercontinent generally implies grouping of formerly dispersed 
continents and/or their fragments in a close packing accounting for about 75% of 
earth’s landmass in a given interval of geologic time. The assembly and disruption 
of supercontinents rely on plate tectonic processes, and therefore, much speculation 
is involved particularly considering the debates surrounding the applicability of dif-
ferential plate motion, the key to plate tectonics during the early Precambrian. The 
presence of Precambrian orogenic belts in all major continents is often considered 
as the marker of ancient collisional or accretionary sutures, which provide us clues 
to the history of periodic assembly of ancient supercontinents. Testing of any model 
assembly/breakup depends on precise age data and paleomagnetic pole reconstruc-
tion. The record of dispersal of the continents and release of enormous stress lie in 
extensional geological features, such as rift valleys, regionally extensive flood 
basalts, granite-rhyolite terrane, anorthosite complexes, mafic dyke swarms, and 
remnants of ancient mid-oceanic ridges.

Indian shield with extensive Precambrian rock records is known to bear signa-
tures of the past supercontinents in a fragmentary manner. Vast tracts of Precambrian 
rocks exposed in peninsular India and in the Lesser Himalaya and the Shillong 
plateau further north and east provide valuable clues to global tectonic reconstruc-
tions and the geodynamics of the respective periods. The Indian shield is a mosaic 
of Archean cratonic nuclei surrounded by Proterozoic orogenic belts, which pre-
serve the records of geologic events since the Paleoarchean/Eoarchean. Here we 
discuss the sojourn of the Indian plate from the Archean through Proterozoic, in 
light of available models for supercontinent assembly and breakup in the 
Precambrian. We also discuss the issues in constraining the configuration, which is 
mainly due to scanty exposures, lack of reliable paleomagnetic poles from different 
cratons, and their time of formation or amalgamation. In this chapter, we briefly 
review Precambrian geology of India to track her participation in the making of the 
supercontinents through time.
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3.1  �Introduction

This review adopts interdisciplinary approaches to understand how the proto India 
plate moved around the globe and grew since its initial formation in the Eoarchean/
Paleoarchean till about the Eocambrian. We consider aspects of geochronology, 
geochemistry, plate kinematics, and geodynamic models, constrained by a variety 
of geological and geophysical observations published till date. India with its four 
major Archean cratons together with the Proterozoic southern granulite terrane and 
the Indian Precambrian rocks of the Lesser Himalaya constitutes a tectonic collage 
(Fig.  3.1), which records a complex history of structural and tectonic evolution. 
Paleomagnetic, geochemical, and tectonostratigraphic data establish that the 
Precambrian era was a dynamic period when several configurations of the amalga-
mation and breakup of the supercontinents occurred. Record of the dispersal of 
continents and the dynamic evolution of our planet are read from the large-scale 
expression of geological features across the continents and the study of the mantle 
underneath. Our understanding of the geodynamic evolution of the Earth developed 
over a century from the “continental drift” of Wegener (1912) to modern plate tec-
tonics through the seminal geophysical and geological input from the oceans (Hess 
1962). Many geological features, such as rift zones, continental margin depositional 
environments, calc-alkaline volcanic-plutonic belts, lithospheric sutures, and oro-
genic belts, follow from this plate motion process (Cawood et al. 2006). Following 
the plate tectonics paradigm, the concept of a huge united landmass consisting of 
most of the earth’s continental regions and surrounded by a global sea constituting 
the supercontinents gradually established itself (Dewey 1969; Rogers and Santosh 
2004; Nance and Murphy 2013). Episodic peak of collisional orogenesis, continen-
tal amalgamation, and mantle plume-related mafic dyke swarms were recognized in 
the rock record as manifestation of the supercontinent cycles. Initially, the late 
Paleozoic supercontinent of Pangaea (Wegener 1912, 1922) was rigorously defined, 
but the knowledge of Precambrian supercontinents was very vague at that point of 
time. Even the existence of early earth supercontinents was questioned by many 
scientists (Davies 1992; Stern 2007; Stern et al. 2008, 2016; Dewey 2007; Brown 
2008). With time, more research appeared wherein paleomagnetic, geochemical, 
and tectonostratigraphic data established that plate tectonics has been active since at 
least 3.1 Ga and that supercontinents played a key role in earth’s history, since its 
formation (Meert 2012; Nance et al. 2014; Meert and Santosh 2017). Deeply eroded 
ancient orogens provide insight into the hidden roots of modern orogens and offer 
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an opportunity to address the nature of the earth’s geodynamic processes and ulti-
mately earth’s history.

The Archean greenstone belts in peninsular India and elsewhere preserve some 
of the oldest terranes which are keys to the understanding of tectonic processes on 
the early earth (Jayananda et al. 2018). The supracrustal rocks in these belts often 
retain primary magmatic features and sedimentary structures, which provide us 
clues to the environment of deposition. In spite of the debate (Eriksson et al. 2004) 

Fig. 3.1  Cratonic blocks and major Proterozoic basins of peninsular India. ADMB Aravalli Delhi 
mobile belt, CB Cuddapah basin, CGGC Chotanagpur granite gneiss complex, Ch Chhattisgarh 
basin, CITZ Central Indian tectonic zone, EDC eastern Dharwar craton, EGB eastern Ghats belt, 
NFB Nallamalai fold belt, NSFB North Singhbhum fold belt, PGV Pranhita Godavari basin, SGT 
Southern granulite terrain, V, Vindhyan basin, WDC western Dharwar craton. (After Saha et al. 
2016a)
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about the modus operandi of the Precambrian plate movement and supercontinent 
formation, it is commonly considered that plate tectonics has been an active 
component of earth’s processes possibly since the formation of the first continental 
crust >4.3 Ga (Cawood et al. 2006). The plate motions are a response to heat loss 
and cooling within the earth’s interior and are also influenced by episodic emplace-
ment of mantle-derived magmas in large igneous provinces.

In this chapter, we aim to synthesize knowledge of Indian geology in the light of 
the plate tectonic reconstruction models and breakup of the Indian plate for the 
Precambrian. Furthermore, we consider the increased understanding of the Archean 
and Proterozoic tectonics within the four major cratons and the Shillong plateau; 
their relationship along the margins; large-scale tectonic features like remnant oro-
genic belts, rifts, dyke swarms, paleo-sutures, and ophiolite domains in the cratons; 
and their implications for the interpretation of plate motions and orogenesis. Though 
the northern margin of the Indian plate is subducted below the Himalayas, the 
remaining part preserves the record of the interaction between the Indian plate and 
its tectonic neighbors. The tectonic plates witnessed assembly and breakup of the 
major Precambrian supercontinents Nuna/Columbia, Rodinia, and Gondwana and 
their timings and models. Finally, we review some of the main tectonic issues and 
uncertainties, bearing on the fit of Indian cratons in one or other of these models. 
Thus, this chapter is divided into three major parts: (1) a review and discussion of 
constraints provided by the Precambrian geology of the Indian cratons and their 
margins, (2) a review and discussion of constraints provided by the Precambrian 
tectonic history of the neighboring plate margins to get the best fit, and (3) unre-
solved tectonic issues.

3.2  �Tectonic Features of Indian Cratons and Their Place 
(Status) in Models of Proterozoic Supercontinent 
Assembly and Breakup

3.2.1  �Supercontinents Through Time

The earth’s plate motion sculptures its surface with distinctive and unique features, 
which are preserved in rock record through time. It has been proposed that cooling 
of the earth’s interior due to heat loss and episodic emplacement of mantle-derived 
magma in large igneous provinces (LIP) are the main drivers of plate’s horizontal 
movement (Cawood and Pisarevsky 2006). These two mechanisms of heat loss may 
have varied through time perhaps in response to decreasing heat flow (e.g., Davies 
1999). This raises questions about the time of initiation of plate tectonic processes 
and formation of the first supercontinent. Was it very early in its history (Kröner 
1981; Ernst 1983; Sleep 1992; Smithies et al. 2003, 2005; Condie 2005; Cawood 
and Pisarevsky 2006; Dilek and Polat 2008; Turner et al. 2014; Santosh et al. 2017a) 
or considerably later (Davies 1992; Hamilton 2007, 2011; Stern 2005, 2007; Stern 
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et al. 2008, 2016; Dewey 2007; Brown 2008; Shirey and Richardson 2011)? How to 
recognize them? Substantial work has been done in this field; still, the time of 
initiation of plate tectonic processes remains debated. However, paleomagnetic, 
geochemical, and tectonostratigraphic data that are in favor of considering plate 
tectonics operating during the Precambrian and existence of supercontinents dating 
back to 3.2 Ga have been proposed (Table 3.1). The presence of ophiolites associ-
ated with island arc assemblages, occurrences of ultra-high pressure (UHP) rocks, 
and large igneous provinces dating back to the Precambrian offer us indication that 
lateral movement of lithospheric plates at divergent and convergent margins was 
operative during that time. Since our oceans are relatively new (Jurassic and 
younger), the clues to past supercontinents are not available from present ocean 
basins. Older oceanic crusts have been consumed in subduction zones. However, a 
host of geological features, such as past rift zones, continental margin depositional 
settings, calc-alkaline volcanic-plutonic belts, lithospheric sutures, and orogenic 
belts, gives us clues to the tearing apart and stitching together of the continents. The 
signatures, usually in bits and pieces from now widely separated continents, reveal 
the nature and evolutionary pattern of each of the supercontinents (e.g., Cocks and 
Torsvik 2002; Halverson et  al. 2009; Meert and Lieberman 2004; Valentine and 
Moores 1972). We look for proxies to get the idea about the plate margins and their 
changes through time. Paleomagnetic data, the correlation of orogenic belts formed 
during accretion of the supercontinents, the correlation of extensional features that 
developed when the supercontinent fragmented, and the recognition of sedimentary 
provenance across the continents are four mostly used techniques for reconstructing 
supercontinents (Rogers and Santosh 2004).

3.2.2  �Indian Scenario

The Indian tectonic plate, presently situated in the northern hemisphere, is bounded 
by four major tectonic plates, namely, the Eurasian plate to the north, the Australian 
plate to the southeast, the African plate to the southwest, and the Arabian plate to the 
west (Fig.  3.2). The northern part of the Indian plate is subducted beneath the 

Table 3.1  Precambrian 
supercontinents (after Rogers 
and Santosh 2004)

Name Age (Ga: Giga annum)

Vaalbara 3.2
Ur 3.0
Kenorland/Arctica 2.7–2.5
Nuna 2.5–1.5
Columbia (first 
coherent 
supercontinent by 
definition)

1.8–1.9

Rodinia 1.1
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Eurasian plate, but the peninsular India constituting the Precambrian Indian shield 
preserves fragmentary records of the past supercontinents. The Central Indian 
Tectonic Zone (CITZ) divides the Indian Precambrian shield into a northern tec-
tonic block and southern tectonic block, which is a collage of four Archean cratons, 
namely, Dharwar, Bastar, Singhbhum, and Aravalli–Bundelkhand, and the 
(Proterozoic) Shillong plateau in the northeast (Fig. 3.1). These cratons are com-
posed mostly of granites, gneisses, and remnants of greenstone/schist belts of the 
Archean age and the cratonic basins of the Proterozoic age which overlie the 
Archean basement (Jayananda et al. 2015, 2016, 2018; Manikyamba et al. 2017; 
Radhakrishna and Naqvi 1986; Ramakrishna and Vaidyanadhan 2008; Meert et al. 
2010; Saha and Mazumder 2012; Saha et al. 2016a). Large-scale tectonic features 
like exhumed orogen, rift basins, dyke swarms, paleo-sutures, ophiolite domains in 
the cratons, and their margins are being used as clues to unravel the history of the 
moving plates, focusing on India through time.

The Proterozoic orogenic/mobile belts rim the Archean cratons in peninsular 
India—the eastern Ghats belt and the southern granulite terrane (SGT) bordering 
the Dharwar craton and the Central Indian Tectonic Zone (CITZ) separating the 
Bundelkhand craton in the north from the southern and eastern Indian cratons, 
namely, the Bastar, Singhbhum, and Dharwar cratons. In addition, the Aravalli-
Delhi fold belt borders the western part of the Bundelkhand craton (Fig. 3.1). By the 
end of the Archean or early Proterozoic, the cratonic nuclei were possibly amalgam-
ated into a number of stable microcontinents, which coalesced to form larger conti-
nental masses. Occurrences of tonalite–trondhjemite–granodiorite (TTG) rocks, 
supracrustal rocks including Archean greenstone belts, and the late Neoarchean 

Fig. 3.2  Tectonic plates around India. The subduction zone and the divergent plate boundaries are 
marked with purple lines. Green arrows mark plate movement directions
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intrusive granitic plutons bear the signature of amalgamation (Santosh et al. 2015, 
2016; Jayananda et al. 2013, 2018). High-grade Proterozoic metamorphic belts at 
the junction of the neighboring cratons were the stitching line between them. The 
junction between the Dharwar craton and the Bastar craton is marked by the 
Karimnagar and Bhopalpatnam granulites, whereas the ultra-high-temperature 
(UHT) granulites along the Central Indian Tectonic Zone (CITZ: Bhowmik et al. 
2005; Bhowmik 2006) suture the Bundelkhand craton in northern India to Bastar 
and the adjoining blocks of southern India. In addition, the vast cratonic sedimen-
tary basins are the repositories of Proterozoic geological records roughly contempo-
raneous with the high heat-producing rocks in the surrounding orogens to its east 
and south (Collins et  al. 2007; Dobmeier and Raith 2003; Santosh et  al. 2006). 
Widespread development of the undeformed or little metamorphosed sedimentary 
successions of the Proterozoic cratonic basins (Purana successions of Holland 1909) 
of the peninsular India points to development of stable shield by the end of the 
Archean.

The stratigraphic successions of the cratonic basins of peninsular India, namely, 
the Chhattisgarh and its satellite basins in the Bastar craton; the Cuddapah, Bhima, 
and Kaladgi basins of the Dharwar craton; and the Vindhyan basin in Bundelkhand 
craton, ranging in age from the Paleoproterozoic through the Neoproterozoic, rep-
resent major cycles of sedimentation with significant similarity in development as 
well as wide variations in their depositional milieu. The depositional milieu of each 
of these major cycles is manifested in the varied facies associations, which represent 
the record of possible fluctuations in the sea level. The two key factors, namely, (1) 
epeirogenic movements in cratonic interiors and (2) changes in sea level, or combi-
nation of the two is responsible for the development of the craton interior unconfor-
mities. The unconformity bound sequences and the cyclicality pattern influenced by 
the global sea-level change curve have been used for intrabasinal correlations of the 
successions of the cratonic basins of peninsular India with an attempt to find pos-
sible tectonic links with the supercontinent cycles (Patranabis-Deb et al. 2018; Saha 
1994; Mazumder et al. 2012).

We also take up Singhbhum craton and the Shillong plateau and adjoining NE 
Himalayan belt, with its subsequent activities to resolve the geodynamic puzzle 
through geological record preserved in them.

In this contribution, we deal with the published models of the supercontinents 
through time and the place of India in the amalgamation and dispersal patterns of 
the supercontinents. The craton interior sedimentary successions and the craton 
margin fold belts which may have correlatable counterparts in other continents are 
briefly described and discussed to highlight the Precambrian dynamics of the Indian 
plate. The techniques usually used to get an understanding of the older superconti-
nents are often indirect, because of loss of older record due to subduction processes 
through ages. The overall geological framework in each craton is discussed with 
emphasis on those stratigraphic records and tectonothermal events that are region-
ally significant and provide clues to regional and tentative global correlation.
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3.3  �Precambrian Supercontinents

3.3.1  �Vaalbara: The Archean Supercontinent ~3.2 Ga

Vaalbara, the earliest supercontinent described so far, derived its name from last 
four letters of the Kaapvaal craton, now located in eastern part of South Africa and 
the Pilbara craton, presently located in north-western Australia (Fig. 3.3; Cheney 
1996). Cheney (1996) correlated these two widely dispersed continents, by compar-
ing 100–1000  m thick unconformity bound sequences, which show remarkable 
similarities in their depositional environment. Sequence stratigraphic correlation is 
supported by the paleomagnetic data (Zegers et al. 1998; Strik et al. 2003) and chro-
nostratigraphic data (Zegers and Ocampo 2003), which placed Vaalbara to be the 
earth’s earliest craton. Further, it has been noted that the oldest impact-related lay-
ers, dated as ca. 3470 Ma, are recognized within greenstone sequences of these two 
cratons (Byerly et al. 2002). Though the existence of this 3.6–3.2 Ga continent can-
not be unequivocally proven and debate about the existence of Vaalbara still per-
sists, it matches chronologically with the volcano-sedimentary succession of the 
Dharwar greenstone belts of peninsular India. 3.5–3.0  Ga age for the Sargur 
Supergroup (Nutman et al. 1992; Peucat et al. 1995; Jayananda et al. 2008; Lancaster 
et al. 2015) and 3.0–2.7 Ga for the Dharwar Supergroup (Taylor et al. 1986; Kumar 
et al. 1996; Nutman et al. 1996; Jayananda et al. 2000, 2013), which led us to rethink 
about India’s participation during the making of Vaalbara as the nearest neighbor. 
However, recent study by Jayananda et al. (2018) shows that the Archean geological 
history and crust-forming events of the Dharwar craton are correlatable with the 
Bundelkhand craton in central India, Pilbara and Yilgarn cratons in western 
Australia, and Kaapvaal and Tanzania cratons in southern Africa. More research and 
authenticated data are still needed to confirm the participation of the Archean green-
stone belts that were subsequently spread out across Gondwana and Laurasia.

Kapval 
craton

South 
Africa

Zimbabwe

Pilbara 
craton

Australia

Fig. 3.3  The earth’s 
earliest known 
supercontinent Vaalbara, 
formed around 
3.3 billion years ago. 
Vaalbara connects South 
Africa’s Kaapval craton 
and Australian Pilbara 
craton
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3.3.2  �Ur: The Archean Supercontinent ~3 Ga

“Ur,” meaning “original” in German, signifies the oldest craton, which possibly 
formed a core for a continental block as late as 1.8 Ga (Rogers and Santosh 2004). 
Ur supercontinent formed at ~3.0 Ga and accreted to the greater part of the east 
Antarctica in the middle Proterozoic to form east Gondwana (Rogers 1996). Initial 
configuration of Ur (Fig. 3.4) was proposed by Rogers (1993, 1996) which included 
the Kaapvaal craton of South Africa; the Madagascar, west Dharwar, Bhandara 
(Bastar), and Singhbhum cratons of India; and the Pilbara craton of Australia. Later 
on, parts of small cratons from east Antarctica, namely, Dronning Maud Land, 
Napier, Vestfold, and Yilgarn from Australia, were added to form expanded Ur 
supercontinent (Rogers and Santosh 2004). The correlation was based mostly from 
available age and roughly similar history of the origin and development of the cra-
tons which actively took part in the amalgamation process to form Ur (Barley 1993; 
Blewett 2002; Jayananda et al. 2000, 2018; Mazumder et al. 2000; Goswami et al. 
1995). However, tests of existence of “Ur” and specific correlation of the rocks from 
each of the cratons are very difficult because of its age, and hence large uncertain-
ties remain.

Fig. 3.4  Maps of “Ur” and “expanded Ur” at 3.0 Ga (Rogers and Santosh 2004). Symbols desig-
nate the following cratons: KA, Kaapvaal; MA, Madagascar; DH, Dharwar (west and east); BH, 
Bhandara (Bastar); SI, Singhbhum, DM, Dronning Maud Land; NP, Napier; VE, Vestfold; YI, 
Yilgarn; ZI, Zimbabwe; PI, Pilbara. Subsequent growth of Ur occurred to form the East Gondwana 
landmass
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Recent studies also suggest that the cratonic fragments of late Archean conti-
nents embedded in younger continents are part of the supercraton Superia (Bleeker 
2003). The supercraton derived its name from the Superior craton, which represents 
one of the larger and better preserved fragments and occupies the central piece of 
supercraton Superia. Based on their paleomagnetic interpretation, Bleeker et  al. 
(2008) argue that the Kaapvaal, Superior, and Wyoming were the nearest neighbors 
in supercraton Superia, representing the fragment that originated from the reentrant 
to the southwest of a combined Superior-Wyoming.

3.3.3  �Arctica/Kenorland ~2.7–2.5 Ga

North America and Siberian cratons were considered to be part of a large continent, 
which was named as Arctica (~2.7 Ga), because of the presence of Arctic Ocean 
through them. However, Arctica’s position against North America is debatable. A 
group of scientists, in their reconstruction placed Siberia against the northern mar-
gin of N. America (Condie and Rosen 1994), while the others placed it along the 
western edge of North America (Sears and Price 2000, 2003). Secondly, history of 
the cratons in the Canadian Shield was not matching with the proposed reconstruc-
tion of Arctica. Williams et al. (1991) proposed the name “Kenorland” for the super-
continent at ~2.5 Ga, which encompasses Canadian cratons of Arctica. This study 
with detailed analysis of six thematic tectonic maps was used to comment on the 
makeup of the North American continent. They have also suggested that essentially 
similar plate tectonic processes controlled continental breakup and assembly from 
the Archean onwards, albeit with gradual increase in size of continental lithospheric 
plates and quantitative change in other parameters such as heat flow and character 
of the mantle (Williams et al. 1991). It has been suggested, but it was also ques-
tioned later that Kenorland underwent widespread rifting and collision along Trans-
Hudson orogeny and Taltson magmatic belt between 1.9 and 1.8  Ga time 
interval (Fig. 3.5; Rogers and Santosh 2004). The breakup of Kenorland was con-
temporaneous with the glaciation event which persisted for up to 60 million years. 
The timing also matches with the atmospheric changes and rise in oxygen level and 
formation of habitable earth. The banded iron formations (BIF) also show their 
worldwide acme in development in this period, thus indicating a massive increase in 
oxygen buildup from an estimated 0.1% of the atmosphere to about 1% (see 
Hashizume et al. 2016). The alternate silica- and iron-rich laminae of banded iron 
formations (BIFs) are thought to reflect the dynamics of the paleo-environments and 
point to biological influence during 2.7–2.9 Ga on BIF (Hashizume et al. 2016).

Despite many persisting problems about the timing and assembly of Kenorland, 
it is accepted that by Middle Proterozoic, it took active part and grew up to be part 
of the supercontinent Rodinia at ~1  Ga (Bowring and Grotzinger 1992). 
Comprehensive stratigraphic and geochronologic investigation of early Proterozoic 
sedimentary basins related to Wopmay and Thelon orogens located in the northwest 
Canadian shield indicates that the duration of the passive margin sedimentation in 
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the Wopmay province was of the order of 80–90 Ma, which is in contrast with the 
earlier notion of about 10 Ma (Bowring and Grotzinger 1992).

3.3.4  �Nuna/Columbia ~2.5–1.5 Ga

Hoffman (1997) proposed the name “Nuna” for their reconstruction of a giant con-
tinent which involved the lands bordering the northern oceans, namely, Laurentia, 
Baltica, and, to a lesser extent, the Angara craton of Siberia. This was not very dif-
ferent from the “Nena” as proposed by Gower et al. (1990). Careful examination 
made by Meert (2012) revealed that although “Nuna” was published prior to 
“Columbia,” the “Nuna” proposal in terms of the configuration of the giant conti-
nent does not fit well. Therefore, the proposal is made that “Columbia” consists of 
several core elements one of which is “Nuna” (Meert 2002; Meert and Santosh 
2017). Rogers and Santosh (2002) proposed the name Columbia (Fig. 3.6a) for the 
Paleo-Mesoproterozoic supercontinent, where the Archean to Paleoproterozoic cra-
tonic blocks were welded by the global 2.1–1.8 Ga collisional belts, with signatures 
of extreme metamorphism (Santosh et al. 2006). Columbia supercontinent was the 
first coherent supercontinent by definition, which contains nearly all of the earth’s 
continental blocks at some time between 1.9 and 1.5 Ga. In the initial configuration 
of Rogers and Santosh (2002), South Africa, Madagascar, India, Australia, and 
attached parts of Antarctica are placed adjacent to the western margin of North 
America, whereas Greenland, Baltica (Northern Europe), and Siberia are positioned 

Fig. 3.5  Map of Kenorland (after Rogers and Santosh 2004). Major post-Archaean orogenic belts 
are named in bold. THO stands for the Trans-Hudson Orogen
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adjacent to the northern margin of North America, and South America is placed 
against West Africa. In the same year (2002), Zhao et al. (2002) proposed an alterna-
tive configuration of Columbia, in which the fits of Baltica and Siberia with 
Laurentia and the fit of South America with West Africa are similar to that of the 
configuration proposed by Rogers and Santosh (2002), whereas the fits of India, 
East Antarctica, South Africa, and Australia with Laurentia are similar to their cor-
responding fits in the configuration of Rodinia. Zhao et al. (2002) proposed that the 
assembly of the supercontinent Columbia was completed by global-scale collisional 
events during 2.1–1.8 Ga, considering lithostratigraphic, tectonothermal, geochro-
nological, and paleomagnetic data from around the world. India played a key role in 
the configuration of the Columbia. The South and North Indian Blocks were amal-
gamated along the Central Indian Tectonic Zone (Deshmukh et al. 2017); and the 
Eastern and Western Blocks of the North China Craton were welded together by 
~1.85 Ga Trans-North China Orogen (Deshmukh et al. 2017; Naganjaneyulu and 

Fig. 3.6  (a) “Columbia” fit of Rogers and Santosh (2002) showing the approximate relationship 
between the various elements comprising the supercontinent without considering a specific map 
projection such that the continents are distorted. The dashed outline shows the “Nuna” core within 
the Columbia supercontinent, (b) a simplified image of the “Columbia” supercontinent according 
to Zhao et al. (2004), and (c) “Columbia” at 1.5 Ga using slightly modified rotation parameters 
(Laurentia fixed) originally given in Meert (2002) to approximate the Rogers and Santosh (2002) 
archetypal fit. Laurentia, along with all the other elements, is then rotated according to the ~1.5 Ga 
St. Francois mountains pole of Meert and Stuckey (2002)
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Santosh 2010). The existence of Columbia is consistent with late Paleoproterozoic 
to Mesoproterozoic sedimentary and magmatic records. Following its final assem-
bly at ca. 1.82 Ga, the supercontinent Columbia underwent long-lived (1.82–1.5 Ga), 
subduction-related growth via accretion at key continental margins, forming at 
1.82–1.5  Ga great magmatic accretionary belt (Condie 2002; Zhao et  al. 2002, 
2004; Rogers and Santosh 2004). In a recent study, Evans and Mitchell (2011) pro-
vided an update on the assembly and breakup of the center of Nuna, between 
Laurentia, Baltica, and Siberia. They have used Nuna and Columbia as equivalent 
terms for their study and used very precise paleomagnetic results from ten sites of 
acid volcanic rocks from North China, and from Australia, India, and Amazonia, to 
examine the positions of these continental blocks in Nuna. Evans and Mitchell 
(2011) proposed Laurentia–Baltica–Siberia connection for the bulk of Nuna (also 
known as Columbia) on the basis of paleomagnetic and geologic studies. Nuna 
reconstruction, constrained by the updated global paleomagnetic dataset, is also 
consistent with key geological features including the ca. 1.8 Ga orogenic belts. The 
Mesoproterozoic global intraplate extensional basins and large igneous province 
(LIP) record were possibly related to the breakup of Nuna. The breakup of Nuna 
may have commenced after ca. 1.4 Ga, but available paleomagnetic data are not yet 
complete enough to allow a more precise depiction of Nuna’s fragmentation. Models 
available for the breakup of Columbia indicate that it began to fragment about 
1.5–1.35  Ga, associated with continental rifting along the western margin of 
Laurentia (Belt-Purcell Supergroup) (Zhao et al. 2004, James et al. 2015), eastern 
India (Godavari Supergroup), southern margin of Baltica (Telemark Supergroup), 
southeastern margin of Siberia (Riphean aulacogens), northwestern margin of South 
Africa (Kalahari Copper Belt), and northern margin of the North China Block 
(Zhaertai-Bayan Obo Belt). The fragmentation corresponded with widespread 
anorogenic magmatic activity, forming anorthosite-mangerite-charnockite-granite 
(AMCG) suite in North America, Baltica, Amazonia, and North China, and contin-
ued until the final breakup of the supercontinent at about 1.3–1.2 Ga, marked by the 
emplacement of the 1.27 Ga Mackenzie and 1.24 Ga Sudbury mafic dyke swarms in 
North America (Zhao et al. 2004). Other dyke swarms associated with extensional 
tectonics and the breakup of Columbia include the Satakunta-Ulvö dyke swarm 
in  Fennoscandia and the Galiwinku dyke swarm in Australia. Very recently,  
Hou et al. (2008) proposed the new configuration of the Columbia supercontinent 
on the basis of giant radiating dike swarms.

3.3.5  �Rodinia

Valentine and Moores (1970) were probably the first to recognize a Precambrian 
supercontinent, which they named “Pangaea I.” McMenamin and McMenamin, in 
the 1990s, renamed it as Rodinia and proposed temporal framework for the super-
continent, which reached its maximum packing at around 1.0 Ga. The name Rodinia 
was derived from the Russian word rodít meaning “to beget” or “to give birth” and 
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proposed plausible reconstruction which involved two Neoproterozoic continents 
(east Gondwana and west Gondwana) that were derived from the breakup of an 
older supercontinent Columbia (Rogers and Santosh 2004; Yoshida et al. 2003).

Following Powell et al.’s (1993) work, Rodinia became the dominant name used 
to refer to a wide variety of Neoproterozoic supercontinental reconstructions (see 
also Torsvik et al. 1996; Weil et al. 1998; Meert and Torsvik 2003; Li et al. 2008). 
Rodinia was assembled through worldwide orogenic events between 1300 and 
900 Ma, with all, or virtually all, the then existing continental blocks likely being 
involved. Reports of major orogenic events at around 1.0 Ga from many parts of the 
world coincide with the maximum packing of Rodinia. Rodinia is the superconti-
nent that gave birth to all subsequent continents, and its continental shelves were the 
cradle of earliest animals (McMenamin and McMenamin 1990). Increased volcanic 
activity of the period also introduced into the marine environment biologically 
active nutrients, which may have played a significant role in the development of the 
earliest animals. The corresponding superocean surrounding Rodinia is called 
Mirovoi (McMenamin and McMenamin 1990). Till recent years, different models 
of reconstruction of Rodinia are put forward matching Grenvillian age belts 
(~1.0 Ga), where the configuration of the core cratons remains the same, but differ 
in many details. Dalziel (1991), Hoffman (1991), and Moores (1991) were among 
the pioneering workers who proposed this Precambrian supercontinent model by 
integrating geological evidence with paleomagnetic data. Most commonly referred 
model is that by Hoffman (1991), which included blocks surrounding Laurentia and 
attached East Antarctica and western North America along a series of Grenville age 
belt (Fig. 3.7). The assembly process features the accretion or collision of continen-
tal blocks around the margin of Laurentia. Meert (2001) proposed similar recon-
struction for Rodinia, integrating geological evidence with Paleomagnetic data. 
Principally, these reconstructions matched the east coast of Australia-Antarctica 
with the west coast of Laurentia. Hoffman (1991) proposed that all Grenvillian belts 
are zones of ocean closure between continental blocks. It is also consistent with 
juxtaposition of Southwest North America and East Antarctica (Dalziel 1991), 
referred to as SWEAT hypothesis, proposed by Moores (1991). Wingate et  al. 
(2002) proposed an AUSMEX connection where Australia and Mexico were adja-
cent to each other or AUSWUS, where Australia was placed against North America 
leaving room for Siberia to be joined to western Canada as proposed by Sears and 
Price (2003). Brookfield (1993), Karlstrom et  al. (1999), and Burrett and Berry 
(2000, 2002) proposed a configuration for one part of Rodinia, which is different 
from the Rodinia proposed by Hoffman (1991). Merdith et al. (2017) points out that 
the existing models predict less subduction (ca. 90%) with respect to what we see 
on the modern Earth. This confusion led them to adopt conservative model, which 
shows notable departures of previous Rodinia reconstruction models, where India 
and South China were omitted from Rodinia completely, due to long-lived subduc-
tion preserved on the margins of India and conflicting paleomagnetic data for the 
Late Neoproterozoic, such that these two cratons act as “lonely wanderers” for 
much of the Neoproterozoic.
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Fragmentation of the supercontinent is recorded in Neoproterozoic rift and pas-
sive margin successions, as it broke apart (Burke and Dewey 1973; Bond et  al. 
1984; Dalziel 1991; Hoffman 1991; Powell et al. 1993, 1995). After the assembly of 
bulk of Rodinia, it moved to the higher latitudes and then returned toward equato-
rial–mid latitudes by ca. 800–825 Ma, with Laurentia occupying a low–mid latitude 
position and Australia-Antarctica and Siberia lying on the equator. The breakup of 
Rodinia started about this time resulting with the opening of the Proto-Pacific Ocean 
between Australia-Antarctica-Tarim and Laurentia. The spreading system separat-
ing Laurentia and Australia likely extended further north and is inferred to be the 
spreading ridge associated with Siberia’s dextral movement against Laurentia 
between 800 and 700 Ma (Pisarevsky et al. 2013). Mantle avalanches, caused by the 
sinking of stagnated slabs accumulated at the mantle transition zone surrounding 
the supercontinent, plus thermal insulation by the supercontinent, led to the forma-
tion of a mantle superplume beneath Rodinia, 40–60 million years after the comple-
tion of its assembly. Different models for breakup of Rodinia are available, but 
many disparities still exist, leaving space for further revision of the models with 

Fig. 3.7  “Rodinia at about 700 Ma” (after Hoffman 1991). Orange shows Grenville age mountain 
belts, and yellow shows preexisting mountain belt
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high precision data. However, it is generally accepted that widespread continental 
rifting between 825 and 740  Ma, with episodic plume events at 825, 780, and 
750 Ma separated the continents (Rogers and Santosh 2004).

Rodinia broke apart, and its successor, Gondwana, began to amalgamate (Meert 
2003; Boger and Miller 2004; Collins and Pisarevsky 2005) in four stages between 
825 and 550 Ma (Bogdanova et al. 2008; Li et al. 2008). There is an overlap between 
the last stage of Rodinia amalgamation in geological records of one continent and 
the first stage of breakup in another continent, which implies that the record of time 
of amalgamation and breakup of this supercontinent vary between continents. 
Consequences of rifting are best recorded in North America being the central part of 
Rodinia. Rifting between the Amazonia craton and the southeastern margin of 
Laurentia started at approximately the same time, but only led to breakup after ca. 
600  Ma. By this time, most of the western Gondwanan continents had joined 
together, although the formation of Gondwanaland was not complete until ca. 
530 Ma. In the interval 650–550 Ma, several events overlapped: the opening of the 
Iapetus Ocean; the closure of the Braziliano, Adamastor, and Mozambique oceans; 
and the Pan-African orogeny, resulting in the formation of Gondwana.

3.4  �Dynamics and Evolutionary Perspectives

3.4.1  �Role of Indian Shield

The Precambrian era is very important and crucial because of many reasons, among 
which most important is the transition from an inhabitable earth to development of 
soft bodied, multicellular creatures. Numerous models of the wandering plates are 
being proposed since the widespread acceptance of the plate tectonic paradigm. The 
long-term trends and variations in mantle dynamics are preserved in rock record 
(e.g., Tackley 2000), faunal diversity and evolutionary patterns, distribution of ore 
deposits (e.g., Barley and Groves 1992; Bierlein et al. 2009; Butterworth et al. 2016; 
Meyer 1988; Pehrsson et  al. 2016), seawater chemistry (Halverson et  al. 2007; 
Hardie 1996), paleogeography, and climate (Hoffman et al. 1998; Kirschvink 1992). 
In this section, we will be looking at how the Indian cratons fit, if at all, in one or 
other of the available models of the assembly and breakup of the supercontinents 
and discuss about the unresolved issues and future directions.

In the following section, we discuss the events preserved in the rock records of 
Indian Peninsula in light of assembly and dispersal of the proposed supercontinents. 
Models for the supercontinents often rely on the history of orogenic belts within the 
continents and their nearest match to the other continent (matching piercing points). 
Accretion and dispersal of the slabs or continental blocks take place due to mantle 
convection. Supercontinents possibly accrete above the down going limb of very 
large convection cells and disperse above rising convection cells (Runcorn 1962; 
Rogers and Santosh 2004).
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3.4.2  �Vaalbara

The 3.2 Ga supercontinent’s existence is still in doubt, but the time frame and the 
greenstone succession match with some of the data from peninsular India, namely, 
the 3.5–3.0  Ga depositional age of the volcano-sedimentary successions of the 
Sargur Group, Dharwar craton (Jayananda et  al. 2008, 2018), the Sonakhan 
Greenstone belt of Bastar craton (Das et al. 2009; Saha et al. 2000), and the Iron Ore 
Group of Gorumahisani–Badampahar area of Singhbhum craton (Mazumder et al. 
2012; Mukhopadhyay et al. 2008). The stratigraphic history and the paleomagnetic 
data, the latter as yet unknown, of the Neoarchean–Paleoproterozoic greenstone 
belts from peninsular India might throw some light on India’s participation during 
the formation of the Vaalbara supercontinent (de Kock et al. 2009). The recently 
reported 3.2–3.5 Ga ages from arc-type magmatism and continental growth within 
the Coorg Block in southern India (Santosh et al. 2016) might also provide evidence 
for the existence of one of the cores of Vaalbara within Peninsular India.

3.4.3  �Ur

Ur, the supercontinent which stabilized at 3.0 Ga, has records of India’s active par-
ticipation. Dharwar, Singhbhum, and Bastar cratons (Figs. 3.1 and 3.4) formed the 
central part of Ur and were connected with Kaapval craton of South Africa in the 
west, Pilbara to the southeast and Napier, Vestfold and Dronning Maud Land of East 
Antarctica to the south. The reconstruction was done mainly on the basis of the 
available dates. Emplacement ages of the Singhbhum granite show wide range start-
ing from 3.3 to 3.1 Ga (Saha 1994; Reddy et al. 2009). Older Metamorphic Tonalite 
Gneiss (OMTG) was dated to be 3.4 (Moorbath and Taylor 1988) and 3.5  Ga 
(Acharyya 2005). Saha (1994) reported 3.8  Ga for Older Metamorphic Group 
(OMG) and 3.3 Ga by Sharma et al. (1994) for the same Group. Mukhopadhyay 
et al. (2008) assigned 3.55 Ga sedimentation age for the Iron Ore Group, Daitari 
basin, representing the oldest shelf sedimentation in eastern India. On the other 
hand, the western Dharwar craton consists of 3.3–3.0 Ga old tonalite–trondhjemite–
granodiorite (TTG) rocks (Jayananda et al. 2000, 2013, 2015; Chardon et al. 2011; 
Guitreau et al. 2017; Maibam et al. 2016; Ishwar-Kumar et al. 2013). Peninsular 
Gneiss, with enclaves of greenstone belts of the Sargur Group, was reported by 
Naha et al. (1991), which ranges in age between 3.3 and 3.1 Ga (Jayananda et al. 
2015; Meert et al. 2010). The Bastar craton includes TTG and greenstones about 
3.5 Ga age (Sarkar et al. 1993).

Mahapatro et  al. (2012), Misra and Gupta (2014), Bose et  al. (2016a), 
Chattopadhyay et al. (2015a, b), and Ghosh et al. (2016) are among the recent work-
ers in the eastern Ghats belt, who suggested that the time of juxtaposition of Rengali 
province against the Eastern Ghats or its connection with the Bastar craton to be 
Late Archean in age. They correlated the granulite facies metamorphism, from one 
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domain of the eastern Ghats belt with the thermal pulses in the Singhbhum craton 
and suggested possible connection with the assembly of the Archean supercontinent 
“Ur” (Mahapatro et  al. 2012). Alternative hypothesis by Chattopadhyay et  al. 
(2015a, b) suggests ~0.98 Ga amphibolite facies metamorphism and transpression 
of Rengali at ~0.5 Ga. Whether juxtaposition of the Rengali province with the east-
ern Ghats occurred during the Grenvillian orogeny (Chattopadhyay et al. 2015a, b) 
or Pan African orogeny (Ghosh et al. 2016) is a matter of debate, and additional data 
is needed to resolve it.

Despite the fact that Dharwar, Bhandara (Bastar), and Singhbhum cratons of 
peninsular India give overlapping age, the tests of the existence of Ur and the place 
of India in it are yet to emerge, because of its old age and limited outcrop. However, 
there is scope for better understanding by identification of similar depositional his-
tory and recognition of unconformity bound sequences within the greenstone suc-
cession, supported by paleomagnetic and geochronologic data.

3.4.4  �Kenorland

The role of Indian shield in the formation of Kenorland is not known yet, but 
recently published data from Indian Paleoproterozoic orogenic belts suggest some 
connection in making up the supercontinent as against the common notion of global 
tectonic quiescence at 2.6–2.4 Ga (Condie et al. 2011; Mazumder et al. 2012).

3.4.5  �Columbia Supercontinent

The Columbia is still believed to be the first coherent supercontinent which con-
tained nearly all of earth’s continental blocks at some point of time between 1.9 and 
1.5 Ga. During amalgamation around ~1.9–1.8 Ga (Rogers and Santosh 2002), the 
eastern India, Australia, and Antarctica were sutured to western North America 
(Rogers and Santosh 2004) and finally to the main landmass stated above. Zhao 
et al. (2004) put forward a different model with slight deviation from the original 
model proposed by Rogers and Santosh (2002). In his model, North China is 
attached to India with Trans-North China Orogen connected to central India 
(Fig. 3.6b).

Ramakrishna and Vaidyanadhan (2008) proposed that the small outcrop of 
Proterozoic basement gneisses and deformed metasedimentary rock groups of the 
Shillong plateau may be considered as part of the Indian craton. Rb-Sr method of 
dating gave ~1.7 Ga age for the gneissic basement complex of the plateau (Ghosh 
et  al. 1994), while Yin et  al. (2010) assigned 1.6  Ga migmatization age for the 
Shillong–Meghalaya basement gneissic complex. Based on the age distribution of 
detrital zircon population, Yin et al. (2010) concluded that the Shillong Group is 

S. Patranabis-Deb et al.



123

possibly younger than 1100  Ma (see also Chatterjee et  al. 2007; cf. Mitra and 
Mitra 2001).

The Lesser Himalayan augen gneisses (Bomdila gneiss) in Arunachal Pradesh, 
intruded into the phyllite–quartzite succession of the Bomdila Group, yield ages of 
1.76–1.74  Ga (Yin et  al. 2010). Paleoproterozoic sedimentation in the Lesser 
Himalaya may be broadly contemporaneous with the lower Vindhyan (Semri 
Group) sedimentation in the Aravalli–Bundelkhand craton, or similar elements pre-
served in the Mahakoshal belt or the Chotanagpur Granite Gneiss terrane (see 
Ramakrishna and Vaidyanadhan 2008). On the whole, the available evidence sug-
gests that the amalgamation of the Shillong plateau basement with the rest of the 
Indian craton is a late Paleoproterozoic–Mesoproterozoic phenomenon, which cor-
responds to the amalgamation of Columbia supercontinent. However, no data on 
paleomagnetism is available, so the validity is still untested.

3.4.6  �Imprints in the Aravalli–Bundelkhand Craton

Aravalli–Bundelkhand craton (ABC), situated in the north of the Central Indian 
Tectonic Zone (CITZ), preserves continuous record of deposition, deformation and 
cratonization starting from 3.3 to 0.5 Ga. Our description will be limited within 
1.9–1.4 Ga events that coincide with amalgamation of Columbia supercontinent. 
The geophysical data of the craton indicate that the Aravalli–Bundelkhand craton 
constitutes the basement beneath the Lesser Himalayan successions and the 
Quaternary alluvium of the Indo-Gangetic plain (Kailasam 1976). About 700 km 
long NE-SW trending Aravalli-Delhi Orogenic Belt (ADOB) marks the NW border 
of the Aravalli–Bundelkhand craton, with Paleo–Mesoproterozoic deposition of the 
volcano-sedimentary successions (Choudhary et al. 1984). Compilation of petro-
logical, geochemical, and geological investigations reveals that ADOB is a mosaic 
of geological terrane, juxtaposed against each other, separated by crustal scale shear 
zones (Gupta 1934; Heron 1953; Roy and Jakhar 2002; Ramakrishna and 
Vaidyanadhan 2008). These major ductile shear zones represent either Proterozoic 
sutures or ophiolite melange zones (Sinha-Roy et al. 1995).

The Paleoproterozoic Aravalli fold belt is generally considered to be separated 
from the Mesoproterozoic Delhi fold belt by a tectonic contact (Gupta 2004; Deb 
et al. 2001). Emplacement of syntectonic granitic plutons, namely, Darwal granite 
or Amet granite at ~1.8 Ga, has been linked with the early deformation of Aravalli 
Supergroup (Sharma 2009). Similarly, the protolith of the Anasagar Granite Gneiss 
was emplaced within supracrustal metasedimentary rocks (Aravalli Supergroup) at 
around 1.85  Ga (Mukhopadhyay et  al. 2000; Chattopadhyay et  al. 2012). Buick 
et al. (2006) assign granulite metamorphism age to be 1.72 Ga for the Sandmata 
complex. The Central Indian Tectonic Zone (CITZ) records ~1.8 Ga closure of the 
northern and southern tectonic blocks (Acharyya and Roy 2000). Harris (1993) 
compared the tectonothermal history of CITZ with the Albany belt of Australia.
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The chronological data obtained from the cratonic basin sedimentary succession 
of the Son Valley Vindhyan record ~1.72 Ga age for the oldest sediments and 1.6 Ga 
for the youngest rocks in the basin (Ray et al. 2002; Sarangi et al. 2004; Ray 2006). 
However, Malone et al. (2008) proposed 1000–1070 Ma age for the Upper Vindhyan 
on the basis of detrital zircon analysis of the Upper Bhander sandstones. This clearly 
indicates that the craton margin orogenic activity coincides with basin formation in 
the craton interior. The basin filling succession keeps record of the eroded past, and 
they should be taken care of during supercontinent reconstructions.

3.4.7  �Dharwar Craton

The term Dharwar craton was introduced by the Geological Survey of India in 1978 
(cf. Radhakrishna and Vaidyanadhan 1997), to accommodate Dharwar Supergroup 
which includes the “Dharwar greenstone granite” and “Sargur Schist complex.” On 
the basis of major differences in lithology and ages of rock units, a dividing line, 
along a steeply dipping mylonite zone (Chitradurga shear zone) (Nutman et  al. 
1992; Kaila et al. 1979) and the Closepet granite (Ramakrishna and Vaidyanadhan 
2008), was proposed to divide the craton into Eastern Dharwar craton and Western 
Dharwar craton (Fig. 3.1). More recent studies show that the craton contains three 
microblocks with independent thermal records and accretionary histories, which 
amalgamated into cratonic framework ca. 2.56 Ga (Peucat et al. 2013; Jayananda 
et al. 2013, 2018). The craton is bordered to the south by the Pan-African Pandyan 
mobile belt, also referred to as the southern granulite terrane (Ramakrishna and 
Vaidyanadhan 2008). The northeastern fringe is marked by the Pranhita–Godavari 
(PG) Valley rift, and the Deccan basalts cover its northern fringes, where the 
Proterozoic Bhima and Kaladgi basins occur (Fig.  3.1). Intracratonic Cuddapah 
basin, ranging in age from the Paleoproterozoic to the Neoproterozoic, occurs in the 
East Dharwar craton. 5–6 km thick sedimentary succession in the basin with occa-
sional interruption by magmatism holds clue to the happenings during the 
Proterozoic time. They also preserve record of the changing provenance through 
time. Paleoproterozoic–Mesoproterozoic tectonic development of the Indian shield 
is well preserved in the orogenic belt along the eastern margin of the Dharwar cra-
ton (Saha et al. 2010). The high grade Eastern Ghats belt, the Nellore schist belt 
with remnants of ocean plate stratigraphy, and the Nallamalai fold belt with their 
Paleoproterzoic to Neoproterozoic tectonic history are important in constraining the 
craton and subsequently the supercontinent development (Saha 2002, 2011; Saha 
and Chakraborty 2003; Saha et al. 2016b). 1.9 Ga mafic dykes and sills (French 
et al. 2008) of Dharwar craton mark extension and initiation of sedimentation in the 
cratonic basins of Dharwar. The interval, 1.5–1.1 Ga, marks wide emplacement of 
kimberlites/lamproites (Osborne et al. 2011) in Indian shield, pointing toward a link 
with global extensional episode. The hypothesis of an approximately 1900 Ma old 
large igneous province (French et al. 2008) incorporating the Cuddapah dykes, that 
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is, those occurring in the basement (Dharwar batholith), is yet to be tested properly 
with data from other continental fragments.

3.4.8  �Ongole Domain: EGMB

There are recent suggestions of the Paleoproterozoic to the Mesoproterozoic ances-
try of the Ongole Domain of the southern eastern Ghats belt (Henderson et al. 2014; 
Sarkar et  al. 2014). They have proposed that the sedimentary and igneous rocks 
showing granulite facies metamorphism preserve fundamental clues to the recon-
struction of Columbia. Approximately 1850–1750 Ma LA ICP-MS age of detrital 
zircons from the sedimentary protoliths constrains the timing of deposition, which 
can be correlated with detritus from the Napier complex and the North Australian 
craton to a lesser extent North China Craton. Dasgupta et al. (2013) discussed about 
the tectonic evolution of the domain and suggested it to be part of accretionary belt 
of Columbia between Napier and Dharwar blocks at about 1.8–1.6 Ga. Conflicting 
views prevail regarding the source of the sediments. Sarkar et al. (2014) suggest the 
provenance was from the present geographic west, i.e., the Dharwar craton, while 
Henderson et  al. (2014) preferred easterly source from the Napier complex. The 
final collisional episode between Indian and east Antarctic blocks in keeping with 
its record of high-pressure metamorphism at ca. 1.54 Ga (Sarkar and Schenk 2014; 
Sarkar et al. 2014) is also considered as cratonization age of the Ongole Domain.

3.4.9  �Mahakoshal Belt

Mahakoshal belt (MB), the northernmost of the supracrustal belt of Central Indian 
Tectonic Zone (CITZ), records the emplacement of late to post-tectonic granitoid 
bodies and associated mafic microgranular enclaves (MME), some of which gave 
robust date between 1.76 and 1.75  Ga by U-Pb SHRIMP zircon geochronology 
(Bora et al. 2013). The emplacement age of the plutons fits well with continental 
collision during the assembly of Columbia (Bora and Kumar 2015). The collision 
was followed by mantle plume activity, with lithospheric thinning and rifting of the 
Mahakoshal belt, which is tentatively constrained at ca. 1.6 Ga (Srivastava 2013). 
The volcanic sequence and the sediments are in general intercalated in the MB, 
where the volcanic rocks are mostly tholeiitic in composition, and occur in associa-
tion with gabbros, dunite, and pyroxenite, representing platform volcanism (Roy 
et al. 2000).
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3.4.10  �Southern Granulite Terrane

It is now becoming increasingly evident that a large part of the crustal basement 
south of the Palghat-Cauvery Suture Zone in the southern granulite terrane, up to 
the tip of the peninsula, comprises Paleoproterozoic rocks generated in arc mag-
matic setting (Yellappa et  al. 2010). The basements of the central and southern 
Madurai Blocks and the Trivandrum and Nagercoil Blocks are now known to be 
widely composed of Paleoproterozoic (ca. 2.0–1.8 Ga) rocks (e.g., Kroner et  al. 
2015; Santosh et al. 2017b). Thus, it is possible that large parts of the southernmost 
part of India were part of the Columbia supercontinent.

3.5  �Breakup of Columbia

It has been generally accepted that the demise of the supercontinent Columbia 
started at around 1.5  Ga (Rogers and Santosh 2002). The signatures of the 
Mesoproterozoic rifting are well preserved throughout the world. Rogers and 
Santosh (2002) correlated the Mahanadi-Lambert and Godavari rifts of India with 
the Belt and Uinta rifts of North America, respectively, thus placing India against 
western North America in Columbia (Fig. 3.8). Eastern India preserves remnants of 
~1.5 Ga granite-rhyolite in the rifts and marginal basins at initial phase of rifting, 
comparable with granite-rhyolite terrane of type area, namely, central and south-
western United States (Anderson and Morrison 1992; Anderson and Cullers 1999).

3.6  �Breakup of Rodinia

The world experienced major orogenies around the period ~1.0 Ga, commonly cor-
related with the Grenville orogeny in Canada. The Grenville orogeny and its cor-
relatives across the world hold the key to the reconstruction of the supercontinent 
Rodinia. Since the early Neoproterozoic, tectonic geography was dominated by the 
formation of the supercontinent Rodinia, its breakup, and the subsequent amalga-
mation of Gondwana. We discuss the Neoproterozoic orogenic record in Indian 
shield in the context of the dynamics of Rodinia supercontinent. The Neoproterozoic 
time range is crucial, that is, the earth went through the most extreme climate swings 
known, from “Snowball Earth” icy extremes to super-hot greenhouse conditions, 
when the atmosphere got a major injection of oxygen and when multicellular life 
appeared and exploded in diversity. All these individual events left distinct records 
in rocks, which could be traced across the continents.
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3.6.1  �Eastern Ghats and Rayner Belt

The eastern Ghats mobile belt (EGMB), lying in the east coast of India, is a com-
posite terrain with multiple cycles of orogenesis recorded in different domains, 
which underwent, in general, granulite facies metamorphism during the Proterozoic. 
The mobile belt extends over 900 km along strike, and the width varies from less 
than 50 km in the south to 300 km in the north, bordering the Dharwar, Bastar, and 
Singhbhum cratons with a ductile shear zone in between (Chetty and Murthy 1993). 

Fig. 3.8  Rifts in eastern India (left) and western North America (right). “N” shows present north 
of each area. (After Rogers and Santosh 2004)
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Three distinct orogenic events clustered into three domains within the EGMB are 
the 1.7–1.54 Ga orogenesis of the Ongole Domain (Henderson et al. 2014; Dasgupta 
et al. 2013; Sarkar and Schenk 2014; Sarkar et al. 2014, 2015); the most prevalent 
1.07–0.90  Ga Grenvillian orogenesis, recorded from the eastern Ghats province, 
north of the Godavari rift (Dasgupta et  al. 2013; Korhonen et  al. 2013); and the 
0.55–0.50 Ga record of the Pan African orogenesis preserved in the northern part of 
the eastern Ghats province and adjacent Rengali province (Chattopadhyay et  al. 
2015a, b; Bose et al. 2016b). New data emerging from the EGMB opens better reso-
lution of transcontinental correlation, either supporting or rejecting the old datasets 
(Saha et al. 2016a).

Here we focus on the eastern Ghats province with records of the Grenvillian 
Orogeny and Rodinia connection. In the reconstruction models, the EGMB is 
often shown to have links with East Antarctica (Bose et al. 2011; Yoshida et al. 
2003; Rogers and Santosh 2004; Dasgupta and Sengupta 2003) based on the 
matching of ~0.95–0.90  Ga granulite facies metamorphic events of the eastern 
Ghats province with that in the Rayner province (Saha et al. 2016a). After docking 
of the Rayner province with the eastern Ghats, these two belts evolved simultane-
ously as a part of the amalgamated continent (Dasgupta et al. 2013). The ultra-
high-temperature (UHT) metamorphism experienced by these rocks is the extreme 
manifestation of high crustal geothermal gradients that affected this region, 
whereas it was being deformed over a billion years ago which holds key to the 
Proterozoic tectonic development of the Indian shield. Controversies exist, and 
debate remains regarding the stages of evolution of the eastern Ghats granulites. 
Korhonen et al. (2013) suggested single, long-lived orogenic pulse between ~1.07 
and ~0.90 Ga, against the existing two-stage evolution of the granulites. Back arc 
model for the generation of UHT metamorphism in the eastern Ghats is being 
proposed by Dasgupta et al. (2013). The cratonization age of the EGMB is consid-
ered as ~0.90  Ga, though minor activities were still going on around 0.85  Ga, 
when India and South China were located at the North Pole (Tucker et al. 2001; 
Santosh et al. 2016). Afterward, the united mass moved south toward Gondwana. 
Yangtze and northwestern India were fully assembled by this time, and a hiatus 
between 0.85 and 0.80 Ga in subduction is inferred when magmatism along the 
southern margin of India (Tucker et al. 2001), in the Seychelles and on the (pres-
ent-day) northern margin of the Yangtze Craton (Yan et al. 2004; Zhou et al. 2002), 
started again. This collision orogeny of Grenvillian age welded proto-India against 
eastern Antarctica, and resultant eastern Ghats belt-Rayner complex terrane, which 
was not separated during the breakup of Rodinia, remained an entity until the frag-
mentation of Gondwana (Fitzsimons 2003). Recent work emphasizes that eastern 
Ghats belt (EGB) played important role in India-East Antarctica connection 
(Dasgupta et al. 2017).
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3.6.2  �Central Indian Tectonic Zone (CITZ): Its Continuation 
in the South Purulia Shear Zone (SPSZ) and Singhbhum 
Shear Zone (SBSZ)

The CITZ, the main tectonic feature of central India, extends over 1200 km in an 
E-W to ENE-WSW trend from the west coast to the Bay of Bengal to the east. Its 
southern contact merges with Bilaspur-Raigarh belt, situated north of Chhattisgarh 
basin, and is often covered by younger sequences at many places (Chetty 2017). 
The CITZ, also known as the Central Indian Shear/Suture Zone, is bounded by the 
Son-Narmada North Fault (SNNF) to the North and the Central Indian Shear (CIS), 
the most significant ductile shear zone to the south (Yedekar et al. 1990). With the 
width of the zone varying between a few tens of meters to a few kilometers, the 
CITZ stitches the North and South Indian Cratonic Blocks (NIB and SIB, respec-
tively) and is characterized by intense mylonitization of granite gneisses and other 
supracrustal rocks of Precambrian age. The rock successions record >800  mil-
lion years of protracted Proterozoic tectonothermal and tectonomagmatic history 
from the Paleoproterozoic to the early Neoproterozoic. The tectonic evolution of 
the CITZ overlaps with two supercontinent assembly events, namely, Columbia 
(between 2.1 and 1.8 Ga) described above and Rodinia (between 1.2 and 0.9 Ga) 
described above.

Debate persists about the eastern continuation of the CITZ, where the northern 
branch is termed as South Purulia Shear Zone (SPSZ) and the southern branch coin-
cides with Singhbhum Shear Zone (SSZ) via Jharsuguda-Rourkela-Jamshedpur. 
However, some works consider that the SPSZ is the southern boundary of the CITZ 
(Ramakrishna and Vaidyanadhan 2008). Bhoumik et al. (2010) proposed that final 
amalgamation of the northern and southern block of India took place during 1.0 Ga 
continent-continent collisional orogeny. Regional gravity anomaly map of central 
India shows a broad region of ENE-WSW trending “gravity high,” indicating thick 
pile of high-density mafic-ultramafic suits (Qureshy and Hinze 1989; Kaila et al. 
1979). The CITZ along the northern border of the Bastar craton has been shown to 
contain possible sites of Proterozoic ocean closure (e.g., Roy et  al. 2002). More 
recently, CITZ is considered as a possible link in alternative models of end-Protero-
zoic supercontinent reconstruction involving India and Australia (e.g., Bhowmik 
et al. 2012; Naganjaneyulu and Santosh 2010).

3.6.3  �Proterozoic Cratonic Basins

Peninsular India contains several cratonic basins that include sedimentary rocks 
deposited at approximately the same time as the high heat-producing (now meta-
morphosed) sedimentary rocks in the surrounding orogens. The intracratonic 
Proterozoic sedimentary basins of India, namely, Chhattisgarh and its satellite 
basins of the Bastar craton, Cuddapah basin of eastern Dharwar craton, Bhima 
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Kaladgi basins of the western Dharwar craton Vindhyan, and Marwar basins of 
Aravalli craton, preserves thick piles of unconformity bound sequences, which may 
be looked upon as successive sedimentation cycles, with prominent breaks in depo-
sition (Saha et al. 2016b). The depositional milieu of each of the cycles is mani-
fested in the facies association, which represents the record of fluctuations in the sea 
level and deposition of siliciclastic-carbonate cycles. The coarse siliciclastic deposit 
represents early rifting stage, followed by extensive shallow-marine carbonate sedi-
mentation where storm and tide played important role in sculpturing the sediments. 
Occasional presence of pelagic carbonates and deep-water shales in some of the 
basins further point to deposition in a wide range of environments, starting from 
shallow shelf to deep basin (Saha et al. 2016b; Chaudhuri et al. 2012). The cessation 
of deposition, initiation of erosion, and reestablishment of depositional regimes are 
responsible for regional and interregional unconformities. Thus, two key factors (1) 
epeirogenic movements of continental interiors and (2) changes in sea level, or the 
combination of these two, are responsible for the development of these unconformi-
ties. The cyclicity pattern reflecting the global sea-level curve is used for correlation 
of the succession of the cratonic basins of peninsular India with an attempt to link it 
with the supercontinent cycle (Saha et  al. 2016b). Distinct correlation between 
acme of passive margin sedimentation and supercontinent breakup has already been 
established by Bradley (2011). Global sea-level rise is also correlated with the 
supercontinent breakup, making the sedimentary records even in the so-called cra-
tonic basins more relevant. However, uncertainties remain because of lack of pre-
cise geochronologic and paleomagnetic data from many of these sedimentary 
successions.

3.6.4  �Rodinia Breakup and Gondwana Assembly

Rodinia broke up between 800 and 600 Ma, leaving evidences of extension over a 
broad area by relaxation of stress throughout the supercontinent. In India, major rift 
valley systems are developed and/or reactivated because of extension, where the 
post-Rodinia sedimentation continued in rift valleys. The Indian rifts are unique 
among all the earth’s known rift systems because they remained active as basins of 
subsidence from the Middle Proterozoic to the present (Rogers and Santosh 2004). 
Eastern Ghats province records evidences of several assembled crustal units with 
their own complex and often polymetamorphic histories (Dasgupta et  al. 2017). 
Petrological, geochemical, and geochronological investigations of the western 
boundary of the eastern Ghats record three distinct events. The first one 0.95–0.93 Ga 
is related with the major granulite metamorphism, followed by decompression at 
0.78–0.75 Ga, related to the breakup of the Rodinia. The third event with late ther-
mal overprint at 0.525–0.51 Ga is inferred to coincide with the timing of amalgama-
tion of Gondwana during the final phase, recording its connection with Prydz Bay 
region in east Antarctica (Chatterjee et al. 2017).
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It is now well established that the orogenic events related to the formation of 
Gondwana supercontinent were described as the “Pan African” episode or event 
(Clifford 1968). Subsequent studies suggest that the west Gondwana which includes 
cratons of South America and Africa was amalgamated between 650 and 600 Ma. 
The east Gondwana was assembled in the last two stages, between 750 and 620 Ma, 
which is called East African Orogen (EAO) and 570–500  Ma (Kunga Orogen) 
(Meert 2001). The Kunga Orogen was originally defined on the basis of geochrono-
logical data and interpreted to be related to the collision between Australia/
Antarctica and an already combined India-East Africa.

The southernmost domains of Indian peninsula preserve rock records of major 
late Neoproterozoic–Cambrian (Pan-African) events (Santosh et  al. 2009) corre-
lated to subduction and accretion events prior to the final assembly of Gondwana. 
These include multiple arc magmatic events during Neoproterozoic, such as those 
recorded from the southern part of the Madurai Block (Santosh et al. 2017b), and 
widespread regional metamorphism reaching up to ultra-high temperatures during 
the terminal stages of Gondwana assembly (Santosh et al. 2009). Post-collisional 
mafic magmatism during extensional collapse of the Gondwana orogen in Cambrian 
has also been recorded in recent studies (Yang et al. 2017).

3.7  �Synthesis of Current Understanding and Outlook

Mantle dynamic processes exert fundamental controls over the accretion and move-
ment of continents. It has been noticed that the formation and breakup of supercon-
tinents follow a natural rule of repetitive pattern. Granites and detrital zircons having 
notably similar and episodic appearances in the rock record led Hawkesworth et al. 
(2010) to constrain the Precambrian supercontinent cycles with the peak of zircon 
appearance. Subduction zone proxies in the rock record provide good evidence for 
the existence of continent-margin and intra-oceanic subduction zones through time. 
Volcanic arc protoliths accreted in continent-continent or continent-arc collisions, 
or as the detritus of these volcanic arcs preserved in successor basins, give us clues 
to reconstruct the old supercontinents.

The characteristics and similarities among the orogenic belts of India suggest 
that the crustal architecture of India is developed during the Proterozoic period pos-
sibly through stitching of several microcontinents, though uncertainties remain due 
to an inadequate paleomagnetic data base (summarized in Li et al. 2008).

Better understanding of the Precambrian geodynamics as applied to the Archean 
cratons and Proterozoic mobile belts in India lies in integrated geochronologic and 
isotopic studies combined with classical geology. While some of the areas like the 
EGMB and SGB are well studied and significant data and newer interpretations are 
coming up in recent years, some areas like the Chotanagpur granite gneiss complex, 
Satpura mobile belt, and even parts of Aravalli-Delhi mobile belt are yet to be inves-
tigated in a comprehensive manner to yield pertinent data. While some suggestions 
relating to the place of India in reconstructions of Gondwana and Rodinia are get-
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ting validated by the recently emerging geochronologic, paleomagnetic, and geo-
logic datasets, paucity of data impedes the understanding of India’s position in 
global models of older supercontinents.
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