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Abstract. ICMP timestamp request and response packets have been
standardized for nearly 40 years, but have no modern practical appli-
cation, having been superseded by NTP. However, ICMP timestamps
are not deprecated, suggesting that while hosts must support them, lit-
tle attention is paid to their implementation and use. In this work, we
perform active measurements and find 2.2 million hosts on the Inter-
net responding to ICMP timestamp requests from over 42,500 unique
autonomous systems. We develop a methodology to classify timestamp
responses, and find 13 distinct classes of behavior. Not only do these
behaviors enable a new fingerprinting vector, some behaviors leak impor-
tant information about the host e.g., OS, kernel version, and local time-
zone.
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1 Introduction

The Internet Control Message Protocol (ICMP) is part of the original Internet
Protocol specification (ICMP is IP protocol number one), and has remained
largely unchanged since RFC 792 [21]. Its primary function is to communicate
error and diagnostic information; well-known uses today include ICMP echo to
test for reachability (i.e., ping), ICMP time exceeded to report packet loops (i.e.,
traceroute), and ICMP port unreachable to communicate helpful information
to the initiator of a transport-layer connection. Today, 27 ICMP types are defined
by the IESG, 13 of which are deprecated [11].

Among the non-deprecated ICMP messages are timestamp (type 13) and
timestamp reply (type 14). These messages, originally envisioned to support time
synchronization and provide one-way delay measurements [19], contain three 32-
bit time values that represent milliseconds (ms) since midnight UTC. Modern
clock synchronization is now performed using the Network Time Protocol [18]
and ICMP timestamps are generally regarded as a potential security vulnerabil-
ity [20] as they can leak information about a remote host’s clock. Indeed, Kohno
et al. demonstrated in 2005 the potential to identify individual hosts by varia-
tions in their clock skew [12], while [6] and [4] show similar discriminating power
when fingerprinting wireless devices.
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Fig. 1. ICMP timestamp message fields

In this work, we reassess the extent to which Internet hosts respond to
ICMP timestamps. Despite no legitimate use for ICMP timestamps today, and
best security practices that recommend blocking or disabling these timestamps,
we receive timestamp responses from 2.2 million IPv4 hosts in 42,656 distinct
autonomous systems (approximately 15% of the hosts queried) during a large-
scale measurement campaign in September and October 2018. In addition to
characterizing this unexpectedly large pool of responses, we seek to better under-
stand how hosts respond. Rather than focusing on clock-skew fingerprinting, we
instead make the following primary contributions:

1. The first Internet-wide survey of ICMP timestamp support and responsive-
ness.

2. A taxonomy of ICMP timestamp response behavior, and a methodology to
classify responses.

3. Novel uses of ICMP timestamp responses, including fine-grained operating
system fingerprinting and coarse geolocation.

2 Background and Related Work

Several TCP/IP protocols utilize timestamps, and significant prior work has
examined TCP timestamps in the context of fingerprinting [12]. TCP timestamps
have since been used to infer whether IPv4 and IPv6 server addresses map to
the same physical machine in [2] and combined with clock skew to identify server
“siblings” on a large scale in [24].

In contrast, this work focuses on ICMP timestamps. Although originally
intended to support time synchronization [19], ICMP timestamps have no mod-
ern legitimate application use (having been superseded by NTP). Despite this,
timestamps are not deprecated [11], suggesting that while hosts must support
them, little attention is paid to their implementation and use.

Figure 1 depicts the structure of timestamp request (type 13) and response
(type 14) ICMP messages. The 16-bit identifier and sequence values enable
responses to be associated with requests. Three four-byte fields are defined:
the originate timestamp (orig ts), receive timestamp (recv ts), and transmit
timestamp (xmit ts). Per RFC792 [21], timestamp fields encode milliseconds
(ms) since UTC midnight unless the most significant bit is set, in which case
the field may be a “non-standard” value. The originator of timestamp requests
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should set the originate timestamp using her own clock; the value of the receive
and transmit fields for timestamp requests is not specified in the RFC.

To respond to an ICMP timestamp request, a host simply copies the request
packet, changes the ICMP type, and sets the receive and transmit time fields.
The receive time indicates when the request was received, while the transmit
time indicates when the reply was sent.

Several prior research works have explored ICMP timestamps, primarily for
fault diagnosis and fingerprinting. Anagnostakis et al. found in 2003 that 93%
of the approximately 400k routers they probed responded to ICMP timestamp
requests, and developed a tomography technique using ICMP timestamps to
measure per-link one-way network-internal delays [1]. Mahajan et al. leveraged
and expanded the use of ICMP timestamps to enable user-level Internet fault
and path diagnosis in [16].

Buchholz and Tjaden leveraged ICMP timestamps in the context of forensic
reconstruction and correlation [3]. Similar to our results, they find a wide variety
of clock behaviors. However, while they probe ∼8,000 web servers, we perform
an Internet-wide survey including 2.2M hosts more than a decade later, and
demonstrate novel fingerprinting and geolocation uses of ICMP timestamps.

Finally, the nmap security scanner [15] uses ICMP timestamp requests, in
addition to other protocols, during host discovery for non-local networks in order
to circumvent firewalls and blocking. nmap sets the request originate timestamp
to zero by default, in violation of the standard [21] (though the user can man-
ually specify a timestamp). Thus, ICMP timestamp requests with zero-valued
origination times provide a signature of nmap scanners searching for live hosts.
While nmap uses ICMP timestamps for liveness testing, it does not use them for
operating system detection as we do in this work.

To better understand the prevalence of ICMP timestamp scanners, we ana-
lyze 240 days of traffic arriving at a /17 network telescope. We observe a total
of 413,352 timestamp messages, 93% of which are timestamp requests. Only 33
requests contain a non-zero originate timestamp, suggesting that the remainder
(nearly 100%) are nmap scanners. The top 10 sources account for more than
86% of the requests we observe, indicating a relatively small number of active
Internet-wide scanners.

3 Behavioral Taxonomy

During initial probing, we found significant variety in timestamp responses. Not
only do structural differences exist in the implementation of [21] by timestamp-
responsive routers and end systems (e.g., little- vs big-endian), they also occur
relative to how the device counts time (e.g., milliseconds vs. seconds), the device’s
reference point (e.g., UTC or local time), whether the reply is a function of
request parameters, and even whether the device is keeping time at all.
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Table 1. ICMP timestamp classification fingerprints

Num Class Request Response

cksum orig ts recv ts xmit ts

1 Normal Valid - �= xmit ts, �= 0 �= 0

2 Lazy Valid - = xmit ts �= 0

3 Checksum-Lazy Bad - - -

4 Stuck valid - const const

5 Constant 0 Valid - 0 0

6 Constant 1 Valid - 1 1

7 Constant LE 1 Valid - htonl(1) htonl(1)

8 Reflection Valid - requestrecv ts requestxmit ts

9 Non-UTC Valid - >231 − 1 >231 − 1

10 Timezone Valid - |recv ts − orig ts|%
(
3.6 × 106

)
< 200 ms -

11 Little Endian Valid - |htonl(recv ts) − orig ts| < 200 ms -

12 Linux htons() Bug Valid - %216 = 0 %216 = 0

13 Unknown Valid - - -

3.1 Timestamp Implementation Taxonomy

Table 1 provides an exhaustive taxonomy of the behaviors we observe; we term
these the ICMP timestamp classifications. Note that this taxonomy concerns
only the implementation of the timestamp response, rather than whether the
responding host’s timestamp values are correct.

– Normal: Conformant to [21]. Assuming more than one ms of processing time,
the receive and transmit timestamps should be not equal, and both should
be nonzero except at midnight UTC.

– Lazy: Performs a single time lookup and sets both receive and transmit
timestamp fields to the same value. A review of current Linux and FreeBSD
kernel source code reveals this common lazy implementation [10,13].

– Checksum-Lazy: Responds to timestamp requests even when the ICMP
checksum is incorrect.

– Stuck: Returns the same value in the receive and transmit timestamp fields
regardless of the input sent to it and time elapsed between probes.

– Constant 0, 1, Little-Endian 1: A strict subset of “stuck” that always
returns a small constant value in the receive and transmit timestamp fields.

– Reflection: Copies the receive and transmit timestamp fields from the times-
tamp request into the corresponding fields of the reply message1.

– Non-UTC: Receive and transmit timestamp values with the most significant
bit set. As indicated in [21], network devices that are unable to provide a
timestamp with respect to UTC midnight or in ms may use an alternate time
source, provided that the high order bit is set.

– Linux htons() Bug: Certain versions of the Linux kernel (and Android) con-
tain a flawed ICMP timestamp implementation where replies are truncated
to a 16-bit value; see AppendixA for details.

– Unknown: Any reply not otherwise classified.
1 We find no copying of originate timestamp into the reply’s receive or transmit fields.
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3.2 Timekeeping Behavior Taxonomy

We next categorize the types of timestamp responses we observe by what the
host is measuring and what they are measuring in relation to.

– Precision: Timestamp reply fields should encode ms to be conformant, how-
ever some implementations encode seconds.

– UTC reference: Conformant to the RFC; receive and transmit timestamps
encode ms since midnight UTC.

– Timezone: Replies with receive and transmit timestamps in ms relative to
midnight in the device’s local timezone, rather than UTC midnight.

– Epoch reference: Returned timestamps encode time in seconds relative to
the Unix epoch time.

– Little-Endian: Receive and transmit timestamps containing a correct times-
tamp when viewed as little-endian four-byte integers.

4 Methodology

We develop sundial, a packet prober that implements the methodology
described herein to elicit timestamp responses that permit behavioral classifi-
cation. sundial is written in C and sends raw IP packets in order to set specific
IP and ICMP header fields, while targets are randomized to distribute load. We
have since ported sundial to a publicly available ZMap [8] module [22].

Our measurement survey consists of probing 14.5 million IPv4 addresses2

of the August 7, 2018 ISI hitlist, which includes one address per routable /24
network [9]. We utilize two vantage points connected to large academic university
networks named after their respective locations: “Boston” and “San Diego.”
Using sundial, we elicit ICMP timestamp replies from ∼2.2 million unique IPs.

This section first describes sundial’s messages and methodology, then our
ground truth validation. We then discuss ethical concerns and precautions under-
taken in this study.

4.1 sundial Messages

In order to generate and categorize each of the response behaviors, sundial
transmits four distinct types of ICMP timestamp requests. Both of our vantage
points have their time NTP-synchronized to stratum 2 or better servers. Thus
time is “correct” on our prober relative to NTP error.

1. Standard: We fill the originate timestamp field with the correct ms from
UTC midnight, zero the receive and transmit timestamp fields, and place the
lower 32 bits of the MD5 hash of the destination IP address and originate
timestamp into the identifier and sequence number fields. The hash permits
detection of destinations or middleboxes that tamper with the originate times-
tamp, identifier, or sequence number.

2 As IPv6 does not support timestamps in ICMPv6, we study IPv4 exclusively.
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2. Bad Clock: We zero the receive and transmit fields of the request, choose an
identifier and sequence number, and compute the MD5 hash of the destination
IP address together with the identifier and sequence number. The lower 32 bits
of the hash are placed in the originate timestamp. This hash again provides
the capability to detect modification of the reply.

3. Bad Checksum: The correct time in ms since UTC midnight is placed
in the originate field, the receive and transmit timestamps are set to zero,
and the identifier and sequence number fields contain an encoding of the
destination IP address along with the originate timestamp. We deliberately
choose a random, incorrect checksum and place it into the ICMP timestamp
request’s checksum field. This timestamp message should appear corrupted
to the destination, and a correct ICMP implementation should discard it.

4. Duplicate Timestamp: The receive and transmit timestamps are initial-
ized to the originate timestamp value by the sender, setting all three times-
tamps to the same correct value. The destination IP address and originate
timestamp are again encoded in the identifier and sequence number to detect
modifications.

Many implementation behaviors in Sect. 3 can be inferred from the first,
standard probe. For instance, the standard timestamp request can determine
a normal, lazy, non-UTC and little-endian implementation. In order to clas-
sify a device as stuck, both the standard and duplicate timestamp requests are
required. Two requests are needed in order to determine that the receive and
transmit timestamps remain fixed over time, and the inclusion of the duplicate
timestamp request ensures that the remote device is not simply echoing the
values in the receive and transmit timestamp fields of the request. Similarly,
timestamp reflectors can be detected using the standard and duplicate request
responses.

The checksum-lazy behavior is detected via responses to the bad checksum
request type. The Linux htons() bug behavior can be detected using the stan-
dard request and filtering for reply timestamps with the two lower bytes set to
zero. In order to minimize the chance of false positives (i.e., the correct time
in ms from UTC midnight is represented with the two lower bytes zeroed), we
count only destinations that match this behavior in responses from both the
standard and bad clock timestamp request types.

To detect the unit precision of the timestamp reply fields, we leverage the
multiple requests sent to each target. Because we know the time at which requests
are transmitted, we compare the time difference between the successive requests
to a host and classify them based on the inferred time difference from the replies.

Finally, we classify responsive devices by the reference by which they main-
tain time. We find many remote machines that observe nonstandard reference
times, but do not set the high order timestamp field bit. A common alterna-
tive timekeeping methodology is to track the number of ms elapsed since mid-
night local time. We detect local timezone timekeepers by comparing the receive
and transmit timestamps to the originate timestamp in replies to the standard
request. Receive and transmit timestamps that differ from our correct originate
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Table 2. Ground truth classification of ICMP timestamp behaviors

OS Behavior Notes

Windows 7–10 Off by default With Windows firewall off, lazy LE

Linux Lazy

Linux 3.18 (incl Android) Lazy htons() bug

Android kernel 3.10, 4.4+ Lazy

BSD Lazy

OSX Unresponsive

iOS Off by default

Cisco IOS/IOS-XE Lazy MSB set if NTP disabled, unset if enabled

JunOS Lazy

timestamp by the number of ms for an existing timezone (within an allowable
error discussed in Sect. 5.2) are determined to be keeping track of their local
time.

Last, a small number of devices we encountered measured time relative to
the Unix epoch. Epoch-relative timestamps are detected in two steps: first, we
compare the epoch timestamp’s date to the date in which we sent the request;
if they match, we determine whether the number of seconds elapsed since UTC
midnight in the reply is suitably close to the correct UTC time.

4.2 Ground Truth

To validate our inferences and understand the more general behavior of popu-
lar operating systems and devices, we run sundial against a variety of known
systems; Table 2 lists their ICMP timestamp reply behavior.

Apple desktop and mobile operating systems, macOS and iOS, both do not
respond to ICMP timestamp messages by default. Initially, we could not elicit
any response from Microsoft Windows devices, until we disabled Windows Fire-
wall. Once disabled, the Windows device responds with correct timestamps in
little-endian byte order. This suggests that not only are timestamp-responsive
devices with little-endian timestamp replies Windows, but it also worryingly
indicates that its built-in firewall has been turned off by the administrator.

BSD and Linux devices respond with lazy timestamp replies, as their source
code indicates they should. JunOS and Android respond like FreeBSD and Linux,
on which they are based, respectively. Of note, we built the Linux 3.18 kernel,
which has the htons() bug described in Sect. 6; it responded with the lower two
bytes zeroed, as expected. This bug has made its way into Android, where we
find devices running the 3.18 kernel exhibiting the same signature.

Cisco devices respond differently depending on whether they have enabled
NTP. NTP is not enabled by default on IOS; the administrator must manu-
ally enable the protocol and configure the NTP servers to use. If NTP has not
been enabled, we observe devices setting the most significant bit, presumably
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Fig. 2. Incidence of fingerprints for
most common telnet banner manufac-
turers

Fig. 3. Incidence of fingerprints for
most common CWMP scan manufac-
turers

to indicate that it is unsure whether the timestamp is accurate, and filling in a
UTC-based timestamp with the remaining bits, according to its internal clock.

Telnet Banner and CWMP GET Ground Truth. To augment the ground truth
we obtained from devices we were able to procure locally, we leveraged IPv4
Internet-wide Telnet banner- and CPE WAN Management Protocol (CWMP)
parameter-grabbing scans from scans.io [23]. From October 3, 2018 scans, we
search banners (Telnet) and GET requests (CWMP) for IP addresses associated
with known manufacturer strings. We then probe these addresses with sundial.

Figure 2 displays the most common fingerprints for a subset of the manufac-
turers probed from scans.io’s Telnet banner-grab dataset, while Fig. 3 is the
analogous CWMP plot. We note that non-homogeneous behavior within a man-
ufacturer’s plot may be due to several factors: different behaviors among devices
of the same manufacturer, banner spoofing, IP address changes, and middle-
boxes between the source and destination. We provide further details regarding
our use of the scans.io datasets in AppendixB.

4.3 Ethical Considerations

Internet-wide probing invariably raises ethical concerns. We therefore follow the
recommended guidelines for good Internet citizenship provided in [8] to mitigate
the potential impact of our probing. At a high-level, we only send ICMP packets,
which are generally considered less abusive than e.g., TCP or UDP probes that
may reach active application services. Further, our pseudo-random probing order
is designed to distribute probes among networks in time so that they do not
appear as attack traffic. Finally, we make an informative web page accessible
via the IP address of our prober, along with instructions for opting-out. In this
work, we did not receive any abuse reports or opt-out requests.
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5 Results

On October 6, 2018, we sent four ICMP timestamp request messages as described
in Sect. 4.1 from both of our vantage points to each of the 14.5 million target
IPv4 addresses in the ISI hitlist. We obtained at least one ICMP timestamp
reply message from 2,221,021 unique IP addresses in 42, 656 distinct autonomous
systems as mapped by Team Cymru’s IP-to-ASN lookup service [5]. Our probing
results are publicly available [22].

We classify the responses according to the implementation taxonomy outlined
in Sect. 3 and Table 1, the timekeeping behavior detailed in Sect. 3.2, and the cor-
rectness of the timestamp reply according to Sect. 5.2. Tables 3 and 4 summarize
our results in tabular form; note that the implementation behavior categories
are not mutually exclusive, and the individual columns will sum to more than
the total column, which is the number of unique responding IP addresses. We
received replies from approximately 11,000 IP addresses whose computed MD5
hashes as described in Sect. 4.1 indicated tampering of the source IP address,
originate timestamp, or id and sequence number fields; we discard these replies.

5.1 Macro Behavior

Lazy replies outnumber normal timestamp replies by a margin of over 50 to 1.
Because we had assumed the normal reply type would be the most common, we
investigated open-source operating systems’ implementations of ICMP. In both
the Linux and BSD implementations, the receive timestamp is filled in via a call
to retrieve the current kernel time, after which this value is simply copied into
the transmit timestamp field. Therefore, all BSD and Linux systems, and their
derivatives, exhibit the lazy timestamp reply behavior.

Normal hosts can appear lazy if the receive and transmit timestamps are set
within the same millisecond. This ambiguity can be resolved in part via multiple
probes. For instance, Table 3 shows that only ∼50% of responders classified as
normal by one vantage are also marked normal by the other.

The majority (61%) of responding devices do not reply with timestamps
within 200 ms of our NTP-synchronized reference clock, our empirically-derived
correctness bound discussed in Sect. 5.2. Only ∼40% of responding IP addresses
fall into this category; notably, we detect smaller numbers devices with cor-
rect clocks incorrectly implementing the timestamp reply message standard. For
example, across both vantage points we detect thousands of devices whose times-
tamps are correct when interpreted as a little-endian integer, rather than in net-
work byte order. We discover one operating system that implements little-endian
timestamps in Sect. 4.2. In another incorrect behavior that nevertheless indicates
a correct clock, some devices respond with the correct timestamp and the most
significant bit set – a behavior at odds with the specification [21] where the
most significant bit indicates a timestamp either not in ms, or the host cannot
provide a timestamp referenced to UTC midnight. In Sect. 4.2, we discuss an
operating system that sets the most significant bit when its clock has not been
synchronized with NTP.
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Table 3. Timestamp reply implementation behaviors (values do not sum to total)

Category Boston Both San Diego Category Boston Both San Diego

Normal 40,491 19,819 40,363 Stuck 855 849 873

Lazy 2,111,344 1,899,297 2,112,386 Constant 0 547 546 555

Checksum-Lazy 28,074 23,365 28,805 Constant 1 200 199 207

Non-UTC 249,454 211,755 249,932 Constant LE 1 22 19 23

Reflection 2,325 2,304 2,364 htons() Bug 1,499 665 1,536

Correct 850,787 803,314 850,133 Timezone 33,317 23,464 33,762

Correct LE 11,127 5,244 11,290 Unknown 38,495 11,865 32,956

Correct - MSB 1,048 386 973

Total 2,194,180 1,934,172 2,189,524

Over 200,000 unique IPs (>10% of each vantage point’s total) respond with
the most significant bit set in the receive and transmit timestamps; those times-
tamps that are otherwise correct are but a small population of those we term
Non-UTC due to the prescribed meaning of this bit in [21]. Some hosts and
routers fall into this category due to the nature of their timestamp reply imple-
mentation – devices that mark the receive and transmit timestamps with little-
endian timestamps will be classified as Non-UTC if the most significant bit of
the lowest order byte is on, when the timestamp is viewed in network byte order.
Others, as described above, turn on the Non-UTC bit if they have not synchro-
nized with NTP.

Another major category of non-standard implementation behavior of ICMP
timestamp replies are devices that report their timestamp relative to their local
timezone. Whether devices are programmatically reporting their local time with-
out human intervention, or whether administrator action is required to change
the system time (from UTC to local time) in order to effect this classification is
unclear. In either case, timezone timestamp replies allow us to coarsely geolocate
the responding device. We delve deeper into this possibility in Sect. 5.4.

Finally, while most responding IP addresses are unsurprisingly classified
as using milliseconds as their unit of measure, approximately 14–16% of IP
addresses are not (see Table 4). In order to determine what units are being used
in the timestamp, we subtract the time elapsed between the standard times-
tamp request and duplicate timestamp request, both of which contain correct
originate timestamp fields. We then subtract the time elapsed according to the
receive and transmit timestamps in the timestamp reply messages. If the differ-
ence of differences is less than 400 ms (two times 200 ms, the error margin for
one reply) we conclude that the remote IP is counting in milliseconds. A similar
calculation is done to find devices counting in seconds. Several of the behavioral
categories outlined in Sect. 3.1 are included among the hosts with undefined
timekeeping behavior – those whose clocks are stuck at a particular value and
those that reflect the request’s receive and transmit timestamps into the corre-
sponding fields are two examples. Others may be filling the reply timestamps
with random values.
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Table 4. Timestamp reply timekeeping behaviors

Category Boston Both San Diego

Millisecond 1,826,696 1,722,176 1,866,529

Second 47 37 68

Epoch 1 1 1

Unknown timekeeping 367,436 211,958 322,926

Total 2,194,180 1,934,172 2,189,524

5.2 Timestamp Correctness

In order to make a final classification – whether the remote host’s clock is correct
or incorrect – as well as to assist in making many of the classifications within our
implementation and timekeeping taxonomies that require a correctness determi-
nation, we describe in this section our methodology for determining whether or
not a receive or transmit timestamp is correct.

To account for clock drift and network delays, we aim to establish a margin
of error relative to a correctly marked originate timestamp, and consider receive
and transmit timestamps within that margin from the originate timestamp to be
correct. To that end, we plot the probability density of the differences between
the receive and originate timestamps from 2.2 million timestamp replies gener-
ated by sending a single standard timestamp request to each of 14.5 million IP
addresses from the ISI hitlist [9] in Fig. 4.

Figure 4 clearly depicts a trough in the difference probability values around
200 ms, indicating that receive timestamps greater than 200 ms than the originate
timestamp are less likely than those between zero and 200 ms. We reflect this
margin about the y-axis, despite the trough occurring somewhat closer to the
origin on the negative side. Therefore, we declare a timestamp correct if it is
within our error margin of 200 ms of the originate timestamp.

5.3 Middlebox Influence

To investigate the origin of some of the behaviors observed in Sect. 3 for which
we have no ground truth implementations, we use tracebox [7] to detect middle-
boxes. In particular, we chose for investigation hosts implementing the reflection,
lazy with MSB set (but not counting milliseconds), and constant 0 behaviors,
as we do not observe any of these fingerprints in our ground truth dataset, yet
there exist nontrivial numbers of them in our Internet-wide dataset.

In order to determine whether a middlebox may be responsible for these
behaviors for which we have no ground truth, we tracebox to a subset of 500 ran-
dom IP addresses exhibiting them. For our purposes, we consider an IP address
to be behind a middlebox if the last hop modifies fields beyond the standard
IP TTL and checksum modifications, and DSCP and MPLS field alterations
and extensions. Of 500 reflection IP addresses, only 44 showed evidence of being
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Fig. 4. Empirical recv ts- orig ts

PMF
Fig. 5. Response error; note hourly
peaks

behind a middlebox, suggesting that some operating systems implement the
reflect behavior and that this is a less common middlebox modification. The lazy
with MSB set (but non-ms counting) behavior, on the other hand, was inferred
to be behind a middlebox in 333 out of 500 random IP addresses, suggesting it is
most often middleboxes that are causing the lazy-MSB-set fingerprint. Finally,
about half of the constant 0 IP addresses show middlebox tampering in tracebox
runs, suggesting that this behavior is both an operating system implementation
of timestamp replies as well as a middlebox modification scheme.

5.4 Geolocation

Figure 5 displays the probability distribution of response error, e.g., recv ts −
orig ts, after correct replies have been removed from the set of standard request
type responses. While there is a level of uniform randomness, we note the peaks
at hour intervals. We surmise that these represent hosts that have correct time,
but return a timezone-relative response (in violation of the standard [21] where
responses should be relative to UTC). The origin of timezone-relative responses
may be a non-conformant implementation. Alternatively, these responses may
simply be an artifact of non-NTP synchronized machines where the adminis-
trator instead sets the localtime correctly, but incorrectly sets the timezone. In
this case, the machine’s notion of UTC is incorrect, but incorrect relative to the
set timezone. Nevertheless, these timezone-relative responses effectively leak the
host’s timezone. We note the large spike in the +9 timezone, which covers Japan
and South Korea; despite the use of nmap’s OS-detection feature, and examining
web pages and TLS certificates where available, we could not definitively identify
a specific device manufacturer or policy underpinning this effect.

To evaluate our ability to coarsely geolocate IP addresses reporting a
timezone-relative timestamp, we begin with ∼34,000 IP addresses in this cate-
gory obtained by sending a single probe to every hitlist IP from our Boston van-
tage. Using the reply timestamps, we compute the remote host’s local timezone
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offset relative to UTC to infer the host’s timezone. We then compare our inferred
timezone with the timezone reported by the MaxMind GeoLite-2 database [17].

For each IP address, we compare the MaxMind timezone’s standard time
UTC-offset and, if applicable, daylight saving time UTC offset, to the timestamp-
inferred offset. Of the 34,357 IP addresses tested, 32,085 (93%) correctly matched
either the standard timezone UTC offset or daylight saving UTC offset, if the
MaxMind-derived timezone observes daylight saving time. More specifically,
18,343 IP addresses had timestamp-inferred timezone offsets that matched their
MaxMind-derived timezone, which did not observe daylight saving time. 11,188
IP addresses resolved to a MaxMind timezone, whose daylight saving time off-
set matched the offset inferred from the timestamp. 2,554 IP addresses had
timestamp-inferred UTC offsets that matched their MaxMind-derived standard
time offset for timezones that do observe daylight saving time. Of the inferred
UTC-offsets that were not correct, 1,641 did not match either the standard time
offset derived from MaxMind, or the daylight saving time offset, if it existed,
and 631 IP addresses did not resolve to a timezone in MaxMind’s free database.

6 Conclusions and Future Work

We observe a wide variety of implementation behavior of the ICMP timestamp
reply type, caused by timestamps’ lack of a modern use but continued require-
ment to be supported. In particular, we are able to uniquely fingerprint the
behavior of several major operating systems and kernel versions, and geolocate
Internet hosts to timezone accuracy with >90% success.

As future work, we intend to exhaustively scan and classify the IPv4 Internet,
scan a subset with increased frequency over a sustained time period, and to do so
many vantage points. We further plan to integrate the OS-detection capabilities
we uncover in this work into nmap, and add tracebox functionality to sundial
in order to better detect middlebox tampering with ICMP timestamp messages.

Acknowledgments. We thank Garrett Wollman, Ram Durairajan, and Dan Ander-
sen for measurement infrastructure, our shepherd Rama Padmanabhan, and the anony-
mous reviewers for insightful feedback. Views and conclusions are those of the authors
and not necessarily those of the U.S. government.

Appendix A: Linux htons() Bug

While investigating the source code of open-source operating systems’ imple-
mentation of ICMP timestamps, we observed a flaw that allows fine-grained
fingerprinting of the Linux kernel version 3.18. The specific bug that allows
this fingerprinting was introduced in March 2016. An update to the Internet
timestamp generating method in af inet.c errantly truncated the 32-bit times-
tamp to a 16-bit short via a call to the C library function htons() rather than
htonl(). When this incorrect 16-bit value is placed into the 32-bit receive and
transmit timestamp fields of a timestamp reply, it causes the lower two bytes



Sundials in the Shade 95

to be zero and disables the responding machine’s ability to generate a correct
reply timestamp at any time other than midnight UTC. This presents a unique
signature of devices running the Linux kernel built during this time period. In
order to identify these devices on the Internet, we filter for ICMP timestamp
replies containing receive and transmit timestamp values with zeros in the lower
two bytes when viewed as a 32-bit big-endian integer. While devices that are
correctly implementing ICMP timestamp replies will naturally reply with times-
tamps containing zeros in the lower two bytes every 65,536 milliseconds, the
probability of multiple responses containing this signature drops rapidly as the
number of probes sent increases.

Being derived directly from the Linux kernel, the 3.18 version of the Android
kernel also includes the flawed af inet.c implementation containing the same
htons() truncation, allowing for ICMP timestamp fingerprinting of mobile
devices as well.

While Linux 3.18 reached its end of life [14] in 2017, we observe hosts on the
Internet whose signatures suggest this is the precise version of software they are
currently running. Unfortunately, this presents an adversary with the opportu-
nity to perform targeted attacks.

Appendix B: scans.io Ground Truth

We use Telnet and CWMP banners in public scans.io as a source of ground
truth. It is possible to override the default text of these protocol banners, and rec-
ognize that this is a potential source of error. However, we examine the manufac-
turer counts in aggregate under the assumption that most manufacturer strings
are legitimate. We believe it unlikely that users have modified their CWMP
configuration on their customer premises equipment to return an incorrect man-
ufacturer.

Parsing the Telnet and CWMP scans for strings containing the names
of major network device manufacturers provided over two million unique IP
addresses. Table 5 summarizes the results; note that for some manufacturers
(e.g., Arris) approximately the same number of IPs were discovered through the
Telnet scan as the CWMP scan, for others (e.g., Cisco and Huawei) CWMP
provided an order of magnitude greater number of IPs, and still others (e.g.,
Mikrotik and Netgear) appeared in only one of the two protocol scans. Note
that these numbers are not the number of timestamp-responsive IP addresses
denoted by n in Figs. 2 and 3.

With the IP addresses we obtained for each manufacturer, we then run
sundial to each set in order to elicit timestamp reply fingerprints and deter-
mine whether different manufacturers tend to exhibit unique reply behaviors.
Figures 2 and 3 display the incidence of timestamp reply fingerprints for a sub-
set of the manufacturers we probed, and provide some interesting results that
we examine here in greater detail.

No manufacturer exhibits only a singular behavior. We attribute this variety
within manufacturers to changes in their implementation of timestamp replies
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Table 5. Unique IP addresses per manufacturer for each scan

Manufacturer Telnet count CWMP count

Arris 8,638 5,281

Cisco 29,135 1,298,761

H3C 80,445 -

HP 24,027 -

Huawei 170,710 2,377,079

Mikrotik 190,484 -

Netgear - 17,723

Sercomm - 899,492

Ubiquiti 598 -

Zhone 6,999 -

ZTE 17,972 560,177

Zyxel 5,902 -

over time, different implementations among different development or product
groups working with different code bases, and the incorporation of outside imple-
mentations inherited through acquisitions and mergers.

Second, we are able to distinguish broad outlines of different manufacturers
based on the incidence of reply fingerprints. In Fig. 2, we note that among the
top six manufacturers, only Huawei had a significant number of associated IP
addresses (∼10%) that responded with the checksum-lazy behavior. More than
half of the Cisco IP addresses from the Telnet scan exhibited the lazy behav-
ior with the most significant bit set while counting milliseconds, a far greater
proportion than any other manufacturer. Also noteworthy is that none of the
manufacturers represented in the Telnet scan exhibits large numbers of correct
replies. In our Telnet data, Mikrotik devices responded with a correct timestamp
reply roughly 25% of the time, a higher incidence than any other manufacturer.
This suggests that perhaps certain Mikrotik products have NTP enabled by
default, allowing these devices to obtain correct time more readily than those
that require administrator interaction. Our CWMP results in Fig. 3 demonstrate
the ability to distinguish manufacturer behavior in certain cases as well, we note
the >70% of Sercomm devices that exhibit only the lazy behavior, as well as
Sercomm exhibiting the only timezone-relative timekeeping behavior among the
CWMP manufacturers.

Finally, we note differences between the protocol scans among IP addresses
that belong to the same manufacturer. Cisco, Huawei, and ZTE appear in both
protocol results in appreciable numbers, and are represented in both figures in
Sect. 4.2. Although Cisco devices obtained from the Telnet scan infrequently
(∼10%) respond with correct timestamps, in the CWMP data the proportion
is nearly 40%. Huawei devices from the Telnet data are generally lazy respon-
ders that count in milliseconds, however, this same behavior occurs only half as
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frequently in the CWMP data. Further, the fingerprint consisting solely of the
lazy behavior represents nearly a quarter of the CWMP Huawei devices, while
it is insignificant in the Telnet Huawei data. While the differences between the
Telnet and CWMP data are less pronounced for ZTE, they exist as well in the
lack of appreciable numbers of ZTE devices setting the most significant bit in
replies within the CWMP corpus.

Appendix C: Timezone-Relative Behavior

Figure 5 displays the probability mass function of the differences between the
receive and originate timestamps for a sundial scan conducted on 9 September
2018 from the Boston vantage after responses with correct timestamps have been
removed. Discernible peaks occur at many of the hourly intervals representing
timezone-relative responders, rising above a base level of randomness. The hourly
offsets in Fig. 5 may need to be normalized to the range of UTC timezone offsets,
however. For example, depending on the originate timestamp value, a responding
host’s receive timestamp at a UTC offset of +9 may appear either nine hours
ahead of the originate timestamp, or 15 h behind, as −15 ≡ 9(mod 24). In Fig. 5
we see large spikes at both +9 and −15 h, but in reality these spikes represent
the same timezone.

Table 6. Inferred UTC-offsets from timestamp replies

UTC offset −12 −11 −10 −9 −8 −7 −6 −5 −4 −3.5 −3 −2 −1 1 2

Count 73 1 7 3 386 476 666 1,763 2,660 2 246 228 5 7,215 1,819

UTC offset 3 3.5 4 4.5 5 5.5 6 6.5 7 8 9 9.5 10 11

Count 449 8 62 3 87 17 14 13 565 3,496 13,861 6 215 11

We identify timezone-relative responses systematically by computing the
local time in milliseconds for each of the UTC-offsets detailed in Table 6, given
the originate timestamp contained in the timestamp response. We then compare
each candidate local timezone’s originate timestamp to the receive timestamp
in the reply. If the candidate originate timestamp is within the 200 ms correct-
ness bound established in Sect. 5.2, we classify the IP address as belonging to
the timezone that produced the correct originate timestamp. Table 6 details the
number of timezone-relative responders we identified during the 9 September
sundial scan.
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