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Preface

Welcome to the proceedings of the 20th edition of the Passive and Active Measure-
ments (PAM) Conference! This year’s conference marked two important milestones.
First, the conference took place during March 27–29 in Puerto Varas, Chile—the
southernmost location for any international networking conference to date. Second, this
was PAM’s 20th anniversary, a testament to the rich, vibrant, and thriving network
measurement research community that continues to make PAM one of the top publi-
cation venues in our field.

We are pleased to present 20 papers that cover a wide range of important networking
measurement and analysis topics from low layers of the network stack up to applica-
tions, using measurements at scales large and small, and covering important aspects
of the network ecosystem such as routing, DNS, privacy, security, and performance.
We received 75 submissions from 197 authors in nearly 100 institutions and 19
countries. The 39 members of the Technical Program Committee (TPC) were tasked
with providing well-reasoned, substantiated, and constructive reviews to determine the
set of papers that would appear in this year’s program. Each submission was assigned
at least three reviewers, with a few papers receiving additional reviews in cases where
additional viewpoints or expert opinions were needed. After the review phase, the
chairs led an online discussion for each paper that received at least one positive review,
with a particular focus on identifying the strengths of the submissions instead of
focusing only on flaws. We were particularly happy with the quality of reviews and
discussions from our TPC, and are excited by the 20 papers that they selected. Please
join us in extending our gratitude to the TPC members for their hard work.

We would also like to thank several members of the Organizing Committee, who
helped make the conference a successful event. This includes the general chairs,
Javier Bustos and Fabián Bustamante, who managed the arrangements on site, the
publicity chair, Pedro Casas, and Steve Uhlig for his experience and advice. Last, we
thank all of the authors and attendees who make PAM such an interesting and
important conference for two decades running, and we look forward to seeing what the
next 20 years of PAM will bring!

March 2019 David Choffnes
Marinho Barcellos
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Leveraging Context-Triggered
Measurements to Characterize LTE

Handover Performance

Shichang Xu(B), Ashkan Nikravesh, and Z. Morley Mao

University of Michigan, Ann Arbor, USA
{xsc,ashnik,zmao}@umich.edu

Abstract. In cellular networks, handover plays a vital role in supporting
mobility and connectivity. Traditionally, handovers in a cellular network
focus on maintaining continuous connectivity for legacy voice calls. How-
ever, there is a poor understanding of how today’s handover strategies
impact the network performance, especially for applications that require
reliable Internet connectivity.

In this work, using a newly designed context-triggered measurement
framework, we carry out the first comprehensive measurement study in
LTE networks on how handover decisions implemented by carriers impact
network layer performance. We find that the interruption in connectivity
during handover is minimal, but in 43% of cases the end-to-end through-
put degrades after the handover. The cause is that the deployed handover
policy uses statically configured signal strength threshold as the key fac-
tor to decide handover and focuses on improving signal strength which by
itself is an imperfect metric for performance. We propose that handover
decision strategies trigger handover based on predicted performance con-
sidering factors such as cell load along with application preference.

1 Introduction

Mobile devices rely on cellular networks to get network access to support data
services. Since the coverage of each cell1 is limited, handover between cells is
essential for ensuring continuous connectivity and mobility. In addition, when
the device is in the coverage of multiple cells, a proper policy should handover
the mobile device to a cell that provides good performance.

There has been little work to understand how the deployed cellular network
handover policies affects network layer performance in the wild. Specifically,
questions such as what is the interruption in the network during handover and
whether network performance consistently improves after handover are not well
understood. In this paper, we perform the first large-scale study of handovers in
LTE network using crowd-sourced measurements of over 200 users across three
major carriers for the purpose of evaluating the performance implications of
1 Each cellular base station has one or more set of antennas and it communicates with

the mobile devices in one or more sectors called cells each of which has a unique
ID [7].

c© Springer Nature Switzerland AG 2019
D. Choffnes and M. Barcellos (Eds.): PAM 2019, LNCS 11419, pp. 3–17, 2019.
https://doi.org/10.1007/978-3-030-15986-3_1
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existing handover algorithms and policies. Performing measurements to capture
transient handover events efficiently is challenging. To address such challenges,
we develop a novel context-triggered measurement framework that dynamically
initiates performance measurements of interest only when handover is likely to
occur to reduce the measurement overhead.

Based on our measurement results, we identified fundamental limitations in
the current design and deployment of handover algorithms: the use of static
configurations on signal strength difference with neighboring cells and a lack
of awareness of network performance. As a consequence, in 43% of cases the
throughput degrades after the handover. By analyzing physical layer information
in LTE network, we found that the cause of the performance degradation is that
target cells have higher load and allocate less physical resources.

Our findings help motivate the need for handover algorithms based on net-
work performance considering both signal strength and cell load. The measure-
ment also shows the opportunity to improve the handover decision (Sect. 4):
(a) currently handovers do not occur only when devices experience poor sig-
nal strength, indicating that the time of handover could be potentially changed
without risk of link failures; (b) the dense deployment of cells provides more
than one candidate target cell the device could be potentially handed over to in
many cases.

We summarize the main contribution of our work below.

– We designed a context-triggered measurement framework to support
lightweight and accurate handover measurements. Using this setup, we col-
lected 5 months’ data from 200 users across three major cellular carriers in
the U.S. to investigate performance impact of handover in LTE network.

– Using cross-layer analysis to incorporate radio link layer visibility with our
data collector, we found that the current deployed handover policy relies on
statically configured thresholds on signal strength. It focuses on improving
signal strength and leads to potential performance degradation after the han-
dover.

– We found that the interruption caused by intra-LTE handover is usually min-
imal. However, the median performance improvement after the handover is
close to 0 in metrics including latency, throughput and jitter. The current
handover algorithms do not appear to optimize performance.

– We identified that the performance degradation after handover is caused by
higher load in the target cell and less allocated physical resources to the
devices. We proposed cells predict performance after handover based on signal
strength and cell load information and make handover decisions based on
performance.

2 Background and Related Work

In this section, we first provide some background on handovers (Sect. 2.1). The
related terminologies are summarized in Table 1. Then we summarize related
works (Sect. 2.2).



Leveraging Context-Triggered Measurements 5

Table 1. Related terminologies in LTE network

Terminology Definition

Reference Signal Received Power
(RSRP)

The average power received from the
reference signals. It is a metric of the
downlink signal strength

Physical Resource Block (PRB) The basic unit of allocation of resources to
the UE

Event A3 The signal strength of neighbor cell becomes
better than the serving cell by a relative
threshold value

 Measurement Procedure

Measurement

 Measurement Report

 Handover Decision

 Initiate Handover

 Handover Preparation

 Handover Complete

UE Serving Cell Target Cell

Detach Time

Fig. 1. The general handover procedure in a LTE network

2.1 LTE Handover and Data Transmission Procedure

Handovers within LTE networks are initiated by the cells and they can maintain
ongoing network connections. We first define some basic terminology. Serving cell
is the cell a user equipment (UE) is currently connected to. Target cell becomes
the serving cell after the handover. We also refer to the original serving cell after
the handover completes as the source cell.

As Fig. 1 shows, to help decide when to trigger handover, the mobile device
measures radio signal strength of both the serving cell and neighbor cells peri-
odically. A commonly used metric of signal strength is Reference Signal Received
Power (RSRP), i.e., the average power received from the reference signals of the
cell. The serving cell sends the measurement configuration to the device to spec-
ify when measurement results should be reported back. Depending on the mea-
surement configurations, the measurement reports can be either event-triggered
or periodical. Event-triggered reports are sent only when the link quality sat-
isfies certain conditions. From previous work, a common trigger for intra-LTE
handover is event A3 [8,11], where the signal strength of neighbor cell becomes
better than the serving cell by a relative threshold value. Based on factors includ-
ing measurement reports and load information, the serving cell makes decisions
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on handover [13]. The actual handover decision algorithm depends on the imple-
mentation at eNodeB or LTE base-station. After the source cell determines to
perform a handover for a UE, it conducts a negotiation with the target cell to
ensure enough resource at the target cell. Then it sends a message to the UE
to initiate the handover. The UE disconnects with the source cell and connects
to the target cell. After it successfully connects to the target cell, it notifies the
target cell of the completion of the handover. These signaling messages between
the cell and the UE are exchanged using radio resource control (RRC) protocol.

To understand how the network layer performance is determined by the lower
layer in LTE network, we also briefly describe the data transmission procedure in
the physical layer. Wireless communication requires radio spectrum resources.
In LTE, cells dynamically allocate the physical radio resources in the unit of
physical resource blocks (PRBs) to UEs and transmit data to the UEs using
the allocated PRBs. The allocation strategy is not standardized in the specifica-
tion and depends on vendor-specific implementation. However, typically cells use
proportional scheduling algorithm [7], which optimizes cell efficiency while main-
taining fairness across all UEs in the long term. When the cell load increases,
i.e. more UEs connect to the cell and the total traffic volume increases, the
allocated PRBs for each UE reduce. We denote the ratio between the allocated
PRBs to a UE and the total PRBs of a cell as PRB ratio. The number of bytes
transmitted by each PRB is determined by the signal strength, i.e., with strong
signal strength and good channel quality, the cell could use coding schemes with
high efficiency and thus transmits more data on each PRB. In summary, the
performance in LTE network is affected by both the cell load which determines
the PRB allocation and the signal strength which determines the transmission
efficiency.

2.2 Related Work

The problem of handover in cellular networks has attracted significant attention
in both academia and industry. However, there is little work on understanding
the performance impact of handover decisions in operational LTE network.

Previous work measured intra-LTE handovers using simulation [8,9] and
testbeds [13,22] to understand the performance of applications during handover.
Our work differs in that we measured the handover performance in the wild.
Recent work [14,16,19,23] study persistent handover loops caused by miscon-
figurations. We also identify such misconfigurations for a few cells in the wild
but find they are not dominant. Our focus is to characterize the interruption
caused by handover regardless of handover loops and compare the network per-
formance before and after handover to understand the performance implica-
tions of deployed handover policies. Some other work [4,12,20,21] studied han-
dovers between different technologies, e.g. 3G and 4G. Our work studies handover
between different cells in LTE network.
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3 Methodology

To understand the impact of handover on performance in the wild, we crowd-
source our measurement using a context-triggered measurement framework.

3.1 On-Device Measurement Support

We combine passive monitoring with active measurements to study handover
with minimal measurement overhead.

Passive Monitoring. We keep track of device context including network type,
signal strength and location. Through a novel use of the built-in diagnostic inter-
face from Qualcomm communication chips, we also collect (1) lower layer RRC
layer information including measurement configurations and handover messages
and (2) physical layer information including PRB allocations. Our lower-layer
message collection builds upon SnoopSnitch [2] which is an open-source Android
app aimed to detect attacks such as fake base station using data from the Diag-
nostic Interface. The collector requires root privilege and reads the raw radio
messages from the character device /dev/diag when DIAG CHAR option is acti-
vated in Android kernel. The collector also collects fine-grained signal strength
information from the diagnostic interface every 40 ms, while the signal strength
information from Android API updates only every two to three seconds. We are
one of the first to crowd-source LTE radio-link layer messages.

Active Measurement. To understand how handover impacts network per-
formance, we use the Mobilyzer measurement library [18], a principled mobile
network measurement platform, to measure network performance. We issue ping,
TCP throughput, and UDP burst measurements to capture network character-
istics using metrics including latency, throughput, jitter, packet loss.

Compared with passive monitoring, active measurements consume data
resources and can cause significant impact on battery life. As data and battery
resources are scarce on mobile devices, we need to capture performance during
handover events efficiently. Towards this goal, we develop a context-triggered
framework to trigger measurements only when a handover is predicted to occur
in the near future.

Context-Triggered Measurement Framework. In general, deciding when
to issue measurements is a challenging task. If we simply perform measurements
periodically, the interval is difficult to configure. A small interval leads to large
amount of unnecessary measurements that fail to capture interesting phenomena,
wasting valuable data and battery resources on the device; while a large interval
can miss the phenomena we are interested in.

One approach to solving this problem is to trigger measurements [3] based
on context that specifies the conditions of interest. We estimate the likelihood of



8 S. Xu et al.

observing relevant events based on the device context and trigger measurements
only when the probability of capturing desired events is high. This helps reduce
unnecessary measurements while capturing more events of interest.

We design a context-triggered measurement framework atop Mobilyzer [18].
We send the devices measurement tasks with specific context requirements. The
devices keep monitoring related context and trigger measurements once the con-
text conditions are met. Note that different contexts contain different informa-
tion with different cost. Even querying the same context with different granu-
larity requirement has different cost implications. These considerations motivate
our design of supporting a multi-level triggering procedure. At the first level, we
monitor a context with the lowest cost. If the context indicates that the possibil-
ity of desired event occurrence is high, we monitor another context with higher
cost or the same context with higher accuracy. This can be done with multiple
layers until we reach high confidence that the event will occur. There is certainly
a trade-off from using many levels to reduce measurement overhead but at the
cost of introducing delay in capturing the event of interest which could lead to
fewer events captured. We argue that the number of levels need to be adjusted
depending on the type of events and the overhead of triggering at each level.

We apply this framework to understand the performance impact of han-
dovers. Based on the passively collected lower layer messages, we find that LTE
handovers usually happen when a cell with a stronger signal strength than the
connected cell is discovered for a mobile user (Sect. 4). We implement the frame-
work as follows. We first use sensors to detect user movement, as the power con-
sumption of movement detection sensors such as accelerometers is only 5 mW
for an active device. Once we detect that the user is moving, we start to read
fine-grained signal strength data from the diagnostic interface, which consumes
around 200 mW. If the neighbor cell signal strength is stronger than the serving
cell, a ping, throughput or udp burst measurement is triggered, consuming more
than 1500 mW to activate the radio [10].

To evaluate the effectiveness of the framework, we run simulation on all traces
collected from PhoneLab deployment [5] as explained later. Figure 2 compares
the overhead and accuracy of measurements with and without context triggered
framework. T = x means the measurement are triggered when the signal strength
of neighbor cell is stronger than the serving cell by the threshold of x dBm. P = y
denotes periodic measurement every y minutes. We calculate the overhead as the
average number of measurements for identified handovers, and accuracy as the
percentage of measurements that capture handovers. As shown, our framework
can reduce the overhead to 1% while increasing the accuracy by 10 times. In
the actual deployment, labeled as “Real” in Fig. 2, we use T = 0. Compared
to the simulation results, the real deployment has a slightly lower overhead
and accuracy, because we imposed constraints on the resource usage of active
measurements to reduce impact on user experiences.
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Fig. 2. Context-triggered measurement improves efficiency and accuracy of measure-
ments for intra-LTE handovers (PhoneLab). (T = x: triggered measurement using x
dBm threshold. P = y: periodic measurement every y min).

3.2 Crowd-Sourced Measurement

PhoneLab Deployment. PhoneLab [5] is a smartphone testbed located at the
University at Buffalo with more than 200 participants. Each participant receives
a Nexus 5 device running Android Lollipop with unlimited Sprint data plan.
Developers can deploy experiments on the devices by modifying the Android
system.

To understand handover policies and performance impacts, we add a system
service called HandoverTrackerService in Android system. This service monitors
context information of the device and triggers active measurements. The lower
layer information and measurement results are uploaded to servers. At the begin-
ning of deployment, we keep collecting lower layer messages and perform active
measurement periodically to avoid bias in the collected data. After analyzing
the data and understanding when handover is triggered, we update the deploy-
ment and leverage the context-triggered measurement framework to reduce the
measurement overhead.

To guarantee minimal influence of active measurements on user experience,
heavy-weight measurements such as throughput are performed only when the
screen is off and users are not interacting with the device. To control the power
consumption of issued active measurements, we build an energy model for all
measurements, and stop all measurements when the power consumption reaches
10% of total battery resources after the device is unplugged from the power
source. We also enforce a limit on the daily data usage generated by the active
measurements.

We deploy the measurement system on PhoneLab testbed and collect a
dataset PHONELAB for 5 months from January 2016 to May 20162. In total we
observe 8403 cells and 283,556 intra-LTE handover events. For active measure-
ments, we collect 49,594 throughput measurements, 159,210 ping measurements
and 50,409 UDP burst measurements.

2 We confirm the inferred handover policy from PHONELAB are still current with
the newer MobileInsight dataset as described later in Sect. 4.
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Local Deployment. We also deploy our measurement setup to 20 local users
with unlimited AT&T data plans. We install an app called HandoverTrackerApp
on their devices. The app collects the same information as HandoverTrackerSer-
vice in PhoneLab deployment. We also collect data from a local device with
T-Mobile service.

Both the crowd-sourced measurements and local deployment were IRB appro-
ved. The descriptions of the experiment and collected data are presented to the
participants and they have the option to opt-out the experiment data collection.

MobileInsight Dataset. MobileInsight dataset [1] is a publicly available
dataset containing lower layer cellular messages3 collected from more than 8
US/Chinese network carriers spanning 3 years from year 2015 to 2018 using
the tool MobileInsight [15]. The types of lower layer information collected by
MobileInsight is similar to our data collection deployed on PhoneLab.

4 Handover Policy Inference

In LTE networks, the cells make decisions on when to initiate handovers. The
handover decision process is not standardized in the 3GPP specification and is
left to be defined using carriers’ network configurations. To infer handover trig-
ger policies in practice, we implement an RRC stack emulator that keeps track of
the current device information, such as RRC connected state, connected cell ID,
measurement configurations, and processes handover related messages. We feed
RRC messages from each device to the emulator and output information includ-
ing recent measurement reports and corresponding measurement configurations
when processing handover initialization commands.

We first characterize the deployment of the cells and analyze how many cells
the device usually observes from the signal strength measurements of neighboring
cells in the PhoneLab dataset. We find that in 77.4% of cases the device observes
at least one neighboring cell. In 41.9% of cases, the devices observe multiple
neighboring cells. These neighboring cells can be of good signal strength. Among
all the measurements, in 18.5% of cases, there is at least 1 neighbor cell with
RSRP no worse than 5 dBm lower than the serving cell. This indicates that
carriers deploy cells densely to ensure connectivity and the potential chances of
performing handovers between cells are high.

We find a strong correlation between measurement reports sent from the UE to
the cell (shown in Fig. 1) and handover events observed on the UE. As illustrated
in Fig. 3, 95.4% of handovers in Sprint occur within 100 ms after the measure-
ment report is sent. If we consider a measurement report helps trigger the han-
dover when a handover occurs within 500 ms after a measurement report is sent,
for all carriers studied, more than 99.4% of handovers are triggered by measure-
ment reports, as shown in Table 2. Such close timing proximity implies potential
causality.
3 The MobileInsight dataset does not have active measurements on network perfor-

mance.
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Table 2. Overall statistics of handovers.

Carriers Sprint T-Mobile AT&T

Handovers triggered from events 99.84% 100% 99.40%

Handovers triggered from event A3 98.39% 89.51% 94.41%

Event A3 triggering handovers 91.87% 88.73% 87.58%

Handover count 283,556 286 330

Handover-involved cell count 6,304 33 45
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Fig. 3. Measured delay from the last measurement report to the time when handover
starts (Sprint).

We find the majority type of measurement reports that triggers handovers
is event A3. Event A3 indicates that signalneighbor − signalserving > threshold.
98.39% of all handovers in Sprint network are triggered by event A3 reports.
On the other hand, event A3 measurement reports have a high success rate
of triggering handover. In Sprint network, for 91.9% of event A3 reports, the
cell initiates a handover within 500 ms. For 98.1% of event A3 reports, the cell
initiates a handover within 2 s. One reason why some reports fail to trigger
handovers is that the device releases the RRC connection or the data collector
stops collecting data before the handover occurs.

We find for each pair of cells, the threshold value of event A3 that triggers
handover is statically configured and does not change over a long period. In
the Sprint network, for the pairs of cells that have more than 100 handovers,
10.4% always set the threshold to 2 dBm and 2.9% always set it to 4 dBm.
The other cells used the threshold of 2 dBm at the first 2 months of our data
collection period and then changed to 4 dBm. The threshold of event A3 can
affect how often handover happens. A lower threshold can be met more easily,
thus encouraging more frequent handovers.

To understand whether handovers occur mostly for devices experiencing poor
signal strength, we plot the distribution of the serving cell’s RSRP values right
before handovers in Fig. 4. As shown, there is no direct relationship between cur-
rent serving cell signal strength and handover occurrence. Handover occurs even
when serving cell signal strength is already strong. For AT&T and Sprint, more
than 20% of handovers happen when serving RSRP is stronger than −100 dBm.
This is due to the fact that most of the handover events are triggered by event
A3 using the relative signal strength threshold.
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Fig. 5. In 90% of cases, signal strength
improves after intra-LTE handover.

From the definition of the measurement report events, we know that han-
dovers triggered by event A3 are likely to improve the signal strength of the UE.
This is confirmed by Fig. 5, showing the signal strength improvement after the
handover.

We also validate our observation using the MobileInsight dataset. Among
the 4873 observed handover events in the dataset, 86.5% are triggered by event
A3 measurement reports. For 99.1% of the cell pairs, the A3 threshold value
triggering handover is fixed. This confirms similar handover policies are used
across time across different carriers. We next study the performance implications
of such handover policies.

5 Performance Impact of Handover

We characterize the disruption during handover and the performance change
after handover.

5.1 Performance Disruption During Handover

Due to the underlying physical radio layer transmission mechanism, during intra-
LTE handovers, the device has to disconnect from the currently connected cell
before connecting to the target cell, thus introducing a period during which
the device is detached from the network preventing any data exchange. This
unavoidably generates an interruption to ongoing traffic during handover. In
intra-LTE handovers, the detach time is defined as the interval from the time
when the device receives handover initialization message from the source cell
and the time when the device successfully connects to the target cell.

To maintain good user experience during handover, the detach time needs
to be kept low. In our observation, the detach time of successful handovers
is within 35 ms, which is quite minimal. However, handovers can fail due to
various reasons such as insufficient radio resources in the target cell. When a
handover fails, detach time can increase dramatically. If the UE fails to connect
to the target cell, the UE aborts the handover process and initiates connec-
tion re-establishment procedure with the source cell instead, which increase the
detach time up to 775 ms from our observations. Moreover, in some cases, the
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re-establishment request is rejected by the source cell, and the UE is forced to
release the connection and establish a new connection. This can further increase
the detach time to 2.7 s. The handover failure rate observed in Sprint is 0.18%.

Low detach time does not necessarily mean low impact on application-layer
traffic. After the UE connects to the target cell, it may not resume data trans-
mission from the new cell immediately. We use UDP burst measurement to
characterize the data pause time during handover. Figure 6 shows an example of
UDP measurement results. After the handover, the first few packets are delayed
for about 200 ms. As Fig. 7 shows, the median data pause time is 66 ms, which
increases traffic jitter and may degrade real-time applications such as VoIP.

We examine packet losses during handover. During the handover, some data
may be buffered in the source cell if the device is receiving data. Depending on
how such data is handled, intra-LTE handovers can be categorized as seamless,
which discards all data in the PDCP retransmission queue in the source cell,
or lossless which forwards such data to the target cell. Recent work [17] shows
that seamless handover is better in terms of goodput while lossless handover is
better in terms of latency. We find that all cells in Sprint network use lossless
handover, as no packet loss is found after the handover.

In AT&T network, we found three cells drop packets when there are han-
dovers between them. In order to understand the underlying cause of this phe-
nomena, we carry a Nexus 5 device that keeps downloading data from a local
server while moving in the coverage area of these three cells. Server throughput
is throttled at different values using the tc tool. All tcpdump traces from both
the server and the client are captured.

Figure 8 shows bytes in flight right before the handover and the corresponding
number of lost packets during the handover. We find that the number of lost
packets has a strong correlation with the number of bytes in flight. We infer
that there is a buffer in the cell that buffers packets during the data transmission
between the server and the device. When a handover happens between the source
cell and the target cell, the source cell tries to forward packets in the buffer to the
target cell. However, during handover, the device cannot receive packets from
the source cell in time, thus the number of accumulated packets at the cell may
exceed the buffer size. In that case, the source cell has to drop packets during
the handover.
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We infer the cause of this unusual behavior of these three cells during han-
dover is the poor configuration of their buffer size. From the experiment results,
the buffer size of these cells is between 250 KB to 400 KB. For normal TCP con-
nections, the small buffer size does not cause packet loss due to the flow control
in TCP. However, during handover, the small buffer size can easily lead packets
loss, further degrading the performance of handover. In the worst case of our
experiment, the duration of retransmission for the lost packets is 2.27 s, which
can greatly degrade user experiences.

5.2 Performance Change After Handover

One desirable goal of handover is to improve performance after switching to
a new cell. We analyze the data to compare performance before and after the
handover.

We filter out the throughput measurements that include handovers and cal-
culate the average throughput value in the 5 s before the handover occurs and
the average value in the 5 s after the handover. As shown in Fig. 9, we find that
the throughput does not improve consistently after the handover. In 43% of
cases, the throughput decreases after the handover. Similar to throughput, nei-
ther latency (Fig. 10) nor jitter improves consistently based on the ping and UDP
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Fig. 13. The performance degradation is associated with higher cell load and less
allocated PRBs (Sprint).

burst measurements. The median improvement is close to 0 for all these metrics.
The current handover algorithms do not appear to optimize performance.

As mentioned in Sect. 4, the currently deployed handover decisions of all the
carriers use signal strength as one of the key metrics and focus on improving
signal strength after the handover. However, signal strength is an imperfect
metric for performance, as performance also depends on other factors such as
allocated PRBs determined by the cell load [6]. We calculate the throughput
values each second using the crowd-sourced data and associate them with the
RSRP and obtained PRB ratio. As shown in Fig. 12, the achieved throughput is
determined by the PRB ratio as well.

Figure 11 shows an example where signal strength increases after the han-
dover, but the performance degrades. To confirm the root cause of such perfor-
mance degradation, we look into the change in allocated PRBs after handover
for the cases where throughput decreases. As shown in Fig. 13, in most of such
cases the allocated PRBs of the UE decreases after the handover, indicating that
the target cell has a higher load.

Instead of making handover decisions simply based on signal strength, we
propose that each cell maintains a 2-dimensional performance map from signal
strength value ranges and load value ranges to performance ranges including
throughput, loss rate, and delay. The performance values are updated by pas-
sively monitoring ongoing traffic at the cell. The cells exchange the performance
information of the UE and UE’s perceived signal strength of the potential target
cell with its neighbors and trigger handover only if there is significantly enough
performance improvements. The type of performance metric to be considered
depends on user traffic demand inferred from its traffic types.

6 Conclusion

Handovers are essential for maintaining connectivity as users move with their
devices. With the introduction of small cells in the incoming 5G network, han-
dovers will become more frequent and critical. In this paper, we conduct the first
comprehensive empirical study to investigate the decision strategies of intra-LTE
handover in the wild and analyze their impact on performance. Our study exam-
ines currently deployed decision policies by carriers and sheds light on opportu-
nities for improving the handover decision process with respect to application
performance.
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Our analysis shows that the policies enforced by carriers are not optimized
in terms of performance. The key factor to decide handover is signal strength,
and the handover trigger thresholds are found to be statically configured. We
discover that the performance can degrade after the handover. We propose that
the handover decision should depend on performance information predicted using
both signal strength and cell load information.
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Abstract. Measuring and understanding the end-user browsing Qual-
ity of Experience (QoE) is crucial to Mobile Network Operators (MNOs)
to retain their customers and increase revenue. MNOs often use traffic
traces to detect the bottlenecks and study their end-users experience.
Recent studies show that Above The Fold (ATF) time better approxi-
mates the user browsing QoE compared to traditional metrics such as
Page Load Time (PLT). This work focuses on developing a methodol-
ogy to measure the web browsing QoE over operational Mobile Broad-
band (MBB) networks. We implemented a web performance measure-
ment tool WebLAR (it stands for Web Latency And Rendering) that
measures web Quality of Service (QoS) such as TCP connect time, and
Time To First Byte (TTFB) and web QoE metrics including PLT and
ATF time. We deployed WebLAR on 128 MONROE (a European-wide
mobile measurement platform) nodes, and conducted two weeks long
(May and July 2018) web measurement campaign towards eight web-
sites from six operational MBB networks. The result shows that, in the
median case, the TCP connect time and TTFB in Long Term Evolution
(LTE) networks are, respectively, 160% and 30% longer than fixed-line
networks. The DNS lookup time and TCP connect time of the websites
varies significantly across MNOs. Most of the websites do not show a
significant difference in PLT and ATF time across operators. However,
Yahoo shows longer ATF time in Norwegian operators than that of the
Swedish operators. Moreover, user mobility has a small impact on the
ATF time of the websites. Furthermore, the website design should be
taken into consideration when approximating the ATF time.

1 Introduction

Recent studies show that mobile data traffic is increasing exponentially, and
web browsing is amongst the dominant applications on MBB networks [13]. The
dependency on MBB networks and the widespread availability of LTE is boosting
user expectations towards fast, reliable, and pervasive connectivity. The users
make the MNOs responsible for the shortcomings in the mobile experience [5].
c© Springer Nature Switzerland AG 2019
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This demand pushes the MNOs to further enhance the capabilities of the mobile
networks for emerging applications. One of the challenging use cases for MBB
networks is the mobility scenario [28], for example, browsing the web while com-
muting in a high-speed train. Thus, for MNOs, it is paramount to understand the
end-user browsing experience while using their network [16]. Users are mostly
concerned with the fulfillment of the quality expectation rather than the level
of the QoS metrics like throughput.

There have been a number of previous efforts (Sect. 4) to measure and under-
stand the performance of MBB networks. NetRadar [34,37], SamKnows broad-
band measurement [12], Meteor [32] are some of the tools that have been devel-
oped to measure the QoS metrics from MBB network. These tools either aim
at measuring the metrics related to QoS or do not indicate how the metrics are
used to measure the QoE. Moreover, web performance and QoE have been well
studied [3,9,13,14,19,25–27,33]. Nonetheless, most of the studies that investi-
gated mobile web QoE are either from lab experiments or do not cover a wide
range of metrics to approximate the end-user browsing experience. As a result,
our understanding of web QoE on operational MNOs is limited. Mainly, this is
because of two reasons: (1) the lack of large-scale measurements that investigate
the application level metrics in operational MBB networks, and (2) the map-
ping of the network QoS to objective application QoS metrics and then to the
subjective QoE, has not been well validated for mobile networks.

Our first contribution in this work (Sect. 2) is the design and development of
WebLAR [7], a lightweight tool for measuring the end-user web experience over
operational MNOs. The measurement tool can be deployed at scale and cap-
tures web latency and QoE metrics at different layers such as the DNS lookup
time, TCP connect time, PLT, and the ATF time. The ATF time is the time
required to show the content in the browsers’ current viewport [15]. The authors
in [9,25] used two different approaches to approximate the ATF time in fixed-
line networks. Asrese et al. [9] used a pixel-wise comparison of the changes in
the browser’s viewport to approximate the ATF time. They capture a series
of screenshots of the webpage loading process and compare the pixel difference
between consecutive screenshots with a three seconds threshold. When there is
no change observed for three seconds, the webpage is considered as rendered com-
pletely. The ATF time is the difference between the starting time of the webpage
loading process and the time where the last pixel change is observed. Hora et
al. [25] used the browsers timing information to approximate the ATF time. They
consider that the ATF time is the integral of the downloading time of the main
HTML file, scripts, stylesheets and the images located in the above-the-fold area.
By adopting the methods from the existing work [9,25], we designed WebLAR
to approximate the ATF time in operational MNOs. In addition, WebLAR cap-
tures network and device level metadata information such as the radio access
technology, the GPS locations, CPU and memory usage in the device. Different
confounding factors such as the device affect the QoE. In this work, we build a
baseline view by using MONROE, a platform that can be used for performing
measurements in a more controlled setting.
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The second contribution of this work (Sect. 3) are the insights derived from
the dataset collected using WebLAR. We deployed WebLAR on MONROE [6],
a Europe-wide experimental platform for MBB network measurement. We mea-
sured the performance of eight popular websites from 128 stationary and mobile
MONROE nodes distributed across Norway and Sweden. In our measurement
campaign, measuring a larger set of websites was not possible because of data
quota limitation. So, we picked eight websites (AppendixA) that are popular in
Norway and Sweden. The result from our analysis shows that there is a differ-
ence in DNS lookup time, and TCP connect time of the websites across different
MNOs. For most of the websites, there is no significant difference in PLT and
ATF time across the operators. However, we also observed a big variation in
ATF time of Yahoo between MNOs across different countries. That is, Yahoo
has longer ATF time in the Norwegian MNOs. Moreover, we observed that user
mobility does not have a significant effect on the web QoE.

The applicability of the aforementioned approaches [9,25] to approximate
the ATF time have not been validated for webpages that have different design
style. That is, one approach may work better for certain types of webpages but
may not work well for others. Using the dataset collected using WebLAR, we
showed that the website design should be taken into consideration while using
the browser timing information and the pixel-wise comparison approaches to
approximate the ATF time (Sect. 3.3). We also showed that for the pixel-wise
comparison approach three seconds threshold is sufficient to determine when
the content in the above-the-fold area of the webpage is stabilized. To encourage
reproducibility [11], we open source the tool [7], and release the collected dataset
along with the Jupyter notebooks [10] that were used for parsing and analysing
the results.

2 Experiment Design

We begin by presenting our methodology (Sect. 2.1) to approximate the ATF
time of websites. We provide details on the design, the experimental workflow
(Sect. 2.2), and the implementation aspects (Sect. 2.3) of WebLAR required for
its deployment on the MONROE platform.

2.1 Methodology

The contents in the above-the-fold area of the webpage (that is, the content
within the current viewport of the browser) are the key parts of the webpage
for the user to judge whether or not the page has downloaded and rendered.
As such, the time at which the contents in the above-the-fold area stop chang-
ing and reach the final state is one objective metric to approximate the user
QoE [15]. We refer to this as ATF time. One way to approximate the ATF
time is by monitoring the pixel changes in the visible part of the webpage and
detecting when it stabilizes [9]. Another method is approximating by using the
performance timing information that the browsers provide [25]. Browsers provide
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APIs to retrieve performance and navigation time information of the websites.
The two approaches have their limitations. The webpage may not stabilize due
to different reasons; for example, it may contain animating contents. As such, it
might be difficult to detect when the webpage stabilizes. This makes it harder to
approximate the ATF time using the pixel-wise approach. Conversely, in some
cases it is difficult to identify the exact location of some types of objects. This is
one of the challenges in approximating the ATF time using the browser’s timing
API. Thus, one approach could better approximate ATF time for certain types
of websites, while the other approach may underestimate or overestimate it.

Recent studies [9,25] have developed tools to estimate the ATF time in fixed-
line networks. We take this forward by designing and developing WebLAR that
measures the web QoE in cellular networks by combining both approaches.
WebLAR can approximate the ATF time using both the pixel-wise compari-
son [9] and using the browser performance timing information [25]. Unlike [9],
where the measurement system approximates the ATF time by downloading
all the web objects at the measurement nodes and pushing them to a cen-
tralized server location for processing, we approximate the ATF time at the
MONROE nodes themselves. For simplicity of notations, we refer the ATF time
approximated using this method as ATFp time. Hora et al. [25] developed a
Google Chrome extension to approximate the ATF time, which requires user
interaction. Since the mobile version of Google Chrome does not support exten-
sions (at least without using additional tools), it is not possible to use the browser
timing information to approximate the ATF time in mobile devices. To close this
gap, WebLAR approximates the ATF time in measurement probes that mimic
mobile devices. We refer the ATF time approximated using this approach as
ATFb time. Moreover, using the browsers timing API, WebLAR also records
metrics such as the DNS lookup time, TCP connect time, TTFB, and PLT. The
browser API also enables us to get the web complexity metrics [22] including the
number and the size of objects of the webpages. WebLAR also captures meta-
data information about the network conditions at the measurement nodes (e.g.,
MBB coverage profiles, signal strength) and other information that describe the
user’s mobility (e.g., GPS coordinates) and other events like CPU and memory
usage.

2.2 Experiment Workflow

Figure 1 shows the sequence of operations of WebLAR experiment in MON-
ROE measurement platform. The MONROE measurement platform provides
a web interface where the users can submit their custom experiment (#1 in
Figure). The MONROE back-end service then schedules (#2) the submitted
user experiments to the selected nodes. It also starts the execution of the test
according to the parameters that the user provided through the web interface.
Once a node receives the commands for executing an experiment, it checks
whether the docker container that contains the test is available locally. Oth-
erwise, it fetches the docker container from a remote repository. Then the node
starts the container with the parameters given in the MONROE web interface.
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Fig. 1. Sequence diagram of the experiment using WebLAR tool in MONROE mea-
surement platform.

When the container begins running the WebLAR experiment, WebLAR starts
by checking the available network interfaces that have cellular connectivity and
changes the default gateway (#3) to one of the available interfaces to fetch the
webpages. Then, the node immediately starts capturing the metadata informa-
tion and simultaneously runs the Google Chrome browser (version 62) using
Chromedriver (version 2.33) (#4 and #5). The Google Chrome browser starts
in Incognito and maximized mode and with no-sandbox option. The browser
issues HTTP[S] GET request to the given URL. When the browser starts down-
loading the webpage a video of the browsing session progress is captured for
30 s. Moreover, we capture the web QoS and complexity metrics of the webpage
(#6) by using the browser timing information. At the same time, the ATF time
is approximated using the timing information retrieved using the browser API.
Once the browsing session is completed the recorded video is converted into a
series of screenshots (bitmap images) in every 100 ms interval and the ATF time
is calculated by comparing the pixel changes within the consecutive screenshots
(#7). Then we stop capturing the metadata (#8) and send the results annotated
with the metadata to the MONROE back-end. In one experiment submission,
the steps from #3 to #8 may repeat depending on the number of cellular connec-
tivity that the node has and the number of the webpages that the user wishes to
measure. Finally, the user can retrieve the results from the MONROE back-end
and can do analysis.

2.3 Implementation

The Pixel-Wise Comparison Approach: We designed a Java program that
records a video (10 frames per second) of the browsing session on a predefined
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screen size. Then by using ffmpeg [23], the video is converted into bitmap images
in 100 ms interval. imagemagic [1] is used to compare the pixel difference between
consecutive images. Then we utilise a python script [9] to determine the ATFp

time from the pixel differences. The ATFp time is the point where there are
no more pixel changes in consecutive X screenshots (i.e., X/10 s threshold). A
study [21] in 2016 shows the average PLT in 4G connection is 14 s. The study
shows that more than half of the mobile users abandon the sites that take longer
than three seconds to load. The study revealed that 75% of the mobile sites take
longer than ten seconds to load. In the WebLAR experiment, we set three thresh-
olds (3, 10 and 14 s) for declaring whether or not the webpage stabilizes. Hence,
the ATFp time is approximated with different webpage stabilizing thresholds.

Browser Heuristic-Based Approach: We used the Google Chrome browser
API and utilized the performance timing information to approximate ATFb time
using the browser’s heuristic. First we detect all the resources of the website
and their location on the webpage. Then, to approximate the ATFb time, we
integrate the download time of the images (that are located in the ATF area),
javascript files, cascaded style sheet files, and the root document that contains
the DOM structure of the webpage. Moreover, using the browser API, the QoS
metrics such as the DNS lookup time, TCP connect time, TTFB, the DOM
load time and PLT are captured. The web complexity metrics such as number
and size of resources are also extracted using the API. We wrote a javascript
implementation to approximate the ATFb time and integrated it within the Java
program used to approximate the ATFp time.

3 Analysis

We begin by presenting the dataset (Sect. 3.1) we collected after deploying
WebLAR on the MONROE platform. We present the analysis using this dataset,
focussing on IP path lengths (Sect. 3.2), web latency and QoE (Sect. 3.3) and
specifically QoE under mobility (Sect. 3.4) conditions.

3.1 Dataset

We ran the WebLAR experiment for two weeks (May 19–26, 2018 and July 2–
9, 2018) in 128 MONROE nodes located in Norway and Sweden. The nodes
are equipped with one or two SIM cards with 4G connectivity. Nine of the
nodes deployed in Norway are connected with a Swedish operator roaming [29]
in Norway. Our measurement campaign covers a total of six operators. During
the campaign, nodes are set to fetch specific pages of eight popular websites
(AppendixA). The WebLAR experiment execute every six hours. In the rest
of this paper, we refer to the websites with the name of their base URL. We
performed pre-processing to prune out results where the experiment failed to
report values of all metrics (e.g., due to browser timeout settings) leaving us
with ∼18K data points.
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3.2 IP Path Lengths

We began by analysing the IP paths towards the measured websites. WebLAR
uses traceroute to measure the IP path length and the round trip time towards
the websites. To study the IP path length and the latency difference in LTE and
fixed-line networks, we ran WebLAR on 29 MONROE nodes in Italy, Norway,
Spain, and Sweden. Figure 2(1) shows the IP path length towards selected web-
sites in fixed-line and LTE networks from 29 MONROE nodes. The result shows
that in the median case, the IP path length in LTE and fixed-line network is
similar.

Fig. 2. The distribution of (1) IP path length and (2) web QoS metrics from fixed-line
and LTE broadband networks as observed from selected 29 nodes.

3.3 Web Latency and QoE

Figure 2(2) shows the latency towards the websites from fixed-line and LTE net-
works from 29 MONROE nodes. We observe that there is no significant difference
in the DNS lookup time and PLT (not shown) of the websites from fixed-line and
LTE network. However, the TCP connect time and TTFB of the websites are
shorter in fixed-line network. For instance, in the median case, in LTE network
the TCP connect time, and TTFB are respectively, 160% and 30% longer than
that observed in fixed-line networks. Due to security reason, the browser timing
API gives the same value for the start and end of the TCP connect and DNS
lookup time for cross-origin resources. That is, unless the user explicitly allows
the server to share these values, by default the TCP connect time and DNS
lookup time is 0 for the cross-origin resources [30]. As a result, three websites
(Google, Microsoft, and Yahoo) report 0 for these metrics. The discussion of the
DNS lookup time and TCP connect time does not include these three websites.

Figure 3(1) shows the latency of the websites under different MNOs. Note, the
Norwegian and Swedish operators are labeled with NO o and SE o, respectively,
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where o ∈ {1, 2, 3}. SE r refers to a Swedish operator roaming in Norway. The
result shows the MNOs have different performance in terms of DNS lookup time
(ranges from 35 ms to 60 ms, in the median case) and TCP connect time (ranges
from 100 ms to 200 ms, in the median). One of the causes for the variation in the
DNS lookup time across the MNOs could be attributed to the presence of cached
DNS entries [36]. The result also shows that, the difference in TTFB and PLT
of the websites across different MNOs is not high (i.e., in the median case, only
200 ms to 600 ms difference in PLT). We applied Kolmogorov - Smirnov test to
investigate the significance of the difference in PLT across MNOs. In most of the
cases, we found a smaller p-value (below 0.05) between the PLT of the websites
across MNOs. This confirms that there is a difference in PLT of the websites
across MNOs. We also found a higher p-value between PLT across MNOs within
the same country (e.g., 0.46 between NO 2 and NO 2, 0.4 between SE 1 and
SE 3). This observation indicates that MNOs within the same country exhibit
similar PLT towards these websites. The result also shows that there is up to 1 s
improvement in the PLT compared with a previous [21] observations.

Fig. 3. The distribution of (1) DNS lookup time, TCP connect time, TTFB, and PLT
and (2) ATF time as approximated using the two approaches.

Figure 3(2) shows the distribution of the ATF time towards websites across
different MNOs as approximated using the two approaches. Figure 3 (2, top)
shows the approximated ATFb time. The long tails of the distribution in this
result is due to Facebook and BBC, which have higher number of objects and
overlapping images in the above-the-fold area. Figure 3 (2, bottom 3) show the
ATFp with three, ten and 14 s threshold, respectively. From the result, we can
see that in the median case, the ATFb is shorter than the ATFp time with three
seconds threshold. This indicates that three seconds is a sufficient threshold to
declare whether the website has stabilized or not. As such, going forward, we
only consider three seconds threshold for approximating the ATF time using the
pixel-wise comparison approach. The difference in the ATF time of the websites
across most of the MNOs is small (i.e., in the median case, the difference is
100 ms to 300 ms). However, we notice that the difference in ATF time between
SE r and the other MNOs is large (i.e., in the median case, ATFb time can be
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up to 400 ms and ATFp time can be up to 4200 ms). By applying a Kolmogorov
- Smirnov test, we found a smaller p-value (below 0.05) between the ATFb time
of the different MNOs. This confirms that there is a difference between ATFb

times across MNOs. Only the ATFb time of websites between SE 1 and SE 3
shows a p-value of 0.75, highlighting similar QoE between the two MNOs.

Fig. 4. (1) The CDF of the PLT and the ATF time of the different websites. (2) The
ATF time of Yahoo across different MNOs.

We also analysed the rendering performance of each website. Figure 4(1)
shows the distribution of the ATF time approximated using the two approaches
and the PLT of the websites. Through manual inspection, we observed that some
of the websites, e.g., Microsoft, have a fewer number of objects and take shorter
time to show the contents of the above-the-fold area. The ATF approximation
using both approaches confirms this. On the contrary, websites like Facebook
have multiple objects located in the above-the-fold area (confirmed through man-
ual inspection). The objects may overlap each other where some of the objects
may not be visible in the front unless the user takes further action (e.g., clicking
the sliding button). In such cases, the browser heuristic based ATF time approx-
imation overestimates the ATF time. Hence, for these kinds of websites, the ATF
time approximation based on the browser heuristic does not better represent the
end user experience. That is, the missing or delay in the download of those over-
lapped objects do not have effect in the visual change of the websites. Therefore,
for the websites that have overlapping objects in the above-the-fold area, the
ATF time needs to be approximated in a different way. For instance, Fig. 4(1)
shows that the ATFp time of Facebook is below half of its PLT, which is much
shorter than its ATFb time. This shows that the pixel-wise comparison approach
of ATF time approximation is better for websites that have overlapping contents.
However, approximating the ATF time using the pixel-wise comparison approach
may also overestimate the ATF time for some websites. For instance, Microsoft
has fewer images in the above-the-fold area, and the ATFb time is short. How-
ever, the visual look of the webpage seems to be manipulated by using css and
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Fig. 5. The distribution: (1) the ATF time of the websites under mobility condition
across different operators, and (2) The ATF time and PLT of the websites under
different mobility conditions.

javascripts and have animating contents. As a result, the pixel-wise comparison
approach yields longer ATF time for this website. Therefore, the design of the
website can have an impact on the two ATF time approximation methods. Fur-
thermore, due to the design pattern adopted by some websites, the objects are
fetched asynchronously and the TCP connection may not be closed. As such,
the javascript onLoad event may fire before all the objects are fetched. In such
cases, the ATFb time is longer than that of the PLT.

Figure 4(1) also shows that the ATF time of BBC, Yahoo and Wikipedia
exhibits a bimodal distribution. We investigated this aspect further by observing
the ATF time of these websites from different operators. For instance, Fig. 4(2)
shows the distribution of the ATF time of Yahoo across the different MNOs
approximated using the two approaches. The result reveals that in the Norwegian
MNOs, Yahoo takes longer to show the contents in the above-the-fold area. As
such, the bimodal distribution of ATF time is due to the difference observed in
the operators across different country. The impact of the longer download time
of the objects in the above-the-fold area is reflected in the ATFp time of the
websites. For the other two websites we see a difference across the operators. That
is, the bimodal distribution happens in all operators. Figure 4(2) and 3(1) also
show that the Swedish operator roaming in Norway has a similar QoE with the
native Swedish operator. As such, the home-routed roaming [29] configuration
does not have much impact on the QoE when the user travels relatively small
distances (i.e., between Norway and Sweden).
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3.4 Web QoE Under Mobility Conditions

Figure 5(1) shows the distribution of the ATF time of the websites under mobility
scenario as approximated using the two methods. The results show that ATF
time of the websites measured from nodes deployed in trains and buses are similar
to that of the nodes deployed in homes and offices. However, the variation in
ATF time across different MNOs is relatively higher under mobility scenario.

The nodes deployed in trains can be online even though the trains are at
the garage; hence some nodes may not be moving in some cases. Figure 5(2)
shows the ATF time and PLT of websites from buses and trains which were
moving while the measurement was conducted. The result shows that most of
the websites have almost similar PLT in a mobile and a stationary situation.
However, the ATF time of some of the websites is relatively longer in mobility
scenario. For instance, in the median case, the ATF time of Microsoft, Yahoo,
Reddit, and Facebook is 0.3 to 1 s longer under mobility condition. Yahoo shows
different behavior in the ATF time from stationary and mobile nodes. That is,
60% of the measurements from the mobiles nodes, and 40% of the measurements
from the stationary nodes show a drastic change (more than 7 s difference) of the
ATF time. To understand the causes for this drastic change we analyzed the ATF
time of this website at each operator. We found that in the Norwegian operators
Yahoo takes longer time to show the contents in the above-the-fold area. One
of the causes for this could be the IP path length between the operators and
the Yahoo content server. Using a traceroute measurement we analyzed the
IP path lengths that the nodes traverse to reach the web servers from different
locations. We observed that the nodes hosted in Norwegian operators traverse up
to 20 IP hops to reach the Yahoo web server. Instead, other Swedish operators
take a maximum of 16 IP hopes to reach Yahoo’s web server.

4 Related Work

The web has been well studied. Various web QoE measurement tools and
methodologies are available [8,9,25,35]. Most of these tools focus on fixed-line
networks. For instance, Varvello et al. [35] designed eyeorg, a platform for crowd-
sourcing web QoE measurements. The platform shows a video of the page loading
progress to provide a consistent view to all the participants regardless of their
network connections and device configurations. Unlike eyeorg, our measurement
tool does not require user interaction to evaluate the web QoE, rather it uses
different approaches to approximate the web QoE. Cechet et al. [18] designed
mBenchLab that measure web QoE in smartphones and tablets by accessing
cloud hosted web service. They measured the performance of few popular web-
sites and identify the QoE issues observing the PLT, the traditional web QoE
metric. Casas et al. [17] studied the QoE provisioning of popular mobile appli-
cations using subjective laboratory tests with end-device through passive mea-
surement. They also studied QoE from feedback obtained in operational MNOs
using crowd-sourcing. They showed the impact of access bandwidth and latency
on QoE of different services including web browsing on Google Chrome.
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Balachandran et al. [13] proposed a machine learning approach to infer the
web QoE metrics from the network traces, and studied the impact of network
characteristics on the web QoE. They showed that the web QoE is more sen-
sitive for the inter-radio technology handover. Improving the signal to noise
ratio, decreasing the load and the handover can improve the QoE. Ahmad et
al. [4] analyzed call-detail records and studied WAP support for popular web-
sites in developing regions. Nejati et al. [31] built a testbed that allows com-
paring the low-level page load activities in mobile and non-mobile browsers.
They showed that computational activities are the main bottlenecks for mobile
browsers, which indicates that browser optimizations are necessary to improve
the mobile web QoE. Dasari et al. [20] studied the impact of device performance
on mobile Internet QoE. Their study revealed that web applications are more
sensitive for low-end hardware devices compared to video applications.

Meteor [32] is a measurement tool which determines the speed of the network
and estimates the experience that the user can expect while using selected pop-
ular applications given their connection requirements. The methodology used
by Meteor is not open aside from the high-level explanation of the system. It
is not clear how the expected experience is computed and which performance
metrics are used for a given application. Perhaps, it is based on QoS metrics
like throughput and latency test, which may not be the only factors that affect
the performance of different application [20]. Unlike Meteor, we measure differ-
ent metrics at the network and application level, e.g., TTFB, PLT, as well as
ATF time at the browser which is more important from the user perspective.
WebPageTest [2] and Google Lighthouse [24] are other tools designed to assess
the web performance from different locations using different network and device
types. These tools measure PLT, SpeedIndex, TTFB, time to visually complete
(TTVC), first contentful paint (FCP), first meaningful paint (FMP), time to
interactive (TTI), and last visual change metrics. WebLAR measures the ATF
time, but it does not measure SpeedIndex, TTVC, TTI, and FCP yet. SpeedIn-
dex [3] is a metric proposed by Google to measure the visual completeness of
a webpage. It can be approximated either by capturing video of the webpage
download progress or by using the paint events exposed by Webkit. We make
WebLAR publicly available [7] and invite the measurement community for con-
tributions to help improve this tool.

5 Conclusions

We presented the design and implementation of WebLAR – a measurement tool
that measures web latency and QoE in the cellular network. We applied ATF
time as the metric to approximate the end-user experience. We followed two
different approaches to approximate the ATF time: pixel-wise comparison and
the browser heuristics. We deployed WebLAR on the MONROE platform for
two weeks. The results show that the DNS lookup time and PLT of the selected
websites have similar performance in LTE and fixed-line networks. However, the
TCP connect time and TTFB of the websites are longer in LTE networks. More-
over, the DNS lookup time and TCP connect time of the websites varies across
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MNOs. For most of the websites, PLT, and ATF time do not have a significant
difference across operators. We observed that mobility has small impact on the
ATF time of the websites. We also showed that the design of the website should
be taken into account when using two approaches to approximate the ATF time.

Limitations and Future Work: We only measured eight websites in this study
and did not perform a subjective QoE evaluation. We also did not consider the
impact of device capabilities on the web QoE since our measurement nodes were
homogenous. In the future, we plan to extend WebLAR to capture other metrics
such as RUM SpeedIndex, TTI, first contentful paint and also evaluate the ATF
time using different screen sizes.

Appendix A List and Category of Measured Webpages

The websites are selected from different categories such as social media, news
websites, and WIKI pages. Moreover, while selecting these websites, the design
of the websites (from simple to media-rich complex webpages) and the purpose
of the websites are taken into consideration. Furthermore, for each website we
selected a specific webpage that does not require user interaction to show mean-
ingful contents to the user.

– News websites
• http://www.bbc.com
• https://news.google.com

– Wiki websites
• https://en.wikipedia.org/wiki/Alan Turing
• https://www.reddit.com

– Social media websites
• https://www.youtube.com
• https://www.facebook.com/places/Things-to-do-in-Paris-France/

110774245616525
– General websites

• https://www.microsoft.com
• https://www.yahoo.com.

Appendix B Additional Observations

Although not specific to mobility scenario, Fig. 5(2) also shows that PLT can
under- or over-estimate the web QoE. For instance, for Facebook, the onLoad
event fires before all the necessary web objects in the above-the-fold area are
downloaded. For these types of websites the PLT underestimates the user QoE.
On the other hand, for websites like Yahoo and Reddit, the ATF is shorter
compared with PLT time, which overestimates the user QoE.

http://www.bbc.com
https://news.google.com
https://en.wikipedia.org/wiki/Alan_Turing
https://www.reddit.com
https://www.youtube.com
https://www.facebook.com/places/Things-to-do-in-Paris-France/110774245616525
https://www.facebook.com/places/Things-to-do-in-Paris-France/110774245616525
https://www.microsoft.com
https://www.yahoo.com
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Abstract. With the popularity of mobile access Internet and the higher
bandwidth demand of mobile applications, user Quality of Experience
(QoE) is particularly important. For bandwidth and delay sensitive appli-
cations, such as Video on Demand (VoD), Realtime Video Call, Games,
etc., if the future bandwidth can be estimated in advance, it will greatly
improve the user QoE. In this paper, we study realtime mobile band-
width prediction in various mobile networking scenarios, such as subway
and bus rides along different routes. The main method used is Long
Short Term Memory (LSTM) recurrent neural network. In specific sce-
narios, LSTM achieves significant accuracy improvements over the state-
of-the-art prediction algorithms, such as Recursive Least Squares (RLS).
We further analyze the bandwidth patterns in different mobility scenar-
ios using Multi-Scale Entropy (MSE) and discuss its connections to the
achieved accuracy.

Keywords: Bandwidth prediction · Long Short Term Memory ·
Multi-Scale Entropy · Bandwidth measurement

1 Introduction

We have witnessed the tremendous growth of mobile traffic in the recent years.
Users are increasingly spending more time on mobile apps and consuming more
content on their mobile devices. The growth trend is expected to accelerate in the
foreseeable future with the introduction of 5G wireless access and new media-rich
applications, such as Virtual Reality and Augmented Reality. However, one main
challenge for mobile app developers and content providers is the high volatility
of mobile wireless connections. The physical channel quality of a mobile user is
constantly affected by interference generated by other users, his/her own mobil-
ity, and signal blockages from static and dynamic blockers [8,9]. The bandwidth
available for a mobile session is ultimately determined by the adaptations cross
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the protocol stack, ranging from adaptive coding and modulation at PHY layer,
cellular scheduling at data link layer, hand-overs between base stations, to TCP
congestion control, etc. For many mobile apps involving user interactivity and/or
multimedia content, e.g., gaming, conferencing and video streaming, it is criti-
cal to accurately estimate the available bandwidth in realtime to deliver a high
quality of user Quality-of-Experience (QoE). In the example of video streaming,
many recent algorithms on Dynamic Adaptive Streaming over Http (DASH)
optimize the video rate selection for incoming video chunks based on the pre-
dicted TCP throughput in a future time window of several seconds [5,11,15].
To cope with the unavoidable TCP throughput prediction errors, one has to be
conservative in video rate selection and resort to long video buffering to absorb
the mismatch between the predicted and actual TCP throughput. Both degrade
user video streaming QoE. Interactive video conferencing has much tighter delay
constraint than streaming. To avoid self-congestion, the available bandwidth on
cellular link has to be accurately estimated in realtime, which is used to guide
the realtime video coding and transmission strategies [10,16]. Bandwidth overes-
timate will lead to long end-to-end video delay or freezing, bandwidth underes-
timate will lead to unnecessarily poor perceptual video quality. Again, accurate
realtime bandwidth prediction is crucial for delivering good conferencing expe-
rience, especially in mobile networking scenarios.

In this paper, we study realtime mobile bandwidth prediction using Long
Short Term Memory (LSTM) [1] recurrent neural network. Recent advances in
Deep Learning have demonstrated that Recurrent Neural Networks (RNN) are
powerful tools for sequence modeling and can learn temporal patterns in sequen-
tial data. RNNs have been widely used in Natural Language Processing (NLP),
speech recognition and time series processing [17,18]. There are rich structures
in realtime mobile network bandwidth evolution, due to user mobility patterns,
wireless signal propagation laws, physical blockage models, and the well-defined
behaviors of network protocols. This presents abundant opportunities for devel-
oping LSTM-based realtime mobile bandwidth estimation. The main idea is to
offline train LSTM RNN models that capture the temporal patterns in various
mobile networking scenarios. The trained LSTM RNN models will be used online
to predict in realtime the network bandwidth within a short future time window.
Specifically, we investigate the following research questions:

1. How much prediction accuracy improvement can LSTM deep learning models
bring over the conventional statistical prediction models?

2. How predictable is realtime bandwidth at different prediction intervals under
different mobility scenarios? Is the LSTM prediction accuracy dependent on
specific mobility scenarios?

3. Should one train a separate LSTM model for each mobility scenario, or train
a universal LSTM model that can be used in different scenarios?
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Towards answering these questions, we made the following contributions:

– We conducted a mobile bandwidth measurement campaign to collect consec-
utive bandwidth traces in New York City. Our traces cover different trans-
portation methods along different routes at different time of day1.

– We developed LSTM models for realtime one-second ahead and multi-second
ahead bandwidth predictions. Through extensive experiments on our own
dataset and the HSDPA dataset [7], we demonstrated that LSTM significantly
outperforms the existing realtime bandwidth prediction algorithms.

– We systematically evaluated the sensitivity of LSTM models to different
mobility scenarios by comparing the performance of per-scenario, cross-
scenario and universal predictions. Using Multi-Scale Entropy (MSE) anal-
ysis, we studied the connection between prediction accuracy and bandwidth
regularity at different time scales. MSE also provides us with guidelines to
explore cross-scenario bandwidth prediction.

The rest of the paper is organized as the following. The related work on real-
time bandwidth prediction is reviewed in Sect. 2. We formally define the realtime
bandwidth prediction problem and introduce our LSTM based prediction mod-
els in Sect. 3. The performance of LSTM models is evaluated by public dataset
and our own dataset in Sect. 4. We conduct Multi-Scale Entropy analysis on our
collected bandwidth traces and analyze the prediction accuracy in Sect. 5. The
paper is concluded with future work in Sect. 6.

2 Related Work

Realtime bandwidth prediction has been a challenging problem for the network-
ing community. Simple history-based TCP throughput estimation algorithm was
proposed in [12]. Authors of [13] proposed to train a Support Vector Regress
(SVR) model [14] to predict TCP throughput based on the measured packet
loss rate, packet delay and the size of file to be transmitted. In the context
of DASH video streaming, in [11], we adopted prediction algorithm in [12] to
guide realtime chunk rate selection, and used a customized SVR model similar
to [13] for DASH server selection. Authors of [20] and [15] used the Harmonic
Mean of TCP throughput for downloading the previous five chunks as the TCP
throughput prediction for downloading the next chunk. In [5], authors devel-
oped Hidden Markov Model (HMM) for bandwidth prediction. HMM model is
parameterized by history bandwidth, and HMM state transition is used to infer
future bandwidth. In the context of video conferencing, in [16], a cellular link is
modeled as a single-server queue driven by a doubly-stochastic service process.
Bandwidth available for a user is measured by the packet arrival dispersion at
the receiver end, and future bandwidth prediction is generated by probabilistic
inference based on the single-server queue model. In [10], we used an adaptive

1 The collected NYU Metropolitan Mobile Bandwidth Trace Dataset (NYU-METS),
is publicly available at https://github.com/NYU-METS/Main.

https://github.com/NYU-METS/Main
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filter, Recursive Least Squared (RLS), to make realtime bandwidth prediction.
We showed that RLS achieves good prediction accuracy on volatile cellular links.
Based on the accurate bandwidth prediction, they proposed a new video con-
ferencing system that can deliver higher video rate and lower video delay than
Facetime in side-by-side comparisons.

All the previous predictors are based on the conventional statistical or
machine learning models and generate predictions based on short bandwidth
history. Different from the conventional models, LSTM deep learning models are
more flexible and can be trained by large datasets to better capture the long-
term and short-term temporal structures in bandwidth time series. A recent
work on Deep Reinforcement Learning (DRL) based DASH [19] takes historical
bandwidth samples as part of the input state vector for DRL to directly gener-
ate video chunk rate selection. DRL based DASH achieves better performance
and robustness than the traditional DASH. While DRL-DASH implicitly mines
the temporal structure in bandwidth, there is no direct/explicit training and
validation optimized for bandwidth prediction.

3 LSTM Based Realtime Bandwidth Prediction

3.1 Realtime Bandwidth Prediction Problem

Let x(t) be the bandwidth available for a user at time t. Given some band-
width measurement frequency, one can obtain a discrete-time series of {x(t), t =
1, 2, · · · .}. The realtime bandwidth prediction problem at time t is to estimate
the bandwidth available for a user at some future time instant x(t + τ) given all
the observed bandwidth measurements so far, i.e.,

x̂(t + τ) = f ({x(k), k = 1, 2, · · · , t}) . (1)

There are many ways to build the estimation function f(·), ranging from sim-
ple history-repeat, i.e., x̂(t + τ) = x(t), Exponential Weighted Moving Aver-
age (EWMA), x̂(t + 1) = (1 − α)x̂(t) + αx(t), Harmonic Mean, x̂(t + τ) =
h/

∑h−1
k=0 1/x(t − k), etc., to more sophisticated signal processing approaches,

such as Kalman filter [6] and Recursive Least Squares (RLS) [3]. In [10],
we used RLS for realtime bandwidth prediction. By assuming x̂(t + 1) =
∑h−1

k=0 ω(k)x(t − k), RLS recursively finds the coefficients ω that minimizes a
weighted linear least squares cost function.

In the bandwidth prediction part of [10], it was shown that RLS achieves
better accuracy than other averaging and signal processing algorithms, such as
Least Mean Square and EWMA etc.

3.2 LSTM-Based Prediction Model

While all those methods use history measurements to generate bandwidth pre-
diction, they did not fully explore the temporal patterns in realtime bandwidth
evolution for more accurate prediction. Meanwhile, LSTM network has recently
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(a) LSTM Network Architecture (b) Internal Structure of LSTM Unit

Fig. 1. LSTM network for realtime bandwidth prediction

emerged as a powerful tool for exploring temporal structures in sequential data.
As illustrated in Fig. 1a, a LSTM network consists of layers of LSTM units.

As illustrated in Fig. 1b, a common LSTM unit is composed of a cell, an input
gate, an output gate and a forget gate. The cell is responsible for “memorizing”
values over arbitrary time intervals; hence the word “memory” in LSTM. Each
of the three gates can be thought of as a “conventional” artificial neuron, as in a
multi-layer (or feed-forward) neural network: they compute an activation (using
an activation function) of a weighted sum. Intuitively, they can be considered
as regulators of the flow of values going through the connections between the
LSTM units; hence the denotation “gate”. There are connections between these
gates and the cell. Detailed LSTM reviews can be found in [1,2].

The input to our LSTM bandwidth prediction network is the recent band-
width measurements, i.e, x = [x(t), x(t − 1), · · · , x(t − n + 1)] ∈ Rn, the output
is the predicted bandwidth in a future time window y = [x̂(t + 1), x(t + 2), · · · ,
x(t + m)] ∈ Rm. Note that since LSTM network adaptively keeps “memory”,
the bandwidth prediction for time window (t, t + m] is not only directly deter-
mined by the recent bandwidth history in (t − n, t], but also indirectly affected
by bandwidth history before t − n through the memory cells. This gives LSTM
more flexibility in capturing long-term bandwidth evolution trends than the tra-
ditional signal processing and averaging approaches working on a moving history
window. Following the architecture in Fig. 1a, we build a LSTM network with
one input Layer, one output layer and two hidden layers, each with 256 and
128 LSTM units respectively2. Given the LSTM architecture, the mapping from
input x to output y is parameterized by all the parameters in the LSTM network,
denoted as θ, which are obtained by minimizing the loss function in training.

Since we study realtime bandwidth prediction for a range of mobile network-
ing scenarios, one option is to train a separate LSTM network for each scenario,
that is using bandwidth data collected from scenario i to train a LSTM network
with parameters θ(i), and then use it to predict bandwidth for scenario i, i.e.,

2 We also tried a LSTM network with 256 and 256 nodes, and a LSTM network
with 128 and 128 nodes. The performance difference is not significant. The results
presented in this paper is based on the 256 + 128 LSTM network.
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per-scenario: ŷ(i) = LSTM
(
x(i), θ(i)

)
, ∀i. (2)

Another option is to train one universal LSTM network with parameters θ(0)

using all data collected from all scenarios, and hope the trained universal LSTM
model can be used to predict bandwidth in all scenarios, i.e.,

universal: ŷ(i) = LSTM
(
x(i), θ(0)

)
, ∀i. (3)

The third option is to train a LSTM network using data from scenario i, then
use it to predict bandwidth in scenario j.

cross-scenario: ŷ(j) = LSTM
(
x(j), θ(i)

)
, i �= j. (4)

To generate training samples, we use a sliding-window based approach. For
example, to predict the bandwidth in the next second (m = 1) based on the
bandwidth measurements in the previous five seconds (n = 5), in the train-
ing, we use every consecutive six bandwidth measurements as one training data
point. The first five seconds bandwidth form the input vector, and the sixth
second bandwidth is the output label. Likewise, for the general multiple sec-
onds prediction, i.e., predicting the future bandwidth for the next m seconds
based on the previous n seconds bandwidth, we use every consecutive n + m
bandwidth measurements as one data point. The first n measurements form the
input vector, and the last m measurements form an output label vector.

4 Data Collection and Performance Evaluation

4.1 Datasets

It is critical to train and test LSTM models using large representative bandwidth
datasets. We first used the HSDPA [7] dataset from the University of Oslo. It con-
sists of cellular bandwidth traces collected on different transportation methods,
including Train, Tram, Ferry, Car, Bus and Metro. For each trace, it recorded the
bandwidth and location every 1,000 ms, and the duration for each trace ranges
from 500 to 1,000 s. However, we later found that the bandwidth traces are too
short for MSE analysis. We also collected long bandwidth traces in New York
City MTA bus and subway by ourselves. Figure 2 shows some sample routes for
our bandwidth collection, including Subway 7 Train, Subway Q Train, Bus B57
and B62. On each route, we conducted multiple experiments at different time of
day. For each experiment, we connect a LTE mobile phone with unlimited data
plan to a remote server in our lab. We run iPerf and record TCP throughput
every 1,000 ms. All the bandwidth samples are logged on the server side. The
duration of each trace ranges from 10,000 to 20,000 s. It took us four months to
complete the first batch of data. We are continuing this measurement campaign
and keep adding new traces to our NYU-METS Dataset for future research.
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(a) MTA Subway 7 Train (b) MTA Subway Q Train (c) Bus 57 Raw Trace

(d) MTA Bus 57 (e) MTA Bus 62 (f) Q Train Raw Trace

Fig. 2. New York City self-measured bandwidth

Table 1. Evaluation results on NYU-METS traces

7A Train 7B Train Bus 57 Bus 62 N Train

Testset Average 6.39 4.76 10.04 2.55 8.98

RLS RMSE 2.57 2.19 2.59 0.87 3.04

RLS MAE 1.69 1.49 1.72 0.66 2.11

Harmonic RMSE 2.98 2.60 2.79 0.94 3.36

Harmonic MAE 1.86 1.68 1.78 0.70 2.26

LSTM RMSE 2.26 2.05 2.32 0.72 2.81

LSTM MAE 1.49 1.41 1.54 0.55 1.90

RLS RMSE Error Ratio 40.3% 46.0% 25.8% 34.2% 33.8%

RLS MAE Error Ratio 26.5% 31.3% 17.1% 26.1% 23.5%

HAR RMSE Error Ratio 46.6% 54.6% 27.8% 37.0% 37.4%

HAR MAE Error Ratio 29.1% 35.4% 17.7% 27.4% 25.2%

LSTM RMSE Error Ratio 35.3% 43.1% 23.1% 28.2% 31.3%

LSTM MAE Error Ratio 23.3% 29.6% 15.3% 21.4% 21.2%

Relative RMSE Impro over RLS 14.0% 6.7% 11.8% 21.2% 8.2%

Relative MAE Impro over RLS 13.6% 5.9% 11.9% 21.6% 11.0%

Relative RMSE Impro over Harmonic 31.8% 26.7% 20.4% 31.1% 19.5%

Relative MAE Impro over Harmonic 24.9% 19.7% 15.8% 27.7% 18.9%
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(a) Harmonic Mean (b) RLS (c) LSTM

Fig. 3. Harmonic Mean, RLS and LSTM predictions on Subway 7 Train

4.2 Next-Second Prediction

For the next-second prediction, the dimension of LSTM output is m = 1, and we
pick LSTM input dimension of n = 5 for evaluation. Figure 3 visually compares
the predicted values from Harmonic Mean, RLS and LSTM with the ground
truth for a trace collected on NYC Subway 7 Train. For LSTM training, we use
Adam optimizer [21] with default parameters (including learning rate, beta, etc)
in training. 80% of the trace is used for training, the rest 20% is used for testing.
We manually adjust dropout and epoch based on the performance of model.

We use the Root Mean Square Error (RMSE) and Mean Absolute Error
(MAE) between the predicted bandwidth and the ground truth as the main
accuracy measures. The complete prediction result of the three algorithms on
our NYU-METS Dataset is reported in Table 1. (LSTM runs in the per-scenario
mode). The unit is Mbps. LSTM has the lowest RMSE and MAE cross all
mobility scenarios. The average accuracy improvement of LSTM over RLS and
Harmonic Mean in RMSE are 12.4% and 25.9% respectively, for MAE, these are
12.8% and 21.4% respectively. Since Harmonic Mean performs much worse than
the other two, in the following, we only compare LSTM with RLS.

Table 2 compares the accuracy of per-scenario LSTM with RLS on the
HSDPA dataset. The unit for the numbers is kbps. LSTM still outperforms
RLS in all mobility scenarios. The Relative Improvement of LSTM over RLS are
around 14.1% and 13.9% for RMSE and MAE respectively. For HSDPA dataset,
we also trained a universal LSTM model by using all traces from different trans-
portation scenarios, including Bus, Tram, Train, Metro and Car, then test its
accuracy on individual transportation scenarios. However, it is performance is
inferior to the corresponding per-scenario models. For some scenarios, its per-
formance is even worse than RLS. Due to the space limit, we don’t report the
detailed statistics here. We defer the discussion on cross-scenario prediction to
the next section, and defer universal prediction to future investigation.
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Table 2. HSDPA traces evaluation result of LSTM and RLS

Ferry FerryB Tram TramB Metro MetroB

Testset Average 248.4 217.6 118.8 133.4 96.0 119.7

RLS RMSE 71.3 88.9 35.3 35.6 34.2 35.5

RLS MAE 53.1 58.5 25.5 26.6 25.8 26.9

LSTM RMSE 60.8 80.4 31.5 30.2 29.2 32.5

LSTM MAE 45.6 50.1 23.3 22.3 23.2 24.3

RLS RMSE Error Ratio 28.7% 40.9% 29.8% 26.7% 35.7% 29.7%

RLS MAE Error Ratio 21.4% 19.7% 21.5% 19.9% 26.7% 22.5%

LSTM RMSE Error Ratio 24.5% 37.0% 26.6% 22.6% 30.4% 27.1%

LSTM MAE Error Ratio 18.4% 16.8% 19.6% 16.7% 24.3% 20.3%

Relative RMSE Impro 17.3% 10.6% 12.2% 17.8% 17.4% 9.3%

Relative MAE Impro 16.5% 16.9% 9.5% 19.3% 11.0% 10.6%

4.3 Multi-second Prediction

We now study the prediction accuracy for longer time intervals. For LSTM
model, we fix the input vector dimension to be n = 10, and vary the output
vector dimension m from 2 to 5. In other words, LSTM network takes as input
the bandwidth vector in the previous ten seconds to predict bandwidth for up to
five seconds ahead. For each combination of n and m, we train a different LSTM
model, denoted as LSTM(n,m). Note that, at time t, a LSTM(n,m) model can
generate bandwidth predictions for t+ i, 1 ≤ i ≤ m. To make RLS generate pre-
diction i seconds ahead, we simply update RLS parameters by using bandwidth
of i seconds ahead, instead of the next second, as the targeted output.

Table 3. Prediction RMSE on RLS and LSTM

1st sec 2nd sec 3rd sec 4th sec 5th sec

RLS 2.57 2.88 3.16 3.53 3.76

LSTM(10, 1) 2.26 – – – –

LSTM(10, 2) 2.27 2.66 – – –

LSTM(10, 3) 2.29 2.68 2.96 – –

LSTM(10, 4) 2.33 2.69 2.97 3.21 –

LSTM(10, 5) 2.40 2.71 2.98 3.22 3.40

Improvement over RLS 13.7% 8.2% 6.8% 9.9% 10.6%

Table 3 compares the prediction accuracy of different LSTM models and RLS
on the NYC Subway 7 Train trace. The RMSE value unit is Mbps. Not coin-
cidentally, all LSTM models outperform RLS at all prediction intervals. In the
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(a) One Second Prediction (b) Five Second Prediction

Fig. 4. RLS vs LSTM multi-second prediction

Fig. 5. Impact of prediction interval on LSTM and RLS

representative results, the best prediction accuracy for interval i is achieved by
LSTM(10, i), marked in bold fonts. Theoretically, LSTM(n,m) model is trained
to minimize the prediction errors for all intervals from 1 to m. Consequently, the
prediction error at interval m1 < m will be larger than those of LSTM(n,m2)
models (m1 ≤ m2 < m). Figures 4a and b illustrate sample prediction error
evolution of RLS and LSTM for one second and five second intervals. Y-axis is
the square error between prediction value and ground truth. It is visually clear
that LSTM RMSE is lower than RLS most of the time. The accuracy improve-
ment of LSTM is more prominent for the five second prediction interval. Figure 5
compares the average RMSE for all LSTM models with RLS at different pre-
diction intervals. Both RMSEs increase as the prediction interval increases. The
slope for LSTM increase is 0.270, while that for RLS is 0.302. This suggests that
not only LSTM is more accurate than RLS at individual prediction intervals,
LSTM’s accuracy decays slower than RLS as the interval increases.

4.4 Computation Overhead

To validate the feasibility of offline training and online prediction, we report
the computation overhead of our LSTM models. Our CPU Configuration is: 4th
Gen Intel Core i5-4210U (1.70 GHz 1600 MHz 3 MB). Neural Network Structure:
Hidden Layer 1 & 2 have 256 and 128 nodes respectively. The training and
running overhead detail is presented in Table 4. Even though the offline training
time is long, once the training is done, the trained model can be used for realtime
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prediction. As shown in Table 4b, the online prediction consumption is so small.
It takes less than six seconds to predict 12,500 five seconds bandwidth vector
in the LSTM(10, 5) model. Once the model is trained offline, it can be used to
generate realtime prediction on any reasonably configured mobile phone.

Table 4. Computation consumption

5 Multi-Scale Entropy Analysis

5.1 Prediction Accuracy Analysis Using Multi-Scale Entropy

The predictability of a time series is determined by its complexity and the tem-
poral correlation at different time scales. The traditional entropy measure can
be used to quantify the randomness of a signal: the higher the entropy, the
more random thus less predictable. However, the traditional entropy measure
cannot model the signal complexity and temporal correlation at different time
scales. Recently, Multi-Scale Entropy (MSE) [4] has been proposed to measure
the complexity of physical and physiologic time series. Given a discrete time
series {x(i), 1 ≤ i ≤ N}, a coarse-grained time series {y(s)(j)} can be con-
structed at scale factor of s ≥ 1:

y(s)(j) � 1
s

js∑

i=(j−1)s+1

x(i), 1 ≤ j ≤ N/s.

Then the entropy measure of x at time scale s can be calculated as the
entropy of y(s):

H(s)(x) � H(y(s)) = −E[log p(y(s))], (5)

where p(y(s)) is the probability density of the constructed signal at scale s. By
varying s, one can examine the complexity/regularity of x at different time scales.
The Multi-Scale Entropy curve H(s)(x) also reveals the temporal correlation
structures of the time series [4].

We apply MSE to study the predictability of network bandwidth under dif-
ferent mobile networking scenarios. MSE can represent the regularity patterns
of each scenario. Given a set of scales S = [s0, s1, · · · , sm], we generate a MSE
vector for scenario i as MSEi � [H(s)(xi), s ∈ S], where xi is bandwidth trace
from scenario i. MSEi can be used to analyze the per-scenario prediction accu-
racy for scenario i, as defined in (2). Additionally, by comparing MSEi and
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MSEj , we can also study the feasibility of cross-scenario prediction between
scenarios i and j, as defined in (4). More specifically, we measure the MSE
similarity between scenarios i and j as the weighted sum of the correlation coef-
ficient and Euclidean distance between MSEi and MSEj . We will demonstrate
the connection between MSE and prediction accuracy of both per-scenario and
cross-scenario predictions next.

5.2 MSE Analysis of NYC MTA Traces

We apply MSE analysis to bandwidth from every scenario in New York City
MTA traces. Figure 6a and b plot the raw bandwidth traces for two sample
traces. They present different variability at different scenarios. Figure 6c shows
the results of Multi-Scale Entropy for five sample traces. The scale is from 1 to
15. According to the [4], to make the MSE analysis valid, the sequence should be
at least 1,000 points at each scale. From the result of Fig. 6c, we find that same
routes share similar MSE patterns. For example, 7A Train and 7B Train traces
were both collected from 7 train but on different days. From the curves of Bus 57
and Bus 62, we find that even though the transportation methods are the same,
due to different routes, the MSE patterns can be very different. Table 5a shows
the cross-scenario prediction accuracy in RMSE. Each row is for a model trained
using data from some mobility scenario, each column is the prediction accuracy
for the testset from some mobility scenario. For example, Row 3 & Column 1
shows that the LSTM model trained by Bus 57 data can achieve RMSE of 2.276
when predicting bandwidth for 7A Train testset.

(a) 7A Train Bandwidth (b) Bus 62 Bandwidth (c) MSE Analysis

Fig. 6. Multi-Scale Entropy of different mobility scenarios

Table 5. Multi-Scale Entropy analysis
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Table 5b shows the MSE similarity between different mobility scenarios.
Table 6 reports for each scenario i the correlation between its MSE similarity
with other scenarios and the accuracy of cross-scenario prediction using models
trained for other scenarios. Close to −1 correlations suggest that higher MSE
similarity leads to higher accuracy (lower RMSE). Multi-Scale Entropy analysis
provides a good measure to explore the possibility of cross-scenario prediction,
which can be very beneficial for mobility scenarios with limited available data
for training Deep learning models.

Table 6. Correlation between MSE similarity and cross-scenario prediction accuracy

7A Train 7B Train Bus 57 Bus 62 N Train

Correlation value −0.916 −0.943 −0.945 −0.937 −0.994

6 Conclusion

In this paper, we studied realtime mobile bandwidth prediction. We developed
LSTM recurrent neural network models to capture the rich temporal structures
in mobile bandwidth traces for accurate prediction. In both next-second and
multi-second predictions, LSTM outperforms other state-of-the-art prediction
algorithms, such as RLS and Harmonic Mean. Using Multi-Scale Entropy anal-
ysis, we investigated the connection between MSE and cross-scenario predic-
tion accuracy. Going forward, we will continue our mobile bandwidth measure-
ment campaign. For online bandwidth prediction, we will study how to dynami-
cally select LSTM models trained offline to match the current mobility scenario
through adaptive model fusion. We will also study the feasibility of using extra
information, e.g. GPS, speed/acceleration sensor readings, to assist mobility sce-
nario identification and model selection. We will also develop LSTM models for
the emerging 5G mobile networks. Finally, we will explore data fusion of LSTM
models and other prediction models to further improve the prediction accuracy.
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Jan Rüth(B) , Torsten Zimmermann, and Oliver Hohlfeld

RWTH Aachen University, Aachen, Germany
{rueth,zimmermann,hohlfeld}@comsys.rwth-aachen.de

https://icmp.netray.io

Abstract. Internet-wide scans are a common active measurement app-
roach to study the Internet, e.g., studying security properties or protocol
adoption. They involve probing large address ranges (IPv4 or parts of
IPv6) for specific ports or protocols. Besides their primary use for prob-
ing (e.g., studying protocol adoption), we show that—at the same time—
they provide valuable insights into the Internet control plane informed
by ICMP responses to these probes—a currently unexplored secondary
use. We collect one week of ICMP responses (637.50M messages) to sev-
eral Internet-wide ZMap scans covering multiple TCP and UDP ports
as well as DNS-based scans covering >50% of the domain name space.
This perspective enables us to study the Internet’s control plane as a
by-product of Internet measurements. We receive ICMP messages from
∼171M different IPs in roughly 53K different autonomous systems. Addi-
tionally, we uncover multiple control plane problems, e.g., we detect a
plethora of outdated and misconfigured routers and uncover the presence
of large-scale persistent routing loops in IPv4.

1 Introduction

Internet scans are a valuable and thus widely used approach to understand and
track the evolution of the Internet as one of the most complex systems ever
created by humans. They are widely applied in different fields, including net-
working and security research: e.g., to find vulnerable systems [9], to measure
the liveness of IP addresses [3], or to measure the deployability of new proto-
cols, features [11], or their evolution [33]. Advances in scanning methodologies
enabled probing the entire IPv4 address space for a single port within minutes or
hours, depending on the available bandwidth and configured scan rate (see tools
such as ZMap [10] or MASSCAN [18]). Thereby, regular scans of the entire IPv4
address space have become feasible, e.g., providing an insightful perspective into
protocol evolution (see e.g., QUIC [31]). This line of scan-based works has cre-
ated a rich body of contributions with valuable insights into Internet structure
and evolution. These works have in common that they focus on one particular
feature or protocol as their objective to study (primary use).
c© Springer Nature Switzerland AG 2019
D. Choffnes and M. Barcellos (Eds.): PAM 2019, LNCS 11419, pp. 51–67, 2019.
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Table 1. Weekly scan schedule fueling our dataset, DNS-based scans use our own
resolver infrastructure. For IPv4-wide scans, we utilize ZMap.

Mon Tue Wed Thu Fri Sat Sun

Source DNS

Protocols &
Ports

TCP/443, gQUIC/443

Source Alexa 1% IPv4 IPv4

Protocols &
Ports

TCP/80,
TCP/443

TCP/80,
TCP/443

TCP/80 iQUIC/443 gQUIC/443 TCP/443

In this work, we argue that Internet-wide scans have a less explored secondary
use to study the Internet control plane while scanning for their primary use,
e.g., to detect routing loops while primarily probing for QUIC-capable servers.
That is, we study Internet control plane responses sent via ICMP as response
to non-ICMP probe packets (e.g., QUIC) and show that Internet-wide scans are
a hidden treasure in that they produce a rich ICMP dataset that is currently
neglected, e.g., to uncover network problems. The interesting aspect is that these
ICMP-responses are a valuable secondary use that is generated as by-product
of any Internet-wide scan. They thus enable to study the Internet control plane
(e.g., to detect routing loops) without requiring dedicated scans (as performed
a decade ago [20,36]) that would increase the scanning footprint.

Our observations on the Internet’s control plane are fueled by regular ZMap
scans of the IPv4 address space for multiple TCP and UDP ports as well as
DNS-based scans of top lists and zone files for mainly TLS, HTTP/2, and QUIC.
We evaluate one full week of ICMP responses to multi-protocol Internet-scans
covering the entire IPv4 address space and >50% of the domain name space(base
domains).

Our contributions are as follows:

– We propose to use Internet-wide scans to study the Internet control plane via
ICMP response, e.g., to detect routing loops or misconfigurations.

– Within our one week observation period, we collect ∼637.50M ICMP messages
which we make available at [22].

– We shed light on how Internet-scans trigger ICMP responses across the Inter-
net.

– Our data shows a plethora of misconfigured systems e.g., sending ICMP redi-
rects across the Internet or producing deprecated source quench messages.

– We find many networks and hosts to be unreachable, our scans uncover large
sets of unreachable address space due to routing loops.

– We provide a growing ICMP dataset at https://icmp.netray.io.

https://icmp.netray.io
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Structure. The next section (Sect. 2) starts by providing an overview of our
ICMP dataset. Following this, we dive into our dataset and dissect it (Sect. 3).
Driven by our findings, we inspect unreachable hosts due to routing loops and
quantifies their presence in today’s Internet (Sect. 4). Finally, we discuss related
works (Sect. 5) and conclude the paper (Sect. 6).

2 Scan Infrastructure and Dataset

Infrastructure. Our scans are sourced by two different modes, on the one hand,
we use the ZMap [10] port scanner on multiple machines to perform different
scans over the course of a week, and on the other hand, we continuously probe
>50% of the DNS space. Table 1 summarized our weekly scan schedule, we did
not specifically create these scans and this schedule for this paper, it is the result
of ongoing research efforts.

These scans typically involve scanning TCP/80 for TCP initial window con-
figurations [30] or TCP fast open support. Further, we investigate TCP/443 for
HTTP/2-support [37] and TLS, additionally, we scan on UDP 443 for Google
QUIC (gQUIC) [31] and IETF-QUIC (iQUIC). Our DNS-based scans are fueled
by using our own resolvers to resolve various record types for domains listed in
zone files of multiple TLDs (e.g., .com, .net, .org), which can be obtained from
the registries, and we use A-records to investigate TLS, HTTP/2, and gQUIC.
All of our scans including the DNS resolutions originate from a dedicated sub-
net. To collect all ICMP traffic that is directed towards these hosts, we install a
mirror port at their uplink switch and filter it to only contain ICMP traffic that
belongs to our measurement network. Since we perform no measurements that
generate ICMP messages themselves, we exclude those sent from our host (only
ping responses) leaving us with only incoming ICMP traffic.

Dataset. We base our observations on one full week in September 2018. In this
week we received 169 GB resp. ∼637.50M ICMPv41 messages (excluding those
explicitly triggered in Sect. 4). ICMP messages follow the structure shown in
Fig. 1, they are fundamentally made up of a type field and, to further specify a
subtype, a code field, and depending on their value additional information may
follow.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Type Code Checksum

Type/Code specific fields

Fig. 1. ICMP header structure. Type and this type’s sub type (code) determine mes-
sage contents, e.g., often packets triggering the ICMP message are quoted.

1 Please note that we do not have a fully IPv6-capable measurement infrastructure
and thus focus on IPv4 only.
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Table 2. ICMP types with their occurrence frequency in our dataset. Ordered by
frequency.

Type Count Uniq. IP Uniq. AS

Dest. Unreach. 476.68M 170.30M 52.92K
TimeExceeded 139.53M 455.13K 18.40K
Redirect 18.12M 243.25K 2.29K
EchoRequest 3.12M 10.64K 861
SourceQuench 46.18K 2.65K 364

Type Count Uniq. IP Uniq. AS

EchoReply 6.08K 301 58
Other 1.48K 606 43
TimestampReq. 73 9 6
Param.Problem 20 16 9
Addr.MaskReq. 4 1 1

3 Study of ICMP Responses

To begin our investigations, we first summarize the ICMP responses to our scans
by looking at the distribution of ICMP message types and their frequency of
occurrence in Table 2. We observe 75 different ICMP type/code combinations
during our observation period with significantly different occurrence frequencies.
While we mostly receive standardized ICMP messages, we also receive some
messages for which we could not find a standard, summarized as Other in Table 2,
on which we do not further focus in this paper. The table lists the total count
of these messages as well as the number of unique source IPs (router/end-host
IPs) that generated the messages and number of ASes they are contained in.
Over the course of the week, we run different scans. Notably, on Sundays and
Mondays (see Table 1), no IPv4-wide ZMap scans are performed.

Fig. 2. Number of ICMP messages receiver per hour and type over the course of a
week. Note the log scale and that we used a rolling sum over 1 h.

Figure 2 thus puts the data from Table 2 into a temporal context showing
the rolling sum over 1 h intervals of the major ICMP types. We observe that the
ICMP traffic varies over the course of the week, e.g., echo requests are rather
static, other types like destination unreachable mainly follow our ZMap scan
schedule.
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Quoted IP Packet. Apart from the different ICMP types, many ICMP mes-
sages contain parts of the packet that caused the creation of the messages. We
further inspect these quoted IPv4 packets within the ICMP messages. From all
received ICMP messages, 99.5% are supposed to contain IP packets (according
to the RFCs), of these only 0.07% cannot be decoded, e.g., because there is
simply not enough data or these are no IPv4 packets. Of the decodable packets,
we find 180.25M unique source IP/payload length combinations, 76% are longer
than 40 bytes, i.e., enough to inspect IP and TCP headers when no options
are used2, 24% are exactly 28 byte long, so just enough to inspect the trans-
port ports. Thus, when no options are used, the chances are high that ICMP
messages received by an ICMP receiver can be demultiplexed to the respective
application process. This extends the finding in [26] that showed a prevalence
of 28 byte responses for TCP traceroutes. Next, we focus on the destination
address field within the quoted IP header. These should correspond to addresses
which are targeted by our scanners. Interestingly, from all ICMP messages, we
find over 1.06M messages with destination IPs that are in reserved address space,
i.e., unallocated or private addresses (e.g., 192.168.0.0/24). Since all our scanners
explicitly blacklist these IP addresses, we believe that these messages are pro-
duced behind network address translations (NATs). We next use the contained
source addresses to understand the relation to our measurements.

Fig. 3. ICMP messages triggered by ZMap and DNS-based scans.

Takeaway. ICMP traffic shows a temporal correlation to measurement traffic,
most messages indicate unreachability. In our collected dataset, quoted IP packets
typically contain enough information to inspect everything up to the end of the
TCP header. Further, a substantial number of messages seems to be generated
behind NATs allowing to peek into private address spaces.

3.1 Responses to Individual Measurements

Since we perform a variety of different measurements independent of this study,
our first investigation is how different measurements affect the generation of
2 To reduce the capture size, our packet capture caps packets at 98 byte allowing no

further investigation, we find 67% having the maximum capture size.
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ICMP traffic. To this end, we compare two ZMap scans and a purely DNS-based
scan. For the ZMap scans, we focus on one that enumerates reachable TCP
port 80 (HTTP) and UDP port 443 (QUIC) hosts, for DNS, we use a scan that
probes for HTTP/2 support via TCP port 443. We are able to clearly tie the
ICMP messages to the different scans via IPs and ports either from the quoted
IP message or from IP itself.

Figure 3 shows the distribution of ICMP types and codes (top 8) that we
receive for the respective scans. As already indicated by Table 2, we receive a
large amount of destination unreachable messages. However, depending on the
scan, their amount and share greatly vary, especially when looking at the respec-
tive code. For example, unreachable ports are very common for our UDP-based
ZMap scan, however, in comparison, the TCP-based ZMap scan shows only a
small fraction of unreachable ports. This is no surprise as TCP should reply
with a RST-packet if a port is unreachable and does typically not generate
ICMP messages. In contrast, there is no such mechanism in UDP, even through
something comparable to TCP’s RST exists in QUIC. However, QUIC is imple-
mented in user-space, thus when the kernel cannot demultiplex a packet to a
socket it must resort to issuing an ICMP unreachable message. Looking at our
DNS-based scan, we still find that more than 20% of the ICMP messages signal
unreachability through ICMP in contrast to TCP RSTs, something that, e.g.,
the default ZMap TCP-SYN scan module simply ignores in contrast to its UDP
counterpart. Since in all major operating systems TCP handles signaling closed
ports, we believe that these hosts issuing ICMP replies are actively configured
either in their own firewalls (e.g., iptables) or in a dedicated firewall to do so.
We find only 16.49K IPs issuing all 1.13M ICMP port unreachable messages,
supporting our assumption that dedicated machines filter this traffic.

Looking at the other types/codes, we find that a non-negligible share of
ICMP messages indicate that hosts are not reachable via the Internet either due
to TTLs expiring or because their host or network cannot be reached. Apart
from this, we observe that TCP port 443 is often firewalled (HostProhibited).

Takeaway. Depending on the protocol and port, we get different feedback from
the Internet’s control plane. Our findings indicate that, e.g., ICMP port unreach-
able messages should not be ignored for TCP-based scans as is currently the case.

3.2 ICMP Echos

ICMP echo requests (Type: 8) are the typical ping to which an echo reply is
sent. RFC792 defines only a single code point, i.e., code = 0 which represents “no
code”, still we observe some non-standard code points. Some security scanners
use non-standard code points for operating system fingerprinting, e.g., a stan-
dard Linux will echo the requested code point in its reply. Still, pings to our
measurement infrastructure seem quite common, for code = 0, we find 10.57K
unique IPs out of 840 autonomous systems (ASes). It seems that our scanning
activities trigger systems to perform ping measurements towards us, yet, we do



Hidden Treasures – Recycling Large-Scale Internet Measurements 57

not know their actual purpose. We suspect that this could be caused by intrusion
detection systems (IDSs) that monitor the liveness of our hosts.

Echo Replies. Since our hosts do not perform echo requests, we were surprised
to find echo replies in our dataset. We observe different code points with different
frequencies but overall we find over a couple of thousand of these replies. To
investigate what causes these seemingly orphaned messages, we inspect their
destinations. Since our measurements are identifiable either by IP or additionally
by weekday, we associate messages to measurements. We find most echo replies
are with code = 3 (except for 5 messages), all 5.75K of these echos are destined
to our DNS resolvers and originate from only 86 IP addresses in 2 Chinese ASes.
While many ICMP packets contain IP quotations, echo replies typically do not,
they usually mirror data contained in the echo request. Yet, we still find IP
packets together with DNS query responses that are destined to our resolver.
Thus, it seems that the packets are generated on the reverse path, however, they
are not sent back to the source (DNS server) but they are forwarded to the
destination (us). Inspecting the source IP within the IP fragments, we find IP
addresses from the same two ASes, as it turns out the 88 ICMP source IPs all
respond to DNS queries which hints at their use as a DNS server cluster. Yet,
we were unable to manually trigger these ICMP reply packets when trying to
send DNS requests to these IPs, we only observed that DNS requests were always
answered by two separate packets from the same IP, however, with different DNS
answers. Further, the packets seem to stem from different IP stacks (significantly
different TTLs, use of IP ID or not, don’t fragment bit set or not). While the
different stack fingerprints could be the result of middleboxes altering the IP
headers, the general pattern that we observe hints at DNS spoofing.

3.3 Source Quench

ICMP Source Quench (SQ) messages (Type: 4, Code: 0) were a precursor of
today’s ECN mechanism, used to signal congestion at end-hosts and routers. The
original idea (RFC792 [28]) was that a router should signal congestion by sending
SQ messages to the sources that cause the congestion. In turn, these hosts should
react, e.g., by reducing their packet rate. However, research [12] found that SQ is
ineffective in e.g., establishing fairness and IETF has deprecated SQ-generation
in 1995 [2] and SQ-processing in 2012 in general [17]. Major operating systems
ignore SQ-messages for TCP at least since 2005 to counter blind throughput-
reduction attacks [16]. Further, [13] claims that SQ is rarely used because it
consumes bandwidth in times of congestion.

In our traces, we observe 2.65K unique IPs located in 364 ASes issuing SQ
messages, despite the deprecation. Out of these IPs, 34.42% are located in only
5 ASes. Moreover, 609 IPs that generate SQ messages were directly contacted by
our measurement infrastructure, i.e., are the original destination of the request
causing this SQ message (according to the IPv4 header contained within the
ICMP message). Among the remaining SQ messages, we find a few messages
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where the original destination and the source of the SQ messages are located
in ASes of different operators, i.e., possible transit networks. Exemplarily, we
observe that IPs located in AS1668 (AOL Transit Data Network) and AS7018
(AT&T) issued SQ messages when IPs located in AS8452 (Telecom Egypt) were
contacted. As a final step, we see that 53 destination IPs in our measurements
trigger the generation of SQ messages and are also contained in A-records of our
DNS data that we collect. Out of these 53 IPs, 22 IPs generated the SQ messages
themselves, i.e., no on-path intermediary caused the creation of this message.

In addition, we checked how vendors implement or handle this feature. Cisco
removed the SQ feature from their IOS system after Version 12 in the early
2000s [5]. Hewlett Packard’s cluster management system (Serviceguard) gener-
ated SQ messages due to a software bug in a read queue, which was fixed by a
patch in 2010 [21]. In their router configuration manual (September 2017), Nokia
also marks SQ messages as deprecated [27]. Although we cannot identify devices
and their operating system version in our measurements, we assume that some
devices are not updated to a current version or are following a configuration that
enables them to generate SQ messages. This is not forbidden per se but given
that ICMP SQ creation was deprecated over 20 years ago, our findings highlight
that removing features from the Internet is a long term endeavor.

3.4 Redirect

ICMP redirect messages (Type: 5), are sent by gateways/routers to signal routes
to hosts. While [15] finds networks which require redirect messages to be archi-
tected sub-optimally in the first place, RFC1812 [2] states that a router must not
generate redirect messages unless three properties are fulfilled: (i) The packet
is being forwarded out the same physical interface that it was received from,
(ii), the IP source address in the packet is on the same logical IP (sub)network
as the next-hop IP address, and (iii), the packet does not contain an IP source
route option. Similar checks [4] are used by receiving hosts to check the validity
of the message (e.g., redirected gateway and issuing router must be on the same
network).

Since none of the 18.12M redirect messages originate from our network, the
routers generating them either violate rule (ii) or some obscure address transla-
tion is in place on their networks. In our data, we even find roughly 2.7K unique
redirects to private address space. Within our dataset, we observed 105.78K
network redirects and 18.01M host redirects. Network redirects are problematic
since no netmask is specified and it is up to the receiving router to interpret
this correctly. For this reason, RFC1812 [2] demands that routers must not send
this type. We find that the network redirects originate from 238 different ASes
affecting nearly 19k different destinations of which less than 20 are mapped in
any of our DNS data. Yet, all these ASes thus contain questionable router config-
urations that are outdated at least since 1995. Similarly, we find that the much
larger fraction of host redirects originate from 2.20K ASes that affected over 400k
destinations of which we find roughly 900 mapped in our DNS data. This sug-
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gests that a substantial number of end-systems are connected via sub-optimally
architected or misconfigured networks.

Table 3. ICMP messages received indicating some form of unreachability with known
type and code ordered by frequency.

Type Code Count

Dest. Unreach. Port 256.72M
TimeExceeded TTLExceeded 139.52M

Dest. Unreach.

Host 107.15M
CommProhibited 71.70M
HostProhibited 23.07M
Net 17.94M
Protocol 51.04K

Type Code Count

Dest. Unreach.
Frag.Needed 26.66K
NetProhibited 26.28K

TimeExceeded Frag.Reassembly 7.31K

Dest. Unreach.

HostUnknown 336
NetTOS 25
NetUnknown 6
SourceIsolated 2

3.5 Unreachable Hosts

Reachability is a fundamental requirement to establish any means of commu-
nication. Given that Table 2 lists 476.68M destination unreachable messages
this looks troublesome at first. Yet, not all unreachability is bad, e.g., fire-
walls actively protect infrastructure from unpermitted access, i.e., when ipta-
bles rejects a packet (in contrast to simply dropping it) it generates an ICMP
response. By default, a port unreachable message (Type: 3, Code: 3) is produced
but other types can be manually specified by the network operator. Our scans
in themselves certainly trigger a certain amount of firewalls or some IDSs. In
contrast, when a path is too long and the IP TTL reaches zero, routers typically
generate an ICMP TTL exceeded message indicating that the destination is not
reachable but this time due to the network’s structure. Similarly, ICMP des-
tination unreachable messages for host unreachable (Type: 3, Code: 1) should
indicate that there is currently simply no path to a host, e.g., because it is not
connected or the link is down. Table 3 summarizes the unreachability that we
observe in our dataset.

As already indicated in Sect. 3.1, our UDP-based ZMap scans have the high-
est share of port unreachable messages putting them at the top. We inspect the
origin of the messages and the actual destination that our scans targeted to see
if the end-hosts generate the messages or an intermediate firewall. It seems that
96% of the messages are indeed generated by end-hosts or machines that can
answer on their behalf (NATs).

Host and Network. Unreachable hosts and networks codes are used to give
hints that currently no path is available and the RFCs explicitly note that this
may be due to a transient state and that such a message is not proof of unreacha-
bility. To check for transient states, we compare the unreachable hosts on Thurs-
day with those on Friday in our ZMap (both UDP 443) scan and additionally
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with the same scan (Thursday) one week later (captured separately from our
initial dataset) and investigate if hosts become reachable that were unreachable
before or vice versa.

(a) Thursday to Friday. (b) Thursday to Thursday one week later.

Fig. 4. Different scans (left to right of each plot) trigger different amount of host
unreachable messages. (a) Compares the changes within one day. (b) Within one week.

Figure 4 visualizes the change between these two days (a) and within one
week (b) for host unreachable messages. We can see that within two days, the
majority of hosts remain unreachable, a small number of hosts that were pre-
viously reachable3 become unreachable, similarly, previously unreachable hosts
become reachable. Looking at the changes within a full week, we observe that
the total amount of unreachable hosts stays the same, however, roughly the same
amount of previously reachable host become unreachable and vice versa. To dig
into these once unreachable and then reachable hosts, we inspect to which AS
they belong finding that 82% of all hosts are from the same ASes. A possible
explanation might be that while our observations seem to indicate a change, the
ICMP message generation is subject to rate-limiting [19]. Thus there might be
routers that generated unreachable messages on Thursday for a certain host,
however, this router could be subject to rate-limiting on Friday for the same
host or the week after leading to a false impression of reachability and continu-
ity, still, a substantial number of hosts remain unreachable. Another possibility
is that some hosts are only up at certain times of the day leading to differences
in the reachability.

Time Exceeded. Similar to host unreachability, Time Exceeded messages
(Type:11) indicate unreachability but due to network issues. Either the Frag-
ment Reassembly (Code: 1) time was exceeded, i.e., the time that IP datagrams
are buffered until they can be reassembled when IP fragmentation happens, or
the TTL runs out (Code: 0), i.e., the path length exceeds the sender-defined
limit. For the former, we find some thousand messages but they stem from only
30 ASes, since many of our scans use small packets, fragmentation is unlikely in

3 With reachable we actually mean not unreachable, i.e., we do not get ICMP unreach-
able messages, which must not mean that this host was reached by the scan.
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the first place. Yet, for example, the UDP ZMap scans use roughly 1300 byte
per packet which is in the range of typical [7] MTUs when fragmentation could
occur. Since the default ZMap functions to create IP packets (which we use) do
not set the don’t fragment bit, only some of our measurements trigger the 26.66K
fragmentation needed and DF set ICMP messages (see Table 3). However, over
time, these ICMP messages could give valuable insights into path MTU in the
Internet.

TTL Exceeded messages have the second largest occurrence (139.52M) within
our dataset. They were produced in 18.40K different ASes covering 35.5M differ-
ent destinations that our scans tried to reach of which ∼32K are again present
in A-records of our DNS data and are thus unreachable. We inspect the TTL
field of the quoted IP packets that triggered the ICMP messages to see if the
TTL was actually zero when the message was generated. To do so, we first gen-
erate all unique pairs of router IP and TTL values and then count the different
TTLs observed. Out of these, 97% of the TTLs show a value of one, followed by
∼2.4% with a zero, we expect these two, since a router should drop a TTL = 0
or, depending on the internal pipeline, also TTL = 1, when the packet is to be
forwarded. Nevertheless, we also find larger TTLs, 2, 3, 4, 5, and 6 directly follow
in frequency, yet, we also find some instances of over 200 or even 255. The very
large TTLs could hint at middleboxes or routers rewriting the TTL when they
generate the message to hide their actual hop count. The lower numbers could
be indicators for MPLS networks. By default, e.g., Cisco [6] and Juniper [24]
routers copy the IP TTL to the MPLS TTL on ingress and also decrement the
IP TTL within the MPLS network. It is possible to separate IP TTL and MPLS
TTL and there are heated discussions whether one should hide the MPLS net-
work from traceroutes or not which has also been subject of investigations [8].
Thus packets expiring within an MPLS network will still trigger an ICMP TTL
exceeded, however, the quoted IP packet will have the TTL value they had at the
MPLS ingress router, thus, if the IP TTL is still copied at ingress a traceroute
could still reason about an MPLS network.

Since we were surprised to see this many TTL exceeded messages across all
scanner types (see Sect. 3.1), we checked our scanners to see which TTL they
were actually using to see if our setup simply has too small values. All our ZMap-
based scanners initialize the TTL field with its maximum of 255 possible hops,
all scanners building on top of the transport layer interfaces, in contrast, use the
current Linux default of 64 hops as also recommended in RFC1700 [29]. Given
that we are at least on the recommended hop count, this leaves us with three
possibilities, (i) the current recommendation of 64 is too low to reach these hosts,
(ii) there are middleboxes modifying the TTL to a much lower value, or, (iii)
there are routing loops on the path to these hosts. After shortly summarizing
our findings, we continue by exploring the latter.

3.6 Summary

As the previous sections have shown, our Internet-wide scans produce an insight-
ful secondary dataset of ICMP responses. Driven by these messages, we identified
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a potential DNS spoofer, found that long deprecated source quench messages are
still generated in today’s Internet and that ICMP redirects are sent across dif-
ferent administrative domains pointing to several outdated and misconfigured
networks. Without crafting a dedicated dataset, our scans enable us to study
Internet reachability and we believe that longitudinal studies offer a way to deal
with the challenge of ICMP rate-limiting.

4 Routing Loops

Routing loops are an undesirable control plane misconfiguration that render
destination networks unreachable and that challenge a link’s load [35]. In essence,
IP’s TTL protects the Internet from indefinitely looping packets and thus ICMP
TTL messages inform the sender that a router dropped a packet after exceeding
the allowed number of router hops (TTL). While the potential for routing loops
is known, only a few studies investigated their presence a decade ago [20,36],
current information on the presence and prevalence is missing. Therefore, we
study routing loops on the basis of ICMP TTL exceeded messages triggered by
our scans. We further argue that routing loops can be frequently investigated
as a by-product of Internet-wide scans that are regularly conducted for different
purposes.

4.1 Methodology: Detecting Loops

ICMP TTL exceeded messages are not necessarily caused by loops, also overly
large paths or middleboxes could trigger these messages. To investigate whether
or not an actual loop is present, we perform traceroutes for the original des-
tinations (in the quoted IP) of the ICMP TTL exceeded messages. Since our
traceroutes are subject to ICMP rate-limiting, especially when packets start to
loop, we customize traceroute. Our traceroute slows down its sending rate when
detecting an already seen IP address (loop indicator), otherwise, it follows the
design of Paris traceroute [1] reusing flow identifiers for each hop to trigger the
same forwarding behavior in ECMP-like load balancers.

Since the traceroutes can still be noisy due to hosts that do not generate
ICMP at all or are still subject to rate-limiting, especially when also other traffic
flows into a loop, we put strong demands on our loop. For each hop on the path
that does not generate a reply, we assign a new unique label, all others are simply
labeled by the answering IP. From this list of labels, we create a directed graph
connecting each label-induced node to its successor and on this path we compute
all elementary cycles using [23]. On an elementary cycle, no node appears twice
except that the first and last node are the same. Then, on each of these possible
cycles we inspect the node with the highest degree, and if this node’s degree
is larger than 54, we mark this traceroute as having a loop. This will yield

4 This is basically a precaution against bad load balancers traded against the required
TTL.
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loops as long as at least one router in the loop generated ICMP TTL exceeded
messages, which we found to work reasonably well when traceroute pauses the
packet generation for at least 500 ms when observing an already seen IP address.
Thus in a loop of two routers, we will send each router a packet roughly every
second.

4.2 Routing Loops in the Wild

We seed our traceroutes by ICMP TTL exceeded messages generated from our
Internet-wide scans5. Since we get way too many TTL exceeded messages to
traceroute them all without generating substantial rate-limiting, we restrict us
to a single traceroute for each unique /24 subnet within 30-min intervals. Thus
for two TTL exceeded messages for a destination from the same /24 subnet, we
only perform a single traceroute if the messages arrive within 30 min.

For our assessment of routing loops, we investigate TTL exceeded messages in
the last week of August 2018. To avoid rate-limiting we also limit our traceroutes
that we perform in parallel; generating all traceroutes for this single week took
us until the end of September 2018. While this skews our data, it enables us to
reason about the persistence of these loops since every 30 min the same /24 could
be scheduled for a rescan. In total, we performed ∼27M traceroutes to ∼612K
different /24 subnets from 28K ASes, of these, 439K subnets from 19.8K ASes
are unreachable due to a loop. We further inspect how many loops are present
and if loops are only within a single AS or whether loops cross AS borders and
are thus potentially on a peering link. To do so, we count the number of distinct
loops and ASes involved in the loops and find 167K different loops in 13.9K ASes.
Of these loops, 136K have IPs for all routers involved in the loop, thus allowing
an in-depth inspection. Looking at the ASes involved, we find that 13% (17.7K)
already cover all different ASes paths involved (i.e., we replaced each IP by the
respective AS), of these 4.8K cross AS boundaries. The top three ASes involved
in the loops are AS171 (Cogent) a Tier-1, AS9498 (BHARTI Airtel Ltd.), an
Indian ISP, and AS3549 (Level 3), again a Tier-1.

Persistence. To investigate the persistence, we restrict our view to traceroutes
that were performed two weeks after the initial TTL exceeded message was
triggered by our Internet-wide scans. In contrast to our previous observation,
loops from roughly 150 ASes disappear, yet, we still find 4.6K loops crossing
AS borders, in total still rendering 404K subnets unreachable. Thus, most loops
seem to persist and are not resolved.

Loops at our Upstream ISP. Within our data, we also found loops in the
AS of our upstream ISP. We contacted the ISP about our findings which they
were able to confirm. Since many of the loops are outside of their administrative
domain even though they manage the address space, they were still able to give

5 Our dataset excludes TTL exceeded messages generated by these traceroutes.
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us more details on a loop that they were able to fix. For one loop, they found
that the first router had a static route for our tested destination towards its next
hop, yet, the next hop had no specific forwarding information for this destination
and thus used its default gateway, which however was the previous router with
the static route thus causing the loop.

Takeaway. Routing loops seem to persist in large parts of the Internet, chal-
lenging the question if the address space cut off by the loops is in use after all or
if there are other routers that would be taken from different vantage points. We
believe routing loops have a huge potential for causing congestion when exploited
and thus a persistent monitoring seeded by large-scale Internet measurements
that informs operators could be a long-term attempt to reduce routing loops.

5 Related Work

Our work relates to approaches analyzing ICMP traffic and its generation in
general, as well as approaches that focus on particular studies built upon ICMP,
e.g., path/topology discovery and routing loops. In the following, we discuss
similarities and differences to our work but we remark that the body of works
building on top of ICMP is far larger but conceptually differ in that they do not
analyze ICMP as a by-product.

Bano et al. [3] also use ZMap and capture all (cross-layer) responses to probe
traffic to infer IP liveness but run specific measurements to generate this traffic,
we believe that our dataset could be used to perform a similar analysis. Malone et
al. [26] analyze the correctness of ICMP quotations. They base their analysis on a
dataset obtained via tcptraceroute in 2005, targeting around 84K web servers.
While most of the reported messages are of type ICMP time exceeded, they
also find around 100 source quench messages, which were already deprecated
then. As we have shown, by looking at the ICMP responses to Internet-wide
scans, we are able to update their findings on a regular basis without having
to craft a dedicated dataset. Guo et al. [19] present FADER, an approach to
detect the presence of ICMP rate-limiting in measurement traces. While we did
not focus on rate-limiting, we found indicators for rate-limiting. We believe that
longitudinal studies seeded by Internet-wide scans can, in the long run, help to
overcome limited visibility due to rate-limiting.

In 2002, Hengartner et al. [20] have characterized and analyzed the presence
of routing loops in a Tier-1 ISP backbone trace. Xia et al. [35,36] have fur-
ther tracerouted over 9M IP addresses to find routing loops in 2005. Transient
routing loops have also been subject to investigation [34] and they are well stud-
ied [14,32]. Lone et al. [25] investigate routing loops in CAIDA data to study
source address validation but do not focus on their prevalence in the Internet,
further, in contrast to using the CAIDA dataset that actively runs traceroutes
against all /24, we utilize indications from ongoing measurement data to investi-
gate loops. While these works show that routing loops are a known problematic
misconfiguration, their presence in the Internet has not been analyzed for over
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10 years. By recycling Internet-wide scans, we can seed such investigations and
enable persistent monitoring of this phenomenon showing that routing loops are
still a problem today.

6 Conclusion

In this paper, we used ICMP responses triggered by large-scale Internet measure-
ments to study how the Internet’s control plane reacts to these measurements.
Thereby, we found that these responses are hidden treasures that are typically
neglected but offer great insights into the configuration of Internet-connected
systems. Our analyses of different ICMP responses led us to many misconfigured
routers, e.g., sending ICMP redirects across the Internet, or outdated systems,
e.g., generating long-deprecated source quench messages. Further, our analy-
sis showed a large and nuanced degree of unreachability in the Internet. More
specifically, our scans hint at the existence of routing loops, which we found to
persist in large parts of the Internet. We hope that these ICMP by-products are
analyzed by more researchers when performing large-scale measurements and
that the regular nature of these scans will enable persistent monitoring of the
Internet’s control plane and that, especially when brought to the attention of
operators, misconfigurations can be fixed. To this end, we make our dataset
publicly available at [22].
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30. Rüth, J., Bormann, C., Hohlfeld, O.: Large-scale scanning of TCP’s initial window.

In: ACM IMC (2017)

https://github.com/robertdavidgraham/masscan
https://github.com/robertdavidgraham/masscan
https://doi.org/10.1007/978-3-319-76481-8_1
https://support.hpe.com/hpsc/doc/public/display?docId=emr_na-c02190964
https://support.hpe.com/hpsc/doc/public/display?docId=emr_na-c02190964
https://icmp.netray.io
https://icmp.netray.io
https://www.juniper.net/documentation/en_US/junos/topics/reference/configuration-statement/no-propagate-ttl-edit-protocols-mpls.html
https://www.juniper.net/documentation/en_US/junos/topics/reference/configuration-statement/no-propagate-ttl-edit-protocols-mpls.html
https://doi.org/10.1007/978-3-319-54328-4_17
https://doi.org/10.1007/978-3-319-54328-4_17
https://doi.org/10.1007/978-3-540-71617-4_24
https://infoproducts.alcatel-lucent.com/cgi-bin/dbaccessfilename.cgi/3HE11976AAACTQZZA01_V1_7450%20ESS%207750%20SR%207950%20XRS%20and%20VSR%20Router%20Configuration%20Guide%20R15.0.R5.pdf
https://infoproducts.alcatel-lucent.com/cgi-bin/dbaccessfilename.cgi/3HE11976AAACTQZZA01_V1_7450%20ESS%207750%20SR%207950%20XRS%20and%20VSR%20Router%20Configuration%20Guide%20R15.0.R5.pdf
https://infoproducts.alcatel-lucent.com/cgi-bin/dbaccessfilename.cgi/3HE11976AAACTQZZA01_V1_7450%20ESS%207750%20SR%207950%20XRS%20and%20VSR%20Router%20Configuration%20Guide%20R15.0.R5.pdf
https://infoproducts.alcatel-lucent.com/cgi-bin/dbaccessfilename.cgi/3HE11976AAACTQZZA01_V1_7450%20ESS%207750%20SR%207950%20XRS%20and%20VSR%20Router%20Configuration%20Guide%20R15.0.R5.pdf


Hidden Treasures – Recycling Large-Scale Internet Measurements 67
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Abstract. Commercial Content Delivery Networks (CDNs) employ a
variety of caching policies to achieve fast and reliable delivery in multi-
tenant environments with highly variable workloads. In this paper, we
explore the efficacy of popular caching policies in a large-scale, global,
multi-tenant CDN. We examine the client behaviors observed in a net-
work of over 125 high-capacity Points of Presence (PoPs). Using produc-
tion data from the Edgecast CDN, we show that for such a large-scale
and diverse use case, simpler caching policies dominate. We find that
LRU offers the best compromise between hit-rate and disk I/O, pro-
viding 60% fewer writes than FIFO, while maintaining high hit-rates.
We further observe that at disk sizes used in a large-scale CDN, LRU
performs on par with complex polices like S4LRU. We further exam-
ine deterministic and probabilistic cache admission policies and quantify
their trade-offs between hit-rate and origin traffic. Moreover, we explore
the behavior of caches at multiple layers of the CDN and provide rec-
ommendations to reduce connections passing through the system’s load
balancers by approximately 50%.

1 Introduction

Content Delivery Networks (CDNs) provide a core piece of modern Internet
infrastructure [16,39]. They handle immense volumes of traffic flowing between
end users and content providers. To facilitate this transmission, while reducing
end-user latency, CDNs employ complex caching systems which include numer-
ous optimizations to improve performance and operational efficiency. Many such
systems are purpose-built for specific application workloads or physical con-
straints, allowing for solutions that are tailor-made to their needs [4,22,38].
While highly effective in context, they are designed to manage well-defined and
homogeneous workloads, granting the operators greater knowledge and control.

Unfortunately, many purpose-built approaches do not apply in multi-tenant
environments where the operating characteristics are a function of the behavior
of end users (i.e., user request patterns), the behavior of content providers (i.e.
customer churn, origin behavior), and the content served. These factors result
in wide variability of request behaviors in both geography and time, potentially
limiting the effectiveness of many specialized techniques.

In this study, we examine the behavior of the Edgecast CDN, a global multi-
tenant CDN, exploring the variations observed in request patterns and file access
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behaviors through the use of a cache emulator. We consider caching at multiple
tiers in a CDN: disk cache (on the order of terabytes) and a load balancer cache
(on the order of gigabytes). In each tier, we explore the trade-offs inherent in
their operating constraints. We investigate the individual and combined impacts
of cache admission (i.e., which objects are cached) and eviction (i.e., which
objects to remove) policies.

We find that relatively simple and easy to manage approaches, such as Least-
Recently-Used (LRU), provide similar performance to more complex techniques
(S4LRU) and are able to improve disk reads by 60% versus simpler techniques,
such as First-In-First-Out (FIFO). At the load balancer level, we are able to serve
nearly 50% of requests from cache employing probabilistic admission and FIFO
with just 1 GB. The view from a global commercial network allows us insight
at a scale that provides meaningful and realistic analysis of the behavior of web
caching in the wild. This represents a step towards managing the complexities
of multi-tenant environments, as many CDN and service providers must do.

We present an overview of related work and previous examinations of cache
behavior in Sect. 2. In Sect. 3 we examine the behaviors of production workloads
and explore how they drive our intuitions on caching behavior. In Sect. 4 we
present an overview of our test environment and provide an evaluation of the
various caching methodologies in Sect. 5. We explore the further potential for
improvement in the systems in Sect. 6. Finally, we conclude in Sect. 7.

2 Related Work

Cache management techniques have a significant history in computer sys-
tems [11,24,26,32,33]. However, many of these systems focus on the particu-
lar case of page caching. Web-caching systems have examined traditional web
object behavior, exploring cacheability if objects follow zipf and zipf-like distri-
butions [8,21], and stretched exponential distributions [20]. Others have explored
emergent behaviors that arise from caching on the web [9,12,13,23,37]. Our work
builds its intuitions from many of these works, in particular in the applicability
of FIFO and LRU in the context of large PoPs with large disks and a diverse set
of clients. We further note that in the context of a commercial CDN, the traffic
is self-selected for cacheability, as those with cacheable content are most likely
to purchase commercial CDN services.

A number of high performance caches have been developed for both web
objects [1,3] and generic objects [2,17]. Numerous proposals have explored exten-
sions to these systems, with an eye towards making them more efficient for par-
ticular workloads [7,15]. While effective in context, many of these systems and
modifications are unusable in generic caching systems, in particular for large
scale deployments that cannot readily change core caching technologies.

Other studies have examined the structure, performance and behaviors of
CDNs [18,25,29]. Further studies have examined the nature of specific request
behaviors, including flash crowds [27,40] and social networks [35]. Google pro-
posed a system for debugging the performance of their CDN with WhyHigh [30].



70 M. Flores and H. Bedi

In [34] and [19], the authors examine a large university trace and examine the
potential cache performance for CDNs and traditional web delivery. In [36], the
authors characterized the workloads of a CDN and examined its cache perfor-
mance, proposing an approach called content-aware caching. Here, we explore
the cache behaviors of content-agnostic policies that are available in production,
and develop an understanding of cache interactions in the CDN.

Finally, a number of purpose built systems have been designed to deal with
large scale and complex cache workflows. For example Facebook’s photo caching
systems [5,22,38]. While similar, these systems are designed for managing inter-
nal systems, rather than external customer needs. AdaptSize [6] uses Markov
chains to learn client request pattern shifts. Other systems such as Google’s
Janus [4] are designed to optimize workflows for FLASH storage. However, their
system requires manual intervention, which is untenable in commercial CDN
settings. Fundamentally, the final back-end origins are operated by third parties
and the workloads are highly variable based on both end-user (access) and cus-
tomer (server side) behaviors. These constraints alter the levels of performance
that are acceptable and the needs of each level of the cache.

3 Overview of a Global CDN

This study is based on the Edgecast CDN, which features a global deployment of
Points-of-Presence (PoPs) around the world. The considered network consists of
PoPs that are well connected to the Internet, as the network aggressively peers
when possible, resulting in a network of over 3000 global interconnections which
provide a total network capacity of over 50 Tbps. The CDN further employs
Anycast routing for replica selection, which means that the traffic which arrives
at a PoP may depend on the underlying network.

We note that contrary to some other approaches to rapidly delivering content
to end-users [10,14], the model studied here focuses on the construction of super -
PoPs. These PoPs consist of a large number of servers, usually on the order of
hundreds, providing significant resources at each location. These super Pops are
then placed in locations with good network connectivity, providing low latency
access to large Internet Exchanges (IX) and other peering opportunities. Since
each PoP is equipped with significant compute and storage capacities, PoPs can
process significant traffic load before they must reach out to other caches.

Importantly, the CDN is a multi-tenant environment. Unlike many purpose-
built platforms [4,22,38], it must respond to a large variety of content, from large
software updates to streaming video, to images on a web-page. This combination
of behaviors means that the entire global network must be flexible to changing
behaviors and needs from customers. Indeed, we demonstrate that many of the
fundamental characteristics do change, making static analysis difficult. We must
further exercise care in the impact different approaches may have on individual
customers, and in particular, if the approaches may result in pathological behav-
iors for some customers but not others (e.g. never caching a particular customers
content). This constraint drives the use of techniques that can be easily assessed
and which have intuitive and clear behavior.
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3.1 Diversity in Accessed Content

Here, we provide some background on the nature of the CDN traffic profile. As
noted in previous work [6], the CDN caches ultimately handle traffic from a
highly diverse set of sources, which include many larger-scale traffic patterns,
individual client access behaviors, file types, and file sizes. We aim to provide an
intuitive understanding of what kind of traffic arrives at each PoP, which will
ultimately determine the policies that work best in these caching systems.

Fig. 1. Requested file sizes from a geo-
graphically distributed set of regions
(over 24 h).

Fig. 2. Distribution of requested file
sizes within the US, 6 months apart.

Figure 1 shows the distribution of the request file sizes from 4 regions around
the world: APAC indicates a sample from a PoP in India, EU in Europe, US in
the United States, and LATAM in South America. First, we see that the spread
of request sizes at each region is quite high, with 10% of files about 1 KB at
nearly all locations on the low end, and with 90th percentiles as high as 1 GB
in APAC and the US. Second, the behavior across PoPs is diverse, with median
request sizes that vary from 10 s of kilobytes (EU, LATAM) to 10 s of megabytes
(US, APAC). This variation reveals the patterns that these caching system must
be prepared to deal with: there are no fixed distributions in the sizes of responses
across locations.

Figure 2 shows that these differences are not limited to the geographic
domain. Here we examine 24 h of log traces taken from the same PoP 6 months
apart (both on matching weekdays). The median requested file size decreases
from 24 MB to 14 KB. This high variation over time indicates that even at the
same server in the same PoP we may see large variations.

These changes are an effect of the following attributes observed from the
perspective of a multi-tenant CDN: (a) the busiest customers vary from region
to region and shift over time, (b) content profiles of customers also change over
time, impacting the overall cache contents (c) routine CDN traffic management
efforts shift traffic across PoPs. However, in all cases, per PoP configurations
must remain generic and able to handle such diversity of traffic behaviors.

The situation is further complicated by variations in the nature of requests.
Figure 3 shows a scatter plot of the bytes delivered over file sizes for all requests
seen on a single server in the US over a 24 h period. Along the diagonal are files
for which the entire file is delivered. However, the area above the diagonal is
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Fig. 3. Bytes requested vs. file size cached
on CDN (red “x” shows median). (Color
figure online)

Fig. 4. File request distribution. We
observe high variation across regions.

also diverse, suggesting there are a large number of files for which only a small
portion of a file is requested. Managing both of these behaviors adds significant
challenges to caching: caches must be prepared to deal with large files that may
consume cache space, but only portions of which are accessed at any given time.
We further see this same type of spread over multiple regions, suggesting this
variation is commonplace.

Figure 4 shows the number of requests seen for each file for each of the geo-
graphically distributed PoPs. For the US, APAC, and EU, between 60 and 80%
of files are only requested once. On the other hand, the most popular files are
extremely popular, with some being requested orders of magnitude more. While
the LATAM PoP saw a lower proportion of requests with a single request, the
majority of files still saw a small number of requests. The variation in these
distributions again hint at the importance of cache policy selection: many files
are not well suited for caching and may waste cache space. Therefore we require
a robust caching system that is not sensitive to the presence of such behaviors.

3.2 Similarities in Client Request Pattern

Next, we examine the popularity of objects over time. This will provide us with a
sense of how objects in the cache are accessed. Figure 5 shows the number of hits
for each object in the cache, binned by the last accessed time by the hour. Here

Fig. 5. Temporal hit-rate view of caches from various regions, which show a histogram
of cache-hits binned by age. The popularity consistently decreases for all regions.
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the x-axis is the last access age, indicating how many days prior to the snapshot
the item was last accessed. Here we see that the most recently accessed content
is indeed the most popular, by nearly three orders of magnitude. This follows our
intuition about web content accesses and suggests that recency will likely be an
important input into the caching systems. Furthermore, we see similar patterns
across all geographic regions and long time scales, suggesting this behavior is
common to different PoPs and time frames.

This access behavior indicates the importance of recency when considering
any caching policy. Indeed, any policy that can keep the freshest objects in the
cache will be able to serve the most requests. Furthermore, the consistency of
this behavior, where we otherwise saw significant variations in request size and
pattern, provides the foundation of our expectations in the subsequent section:
recency based algorithms that are flexible to request type are likely to do well.

4 Cache Evaluation Framework

Our analysis is based on a caching emulator designed to facilitate the assessment
of arbitrary cache policies1. In particular, it was designed to consume CDN cache
server access logs and closely match the behavior of the production cache. The
emulator also allows pre-population of its cache with contents of a production
server and enables the tracking and statistics collection of cache data. We empha-
size that this system emulates cache behaviors rather than estimating using a
simple model: since the system relies on observed access logs, it behaves as a
production implementation would (Fig. 6).

Fig. 6. Data flow diagram of the emulator. Each client request passes through a stack
of arbitrarily configured caches.

The emulator models the flow of requests through a series of tiered caches.
When a request is processed, it checks the first cache. If the object is present, the
request is labeled a hit and the object is “returned” from that cache. Otherwise,
it is labeled a miss and passed to the next layer. These layers can be other
arbitrary caches or can be treated as an external origin. Each abstract cache
layer is provided with admission and eviction policies. The admission policy

1 Available at https://github.com/VerizonDigital/edgecast caching emulator.

https://github.com/VerizonDigital/edgecast_caching_emulator
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determines which requested objects are cached at that level, and the eviction
policy describes which objects to remove from the cache when it is full. Each
layer tracks a relevant statistics: including the hit rate and the bytes written.

In this study, we consider 30 days of access logs from a set of cache servers
from the geographic regions shown in the previous section. Each log entry repre-
sents a client request that was handled by a single server in a PoP. Each log entry
contains the timestamp when the request was logged, the size of the requested
asset, the status code returned from the back-end system (i.e. a cache hit or
miss), the bytes delivered to the client (which will be less than the asset size in
cases of range requests), as well as the url of the asset requested. This informa-
tion allows us to conduct a thorough study on the behaviors observed directly
in the trace, as well as enabling us to replay this traffic in the emulator. Doing
so allows us to examine what-if scenarios in which we employ alternative cache
policies and mechanisms on real-world access behaviors.

5 Evaluation

Here we provide an analysis of various caching techniques using the above frame-
work. We explore the implementation of caching at: the disk (storage on the scale
of terabytes), and at a load balancer (gigabytes). We examine each of these in the
context of the constraints of the network described in Sect. 3. Table 1 provides
an overview of the policies we examine along with a brief description.

Table 1. Cache policies examined in this study.

Policy Type Description

Eviction FIFO A simple First In First Out queue

LRU Least recently used

COST LRU based, size and recency weighted equally

S4LRU Quadruply segmented LRU [22]

Infinite No eviction (i.e., unlimited cache)

Admission N -Hit Admit on N th request

Probabilistic (Pr) Admit with fixed probability

Prob-Size (Pr.Size) Admit with probability dependent on the file size [6]

We focus first on cache eviction, the process of determining which objects to
remove from the cache when it becomes full. We begin with FIFO, as it’s gen-
erally the simplest to implement and widely used in industry. Next, we examine
LRU, as it is a robust and standard caching algorithm, and our analysis in the
previous section suggests the asset request patterns have clear recency properties.
We further examine a method similar to Greedy-Dual-Size [11] which computes
an eviction score which grants equal weight to frequency and file size. Finally,
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we examine S4LRU, as it provides a relatively direct extension of LRU, and has
been shown to perform well in other web-object caching environments [22].

In examining cache admission, we present an examination of N-Hit Caching,
a bloom filter based approach that produces deterministic output and has been
shown effective in industry [28,31]. We further examine a commonly considered
alternative that admits objects with a fixed probability, and a methodology
which uses a size-based probabilistic admission [6].

5.1 Cache Eviction

Here, we examine disk eviction policies: FIFO, LRU, COST, and S4LRU [22].
Here, FIFO presents the obvious simplest solution, followed closely by LRU.
COST is a variant of LRU in which a cost is computed for each object that lin-
early weights file size and recency. The lowest scores (i.e. intuitively the largest
and oldest files) are then evicted first. The final policy, S4LRU, consists of 4 LRU
“queues”. On a cache miss, an object is inserted into the first queue. On subse-
quent hits, it’s promoted to the head of next queue. If it’s in the final queue, it is
simply moved to the head of that queue. Each queue then works as an indepen-
dent LRU cache. When the object is evicted, it goes to the head of the previous
queue. If that queue is the first, it is evicted entirely. This process essentially
encodes frequency into an LRU-like structure. In all of the experiments in this
section, we use the default admission policy, which admits all objects into the
cache.

First, we examine the most straightforward metric: hit-rate. Indeed, the hit-
rate is a fundamental measure of how well the cache is performing, and in many
instances will correlate directly with the CDN’s ability to respond with a low
response time. Here, we consider the performance of the algorithms over various
disk sizes: for each algorithm and disk size, we play back 7 days worth of cache
accesses, accounting for the majority of the regular diurnal patterns2. We further
consider the performance of an infinite cache, which represents the optimal hit
rate without knowledge of the future.

Fig. 7. Hit-rates of eviction algorithms.
The horizontal line shows the hit-rate of
an infinite cache.

Fig. 8. Disk writes for each eviction
algorithm.

2 We observed similar results when using the full 30 days of logs.
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Figure 7 presents the results of these experiments. First, we note the obvious
increase in hit rate as the disk increases in size: with a larger disk we are able
to respond from the cache more often. We also note that the performance of the
algorithms becomes more similar with a larger disk, suggesting that the marginal
impact from our choice of algorithm is reduced. In particular, we note that at
large enough disks, traditional LRU performs quite well, approaching the hit
rate of the infinite cache of 97.5%. We see similar behavior from the byte-hit
rate, but refrain from showing here due to space constraints.

The hit-rate alone, however, fails to show the whole picture: there are addi-
tional considerations when using each of these algorithms. In particular, the
load induced via the write operations that must be performed, which may have
an adverse effect on the underlying hardware (e.g. solid state disks). Next we
examine the disk write behavior of each policy.

Figure 8 shows the total disk writes (log scale) achieved for each disk size.
The disk size has a sizeable impact on the total volume of writes, with the
smallest disks incurring total write costs on the order of petabytes, larger disks
requiring only 10 s of terabytes. Beyond this, we see that FIFO performs con-
sistently worse than the LRU-based approaches, uniformly requiring additional
disk writes, about 60% more in the 4 TB case. High write volume puts greater
load on the underlying hardware, straining its performance and reducing over-
all lifetimes. Content which has to be written out to disk must also be fetched
externally, causing greater delay in the delivery to the end-user.

While all 4 algorithms appear to perform relatively well at large enough
disks (within 1% above the 4 TB level), there are still potentially other costs, in
particular additional disk writes, in the case of FIFO. Among the 3 LRU based
policies, their similar performance makes vanilla LRU particularly appealing, as
it is the least expensive in terms of complexity and management.

5.2 Cache Eviction with Selective Admission

Despite the generally good behavior of LRU, there are some behaviors in CDN
web traffic which can poison attempts at maintaining a healthy cache with an
eviction policy alone. In particular, we recall from Fig. 4 that many files are only
requested a single time, creating pressure on the cache, and in particular the
storage medium, for files that will never be accessed from the cache. However,
we further recall that the most popular files were requested extremely frequently.
We therefore also consider the use of a cache admission policy that can alleviate
the underlying amount of writes a cache disk will need to do, reducing hardware
load and overall cache churn.

First, we consider a bloom filter placed in front of the disk cache, implementing
a technique we call second hit caching (2-Hit) [28,31,36]. The process is simple:
on a miss, if the appropriate hash of a requested item is not in the bloom filter,
it is added to the filter but not cached. If, on the other hand, it is in the bloom
filter, the object is added to the cache. In this way we are able to avoid caching
objects which are requested only a single time. Very popular items, however, are
still quickly pulled into the disk cache, minimizing negative impact.
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We further consider two alternative admission policies: a probabilistic admis-
sion which caches objects with a fixed probability of p (which we refer to as Pr.),
and a size based probabilistic policy which admits objects of size bytes with prob-
ability e

−size
c [6] (Pr.Size). In both cases, the intuition is that popular items will

be requested frequently, increasing the likelihood that they make it into the disk
cache. In the size based methodology, the system biases towards objects which
are smaller than c, capturing the risk of allowing very large objects into the
cache. In our evaluations we consider a range of values for p, from .25 to .75, and
c, from 100 MB to 1 GB. In this section we further consider each of these three
policies when combined with the 3 eviction policies described in the previous
section on a 4 TB cache disk.

(a) Hit rates and reduction in
disk writes.

(b) Hit rates and origin reads.

(c) Disk writes for FIFO and
LRU with and without 2-Hit.

(d) Origin reads for viable poli-
cies.

Fig. 9. Impact on hit-rate, disk writes and origin reads by LRU, FIFO and S4LRU
with selective admission: 2-Hit (N-hit, where N=2), Pr., and Pr.Size.

Figure 9a shows the hit rate achieved by each combination of policies and the
relative improvement to disk writes (i.e. the percentage reduction in disk writes
versus using no admission policy with the same eviction policy). The hit rates
range from 92 to 97%. Furthermore, some of the policies, in particular the Pr.Size
approaches, show significant reductions in disk writes. The smaller probabilistic
and second hit showed modest improvements to disk writes, between 10 and
33%.

Figure 9b shows the impact on hit-rate versus the absolute origin reads (i.e.
the bytes that had to be fetched from the customer origin). Here we see that
the disk writes were an insufficient view: the Pr.Size methodologies significantly
increased the bytes read from origin, rendering them unusable. This is the result
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of the largest objects never making it into cache, forcing them to always pull from
origin. The probabilistic and 2-Hit policies had much more modest increases,
between 12 and 30%, depending on the eviction policy.

Origin traffic is particularly sensitive in a CDN environment, as reducing
origin traffic is one of the core purposes of the CDN itself. Furthermore, unlike
purpose built or in-house solutions, origin traffic results in increased cost for
a third party. On the other hand, ensuring a higher hit-rate provides end-users
with improved latency. CDN operators much balance these trade-offs, hence, the
use of an admission policy to control the load on the cache medium may make
sense, but it must be done with extreme care, as it can undermine the CDNs
efficacy, as seen in the Pr.Size case.

Figure 9c shows a CDF of the disk writes of FIFO and LRU, with and with-
out 2-Hit (we exclude S4LRU and Prob. Admission from this figure for clarity,
but note that they performed similarly to LRU and 2-Hit, correspondingly).
Importantly, origin reads and disk writes differ when using a selective admis-
sion policy, since an object may be fetched from origin multiple times before it
is written to disk. Even though FIFO showed promising improvements to disk
writes when using an admission policy, the writes for FIFO were high enough
that FIFO remains an outlier. In the median case, the over 30% improvement
on disk write operations still left FIFO-2-Hit performing more write operations
than LRU.

Figure 9d shows a closeup view of the absolute origin reads achieved by each
viable algorithm grouped by eviction policy (i.e. excluding the Prob. size poli-
cies). First, we note that all three eviction policies exhibit similar impacts, con-
firming our previous findings that the eviction policy becomes less critical with
large disks. The lowest probability admission, p = .25 also shows a significant
increase in origin reads, due to the difficulty for any one item to make it into
the cache. Finally, we see that 2-hit and Pr.75 show similar results, nearly in
proportion to their difference in disk write savings seen in Fig. 9a.

While we have seen here that a probabilistic admission with a relatively high
probability (p = .75) and 2-Hit perform similarly, we consider a final operation
component: in many production settings, determinism can be extremely valu-
able. Specifically, when debugging and testing, it can often be important that
the system behaves deterministically, providing consistent results, not just at
scale, but for individual requests. This need makes 2-Hit an appealing method,
despite its increase in complexity over purely probabilistic methods.

6 Load Balancer Cache

Next, we consider placing a cache in-front of the L7 load balancers. Specifi-
cally, in the above studies, we considered caches which were co-located with the
caching servers. Here, we examine an arrangement where the cache sits earlier in
the request processing. This creates the opportunity to manage traffic at it’s first
entry point inside of the PoP, eliminating significant amounts of intra-datacenter
traffic, easing load on cache servers and intermediate appliances, further reduc-
ing request latency. This placement also demands that the caches be managed
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Table 2. Hit/byte-hit rate achieved by the load balancer cache.

Method Size Hit-rate Byte hit-rate

P. size 32 KB 1GB .49 .05

P. size 16 MB .44 .01

P. size 256 MB .36 .03

P. size 32 KB 5GB .50 .06

P. size 16 MB .54 .03

P. size 256 MB .44 .09

simply: i.e. they must sit ahead of much of the complex configuration logic that
drives the true disk caches. Therefore, we stick to a bare-bones eviction policy,
pursuing only FIFO systems with a Pr.Size admission policy, avoiding the need
for bloom filters or other stored state.

Moreover, this placement means that our threshold for good performance is
much different than more traditional components of the cache hierarchy. Specif-
ically, very low cache hit rates do not necessarily mean that the cache is per-
forming poorly: even a small reduction in hit rate reduces the load that must
pass through the load balancer and land on the main caches. Even in the event
of a cache miss, the request is still backed by the underlying cache server.

Table 2 presents the hit-rates and byte hit-rates seen for two possible cache
sizes, 1 and 5 GB, and 3 size admission parameters, 32 KB, 16 MB, and 256 MB.
The hit-ratios remain relatively steady, with roughly 50% of requests being ser-
viced by the cache, excepting the smaller cache with large admission parameter.
The byte hit-rates however are very low, showing that very few bytes are served
from the cache, even when its size is increased to 5 GB. Despite this, it offers
significant potential, as the measured hit rates would correspond to 50% of con-
nections terminating at the load balancer.

7 Conclusion

We have presented a study of the caching behavior of a large scale, global, CDN.
We explored the global accessed patterns observed by the CDN, examining both
historical log behaviors and the contents of caches. While we saw significant
variations in the access and request file size, fundamentally, the caches exhibited
similar behaviors, with the newest objects being the most popular.

We further examined behaviors of cache evictions and admission policies,
going from the bottom up: first considering a large disk cache alone, followed by
more complex arrangements. In the disk cache we explored the trade off between
complexity and performance, where we found that with large enough disks, rel-
atively simple methods (LRU, in particular), function well, while avoiding the
pitfalls of the simplest methods (FIFO). When considering admission policies,
we again found simplicity dominated, as more complex methods had operational
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challenges and increased origin reads. We additionally explored how we could
reduce connections to the L7 load-balancers significantly by introducing an in-
memory cache earlier in the network. Ultimately, our findings provide a critical
lesson in operational systems: robust and flexible approaches, like LRU, provide
the best trade-off between performance and operational constraints.
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Abstract. ICMP timestamp request and response packets have been
standardized for nearly 40 years, but have no modern practical appli-
cation, having been superseded by NTP. However, ICMP timestamps
are not deprecated, suggesting that while hosts must support them, lit-
tle attention is paid to their implementation and use. In this work, we
perform active measurements and find 2.2 million hosts on the Inter-
net responding to ICMP timestamp requests from over 42,500 unique
autonomous systems. We develop a methodology to classify timestamp
responses, and find 13 distinct classes of behavior. Not only do these
behaviors enable a new fingerprinting vector, some behaviors leak impor-
tant information about the host e.g., OS, kernel version, and local time-
zone.

Keywords: Network · Time · ICMP · Fingerprinting · Security

1 Introduction

The Internet Control Message Protocol (ICMP) is part of the original Internet
Protocol specification (ICMP is IP protocol number one), and has remained
largely unchanged since RFC 792 [21]. Its primary function is to communicate
error and diagnostic information; well-known uses today include ICMP echo to
test for reachability (i.e., ping), ICMP time exceeded to report packet loops (i.e.,
traceroute), and ICMP port unreachable to communicate helpful information
to the initiator of a transport-layer connection. Today, 27 ICMP types are defined
by the IESG, 13 of which are deprecated [11].

Among the non-deprecated ICMP messages are timestamp (type 13) and
timestamp reply (type 14). These messages, originally envisioned to support time
synchronization and provide one-way delay measurements [19], contain three 32-
bit time values that represent milliseconds (ms) since midnight UTC. Modern
clock synchronization is now performed using the Network Time Protocol [18]
and ICMP timestamps are generally regarded as a potential security vulnerabil-
ity [20] as they can leak information about a remote host’s clock. Indeed, Kohno
et al. demonstrated in 2005 the potential to identify individual hosts by varia-
tions in their clock skew [12], while [6] and [4] show similar discriminating power
when fingerprinting wireless devices.
This is a U.S. government work and not under copyright protection in the United States; foreign
copyright protection may apply 2019
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Fig. 1. ICMP timestamp message fields

In this work, we reassess the extent to which Internet hosts respond to
ICMP timestamps. Despite no legitimate use for ICMP timestamps today, and
best security practices that recommend blocking or disabling these timestamps,
we receive timestamp responses from 2.2 million IPv4 hosts in 42,656 distinct
autonomous systems (approximately 15% of the hosts queried) during a large-
scale measurement campaign in September and October 2018. In addition to
characterizing this unexpectedly large pool of responses, we seek to better under-
stand how hosts respond. Rather than focusing on clock-skew fingerprinting, we
instead make the following primary contributions:

1. The first Internet-wide survey of ICMP timestamp support and responsive-
ness.

2. A taxonomy of ICMP timestamp response behavior, and a methodology to
classify responses.

3. Novel uses of ICMP timestamp responses, including fine-grained operating
system fingerprinting and coarse geolocation.

2 Background and Related Work

Several TCP/IP protocols utilize timestamps, and significant prior work has
examined TCP timestamps in the context of fingerprinting [12]. TCP timestamps
have since been used to infer whether IPv4 and IPv6 server addresses map to
the same physical machine in [2] and combined with clock skew to identify server
“siblings” on a large scale in [24].

In contrast, this work focuses on ICMP timestamps. Although originally
intended to support time synchronization [19], ICMP timestamps have no mod-
ern legitimate application use (having been superseded by NTP). Despite this,
timestamps are not deprecated [11], suggesting that while hosts must support
them, little attention is paid to their implementation and use.

Figure 1 depicts the structure of timestamp request (type 13) and response
(type 14) ICMP messages. The 16-bit identifier and sequence values enable
responses to be associated with requests. Three four-byte fields are defined:
the originate timestamp (orig ts), receive timestamp (recv ts), and transmit
timestamp (xmit ts). Per RFC792 [21], timestamp fields encode milliseconds
(ms) since UTC midnight unless the most significant bit is set, in which case
the field may be a “non-standard” value. The originator of timestamp requests
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should set the originate timestamp using her own clock; the value of the receive
and transmit fields for timestamp requests is not specified in the RFC.

To respond to an ICMP timestamp request, a host simply copies the request
packet, changes the ICMP type, and sets the receive and transmit time fields.
The receive time indicates when the request was received, while the transmit
time indicates when the reply was sent.

Several prior research works have explored ICMP timestamps, primarily for
fault diagnosis and fingerprinting. Anagnostakis et al. found in 2003 that 93%
of the approximately 400k routers they probed responded to ICMP timestamp
requests, and developed a tomography technique using ICMP timestamps to
measure per-link one-way network-internal delays [1]. Mahajan et al. leveraged
and expanded the use of ICMP timestamps to enable user-level Internet fault
and path diagnosis in [16].

Buchholz and Tjaden leveraged ICMP timestamps in the context of forensic
reconstruction and correlation [3]. Similar to our results, they find a wide variety
of clock behaviors. However, while they probe ∼8,000 web servers, we perform
an Internet-wide survey including 2.2M hosts more than a decade later, and
demonstrate novel fingerprinting and geolocation uses of ICMP timestamps.

Finally, the nmap security scanner [15] uses ICMP timestamp requests, in
addition to other protocols, during host discovery for non-local networks in order
to circumvent firewalls and blocking. nmap sets the request originate timestamp
to zero by default, in violation of the standard [21] (though the user can man-
ually specify a timestamp). Thus, ICMP timestamp requests with zero-valued
origination times provide a signature of nmap scanners searching for live hosts.
While nmap uses ICMP timestamps for liveness testing, it does not use them for
operating system detection as we do in this work.

To better understand the prevalence of ICMP timestamp scanners, we ana-
lyze 240 days of traffic arriving at a /17 network telescope. We observe a total
of 413,352 timestamp messages, 93% of which are timestamp requests. Only 33
requests contain a non-zero originate timestamp, suggesting that the remainder
(nearly 100%) are nmap scanners. The top 10 sources account for more than
86% of the requests we observe, indicating a relatively small number of active
Internet-wide scanners.

3 Behavioral Taxonomy

During initial probing, we found significant variety in timestamp responses. Not
only do structural differences exist in the implementation of [21] by timestamp-
responsive routers and end systems (e.g., little- vs big-endian), they also occur
relative to how the device counts time (e.g., milliseconds vs. seconds), the device’s
reference point (e.g., UTC or local time), whether the reply is a function of
request parameters, and even whether the device is keeping time at all.



Sundials in the Shade 85

Table 1. ICMP timestamp classification fingerprints

Num Class Request Response

cksum orig ts recv ts xmit ts

1 Normal Valid - �= xmit ts, �= 0 �= 0

2 Lazy Valid - = xmit ts �= 0

3 Checksum-Lazy Bad - - -

4 Stuck valid - const const

5 Constant 0 Valid - 0 0

6 Constant 1 Valid - 1 1

7 Constant LE 1 Valid - htonl(1) htonl(1)

8 Reflection Valid - requestrecv ts requestxmit ts

9 Non-UTC Valid - >231 − 1 >231 − 1

10 Timezone Valid - |recv ts − orig ts|%
(
3.6 × 106

)
< 200 ms -

11 Little Endian Valid - |htonl(recv ts) − orig ts| < 200 ms -

12 Linux htons() Bug Valid - %216 = 0 %216 = 0

13 Unknown Valid - - -

3.1 Timestamp Implementation Taxonomy

Table 1 provides an exhaustive taxonomy of the behaviors we observe; we term
these the ICMP timestamp classifications. Note that this taxonomy concerns
only the implementation of the timestamp response, rather than whether the
responding host’s timestamp values are correct.

– Normal: Conformant to [21]. Assuming more than one ms of processing time,
the receive and transmit timestamps should be not equal, and both should
be nonzero except at midnight UTC.

– Lazy: Performs a single time lookup and sets both receive and transmit
timestamp fields to the same value. A review of current Linux and FreeBSD
kernel source code reveals this common lazy implementation [10,13].

– Checksum-Lazy: Responds to timestamp requests even when the ICMP
checksum is incorrect.

– Stuck: Returns the same value in the receive and transmit timestamp fields
regardless of the input sent to it and time elapsed between probes.

– Constant 0, 1, Little-Endian 1: A strict subset of “stuck” that always
returns a small constant value in the receive and transmit timestamp fields.

– Reflection: Copies the receive and transmit timestamp fields from the times-
tamp request into the corresponding fields of the reply message1.

– Non-UTC: Receive and transmit timestamp values with the most significant
bit set. As indicated in [21], network devices that are unable to provide a
timestamp with respect to UTC midnight or in ms may use an alternate time
source, provided that the high order bit is set.

– Linux htons() Bug: Certain versions of the Linux kernel (and Android) con-
tain a flawed ICMP timestamp implementation where replies are truncated
to a 16-bit value; see AppendixA for details.

– Unknown: Any reply not otherwise classified.
1 We find no copying of originate timestamp into the reply’s receive or transmit fields.
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3.2 Timekeeping Behavior Taxonomy

We next categorize the types of timestamp responses we observe by what the
host is measuring and what they are measuring in relation to.

– Precision: Timestamp reply fields should encode ms to be conformant, how-
ever some implementations encode seconds.

– UTC reference: Conformant to the RFC; receive and transmit timestamps
encode ms since midnight UTC.

– Timezone: Replies with receive and transmit timestamps in ms relative to
midnight in the device’s local timezone, rather than UTC midnight.

– Epoch reference: Returned timestamps encode time in seconds relative to
the Unix epoch time.

– Little-Endian: Receive and transmit timestamps containing a correct times-
tamp when viewed as little-endian four-byte integers.

4 Methodology

We develop sundial, a packet prober that implements the methodology
described herein to elicit timestamp responses that permit behavioral classifi-
cation. sundial is written in C and sends raw IP packets in order to set specific
IP and ICMP header fields, while targets are randomized to distribute load. We
have since ported sundial to a publicly available ZMap [8] module [22].

Our measurement survey consists of probing 14.5 million IPv4 addresses2

of the August 7, 2018 ISI hitlist, which includes one address per routable /24
network [9]. We utilize two vantage points connected to large academic university
networks named after their respective locations: “Boston” and “San Diego.”
Using sundial, we elicit ICMP timestamp replies from ∼2.2 million unique IPs.

This section first describes sundial’s messages and methodology, then our
ground truth validation. We then discuss ethical concerns and precautions under-
taken in this study.

4.1 sundial Messages

In order to generate and categorize each of the response behaviors, sundial
transmits four distinct types of ICMP timestamp requests. Both of our vantage
points have their time NTP-synchronized to stratum 2 or better servers. Thus
time is “correct” on our prober relative to NTP error.

1. Standard: We fill the originate timestamp field with the correct ms from
UTC midnight, zero the receive and transmit timestamp fields, and place the
lower 32 bits of the MD5 hash of the destination IP address and originate
timestamp into the identifier and sequence number fields. The hash permits
detection of destinations or middleboxes that tamper with the originate times-
tamp, identifier, or sequence number.

2 As IPv6 does not support timestamps in ICMPv6, we study IPv4 exclusively.
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2. Bad Clock: We zero the receive and transmit fields of the request, choose an
identifier and sequence number, and compute the MD5 hash of the destination
IP address together with the identifier and sequence number. The lower 32 bits
of the hash are placed in the originate timestamp. This hash again provides
the capability to detect modification of the reply.

3. Bad Checksum: The correct time in ms since UTC midnight is placed
in the originate field, the receive and transmit timestamps are set to zero,
and the identifier and sequence number fields contain an encoding of the
destination IP address along with the originate timestamp. We deliberately
choose a random, incorrect checksum and place it into the ICMP timestamp
request’s checksum field. This timestamp message should appear corrupted
to the destination, and a correct ICMP implementation should discard it.

4. Duplicate Timestamp: The receive and transmit timestamps are initial-
ized to the originate timestamp value by the sender, setting all three times-
tamps to the same correct value. The destination IP address and originate
timestamp are again encoded in the identifier and sequence number to detect
modifications.

Many implementation behaviors in Sect. 3 can be inferred from the first,
standard probe. For instance, the standard timestamp request can determine
a normal, lazy, non-UTC and little-endian implementation. In order to clas-
sify a device as stuck, both the standard and duplicate timestamp requests are
required. Two requests are needed in order to determine that the receive and
transmit timestamps remain fixed over time, and the inclusion of the duplicate
timestamp request ensures that the remote device is not simply echoing the
values in the receive and transmit timestamp fields of the request. Similarly,
timestamp reflectors can be detected using the standard and duplicate request
responses.

The checksum-lazy behavior is detected via responses to the bad checksum
request type. The Linux htons() bug behavior can be detected using the stan-
dard request and filtering for reply timestamps with the two lower bytes set to
zero. In order to minimize the chance of false positives (i.e., the correct time
in ms from UTC midnight is represented with the two lower bytes zeroed), we
count only destinations that match this behavior in responses from both the
standard and bad clock timestamp request types.

To detect the unit precision of the timestamp reply fields, we leverage the
multiple requests sent to each target. Because we know the time at which requests
are transmitted, we compare the time difference between the successive requests
to a host and classify them based on the inferred time difference from the replies.

Finally, we classify responsive devices by the reference by which they main-
tain time. We find many remote machines that observe nonstandard reference
times, but do not set the high order timestamp field bit. A common alterna-
tive timekeeping methodology is to track the number of ms elapsed since mid-
night local time. We detect local timezone timekeepers by comparing the receive
and transmit timestamps to the originate timestamp in replies to the standard
request. Receive and transmit timestamps that differ from our correct originate
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Table 2. Ground truth classification of ICMP timestamp behaviors

OS Behavior Notes

Windows 7–10 Off by default With Windows firewall off, lazy LE

Linux Lazy

Linux 3.18 (incl Android) Lazy htons() bug

Android kernel 3.10, 4.4+ Lazy

BSD Lazy

OSX Unresponsive

iOS Off by default

Cisco IOS/IOS-XE Lazy MSB set if NTP disabled, unset if enabled

JunOS Lazy

timestamp by the number of ms for an existing timezone (within an allowable
error discussed in Sect. 5.2) are determined to be keeping track of their local
time.

Last, a small number of devices we encountered measured time relative to
the Unix epoch. Epoch-relative timestamps are detected in two steps: first, we
compare the epoch timestamp’s date to the date in which we sent the request;
if they match, we determine whether the number of seconds elapsed since UTC
midnight in the reply is suitably close to the correct UTC time.

4.2 Ground Truth

To validate our inferences and understand the more general behavior of popu-
lar operating systems and devices, we run sundial against a variety of known
systems; Table 2 lists their ICMP timestamp reply behavior.

Apple desktop and mobile operating systems, macOS and iOS, both do not
respond to ICMP timestamp messages by default. Initially, we could not elicit
any response from Microsoft Windows devices, until we disabled Windows Fire-
wall. Once disabled, the Windows device responds with correct timestamps in
little-endian byte order. This suggests that not only are timestamp-responsive
devices with little-endian timestamp replies Windows, but it also worryingly
indicates that its built-in firewall has been turned off by the administrator.

BSD and Linux devices respond with lazy timestamp replies, as their source
code indicates they should. JunOS and Android respond like FreeBSD and Linux,
on which they are based, respectively. Of note, we built the Linux 3.18 kernel,
which has the htons() bug described in Sect. 6; it responded with the lower two
bytes zeroed, as expected. This bug has made its way into Android, where we
find devices running the 3.18 kernel exhibiting the same signature.

Cisco devices respond differently depending on whether they have enabled
NTP. NTP is not enabled by default on IOS; the administrator must manu-
ally enable the protocol and configure the NTP servers to use. If NTP has not
been enabled, we observe devices setting the most significant bit, presumably
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Fig. 2. Incidence of fingerprints for
most common telnet banner manufac-
turers

Fig. 3. Incidence of fingerprints for
most common CWMP scan manufac-
turers

to indicate that it is unsure whether the timestamp is accurate, and filling in a
UTC-based timestamp with the remaining bits, according to its internal clock.

Telnet Banner and CWMP GET Ground Truth. To augment the ground truth
we obtained from devices we were able to procure locally, we leveraged IPv4
Internet-wide Telnet banner- and CPE WAN Management Protocol (CWMP)
parameter-grabbing scans from scans.io [23]. From October 3, 2018 scans, we
search banners (Telnet) and GET requests (CWMP) for IP addresses associated
with known manufacturer strings. We then probe these addresses with sundial.

Figure 2 displays the most common fingerprints for a subset of the manufac-
turers probed from scans.io’s Telnet banner-grab dataset, while Fig. 3 is the
analogous CWMP plot. We note that non-homogeneous behavior within a man-
ufacturer’s plot may be due to several factors: different behaviors among devices
of the same manufacturer, banner spoofing, IP address changes, and middle-
boxes between the source and destination. We provide further details regarding
our use of the scans.io datasets in AppendixB.

4.3 Ethical Considerations

Internet-wide probing invariably raises ethical concerns. We therefore follow the
recommended guidelines for good Internet citizenship provided in [8] to mitigate
the potential impact of our probing. At a high-level, we only send ICMP packets,
which are generally considered less abusive than e.g., TCP or UDP probes that
may reach active application services. Further, our pseudo-random probing order
is designed to distribute probes among networks in time so that they do not
appear as attack traffic. Finally, we make an informative web page accessible
via the IP address of our prober, along with instructions for opting-out. In this
work, we did not receive any abuse reports or opt-out requests.
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5 Results

On October 6, 2018, we sent four ICMP timestamp request messages as described
in Sect. 4.1 from both of our vantage points to each of the 14.5 million target
IPv4 addresses in the ISI hitlist. We obtained at least one ICMP timestamp
reply message from 2,221,021 unique IP addresses in 42, 656 distinct autonomous
systems as mapped by Team Cymru’s IP-to-ASN lookup service [5]. Our probing
results are publicly available [22].

We classify the responses according to the implementation taxonomy outlined
in Sect. 3 and Table 1, the timekeeping behavior detailed in Sect. 3.2, and the cor-
rectness of the timestamp reply according to Sect. 5.2. Tables 3 and 4 summarize
our results in tabular form; note that the implementation behavior categories
are not mutually exclusive, and the individual columns will sum to more than
the total column, which is the number of unique responding IP addresses. We
received replies from approximately 11,000 IP addresses whose computed MD5
hashes as described in Sect. 4.1 indicated tampering of the source IP address,
originate timestamp, or id and sequence number fields; we discard these replies.

5.1 Macro Behavior

Lazy replies outnumber normal timestamp replies by a margin of over 50 to 1.
Because we had assumed the normal reply type would be the most common, we
investigated open-source operating systems’ implementations of ICMP. In both
the Linux and BSD implementations, the receive timestamp is filled in via a call
to retrieve the current kernel time, after which this value is simply copied into
the transmit timestamp field. Therefore, all BSD and Linux systems, and their
derivatives, exhibit the lazy timestamp reply behavior.

Normal hosts can appear lazy if the receive and transmit timestamps are set
within the same millisecond. This ambiguity can be resolved in part via multiple
probes. For instance, Table 3 shows that only ∼50% of responders classified as
normal by one vantage are also marked normal by the other.

The majority (61%) of responding devices do not reply with timestamps
within 200 ms of our NTP-synchronized reference clock, our empirically-derived
correctness bound discussed in Sect. 5.2. Only ∼40% of responding IP addresses
fall into this category; notably, we detect smaller numbers devices with cor-
rect clocks incorrectly implementing the timestamp reply message standard. For
example, across both vantage points we detect thousands of devices whose times-
tamps are correct when interpreted as a little-endian integer, rather than in net-
work byte order. We discover one operating system that implements little-endian
timestamps in Sect. 4.2. In another incorrect behavior that nevertheless indicates
a correct clock, some devices respond with the correct timestamp and the most
significant bit set – a behavior at odds with the specification [21] where the
most significant bit indicates a timestamp either not in ms, or the host cannot
provide a timestamp referenced to UTC midnight. In Sect. 4.2, we discuss an
operating system that sets the most significant bit when its clock has not been
synchronized with NTP.
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Table 3. Timestamp reply implementation behaviors (values do not sum to total)

Category Boston Both San Diego Category Boston Both San Diego

Normal 40,491 19,819 40,363 Stuck 855 849 873

Lazy 2,111,344 1,899,297 2,112,386 Constant 0 547 546 555

Checksum-Lazy 28,074 23,365 28,805 Constant 1 200 199 207

Non-UTC 249,454 211,755 249,932 Constant LE 1 22 19 23

Reflection 2,325 2,304 2,364 htons() Bug 1,499 665 1,536

Correct 850,787 803,314 850,133 Timezone 33,317 23,464 33,762

Correct LE 11,127 5,244 11,290 Unknown 38,495 11,865 32,956

Correct - MSB 1,048 386 973

Total 2,194,180 1,934,172 2,189,524

Over 200,000 unique IPs (>10% of each vantage point’s total) respond with
the most significant bit set in the receive and transmit timestamps; those times-
tamps that are otherwise correct are but a small population of those we term
Non-UTC due to the prescribed meaning of this bit in [21]. Some hosts and
routers fall into this category due to the nature of their timestamp reply imple-
mentation – devices that mark the receive and transmit timestamps with little-
endian timestamps will be classified as Non-UTC if the most significant bit of
the lowest order byte is on, when the timestamp is viewed in network byte order.
Others, as described above, turn on the Non-UTC bit if they have not synchro-
nized with NTP.

Another major category of non-standard implementation behavior of ICMP
timestamp replies are devices that report their timestamp relative to their local
timezone. Whether devices are programmatically reporting their local time with-
out human intervention, or whether administrator action is required to change
the system time (from UTC to local time) in order to effect this classification is
unclear. In either case, timezone timestamp replies allow us to coarsely geolocate
the responding device. We delve deeper into this possibility in Sect. 5.4.

Finally, while most responding IP addresses are unsurprisingly classified
as using milliseconds as their unit of measure, approximately 14–16% of IP
addresses are not (see Table 4). In order to determine what units are being used
in the timestamp, we subtract the time elapsed between the standard times-
tamp request and duplicate timestamp request, both of which contain correct
originate timestamp fields. We then subtract the time elapsed according to the
receive and transmit timestamps in the timestamp reply messages. If the differ-
ence of differences is less than 400 ms (two times 200 ms, the error margin for
one reply) we conclude that the remote IP is counting in milliseconds. A similar
calculation is done to find devices counting in seconds. Several of the behavioral
categories outlined in Sect. 3.1 are included among the hosts with undefined
timekeeping behavior – those whose clocks are stuck at a particular value and
those that reflect the request’s receive and transmit timestamps into the corre-
sponding fields are two examples. Others may be filling the reply timestamps
with random values.
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Table 4. Timestamp reply timekeeping behaviors

Category Boston Both San Diego

Millisecond 1,826,696 1,722,176 1,866,529

Second 47 37 68

Epoch 1 1 1

Unknown timekeeping 367,436 211,958 322,926

Total 2,194,180 1,934,172 2,189,524

5.2 Timestamp Correctness

In order to make a final classification – whether the remote host’s clock is correct
or incorrect – as well as to assist in making many of the classifications within our
implementation and timekeeping taxonomies that require a correctness determi-
nation, we describe in this section our methodology for determining whether or
not a receive or transmit timestamp is correct.

To account for clock drift and network delays, we aim to establish a margin
of error relative to a correctly marked originate timestamp, and consider receive
and transmit timestamps within that margin from the originate timestamp to be
correct. To that end, we plot the probability density of the differences between
the receive and originate timestamps from 2.2 million timestamp replies gener-
ated by sending a single standard timestamp request to each of 14.5 million IP
addresses from the ISI hitlist [9] in Fig. 4.

Figure 4 clearly depicts a trough in the difference probability values around
200 ms, indicating that receive timestamps greater than 200 ms than the originate
timestamp are less likely than those between zero and 200 ms. We reflect this
margin about the y-axis, despite the trough occurring somewhat closer to the
origin on the negative side. Therefore, we declare a timestamp correct if it is
within our error margin of 200 ms of the originate timestamp.

5.3 Middlebox Influence

To investigate the origin of some of the behaviors observed in Sect. 3 for which
we have no ground truth implementations, we use tracebox [7] to detect middle-
boxes. In particular, we chose for investigation hosts implementing the reflection,
lazy with MSB set (but not counting milliseconds), and constant 0 behaviors,
as we do not observe any of these fingerprints in our ground truth dataset, yet
there exist nontrivial numbers of them in our Internet-wide dataset.

In order to determine whether a middlebox may be responsible for these
behaviors for which we have no ground truth, we tracebox to a subset of 500 ran-
dom IP addresses exhibiting them. For our purposes, we consider an IP address
to be behind a middlebox if the last hop modifies fields beyond the standard
IP TTL and checksum modifications, and DSCP and MPLS field alterations
and extensions. Of 500 reflection IP addresses, only 44 showed evidence of being
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Fig. 4. Empirical recv ts- orig ts

PMF
Fig. 5. Response error; note hourly
peaks

behind a middlebox, suggesting that some operating systems implement the
reflect behavior and that this is a less common middlebox modification. The lazy
with MSB set (but non-ms counting) behavior, on the other hand, was inferred
to be behind a middlebox in 333 out of 500 random IP addresses, suggesting it is
most often middleboxes that are causing the lazy-MSB-set fingerprint. Finally,
about half of the constant 0 IP addresses show middlebox tampering in tracebox
runs, suggesting that this behavior is both an operating system implementation
of timestamp replies as well as a middlebox modification scheme.

5.4 Geolocation

Figure 5 displays the probability distribution of response error, e.g., recv ts −
orig ts, after correct replies have been removed from the set of standard request
type responses. While there is a level of uniform randomness, we note the peaks
at hour intervals. We surmise that these represent hosts that have correct time,
but return a timezone-relative response (in violation of the standard [21] where
responses should be relative to UTC). The origin of timezone-relative responses
may be a non-conformant implementation. Alternatively, these responses may
simply be an artifact of non-NTP synchronized machines where the adminis-
trator instead sets the localtime correctly, but incorrectly sets the timezone. In
this case, the machine’s notion of UTC is incorrect, but incorrect relative to the
set timezone. Nevertheless, these timezone-relative responses effectively leak the
host’s timezone. We note the large spike in the +9 timezone, which covers Japan
and South Korea; despite the use of nmap’s OS-detection feature, and examining
web pages and TLS certificates where available, we could not definitively identify
a specific device manufacturer or policy underpinning this effect.

To evaluate our ability to coarsely geolocate IP addresses reporting a
timezone-relative timestamp, we begin with ∼34,000 IP addresses in this cate-
gory obtained by sending a single probe to every hitlist IP from our Boston van-
tage. Using the reply timestamps, we compute the remote host’s local timezone
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offset relative to UTC to infer the host’s timezone. We then compare our inferred
timezone with the timezone reported by the MaxMind GeoLite-2 database [17].

For each IP address, we compare the MaxMind timezone’s standard time
UTC-offset and, if applicable, daylight saving time UTC offset, to the timestamp-
inferred offset. Of the 34,357 IP addresses tested, 32,085 (93%) correctly matched
either the standard timezone UTC offset or daylight saving UTC offset, if the
MaxMind-derived timezone observes daylight saving time. More specifically,
18,343 IP addresses had timestamp-inferred timezone offsets that matched their
MaxMind-derived timezone, which did not observe daylight saving time. 11,188
IP addresses resolved to a MaxMind timezone, whose daylight saving time off-
set matched the offset inferred from the timestamp. 2,554 IP addresses had
timestamp-inferred UTC offsets that matched their MaxMind-derived standard
time offset for timezones that do observe daylight saving time. Of the inferred
UTC-offsets that were not correct, 1,641 did not match either the standard time
offset derived from MaxMind, or the daylight saving time offset, if it existed,
and 631 IP addresses did not resolve to a timezone in MaxMind’s free database.

6 Conclusions and Future Work

We observe a wide variety of implementation behavior of the ICMP timestamp
reply type, caused by timestamps’ lack of a modern use but continued require-
ment to be supported. In particular, we are able to uniquely fingerprint the
behavior of several major operating systems and kernel versions, and geolocate
Internet hosts to timezone accuracy with >90% success.

As future work, we intend to exhaustively scan and classify the IPv4 Internet,
scan a subset with increased frequency over a sustained time period, and to do so
many vantage points. We further plan to integrate the OS-detection capabilities
we uncover in this work into nmap, and add tracebox functionality to sundial
in order to better detect middlebox tampering with ICMP timestamp messages.

Acknowledgments. We thank Garrett Wollman, Ram Durairajan, and Dan Ander-
sen for measurement infrastructure, our shepherd Rama Padmanabhan, and the anony-
mous reviewers for insightful feedback. Views and conclusions are those of the authors
and not necessarily those of the U.S. government.

Appendix A: Linux htons() Bug

While investigating the source code of open-source operating systems’ imple-
mentation of ICMP timestamps, we observed a flaw that allows fine-grained
fingerprinting of the Linux kernel version 3.18. The specific bug that allows
this fingerprinting was introduced in March 2016. An update to the Internet
timestamp generating method in af inet.c errantly truncated the 32-bit times-
tamp to a 16-bit short via a call to the C library function htons() rather than
htonl(). When this incorrect 16-bit value is placed into the 32-bit receive and
transmit timestamp fields of a timestamp reply, it causes the lower two bytes
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to be zero and disables the responding machine’s ability to generate a correct
reply timestamp at any time other than midnight UTC. This presents a unique
signature of devices running the Linux kernel built during this time period. In
order to identify these devices on the Internet, we filter for ICMP timestamp
replies containing receive and transmit timestamp values with zeros in the lower
two bytes when viewed as a 32-bit big-endian integer. While devices that are
correctly implementing ICMP timestamp replies will naturally reply with times-
tamps containing zeros in the lower two bytes every 65,536 milliseconds, the
probability of multiple responses containing this signature drops rapidly as the
number of probes sent increases.

Being derived directly from the Linux kernel, the 3.18 version of the Android
kernel also includes the flawed af inet.c implementation containing the same
htons() truncation, allowing for ICMP timestamp fingerprinting of mobile
devices as well.

While Linux 3.18 reached its end of life [14] in 2017, we observe hosts on the
Internet whose signatures suggest this is the precise version of software they are
currently running. Unfortunately, this presents an adversary with the opportu-
nity to perform targeted attacks.

Appendix B: scans.io Ground Truth

We use Telnet and CWMP banners in public scans.io as a source of ground
truth. It is possible to override the default text of these protocol banners, and rec-
ognize that this is a potential source of error. However, we examine the manufac-
turer counts in aggregate under the assumption that most manufacturer strings
are legitimate. We believe it unlikely that users have modified their CWMP
configuration on their customer premises equipment to return an incorrect man-
ufacturer.

Parsing the Telnet and CWMP scans for strings containing the names
of major network device manufacturers provided over two million unique IP
addresses. Table 5 summarizes the results; note that for some manufacturers
(e.g., Arris) approximately the same number of IPs were discovered through the
Telnet scan as the CWMP scan, for others (e.g., Cisco and Huawei) CWMP
provided an order of magnitude greater number of IPs, and still others (e.g.,
Mikrotik and Netgear) appeared in only one of the two protocol scans. Note
that these numbers are not the number of timestamp-responsive IP addresses
denoted by n in Figs. 2 and 3.

With the IP addresses we obtained for each manufacturer, we then run
sundial to each set in order to elicit timestamp reply fingerprints and deter-
mine whether different manufacturers tend to exhibit unique reply behaviors.
Figures 2 and 3 display the incidence of timestamp reply fingerprints for a sub-
set of the manufacturers we probed, and provide some interesting results that
we examine here in greater detail.

No manufacturer exhibits only a singular behavior. We attribute this variety
within manufacturers to changes in their implementation of timestamp replies
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Table 5. Unique IP addresses per manufacturer for each scan

Manufacturer Telnet count CWMP count

Arris 8,638 5,281

Cisco 29,135 1,298,761

H3C 80,445 -

HP 24,027 -

Huawei 170,710 2,377,079

Mikrotik 190,484 -

Netgear - 17,723

Sercomm - 899,492

Ubiquiti 598 -

Zhone 6,999 -

ZTE 17,972 560,177

Zyxel 5,902 -

over time, different implementations among different development or product
groups working with different code bases, and the incorporation of outside imple-
mentations inherited through acquisitions and mergers.

Second, we are able to distinguish broad outlines of different manufacturers
based on the incidence of reply fingerprints. In Fig. 2, we note that among the
top six manufacturers, only Huawei had a significant number of associated IP
addresses (∼10%) that responded with the checksum-lazy behavior. More than
half of the Cisco IP addresses from the Telnet scan exhibited the lazy behav-
ior with the most significant bit set while counting milliseconds, a far greater
proportion than any other manufacturer. Also noteworthy is that none of the
manufacturers represented in the Telnet scan exhibits large numbers of correct
replies. In our Telnet data, Mikrotik devices responded with a correct timestamp
reply roughly 25% of the time, a higher incidence than any other manufacturer.
This suggests that perhaps certain Mikrotik products have NTP enabled by
default, allowing these devices to obtain correct time more readily than those
that require administrator interaction. Our CWMP results in Fig. 3 demonstrate
the ability to distinguish manufacturer behavior in certain cases as well, we note
the >70% of Sercomm devices that exhibit only the lazy behavior, as well as
Sercomm exhibiting the only timezone-relative timekeeping behavior among the
CWMP manufacturers.

Finally, we note differences between the protocol scans among IP addresses
that belong to the same manufacturer. Cisco, Huawei, and ZTE appear in both
protocol results in appreciable numbers, and are represented in both figures in
Sect. 4.2. Although Cisco devices obtained from the Telnet scan infrequently
(∼10%) respond with correct timestamps, in the CWMP data the proportion
is nearly 40%. Huawei devices from the Telnet data are generally lazy respon-
ders that count in milliseconds, however, this same behavior occurs only half as
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frequently in the CWMP data. Further, the fingerprint consisting solely of the
lazy behavior represents nearly a quarter of the CWMP Huawei devices, while
it is insignificant in the Telnet Huawei data. While the differences between the
Telnet and CWMP data are less pronounced for ZTE, they exist as well in the
lack of appreciable numbers of ZTE devices setting the most significant bit in
replies within the CWMP corpus.

Appendix C: Timezone-Relative Behavior

Figure 5 displays the probability mass function of the differences between the
receive and originate timestamps for a sundial scan conducted on 9 September
2018 from the Boston vantage after responses with correct timestamps have been
removed. Discernible peaks occur at many of the hourly intervals representing
timezone-relative responders, rising above a base level of randomness. The hourly
offsets in Fig. 5 may need to be normalized to the range of UTC timezone offsets,
however. For example, depending on the originate timestamp value, a responding
host’s receive timestamp at a UTC offset of +9 may appear either nine hours
ahead of the originate timestamp, or 15 h behind, as −15 ≡ 9(mod 24). In Fig. 5
we see large spikes at both +9 and −15 h, but in reality these spikes represent
the same timezone.

Table 6. Inferred UTC-offsets from timestamp replies

UTC offset −12 −11 −10 −9 −8 −7 −6 −5 −4 −3.5 −3 −2 −1 1 2

Count 73 1 7 3 386 476 666 1,763 2,660 2 246 228 5 7,215 1,819

UTC offset 3 3.5 4 4.5 5 5.5 6 6.5 7 8 9 9.5 10 11

Count 449 8 62 3 87 17 14 13 565 3,496 13,861 6 215 11

We identify timezone-relative responses systematically by computing the
local time in milliseconds for each of the UTC-offsets detailed in Table 6, given
the originate timestamp contained in the timestamp response. We then compare
each candidate local timezone’s originate timestamp to the receive timestamp
in the reply. If the candidate originate timestamp is within the 200 ms correct-
ness bound established in Sect. 5.2, we classify the IP address as belonging to
the timezone that produced the correct originate timestamp. Table 6 details the
number of timezone-relative responders we identified during the 9 September
sundial scan.
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Abstract. We present a list of the Best-50 public IPv4 time servers by
mining a high-resolution dataset of Stratum-1 servers for Availability,
Stratum Constancy, Leap Performance, and Clock Error, broken down
by continent. We find that a server with ideal leap performance, high
availability, and low stratum variation is often clock error-free, but this
is no guarantee. We discuss the relevance and lifetime of our findings,
the scalability of our approach, and implications for load balancing and
server ranking.
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1 Introduction

A high proportion of the global computer population achieves its time synchro-
nization via public time servers accessed by the NTP protocol. Such servers are
hierarchical in that a Stratum-s (or S-s) timeserver itself synchronizes to a Stra-
tum s − 1 server. Anchoring the system are the Stratum-1 time servers, which
have local access to reference hardware.

Clients rely on their server’s notion of time, however, as we describe below,
server quality varies in important ways, often with no warning being delivered to
clients. It would clearly be of interest to map out server quality across the Inter-
net, both for its own sake, and also to inform client server selection. However, it
is not immediately clear how this could be achieved at scale, and reliably, across
the latency noise of the Internet.

Recently the problem of server health monitoring has begun to receive atten-
tion, in particular regarding the small but critical Stratum-1 class. Techniques,
described in [5,18], have been developed for the unambiguous detection of errors
in server clock timestamps, even from vantage points where the path to the server
is both long in terms of Round Trip Time (RTT), and noisy. In [18], studying
around 100 servers, it was found that significant errors are not rare, being found
in a surprisingly high proportion of popular public servers, including many from
National Laboratories. Errors can be both large in magnitude (10’s to 100’s of
c© Springer Nature Switzerland AG 2019
D. Choffnes and M. Barcellos (Eds.): PAM 2019, LNCS 11419, pp. 101–115, 2019.
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milliseconds and even beyond) and long lasting (from hours to days and even
continuously over months), or both. In [17] a similar server set was analyzed with
respect to their leap second performance, and recently [5], using a new and much
larger data set, looked at both server clock error and protocol failures during the
end-2016 leap second. In these servers, which include all those Stratum-1 servers
employed in the widely used NTP Pool service [11], only 37.3% were found to
perform adequately.

In this paper we mine the IPv4 data set, available at [4], used in [5]. We
evaluate quality according to four dimensions: server Availability, behaviour sur-
rounding a Leap Second (a stress test for both NTP protocol compliance and
clock behaviour), Stratum Constancy, and finally, severity of server Clock Errors.
We limit our list to 50 members, and within this group servers are not explicitly
ranked. Instead, because of the importance to clients of the RTT to its server,
a key factor in synchronization performance in practice (though not necessarily
in theory, see [16]) due to its correlation with path asymmetry, congestion and
loss, we structure our results in a per-continent then per-country breakdown.

There are a number of arguments for a ‘Best-50’. One is for direct use by
measurement specialists, in particular operators of measurement infrastructures
[1,2,14], who require servers of both high availability and high accuracy. Another
is to highlight the server health issue. Quantifying best practice increases aware-
ness of ongoing problems, and provides the context (and an incentive) for efforts
to improve the system and to track performance over time. A third goal is to
explore concretely a number of quality metrics, and how they relate to actual,
verifiable errors in server timing. Although there have been some papers survey-
ing network timing performance [6–10], we believe this is the first attempt to
accurately identify the best servers, using diverse metrics.

After providing background in Sect. 2 and an overview in Sect. 3, the main
results are presented in Sect. 4. Section 5 discusses their significance, limitations,
and implications for the definition and use of a server quality rank, with reference
to load balancing services including NTP Pool. We conclude in Sect. 6.

2 Background

We summarize the experimental setup, data set and server list (see [5] for full
details). We then summarize the operation of the NTP Pool service.

2.1 The Experiment

The experiment covered a 64 day period from Nov. 16 2016 to Feb. 2 2017, includ-
ing the end-2016 leap second. For each server in a target server list in parallel, an
independent instance of a request–response exchange daemon, using a per-server
customized polling period as close to τ = 1 s as possible, was launched.

For an NTP packet i which successfully completes its round-trip from the
client to server and back, a 4-tuple stamp {Ta,i, Tb,i, Te,i, Tf,i} of timestamps
is recorded. Here Tb,i, Te,i are the (incoming and outgoing respectively) UTC
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timestamps made by the server. These are extracted from the returning NTP
packet header, along with the Leap Indicator (LI) bits and the server Stratum
field. The timestamps Ta,i, Tf,i are of passively tapped NTP packets, hardware
timestamped using high performance Endace DAG 7.5G4 capture cards, whose
hardware clocks are disciplined to a rubidium atomic clock, itself locked to a roof
mounted GPS receiver. The error in the client side timestamps measurement is
therefore sub-microsecond and is ignored here.
The IPv4 servers studied came from five sources:

Org: the public S-1 URL list maintained at ntp.org
Pool: S-1 servers participating in the NTP Pool Project
LBL: S-1 servers caught at the Lawrence Berkeley Laboratory border router
Au: the set of Australian public facing S-1 servers (plus 6 private)
Misc: miscellaneous servers of interest.

The servers which returned useful data, 459 in total, are broken down by source
in Table 1 (the sets overlap). Of the AU servers, 6 are in fact private and will
be excluded from the final results. Table 2 provides a geographical breakdown.
The low values for AF, AN and SA reflect the immaturity of Internet timing
infrastructure across these continents.

Table 1. Server source breakdown.

Population Org Pool LBL Au Misc

# 197 258 257 14 10

% 43 56 56 3 2

Table 2. Continental breakdown of servers.

Population AF AN AS EU NA OC SA

# 1 0 50 203 169 29 7

% 0.2 0 0.9 44.2 36.8 6.3 1.5

2.2 NTP Pool

The NTP Pool Project [11] provides a load balancing and convenient configu-
ration service for millions of NTP clients, by supplying a set of URLs resolved
via a tailored DNS server, to members of a pool of participating volunteer NTP
servers of various strata.

Users can access at pool.ntp.org the complete worldwide pool, or subsets
thereof at #.pool.ntp.org, where # is one of {0,1,2,3}. These subsets are influ-
enced by client geo-location but otherwise random, and refresh every hour [12].
The full details of how server subsets are selected is not documented.

A degree of client-control is supported via CONT.pool.ntp.org : continental
zone pools where CONT is one of {africa, antarctica, asia, europe, north-america,
oceania, south-america}, and CY-coded country pools at CY.pool.ntp.org, and
#. prefixed subsets of these [13].

For the pool associated to a given client at a particular time, the system uses
DNS round robin to resolve URL queries to the IP address of a server in that
pool. NTP Pool includes a monitoring system which queries the pool servers,
scoring their performance based in NTP packet fields including {offset, stratum,
LI, RTT, noresponse}. Servers are evaluated periodically and only those with a
score above 10 are made available.
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3 Server Characterization

We characterize servers according to the following four criteria or dimensions.

Availability. This simple but critical criterion is measured by the ratio of
response packets received to request packets sent. This will underestimate the
true availability, because of packet loss and reachability failure in the network.

Stratum Constancy. Possible stratum values range from S = 0 (unsynchro-
nized), to S = 1, 2 . . . 16. A Stratum-1 server may change stratum if its hardware
reference has a problem, if the system has a reboot, or if its synchronization
daemon/algorithm decides it would prefer an remote reference, and stratum
values of 0, 2, 3 or even higher could result. We measure the ‘Stratum-1 down-
time’ (S1Downtime) as the proportion of response packets which report a stra-
tum other than 1. Values of S1Downtime close to zero suggest a well managed
Stratum-1 server in a stable environment. We also record the list of all stratum
values ever seen.

Leap Performance. Leap Second events are a stress test for servers, both in
terms of the detailed clock performance (does it jump cleanly by exactly 1 second
at exactly the right time, and nothing else?) and protocol compliance (does it
set the LI bits in accordance with the standard?). This question was studied in
detail for each server in the list in [5]. Here we classify servers according to a
subset of the characterization defined there, as:
Ideal: no observed clock error linked to the leap second, ideal protocol behaviour;
Adequate: no clock error, compliant protocol behaviour;
Clock Good: no evidence of clock error about the leap,

where Ideal ⊂Adequate ⊂Clock Good⊂All. For convenience, we add two more
classes by set difference:

Clock Good Only (CGO): Clock-Good\Adequate;
Clock Not Good (CNG): All\Clock-Good.

Although leap seconds are rare, they occur regularly. If a server handles them
poorly, the impact can be severe, for example taking weeks to jump, or never.

Clock Errors/Anomalies. Our approach is based on the methodology we
pioneered in [18] for the remote detection and measurement of server errors. It
uses baseline analysis of the RTT timeseries to identify changes in the ‘Error’

30.5278 30.569 30.6101 30.6513t [day]

-20
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20
40
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Fig. 1. Server errors cause E(i) to deviate from its true underlying value (green line).
(Color figure online)
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Fig. 2. CDF of Availability (in %) over all servers (black), and per-continent.

time series Ei = (D↑
i −D↓

i )/2 due to server errors, rather than the alternatives of
path routing changes and/or congestion. Here D↑

i = Tb,i−Ta,i and D↓
i = Tf,i−Te,i

are the empirical outgoing and incoming delays to the server. An example of a
server error zone, beginning at around t = 30.544 days, is given in Fig. 1.

We have improved the methodology of [18] by (i) replacing non-linear filtering
based congestion suppression (which can be fooled in certain circumstances) with
strict RTT bounding, (ii) systematically recording not only error sizes but also
the precise locations of all error zones, (iii) increasing the granularity of error
frequency reporting: we classify servers according to the number of errors as:
Good: no errors; Rare: less than one error per week; Common: more than one
error per week, but not High; and High: continuous stretches of error covering
at least 25% of the trace. In [18] R and C were combined into R.

Since the selection of error zones is performed manually (due to the need to
disambiguate from complex routing, congestion and error scenarios), the detec-
tion process is very labor intensive. It is essential however for our purposes here
where, unlike [18], we evaluate not only error presence and representative size
but also how often the server is in error (see Errtime below).

3.1 Server Overview

We provide some context by examining the first three of the above dimensions
over all servers.

Figure 2 shows the Cumulative Distribution Function (CDF) of availability
for all servers. Availability is good overall, with 80% of servers having values
exceeding 95%, and over half exceeding 99%. The per-continent results show
lower availability for regions further from the testbed in Sydney, Oceania. This
can be explained through a measurement bias due to higher loss rates over longer
paths leading to lower apparent availability.
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Fig. 3. Relationship between the Stratum classes. Symbols denote servers in the Best-
50, red symbols denote those with server errors. (Color figure online)

The leap performance results over all servers appear in Table 3. Only 37%
exhibit Adequate behavior, necessary to allow their clients to navigate a leap
second without incident.

Table 3. Leap performance summary.

All CGO CNG Clock Good Adequate Ideal

# 459 134 154 305 171 36

% 100 29 34 66 37 8

Figure 3 provides a pertinent classification of servers according to strata. In
the Constant class only one stratum value is ever seen (not always Stratum-1!),
in Bi only two, and in Unsync at least one response carries Stratum-0. We see
that 154 servers (34%) have constant strata, and the majority of the 305 that
do not, 254 or 83%, announced themselves as unsynchronized at least once.

Overall 137 servers (30%) announce themselves as Stratum-1 in each and
every response. This appears as a discrete mass of weight 0.3 at the origin in the
S1Downtime CDF in Fig. 4, which shows that servers which are not Constant
have a wide variety of S1Downtime values.

4 The Best-50 Servers

What we would ideally like is clear: to find servers that are always available, and
that have no detectable clock errors. However, to determine the latter implies a
prior detailed examination, which is too labour intensive using our server error
methodology and tools to deal with 459 servers, each with up to 2 months of
high resolution data, each with potentially a large number of errors.
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Fig. 4. CDF of S1Downtime (in %) over all servers (black), and per-continent.

Accordingly, our approach is to first assemble a list of ostensibly high qual-
ity servers using the dimensions of Availability and Stratum Constancy that
are readily calculated, and Leap Performance, available from prior work, and to
apply the Clock Error analysis on this much smaller number of servers, which
moreover are likely to be simpler to analyse. In this way we approximate the
ideal above in a scalable way (see Sect. 5), with a practically appropriate bias
toward servers with stable management (high Stratum Constancy) and compe-
tent configuration and performance during high stress (Leap Performance).

More precisely we proceed as follows. For Availability, we seek servers that are
almost always available, with due allowance for measurement bias due to packet
loss. Based on Fig. 2 we believe a cutoff of 97% is safe. For Leap Performance, we
insist that servers are in the Adequate class. Next, we use S1Downtime to order
the servers that pass the above two criteria. Our Best-50 servers are then defined
as the first 50 servers in this ordering (starting from the zero S1Downtime end)
whose Clock Error class is either G or R.

Server errors in a given server are further quantified through the metrics of
Size (the median over all error zones of the error range over that zone), and
Errtime (the proportion of the trace taken up by error zones).

The resulting Best-50 servers are given in Table 4. Within each continent
group, servers are ordered according to country code first, and then lexicograph-
ically according to their URL. The mapping from URL to IP address is provided
in the Appendix.

Beyond the identities of the servers themselves and their geographical break-
down, the most important observation from the table is the fact that even excel-
lent performance under each of Availability, Stratum Constancy and Leap Per-
formance does not mean that the server is error free. Indeed, out of 15 servers
with detected server errors, 9 give no warning of this with a S1Downtime of
zero, yet have Sizes ranging from 2.1 to 1000ms, albeit with Errtime being gen-
erally low (0.9 s in the hour on average in the worst case of 0.025%). The worst
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Table 4. Best-50 public timeservers organised by continent, country, and URL. Cyan
URLs marks National Laboratory servers.

CONT URL CY
Strata Server Error

Avail.
(%)

Leap
PerfList S1Down Class Size Errtime

time(%) [ms] (%)

AF stratum1.neology.co.za ZA {1} 0 R 2.1 7.0e-5 99.87 Adeq.
AN – – – – – – – – –
OC ntp1.net.monash.edu.au AU {1} 0 R 180 1.4e-4 99.86 Adeq.

EU

ntp1.oma.be BE {0,1} 2.9e-4 R 28 0.032 99.04 Adeq.
ntp.freestone.net CH {1} 0 G – – 99.80 Ideal

netopyr.hanacke.net CZ {1} 0 G – – 99.25 Ideal
ntp.nic.cz CZ {1} 0 G – – 99.86 Adeq.

ptbtime1.ptb.de DE {0,1} 2.9e-4 R 1.1 2.9e-4 99.78 Adeq.
ptbtime3.ptb.de DE {1} 0 R 5.46 0.014 99.78 Ideal

hora.roa.es ES {0,1,2} 2.9e-4 R 120 5.8e-3 99.40 Adeq.
ntp.i2t.ehu.es ES {1} 0 G – – 98.94 Ideal

unknown1 GB {1} 0 G – – 99.71 Ideal
unknown2 GB {1} 0 G – – 99.71 Ideal

ntp2.litnet.lt LT {1} 0 G – – 99.87 Ideal
metronoom.dmz.cs.uu.nl NL {1} 0 G – – 99.66 Ideal

unknown3 NO {1} 0 G – – 98.88 Ideal
goblin.nask.net.pl PL {1} 0 G – – 99.79 Ideal

ntp.certum.pl PL {1} 0 R 7.0 0.025 97.55 Adeq.
ntp.fizyka.umk.pl PL {1} 0 G – – 99.45 Ideal
time.assecobs.pl PL {1} 0 G – – 99.10 Ideal

ntp1.niiftri.irkutsk.ru RU {1} 0 G – – 98.83 Ideal
ntp2.niiftri.irkutsk.ru RU {1} 0 G – – 98.94 Ideal

ntp1.gbg.netnod.se SE {1} 0 R 1000 1.8e-5 99.89 Adeq.
ntp2.gbg.netnod.se SE {1} 0 R 1000 1.8e-5 99.89 Adeq.

ntp1.mmo.netnod.se SE {1} 0 R 1000 3.6e-5 99.87 Adeq.
ntp2.mmo.netnod.se SE {1} 0 G – – 99.88 Adeq.
ntp1.sth.netnod.se SE {1} 0 G – – 99.82 Adeq.
ntp2.sth.netnod.se SE {1} 0 R 1000 8.8e-4 99.81 Adeq.

NA

istntpprd–02.corenet.ualberta.ca CA {1} 0 G – – 99.89 Ideal
tick.usask.ca CA {1} 0 G – – 99.86 Adeq.
tock.usask.ca CA {1} 0 R 17 2.5e-4 99.58 Adeq.

clepsydra.dec.com US {1} 0 G – – 97.82 Ideal
m4c2236d0.tmodns.net US {1} 0 G – – 99.87 Ideal
m4d2236d0.tmodns.net US {1} 0 G – – 99.88 Ideal

montpelier.ilan.caltech.edu US {1} 0 G – – 99.76 Ideal
navobs1.gatech.edu US {1} 0 G – – 99.70 Adeq.

ntp.colby.edu US {1} 0 G – – 99.71 Ideal
ntp1.digitalwest.net US {1} 0 G – – 99.82 Ideal

tick.ucla.edu US {1,2} 2.6e-4 G – – 99.50 Adeq.
time–a.netgear.com US {1} 0 G – – 99.78 Ideal
time–a.stanford.edu US {1} 0 G – – 99.92 Adeq.

tock.phyber.com US {1} 0 G – – 99.87 Adeq.
usatl4-ntp-002.aaplimg.com US {0,1,2} 5.7e-5 R 1.5 0.063 99.83 Adeq.

usno.hpl.hp.com US {1} 0 G – – 97.82 Ideal
usnyc3-ntp-003.aaplimg.com US {0,1} 1.8e-3 R 6.4 0.052 99.85 Adeq.

AS

f2.kns1.eonet.ne.jp JP {0,1} 2.8e-4 G – – 99.83 Adeq.
jptyo5-ntp-001.aaplimg.com JP {1,2} 2.3e-4 R 39 0.029 99.11 Adeq.

ntp1.noc.titech.ac.jp JP {1} 0 G – – 99.82 Adeq.
ntp-b2.nict.go.jp JP {1} 0 G – – 99.90 Ideal

unknown4 SG {1} 0 G – – 99.91 Ideal
SA ntp.shoa.cl CL {1} 0 G – – 99.70 Ideal
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Table 5. Five categories of examples of servers outside the Best-50 in one or more
criteria. Bold column entries mark failed criteria.

CONT URL CY
Strata Server Error

Avail.
(%)

Leap
PerfList S1Down Class Size Errtime

time(%) [ms] (%)

OC ntp10.net.monash.edu.au AU {1} 0 C 18.46 0.002 99.86 Adeq.
NA time-a.timefreq.bldrdoc.gov US {1} 0 H 23.16 100 99.47 Adeq.
NA time-c.timefreq.bldrdoc.gov US {1} 0 H 8.98 100 99.69 Adeq.

OC ntp.waia.asn.au AU {0,1,3} 0.040 R 700 0.128 99.44 Adeq.
EU ntp1.fau.de DE {1,2} 0.381 R 1.76 0.628 99.70 Adeq.

NA srcf-ntp.stanford.edu US {1} 0 G – – 99.93 CGO

SA a.st1.ntp.br BR {0,1} 1.1e-4 G – – 99.72 CGO

EU ntp1.vniiftri.ru RU {0-3,12} 0.029 R 2.30 1.852 98.05 CNG

EU ntp3.fau.de DE {1,2} 0.401 H 6.3 100 99.69 Adeq.
NA ntp.myfloridacity.us US {0,1} 3.9e-4 H 14.61 100 98.73 CNG

NA time-b.nist.gov US {1} 0 C 2.10 0.254 63.73 Adeq.
NA t2.timegps.net US {0,1,2} 0.011 R 333.50 0.043 99.59 CGO

EU rustime01.rus.uni-stuttgart.de DE {1,2} 0.380 R 4.50 3.485 95.05 CGO

EU ntp2.usv.ro RO {0,1} 0.003 G – – 96.70 CNG

S1Downtime in the table, NA server usnyc3-ntp-003.aaplimg.com, which is also
an R server, only drops from Stratum-1 (to Stratum-0 in this case) 0.0018% of
the time. This is 29 times less often than its Errtime at 0.052%. Thus for this
server, error is a more serious concern than stratum stability.

The Best-50 are marked via symbols within Fig. 3, where certain observations
are more immediate. For example we clearly see that 9 of the Constant S1 servers
in the Best-50 have clock errors, and that only 2 in the Best-50 take 3 or more
stratum values.

Another observation of note is that, with the exception of ptbtime3.ptb.de,
servers with Ideal Leap Performance and zero S1Downtime enjoy Server Error
ratings of G, suggesting that this pair could serve as a useful indicator of an
exceptionally well managed server, and hence be predictive of exemplary Error
behaviour. Useful does not mean foolproof however: in addition to the exception
above the two NIST servers in Table 5 provide sobering counter-examples.

The server list contains 35 servers from Apple’s 17.253 domain. Three of
these make it into the Best-50, though all exhibit server errors with relatively
large Errtime values. Finally, it is worth noting that despite having 66 servers
from National Laboratories in the list, only 12, those colored cyan, make it into
the Best-50 (an additional 5 from the NMI in Australia are excluded as they are
not publicly accessible).

Because the criteria of entry into the Best-50 are so strict, there is a limit to
what one can say about these servers: they are indeed very well behaved. How-
ever, if one relaxes the criteria in different dimensions, a much wider variety of
behaviour is quickly revealed. To make this concrete, and to indicate what could
have been included in the Best-50 had things been a little different, a number
of contrasting examples are provided in Table 5, separated into five categories.
For each server bolded column entries mark the criteria which did not meet the
Best-50 standard.
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In the first category we give 3 of the 5 servers (of which {2,3} were rated
{C,H} respectively) that failed to make the Best-50 because of excessive server
errors. By definition, and as noted earlier, such servers illustrate the fact that the
(Availability, Stratum, Leap) three-tuple is not sufficient to predict the absence
or otherwise of clock errors, nor their severity in terms of Size or Errtime. Partic-
ularly noteworthy is the fact that H servers, which by definition have an Errtime
over 25%, and typically have Errtime of a dramatic 100%! can and do appear.
The second category exhibits two examples of servers that failed only due to
being too low in the S1Downtime ranking, one of which has Size of 700ms and
Errtime three times higher than its S1Downtime. The third category gives exam-
ples failing only the Leap criterion, that are exemplary in other respects. There
were no examples of servers which failed in Availability only. The fourth cate-
gory includes five diverse examples where two criteria were not met. Finally, the
fifth category includes servers that are still generally respectable despite failing
in three criteria.

5 Discussion

We discuss the limitations, implications and future of our work.

Source Coverage. Because of the widespread usage of the Pool service, and
the high profile of the Org list, we expect the server list to contain most of the
widely used public S-1 servers, but how representative are they of the (unknown)
complete set? There is in fact a high degree of overlap, 50% or more, between
each of the three main sources: Org, Pool and LBL, leading to speculation in [5]
that the server list contains a significant percentage of the global public facing
Stratum-1 server population. We now consider how to evaluate this claim.

Population estimation based on re-sampling a marked sub-population is known
as the capture-recapture problem in statistics. To fit within this framework, it is
natural to group the Org and Pool sources together as they are both community
based, and have a strong, non-random relationship. Thus we have n = |Org ∪
Pool| = 356 servers which represent a ‘marked’ sample of the total unknown pop-
ulation N . The LBL source now represents a random sample of K = 257 servers,
of which k = 175 lie inOrg∪Pool, that is they are marked servers that are ‘recap-
tured’. The population can now be estimated from n, K and k. For example the
Chapman estimator [3,15], yields N̂ = �(K+1)(n+1)/(k+1)�−1 = 522. A corre-
sponding (non-symmetric) 95% coverage interval for N is [497, 562]. This suggests
that our Best-50 is well founded as it is based on a number, 453, being between
80% and 91% of all public servers.

The random sampling assumptions underlying the Chapman estimator do not
hold strictly here, so the above estimate can only be viewed as a rough indication.
To determine the true value of N a better approach, for IPv4 servers, is simply
to exhaustively probe the IPv4 address space. We did not do so here, as that
would not have given us the leap second performance information we require.

List Shelf Life. As it derives from a static data set, the utility of our Best-50
will decrease over time. Some indication of its expected lifetime can be gained
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from the longitudinal results in [18], which report on a subset of Org servers
using data collected over 151 days in 2011–12 (Exp1), and 124 days in 2014–15
(Exp2). Although Availability, Leap performance, and Errtime are not given, we
can compare with respect to Stratum Constancy, and Error Classification.

Of the Best-50 servers, there are 13 which also appear in that study. All 13
(100%) were found to be error-free in each of Exp1 and Exp2, as well as having
zero S1Downtime for Exp2 (stratum data was unavailable for Exp1). For the
metrics available, this represents perfect agreement.

Of the 14 servers which feature in Table 5, 13 also appear in the study,
of which 3 are suitable for direct comparison as they pass our criteria for
S1Downtime and have Error class in {G,R,C}. Of these, all 3 exhibit close
agreement, with no detected errors in each of Exp1 and Exp2, and again with
zero S1Downtime. Finally, at the other end of the spectrum, of the 4 servers in
the continuously errored H class in Table 5, 3 were also classed as H in [18].

Based on the above, we expect that the level of churn in the Best-50 list
provided here will be low on useful timescales, for example 5 years. Knowledge
of server configuration would be of interest here also to attempt root cause
analysis, as would correlating against network failures. We have attempted to
contact administrators, however the response rate was minimal.

Measurement Cost. The analysis used here requires specialist hardware, tech-
niques, unusual data (leap events), and significant effort. A priori, this does not
scale. A goal of future work must be to develop lighter weight approximate tech-
niques and more automated server error detection using standard hardware. The
work here can serve to evaluate the effectiveness of such techniques.

Scalability cost divides substantially along criteria lines. Stratum Constancy
measurement scales trivially, as it depends neither on special hardware nor the
network path. Availability also scales readily, though to remove packet loss bias
requires measurement close to the server and/or path diversity, and hence client
placement diversity ideally. Leap Performance is inherently difficult as oppor-
tunities to measure it occur only every ≈2.5 years. On the other hand this also
limits the workload, and the protocol aspects are as scalable as Stratum Con-
stancy. Rankings could be defined which exclude leap second criteria for appli-
cations where this is not needed, for example Internet measurement campaigns
not covering leap events, which are announced months in advance.

The Clock Error criteria is the expensive one, and the most critical. The
hardware cost could be avoided by using a robust clock synchronization and
timestamping approach such as RADclock [16] as a Stratum-2, with its Stratum-
1 server selected from the Best-50 provided here. Although timestamping errors
would of course be higher, they would still be well below server error sizes in
most cases. In terms of the error analysis itself, it is feasible, albeit non-trivial,
to automate this to a good level of accuracy, and this is a direction for our future
work. Such a capability would enable, for example, ongoing monitoring and error
querying for important servers. However, this is not essential for the purpose of
maintaining the Best-50 as we have defined it here, as the construction of the
list, combined with its expected low churn, implies that only a small number
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of high quality servers (which are faster to process) would have to be evaluated
from scratch each year to keep it current. Those remaining would also have to
be re-evaluated, but this is less onerous when they have been seen before.

Server Ranking. From the quality dimensions we have considered various rank-
ings could be defined. An obvious way to rank the Best-50 is the S1Downtime
ordering employed in the list construction, however this cannot be extended over
all servers, as many will not satisfy the minimum requirements in other crite-
ria. A candidate which avoids this problem is Badtime, defined to be the sum
of Errtime and 1−Availability, being the proportion of time a server should be
avoided. This should suit contexts where leap second performance is not critical.

Great care must be taken in how any ranking is used, to prevent high ranking
servers from receiving high loads. It would be a mistake (and is not the intent
of this paper!) to recommend that clients make use of the Best-50 en masse.
Instead, server rank should be used within broader systems designed to tradeoff
load balancing and server quality appropriately. Indeed, NTP Pool’s score is an
attempt to do this (Sect. 2), however it is not grounded in knowledge of actual
server error. The larger problem is that NTP Pool breaks NTP’s inherent load
balancing mechanism, namely the server hierarchy, while simultaneously prefer-
encing its own load balancing over server quality. Thus pools contain servers of
mixed strata, and clients are given different servers over time with quality which
may vary enormously. Instead, we argue that the hierarchy needs to be enforced,
and within that, well defined notions of rank given higher prominence.

Client Impacts. Finally, a separate, but natural question to ask is, how impor-
tant is it for a client to select a server of Best-50 calibre? The client impact will
depend strongly on many factors including the robustness of the clock synchro-
nization algorithm in use, the policy regarding back-up servers and if they are
available, the size of server errors, their duration, the length of non-availability
periods, the stratum of the client, the characteristics of the path to the server,
and whether a leap second is involved. Potential errors can range from negligi-
ble (< 10µs) and short-term (few seconds) at one extreme, to permanent (until
server change) and extreme (10’s of ms to seconds or well beyond plus high
variability) at the other. The onus on the Stratum-1 server is to show near per-
fect behaviour to anchor and lift performance across the timing system. This is
possible, as many in the Best-50 demonstrate.

6 Conclusion

Our Best-50 list is not definitive. It is however the first serious attempt to quan-
tify timeserver best practice that we are aware of. We believe that it will be
of use for a number of years at least, by which time the methodology could be
improved to make such a list more comprehensive, dynamic and less expensive to
generate. It is in any event, feasible to maintain it even with current technology.
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Appendix

(see Tables 6 and 7).

Table 6. URL to IP mapping of the servers in Table 4.

CONT URL IP CY

AF stratum1.neology.co.za 41.73.40.11 ZA
AN – – –
OC ntp1.net.monash.edu.au 130.194.1.96 AU

EU

ntp1.oma.be 193.190.230.65 BE
ntp.freestone.net 193.5.68.2 CH

netopyr.hanacke.net 94.124.107.190 CZ
ntp.nic.cz 217.31.202.100 CZ

ptbtime1.ptb.de 192.53.103.108 DE
ptbtime3.ptb.de 192.53.103.103 DE

hora.roa.es 150.214.94.5 ES
ntp.i2t.ehu.es 158.227.98.15 ES

unknown1 188.39.213.7 GB
unknown2 81.187.202.142 GB

ntp2.litnet.lt 193.219.61.120 LT
metronoom.dmz.cs.uu.nl 131.211.8.244 NL

unknown3 148.252.105.132 NO
goblin.nask.net.pl 195.187.245.55 PL

ntp.certum.pl 213.222.200.99 PL
ntp.fizyka.umk.pl 158.75.5.245 PL
time.assecobs.pl 195.189.85.132 PL

ntp1.niiftri.irkutsk.ru 46.254.241.74 RU
ntp2.niiftri.irkutsk.ru 46.254.241.75 RU

ntp1.gbg.netnod.se 192.36.133.17 SE
ntp2.gbg.netnod.se 192.36.133.25 SE

ntp1.mmo.netnod.se 192.36.134.17 SE
ntp2.mmo.netnod.se 192.36.134.25 SE
ntp1.sth.netnod.se 192.36.144.22 SE
ntp2.sth.netnod.se 192.36.144.23 SE

NA

istntpprd–02.corenet.ualberta.ca 129.128.5.211 CA
tick.usask.ca 128.233.154.245 CA
tock.usask.ca 128.233.150.93 CA

clepsydra.dec.com 204.123.2.5 US
m4c2236d0.tmodns.net 208.54.34.76 US
m4d2236d0.tmodns.net 208.54.34.77 US

montpelier.ilan.caltech.edu 192.12.19.20 US
navobs1.gatech.edu 130.207.244.240 US

ntp.colby.edu 137.146.28.85 US
ntp1.digitalwest.net 72.29.161.5 US

tick.ucla.edu 164.67.62.194 US
time–a.netgear.com 209.249.181.52 US
time–a.stanford.edu 171.64.7.105 US

tock.phyber.com 207.171.30.106 US
usatl4-ntp-002.aaplimg.com 17.253.6.253 US

usno.hpl.hp.com 204.123.2.72 US
usnyc3-ntp-003.aaplimg.com 17.253.14.123 US

AS

f2.kns1.eonet.ne.jp 60.56.214.78 JP
jptyo5-ntp-001.aaplimg.com 17.253.68.125 JP

ntp1.noc.titech.ac.jp 131.112.125.48 JP
ntp-b2.nict.go.jp 133.243.238.163 JP

unknown4 210.23.25.77 SG
SA ntp.shoa.cl 200.54.149.24 CL
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Table 7. URL to IP mapping of the servers in Table 5.

CONT URL IP CY

OC ntp10.net.monash.edu.au 130.194.10.150 AU
NA time-a.timefreq.bldrdoc.gov 132.163.4.101 US
NA time-c.timefreq.bldrdoc.gov 132.163.4.103 US

OC ntp.waia.asn.au 218.100.43.70 AU
EU ntp1.fau.de 131.188.3.221 DE

NA srcf-ntp.stanford.edu 171.66.97.126 US
SA a.st1.ntp.br 200.160.7.186 BR

EU ntp1.vniiftri.ru 89.109.251.21 RU
EU ntp3.fau.de 131.188.3.223 DE
NA ntp.myfloridacity.us 71.40.128.146 US
NA time-b.nist.gov 129.6.15.29 US
NA t2.timegps.net 69.75.229.43 US

EU rustime01.rus.uni-stuttgart.de 129.69.1.153 DE
EU ntp2.usv.ro 80.96.120.252 RO
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Abstract. Traceroute is often used to help diagnose when users experi-
ence issues with Internet applications or services. Unfortunately, probes
issued by classic traceroute tools differ from application traffic and hence
can be treated differently by routers that perform load balancing and
middleboxes within the network. This paper proposes a new traceroute
tool, called Service traceroute. Service traceroute leverages the idea from
paratrace, which passively listens to application traffic to then issue
traceroute probes that pretend to be part of the application flow. We
extend this idea to work for modern Internet services with support for
identifying the flows to probe automatically, for tracing of multiple con-
current flows, and for UDP flows. We implement command-line and
library versions of Service traceroute, which we release as open source.
This paper also presents an evaluation of Service traceroute when tracing
paths traversed by Web downloads from the top-1000 Alexa websites and
by video sessions from Twitch and Youtube. Our evaluation shows that
Service traceroute has no negative effect on application flows. Our com-
parison with Paris traceroute shows that a typical traceroute tool that
launches a new flow to the same destination discovers different paths than
when embedding probes in the application flow in a significant fraction of
experiments (from 40% to 50% of our experiments in PlanetLab Europe).

1 Introduction

Internet services and applications rely on highly distributed infrastructures to
deliver content. When applications stop working or when their performance
degrades, service providers and more sophisticated users often resort to tracer-
oute to narrow down the likely location of the problem. Traceroute issues probes
with increasing TTL to force routers along the path towards a destination to
issue an ICMP TTL exceeded message back to the source, which iteratively
reveals the IP addresses of routers in the path [4].

Traceroute, however, may fail to reveal the exact path that a given appli-
cation flow traverses. For example, Luckie et al. [8] have shown that depending
on the traceroute probing method (ICMP, UDP, and TCP) the set of reached
c© Springer Nature Switzerland AG 2019
D. Choffnes and M. Barcellos (Eds.): PAM 2019, LNCS 11419, pp. 116–128, 2019.
https://doi.org/10.1007/978-3-030-15986-3_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-15986-3_8&domain=pdf
https://doi.org/10.1007/978-3-030-15986-3_8


Service Traceroute: Tracing Paths of Application Flows 117

destinations and discovered links differ. The authors explain these differences by
the presence of middleboxes in the path such as load balancers and firewalls that
make forwarding decisions based on flow characteristics. These results imply that
diagnosing issues on application flows must ensure that traceroute probes have
the same characteristics as the application’s packets.

This paper develops a traceroute tool, called Service traceroute, to allow dis-
covering the paths of individual application flows. Service traceroute passively
listens to application traffic to then issue probes that pretend to be part of the
application flow. Some traceroute tools (for instance, paratrace [6], TCP side-
car [13], and 0trace [5]) already enable probes to piggyback on TCP connections.
These tools observe an active TCP connection to then insert traceroute probes
that resemble retransmitted packets. TCP sidecar was developed for topology
mapping, whereas paratrace and 0trace for tracing past a firewall. As such, they
lack the support for tracing paths of modern application sessions, which fetch
content over multiple flows that change dynamically over time. First, these tools
provide no means to identify the set of application flows to trace. They require
as input the destination IP address and the destination port to detect the target
application flow. Second, they trace one target application flow at a time. Finally,
these tools lack the support for tracing application flows using UDP as transport
protocol, which are increasing thanks to the adoption of QUIC protocol [7].

Our work makes the following contributions. First, we develop and implement
Service traceroute (Sect. 2), which we release as open source software. Service
traceroute is capable of identifying application flows to probe and of tracing the
paths of multiple concurrent flows of both TCP and UDP flows. For example,
a user may simply specify trace ‘Youtube’ and Service traceroute will identify
Youtube flows and then trace all of their paths. Service traceroute is configurable
to cover a large variety of Internet services.

Our second contribution is to conduct the first thorough evaluation of the
effect of embedding tracetoute probes within application flows. One issue with
this approach is that we may hurt application performance. Our evaluation shows
that in the vast majority of cases, Service traceroute has no side-effect on the
target application (Sect. 4). Finally, we compare Service traceroute with 0Trace,
which also embeds probes within a target application flow, and with Paris Tracer-
oute, which launches a new flow for probing (Sect. 5). Our comparison with Paris
traceroute shows that when we launch a new flow with traceroute probes we
observe a different path in around 40% to 50% of paths depending on the appli-
cation. This difference reduces considerably for the majority of applications when
we run Paris traceroute with the same flow ID as the target application flow,
which shows that differences are mostly due to middleboxes that make forward-
ing decisions per flow. These results highlight the need for Service traceroute,
which automatically identifies the flow IDs of the target application to create
probes.
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2 Tool Design and Implementation

Service traceroute follows the same high-level logic as paratrace or 0trace. Given
a target application flow, which we define as the application flow whose path
we aim to trace, Service traceroute proceeds with two main phases. The first
phase is the passive observation of a target application flow to define the content
of the probes. Then, the second phase involves active injection of TTL-limited
probes within the application flow. The main difference is that Service traceroute
identifies the flows to trace automatically and supports tracing paths traversed
by multiple application flows concurrently. The user can either directly specify
the set of target application flows or simply describe a high-level service (e.g.,
Youtube). Service traceroute will then trace paths traversed by all the flows
related to the target service. This section first describes the two phases focus-
ing on the new aspects of Service traceroute to allow per service tracing and
then presents our implementation. Library and command-line versions of Ser-
vice traceroute, together with the scripts to perform data analysis are available
as open source projects [1].

2.1 Observation of Target Application Flow

Service traceroute passively observes traffic traversing a network interface to
search for packets with the flow-id of the target application flows.1 Service tracer-
oute takes a set of target application flows as input, in contrast with previous
tools which can only trace the path traversed by one single application flow.
Users can either explicitly specify one or more target application flows or they
can simply specify a service. Service traceroute uses a database of signatures of
known services to inspect DNS packets in real-time and identify flows that match
the target service. We release the DB as open source, so users can contribute to
add or update the signatures in the database [1]. We define as signature the set
of domains and IP addresses corresponding to a specific service. For instance,
‘google.com’ or the corresponding IP addresses can be used in the signature to
detect Google services. Our current database has signatures for popular video
streaming services such as Netflix, Youtube, and Twitch. We identify web flows
simply from the domain or the host name given as input. For additional flexibil-
ity, it is possible to add domains and IP addresses via command line parameters
or through the library API.

2.2 Path Tracing

Only once it identifies a packet belonging to the target application flow, Service
traceroute will start the tracing phase. This phase works as classic traceroute
implementations sending probes with increasing TTL, but Service traceroute
creates a probe that takes the form of an empty TCP acknowledgement that

1 We use the traditional 5-tuple definition of a flow (protocol, source and destination
IP, as well as source and destination port).
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copies the 5-tuple of the flow as well as its sequence number and acknowledge-
ment number (similar to paratrace and 0trace). We rely on the flow-id plus the
IPID field to match issued probes with the corresponding ICMP responses. We
note that this is sufficient to correctly identify probes even when tracing mul-
tiple concurrent target application flows. The maximum number of concurrent
target application flows varies based on the used configuration as the IPID field
is dynamically sliced based on the number of probes that have to be generated.
For example, with traceroute standard parameters, i.e. maximum distance of
32 and 3 packets per hop, Service traceroute can trace paths of more than 600
target application flows in parallel.

Service traceroute stops tracing when the target application flow closes to
avoid any issues with middleboxes (which may interpret probes after the end of
the connection as an attack) and also to reduce any network and server overhead.
In contrast to prior tools that only support TCP, we add support for UDP. In
this case, we create probes with empty UDP payload, but with the same 5-tuple
flow-id as the target application flow. Given UDP has no explicit signal of the
end of the flow (like the FIN in TCP), we stop tracing if the flow produces no
further packets (either received or sent) after a configurable time interval.

2.3 Implementation

We implement Service traceroute in Go and release command-line and library
versions. The command-line version is useful for ad-hoc diagnosis, whereas the
library allows easy integration within monitoring systems. The library version
of Service traceroute outputs a json data structure that contains the discovered
interfaces with the observed round-trip-time values. For the command line ver-
sion, Service traceroute shows the results of each trace in the traceroute format,
i.e., the list of hops with the corresponding round-trip times.

Service traceroute is configurable to adapt to different applications. It
includes three types of probing algorithms that capture the tradeoff between
tracing speed and network overhead. PacketByPacket sends only one probe at
a time. HopByHop sends a configurable number of probes with the same TTL
at a time (3 by default). Concurrent sends all probes to all hops at once. Given
that Service traceroute requires the target application flow to be active dur-
ing tracing, some applications with short flows (e.g., Web) require the higher
overhead of Concurrent to complete all the probes within the flow duration. Ser-
vice traceroute also allows configuring the number of probes for each TTL, the
inter-probe time, and inter-iteration time (i.e., the time between packets with
different TTL) to further control the tradeoff between tracing speed and over-
head. Finally, Service traceroute allows to specify three types of stop conditions:
the maximum distance from the source, the maximum number of non-replying
hops, like Paris Traceroute, or explicit stop points in the form of IP addresses.
The stop condition is particularly important for Service traceroute because the
destination host will never respond with an ICMP error message as probes are
part of the target application flow.



120 I. Morandi et al.

Following extensive calibration tests (reported in Sect. 3), we set Service
traceroute to use as default the Concurrent mode, together with a maximum
distance of 32 and 3 probes per hop.

3 Evaluation Method

We design our evaluation around two questions. First, does Service traceroute
affect the target application flows? Service traceroute injects new packets within
the application flow. Although the majority of these packets will be discarded
before they reach the servers, a few probe packets will reach the end-host and
can potentially affect the target application flows. Second, do paths discovered
with Service traceroute differ from those discovered by other traceroute methods?
One assumption of our work is that paths taken by classic traceroute probes
may not follow the same paths as the packets of the target application flows.
We present a preliminary evaluation to help answer these questions, where we
use Service traceroute to trace paths of target application flows corresponding to
the two most popular Internet services: Web and video. We compare our results
with that of Paris traceroute [2] and 0Trace [5].

Web. We select the top-1000 Alexa webpages on April 14 2018 as target web
flows.

Video. We focus on two popular video streaming services: Twitch and YouTube.
We select Twitch videos on their homepage where Twitch shows dynamically a
popular live streaming video. While for YouTube, we select 20 random videos
from the catalogue obtained after arbitrarily searching with the keyword “4K
UHD”. With YouTube, we evaluate both TCP and QUIC.

Calibration. We run extensive experiments to calibrate Service traceroute for
these two applications varying the probing algorithm and the number of probes
per hops [9]. Our results (not shown for conciseness) indicate that the best
settings to maximize the fraction of completed traceroutes while minimizing the
probing overhead is different for video and Web. For video, we use the HopByHop
probing algorithm with a timeout of 2 seconds to wait for ICMP replies, whereas
for web we use the Concurrent probing algorithm. For both, we set the maximum
distance to 32 and the number of probes per hop to 3.

Comparison with Paris Traceroute. We select Paris traceroute because its
Multipath Detection Algorithm (MDA) [16] can discover with high probability
all paths between the source and the destination in case there is a load balancer
in the path. This allows us to disambiguate whether the differences we may
encounter between Paris traceroute and Service traceroute are because of load
balancing or some other type of differential treatment. We evaluate four versions
of Paris traceroute with MDA enabled using the three protocols ICMP, UDP,
and TCP as well as Paris traceroute to trace a single path with the same 5-tuple
as the target application flow.
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Comparison with 0Trace. We select 0Trace as it implements the idea of
embedding probes in a target application flow and it has a working implementa-
tion.2 0Trace, however, requires as input the flow to probe, which is hard to know
in advance. We used Service traceroute’s DNS resolution to detect the flow to
probe and then launch 0Trace. Unfortunately, the download time for web pages
is extremely short and our script was too slow to detect the target application
flows and then run 0Trace. Hence, for this comparison we focus only on Twitch
and Youtube. This experience illustrates the challenge of running 0Trace in prac-
tice and highlights the importance of integrating flow identification in Service
traceroute.

Experiment Setup. We run our tests during 30 days in July 2018 from 27
PlanetLab nodes in Europe.3 Experiments for video and Web are similar. We
first launch Service traceroute, then we start streaming a video or downloading
a webpage, once that is done we run the four versions of Paris traceroute and
0Trace back-to-back. Then, we stream again the same video or download the
same webpage without Service traceroute. We have run a total of 459 videos,
153 for Twitch and 306 equally split between YouTube with TCP and with
QUIC, and 1000 Web experiments. All datasets collected in our experiments are
available [1].

Data Representativeness. Webpages in the Alexa top-1000 list are often
hosted on CDNs [12]. This choice guarantees that we cover the large major-
ity of locations hosting web content (i.e., all major CDN providers), but we may
fail to capture the behavior of smaller webpages. Another bias comes from our
choice of PlanetLab nodes as it is well known that they are mostly connected via
academic networks [3,14] and hence may fail to capture the behavior of commer-
cial ISPs. Even with these limitations, our European-scale evaluation is useful
to determine whether or not Service traceroute affects the application flows of
popular services (top-1000 Alexa as well as Twitch/Youtube). It is also useful to
shed some light on whether there are differences between paths discovered with
Service traceroute and more traditional traceroute paths. The generalization of
these results to vantage points located in other areas of the Internet and to other
services would require larger scale experiments.

4 Side Effects of Service Traceroute

This section evaluates whether Service traceroute affects target application flows.
Firewalls or servers may mistakenly interpret too many duplicated packets within
a flow as an attack or losses, which in turn may cause application flows to be

2 To make 0Trace work on PlanetLab nodes, we had to replace the library to issue
probes from dnet to scapy.

3 Service traceroute failed to run on PlanetLab US nodes due to compatibility issues.
PlanetLab US nodes use an old Linux distribution (Fedora 2), which lacks many
required tools and libraries necessary to run our program.
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blocked or achieve lower throughput. Although the idea of piggybacking tracer-
oute probes within application flows has been around for approximately a decade,
there has been no prior evaluation of whether it can hurt target application flows.
TCP sidecar evaluates the intrusiveness of their method, but only by measuring
the number of abuse reports [13].

4.1 Metrics

We select different metrics to measure properties of target application flows.
Flow duration refers to the time between the first and the last packet of a flow.
For TCP, we measure the time from the server SYN to the first FIN or RST.
For UDP, we measure the time from the first and the last packet coming from
the server. We compute the average throughput of a target application flow as
the total application bytes divided by the flow duration. In addition to these
metrics, which we can compute for both TCP and UDP flows, we have three
other TCP specific metrics: the number of resets, which capture the number of
target application flows closed by resets; window size is the difference between
the minimum and the maximum TCP window size of the server for an application
flow; and the number of retransmissions is the number of retransmission from
the server per application flow.

4.2 Aborted Flows

We first study whether Service traceroute causes flows to be aborted. We have
seen no video sessions that ended with resets in our experiments. Even though
our analysis is only from PlanetLab vantage points in Europe, we believe that
this result will hold more generally for both Twitch and Youtube as these type
of large video providers deploy multiple versions of the same software across
servers/caches [10,17]. Any differences will depend on middleboxes placed either
close to the clients or in the path towards the service. Our results for webpage
downloads are also encouraging, we see no aborted flows. In some preliminary
experiments we observe resets for three of the top-1000 websites only with Service
traceroute. Our manual analysis suggests that either some firewall close to the
website or the web server itself is resetting the flows due to the duplicate packets.

4.3 Flow Performance

We next evaluate whether Service traceroute affects flow performance. Figure 1
presents the cumulative distribution function of the flow duration in seconds with
and without Service traceroute. We present eight curves: two for video sessions
over TCP both for Twitch and Youtube, two for Youtube sessions over UDP,
and two for all web page downloads. We see that the distributions with and
without Service traceroute are mostly the same. Similarly, our analysis (omitted
due to space constraints) shows that the distributions of average throughput,
TCP window size, and retransmissions are similar with and without Service
traceroute. We conclude that Service traceroute has no effect on the performance
of target application flows.
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Fig. 1. Flow duration of target application flows with and without Service traceroute

5 Comparison with Traceroute Tools

The key motivation for building Service traceroute is that we must send probes
within the target application flow to discover its path. Although Luckie et al. [8]
have observed different paths depending on the traceroute method (UDP, ICMP,
or TCP), no prior work has studied how often piggybacking traceroute probes
within application flows will discover different paths. This section compares Ser-
vice traceroute with different traceroute probing methods using Paris traceroute,
which discover all paths between a source and destination in the presence of load
balancing, and 0Trace, which also piggybacks probes inside an application flow.

5.1 Metrics

We select two metrics to compare the discovered paths. The path length captures
the distance from the source to the last hop that replies to probes. For Paris
traceroute, we take the length of the longest path in case of multiple paths. The
path edit distance captures the edit distance between the path discovered with
Service traceroute and that discovered with another traceroute (0Trace or Paris
traceroute). The edit distance is the minimum number of operations (insertion,
deletion, and substitution) needed to transform one string (in our case, one path)
into the other. In case Paris traceroute returns multiple paths, we select the one
with the smallest edit distance. This allows us to focus on the best case. We
treat empty hops (marked with a ∗) as any other character. When we observe
differences between paths, we analyze where the differences are in the path:
origin AS, middle of the path, or destination AS. We map IPs to ASes using
the RIPEstat Data API [11]. The location where the two paths diverge help us
understand the placement of middleboxes.

5.2 Path Lengths

We study the length of paths discovered with Service traceroute, Paris traceroute
MDA (TCP, ICMP, and UDP), and 0Trace. The comparison of path lengths
helps capture which versions of traceroute discover more hops. For application
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diagnosis it is important that the tool reveals most (hopefully all) of the path,
so that we can identify issues in any parts of the path. Figure 2 presents the
cumulative distribution functions of path length for each service: Web, Twitch,
and Youtube (UDP and TCP). We see that for all three services, probing with
TCP and UDP discovers less hops. The Web results confirm Luckie et al. [8]’s
analysis from ten years ago, which showed that UDP probes cannot reach the
top Alexa web sites as probes correspond to no active flow. Service traceroute
discovers longer paths for all three services. ICMP and 0Trace discover paths
that are almost as long as those discovered by Service traceroute. The next
sections characterize the path edit distance and the location of path differences
to shed light on the causes of the differences we observe in path length.

(a) Web pages (TCP) (b) Twitch (TCP) (c) Youtube (UDP&TCP)

Fig. 2. Length of paths discovered with different versions of traceroute.

5.3 Path Differences When Tracing with Different Flow IDs

This section studies the differences in paths discovered by Service traceroute
versus by other traceroutes in the most typical case, i.e., when traceroute starts a
new flow and picks the port numbers with no knowledge of the target application
flow ID. We compare with Paris traceroute MDA using TCP, UDP, and ICMP.

Figure 3 presents the cumulative distribution functions of path edit distance
between Service traceroute and Paris traceroute for Web, Twitch, and Youtube
(UDP and TCP). A path edit distance of zero corresponds to the case when
the Paris traceroute output contains the path discovered by Service traceroute.
We see that even though we select the closest path in Paris traceroute’s output
to compute the edit distance, the path discovered with Service traceroute only
matches that discovered by Paris traceroute MDA in about 55% of the web-
page downloads, 50% of the Twitch sessions, and almost 75% of the Youtube
streaming sessions. When paths discovered by Service traceroute differ from
paths discovered by Paris traceroute, the edit distance is relatively high as the
vast majority of paths towards these services is less than 15 hops long. In gen-
eral, Twitch has longer paths (up to 30 hops) and Youtube shorter (up to 20
hops), which explains the differences in the values of edit distance we observe.
For Twitch, UDP discovers paths that are the most similar to Service tracer-
oute’s paths, whereas for both Web and Youtube, ICMP leads to the most similar
paths.
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(a) Web pages (TCP) (b) Twitch (TCP) (c) Youtube (UDP&TCP)

Fig. 3. Path edit distance between Service traceroute and Paris traceroute.

5.4 Path Differences When Tracing with Same Flow ID
as Application

One possible explanation for the differences we observe in the previous section
is the fact that the flow ID of Paris traceroute probes is different than the ID
of the target application flow, which can trigger different forwarding decisions
in middleboxes that act per flow. In this section, we compare Service tracer-
oute’s output with Paris traceroute when it uses the same flow ID as the target
application flow. Note that in this case Paris traceroute still runs after the tar-
get application flow finishes, we get the correct flow ID based on the Service
traceroute’s run just before in order to guarantee a complete match.

Figure 4 compares the path discovered by Service traceroute with that dis-
covered by Paris traceroute when using the exact same flow ID as the target
application flow. In this case, Paris traceroute discovers the same path as Ser-
vice traceroute more often than when probing with MDA: about 65% of Twitch
sessions, 91% of Youtube sessions, and 93% of web downloads. This result shows
that issuing probes with a different flow ID than that of the target applica-
tion flow causes most of the differences we observe in the previous section. The
remaining differences are due to three possible causes: (i) path changes that
might occur between the runs of Service traceroute and Paris traceroute; (ii)
per-packet load balancing; or (iii) middleboxes (such as application-layer prox-
ies or firewalls) that track the state of TCP connections and may hence drop
packets after connections are terminated. In fact, in our initial testing we noticed
cases of probes not generating any ICMP response if issued after the target appli-
cation flow finishes. We further examine the paths for Twitch to shed light on the
reasons for the large fraction of paths that are different between Paris traceroute
and Service traceroute. It is unlikely to have routing changes for about 45% of
paths and we verified that there are no middleboxes dropping our probes (which
would appear as stars). Thus, we conjecture that the differences are likely due
to per-packet load balancing, but we must run further experiments to verify this
conjecture.

We also compare Service traceroute with 0Trace. Unfortunately, due to how
web browsers loop across a large number of different ports, both Twitch and
Youtube often change port numbers between consecutive runs. Given that we
launch a new video session to probe with 0Trace, the result is that Service
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Fig. 4. Path edit distance between Service traceroute and Paris traceroute using the
same flow ID.

traceroute and 0Trace often issue probes with different flow IDs. This issue
biases our experiments, and hence we omit these results (available at [9]).

5.5 Location of Path Divergence Points

To help explain our results we study the location of the points where Service
traceroute’s and Paris traceroute’s paths diverge, which we call the divergence
point. Table 1 shows the fraction of experiments with divergence points at the
origin AS, the middle of the path, and the destination AS. We conduct this
analysis to help explain the results in the previous sections, but we note that
the findings are heavily biased by our vantage points and destinations.

Table 1. Location of divergence points [% of all flows]

Web pages (TCP) Twitch (TCP) Youtube (TCP and UDP)

Configuration Origin Middle Dest. Origin Middle Dest. Origin Middle Dest.

MDA UDP 7.33 39.82 4.92 0.41 50.56 0.64 12.49 19.52 3.15

MDA TCP 15.13 34.37 2.86 4.28 49.17 0.51 15.67 19.13 3.92

MDA ICMP 9.11 19.04 17.44 7.35 44.50 1.99 6.81 19.95 1.55

PT same flow ID 4.06 1.81 1.03 8.43 24.72 2.18 4.08 0.87 4.61

For the three applications, when comparing with MDA most of the divergence
points are in the middle (from 19% for Youtube to above 40% for Twitch). Given
the middle contains more hops it is not too surprising that it also contains more
divergence points. When using Paris traceroute with the same flow ID, however,
the percentage of divergence points in the middle decreases substantially to less
than 2% for Web and Youtube and to 24% for Twitch. This result indicates that
divergence points in the middle mostly correspond to middleboxes that perform
per-flow forwarding. Paris traceroute’s MDA discovers all possible interfaces for
every hop of the path and we compare the closest path MDA finds to Service
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traceroute’s output, but MDA often uses different flow IDs than the target appli-
cation flow and hence it may not get the exact same sequence of hops end-to-end.
For Paris traceroute with the same flow ID, we observe more divergence points
at the origin, which may indicate path changes. The only exception is Twitch,
which still has around 24% of divergence points in the middle. Our analysis of
these divergence points shows that half of them are within a single ISP: GTT
Communications (AS 3257).

6 Related Work

Since Jacobson’s original traceroute tool [4], a number of new versions have
emerged with different features and with new methods for constructing probes
(e.g., Paris traceroute [2,16] and tcptraceroute [15]). All these traceroute versions
have a drawback for the goal of diagnosing a target application flow because
they start a new flow to send probes. As such, middleboxes may treat them
differently than the target application flow. Service traceroute avoids this issue
by piggybacking traceroute probes within active application flows. This idea
was first introduced in paratrace [6], which is no longer available, and then
re-implemented in 0trace [5] with the goal of tracing through firewalls and in
TCP sidecar [13] for reducing complaints of large-scale traceroute probing for
topology mapping. Unfortunately, none of these tools is actively maintained.
Service traceroute adds the capability of automatically identifying application
flows to trace by a domain name, of tracing UDP flows as well as of tracing
multiple concurrent flows that compose a service. We release both a command-
line and a library version as open source. Furthermore, we present an evaluation
of the side-effects of piggybacking traceroute probes within application traffic
as well as of its benefit by comparing the differences with Paris traceroute and
with 0Trace. Our characterization reappraises some of the findings from Luckie
et al. [8], which show that the discovered paths depend on the protocol used in
the probes. Their study, however, includes no traceroute tools that piggyback
on application flows.

7 Conclusion

In this paper we present Service traceroute, a tool to trace paths of flows of mod-
ern Internet services by piggybacking TTL-limited probes within target applica-
tion flows. Our evaluation of paths to popular websites and video services from
PlanetLab Europe shows that Service traceroute’s probing has no effect on target
application flows. Moreover, a typical traceroute tool that launches a new flow
to the same destination discovers different paths than when embedding probes
in the application flow in a significant fraction of experiments (from 40% to 50%
of our experiments) as our comparison with Paris traceroute shows. When we
set Paris traceroute’s flow ID to that of the target application flow, the resulting
paths are more similar to Service traceroute’s. Identifying the flow ID to probe,
however, is not trivial. Modern applications rely on a large pool of servers/ports.
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Even to run 0Trace, which implements the same idea of piggybacking probes in
the application flow, we had to rely on Service traceroute’s functionality to iden-
tify target application flow IDs to probe. In future work, we plan to add the
support of IPv6 to Service traceroute. We further plan to perform a larger scale
characterization of results of Service traceroute across a wide variety of services
and a larger set of globally distributed vantage points.
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Abstract. Enterprise networks are becoming more complex and dyn-
amic, making it a challenge for network administrators to fully track
what is potentially exposed to cyber attack. We develop an automated
method to identify and classify organizational assets via analysis of just
0.1% of the enterprise traffic volume, specifically corresponding to DNS
packets. We analyze live, real-time streams of DNS traffic from two
organizations (a large University and a mid-sized Government Research
Institute) to: (a) highlight how DNS query and response patterns dif-
fer between recursive resolvers, authoritative name servers, web-servers,
and regular clients; (b) identify key attributes that can be extracted effi-
ciently in real-time; and (c) develop an unsupervised machine learning
model that can classify enterprise assets. Application of our method to
the 10 Gbps live traffic streams from the two organizations yielded results
that were verified by the respective IT departments, while also revealing
new knowledge, attesting to the value provided by our automated system
for mapping and tracking enterprise assets.

Keywords: Enterprise network · DNS analysis · Machine learning

1 Introduction

Enterprise networks are not only large in size with many thousands of con-
nected devices, but also dynamic in nature as hosts come and go, web-servers
get commissioned and decommissioned, and DNS resolvers and name servers get
added and removed, to adapt to the organization’s changing needs. Enterprise
IT departments track such assets manually today, with records maintained in
spreadsheets and configuration files (DHCP, DNS, Firewalls, etc.) – this is not
only cumbersome, but also error prone and almost impossible to keep up-to-date.
It is therefore not surprising that many enterprise network administrators are
not fully aware of their internal assets [12], and consequently do not know the
attack surface they expose to the outside world.

The problem is even more acute in university and research institute campus
networks for several reasons [6]: (a) they host a wide variety of sensitive and lucra-
tive data including intellectual property, cutting-edge research datasets, social
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D. Choffnes and M. Barcellos (Eds.): PAM 2019, LNCS 11419, pp. 129–144, 2019.
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(a) Outgoing DNS queries. (b) Incoming DNS responses.

Fig. 1. University campus: outgoing queries and incoming responses, measured on 3
May 2018. (Color figure online)

security numbers, and financial information; (b) their open-access culture, decen-
tralized departmental-level control, as well as federated access to data makes them
particularly vulnerable targets for unauthorized access, unsafe Internet usage,
and malware; and (c) they typically have high-speed network infrastructure that
makes them an attractive target for volumetric reflection attacks.

Our aim in this paper is to develop an automated method to map internal
hosts of an enterprise network by focusing only on DNS traffic which: (a) is
a key signaling protocol that carries a wealth of information yet bypasses fire-
walls easily; (b) constitutes a tiny faction of total network traffic by volume
(less than 0.1% from our measurements in two networks); and (c) is easy to
capture with only a couple of flow entries (i.e mirroring UDP packets to/from
port 53) in an Openflow-based SDN switch. By capturing and analyzing DNS
traffic in/out of the organization, we dynamically and continually identify the
DNS resolvers, DNS name-servers, (non-DNS) public-facing servers, and regular
client hosts behind or not behind the NAT in the enterprise. This can let net-
work administrators corroborate changes in host roles in their network, and also
equip them with information to configure appropriate security postures for their
assets, such as to protect DNS resolvers from unsolicited responses, authoritative
name servers from amplification requests, and web-servers from volumetric DNS
reflection attacks.

Our specific contributions are as follows. We analyze real-time live streams of
DNS traffic from two organizations (a large University and a mid-sized Govern-
ment Research Institute) to: (a) highlight how DNS query and response patterns
differ amongst recursive resolvers, authoritative name servers, and regular hosts;
(b) identify key DNS traffic attributes that can be extracted efficiently in real-
time; and (c) develop an unsupervised machine learning model that can classify
enterprise assets. Application of our method to the traffic streams from the two
organizations yielded results that were verified by the respective IT departments
while revealing new information, such as unsecured name servers that were being
used by external entities to amplify DoS attacks.
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2 Profiling Enterprise Hosts

In this section, we analyze the characteristics of DNS traffic collected from the
border of two enterprise networks, a large University campus (i.e., UNSW) and
a medium-size research institute (i.e., CSIRO). In both instances, the IT depart-
ment of the enterprise provisioned a full mirror (both inbound and outbound) of
their Internet traffic (each on a 10 Gbps interface) to our data collection system
from their border routers (outside of the firewall), and we obtained appropri-
ate ethics clearances for this study1. We extracted DNS packets from each of
enterprise Internet traffic streams in real-time by configuring rules for incom-
ing/outgoing IPv4 UDP packets for port 53 on an SDN switch (extension to
IPv6 DNS packets is left for future work). The study in this paper considers the
data collected over a one week period of 3–9 May 2018.

2.1 DNS Behavior of Enterprise Hosts

Enterprises typically operate two types of DNS servers: (a) recursive resolvers
are those that act on behalf of end-hosts to resolve the network address of a URL
and return the answer to the requesting end-host (recursive resolvers commonly
keep a copy of positive responses in a local cache for time-to-live of the record
to reduce frequent recursion), and (b) authoritative servers of a domain/zone
are those that receive queries from anywhere on the Internet for the network
address of a sub-domain within the zone for which they are authoritative (e.g.,
organizationXYZ.net).

In order to better understand the DNS behavior of various hosts (and their
role) inside an enterprise network, we divide the DNS dataset into two categories:
(a) DNS queries from enterprise hosts that leave the network towards a server on
the Internet along with DNS responses that enter the network, (b) DNS queries
from external hosts that enter the network towards an enterprise host along with
DNS responses that leave the network.

This analysis helps us identify important attributes related to host DNS
behavior, characterizing its type/function including authoritative name server,
recursive resolver, generic public-facing server (e.g web/VPN servers), or end-
host inside the enterprise that may not always be fully visible to the network
operators. This also enables us to capture the normal pattern of DNS activity
for various hosts.

Outgoing Queries and Incoming Responses. Figure 1 shows a time trace of
DNS outgoing queries and incoming responses for the university campus2, with
a moving average over 1-minute intervals on a typical weekday. The university
network handles on average 353 outgoing queries and 308 incoming responses per
1 UNSW Human Research Ethics Advisory Panel approval number HC17499, and

CSIRO Data61 Ethics approval number 115/17.
2 We omit plots for the research institute in this section due to space constraint,

they are shown in Appendix 1.
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(a) Incoming DNS queries. (b) Outgoing DNS responses.

Fig. 2. University campus: incoming queries and outgoing responses, measured on 3
May 2018. (Color figure online)

second. By checking the transaction ID of queries and responses, we found that
17.28% of outgoing queries are “unanswered” (i.e., 5.26M out of 30.46M) on 3
May 2018. It is also important to note that 5.24% of incoming responses to the
university campus network (i.e., 1.39M out of 26.59M) are “unsolicited” on the
same day3. A similar pattern with lower number of outgoing queries and incom-
ing responses (i.e., average of 107 and 80 per second respectively) is observed in
the research institute network. This network experiences approximately double
the amount of unanswered queries (i.e., 34.14%) and unsolicited responses (i.e.,
12.15%) compared to the university network.

Query per Host: We now consider individual hosts in each enterprise. Unsur-
prisingly, the majority of outgoing DNS queries are generated by only two hosts
A and B in both networks, i.e., 68% of the total in the university campus (shown
by blue and yellow shades in Fig. 1(a)) and 82% of the total in the research insti-
tute – these hosts are also the major recipients of incoming DNS responses from
the Internet. We have verified with the respective IT departments of the two
enterprises that both hosts are the primary recursive resolvers of their organiza-
tions.

In addition to these recursive resolvers, we observe a number of hosts in both
organizations, shown by red shades in Fig. 1(a), that generate DNS queries to
outside of the enterprise network. The 2,642 other Univ hosts in Fig. 1(a) are
either: end-hosts configured to use public DNS resolvers that make direct queries
out of the enterprise network, or secondary recursive servers operating in smaller
sub-networks at department-level. We found that 286 of these 2,642 University
hosts actively send queries (at least once every hour) over the day and contact
more than 10 Internet-based DNS servers (resolvers or name-servers). These 286
hosts display the behavior of recursive resolvers but with fairly low throughput,
thus we deem them secondary resolvers. The remaining 2,356 hosts are only
active for a limited interval (i.e., between 5 min to 10 h) and contact a small

3 We acknowledge that some DNS packets could have been dropped by the switches
on which the span-port was configured, especially during periods of overload.
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(a) Unsolicited incoming responses. (b) Unanswered incoming queries.

Fig. 3. University campus: CCDF of (a) unsolicited incoming responses and (b) unan-
swered incoming queries per host, measured on 3 May 2018.

number of public resolvers (e.g., 8.8.8.8 or 8.8.4.4 of Google) over the day. We
found that 15 of 340 hosts in the research institute display behavior of secondary
resolvers.

Response per Host: Considering incoming responses (Fig. 1(b) for the uni-
versity network), a larger number of “other” hosts in both organizations are
observed – approximately 8 K hosts in the University and 5.8 K hosts in the
research institute. Most of these “other” hosts (i.e., 67%) are the destinations
of unsolicited responses. To better understand the focus target of these poten-
tially malicious responses, we analyze unsolicited incoming responses for the two
enterprises. Figure 3(a) shows the CCDF of total unsolicited incoming responses
per each host over a day for the university campus. Interestingly, the primary
recursive resolvers in both organizations are top targets: (a) in the University
campus, hosts A and B respectively are the destinations of 522 K and 201 K unso-
licited incoming responses (i.e., together receive 52% of total unsolicited DNS
responses), and (b) in the research institute, hosts A and B respectively are the
destination of 435 K and 135 K unsolicited incoming responses (i.e., together
receive 69% of total unsolicited DNS responses).

Incoming DNS Queries. Enterprises commonly receive DNS queries from the
Internet that are addressed to their authoritative name servers.

It can be seen that two hosts of the University campus (i.e., hosts C and
D in Fig. 2) and one host (we name it Host C) of the research institute are the
dominant contributors to outgoing DNS responses – we have verified (by reverse
lookup) that these hosts are indeed the name servers of their respective organi-
zations. Interestingly, for both organizations we observe that a large number of
hosts (i.e., 197K hosts of the University campus and 244K hosts of the research
institute (shown by red shades in Fig. 2(a) for the university network) receive
queries from the Internet, but a significant majority of them are unanswered (i.e.,
82.18% and 62.09% respectively) – these hosts are supposed to neither receive
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Table 1. Host attributes.

QryFracOut numExtSrv numExtClient actvTimeFrac

Univ name server (host C) 0 0 0.29 0

Rsch name server (host C) 0 0 0.61 0

Univ recursive resolver (host A) 1 0.26 0 1

Rsch recursive resolver (host A) 1 0.49 0 1

Univ mixed DNS Server 0.55 0.03 0.06 1

Rsch mixed DNS Server 0.29 0.0008 0.0018 1

Univ end-host 1 0.00002 0 0.375

Rsch end-host 1 0.00003 0 0.25

nor respond to incoming DNS queries, highlighting the amount of unwanted DNS
traffic that targets enterprise hosts for scanning or DoS purposes.

To better understand the target of these potentially malicious queries,
we analyze unanswered incoming queries over a day for the two enterprises.
Figure 3(b) is the CCDF of total incoming unanswered queries per each host
for the university campus. It is seen that two hosts of the university campus
receive more than a million DNS queries over a day from the Internet with no
response sent back, whereas one host in the research institute has the similar
behaviour. By reverse lookup, we found that the University hosts are a DHCP
server and a web server that respectively received 9.4M and 4.4M unanswered
queries (together contributing to 72% of red shaded area in Fig. 2(a)).

Furthermore, we analyzed the question section of unanswered incoming
queries that originated from a distributed set of IP addresses. Surprisingly, in
the University dataset we found that 72% of domains queried were irrelevant
to its zone (e.g., 47% for “nist.gov”, 5% for“svist21.cz”, and even 2% for
“google.com”), and in the research institute dataset we found 84% of domains
queried were irrelevant to its zone (e.g., 8% for “qq.com”, 7% for“google.com”,
and 5% for “com”).

Considering outgoing responses (shown in Fig. 2(b) for the university net-
work), there are 68 hosts in the campus network (shown by the red shade) and 21
hosts in the research network that respond to incoming DNS queries in addition
to name servers (i.e., hosts C and D). We have verified (by reverse lookup) that
all hosts that generate “no Error” responses are authoritative for sub-domains of
their organization zone. We also note that some hosts that reply with “Refused”,
“Name Error” and “Server Failure” flags to some irrelevant queries (e.g., com)
– these are secondary name servers.

2.2 Attributes

Following the insights obtained from DNS behavior of various hosts, we now
identify attributes that help to automatically (a) map a given host to its function,
including authoritative name server, recursive resolver, mixed DNS server (i.e.,
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Fig. 4. Automatic classification and ranking of enterprise hosts.

both name server and recursive resolver), a (non-DNS) public-facing server, or
a regular client; and (b) rank the importance of servers.

Dataset Cleansing. We first clean our dataset by removing unwanted (or mali-
cious) records including unsolicited responses and unanswered queries. This is
done by correlating the transaction ID of responses with the ID of their corre-
sponding queries. In the cleaned dataset, incoming responses are equal in number
to outgoing queries, and similarly for the number of incoming queries and out-
going responses.

Functionality Mapping. As discussed in Sect. 2.1, recursive resolvers are
very active in terms of queries-out and responses-in, whereas name servers
behave the opposite with high volume of queries-in and responses-out. Hence,
a host attribute defined by the query fraction of all outgoing DNS packets
(QryFraqOut) should distinguish recursive resolvers from name servers. As
shown in Table 1, this attribute has a value close to 1 for recursive resolvers and
a value close to 0 for name servers.

In addition to recursive resolvers, there are some end-hosts configured to use
public resolvers (e.g., 8.8.8.8 of Google) that have a non-zero fraction of DNS
queries out of the enterprise network. We note that these end-hosts ask a limited
number of Internet servers during their activity period whereas the recursive
resolvers typically communicate with a larger number of external servers. Thus,
we define a second attribute as the fraction of total number of external servers
queried (numExtSrv) per individual enterprise host. As shown in Table 1, the
value of this attribute for end-hosts is much smaller than for recursive resolvers.
Similarly for incoming queries, we consider a third attribute as the fraction
of total number of external hosts that initiate query in (numExtClient) per
individual enterprise host. Indeed, this attribute has a larger value for name
servers compared with other hosts, as shown in Table 1.

Lastly, to better distinguish between end-hosts and recursive resolvers (high
and low profile servers), we define a fourth attribute as the fraction of active
hours for outgoing queries (actvTimeFrac). Regular clients have a smaller
value of this attribute compared with recursive resolvers and mixed DNS servers,
as shown in Table 1.
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We note that public-facing (non-DNS) servers typically do not have DNS
traffic in/out of the enterprise networks. To identify these hosts, we analyzed
the answer section of A-type outgoing responses.

Importance Ranking. Three different attributes are used to rank the impor-
tance of name servers, recursive resolvers, and (non-DNS) public-facing servers
respectively. Note that we rank mixed DNS servers within both name servers
and recursive resolvers for their mixed DNS behaviour.

For recursive resolvers, we use QryFracHost defined as the fraction of out-
going queries sent by each host over the cleaned dataset. And for name servers,
we use RespFracHost as the fraction of outgoing responses sent by each host.
For other public-facing servers, we use RespCount as the total number of out-
going responses that contain the IP address of a host – external clients that
access public-facing servers obtain the IP address of these hosts by querying the
enterprise name servers.

3 Classifying Enterprise Hosts

In this section, we firstly develop a machine learning technique to determine if an
enterprise host with a given DNS activity is a “name server”, “recursive resolver”,
“mixed DNS server”, or a “regular end-host”. We then detect other public-facing
(non-DNS) servers by analyzing the answer section of A-type outgoing responses.
Finally, we rank the enterprise server assets by their importance.

Our proposed system (shown in Fig. 4) automatically generates lists of active
servers into three categories located inside enterprise networks, with the real-
time DNS data mirrored from the border switch of enterprise networks. The
system first performs “Data cleansing” that aggregates DNS data into one-
day granularity and removes unsolicited responses and unanswered queries (i.e.,
step 1); then “Attribute extraction” in step 2 computes attributes required
by the following algorithms; “Server mapping” in step 3 detects DNS servers
and other public-facing servers; and finally “server ranking” in step 4 ranks
their criticality. The output is a classification and a ranked order of criticality,
which an IT manager can then use to accordingly adjust security policies.

3.1 Host Clustering Using DNS Attributes

We choose unsupervised clustering algorithms to perform the grouping and clas-
sification process because they are a better fit for datasets without ground truth
labels but nevertheless exhibit a clear pattern for different groups/clusters.

Selecting Algorithm. We considered 3 common clustering algorithms, namely
Hierarchical Clustering (HC), K-means and Expectation-maximization (EM).
HC is more suitable for datasets with a large set of attributes and instances that
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Table 2. University campus: host clusters (3 May 2018).

Count QryFracOut numExtSrv numExtClient actvTimeFrac

Name server 42 0.0057 1e-5 0.02 0.03

Recursive resolver 14 0.99 0.06 0 0.94

Mixed DNS server 14 0.57 0.01 0.02 0.66

End-host 2195 1 2e-5 0 0.31

Table 3. Research institute: host clusters (3 May 2018).

Count QryFracOut numExtSrv numExtClient actvTimeFrac

Name server 12 7e-7 5e-6 0.07 0.01

Recursive resolver 4 0.99 0.20 9e-5 1

Mixed DNS server 6 0.21 0.001 0.019 0.625

End-host 249 1 7e-4 0 0.25

have logical hierarchy (e.g., genomic data). In our case however, hosts of enter-
prise networks do not have a logical hierarchy and the number of attributes are
relatively small, therefore HC is not appropriate. K-means clustering algorithms
are distance-based unsupervised machine learning techniques. By measuring the
distance of attributes from each instance and their centroids, it groups data-
points into a given number of clusters by iterations of moving centroids. In our
case there is a significant distance variation of attributes for hosts within each
cluster (e.g., highly active name servers or recursive resolvers versus low active
ones) which may lead to mis-clustering.

The EM algorithm is a suitable fit in our case since it uses the probabil-
ity of an instance belonging to a cluster regardless of its absolute distance. It
establishes initial centroids using a K-means algorithm, starts with an initial
probability distribution following a Gaussian model and iterates to achieve con-
vergence. This mechanism, without using absolute distance during iteration,
decreases the chance of biased results due to extreme outliers. Hence, we choose
an EM clustering algorithm for “DNS Host Clustering Machine”.

Number of Clusters. Choosing the appropriate number of clusters is the key
step in clustering algorithms. As discussed earlier, we have chosen four clusters
based on our observation of various types of servers. One way to validate the
number of clusters is with the “elbow” method. The idea of the elbow method is
to run k-means clustering on the dataset for a range of k values (say, k from 1 to
9) that calculates the sum of squared errors (SSE) for each value of k. The error
decreases as k increases; this is because as the number of clusters increases, the
SSE becomes smaller so the distortion also gets smaller. The goal of the elbow
method is to choose an optimal k around which the SSE decreases abruptly (i.e.,



138 M. Lyu et al.

(a) Univesity campus. (b) Research institute.

Fig. 5. Hosts clustering results across one week.

ranging from 3 to 5 in our results, hence, k = 4 clusters seems a reasonable value
for both the university and the research institute).

Clustering Results. We tuned the number of iterations and type of covari-
ance for our clustering machine to maximize the performance in both enterprises.
Tables 2 and 3 show the number of hosts identified in each cluster based on data
from 3 May 2018. We also see the average value of various attributes within each
cluster. For the cluster of name servers, QryFracOut approaches 0 in both orga-
nizations, highlighting the fact that almost all outgoing DNS packets from these
hosts are responses rather than queries, which matches with the expected behav-
ior. Having a high number of external clients served also indicates the activity of
these hosts – in the University campus and research institute respectively 42 and
12 name servers collectively serve 84% (i.e., 42× 2% and 12× 7%) of external
hosts.

Considering recursive resolvers in Tables 2 and 3, the average QryFracOut is
close to 1 for both organizations as expected. It is seen that some of these hosts
also answer incoming queries (from external hosts) possibly due to their mis-
configuration. However, the number of external clients served by these hosts is
very small (i.e., less than 10 per recursive resolver) leading to an average fraction
near 0. Also, looking at the number of external servers queried (i.e., numExtSrv),
the average value of this attribute for recursive resolvers is reasonably high, i.e.,
14 and 4 hosts in the University and the research network respectively contribute
to 84% and 80% of total numExtSrv – this is also expected since they commonly
communicate with public resolvers or authoritative name servers on the Internet.

Hosts clustered as mixed DNS servers in both organizations have a mod-
erate value of the QryFracOut attribute (i.e., 0.57 and 0.21 for the Univer-
sity and the research network respectively) depending on their varying level of
inbound/outbound DNS activity. Also, in terms of external clients and servers
communicated with, the mixed servers lie between name servers and recursive
resolvers. Lastly, regular end-hosts generate only outbound DNS queries (i.e.,
QryFracOut equals to 1), contact a small number of external resolvers, and are
active for shorter duration of time over a day (i.e., actvTimeFrac less than 0.5).

Interpreting the Output of Clustering. Our clustering algorithm also gen-
erates a confidence level as an output. This can be used as a measure of reliabil-
ity for our classifier. If adequate information is not provided by attributes of an
instance then the algorithm will decide its cluster with a low confidence level.
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The average confidence level of the result clustering is 97.61% for both organiza-
tions, with more than 99% of instances classified with a confidence-level of more
than 85%. This indicates the strength of our host-level attributes, enabling the
algorithm to cluster them with a very high confidence-level.

Server Clusters Across a Week. We now check the performance of our clus-
tering algorithm over a week. Figure 5 shows a heat map for clusters of servers.
Columns list server hosts that were identified in Tables 2 and 3 (i.e., 70 hosts
in the University network and 22 hosts in the research network). Rows display
the cluster into which each server is classified. The color of each cell depicts the
number of days (over a week) that each host is identified as the corresponding
cluster – dark cells depict a high number of occurrences (approaching 7), while
bright cells represent a low occurrence closer to 0.

In the University network we identified 42 name servers, shown by H1 to H42
in Fig. 5(a); the majority of which are repeatedly classified as a name server over
a week, thus represented by dark cells at their intersections with the bottom
row, highlighting the strong signature of their profile as a name server.

Among 14 recursive resolvers of the university campus, shown by H43 to H56
in Fig. 5(a); two of them (i.e., hosts A and B in Fig. 1) are consistently classified
as recursive resolver, and the rest are classified as either mixed DNS server or
even end hosts (due to their varying activity). Lastly, 14 mixed servers, shown
by H57 to H70 in Fig. 5(a), are classified consistently though their behavior
sometimes is closer to a resolver or a name server.

Our results from the Research Institute network are fairly similar – Fig. 5(b)
shows that hosts H1-H12 are consistently classified as name servers, while hosts
H13-H16 are recursive resolvers and H17-H22 are mixes servers.

3.2 Server Ranking

Our system discovered 5097 public-facing (non-DNS) servers in the University,
and 6102 at the Research Institute. However, only top 368 and 271 of these
servers respectively appeared in the answer section of more than 100 outgoing
DNS responses over a day. Additionally, 6 top ranked DNS servers, in each
organization, contribute to more than 90% of outgoing queries and responses.
Servers ranking provides network operators with the visibility into the criticality
of their internal assets.

3.3 IT Verification

IT departments of both organizations were able to verify the top ranked
DNS resolvers, name-servers, and non-DNS public-facing servers found, as they
are directly configured and controlled by IT departments of the two organi-
zations,(e.g., major name-servers and web-servers). Additionally, we revealed
unknown servers configured by departments of the two enterprises (we verified
their functionality by reverse DNS lookup and their IP range allocated by IT
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departments). Interestingly, 3 of the name-servers our method identified were
implicated in a DNS amplification attack soon after, and IT was able to confirm
that these were managed by affiliated entities (such as retail stores that lease
space and Internet connectivity from the University) - this clearly points to the
use of our system in identifying and classifying assets whose security posture the
network operators themselves may not have direct control over.

3.4 Clustering of End-Hosts: NATed or Not?

Lastly, to draw more insights we further applied our clustering algorithm (using
the same attributes introduced in Sect. 2.2) to IP address of end-hosts, deter-
mining whether they are behind a NAT gateway or not (i.e., two clusters:
NATed and not-NATed). In both networks, all WiFi clients are behind NAT
gateways. Additionally, some specific departments of the two enterprises use
NAT for their wired clients too. We verified our end-host clustering by reverse
lookup for each enterprise network. Each NATed IP address has a corresponding
domain name in specific forms configured by IT departments. For example the
University campus wireless NAT gateways are associated with domain-names as
“SSID-pat-pool-a-b-c-d.gw.univ-primay-domain”, where “a.b.c.d” is the
public IP address of the NAT gateway, and SSID is the WiFi SSID for the Uni-
versity campus network (we will disclose SSID and univ-primay-domain when
this paper is de-anonymized). Similarly, in the Research institute NAT gateways
use names in form of “c-d.pool.rsch-primary-domain” where “c.d” is the
last two octets of the public IP address of the NAT gateway in the Research
institute. On 3rd May, our end-host clustering shows that 292 and 19 of end-
hosts IP addresses are indeed NATed in the University campus and the Research
institute respectively – we verified their corresponding domain names configured
by their IT departments.

We note that the two clusters of end-hosts are distinguished primarily by
one attribute actvTimeFrac – a NATed IP address (representing a group of end-
hosts) is expected to have a longer duration of DNS activity compared to a
not-NATed IP address (representing a single end-host)4. We observe that some
IPs with domain-names of NAT gateways are incorrectly classified as not-NATed
end-hosts. This is because their daily DNS activity was fairly low, i.e., less
than an hour. On the other hand, not-NATed end-hosts with long duration
of DNS activity (i.e., almost the whole day) were misclassified. Verifying end-
hosts classified as NATed, 84.3% of them in the University campus and 86% in
the Research institute have corresponding domain-names as for NAT gateways
allocated by IT departments. For end-hosts classified as not-NATed, 80.7% and
90.0% in the respective two organizations do not map to any organizational
domain-names.

4 We omit CCDF plots due to space constraint, they are shown in Appendix 2.
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Looking into the performance of end-hosts clustering across a week, we note
that 78.3% end-hosts in the University campus are consistently labeled as NATed
over 7 days5. However, for the research institute, only 32.0% of NATed IPs are
consistent across the entire week – 34.5% of IPs were absent on some days and
the remaining 33.4% were misclassified as not-NATed for their low activity (e.g.,
only active 2 h during a day).

4 Related Work

DNS traffic has been analyzed for various purposes, ranging from measuring per-
formance (effect of Time-to-Live of DNS records) [3,7,13] to identifying malicious
domains [2,8,9] and the security of DNS [5,10,11,14]. In this paper we have pro-
filed the pattern of DNS traffic for individual hosts of two enterprise networks to
map network assets to their function and thereby identify their relative impor-
tance for efficient monitoring and security.

Considering studies related to malicious domains, [8] inspects DNS traffic
close to top-level domain servers to detect abnormal activity and PREDATOR
[9] derives domain reputation using registration features to enable early detection
of potentially malicious DNS domains without capturing traffic. From a security
viewpoint, the authors of [5] study the adoption of DNSSEC [1], highlighting that
only 1% of domains have implemented this secure protocol due to difficulties in
the registration process and operational challenges; [10,11] focus on authoritative
name servers used as reflectors in DNS amplification attacks; some researchers
[14] have reported that the amplification factor of DNSSEC is quite high (i.e.,
up to 44 to 55) whereas this measure is 6 to 12 for regular DNS servers.

DNS data can be collected from different locations (such as from log files of
recursive resolvers [4,7] or authoritative name servers) or with different gran-
ularity (such as query/response logs or aggregated records). Datasets used in
[5,10,11] contain DNS traffic for top level domains such as .com, and .net. We
collect our data at the edge of an enterprise network, specifically outside the
firewall at the point of interconnect with the external Internet. We note that
while using data from resolver logs can provide detailed information about end
hosts and their query types/patterns, this approach limits visibility and may not
be comprehensive enough to accurately establish patterns related to the assets
of the entire network.

5 Conclusion

Enterprise network administrators find it challenging to track their assets and
their network behavior. We have developed an automated method to map inter-
nal hosts of an enterprise network by focusing only on DNS traffic which carries
a wealth of information, constitutes a tiny faction of total network traffic and is

5 We omit consistency plots due to space constraint, they are shown in Appendix 2.
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easy to capture. By analyzing real-time live streams of DNS traffic from two orga-
nizations we highlighted how DNS query and response patterns differ amongst
recursive resolvers, authoritative name servers, and regular hosts. We then iden-
tified key DNS traffic attributes that can be extracted efficiently in real-time.
Lastly, we developed an unsupervised machine learning model that can classify
enterprise assets, and we further applied our technique to infer the type of an
enterprise end-host (NATed or not-NATed). Our results have been verified with
IT departments of the two organizations while revealing unknown knowledges.

Acknowledgements. This work was completed in collaboration with the Australian
Defence Science and Technology Group.

Appendix 1. DNS Behavior of Hosts (Research Institute)

(see Figs. 6 and 7).

(a) Outgoing DNS queries. (b) Incoming DNS responses.

(c) Incoming DNS queries. (d) Outgoing DNS responses.

Fig. 6. Research institute: outgoing queries, incoming responses, incoming queries and
outgoing responses, measured on 3 May 2018.
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(a) Unsolicited incoming responses. (b) Unanswered incoming queries.

Fig. 7. Research institute: CCDF of (a) unsolicited incoming responses and (b) unan-
swered incoming queries per host, measured on 3 May 2018.

Appendix 2. NATed vs. not-NATed End-Hosts

(see Figs. 8 and 9).

(a) University campus. (b) Research institute.

Fig. 8. CCDF: fraction of active hour per day for end-host IP addresses with/without
domain names.

(a) University campus. (b) Research institute.

Fig. 9. CCDF: Consistency of end-hosts clustering across a week.
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Abstract. The Domain Name System (DNS) is a critical part of net-
work and Internet infrastructure; DNS lookups precede almost any user
request. DNS lookups may contain private information about the sites
and services a user contacts, which has spawned efforts to protect pri-
vacy of users, such as transport encryption through DNS-over-TLS or
DNS-over-HTTPS.

In this work, we provide a first look on the resolver-side technique of
query name minimization (qmin), which was standardized in March 2016
as RFC 7816. qmin aims to only send minimal information to authorita-
tive name servers, reducing the number of servers that full DNS query
names are exposed to. Using passive and active measurements, we show
a slow but steady adoption of qmin on the Internet, with a surprising
variety in implementations of the standard. Using controlled experiments
in a test-bed, we validate lookup behavior of various resolvers, and quan-
tify that qmin both increases the number of DNS lookups by up to 26%,
and also leads to up to 5% more failed lookups. We conclude our work
with a discussion of qmin’s risks and benefits, and give advice for future
use.

Keywords: DNS · Privacy · QNAME minimization · Measurements

1 Introduction

The Domain Name System (DNS) plays a crucial role on the Internet. It is
responsible for resolving domain names to IP addresses. The DNS is a hierar-
chical system where each so-called authoritative name server in the hierarchy
is responsible for a part of a domain name. Recursive caching name servers –
or ‘resolvers’ for short – query each level of authoritative name servers in turn
to obtain the final answer. Resolvers usually cache responses to improve lookup
speed.

On the Internet every domain resolution, given an empty cache, starts at the
root of the DNS, which has knowledge of the name servers that are responsible
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for all the Top-Level Domains (TLDs). Those name servers typically then refer
the recursive resolver on towards yet another name server. This can keep going
indefinitely, only limited by the maximum query name (qname) length, until
finally the authoritative name server for the requested qname is reached (in
practice the recursive resolver can give up earlier).

In the standard DNS resolution process, outlined in RFC 1034 [24], the recur-
sive resolver, unaware of zone cuts in which different parts of the domain are
under control of different authorities, sends the full qname to each of the authori-
tative name servers in this chain. Since the first two (root and TLD) name servers
in the recursion are very unlikely to be authoritative for the requested qname,
this particular aspect causes unnecessary exposure of potentially private infor-
mation [6]. E.g., exposing the qname of a website that is illegal in some countries
to more parties than necessary might put the querying end-user at serious risk.
A solution for this issue is proposed in RFC 7816 [7], which introduces query
name minimization (qmin), preventing recursive resolvers from sending the full
qname until the authoritative name server for that qname is reached [7].

End-users typically do not run a recursive resolver, but instead depend on
others, such as their ISP, to enable this privacy-preserving feature. From a user’s
perspective, qmin is difficult to detect, making it hard to judge adoption.

In this paper we study the adoption, performance, and security implications
of RFC 7816. Specifically, we: (1) develop novel methodology to detect whether
a resolver has qmin enabled, and quantify the adoption of qmin over time, both
with active measurements from the end-user perspective, and passive measure-
ments from the authoritative name server perspective, at a root and TLD server,
(2) develop an algorithm to fingerprint qmin implementations, and classify the
use of qmin algorithms in the Internet and, (3) provide insight into the impact
of qmin on performance and result quality for three resolver implementations.

In order to facilitate reproducibility we make our scripts and datasets avail-
able publicly [33].

2 Background and Related Work

When DNS was first introduced in the 1980s, there was no consideration for
security and privacy. These topics have now gained considerable importance,
leading to a plethora of RFCs that add security and privacy to the DNS. For
example, DNSSEC [28–30] introduces end-to-end authenticity and integrity, but
no privacy. More recently, DNS-over-TLS [21] and DNS-over-HTTPS [20] added
transport security. “Aggressive Use of DNSSEC-Validated Cache” [18], reduces
unnecessary leaks of non-existing domain names. Furthermore, running a local
copy of the root zone at a resolver avoids sending queries to root servers com-
pletely [19].

Typically, resolvers send the full qname to each authoritative name server
involved in a lookup. Consequently, root servers receive the same query as the
final authoritative name server. Since the IETF states that Internet protocols
should minimize the data used to what is necessary to perform a task [12],
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qmin was introduced to bring an end to this. Resolvers that implement qmin
only query name servers with a name stripped to one label more than what
that name server is known to be authoritative for. E.g., when querying for
a.b.domain.example, the resolver will first query the root for .example, instead
of a.b.domain.example. The reference algorithm for qmin also hides the original
query type by using the NS type instead of the original until the last query. In
Table 1 we show what queries are performed for both standard DNS and the
qmin reference implementation.

This reference algorithm, however, faces two challenges on the real Internet:
First, it does not handle configuration errors in the DNS well [26]. E.g., in case
b.domain.example does not have any RRs but a.b.domain.example does, a name
server should respond with NOERROR for a query to b.domain.example [8], but
in fact often responds with NXDOMAIN, or another invalid RCODE. This would
force resolvers that conform to the standard to stop querying and thereby not
successfully resolve the query. Also, operators report other issues, such as name
servers that do not respond to NS queries, which would break qmin as well [25].

Table 1. DNS queries and responses without (left) and with (right) qmin.

Standard DNS resolution qmin Reference (RFC7816)

a.b.example.com. A → . com. NS → .
com. NS ← . com. NS ← .

a.b.example.com A → com. example.com NS → com.
example.com NS ← com. example.com NS ← com.

a.b.example.com A → example.com. b.example.com NS → example.com.
a.b.example.com A ← example.com. b.example.com NS ← example.com

a.b.example.com NS → example.com.
a.b.example.com NS ← example.com

a.b.example.com A → example.com.
a.b.example.com A example.com

Second, qmin can lead to a large number of queries. For example, a name with
20 labels would make the resolver issue 21 queries to authoritative name servers,
causing excessive load at the resolver and authoritative. Attackers can abuse this
for DoS attacks by querying excessively long names for victim domains. Both of
these issues led resolver implementors to modify their qmin implementations, as
well as adding so called “strict” and “relaxed” modes, which we investigate in
Subsect. 3.2 and Sect. 5.

As of October 2018, three major DNS resolvers support qmin. Unbound
supports qmin since late 2015 and turned relaxed qmin on by default in May
2018 [25]. Knot resolver uses relaxed qmin since its initial release in May 2016
[13], and the recursive resolver of BIND supports qmin and turned the relaxed
mode on by default in July 2018 [23]. Another frequently used resolver, Pow-
erDNS Recursor, does not support qmin yet [9].
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Related Work: Hardaker et al. [19] showed that root servers receive a
considerable amount of privacy-sensitive query names, and propose using local
instances of root servers to alleviate this issue. Imana et al. [22] study this
aspect from a broader perspective, covering all name servers above the recursive
resolver, and report similar privacy issues.

Schmitt et al. [32] propose Oblivious DNS, an obfuscation method introduc-
ing an additional intermediate resolver between recursive resolver and authorita-
tive name servers. Oblivious DNS prevents the additional resolver from learning
the user’s IP address and the recursive resolver from learning the query name.

Recent work [34] has also shown that qmin increases the number of queries
per lookup, increasing the load on authoritative name servers. They provide a
technique called NXDOMAIN optimization that reduces the number of queries in
case the resolver encounters an NXDOMAIN. We extend this by providing longitu-
dinal measurements, showing various implementations of qmin algorithms and
quantifying the increase in queries per resolver implementation.

3 Active Internet-Wide Measurements

We conduct active Internet-wide measurements using two methods. First, we use
RIPE Atlas probes to query a domain under our control. Second, we query open
resolvers for the same domain. RIPE Atlas is a global measurement network with
over 10,000 small devices called probes, and 370 larger probes, called anchors.
In this section, we measure qmin adoption over time, classify the various qmin
implementations in use, and shed light on qmin use by open resolvers.

3.1 Resolver Adoption over Time

We detect qmin support by relying on the fact that a non-qmin resolver will miss
any delegation that happens in one of the labels before the terminal label. So, if
we delegate to a different name server, with a different record for the terminal
label in one of the labels before the terminal label, qmin resolvers will find a
different answer than non-qmin resolvers.

We scheduled a RIPE Atlas measurement for all probes to perform a lookup
with all the probe’s resolvers for “a.b.qnamemin-test.domain.example” with type
TXT [1], repeating every hour. Each probe uses its own list of resolvers, typically
obtained via DHCP, and assumed typical for the network that hosts the probe.

A non-qmin resolver will send a query for the full qname to the authoritative
name server for “qnamemin-test.domain.example”, and will end up with a TXT
reply containing the text: “qmin NOT enabled.” A qmin resolver will send a
query for just the second-to-last label, “b.qnamemin-test.domain.example”, to
the authoritative name server for “qnamemin-test.domain.example”. For this
minimized query, it will receive a delegation to a different name server, which
will return a TXT record containing the text: “qmin enabled.”

This measurement runs since April 2017, and allows us to see the long term
adoption of qmin. Figure 1b shows the overall adoption of qmin as seen from all
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RIPE Atlas probes. We count both probes and probe/resolver combinations, as
a significant number of probes uses multiple resolvers. Adoption grew from 0.7%
(116 of 17,663) of probe/resolver pairs in April 2017 to 8.8% (1,662 of 18,885) in
October 2018. Also in April 2017, 0.9% (82 of 9,611) of RIPE Atlas probes had
at least one qmin resolver, growing to 11.7% (1,175 of 10,020) in October 2018.

Fig. 1. Adoption over time

In Fig. 1a only probe/resolver pairs supporting qmin are shown. We see a
steep rise of qmin resolvers in April 2018. Figure 1a also shows probes that have
at least one qmin resolver as well as at least one resolver that does not do qmin.
It is noteworthy that at the last measurement (October 15, 2018) at least 31%
of probes that have a qmin resolver, also have at least one non-qmin resolver.

Alongside the qmin measurement, we run measurements that return the IP
address of the resolver as seen from an authoritative name server [2,3,5]. By
identifying the Autonomous System Numbers (ASNs) associated with the IP
addresses seen at the authoritative name server we gain insight in the orga-
nizations providing the qmin resolvers. From this we learn that the adoption
of Cloudflare (1.1.1.1) is responsible for the fast rise of qmin resolvers in
April 2018.

We also found some public resolvers, such as Google Public DNS, that in
some cases appear to support qmin according to our test, but in fact do not.
This is likely caused by a qmin-enabled forwarding resolver, which forwards to, in
Google’s case, 8.8.8.8. Additionally, the non-qmin resolver successively caches
the authoritative for the second-last label and will appear to support qmin for
the TTL of the delegation (10 s in our test). We have developed an improved test
without these issues in the course of this research, but this corrected test did
not yet exist during scheduling of the RIPE Atlas measurement in April 2017.

The improved test, “a.b.random-element.domain.example. TXT”, uses a ran-
dom pattern as the third-last label which is uniquely chosen for each query, pre-
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venting other measurement queries to find a cached delegation for the second-last
label. This improved test is used in measuring the adoption by open resolvers in
Subsect. 3.3, removing false positives from that measurement.

We argue that this flaw had little impact on our results, as (i), RIPE Atlas
measurements are spread out over an hour, whereas our test record has a small
TTL, reducing this risk and (ii) the overall trend over time is still indicative.

The ASNs seen at the authoritative were further used to classify resolvers
in three categories: (1) Internal resolvers have the same ASN for the probe
and the observed resolver IP, (2) External resolvers for which the ASN of the
resolver IP configured on the probe matches the ASN for the IP observed on
the authoritative, but differs from the ASN in which the probe resides, (3)
Forwarding resolvers, for which the ASN seen on the authoritative differs from
both the ASN associated with the resolver IP configured on the probe and the
ASN the probe resides in.

Fig. 2. Internal, Forwarding and External resolvers supporting qmin

Figure 2 shows that both External and Forwarding probe/resolver pairs sup-
porting qmin are on the rise, which is mainly due to adoption of the Cloudflare
resolver in April 2018. We can also see that qmin support is steadily growing
with Internal resolvers, which do not include the larger public resolvers.

Looking more closely at the Internal resolvers we have identified, we see
that several ISPs started supporting qmin over the past 1.5 years. Most notably
“Versatel Deutschland GmbH” started supporting qmin on November 9th, 2017;
“Init Seven AG” on August 2nd, 2017; “OVH Systems” on February 1st, 2018;
and “M-Net Telekommunikations GmbH, Germany” on May 1st, 2018. Note that
these do not necessarily cause a visible change in Fig. 2.

3.2 Fingerprinting Resolver Algorithms

As described in Sect. 2, the RFC [7] provides a reference algorithm for qmin.
This is an aggressive algorithm in the sense that it maximizes potential privacy
gains at the cost of performance. It iteratively increases the name length by one
label, querying for the NS type, until it reaches the full name. Then, it switches
to the original query type, thus also this type from all but the final name server.
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While this algorithm is good for privacy, it can significantly impact perfor-
mance, security, and result quality (see Sect. 5). Since the reference algorithm is
merely a suggestion, resolver implementors are free to write their own algorithm.

Using RIPE Atlas measurements, we explore qmin algorithms implemented
in practice. To measure this, we performed a one-off DNS measurement [4] from
all RIPE Atlas probes able to resolve A records correctly (9,410 probes). We con-
trol the authoritative name server for the queried name, permitting us to identify
query behavior. The queried name consists of 24 labels, including random val-
ues and the probe ID to permit mapping inbound DNS queries to originating
probes. We see inbound queries from 8,894 unique probes (out of 9,410) from
8,179 unique resolvers. Most probes have at least two resolvers configured, many
overlapping with those of other probes, resulting in 20,716 total inbound queries.

Assigning Signatures: To group resolver behavior, we map the incoming
query behavior observed at our authoritative name server to signatures, con-
taining length, order, and type of inbound queries. Our test domain is at the
second label depth, so we observe queries starting from the third label depth.
For example, an algorithm asking for NS at the 3rd label, then for NS at the 4th
label, and then for A at the final, 24th, label, will be mapped to the signature
3NS-4NS-24A.

Signatures of BIND, Knot and Unbound: To have a basis for compar-
ison, we run our domain through each of these three resolvers, which are known
to implement qmin, and determine each of their qmin signatures. BIND and
Unbound also support an additional strict mode, however, this has no effect on
the signature and is related to how NXDOMAIN responses are handled. The result-
ing signatures, and the reference algorithm signature, are shown in Table 2.

Table 2. Top 6 signatures seen at Authoritative Resolvers, mapped to resolver imple-
mentations. Reference implementation not observed.

Type Signature Implementation Count

1 24A 13,892

2 3NS-24A Knot 3.0.0 784

3 3A-4A-5A-8A-11A-14A-17A-21A-24A 239

3 3A-4A-5A-6A-9A-12A-15A-18A-22A-24A 193

3 3A-4A-7A-10A-13A-16A-20A-24A Unbound 1.8.0 16

4 3NS-4NS-5NS-24A BIND 9.13.3 11

3NS-4NS-5NS-6NS-7NS-...-24NS-24A Reference 0

Signatures in the Wild: We identify four types of signatures, with some
types having multiple variations, see Table 2. The first, most common type (#1 )
applies no qmin. These resolvers directly query the full length DNS name. The
second type (#2 ) is a minimalistic qmin approach. After a no-delegation check
below the base domain, the full query name is sent. This is used by the Knot
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resolver, and, for example, by Cloudflare’s public DNS resolver. The third type,
with variations (#3 ), is closer to the reference algorithm, but displays various
ways of skipping labels, as well as always using the A query type instead of the NS
type as suggested by the reference algorithm. Unbound is known to have a similar
implementation [16], confirmed in our experiments. The final signature, (#4 )
uses the NS query type, and jumps to querying for the full name after not finding
a zone cut for three labels. This is consistent with the BIND implementation.

Besides the specific signatures seen in Table 2, there are many variations of
type #3. This indicates that not only do different resolvers implement different
algorithms, but they also appear to be configurable or change over time (e.g. a
new version changes the behavior). In total we see 20 different signatures, many
of which only from one specific resolver. Interestingly, we did not observe the
reference algorithm from any resolver.

3.3 Adoption by Open Resolvers

Aside from resolvers that can be reached from inside networks, such as those
offered by ISPs, there are also a large number of open resolvers on the Internet.
These can range from unsecured corporate DNS resolvers, to large scale public
DNS services, such as those run by Google, OpenDNS, Quad9 and Cloudflare.

Rapid7 provides a list of servers that are responsive on UDP port 53, which
are typically DNS servers. We query each such server using the method out-
lined in Subsect. 3.1. The list contains a total of 8M IPv4 addresses, we receive
a response from 64% of these. Of those responding, 32% respond with a NOER-
ROR reply, of which only 72% (≈1.2M) provide a correct reply.

Of those 1.2M, only 19,717 (1.6%) resolvers support qmin. On the authori-
tative side, we only observe 110k unique source IPs, which suggests that many
of the queried resolvers are in fact forwarders. Of the resolvers that implement
qmin, 10,338 send queries from a Cloudflare IP, 2,147 from an OVH IP, and 1,616
from a TV Cabo Angola IP address. This shows that most qmin-supporting open
resolvers simply forward to larger public DNS resolvers that implement qmin.

For qmin-enabled resolvers, we compare the ASN of the IP we send our query
to with the ASN of the IP seen at the authoritative for that same query. We find
11.5k resolvers to resolve externally, and 8.2k resolvers to resolve internally.

The takeaway is that many open resolvers on the Internet use centralized
public DNS services. Thus, efforts to drive adoption of qmin should focus on
large public DNS providers (e.g. Google, which does not support qmin yet).

4 Passive Measurements at Authoritative Name Servers

As qmin limits the visible information of a query at authoritative name servers,
adoption of qmin likely changes the query profile of resolvers as observed on
the authoritative side. We measure the impact and adoption of qmin with query
data collected at the authoritative name servers of the ccTLD .nl and of K-Root.
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Name servers of .nl are authoritative for the delegation of 5.8 million domain
names. If they receive queries for a .nl domain name with 2 or more labels then
they almost always (except for DS records) respond with a set of name servers
that are actually responsible for the queried domain name. Thus, a query for the
NS record of a second level domain name is sufficient for the .nl name servers to
answer the query. Similarly, the root servers are authoritative for the 1.5k TLDs
as of October 9, 2018, and a query for just the TLD is sufficient in most cases.

We cannot be certain whether resolvers send minimized queries to the author-
itative name servers, but we can count the queries that follow the expected pat-
terns if resolvers were to send minimized queries. For the rest of this section,
and following the observations made in Sect. 3, we count queries as minimized if
the query contains only 2 labels (at .nl) or 1 label (at K-Root). With increasing
qmin adoption, we expect to see an increase in queries that follow these criteria.

Identifying qmin. First, we measure how query patterns seen at the authorita-
tive name servers differ when resolvers implement qmin. We use the list of open
resolvers from Subsect. 3.3 of which we know whether they have qmin enabled.
Then, we count how many queries these resolvers send to the authoritative name
servers of .nl for names with just two labels on 2018-10-11. In total, we observe
1,918 resolvers that do and 27,251 resolvers that do not support qmin.

In Fig. 3 we see that qmin-enabled resolvers send a median of 97% of queries
classified as minimized, whereas resolvers that have not enabled this feature send
only 12% of their queries classified as minimized. This confirms that qmin has
an observable impact at authoritative name servers.

Fig. 3. Minimized queries to
.nl. Whiskers at 0.05 and 0.95.

Fig. 4. Share of minimized queries sent to
.nl and K-Root

Resolver Adoption Over Time. Based on the results of the previous section
we expect a visible impact from increasing adoption of qmin at authoritative
name servers. To verify this expectation we count how many queries overall
are sent for 2nd level domain names and TLDs respectively. We analyze .nl
data collected from 2017-06-01 to 2018-09-30 at 2 of the 4 authoritative name
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servers [35] and rely on the “Day In The Life of the Internet” (DITL) data sets of
K-Root on 2017-04-11 and 2018-04-10 collected by DNS-OARC [15]. We observe
more than 400B queries from 2017-06-01 to 2018-09-30 at .nl and 12B queries
on the two days of the DITL data sets. Figure 4 shows the fraction of minimized
queries.

In the beginning of our measurement, roughly 33% of the queries to .nl where
minimized. A year later, at least 40% of queries were minimized. A peak around
May 2018 correlates with the date on which Unbound enabled qmin by default.
This peak, however, is followed by a steep decline shortly after, which means we
cannot confirm if Unbound enabling qmin by default caused this peak.

At K-Root we also observe an increase from 44% to 48% in queries for domain
names with only one label. Note that query patterns at the root may strongly
vary from one day to another and that many queries are sent to non existing
domain names which can influence our results [10].

5 Controlled Experiments: Impact on Resolver
Performance and Result Quality

As qmin is deployed at the recursive resolver, we explore how qmin impacts
the performance and the result quality of such a recursive resolver. We compare
three popular qmin-enabled resolvers in their most recent version: Unbound
1.8.0, Knot 3.0.0, and BIND 9.13.3. We use all three resolvers with their default
options, only adjusting to an equal cache size of 4GB and turning DNSSEC
validation off1. We cycle through all configurable qmin behaviors for Unbound
and BIND; Knot has relaxed qmin hardcoded. As target domains, we use the
Cisco Umbrella Top 1M [11] list as a sample of popular domain names, and
aggregate all domains names for a 2-week period to avoid daily fluctuations
and weekly patterns [31], resulting in 1.56M domain names. To even out caching
effects, we sort our target domain names in 4 different orders. We conduct several
iterations of these measurements from October 1 through October 15, 2018,
starting each measurement with an empty cache. We report means from all
measurement runs, and find little variation in all numbers, typically one standard
deviation σ is smaller than 2% of the mean μ. Table 3 gives an overview of our
results.

Performance: qmin shows a clear impact on the number of packets sent to
resolve our 1.56M domains. For Unbound, the 5.7M packets without qmin require
6.82M (relaxed) and 6.71M (strict) packets with qmin, a 17–19% increase. For
BIND, the increase is 15–26%. It is to be expected that the strict mode requires
fewer packets, as it will give up on receiving an error, whereas relaxed modes
continue through SERVFAIL or NXDOMAIN error codes. This increase in packet
count is not offset by smaller packets, across resolvers we see average packet
sizes only decrease by 5% or less with qmin enabled.
1 We turn DNSSEC validation off to achieve comparable behavior (validating DNSSEC

requires more queries to be sent); we also note that the combination of qmin and
DNSSEC may induce further complexities beyond the scope of this work.
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Table 3. Performance and result quality across qmin modes and resolvers. Results are
mean (μ) across all runs, with all standard deviations σ < 2%μ. We also show the qmin
algorithm signature per resolver for the qmin-enabled case (signature without qmin is
always 24A).

Unbound 1.8.0 Knot 3.0.0 Bind 13.3.2

qmin Signature 3A-4A-7A-...-24A 3NS-24A 3NS-4NS-5NS-24A

qmin mode Off Relaxed Strict Relaxed Off Relaxed Strict

# packets 5.70M 6.82M 6.71M 5.94M 5.07M 6.39M 5.84M

Errors 12.6% 12.6% 15.9% 13.5% 16.6% 17.1% 21.6%

This confirms that qmin in its current form does come with a perfor-
mance penalty of up to 26%. We argue that the full cache in a produc-
tion resolver will soften that overhead. Please note that a comparison of
packet counts between different resolvers implicitly compares many other details
such as caching strategies, which is why comparison between resolvers should
be conducted very carefully. While it may seem intuitive that Unbound’s
3A-4A-7A-10A-13A-16A-20A-24A qmin approach requires more packets than
Knot’s 3NS-24A and BIND’s 3NS-4NS-5NS-24A approaches (cf. Subsect. 3.2),
a comparison of the number of packets between resolvers would require a much
deeper exploration of root causes of packets sent, such as caching and time-out
strategies.

Result Quality: Another critical aspect of resolver performance is the result
quality: Will a resolver be able to work through numerous edge cases and miscon-
figurations to deliver a response, or will it hang up on certain errors? To answer
this question, we compare the amount of errors (NXDOMAIN or SERVFAIL)
in our resolution results between different resolver and qmin approaches. Across
resolvers, we see a significantly higher share of errors with strict qmin enabled.
For example, the 3.3% increase for Unbound translates to ≈50k domains, a sig-
nificant share of these popular DNS domain names. The difference in resolvers
corresponds to our observations on resolver behavior: As reported in Sect. 2, a
portion of authoritative name servers fails to respond to NS queries. As Unbound
uses type A queries to discover zone boundaries, and Knot and BIND use NS
queries (as suggested by RFC 7816), higher error rates are expected for Knot
and BIND. The surprisingly high baseline of non-resolving domains of 12–16%
is a characteristic of the Umbrella Top 1M list recently discussed in [31].

These findings show that qmin comes with two drawbacks: Packets and bytes
transferred increase, and, depending on the detailed algorithm, also a significant
share of popular DNS names fails to resolve.

6 Discussion and Conclusions

Our study covered qmin from various angles: we performed (1) controlled exper-
iments that confirm that qmin can have negative performance and result quality
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implications, and (2) active and passive measurements in the Internet that con-
firm from both the client and authoritative server side that qmin adoption is
rising. We also explored the various problems and workarounds that have been
deployed, and want to conclude and discuss further aspects:

qmin Is Complex: Like many DNS mechanisms, qmin sounds simple, but
broken deployments make it difficult to implement without collateral damage.
Resolvers’ iterations towards a relaxed qmin algorithm reflect this, and impor-
tant take-aways are: (i) Using NS queries to detect zone cuts results in a consider-
able number of failures; using A queries instead seems reasonable. (ii) responding
to SERVFAIL/NXDOMAIN by sending the full name (i.e., disabling qmin for
this query) is currently a necessity to avoid significant error rates.

qmin Can Be a Security Risk: Having a resolver step through many
iterations for a name with an excessive number of labels is a DoS attack vector.
All implementations we encountered mitigate this. Unbound jumps over labels
to decrease the number of queries to some maximum, considerably saving on
query count. Knot’s (3NS-24A) and BIND’s (3NS-4NS-5NS-24A) approaches go
further: Knot stops qmin if it encounters a label that has not been delegated
(except for some exceptions, such as .co.uk). BIND has both a limit on the
maximum number of labels (default 9), in addition to having a maximum number
of undelegated labels (default 3). We consider these approaches good, as they
mitigate security risks while still providing qmin privacy against the top levels
in the DNS hierarchy.

qmin Can Impact Resolver Performance and Result Quality: Cur-
rently, qmin comes with a 15%+ performance penalty, and unless implemented
very carefully, will also impair result quality. Please note that, as qmin queries
are sent sequentially, the measured increase in query volume will correlate to
latency.

Recommendations: Based on the insights collected in this paper, we con-
clude with the following recommendations: (i), despite its performance and
quality caveats, qmin improves privacy and should be universally deployed. (ii)
qmin deployment must be conducted carefully: We recommend an algorithm that
combines Unbound’s and BIND’s algorithms, i.e., conducts fallback upon error,
replaces NS (and other) query types by A queries, and stops qmin after a con-
figurable number of labels. (iii) over time, heuristics may be added to alleviate
certain cases where qmin will unlikely add privacy. For example, DANE-TLSA
labels such as 443. tcp could be exempt from qmin.

Conclusion: The currently still rather low qmin adoption already causes a
significant positive effect for query privacy at both Root and TLD authorita-
tive name servers. While there are legitimate performance, result quality, and
security concerns, we already see resolver implementers tackle these, and are
confident that these negative implications will be further reduced, assisted by
the quantitative evidence and tangible recommendations in this study. We fully
expect more and more DNS operators to enable qmin to further improve privacy
of end-users on the Internet.
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Abstract. Top domain rankings (e.g., Alexa) are commonly used in
security research, such as to survey security features or vulnerabilities
of “relevant” websites. Due to their central role in selecting a sample of
sites to study, an inappropriate choice or use of such domain rankings can
introduce unwanted biases into research results. We quantify various char-
acteristics of three top domain lists that have not been reported before.
For example, the weekend effect in Alexa and Umbrella causes these
rankings to change their geographical diversity between the workweek
and the weekend. Furthermore, up to 91% of ranked domains appear
in alphabetically sorted clusters containing up to 87k domains of pre-
sumably equivalent popularity. We discuss the practical implications of
these findings, and propose novel best practices regarding the use of top
domain lists in the security community.

1 Introduction

In recent years, security research has seen the emergence of Internet measure-
ments as a subdiscipline aiming to quantify the prevalence of security risks or
vulnerabilities in practice. Since many types of security assessments do not easily
scale to the entire Internet, researchers typically consider only a subset of regis-
tered domains. Often, they decide to cover the most popular domains, that is,
those receiving the most visitors [14,18,27,32]. In doing so, they rely on “top site”
rankings such as the lists compiled by Alexa [2], Majestic [6], Quantcast [7] and
Umbrella [4]. Consequently, these top site lists play a central role in many studies;
they decide which domain will or will not be included in the measured sample.
Alexa’s list in particular has become nearly ubiquitous, with multiple papers
using it at any major security and Internet measurement conference [20,30].

Many authors have commented individually on shortcomings of Alexa’s rank-
ing (e.g., lack of reliability in the bottom ranks [29], presence of malicious
domains [23,24,28]) and devised their own ad-hoc mitigations to make their
research results more robust against these issues (e.g., using only a list pre-
fix [9,22], using multiple domain lists [13,19], and using only domains that have
been present on the list for a longer time period [9,22]). Yet, researchers are
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just beginning to investigate these issues in a more systematic way. In 2018,
Scheitle et al. [30] and Le Pochat et al. [20] performed rigourous analyses on
the nature of top lists. These works aim to understand the construction of these
lists, including: how they model popularity, what their data sources are, how
fast they change, and how resilient they are to manipulation attempts. While
these papers have shed light on many important characteristics of top domain
lists, several aspects have gone unnoticed, or have received less attention than
they deserve.

Specifically, Scheitle et al. mention a periodic weekend effect in Alexa’s and
Umbrella’s lists [30], becoming manifest in a higher degree of change each week-
end. We conduct a more in-depth analysis of the weekend effect by studying the
content categories of the respective websites, confirming the authors’ cursory
finding that the weekend effect is likely due to a dominance of leisure traffic dur-
ing the weekend, and office traffic during the workweek. In addition, we show that
the weekend effect causes changes even among the highest ranked domains in
Umbrella, whereas these domains tend to be more stable in Alexa. The weekend
effect also affects country representation in the lists. These phenomena highlight
the need for a more robust and stable domain selection process.

Beyond the brief reference by Le Pochat et al. [20], we are the first to quantify
in detail how Alexa and Umbrella cluster domain names of equivalent popularity,
while assigning them individual ranks. In fact, more than 54% of domains in
Alexa, and 91% in Umbrella, appear in such alphabetically ordered clusters that
can reach a size of up to 87k domains. If not accounted for, the alphabetic
ordering caused by clustering can cause anomalies when correlating a domain’s
rank with a measured property.

By characterising clustering and the weekend effect, we contribute to a better
understanding of the limitations of top domain lists. We distill our findings
into concrete recommendations by proposing novel best practices for the use of
domain lists.

Overall, this paper makes the following contributions:

– We provide a detailed look at weekend changes in Alexa and Umbrella, the
extent of these changes in different parts of the list, and the implications on
the content categories and geographical diversity of listed domains.

– We are the first to quantify and explain the presence of alphabetically sorted
clusters of domains in Alexa’s and Umbrella’s rankings.

– We discuss the implications of these phenomena for researchers using the
lists in their measurements, and propose novel best practices to minimise
unwanted biases.

2 Background and Related Work

In this paper, we often refer to entries of rankings or lists, but language can be
confusingly ambiguous as to a “high” rank being good or bad. As a convention,
when we write that a rank is higher, we mean that it is a better rank, numerically
lower, towards the top of the list with the most popular entries.
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Table 1. Data sources of common top site lists.

Ranking Data source List contents

Alexa Browser toolbar Typed-in website domains

Majestic Web crawl Linked website domains

Quantcast Website instrumentation Measured website domains

Umbrella DNS resolver Resolved (sub)domains

Alexa and Umbrella data from 2018-02-01 to 2018-05-31

Majestic data from 2018-02-28 to 2018-05-31

Table 2. Hidden entries in
quantcast (2018-06-17).

List prefix Hidden # %

1 − 10 0 0.0

1 − 100 15 15.0

1 − 1, 000 136 13.6

1 − 10, 000 594 5.9

1 − 100, 000 1, 892 1.9

1 − 511, 804 5, 045 1.0

2.1 Use of Top Lists in Security Research

Top domain lists such as the Alexa Top Sites are frequently used in security
research. Le Pochat et al. [20] found 102 papers using the Alexa ranking at the
four main security conferences from 2015 to 2017/2018, and Scheitle et al. [30]
found 68 studies using Alexa published at the top measurement, security, and
systems conferences in 2017.

Researchers can use top domain lists in different ways. In this paper, we
focus on measurement studies that use these lists to select a “representative”
sample of domains to analyse, in the sense that these lists designate the “largest”
or “most popular” domains (e.g., [14,18,27,32]). When measurement studies
compute aggregates over the domains on these lists, their results depend on how
the lists select and rank domains [20,30].

A less frequent, but common use of domain lists in security research is to
obtain samples of “benign” domains. In this context, domain lists are sometimes
used to train models or evaluate proposed security systems (e.g., [9,10,15,22]).
In a few cases, any ranked domain is whitelisted to improve classifier perfor-
mance [21,26]. This use is most sensitive to malicious domains not appearing in
the ranking, and other list properties such as stability or ordering are less crit-
ical. Maliciousness of ranked domains has been studied before [23,24,28], and
this scenario is beyond the scope of this paper.

2.2 List Compilation Methodology

We are aware of four major measurement-based top site lists: Amazon Alexa
Top Sites [2], The Majestic Million [6], Quantcast Top Websites [7], and Cisco
Umbrella Top 1 Million [4]. Table 1 summarises the data source and popularity
model of each ranking.

Alexa. The data for the ranking originates primarily from “millions of users” [3]
who have installed the Alexa toolbar and share their browsing history with
Alexa. Its website documents Alexa’s methodology as follows: The toolbar only
collects URLs that appear in the address bar of the browser window or tab.
Sudomains are not ranked separately from the main domain, unless they can be
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determined to be blogs or personal homepages. Domains are ranked according to
a combination of the number of users visiting the site, and the unique URLs on
that site visited by each user. Ranks below 100k are not statistically meaningful
because the data collected about those domains is too scarce [3,5]. The ranking is
updated daily. Our work uses the ranking from the file download [1]. In contrast
to the API and website, ranks in the file do not appear to be smoothed.

Majestic. Majestic’s ranking is based on the link graph built from a continu-
ously updated, proprietary web crawl comprising over 528 B URLs as of June
2018 [6]. Domains are ranked by the number of unique /24 IP networks hosting
inbound links [17].

Quantcast. Ranks are based on direct traffic measurements through client-
side tracking code embedded by Quantcast’s customers into their websites and
mobile applications, as well as estimated traffic (from unspecified sources) for
non-customer websites [7]. Quantcast customers can choose to hide their identity
in the ranking. Table 2 shows that around 1% of all list entries are hidden, but
for some list prefixes the percentage can be much higher, such as 15% in the
top 100. These censored entries make it challenging to compare this ranking to
others. Therefore, we do not consider it further in this paper.

Umbrella. The ranking is computed from incoming DNS lookups observed in
Cisco’s Umbrella Global Network and the OpenDNS service, which amount to
over 100 B daily requests from 65 M users in 165 countries [4]. Consequently, the
list reflects the popularity of domains used in any Internet protocol, not only
web traffic. According to Umbrella, ranks are based on the unique client IPs
looking up a domain [16].

2.3 Related Work

In 2006, Lo and Sharma Sedhain compared the lists available at that time to
determine how similar and reliable they were [25]. Out of the lists we initially
considered relevant for this study, they included only Alexa. Given the long
time that has passed since then, it is likely that the ranking methodology and
list composition have changed.

Scheitle et al. [30,31] study the domains on the lists compiled by Alexa,
Umbrella and Majestic, how these lists differ, how they evolve over time, how
they are being used in research studies, how list parameters influence the out-
come of research studies, and how the rankings could be manipulated. The
authors describe a weekend effect in Alexa and Umbrella, a periodic change in
list composition between weekday and weekend rankings. While the authors con-
vey an intuition as to why this effect exists, we provide a more detailed analysis
of the reasons and implications of this phenomenon. We describe an additional
phenomenon, clustering of equivalent domains in Alexa and Umbrella, which is
not mentioned by Scheitle et al. and discuss potential implications.
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Le Pochat et al. [20] also quantify several properties of domain lists and
reproduce prior studies using different lists, but the focus of their work is on
attacks to influence the rankings. While the weekend effect is visible in one
of the figures, it is not further mentioned or analysed. The authors do mention
clustering, but only in an attack context, and without discussing the implications
for research studies relying on these lists.

When discussing their results, both papers make high-level recommendations
how other researchers should use domain lists in their studies. We believe that
this topic warrants more discussion and conclude our paper with several addi-
tional recommendations.

3 List Analysis

In the following, we study weekend effects and clustering in the top 1 M rankings
of Alexa, Majestic, and Umbrella. We downloaded the respective ranking file
every day. We label the data with the date one day prior to downloading, as a
list updated and downloaded on Monday, for instance, appears to contain the
ranks computed from Sunday data.

3.1 List Stability

We begin our analysis with a look at how much and how fast the rankings change.
In contrast to prior work [20,30], we divide each ranking into non-overlapping
intervals of exponentially increasing length 1–10, 11–100, 101–1,000, etc. This
provides a better view on which parts of the ranking change. The exact order of
domains within each interval does not matter for many uses in security research,
thus we allow for reordering or minor rank changes by calculating set inter-
sections. We pick a single reference day, 2018-02-07 for Alexa and Umbrella,
2018-03-28 for Majestic, and compare all subsequent days upto 2018-05-31 to
this day. This allows us to visually distinguish long-term drift from transient
changes. Figure 1 uses a Wednesday as a representative of the workweek; similar
heatmaps using a Sunday for the weekend can be seen in Fig. 6 in the appendix.

At a high level, the heatmaps show that the top ranked domains exhibit
less change than the lower intervals of the ranking. This is in line with Scheitle
et al. [30], who showed that longer list prefixes tend to exhibit lower stability.
In contrast to prior work, our representation reveals that the higher ranks in
Alexa are more stable than in Umbrella, where changes occur within the top 10
domains on a regular basis. The bottom 900k domains, however, are considerably
less stable in Alexa than they are in Umbrella. In the bottom of the plot, most
intervals get lighter in color, corresponding to long-term drift.

Scheitle et al. [30] describe a weekend effect in Alexa and Umbrella, a weekly
pattern where change is highest on the weekend. This pattern appears in the
heatmaps as regular horizontal bands. While only implied by Scheitle et al. the
heatmaps in Fig. 1 confirm that the change is indeed transient, that is, the rank-
ing tends to revert back to the original domains after the weekend. Furthermore,
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Fig. 1. Heatmaps showing the set intersection of ranked domains with the reference
day, Wed. 7 February, in exponentially increasing list intervals 1–10, 11–100, 101–1,000,
etc. Horizontal lines correspond to the weekend effect, which is stronger in Umbrella,
whereas Alexa has stronger long-term drift. For Majestic, see Fig. 7 in the appendix.
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Fig. 2. Heatmaps showing domain extensions’ mean Wednesday market share ± the
difference to the mean Sunday market share (also used to colour each cell) in expo-
nentially increasing list intervals 1–10, 11–100, 101–1,000, etc., from February to May
2018. Extensions ordered by Wednesday top 1 M mean market share. Weekends cause
a change in geographic representation. For Majestic, see Fig. 9 in the appendix. (Color
figure online)

close inspection of the heatmaps shows that the weekend differences are strongest
on Sundays. Figure 6 in the appendix contains similar heatmaps using a Sunday
as the reference day, and shows the expected inverted pattern of a greater differ-
ence during the workweek, and less during the weekend, relative to the Sunday
list. Umbrella has the strongest weekend effect, with changes occurring even in
the top 10. For example, Table 4 in the appendix shows that Netflix moves from
ranks two and three to one and two, and Hola appears with two new entries.
Majestic, shown in Fig. 7 in the appendix, has no discernible weekend effect, as
its ranks appear stable.
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Table 3. Top 5 unresolvable public suffixes in Umbrella, Feb. to May 2018.

Suffix Wednesday
(mean freq./best rank)

Sunday
(mean freq./best rank)

localhost 18/18,583 7,852/11,829

local 835/2,211 1,080/1,530

home 705/2,629 1,266/1,331

lan 566/6,246 948/3,687

localdomain 208/13,852 315/8,723

3.2 The Weekend Effect

Alexa and Umbrella exhibit strong, temporary changes each weekend. Using
domain extensions and website categories, we quantify how this affects the type
of listed domains.

Domain Extensions. To judge how the lists represent different geographical
regions, we look at country-code domain extensions, or more precisely, public
suffixes. The public suffix of a domain is the domain extension under which
domains can be registered, such as .cl or .co.uk. Country-code domain exten-
sions are only a coarse-grained approximation of country-level popularity, as
many regions use generic top-level domains such as .com in addition to their
country-code domain, and the U.S. in particular makes comparatively little use
of their .us extension. However, the way how each region splits its traffic across
generic and country-code domains should be stable, which means that we can
use domain extensions to uncover weekday to weekend changes.

Figure 2 shows the most common public suffixes used in Alexa and Umbrella
on Wednesdays from February to May 2018, ordered by their mean market share.
Different list intervals often exhibit variation in the relative popularity of domain
extensions. For example, .jp is the sixth most frequent extension in Alexa’s
top 100k, whereas it is ranked twenty-fourth in the full list. Extension diversity
differs between the lists, with Alexa containing 33 extensions in the top 100,
Majestic 13, and Umbrella only 4.

The weekend effect affects the geographical diversity of Alexa and Umbrella.
On weekends, Alexa loses domains from European countries and gains in Russia,
India, and for .com (from mean of 47.0 to 48.1%); Umbrella also includes more
Russian domains, and more domains with invalid extensions, but has fewer .com
domains (from 57.1 to 53.4% in the full list). Only Majestic remains relatively
stable, most likely due to its ranking reflecting structural properties of a website
link graph and not visitor popularity.

Invalid Domains. All of the domains in Alexa use a well-known public suf-
fix, but a mean of 0.5% (Wednesday) and 1.6% (Sunday) of Umbrella domains
and 0.004% of Majestic domains have a non-delegated domain extension. Such
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domains cannot currently be registered or resolved on the public Internet. In
fact, Umbrella appears to contain domains used internally in corporate networks.
These domains can appear quite high in the ranking, such as the domain tcs at
rank 820. Table 3 shows the five most frequently used invalid domain extensions
in Umbrella. Each Wednesday, Umbrella contains a mean of 18 domains with the
localhost extension, the highest of which was observed at rank 18,583, while
each Sunday, localhost contains a mean of 7,852 domain with a best rank of
11,829. This trend is consistent with other invalid domains, showing that invalid
domains peak on the weekend. The list also contains a mean of 198 corp domains,
and entries corresponding to the names of networking equipment manufacturers
such as belkin and dlink. Chen et al. [11,12] describe how internal domain
name lookups can leak into the public Internet, where they are susceptible to
attacks.

Website Categories. Similar to country-level representations, the lists may
exhibit differences in the content-level types of domains they contain. We utilise
Symantec/BlueCoat WebPulse [8] to categorise the top 10k domains of each list,
assuming that they are websites. For subdomains, the category usually refers to
the registered parent domain.

We successfully retrieve categories for 97.8–98.3% of domains in the top 10k
from March and April 2018. Domains listed in Alexa and Majestic are classified
into 63 and 62 categories, respectively, whereas Umbrella covers only 53 distinct
categories. This effect is even more pronounced in the top 1k, where Alexa con-
tains 48 categories, Majestic 39, and Umbrella only 23. Umbrella contains many
subdomains [20,30], which results in a significantly less diverse set of websites.
Figure 3 shows the most frequent categories ordered by their Wednesday market
share. The category market share distribution in Alexa is much more balanced
than in Umbrella, resulting in a better representation of websites of different
categories.

The types of categories also differ between the lists. The Wednesday Alexa
in the interval 100–1k contains 7.5% websites that could be considered “unsafe
for work” environments, whereas in Umbrella, the percentage is only 0.2%. This
suggests that the Umbrella ranking may be based on a larger share of corporate
traffic. Similarly, while the News/Media category is ranked first in Sunday Alexa,
it appears at rank 12 in Umbrella. In contrast, Umbrella highly ranks several
categories that appear to apply to internal subdomains and subresources such
as Web Ads/Analytics, the highest ranked category at (38.4% Wed.), as well as
Content Servers (7.7% Wed.) and Non-Viewable/Infrastructure (4.0% Wed.). For
comparison, in the Alexa top 1k, the former categories account for only 2.8%
and 0.5%, respectively, and the latter category does not appear. This further
illustrates the effects of Umbrella’s subdomain inclusion.

From the weekdays to the weekend, Alexa and Umbrella both lose in business-
related categories and gain in various forms of entertainment. In the Umbrella
interval 100–1 k, the Business/Economy category loses 1.1 percentage points,
whereas the Chat category gains 0.9 percentage points; Games increase their mar-
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Fig. 3. Alexa (top) and Umbrella (bottom) heatmaps showing website categories’ mean
Wednesday market share ± the difference to the mean Sunday market share (also used
to colour each cell) in exponentially increasing list intervals 1–10, 11–100, 101–1,000,
etc., from March to April 2018. Categories ordered by Wednesday top 1 M mean market
share. Sundays see fewer office-related domains, and more entertainment. For Majestic,
see Fig. 10 in the appendix. (Color figure online)

ket share threefold. Furthermore, categories appear to be slightly more evenly
distributed during the weekend. The categories of the top 10 domains (Table 4) in
Alexa, and to some extent also the top 100, remain stable between the workweek
and the weekend. In Umbrella, however, there is significant change in the cate-
gories in the top 10 because of the addition of two new domains. Taken together,
these results confirm the preliminary finding by Scheitle et al. [30] (based on
popularity changes of a handful of domains listed with many subdomains) that
Alexa and Umbrella are dominated by office traffic during the workweek, and
leisure traffic during the weekend.

3.3 Clusters

The rankings of Alexa and Umbrella contain large alphabetically sorted clusters
of domain names. (Umbrella appears to apply an atypical sorting order when
dashes and prefixes are involved: ab-c before ab.) We assume that these clusters
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Fig. 4. Percentage of the ranking that is part of a cluster, for varying minimum length
thresholds for an alphabetically sorted sequence to be considered a cluster. Alexa and
Umbrella cluster a large fraction of their respective list, Majestic does not.

represent domains that cannot be distinguished based on their traffic character-
istics.

Alphabetically sorted sublists may occur coincidentally. To explore minimum
size thresholds for when a sorted sublist may be considered a cluster, we plot in
Fig. 4 the resulting percentage of domains that would be considered part of any
cluster. Majestic has only very small clusters; fewer than 0.05% of the list would
be part of clusters if they were required to be larger than 42 domains. Applying
the same threshold to the other lists, more than 54% of Alexa, and more than
91% of Umbrella appear in a cluster.

To understand the sizes and rank locations of clusters, Fig. 5 plots the length
of each alphabetically ordered sublist against its first rank. In Alexa, larger
clusters start appearing at ranks around 49k. Clusters can grow very large, with
outliers of 40k and 87k domains, and their size does not increase monotonically.
Majestic, shown in Fig. 8 in the appendix, has no significant clusters except for
a few outliers in the last third of the list. In Umbrella, clusters larger than 42
domains start at rank 83k (rank 126k with a threshold of 100). The size of
clusters appears to grow exponentially towards the end of the list, but the last
cluster of the list is likely truncated as it does not follow the increasing trend.
Furthermore, clusters on the two Wednesdays are one third to a half smaller
than the clusters observed on Sundays. This suggests that Umbrella’s ranking
is based on less traffic on Sundays, as larger clusters imply more domains that
cannot be distinguished.

These clusters have a number of important implications for users of the lists.
First, while one may expect that domains equivalent in terms of traffic would
receive the same rank, Alexa and Umbrella do in fact assign individual ranks to
each domain in alphabetical order. Inside a large cluster, the first few characters
of a domain can cause a large rank difference, such as 87k in Alexa. The last
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Fig. 5. Scatterplots of each alphabetically sorted cluster’s size by its highest rank.
No size threshold, but clusters with 42 or fewer domains are downsampled to 1% for
printability (difference invisible). In Alexa, ten very large outlier clusters of up to 87k
domains not shown. Umbrella clusters have a trend of increasing size towards the end
of the list, except for the last (truncated) cluster; weekends tend to increase cluster
sizes.

cluster of the ranking is cut off, as including it entirely would extend the length
of the list beyond 1 M entries. Similar effects can occur when researchers use a
list prefix without accounting for clusters. In both cases, domains are excluded
from consideration not because of their popularity, but because of their relative
lexicographical order. Furthermore, clustering effects have implications on the
stability of the list. A domain with stable traffic may receive a worse rank when
domains with equivalent traffic but a lower lexicographical ordering are added
to the list. Similarly, when a domain switches to an adjacent cluster, the rank
difference can be consequential, even though the actual change in traffic may be
minor.

4 Discussion: Best Practices for Using Top Domain Lists

Our analysis has revealed various characteristics of the lists compiled by Alexa,
Majestic, and Umbrella. To minimise any negative impact that these character-
istics can have on measurement results, we propose the following best practices.

Avoid Direct Correlation with a Domain’s Rank. Alexa and Umbrella contain
large clusters of domains with the same popularity, yet each domain is assigned
an individual rank in alphabetical order. For example, 56% of Alexa, and 99.9%
of Umbrella entries in the bottom 900k are part of clusters. This can cause
anomalies, e.g. when looking for a linear correlation between the rank and a
security property (“do more popular websites have a higher security score?”).
Furthermore, especially the lower domain ranks can fluctuate considerably on a
daily basis. Instead of using the rank directly, we suggest looking at aggregates
based on exponentially increasing rank intervals, such as 1–10, 11–100, 101–1000
etc., which perhaps results in less precision, but more robustness.
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Use Contemporaneous Rankings to Label Historical Datasets. A domain that
was popular in the past is not necessarily highly ranked today, and vice versa.
When labelling a dataset with domain ranks, it is important to use the rank
that was current at the time of the recorded event. For example, a Web vulner-
ability database may contain entries spanning multiple years, and a website’s
popularity should be assessed based on the ranking when the vulnerability was
discovered (“do popular websites receive more vulnerability reports?”). The fast
responsiveness of Alexa and Umbrella implies that this precaution is also neces-
sary at shorter time scales. A malicious domain, for instance, may be active and
popular for just a few days before it is blacklisted [28] and traffic subsides.

Measure a Static Set of Domains, if Possible. We have shown that the weekend
effect in Alexa and Umbrella causes different types of domains to be included
(e.g., changing country and content category distributions). This pattern is also
visible in multiple network, transport and application layer measurements repro-
duced daily with the newest domain lists by Scheitle et al. [30]. However, such a
measurement setup does not allow to distinguish changes due to list composition
from changes that occur on a measured domain. For example, a domain that is
present in the ranking during all days may cease to use a certain form of tracking,
or a domain that always uses this form of tracking may drop out of the ranking,
to the same overall effect. We argue that short-term noise from list composition,
such as the weekend effect, is usually undesirable in measurements. It makes it
challenging to interpret observed changes, and it is typically of little interest to
break down the prevalence of tracking, for instance, based on sites’ weekend or
workweek popularity. We believe that measurements can often be carried out
with a static list of domains, such as to study the evolution of tracking on a
fixed set of sites. Medium and long-term list changes may be more relevant to
account for permanent popularity changes.

To create a set of domains to be measured, we suggest collecting list data
over the course of one or more weeks, and using the union or intersection of all
days, depending on the scenario. To improve comparability and reproducibility
of measurements, researchers could agree on a common list of domains that is
updated on a quarterly or yearly basis.

Account for Subdomains. Umbrella contains so many subdomains that the set
of unique registered domains is only around 28% [30], three times smaller than
in Alexa or Majestic. In some contexts, measuring all subdomains may be desir-
able. For example, subdomains may serve different web content, and subdomains
include mail servers that may use a different TLS configuration than web servers.
In other contexts, subdomains may be aliases, or may be configured and managed
identically since they are part of the same infrastructure. For example, if they
share the same authoritative name server, they likely have identical DNSSEC
capabilities. This can result in duplicates, and bias aggregates towards services
that are listed with more subdomains. In such cases, it may be preferable to
use only one (sub)domain per unique registered domain. Similar issues exist due
to Content Distribution Networks [30]. The large difference in unique registered
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domains also makes it challenging to compare results derived from Umbrella to
Alexa or Majestic.

For completeness, we discuss recommendations from prior work in the para-
graphs below.

Use Lists According to What They Represent. Each list uses different data, which
implies a different definition of popularity. Alexa contains (desktop) type-in web-
site domains, Majestic models website popularity by inbound links instead of
visitors, Umbrella ranks domains that may not host web content, and Quantcast
allows customers to hide their identity. These missing ranks are not uniformly
random (Table 2), and we recommend against the use of Quantcast when repre-
sentativity or comparability are desired.

Use Only the Highest-Ranked 100k Domains, or Fewer. The publishers of the
Alexa list caution that only the top 100k domains are statistically significant [3,5].
The reverse conclusion is a degree of imprecision, or randomness, in the remaining
900k list entries; this could refer both to their relative ranking, and to their
presence or absence. Research results aggregated over the full 1 M list are based
on 90% “unreliable” data points.

Use Multiple Sources, Including Unranked Sets of Domains. The limitations of
individual lists could be mitigated by measuring domains selected from multiple
lists in parallel and contrasting the results, as suggested [30] and done [19] in
prior work. Researchers could base their analysis on one ranked domain list and
a random sample of the .com zone (or IPv4 address space). The first set of
domains would be “representative” in terms of visits and mirror the security
aspects that users face, while the second set would be “representative” in terms
of sites and reflect security from the point of view of developers.

Do Not Assume that Ranked Domains are Benign. This paper and the previous
recommendations focus on measurement studies, where domains do not need to
be benign. In fact, several prior studies have reported evidence that malicious
domains exist in the Alexa ranking [23,24,28]. This can be an issue for security
systems using domain lists as sources of “benign” examples for model training,
validation or whitelisting [9,10,15,21,22,26].

5 Conclusion

Many security research papers utilise top domain rankings such as the ones pub-
lished by Alexa, Majestic, or Umbrella to select domains or websites to consider
in their study. Each list models popularity in a different way. Alexa contains only
type-in website domains based on their popularity with toolbar users, Majes-
tic ranks websites based on structural properties rather than popularity with
actual visitors, and Umbrella includes any type of domain observed at a large
public DNS resolver, including many internal, non-web domains. Consequently,
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the lists differ in the country and category distribution of their domains, and
some exhibit immediate reactivity to momentary changes in traffic volume and
distribution, making weekday and weekend rankings look quite distinct. If not
properly accounted for, these characteristics can hamper reproducibility, and
introduce unwanted bias into research results derived from the domains in the
rankings. To that end, we have proposed best practices for the use of top domain
lists in security measurements.

Acknowledgements. This work was supported by Secure Business Austria and
the National Science Foundation under grants CNS-1563320, CNS-1703454, and IIS-
1553088.
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Fig. 6. Alexa and Umbrella changes over time in exponentially increasing list intervals,
using Sunday 4 February as the reference day. See Fig. 1 for full legend.
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Fig. 7. Changes in Majestic over time
in exponentially increasing list inter-
vals, using Wednesday 24 March as the
reference day. See Fig. 1 for full legend.
Majestic is remarkably stable.
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Table 4. Top 10 domains on Wed. 4 and Sun. 8 April 2018 in Alexa and Umbrella.

Alexa Umbrella

Wednesday & Sunday Wednesday Sunday

1 google.com google.com netflix.com

2 youtube.com netflix.com api-global.netflix.com

3 facebook.com api-global.netflix.com google.com

4 baidu.com www.google.com microsoft.com

5 wikipedia.org microsoft.com ichnaea.netflix.com

6 yahoo.com facebook.com www.google.com

7 reddit.com doubleclick.net facebook.com

8 google.co.in g.doubleclick.net hola.org

9 qq.com googleads.g.doubleclick.net dns-test1.hola.org

10 taobao.com google-analytics.com doubleclick.net
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Fig. 9. Heatmap showing Majestic domain extensions’ mean Wednesday market share
± the difference to the mean Sunday market share (also used to colour each cell) in
exponentially increasing list intervals 1–10, 11–100, 101–1,000, etc., from March to May
2018. Extensions ordered by Wednesday top 1 M mean market share. Due to Majestic’s
high list stability, differences are not visible. (Color figure online)
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Fig. 10. Heatmap showing Majestic website categories’ mean Wednesday market share
± the difference to the mean Sunday market share (also used to colour each cell) in
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Majestic’s high list stability, differences are not visible. (Color figure online)
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Abstract. International Domain Names (IDNs) were introduced to sup-
port non-ASCII characters in domain names. In this paper, we explore
IDNs that hold genuine interest, i.e. that owners of brands with dia-
critical marks may want to register and use. We generate 15 276 candi-
date IDNs from the page titles of popular domains, and see that 43%
are readily available for registration, allowing for spoofing or phishing
attacks. Meanwhile, 9% are not allowed by the respective registry to
be registered, preventing brand owners from owning the IDN. Based on
WHOIS records, DNS records and a web crawl, we estimate that at least
50% of the 3 189 registered IDNs have the same owner as the original
domain, but that 35% are owned by a different entity, mainly domain
squatters; malicious activity was not observed. Finally, we see that appli-
cation behavior toward these IDNs remains inconsistent, hindering user
experience and therefore widespread uptake of IDNs, and even uncover
a phishing vulnerability in iOS Mail.

Keywords: Internationalized Domain Names · Phishing ·
Domain squatting · Homograph attack

1 Introduction

The Internet has become a global phenomenon, with more than half of the
world’s households being estimated to have Internet access [2]. The English lan-
guage and Latin alphabet remain dominant, but multilingual content is enjoy-
ing increased popularity [19,59]. However, one crucial part of the Internet, the
Domain Name System (DNS), has historically been limited to ASCII charac-
ters [5,27,46].

Internationalized Domain Names (IDNs) [20,35] have been introduced to
address this problem, and domain names can now contain (Unicode) characters
from various languages and scripts. IDNs allow end users to refer to websites
in their native language, and have helped to increase linguistic diversity, with a
strong correlation between a website’s language and the script of its IDN [19].

Acceptance of IDNs relies on support by web applications, and while this has
been improving, significant gaps that present a barrier to user recognition and
c© Springer Nature Switzerland AG 2019
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adoption remain [19]. Moreover, IDNs have seen abuse, with malicious actors
registering domains that use visually similar characters to impersonate popular
domains for phishing attacks [21,28,41]. This further complicates how browsers
choose between displaying IDNs and protecting end users [1,44].

In this paper, we explore (ab)use of IDNs for over 15 000 popular brands and
phrases that contain non-ASCII characters (e.g. “Nestlé”), obtained through the
presence of their ASCII equivalent in a set of popular domains (nestle.com). For
these, we define IDNs that hold genuine interest (nestlé.com): these IDNs can
enhance user experience as they are easier and more natural to read and correctly
understand, and both end users and brand owners may therefore prefer to use
them. Moreover, country-specific keyboard layouts often feature dedicated keys
for characters with accents, making typing them no more difficult than non-
accented letters. We study whether owners of popular domains where an IDN
with genuine interest exists have made the effort to register and use it.

However, these IDNs can also attract malicious activity. While previous work
studied abuse of IDNs resembling very popular brands [41], these brands gen-
erally do not feature accents, meaning that users are less prone to use or trust
the IDNs, and brand owners are not inclined to own them except for defensive
purposes. In contrast, as our IDNs with genuine interest appear ‘valid’ to end
users, it becomes even more difficult to distinguish a legitimate website from an
attempt at phishing, and the domains are therefore more valuable to malicious
actors. This also enables attacks akin to typosquatting [16], as users may type
the (non-)accented version of a domain, even though this may host a different
website. We determine whether these IDNs are still open for or already see abuse.

In summary, we make the following contributions: (1) we generate 15 276
candidate IDNs with genuine interest as derived from the page titles of popular
domains; (2) we see that 43% can still easily be registered, e.g. for domain
squatting or abuse by malicious parties; (3) we estimate at least 50% of the
IDNs to share ownership with the original domain, but 35% to have different
owners, mostly domain squatters; (4) we see that browsers and email clients
display IDNs inconsistently: our survey even leads us to discover a vulnerability
in iOS Mail that enables phishing for domains with ß.

2 Background and Related Work

Internationalized Domain Names. Through the Domain Name System (DNS),
user-friendly domain names are translated into IP addresses. Domain names rep-
resent a hierarchy, with the registries managing the top-level domains (e.g. .com)
usually delegating the public offering of second-level domains (e.g. example.com)
to registrars. Originally, the LDH convention restricted domain names to ASCII
letters, d igits and hyphens [5,27,46]. However, languages like French and Ger-
man use Latin characters with diacritics, and e.g. Arabic and Chinese use differ-
ent character sets altogether. To provide a universal character encoding of these
writing systems, the Unicode Standard [65] was developed.

To support domain names with Unicode labels, IETF developed the Interna-
tionalized Domain Names in Applications (IDNA2003) protocol in 2003 [20]. To
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maintain compatibility with existing protocols and systems, this protocol uses
the Punycode algorithm [10] to convert Unicode labels (“U-label”) to an ASCII
Compatible Encoding (ACE) label starting with xn-- and containing only ASCII
characters (“A-label”). In 2010, the standard was revised (IDNA2008) [35],
mainly to add support for newer versions of the Unicode Standard.

Homograph Attacks. Homographs are strings that contain homoglyphs or visu-
ally resembling characters, and can be used to trick users into thinking that they
are visiting one domain while actually browsing another, opening up opportuni-
ties for web spoofing or phishing [14,28]. While certain ASCII characters (e.g.
lower case l and upper case I) already allowed for confusion, the introduction of
IDNs gave rise to a whole new set of potential homographs, using either diacrit-
ics or resembling characters from other scripts. Evaluations over time of browser
and email client behavior regarding IDNs have found that browsers have imple-
mented countermeasures in response to vulnerabilities to homograph attacks,
but that they are not (yet) fully effective [24–26,41,45,71].

Previous studies have shown IDNs confusable with popular domains to exist
on a modest scale and for relatively benign purposes such as parking [21,28]. In
2018, Liu et al. [41] detected 1 516 out of 1.4 million registered IDNs to exploit
homographs for targeting domains in Alexa’s top 1 000. Only 4.82% belonged
to the same owner as the original domain. Moreover, they generated 42 434
additional IDNs with sufficient visual similarity that are still unregistered. Tian
et al. [66] searched for phishing sites that impersonate a set of 702 popular brands
both in content and in domain, a.o. through homograph domains. Several indus-
try reports have addressed homograph attacks in the wild, seeing circumvention
of spam filters [70], phishing, malware and botnet abuse [38] and popular as well
as financial websites being main targets [56].

Domain Squatting. Domain names can be exploited for deceiving end users:
involuntary errors redirect traffic to unintended destinations [3,15,16,50,63,67,
69], while credible domain names may create the perception of dealing with a
legitimate party [34,43,48]. Spaulding et al. [61] reviewed techniques to generate,
abuse and counteract deceptive domains. Liu et al. [41] found 1 497 IDNs that
combine domains from Alexa’s top 1 000 with keywords containing non-ASCII
characters. They also mention a type of abuse where the IDN is the translation
of a brand name to another language, but do not conduct any experiments.

3 Methods

3.1 Generating Candidate Domains

In order to obtain IDNs with genuine interest, we start from a list of popu-
lar domains. While the Alexa top million ranking is commonly used, Scheitle
et al. [55] and Le Pochat et al. [39] have shown that it has become very volatile
and disagrees with other rankings, while the latter proved that manipulation
by malicious actors requires very low effort. Therefore, we use the Tranco list1

1 https://tranco-list.eu/list/RQ4M/1000000.

https://tranco-list.eu/list/RQ4M/1000000
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Table 1. Candidate IDNs are generated by searching relevant substitutions within a
domain name using its root page title.

proposed by Le Pochat et al. [39], a list of one million domains generated by
combining four rankings over 30 days (here 30 July to 28 August 2018), in order
to require prolonged popularity from multiple vantage points.

We check for each domain whether it corresponds to a string that contains
diacritical marks, i.e. where there could be genuine interest in adopting a variant
IDN. For this purpose, we look for plausible substitutions with accented words
in the title of its root page. To collect these title strings, we use a distributed
crawler setup of 4 machines with 4 CPU cores and 8 GB RAM, using Ubuntu
16.04 with Chromium version 66.0.3359.181 in headless mode.

We then convert this title to lowercase and remove punctuation, after which
two strings are generated: either diacritical marks are simply removed, or
language-specific substitutions are applied (as listed in AppendixA). The lat-
ter covers the common practice in for example German to use replacements such
as ae for ä. We then compare these converted (ASCII) strings with the domain
name: we favor the case where the full domain is found, but also consider cases
where single words are shared. Finally, if such cases are found, we retrieve the
corresponding accented form from the original title and apply this substitution
to the original domain name, resulting in the candidate IDN. Table 1 illustrates
our approach.

3.2 Retrieving Domain-Related Data

To understand if and how these IDNs are used, we collect the following data:

DNS Records. To check whether candidate IDNs exist in the DNS (i.e. are regis-
tered) and how they are configured, we request A, MX, NS and SOA records for both
the original and candidate domain. If all records return an NXDOMAIN response, we
assume the domain to be unregistered. Otherwise, we verify whether the name-
server is properly set up (no SERVFAIL) and if there are A records (suggesting a
reachable website) or only other records (suggesting another purpose).

Domain Eligibility. A TLD registry is free to support IDNs or not, and if they
do, they may only allow a specific set of characters. For country code TLDs
this set usually consists of the characters in languages spoken in that TLD’s
country, which can help in avoiding homograph attacks by prohibiting confusable
characters that would normally not be used in those languages.
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ICANN’s IDN guidelines [29] require registries to publish “Label Genera-
tion Rulesets” (LGR), i.e. lists with permitted Unicode code points, in IANA’s
Repository for IDN Practices [30]. However, as of this publication, only six TLDs
had published these machine readable LGRs. For 626 other TLDs, the repository
contains simple text files that list the code points. Where possible, we parse these
files and generate the corresponding LGRs with ICANN’s LGR Toolset [31]. For
the remaining TLDs, no information is available from the repository. We manu-
ally search the IDN policy and generate an LGR for 30 additional TLDs. Finally,
we validate our candidate domains against these LGRs with the LGR Toolset
to determine whether they are allowed by their respective registries.

Domain Availability. To determine whether unregistered domains can be readily
bought through a popular registrar, we query GoDaddy’s API [22] for their
availability. This data complements the eligibility data, as further restrictions
may apply for certain TLDs (e.g. being based in that TLD’s country): in this
case the API returns an error indicating that the TLD is unsupported, otherwise
the API returns whether the domain is (un)available.

WHOIS Records. To obtain ownership information for the domains in our data
set, we retrieve and parse their WHOIS records with the Ruby Whois library [7].
However, WHOIS data has several limitations, especially for bulk and automated
processing. The format of WHOIS data varies widely between providers (which
can be registries or registrars); it may be human-readable, but both parser-based
and statistical methods cannot retrieve all information flawlessly [42]. Moreover,
rate limits prevent bulk data collection.

Even if data can be adequately obtained, it may not be of high quality. Reg-
istrant details can contain private contact information, so privacy concerns and
malicious intent have spurred a number of privacy and proxy services, whose
details replace those of the real owner [9]. The European General Data Pro-
tection Regulation (GDPR) has also cast doubt on whether such data can still
be released [32], with e.g. the .de registry already withholding any personal
details [13]. Finally, WHOIS data may be outdated, e.g. not reflecting company
name changes, or the same registrant may use different data across domains.

Web Pages. To determine what content the accented and non-accented domains
serve, we visit the root page for each domain pair where the IDN has a valid
A record. By limiting our crawl to one page, we minimize the impact on the
servers hosting the websites. As with our title crawl, we use a real browser to
capture the request and response headers, the redirection path and final URL of
the response, TLS certificate data, the HTML source and a screenshot.

To classify domains, we first compute a perceptual hash of the screenshot
based on the discrete cosine transform [37]. As visually similar images have simi-
lar hash values, we cluster their pairwise Hamming distances using DBSCAN [18]
to find groups of websites with (nearly) the same content, which we then man-
ually label. We also compare the hashes of the original domain and its IDN to
detect equal but non-redirecting domains. Finally, for domains that were not
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Table 2. Summary of the registration properties of our candidate IDNs.

Candidates 15 276 (100.0%)

Unregistered 12 087 (79.1%) Readily available 6 608 (54.7%)

Unavailable/Additional restrictions 4 116 (34.1%)

Non-compliant with TLD policy 1 363 (11.3%)

Registered 3 189 (20.9%)

classified using their hash, we check for the presence of certain keywords (e.g.
‘parking’) in the HTML source, or else decide that we cannot classify the domain.

Blacklists. To detect whether our candidate IDNs exhibit malicious behavior,
we match them and the domains they redirect to against the current blacklists
provided by Google Safe Browsing [23] (malware and phishing), PhishTank [53]
(phishing), Spamhaus DBL [60] (spam), SURBL [62] (spam, phishing, malware
and cracking) and VirusTotal [8] (malware).

3.3 Limitations

We restrict our search to IDNs with variations on characters of the Latin alpha-
bet. Our exploration could be broadened to popular domains that are a roman-
ized (converted to Latin alphabet) version of brands or phrases in another char-
acter set. However, a script often has multiple romanization standards that may
be language-dependent [64]: for example, (Yandex) can be romanized to
Iandeks, Jandeks or Yandeks. We therefore ignore other character sets to avoid
false positives and negatives caused by these differing systems.

Our approach to select candidate IDNs is conservative: our requirement that
whole words from the title and domain match, may mean that we miss some
candidate IDNs, e.g. if the domain is an abbreviation of words in the title.
However, through this approach we limit erroneous candidate IDNs, which we
estimate would more likely be either unregistered or maliciously used, as no one
would have a genuine interest in owning the domain.

4 Results

In this section, we determine whether IDNs with genuine interest share owner-
ship with the popular domain they are based on, and for what purpose they are
used. Through a crawl conducted between 30 August and 28 September 2018, we
were able to retrieve a non-empty title from the root page of 849 341 out of 1 mil-
lion domains (website rankings are known to contain unreachable domains [39]).
Using the process described in Sect. 3.1, we generated 15 276 candidate IDNs.
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Table 3. Summary of the classification of the registered IDNs with genuine interest.

Fig. 1. Cumulative distribution functions for the creation dates of registered IDNs.

4.1 Registration and Ownership

Table 2 lists whether our candidate IDNs with genuine interest are still available
for registration. Of the 79.1% unregistered IDNs, 11.3% do not comply with their
respective TLD’s LGR policy, meaning that an owner of a popular domain can-
not register the corresponding IDN and loses out on the user experience benefits.
Through the GoDaddy API, we find that 43.3% of all candidate IDNs are read-
ily available; 26.9% are unavailable for registration, because the registry either
blocks visually similar registrations or applies further restrictions to registrants,
which could also increase the burden for a malicious registration.

For the 20.9% registered domains, we compare the DNS (Table 3b) and
WHOIS (Table 3c) records and web crawl data (Tables 3e and f) to estimate
whether the original domain and its IDN have the same owner (summarized in
Table 3a). For 50.0%, we believe both domains to have the same owner: they
have overlapping WHOIS contact data, have the same A record, serve the same
web content and/or present a TLS certificate for the same domains. For an
additional 9.1%, shared nameservers or SOA records also allow us to reasonably
assume shared ownership. For 34.6%, we believe both domains to have a different
owner: either their NS and SOA records are both different, or the domain is parked
or for sale. Brand owners would be unlikely to use the latter for monetizing their
IDN, as they could better serve the actual website the visitor is looking for, and
the domain would not be displaying content from a third party.
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Figure 1 shows the distribution of creation dates of the IDNs. Brand owners
tend to have registered their IDNs earlier than average, while domain squatters
registered them later (Fig. 1a). The majority of IDNs was registered after the
original domain, although 3.7% of IDNs were registered earlier (Fig. 1b).

In our data set, we can see examples of companies that do or do not cover
IDNs when protecting their brand on the Internet. Nestlé, L’Oréal, Mömax and
Citroën own several candidate IDNs, usually redirecting to the original domain,
but still see some owned by third parties for parking. We also see 40 IDNs bought
by brand protectors such as CSC, Nameshield and SafeBrands for their clients.
However, the lack of support for certain characters hinders some companies in
owning IDNs with genuine interest: e.g. the Š character in Škoda sees little
support by TLD registries, causing relatively low IDN ownership.

4.2 Usage

Table 3d lists whether the IDNs host a website: 14.3% of registered IDNs have
no configured A record, suggesting proactive registration without the intention
to use the IDN. Table 3e lists what content the domains that returned HTTP
status code 200 serve, with 53.8% displaying the same content as the original
domain, meaning that they are very likely owned and operated by the same
entity. 112 IDNs are even treated equally by not redirecting to the original;
however, none of the original domains redirect to the IDN. 30.5% are parked/for
sale, while 5.4% show an empty/default page (e.g. unconfigured server).

Manual inspection of the domains that could not be classified shows that
these largely fall into two categories. The first consists of websites that are com-
pletely different to the original domain, owned by another entity. This can lever-
age the popularity of the original domain, and is an opportunity to own domains
with desirable phrases, but also exposes end users to confusion and potential mis-
direction. The second has the IDN showing slightly different or older versions
of the original domain. This indicates that they both belong to the same owner
and that there was an intention to use the IDN, but that it was forgotten when
the original domain was reconfigured and now points to an outdated website.

4.3 Security

Incidence on blacklists is very low: none of our candidate IDNs, nor the domains
they redirect to appear on the Google Safe Browsing, PhishTank, Spamhaus or
SURBL blacklists. VirusTotal reports malware detections on 5 domains, but only
by at most 3 out of 67 engines; these detections appear to be based on outdated
information. However, Tian et al. [66] have found that over 90% of phishing
sites served through squatting domains could evade blacklisting, meaning that
phishing may already be much more prevalent on our candidate IDNs. Finally,
parked domains are known to only sometimes redirect to malicious content [68]:
we manually saw instances of such intermittent redirects to blacklisted sites for
several IDNs.
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Through inspection of the redirection paths, we found no proof of affiliate
abuse on IDNs (sending users to the intended domain, but adding an affiliate
ID to earn a sales commission), as has been seen for several domain squatting
techniques [47]. We manually found examples of other, questionable behavior:
pokémongo.com offers a “cheat code” in an online survey scam [33], and has
a cryptocurrency miner [17,54]; jmonáe.com redirects to the original domain
through an ad-based URL shortener [49]; and www.preußische-allgemeine.de
includes the site of a competing newspaper in a frame (Fig. 2).

From the WHOIS records, we find 81 domains to use a privacy/proxy service;
while abusive domains tend to use such services [9], using them does not reliably
demonstrate malicious intent [36]. Moreover, privacy concerns as well as the
GDPR make that some registries and registrars hide private information by
default, reducing the need to procure a privacy/proxy service.

As the web is rapidly adopting HTTPS, IDNs will also need a correct TLS
setup for users to reach them without trouble. However, for the 2 166 reachable
IDNs in our TLS crawl, Table 3f shows that only 7.9% are securely configured and
would not cause a browser warning. The other domains either have an insecure
setup (mostly because the presented certificate does not cover the IDN) or do
not allow a TLS connection to be established.

For the domains with shared ownership, 60.2% are insecure or don’t allow
a TLS connection even though the original domain is securely configured. For
360 (26.9%) IDNs, the presented certificate is valid only for the original domain,
suggesting that the domain owner has set up the original domain and the IDN
identically, but has forgotten to obtain a certificate that is also valid for the IDN.

5 User Agent Behavior

Throughout the DNS protocol, the A-label (Punycode) of an IDN is used to
maintain backward compatibility. However, developers of user interfaces may
elect to display the U-label (Unicode) to provide the best user experience, as the
A-label is less readable (e.g. köln.de becomes xn- -kln-sna.de). In this section, we
discuss the behavior of user agents regarding IDNs with diacritical marks from
the Latin script, where the lack of homoglyphs makes abuse more difficult to
prevent. We also uncover two edge cases that have an impact both on the value
of IDNs to brand owners and on the vulnerability to IDN abuse.

Table 4 shows that popular web browsers and email clients vary widely in
whether they show the A- or U-label when visiting a website or receiving email.
The Gmail app on Android is a particular case, as it shows either the U-label or
the A-label when email is received on a Gmail or IMAP account respectively.

Browsers based on Chromium, such as Chrome and several Android browsers,
implement a special policy toward IDNs resembling very popular domains: the A-
label is shown when the domain with diacritics removed appears on a hardcoded
list based on Alexa’s top 10 000 [1]. This policy affects 125 candidate IDNs, of
which 74 are registered with 21 having the same owner: these cannot choose
to prefer the IDN without affecting user experience. 2 domains already do not
redirect, causing the display of the A-label. The seemingly arbitrary cut-off [58],
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Table 4. Browser and email client behavior regarding IDNs with diacritical marks.
For the top 10 000 pokémon.com was tested, for the other sites böll.de, and for “devi-
ation” characters straße.de. ‘A’ denotes the display of the A-label, ‘U’ of the U-label.
Appendix B lists the browser and email client versions used in our survey.

manual addition of domains and lack of updates [57] suggest that this heuristic
solution using a hardcoded list still leaves room for successful spoofing attacks.

Another edge case was introduced during the revision of the IDNA stan-
dard. Four characters (so-called “deviations”) are valid in both versions, but
are interpreted differently [12]: for example, the German ß is supported as-is
in IDNA2008 but converted to ss in IDNA20032. This results in two different
domains, but the visited domain depends on which version of the standard a
browser implements.

This does not only affect user experience, i.e. when links on web pages or out-
side the browser (e.g. in emails) point to different resources, but also has security
implications. The ß domain may host a spoofing or phishing site replicating that
of the ss domain [12]. Moreover, resources included from an ß domain could
originate from another domain in different browsers, allowing to insert malicious
content. Requiring the same owner for both domains will prevent such attacks,
although errors due to misconfigured websites may persist. However, for example
even the German .de registry does not currently enforce this for ß and ss.

Unfortunately, Table 4a shows that major browsers do not agree on which
IDNA standard to implement, causing them to direct users to different websites
as shown in Fig. 2. An ß character occurs in 55 candidate IDNs, of which 26
are registered, including several bank websites. 9 domains do not belong to the

2 The other deviations are the Greek , converted to in IDNA2003, and the zero
width non-joiner and joiner, both deleted by the IDNA2003 Punycode algorithm.
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Fig. 2. Visiting preußische-allgemeine.de in Chrome and Firefox leads to different sites:
preussische-allgemeine.de and xn- -preuische-allgemeine-ewb.de.

same owner: the ß domain is then almost unreachable from Chromium-based
and Microsoft browsers (users would have to type or follow a link to the already
converted A-label), and there is potential for phishing or spoofing attacks.

Email clients also handle domains with ß differently, even between receiving
and sending (Table 4b). On Outlook, the sender field remains empty. More wor-
ringly, we found that iOS Mail displayed an email received from an ß domain
(e.g. user@straße.de) as coming from the domain with ss (user@strasse.de). This
vulnerability enables phishing attacks by the owner of the ß domain; moreover,
checks such as SPF will succeed as they are carried out by the mail exchangers
and not the client. A reply will also be sent to the ß domain, potentially leaking
sensitive information to a third party. We disclosed this vulnerability to Apple,
and it was fixed in iOS 12.1.1 [4], which now displays the correct U-label.

6 Discussion

As registries are ultimately responsible for managing which domains can be
registered and who can own them, they are in a prime position to combat IDN-
related abuse. The most recent version of ICANN’s IDN implementation guide-
lines [29] calls for registries to prohibit registrations of domain name variants
with accented or homoglyph characters, or limit them to the same owner [40].
While certain registries implement these measures [6,11,51,52], other registries
that support IDNs usually either only apply such policies to homograph domains
but not domains with diacritics, or do not impose any restriction at all, allowing
malicious actors or domain squatters to register the IDNs with genuine interest.

On the client side, browsers and email clients represent the most visible and
widespread use of IDNs. However, we have shown that they do not yet universally
support the display of IDNs in Unicode, degrading the user experience. Moreover,
measures put in place by browser vendors to prevent homograph attacks have
been shown to be insufficient on multiple occasions [21,41,71]; we have done
the same for a popular email client. Mozilla has expressed the opinion that
registries are responsible for preventing IDN abuse, and that browser restrictions
risk degrading the usefulness of IDNs [44]. Indeed, the manually developed and
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heuristic-based defenses cannot be expected to comprehensively solve this issue.
Other protection mechanisms such as TLS and SPF also cannot prevent these
attacks, as e.g. certificates can legitimately be acquired for the malicious IDN.

Owners of popular brands and domains can register the IDN with genuine
interest, either as a real replacement or supplementary domain, or to proactively
stop others from abusing it. However, while this may be enough to combat
(more dangerous) abuse of the ‘valid’ IDN with genuine interest, registering all
other variant domains with homoglyphs, diacritics, and potential typos quickly
becomes infeasible in terms of cost and coverage. Shared ownership of IDNs with
genuine interest is already much more common than of other homograph IDNs
(over 50% vs. almost 5% [41]). However, it is still concerning that at least 35%
allow third parties to take hold of the valuable IDNs with genuine interest.

An unfortunate outcome of the issues surrounding IDNs would be to dis-
courage the adoption of IDNs and to recommend that users distrust them. IDNs
enable anyone to use the Internet in their native language, providing them a
great benefit in user experience. IDNs also allow companies to create a better
integration of brands with their Internet presence, e.g. combining a logo with a
TLD in marketing material, providing additional economic value.

7 Conclusion

We have introduced the concept of Internationalized Domain Names for which
there is genuine interest : domains that represent popular brands or phrases with
diacritical marks. By comparing the page titles and domain names for 849 341
websites, we generated 15 276 such IDNs. We find 43% of them to be available
for registration without restrictions, leaving the opportunity for a third party
to exploit the IDN. For the 3 189 registered domains, we see that ownership is
split: at least half have the same owner and content as the original domain,
but at least a third belongs to another entity, usually domain squatters who
have put the domain up for sale. The IDNs are not known to exhibit malicious
activity, although cases of questionable behavior can be found. From insecure
TLS setups and IDNs showing old versions of the original domain, we can see that
brand owners who registered IDNs tend to ‘forget’ configuring them properly.
Finally, we find applications to treat IDNs with diacritical marks inconsistently,
displaying Unicode or a less readable alternative depending on resemblance to a
popular domain or on the implemented version of the IDNA standard. We even
found a phishing vulnerability on iOS Mail, where the actual sender domain
differs from the one displayed. While brand owners have already somewhat found
their way to IDNs with genuine interest, and while registries and browser vendors
start to deploy tools to prevent IDN abuse, support for IDNs remains challenging,
which unfortunately does not encourage their uptake in the near future.
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A Common Character Substitutions

Original ä ö ü ß æ ø å œ þ
Substitution ae oe ue ss ae oe aa oe th

B Tested User Agent Versions

Client Version Operating system

Browser desktop Google Chrome 69.0.3497.100 Ubuntu Linux 18.04.1

Firefox 62.0 Ubuntu Linux 18.04.1

Safari 12.0.1 (13606.2.100) macOS 10.13.6 (17G65)

Opera 55.0.2994.61 Ubuntu Linux 18.04.1

Internet Explorer 11.0.9600.18894 Windows 8.1

Microsoft Edge 42.17134.1.0 Windows 10 17.17134

Browser mobile Google Chrome 69.0.3497.100 Android 7.0.0

Safari – iOS 12.0 (16A366)

Firefox 62.0.2 Android 7.0.0

UC Browser 12.9.3.1144 Android 7.0.0

Samsung Internet 7.4.00.70 Android 7.0.0

Opera 47.3.2249.130976 Android 7.0.0

Microsoft Edge 42.0.0.2529 Android 7.0.0

Email desktop Outlook 2016 16.0.4738.1000 Windows 10 17.17134

macOS Mail 11.5 (3445.9.1) macOS 10.13.6 (17G65)

Thunderbird 52.9.1 Ubuntu Linux 18.04.1

Email mobile Gmail 8.9.9.213351932 Android 7.0.0

Outlook 2.2.219 Android 7.0.0

iOS Mail – iOS 12.0 (16A366)

iOS 12.1.2 (16C104)

Webmail Gmail – –

Yahoo – –

Yandex – –

Outlook – –

RoundCube 1.2.9 –
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Abstract. Network operators use the Border Gateway Protocol (BGP)
to control the global visibility of their networks. When withdrawing an
IP prefix from the Internet, an origin network sends BGP withdraw mes-
sages, which are expected to propagate to all BGP routers that hold an
entry for that IP prefix in their routing table. Yet network operators
occasionally report issues where routers maintain routes to IP prefixes
withdrawn by their origin network. We refer to this problem as BGP
zombies and characterize their appearance using RIS BGP beacons, a
set of prefixes withdrawn every four hours. Across the 27 monitored bea-
con prefixes, we observe usually more than one zombie outbreak per day.
But their presence is highly volatile, on average a monitored peer misses
1.8% withdraws for an IPv4 beacon (2.7% for IPv6). We also discovered
that BGP zombies can propagate to other ASes, for example, zombies
in a transit network are inevitably affecting its customer networks. We
employ a graph-based semi-supervised machine learning technique to
estimate the scope of zombies propagation, and found that most of the
observed zombie outbreaks are small (i.e. on average 10% of monitored
ASes for IPv4 and 17% for IPv6). We also report some large zombie
outbreaks with almost all monitored ASes affected.

1 Introduction

BGP is the protocol that governs inter-domain routing on the Internet. As such
understanding the boundaries of its behaviour is of prime importance. The tens
of thousands of Autonomous Systems (ASes) that constitute the Internet expect
to rapidly be able to change the routing and reachability of the address space
they are originating towards all other ASes. The process of announcing and
withdrawing address space is of utmost importance.

When an origin AS withdraws a prefix, it sends a withdrawal message to its
BGP neighbours, who will in turn propagate it to their neighbours. Sometimes a
c© Springer Nature Switzerland AG 2019
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network sees the best path that it propagated to neighbours disappears, but in a
rich topology the network still has alternative paths yet to be withdrawn. In that
case the neighbours will not receive a withdrawal, but the best alternative path.
This process, called path hunting, typically causes several BGP path changes in
the matter of minutes, before a BGP prefix is fully withdrawn [9]. The richer
the topology between the origin AS and a BGP speaker, the larger the number
of path changes.

Theoretically this withdrawal process ends with the prefix completely with-
drawn from all BGP speakers, as announcements and withdrawals propagate
through the entire Internet similarly. In practice, this sometimes fails, a phe-
nomenon known by network operators as stuck routes or zombie routes. In this
case, path hunting gets stuck in a state where BGP routes are still visible at some
BGP routers, something we can easily observe with route collector systems like
RIS, Routeviews, and Isolario [2,6,7].

This work is motivated by the operational confusion that missing withdrawal
causes. We have witnessed several cases where zombie routes caused confusion
about the state of the withdrawn address space. In addition, troubleshooting
and cleaning zombie routes is a burden for network operators. This phenomenon
is relatively unknown outside network operator circles, and generally not well
understood. We intend to shed light on BGP zombies in order to make the
research community aware of this problem and to assist operators.

In this study we characterize zombie routes in a controlled setting using
the RIS routing beacons. In this controlled environment, we can measure the
frequency of failed withdrawals, and alternative paths that are seen in the with-
drawal phase. The key contributions of this paper are to provide the first charac-
terization of BGP zombies and a method to infer the scope of zombie outbreaks
with the help of a graph-based semi-supervised machine learning algorithm. Our
experiments reveal a surprisingly high number of zombies. Zombies are seen daily
in our dataset, but we found that the number of affected ASes is usually limited
(on average 10% of monitored ASes in IPv4 and 17% for IPv6). The appearance
of zombie routes is very erratic. Zombie routes rarely emerge for numerous pre-
fixes at the same time and for the same RIS peers. The average likelihood of
observing a zombie for a given RIS peer and beacon prefix is 1.8% for IPv4 and
2.7% for IPv6. Finally, we show that numerous zombie paths are revealed dur-
ing path hunting and the scope of an outbreak is usually related to the affected
transit networks.

2 BGP Zombies

Before diving into the detailed analysis of BGP zombies, we define all the related
terminology and explain our experimental setup. A BGP zombie refers to an
active Routing Information Base (RIB) entry for a prefix that has been with-
drawn by its origin network, and is hence not reachable anymore. In this paper
we also refer to zombie ASes and zombie peers for ASes and BGP peers
whose routers have BGP zombies. We refer to all zombies that correspond to
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the same prefix and appear during the same two-hour time slot as a zombie
outbreak, the outbreak size is the number of zombie ASes.

2.1 Experimental Setup

In order to observe BGP zombies one needs to withdraw an IP prefix from its
origin AS and inspect RIB changes, or lack thereof, in other ASes. We conduct
such controlled experiments with the help of RIPE’s Routing Information Service
(RIS) BGP beacons [4,14] and RIS BGP data repository [6].

The RIS BGP beacons are a set of IPv4 and IPv6 prefixes that are used solely
for studying Internet inter-domain routing. These IP prefixes are announced
and withdrawn at predetermined time intervals. Namely, RIS BGP beacons are
announced every day at 00:00, 04:00, 08:00, 12:00, 16:00, and 20:00 UTC, and
they are withdrawn two hours after the announcements (i.e. at 02:00, 06:00,
10:00, 14:00, 18:00, and 22:00 UTC). We are monitoring 27 beacon prefixes (13
IPv4 and 14 IPv6) announced from Europe, U.S.A., Russia, Japan, and Brazil.

RIS also archives RIB and BGP update messages collected at diverse places
on the Internet. RIS collectors (named rrc00, rrc01, etc.) are mainly located at
Internet eXchange Points (IXP) and peer with hundreds of different ASes. Using
this archive we can monitor how these ASes respond to the BGP beacons stimuli
and characterize the emergence of BGP zombies.

For beacon prefixes, the detection of zombies in RIS peers is straightforward.
We keep track of the visibility of beacons for all RIS peers and report a zombie for
each RIB entry that is still active 1.5 h after the prefix was withdrawn. The 1.5 h
delay is set empirically to avoid late withdrawals due to BGP convergence [14],
route flap damping [20], or stale routes [17]. Each beacon’s visibility is monitored
in near-real time using the RIPEstat looking glass [5] so we can trigger active
measurements (e.g. traceroutes) during detected zombie outbreaks.

We conducted experiments during the three periods of time listed in Table 1
and detected for the 27 monitored prefixes a total of 5115 zombie outbreaks,
each composed of one or more zombie routes for the same prefix.

Table 1. Measurement periods and number of detected zombie outbreaks for the 27
monitored beacons.

Start End #IPv4 outbreaks #IPv6 outbreaks

2017-03-01 2017-04-28 1732 591

2017-10-01 2018-12-28 384 1202

2018-07-19 2018-08-31 520 686

2.2 Example

Figure 1 illustrates the visibility for beacon 84.205.71.0/24 from all RIS peers on
September 9th and 10th, 2017. Peers are sorted on the y axis and time is repre-
sented by the x axis. From 12:00 to 18:00 UTC, all peers behave as expected. At
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Fig. 1. Visibility for 84.205.71.0/24 from all RIS collectors on September 9th and 10th,
2017. A zombie outbreak happened from 18:00 to 20:00 UTC and another one from
22:00 to 00:00 UTC. Both outbreaks are visible from three RIS peers.

12:00, RIS peers announce the availability of the beacon prefix and maintain an
active route to the prefix until 14:00. One peer from rrc19 withdraws the prefix
a bit late (14:19), but this is not considered as a zombie because the prefix is
withdrawn reasonably quickly. However, at 18:00 three peers do not withdraw
the beacon although this prefix is not reachable at that time. This zombie out-
break ends at 20:00 when the beacon is re-announced. A similar zombie outbreak
appears at 22:00 for the same three peers.

During the first zombie outbreak (18:00-20:00), we found other zombies for
the same three peers but another beacon (84.205.67.0/24). The 25 other beacons
are withdrawn as expected at that time. For the second outbreak (22:00-00:00),
we found no other zombie. These observations give an early glimpse of the rela-
tionship between outbreaks for different prefixes. Zombie outbreaks for different
beacons can be related but are usually independent. We formally investigate the
co-occurrence of outbreaks from different beacons in Sect. 4.1.

2.3 Are Zombies Real?

To ensure that no artificial zombies are caused by measurement artifacts, we
also looked for zombie evidences in other datasets.

First, for each zombie detected with the RIPEstat looking glass, we also
accessed the raw data from the RIS archive using BGPstream [16] and checked
that the withdraw messages are indeed missing in the raw traces. We found 794
outbreaks that are reported by the looking glass but not present in the raw data.
We ignored these events in our analysis; these are not listed in Table 1.

Then, we also looked at the presence of zombies in Routeviews data and
NLNOG looking glass during large zombie outbreak and confirmed that zombies
are also present there. As Routeviews and RIS are now using completely differ-
ent software for data collection (ExaBGP vs. Quagga/Zebra) we assume that
observed zombies are not caused by malfunctioning collectors.

Finally, during zombie outbreaks we performed traceroute measurements
towards beacon prefixes from Atlas probes located in zombie ASes. The tracer-
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outes reveal that border routers in zombie ASes are indeed forwarding packets
whereas other routers usually drop these packets. We also use these traceroute
results to evaluate our method to infer zombie ASes on AS paths (Sect. 3.2).

3 Hunting Zombies

With the simple zombie detection technique described above, we observe zombies
only in ASes that are peering with RIS collectors. In this section, we show that
the withdrawn and zombie AS paths collected by RIS also enable us to infer
zombie ASes beyond RIS peers and estimate the scope of outbreaks.

For each outbreak we retrieve the AS path of zombie entries and the last
valid path for peers that have correctly withdrawn the beacon. A path alone
provides little information, but put together they reveal topological similarities
that we consider evidence for the locations of zombies.

Fig. 2. AS paths for the second outbreak in Fig. 1. Each node is an AS, red and green
nodes are RIS peers. Gray nodes are ASes seen on the paths but not peering with RIS.
(Color figure online)

Figure 2 depicts AS paths for the second outbreak in Fig. 1. Each node rep-
resents an AS and consecutive ASes in the AS paths are connected by an edge.
The green nodes represent RIS peers that have correctly withdrawn the prefix at
22:00. The red nodes represent zombie peers observed from 22:00 to 00:00. The
gray nodes represent ASes that are not peering with RIS collectors, hence we
have no direct observations for these ASes though they appear in collected AS
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paths. Here, the three observed zombies share the same upstream provider which
is strong evidence that this provider and all its downstream ASes (depicted by
triangles in Fig. 2) are also zombies.

To systematically identify these clusters of zombies, we build such graphs for
each outbreak then we classify unknown ASes using the graph-based machine
learning technique described in the next section. The results of the classification
are illustrated in Fig. 2 with the shape of the nodes: triangles represent detected
zombies; circles represent other ASes.

3.1 Graph-Based Semi-supervised Learning

Graph-based Semi-Supervised Learning (G-SSL) is a generic framework per-
mitting efficient classification of graph nodes by jointly exploiting the graph
topology and prior information consisting of a small fraction of nodes being a
priori classified by experts [19] (i.e. RIS peers). There already exist several doc-
umented examples where G-SSL has outperformed other state-of-the-art clas-
sification strategies (e.g., BitTorrent content and user classification [10], text
recognition [18], bio-medical diagnoses [21]).

Amongst the several versions of G-SSL, the PageRank-based G-SSL is a
popular and commonly used one [11]. It relies on a coding of the graph topology
via a specific operator, the (combinatorial) Laplacian L. Namely, let us consider
an N node undirected graph encoded by the adjacency matrix W , with Wi,j = 1
when nodes i and j are connected and 0 otherwise. Further, let di =

∑
j Wij

denote the degree of node i, D = diag(d1, . . . , dN ) the diagonal matrix of vertex
degrees, and form L = D − W . The PageRank K-class classification procedure
can be sketched as follows. The labeled information is encoded in a matrix Y ∈
R

N×K , where Yik = 1 if node i is declared by expert to belong to class k
and 0 elsewhere. In the present work, Y conveys the information provided by
RIS; normal and zombie peers are respectively coded as Yi1 = 1 and Yi2 = 1.
The classification of the unlabeled nodes amounts to estimate a vectorial signal
X ∈ R

N×K on the graph as:

min
x

{
xTD−1LD−1x + μ (y − x)T D−1 (y − x)

}
. (1)

This functional minimization is known to have an analytical closed-form solution,
providing access to X, without recourse to a time/memory consuming iterative
minimization procedure:

XT =
μ

μ + 2
yT

(
I − αD−1W

)−1
. (2)

Once X is computed, node i is assigned to the class k selected by argmaxkXik.
The hyper-parameter μ balances the confidence granted to the expert knowl-

edge versus the information conveyed by the graph (and the graph Laplacian
L). It is tuned by means of a standard leave-one-out cross validation procedure,
tailored to the context of semi-supervised learning: From the set of documented
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vertices, one element, per class, is selected as a labeled example, while the rest
is added to the group of not documented and used for validation. The procedure
is repeated and μ is selected as maximizing average detection performance.

3.2 Validation

G-SSL produces a list of zombie ASes that are not necessarily peering with RIS
collectors. To evaluate the classification accuracy of G-SSL we performed timely
traceroute measurements from ASes found on the zombie paths and compared
the traceroute results with G-SSL results.

Our traceroute measurements are done with the RIPE Atlas measurement
platform [3]. We select five Atlas probes for each AS found in zombie paths, and
perform traceroutes towards the corresponding beacon prefix every 5 min until
the prefix is announced again.

Comparing traceroute results to G-SSL results requires certain precautions.
We intuitively expect routers from zombie ASes to forward traceroute pack-
ets and other routers to either drop these packets or return an ICMP network
unreachable error. However, the presence of default routes in intra-AS routing is
inevitably exhibiting router IP addresses although the AS border routers have
withdrawn the prefix. Another difficulty is to identify borders between two ASes
and avoid making wrong inferences when mapping IP addresses to AS numbers
[13,15].

To address both issues we employ the following heuristics. First, we discard
the first public IP found in traceroutes as it usually stands for a gateway with
a default route. We group all traceroutes initiated from the same AS, if these
traceroutes consist only of ICMP network unreachable errors and unresponsive
routers then we consider that AS as normal, that is the AS has correctly with-
drawn the route and is not forwarding packets. For traceroutes with responsive
routers we retrieve the routers’ ASN using longest prefix match and compute FA,
the number of IP addresses from ASN A that forwarded packets, and, EA the
number of IP addresses from ASN A that sent an ICMP error. We consider an
AS A as zombie if the majority of its routers are forwarding packets, FA > EA.

The AS classification using traceroutes and the observations from RIS peers
constitute the ground truth data we use to evaluate G-SSL results. For the
three measurement periods G-SSL retrieved 97% of the zombies identified in
the ground truth and 99% of the normal AS, which is more than acceptable for
the following characterization of zombies. Since G-SSL classifies all nodes in the
graph, we also obtain 35% more classified ASes than using traceroutes and RIS
peers.

4 Zombie Characteristics

We now investigate temporal and topological characteristics of zombies directly
observed at RIS peers and those inferred using the G-SSL method. Our aim here
is to quantify the frequency of zombies, uncover their locality, and estimate the
scale of zombie outbreaks.
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(a) Frequency of zombie appearance for
each RIS peer and beacon prefix.

(b) AS path length for IPv4 beacons.

Fig. 3. Zombies observed by RIS peers.

4.1 Zombies Observed at RIS Peers

Starting with zombies observed at RIS peers, we compute the zombie emergence
rate, that is the number of times zombies are reported for each peer and each
beacon normalized by the number of times beacons have been withdrawn dur-
ing our measurement study. This metric corresponds to the likelihood of pair
〈peer, beacon〉 to cause a zombie. Figure 3a depicts the distribution of the values
obtained with our dataset. We observe only 6.5% 〈peer, beacon〉 pairs with no
zombie during our entire measurement periods. However, zombies are uncom-
mon for RIS peers, 50% of the 〈peer, beacon〉 pairs have zombie entries for less
than 1.3% of the beacon withdraws (average value is 1.8% for IPv4 and 2.7%
for IPv6). We found some outlier values, meaning that a few RIS peers are more
prone to zombies, which is better understood with G-SSL results (Sect. 4.2).

We also compared the zombie AS paths to the paths that are advertised
before the beacon withdraw. For IPv4, 50% of the zombie paths are different
than the paths that are used before the withdraw (69% for IPv6). Figure 3b
illustrates the distribution of path length for zombie paths, paths that were
previously advertised by zombie ASes (Normal path (zombie peer)), and paths
that were advertised by peers that correctly withdrawn the beacon (Normal path
(normal peer)). The distribution of zombie paths is clearly shifted to the right
hence zombie paths are usually longer. These observations imply that zombie
paths are mostly different from the paths that are selected during BGP path
convergence, and numerous zombies appear during path hunting.

Then we examine if certain beacons are more prone to zombies. Figure 4a
shows the number of zombie outbreaks observed per beacon. On average we
detect about 200 outbreaks per beacon in our dataset. For IPv6 beacons
announced from DE-CIX in Frankfurt and VIX in Vienna are responsible for
the largest number of outbreaks. For IPv4 the beacon with the most outbreaks
is the one announced from both AMS-IX and NL-IX in Amsterdam. To under-
stand the relationship between zombies detected across the various beacons, we



BGP Zombies: An Analysis of Beacons Stuck Routes 205

(a) Total number of zombie outbreaks per
beacon.

(b) Number of simultaneous zombie out-
breaks.

Fig. 4. Dependency of outbreaks across BGP beacons.

(a) Distribution of the number of zombie
ASes per outbreak.

(b) Relation between main zombie transit
and outbreak size.

Fig. 5. All detected Zombies (i.e. observed by RIS and inferred by G-SSL).

compute the number of outbreaks that happened simultaneously but for differ-
ent beacons. For 23% of instances where we detect IPv4 zombies (35% for IPv6)
we found zombies only for a single beacon. For IPv4 we also found multiple
instances (25%) where we detect simultaneous zombies outbreaks for all moni-
tored beacons. The rest of the distribution is uniform, meaning that we observe
little correlation between outbreaks on different beacons. These observations
reveal that usually outbreaks emerge independently across different prefixes, yet
in certain cases some peers altogether miss withdraws for all monitored beacons.

4.2 Zombies Beyond RIS Peers

Using G-SSL results we can explore the scale of zombie outbreaks beyond the
monitored RIS peers. For each zombie outbreak we count the total number of
ASes with detected zombies (i.e. zombies observed at RIS peers and zombies
inferred by G-SSL). On average, a zombie outbreak affects 24 ASes for IPv4 and
30 ASes for IPv6, that is 10% of the IPv4 monitored ASes and 17% for IPv6.



206 R. Fontugne et al.

(a) Zombie detected in Init7 for beacon
2001:7fb:fe06::/48 on March 1st, 2017.

(b) Zombie detected in Level(3) for bea-
con 84.205.70.0/24 on December 6th,
2017.

Fig. 6. Examples of zombie outbreak affecting significant transit networks. See Fig. 2
for the legend.

However, the distribution of outbreak size is significantly skewed (Fig. 5a).
The median outbreak size is 11 ASes for IPv4 and 16 ASes for IPv6. We also
observe a few instances where most of the monitored ASes are zombies due to
zombies that appeared close to the beacons’ origin AS or in large ISPs.

For IPv6 we found that a remarkably high number of outbreaks (63%) contain
between 12 and 19 ASes. For IPv4, the number of outbreaks with that particular
size is also significant (18%), but we also observe a large proportion of smaller
outbreaks, 45% of the IPv4 outbreaks have between 1 and 6 ASes.

By manually looking at the results we noticed certain patterns among out-
breaks. We hypothesize that the number of zombie ASes is usually related to
the importance of the transit networks affected by zombies. To illustrate this
we select for each outbreak the most prominent transit network affected by the
outbreak using global AS hegemony [8,12]. AS hegemony measures the central-
ity of an AS in the Internet, higher values standing for Tier-1 ISPs. Comparing
the size of outbreaks to the largest AS hegemony score of affected ASes (Fig. 5b)
shows that small outbreaks consist only of edge networks (i.e. low AS hegemony)
and large transit networks belong only to the largest outbreaks.

Figure 6 illustrates two outbreaks where we detected zombies in large transit
networks. The left hand side graph (Fig. 6a) represents an outbreak where the
zombie AS with the highest hegemony score is Init7 and all ASes downstream are
also affected by the outbreak. The right hand side graph (Fig. 6b) depicts another
outbreak where we inferred a zombie in a Tier-1 network, Level(3). As Level(3)’s
customer cone is larger the scope of the outbreak is also more important. This
results in about half of the RIS peers having zombie routes through Level(3).
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Table 2. Top 5 affected transit ASes for IPv4, IPv6, and each measurement period.
Each percentage is the number of outbreaks that include the AS divided by the total
number of outbreaks for the corresponding measurement period.

(a) IPv4

Mar./Apr. 2017 Oct./Dec. 2017 Jul./Aug. 2018

AS3303 Swisscom 46.13% AS6939 HE 14.84% AS6667 Elisa 19.81%

AS12874 Fastweb 46.07% AS1103 SURFnet 9.90% AS680 DFN 17.69%

AS8359 MTS 9.93% AS7575 AARNet 9.38% AS7018 AT&T 16.73%

AS680 DFN 9.18% AS286 KPN 9.38% AS3549 Level3 GBLX 15.96%

AS7018 AT&T 8.60% AS6453 TATA 9.11% AS7575 AARNet 15.19%

(b) IPv6

Mar./Apr. 2017 Oct./Dec. 2017 Jul./Aug. 2018

AS8455 Atom86 39% AS13030 Init7 57% AS13030 Init7 74%

AS13030 Init7 39% AS8455 Atom86 55% AS8455 Atom86 73%

AS5580 Hibernia 36% AS8928 Interoute 36% AS7018 AT&T 15%

AS7018 AT&T 8% AS9002 RETN 35% AS23106 CEMIG 13%

AS28917 Fiord 6% AS33891 Core-Backbone 22% AS1916 RNP 13%

In the absence of zombies we observe much less AS paths that contain Init7
or Level(3). This demonstrates again the role of path hunting in zombie propa-
gation. When a beacon is withdrawn and a zombie appears on a transit network,
downstream ASes are selecting that zombie path as other paths get discarded.

The frequency of zombies at transit networks is hence directly related to
the topological spread of zombie outbreaks reported earlier (Fig. 5a). In Table 2
we list transit networks that appeared the most in zombie outbreaks. We again
employ AS hegemony to focus only on large transit ASes, we arbitrarily picked
ASes with an hegemony higher than 0.001. For IPv4 the top-5 ASes vary signif-
icantly across the three measurement periods. For IPv6 we found that Init7 and
Atom86 are always the top two affected networks. Our manual inspection of the
data reveals that Atom86 is downstream of Init7, so is affected every time Init7
has zombies. Init7’s zombies usually propagate to 14 downstream ASes (exam-
ple shown in Fig. 6a), which explains the large number of outbreaks composed
of about 15 ASes in IPv6 in our results (Fig. 5a).

Network operators at Init7 acknowledged these issues with IPv6 routes, likely
due to misbehaving vendor software, and expressed the need for zombie report-
ing systems, as it creates customer complaints every few months. Mitigation of
the BGP zombies usually required the clearing of some Route Reflector iBGP
sessions within Init7’s network. Init7 operates its backbone using Extreme Net-
works MLXe (formerly known as Brocade MLXe) platform, which seems to be
uncommon. Upgrading to later firmware version did not resolve the problem.
Notice that we do not imply that detected outbreaks are caused by the transit
networks listed in Table 2. Finding the root cause of zombie outbreaks requires
additional measurements within these networks and their peers.
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5 Discussion

While detecting BGP zombies with RIS beacons is straightforward, we faced
significant challenges in pinpointing the root cause of observed zombies. Given
the erratic patterns observed in our study and the investigations conducted with
network operators, we believe zombies are mainly the results of software bugs
in routers, BGP optimizers, and route reflectors. The systematic identification
of zombie root causes on the Internet has proven to be very challenging, even
for operators, as it requires timely and detailed information from a complex
and occasionally misbehaving infrastructure. It is however a crucial challenge to
ensure that this issue will not cause an increasing amount of difficult to debug
issues for network operators.

If the fraction of zombie routes in the wild is in the same order of magnitude as
what we see for RIS beacons, this can have interesting consequences that would
merit further research. For instance, in the case of large route leaks, zombie
routes could add significantly to the complexity of mitigating these incidents.

Our study focuses only on RIS beacons as we know their withdraw times
a priori. However, these results cannot be easily extrapolated for any routed
prefix. We could infer zombies for cases where a prefix is withdrawn in a short
period of time for most, but not all route collector peers, and it remains difficult
to distinguish this from a routing configuration change intended to limit the
visibility of a prefix. Furthermore, in the case of large zombie outbreaks, which
are of prime interest, one may confuse the few observed withdraws with a local
routing issue. We plan to address these challenges in future works. A rigorous
method for detecting zombies in the wild would allow us to estimate the overall
impact of zombies on routing tables and to provide network operators with tools
to effectively identify zombies.

6 Conclusions

In this paper, we investigated the emergence of BGP zombies with the help of
RIS beacons. Our study spans across a year and half of data and revealed that
BGP zombies are seen daily, although the scope of outbreaks is usually limited
to a small fraction of monitored ASes (on average 10% for IPv4 and 17% for
IPv6). We found almost no regularity in the appearance of zombies. They rarely
emerge synchronously on all monitored prefixes. Numerous zombie paths are
revealed during path hunting and the scope of an outbreak is usually related to
the affected transit networks. Our future plans are to identify zombies for any
prefix announced on the Internet (i.e. not only beacon prefixes) and quantify the
impact of zombies in the wild. Finally, we make our tools and traceroute results
publicly available [1] in order to share our findings and assist researchers in their
zombie hunt.
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Abstract. Even as residential users increasingly rely upon the Internet,
connectivity sometimes fails. Characterizing small-scale failures of last
mile networks is essential to improving Internet reliability.

In this paper, we develop and evaluate an approach to detect Inter-
net failure events that affect multiple users simultaneously using mea-
surements from the Thunderping project. Thunderping probes addresses
across the U.S. When the areas in which they are geo-located are affected
by severe weather alerts. It detects a disruption event when an IP address
ceases to respond to pings. In this paper, we focus on simultaneous dis-
ruptions of multiple addresses that are related to each other by geog-
raphy and ISP, and thus are indicative of a shared cause. Using bino-
mial testing, we detect groups of per-IP disruptions that are unlikely to
have happened independently. We characterize these dependent disrup-
tion events and present results that challenge conventional wisdom on
how such outages affect Internet address blocks.

1 Introduction

Even as residential users rely increasingly upon the Internet, last-mile infras-
tructure continues to be vulnerable to connectivity outages [1–3,5,18,20–24].
Measurement-driven approaches to study residential Internet failures will help
improve reliability by identifying vulnerable networks and their challenges.

Techniques that detect outages at the Internet’s edge often seek, using ter-
minology from Richter et al. [19], disruption events: the abrupt loss of Internet
connectivity of a substantial set of addresses. The set of addresses may com-
prise those belonging to the same /24 address block [18,19], BGP prefix [9], or
country [4]. Techniques seek such disruption events because individually, each
large disruption has impact and their size makes them easier to confirm, e.g.,
with operators. In contrast, disruptions affecting only a few users are harder to
detect with confidence. For example, the lack of response from a single address
might best be explained by a user switching off their home router—hardly an
outage. However, residential Internet outages may be limited to a small neigh-
borhood or apartment block; prior techniques are likely to miss such events.
c© Springer Nature Switzerland AG 2019
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In this work, we demonstrate a technique that detects disruption events with
quantifiable confidence, by investigating the potential dependence between dis-
ruptions of multiple IP addresses in a principled way. We apply a simple statisti-
cal method to a large dataset of active probing measurements towards residential
Internet users in the US. We find times when multiple addresses experience a
disruption simultaneously such that they are unlikely to have occurred inde-
pendently; we call the occurrence of such events dependent disruptions. Our
preliminary results shed light on when, how large, and with which structure in
the address space dependent disruptions happen. We show that even some large
outages do not disrupt entire /24 address blocks.

Our contributions are:

– We demonstrate a technique to detect dependent disruption events using the
binomial test.

– We show that dependent disruption events occur more frequently at night for
some ISPs.

– The majority of dependent disruption events last less than an hour.
– We show that dependent disruption events do not always affect entire /24

address blocks and can therefore be missed by prior techniques that detect
disruptions at this granularity [18,19].

2 Background and Related Work

In this section, we begin with a presentation of edge Internet disruption detection
techniques. These techniques typically detect disruptions affecting a large group
of addresses. Next, we provide a description of the Thunderping dataset [21] that
yields per-IP address disruptions required for our detection technique.

2.1 Prior Work

Prior techniques that detect edge Internet disruptions typically detect disrup-
tions that affect a group of addresses collectively. Like us, they also leverage the
dependence among the per-IP address “disruptions” that these disruptions cause.
However, they differ from our technique in that they look for dependence in large
aggregates (that is, so many addresses are affected at the same time that there
must be an evident anomaly) or limit their resolution to small address blocks,
looking only for outages that cause dependent disruptions for most addresses in
a monitored block.

Several systems investigate disruptions affecting a substantial set of
addresses. The IODA system looks for the most impactful outages, those causing
an extensive loss of connectivity for a geographical area or Autonomous Sys-
tem [4,7]. Hubble detects prefix-level unreachability problems [9] using a hybrid
monitoring scheme that combines passive BGP monitoring and active probing.
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Other systems detect disruptions affecting many addresses within /24 address
blocks. For example, Trinocular uses historical data from the ISI census [6] to
model the responsiveness of blocks and finds addresses within each block that
are likely to respond to pings. The system pings a few of these addresses from
each block at random in 11-minute rounds. It then employs Bayesian inference
to reason about responses from blocks. When a block’s responsiveness is lower
than expected, Trinocular probes the block at a faster rate and eventually detects
an outage when the follow-up probes also suggest the block’s lack of Internet
connectivity. Since Trinocular may not identify an outage even if a single address
in a block responds to probing, it potentially neglects outages affecting /24 blocks
only partially, including larger outages affecting multiple /24 blocks. Recently,
Richter et al. used proprietary CDN logs to detect disruptions affecting multiple
addresses within /24 address blocks [19]. They showed that many disruptions do
not affect all addresses in a /24; we revisit this result in Sect. 4.4.

Disco [22] shares some features with our work: they also detect simultaneous
disconnects of multiple RIPE Atlas probes within an ISP or geographic region to
infer outages. However, there are two major differences between the Thunderping
and RIPE Atlas datasets. At any given point in time, the Thunderping dataset
typically consists of pings sent to thousands of addresses in relatively small geo-
graphical areas in the U.S. with active severe weather alerts. The Disco dataset
consists of 10,000 RIPE Atlas probes distributed around the world; this sparse
distribution may prevent the detection of smaller outages localized to one area
(like a U.S. state). The second difference is that unlike Thunderping ping data
whose timestamps are only accurate to minutes, the timestamps available in the
RIPE Atlas datasets are accurate to seconds, permitting the use of Kleinberg’s
burst detection to detect bursts in probe disconnects.

2.2 The Thunderping Dataset Yields Per-Address Disruptions

The key insight behind our technique is that simultaneous disruptions of multiple
individual IPv4 addresses could occur due to a common underlying cause. We
therefore require per-IP address disruptions.

Such data is present in the Thunderping dataset [21]. Thunderping pings
sampled IPv4 addresses from multiple ISPs in geographic areas in the United
States. Originally designed to evaluate how weather affects Internet outages,
the system uses Planetlab vantage points to ping 100 randomly sampled IPv4
addresses per ISP, from multiple ISPs, in each U.S. county with active weather
alerts. Each address is pinged from multiple Planetlab vantage points (at least
3) every 11 min, and addresses in a county are pinged six hours before, during,
and after a weather alert.

Here, we analyze a dataset of Thunderping’s ping responses to detect disrup-
tions for each probed address using Schulman and Spring’s technique [21]. When
an address that is responsive stops responding to pings from all vantage points
that are currently probing it, we detect a disruption for that address. Since a
disruption is detected only when all vantage points declare unreachability, the
minimum duration of a disruption is 11 min (at the end of 11 min each vantage
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point has pinged the address at least once).Thunderping continues to probe an
address after it has become unresponsive, allowing us to estimate how long the
unresponsive period lasted.

While per-IP address disruptions allow the detection of small disruption
events, all per-address disruptions are not necessarily the result of Internet con-
nectivity outages (e.g., a user might turn off their home router). This paper
shows how to detect dependent disruption events using per-address disruptions.

3 Detecting Dependent Disruptions

In this section, we apply binomial testing to identify dependent disruptions in
the outage dataset. First, we show how the binomial test works to rule out
independent events and show how to apply the test to outages in reasonably sized
aggregates of addresses. Second, we apply this method to the outage dataset,
omitting addresses with excessive baseline loss rates and evaluating our chosen
aggregation method. Finally we summarize the dependent disruptions we found
in this dataset. This sets up analysis of these events (time of day, geography,
and scope) which we defer to the following section.

3.1 Finding Dependent Events in an Address Aggregate

When many addresses experience a disruption simultaneously, there could be
a common underlying cause. Such disruptions are statistically dependent. To
identify these dependent events, our insight is to model address disruptions as
independent events; when disruptions co-occur in greater numbers than the inde-
pendent model can explain, the disruptions must be dependent. Binomial test-
ing provides precisely this ability to find events that are highly unlikely to have
occurred independently.

Given N addresses, the binomial distribution gives the probability that D of
them were disrupted independently as:

Pr[D independent failures] =
(
N

D

)
· PD

d (1 − Pd)N−D (1)

where Pd represents the probability of disruption for the aggregate N . To apply
this formula, we must first set a threshold probability below which we con-
sider the simultaneous disruption to be too unlikely to be independent. We set
this threshold to 0.01%. We then solve for Dmin, the smallest (whole) num-
ber of simultaneous disruptions with a smaller than 0.01% chance of occurring
independently. Table 1 in the appendix presents computed values of Dmin for
various values of N and Pd. This table shows that, even for large aggregates
of IP addresses, often few simultaneous disruptions are necessary to be able to
confidently conclude that a dependent disruption has occurred. As we will see,
when applied to our dataset, Dmin values are typically below 8.

There are two practical challenges in applying this test. First, we must choose
aggregates of N IP addresses that define the scope of a dependent disruption:
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too large an aggregate will have too large a chance of simultaneous independent
failures and drive up D, while too small an aggregate may fail to include all
the addresses in an event. Second, we must estimate Pd for each aggregate. We
address each in turn.

3.1.1 Choosing Aggregate Sets of IP Addresses
Our technique assumes some aggregate set of IP addresses among which to detect
a dependent disruption. We note that the correctness of our approach does
not depend on how this set is chosen—the binomial test will apply so long as
independent failures can be modeled by Pd. When applying our technique, IP
addresses must be aggregated into sets that are large enough to span interesting
disruption events, but not so large as to become insensitive to them.

In this paper, we aggregate IP addresses based on the U.S. state and the
ASN they are in.State-ASN aggregates have the benefit of spanning multiple
prefixes (so we can observe whether more than one /24 is affected by a given
disruption event), but also being constrained to a common geographic region (so
hosts in an aggregate are likely to share similar infrastructure). There are two
limitations with this approach: states are not of uniform size, though the test
elegantly handles varying N , and a few ISPs use multiple ASNs, which may hide
some dependent failures. Alternate aggregations are possible (AppendixA.4).

3.1.2 Calculating the Probability of Disruption (Pd)
As a final consideration, we discuss how to estimate the probability of disruption,
Pd, from an empirical dataset of disruptions. We assume that the dataset can
be separated into a set of discrete “time bins”; this is common with ping-based
outage detection, such as Thunderping and Trinocular, which both consider 11-
minute bins of time. Pd can be estimated using the following equation:

Pd =
#disruptions
#timebins

(2)

Here, #timebins represents the total number of observation intervals used: if a
single host was measured across 10 time intervals and five other hosts were all
measured across 3, then #timebins = 10 + 3 · 5 = 25.

We only consider state-ASN aggregates where we were able to obtain a sta-
tistically significant value for Pd. For statistical significance, we adhere to the
following rule of thumb [25, Chap. 6]: we accept a state-ASN aggregate with t
timebins and estimated probability of disruption Pd only if:

tPd(1 − Pd) ≥ 10 (3)

3.2 Applying Our Method to the Thunderping Dataset

We investigate all ping responses in the Thunderping dataset from January 1,
2017 to December 31, 2017 and detect disruptions according to the methodol-
ogy described above. During this time, Thunderping had sent at least 100 pings
to 3,577,895 addresses and detected a total of 1,694,125 individual address dis-
ruptions affecting 1,193,812 unique addresses. The top ISPs whose addresses
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Thunderping sampled most frequently include large cable providers (Com-
cast, Charter, Suddenlink), DSL providers (Windstream, Qwest, Centurytel),
WISP providers (RISE Broadband), and satellite providers (Viasat). While most
addresses have low loss rates, 2% of addresses had loss rates exceeding 10%; we
remove these addresses to avoid biasing the analysis. We report additional details
about these addresses in [15,17].

Fig. 1. Potential N and Pd values in the Thunderping dataset: on the left, we show the
distribution of all addresses (across all state-ASN aggregates) pinged by Thunderping
that can potentially fail in each 11min time bin. On the right, we show the distribution
of the probability of disruption (Pd) for the 1559 state-ASN address aggregates we
studied.

Detecting Dependent Disruptions in the Thunderping Dataset
We use Fig. 1 to describe potential N and Pd values in the Thunderping dataset.
On the left, we show the distribution of addresses pinged by Thunderping in each
11 min timebin in 2017. The median number is roughly 50,000 addresses across
all U.S. states and ISPs. Since many weather alerts tend to be active at any given
point of time, these addresses are likely to be distributed among tens of state-
ASN aggregates. In 2017, the maximum addresses that could potentially fail in
any state-ASN aggregate was 15,863. On the right, we show the distribution
of Pd values for all state-ASN aggregates that we considered. There is extensive
variation: addresses in some of these aggregates experience disruptions only once
every year, whereas in other aggregates they experience disruptions more often
than once per day.1

1 Since disruptions are a superset of outages and dynamic reassignment [16], frequent
disruptions are not necessarily indicative of poor Internet connectivity. Also, the
existence of many aggregates with few disruptions indicates that Thunderping often
pinged addresses during weather conditions that were not conducive to disruptions.
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For each state-ASN aggregate, for each 11-min window during which Thun-
derping had pinged addresses, we identify the maximum number of addresses
that can potentially fail, N , i.e., all the addresses that are responsive to pings at
the beginning of the window. Next, we apply the binomial test for each of these
windows since we know N and Pd. When the number of disruptions in a window
is at least Dmin, we determine that a dependent disruption event occurred in
that window with a probability greater than 0.9999.

In total, we detected 20,831 events with dependent disruptions in 2017. We
analyzed our confidence in these dependent disruptions. The detailed results are
included in the appendix (Fig. 8); in summary, the probabillity that detected
events occurred independently is typically much smaller than our choice of 0.01%.
We analyze the characteristics of these events next.
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Fig. 2. For each detected dependent disruption event, Fig. 2 shows the Dmin value on
the x-axis and the corresponding number of observed disruptions on the y-axis. 62% of
the 20,831 detected events had more than Dmin observed disruptions. The scatterplot
adds a random gaussian offset to both x and y with mean of 0.1, clamped at 0.45, to
show density.

How Many Addresses Are Disrupted Dependently?
The binomial test does not say that all of the addresses that were observed to
be disrupted during a dependent event were disrupted in a dependent manner.
Consider if Dmin is 4 and we detect an event where 7 addresses were disrupted.
The binomial test shows us that the event took place with very low probabil-
ity. However, that does not necessarily mean all 7 addresses were disrupted in
a dependent manner; up to 3 of them (Dmin − 1) could have been disrupted
independently with up to 99.99% probability.

We call the set of addresses in a state-ASN aggregate that were disrupted
in the time-bin of a dependent event the observed group of addresses that were
disrupted, or the observed disrupted group for short. In the example above, the
observed disrupted group contains 7 addresses. Of the observed disrupted group,
our assumption is that some were disrupted together in a dependent manner:
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we call this subset the actual group of addresses that were disrupted, or actual
disrupted group. We obtain a minimum bound on the actual disrupted group by
subtracting Dmin − 1 from the observed disrupted group; thus in the example
above, the minimum number of addresses in the actual disrupted group is 4. For
the 20,831 dependent disruption events, the total addresses in all the observed
disrupted groups is 229,413 and the minimum total addresses in all the actual
disrupted groups is 165,328.

We study the relationship between Dmin for a state-ASN aggregate on the
x-axis and the corresponding number of addresses in the observed group of dis-
rupted addresses (on the y-axis) in Fig. 2. Each point corresponds to one of the
20,831 detected events. Sometimes, a state-ASN aggregate had such low Pd that
even a single disruption in a 11-min bin occurred with less than 0.01% probably
and therefore had a Dmin value of 1. However, since we are looking for unlikely
disruptions of multiple addresses, at least two addresses were disrupted in the
same time-bin for all our detected events. For 12,911 (62%) detected events,
more than Dmin addresses experienced disruptions in the same time-bin, cor-
roborating the result from Fig. 8 (in the appendix) that most detected events
would have been detected even with a stricter threshold.

We detected dependent disruption events with various sizes as shown in
Fig. 2. There are 693 (3%) events with more than 50 observed disrupted
addresses. The largest detected event had 913 addresses experience disruptions
in the same time-bin in AS33489 (Comcast) in Florida at 2017-09-13T20:33 UTC
time. This detected event correlates to the minute with a known failure event for
Comcast that was discussed in the Outages mailing list [14]. However, for most
of the events, the size of the observed group of disrupted addresses is small: there
were 2,593 (12%) with two, 2,969 (14%) with three, 2,776 (13%) with four, and
2,175 (10%) with five observed disrupted addresses. These results highlight the
ability of our technique to detect even small sized disruptions with confidence.

4 Properties of Dependent Disruptions

In this section, we study various properties of dependent disruptions. For some
properties, we conduct additional analyses on specific ISPs in the Thunderping
dataset: Comcast (cable), Qwest (DSL) and Viasat (Satellite). These are three
ISPs whose addresses are pinged frequently by Thunderping and where we were
able to detect in excess of a thousand dependent disruption events (3109 events
for Comcast, 1855 for Viasat, 1734 for Qwest). The appendix contains additional
detail on per-ISP dependent disruption events.
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Fig. 3. The y-axis shows dependent disruption events that began in each hour of the
week. ‘Mon’ on the bottom x-axis refers to midnight on Monday in UTC time. On the
top x-axis, ’Mon’ refers to midnight at UTC-6 (CST).

4.1 Dependent Disruptions Are More Frequent at Night
for Some ISPs

Richter et al. have recently shown that disruptions tend to happen more fre-
quently during maintenance intervals close to midnight local time [19]. They did
so using proprietary data from a CDN, collected at the granularity of every hour.
Here, we investigate if our technique can identify similar patterns.

Figure 3 shows that individual ISPs can have different behavior. Comcast
and Viasat have more dependent disruption events occurring close to midnight,
CST, on weekday nights. Qwest, on the other hand, does not appear to have
a clearly discernible pattern. Our results confirm those from prior work [19],
lending credence to our technique.Moreover, we are able to do so using public
(Thunderping) data and a granularity of every 11 min.

4.2 Dependent Disruptions Can Recover Together

Here, we investigate whether dependent disruption events are accompanied by
dependent recovery. Since Thunderping continues to probe an IP address even
after it becomes unresponsive (until six hours after the end of the weather
alert [21]), it can observe when the address becomes responsive again. This
responsiveness may signal that the disruption for the address has ended. Multi-
ple addresses that are disrupted together and also recover together offer evidence
that: (a) the event was indeed dependent and (b) the event has ended, allowing
estimation of the disruption’s duration.

Most dependent disruptions also have correlated recoveries. Of 20,831 depen-
dent disruption events, 6,869 (33%) had all disrupted addresses recover dur-
ing the same 11-min time-bin. Further, 14,789 (71%) disruption events had at
least half of the disrupted addresses recover together. Across all of the 20,831
dependent disruption events, there were 229,413 observed disrupted addresses
in total. Of these, 121,648 (53%) disrupted addresses—from 15,117 (73%) dis-
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ruption events—exhibited a dependent recovery with other addresses from that
same group. This indicates that dependent recovery is quite common.
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Fig. 4. (a) The distribution of durations of dependent disruptions for all addresses
that recovered in a correlated manner. 60% of addresses recovered in less than an hour.
(b) For dependent disruption events where at least two addresses recovered, this shows
the number of addresses that recovered on the x-axis and the corresponding recovery
duration for the event on the y-axis. Dependent disruption events vary in their duration
irrespective of the number of affected addresses.

Recovery Times are Often Shorter than an Hour
Next, we turn our attention to the time it takes dependent disruptions to recover.
Figure 4(a) shows that 60% of recovered addresses recovered in less than an hour.
Our technique is able to identify this, because we operate at the precision of the
11-min time-bins from standard outage detection datasets. Conversely, recent
work that finds disruptions spanning an entire calendar hour [19] would miss
these disruptions.

Next, we examine whether short recovery durations can be attributable to
small disruption events: that is, do the recoveries appear quick because only
a couple hosts were disrupted? Figure 4(b) shows that the answer is no: Even
dependent disruptions with hundreds of addresses that recovered together often
last less than an hour.

4.3 Dependent Disruptions Can Be Multi-ISP

Dependent disruption events can also span multiple ISPs within a single state:
these events indicate a fault of infrastructure shared by the ISP or their cus-
tomers. Here, we broaden our analysis to examine whether dependent disruption
events are correlated across multiple ISPs within the same state.

We observe 333 instances where multiple ISPs in the same state had simul-
taneous dependent disruption events, and we are able to confirm that many
occurred on days when the media reported large power outages in those
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Fig. 5. Multi-ISP dependent disruption events over time: several ISPs in the same
state have simultaneous disruption events on 333 occasions. Here, we show how many
events occurred on each day of the year in 2017. Days with many multi-ISP events
often correlate with days with large known power outages.
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Fig. 6. Multi-ISP dependent disruption events during Hurricane Irma in Florida (FL),
Georgia (GA), and South Carolina (SC). Of 111 events during this time, 15 affected 3
ISPs simultaneously and 96 affected 2.

areas. Figure 5 shows days in 2017 when multi-ISP dependent disruption events
occurred. Of the 333 instances, 88 (26%) occurred on a single day during Hur-
ricane Irma (Sep 11). Figure 6 shows multi-ISP events during Hurricane Irma
by state and by the number of individual ISPs affected during each multi-ISP
event. We observed 20 multi-ISP events in Florida on Sep 10, when Irma made
landfall [8]. As Irma moved northwards, we saw multi-ISP events in Georgia
and South Carolina as well. Other days with many such events include Oct 30
with 19 events across six states in the Northeastern U.S. (Maine, New Hamp-
shire, Vermont, Connecticut, Massachusetts, Rhode Island); there were recorded
power outages during this time as a result of a severe storm [11–13]. On Oct
22, there were 4 multi-ISP events in Oklahoma and 2 in Arkansas; there are
corresponding reports of power outages during these times as well [10].

4.4 Dependent Disruptions May Not Disrupt Entire /24s

Here, we examine if dependent disruption events disrupt entire /24 address
blocks. If so, they would likely be detected by prior work that looks for out-
ages at these granularities [18,19]. If there continue to be responding addresses
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within a /24 with a disrupted address, however, prior work may miss the dis-
ruption.

To analyze how dependent disruptions affect /24 address blocks, we find all
addresses in the observed disrupted group for a dependent disruption event and
group them by /24s. As a running example in this section, consider a dependent
disruption event comprising 3 addresses in 1.2.3.0/24, 5 addresses in 2.3.4.0/24,
and 2 addresses in 4.5.6.0/24. We call these the observed disrupted /24s for this
event. For each of these /24s, we also find how many addresses were pinged
by Thunderping that were responding to pings before the dependent disruption
and that continued to respond for at least 30 min after the time-bin where the
dependent disruption occurred. We term these addresses the responsive addresses
in a /24 since these addresses were not affected by the disruption.

Our goal is to find how many /24 address blocks exist where at least one
address within the /24 was an actual address in a dependent disruption but
there were other addresses within the same /24 that continued to be responsive.
Such /24s only experience a partial disruption (as defined in [19]). First, we
checked how many of the 20,831 dependent disruption events had at least one
responsive address in all of the observed disrupted /24s; there were 12,825 (61%)
such events. For each of these events, even if some of the observed disrupted
/24s for the event have addresses that failed independently, since all disrupted
/24s continue to have at least one responsive address, all affected /24s only
experienced partial disruptions (that could be missed by prior work).

Next, we investigate the subset of observed disrupted /24s where there were
at least Dmin failures within the /24 itself. Since the entire state-ASN aggregate
only required Dmin failures, when Dmin or more addresses are disrupted within
a single /24, the /24 has at least one actual disrupted address. We obtain the
minimum bound on the number of actual disrupted addresses in a /24 by sub-
tracting Dmin − 1 from the observed disrupted addresses in that /24. Suppose
the Dmin for the example dependent disruption event above was 3. We would
obtain a minimum bound of at least 1 actual disrupted address in 1.2.3.0/24.
In 2.3.4.0/24, the minimum bound is 3. In 4.5.6.0/24, the minimum bound is
0 and we are unable to determine if the addresses in this /24 had a dependent
disruption. Of 92,777 observed disrupted /24s (across all dependent disruption
events), we find that 14,702 (16%) have at least Dmin disrupted addresses. Each
of these is a point in Fig. 7.

We find that many disrupted /24s with actual disrupted addresses have other
addresses that continued to be responsive. 10,164 (69%) /24s had at least one
responsive address, 9327 (63%) had at least two responsive addresses, and 6,096
(41%) had at least 10 responsive addresses. 1,691 /24s had at least 10 actual
disrupted addresses; of those, 550 (33%) had at least 10 responsive addresses.
In the appendix, we show that such behavior occurs across ISPs and we also
discuss the implications of these results for prior work.
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Fig. 7. Minimum actual disrupted addresses in a /24 vs. responsive addresses in a /24,
for all /24s with at least Dmin address that were disrupted during a detected dependent
disruption event.

5 Discussion and Conclusion

We developed a technique to detect dependent disruption events with high con-
fidence using the binomial test. The technique is general enough to apply to
any dataset of disruptions; we applied it to the Thunderping dataset [21]. This
dataset has the benefit of containing per-address disruption data from thousands
of addresses in relatively small geographic regions (like a U.S. state) that may
experience failures due to common underlying causes. We inherit the limita-
tions of the Thunderping probing scheme—the system only measures residential
addresses in one country (the U.S.), it probes mostly during times of predicted
severe weather, and the minimum duration of disruptions is 11 min—so our con-
clusions may be limited in that they apply to this data.

Our application of the binomial test upon this dataset allowed us to show
the feasibility of detecting large disruption events (such as power outages during
times of severe thunderstorms) and also much smaller events. The majority of
dependent disruptions last less than an hour although a small fraction continued
for days. Corroborating prior work, we observe that disruption events occur more
frequently at night for some ISPs. However, many disruptions do not affect entire
/24 address blocks, suggesting that prior work may miss detecting them.

Simultaneous renumbering of entire prefixes by an ISP would manifest as
a dependent disruption event. However, Richter et al. show that such events
occur rarely in the U.S.; even elsewhere, they occur only in a few ASes [19].
Since Thunderping pings only U.S. addresses, the dependent disruption events
we detected are unlikely to be caused by simultaneous renumbering. We believe
that most of these events are caused by outages and are pursuing efforts to
corroborate our inferences against ground truth.
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A Appendix

A.1 Determining Dmin

Section 3.1 described our technique for detecting dependent disruptions through
the calculation of Dmin. Table 1 presents Dmin, computed for various values of N
and Pd. This table shows that, even for large aggregates of IP addresses, often
few simultaneous disruptions are necessary to be able to confidently conclude
that a dependent disruption has occurred.

Table 1. Dmin values for varying values of N and Pd. There is less than 0.01% prob-
ability according to the binomial test that Dmin or more addresses fail for each N
and Pd.

N Dmin

Pd = 1/hour 1/day 1/week 1/month

10 8 3 2 2

50 21 5 3 2

100 35 7 4 3

500 126 14 6 4

1000 231 21 8 5

5000 1021 64 17 8

10000 1980 112 26 11

50000 9491 457 85 29

A.2 Analyzing the Confidence of Detected Disruption Events

Here, we examine our confidence in the 20,831 detected dependent disruption
events from Sect. 3.2. The occurrence of Dmin disruptions has less than 0.01%
probability according to the binomial test. We test if most detected dependent
disruption events have exactly 0.01% probability of occurring or if they are well
clear of this threshold.

Figure 8 shows the distribution of the probability that we incorrectly classify
an independent event as dependent. The probability of occurring independently
is less than 0.005% for 90% of the events and less than 0.001% for 75%. Thus,
the probabillity that detected events occurred independently is typically much
smaller than our choice of 0.01%.
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Fig. 8. Figure 8 shows the distribution of the probability that the 20,831 detected
dependent disruption events could have occurred independently. For 90% of events,
the probability of occurring independently is less than 0.00005.

A.3 Dependent Disruption Events Across ISPs

We grouped dependent disruption events by ISP to check if any ISPs contribute
an unusual number of events. Figure 9 shows the top 15 ISPs with dependent
disruption events. These top 15 ISPs together account for 13,643 (65%) of all
detected events.

We emphasize that these results are not meant to reflect any underlying
problems with these ISPs; Thunderping samples and pings large ISPs more fre-
quently and consequently, finds more disrupted addresses in them. The purpose
of this analysis is to ensure that no ISP contributes unduly many events.
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Fig. 9. Figure 9 shows the number of dependent disruption events detected per ISP.
Note that these numbers are more a reflection of addresses sampled and pinged in the
Thunderping dataset than any major underlying problem in their infrastructure. We
leave per-ISP comparisons of dependent disruptions to future work.
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(a) Comcast
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(b) Qwest
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(c) Viasat

Fig. 10. For Comcast, Qwest, and Viasat: Minimum actual disrupted addresses in a
/24 vs. responsive addresses in a /24, for all /24s with at least Dmin address that were
disrupted during a detected dependent disruption event. All ISPs have /24s with actual
disrupted addresses where there continued to be responsive addresses throughout the
disruption.

A.4 Dependent Disruptions May Not Disrupt Entire /24s:
Implications

Continuing our analysis from Sect. 4.4, we investigated if the responsiveness of
other addresses in /24s with actual disrupted addresses would vary across ISPs.
Figure 10 shows per-ISP behavior. We see that all these ISPs have /24s with
actual disrupted addresses where there continued to be responsive addresses
throughout the disruption.

Prior work detecting outages within /24 aggregates may miss these events.
Since a single positive response from an address within a /24 could lead Trinoc-
ular to conclude that the block is alive [18], it can miss dependent disruption
events affecting only a subset of addresses within a /24 address block. Richter
et al.’s technique is capable of detecting partial /24 disruptions [19]; indeed,
many of their disruptions did not affect all addresses in the /24. However, their
choice of the alpha parameter in their technique (alpha = 0.5) meant that they
would only detect disruptions where at least half of the active addresses were dis-
rupted. In this paper, we showed that many /24s with actual disrupted addresses
continued to have more than half of their (sampled) addresses responsive.

We believe that prior work may be able to detect these events by analyzing
broader address aggregates (such as the state-ASN aggregates we use), in addi-
tion to /24 aggregates. In preliminary investigations, we found that many of our
dependent disruption events consisted of multiple observed disrupted /24s that
were each only partially disrupted; that is, a few addresses from many /24s were
disrupted simultaneously but there continued to be other responsive addresses
in these /24s. One of the largest events had 811 addresses from 42 /24 blocks in
the observed disrupted group and 40 of these blocks had responsive addresses.
We leave additional analyses for future work but we believe that we detected
such events due to the broader aggregate of addresses we considered.
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Abstract. The Domain Name System (DNS) Security Extensions
(DNSSEC) introduced additional DNS records (NSEC or NSEC3 records)
into negative DNS responses, which records can prove there is no trans-
lation for a queried domain name. We introduce a novel technique to
estimate the size of a DNS zone by analyzing the NSEC3 records returned
by only a small number of DNS queries issued. We survey the prevalence
of the deployment of different variants of DNSSEC negative responses
across a large set of DNSSEC-signed zones in the wild, and identify
over 50% as applicable to our measurement technique. Of the applicable
zones, we show that 99% are composed of fewer than 40 names.

Keywords: DNS · DNSSEC · Privacy

1 Introduction

Since its inception over thirty years ago, the Domain Name System (DNS) [19,20]
has included provisions for so-called negative responses, which indicate that there
is no translation for a queried domain name. While the essential characteristic of
a negative response has always been the lack of an answer (i.e., translation), the
DNS Security Extensions (DNSSEC) [8,19,20,23] introduced the requirement
that additional DNS records (NSEC or NSEC3 records) be included in a negative
DNS response, which records can prove the non-translation of the domain name.
A side effect of including these extra records is that additional information is
revealed about a domain—such as names that do exist. While this side effect is
innocuous to some, to others it can be undesirable. In an attempt to reduce or
eliminate unwanted disclosure of information via DNSSEC negative responses,
new approaches have been introduced into the DNSSEC ecosystem. However,
each comes with its own caveats.

In this paper, we present a novel method for learning the size of a DNS zone—
using DNSSEC negative responses—by issuing only a relatively small number of
queries. From a standpoint of minimum information disclosure, even revealing
the size of a zone might be a privacy concern to some entities. However, more
generally it stands alone as a way to estimate zone size to learn more about
how the DNS ecosystem is being utilized. We list the following as the major
contributions of this paper:
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– The presentation of a technique to estimate DNS zone size for NSEC3-signed
zones;

– A measurement study on the use of different strategies of DNSSEC negative
responses in the wild; and

– A survey of the sizes of various NSEC3-signed zones using the technique intro-
duced in this paper.

As part of our study, we systematically issue queries to DNS servers authoritative
for over two million DNSSEC-signed zones, eliciting negative DNS responses
of various types. We find that over 50% of the zones we analyzed are signed
with traditional NSEC3, and are thus candidates for zone size estimation using
relatively few queries. We also observed that 99% of the NSEC3 zones we analyzed
have an estimated size of less than 40 names.

2 Background

The Domain Name System (DNS) [19,20] protocol primarily consists of queries
and responses. Queries are messages requesting the translation of a given domain
name (i.e., example.com) and type (e.g., A, for IPv4 address). Responses are
made of multiple DNS records, where a record is a mapping of domain name and
type to some resource. The records in a DNS response collectively constitute
either an answer, a referral to which server(s) might have the answer, or a
definitive indication that there is no resource to which the name and type maps,
i.e., there is no answer. A DNS zone is a group of DNS records with names under
a common domain (i.e., suffix) and served from the same set of servers.

When there is no translation for a given name and type, the response includes
no answer records, yielding an empty answer section. The NSEC record was intro-
duced, with DNSSEC, to prove that for a given query (a) the queried domain
name doesn’t exist or (b) no record of the queried type exists at that name [8,9].
An NSEC (next secure) record consists largely of two parts: (1) a pair of domain
names that, using a defined canonical ordering, are in sequence; and (2) the list
of types that exist for the first of the names in the NSEC record. If a queried
name doesn’t exist, the server returns the NSEC record that contains the names
between which the queried name would fall, if it existed—the NSEC covering. If
the queried name exists but the queried type does not, then the server returns
the NSEC record corresponding to the name, and the list of types in the record
prove that the queried type does not exist.

While NSEC records in a response provide a useful non-existence proof, their
inclusion makes it possible for a server to divulge all existing domain names in
a given zone through systematic querying. This exposure is a privacy concern
for some organizations, but the introduction of NSEC3 addressed this concern, in
part [23]. With NSEC3, names within a DNS zone are hashed, and the ordered
sequence of hashes that cover the hash of the queried name, are returned by
a server, instead of the names that cover the queried name. Thus, the client
receiving the response can prove non-existence of a given name, but doesn’t
immediately learn about any other names that do exist.
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3 Previous Work

While NSEC3 effectively obfuscates the names from simple disclosure, research
has shown that with a relatively small number of queries, a significant portion
of zone contents can be enumerated using an offline dictionary “attack” [12,24].
We complement this research to show that the size of a zone can also trivially
be learned.

Further measures to protect DNS privacy by revealing less about a DNS zone
involve servers sending minimal proofs—effectively “lying” about zone contents.
Two major variants exist, one for NSEC3 records (“white lies”) and one for NSEC
records (“black lies”). The notion of NSEC3 white lies was introduced by Dan
Kaminsky in his Phreebird DNSSEC software [18]. Upon receiving a query for a
given domain name, d, rather than returning the NSEC3 record with the hashes
corresponding to existing names that surround the hash of d, h(d), the server
dynamically creates an NSEC3 record with hashes h(d) − 1 and h(d) + 1. With
the black lies approach—a term coined by Cloudflare—the server dynamically
generates an NSEC record with (1) the name queried and (2) the next possible
name in DNSSEC canonical ordering (i.e., foo.com and \000.foo.com) [16].
The result in both cases is an NSEC or NSEC3 proof that satisfies any validator
without disclosing any existing names or hashes of existing names and does not
disclose additional information. In the case of black lies, the response indicates
that the name exists (even though it doesn’t), but that the type does not.

Generating a dynamic response requires a server to have access to the pri-
vate key(s) associated with the zone, so DNSSEC signatures (RRSIG records)
can also be generated dynamically. This is in contrast to traditional static sign-
ing methods, in which RRSIG records can be created on a server, possibly even
offline. This potentially creates concerns for zones served by third-party orga-
nizations [11,22]; providing private keys to a third party allows them access to
create arbitrary zone content. The NSEC5 mechanism was proposed to address
this concern by providing a separate key to third parties, which was only good for
providing a dynamic signature for an intermediate record that played a role in
the proof [15]. Because this key cannot sign the records found in the zone proper,
they cannot be used to manipulate. Despite the privacy advantages, NSEC5 has
faced challenges with its standardization and adoption.

4 NSEC3 Zone Size Discovery

In this section we discuss the foundations and methodology for estimating the
size of an NSEC3-signed zone.

It is well known that contents of zones signed with traditional NSEC (i.e.,
without black lies) can be trivially enumerated with a number of queries equal
to the number of unique owner names in the zone [21]. As a side effect, zone
size—as measured by the number of unique owner names—is also discovered.

Zones signed with NSEC3 cannot be similarly enumerated. This is because
the hashes returned in the NSEC3 records of one response cannot be used as
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query names in subsequent responses, as they can in NSEC [23]. However, with
traditional NSEC3 (i.e., no white lies), an interested party can accumulate a
large number of NSEC3 records with repeated queries. With sufficient queries, the
collection of records retrieved might approach the entire set of NSEC3 records for
the zone. In that case, the investigator can not only carry out an offline dictionary
“attack” [12,24], but also learn the size of the zone.

Throughout the remainder of this paper, we refer to three types of queries
used to elicit negative response, which we describe here:

– q-nxdomain: a type A query for a domain name within the zone, formed by
pre-pending an arbitrary label of our choosing to the subject domain, e.g.,
foobar123.example.com, which domain name (presumably) does not exist.

– q-nodata: a type CNAME query for the domain name at the zone apex (i.e., the
domain name corresponding to the zone itself), which record should also not
exist (because a record of type CNAME cannot co-exist with the NS records also
at the zone apex) [13].

– q-nodata-type: a query for an undefined type at the zone apex, which record
should also not exist because the type has not been defined.

4.1 NSEC3 Distance

Like all DNS records, NSEC3 records have an owner name and record data.
The first (left-most) label in the owner name is the Base32-encoded (using the
“Extended Hex” alphabet [17]) value of the SHA1 hash of a domain name [23].
This label is 32 characters long, with each character having 32 possible values.
The record data for an NSEC3 record includes, among other fields, the next field,
which is the hash of another owner name in the zone—the next hash in the zone,
in canonical ordering. The hash value in the next field can also be represented
as a 32-byte string of Base32 characters. The maximum value of the Base32
representation of either is H = 2160 = 3232.

The distance, d(n), of an NSEC3 record, n, is the result of subtracting the
next field’s value, nnext, from the value of the first label of the owner name,
nowner. If the next hash value is greater than the hash value in the owner name,
then the absolute difference is subtracted from the maximum hash space:

d(n) =

{
nowner − nnext if nowner ≥ nnext

H − |nnext − nowner| otherwise
(1)

For a given zone, Z, the sum of the distances of all the NSEC3 records must equal
the total hash space, H: ∑

n∈Z

d(n) = H (2)

4.2 NSEC3 Distance Distribution

To understand the distribution of distances within a zone, Z, we generated ran-
dom names using the Natural Language Toolkit (NLTK) [10] to create 100 DNS
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zones for each of the following zone sizes: 102, 103, 104, 105, and 106. Each of the
resulting 500 zones was signed with NSEC3 using BIND’s dnssec-signzone [1].
We then computed the distance for each NSEC3 record and plotted the Cumula-
tive Distribution Function (CDF) of all the distances, categorized by zone size,
in Fig. 1.

Fig. 1. The CDF of NSEC3 distances for zones of various sizes.

The plots exhibit several noteworthy features. First, the plots of distances
for each zone size are nearly identical, with each distribution being shifted from
any other distribution according to the inverse proportionality of their respective
zone sizes. For example, the median distance for the zone of size 102, is 100 (i.e.,
104/102) times greater than the median distance for the zone of size 104. Second,
the CDF for each zone size increases logarithmically, rather than exhibiting a
normal distribution. Thus, there is a much larger proportion of small NSEC3
distances in each of the zones than large distances. It follows that for an NSEC3-
signed zone, the majority of the hash space is covered by relatively few NSEC3
records. Specifically, 90% of the hash space, H, is covered by only about 60% of
the NSEC3 records in a zone, and only 19% of the NSEC3 records cover half of the
hash space. Relatedly, the lower 50% of NSEC3 distances for a given zone covers
only 15% of the overall hash space, H.

The distribution of cumulative NSEC3 distances to cumulative hash space,
for the 500 zones we created, is shown in Fig. 2. Notably, Fig. 2 plots the same
NSEC3 distance data as Fig. 1, consolidating the distance data from all the zones.
Because the distribution of NSEC3 across the hash space is the same for any zone
size, the resulting plot is a single, unified line.

The hashes of query names, however, are distributed uniformly across the
hash space. We confirmed this by generating 100,000 unique query names within
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Fig. 2. The CDF of NSEC3 distances compared to cumulative percentage of hash space.

a domain and analyzing the distribution of the resulting NSEC3 hashes, which
were computed using BIND’s nsec3hash utility [1]. The hash space, H, was
divided up into 1,024 equal-sized bins, and the number of NSEC3 hashes that
fell in each bin was graphed as a CDF, shown in Fig. 3. The number of NSEC3
hashes per bin were normally distributed with a median value of 98, which is
the expected value for 100,000 queries, i.e., 100000/1024 = 98.

The apparent disparity between the uniform distribution of hashes and the
exponential distribution of the distances between them is actually an example of
a Poisson process. The NSEC3 hashes represent “arrival times” across the hash
space, which are uniformly distributed according to constant intensity (or arrival
rate) λ, which is a function of the size of the zone. The NSEC3 distances represent
the inter-arrival times and are distributed according to Exp(λ) [14].

Let z = |Z| denote the actual size of DNS zone Z, and let z′ represent the
estimate of z, derived from NSEC3 distances. If the distances of all NSEC3 records
were somewhat uniform, then calculating z′ would be as simple as calculating
the average distance of the collection of NSEC3 records, N , returned in negative
responses to q-nxdomain queries and dividing H by that average:

z′ =
H(∑

n∈N d(n)

|N |
) (3)

However, the fact that the distribution of NSEC3 distances—for a zone of any
size—follows an exponential distribution across the hash space, while the distri-
bution of NSEC3 hashes are uniformly distributed across the hash space, means
that not all queries are equal. That is, the NSEC3 hash corresponding to an arbi-
trary q-nxdomain query is more likely to be covered by an NSEC3 record with a
large distance, but that distance is less representative of the zone’s NSEC3 records
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Fig. 3. The distribution of NSEC3 hashes resulting from random query names, graphed
as a CDF representing the number of hashes per 1,024th part of the hash space, H.

because of the relatively large percentage of NSEC3 records having a smaller dis-
tance. Thus, if all NSEC3 distances in N were weighted equally (i.e., following
Eq. 3), then the resulting average would be too high, resulting in a proportionally
too-low value for z′.

A more accurate approach to estimating the size of a zone using the collection
of NSEC3 records, N , returned in negative responses to q-nxdomain queries, is to
weight each NSEC3 record according to its statistical representation of the hash
space. If the NSEC3 records in N are divided into q quantiles, according to their
distance, N = N1 + N2 + . . . + Nq, then the distance for all records in Ni are
weighted using the fraction of the hash space that that ith quantile represents.
The weights for q = 10 (i.e., decile or 10th percentiles) were derived from the
distance distribution of the NSEC3 records from the 100 zones of size 106 that we
created and are shown in Table 1. These weights correspond to the difference in
cumulative hash space, x, for consecutive quantile values of NSEC3 distances, i.e.,
y1 = i−1

q and y2 = i
q . The resulting formula to approximate zone size, letting wi

correspond to the weight for quantile i, is the following:

z′ =
H(∑

1≤i≤q

wi

∑
n∈Ni

d(n)

|Ni|
) (4)

Table 1. Distance weights for zone size detection using decile divisions (i.e., q = 10).

Decile (i) 1 2 3 4 5 6 7 8 9 10

Weight (wi) 0.41 0.15 0.10 0.08 0.07 .05 .05 0.04 0.03 0.02
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The result of this weighted approach is that the NSEC3 records with larger
distances—which are more likely to cover an arbitrary q-nxdomain query but
are less representative of the zone’s NSEC3 distances—contribute less to the aver-
age than NSEC3 with small distances—which are less likely to cover an arbitrary
q-nxdomain query and are more representative of the zone’s NSEC3 distances.

4.3 Validation

To test the validity of our zone size detection methodology, we issued 1,000 trials,
each consisting of 18 q-nxdomain queries, for each of the zones we created. The
zones were served locally on a BIND DNS server. For each trial, the 18 queries
yielded a total of 20 NSEC3 records, which comprised N ; in addition to the 18
NSEC3 records covering the unique names queried, every response included the
NSEC3 record that covers the wildcard record and the NSEC3 record matching
the zone name [23].

First, we investigated the accuracy of our methodology using different quan-
tile (q) values. Specifically, we evaluated the 1,000 trials against the zone of size
10,000 using quantile values of 20, 10, and 5. We measured accuracy in terms of
percentage of error based on the actual zone size, i.e.,

e =
z′ − z

z
(5)

Thus, values of e closer to 0 indicate higher accuracy of zone size prediction,
e < 0 indicates a low guess (z′ < z), and e > 0 indicates a high guess (z′ > z).
The results are shown in Fig. 4 as a CDF.

Fig. 4. Error (e) for size prediction of a DNS zone of size 106 for various values of q.
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Weighting the NSEC3 distances, by any quartile value (Eq. 4) significantly
improved the accuracy from the zone size estimates based on unweighted dis-
tance averages (Eq. 3). Even the highest zone size estimates calculated using
unweighted averages were lower than the actual zone size, with the median error
being about 48% low. In contrast, for about 60% of the trials (between the 30
and 90 percentiles) for q = 10 and q = 20, z′ was within 15% of z. And for about
30% of the trials (between the 50 and 80 percentiles), the z′ was within 7% of z.
Because the error for q = 10 and q = 20 were comparable, and q = 10 requires
fewer queries to have at least one NSEC3 record in every quantile, we use q = 10
for the remainder of our experiments.

We next tested the accuracy of zone size prediction against zones of different
sizes, the results of which are shown in Table 2 and Fig. 5. Consistent among
the zones of all sizes was that z′ was low more often than not, with the median
values of e ranging between −6% and −16%. For zones smaller than 100,000,
75% or more of the trials had error values that were within 20% of the size of
the zone.

Fig. 5. Error (e) for zone size prediction of DNS zones of various sizes using q = 10.

Table 2. Statistics for zone size prediction of DNS zones of various sizes using q = 10.

Zone size 102 103 104 105 106

Median error −0.06 −0.05 −0.07 −0.16 −0.11

Fraction of trials −0.20 ≤ e ≤ 0.20 0.77 0.78 0.76 0.61 0.70
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5 DNS Zone Size Measurement Study

To perform our DNS zone size measurement on deployed DNS zones, we analyzed
2,182,987 DNSSEC-signed zones to determine the strategy they employ for nega-
tive responses. This would allow us to identify our candidate DNS zones. The list
of zones consisted of DNSSEC-signed second-level domains extracted from the
zone files for 821 top-level domains (TLDs). The TLD zone files themselves were
obtained from the following sources: Verisign’s Zone File Access [6]; the Cen-
tralized Zone Data Service (CZDS) [2]; the Public Interest Registry (PIR) [5];
the Internet Foundation in Sweden (IIS) [4]; and Domains Index [3], from which
we acquired domains under gov. DNSSEC-signed domains were identified as
those with at least one delegation signer (DS) record in the TLD zone file. The
breakdown of the domains and their TLD are shown in Table 3. Nearly 80% of
the zones analyzed were under the com and se TLDs. This was because of the
significant presence of DS records in those domains.

Table 3. Breakdown of domains analyzed, both by TLD and by detected negative
response type.

TLD Zones analyzed Traditional Traditional White lies Black lies Unclassified

NSEC NSEC3 NSEC3 NSEC

com 911,576 (42%) 112,168 725,521 18,879 36,501 17,823

se 802,198 (37%) 77,549 147,294 539,178 408 37,072

net 127,545 (6%) 14,390 103,136 2,762 5,089 1,920

nu 118,158 (5%) 9,508 33,801 66,690 74 7,623

org 95,319 (4%) 9,252 79,557 2,214 2,964 1,076

app 33,254 (2%) 492 7,223 25,232 219 33

Other 94,937 (4%) 17,686 70,687 2,136 2,804 1,099

Total 2,182,987 241,045 1,167,219 657,091 48,059 66,646

(100%) (11%) (53%) (30%) (2%) (3%)

5.1 Zone Analysis

For each zone in our data set, we identified the authoritative servers using DNS
lookups for the NS (name server) records and the corresponding A and AAAA
(IPv4 and IPv6 address) records. Having the set of IP addresses for servers
authoritative for the domains, we issued three queries to every authoritative
server: a q-nxdomain query, a q-nodata query, and a q-nodata-type query. The
three queries were intended to elicit different types of negative response behavior,
including any of the following:

– NXDOMAIN: a response indicating that the name queried name doesn’t exist.
– wildcard: a response synthesized from a wildcard, with NSEC or NSEC3 records

to indicate that the queried name didn’t exist (as specified by DNSSEC [23]).
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– NODATA: a response indicating that the name exists, but with no records cor-
responding to the type queried [7].

The expected response for q-nxdomain was either an NXDOMAIN or wildcard
response, and the expected response for q-nodata and q-nodata-type was NODATA.
Under DNSSEC requirements, all such responses would include NSEC or NSEC3
records. Table 3 shows the breakdown of response strategies observed by author-
itative servers: traditional NSEC, traditional NSEC3, white lies with NSEC3, and
black lies with NSEC. If at least one of the query responses matched a given nega-
tive response strategy, then the zone was included in the count for that strategy.
We note that for a very small (less than 1%) percentage of the zones analyzed,
we observed several different negative response behaviors, such that they are
represented in multiple categories. For example, for some zones, white lies was
used in response to our q-nxdomain, but NSEC records were returned in response
to the q-nodata-type. Also, for 3% of the DNS zones we analyzed, none of our
queries resulted in NSEC or NSEC3 records, so their negative response strategy
remained unclassified.

The responses for the unclassified zones fell into several categories. Some
of the q-nxdomain queries yielded non-wildcard positive responses (i.e., indi-
cating that the record existed), the result of server-side record synthesis with
online-signing. This method is employed by organizations in an effort to not
even disclose the fact that the response is a wildcard—which would otherwise be
apparent. Some responses lacked NSEC or NSEC3 records due to misconfiguration.
For example, a DS record existed, but the zone was actually not DNSSEC-signed,
or the response had response code SERVFAIL.

We observed nearly one-third of the zones employed white lies, while just over
half used traditional NSEC3. About 11% of zones were signed with traditional
NSEC, while about 2% of zones used black lies. The combined presence of white
lies and black lies implied that a minimum of 32% of the zones we analyzed
employed a online signing.

5.2 Detecting Zone Size in the Wild

We tested our zone detection methodology in the wild by issuing 20 queries to
each of the zones in our dataset that were signed with plain NSEC3, i.e., without
white lies. The results of this measurement are shown in Fig. 6. We found that
85% of the zones we probed were so small that even with only 20 queries, we
received fewer than 10 unique NSEC3 records, which is the minimum size of N
necessary to apply our methodology. The fact that NSEC3 records were being
returned multiple times with these zones was evidence that the zone was small,
and was—quite likely—being completely enumerated with our small number of
queries. Thus, for |N | < 10, we simply use z′ = |N | as our zone size estimate.
For the zones we measured, 99% were smaller than 40, but the top 1% reached
up to nearly four million.
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Fig. 6. Estimated zone sizes (z′) for the NSEC3-signed zones in our data set (Table 3).

6 Conclusion

In this paper, we have presented methodology for learning the size of a DNS
zone by issuing relatively few DNS queries. We demonstrated the accuracy of
our technique in a lab environment and showed that in approximately 75% of
cases, the methodology would yield a an estimate that is within 20% of the
actual zone size, with only 18 queries. We deployed this methodology on over
one million NSEC3 zones in our data set and learned that most of these zones are
small, with 85% having fewer than 10 domain names.

As part of our study, we measured some of the DNSSEC negative response
behaviors currently deployed. We learned that the most popular negative
response strategy deployed in our data set is traditional NSEC3, which is used
by 53% of zones, and makes them candidates for DNS zone size estimation,
using our methodology. Privacy-preserving strategies such as NSEC3 with white
lies and NSEC with black lies are also gaining some traction with 30% and 2%
deployment, respectively.

The techniques presented in this paper serve as a general purpose tool to
better understand the DNS ecosystem, in terms of the size of deployed DNS
zones, specifically those signed with NSEC3. It also provides a new insight into
information disclosure, regardless of how innocuous the revealing of the size of
DNS zone might be to an organization. This knowledge can only benefit and
empower the designers, maintainers, and users of the Internet.
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Abstract. RF spectrum is a limited natural resource under a signif-
icant demand and thus must be effectively monitored and protected.
Recently, there has been a significant interest in the use of inexpensive
commodity-grade spectrum sensors for large-scale RF spectrum moni-
toring. The spectrum sensors are attached to compute devices for signal
processing computation and also network and storage support. However,
these compute devices have limited computation power that impacts
the sensing performance adversely. Thus, the parameter choices for the
best performance must be done carefully taking the hardware limitations
into account. In this paper, we demonstrate this using a benchmark-
ing study, where we consider the detection an unauthorized transmit-
ter that transmits intermittently only for very small durations (micro-
transmissions). We characterize the impact of device hardware and crit-
ical sensing parameters such as sampling rate, integration size and fre-
quency resolution in detecting such transmissions. We find that in our
setup we cannot detect more than 45% of such micro-transmissions on
these inexpensive spectrum sensors even with the best possible param-
eter setting. We explore use of multiple sensors and sensor fusion as an
effective means to counter this problem.

Keywords: Distributed spectrum monitoring ·
Transmission detection

1 Introduction

RF spectrum is a natural resource that is in limited supply but is neverthe-
less in great demand due to the exponentiating increase of mobile network use.
Naturally, just like any such resource the spectrum must be protected against
unauthorized use. This issue has recently been exacerbated by the increasing
affordability of software-defined radio technologies making RF transmissions of
arbitrary waveforms in arbitrary spectrum bands practical.

One way to protect spectrum is via large-scale spectrum monitoring. Vari-
ous spectrum monitoring efforts have been underway for many years (e.g., [13–
15]). One issue in such efforts is that lab-grade spectrum sensors are large and
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expensive both to procure and operate. This issue has recently been addressed
by promoting the use of small and inexpensive spectrum sensors that can
potentially be crowdsourced, e.g., SpecSense [8], Electrosense [30] and other
projects [6,19,32]. This enables much wider deployment in practical settings.
Some of these works [8,30] use inexpensive software-defined radios (such as
RTL-SDR which costs ≈$20 [27]) and inexpensive compute devices (such as
the RaspberryPi which costs ≈$40 [25]) attached to these spectrum sensors
to enable compute, storage and network capability. ElectroSense has already
deployed using these inexpensive spectrum sensors1 to successfully monitor wide-
area spectrum [26].

However, one major concern here is that these inexpensive spectrum sensors
are too resource limited and may not be able to perform resource intensive spec-
trum sensing and detection tasks, e.g., Fast Fourier Transform (FFT) computa-
tion and signal detection algorithms [7]. Several sensor related parameters (such
as sampling rate, FFT size) and device related parameters (CPU and memory)
affect the signal detection performance. A natural question here is to ask how
much of these parameters impact the transmitter detection performance given
the fact that there are diverse heterogeneous sensors with diverse capabilities.
Understanding the impact of these parameters is crucial to design and deploy
this class of spectrum sensors.

To address this question, we consider detecting an intermittent transmitter
as an example problem and characterize the impact of these parameters on
detection performance. In our setup, the transmitter here generates a tone of
certain duration (e.g., 1µs) periodically. Detecting such ‘micro-transmissions’ on
these inexpensive devices is hard because we cannot use the optimal parameters
that are used in general, due to poor compute capabilities. To quantify this,
we use detection ratio as a metric to evaluate the system. Detection ratio is
the percentage of transmissions detected by the sensor. We characterize the
detection ratio for four different parameters: (1) sampling rate, (2) integration
size, (3) FFT size, and (4) device hardware. Our goal is to understand how each
of these parameters on the inexpensive compute devices affect the detection of
micro-transmissions.

Our key finding is that the inexpensive sensors perform very poorly (<45%
accuracy) in detecting micro-transmissions on Odroid-C2 board [24] using
USRP-B210 [1] and RTL-SDR [27] sensors. In particular, the detection ratio
drops by almost 90% for an intermittent transmitter when the transmission
duration drops from 1 s to 1µs (Sect. 2.3). This is because the limited capabil-
ities of the compute devices lead to dropping of samples while computing FFT
and power spectral density (PSD). We also observe that increasing sampling
rate from 1 Msps to 32 Msps leads to a drop in the detection ratio by 85% and
decreasing it from 1 Msps to 512 Ksps drops by 30%. This performance impact
is due to buffer overflow at the higher sampling rate or insufficient number of
samples at lower sampling rate.

1 We use the term spectrum sensor as sensor and compute device together.
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Fig. 1. Architecture of distributed spectrum patrolling. The sensors and attached com-
pute devices are inexpensive and thus suitable for crowd sourcing, but are performance
limited.

We also find that the detection ratio is greatly impacted by device hard-
ware. For example, on Odroid-C2 the detection ratio is 70% and 30% less rela-
tive to a desktop PC during local and remote detection, respectively (Sect. 3.2).
The detection performance can also be impacted by the received power which
depends on sensor location, channel conditions as well as the Tx power. To
model this behavior at different received power levels, we vary the Tx gain.
As expected, the detection ratio reduces significantly on reducing the gain of
transmitter (Sect. 3.3). Finally to tackle the above challenges in using low-cost
spectrum sensors, we deploy multiple sensors in a given location. We show that
using multiple sensors and sensor fusion the detection performance improves
significantly (Sect. 4.2).

2 Distributed Spectrum Patrolling

2.1 Background

The increasing cost of spectrum has made it necessary to monitor its usage
and detect illegal spectrum transmissions. Crowdsourcing approaches have been
proposed in the past to deploy distributed spectrum sensors at a large-scale.
However, that necessitates use of inexpensive sensors. To perform large-scale
spectrum monitoring, the most commonly proposed technique is to deploy a dis-
tributed set of inexpensive sensors (see in Fig. 1). For example, SpecSense [8]
and ElectroSense [30] are two successful, well-known examples of distributed
spectrum monitoring. Each such spectrum sensor consists of a low-cost embed-
ded compute platform device such as a RaspberryPi or Odroid-C2 connected
to an RF front end such as RTL-SDR or USRP. Each sensor scans the differ-
ent frequency bands and transfers the sampled IQ data to compute device over
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Table 1. Spectrum sensor and compute configurations used in our experiments.

Parameters RTL SDR USRP B210 Parameters Desktop Odroid C2 RPi3 RPi1

Sampling rate (Msps) 2.5 62 Max clock (GHz) 3.35 1.5 1.2 0.7

Spectrum (MHz-GHz) 24-1.7 50-6 CPU cores 4 4 4 1

Bits/sample 8 12 Memory (GB) 8 2 1 0.5

Interface (USB version) 2 2/3 Interface 2/3 2 2 2

Cost (≈$) 20 1200 Cost (≈$) 1000 40 40 20

USB interface.2 The compute device either runs signal detection algorithms on
the data locally or sends the data to a remote server for processing. We refer to
these two configurations as local and remote processing respectively. A number
of such spectrum patrolling systems have been proposed and deployed [8,18,30].

A key design challenge for these distributed sensing systems is to decide the
type of compute device, the sensor and the associated parameters to use. Devices
with better compute power and spectrum sensors with higher sampling rates pro-
vide much higher accuracy, but also cost more. The higher sampling rate also
increases the network bandwidth requirement which is challenging in a wireless
environment. While various deployments use different compute devices and sen-
sors, the performance impact of different device choices is not well understood.
To address this question, we systematically benchmark the performance of mul-
tiple sensor and compute device parameters in the context of a specific spectrum
patrolling problem where an intermittent transmitter needs to be detected.

2.2 Measurement Setup

Our measurement setup includes the type of spectrum sensors used, the compute
devices attached with the sensors, and the data collection process. Each of these
are explained below.

Spectrum Sensors: Commodity spectrum sensors vary widely in terms of cost,
performance, and the maximum frequency that they can scan. We experiment
with two types of sensors—a higher performing but relatively expensive sensor,
USRP-B210 ($1200) [1], and popular, inexpensive sensor, RTL-SDR ($20) [27].
The RTL-SDR has a maximum sampling rate of 2.5 Msps while the maximum of
the USRP-B210 is 62 Msps. The number of bits per sample is 8 for RTL and 12
for USRP. More bits means better accuracy because of lower quantization noise.
The sensor capabilities are summarized in Table 1.

Compute Devices: This device is essentially a small form factor single board
embedded computer that acts as a USB host to the sensor. There are many such

2 I refers to the in phase component of the signal and Q refers to the quadrature
component of the signal. I and Q representation of a signal contains information
about the amplitude as well as the phase of the signal. The received IQ samples are
used to reconstruct the received signal which is later demodulated to extract the
message signal.
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Fig. 2. Detecting intermittent transmissions using USRP-B210 and RTL-SDR sen-
sors on Odroid-C2 board. The detection performance deteriorates significantly as we
decrease the transmission length.

platforms. We experiment with three different types of devices—Odroid-C2 [24],
RaspberryPi-3 (RPi-3) [25] and RaspberryPi-1 (RPi-1) [25], along with a desktop
for a baseline comparison. Each of these devices vary significantly in terms of
cost and performance. The CPU performance directly influences the transmitter
detection performance because of the processing needed for the signal detection
algorithms. Table 1 summarizes the capabilities of these devices.

Data Collection: For all the experiments, we place the transmitter and sensor
at a distance of five meters. This transmitter is a USRP-B210 based software
radio that transmits an intermittent tone in the 915 MHz band. The default
transmitter gain for all the experiments is 100. We use an energy-based signal
detection algorithm for detecting the transmitter [7]. The algorithm calculates
total power within a frequency band by computing FFT on the IQ samples. The
signal is detected if the total power in the channel is more than a predetermined
threshold. The threshold can be determined by measuring noise in the channel
when there is no transmission. For all the experiments, we use 1 ms transmission
on Odroid-C2 board with either USRP or RTL sensors. We consider a single
transmitter transmitting with a center frequency of 915 MHz. The default sam-
pling rate is 1 Msps.

2.3 Motivation

As explained in Sect. 2.1, these systems employ expensive compute operations
on the received signals at the deployed spectrum sensor. For example, most of
this prior work performs FFT on the received IQ samples at the sensor itself,
computes the PSD and sends the results to a remote server for further analysis.
This computation however can slow down the sensor, leading to dropping of IQ
samples and thereby making it hard to detect micro-transmissions. To quan-
tify this, we conduct experiments to study the performance of detecting shorter
intermittent transmissions by varying the Tx lengths from 1µs to 1 s (see Fig. 2).

Based on the length of transmitted signal, a significant difference exists in
detection performance even if all other parameters and configurations are identi-
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Fig. 3. Sampling rate versus Noise floor (the number in the label indicates sampling
rate in Msps). Higher sampling rates bring challenges in detection in terms of noise
floor and data rates.

cal. While the sensor is able to detect almost all the 1 s transmissions, the detec-
tion performance for 1µs falls to less than 30% and 10% on USRP and RTL-SDR
sensors respectively. This difference must stem from the sensing parameters used
on both the sensor and compute device (see Sect. 3) as we observe significantly
better performance on high-end desktops with the same sensors (not shown
here). Note that the desktop machine has sufficient compute power, and we do
not expect any drop of samples on it.

Based on this initial study, our goal is to (i) understand the factors that
influence the performance of detecting micro-transmissions on the inexpensive
spectrum sensors and (ii) explore an alternative to improve the signal detection
performance.

3 Micro-benchmarking of Spectrum Sensors

Four different spectrum sensor parameters (Table 1) could influence the detec-
tion performance—sampling rate, integration size, FFT size, and compute device
hardware. Sampling rate here is the number of IQ samples received per sec-
ond. Integration size is the number of samples (i.e., the length of the signal in
time) used in a single FFT computation. FFT size is the number of FFT bins.
Apart from these parameters, placing the detection locally versus remote, and
the transmitter behavior can also influence the detection performance. We study
the impact of these properties.

3.1 Sensor Performance

Impact of Sampling Rate: In general, more the sampling rate, better the
transmission detection performance. However, distributed spectrum patrolling
with inexpensive sensors brings many challenges in using higher sampling rates:
(1) Not all sensors support multiple sampling rates. For example, USRP B210
supports sampling rates from 64 Ksps to 62 Msps while RTL supports only
from 1 Msps to 2.4 Msps. (2) Higher sampling rates also require proportionately
higher backhaul network capacity. (3) Finally, there is a general concern where
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(a) USRP (b) RTL-SDR

Fig. 4. Detection performance vs. Sampling rate for 1 ms transmission. Increase in
sampling rate is decreasing the detection performance on USRP-B210.

Fig. 5. Integration size vs. detection
ratio. We use an FFT bin size of 1024 and
run the experiment on Odroid-C2.

Fig. 6. FFT size vs. detection ratio. We
use an integration size of 256 and run
the experiment on Odroid-C2.

increasing the sampling rate increases the noise floor which makes it harder to
detect micro-transmissions. We study this impact of sampling rate on the inex-
pensive spectrum sensors.

Figure 3 shows that the noise-floor increases from −110 dB to −90 dB when
the sampling rate increases from 1 Msps to 32 Msps on USRP. This becomes
much worse, greater than −70 dB, for RTL-SDR because of its inaccurate analog
converter [5]. This increase in noise-floor makes it hard to choose a threshold
for the transmission detection, especially given the fact that there can be many
heterogeneous sensors deployed with different sampling rates.

Figure 4 shows the impact of sampling rate on detection performance. The
detection performance using local and remote processing decreases by 30% and
80% respectively from 1 Msps to 32 Msps sampling rate. This is a counterintuitive
result because we expect to see an increase in detection ratio with the increase in
sampling rate. This is because the sensor is unable to cope with the speed at which
the samples are received under higher sampling rates (remote), and FFT and PSD
computation (local). Hence, the sensor is losing many of the important samples
that could otherwise detect transmissions. The result is different with RTL-SDR
against sampling rate. When sampling rate increases from 1 Msps to 2 Msps, the
detection ratio increases by 15% and 20% for local and remote detection respec-
tively. We explain this by noting that the bits per sample of RTL-SDR is less than
USRP, and hence RTL-SDR data require less. Also, reducing the sampling rate
below 1 Msps decreases detection ratio due to insufficient number of samples.
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(a) USRP-B210 (b) RTL-SDR

Fig. 7. Impact of device performance on detection performance

Impact of Integration Size: Integration size is a critical parameter in detect-
ing micro-transmissions in terms of both FFT accuracy and compute require-
ment. Increasing the integration size increases the accuracy of FFT computa-
tions, but also increases the amount of computation power needed to compute
it. We study the impact of integration size while computing the PSD locally on
both USRP and RTL-SDR sensors.

Figure 5 shows local detection performance against integration size on USRP
and RTL-SDR on an Odroid-C2. We set the FFT size at 1024 for this experiment,
as we find in the next experiment that it provides the best detection performance.
The detection drops by more than 30% from an integration size of 256 to 8192 on
USRP. The reason behind this impact is that more number of samples the FFT is
computed on, harder it is to detect micro-transmissions as the power is averaged
over many noise samples. Another interesting result is that if we decrease the
integration time from 256 to 128, the detection rate also drops by over 20%. This
discrepancy is because the increased number of FFTs become computationally
intensive, and consequently, it is not able to handle all the incoming IQ samples.
Similar trend exists with RTL-SDR. Therefore, we observe that the integration
size should neither be too low nor be too high.

Impact of FFT Size: FFT size defines the number of bins while computing the
FFT. Each bin represents the resolution of frequency. For example, if sampling
rate is 1 Msps and FFT size is 1024, then the frequency resolution should be
1 MHz/1024 which is 1024 Hz. Smaller the frequency resolution (i.e., more bins),
more accurately we can detect the power at a given frequency. Also, it increases
the amount of computation needed. We evaluate detection ratio with different
FFT sizes from 128 to 8192 with local processing on an Odroid-C2. We use an
integration size of 256 samples, as we have observed in the previous experiment
that it provides the best detection performance.

Figure 6 shows the impact of FFT size on detection performance. Both RTL
and USRP sensors perform better at 1024 FFT size. Having more than 1024 FFT
size causes compute and buffer overflow thereby missing IQ samples. Whereas
having less than 1024 FFT size makes it hard to detect micro-transmissions.
This is because the signal power gets averaged with noise floor due to larger bin
size. On the other hand, we find that the optimal FFT size on desktop to detect
micro-transmissions is 8192.
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(a) USRP-B210 (b) RTL-SDR

Fig. 8. Impact of CPU clock frequency on detection performance

3.2 Device Performance

In the previous section, we studied impact of low-end hardware on the sensor
parameters that affect detection performance. In this section, we study the direct
influence of device hardware on detection. We keep the best performing sensor
parameters such as sampling rate (1 Msps) and integration size (256) and eval-
uate the detection ratio across different devices – Odroid-C2, RPi-3, RPi-1, and
a desktop (See Table 1).

Detection Performance Across Devices: Figure 7 shows the performance of
detection for both local and remote processing. We observe that in each case,
performance of detection reduces with a reduction in the computation power of
the computing device. For both USRP and RTL sensors, as we go from more
powerful to less powerful computing devices, the local detection ratio drops by
over 50% and becomes the worst in case of RPi-1 (<20%). This must be due to
the compute capacity of the device as the other parameters are unchanged.

We also find that remote processing has much higher detection ratio than
local processing when other sensor and transmitter-related parameters are iden-
tical. The compute capacity is a bottleneck for local detection because of the
FFT and PSD computation, as we observe that remote detection is as high as
97% on Odroid-C2. Even the remote detection performance degrades to only
60% of total transmissions on RPi-1 as its poor hardware is not able to cope
with the sampling rate at which the sensors are sampling.

Critical Device Bottleneck: To further understand the impact of the device,
we experiment with the most critical parameter of the device – CPU clock fre-
quency (as we have seen relatively less impact with other device parameters
such as memory and number of cores). A reduction in CPU clock frequency
leads to slower computation on the board, and thus lower detection ratio. This
is especially important because many such single board compute devices have
varied clock frequencies. We conduct the same study for six different clock fre-
quencies available on the Odroid-C2 board. Figure 8 shows the detection ratio
against clock frequency. From 1536 MHz to 100 MHz clock frequency, the detec-
tion ratio for local and remote processing on USRP drops by almost 30% and
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(a) Local Processing (b) Remote Processing

Fig. 9. Detection performance vs. transmitter gain. The poor detection performance
is because of a combination of factors – dropped IQ samples due to additional compu-
tation and poor received signal power level.

62% respectively. Similar trends can also be observed with RTL-SDR. An inter-
esting observation is that the decrease in detection ratio in case of RTL-SDR
is less than USRP despite being much cheaper. This is because RTL-SDR has
smaller number of bits per sample compared to USRP and hence the compute
requirement is less.3

3.3 Variation in Transmitter’s Behavior

The detection performance depends on the received signal power relative to the
noise floor. To model this we vary the transmitter’s gain. Gain here is a scaling
factor that decides the power of the transmitted signal. When the received signal
power is low (due to the low gain in the Tx for example) there is a significant
chance of false alarms. When the signal power is close to the noise floor, it
becomes difficult for the sensors to differentiate between noise and the signal.
As a result, signal detection becomes difficult because the sensors can falsely tag
noise as signal. The false alarm rate increases in this scenario as it is very hard to
detect the low power signals unless we keep the threshold close to noise. Keeping
the threshold closer to noise increases the probability of false alarm (PFA). We
choose a threshold similar to [5] by assuming the PFA as 10% and compute the
detection performance based on this threshold.

We experiment with the transmitter changing its gain from 100 to 1000 in
steps of 100. Figure 9 shows the detection performance during local and remote
processing. The detection ratio drops to zero when the transmitter changes its
gain to 50 during local processing on USRP-B210.4 The performance is much
worse on RTL-SDR, in that it becomes almost zero for gain around 200. This
performance degradation also exists for remote processing. The detection ratio
drops to 50% and 30% on USRP and RTL-SDR sensors respectively. The reason
3 Note that RTL-SDR has detection ratio similar USRP when the received signal

power is high. RTL-SDR performs poorly when the transmitter gain is very low and
signal power is close to noise floor (See Sect. 3.3).

4 Note that it is well known that signal power deteriorates as the transmitter decreases
its gain. The goal of this experiment is to understand the significance of detecting
micro-transmissions under poor capabilities.



254 M. Dasari et al.

behind the poorer performance during the local processing is because of the dual
impact of PSD computation overheads and lower received signal power levels at
lower gain values. During remote processing, only lower gain has an impact on
the detection performance.

4 Discussion

In this section, we discuss the major findings of our study and provide a possible
solution to improve the detection performance of the inexpensive sensors.

4.1 Summary of Main Observations

The key takeaways of our benchmark study are:

– The optimal parameters for spectrum sensing such as effective sampling rate,
FFT size, integration size need to be rethought for low-end inexpensive sen-
sors. For example, the optimal sampling rate of detecting 1 ms length micro-
transmissions on a Desktop is 8 Msps while on Odroid-C2 it is 1 Msps.

– Even when all signal processing is done remotely, the performance impact of
using low-end processors in the spectrum sensor could be significant (<75%
on RPi-1 compared to Desktop, for 1 ms transmission). This is attributed to
two factors – (1) inaccurate spectrum sensors, and (2) poor compute hardware
that is not able to process high sampling rates.

– For local processing, availability of compute power is a much bigger factor
affecting detection performance than the type of spectrum sensor. However,
this is not true for remote processing as the amount of samples dropped in
the network during shipping for remote processing is never high enough to
reduce detection ratio significantly.

4.2 Data Fusion

In Sect. 3, we observed that inexpensive compute devices are limited in terms of
computation power because of their hardware. Moreover, the spectrum sensors
are also inaccurate in detecting the signal. We now overcome these limitations
and improve the signal detection performance while retaining the cost-effective
motivation behind distributed sensing. We follow a similar idea from the previous
work [8] where the authors show that the inaccuracy of radios can be mitigated
by having more radios that are sensing together. This is because the samples are
dropped randomly by the devices due to computation bottleneck. The data is
later fused from all the sensors. Taking this further, we deploy 10 sensors each
with RTL-SDR and Odroid-C2 board at the same location in a campus area.

We use the same transmitter and the setup described in Sect. 2.1. The 10
sensors sense the single channel continuously, compute the PSD, and send the
power data to our central server. We use Kaa framework [16] and MongoDB [21]
to collect the data and store it in a central database. We use a fusing algorithm
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Fig. 10. Improvement in detection performance with number of sensors used.

similar to [5] to combine the data from all the sensors. The detection perfor-
mance is shown in Fig. 10. We observe that using 8 sensors, a detection ratio of
almost 99% and 95% is reached in case of transmission lengths of 1 ms and 1µs
respectively. This trade-off of cost versus performance benefits shows that detec-
tion performance of inexpensive spectrum sensors can be improved by deploying
more sensors. A more complicated scenario is to detect the transmissions where
the transmitter is changing its gain. This brings the challenges of dealing with
PFA while fusing data and requires more sensors to detect all transmissions.

5 Related Work

The advent of inexpensive software radios has made the spectrum vulnerable to
unauthorized use [2,9,10,17,23,31]. We discuss two related lines of research: (1)
distributed spectrum patrolling, and (2) benchmarking of spectrum sensors.

Distributed Spectrum Patrolling: Multiple studies such as SpecSense [8],
ElectroSense [30] and RadioHound [18] have proposed deploying distributed
spectrum patrolling systems using commodity spectrum sensors. However, they
all deploy one or two different varieties of sensors and compute devices. For
example, RadioHound uses RPi’s and laptops as the compute device whereas
ElectroSense and SpecSense use RPi’s and Odroid-C2’s respectively. Other stud-
ies such as [4] and [5] have focused on the heterogeneity of the sensors and their
impact on detection, or various performance issues related to distributed sensing,
such as inaccurate clocks [3] and noisy outputs [19,22]. However, these studies
do not investigate impact of sensing parameters or device hardware.

Benchmarking of Spectrum Sensors: A number of studies benchmark the
performance of individual spectrum sensors and the compute devices. For exam-
ple, [7,28] benchmarks the energy and performance trade-off of RPi and compare
it with a smartphone and a laptop based sensor. Other studies investigate the
performance of multiple compute devices such as RPi-2, RPi-3 and Beaglebone-
Black in the context of audio processing [11,12,20]. Finally, [29] benchmark FFT
computations on multiple inexpensive compute devices to study their utility for
on-board processing for space missions.
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6 Conclusion

The demand for wireless spectrum sharing and co-existence technologies makes
large-scale, real-time spectrum measurements necessary. In this work, we explain
the key issues that current wide-area distributed spectrum sensing systems face,
by benchmarking the impact of sensor and device-related parameters when
detecting unauthorized micro-transmissions. We show that the detection per-
formance is no more than 45% even with optimal parameter settings for a 1 ms
transmission. The poor performance is mainly attributed to limited computation
capability of the device that results in lost samples. To improve this detection
performance, we deploy multiple sensors and demonstrate a 98% of detection
performance by fusing the data from all the sensors. We believe that this study
also serves the validation and reappraisal of distributed sensing systems such as
SpecSense [8] and ElectroSense [26].
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Abstract. In response, the European Union has adopted the General
Data Protection Regulation (GDPR), a legislative framework for data
protection empowering individuals to control their data. Since its adop-
tion on May 25th, 2018, its real-world implications are still not fully
understood. An often mentioned aspect is Internet browser cookies, used
for authentication and session management but also for user tracking
and advertisement targeting.

In this paper, we assess the impact of the GDPR on browser cook-
ies in the wild in a threefold way. First, we investigate whether there
are differences in cookie setting when accessing Internet services from
different jurisdictions. Therefore, we collected cookies from the Alexa
Top 100,000 websites and compared their cookie behavior from different
vantage points. Second, we assess whether cookie setting behavior has
changed over time by comparing today’s results with a data set from
2016. Finally, we discuss challenges caused by these new cookie setting
policies for Internet measurement studies and propose ways to overcome
them.

Keywords: GDPR · Cookies · Privacy

1 Introduction

Privacy means freedom from (unauthorized) surveillance and is considered a
human right according to the United Nations. Nowadays, individual privacy
is increasingly eroding by our fully digitalized world: Enterprises of the digital
economy such as social networks or online advertisers but also nation-state actors
collect vast amounts of data via the Internet [8].

However, privacy legislation significantly differs among countries failing to
address the international aspects of the Internet. With the General Data Pro-
tection Regulation (GDPR), the European Union (EU) has taken the effort of
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harmonization and adopted bold rules for personal data. Its overall goal is to
empower individuals to control their personal data and is largely considered one
of the strictest legislative framework for data protection worldwide [26]. As a
novelty, the GDPR does not only apply to data collection and processing based
in the EU, but also to data of European residents that is collected abroad. In
theory, this implies changes to all Internet services offered to EU customers
regardless of their origin.

As one of its aims, GDPR seeks to prevent the (unconsenting) creation of user
profiles; in consequence, most common usages of browser cookies are affected.

As a reaction, Internet services appear to follow one of the strategies below for
compliance with the GDPR: (1) A service refrains from using persistent cookies
at all. (2) The service asks for explicit user consent and only then sets the
cookies, leaving the site usable without consent. In practice, there is frequently
a banner spanning over a service’s pages asking for consent. (3) Alternatively,
EU users are banned from using the service. For example, Los Angeles Times [16]
remained inaccessible from Europe for some time, and even GDPR shields as a
service preventing visits from Europe for a monthly fee are available [13].

In this paper, we assess the impact of the recent GDPR enactment on cookie
setting behavior at large scale. In particular, our research is threefold:

– We investigate whether there are differences in cookie setting when access-
ing the Alexa Top 100,000 websites from different jurisdictions by collect-
ing cookies in an Internet measurement study. We compare persistent cookie
usage upon requests originating from the European Union with such from the
United States.

– Further, we assess whether cookie setting behavior has changed with the
implementation of the GDPR in May 2018. Therefore, we compare our 2018
results with a data set collected in 2016.

– Finally, we infer challenges for Internet measurement studies imposed by
GDPR’s implementation and discuss means to overcome them.

The remainder of the paper is organized as follows: Sect. 2 provides back-
ground on browser cookies and their subsumption under the GDPR framework.
Section 3 describes our measurement methodology and data sets. Our results on
differences in cookie setting behavior with respect to jurisdiction are presented in
Sect. 4, on changes over time in Sect. 5. Section 6 discusses the impact of cookie
setting policies on Internet-wide measurement studies, and Sect. 8 concludes.

2 Background and Related Work

This section provides background on HTTP cookies, the General Data Protection
Regulation (GDPR) and finally presents related work.

2.1 HTTP Cookies

HTTP cookies are a state management mechanism [2], enabling stateful behavior
for the per se stateless HTTP protocol [12]. Cookies are data pieces – to be
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precise: name-value pairs and metadata – and are set (1) in a server’s HTTP
response using a HTTP Set-Cookie header or alternatively (2) by Javascript
running at the client. Either way, the cookie is stored in the client’s browser and
sent back to the server in subsequent requests; whether the cookie is included into
a request is decided upon its metadata, e.g., its expiry date, domain and path.
The server is able to adapt its behavior in dependence of the cookie information,
or return a modified cookie to the client. Cookies have manifold usages, including
user authentication, user tracking or targeted advertising. The latter two are
typically permanent (or persistent) cookies; they are issued automatically at the
first visit to a new site, stored non-volatile, remain valid for long periods of time
– as a consequence of the chosen expiry date – and are used to link subsequent
visits of the same user. In contrast, cookies for login purposes are only set during
authentication. Working as a temporary session identifier, they are only kept in
volatile memory, expire within hours and lost when the browser window is closed.

2.2 General Data Protection Regulation

The General Data Protection Regulation (GDPR) came into force on May 25th,
2018. Before that, cookies have been addressed in 2002 by the European Union’s
ePrivacy directive (Directive 2002/58/EC, Directive on privacy and electronic
communications), also known as Cookie directive, and its adaption in 2009
(2009/136/EC). Publications of the European Commission address the correct
use of cookies in regard of the European legal framework [10]. In case of cookies
acting as a means to collect data for behavioral analytics or to facilitate user
tracking, the legislation of the GDPR applies in addition.

According to the GDPR, a data controller will need a legal basis to process
personal identifiable information (PII) at all. In general, this is either consent
from the user or one of the exceptions in Article 6 of the GDPR.

1. the data subject has given consent to the processing of his or her personal
data for one or more specific purposes. Almost any processing activity can be
justified by informed consent, although the requirements for the underlying
information are relatively high. For consent to be valid, it must be informed,
specific, freely given and must constitute a real indication of the individual’s
wishes1. In any case, consent is only valid in the form of an active act of
consent, or a so-called opt-in, the mere opt-out or tolerance would no longer be
legal. An example in which consent would be required are behavioral analyses,
e.g., by Google Analytics. Cookies are only exempted from this requirement,
if they are used for the sole purpose of carrying out the transmission of a
communication, and are strictly necessary in order for the provider of an
information society service explicitly required by the user to provide that
service.

2. processing is necessary for the performance of a contract to which the data
subject is party or in order to take steps at the request of the data subject

1 Guidelines on Consent under Regulation 2016/679. Adopted on 28 November 2017.
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prior to entering into a contract. This applies to cases in which the cookie
is necessary to provide the requested webpage or service, such as cookies for
user authentication, or webshop carts.

3. processing is necessary for the purposes of the legitimate interests pursued by
the controller or by a third party, except where such interests are overridden
by the interests or fundamental rights and freedoms of the data subject which
require protection of personal data. IT security, i.e. the protection from attacks
or malware are considered a possible legitimate interest on the part of the
person responsible.

Also in the case of transfer to a third country according to Article 44, which is
often the case when using analysis, content delivery or social media (e.g. Google,
USA), certain regulations must be observed in order to remain within a legal
framework [11], e.g., in the case of the U.S. the Privacy Shield framework [9].

2.3 Related Work

Previous measurement studies collected cookies for various purposes; measure-
ments are either active using crawling or probing a data set, e.g., [3,5,7,8] or
passive relying on (already available or just captured) traffic logs, e.g., [14,25]:
Hannak et al. [15] investigate price discrimination and personalization that is
based on cookies. Englehardt et al. [8] studied the potential of passive mass
surveillance, e.g., by intelligence services, exploiting third-party HTTP track-
ing cookies. Englehardt and Narayanan [7] developed a measurement platform
for web privacy measurements. The platform allowed to assess cookie-based,
stateful as well as fingerprinting-based, stateless tracking, and found previously
unknown techniques for tracking. Merzdovnik et al. [21] provided a similar large
scale study on tracking and tracker blocking, which was conducted on the Alexa
Top 200,000 pages. Cahn et al. [3] crawled the Alexa Top 100,000 web sites
for cookies; their assessment led to the development of a mathematical model
to quantify user information leakage. Sivakorn et al. [25] assessed the extent of
information that is revealed to adversaries hijacking HTTP cookies in cases of
simultaneous deployment of HTTP and HTTPS. Based on a data set of cookies
collected in the wild, Gonzalez et al. [14] developed a methodology extracting
information from proprietary data formats that are frequently used in cookies.
Lerner et al. [19] investigated the history of cookie-based web tracking from 1996
to 2016; their work is similar to ours insofar as historic changes in cookie uti-
lization are observed. We progress this line of research by specifically assessing
the practical impact of the GDPR adoption on cookie usage.

Degeling et al. [6] and Linden et al. [20] made studies on the related topic of
how GDPR changes web sites’ privacy policies. Kulyk et al. [18] observed user
reaction to the former cookie information banners.

Beyond, there are works on effects of GDPR adoption on Internet measure-
ment: Plonka and Berger [22] revised collection of IPv6 addresses – the latter
considered as personal identifiable information (PII) under the GDPR – and
proposed a method to anonymize data sets of IPv6 addresses. Trammell and
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Kühlewind [27] showed that even simple round-trip measurements reveal sen-
sitive information, i.e., geographical location, and might thus become subject
to the GDPR. While these works consider the impact of GDPR on Internet
measurement, they do not assess the impact of GDPR adaption in the wild.

3 Methodology and Data Sets

For our study we employed three measurements based on the Alexa Top 100,000
ranking (a subset of Alexa Top 1 Million [1]). While the ranking methodology
is poorly documented [23,24], it remains a de-facto industry standard. In our
opinion, it still depicts the World Wide Web better, than the protocol-agnostic
Umbrella [4] list.

Two data sets were recorded in 2018 from different locations starting one
week after GDPR’s adoption. The third one had been recorded in 2016 but
remapped to fit the 2018 ranking based on domain name. Thus, all data are
shown and compared in 2018 ranking.

3.1 2018 Measurement

We crawled the Alexa Top 100,000 websites using the official Google Chrome
v.66 browser in headless and network-deterministic mode. Every website was vis-
ited using HTTP and HTTPS, and each visit consisted of three retrievals. In the
first retrieval, the main landing page is gained. For example, microsoft.com
redirects to a specific regional page such as https://www.microsoft.com/nl-
nl/ and de.wikipedia.org redirects to https://de.wikipedia.org/wiki/Wikipedia:
Hauptseite. If the HTTP visit redirected to HTTPS or vice-versa, the other visit
was skipped. The last two retrievals shared the user profile, but the browser pro-
cess was closed in between. Thus removing all session cookies and leaving only
persistent cookies. Finally, the internal netlog of the third retrieval was searched
for transmitted cookies to the landing page. Unresponsive websites (e.g., due to
down times or blocked IPs) and unresolvable websites were marked as erroneous.

This approach provides the following benefits: (1) The final netlog is not
cluttered with redirect chains, e.g., HTTP redirects to HTTPS followed by fur-
ther redirects to regional language pages. (2) In consequence, the first request
in the netlog is the page actually shown to the user. (3) This way, subsequent
requests to third party resources (e.g., advertisement banners) can be clearly
separated. (4) Since persistent cookies can also be set dynamically among others
by Javascript or in iframes, we have to observe the actual network traffic of an
request to gain all cookies. It is not enough to look for Set-Cookie headers in
server responses as the dynamic cookies are missed this way.

For the two measurements, we visited the Alexa Top 100,000 websites2 from
two locations. The first is based in a member state of the EU, the second in a

2 We used Alexa Top 1 Million file [1] dating, May 24th, 2018, for all 2018 measure-
ments after the introduction of GDPR.

https://www.microsoft.com/nl-nl/
https://www.microsoft.com/nl-nl/
http://de.wikipedia.org
https://de.wikipedia.org/wiki/Wikipedia:Hauptseite
https://de.wikipedia.org/wiki/Wikipedia:Hauptseite
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US-based Amazon data center (east coast). Unreachable or unsuccessfully loaded
websites were retried a few days later before being eventually marked as erro-
neous.

3.2 2016 Measurement

The 2016 measurement was conducted for a different study and thus used a
slightly different approach. A scripted Firefox headless browser visited the Alexa
Top 200,000 pages3 from a US-based Amazon data center (west coast). These
200,000 measurements where later mapped to the 2018 ranking for comparison,
matching 62,679 sites. A visit consisted of following initial redirects and then
visiting three random sub pages of the site. Both, the HTTP and HTTPS traffic
was recorded using a man-in-the-middle proxy with a custom-supplied certificate
which was trusted by the browser.

This method is able to distinguish between session and persistent cookies
that are set in HTTP headers using the expiry date from the Set-Cookie HTTP
response header. However, it cannot make such a distinction on cookies that have
been dynamically set (Javascript). The latter are only observed in subsequent
requests but do not carry any indicator about their lifespan. In consequence, we
can only provide an upper and lower bound for persistent cookies within this
work representing the uncertainty span.

3.3 Unavailable Websites

In 2018, 2.5% of all websites were unavailable from the US but available from
the EU; 0.7% were unavailable from the EU but available from the US and 1.9%
were unavailable from both locations. Possible reasons include:

– Content delivery network (CDN) domains without an actual website. Exam-
ples include twimg.com (the Twitter CDN for images), cdninstagram.com,
cloudfront.net (the CDN domain of cloudfront.com), ytimg.com, ebay-
desc.com (used for user-supplied content to mitigate SOP-based problems
such as XSS).

– Geographic blocking. For example, 92 Russian, 45 Iranian, and 58 Brasilian
websites were exclusively blocked for US visitors, compared to 26, 5, and 13
respectively for EU visitors (based on ccTLD).

– Network and server failures during the measurement period.

3.4 Data Set Usage

For the 2018 measurements, we concluded that a website uses persistent cookies
whenever at least one cookie was detected during the first HTTP(S) request in
the third retrieval. We did not specifically look at third-party resources, such
as advertisement networks. For the 2016 data set, we counted the Set-Cookie

3 Alexa file from May 24th, 2016.
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header in case it included an expiry date or if a new cookie not previously set by
HTTP headers was observed in the traffic. For comparison of the 2018 data sets,
we used websites reachable from both measurement locations only. For temporal
analysis, we matched the 2018 and 2016 data sets by domain name and included
only domains that have been prevalent in both data sets since the Alexa ranking
changed considerably over time.

3.5 Ethical Considerations

In our measurements, no personal data of individuals was collected or processed,
i.e., the GDPR does apply to our measurements. We pretended to be a regular
user, and investigated how websites react in case of such legitimate use. How-
ever, personal data of real people was not involved at any stage of this study.
Beyond, we did not inflict any negative impact on websites ranked in the Alexa
ranking [1] as our line of action, i.e., accessing websites and storing the cookies
in our browser, is considered regular behavior on the Internet.

4 Geographical Differences

In this section, we compare the results from our 2018 measurements from US and
EU vantage points (Fig. 1). In total, 94,836 sites could be retrieved from both
test locations. Thereof, 50,663 sites (53.4%) did not install a persistent cookie
on first visit, neither when requested from the EU nor the US. 31,362 (33.0%)

Fig. 1. Comparison of 2018 cookie usage. How to read: similar to a density plot. Exam-
ple: around rank position 100, 87% of sites install a persistent cookie when visited from
the US, but only 46% sites do the same for European visitors without prior consent.
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Fig. 2. Share EU-related top-level domains in the Alexa top 100,000 sites as of May
2018 based on ccTLD (Sect. 5.1)

installed a cookie in every case. However, 11,773 (12.4% of reachable and 26.6%
of cookie-using) sites issued cookies for US-based visitors but not for EU-based
ones. In comparison, only 1,038 (1% reachable, 2.3% cookie-using) of the sites
set cookies for European, but not for US customers.

Interestingly, the discrepancy sharply increases for the top 1,000 websites:
49.3% of cookie-using websites choose to evade GDPR by using some form of
geographic discrimination.

Figure 1 depicts the percentage of websites using persistent cookies, and
shows the clear tendency of less persistent cookie usage for EU users. We have
chosen a logarithmic scale for the Alexa rank as it better fits the long-tail char-
acteristic of the rank.

We attribute the clear tendency to more geographically-based cookie differ-
entiation on the higher ranks to the dominance of commercial and international
websites. The Alexa list (and probably the WWW as a whole) is skewed towards
non-EU sites on the top ranks (Fig. 2). As EU-based operators have to apply
GDPR rules regardless of origin, those rules have larger effect on lower ranks.
Additionally, lower ranked websites tend not to have made the same investment
into a real-time geographical differentiation of their visitors, as higher ranked
websites. The latter’s business model might depend more on tracking, advertise-
ment and user analytics.
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Fig. 3. Temporal comparison of cookie usage. Data for 2016 is given as an upper and
lower limit (see Sect. 3.2) and mapped to Alexa ranking of May 2018

5 Temporal Changes

For temporal comparison, we normalized the 2016 ranking to fit the 2018 ranking.
Thus, giving us a comparison about the development of cookie usage on a per-
site basis. As for the above described uncertainty of the 2016 data, we can only
provide ranges. The results are depicted in Fig. 3.

In the top 1,000 ranks, 84% of sites could be matched from the whole 2016
data set. Of those, between 10.3% and 24.3% dropped non-consensual persistent
cookie usage between 2016 and 2018.

In comparison, for the top 100,000 sites, only 55% could be matched from
2016 to 2018. Between 30.88% and 46.7% decided to refrain from non-consensual
persistent cookie use all together.

Overall, US customers seem to also have profited from EU restrictions on
Cookie usage.

As mentioned in Sect. 4, the drop of cookie usage above rank 1,000 for non
EU-consumers could be due to websites applying EU-sane settings without a
geographical considerations.

5.1 EU Websites

Out of the Alexa Top 100,000 sites, we estimate are 10,584 are EU-related
based on the country-code top-level domain (ccTLD)4. 7,668 have been valid
and present in all three data sets (Fig. 4). Albeit some inaccuracies (e.g., vanity
domains such as start.at, or multinationals such as siemens.com), the majority

4 eu, at, be, bg, cz, cy, de, dk, ee, es, fi, fr, gg, uk, gb, gi, gr, hr, hu, ie, im, it, je, lt,
lu, lv, mt, nl, pl, pt, ro, se, si, sk.
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Fig. 4. Persistent cookie usage amount sites with EU-related domains, otherwise sim-
ilar to Figs. 1 and 3.

of those websites target EU consumers of some sort. 36% use cookies regardless
of the geographic location of an visitor. 11% set cookies for U.S.-based but not
EU users and 2% vice-versa. Between 31% and 46% of websites with EU-related
domain names chose to drop cookie usage in the last two years, whereas 3%
introduced them.

6 Impact on Measurement Studies

The adoption of the GDPR in the European Union has apparently created a
two-class Internet with regard to privacy. While Internet users benefit from
this development, it poses several challenges for Internet measurement studies.
Future measurements on website behavior, cookie usage, privacy options, and
related matters will heavily depend on the location of the measurement and pro-
vide potentially vastly different results. This diversification will further proceed
should more world-regions (state unions, political super-powers) put effective
Internet-regulation for privacy protection in place.

This implies reduced significance and universality, especially for measure-
ments on privacy. Researchers will either have to restrict their scope to certain
geographical regions or have to invest in multiple measurement sites repeat-
ing tests from each site. Additionally, as many websites present geographically-
selected GDPR-compliance banners, measurement studies comparing the visual
representation of websites might lead to false results. Studies investigating cook-
ies, e.g., the extent of tracking after providing consent, have to find a way to
automatically overcome the banner to proceed to cookie setting.
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But also beyond cookies, more challenges are caused by the adoption of the
GDPR for measurement studies. For example, various European registrars no
longer collect information for ICANN’s WHOIS database as this line of action
opposes GDPR’s principle of data minimization. This impacts the database’s
usefulness for measurement studies as it limits the view on domain registrations
in comparison to the era before GDPR adoption.

7 Limitations and Future Work

This study only compared snapshots of cookie usage by websites directly without
third-party cookies (c.f. Iordanou et al. [17]). A stronger link between GDPR
and changes in cookie usage would be possible by a longitudinal study dur-
ing GDPR’s adoption. Additionally, the 2016 data was collected with a slightly
different methodology prohibiting to distinguish the temporal configuration of
Javascript-set cookies, thus leading to upper and lower bounds for persistent
cookies. Additionally, the different browsers might have triggered slightly differ-
ent responses from websites.

Nevertheless, the current data suggests that EU’s GDPR had a massive inter-
national impact on cookie usage in the web’s ecosystem.

Some open topics remain for further investigation. First, we focused on per-
sistent cookies in this study but neglected the use of sessions cookies which
should become part of future inspections. Furthermore, as has been shown in
the past, trackers can also rely on other information to identify users, like fin-
gerprinting and local storage. Therefore the impact of GDPR on such types of
user tracking needs to be analyzed as well. Additionally, since sites now need
to ask the user’s consensus before setting cookies, systems to detect and inter-
act with such checks need to be devised to allow for a better analysis in future
privacy measurements. Many cookies might still be set, after the user consent
– however, if the user is willing to live with the banner, they might now enjoy
many more websites cookie-free. We neglected, that some non-GDPR-compliant
websites might offer the user to opt-out afterwards. Beyond, it should be investi-
gated whether a website’s real behavior is compliant with the declaration offered
in the banners.

In our study we assumed geographical discrimination to be Source-IP or DNS-
based. Other techniques exist, such as geographical routing announcements to
different data centers.

8 Conclusion

General Data Protection Regulation (GDPR) has created a two-class Internet
with regard to privacy. EU consumers encounter significantly less unconditional
usage of persistent cookies when surfing the web than US visitors. 49.3% of
cookie-using websites of the Alexa Top 1,000 choose to refrain from cookie setting
without consent on the first visit when facing an EU visitor, when they would for
other visitors. This figure drops to an overall of 26% when observing all Alexa
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Top 100,000 websites. Further, the new regulations reduced cookie burdens for
the rest of the Internet as well, i.e., even users from outside of the EU benefit
from the GDPR’s adoption and experience less cookies. When compared to data
from 2016, the overall cookie load reduced by up to 46.7% for US consumers,
albeit mostly for lower ranked websites.

For consumers, this is clearly great news for their privacy. However,
researchers face an increasingly divided World Wide Web. Future Internet stud-
ies will have to account for different geographical regions or alternatively reduce
their scope.
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Abstract. We present the first detailed analysis of ad-blocking’s impact
on user Web quality of experience (QoE). We use the most popular web-
based ad-blocker to capture the impact of ad-blocking on QoE for the
top Alexa 5,000 websites. We find that ad-blocking reduces the number
of objects loaded by 15% in the median case, and that this reduction
translates into a 12.5% improvement on page load time (PLT) and a
slight worsening of time to first paint (TTFP) of 6.54%. We show the
complex relationship between ad-blocking and quality of experience -
despite the clear improvements to PLT in the average case, for the bot-
tom 10 percentile, this improvement comes at the cost of a slowdown on
the initial responsiveness of websites, with a 19% increase to TTFP. To
understand the relative importance of this trade-off on user experience,
we run a large, crowd-sourced experiment with 1,000 users in Amazon
Turk. For this experiment, users were presented with websites for which
ad-blocking results in both, a reduction of PLT and a significant increase
in TTFP. We find, surprisingly, 71.5% of the time users show a clear pref-
erence for faster first paint over faster page load times, hinting at the
importance of first impressions on web QoE.

1 Introduction

The web advertisement industry has grown exponentially over the past decade
and is now the primary source of income for most content providers [19]. A
number of research efforts in the last few years have focused on understanding
their scale, mechanisms, and economics [10,26,34].

While keeping most online content and services “free”, web advertisements
have raised serious security problems and privacy concerns, and attracted some
negative press due to questionable practices [21,29,40]. In response, millions of
users have adopted some form of ad-blocker. By February 2017, at least 615 mil-
lion devices have an ad-blocker installed, and the total ad-block usage increased
30% between December 2015 and 2016, according to the latest PageFair Adblock
Report from 2017 [8].

Besides increased security and fewer interruptions, a key motivation for the
wide adoption of ad-blockers is speed [8]. While it seems intuitive that loading
fewer objects would lead to an improved quality of experience (QoE), the exact

c© Springer Nature Switzerland AG 2019
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impact of ad-blocking on perceived website performance is still unclear, despite
the importance of QoE on user engagement and profit [24,39].

This paper presents the first detailed analysis of ad-blocking’s impact on user
QoE. We use the most popular web-based ad-blocker to analyze the impact of
ad-blocking on users’ web experience when visiting the top-5,000 most popular
websites according to Alexa. We rely on three commonly used metrics as proxies
of users’ QoE – Page Load Time, First Paint Time, and Speed Index.

Our results reveal a complex relationship between ad-blocking and web QoE.
We find, as expected, that ad-blocking reduces the number of objects loaded by
15% in the median case. This reduction in loaded objects translates into a 12.5%
improvement on PLT and a slight worsening of TTFP of 6.54%, on average.
When focusing on the bottom 10 percentile, however, we find that while ad-
blocking yields a 14% improvement on PLT, the worsening of TTFP is about 3x
higher than in the average case.

To understand the relative importance of this trade-off for user experience, we
conducted a large crowd-sourced experiment of ad-blocking and Web QoE with
1,000 users in Amazon Mechanical Turk. Users were presented with websites for
which ad-blocking results in both a significant reduction of PLT and a significant
increase of TTFP. We find, surprisingly, that 71.5% of the time users show a clear
preference for faster first paint over page load times, suggesting the importance
of first impressions on web QoE.

In summary, our main contributions are:

– We report on the first large-scale evaluation of the web QoE impact of ad-
blocking with the 5,000 top Alexa sites.

– We show the complex relationship between ad-blocking and quality of expe-
rience – while ad-blocking yields clear improvements to PLT in the average
case, for the bottom 10 percentile, this improvement comes at the cost of
a significant slowdown on the initial responsiveness of websites, with a 19%
increase to TTFP.

– We present results from the largest crowd-sourced analysis of ad-blocking
impact on QoE today, with 1,000 users in Amazon Mechanical Turk. Our
results suggest that user experience is more sensitive to faster first paint than
slower page load times.

– To assist open science, we will publicly release our dataset from our con-
trolled experiment with the top 5,000 Alexa websites and the 1,000-user
crowd-sourced experiment.1

2 Ad-Block Background

Ad-blockers come in a number of formats – as browser extensions, VPN-based
solutions and full browsers (e.g., Brave, Cliqz and now Chrome Canary [13]). In
this work we focus on the browser-extension format as this is by far the most
commonly used option.
1 http://www.aqualab.cs.northwestern.edu/projects/AdQoE.

http://www.aqualab.cs.northwestern.edu/projects/AdQoE
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There is a wide range of browser extensions aimed at avoiding or blocking
ads including Ghostery, 1Blocker, NoScript, Adblock, and Adblock Plus [18].
Most web-based ad-blockers rely on the browser’s webRequest API to intercept
requests from websites for modification [7]. The API allows an extension or
plugin to act as a proxy and interact with requests from the website at different
points in their life cycle.2 For example, in the Chrome browser Adblock Plus uses
the “onBeforeRequest” callback to receive the URL of a request and determines
whether or not to block it.

To decide whether a URL should be blocked or not, ad-blockers use crowd-
sourced list of filter rules (“filter lists”). Filter list rules are regular expressions
that match HTTP requests and HTML elements. Ad-blockers block HTTP
requests and hide HTML elements if they match any of the filter rules. Ad-
blockers typically allow users to subscribe to different filter lists and even incor-
porate custom filter rules. EasyList [32] is the most popular of these list, but
there are others such as Fanboy’s Enhanced Tracking List [11], Disconnect.me [9]
and Blockzilla [14] as well as language-specific ones [3]. Filters lists can include
thousands of rules; EasyList alone is over 69K-rules long at the time of submis-
sion.

For our analysis we use Adblock Plus (ABP). ABP is by far the most popular
ad-blocker holding, according to a recent study by Malloy et al. [19], over 90% of
the market for Firefox and Internet Explorer and nearly 50% of Google Chrome’s
market. Despite or focus on ABP, we believe our finding are generalizable to any
of the ad-blockers relying on EasyList or similar filter lists.

3 The Performance Cost of Ad-Blocking

Our analysis aims to identify specifically how ad-blockers impact user QoE. The
following paragraphs present our experimental methodology and dataset, and
describe our evaluation results.

3.1 Methodology and Dataset

To analyze the impact of ad-blocking on user QoE, we load a range of popular
websites in a controlled environment, with and without ABP enabled. For this we
use WebPageTest (WPT) [20], an online, open-source web performance diagnos-
tic tool. WPT creates a sandbox with virtual machines in which testers can load
websites using various devices and browsers over different network conditions.
The tool returns a straightforward report card summarizing the performance
results of its tests, including a table of milestones alongside speed metrics, such
as PLT and TTFP. WPT performs a similar analysis of web pages as [30] and
was used by Netravali et al. for accurate record-and-replay for HTTP [23].

We employ a private instance of WPT using a dedicated virtual machine
on a desktop and a web server instantiated on Google Cloud Platform [1]. We

2 https://developer.chrome.com/extensions/webRequest.

https://developer.chrome.com/extensions/webRequest
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use a private instance instead of a public one to avoid polluting our results
with traffic from other users’ concurrent tests. To load different websites in
succession, with and without Adblock Plus enabled, we use the Chrome browser
flag --load-extension to load the unpacked Adblock Plus extension from the
local computer’s storage.

For our analysis, we aim to limit overhead or bias from the testbed. As
such, we do not add latency and leave the default bandwidth for both upload
and download. We use the Google Chrome browser (version 57.0.2979.23) with
Adblock Plus browser extension (version 1.12.4). After all of the websites have
completely loaded, we collect the results using the WPT REST API hosted on
our web server, before parsing the resulting HAR files with Haralyzer [12].

We use the top 5,000 popular sites world-wide according to Alexa [2]. This
set includes websites with similar URLs and different country codes, which we
opted to keep as the may be hosted by different servers or CDNs and potentially
be affected differently by ad-blocking.

3.2 Ad-Blocking, Requested Objects and Web QoE

We begin by measuring the reduction in the number of objects loaded with ad-
blocking for the top 5,000 Alexa sites. We focus on two of the metrics, Page
Load Time and Time to First Paint.4

Impact on Requested Objects. Sites are made up of many different types
of objects including HTML, CSS, JavaScript, image, and video files. Butkiewicz
et al. [5] highlight the growing complexity of websites and report that loading
a base web page requires fetching more than 40 objects in the median case. For
a non-trivial fraction (20%) of websites, the number of objects requested is well
above 100. Our analysis on the impact of ad-blocker usage on the number of
requested objects focuses on three of the five common object types – JavaScript,
images, and HTML [22] – as these are most typically associated with ads [25].

When websites are loaded with ABP enabled, we see 19% fewer objects
requested on average, and a 75% reduction for the 95pct (220 instead of 900
objects when loading with ABP disabled).

Table 1 shows a set of percentile numbers of requested objects across our
collection of web sites, when the sites were loaded with and without ad-blocker.
The last column in the table is the ad-block exposure rate, defined as in Malloy
et al. [19], as the number of ads shown to ad-block users per ad shown to no-
ad-block users. The drop in the number of requested objects is clear; at the
30th percentile there is already a 10% reduction from ad-blocking. At the 90th
percentile, the use of ad-blocking yields a 25% reduction in ad-block exposure
rate.

In Fig. 1 we focus on the difference in requests for various object types across
the 90th percentile of websites. The most blocked type of objects are images,
3 The newest version able to work with WebPageTest.
4 We excluded SpeedIndex results for space considerations; these results were consis-

tent with other findings.
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Table 1. When loaded with ad-block, websites request noticeably fewer objects as soon
as the 30th percentile. This is mirrored in the ad-block exposure rate, defined as the
number of ads shown to an ad-block user per ad shown to a non-blocking user.

Percentile Adblock No adblock Ad-block exposure rate

10 20.0 20.2 0.99

30 51.0 56.0 0.91

50 79.0 93.0 0.85

70 116.0 140.0 0.83

90 177.0 237.0 0.75

followed by JavaScript and HTML files. We see that, on average, 5 fewer requests
were made for images, while 3 fewer JS and 2 fewer requests for HTML objects
were made. This is, in many ways, as expected since images make up the core of
ads [25], and are typically requested asynchronously by JavaScript or included
in HTML pages.

Fig. 1. 90th percentile for the number of requests the types of objects most associ-
ated with ads. The most blocked type of objects are images, seen in the right-most
line, followed by JavaScript and HTML objects. Java Scripts are used typically for
asynchronous loading of ads while HTML objects are used for iFrame ads.

Overall Impact on QoE. In the following paragraphs we focus on the impact
that the decreased number of objects requested has on user QoE as captured by
TTFP, PLT, and SI.

Page Load Time (PLT). Page load time (PLT), the most ubiquitous QoE metric,
is an approximation of the time it takes for all objects on the website to load.
PLT is typically measured as the time between when a page is requested and
when the OnLoad event is fired by the browser. While some studies have explored
other estimates of PLT (such as perceived PLT [15]), we use the traditional PLT
metric as our proxy for user QoE.
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Fig. 2. CDFs of Page Load Time (2a) and First Paint (2b); each set includes the
bottom 10% and top 10%.

Figure 2a shows the CDFs of PLT with the complete distribution in the center
and the bottom and top 10% of the distribution at the left and right of the figure,
respectively. The average PLT is approximately 40 s when loaded without ABP.
Using ABP yields and improvement of 5 s, in average. The improvement is even
more noticeable in the bottom ten percentile (left-most graph of Fig. 2a), with
websites loading 14% faster with ABP enabled, as a consequence of loading fewer
objects.

Time to First Paint (TTFP). The impact of ad-blocker usage on Time to First
Paint is quite different. TTFP captures the time it takes to begin rendering the
first objects of a website [35]. When a user navigates to a website, the browser
requests the initial HTML page before requesting and rendering the content.
TTFP is a function of the complexity of the webpage and the latency to servers
hosting the content and is considered an important factor of web QoE, as a lower
TTFP means less time a user must wait before starting to view an active site.

Figure 2b shows the CDF of TTFP in milliseconds. The figure contains a
similar set of three graphs as with PLT, with the whole distribution in the
center and the bottom and top 10% of the distribution at each side of the figure.

The figure shows the clearly negative impact of ad-blocker usage on first
paint time, particularly for the lower 10% of the distribution. This delay results
from the time it takes for the ad-blocker to decide whether or not it should block
an object. Even if the absolute time to process URLs through the EasyList is
small, this small overhead can have a significant impact on TTFP for the fastest
sites, many of which finish the painting of the first object in less than a second
without ad-blocking.

Summary. The use of ad-blocker introduces a constant processing overhead from
checking each URL request with the filter list. For many sites, the reduction in
the number of ads’ associated objects requested yields clear improvements on



The Value of First Impressions 279

PLT. As most ads are loaded asynchronously with JavaScript, however, these
benefits do not offset the processing overhead by the time of painting of the first
object (TTFP). The following paragraphs explore this trade-off.

4 Crowd-Sourced Evaluation of Trade-Offs in QoE

The results from the previous section show a clear trade-off in the use of ad-
blocker between the responsiveness of a website and the total time the user spend
waiting on a page to load – for a large number of sites, ad-blocking improves
PLT at a significant cost on TTFP.

The relative importance of these two metrics to overall users’ QoE, however,
is not well understood. To explore this we run a large, crowd-sourced experiment
of Web QoE; the following paragraphs describe our experimental methodology
and present a summary of our findings.

4.1 Crowd-Sourced Experiment Methodology

Our goal is to capture the impact of the trade-off between PLT and TTFP on
users’ perception. To this end, we need the ability to present a large random set
of users with both version of a website, with and without ad-blocker, under the
same or similar network conditions.

Experiment Setting. We conduct a user study with 1,000 users on Amazon
Mechanical Turk.5 In our experiments, we direct workers to a website under our
control and present them with two versions (with and without Adblock Plus)
for each of a sample of sites.6 For each Human Intelligence Task (HIT), a user is
presented with both versions of 10 sites, loaded with and without ad-blocking,
and asked to select the site that “loaded faster.”

The websites we use in these experiments were selected, at random, from a
subset of 965 websites, from our corpus of 5,000, that show both a significantly
slower TTFP and a faster PLT when loaded with Adblock Plus.

As in Varvello et al. [33], rather than using live sites during these experiments,
we collect videos of the websites loading through WebPageTest under controlled
conditions. Videos recorded with WebPageTest have the time included and end
with a gray tinted frame. We modified the server to remove these and make sure
the user has no indication of when the website has loaded. We use these videos
to provide a consistent experience to all participants, regardless of their network
connections and device configurations.

We use two different types of instructions during an experiment to ensure we
capture the proper response. The first set of instructions, or primer, informs the
user as to what they should be looking for during the experiment, asking them
to Immediately select the video they believe loaded first.

5 https://www.mturk.com.
6 adblock.aqualab.cs.northwestern.edu.

https://www.mturk.com
http://adblock.aqualab.cs.northwestern.edu/
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The second set of instructions, or directions, instructs users on how to make
their actual selection by asking them: Once one of the websites finishes loading,
immediately click the video.

Pre- and Post-experiment Survey. Before each experiment, we collect some basic
demographic information on users’ including gender, age group and country of
residence. In addition, we ask two additional questions regarding their familiarity
with technology: the range of hours spent online on a typical day, and their
own rating of their personal technological expertise. These last questions look
to determine the impact a user’s perceived level of technical proficiency and
experience has on their sensitivity to the performance changes introduced by
ad-block.

We also include an exit survey that users must complete before submitting
their HIT to Amazon. We ask users whether, in their selection of the page which
loaded first, they opted for the page which first showed content or the page which
appeared to have loaded everything first. Here we are interested in determining
what effect, if any, the user’s interpretation of loaded faster has on their selection.

Quality Control. We apply a number of common techniques to validate the
quality of our crowd-sourced data. First, we restrict our survey to workers that
have completed ≥50 HITs and have an approval rating ≥95%. Second, beyond
our 10 sites, sampled from a larger set of websites where ad-blocking impact
on QoE is ambiguous, we include 2 other websites as control cases. Both cases,
placed randomly among the other 10 sites, present an obvious choice of “loading
faster” in either the right or left of the screen. We employ this as a form of
quality control on all of the HITs. All 1,000 HITs correctly chose the control
cases. We received 1,080 experiment results and eliminated 5.6% (52) of them
that were partially completed (rated less than 10 sites).

Ethical Considerations. Amazon’s conditions of use explicitly prohibit tasks that
gather personally identifiable information (PII). The information we did collect
is coarse enough that we have no reasonable way to map it to individuals. Our
experiments collect data “about what”, rather than “about whom”, through
the relatively innocuous task of selecting videos. Our institution’s Institutional
Review Board (IRB) did not consider our experiment human subject research.

4.2 Summary of Results

Looking at the set of individual experiments, summarized in Table 2, we see that
users chose the website loaded without ad-blocker 71.5% of the time as the one
“loading faster”. Focusing on users rather than individual page comparisons, we
find that 86.7% of them choose the non-ad-blocker option as “loading faster”
the majority of the time.

This clear preference for non-ad-blocking appears to be independent of any
user attribute, including their age, gender, locale and even their self-reported
technical proficiency. As an example, Fig. 3a shows users’ majority preference,
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Table 2. Experiments and user majority preference for ad-blocking and non-ad-
blocking. In 71.5% of tests users selected non-ad-blocking as loaded faster.

Indicator Non-ad-blocking (%) Ad-blocking (%)

Experiments (10,000) 71.5 28.5

Users (1,000) 86.7 13.3

(a) Majority Choice by Technical Proficiency (b) Time Taken

Fig. 3. On the left is the number of users per majority choice aggregated by technical
proficiency. On the right is the time taken per user for users based on what they looked
for to indicate the page was done loading.

broken down by technical proficiency. The figure combines users with below aver-
age and average self-reported technical proficiency, as only 3.8% of users selected
the former. When examining the results of users’ preferences by technical pro-
ficiency, there is not significant difference in their preferences, with “average”
proficiency and “above average” proficiency choosing the non-ad-blocking option
95% and 93% of the time, respectively.

Interestingly enough, this clear preference is even independent of the user’s
own understanding of what they consider “loading faster” – the site that show
some content first or the one that loaded everything first. When aggregating users
based on this, we find that despite 65.1% of users selecting loaded everything as
their definition of “loading faster”, a large fraction of them opted for the non-
ad-blocking option that yields a shorter time to first-content (and longer loading
time). Table 3 shows the number of users that selected majority non-ad-blocking
(“NAB”) or ad-blocking (“AB”), separated by their definition of “loading faster”
from the exit survey. Over 96% of users selecting “loading everything” opted for
the non-ad-blocking (NAB) version.

For validation, Fig. 3b plots the time users take to make a decision, aggre-
gated by their choice of “loading faster” in the exit survey. As expected, users
who are looking for the first content take less time to select a webpage than
users who are looking for everything to be loaded.
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Table 3. Number of users for “NAB” and “AB” majority choice based on their
indicator of page load. We see that users selected loaded everything more often than
first content.

Indicator NAB users AB users No majority Skipped survey

first content 227 15 209 17

loaded everything 525 21

5 Discussion

Our measurement study motivates and provides direction to work on improv-
ing the quality of experience for users of ad-blockers. The observations are not
restricted to the particular ad-blocker we used, but are equally relevant to other
ad-blocker that relies on filter lists. Any of these ad-blockers would need to check
the list of regular expressions to determine whether or not to block a requested
object. As we show, while this check may result in fewer objects being requested
and, thus, lower PLT, the extra time will negatively impact TTFP.

There is a number of possible paths to optimize ad-blockers based on their
impact on QoE. One could imagine using historical data to identify when loading
a website with ad-blocking results in a significantly degraded TTFP/improved
PLT. For these sites, the ad-blocker could delay checking until after reaching the
TTFP not to impact a website’s initial responsiveness if a potential cost on ad
exposure.

Our analysis of ad-blocking’s impact on users’ web experience is preliminary.
Our study focuses on how ad-blocking impacts QoE performance metrics such as
PLT and TTFP, but that is only one aspect of the whole web browsing experi-
ence. Issues such as Do ad-blockers make web browsing less distracting for users?,
Do ad-blockers improve users’ data privacy?, or Despite their performance over-
head, do users prefer browsing with ad-blocking enabled? are interesting research
questions that we leave for future work.

6 Related Work

The rapid proliferation of tools to evade or block ads and their potential impact
on the web ecosystem have served as motivation to a number of recent studies.

Pujol et al. [26] examines network-wide advertisement traffic and infers the
prevalence of ad-block usage. The authors identify advertisement traffic from
passive network measurements in a residential broadband network of a European
ISP in order to assess the prevalence of ad-blockers. They found that 18% of the
total requests in the traffic they monitored were ad-related traffic.

Malloy et al. [19] studies the global prevalence and impact of ad-blockers.
Utilizing a dataset composed of information from 2 million users and more than
20 billion page views across half a million top level domains, the paper exam-
ines the pervasiveness of ad-blockers around the world. In addition to studying
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the geographic, demographic, and publisher trends of ad-blockers, the financial
impact of ad-blockers on a small set of publishers is discussed. The paper finds
that ad-blockers can significantly impact the revenue of publishers, causing a
$3.9M/mo. negative impact on a particular publisher.

A recent study by Walls et al. [34] focuses on Adblock Plus and the
Adblock Plus’ Acceptable Ads program. This program allows some advertise-
ment providers to pay in order to have their advertisements shown to users.
The authors measure the effects of this “whitelist” in order to understand who
benefits from it as well as how users perceive “acceptable” advertisements. After
running a user study to see how users perceive advertisements, they find that
not all advertisements in Adblock Plus’ Acceptable Ads program abide by the
program’s stated policies.

Additionally, different works have analyzed how filter lists work, particularly
with respect to anti-adblocking [37]. These works focus on understanding how
filter lists identify anti-adblocking functionality on websites. However, they don’t
examine the time it takes to process the regular expressions present in filter lists.

Other recent work has explored how to effectively defend against JavaScript-
based advertisements [10,16]. These studies attempt to define ways to block
JavaScript ads without compromising the security of webpages which serve them.
They find that a small number of rules is capable of blocking a large majority
of ads on the web.

Our work focuses on a so-far ignored potential side effect of ad-blocker usage:
their impact on users’ QoE. Internet QoE, and web QoE in particular, have
received significant attention in recent years. Much of the work has focused
on improving Web page loads, with new network protocols [17,31], new Web
architectures [22,27,28,36], and developing tools. More recent work, such as
Kelton et al. [15] and Butkiewicz et al. [6], present alternative approaches and
non-traditional metrics to model users’ QoE of experience.

7 Conclusions

The growing prevalence of online advertisements has motivated a number of
research efforts to understand their scale, mechanisms, and economics while,
concurrently, fueling the adoption of services to block them. We presented the
first detailed analysis of ad-blocking’s impact on user Web QoE. We used the
most popular web-based ad-blocker to capture the impact of ad-blocking on
common metrics of QoE for the top Alexa 5,000 websites

We found that, while ad-blocking reduction on the number of objects loaded
yields a clear improvement on page load time (PLT), for a significant fraction of
sites this PLT improvement comes at a high cost on time to first paint (TTFP).
We presented results from a large crowdsourced experiment with 1,000 AMT
users to understand the relative importance of these metrics on users’ experience.
We found that, surprisingly, 71.5% of times users indicated a preference for faster
TTFP over shorter PLT, hinting at the importance of first impressions on web
quality of experience.
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While extensive, our evaluation focused on just one aspect of web quality
of experience. The impact of ads or the costs/benefits of ad-blockers are not
restricted to the chosen metrics of experience we used in our analysis. Under-
standing other aspects of experience with ad-blocking is left as future work. We
have also started to explore ways to leverage our findings to optimize ad-block
users’ experience, something that will become increasingly relevant as browsers
begin to move towards blocking ads [4,38].
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Abstract. Web performance is widely studied in terms of load times,
numbers of objects, object sizes, and total page sizes. However, for all
these metrics, there are various definitions, data sources, and measure-
ment tools. These often lead to different results and almost all studies do
not provide sufficient details about the definition of metrics and the data
sources they use. This hinders reproducibility as well as comparability
of the results. This paper revisits the various definitions and quantifies
their impact on performance results. To do so we assess Web metrics
across a large variety of Web pages.

Amazingly, even for such “obvious” metrics as load times, differences
can be huge. For example, for more than 50% of the pages, the load times
vary by more than 19.1% and for 10% by more than 47% depending on
the exact definition of load time. Among the main culprits for such dif-
ference are the in-/exclusion of initial redirects and the choice of data
source, e.g., Resource Timings API or HTTP Archive (HAR) files. Even
“simpler” metrics such as the number of objects per page have a huge
variance. For the Alexa 1000, we observed a difference of more than 67
objects for 10% of the pages with a median of 7 objects. This highlights
the importance of precisely specifying all metrics including how and from
which data source they are computed.

Keywords: Web performance · Measurement

1 Introduction

Web browsing is one of the most prevalent applications in today’s Internet.
Thus, understanding its performance is critical. Hereby, both metrics as well
as experiments have to realistically reflect possible performance improvements
for actual users. Moreover, they need to be reproducible. However, quantifying
Web performance is challenging due to Web page diversity, heterogeneous devices
types and browsers, choice of metrics, including network-centric, browser-centric,
and user-centric metrics, and the lack of well-established standards. Given this
diversity, it is critical that studies provide sufficient details regarding their choice
of metrics, data sources, and tools, to (a) understand and interpret the results,
(b) to compare results across studies, and (c) to reproduce them independently.
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Fig. 1. Page Load Time (PLT) with and without initial redirects.

For instance, Page Load Time (PLT) is a common metric used to estimate
user-perceived quality (QoE) and to evaluate mechanisms for improving Web
browsing. Thus, inaccuracies can lead to skewed results which may even lead
to wrong conclusions. PLT is often defined as “time until onLoad1 event”. A
less considered aspect is the start point of the measurement. PLT may include
initial redirects, e.g., when a browser starts loading http://example.com and is
redirected to https://www.example.com—the actual landing page. Such redi-
rects increase PLT. To highlight that the discrepancies are non-negligible Fig. 1
depicts PLTs with and without initial redirects2. According to the most recent
W3C Navigation Timings specification [3] initial redirects should be included
in all browser timings. But, whether redirects actually occur in a page load
depends on the web workload, i.e., whether one starts with http://example.com
or https://www.example.com. Moreover, even the end point of the measurement
is not always well specified (see the Survey section), nor is it obvious how to pre-
cisely measure it. We are not aware of any prior work that quantifies the impact
of the exact choice of metric on the measurement results.

The main contributions of this paper are as follows. (1) We survey Web per-
formance studies and summarize which measurement tools, methods, and metrics
are used. Amazingly, we find that a third of these studies do not provide precise
definitions of their metrics and/or data sources. However, it allows us to identify
tools which are typically used for evaluating Web performance. (2) We realize
a test environment that allows us to compare different tools against a baseline
to assess their accuracy. Among our results are that in-/exclusion of initial redi-
rects skews the page load times by up to 47% for 10% of the pages. Moreover,
object sizes differ from the packet trace for more than 60% of objects. This is
critical as metrics derived from object sizes, e.g., Byte Index of loaded objects
over time, differ by more than 50%. (3) We discuss lessons learned regarding
Web performance measurements and provide guidance on how to increase the

1 See Fig. 2 for an overview and Appendix A for more explanation.
2 For details regarding the methodology and the corresponding dataset see Sect. 4.

http://example.com
https://www.example.com
http://example.com
https://www.example.com
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Fig. 2. Browser events and timings. See Appendix A for more details.

accuracy of measured load times and object sizes3. Most importantly: (1) HAR
files are the most reliable data source for object counts and sizes. Resource tim-
ings underestimate these metrics, as they do not include objects in embedded
frames, and they often do not provide object sizes for cross-origin objects. (2)
As redirects may highly influence load times, make a conscious choice whether
to include them.

2 Web Metrics and Tools

Typical Web metrics include load times, object sizes, number of objects, and page
sizes. Each of these metrics has various definitions and data sources. Moreover,
there are different tools to measure them which we outline in the following.

2.1 Load Times

The time for loading Web pages strongly correlates with user experience [28]. To
load a Web page, a browser usually loads the base document, parses it, constructs
a Document Object Model (DOM), loads the referenced objects, processes them,
and displays the results. Figure 2 shows a detailed view of this process including
the browser events which are the basis of several commonly used load times
metrics.

Definitions for Load Times: Typically, Page Load Time (PLT) is defined as
the time until the onLoad event. However, in the eye of the user, the actual Web
page display is often finished earlier, e.g., when the content is first displayed
on the screen. Thus, other timings include domContentLoaded, when all objects
referenced in the base document have been loaded, Time To First Paint (TTFP),
when the first content is rendered, or Above The Fold Time (AFT), when the
part of the page visible on the user’s screen has been fully rendered. Start times
can be the navigationStart, the fetchStart, or when the first DNS request or TCP
connection is opened.

Data Sources for Load Times: Load times based on browser navigation
events are available through the standardized Navigation Timings API [2,3].
3 Our tools are publicly available at https://github.com/theri/web-measurement-

tools.

https://github.com/theri/web-measurement-tools
https://github.com/theri/web-measurement-tools
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Moreover, Time To First Paint (TTFP) is currently being standardized [6]. Being
standardized implies that these metrics are available for different browsers based
on a “similar” definition. HTTP Archive (HAR) files [7] also include onLoad and
domContentLoaded times. However, AFT is not standardized, and estimating
it requires not only load time data but also object positions within the Web
page [11]. Load times are available through the Resource Timings API from
version 1 [4] onward or from HAR files. Object positions are available by querying
the DOM, e.g., using JavaScript.

Tools: Most popular browsers4 implement Navigation Timings and Resource
Timings. The standardized version of TTFP is not yet supported by all browsers5

as of September 2018. AFT is realized via a browser plugin available for
Chrome [11]. HAR files can be exported using built-in developer tools.

To automate page loads, both Chrome and Firefox provide remote debugging
interfaces, i.e., the Chrome DevTools Protocol6, and Firefox Marionette7. For
both interfaces, there is a variety of clients to navigate to a page and interact
with it, e.g., to inject JavaScript code to export a timing.

Browser automation frameworks such as Selenium [8] allow more complex
Web page interactions using a standardized webdriver interface, which controls
Firefox using the Marionette protocol. The authors of Selenium advise against
using it for Web performance testing, as its complex setup may incur significant
performance overhead [9]. Furthermore, WebPagetest [10] integrates different
browser automation frameworks into a single platform. It provides a Web-based
User Interface for Navigation Timings, HAR files, load times, and Speed Index.

2.2 Number and Size of Objects

Number and sizes of objects are used to estimate the complexity of Web pages
and are needed to compute metrics such as Object Index or Byte Index.

Possible Definition of Object Count, Object Size, and Derived Met-
rics: Nowadays, Web pages often fetch objects continuously even after the ini-
tial page load has completed. Therefore, object counts should only include those
objects loaded until the onLoad event. This can be done by either observing
HTTP request-response pairs or by using the objects in the DOM. With regards
to object size, networking-related studies usually use the encoded size, i.e., the
number of bytes transferred over the network. One alternative is the decoded
size, namely the number of bytes after decompression. However, as objects are
transferred over HTTP there is overhead, namely the HTTP headers. Unfortu-
nately, it is often unclear if the object size includes the header or not. The total
page size is the sum of all object sizes. Byte Index is the integral of sizes of
objects loaded over time, see [1].

4 See http://gs.statcounter.com/browser-market-share/desktop/worldwide.
5 Chrome and Opera support it, Firefox is still validating their implementation.
6 https://chromedevtools.github.io/devtools-protocol/.
7 https://firefox-source-docs.mozilla.org/testing/marionette/marionette.

http://gs.statcounter.com/browser-market-share/desktop/worldwide
https://chromedevtools.github.io/devtools-protocol/
https://firefox-source-docs.mozilla.org/testing/marionette/marionette
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Table 1. Survey of Web performance studies: metrics and data sources.

Metrics Definition Data source Used in papers

PLT Time of onLoad Navigation timings 6

HAR file 1

Unknown 2

Time to load all objects HAR file 1

Unknown Unknown 3

DOM time Time of domContentLoaded Navigation timings 1

AFT Visible content rendered Resource timings 2

Object load
times

Time until object responseEnd Resource timings 1

HAR file 1

Object size Number of bytes transferred HAR file 2

Unknown 2

Number of
objects

HTTP request-responses before
onLoad

Resource timings 1

Number of DOM resources HAR file 4

Data Sources for Object Sizes: One way to derive the number of objects is
to count the number of HTTP request-response pairs using the list of entries in a
HAR file. The number of objects involved in constructing a page is available via
the Resource Timings API. HAR files [7] as well as Resource Timings version 2 [5]
provide encoded and decoded body size of each object. In addition, HAR files
include HTTP headers, possibly including a Content-Length header, and header
size8, while Resource Timings also includes the transfer sizes of header and body.
An alternative is to extract the number of objects from a packet capture trace
if it is possible to successfully decrypt all elements. However, exact object sizes
can be off due to TLS padding.

3 Survey of Web Studies

Given the variety of metrics definitions, data sources, and tools, we survey Web
performance studies published at SIGCOMM, IMC, PAM, NSDI, and CoNEXT
during the last 8 years. In total, we include 15 papers [11–25], two of which
include links to their code repositories in their papers.

Table 1 summarizes the metrics and data sources of the surveyed papers.
Many of them use PLT, as it is well-known and widely used across academia and
industry, standardized by W3C, and readily available from various data sources.
However, the surveyed papers use diverse definitions and data sources which
surprisingly are often not even specified in the paper. We note that only one of
the surveyed papers even mentions initial redirects. Several papers compare PLT
8 Note that for HTTP/2, logged header sizes do not correspond to bytes on the wire

anymore due to HTTP/2 header compression.
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Table 2. Survey of Web performance studies: browsers and automation tools.

Browser Automation tool Used in papers

Chrome (desktop) DevTools 6

Selenium 1

Unknown 1

Chrome (mobile) adb shell 1

Firefox (desktop) Selenium 1

Unknown 2

phantomJS - 1

with other metrics such as AFT, which is more user-centric, but not standardized
and, thus, harder to measure. Finally, several papers in the survey (also) measure
the number, size, and load times of individual objects to compute integral metrics
to quantify the page load process. Such metrics are readily available from the
data sources. But many papers fail to precisely specify how they measure or
compute these metrics.

Tools Used to Fetch Pages: Table 2 summarizes which browsers and automa-
tion tools are used in the surveyed papers. Chrome is most popular, with Firefox
in second place. Most studies use the DevTools interface but some use Selenium.
To highlight the need for more information we point out that one paper uses a
dataset and testbed without stating either the browser or the tools used. Overall,
we conclude that a variety of different tools are used, with yet unclear effects on
the results.

4 Methodology

So far we have pointed out that many different Web performance studies used
different metrics. In this section, we explain our setup to understand the impact
of different metrics. To compare the impact of different frameworks9 and different
Web pages we use the following tools10: (1) Firefox 61.0.2 with Selenium 3.14.0
and geckodriver 0.21.0, (2) Firefox 61.0.2 with Marionette, and (3) Chrome 69
with Chrome DevTools.

We load pages from a Thinkpad L450 with Debian Stretch. To avoid band-
width issues, our vantage point is directly connected to a university network.
To minimize the effects of DNS caching and delay to the resolver, we use a
recursive resolver close11 to our vantage point instead of popular open resolvers.
9 Our scripts instrument browser automation frameworks directly to give us more

control and avoid the overhead of an integrated framework such as WebPagetest.
10 For realistic browser behavior, which includes the rendering engine, we open Web

browsers including the graphical user interface rather than using them in headless
mode.

11 Close in terms of network distance.
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Fig. 3. Effects of initial redirects.

Since the most commonly used workload are the Alexa Top Lists despite their
limitations [26] we also use a snapshot of the global Alexa Top 100012, and the
Alexa 10001 to 11000 for Marionette and ChromeDevTools. We then repeatedly
accessed each page 10 times with the different frameworks. This ensures that all
experiments for a single page are done within a reasonable time window. Overall,
the experiments were executed between 18. September and 11. October 2018.

For each page, we first initialize a new browser profile with a cold browser
cache. We then fetch the page and wait for it to load13. As data sources, we
export Navigation Timings, Resource Timings, TTFP, and the HAR file using
the native HAR export of the browser via har-export-trigger 0.6.1. In parallel,
we also run a packet capture to derive our baseline. If one of the data sources
does not yield any data, we log an error and exclude the page load attempt from
the data set.

5 Results

In this section, we point out various pitfalls with Web performance metrics.

5.1 Pitfall: Redirects

As already pointed out, see Fig. 1, initial redirects can increase PLT substan-
tially, especially for short page loads. Timings excluding redirects may be more
representative of page loads by actual users due to browser optimizations, e.g.,
the user types the first few letters and then clicks on a URL suggested by the
browser, or the browser automatically uses HTTPS due to HSTS or adds “www”
to domain names the user types14. In contrast, load times including redirects are
representative of page loads if a user types in the full URL and presses Enter.
However, a conscious choice should be made and the web workload adjusted
accordingly.
12 18. September 2018 for Alexa 1000 and 30. September 2018 for Alexa 10001–11000.
13 We instruct the browser automation tool to wait for the onLoad event.
14 See, e.g., https://support.mozilla.org/en-US/kb/search-web-address-bar.

https://support.mozilla.org/en-US/kb/search-web-address-bar
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Table 3. Object sizes: accuracies for unencrypted objects.

Comparison Browser Match Counted too many bytes Counted too few bytes

Cases [%] Cases [%] 99%q
[KB]

Max
[KB]

Cases
[%]

99%q
[KB]

Max
[KB]

Content-length Firefox 100 0 0 0 0 0 6.8

Chrome 100 0 0 0 0 0 0

HAR body size Firefoxa 72.6 13.4 66.28 2170 14 0.13 852.4

Chrome 91.9 0.5 0 303.4 7.6 0.3 2925

Res body size Firefox 39.6 0.8 0 2910 59.6 196.6 5092

Chrome 46 0.5 0 276.5 53.5 181.5 5092
aIn HAR files, Firefox logs body size including headers, contradicting [7], see https://
dxr.mozilla.org/mozilla-central/source/devtools/server/actors/network-monitor/network-resp
onse-listener.js\#428, accessed 28.09.2018. Thus, we subtract header size from all object sizes.

To assess the impact of redirects we first count the number of server-side
redirects15 for both the Alexa 1000 and 10000–11000, see Fig. 3b. The most
common cause for a redirect is that a page is no longer available via HTTP
and the browser is redirected to the HTTPS version. Given that many pages
have migrated to HTTPS, e.g., 75% of Web pages loaded by Firefox users in
September 2018 [27], this is not surprising. Other reasons for redirects include
pointers to subdomains, e.g., for localized versions of the content based on the
geolocation. Often both occur and lead to two redirects.

Next, we revisit page load times16. To quantify their contribution to the load
time, we show, in Fig. 3a, the relative percentage of load times of redirects for all
Web pages. Redirects account for 6.1% of PLT for 50% of the pages and for 23%
of PLT for 10% of pages. This implies that the PLT with or without redirects
differs by this amount. The difference is even larger for user-centric load time
metrics as these are usually shorter. For instance, Time To First Paint (TTFP)
differs by 19.1% for 50% of pages and by 47% for 10% of pages. Indeed, the time
for the redirects is about the same as the Time To First Byte after the redirect
for about 50% of pages. The reason is that most redirects, typically involve an
additional name resolution, TCP connection establishment, TLS handshake17,
and HTTP request.

In summary, we make the following observations: (1) Redirects account for
a significant share of PLT and a substantial share of user-centric load time
metrics such as TTFP. (2) Studies should make a conscious choice on in-/exclude
redirects, see Sect. 6.

15 Server-side redirects use HTTP status 301 or 302. Client-side redirects use status
200 and contain the redirection URL in the response content, which we do not log.

16 For Navigation Timings, redirects are the time between navigationStart and fetch-
Start. For HAR files, we use the time before the first HTTP 200 response.

17 In September and early October 2018, TLS 1.3 was still not deployed.

https://dxr.mozilla.org/mozilla-central/source/devtools/server/actors/network-monitor/network-response-listener.js\#428
https://dxr.mozilla.org/mozilla-central/source/devtools/server/actors/network-monitor/network-response-listener.js\#428
https://dxr.mozilla.org/mozilla-central/source/devtools/server/actors/network-monitor/network-response-listener.js\#428
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5.2 Pitfall: Object Sizes

Next, we take a closer look at object sizes. In particular, we explore if different
data sources are consistent with the baseline from the packet capture trace and
if they yield similar results.

Comparison with the Baseline for Unencrypted Objects: To validate
the object sizes recorded by the different data sources, see Sect. 2.2, we com-
pare them against the baseline which we get via the packet capture trace. This,
unfortunately, is only possible for objects loaded over unencrypted HTTP/1.0
or HTTP/1.1. If TLS is used object sizes may be incorrect due to padding. For
computing the baseline, we extract HTTP request and response pairs from the
packet capture trace and exclude objects with missing bytes. For the remaining
object, we separate the TCP payload into the HTTP header and body, and count
bytes18. Finally, we match the object to the corresponding HAR and Resource
Timing (Res) data based on timestamp. Hereby, we exclude ambiguous cases,
i.e., where multiple HAR entries match an object from the trace.

The resulting comparison is summarized in Table 3. If the Content-Length
header is present its information is mostly consistent with the traces. None of
the other data sources is that good. Rather, we find that the accuracy varies
widely across data sources and browsers. When manually investigating the most
significant mismatches, we find that Resource Timings set object size to 0 for
most cross-origin objects19. In HAR files, body size is often set to −1 if the
browser did not succeed in loading a resource. In several cases, Firefox counted
too many bytes if redirects happened. Apparently, it is returning the size of the
redirect destination instead of the actual object size.

Comparison of Data Sources for All Objects: Next, we explore the con-
sistency of the results for all objects including those that are transferred over
an encrypted connection. Figure 4, shows the object size differences for the same
object and various data source combinations, i.e., HAR file body size (HAR),
Content-Length header taken from HAR file, and Resource Timings encoded
body size (Res). Since Content-Length is a close approximation to the baseline
for unencrypted objects we use it as a baseline. Res provides the exact same
object size as Content-Length in only 42.5% of cases for Firefox and in 43.4% of
cases for Chrome. This is consistent with the results for unencrypted objects, see
Table 3. For HAR, Firefox provides an object size which matches the Content-
Length for 91.3% of cases, see Fig. 4a. Thus, we conclude that HAR’s accuracy is
better than for unencrypted objects. In contrast, Chrome provides an object size
which matches the Content-Length in only 39.4% of cases for all objects. When
investigating the difference, we find that Chrome sets HAR body and header
size to −1 for all HTTP/2 objects20.

From this, we conclude: (1) Content-Length provides the most accurate
object size but is not always available. (2) Resource Timings are an unreliable
18 See analysis script eval/validate object sizes.py in our repository.
19 Unless the ‘Timing-Allow-Origin’ header is set, see [5].
20 In Firefox, only HTTP/2 Server Push objects lack body size and timings.
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Fig. 4. Object sizes: differences due to metric for all objects.

data source for object sizes, as they do not provide sizes for cross-origin objects,
except when explicitly allowed. (3) HAR body size is inaccurate for a significant
number of objects, due to bugs in both Firefox and Chrome (whereby Firefox is
more accurate than Chrome).

5.3 Pitfall: Object Count and ByteIndex

Amazingly, we find that not only the object sizes differ by data sources but also
the object counts (for the same page download)! For the Alexa 1000 dataset,
object counts from HAR and Res always differ by at least one object and by 7
or more objects for 50% of cases. For 10% of the cases, they are off by more than
67 objects. Numbers for Alexa 10000 are similar. Among the main contributor
to this difference is that Resource Timings do not include objects loaded within
commonly embedded HTML Inline Frames (iframes)21. Rather, these objects
are recorded in the Resource Timeline for the iframe.
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Fig. 5. Byte index: difference due to data source.

Next, we quantify the impact of object size and count differences on the
Byte Index [1], which captures page load progress, i.e., loaded bytes over time. In
21 See the examples in Sect. 4.2 of [5].
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Table 4. Missing data source: successful page loads vs. errors for Alexa 1000 run

Tools Success Before
onLoad

No data No Res No
HAR

No Res
and HAR

Min Max Median Min Max Median Median Median

Firefox with Selenium 880 898

0

60 76 35 4 3

Firefox with Marionette 915 922

0

37 43 38 3 2

Chrome with DevTools 740 801 100 32 81 14.5 31.5 21.5

Fig. 5, we plot the relative difference between Byte Index for the same page load,
calculated from HAR body sizes, Resource Timings body sizes, and Content-
Length header (using the HAR body size if the Content-Length header is miss-
ing). For Firefox, see Fig. 5a, the Byte Index is almost identical for Content-
Length and HAR body size, but differs by 17.1% for Res in 50% of the pages
loads, and by 56.4% for 10%. For Chrome, see Fig. 5b, the Byte Index derived
from both Res and HAR differs substantially from the Byte Index derived from
Content-Length.

Thus, we conclude: (1) Resource Timings do not include all objects of a Web
page download. (2) Byte Indexes from Resource Timings vs. HAR files differ by
13.8%/17% in median and by more than 50% for 10% of the pages.

5.4 Pitfall: Data Source Availability

Besides being inaccurate some data sources do not even provide us with any data
for some Web page access. More precisely, Table 4 shows the number of success-
ful page loads as well as the errors for the Alexa 1000 for different browsers
and automation tools. Firefox with Marionette yields the best results in terms
of successful runs that include all data elements. Using Chrome often yields
invalid timings, in particular, for the onLoad event. The main culprit is a too
early export of the data—the page load has not yet been completed even though
Chrome was instructed to wait for the onLoad event22. For a non-negligible
number of Web pages, we did not get any results for all or for some of the 10
repeated page loads per browser framework. For most of these page downloads,
the browser never invoked the onLoad event, see also Sect. 2.1, and, thus, timed
out without exporting any data. Using a different tool would not fix the prob-
lem in some cases: Investigating both the error messages logged by the browser
automation tool as well as the captured traces we find that common reasons
are no DNS response, not being able to establish a TCP connection, or cer-
tificate errors. We limit intermittent connectivity issues by spreading out page
loads over time. But, we cannot rule out filtering, e.g., due to our vantage point.
Still, manual tests for some of the page loads showed that these also fail for

22 Using the Page.frameStoppedLoading event instead did not resolve this problem.
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different vantage points. These even involve domains of large application service
providers and content distribution networks, which are hosting resources only
under subdomains23.

In summary, our conclusions are: (1) Not all domains in the Alexa Top Lists
point to actual Web pages. (2) Firefox with Marionette is more likely to provide
complete data than Firefox with Selenium or Chrome.

6 Guidelines for Web Performance Measurement

Next, we derive some guidelines for designing and conducting experiments.

Use HAR Files and Navigation Timings, Not Resource Timings: As
shown in Sect. 5.2, Resource timings are an unreliable data source, as they do
not include resources of embedded frames and often do not provide sizes for
cross-origin objects.

Choose Whether to Exclude Redirects: Redirects significantly contribute
to page load times. Yet, they may not be representative for typical end-user
Web browsing, recall Sect. 5.1. It is possible to exclude redirects upfront, e.g., by
adjusting the hit list to post-redirect URLs. However, post-redirect URLs may
change, e.g., due to geolocation or HTTPS migration. Such changes may lead to
more page load failures, compared to starting from the “base” URLs of http://
and the top-level domain name. Alternatively, redirects can be excluded in retro-
spect by computing the timings relative to fetchStart instead of navigationStart
for Navigation Timings resp. relative to the start time of the first HTTP 200
object for HAR files.

Choice of Tools: Make a conscious choice whether to use a framework that
integrates browser automation tools, such as WebPagetest [10], or write your own
scripts. The first has the advantage that it enables comparing multiple browsers
out of the box, while the latter gives more explicit control over details. Note,
WebPagetest provides Navigation Timings and HAR files. So pitfalls related to
Resource Timings do not apply. Moreover, it provides additional metrics such
as SpeedIndex. WebPagetest always includes redirects—in line with the W3C
definition of load times.

Use Up-to-Date Software: Major Web browsers are updated rather often,
typically every 1–2 months. While research projects typically last longer one has
to address the trade-off of updating to a newer version during the study: On the
one hand, software updates may fix bugs and provide performance optimizations
so that the results are more representative of state-of-the-art setups and actual
user experience. On the other hand, updating may cause compatibility issues,
e.g., with measurement tools that are updated less often and hinder backward
compatibility. We recommend to consciously address this trade-off and to include
the version numbers of the used tools. See AppendixB for more details.

23 Examples include microsoftonline.com and googleusercontent.com.
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Disable Features for a Quiet Browser: Modern browsers do not just load the
requested Web page. Rather they often automatically load additional data, e.g.,
software updates or blocklists, or transmit performance statistics to the browser
vendor. This can cause significant performance overhead. We, thus, recommend
turning off such features. See AppendixB for more details.

Record and Compare Different Data Sources: Whenever possible multiple
data sources should be recorded to enable cross-checks. Data sources include
but are not limited to Navigation Timings, Resource Timings, and HAR files.
Combining them helps improve accuracy. When choosing metrics it is essential
to understand their status with regards to standardization, e.g., published as
W3C Recommendation, and to which extent the implementation conforms to
the standard.

Mind New Protocols: Deployment of new protocols always has the chance
of invalidating existing assumptions about traffic both in general as well as for
Web traffic. Moreover, new protocols may require updates to the measurement
and evaluation setup or trigger so far unknown bugs in the evaluation. Recent
examples include the increased deployment of HTTP/2 and QUIC which use
features such as header compression and HTTP/2 Server Push.

7 Conclusion

We show that Web metrics highly depend on which specific metrics, data sources,
and/or measurement tools are used. For example, initial redirects can cause Page
Load Times (PLTs) to vary by 6.1% in median and by more than 23% for 10% of
pages. The impact is even larger for user-centric metrics such as Time To First
Paint (TTFP), with 19.1% and 47%, respectively. Furthermore, HAR files and
Resource Timings provide widely differing object sizes and numbers of objects
which in turn bias derived metrics, e.g., Byte Index varies by 17.1% for 50% of
pages and by 54.2% for 10% of pages. However, in almost all Web measurement
studies none of the metrics or the data sources are described in sufficient detail.
Moreover, they often ignore the bias of the above differences.

Thus, our study clearly highlights the need to (a) improve documentation,
(b) choose metrics consciously and with all caveats in mind, (c) double check the
results against alternative metrics, and (d) enable qualitative comparisons. To
enable this we strongly follow the recommendations of a recent Dagstuhl seminar
on reproducibility and suggest that conferences and journals should not count
the pages needed to document the precise measurement/simulation setup and
the used metrics against the available page limit.

Acknowledgements. Thanks to Dominik Strohmeier for the discussion and the
pointers to resources, to our shepherd Jelena Mirkovic, as well as our anonymous
reviewers.
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A Web Page Load Explained

In this section, we explain a Web page load in more detail. See also Fig. 2 and
the processing models in the Navigation Timings specifications [2,3].

The starting point for a new page load, also called navigation, of a particular
URL, is called navigationStart in [2]. Initially, fetchStart is set to the same value,
but if a redirect occurs, fetchStart is overwritten before the new URL is loaded.

If another page has been previously loaded by the browser, e.g., in the same
browser tab, this document has to be first unloaded. Then, the browser checks
its cache to see whether the page is already there. If the page is not in the cache,
the browser usually resolves the hostname (resulting in a DNS query and usually
answer), establishes a TCP connection, and performs a TLS handshake if the
scheme of the URL is https. Then, the browser issues an HTTP GET request
for the URL. As soon as it receives an HTTP reply, which always contains a
status line, headers, and body, the browser processes the reply.

If the reply contains an HTTP status code of 3xx, such as “301 Moved
Permanently” or “302 Found”, this means that the server redirects the browser to
a different URL, which is given in the “Location” header in the HTTP response.
This redirect may be a same-origin redirect, which roughly means that both the
old and the new URL have the same scheme (http or https), hostname, and port
(see RFC 6454 [29] for details), or it may be a cross-origin redirect. For same-
origin redirects, the start and end time of the redirect are recorded as Navigation
Timings redirectStart and redirectEnd [2], while for cross-origin redirects they
are not. Unfortunately, nearly all redirects we observed are cross-origin, as the
purpose of the redirect is to use a different scheme (HTTPS instead of HTTP) or
hostname (www.example.com instead of example.com). The same-origin policy
is an important security and privacy feature in the Web, so information access
is often restricted to, e.g., the same hostname.

Given the new URL to be fetched, the browser records the current time as
fetchStart, potentially overwriting the old value24. It then checks its application
cache again, resolves the host name if needed, establishes a new TCP connection,
performs a new TLS handshake, and sends an HTTP request for the new URL.
If it gets an HTTP reply, this may be another redirect, an error code such as
“404 Not Found” or“503 Internal Server Error”, or the request may succeed
with a “200 OK”. In the latter case, the body of the HTTP response usually
contains the base document of the Web page in HyperText Markup Language
(HTML). As soon as the browser starts receiving this document, it parses it
and starts constructing the Document Object Model (DOM) of the page. For
example, the document may reference additional resources, such as JavaScript,
Cascading Stylesheets (CSS), or images. Typically, for each of these additional
resources, the browser has to issue a new HTTP request, unless the resource

24 After a redirect, the browser overwrites the old fetchStart value before it fetches
the new URL using a GET request. This implies that once the page load is finished,
fetchStart is the start time of the loading of the final base page, as all previous values
related to redirects are overwritten.

www.example.com
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is proactively sent by the server using HTTP/2 Server Push. Each new HTTP
request may involve an additional name resolution, TCP handshake, and TLS
handshake, because resources are often hosted on different servers than the base
page. The browser now simultaneously fetches new resources, continues to parse
the HTML base page, and processes the CSS and Javascripts, even though these
processes may block each other. See Wang et al. [16] for a detailed explanation
of this complex process.

At some point, the browser flushes the current state of the DOM to the
rendering engine. The time at which this happens corresponds to Time To First
Paint (TTFP). The point at which all resources in the DOM have been loaded
is called DOMContentLoaded and recorded in the Navigation Timings and HAR
file. However, processing of the page usually continues, until, eventually, the
browser fires the onLoad event for the page which is recorded in the Navigation
Timings and HAR file. The onLoad Time is usually taken as Page Load Time
(PLT). At this point, the page load is considered finished. However, onLoad
usually triggers the execution of one or more javascripts, which may result in
loading more resources, sending data, e.g., to third parties, or other network
traffic. In fact, most modern Web pages load resources continuously long after the
onLoad event. Thus, Related Work usually stops counting objects after onLoad.

B Details of Lessons Learned

Next, we outline additional details regarding our lessons learned, which led to
our guidelines for Web performance measurement, recall Sect. 6.

Software Versions: The Debian Linux distribution includes a version of the
Firefox browser which is usually quite dated. This can have a major impact on
load times. For instance, in Firefox version 61 (“Firefox Quantum”), parts of the
code have been rewritten and optimized, which makes the browser much faster
than previous versions. Consequently, carrying out Web page loads using an
older version results in unrealistically long load times. However, updating Firefox
frequently to the newest version can result in incompatibilities with measurement
tools. For instance, not every version of the HAR Export Trigger extension works
with every version of Firefox, so it has to be updated along with the browser.
However, the upside is that in newer versions of Firefox, HAR Export Trigger is
supposed to work without having the developer panel open.

Browser Traffic Unrelated to Page Loads: Modern browsers usually issue
a significant number of requests that are not directly related to the page load
that a user has requested. For instance, Firefox by default loads blocklists for
“safe browsing”, to protect users from malware or phishing. It also automati-
cally checks for updates and may even automatically download and install these
updates for the entire browser or for individual browser extensions. These queries
can involve substantial data transfers: For example, we observed the automatic
download of a binary related to an H264 media component which we never acti-
vated or requested: 500 KB were downloaded in the background. Worse yet,
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the state of such updates is often stored in the browser profile. This may cause
such downloads to be triggered for every fresh browser profile, i.e., each of our
page loads. Additionally, the Chrome browser by default issues queries to var-
ious Google servers, e.g., it tries to connect each browsing session to a Google
account. We provide configurations for Firefox and Chrome to turn off most
features that generate such traffic, see our repository https://github.com/theri/
web-measurement-tools.

Logging a Trace and Client-Side SSL Keys: To be able to better debug and
validate measurement setups and tools, we recommend capturing packet traces
that include at least ports 53 (DNS), 80 (HTTP), and 443 (HTTPS). Encrypted
traffic can be decrypted after logging the SSL session keys within the browser:
Firefox and Chrome log keys into a specified SSLKEYLOGFILE. Note that this
option must be compiled into Firefox. It, e.g., does not work with the Firefox
binary in the Debian repositories.

C Artifacts Related to This Paper

The following artifacts are available:

Our Tools, Such as Measurement and Evaluation Scripts: See https://
github.com/theri/web-measurement-tools. This repository includes the scripts
to automatically load Web pages using Firefox with Selenium and Marionette,
and using Chrome with DevTools. Furthermore, it includes the analysis scripts
we used to generate our plots.

Data Set of Web Page Loads: See http://dx.doi.org/10.14279/deposi
tonce-8100. This dataset includes data from all of our experiment runs, see
Sect. 4. It can be used along with our evaluation scripts to reproduce the plots
in this paper, see https://github.com/theri/web-measurement-tools for details.
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Abstract. Web pornography represents a large fraction of the Internet
traffic, with thousands of websites and millions of users. Studying web
pornography consumption allows understanding human behaviors and it
is crucial for medical and psychological research. However, given the lack
of public data, these works typically build on surveys, limited by differ-
ent factors, e.g., unreliable answers that volunteers may (involuntarily)
provide.

In this work, we collect anonymized accesses to pornography web-
sites using HTTP-level passive traces. Our dataset includes about 15 000
broadband subscribers over a period of 3 years. We use it to provide
quantitative information about the interactions of users with porno-
graphic websites, focusing on time and frequency of use, habits, and
trends. We distribute our anonymized dataset to the community to ease
reproducibility and allow further studies.

Keywords: Passive measurements · Web pornography ·
Adult content · User behaviour · Network monitoring

1 Introduction

Pornography and technology have enjoyed a close relationship in the last decades,
with technology hugely increasing the capabilities of the porn industry. From the
limited market reachable through public theatres, the introduction of the video-
cassette recorder in the 1970s abruptly changed the way of accessing pornog-
raphy, allowing to access pornography in the privacy and comfort of each indi-
vidual home. Then, the birth of cable networks and specialty channels in the
1990s, allowed a further step towards accessibility and privacy, giving the possi-
bility to retrieve content directly from home. Finally, the Internet revolutionized
again the market, guaranteeing direct desktop delivery to every individual with
a connection, interactivity through forums and webcams, free content and, at
the same time, anonymity. In 2017, the most used pornographic platform in the

The research leading to these results has been funded by the Vienna Science and
Technology Fund (WWTF) through project ICT15-129 (BigDAMA) and the Smart-
Data@PoliTO center for Big Data technologies.
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world (Pornhub, according to Alexa ranking)1, claims 80 million daily accesses
to its website.2 The importance of Internet pornography as a prevalent compo-
nent of popular culture and the need of its study has been recognized for a long
time [6].

In this work we do not attempt to classify Internet pornography. Rather, we
refer to the term web pornography (WP) to any online material that, directly or
indirectly, seeks to bring about sexual stimulation [4]. Therefore, the term porno-
graphic website is here used to describe services that provide actual pornographic
videos, sell sex related merchandise, help in arranging sexual encounters, etc. We
refer only to adult pornography websites and we do not advocate the inclusion
of child pornography websites in our research, thus this paper has no application
whatsoever to child pornography. The word pornography, in the context of this
article, refers exclusively to legal content in the territories of EU and USA.

Through the years, WP has been the subject of many studies, that aimed
at describing how people make use of it, or pinpointing eventual pathological
situation correlated to an excessive use. However, such works typically come from
the medical and psychology communities, and are based on surveys that cover
a very small number of volunteers. Moreover, previous studies [10,12] report
that people tend to lie, either consciously or unconsciously, when answering to
private-life concerning surveys, especially about sexuality; there are people who
declare more accesses than real (e.g., to show to be uninhibited) and others who
understate the actual consumption, fearing social blame. Both these behaviours,
called social desirability biases, and egosyntonic/egodystonic feelings (i.e., being
or not in accordance with their self-image) make surveys less reliable with respect
to other sources of information.

In contrast to previous works, in this study we investigate WP by means
of passive network measurements, collected from about 15 000 broadband sub-
scribers over a period of 3 years. MindGeek, a company operating many popular
pornographic websites, switched to encryption only in April 2017, being the
first big player of WP industry to adopt HTTPS.3 As such, the vast majority
of WP portals used plain-text HTTP up to March 2017, allowing us to lever-
age HTTP-level measurements, and obtain detailed results of WP consumption.
Using recent advances in data science, we extract only user actions to WP portals
from a deluge of HTTP data.

The main contributions of this paper are:

– We provide a thorough characterization of WP consumption leveraging mea-
surements from 15 000 broadband subscribers over a period of 3 years.

– We show how users moved to mobile devices through the years, even if the
time spent onWP remains constant.

1 As of October 17th, 2018 www.alexa.com/topsites.
2 www.pornhub.com/insights/2017-year-in-review.
3 www.washingtonpost.com/news/the-switch/wp/2017/03/30/porn-websites-beef-

up-privacy-protections-days-after-congress-voted-to-let-isps-share-your-web-
history.

www.alexa.com/topsites
www.pornhub.com/insights/2017-year-in-review
www.washingtonpost.com/news/the-switch/wp/2017/03/30/porn-websites-beef-up-privacy-protections-days-after-congress-voted-to-let-isps-share-your-web-history
www.washingtonpost.com/news/the-switch/wp/2017/03/30/porn-websites-beef-up-privacy-protections-days-after-congress-voted-to-let-isps-share-your-web-history
www.washingtonpost.com/news/the-switch/wp/2017/03/30/porn-websites-beef-up-privacy-protections-days-after-congress-voted-to-let-isps-share-your-web-history
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– We show that typical WP sessions last less than 15 min, with users rarely
accessing more than one website. Less than 10% of users consume WP more
than 15 days in a month, and repeated use within a single day is very sporadic.

– We release our dataset to the community in anonymized form for further
investigation [1]. To the best of our knowledge, this is the only public datasets
that includes WP accesses from regular Internet users.

The employed metrics are taken from the surveys reported in medical litera-
ture and from WP portal reports that we use throughout the paper. We restrict
our analysis only to those that we were able to verify given our data. Our results
enhance the visibility and understanding of those topics, and give a less medi-
ated overview of users behaviors, mostly confirming what emerges from medical
surveys.

The remainder of the paper is organized as follows: Sect. 2 summarizes related
work. Section 3 describes data collection, processing and privacy issues, while
Sect. 4 presents the results. Finally, Sect. 5 concludes the paper.

2 Related Work

Most previous works that investigate the interaction between users and WP
leverage the information contained in surveys proposed to groups of volunteers.
Vaillancourt-Morel et al. [18] examine the potential presence of different profiles
of pornography users and their relation with sexual satisfaction and sexual dys-
function. The investigation is conducted over a poll that involved 830 adults,
and they group users’ behavior in three clusters. Daspe et al. [5] investigate the
relationship between frequency of WP consumption and the personal perception
of this behavior, pointing out that often there are strong discrepancies. Another
analysis of the phenomenon is provided by Grubbs et al. [9], where the analysis
is conducted over two participants sets, divided in students and adults, show-
ing that moral scruples can infect the self-impression over their consumption.
Wetterneck et al. [14] propose a critical analysis of WP, showing the various
limitations of the state of the art of studies that assessed online pornography
usage, concerning its definition, consumption, and the variability of its measure-
ments.

Fewer works used network measurements to study WP. Tyson et al. [17]
extract trends and characteristics in a major adult video portal (YouPorn) by ana-
lyzing almost 200k videos, together with meta-data such as page content, ratings
and tags. In a similar direction, Maziéres et al. [11] produce and analyze a seman-
tic network of WP categories, extracted from the portal xHamster, in order to find
which are the most dominants and if they are actually meaningful. Ortiz et al. [13]
study a Chilean websites containing human images and classify them in normal,
porno and nude, with the objective of automatically discovering WP websites.
Finally, Coletto et al. [3] study users’ activity in social networks related to WP, in
order to extract information about the seclusion of those communities with respect
to the rest of the population and their characteristics in terms of age and habits
and gender. To the best of our knowledge, we are the first to use passive measure-
ments to study the behavior of users accessing web pornography.
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3 Measurements

3.1 Data Collection

In this work, we rely on network measurements coming from passive monitoring
of a population of broadband subscribers over a period of 3 years (from March
2014 to March 2017). We have instrumented a Point-of-Presence (PoP) of a
European ISP, where ≈ 10 000 ADSL and ≈ 5 000 FTTH customers are aggre-
gated. ADSL downlink capacity is 4–20 Mbit/s, with uplink limited to 1 Mb/s.
FTTH users enjoy 100 Mb/s downlink, and 10 Mbit/s uplink. Each subscription
refers to an installation, where users’ devices (PCs, smartphones, etc.) connect
via WiFi or Ethernet through a home gateway. Important to our analysis, the
ISP provides each customer a fixed IP address, allowing us to track her over
time. Nevertheless, a small fraction of customers abandoned the ISP during the
observation period, and few new ones joined. All ADSL customers are residential
customers (i.e., households), while a small number of business customers exist
among the FTTH customers.

To gather measurements we use Tstat [15], a passive meter that collects
rich per-flow summaries, with hundreds of statistics regarding TCP/UDP con-
nections issued by clients. Beside, Tstat includes a DPI module that creates log
files containing details about observed HTTP transactions. For each transaction,
it records the URL, a client identifier as well as other HTTP headers of requests
and responses. Our measurements are based on the inspection of HTTP head-
ers, and, as such, neglect all encrypted traffic. However, no big WP portal used
encryption at the time our dataset was collected. Generated log files are copied
to our back-end servers with a daily frequency. Data is stored on a medium-sized
Hadoop cluster to allow scalable processing. All processing is done using Apache
Spark and Python. The stored data covers 3 years of measurements, totaling
20.5 TB of compressed and anonymized flow logs (around 138 billion records).

3.2 Definition of User and Its Limitations

Our PoP is located at the Broadband Remote Access Server (BRAS) level. Each
subscription is identified by a unique and fixed IP address. However, subscrip-
tions typically refer to households where potentially more than one person surf
the Internet sharing the same public IP address. As such, relying on the client
IP to identify a user would not be precise enough to study habits and behavior.
Thus, in our work we define a user as the concatenation of the client IP address
and the user-agent as extracted from the corresponding HTTP header. Note
that with this definition a single person may appear multiple times with differ-
ent identifiers if she uses multiple devices or her device incurs software updates
that modify the user agent string. Analyses are thus performed on a per-browser
fashion – i.e., each user-agent string observed in a household. Privacy require-
ments limit any finer granularity.

The evaluated dataset includes only a regional sample of households in a sin-
gle country. Users in other regions may have diverse browsing habits. Equally,
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mobile devices have been monitored only while connected to home WiFi net-
works. As such, our quantification of browsing on mobile terminals is actually a
lower-bound, since visits while connected on mobile networks are not captured.

3.3 Data Filtering and Session Definition

Starting from a HTTP-level dataset, we need to filter only entries referring to
WP websites. Studying innovative methodologies to automatically isolate traf-
fic towards particular services is out of the scope of this work. We employ a
blacklist based approach to perform classification. We build on public available
lists, achieving robustness by combining three different sources.4 These three
lists provide a set of domain names that offer different WP content (ranging
from video streaming to thematic forums). To avoid false positives, we consider
only those domain names contained in at least two over three lists. We come up
with 310 252 unique entries, arranged over 460 top-level domains.

After filtering entries referring to WP websites, we perform a further step to
identify sessions of continuous activity. To this end, we group data by user, and
process HTTP transactions by start time. We then identify session as follows:
when a user accesses a pornographic website we open a new session and account
to this all subsequent entries to WP websites. We terminate a session if we do
not observe any entry to WP for a period of 30 min. While defining a browsing
session is complicated [8], we simply consider a time larger than 30 min as an
indication of the session end as it is often seen in previous works (e.g., [2]), and
in applications like Google Analytics.5

3.4 User Actions Extraction

Subsequently, we further filter the dataset to isolate only those HTTP requests
containing an explicit user action by the user. This step aims at isolating users’
behavior discarding all HTTP traffic related to inner objects of webpages such
as images, style-sheets, and scripts To this end, we implement the methodology
described in our previous work [19] that builds a machine-learning model to
pinpoint intentionally visited URLs (i.e., webpages) from raw HTTP traces.
The followed strategy has as core module a supervised classifier, which is able to
correctly recognize user actions in HTTP traces. It results to reach an accuracy
of over 98%, and it can be successfully applied to different scenarios, including
smartphone apps [20].

In total, after the extraction, we have 58 million user actions/visited web-
pages towards 59 989 different adult domains. We observe an average of 13 261
different WP users per month. For each user, we determine information about
used OS, browser, and if the device was a PC, a smartphone, or a tablet. These
information are extracted from the user-agent of the original HTTP request at

4 www.shallalist.de/categories.html, www.similarweb.com, and dsi.ut-capitole.fr/blac
klists/index en.php.

5 support.google.com/analytics/answer/2731565?.

http://www.shallalist.de/categories.html
http://www.similarweb.com/
http://dsi.ut-capitole.fr/blacklists/index_en.php
http://dsi.ut-capitole.fr/blacklists/index_en.php
http://support.google.com/analytics/answer/2731565
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the time of the capture, using the Universal Device Detection library.6 We made
these data available to the community in anonymized form to guarantee repro-
ducibility of our results and further investigations [1]. In the remainder of the
paper, we only take into account user actions, to which we simply refer with the
term visited webpages.

3.5 Privacy and Ethical Concerns

Passive measurements potentially expose information which may threaten users’
privacy. As such, our data collection program has been approved by the partner
ISP and by the ethical board of our University. Moreover, this specific data
analysis project was also subject to a privacy impact assessment that was done
with the data protection officer of our institution.

We undertake several countermeasures to avoid recording any personally
identifiable information. Before any storage, all client identifiers are anonymized
using Crypto-PAn algorithm [7], and URLs are truncated to avoid recording
URL-encoded parameters. Encryption keys are varied on a monthly basis, to
avoid persistent users tracking. Sensitive information such as cookies and Post
data are not monitored at all. Logs are stored in a secured data center in an
encrypted format. We emphasize again that in our research we only refer to adult
pornography websites, obtained through open datasets, referring exclusively to
legal content in the territories of EU and USA.

4 Results

In this section, we report the most significant results emerging from our dataset.
We first focus on the time dimension, showing the evolution of WP consumption
from 2014 to 2017 in terms of quantity and device type. We then focus on users,
characterizing duration and frequency of their WP use. Finally, we provide some
figures about the popularity of services.

4.1 Usage Trends

Our first analysis aims at describing WP consumption trends from 2014 to 2017.
In Fig. 1a, we focus on the time spent on WP by monitored users. The blue
(solid), red (dash-dot) and green (dashed) curves report, respectively, the 25th,
50th and 75th percentiles of the total per-user daily time spent on WP, i.e., the
sum of the duration of all the WP sessions. Curves are calculated only for active
users, i.e., users visiting at least one WP website during one day. Curves are
not continuous, for the lack of data due to outages in out PoP. The outcome
shows a rather stable trend over the observation period, with half of the users
spending less than 18 min per day on WP; however almost 25% of users reaches
40 min of daily activity. These are day-wise statistics, and do not provide figures

6 github.com/piwik/device-detector.

http://github.com/piwik/device-detector
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about the repeated use of WP across multiple days by the same user, as we
will see later. Measuring the overall share of users accessing WP portals is not
easy using our data, as a single identifier – the client IP address – identifies a
broadband subscription, potentially shared by multiple users. However, we notice
that every day 12% of subscribers access WP websites, and this value is constant
across years. A further analysis on WP pervasiveness is given in Sect. 4.2.

Those results can be used as a comparison with surveys statistics, fortifying
or confuting what the participants declare. Vaillancourt-Morel et al. [18] study
the characteristics of WP consumers. The majority of the chosen sample uses WP
for recreation only, on average 24 min per week, a value consistent but slightly
higher compared to our data.

Then, we investigate the evolution in device categories use (PCs, tablets
and smartphones). We compute, for each device category, its share in terms
of number of sessions. Figure 1b shows the results. We notice that smartphones
(blue surface), have largely increased their share from 27% to 42% at the expense
of PCs. Tablets pervasiveness, reported in green, is instead rather constant. Not
shown, the evolution of daily time spent with different devices did not changed
too much throughout the years (see Sect. 4.2 for more details).

4.2 Usage Frequency, Duration and Habits

For detailed analyses, we restrict to the last month of our dataset that does
not include nor public holidays nor measurement outages, i.e., October 2016.
We first characterize WP sessions in terms of duration. Figure 2a shows the
empirical cumulative distribution function (CDF) of session duration, expressed
in minutes. The duration is larger for PCs than for tablet and smartphones.
While most of the sessions are rather short, i.e., less than 15 min for PCs and 10
for smartphones, we observe sporadic longer sessions up to more than one hour.
We now draw the attention on the number of webpages accessed during WP
sessions, whose CDF is reported in Fig. 2b. Here the difference among devices
is limited, with users accessing in median 5 or 6 webpages in a session, with
28% of them limited to one or two. However, in some cases tens of webpages
are accessed. Similarly, in Fig. 2c we report the distribution of the number of
unique websites accessed during a WP session. Results show that smartphone
users tend to focus on a single WP website at a time (78% of sessions), while
PC users are more prone to visit more websites. For all the devices, very few
sessions include visits to 4 or more different websites. Finally, Fig. 2d reports the
number of daily sessions for an active user. The figure shows that users hardly
make repeated use of WP within a day, without differences among devices.

We next focus on the frequency of WP consumption by users over the month.
In Fig. 3 we report the CDF of number of days of activity for WP users in the
dataset. The figure indicates that the monthly frequency is generally low, with
76% of the users visiting WP 5 or less days in a month. Still, there are some
users with a reiterate usage, with 8% of them consuming WP more than 15 days.
These results confirm what is found by Daspe et al. [5], who show that the 73%
of the participants to a survey access pornography no more than once or twice
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Fig. 1. Usage trends from March 2014 to March 2017. (Color figure online)
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Fig. 2. CDF of WP session characteristics, divided by device type.
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per week, and only 11% more than 5 times per week. Given the nature of our
dataset, we cannot estimate the number of users not consuming WP. Still, an
analysis of per-subscription traffic to WP is provided later in this section.

0 5 10 15 20 25 30
Days of activity

0.0

0.2

0.4

0.6

0.8

1.0

C
D
F

Fig. 3. Number of distinct days in which users consumed WP in a month.

WP consumption also changes during different time of day. Figure 4 provides
the average percentage of sessions across the 24 h of the day (red solid line). For
ease of visualization, we start the x-axis from 4am, correspondent to the lowest
value of the day. The two higher peaks are immediately after lunch time (2pm
- 4pm) and after dinner (9pm - midnight). In addition to WP traffic, the figure
also reports the overall trend considering all HTTP transactions, regardless their
nature (dashed blue line). Comparing WP to total traffic, some differences are
noticeable; the peaks do not overlap, and the latter is definitely more balanced
over daylight hours. An hypothesis for those divergences may be related to the
fact that accessing pornographic websites is likely to be a private and leisure
activity confined to intimate moments. At a global scale, Pornhub service has
found similar results (See footnote 2). The average session time reported by
Pornhub for Italy is 9 min and 30 s, similar to what observed from our analysis.
We also provide a breakdown across both hours and days of the week, with Fig. 5
showing the heat-map of the percentage variations from the gross weekly average
(white color). Warmer tones register values below average, while colder ones
show values above. Notice some clear diminishing traffic on Saturday evening
(7pm - midnight) and some increasing traffic on Saturday, Sunday and Monday
morning (9am - 1pm). Indeed, many commercial activities are closed on Monday
morning in the monitored country, perhaps influencing this behavior. Again,
Pornhub data shows comparable results, with their heatmap having peaks of
traffic in more or less the same time frames (2pm - 5pm) and (10pm - midnight).
Considering the cumulative daily accesses, Mondays register the highest values
and Saturdays the lowest.

Finally, we provide an overall picture about the fraction of all monitored
subscribers accessing WP website. Although our dataset does not contain fine-
grained details about WP pervasiveness, we can still show the fraction of sub-
scriptions where at least one user accessed WP during our period of observa-
tion. In Fig. 6, the x-axis represents the 31 days of our reference month (being
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Fig. 5. Weekly breakdown of hourly WP usage. Heat-map of deviation from hourly
average.

day 1 October 1st, 2016 and day 31 October 31st, 2016), while y-axis reports
the cumulative fraction of subscriptions that accessed at least one WP website.
Considering a single day, less than 12% of subscriptions accessed WP, but this
fraction raises to 27% after a week. At the end of the month it reaches 38%,
meaning that more than one subscription over three generated traffic toward
WP websites at least once in a month. For comparison, YouTube and Netflix
are daily accessed by 45% and 3% of subscribers respectively. Considering social
networks, 60% and 25% of subscribers contact Facebook and Instagram on a
daily basis, respectively.7

7 A deeper analysis can be found in our previous work [16].
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Fig. 6. Cumulative percentage of subscriptions accessing WP at different time in the
trace.

4.3 WP Websites at a Glance

In this section, we briefly describe WP website popularity and pervasiveness.
Similarly to the Internet global trend, the market is dominated by few big play-
ers. Looking at the Alexa rank, (See footnote 1) three WP websites appear among
the top-50, namely pornhub.com, xvideos.com and livejasmin.com, with the first
one ranked 29th, just behind linkedin.com. Considering our dataset, we observe
a similar situation, with over-the-top companies leading the rank. In Fig. 7 we
show the percentage of users reached by the top-15 WP websites using bars
(left-most y-axis), and the cumulative percentage of visits to these services (red
line, right-most y-axis). In total users accessed 7 048 different websites during the
entire month. The top-3 websites in our dataset match exactly Alexa rank, with
pornhub.com being accessed by 34% of the users. Global tendencies are reflected
in our top-15, with only 2 omitted websites as local representative of the mon-
itored country. Considering the percentage of visited webpages, pornhub.com
alone accounts for 14% of them, and the top-15 together approximately 63%
of all WP visits. The percentage reaches 90% considering the top-204 websites,
confirming the concentration of users around top services. Interestingly, very
similar numbers hold for the overall traffic (including also non-WP websites),
with top-15 accounting for 61% of traffic and 90% due to 195 websites.

Finally, we notice that 3 out of 15 WP websites of Fig. 7 belong to MindGeek,
a company owning pornhub.com, redtube.com, youporn.com, and dozens of other
websites.8 MindGeek websites account for more than 20% of accesses in our
dataset, making it a market leader. For comparison, the second website in terms
of users and visits is xvideos.com (owned by WGCZ Holding), with less than
half the users of MindGeek services, according to our data, suggesting a scenario
where the ecosystem is lead by few big players in a dominant position.

8 https://goo.gl/UgLqAj.

http://pornhub.com/
http://xvideos.com/
http://livejasmin.com/
http://linkedin.com/
http://pornhub.com/
http://pornhub.com/
http://pornhub.com/
http://www.redtube.com/
http://youporn.com/
http://xvideos.com/
https://goo.gl/UgLqAj
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Fig. 7. Top-15 WP websites ranked according to percentage of users accessing them.
Cumulative percentages of their visits with respect to all WP visits are also shown.
(Color figure online)

5 Conclusion

In this paper we offered a quantitative analysis concerning web pornography
consumption. To the best of our knowledge, we are the first to use network
passive measurements to study the interactions of users with these services.
We followed an exploratory approach on data, focusing on questions, topics and
metrics typically analyzed in previous surveys and research works, e.g., frequency
of fruition and the time spent on WP. We found interesting results, some typical
of the observed population and others capable of confirming global trends.

Our results draw the attention to a large and active group of users, and
may be helpful for researchers that study web services consumption and human
behavior at large. The obtained outcomes can be checked and verified, thanks
to the fact that we release our anonymized dataset. Furthermore, the chosen
metrics allowed a comparison with outcomes of previously conducted surveys,
and mostly confirmed their results.
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