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Preface

Welcome to the proceedings of the 20th edition of the Passive and Active Measure-
ments (PAM) Conference! This year’s conference marked two important milestones.
First, the conference took place during March 27-29 in Puerto Varas, Chile—the
southernmost location for any international networking conference to date. Second, this
was PAM’s 20th anniversary, a testament to the rich, vibrant, and thriving network
measurement research community that continues to make PAM one of the top publi-
cation venues in our field.

We are pleased to present 20 papers that cover a wide range of important networking
measurement and analysis topics from low layers of the network stack up to applica-
tions, using measurements at scales large and small, and covering important aspects
of the network ecosystem such as routing, DNS, privacy, security, and performance.
We received 75 submissions from 197 authors in nearly 100 institutions and 19
countries. The 39 members of the Technical Program Committee (TPC) were tasked
with providing well-reasoned, substantiated, and constructive reviews to determine the
set of papers that would appear in this year’s program. Each submission was assigned
at least three reviewers, with a few papers receiving additional reviews in cases where
additional viewpoints or expert opinions were needed. After the review phase, the
chairs led an online discussion for each paper that received at least one positive review,
with a particular focus on identifying the strengths of the submissions instead of
focusing only on flaws. We were particularly happy with the quality of reviews and
discussions from our TPC, and are excited by the 20 papers that they selected. Please
join us in extending our gratitude to the TPC members for their hard work.

We would also like to thank several members of the Organizing Committee, who
helped make the conference a successful event. This includes the general chairs,
Javier Bustos and Fabian Bustamante, who managed the arrangements on site, the
publicity chair, Pedro Casas, and Steve Uhlig for his experience and advice. Last, we
thank all of the authors and attendees who make PAM such an interesting and
important conference for two decades running, and we look forward to seeing what the
next 20 years of PAM will bring!

March 2019 David Choffnes
Marinho Barcellos
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Leveraging Context-Triggered
Measurements to Characterize LTE
Handover Performance

Shichang Xu®) Ashkan Nikravesh, and Z. Morley Mao

University of Michigan, Ann Arbor, USA
{xsc,ashnik,zmao}@umich.edu

Abstract. In cellular networks, handover plays a vital role in supporting
mobility and connectivity. Traditionally, handovers in a cellular network
focus on maintaining continuous connectivity for legacy voice calls. How-
ever, there is a poor understanding of how today’s handover strategies
impact the network performance, especially for applications that require
reliable Internet connectivity.

In this work, using a newly designed context-triggered measurement
framework, we carry out the first comprehensive measurement study in
LTE networks on how handover decisions implemented by carriers impact
network layer performance. We find that the interruption in connectivity
during handover is minimal, but in 43% of cases the end-to-end through-
put degrades after the handover. The cause is that the deployed handover
policy uses statically configured signal strength threshold as the key fac-
tor to decide handover and focuses on improving signal strength which by
itself is an imperfect metric for performance. We propose that handover
decision strategies trigger handover based on predicted performance con-
sidering factors such as cell load along with application preference.

1 Introduction

Mobile devices rely on cellular networks to get network access to support data
services. Since the coverage of each cell' is limited, handover between cells is
essential for ensuring continuous connectivity and mobility. In addition, when
the device is in the coverage of multiple cells, a proper policy should handover
the mobile device to a cell that provides good performance.

There has been little work to understand how the deployed cellular network
handover policies affects network layer performance in the wild. Specifically,
questions such as what is the interruption in the network during handover and
whether network performance consistently improves after handover are not well
understood. In this paper, we perform the first large-scale study of handovers in
LTE network using crowd-sourced measurements of over 200 users across three
major carriers for the purpose of evaluating the performance implications of

! Each cellular base station has one or more set of antennas and it communicates with
the mobile devices in one or more sectors called cells each of which has a unique
ID [7].

© Springer Nature Switzerland AG 2019
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existing handover algorithms and policies. Performing measurements to capture
transient handover events efficiently is challenging. To address such challenges,
we develop a novel context-triggered measurement framework that dynamically
initiates performance measurements of interest only when handover is likely to
occur to reduce the measurement overhead.

Based on our measurement results, we identified fundamental limitations in
the current design and deployment of handover algorithms: the use of static
configurations on signal strength difference with neighboring cells and a lack
of awareness of network performance. As a consequence, in 43% of cases the
throughput degrades after the handover. By analyzing physical layer information
in LTE network, we found that the cause of the performance degradation is that
target cells have higher load and allocate less physical resources.

Our findings help motivate the need for handover algorithms based on net-
work performance considering both signal strength and cell load. The measure-
ment also shows the opportunity to improve the handover decision (Sect.4):
(a) currently handovers do not occur only when devices experience poor sig-
nal strength, indicating that the time of handover could be potentially changed
without risk of link failures; (b) the dense deployment of cells provides more
than one candidate target cell the device could be potentially handed over to in
many cases.

We summarize the main contribution of our work below.

— We designed a context-triggered measurement framework to support
lightweight and accurate handover measurements. Using this setup, we col-
lected 5 months’ data from 200 users across three major cellular carriers in
the U.S. to investigate performance impact of handover in LTE network.

— Using cross-layer analysis to incorporate radio link layer visibility with our
data collector, we found that the current deployed handover policy relies on
statically configured thresholds on signal strength. It focuses on improving
signal strength and leads to potential performance degradation after the han-
dover.

— We found that the interruption caused by intra-LTE handover is usually min-
imal. However, the median performance improvement after the handover is
close to 0 in metrics including latency, throughput and jitter. The current
handover algorithms do not appear to optimize performance.

— We identified that the performance degradation after handover is caused by
higher load in the target cell and less allocated physical resources to the
devices. We proposed cells predict performance after handover based on signal
strength and cell load information and make handover decisions based on
performance.

2 Background and Related Work

In this section, we first provide some background on handovers (Sect.2.1). The
related terminologies are summarized in Table1l. Then we summarize related
works (Sect. 2.2).
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Table 1. Related terminologies in LTE network

Terminology Definition

Reference Signal Received Power The average power received from the

(RSRP) reference signals. It is a metric of the
downlink signal strength

Physical Resource Block (PRB) The basic unit of allocation of resources to
the UE

Event A3 The signal strength of neighbor cell becomes

better than the serving cell by a relative
threshold value
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2.1 LTE Handover and Data Transmission Procedure

Handovers within LTE networks are initiated by the cells and they can maintain
ongoing network connections. We first define some basic terminology. Serving cell
is the cell a user equipment (UE) is currently connected to. Target cell becomes
the serving cell after the handover. We also refer to the original serving cell after
the handover completes as the source cell.

As Fig. 1 shows, to help decide when to trigger handover, the mobile device
measures radio signal strength of both the serving cell and neighbor cells peri-
odically. A commonly used metric of signal strength is Reference Signal Received
Power (RSRP), i.e., the average power received from the reference signals of the
cell. The serving cell sends the measurement configuration to the device to spec-
ify when measurement results should be reported back. Depending on the mea-
surement configurations, the measurement reports can be either event-triggered
or periodical. Event-triggered reports are sent only when the link quality sat-
isfies certain conditions. From previous work, a common trigger for intra-LTE
handover is event A3 [8,11], where the signal strength of neighbor cell becomes
better than the serving cell by a relative threshold value. Based on factors includ-
ing measurement reports and load information, the serving cell makes decisions
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on handover [13]. The actual handover decision algorithm depends on the imple-
mentation at eNodeB or LTE base-station. After the source cell determines to
perform a handover for a UE, it conducts a negotiation with the target cell to
ensure enough resource at the target cell. Then it sends a message to the UE
to initiate the handover. The UE disconnects with the source cell and connects
to the target cell. After it successfully connects to the target cell, it notifies the
target cell of the completion of the handover. These signaling messages between
the cell and the UE are exchanged using radio resource control (RRC) protocol.

To understand how the network layer performance is determined by the lower
layer in LTE network, we also briefly describe the data transmission procedure in
the physical layer. Wireless communication requires radio spectrum resources.
In LTE, cells dynamically allocate the physical radio resources in the unit of
physical resource blocks (PRBs) to UEs and transmit data to the UEs using
the allocated PRBs. The allocation strategy is not standardized in the specifica-
tion and depends on vendor-specific implementation. However, typically cells use
proportional scheduling algorithm [7], which optimizes cell efficiency while main-
taining fairness across all UEs in the long term. When the cell load increases,
i.e. more UEs connect to the cell and the total traffic volume increases, the
allocated PRBs for each UE reduce. We denote the ratio between the allocated
PRBs to a UE and the total PRBs of a cell as PRB ratio. The number of bytes
transmitted by each PRB is determined by the signal strength, i.e., with strong
signal strength and good channel quality, the cell could use coding schemes with
high efficiency and thus transmits more data on each PRB. In summary, the
performance in LTE network is affected by both the cell load which determines
the PRB allocation and the signal strength which determines the transmission
efficiency.

2.2 Related Work

The problem of handover in cellular networks has attracted significant attention
in both academia and industry. However, there is little work on understanding
the performance impact of handover decisions in operational LTE network.

Previous work measured intra-LTE handovers using simulation [8,9] and
testbeds [13,22] to understand the performance of applications during handover.
Our work differs in that we measured the handover performance in the wild.
Recent work [14,16,19,23] study persistent handover loops caused by miscon-
figurations. We also identify such misconfigurations for a few cells in the wild
but find they are not dominant. Our focus is to characterize the interruption
caused by handover regardless of handover loops and compare the network per-
formance before and after handover to understand the performance implica-
tions of deployed handover policies. Some other work [4,12,20,21] studied han-
dovers between different technologies, e.g. 3G and 4G. Our work studies handover
between different cells in LTE network.



Leveraging Context-Triggered Measurements 7

3 Methodology

To understand the impact of handover on performance in the wild, we crowd-
source our measurement using a context-triggered measurement framework.

3.1 On-Device Measurement Support

We combine passive monitoring with active measurements to study handover
with minimal measurement overhead.

Passive Monitoring. We keep track of device context including network type,
signal strength and location. Through a novel use of the built-in diagnostic inter-
face from Qualcomm communication chips, we also collect (1) lower layer RRC
layer information including measurement configurations and handover messages
and (2) physical layer information including PRB allocations. Our lower-layer
message collection builds upon SnoopSnitch [2] which is an open-source Android
app aimed to detect attacks such as fake base station using data from the Diag-
nostic Interface. The collector requires root privilege and reads the raw radio
messages from the character device /dev/diag when DIAG_CHAR option is acti-
vated in Android kernel. The collector also collects fine-grained signal strength
information from the diagnostic interface every 40 ms, while the signal strength
information from Android API updates only every two to three seconds. We are
one of the first to crowd-source LTE radio-link layer messages.

Active Measurement. To understand how handover impacts network per-
formance, we use the Mobilyzer measurement library [18], a principled mobile
network measurement platform, to measure network performance. We issue ping,
TCP throughput, and UDP burst measurements to capture network character-
istics using metrics including latency, throughput, jitter, packet loss.

Compared with passive monitoring, active measurements consume data
resources and can cause significant impact on battery life. As data and battery
resources are scarce on mobile devices, we need to capture performance during
handover events efficiently. Towards this goal, we develop a context-triggered
framework to trigger measurements only when a handover is predicted to occur
in the near future.

Context-Triggered Measurement Framework. In general, deciding when
to issue measurements is a challenging task. If we simply perform measurements
periodically, the interval is difficult to configure. A small interval leads to large
amount of unnecessary measurements that fail to capture interesting phenomena,
wasting valuable data and battery resources on the device; while a large interval
can miss the phenomena we are interested in.

One approach to solving this problem is to trigger measurements [3] based
on context that specifies the conditions of interest. We estimate the likelihood of
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observing relevant events based on the device context and trigger measurements
only when the probability of capturing desired events is high. This helps reduce
unnecessary measurements while capturing more events of interest.

We design a context-triggered measurement framework atop Mobilyzer [18].
We send the devices measurement tasks with specific context requirements. The
devices keep monitoring related context and trigger measurements once the con-
text conditions are met. Note that different contexts contain different informa-
tion with different cost. Even querying the same context with different granu-
larity requirement has different cost implications. These considerations motivate
our design of supporting a multi-level triggering procedure. At the first level, we
monitor a context with the lowest cost. If the context indicates that the possibil-
ity of desired event occurrence is high, we monitor another context with higher
cost or the same context with higher accuracy. This can be done with multiple
layers until we reach high confidence that the event will occur. There is certainly
a trade-off from using many levels to reduce measurement overhead but at the
cost of introducing delay in capturing the event of interest which could lead to
fewer events captured. We argue that the number of levels need to be adjusted
depending on the type of events and the overhead of triggering at each level.

We apply this framework to understand the performance impact of han-
dovers. Based on the passively collected lower layer messages, we find that LTE
handovers usually happen when a cell with a stronger signal strength than the
connected cell is discovered for a mobile user (Sect. 4). We implement the frame-
work as follows. We first use sensors to detect user movement, as the power con-
sumption of movement detection sensors such as accelerometers is only 5mW
for an active device. Once we detect that the user is moving, we start to read
fine-grained signal strength data from the diagnostic interface, which consumes
around 200 mW. If the neighbor cell signal strength is stronger than the serving
cell, a ping, throughput or udp burst measurement is triggered, consuming more
than 1500 mW to activate the radio [10].

To evaluate the effectiveness of the framework, we run simulation on all traces
collected from PhoneLab deployment [5] as explained later. Figure 2 compares
the overhead and accuracy of measurements with and without context triggered
framework. T' = x means the measurement are triggered when the signal strength
of neighbor cell is stronger than the serving cell by the threshold of x dBm. P =y
denotes periodic measurement every y minutes. We calculate the overhead as the
average number of measurements for identified handovers, and accuracy as the
percentage of measurements that capture handovers. As shown, our framework
can reduce the overhead to 1% while increasing the accuracy by 10 times. In
the actual deployment, labeled as “Real” in Fig.2, we use T' = 0. Compared
to the simulation results, the real deployment has a slightly lower overhead
and accuracy, because we imposed constraints on the resource usage of active
measurements to reduce impact on user experiences.
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Fig. 2. Context-triggered measurement improves efficiency and accuracy of measure-
ments for intra-LTE handovers (PhoneLab). (T = z: triggered measurement using z
dBm threshold. P = y: periodic measurement every y min).

3.2 Crowd-Sourced Measurement

PhoneLab Deployment. PhoneLab [5] is a smartphone testbed located at the
University at Buffalo with more than 200 participants. Each participant receives
a Nexus 5 device running Android Lollipop with unlimited Sprint data plan.
Developers can deploy experiments on the devices by modifying the Android
system.

To understand handover policies and performance impacts, we add a system
service called HandoverTrackerService in Android system. This service monitors
context information of the device and triggers active measurements. The lower
layer information and measurement results are uploaded to servers. At the begin-
ning of deployment, we keep collecting lower layer messages and perform active
measurement periodically to avoid bias in the collected data. After analyzing
the data and understanding when handover is triggered, we update the deploy-
ment and leverage the context-triggered measurement framework to reduce the
measurement overhead.

To guarantee minimal influence of active measurements on user experience,
heavy-weight measurements such as throughput are performed only when the
screen is off and users are not interacting with the device. To control the power
consumption of issued active measurements, we build an energy model for all
measurements, and stop all measurements when the power consumption reaches
10% of total battery resources after the device is unplugged from the power
source. We also enforce a limit on the daily data usage generated by the active
measurements.

We deploy the measurement system on PhoneLab testbed and collect a
dataset PHONELAB for 5 months from January 2016 to May 20162. In total we
observe 8403 cells and 283,556 intra-LTE handover events. For active measure-
ments, we collect 49,594 throughput measurements, 159,210 ping measurements
and 50,409 UDP burst measurements.

2 We confirm the inferred handover policy from PHONELAB are still current with
the newer Mobilelnsight dataset as described later in Sect. 4.
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Local Deployment. We also deploy our measurement setup to 20 local users
with unlimited AT&T data plans. We install an app called HandoverTrackerApp
on their devices. The app collects the same information as Handover TrackerSer-
vice in PhoneLab deployment. We also collect data from a local device with
T-Mobile service.

Both the crowd-sourced measurements and local deployment were IRB appro-
ved. The descriptions of the experiment and collected data are presented to the
participants and they have the option to opt-out the experiment data collection.

MobileInsight Dataset. MobileInsight dataset [1] is a publicly available
dataset containing lower layer cellular messages® collected from more than 8
US/Chinese network carriers spanning 3years from year 2015 to 2018 using
the tool MobileInsight [15]. The types of lower layer information collected by
Mobilelnsight is similar to our data collection deployed on PhoneLab.

4 Handover Policy Inference

In LTE networks, the cells make decisions on when to initiate handovers. The
handover decision process is not standardized in the 3GPP specification and is
left to be defined using carriers’ network configurations. To infer handover trig-
ger policies in practice, we implement an RRC stack emulator that keeps track of
the current device information, such as RRC connected state, connected cell ID,
measurement, configurations, and processes handover related messages. We feed
RRC messages from each device to the emulator and output information includ-
ing recent measurement reports and corresponding measurement configurations
when processing handover initialization commands.

We first characterize the deployment of the cells and analyze how many cells
the device usually observes from the signal strength measurements of neighboring
cells in the PhoneLab dataset. We find that in 77.4% of cases the device observes
at least one neighboring cell. In 41.9% of cases, the devices observe multiple
neighboring cells. These neighboring cells can be of good signal strength. Among
all the measurements, in 18.5% of cases, there is at least 1 neighbor cell with
RSRP no worse than 5dBm lower than the serving cell. This indicates that
carriers deploy cells densely to ensure connectivity and the potential chances of
performing handovers between cells are high.

We find a strong correlation between measurement reports sent from the UE to
the cell (shown in Fig. 1) and handover events observed on the UE. As illustrated
in Fig. 3, 95.4% of handovers in Sprint occur within 100 ms after the measure-
ment report is sent. If we consider a measurement report helps trigger the han-
dover when a handover occurs within 500 ms after a measurement report is sent,
for all carriers studied, more than 99.4% of handovers are triggered by measure-
ment reports, as shown in Table 2. Such close timing proximity implies potential
causality.

3 The MobileInsight dataset does not have active measurements on network perfor-
mance.



Leveraging Context-Triggered Measurements 11

Table 2. Overall statistics of handovers.

Carriers Sprint | T-Mobile | AT&T
Handovers triggered from events | 99.84% | 100% 99.40%
Handovers triggered from event A3 |98.39% | 89.51% | 94.41%

Event A3 triggering handovers 91.87% | 88.73% | 87.58%
Handover count 283,556 | 286 330
Handover-involved cell count 6,304 |33 45
100
80
& 60
40
° 20/
0

0 50 100 150 200 250 300
Handover delay (ms)

Fig. 3. Measured delay from the last measurement report to the time when handover
starts (Sprint).

We find the majority type of measurement reports that triggers handovers
is event A3. Event A3 indicates that signal, i npor — Signalse,ying > threshold.
98.39% of all handovers in Sprint network are triggered by event A3 reports.
On the other hand, event A3 measurement reports have a high success rate
of triggering handover. In Sprint network, for 91.9% of event A3 reports, the
cell initiates a handover within 500 ms. For 98.1% of event A3 reports, the cell
initiates a handover within 2s. One reason why some reports fail to trigger
handovers is that the device releases the RRC connection or the data collector
stops collecting data before the handover occurs.

We find for each pair of cells, the threshold value of event A3 that triggers
handover is statically configured and does not change over a long period. In
the Sprint network, for the pairs of cells that have more than 100 handovers,
10.4% always set the threshold to 2dBm and 2.9% always set it to 4dBm.
The other cells used the threshold of 2dBm at the first 2 months of our data
collection period and then changed to 4dBm. The threshold of event A3 can
affect how often handover happens. A lower threshold can be met more easily,
thus encouraging more frequent handovers.

To understand whether handovers occur mostly for devices experiencing poor
signal strength, we plot the distribution of the serving cell’s RSRP values right
before handovers in Fig. 4. As shown, there is no direct relationship between cur-
rent serving cell signal strength and handover occurrence. Handover occurs even
when serving cell signal strength is already strong. For AT&T and Sprint, more
than 20% of handovers happen when serving RSRP is stronger than —100 dBm.
This is due to the fact that most of the handover events are triggered by event
A3 using the relative signal strength threshold.
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Fig.4. RSRP of serving cell before Fig. 5. In 90% of cases, signal strength
the handover. Despite strong signal improves after intra-LTE handover.

strength, handovers still occur.

From the definition of the measurement report events, we know that han-
dovers triggered by event A3 are likely to improve the signal strength of the UE.
This is confirmed by Fig. 5, showing the signal strength improvement after the
handover.

We also validate our observation using the MobileInsight dataset. Among
the 4873 observed handover events in the dataset, 86.5% are triggered by event
A3 measurement reports. For 99.1% of the cell pairs, the A3 threshold value
triggering handover is fixed. This confirms similar handover policies are used
across time across different carriers. We next study the performance implications
of such handover policies.

5 Performance Impact of Handover

We characterize the disruption during handover and the performance change
after handover.

5.1 Performance Disruption During Handover

Due to the underlying physical radio layer transmission mechanism, during intra-
LTE handovers, the device has to disconnect from the currently connected cell
before connecting to the target cell, thus introducing a period during which
the device is detached from the network preventing any data exchange. This
unavoidably generates an interruption to ongoing traffic during handover. In
intra-LTE handovers, the detach time is defined as the interval from the time
when the device receives handover initialization message from the source cell
and the time when the device successfully connects to the target cell.

To maintain good user experience during handover, the detach time needs
to be kept low. In our observation, the detach time of successful handovers
is within 35ms, which is quite minimal. However, handovers can fail due to
various reasons such as insufficient radio resources in the target cell. When a
handover fails, detach time can increase dramatically. If the UE fails to connect
to the target cell, the UE aborts the handover process and initiates connec-
tion re-establishment procedure with the source cell instead, which increase the
detach time up to 775ms from our observations. Moreover, in some cases, the
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re-establishment request is rejected by the source cell, and the UE is forced to
release the connection and establish a new connection. This can further increase
the detach time to 2.7s. The handover failure rate observed in Sprint is 0.18%.

Low detach time does not necessarily mean low impact on application-layer
traffic. After the UE connects to the target cell, it may not resume data trans-
mission from the new cell immediately. We use UDP burst measurement to
characterize the data pause time during handover. Figure 6 shows an example of
UDP measurement results. After the handover, the first few packets are delayed
for about 200 ms. As Fig. 7 shows, the median data pause time is 66 ms, which
increases traffic jitter and may degrade real-time applications such as VoIP.

We examine packet losses during handover. During the handover, some data
may be buffered in the source cell if the device is receiving data. Depending on
how such data is handled, intra-LTE handovers can be categorized as seamless,
which discards all data in the PDCP retransmission queue in the source cell,
or lossless which forwards such data to the target cell. Recent work [17] shows
that seamless handover is better in terms of goodput while lossless handover is
better in terms of latency. We find that all cells in Sprint network use lossless
handover, as no packet loss is found after the handover.

In AT&T network, we found three cells drop packets when there are han-
dovers between them. In order to understand the underlying cause of this phe-
nomena, we carry a Nexus b device that keeps downloading data from a local
server while moving in the coverage area of these three cells. Server throughput
is throttled at different values using the tc tool. All tcpdump traces from both
the server and the client are captured.

Figure 8 shows bytes in flight right before the handover and the corresponding
number of lost packets during the handover. We find that the number of lost
packets has a strong correlation with the number of bytes in flight. We infer
that there is a buffer in the cell that buffers packets during the data transmission
between the server and the device. When a handover happens between the source
cell and the target cell, the source cell tries to forward packets in the buffer to the
target cell. However, during handover, the device cannot receive packets from
the source cell in time, thus the number of accumulated packets at the cell may
exceed the buffer size. In that case, the source cell has to drop packets during
the handover.
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We infer the cause of this unusual behavior of these three cells during han-
dover is the poor configuration of their buffer size. From the experiment results,
the buffer size of these cells is between 250 KB to 400 KB. For normal TCP con-
nections, the small buffer size does not cause packet loss due to the flow control
in TCP. However, during handover, the small buffer size can easily lead packets
loss, further degrading the performance of handover. In the worst case of our
experiment, the duration of retransmission for the lost packets is 2.27 s, which
can greatly degrade user experiences.

5.2 Performance Change After Handover

One desirable goal of handover is to improve performance after switching to
a new cell. We analyze the data to compare performance before and after the
handover.

We filter out the throughput measurements that include handovers and cal-
culate the average throughput value in the 5s before the handover occurs and
the average value in the 5s after the handover. As shown in Fig. 9, we find that
the throughput does not improve consistently after the handover. In 43% of
cases, the throughput decreases after the handover. Similar to throughput, nei-
ther latency (Fig. 10) nor jitter improves consistently based on the ping and UDP
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Fig. 13. The performance degradation is associated with higher cell load and less
allocated PRBs (Sprint).

burst measurements. The median improvement is close to 0 for all these metrics.
The current handover algorithms do not appear to optimize performance.

As mentioned in Sect. 4, the currently deployed handover decisions of all the
carriers use signal strength as one of the key metrics and focus on improving
signal strength after the handover. However, signal strength is an imperfect
metric for performance, as performance also depends on other factors such as
allocated PRBs determined by the cell load [6]. We calculate the throughput
values each second using the crowd-sourced data and associate them with the
RSRP and obtained PRB ratio. As shown in Fig. 12, the achieved throughput is
determined by the PRB ratio as well.

Figure 11 shows an example where signal strength increases after the han-
dover, but the performance degrades. To confirm the root cause of such perfor-
mance degradation, we look into the change in allocated PRBs after handover
for the cases where throughput decreases. As shown in Fig. 13, in most of such
cases the allocated PRBs of the UE decreases after the handover, indicating that
the target cell has a higher load.

Instead of making handover decisions simply based on signal strength, we
propose that each cell maintains a 2-dimensional performance map from signal
strength value ranges and load value ranges to performance ranges including
throughput, loss rate, and delay. The performance values are updated by pas-
sively monitoring ongoing traffic at the cell. The cells exchange the performance
information of the UE and UE’s perceived signal strength of the potential target
cell with its neighbors and trigger handover only if there is significantly enough
performance improvements. The type of performance metric to be considered
depends on user traffic demand inferred from its traffic types.

6 Conclusion

Handovers are essential for maintaining connectivity as users move with their
devices. With the introduction of small cells in the incoming 5G network, han-
dovers will become more frequent and critical. In this paper, we conduct the first
comprehensive empirical study to investigate the decision strategies of intra-LTE
handover in the wild and analyze their impact on performance. Our study exam-
ines currently deployed decision policies by carriers and sheds light on opportu-
nities for improving the handover decision process with respect to application
performance.
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Our analysis shows that the policies enforced by carriers are not optimized

in terms of performance. The key factor to decide handover is signal strength,
and the handover trigger thresholds are found to be statically configured. We
discover that the performance can degrade after the handover. We propose that
the handover decision should depend on performance information predicted using
both signal strength and cell load information.
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Abstract. Measuring and understanding the end-user browsing Qual-
ity of Experience (QoE) is crucial to Mobile Network Operators (MNOs)
to retain their customers and increase revenue. MNOs often use traffic
traces to detect the bottlenecks and study their end-users experience.
Recent studies show that Above The Fold (ATF) time better approxi-
mates the user browsing QoE compared to traditional metrics such as
Page Load Time (PLT). This work focuses on developing a methodol-
ogy to measure the web browsing QoE over operational Mobile Broad-
band (MBB) networks. We implemented a web performance measure-
ment tool WebLAR (it stands for Web Latency And Rendering) that
measures web Quality of Service (QoS) such as TCP connect time, and
Time To First Byte (TTFB) and web QoE metrics including PLT and
ATF time. We deployed WebLAR on 128 MONROE (a European-wide
mobile measurement platform) nodes, and conducted two weeks long
(May and July 2018) web measurement campaign towards eight web-
sites from six operational MBB networks. The result shows that, in the
median case, the TCP connect time and TTFB in Long Term Evolution
(LTE) networks are, respectively, 160% and 30% longer than fixed-line
networks. The DNS lookup time and TCP connect time of the websites
varies significantly across MNOs. Most of the websites do not show a
significant difference in PLT and ATF time across operators. However,
Yahoo shows longer ATF time in Norwegian operators than that of the
Swedish operators. Moreover, user mobility has a small impact on the
ATF time of the websites. Furthermore, the website design should be
taken into consideration when approximating the ATF time.

1 Introduction

Recent studies show that mobile data traffic is increasing exponentially, and
web browsing is amongst the dominant applications on MBB networks [13]. The
dependency on MBB networks and the widespread availability of LTE is boosting
user expectations towards fast, reliable, and pervasive connectivity. The users
make the MNOs responsible for the shortcomings in the mobile experience [5].
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This demand pushes the MNOs to further enhance the capabilities of the mobile
networks for emerging applications. One of the challenging use cases for MBB
networks is the mobility scenario [28], for example, browsing the web while com-
muting in a high-speed train. Thus, for MNOs, it is paramount to understand the
end-user browsing experience while using their network [16]. Users are mostly
concerned with the fulfillment of the quality expectation rather than the level
of the QoS metrics like throughput.

There have been a number of previous efforts (Sect. 4) to measure and under-
stand the performance of MBB networks. NetRadar [34,37], SamKnows broad-
band measurement [12], Meteor [32] are some of the tools that have been devel-
oped to measure the QoS metrics from MBB network. These tools either aim
at measuring the metrics related to QoS or do not indicate how the metrics are
used to measure the QoE. Moreover, web performance and QoE have been well
studied [3,9,13,14,19,25-27,33]. Nonetheless, most of the studies that investi-
gated mobile web QoE are either from lab experiments or do not cover a wide
range of metrics to approximate the end-user browsing experience. As a result,
our understanding of web QoE on operational MNOs is limited. Mainly, this is
because of two reasons: (1) the lack of large-scale measurements that investigate
the application level metrics in operational MBB networks, and (2) the map-
ping of the network QoS to objective application QoS metrics and then to the
subjective QoE, has not been well validated for mobile networks.

Our first contribution in this work (Sect. 2) is the design and development of
WebLAR [7], a lightweight tool for measuring the end-user web experience over
operational MNOs. The measurement tool can be deployed at scale and cap-
tures web latency and QoE metrics at different layers such as the DNS lookup
time, TCP connect time, PLT, and the ATF time. The ATF time is the time
required to show the content in the browsers’ current viewport [15]. The authors
in [9,25] used two different approaches to approximate the ATF time in fixed-
line networks. Asrese et al. [9] used a pixel-wise comparison of the changes in
the browser’s viewport to approximate the ATF time. They capture a series
of screenshots of the webpage loading process and compare the pixel difference
between consecutive screenshots with a three seconds threshold. When there is
no change observed for three seconds, the webpage is considered as rendered com-
pletely. The ATF time is the difference between the starting time of the webpage
loading process and the time where the last pixel change is observed. Hora et
al. [25] used the browsers timing information to approximate the ATF time. They
consider that the ATF time is the integral of the downloading time of the main
HTML file, scripts, stylesheets and the images located in the above-the-fold area.
By adopting the methods from the existing work [9,25], we designed WebLAR
to approximate the ATF time in operational MNOs. In addition, WebLLAR cap-
tures network and device level metadata information such as the radio access
technology, the GPS locations, CPU and memory usage in the device. Different
confounding factors such as the device affect the QoE. In this work, we build a
baseline view by using MONROE, a platform that can be used for performing
measurements in a more controlled setting.
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The second contribution of this work (Sect. 3) are the insights derived from
the dataset collected using WebLAR. We deployed WebLAR on MONROE [6],
a Europe-wide experimental platform for MBB network measurement. We mea-
sured the performance of eight popular websites from 128 stationary and mobile
MONROE nodes distributed across Norway and Sweden. In our measurement
campaign, measuring a larger set of websites was not possible because of data
quota limitation. So, we picked eight websites (Appendix A) that are popular in
Norway and Sweden. The result from our analysis shows that there is a differ-
ence in DNS lookup time, and TCP connect time of the websites across different
MNOs. For most of the websites, there is no significant difference in PLT and
ATF time across the operators. However, we also observed a big variation in
ATF time of Yahoo between MNOs across different countries. That is, Yahoo
has longer ATF time in the Norwegian MNOs. Moreover, we observed that user
mobility does not have a significant effect on the web QoE.

The applicability of the aforementioned approaches [9,25] to approximate
the ATF time have not been validated for webpages that have different design
style. That is, one approach may work better for certain types of webpages but
may not work well for others. Using the dataset collected using WebLAR, we
showed that the website design should be taken into consideration while using
the browser timing information and the pixel-wise comparison approaches to
approximate the ATF time (Sect.3.3). We also showed that for the pixel-wise
comparison approach three seconds threshold is sufficient to determine when
the content in the above-the-fold area of the webpage is stabilized. To encourage
reproducibility [11], we open source the tool [7], and release the collected dataset
along with the Jupyter notebooks [10] that were used for parsing and analysing
the results.

2 Experiment Design

We begin by presenting our methodology (Sect.2.1) to approximate the ATF
time of websites. We provide details on the design, the experimental workflow
(Sect. 2.2), and the implementation aspects (Sect. 2.3) of WebLAR required for
its deployment on the MONROE platform.

2.1 Methodology

The contents in the above-the-fold area of the webpage (that is, the content
within the current viewport of the browser) are the key parts of the webpage
for the user to judge whether or not the page has downloaded and rendered.
As such, the time at which the contents in the above-the-fold area stop chang-
ing and reach the final state is one objective metric to approximate the user
QoE [15]. We refer to this as ATF time. One way to approximate the ATF
time is by monitoring the pixel changes in the visible part of the webpage and
detecting when it stabilizes [9]. Another method is approximating by using the
performance timing information that the browsers provide [25]. Browsers provide
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APIs to retrieve performance and navigation time information of the websites.
The two approaches have their limitations. The webpage may not stabilize due
to different reasons; for example, it may contain animating contents. As such, it
might be difficult to detect when the webpage stabilizes. This makes it harder to
approximate the ATF time using the pixel-wise approach. Conversely, in some
cases it is difficult to identify the exact location of some types of objects. This is
one of the challenges in approximating the ATF time using the browser’s timing
API. Thus, one approach could better approximate ATF time for certain types
of websites, while the other approach may underestimate or overestimate it.

Recent studies [9,25] have developed tools to estimate the ATF time in fixed-
line networks. We take this forward by designing and developing WebLAR that
measures the web QoE in cellular networks by combining both approaches.
WebLAR can approximate the ATF time using both the pixel-wise compari-
son [9] and using the browser performance timing information [25]. Unlike [9],
where the measurement system approximates the ATF time by downloading
all the web objects at the measurement nodes and pushing them to a cen-
tralized server location for processing, we approximate the ATF time at the
MONROE nodes themselves. For simplicity of notations, we refer the ATF time
approximated using this method as ATF, time. Hora et al. [25] developed a
Google Chrome extension to approximate the ATF time, which requires user
interaction. Since the mobile version of Google Chrome does not support exten-
sions (at least without using additional tools), it is not possible to use the browser
timing information to approximate the ATF time in mobile devices. To close this
gap, WebLAR approximates the ATF time in measurement probes that mimic
mobile devices. We refer the ATF time approximated using this approach as
ATF}, time. Moreover, using the browsers timing API, WebLAR also records
metrics such as the DNS lookup time, TCP connect time, TTFB, and PLT. The
browser API also enables us to get the web complexity metrics [22] including the
number and the size of objects of the webpages. WebLLAR also captures meta-
data information about the network conditions at the measurement nodes (e.g.,
MBB coverage profiles, signal strength) and other information that describe the
user’s mobility (e.g., GPS coordinates) and other events like CPU and memory
usage.

2.2 Experiment Workflow

Figure1 shows the sequence of operations of WebLAR experiment in MON-
ROE measurement platform. The MONROE measurement platform provides
a web interface where the users can submit their custom experiment (#1 in
Figure). The MONROE back-end service then schedules (#2) the submitted
user experiments to the selected nodes. It also starts the execution of the test
according to the parameters that the user provided through the web interface.
Once a node receives the commands for executing an experiment, it checks
whether the docker container that contains the test is available locally. Oth-
erwise, it fetches the docker container from a remote repository. Then the node
starts the container with the parameters given in the MONROE web interface.
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Fig. 1. Sequence diagram of the experiment using WebLAR tool in MONROE mea-
surement platform.

When the container begins running the WebL AR, experiment, WebLAR starts
by checking the available network interfaces that have cellular connectivity and
changes the default gateway (#3) to one of the available interfaces to fetch the
webpages. Then, the node immediately starts capturing the metadata informa-
tion and simultaneously runs the Google Chrome browser (version 62) using
Chromedriver (version 2.33) (#4 and #5). The Google Chrome browser starts
in Incognito and maximized mode and with no-sandbox option. The browser
issues HTTP[S] GET request to the given URL. When the browser starts down-
loading the webpage a video of the browsing session progress is captured for
30s. Moreover, we capture the web QoS and complexity metrics of the webpage
(#6) by using the browser timing information. At the same time, the ATF time
is approximated using the timing information retrieved using the browser API.
Once the browsing session is completed the recorded video is converted into a
series of screenshots (bitmap images) in every 100 ms interval and the ATF time
is calculated by comparing the pixel changes within the consecutive screenshots
(#7). Then we stop capturing the metadata (#8) and send the results annotated
with the metadata to the MONROE back-end. In one experiment submission,
the steps from #3 to #8 may repeat depending on the number of cellular connec-
tivity that the node has and the number of the webpages that the user wishes to
measure. Finally, the user can retrieve the results from the MONROE back-end
and can do analysis.

2.3 Implementation

The Pixel-Wise Comparison Approach: We designed a Java program that
records a video (10 frames per second) of the browsing session on a predefined
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screen size. Then by using ffmpeg [23], the video is converted into bitmap images
in 100 ms interval. imagemagic [1] is used to compare the pixel difference between
consecutive images. Then we utilise a python script [9] to determine the ATF,
time from the pixel differences. The ATF, time is the point where there are
no more pixel changes in consecutive X screenshots (i.e., X/10s threshold). A
study [21] in 2016 shows the average PLT in 4G connection is 14s. The study
shows that more than half of the mobile users abandon the sites that take longer
than three seconds to load. The study revealed that 75% of the mobile sites take
longer than ten seconds to load. In the WebLLAR experiment, we set three thresh-
olds (3, 10 and 14s) for declaring whether or not the webpage stabilizes. Hence,
the ATF,, time is approximated with different webpage stabilizing thresholds.

Browser Heuristic-Based Approach: We used the Google Chrome browser
API and utilized the performance timing information to approximate ATF}, time
using the browser’s heuristic. First we detect all the resources of the website
and their location on the webpage. Then, to approximate the ATF}, time, we
integrate the download time of the images (that are located in the ATF area),
javascript files, cascaded style sheet files, and the root document that contains
the DOM structure of the webpage. Moreover, using the browser API, the QoS
metrics such as the DNS lookup time, TCP connect time, TTFB, the DOM
load time and PLT are captured. The web complexity metrics such as number
and size of resources are also extracted using the API. We wrote a javascript
implementation to approximate the ATF}, time and integrated it within the Java
program used to approximate the ATF,, time.

3 Analysis

We begin by presenting the dataset (Sect.3.1) we collected after deploying
WebLAR on the MONROE platform. We present the analysis using this dataset,
focussing on IP path lengths (Sect.3.2), web latency and QoE (Sect.3.3) and
specifically QoE under mobility (Sect.3.4) conditions.

3.1 Dataset

We ran the WebLAR experiment for two weeks (May 19-26, 2018 and July 2-
9, 2018) in 128 MONROE nodes located in Norway and Sweden. The nodes
are equipped with one or two SIM cards with 4G connectivity. Nine of the
nodes deployed in Norway are connected with a Swedish operator roaming [29]
in Norway. Our measurement campaign covers a total of six operators. During
the campaign, nodes are set to fetch specific pages of eight popular websites
(Appendix A). The WebLAR experiment execute every six hours. In the rest
of this paper, we refer to the websites with the name of their base URL. We
performed pre-processing to prune out results where the experiment failed to
report values of all metrics (e.g., due to browser timeout settings) leaving us
with ~18K data points.



24 A. S. Asrese et al.

3.2 IP Path Lengths

We began by analysing the IP paths towards the measured websites. WebL AR
uses traceroute to measure the IP path length and the round trip time towards
the websites. To study the IP path length and the latency difference in LTE and
fixed-line networks, we ran WebLAR on 29 MONROE nodes in Italy, Norway,
Spain, and Sweden. Figure 2(1) shows the IP path length towards selected web-
sites in fixed-line and LTE networks from 29 MONROE nodes. The result shows
that in the median case, the IP path length in LTE and fixed-line network is
similar.

DNS lookup time
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Fig. 2. The distribution of (1) IP path length and (2) web QoS metrics from fixed-line
and LTE broadband networks as observed from selected 29 nodes.

3.3 Web Latency and QoE

Figure 2(2) shows the latency towards the websites from fixed-line and LTE net-
works from 29 MONROE nodes. We observe that there is no significant difference
in the DNS lookup time and PLT (not shown) of the websites from fixed-line and
LTE network. However, the TCP connect time and TTFB of the websites are
shorter in fixed-line network. For instance, in the median case, in LTE network
the TCP connect time, and TTFB are respectively, 160% and 30% longer than
that observed in fixed-line networks. Due to security reason, the browser timing
API gives the same value for the start and end of the TCP connect and DNS
lookup time for cross-origin resources. That is, unless the user explicitly allows
the server to share these values, by default the TCP connect time and DNS
lookup time is 0 for the cross-origin resources [30]. As a result, three websites
(Google, Microsoft, and Yahoo) report 0 for these metrics. The discussion of the
DNS lookup time and TCP connect time does not include these three websites.

Figure 3(1) shows the latency of the websites under different MNOs. Note, the
Norwegian and Swedish operators are labeled with NO_o and SE_o, respectively,
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where o € {1,2,3}. SE_r refers to a Swedish operator roaming in Norway. The
result shows the MNOs have different performance in terms of DNS lookup time
(ranges from 35ms to 60 ms, in the median case) and TCP connect time (ranges
from 100 ms to 200 ms, in the median). One of the causes for the variation in the
DNS lookup time across the MNOs could be attributed to the presence of cached
DNS entries [36]. The result also shows that, the difference in TTFB and PLT
of the websites across different MNOs is not high (i.e., in the median case, only
200 ms to 600 ms difference in PLT). We applied Kolmogorov - Smirnov test to
investigate the significance of the difference in PLT across MNOs. In most of the
cases, we found a smaller p-value (below 0.05) between the PLT of the websites
across MNOs. This confirms that there is a difference in PLT of the websites
across MNOs. We also found a higher p-value between PLT across MNOs within
the same country (e.g., 0.46 between NO_2 and NO_2, 0.4 between SE_1 and
SE_3). This observation indicates that MNOs within the same country exhibit
similar PLT towards these websites. The result also shows that there is up to 1s
improvement in the PLT compared with a previous [21] observations.
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Fig. 3. The distribution of (1) DNS lookup time, TCP connect time, TTFB, and PLT
and (2) ATF time as approximated using the two approaches.

Figure 3(2) shows the distribution of the ATF time towards websites across
different MNOs as approximated using the two approaches. Figure3 (2, top)
shows the approximated ATF}, time. The long tails of the distribution in this
result is due to Facebook and BBC, which have higher number of objects and
overlapping images in the above-the-fold area. Figure3 (2, bottom 3) show the
ATF, with three, ten and 14s threshold, respectively. From the result, we can
see that in the median case, the ATF}, is shorter than the ATF,, time with three
seconds threshold. This indicates that three seconds is a sufficient threshold to
declare whether the website has stabilized or not. As such, going forward, we
only consider three seconds threshold for approximating the ATF time using the
pixel-wise comparison approach. The difference in the ATF time of the websites
across most of the MNOs is small (i.e., in the median case, the difference is
100 ms to 300 ms). However, we notice that the difference in ATF time between
SE_r and the other MNOs is large (i.e., in the median case, ATF}, time can be
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up to 400ms and ATF, time can be up to 4200 ms). By applying a Kolmogorov
- Smirnov test, we found a smaller p-value (below 0.05) between the ATF}, time
of the different MNOs. This confirms that there is a difference between ATF},
times across MNOs. Only the ATF}, time of websites between SE_1 and SE_3
shows a p-value of 0.75, highlighting similar QoE between the two MNOs.
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Fig.4. (1) The CDF of the PLT and the ATF time of the different websites. (2) The
ATF time of Yahoo across different MNOs.

We also analysed the rendering performance of each website. Figure4(1)
shows the distribution of the ATF time approximated using the two approaches
and the PLT of the websites. Through manual inspection, we observed that some
of the websites, e.g., Microsoft, have a fewer number of objects and take shorter
time to show the contents of the above-the-fold area. The ATF approximation
using both approaches confirms this. On the contrary, websites like Facebook
have multiple objects located in the above-the-fold area (confirmed through man-
ual inspection). The objects may overlap each other where some of the objects
may not be visible in the front unless the user takes further action (e.g., clicking
the sliding button). In such cases, the browser heuristic based ATF time approx-
imation overestimates the ATF time. Hence, for these kinds of websites, the ATF
time approximation based on the browser heuristic does not better represent the
end user experience. That is, the missing or delay in the download of those over-
lapped objects do not have effect in the visual change of the websites. Therefore,
for the websites that have overlapping objects in the above-the-fold area, the
ATF time needs to be approximated in a different way. For instance, Fig.4(1)
shows that the ATF, time of Facebook is below half of its PLT, which is much
shorter than its ATF}, time. This shows that the pixel-wise comparison approach
of ATF time approximation is better for websites that have overlapping contents.
However, approximating the ATF time using the pixel-wise comparison approach
may also overestimate the ATF time for some websites. For instance, Microsoft
has fewer images in the above-the-fold area, and the ATFy, time is short. How-
ever, the visual look of the webpage seems to be manipulated by using css and
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Fig. 5. The distribution: (1) the ATF time of the websites under mobility condition
across different operators, and (2) The ATF time and PLT of the websites under
different mobility conditions.

javascripts and have animating contents. As a result, the pixel-wise comparison
approach yields longer ATF time for this website. Therefore, the design of the
website can have an impact on the two ATF time approximation methods. Fur-
thermore, due to the design pattern adopted by some websites, the objects are
fetched asynchronously and the TCP connection may not be closed. As such,
the javascript onLoad event may fire before all the objects are fetched. In such
cases, the ATF}, time is longer than that of the PLT.

Figure4(1) also shows that the ATF time of BBC, Yahoo and Wikipedia
exhibits a bimodal distribution. We investigated this aspect further by observing
the ATF time of these websites from different operators. For instance, Fig. 4(2)
shows the distribution of the ATF time of Yahoo across the different MNOs
approximated using the two approaches. The result reveals that in the Norwegian
MNOs, Yahoo takes longer to show the contents in the above-the-fold area. As
such, the bimodal distribution of ATF time is due to the difference observed in
the operators across different country. The impact of the longer download time
of the objects in the above-the-fold area is reflected in the ATF, time of the
websites. For the other two websites we see a difference across the operators. That
is, the bimodal distribution happens in all operators. Figure4(2) and 3(1) also
show that the Swedish operator roaming in Norway has a similar QoE with the
native Swedish operator. As such, the home-routed roaming [29] configuration
does not have much impact on the QoE when the user travels relatively small
distances (i.e., between Norway and Sweden).
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3.4 Web QoE Under Mobility Conditions

Figure 5(1) shows the distribution of the ATF time of the websites under mobility
scenario as approximated using the two methods. The results show that ATF
time of the websites measured from nodes deployed in trains and buses are similar
to that of the nodes deployed in homes and offices. However, the variation in
ATF time across different MNOs is relatively higher under mobility scenario.

The nodes deployed in trains can be online even though the trains are at
the garage; hence some nodes may not be moving in some cases. Figure5(2)
shows the ATF time and PLT of websites from buses and trains which were
moving while the measurement was conducted. The result shows that most of
the websites have almost similar PLT in a mobile and a stationary situation.
However, the ATF time of some of the websites is relatively longer in mobility
scenario. For instance, in the median case, the ATF time of Microsoft, Yahoo,
Reddit, and Facebook is 0.3 to 1s longer under mobility condition. Yahoo shows
different behavior in the ATF time from stationary and mobile nodes. That is,
60% of the measurements from the mobiles nodes, and 40% of the measurements
from the stationary nodes show a drastic change (more than 7s difference) of the
ATF time. To understand the causes for this drastic change we analyzed the ATF
time of this website at each operator. We found that in the Norwegian operators
Yahoo takes longer time to show the contents in the above-the-fold area. One
of the causes for this could be the IP path length between the operators and
the Yahoo content server. Using a traceroute measurement we analyzed the
IP path lengths that the nodes traverse to reach the web servers from different
locations. We observed that the nodes hosted in Norwegian operators traverse up
to 20 IP hops to reach the Yahoo web server. Instead, other Swedish operators
take a maximum of 16 IP hopes to reach Yahoo’s web server.

4 Related Work

The web has been well studied. Various web QoE measurement tools and
methodologies are available [8,9,25,35]. Most of these tools focus on fixed-line
networks. For instance, Varvello et al. [35] designed eyeorg, a platform for crowd-
sourcing web QoE measurements. The platform shows a video of the page loading
progress to provide a consistent view to all the participants regardless of their
network connections and device configurations. Unlike eyeorg, our measurement
tool does not require user interaction to evaluate the web QoE, rather it uses
different approaches to approximate the web QoE. Cechet et al. [18] designed
mBenchLab that measure web QoE in smartphones and tablets by accessing
cloud hosted web service. They measured the performance of few popular web-
sites and identify the QoE issues observing the PLT, the traditional web QoE
metric. Casas et al. [17] studied the QoE provisioning of popular mobile appli-
cations using subjective laboratory tests with end-device through passive mea-
surement. They also studied QoE from feedback obtained in operational MNOs
using crowd-sourcing. They showed the impact of access bandwidth and latency
on QokE of different services including web browsing on Google Chrome.
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Balachandran et al. [13] proposed a machine learning approach to infer the
web QoE metrics from the network traces, and studied the impact of network
characteristics on the web QoE. They showed that the web QoE is more sen-
sitive for the inter-radio technology handover. Improving the signal to noise
ratio, decreasing the load and the handover can improve the QoE. Ahmad et
al. [4] analyzed call-detail records and studied WAP support for popular web-
sites in developing regions. Nejati et al. [31] built a testbed that allows com-
paring the low-level page load activities in mobile and non-mobile browsers.
They showed that computational activities are the main bottlenecks for mobile
browsers, which indicates that browser optimizations are necessary to improve
the mobile web QoE. Dasari et al. [20] studied the impact of device performance
on mobile Internet QoE. Their study revealed that web applications are more
sensitive for low-end hardware devices compared to video applications.

Meteor [32] is a measurement tool which determines the speed of the network
and estimates the experience that the user can expect while using selected pop-
ular applications given their connection requirements. The methodology used
by Meteor is not open aside from the high-level explanation of the system. It
is not clear how the expected experience is computed and which performance
metrics are used for a given application. Perhaps, it is based on QoS metrics
like throughput and latency test, which may not be the only factors that affect
the performance of different application [20]. Unlike Meteor, we measure differ-
ent metrics at the network and application level, e.g., TTFB, PLT, as well as
ATF time at the browser which is more important from the user perspective.
WebPageTest [2] and Google Lighthouse [24] are other tools designed to assess
the web performance from different locations using different network and device
types. These tools measure PLT, SpeedIndex, TTFB, time to visually complete
(TTVC), first contentful paint (FCP), first meaningful paint (FMP), time to
interactive (TTI), and last visual change metrics. WebLAR measures the ATF
time, but it does not measure SpeedIndex, TTVC, TTI, and FCP yet. SpeedIn-
dex [3] is a metric proposed by Google to measure the visual completeness of
a webpage. It can be approximated either by capturing video of the webpage
download progress or by using the paint events exposed by Webkit. We make
WebLAR publicly available [7] and invite the measurement community for con-
tributions to help improve this tool.

5 Conclusions

We presented the design and implementation of WebLLAR — a measurement tool
that measures web latency and QoE in the cellular network. We applied ATF
time as the metric to approximate the end-user experience. We followed two
different approaches to approximate the ATF time: pixel-wise comparison and
the browser heuristics. We deployed WebLLAR on the MONROE platform for
two weeks. The results show that the DNS lookup time and PLT of the selected
websites have similar performance in LTE and fixed-line networks. However, the
TCP connect time and TTFB of the websites are longer in LTE networks. More-
over, the DNS lookup time and TCP connect time of the websites varies across
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MNOs. For most of the websites, PLT, and ATF time do not have a significant
difference across operators. We observed that mobility has small impact on the
ATF time of the websites. We also showed that the design of the website should
be taken into account when using two approaches to approximate the ATF time.

Limitations and Future Work: We only measured eight websites in this study
and did not perform a subjective QoE evaluation. We also did not consider the
impact of device capabilities on the web QoE since our measurement nodes were
homogenous. In the future, we plan to extend WebLLAR to capture other metrics
such as RUM SpeedIndex, TTI, first contentful paint and also evaluate the ATF
time using different screen sizes.

Appendix A List and Category of Measured Webpages

The websites are selected from different categories such as social media, news
websites, and WIKI pages. Moreover, while selecting these websites, the design
of the websites (from simple to media-rich complex webpages) and the purpose
of the websites are taken into consideration. Furthermore, for each website we
selected a specific webpage that does not require user interaction to show mean-
ingful contents to the user.

— News websites
e http://www.bbc.com
e https://news.google.com
— Wiki websites
e https://en.wikipedia.org/wiki/Alan_Turing
e https://www.reddit.com
— Social media websites
e https://www.youtube.com
e https://www.facebook.com/places/Things-to-do-in-Paris-France/
110774245616525
— General websites
e https://www.microsoft.com
e https://www.yahoo.com.

Appendix B  Additional Observations

Although not specific to mobility scenario, Fig.5(2) also shows that PLT can
under- or over-estimate the web QoE. For instance, for Facebook, the onLoad
event fires before all the necessary web objects in the above-the-fold area are
downloaded. For these types of websites the PLT underestimates the user QoE.
On the other hand, for websites like Yahoo and Reddit, the ATF is shorter
compared with PLT time, which overestimates the user QoE.
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Abstract. With the popularity of mobile access Internet and the higher
bandwidth demand of mobile applications, user Quality of Experience
(QoE) is particularly important. For bandwidth and delay sensitive appli-
cations, such as Video on Demand (VoD), Realtime Video Call, Games,
etc., if the future bandwidth can be estimated in advance, it will greatly
improve the user QoE. In this paper, we study realtime mobile band-
width prediction in various mobile networking scenarios, such as subway
and bus rides along different routes. The main method used is Long
Short Term Memory (LSTM) recurrent neural network. In specific sce-
narios, LSTM achieves significant accuracy improvements over the state-
of-the-art prediction algorithms, such as Recursive Least Squares (RLS).
We further analyze the bandwidth patterns in different mobility scenar-
ios using Multi-Scale Entropy (MSE) and discuss its connections to the
achieved accuracy.

Keywords: Bandwidth prediction - Long Short Term Memory -
Multi-Scale Entropy - Bandwidth measurement

1 Introduction

We have witnessed the tremendous growth of mobile traffic in the recent years.
Users are increasingly spending more time on mobile apps and consuming more
content on their mobile devices. The growth trend is expected to accelerate in the
foreseeable future with the introduction of 5G wireless access and new media-rich
applications, such as Virtual Reality and Augmented Reality. However, one main
challenge for mobile app developers and content providers is the high volatility
of mobile wireless connections. The physical channel quality of a mobile user is
constantly affected by interference generated by other users, his/her own mobil-
ity, and signal blockages from static and dynamic blockers [8,9]. The bandwidth
available for a mobile session is ultimately determined by the adaptations cross
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the protocol stack, ranging from adaptive coding and modulation at PHY layer,
cellular scheduling at data link layer, hand-overs between base stations, to TCP
congestion control, etc. For many mobile apps involving user interactivity and/or
multimedia content, e.g., gaming, conferencing and video streaming, it is criti-
cal to accurately estimate the available bandwidth in realtime to deliver a high
quality of user Quality-of-Experience (QoE). In the example of video streaming,
many recent algorithms on Dynamic Adaptive Streaming over Http (DASH)
optimize the video rate selection for incoming video chunks based on the pre-
dicted TCP throughput in a future time window of several seconds [5,11,15].
To cope with the unavoidable TCP throughput prediction errors, one has to be
conservative in video rate selection and resort to long video buffering to absorb
the mismatch between the predicted and actual TCP throughput. Both degrade
user video streaming QoE. Interactive video conferencing has much tighter delay
constraint than streaming. To avoid self-congestion, the available bandwidth on
cellular link has to be accurately estimated in realtime, which is used to guide
the realtime video coding and transmission strategies [10,16]. Bandwidth overes-
timate will lead to long end-to-end video delay or freezing, bandwidth underes-
timate will lead to unnecessarily poor perceptual video quality. Again, accurate
realtime bandwidth prediction is crucial for delivering good conferencing expe-
rience, especially in mobile networking scenarios.

In this paper, we study realtime mobile bandwidth prediction using Long
Short Term Memory (LSTM) [1] recurrent neural network. Recent advances in
Deep Learning have demonstrated that Recurrent Neural Networks (RNN) are
powerful tools for sequence modeling and can learn temporal patterns in sequen-
tial data. RNNs have been widely used in Natural Language Processing (NLP),
speech recognition and time series processing [17,18]. There are rich structures
in realtime mobile network bandwidth evolution, due to user mobility patterns,
wireless signal propagation laws, physical blockage models, and the well-defined
behaviors of network protocols. This presents abundant opportunities for devel-
oping LSTM-based realtime mobile bandwidth estimation. The main idea is to
offline train LSTM RNN models that capture the temporal patterns in various
mobile networking scenarios. The trained LSTM RNN models will be used online
to predict in realtime the network bandwidth within a short future time window.
Specifically, we investigate the following research questions:

1. How much prediction accuracy improvement can LSTM deep learning models
bring over the conventional statistical prediction models?

2. How predictable is realtime bandwidth at different prediction intervals under
different mobility scenarios? Is the LSTM prediction accuracy dependent on
specific mobility scenarios?

3. Should one train a separate LSTM model for each mobility scenario, or train
a universal LSTM model that can be used in different scenarios?
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Towards answering these questions, we made the following contributions:

— We conducted a mobile bandwidth measurement campaign to collect consec-
utive bandwidth traces in New York City. Our traces cover different trans-
portation methods along different routes at different time of day!.

— We developed LSTM models for realtime one-second ahead and multi-second
ahead bandwidth predictions. Through extensive experiments on our own
dataset and the HSDPA dataset 7], we demonstrated that LSTM significantly
outperforms the existing realtime bandwidth prediction algorithms.

— We systematically evaluated the sensitivity of LSTM models to different
mobility scenarios by comparing the performance of per-scenario, cross-
scenario and universal predictions. Using Multi-Scale Entropy (MSE) anal-
ysis, we studied the connection between prediction accuracy and bandwidth
regularity at different time scales. MSE also provides us with guidelines to
explore cross-scenario bandwidth prediction.

The rest of the paper is organized as the following. The related work on real-
time bandwidth prediction is reviewed in Sect. 2. We formally define the realtime
bandwidth prediction problem and introduce our LSTM based prediction mod-
els in Sect. 3. The performance of LSTM models is evaluated by public dataset
and our own dataset in Sect. 4. We conduct Multi-Scale Entropy analysis on our
collected bandwidth traces and analyze the prediction accuracy in Sect.5. The
paper is concluded with future work in Sect. 6.

2 Related Work

Realtime bandwidth prediction has been a challenging problem for the network-
ing community. Simple history-based TCP throughput estimation algorithm was
proposed in [12]. Authors of [13] proposed to train a Support Vector Regress
(SVR) model [14] to predict TCP throughput based on the measured packet
loss rate, packet delay and the size of file to be transmitted. In the context
of DASH video streaming, in [11], we adopted prediction algorithm in [12] to
guide realtime chunk rate selection, and used a customized SVR model similar
to [13] for DASH server selection. Authors of [20] and [15] used the Harmonic
Mean of TCP throughput for downloading the previous five chunks as the TCP
throughput prediction for downloading the next chunk. In [5], authors devel-
oped Hidden Markov Model (HMM) for bandwidth prediction. HMM model is
parameterized by history bandwidth, and HMM state transition is used to infer
future bandwidth. In the context of video conferencing, in [16], a cellular link is
modeled as a single-server queue driven by a doubly-stochastic service process.
Bandwidth available for a user is measured by the packet arrival dispersion at
the receiver end, and future bandwidth prediction is generated by probabilistic
inference based on the single-server queue model. In [10], we used an adaptive

! The collected NYU Metropolitan Mobile Bandwidth Trace Dataset (NYU-METS),
is publicly available at https://github.com/NYU-METS/Main.
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filter, Recursive Least Squared (RLS), to make realtime bandwidth prediction.
We showed that RLS achieves good prediction accuracy on volatile cellular links.
Based on the accurate bandwidth prediction, they proposed a new video con-
ferencing system that can deliver higher video rate and lower video delay than
Facetime in side-by-side comparisons.

All the previous predictors are based on the conventional statistical or
machine learning models and generate predictions based on short bandwidth
history. Different from the conventional models, LSTM deep learning models are
more flexible and can be trained by large datasets to better capture the long-
term and short-term temporal structures in bandwidth time series. A recent
work on Deep Reinforcement Learning (DRL) based DASH [19] takes historical
bandwidth samples as part of the input state vector for DRL to directly gener-
ate video chunk rate selection. DRL based DASH achieves better performance
and robustness than the traditional DASH. While DRL-DASH implicitly mines
the temporal structure in bandwidth, there is no direct/explicit training and
validation optimized for bandwidth prediction.

3 LSTM Based Realtime Bandwidth Prediction

3.1 Realtime Bandwidth Prediction Problem

Let x(t) be the bandwidth available for a user at time t. Given some band-
width measurement frequency, one can obtain a discrete-time series of {z(t),t =
1,2,--- .}. The realtime bandwidth prediction problem at time ¢ is to estimate
the bandwidth available for a user at some future time instant x(t + 7) given all
the observed bandwidth measurements so far, i.e.,

Bt+7)=f{zlk),k=1,2,--,t}). 1)

There are many ways to build the estimation function f(-), ranging from sim-
ple history-repeat, i.e., &(t + 7) = x(t), Exponential Weighted Moving Aver-
age (EWMA), 2(t+ 1) = (1 — a)Z(t) + az(t), Harmonic Mean, &(t + 7) =
h/ Zz;é 1/x(t — k), etc., to more sophisticated signal processing approaches,
such as Kalman filter [6] and Recursive Least Squares (RLS) [3]. In [10],
we used RLS for realtime bandwidth prediction. By assuming Z(t + 1) =
Zz;é w(k)x(t — k), RLS recursively finds the coefficients w that minimizes a
weighted linear least squares cost function.

In the bandwidth prediction part of [10], it was shown that RLS achieves
better accuracy than other averaging and signal processing algorithms, such as
Least Mean Square and EWMA etc.

3.2 LSTM-Based Prediction Model

While all those methods use history measurements to generate bandwidth pre-
diction, they did not fully explore the temporal patterns in realtime bandwidth
evolution for more accurate prediction. Meanwhile, LSTM network has recently
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Fig. 1. LSTM network for realtime bandwidth prediction

emerged as a powerful tool for exploring temporal structures in sequential data.
As illustrated in Fig. 1a, a LSTM network consists of layers of LSTM units.

As illustrated in Fig. 1b, a common LSTM unit is composed of a cell, an input
gate, an output gate and a forget gate. The cell is responsible for “memorizing”
values over arbitrary time intervals; hence the word “memory” in LSTM. Each
of the three gates can be thought of as a “conventional” artificial neuron, as in a
multi-layer (or feed-forward) neural network: they compute an activation (using
an activation function) of a weighted sum. Intuitively, they can be considered
as regulators of the flow of values going through the connections between the
LSTM units; hence the denotation “gate”. There are connections between these
gates and the cell. Detailed LSTM reviews can be found in [1,2].

The input to our LSTM bandwidth prediction network is the recent band-
width measurements, i.e, x = [z(t),z(t — 1),--- ,2(t —n+ 1)] € R, the output
is the predicted bandwidth in a future time window y = [Z(¢ + 1), z(t + 2),-- -,
x(t + m)] € R™. Note that since LSTM network adaptively keeps “memory”,
the bandwidth prediction for time window (¢,¢ 4+ m] is not only directly deter-
mined by the recent bandwidth history in (¢ — n,t], but also indirectly affected
by bandwidth history before t — n through the memory cells. This gives LSTM
more flexibility in capturing long-term bandwidth evolution trends than the tra-
ditional signal processing and averaging approaches working on a moving history
window. Following the architecture in Fig. la, we build a LSTM network with
one input Layer, one output layer and two hidden layers, each with 256 and
128 LSTM units respectively?. Given the LSTM architecture, the mapping from
input x to output y is parameterized by all the parameters in the LSTM network,
denoted as 6, which are obtained by minimizing the loss function in training.

Since we study realtime bandwidth prediction for a range of mobile network-
ing scenarios, one option is to train a separate LSTM network for each scenario,
that is using bandwidth data collected from scenario ¢ to train a LSTM network
with parameters #(, and then use it to predict bandwidth for scenario i, i.e.,

2 We also tried a LSTM network with 256 and 256 nodes, and a LSTM network
with 128 and 128 nodes. The performance difference is not significant. The results
presented in this paper is based on the 256 + 128 LSTM network.
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per-scenario: 7@ = LSTM (x(i),e(i)) , Vi (2)
Another option is to train one universal LSTM network with parameters (%)
using all data collected from all scenarios, and hope the trained universal LSTM
model can be used to predict bandwidth in all scenarios, i.e.,

universal: 9O — LSTM (x<i>, 0<°>) Vi (3)

The third option is to train a LSTM network using data from scenario i, then
use it to predict bandwidth in scenario j.

cross-scenario: 79 = LSTM (x(j), G(i)> , 1] (4)

To generate training samples, we use a sliding-window based approach. For
example, to predict the bandwidth in the next second (m = 1) based on the
bandwidth measurements in the previous five seconds (n = 5), in the train-
ing, we use every consecutive six bandwidth measurements as one training data
point. The first five seconds bandwidth form the input vector, and the sixth
second bandwidth is the output label. Likewise, for the general multiple sec-
onds prediction, i.e., predicting the future bandwidth for the next m seconds
based on the previous n seconds bandwidth, we use every consecutive n + m
bandwidth measurements as one data point. The first n measurements form the
input vector, and the last m measurements form an output label vector.

4 Data Collection and Performance Evaluation

4.1 Datasets

It is critical to train and test LSTM models using large representative bandwidth
datasets. We first used the HSDPA [7] dataset from the University of Oslo. It con-
sists of cellular bandwidth traces collected on different transportation methods,
including Train, Tram, Ferry, Car, Bus and Metro. For each trace, it recorded the
bandwidth and location every 1,000 ms, and the duration for each trace ranges
from 500 to 1,000 s. However, we later found that the bandwidth traces are too
short for MSE analysis. We also collected long bandwidth traces in New York
City MTA bus and subway by ourselves. Figure 2 shows some sample routes for
our bandwidth collection, including Subway 7 Train, Subway Q Train, Bus B57
and B62. On each route, we conducted multiple experiments at different time of
day. For each experiment, we connect a LTE mobile phone with unlimited data
plan to a remote server in our lab. We run iPerf and record TCP throughput
every 1,000ms. All the bandwidth samples are logged on the server side. The
duration of each trace ranges from 10,000 to 20,000s. It took us four months to
complete the first batch of data. We are continuing this measurement campaign
and keep adding new traces to our NYU-METS Dataset for future research.
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Table 1. Evaluation results on NYU-METS traces

7A Train|7B Train|Bus 57 |Bus 62|N Train

Testset Average 6.39 4.76 10.04 |2.55 8.98
RLS RMSE 2.57 2.19 2.59 0.87 3.04
RLS MAE 1.69 1.49 1.72 0.66 2.11
Harmonic RMSE 2.98 2.60 2.79 0.94 3.36
Harmonic MAE 1.86 1.68 1.78 0.70 2.26
LSTM RMSE 2.26 2.05 2.32 |0.72 |2.81
LSTM MAE 1.49 1.41 1.54 |0.55 1.90
RLS RMSE Error Ratio 40.3% 46.0% 25.8% |34.2% 33.8%
RLS MAE Error Ratio 26.5% 31.3% 17.1% 126.1% |23.5%
HAR RMSE Error Ratio 46.6% 54.6% 27.8% |37.0% |37.4%
HAR MAE Error Ratio 29.1% 35.4% 17.7% |27.4% |25.2%
LSTM RMSE Error Ratio 35.3% 43.1% 23.1% [28.2% |31.3%
LSTM MAE Error Ratio 23.3% 29.6% 15.3% 121.4% |21.2%
Relative RMSE Impro over RLS 14.0% 6.7% 11.8% (21.2%|8.2%
Relative MAE Impro over RLS 13.6% 5.9% 11.9%(21.6% 11.0%
Relative RMSE Impro over Harmonic|31.8% [26.7% |20.4%|31.1%/19.5%
Relative MAE Impro over Harmonic (24.9% [19.7% [15.8% |27.7% 18.9%
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Fig. 3. Harmonic Mean, RLS and LSTM predictions on Subway 7 Train

4.2 Next-Second Prediction

For the next-second prediction, the dimension of LSTM output is m = 1, and we
pick LSTM input dimension of n = 5 for evaluation. Figure 3 visually compares
the predicted values from Harmonic Mean, RLS and LSTM with the ground
truth for a trace collected on NYC Subway 7 Train. For LSTM training, we use
Adam optimizer [21] with default parameters (including learning rate, beta, etc)
in training. 80% of the trace is used for training, the rest 20% is used for testing.
We manually adjust dropout and epoch based on the performance of model.

We use the Root Mean Square Error (RMSE) and Mean Absolute Error
(MAE) between the predicted bandwidth and the ground truth as the main
accuracy measures. The complete prediction result of the three algorithms on
our NYU-METS Dataset is reported in Table 1. (LSTM runs in the per-scenario
mode). The unit is Mbps. LSTM has the lowest RMSE and MAE cross all
mobility scenarios. The average accuracy improvement of LSTM over RLS and
Harmonic Mean in RMSE are 12.4% and 25.9% respectively, for MAE, these are
12.8% and 21.4% respectively. Since Harmonic Mean performs much worse than
the other two, in the following, we only compare LSTM with RLS.

Table 2 compares the accuracy of per-scenario LSTM with RLS on the
HSDPA dataset. The unit for the numbers is kbps. LSTM still outperforms
RLS in all mobility scenarios. The Relative Improvement of LSTM over RLS are
around 14.1% and 13.9% for RMSE and MAE respectively. For HSDPA dataset,
we also trained a universal LSTM model by using all traces from different trans-
portation scenarios, including Bus, Tram, Train, Metro and Car, then test its
accuracy on individual transportation scenarios. However, it is performance is
inferior to the corresponding per-scenario models. For some scenarios, its per-
formance is even worse than RLS. Due to the space limit, we don’t report the
detailed statistics here. We defer the discussion on cross-scenario prediction to
the next section, and defer universal prediction to future investigation.
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Table 2. HSDPA traces evaluation result of LSTM and RLS

Ferry |FerryB | Tram | TramB | Metro | MetroB

Testset Average 248.4 |217.6 |118.8 |133.4 |96.0 119.7
RLS RMSE 71.3 88.9 35.3 35.6 34.2 35.5
RLS MAE 53.1 58.5 25.5 26.6 25.8 26.9
LSTM RMSE 60.8 |80.4 |31.5 |30.2 29.2 |32.5
LSTM MAE 45.6 |50.1 |23.3 |22.3 23.2 |24.3

RLS RMSE Error Ratio |28.7% |40.9% |29.8% [26.7% |35.7% [29.7%
RLS MAE Error Ratio 21.4% [19.7% | 21.5% [19.9% |26.7% |22.5%
LSTM RMSE Error Ratio | 24.5% |37.0% |26.6% |22.6% |30.4% |27.1%
LSTM MAE Error Ratio |18.4% |16.8% |19.6% |16.7% |24.3% |20.3%
Relative RMSE Impro 17.3%|10.6% | 12.2% | 17.8% | 17.4%  9.3%

Relative MAE Impro 16.5% 16.9% | 9.5% 19.3% | 11.0% | 10.6%

4.3 Multi-second Prediction

We now study the prediction accuracy for longer time intervals. For LSTM
model, we fix the input vector dimension to be n = 10, and vary the output
vector dimension m from 2 to 5. In other words, LSTM network takes as input
the bandwidth vector in the previous ten seconds to predict bandwidth for up to
five seconds ahead. For each combination of n and m, we train a different LSTM
model, denoted as LST M (n, m). Note that, at time ¢, a LST M (n, m) model can
generate bandwidth predictions for ¢t +4, 1 < i < m. To make RLS generate pre-
diction ¢ seconds ahead, we simply update RLS parameters by using bandwidth
of i seconds ahead, instead of the next second, as the targeted output.

Table 3. Prediction RMSE on RLS and LSTM

1st sec | 2nd sec | 3rd sec | 4th sec | 5th sec

RLS 257 2.88 (316 353 | 3.76
LSTM(10,1) 2.26 | — - - -
LSTM(10,2) 227 2.66 |- - -
LSTM(10,3) 220 268 (296 |- -
LSTM(10,4) 233 1269 (297 321 |-

LSTM(10,5) 2.40 2.71 2.98 3.22 3.40
Improvement over RLS | 13.7% 8.2% 6.8% [9.9% |10.6%

Table 3 compares the prediction accuracy of different LSTM models and RLS
on the NYC Subway 7 Train trace. The RMSE value unit is Mbps. Not coin-
cidentally, all LSTM models outperform RLS at all prediction intervals. In the
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Fig. 5. Impact of prediction interval on LSTM and RLS

representative results, the best prediction accuracy for interval i is achieved by
LSTM (10,4), marked in bold fonts. Theoretically, LST M (n, m) model is trained
to minimize the prediction errors for all intervals from 1 to m. Consequently, the
prediction error at interval m; < m will be larger than those of LSTM (n,ms2)
models (m; < ms < m). Figures4a and b illustrate sample prediction error
evolution of RLS and LSTM for one second and five second intervals. Y-axis is
the square error between prediction value and ground truth. It is visually clear
that LSTM RMSE is lower than RLS most of the time. The accuracy improve-
ment of LSTM is more prominent for the five second prediction interval. Figure 5
compares the average RMSE for all LSTM models with RLS at different pre-
diction intervals. Both RMSEs increase as the prediction interval increases. The
slope for LSTM increase is 0.270, while that for RLS is 0.302. This suggests that
not only LSTM is more accurate than RLS at individual prediction intervals,
LSTM’s accuracy decays slower than RLS as the interval increases.

4.4 Computation Overhead

To validate the feasibility of offline training and online prediction, we report
the computation overhead of our LSTM models. Our CPU Configuration is: 4th
Gen Intel Core i5-4210U (1.70 GHz 1600 MHz 3 MB). Neural Network Structure:
Hidden Layer 1 & 2 have 256 and 128 nodes respectively. The training and
running overhead detail is presented in Table4. Even though the offline training
time is long, once the training is done, the trained model can be used for realtime
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prediction. As shown in Table 4b, the online prediction consumption is so small.
It takes less than six seconds to predict 12,500 five seconds bandwidth vector
in the LSTM (10, 5) model. Once the model is trained offline, it can be used to
generate realtime prediction on any reasonably configured mobile phone.

Table 4. Computation consumption

(a) Offline Training (b) Online Running Consumption
Trainsize Batchsize = 2 Batchsize = 4  Prediction Size LSTM (10,1) LSTM (10,5)
13,000  120s/epoch 62s/epoch 12,500 4,953ms 5,706ms
10,000 95s/epoch 50s/epoch 5,000 2,396ms 2,590ms
5,000 49s/epoch 26s/epoch 2,500 1,191ms 1,239ms
3,000 35s/epoch 14s/epoch 500 266ms 386ms
1,000 11s/epoch 6s/epoch 50 38ms 53ms

5 Multi-Scale Entropy Analysis

5.1 Prediction Accuracy Analysis Using Multi-Scale Entropy

The predictability of a time series is determined by its complexity and the tem-
poral correlation at different time scales. The traditional entropy measure can
be used to quantify the randomness of a signal: the higher the entropy, the
more random thus less predictable. However, the traditional entropy measure
cannot model the signal complexity and temporal correlation at different time
scales. Recently, Multi-Scale Entropy (MSE) [4] has been proposed to measure
the complexity of physical and physiologic time series. Given a discrete time
series {x(i),1 < i < N}, a coarse-grained time series {y(*)(j)} can be con-
structed at scale factor of s > 1:

a1 & . .
yG &S Y (@)1 << N/,
i=(j—1)s+1

Then the entropy measure of x at time scale s can be calculated as the
entropy of y(®):
H®(x) £ H(y®)) = —Ellogp(y®)], ()

where p(y(s)) is the probability density of the constructed signal at scale s. By
varying s, one can examine the complexity /regularity of x at different time scales.
The Multi-Scale Entropy curve H(*)(x) also reveals the temporal correlation
structures of the time series [4].

We apply MSE to study the predictability of network bandwidth under dif-
ferent mobile networking scenarios. MSE can represent the regularity patterns
of each scenario. Given a set of scales S = [sq, 81, , Sm], We generate a MSE
vector for scenario i as MSE; £ [H®)(x;),s € S|, where x; is bandwidth trace
from scenario . M SFE; can be used to analyze the per-scenario prediction accu-
racy for scenario 4, as defined in (2). Additionally, by comparing MSE; and
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MSE;, we can also study the feasibility of cross-scenario prediction between
scenarios ¢ and j, as defined in (4). More specifically, we measure the MSE
similarity between scenarios ¢ and j as the weighted sum of the correlation coef-
ficient and Euclidean distance between M SE; and M SE;. We will demonstrate
the connection between MSE and prediction accuracy of both per-scenario and
cross-scenario predictions next.

5.2 MSE Analysis of NYC MTA Traces

We apply MSE analysis to bandwidth from every scenario in New York City
MTA traces. Figure6a and b plot the raw bandwidth traces for two sample
traces. They present different variability at different scenarios. Figure 6¢ shows
the results of Multi-Scale Entropy for five sample traces. The scale is from 1 to
15. According to the [4], to make the MSE analysis valid, the sequence should be
at least 1,000 points at each scale. From the result of Fig. 6¢, we find that same
routes share similar MSE patterns. For example, 7A Train and 7B Train traces
were both collected from 7 train but on different days. From the curves of Bus 57
and Bus 62, we find that even though the transportation methods are the same,
due to different routes, the MSE patterns can be very different. Table 5a shows
the cross-scenario prediction accuracy in RMSE. Each row is for a model trained
using data from some mobility scenario, each column is the prediction accuracy
for the testset from some mobility scenario. For example, Row 3 & Column 1
shows that the LSTM model trained by Bus 57 data can achieve RMSE of 2.276
when predicting bandwidth for 7A Train testset.

£l
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Fig. 6. Multi-Scale Entropy of different mobility scenarios

Table 5. Multi-Scale Entropy analysis

(a) Cross-scenario Prediction RMSE (b) MSE Similarity
TA 7B B57 B62 N 7TA 7B B57 B62 N
7A Model 2.257 2.060 2.475 0.746 2.837 TA - 1.2231.176 1.021 1.106
7B Model 2.267 2.052 2.369 0.749 2.817 7B 1.221 - 1.121 1.044 1.080
B57 Model 2.276 2.096 2.320 0.754 2.830 B571.166 1.118 - 1.029 1.123
B62 Model 2.762 2.205 3.278 0.719 3.423 B62 0.630 0.696 0.665 - 0.690

N Model 2.259 2.091 2.382 0.770 2.808 N 0.984 0.964 1.038 0.907 -
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Table 5b shows the MSE similarity between different mobility scenarios.
Table 6 reports for each scenario i the correlation between its MSE similarity
with other scenarios and the accuracy of cross-scenario prediction using models
trained for other scenarios. Close to —1 correlations suggest that higher MSE
similarity leads to higher accuracy (lower RMSE). Multi-Scale Entropy analysis
provides a good measure to explore the possibility of cross-scenario prediction,
which can be very beneficial for mobility scenarios with limited available data
for training Deep learning models.

Table 6. Correlation between MSE similarity and cross-scenario prediction accuracy

7A Train | 7B Train | Bus 57 | Bus 62 | N Train
Correlation value | —0.916 —0.943 —0.945 | —0.937 | —0.994

6 Conclusion

In this paper, we studied realtime mobile bandwidth prediction. We developed
LSTM recurrent neural network models to capture the rich temporal structures
in mobile bandwidth traces for accurate prediction. In both next-second and
multi-second predictions, LSTM outperforms other state-of-the-art prediction
algorithms, such as RLS and Harmonic Mean. Using Multi-Scale Entropy anal-
ysis, we investigated the connection between MSE and cross-scenario predic-
tion accuracy. Going forward, we will continue our mobile bandwidth measure-
ment campaign. For online bandwidth prediction, we will study how to dynami-
cally select LSTM models trained offline to match the current mobility scenario
through adaptive model fusion. We will also study the feasibility of using extra
information, e.g. GPS, speed/acceleration sensor readings, to assist mobility sce-
nario identification and model selection. We will also develop LSTM models for
the emerging 5G mobile networks. Finally, we will explore data fusion of LSTM
models and other prediction models to further improve the prediction accuracy.
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Abstract. Internet-wide scans are a common active measurement app-
roach to study the Internet, e.g., studying security properties or protocol
adoption. They involve probing large address ranges (IPv4 or parts of
IPv6) for specific ports or protocols. Besides their primary use for prob-
ing (e.g., studying protocol adoption), we show that—at the same time—
they provide valuable insights into the Internet control plane informed
by ICMP responses to these probes—a currently unexplored secondary
use. We collect one week of ICMP responses (637.50M messages) to sev-
eral Internet-wide ZMap scans covering multiple TCP and UDP ports
as well as DNS-based scans covering >50% of the domain name space.
This perspective enables us to study the Internet’s control plane as a
by-product of Internet measurements. We receive ICMP messages from
~171M different IPs in roughly 53K different autonomous systems. Addi-
tionally, we uncover multiple control plane problems, e.g., we detect a
plethora of outdated and misconfigured routers and uncover the presence
of large-scale persistent routing loops in IPv4.

1 Introduction

Internet scans are a valuable and thus widely used approach to understand and
track the evolution of the Internet as one of the most complex systems ever
created by humans. They are widely applied in different fields, including net-
working and security research: e.g., to find vulnerable systems [9], to measure
the liveness of IP addresses [3], or to measure the deployability of new proto-
cols, features [11], or their evolution [33]. Advances in scanning methodologies
enabled probing the entire IPv4 address space for a single port within minutes or
hours, depending on the available bandwidth and configured scan rate (see tools
such as ZMap [10] or MASSCAN [18]). Thereby, regular scans of the entire IPv4
address space have become feasible, e.g., providing an insightful perspective into
protocol evolution (see e.g., QUIC [31]). This line of scan-based works has cre-
ated a rich body of contributions with valuable insights into Internet structure
and evolution. These works have in common that they focus on one particular
feature or protocol as their objective to study (primary use).
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Table 1. Weekly scan schedule fueling our dataset, DNS-based scans use our own
resolver infrastructure. For IPv4-wide scans, we utilize ZMap.

H Mon Tue ‘ Wed ‘ Thu ‘ Fri ‘ Sat Sun
DNS

Source

Protocols &‘ ‘ TCP/443, gQUIC/443

Ports

Source || Alexa | 1% IPv4 | IPv4 \
Protocols &|| TCP/80, | TCP/80, .

Ports H TCP/443 | TCP/443 TCP/80 1QUIC/443‘ gQUIC/443‘ TCP/443 ‘

In this work, we argue that Internet-wide scans have a less explored secondary
use to study the Internet control plane while scanning for their primary use,
e.g., to detect routing loops while primarily probing for QUIC-capable servers.
That is, we study Internet control plane responses sent via ICMP as response
to non-ICMP probe packets (e.g., QUIC) and show that Internet-wide scans are
a hidden treasure in that they produce a rich ICMP dataset that is currently
neglected, e.g., to uncover network problems. The interesting aspect is that these
ICMP-responses are a valuable secondary use that is generated as by-product
of any Internet-wide scan. They thus enable to study the Internet control plane
(e.g., to detect routing loops) without requiring dedicated scans (as performed
a decade ago [20,36]) that would increase the scanning footprint.

Our observations on the Internet’s control plane are fueled by regular ZMap
scans of the IPv4 address space for multiple TCP and UDP ports as well as
DNS-based scans of top lists and zone files for mainly TLS, HTTP/2, and QUIC.
We evaluate one full week of ICMP responses to multi-protocol Internet-scans
covering the entire IPv4 address space and >50% of the domain name space(base
domains).

Our contributions are as follows:

— We propose to use Internet-wide scans to study the Internet control plane via
ICMP response, e.g., to detect routing loops or misconfigurations.

— Within our one week observation period, we collect ~637.50M ICMP messages
which we make available at [22].

— We shed light on how Internet-scans trigger ICMP responses across the Inter-
net.

— Our data shows a plethora of misconfigured systems e.g., sending ICMP redi-
rects across the Internet or producing deprecated source quench messages.

— We find many networks and hosts to be unreachable, our scans uncover large
sets of unreachable address space due to routing loops.

— We provide a growing ICMP dataset at https://icmp.netray.io.
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Structure. The next section (Sect.2) starts by providing an overview of our
ICMP dataset. Following this, we dive into our dataset and dissect it (Sect. 3).
Driven by our findings, we inspect unreachable hosts due to routing loops and
quantifies their presence in today’s Internet (Sect. 4). Finally, we discuss related
works (Sect.5) and conclude the paper (Sect. 6).

2 Scan Infrastructure and Dataset

Infrastructure. Our scans are sourced by two different modes, on the one hand,
we use the ZMap [10] port scanner on multiple machines to perform different
scans over the course of a week, and on the other hand, we continuously probe
>50% of the DNS space. Table 1 summarized our weekly scan schedule, we did
not specifically create these scans and this schedule for this paper, it is the result
of ongoing research efforts.

These scans typically involve scanning TCP /80 for TCP initial window con-
figurations [30] or TCP fast open support. Further, we investigate TCP /443 for
HTTP /2-support [37] and TLS, additionally, we scan on UDP 443 for Google
QUIC (gQUIC) [31] and IETF-QUIC (iQUIC). Our DNS-based scans are fueled
by using our own resolvers to resolve various record types for domains listed in
zone files of multiple TLDs (e.g., .com, .net, .org), which can be obtained from
the registries, and we use A-records to investigate TLS, HTTP/2, and gQUIC.
All of our scans including the DNS resolutions originate from a dedicated sub-
net. To collect all ICMP traffic that is directed towards these hosts, we install a
mirror port at their uplink switch and filter it to only contain ICMP traffic that
belongs to our measurement network. Since we perform no measurements that
generate ICMP messages themselves, we exclude those sent from our host (only
ping responses) leaving us with only incoming ICMP traffic.

Dataset. We base our observations on one full week in September 2018. In this
week we received 169 GB resp. ~637.50M ICMPv4! messages (excluding those
explicitly triggered in Sect.4). ICMP messages follow the structure shown in
Fig. 1, they are fundamentally made up of a type field and, to further specify a
subtype, a code field, and depending on their value additional information may
follow.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Type Code Checksum

Type/Code specific fields

Fig. 1. ICMP header structure. Type and this type’s sub type (code) determine mes-
sage contents, e.g., often packets triggering the ICMP message are quoted.

! Please note that we do not have a fully IPv6-capable measurement infrastructure
and thus focus on IPv4 only.
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Table 2. ICMP types with their occurrence frequency in our dataset. Ordered by
frequency.

Type ‘ Count| Uniq. IP|Uniq. AS Type ‘Count‘Uniq. IP‘Uniq. AS
Dest. Unreach. |476.68M|170.30M| 52.92K EchoReply 6.08K 301 58
TimeExceeded|139.53M| 455.13K| 18.40K Other 1.48K 606 43
Redirect 18.12M| 243.25K| 2.29K TimestampReq. 73 9 6
EchoRequest 3.12M| 10.64K 861 Param.Problem 20 16 9
SourceQuench| 46.18K| 2.65K 364 Addr.MaskReq. 4 1 1

3 Study of ICMP Responses

To begin our investigations, we first summarize the ICMP responses to our scans
by looking at the distribution of ICMP message types and their frequency of
occurrence in Table2. We observe 75 different ICMP type/code combinations
during our observation period with significantly different occurrence frequencies.
While we mostly receive standardized ICMP messages, we also receive some
messages for which we could not find a standard, summarized as Other in Table 2,
on which we do not further focus in this paper. The table lists the total count
of these messages as well as the number of unique source IPs (router/end-host
IPs) that generated the messages and number of ASes they are contained in.
Over the course of the week, we run different scans. Notably, on Sundays and
Mondays (see Table 1), no IPv4-wide ZMap scans are performed.

EchoReply SourceQuench ¥~ EchoRequest ~{— Other
- Dest. Unreach. Redirect —— TimeExceeded
107_
“o0
=
=e 105
5
I9)
=
o
o
S

25.09.2018 26.09.2018 27.09.2018 28.09.2018 29.09.2018 30.09.2018 01.10.2018
Tue Wed Thu Fri Sat Sun Mon

Date (Localtime)

Fig.2. Number of ICMP messages receiver per hour and type over the course of a
week. Note the log scale and that we used a rolling sum over 1h.

Figure2 thus puts the data from Table2 into a temporal context showing
the rolling sum over 1 h intervals of the major ICMP types. We observe that the
ICMP traffic varies over the course of the week, e.g., echo requests are rather
static, other types like destination unreachable mainly follow our ZMap scan
schedule.
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Quoted IP Packet. Apart from the different ICMP types, many ICMP mes-
sages contain parts of the packet that caused the creation of the messages. We
further inspect these quoted IPv4 packets within the ICMP messages. From all
received ICMP messages, 99.5% are supposed to contain IP packets (according
to the RFCs), of these only 0.07% cannot be decoded, e.g., because there is
simply not enough data or these are no IPv4 packets. Of the decodable packets,
we find 180.25M unique source IP /payload length combinations, 76% are longer
than 40 bytes, i.e., enough to inspect IP and TCP headers when no options
are used?, 24% are exactly 28 byte long, so just enough to inspect the trans-
port ports. Thus, when no options are used, the chances are high that ICMP
messages received by an ICMP receiver can be demultiplexed to the respective
application process. This extends the finding in [26] that showed a prevalence
of 28 byte responses for TCP traceroutes. Next, we focus on the destination
address field within the quoted IP header. These should correspond to addresses
which are targeted by our scanners. Interestingly, from all ICMP messages, we
find over 1.06M messages with destination IPs that are in reserved address space,
i.e., unallocated or private addresses (e.g., 192.168.0.0/24). Since all our scanners
explicitly blacklist these IP addresses, we believe that these messages are pro-
duced behind network address translations (NATSs). We next use the contained
source addresses to understand the relation to our measurements.

0.6 B ZMap TCP/80 W ZMap UDP/443 DNS TCP/443]

Fig. 3. ICMP messages triggered by ZMap and DNS-based scans.

Takeaway. ICMP traffic shows a temporal correlation to measurement traffic,
most messages indicate unreachability. In our collected dataset, quoted IP packets
typically contain enough information to inspect everything up to the end of the
TCP header. Further, a substantial number of messages seems to be generated
behind NATs allowing to peek into private address spaces.

3.1 Responses to Individual Measurements

Since we perform a variety of different measurements independent of this study,
our first investigation is how different measurements affect the generation of

2 To reduce the capture size, our packet capture caps packets at 98 byte allowing no
further investigation, we find 67% having the maximum capture size.



56 J. Riith et al.

ICMP traffic. To this end, we compare two ZMap scans and a purely DNS-based
scan. For the ZMap scans, we focus on one that enumerates reachable TCP
port 80 (HTTP) and UDP port 443 (QUIC) hosts, for DNS, we use a scan that
probes for HTTP/2 support via TCP port 443. We are able to clearly tie the
ICMP messages to the different scans via IPs and ports either from the quoted
IP message or from IP itself.

Figure 3 shows the distribution of ICMP types and codes (top 8) that we
receive for the respective scans. As already indicated by Table 2, we receive a
large amount of destination unreachable messages. However, depending on the
scan, their amount and share greatly vary, especially when looking at the respec-
tive code. For example, unreachable ports are very common for our UDP-based
ZMap scan, however, in comparison, the TCP-based ZMap scan shows only a
small fraction of unreachable ports. This is no surprise as TCP should reply
with a RST-packet if a port is unreachable and does typically not generate
ICMP messages. In contrast, there is no such mechanism in UDP, even through
something comparable to TCP’s RST exists in QUIC. However, QUIC is imple-
mented in user-space, thus when the kernel cannot demultiplex a packet to a
socket it must resort to issuing an ICMP unreachable message. Looking at our
DNS-based scan, we still find that more than 20% of the ICMP messages signal
unreachability through ICMP in contrast to TCP RSTs, something that, e.g.,
the default ZMap TCP-SYN scan module simply ignores in contrast to its UDP
counterpart. Since in all major operating systems TCP handles signaling closed
ports, we believe that these hosts issuing ICMP replies are actively configured
either in their own firewalls (e.g., iptables) or in a dedicated firewall to do so.
We find only 16.49K IPs issuing all 1.13M ICMP port unreachable messages,
supporting our assumption that dedicated machines filter this traffic.

Looking at the other types/codes, we find that a non-negligible share of
ICMP messages indicate that hosts are not reachable via the Internet either due
to TTLs expiring or because their host or network cannot be reached. Apart
from this, we observe that TCP port 443 is often firewalled (HostProhibited).

Takeaway. Depending on the protocol and port, we get different feedback from
the Internet’s control plane. Our findings indicate that, e.g., ICMP port unreach-
able messages should not be ignored for TCP-based scans as is currently the case.

3.2 ICMP Echos

ICMP echo requests (Type: 8) are the typical ping to which an echo reply is
sent. RFC792 defines only a single code point, i.e., code =0 which represents “no
code”, still we observe some non-standard code points. Some security scanners
use non-standard code points for operating system fingerprinting, e.g., a stan-
dard Linux will echo the requested code point in its reply. Still, pings to our
measurement infrastructure seem quite common, for code=0, we find 10.57K
unique IPs out of 840 autonomous systems (ASes). It seems that our scanning
activities trigger systems to perform ping measurements towards us, yet, we do
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not know their actual purpose. We suspect that this could be caused by intrusion
detection systems (IDSs) that monitor the liveness of our hosts.

Echo Replies. Since our hosts do not perform echo requests, we were surprised
to find echo replies in our dataset. We observe different code points with different
frequencies but overall we find over a couple of thousand of these replies. To
investigate what causes these seemingly orphaned messages, we inspect their
destinations. Since our measurements are identifiable either by IP or additionally
by weekday, we associate messages to measurements. We find most echo replies
are with code =3 (except for 5 messages), all 5.75K of these echos are destined
to our DNS resolvers and originate from only 86 IP addresses in 2 Chinese ASes.
While many ICMP packets contain IP quotations, echo replies typically do not,
they usually mirror data contained in the echo request. Yet, we still find TP
packets together with DNS query responses that are destined to our resolver.
Thus, it seems that the packets are generated on the reverse path, however, they
are not sent back to the source (DNS server) but they are forwarded to the
destination (us). Inspecting the source IP within the IP fragments, we find IP
addresses from the same two ASes, as it turns out the 8 ICMP source IPs all
respond to DNS queries which hints at their use as a DNS server cluster. Yet,
we were unable to manually trigger these ICMP reply packets when trying to
send DNS requests to these IPs, we only observed that DNS requests were always
answered by two separate packets from the same IP, however, with different DNS
answers. Further, the packets seem to stem from different IP stacks (significantly
different TTLs, use of IP ID or not, don’t fragment bit set or not). While the
different stack fingerprints could be the result of middleboxes altering the IP
headers, the general pattern that we observe hints at DNS spoofing.

3.3 Source Quench

ICMP Source Quench (SQ) messages (Type: 4, Code: 0) were a precursor of
today’s ECN mechanism, used to signal congestion at end-hosts and routers. The
original idea (RFC792 [28]) was that a router should signal congestion by sending
SQ messages to the sources that cause the congestion. In turn, these hosts should
react, e.g., by reducing their packet rate. However, research [12] found that SQ is
ineffective in e.g., establishing fairness and IETF has deprecated SQ-generation
in 1995 [2] and SQ-processing in 2012 in general [17]. Major operating systems
ignore SQ-messages for TCP at least since 2005 to counter blind throughput-
reduction attacks [16]. Further, [13] claims that SQ is rarely used because it
consumes bandwidth in times of congestion.

In our traces, we observe 2.65K unique IPs located in 364 ASes issuing SQ
messages, despite the deprecation. Out of these IPs, 34.42% are located in only
5 ASes. Moreover, 609 IPs that generate SQ messages were directly contacted by
our measurement infrastructure, i.e., are the original destination of the request
causing this SQ message (according to the IPv4 header contained within the
ICMP message). Among the remaining SQ messages, we find a few messages
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where the original destination and the source of the SQ messages are located
in ASes of different operators, i.e., possible transit networks. Exemplarily, we
observe that IPs located in AS1668 (AOL Transit Data Network) and AS7018
(AT&T) issued SQ messages when IPs located in AS8452 (Telecom Egypt) were
contacted. As a final step, we see that 53 destination IPs in our measurements
trigger the generation of SQ messages and are also contained in A-records of our
DNS data that we collect. Out of these 53 IPs, 22 IPs generated the SQ messages
themselves, i.e., no on-path intermediary caused the creation of this message.

In addition, we checked how vendors implement or handle this feature. Cisco
removed the SQ feature from their IOS system after Version 12 in the early
2000s [5]. Hewlett Packard’s cluster management system (Serviceguard) gener-
ated SQ messages due to a software bug in a read queue, which was fixed by a
patch in 2010 [21]. In their router configuration manual (September 2017), Nokia
also marks SQ messages as deprecated [27]. Although we cannot identify devices
and their operating system version in our measurements, we assume that some
devices are not updated to a current version or are following a configuration that
enables them to generate SQ messages. This is not forbidden per se but given
that ICMP SQ creation was deprecated over 20 years ago, our findings highlight
that removing features from the Internet is a long term endeavor.

3.4 Redirect

ICMP redirect messages (Type: 5), are sent by gateways/routers to signal routes
to hosts. While [15] finds networks which require redirect messages to be archi-
tected sub-optimally in the first place, RFC1812 [2] states that a router must not
generate redirect messages unless three properties are fulfilled: (i) The packet
is being forwarded out the same physical interface that it was received from,
(ii), the IP source address in the packet is on the same logical IP (sub)network
as the next-hop IP address, and (%), the packet does not contain an IP source
route option. Similar checks [4] are used by receiving hosts to check the validity
of the message (e.g., redirected gateway and issuing router must be on the same
network).

Since none of the 18.12M redirect messages originate from our network, the
routers generating them either violate rule (i) or some obscure address transla-
tion is in place on their networks. In our data, we even find roughly 2.7K unique
redirects to private address space. Within our dataset, we observed 105.78K
network redirects and 18.01M host redirects. Network redirects are problematic
since no netmask is specified and it is up to the receiving router to interpret
this correctly. For this reason, RFC1812 [2] demands that routers must not send
this type. We find that the network redirects originate from 238 different ASes
affecting nearly 19k different destinations of which less than 20 are mapped in
any of our DNS data. Yet, all these ASes thus contain questionable router config-
urations that are outdated at least since 1995. Similarly, we find that the much
larger fraction of host redirects originate from 2.20K ASes that affected over 400k
destinations of which we find roughly 900 mapped in our DNS data. This sug-
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gests that a substantial number of end-systems are connected via sub-optimally
architected or misconfigured networks.

Table 3. ICMP messages received indicating some form of unreachability with known
type and code ordered by frequency.

Type ‘ Code ‘ Count  Type Code ‘ Count
Dest. Unreach. |Port 256.72M Dest. Unreach Frag.Needed 26.66K
TimeExceeded |TTLExceeded 139.52M ’ " |NetProhibited 26.28K
Host 107.15M  TimeExceeded |Frag.Reassembly 7.31K
CommProhibited 71.70M HostUnknown 336
Dest. Unreach. |HostProhibited 23.07M Dest. Unreach NetTOS 25
Net 17.94M ’ " |INetUnknown 6
Protocol 51.04K Sourcelsolated 2

3.5 TUnreachable Hosts

Reachability is a fundamental requirement to establish any means of commu-
nication. Given that Table2 lists 476.68M destination unreachable messages
this looks troublesome at first. Yet, not all unreachability is bad, e.g., fire-
walls actively protect infrastructure from unpermitted access, i.e., when ipta-
bles rejects a packet (in contrast to simply dropping it) it generates an ICMP
response. By default, a port unreachable message (Type: 3, Code: 3) is produced
but other types can be manually specified by the network operator. Our scans
in themselves certainly trigger a certain amount of firewalls or some IDSs. In
contrast, when a path is too long and the IP TTL reaches zero, routers typically
generate an ICMP TTL exceeded message indicating that the destination is not
reachable but this time due to the network’s structure. Similarly, ICMP des-
tination unreachable messages for host unreachable (Type: 3, Code: 1) should
indicate that there is currently simply no path to a host, e.g., because it is not
connected or the link is down. Table 3 summarizes the unreachability that we
observe in our dataset.

As already indicated in Sect. 3.1, our UDP-based ZMap scans have the high-
est share of port unreachable messages putting them at the top. We inspect the
origin of the messages and the actual destination that our scans targeted to see
if the end-hosts generate the messages or an intermediate firewall. It seems that
96% of the messages are indeed generated by end-hosts or machines that can
answer on their behalf (NATS).

Host and Network. Unreachable hosts and networks codes are used to give
hints that currently no path is available and the RFCs explicitly note that this
may be due to a transient state and that such a message is not proof of unreacha-
bility. To check for transient states, we compare the unreachable hosts on Thurs-
day with those on Friday in our ZMap (both UDP 443) scan and additionally
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with the same scan (Thursday) one week later (captured separately from our
initial dataset) and investigate if hosts become reachable that were unreachable
before or vice versa.

Reachable Reachable
3.4M 5.3M

Unreachable

24.0M
Unreachable
18.1M

Unreachable

24.0M
Unreachable
24.0M

Reachable
9.3M 5.3M
(a) Thursday to Friday. (b) Thursday to Thursday one week later.

Reachable

Fig. 4. Different scans (left to right of each plot) trigger different amount of host
unreachable messages. (a) Compares the changes within one day. (b) Within one week.

Figure4 visualizes the change between these two days (a) and within one
week (b) for host unreachable messages. We can see that within two days, the
majority of hosts remain unreachable, a small number of hosts that were pre-
viously reachable® become unreachable, similarly, previously unreachable hosts
become reachable. Looking at the changes within a full week, we observe that
the total amount of unreachable hosts stays the same, however, roughly the same
amount of previously reachable host become unreachable and vice versa. To dig
into these once unreachable and then reachable hosts, we inspect to which AS
they belong finding that 82% of all hosts are from the same ASes. A possible
explanation might be that while our observations seem to indicate a change, the
ICMP message generation is subject to rate-limiting [19]. Thus there might be
routers that generated unreachable messages on Thursday for a certain host,
however, this router could be subject to rate-limiting on Friday for the same
host or the week after leading to a false impression of reachability and continu-
ity, still, a substantial number of hosts remain unreachable. Another possibility
is that some hosts are only up at certain times of the day leading to differences
in the reachability.

Time Exceeded. Similar to host unreachability, Time Exceeded messages
(Type:11) indicate unreachability but due to network issues. Either the Frag-
ment Reassembly (Code: 1) time was exceeded, i.e., the time that IP datagrams
are buffered until they can be reassembled when IP fragmentation happens, or
the TTL runs out (Code: 0), i.e., the path length exceeds the sender-defined
limit. For the former, we find some thousand messages but they stem from only
30 ASes, since many of our scans use small packets, fragmentation is unlikely in

3 With reachable we actually mean not unreachable, i.e., we do not get ICMP unreach-
able messages, which must not mean that this host was reached by the scan.
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the first place. Yet, for example, the UDP ZMap scans use roughly 1300 byte
per packet which is in the range of typical [7] MTUs when fragmentation could
occur. Since the default ZMap functions to create IP packets (which we use) do
not set the don’t fragment bit, only some of our measurements trigger the 26.66K
fragmentation needed and DF set ICMP messages (see Table 3). However, over
time, these ICMP messages could give valuable insights into path MTU in the
Internet.

TTL Exceeded messages have the second largest occurrence (139.52M) within
our dataset. They were produced in 18.40K different ASes covering 35.5M differ-
ent destinations that our scans tried to reach of which ~32K are again present
in A-records of our DNS data and are thus unreachable. We inspect the TTL
field of the quoted IP packets that triggered the ICMP messages to see if the
TTL was actually zero when the message was generated. To do so, we first gen-
erate all unique pairs of router IP and TTL values and then count the different
TTLs observed. Out of these, 97% of the TTLs show a value of one, followed by
~2.4% with a zero, we expect these two, since a router should drop a TTL =0
or, depending on the internal pipeline, also TTL =1, when the packet is to be
forwarded. Nevertheless, we also find larger TTLs, 2, 3, 4, 5, and 6 directly follow
in frequency, yet, we also find some instances of over 200 or even 255. The very
large TTLs could hint at middleboxes or routers rewriting the TTL when they
generate the message to hide their actual hop count. The lower numbers could
be indicators for MPLS networks. By default, e.g., Cisco [6] and Juniper [24]
routers copy the IP TTL to the MPLS TTL on ingress and also decrement the
IP TTL within the MPLS network. It is possible to separate IP TTL and MPLS
TTL and there are heated discussions whether one should hide the MPLS net-
work from traceroutes or not which has also been subject of investigations [8].
Thus packets expiring within an MPLS network will still trigger an ICMP TTL
exceeded, however, the quoted IP packet will have the TTL value they had at the
MPLS ingress router, thus, if the IP TTL is still copied at ingress a traceroute
could still reason about an MPLS network.

Since we were surprised to see this many TTL exceeded messages across all
scanner types (see Sect.3.1), we checked our scanners to see which TTL they
were actually using to see if our setup simply has too small values. All our ZMap-
based scanners initialize the TTL field with its maximum of 255 possible hops,
all scanners building on top of the transport layer interfaces, in contrast, use the
current Linux default of 64 hops as also recommended in RFC1700 [29]. Given
that we are at least on the recommended hop count, this leaves us with three
possibilities, (i) the current recommendation of 64 is too low to reach these hosts,
(#7) there are middleboxes modifying the TTL to a much lower value, or, (%ii)
there are routing loops on the path to these hosts. After shortly summarizing
our findings, we continue by exploring the latter.

3.6 Summary

As the previous sections have shown, our Internet-wide scans produce an insight-
ful secondary dataset of ICMP responses. Driven by these messages, we identified
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a potential DNS spoofer, found that long deprecated source quench messages are
still generated in today’s Internet and that ICMP redirects are sent across dif-
ferent administrative domains pointing to several outdated and misconfigured
networks. Without crafting a dedicated dataset, our scans enable us to study
Internet reachability and we believe that longitudinal studies offer a way to deal
with the challenge of ICMP rate-limiting.

4 Routing Loops

Routing loops are an undesirable control plane misconfiguration that render
destination networks unreachable and that challenge a link’s load [35]. In essence,
IP’s TTL protects the Internet from indefinitely looping packets and thus ICMP
TTL messages inform the sender that a router dropped a packet after exceeding
the allowed number of router hops (TTL). While the potential for routing loops
is known, only a few studies investigated their presence a decade ago [20,36],
current information on the presence and prevalence is missing. Therefore, we
study routing loops on the basis of ICMP TTL exceeded messages triggered by
our scans. We further argue that routing loops can be frequently investigated
as a by-product of Internet-wide scans that are regularly conducted for different
purposes.

4.1 Methodology: Detecting Loops

ICMP TTL exceeded messages are not necessarily caused by loops, also overly
large paths or middleboxes could trigger these messages. To investigate whether
or not an actual loop is present, we perform traceroutes for the original des-
tinations (in the quoted IP) of the ICMP TTL exceeded messages. Since our
traceroutes are subject to ICMP rate-limiting, especially when packets start to
loop, we customize traceroute. Our traceroute slows down its sending rate when
detecting an already seen IP address (loop indicator), otherwise, it follows the
design of Paris traceroute [1] reusing flow identifiers for each hop to trigger the
same forwarding behavior in ECMP-like load balancers.

Since the traceroutes can still be noisy due to hosts that do not generate
ICMP at all or are still subject to rate-limiting, especially when also other traffic
flows into a loop, we put strong demands on our loop. For each hop on the path
that does not generate a reply, we assign a new unique label, all others are simply
labeled by the answering IP. From this list of labels, we create a directed graph
connecting each label-induced node to its successor and on this path we compute
all elementary cycles using [23]. On an elementary cycle, no node appears twice
except that the first and last node are the same. Then, on each of these possible
cycles we inspect the node with the highest degree, and if this node’s degree
is larger than 5%, we mark this traceroute as having a loop. This will yield

4 This is basically a precaution against bad load balancers traded against the required
TTL.
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loops as long as at least one router in the loop generated ICMP TTL exceeded
messages, which we found to work reasonably well when traceroute pauses the
packet generation for at least 500 ms when observing an already seen IP address.
Thus in a loop of two routers, we will send each router a packet roughly every
second.

4.2 Routing Loops in the Wild

We seed our traceroutes by ICMP TTL exceeded messages generated from our
Internet-wide scans®. Since we get way too many TTL exceeded messages to
traceroute them all without generating substantial rate-limiting, we restrict us
to a single traceroute for each unique /24 subnet within 30-min intervals. Thus
for two TTL exceeded messages for a destination from the same /24 subnet, we
only perform a single traceroute if the messages arrive within 30 min.

For our assessment of routing loops, we investigate TTL exceeded messages in
the last week of August 2018. To avoid rate-limiting we also limit our traceroutes
that we perform in parallel; generating all traceroutes for this single week took
us until the end of September 2018. While this skews our data, it enables us to
reason about the persistence of these loops since every 30 min the same /24 could
be scheduled for a rescan. In total, we performed ~27M traceroutes to ~612K
different /24 subnets from 28K ASes, of these, 439K subnets from 19.8K ASes
are unreachable due to a loop. We further inspect how many loops are present
and if loops are only within a single AS or whether loops cross AS borders and
are thus potentially on a peering link. To do so, we count the number of distinct
loops and ASes involved in the loops and find 167K different loops in 13.9K ASes.
Of these loops, 136K have IPs for all routers involved in the loop, thus allowing
an in-depth inspection. Looking at the ASes involved, we find that 13% (17.7K)
already cover all different ASes paths involved (i.e., we replaced each IP by the
respective AS), of these 4.8K cross AS boundaries. The top three ASes involved
in the loops are AS171 (Cogent) a Tier-1, AS9498 (BHARTI Airtel Ltd.), an
Indian ISP, and AS3549 (Level 3), again a Tier-1.

Persistence. To investigate the persistence, we restrict our view to traceroutes
that were performed two weeks after the initial TTL exceeded message was
triggered by our Internet-wide scans. In contrast to our previous observation,
loops from roughly 150 ASes disappear, yet, we still find 4.6K loops crossing
AS borders, in total still rendering 404K subnets unreachable. Thus, most loops
seem to persist and are not resolved.

Loops at our Upstream ISP. Within our data, we also found loops in the
AS of our upstream ISP. We contacted the ISP about our findings which they
were able to confirm. Since many of the loops are outside of their administrative
domain even though they manage the address space, they were still able to give

5 Our dataset excludes TTL exceeded messages generated by these traceroutes.
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us more details on a loop that they were able to fix. For one loop, they found
that the first router had a static route for our tested destination towards its next
hop, yet, the next hop had no specific forwarding information for this destination
and thus used its default gateway, which however was the previous router with
the static route thus causing the loop.

Takeaway. Routing loops seem to persist in large parts of the Internet, chal-
lenging the question if the address space cut off by the loops is in use after all or
if there are other routers that would be taken from different vantage points. We
believe routing loops have a huge potential for causing congestion when exploited
and thus a persistent monitoring seeded by large-scale Internet measurements
that informs operators could be a long-term attempt to reduce routing loops.

5 Related Work

Our work relates to approaches analyzing ICMP traffic and its generation in
general, as well as approaches that focus on particular studies built upon ICMP,
e.g., path/topology discovery and routing loops. In the following, we discuss
similarities and differences to our work but we remark that the body of works
building on top of ICMP is far larger but conceptually differ in that they do not
analyze ICMP as a by-product.

Bano et al. [3] also use ZMap and capture all (cross-layer) responses to probe
traffic to infer IP liveness but run specific measurements to generate this traffic,
we believe that our dataset could be used to perform a similar analysis. Malone et
al. [26] analyze the correctness of ICMP quotations. They base their analysis on a
dataset obtained via tcptraceroute in 2005, targeting around 84K web servers.
While most of the reported messages are of type ICMP time exceeded, they
also find around 100 source quench messages, which were already deprecated
then. As we have shown, by looking at the ICMP responses to Internet-wide
scans, we are able to update their findings on a regular basis without having
to craft a dedicated dataset. Guo et al. [19] present FADER, an approach to
detect the presence of ICMP rate-limiting in measurement traces. While we did
not focus on rate-limiting, we found indicators for rate-limiting. We believe that
longitudinal studies seeded by Internet-wide scans can, in the long run, help to
overcome limited visibility due to rate-limiting.

In 2002, Hengartner et al. [20] have characterized and analyzed the presence
of routing loops in a Tier-1 ISP backbone trace. Xia et al. [35,36] have fur-
ther tracerouted over 9M IP addresses to find routing loops in 2005. Transient
routing loops have also been subject to investigation [34] and they are well stud-
ied [14,32]. Lone et al. [25] investigate routing loops in CAIDA data to study
source address validation but do not focus on their prevalence in the Internet,
further, in contrast to using the CAIDA dataset that actively runs traceroutes
against all /24, we utilize indications from ongoing measurement data to investi-
gate loops. While these works show that routing loops are a known problematic
misconfiguration, their presence in the Internet has not been analyzed for over
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10years. By recycling Internet-wide scans, we can seed such investigations and
enable persistent monitoring of this phenomenon showing that routing loops are
still a problem today.

6 Conclusion

In this paper, we used ICMP responses triggered by large-scale Internet measure-
ments to study how the Internet’s control plane reacts to these measurements.
Thereby, we found that these responses are hidden treasures that are typically
neglected but offer great insights into the configuration of Internet-connected
systems. Our analyses of different ICMP responses led us to many misconfigured
routers, e.g., sending ICMP redirects across the Internet, or outdated systems,
e.g., generating long-deprecated source quench messages. Further, our analy-
sis showed a large and nuanced degree of unreachability in the Internet. More
specifically, our scans hint at the existence of routing loops, which we found to
persist in large parts of the Internet. We hope that these ICMP by-products are
analyzed by more researchers when performing large-scale measurements and
that the regular nature of these scans will enable persistent monitoring of the
Internet’s control plane and that, especially when brought to the attention of
operators, misconfigurations can be fixed. To this end, we make our dataset
publicly available at [22].
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Abstract. Commercial Content Delivery Networks (CDNs) employ a
variety of caching policies to achieve fast and reliable delivery in multi-
tenant environments with highly variable workloads. In this paper, we
explore the efficacy of popular caching policies in a large-scale, global,
multi-tenant CDN. We examine the client behaviors observed in a net-
work of over 125 high-capacity Points of Presence (PoPs). Using produc-
tion data from the Edgecast CDN, we show that for such a large-scale
and diverse use case, simpler caching policies dominate. We find that
LRU offers the best compromise between hit-rate and disk 1/O, pro-
viding 60% fewer writes than FIFO, while maintaining high hit-rates.
We further observe that at disk sizes used in a large-scale CDN, LRU
performs on par with complex polices like SALRU. We further exam-
ine deterministic and probabilistic cache admission policies and quantify
their trade-offs between hit-rate and origin traffic. Moreover, we explore
the behavior of caches at multiple layers of the CDN and provide rec-
ommendations to reduce connections passing through the system’s load
balancers by approximately 50%.

1 Introduction

Content Delivery Networks (CDNs) provide a core piece of modern Internet
infrastructure [16,39]. They handle immense volumes of traffic flowing between
end users and content providers. To facilitate this transmission, while reducing
end-user latency, CDNs employ complex caching systems which include numer-
ous optimizations to improve performance and operational efficiency. Many such
systems are purpose-built for specific application workloads or physical con-
straints, allowing for solutions that are tailor-made to their needs [4,22,38].
While highly effective in context, they are designed to manage well-defined and
homogeneous workloads, granting the operators greater knowledge and control.

Unfortunately, many purpose-built approaches do not apply in multi-tenant
environments where the operating characteristics are a function of the behavior
of end users (i.e., user request patterns), the behavior of content providers (i.e.
customer churn, origin behavior), and the content served. These factors result
in wide variability of request behaviors in both geography and time, potentially
limiting the effectiveness of many specialized techniques.

In this study, we examine the behavior of the Edgecast CDN, a global multi-
tenant CDN, exploring the variations observed in request patterns and file access
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behaviors through the use of a cache emulator. We consider caching at multiple
tiers in a CDN: disk cache (on the order of terabytes) and a load balancer cache
(on the order of gigabytes). In each tier, we explore the trade-offs inherent in
their operating constraints. We investigate the individual and combined impacts
of cache admission (i.e., which objects are cached) and eviction (i.e., which
objects to remove) policies.

We find that relatively simple and easy to manage approaches, such as Least-
Recently-Used (LRU), provide similar performance to more complex techniques
(S4LRU) and are able to improve disk reads by 60% versus simpler techniques,
such as First-In-First-Out (FIFO). At the load balancer level, we are able to serve
nearly 50% of requests from cache employing probabilistic admission and FIFO
with just 1 GB. The view from a global commercial network allows us insight
at a scale that provides meaningful and realistic analysis of the behavior of web
caching in the wild. This represents a step towards managing the complexities
of multi-tenant environments, as many CDN and service providers must do.

We present an overview of related work and previous examinations of cache
behavior in Sect. 2. In Sect. 3 we examine the behaviors of production workloads
and explore how they drive our intuitions on caching behavior. In Sect.4 we
present an overview of our test environment and provide an evaluation of the
various caching methodologies in Sect.5. We explore the further potential for
improvement in the systems in Sect. 6. Finally, we conclude in Sect. 7.

2 Related Work

Cache management techniques have a significant history in computer sys-
tems [11,24,26,32,33]. However, many of these systems focus on the particu-
lar case of page caching. Web-caching systems have examined traditional web
object behavior, exploring cacheability if objects follow zipf and zipf-like distri-
butions [8,21], and stretched exponential distributions [20]. Others have explored
emergent behaviors that arise from caching on the web [9,12,13,23,37]. Our work
builds its intuitions from many of these works, in particular in the applicability
of FIFO and LRU in the context of large PoPs with large disks and a diverse set
of clients. We further note that in the context of a commercial CDN, the traffic
is self-selected for cacheability, as those with cacheable content are most likely
to purchase commercial CDN services.

A number of high performance caches have been developed for both web
objects [1,3] and generic objects [2,17]. Numerous proposals have explored exten-
sions to these systems, with an eye towards making them more efficient for par-
ticular workloads [7,15]. While effective in context, many of these systems and
modifications are unusable in generic caching systems, in particular for large
scale deployments that cannot readily change core caching technologies.

Other studies have examined the structure, performance and behaviors of
CDNs [18,25,29]. Further studies have examined the nature of specific request
behaviors, including flash crowds [27,40] and social networks [35]. Google pro-
posed a system for debugging the performance of their CDN with WhyHigh [30].
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In [34] and [19], the authors examine a large university trace and examine the
potential cache performance for CDNs and traditional web delivery. In [36], the
authors characterized the workloads of a CDN and examined its cache perfor-
mance, proposing an approach called content-aware caching. Here, we explore
the cache behaviors of content-agnostic policies that are available in production,
and develop an understanding of cache interactions in the CDN.

Finally, a number of purpose built systems have been designed to deal with
large scale and complex cache workflows. For example Facebook’s photo caching
systems [5,22,38]. While similar, these systems are designed for managing inter-
nal systems, rather than external customer needs. AdaptSize [6] uses Markov
chains to learn client request pattern shifts. Other systems such as Google’s
Janus [4] are designed to optimize workflows for FLASH storage. However, their
system requires manual intervention, which is untenable in commercial CDN
settings. Fundamentally, the final back-end origins are operated by third parties
and the workloads are highly variable based on both end-user (access) and cus-
tomer (server side) behaviors. These constraints alter the levels of performance
that are acceptable and the needs of each level of the cache.

3 Overview of a Global CDN

This study is based on the Edgecast CDN, which features a global deployment of
Points-of-Presence (PoPs) around the world. The considered network consists of
PoPs that are well connected to the Internet, as the network aggressively peers
when possible, resulting in a network of over 3000 global interconnections which
provide a total network capacity of over 50 Tbps. The CDN further employs
Anycast routing for replica selection, which means that the traffic which arrives
at a PoP may depend on the underlying network.

We note that contrary to some other approaches to rapidly delivering content
to end-users [10,14], the model studied here focuses on the construction of super-
PoPs. These PoPs consist of a large number of servers, usually on the order of
hundreds, providing significant resources at each location. These super Pops are
then placed in locations with good network connectivity, providing low latency
access to large Internet Exchanges (IX) and other peering opportunities. Since
each PoP is equipped with significant compute and storage capacities, PoPs can
process significant traffic load before they must reach out to other caches.

Importantly, the CDN is a multi-tenant environment. Unlike many purpose-
built platforms [4,22,38], it must respond to a large variety of content, from large
software updates to streaming video, to images on a web-page. This combination
of behaviors means that the entire global network must be flexible to changing
behaviors and needs from customers. Indeed, we demonstrate that many of the
fundamental characteristics do change, making static analysis difficult. We must
further exercise care in the impact different approaches may have on individual
customers, and in particular, if the approaches may result in pathological behav-
iors for some customers but not others (e.g. never caching a particular customers
content). This constraint drives the use of techniques that can be easily assessed
and which have intuitive and clear behavior.
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3.1 Diversity in Accessed Content

Here, we provide some background on the nature of the CDN traffic profile. As
noted in previous work [6], the CDN caches ultimately handle traffic from a
highly diverse set of sources, which include many larger-scale traffic patterns,
individual client access behaviors, file types, and file sizes. We aim to provide an
intuitive understanding of what kind of traffic arrives at each PoP, which will
ultimately determine the policies that work best in these caching systems.
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Fig. 1. Requested file sizes from a geo-
graphically distributed set of regions
(over 24 h).

Figure 1 shows the distribution of the request file sizes from 4 regions around
the world: APAC indicates a sample from a PoP in India, EU in Europe, US in
the United States, and LATAM in South America. First, we see that the spread
of request sizes at each region is quite high, with 10% of files about 1KB at
nearly all locations on the low end, and with 90th percentiles as high as 1 GB
in APAC and the US. Second, the behavior across PoPs is diverse, with median
request sizes that vary from 10s of kilobytes (EU, LATAM) to 10s of megabytes
(US, APAC). This variation reveals the patterns that these caching system must
be prepared to deal with: there are no fixed distributions in the sizes of responses
across locations.

Figure2 shows that these differences are not limited to the geographic
domain. Here we examine 24 h of log traces taken from the same PoP 6 months
apart (both on matching weekdays). The median requested file size decreases
from 24 MB to 14 KB. This high variation over time indicates that even at the
same server in the same PoP we may see large variations.

These changes are an effect of the following attributes observed from the
perspective of a multi-tenant CDN: (a) the busiest customers vary from region
to region and shift over time, (b) content profiles of customers also change over
time, impacting the overall cache contents (c) routine CDN traffic management
efforts shift traffic across PoPs. However, in all cases, per PoP configurations
must remain generic and able to handle such diversity of traffic behaviors.

The situation is further complicated by variations in the nature of requests.
Figure 3 shows a scatter plot of the bytes delivered over file sizes for all requests
seen on a single server in the US over a 24 h period. Along the diagonal are files
for which the entire file is delivered. However, the area above the diagonal is
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also diverse, suggesting there are a large number of files for which only a small
portion of a file is requested. Managing both of these behaviors adds significant
challenges to caching: caches must be prepared to deal with large files that may
consume cache space, but only portions of which are accessed at any given time.
We further see this same type of spread over multiple regions, suggesting this
variation is commonplace.

Figure 4 shows the number of requests seen for each file for each of the geo-
graphically distributed PoPs. For the US, APAC, and EU, between 60 and 80%
of files are only requested once. On the other hand, the most popular files are
extremely popular, with some being requested orders of magnitude more. While
the LATAM PoP saw a lower proportion of requests with a single request, the
majority of files still saw a small number of requests. The variation in these
distributions again hint at the importance of cache policy selection: many files
are not well suited for caching and may waste cache space. Therefore we require
a robust caching system that is not sensitive to the presence of such behaviors.

3.2 Similarities in Client Request Pattern

Next, we examine the popularity of objects over time. This will provide us with a
sense of how objects in the cache are accessed. Figure 5 shows the number of hits
for each object in the cache, binned by the last accessed time by the hour. Here
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Fig. 5. Temporal hit-rate view of caches from various regions, which show a histogram
of cache-hits binned by age. The popularity consistently decreases for all regions.
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the z-axis is the last access age, indicating how many days prior to the snapshot
the item was last accessed. Here we see that the most recently accessed content
is indeed the most popular, by nearly three orders of magnitude. This follows our
intuition about web content accesses and suggests that recency will likely be an
important input into the caching systems. Furthermore, we see similar patterns
across all geographic regions and long time scales, suggesting this behavior is
common to different PoPs and time frames.

This access behavior indicates the importance of recency when considering
any caching policy. Indeed, any policy that can keep the freshest objects in the
cache will be able to serve the most requests. Furthermore, the consistency of
this behavior, where we otherwise saw significant variations in request size and
pattern, provides the foundation of our expectations in the subsequent section:
recency based algorithms that are flexible to request type are likely to do well.

4 Cache Evaluation Framework

Our analysis is based on a caching emulator designed to facilitate the assessment
of arbitrary cache policies'. In particular, it was designed to consume CDN cache
server access logs and closely match the behavior of the production cache. The
emulator also allows pre-population of its cache with contents of a production
server and enables the tracking and statistics collection of cache data. We empha-
size that this system emulates cache behaviors rather than estimating using a
simple model: since the system relies on observed access logs, it behaves as a
production implementation would (Fig.6).

Cache N Request Flow L |New Cache
State ¢_ _ State
Admit | viss | Admit
Logs f»f L2 e Time Series
Hit o
Serve Request Data

Fig. 6. Data flow diagram of the emulator. Each client request passes through a stack
of arbitrarily configured caches.

The emulator models the flow of requests through a series of tiered caches.
When a request is processed, it checks the first cache. If the object is present, the
request is labeled a hit and the object is “returned” from that cache. Otherwise,
it is labeled a miss and passed to the next layer. These layers can be other
arbitrary caches or can be treated as an external origin. Each abstract cache
layer is provided with admission and eviction policies. The admission policy

! Available at https://github.com/VerizonDigital /edgecast_caching_emulator.
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determines which requested objects are cached at that level, and the eviction
policy describes which objects to remove from the cache when it is full. Each
layer tracks a relevant statistics: including the hit rate and the bytes written.

In this study, we consider 30 days of access logs from a set of cache servers
from the geographic regions shown in the previous section. Each log entry repre-
sents a client request that was handled by a single server in a PoP. Each log entry
contains the timestamp when the request was logged, the size of the requested
asset, the status code returned from the back-end system (i.e. a cache hit or
miss), the bytes delivered to the client (which will be less than the asset size in
cases of range requests), as well as the url of the asset requested. This informa-
tion allows us to conduct a thorough study on the behaviors observed directly
in the trace, as well as enabling us to replay this traffic in the emulator. Doing
so allows us to examine what-if scenarios in which we employ alternative cache
policies and mechanisms on real-world access behaviors.

5 Evaluation

Here we provide an analysis of various caching techniques using the above frame-
work. We explore the implementation of caching at: the disk (storage on the scale
of terabytes), and at a load balancer (gigabytes). We examine each of these in the
context of the constraints of the network described in Sect.3. Table 1 provides
an overview of the policies we examine along with a brief description.

Table 1. Cache policies examined in this study.

Policy Type Description
Eviction |FIFO A simple First In First Out queue
LRU Least recently used
COST LRU based, size and recency weighted equally
S4LRU Quadruply segmented LRU [22]
Infinite No eviction (i.e., unlimited cache)
Admission| N-Hit Admit on N** request
Probabilistic (Pr) |Admit with fixed probability
Prob-Size (Pr.Size)|Admit with probability dependent on the file size [6]

We focus first on cache eviction, the process of determining which objects to
remove from the cache when it becomes full. We begin with FIFO, as it’s gen-
erally the simplest to implement and widely used in industry. Next, we examine
LRU, as it is a robust and standard caching algorithm, and our analysis in the
previous section suggests the asset request patterns have clear recency properties.
We further examine a method similar to Greedy-Dual-Size [11] which computes
an eviction score which grants equal weight to frequency and file size. Finally,
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we examine S4LRU, as it provides a relatively direct extension of LRU, and has
been shown to perform well in other web-object caching environments [22].

In examining cache admission, we present an examination of N-Hit Caching,
a bloom filter based approach that produces deterministic output and has been
shown effective in industry [28,31]. We further examine a commonly considered
alternative that admits objects with a fixed probability, and a methodology
which uses a size-based probabilistic admission [6].

5.1 Cache Eviction

Here, we examine disk eviction policies: FIFO, LRU, COST, and S4LRU [22].
Here, FIFO presents the obvious simplest solution, followed closely by LRU.
COST is a variant of LRU in which a cost is computed for each object that lin-
early weights file size and recency. The lowest scores (i.e. intuitively the largest
and oldest files) are then evicted first. The final policy, SALRU, consists of 4 LRU
“queues”. On a cache miss, an object is inserted into the first queue. On subse-
quent hits, it’s promoted to the head of next queue. If it’s in the final queue, it is
simply moved to the head of that queue. Each queue then works as an indepen-
dent LRU cache. When the object is evicted, it goes to the head of the previous
queue. If that queue is the first, it is evicted entirely. This process essentially
encodes frequency into an LRU-like structure. In all of the experiments in this
section, we use the default admission policy, which admits all objects into the
cache.

First, we examine the most straightforward metric: hit-rate. Indeed, the hit-
rate is a fundamental measure of how well the cache is performing, and in many
instances will correlate directly with the CDN’s ability to respond with a low
response time. Here, we consider the performance of the algorithms over various
disk sizes: for each algorithm and disk size, we play back 7 days worth of cache
accesses, accounting for the majority of the regular diurnal patterns?. We further
consider the performance of an infinite cache, which represents the optimal hit
rate without knowledge of the future.

Hit Ratio
Disk Writes.

32GB 256GB 1TB 8TB 32GB 256GB 1TB 8TB
Drive Size Drive Size

Fig. 7. Hit-rates of eviction algorithms. Fig.8. Disk writes for each eviction

The horizontal line shows the hit-rate of algorithm.
an infinite cache.

2 We observed similar results when using the full 30 days of logs.
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Figure 7 presents the results of these experiments. First, we note the obvious
increase in hit rate as the disk increases in size: with a larger disk we are able
to respond from the cache more often. We also note that the performance of the
algorithms becomes more similar with a larger disk, suggesting that the marginal
impact from our choice of algorithm is reduced. In particular, we note that at
large enough disks, traditional LRU performs quite well, approaching the hit
rate of the infinite cache of 97.5%. We see similar behavior from the byte-hit
rate, but refrain from showing here due to space constraints.

The hit-rate alone, however, fails to show the whole picture: there are addi-
tional considerations when using each of these algorithms. In particular, the
load induced via the write operations that must be performed, which may have
an adverse effect on the underlying hardware (e.g. solid state disks). Next we
examine the disk write behavior of each policy.

Figure 8 shows the total disk writes (log scale) achieved for each disk size.
The disk size has a sizeable impact on the total volume of writes, with the
smallest disks incurring total write costs on the order of petabytes, larger disks
requiring only 10s of terabytes. Beyond this, we see that FIFO performs con-
sistently worse than the LRU-based approaches, uniformly requiring additional
disk writes, about 60% more in the 4 TB case. High write volume puts greater
load on the underlying hardware, straining its performance and reducing over-
all lifetimes. Content which has to be written out to disk must also be fetched
externally, causing greater delay in the delivery to the end-user.

While all 4 algorithms appear to perform relatively well at large enough
disks (within 1% above the 4 TB level), there are still potentially other costs, in
particular additional disk writes, in the case of FIFO. Among the 3 LRU based
policies, their similar performance makes vanilla LRU particularly appealing, as
it is the least expensive in terms of complexity and management.

5.2 Cache Eviction with Selective Admission

Despite the generally good behavior of LRU, there are some behaviors in CDN
web traffic which can poison attempts at maintaining a healthy cache with an
eviction policy alone. In particular, we recall from Fig. 4 that many files are only
requested a single time, creating pressure on the cache, and in particular the
storage medium, for files that will never be accessed from the cache. However,
we further recall that the most popular files were requested extremely frequently.
We therefore also consider the use of a cache admission policy that can alleviate
the underlying amount of writes a cache disk will need to do, reducing hardware
load and overall cache churn.

First, we consider a bloom filter placed in front of the disk cache, implementing
a technique we call second hit caching (2-Hit) [28,31,36]. The process is simple:
on a miss, if the appropriate hash of a requested item is not in the bloom filter,
it is added to the filter but not cached. If, on the other hand, it is in the bloom
filter, the object is added to the cache. In this way we are able to avoid caching
objects which are requested only a single time. Very popular items, however, are
still quickly pulled into the disk cache, minimizing negative impact.
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We further consider two alternative admission policies: a probabilistic admis-
sion which caches objects with a fixed probability of p (which we refer to as Pr.),
and a size based probabilistic policy which admits objects of size bytes with prob-

—size

ability e < [6] (Pr.Size). In both cases, the intuition is that popular items will
be requested frequently, increasing the likelihood that they make it into the disk
cache. In the size based methodology, the system biases towards objects which
are smaller than ¢, capturing the risk of allowing very large objects into the
cache. In our evaluations we consider a range of values for p, from .25 to .75, and
¢, from 100 MB to 1 GB. In this section we further consider each of these three
policies when combined with the 3 eviction policies described in the previous
section on a 4 TB cache disk.
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Fig. 9. Impact on hit-rate, disk writes and origin reads by LRU, FIFO and S4LRU
with selective admission: 2-Hit (N-hit, where N=2), Pr., and Pr.Size.

Figure 9a shows the hit rate achieved by each combination of policies and the
relative improvement to disk writes (i.e. the percentage reduction in disk writes
versus using no admission policy with the same eviction policy). The hit rates
range from 92 to 97%. Furthermore, some of the policies, in particular the Pr.Size
approaches, show significant reductions in disk writes. The smaller probabilistic
and second hit showed modest improvements to disk writes, between 10 and
33%.

Figure 9b shows the impact on hit-rate versus the absolute origin reads (i.e.
the bytes that had to be fetched from the customer origin). Here we see that
the disk writes were an insufficient view: the Pr.Size methodologies significantly
increased the bytes read from origin, rendering them unusable. This is the result
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of the largest objects never making it into cache, forcing them to always pull from
origin. The probabilistic and 2-Hit policies had much more modest increases,
between 12 and 30%, depending on the eviction policy.

Origin traffic is particularly sensitive in a CDN environment, as reducing
origin traffic is one of the core purposes of the CDN itself. Furthermore, unlike
purpose built or in-house solutions, origin traffic results in increased cost for
a third party. On the other hand, ensuring a higher hit-rate provides end-users
with improved latency. CDN operators much balance these trade-offs, hence, the
use of an admission policy to control the load on the cache medium may make
sense, but it must be done with extreme care, as it can undermine the CDNs
efficacy, as seen in the Pr.Size case.

Figure 9c shows a CDF of the disk writes of FIFO and LRU, with and with-
out 2-Hit (we exclude S4LRU and Prob. Admission from this figure for clarity,
but note that they performed similarly to LRU and 2-Hit, correspondingly).
Importantly, origin reads and disk writes differ when using a selective admis-
sion policy, since an object may be fetched from origin multiple times before it
is written to disk. Even though FIFO showed promising improvements to disk
writes when using an admission policy, the writes for FIFO were high enough
that FIFO remains an outlier. In the median case, the over 30% improvement
on disk write operations still left FIFO-2-Hit performing more write operations
than LRU.

Figure 9d shows a closeup view of the absolute origin reads achieved by each
viable algorithm grouped by eviction policy (i.e. excluding the Prob. size poli-
cies). First, we note that all three eviction policies exhibit similar impacts, con-
firming our previous findings that the eviction policy becomes less critical with
large disks. The lowest probability admission, p = .25 also shows a significant
increase in origin reads, due to the difficulty for any one item to make it into
the cache. Finally, we see that 2-hit and Pr.75 show similar results, nearly in
proportion to their difference in disk write savings seen in Fig. 9a.

While we have seen here that a probabilistic admission with a relatively high
probability (p = .75) and 2-Hit perform similarly, we consider a final operation
component: in many production settings, determinism can be extremely valu-
able. Specifically, when debugging and testing, it can often be important that
the system behaves deterministically, providing consistent results, not just at
scale, but for individual requests. This need makes 2-Hit an appealing method,
despite its increase in complexity over purely probabilistic methods.

6 Load Balancer Cache

Next, we consider placing a cache in-front of the L7 load balancers. Specifi-
cally, in the above studies, we considered caches which were co-located with the
caching servers. Here, we examine an arrangement where the cache sits earlier in
the request processing. This creates the opportunity to manage traffic at it’s first
entry point inside of the PoP, eliminating significant amounts of intra-datacenter
traffic, easing load on cache servers and intermediate appliances, further reduc-
ing request latency. This placement also demands that the caches be managed
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Table 2. Hit/byte-hit rate achieved by the load balancer cache.

Method Size | Hit-rate | Byte hit-rate
P. size 32 KB |1GB | .49 .05
P. size 16 MB .44 .01
P. size 256 MB .36 .03
P. size 32 KB |5GB | .50 .06
P. size 16 MB .54 .03
P. size 256 MB 44 .09

simply: i.e. they must sit ahead of much of the complex configuration logic that
drives the true disk caches. Therefore, we stick to a bare-bones eviction policy,
pursuing only FIFO systems with a Pr.Size admission policy, avoiding the need
for bloom filters or other stored state.

Moreover, this placement means that our threshold for good performance is
much different than more traditional components of the cache hierarchy. Specif-
ically, very low cache hit rates do not necessarily mean that the cache is per-
forming poorly: even a small reduction in hit rate reduces the load that must
pass through the load balancer and land on the main caches. Even in the event
of a cache miss, the request is still backed by the underlying cache server.

Table 2 presents the hit-rates and byte hit-rates seen for two possible cache
sizes, 1 and 5 GB, and 3 size admission parameters, 32 KB, 16 MB, and 256 MB.
The hit-ratios remain relatively steady, with roughly 50% of requests being ser-
viced by the cache, excepting the smaller cache with large admission parameter.
The byte hit-rates however are very low, showing that very few bytes are served
from the cache, even when its size is increased to 5 GB. Despite this, it offers
significant potential, as the measured hit rates would correspond to 50% of con-
nections terminating at the load balancer.

7 Conclusion

We have presented a study of the caching behavior of a large scale, global, CDN.
We explored the global accessed patterns observed by the CDN, examining both
historical log behaviors and the contents of caches. While we saw significant
variations in the access and request file size, fundamentally, the caches exhibited
similar behaviors, with the newest objects being the most popular.

We further examined behaviors of cache evictions and admission policies,
going from the bottom up: first considering a large disk cache alone, followed by
more complex arrangements. In the disk cache we explored the trade off between
complexity and performance, where we found that with large enough disks, rel-
atively simple methods (LRU, in particular), function well, while avoiding the
pitfalls of the simplest methods (FIFO). When considering admission policies,
we again found simplicity dominated, as more complex methods had operational
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challenges and increased origin reads. We additionally explored how we could
reduce connections to the L7 load-balancers significantly by introducing an in-
memory cache earlier in the network. Ultimately, our findings provide a critical
lesson in operational systems: robust and flexible approaches, like LRU, provide
the best trade-off between performance and operational constraints.
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Abstract. ICMP timestamp request and response packets have been
standardized for nearly 40 years, but have no modern practical appli-
cation, having been superseded by NTP. However, ICMP timestamps
are not deprecated, suggesting that while hosts must support them, lit-
tle attention is paid to their implementation and use. In this work, we
perform active measurements and find 2.2 million hosts on the Inter-
net responding to ICMP timestamp requests from over 42,500 unique
autonomous systems. We develop a methodology to classify timestamp
responses, and find 13 distinct classes of behavior. Not only do these
behaviors enable a new fingerprinting vector, some behaviors leak impor-
tant information about the host e.g., OS, kernel version, and local time-
zone.

Keywords: Network - Time + ICMP - Fingerprinting * Security

1 Introduction

The Internet Control Message Protocol (ICMP) is part of the original Internet
Protocol specification (ICMP is IP protocol number one), and has remained
largely unchanged since RFC 792 [21]. Its primary function is to communicate
error and diagnostic information; well-known uses today include ICMP echo to
test for reachability (i.e., ping), ICMP time exceeded to report packet loops (i.e.,
traceroute), and ICMP port unreachable to communicate helpful information
to the initiator of a transport-layer connection. Today, 27 ICMP types are defined
by the IESG, 13 of which are deprecated [11].

Among the non-deprecated ICMP messages are timestamp (type 13) and
timestamp reply (type 14). These messages, originally envisioned to support time
synchronization and provide one-way delay measurements [19], contain three 32-
bit time values that represent milliseconds (ms) since midnight UTC. Modern
clock synchronization is now performed using the Network Time Protocol [18]
and ICMP timestamps are generally regarded as a potential security vulnerabil-
ity [20] as they can leak information about a remote host’s clock. Indeed, Kohno
et al. demonstrated in 2005 the potential to identify individual hosts by varia-
tions in their clock skew [12], while [6] and [4] show similar discriminating power
when fingerprinting wireless devices.
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Fig. 1. ICMP timestamp message fields

In this work, we reassess the extent to which Internet hosts respond to
ICMP timestamps. Despite no legitimate use for ICMP timestamps today, and
best security practices that recommend blocking or disabling these timestamps,
we receive timestamp responses from 2.2 million IPv4 hosts in 42,656 distinct
autonomous systems (approximately 15% of the hosts queried) during a large-
scale measurement campaign in September and October 2018. In addition to
characterizing this unexpectedly large pool of responses, we seek to better under-
stand how hosts respond. Rather than focusing on clock-skew fingerprinting, we
instead make the following primary contributions:

1. The first Internet-wide survey of ICMP timestamp support and responsive-
ness.

2. A taxonomy of ICMP timestamp response behavior, and a methodology to
classify responses.

3. Novel uses of ICMP timestamp responses, including fine-grained operating
system fingerprinting and coarse geolocation.

2 Background and Related Work

Several TCP/IP protocols utilize timestamps, and significant prior work has
examined TCP timestamps in the context of fingerprinting [12]. TCP timestamps
have since been used to infer whether IPv4 and IPv6 server addresses map to
the same physical machine in [2] and combined with clock skew to identify server
“siblings” on a large scale in [24].

In contrast, this work focuses on ICMP timestamps. Although originally
intended to support time synchronization [19], ICMP timestamps have no mod-
ern legitimate application use (having been superseded by NTP). Despite this,
timestamps are not deprecated [11], suggesting that while hosts must support
them, little attention is paid to their implementation and use.

Figure 1 depicts the structure of timestamp request (type 13) and response
(type 14) ICMP messages. The 16-bit identifier and sequence values enable
responses to be associated with requests. Three four-byte fields are defined:
the originate timestamp (orig-ts), receive timestamp (recv_ts), and transmit
timestamp (xmit_ts). Per RFC792 [21], timestamp fields encode milliseconds
(ms) since UTC midnight unless the most significant bit is set, in which case
the field may be a “non-standard” value. The originator of timestamp requests
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should set the originate timestamp using her own clock; the value of the receive
and transmit fields for timestamp requests is not specified in the RFC.

To respond to an ICMP timestamp request, a host simply copies the request
packet, changes the ICMP type, and sets the receive and transmit time fields.
The receive time indicates when the request was received, while the transmit
time indicates when the reply was sent.

Several prior research works have explored ICMP timestamps, primarily for
fault diagnosis and fingerprinting. Anagnostakis et al. found in 2003 that 93%
of the approximately 400k routers they probed responded to ICMP timestamp
requests, and developed a tomography technique using ICMP timestamps to
measure per-link one-way network-internal delays [1]. Mahajan et al. leveraged
and expanded the use of ICMP timestamps to enable user-level Internet fault
and path diagnosis in [16].

Buchholz and Tjaden leveraged ICMP timestamps in the context of forensic
reconstruction and correlation [3]. Similar to our results, they find a wide variety
of clock behaviors. However, while they probe ~8 000 web servers, we perform
an Internet-wide survey including 2.2M hosts more than a decade later, and
demonstrate novel fingerprinting and geolocation uses of ICMP timestamps.

Finally, the nmap security scanner [15] uses ICMP timestamp requests, in
addition to other protocols, during host discovery for non-local networks in order
to circumvent firewalls and blocking. nmap sets the request originate timestamp
to zero by default, in violation of the standard [21] (though the user can man-
ually specify a timestamp). Thus, ICMP timestamp requests with zero-valued
origination times provide a signature of nmap scanners searching for live hosts.
While nmap uses ICMP timestamps for liveness testing, it does not use them for
operating system detection as we do in this work.

To better understand the prevalence of ICMP timestamp scanners, we ana-
lyze 240 days of traffic arriving at a /17 network telescope. We observe a total
of 413,352 timestamp messages, 93% of which are timestamp requests. Only 33
requests contain a non-zero originate timestamp, suggesting that the remainder
(nearly 100%) are nmap scanners. The top 10 sources account for more than
86% of the requests we observe, indicating a relatively small number of active
Internet-wide scanners.

3 Behavioral Taxonomy

During initial probing, we found significant variety in timestamp responses. Not
only do structural differences exist in the implementation of [21] by timestamp-
responsive routers and end systems (e.g., little- vs big-endian), they also occur
relative to how the device counts time (e.g., milliseconds vs. seconds), the device’s
reference point (e.g., UTC or local time), whether the reply is a function of
request parameters, and even whether the device is keeping time at all.
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Table 1. ICMP timestamp classification fingerprints

Num | Class Request | Response
cksum orig.ts | recv._ts xmit_ts
1 Normal Valid - # xmit_ts, # 0 #0
2 Lazy Valid - = xmit_ts #0
3 Checksum-Lazy Bad - - -
4 Stuck valid - const const
5 Constant 0 Valid - 0 0
6 Constant 1 Valid - 1 1
7 Constant LE 1 Valid - htonl(1) htonl(1)
8 Reflection Valid - requestrecy_ts requestymit_ts
9 Non-UTC Valid | - >231 1 >231 1
10 Timezone Valid - |recv_ts — orig_ts|% (346 X 105) < 200ms | -
11 Little Endian Valid - |htonl(recv_ts) — orig_ts| < 200 ms -
12 Linux htons() Bug | Valid - %216 =0 %216 =0
13 Unknown Valid - - -

3.1 Timestamp Implementation Taxonomy

Table 1 provides an exhaustive taxonomy of the behaviors we observe; we term
these the ICMP timestamp classifications. Note that this taxonomy concerns
only the implementation of the timestamp response, rather than whether the
responding host’s timestamp values are correct.

Normal: Conformant to [21]. Assuming more than one ms of processing time,
the receive and transmit timestamps should be not equal, and both should
be nonzero except at midnight UTC.

Lazy: Performs a single time lookup and sets both receive and transmit
timestamp fields to the same value. A review of current Linux and FreeBSD
kernel source code reveals this common lazy implementation [10,13].
Checksum-Lazy: Responds to timestamp requests even when the ICMP
checksum is incorrect.

Stuck: Returns the same value in the receive and transmit timestamp fields
regardless of the input sent to it and time elapsed between probes.
Constant 0, 1, Little-Endian 1: A strict subset of “stuck” that always
returns a small constant value in the receive and transmit timestamp fields.
Reflection: Copies the receive and transmit timestamp fields from the times-
tamp request into the corresponding fields of the reply message’.
Non-UTC: Receive and transmit timestamp values with the most significant
bit set. As indicated in [21], network devices that are unable to provide a
timestamp with respect to UTC midnight or in ms may use an alternate time
source, provided that the high order bit is set.

Linux htons() Bug: Certain versions of the Linux kernel (and Android) con-
tain a flawed ICMP timestamp implementation where replies are truncated
to a 16-bit value; see Appendix A for details.

Unknown: Any reply not otherwise classified.

! We find no copying of originate timestamp into the reply’s receive or transmit fields.
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3.2 Timekeeping Behavior Taxonomy

We next categorize the types of timestamp responses we observe by what the
host is measuring and what they are measuring in relation to.

— Precision: Timestamp reply fields should encode ms to be conformant, how-
ever some implementations encode seconds.

— UTC reference: Conformant to the RFC; receive and transmit timestamps
encode ms since midnight UTC.

— Timezone: Replies with receive and transmit timestamps in ms relative to
midnight in the device’s local timezone, rather than UTC midnight.

— Epoch reference: Returned timestamps encode time in seconds relative to
the Unix epoch time.

— Little-Endian: Receive and transmit timestamps containing a correct times-
tamp when viewed as little-endian four-byte integers.

4 Methodology

We develop sundial, a packet prober that implements the methodology
described herein to elicit timestamp responses that permit behavioral classifi-
cation. sundial is written in C and sends raw IP packets in order to set specific
IP and ICMP header fields, while targets are randomized to distribute load. We
have since ported sundial to a publicly available ZMap [8] module [22].

Our measurement survey consists of probing 14.5 million IPv4 addresses
of the August 7, 2018 ISI hitlist, which includes one address per routable /24
network [9]. We utilize two vantage points connected to large academic university
networks named after their respective locations: “Boston” and “San Diego.”
Using sundial, we elicit ICMP timestamp replies from ~2.2 million unique IPs.

This section first describes sundial’s messages and methodology, then our
ground truth validation. We then discuss ethical concerns and precautions under-
taken in this study.

2

4.1 sundial Messages

In order to generate and categorize each of the response behaviors, sundial
transmits four distinct types of ICMP timestamp requests. Both of our vantage
points have their time NTP-synchronized to stratum 2 or better servers. Thus
time is “correct” on our prober relative to NTP error.

1. Standard: We fill the originate timestamp field with the correct ms from
UTC midnight, zero the receive and transmit timestamp fields, and place the
lower 32 bits of the MD5 hash of the destination IP address and originate
timestamp into the identifier and sequence number fields. The hash permits
detection of destinations or middleboxes that tamper with the originate times-
tamp, identifier, or sequence number.

2 As IPv6 does not support timestamps in ICMPv6, we study IPv4 exclusively.
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2. Bad Clock: We zero the receive and transmit fields of the request, choose an
identifier and sequence number, and compute the MD5 hash of the destination
IP address together with the identifier and sequence number. The lower 32 bits
of the hash are placed in the originate timestamp. This hash again provides
the capability to detect modification of the reply.

3. Bad Checksum: The correct time in ms since UTC midnight is placed
in the originate field, the receive and transmit timestamps are set to zero,
and the identifier and sequence number fields contain an encoding of the
destination IP address along with the originate timestamp. We deliberately
choose a random, incorrect checksum and place it into the ICMP timestamp
request’s checksum field. This timestamp message should appear corrupted
to the destination, and a correct ICMP implementation should discard it.

4. Duplicate Timestamp: The receive and transmit timestamps are initial-
ized to the originate timestamp value by the sender, setting all three times-
tamps to the same correct value. The destination IP address and originate
timestamp are again encoded in the identifier and sequence number to detect
modifications.

Many implementation behaviors in Sect.3 can be inferred from the first,
standard probe. For instance, the standard timestamp request can determine
a normal, lazy, non-UTC and little-endian implementation. In order to clas-
sify a device as stuck, both the standard and duplicate timestamp requests are
required. Two requests are needed in order to determine that the receive and
transmit timestamps remain fixed over time, and the inclusion of the duplicate
timestamp request ensures that the remote device is not simply echoing the
values in the receive and transmit timestamp fields of the request. Similarly,
timestamp reflectors can be detected using the standard and duplicate request
responses.

The checksum-lazy behavior is detected via responses to the bad checksum
request type. The Linux htons () bug behavior can be detected using the stan-
dard request and filtering for reply timestamps with the two lower bytes set to
zero. In order to minimize the chance of false positives (i.e., the correct time
in ms from UTC midnight is represented with the two lower bytes zeroed), we
count only destinations that match this behavior in responses from both the
standard and bad clock timestamp request types.

To detect the unit precision of the timestamp reply fields, we leverage the
multiple requests sent to each target. Because we know the time at which requests
are transmitted, we compare the time difference between the successive requests
to a host and classify them based on the inferred time difference from the replies.

Finally, we classify responsive devices by the reference by which they main-
tain time. We find many remote machines that observe nonstandard reference
times, but do not set the high order timestamp field bit. A common alterna-
tive timekeeping methodology is to track the number of ms elapsed since mid-
night local time. We detect local timezone timekeepers by comparing the receive
and transmit timestamps to the originate timestamp in replies to the standard
request. Receive and transmit timestamps that differ from our correct originate



88 E. C. Rye and R. Beverly

Table 2. Ground truth classification of ICMP timestamp behaviors

oS Behavior Notes

Windows 7-10 Off by default | With Windows firewall off, lazy LE

Linux Lazy

Linux 3.18 (incl Android) | Lazy htons() bug

Android kernel 3.10, 4.4+ | Lazy

BSD Lazy

OSX Unresponsive

iOS Off by default

Cisco IOS/IOS-XE Lazy MSB set if NTP disabled, unset if enabled
JunOS Lazy

timestamp by the number of ms for an existing timezone (within an allowable
error discussed in Sect.5.2) are determined to be keeping track of their local
time.

Last, a small number of devices we encountered measured time relative to
the Unix epoch. Epoch-relative timestamps are detected in two steps: first, we
compare the epoch timestamp’s date to the date in which we sent the request;
if they match, we determine whether the number of seconds elapsed since UTC
midnight in the reply is suitably close to the correct UTC time.

4.2 Ground Truth

To validate our inferences and understand the more general behavior of popu-
lar operating systems and devices, we run sundial against a variety of known
systems; Table 2 lists their ICMP timestamp reply behavior.

Apple desktop and mobile operating systems, macOS and iOS, both do not
respond to ICMP timestamp messages by default. Initially, we could not elicit
any response from Microsoft Windows devices, until we disabled Windows Fire-
wall. Once disabled, the Windows device responds with correct timestamps in
little-endian byte order. This suggests that not only are timestamp-responsive
devices with little-endian timestamp replies Windows, but it also worryingly
indicates that its built-in firewall has been turned off by the administrator.

BSD and Linux devices respond with lazy timestamp replies, as their source
code indicates they should. JunOS and Android respond like FreeBSD and Linux,
on which they are based, respectively. Of note, we built the Linux 3.18 kernel,
which has the htons () bug described in Sect. 6; it responded with the lower two
bytes zeroed, as expected. This bug has made its way into Android, where we
find devices running the 3.18 kernel exhibiting the same signature.

Cisco devices respond differently depending on whether they have enabled
NTP. NTP is not enabled by default on I0S; the administrator must manu-
ally enable the protocol and configure the NTP servers to use. If NTP has not
been enabled, we observe devices setting the most significant bit, presumably
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to indicate that it is unsure whether the timestamp is accurate, and filling in a
UTC-based timestamp with the remaining bits, according to its internal clock.

Telnet Banner and CWMP GET Ground Truth. To augment the ground truth
we obtained from devices we were able to procure locally, we leveraged IPv4
Internet-wide Telnet banner- and CPE WAN Management Protocol (CWMP)
parameter-grabbing scans from scans.io [23]. From October 3, 2018 scans, we
search banners (Telnet) and GET requests (CWMP) for IP addresses associated
with known manufacturer strings. We then probe these addresses with sundial.

Figure 2 displays the most common fingerprints for a subset of the manufac-
turers probed from scans.io’s Telnet banner-grab dataset, while Fig. 3 is the
analogous CWMP plot. We note that non-homogeneous behavior within a man-
ufacturer’s plot may be due to several factors: different behaviors among devices
of the same manufacturer, banner spoofing, IP address changes, and middle-
boxes between the source and destination. We provide further details regarding
our use of the scans.io datasets in Appendix B.

4.3 Ethical Considerations

Internet-wide probing invariably raises ethical concerns. We therefore follow the
recommended guidelines for good Internet citizenship provided in [8] to mitigate
the potential impact of our probing. At a high-level, we only send ICMP packets,
which are generally considered less abusive than e.g., TCP or UDP probes that
may reach active application services. Further, our pseudo-random probing order
is designed to distribute probes among networks in time so that they do not
appear as attack traffic. Finally, we make an informative web page accessible
via the IP address of our prober, along with instructions for opting-out. In this
work, we did not receive any abuse reports or opt-out requests.
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5 Results

On October 6, 2018, we sent four ICMP timestamp request messages as described
in Sect.4.1 from both of our vantage points to each of the 14.5 million target
IPv4 addresses in the ISI hitlist. We obtained at least one ICMP timestamp
reply message from 2,221,021 unique IP addresses in 42, 656 distinct autonomous
systems as mapped by Team Cymru’s IP-to-ASN lookup service [5]. Our probing
results are publicly available [22].

We classify the responses according to the implementation taxonomy outlined
in Sect. 3 and Table 1, the timekeeping behavior detailed in Sect. 3.2, and the cor-
rectness of the timestamp reply according to Sect. 5.2. Tables 3 and 4 summarize
our results in tabular form; note that the implementation behavior categories
are not mutually exclusive, and the individual columns will sum to more than
the total column, which is the number of unique responding IP addresses. We
received replies from approximately 11,000 IP addresses whose computed MD5
hashes as described in Sect. 4.1 indicated tampering of the source IP address,
originate timestamp, or id and sequence number fields; we discard these replies.

5.1 Macro Behavior

Lazy replies outnumber normal timestamp replies by a margin of over 50 to 1.
Because we had assumed the normal reply type would be the most common, we
investigated open-source operating systems’ implementations of ICMP. In both
the Linux and BSD implementations, the receive timestamp is filled in via a call
to retrieve the current kernel time, after which this value is simply copied into
the transmit timestamp field. Therefore, all BSD and Linux systems, and their
derivatives, exhibit the lazy timestamp reply behavior.

Normal hosts can appear lazy if the receive and transmit timestamps are set
within the same millisecond. This ambiguity can be resolved in part via multiple
probes. For instance, Table 3 shows that only ~50% of responders classified as
normal by one vantage are also marked normal by the other.

The majority (61%) of responding devices do not reply with timestamps
within 200 ms of our NTP-synchronized reference clock, our empirically-derived
correctness bound discussed in Sect.5.2. Only ~40% of responding IP addresses
fall into this category; notably, we detect smaller numbers devices with cor-
rect clocks incorrectly implementing the timestamp reply message standard. For
example, across both vantage points we detect thousands of devices whose times-
tamps are correct when interpreted as a little-endian integer, rather than in net-
work byte order. We discover one operating system that implements little-endian
timestamps in Sect. 4.2. In another incorrect behavior that nevertheless indicates
a correct clock, some devices respond with the correct timestamp and the most
significant bit set — a behavior at odds with the specification [21] where the
most significant bit indicates a timestamp either not in ms, or the host cannot
provide a timestamp referenced to UTC midnight. In Sect. 4.2, we discuss an
operating system that sets the most significant bit when its clock has not been
synchronized with NTP.
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Table 3. Timestamp reply implementation behaviors (values do not sum to total)

Category Boston Both San Diego | Category Boston Both San Diego
Normal 40,491 19,819 40,363 Stuck 855 849 873

Lazy 2,111,344 | 1,899,297 | 2,112,386 | Constant 0 547 546 555
Checksum-Lazy | 28,074 23,365 28,805 Constant 1 200 199 207
Non-UTC 249,454 211,755 249,932 Constant LE 1 | 22 19 23
Reflection 2,325 2,304 2,364 htons() Bug 1,499 665 1,536
Correct 850,787 803,314 850,133 Timezone 33,317 23,464 33,762
Correct LE 11,127 5,244 11,290 Unknown 38,495 11,865 32,956
Correct - MSB | 1,048 386 973

Total 2,194,180 | 1,934,172 | 2,189,524

Over 200,000 unique IPs (>10% of each vantage point’s total) respond with
the most significant bit set in the receive and transmit timestamps; those times-
tamps that are otherwise correct are but a small population of those we term
Non-UTC due to the prescribed meaning of this bit in [21]. Some hosts and
routers fall into this category due to the nature of their timestamp reply imple-
mentation — devices that mark the receive and transmit timestamps with little-
endian timestamps will be classified as Non-UTC if the most significant bit of
the lowest order byte is on, when the timestamp is viewed in network byte order.
Others, as described above, turn on the Non-UTC bit if they have not synchro-
nized with NTP.

Another major category of non-standard implementation behavior of ICMP
timestamp replies are devices that report their timestamp relative to their local
timezone. Whether devices are programmatically reporting their local time with-
out human intervention, or whether administrator action is required to change
the system time (from UTC to local time) in order to effect this classification is
unclear. In either case, timezone timestamp replies allow us to coarsely geolocate
the responding device. We delve deeper into this possibility in Sect. 5.4.

Finally, while most responding IP addresses are unsurprisingly classified
as using milliseconds as their unit of measure, approximately 14-16% of IP
addresses are not (see Table4). In order to determine what units are being used
in the timestamp, we subtract the time elapsed between the standard times-
tamp request and duplicate timestamp request, both of which contain correct
originate timestamp fields. We then subtract the time elapsed according to the
receive and transmit timestamps in the timestamp reply messages. If the differ-
ence of differences is less than 400 ms (two times 200 ms, the error margin for
one reply) we conclude that the remote IP is counting in milliseconds. A similar
calculation is done to find devices counting in seconds. Several of the behavioral
categories outlined in Sect.3.1 are included among the hosts with undefined
timekeeping behavior — those whose clocks are stuck at a particular value and
those that reflect the request’s receive and transmit timestamps into the corre-
sponding fields are two examples. Others may be filling the reply timestamps
with random values.
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Table 4. Timestamp reply timekeeping behaviors

Category Boston | Both San Diego
Millisecond 1,826,696 | 1,722,176 | 1,866,529
Second 47 37 68

Epoch 1 1 1
Unknown timekeeping | 367,436 | 211,958 | 322,926
Total 2,194,180 | 1,934,172 | 2,189,524

5.2 Timestamp Correctness

In order to make a final classification — whether the remote host’s clock is correct
or incorrect — as well as to assist in making many of the classifications within our
implementation and timekeeping taxonomies that require a correctness determi-
nation, we describe in this section our methodology for determining whether or
not a receive or transmit timestamp is correct.

To account for clock drift and network delays, we aim to establish a margin
of error relative to a correctly marked originate timestamp, and consider receive
and transmit timestamps within that margin from the originate timestamp to be
correct. To that end, we plot the probability density of the differences between
the receive and originate timestamps from 2.2 million timestamp replies gener-
ated by sending a single standard timestamp request to each of 14.5 million IP
addresses from the IST hitlist [9] in Fig. 4.

Figure 4 clearly depicts a trough in the difference probability values around
200 ms, indicating that receive timestamps greater than 200 ms than the originate
timestamp are less likely than those between zero and 200 ms. We reflect this
margin about the y-axis, despite the trough occurring somewhat closer to the
origin on the negative side. Therefore, we declare a timestamp correct if it is
within our error margin of 200 ms of the originate timestamp.

5.3 Middlebox Influence

To investigate the origin of some of the behaviors observed in Sect. 3 for which
we have no ground truth implementations, we use tracebox [7] to detect middle-
boxes. In particular, we chose for investigation hosts implementing the reflection,
lazy with MSB set (but not counting milliseconds), and constant 0 behaviors,
as we do not observe any of these fingerprints in our ground truth dataset, yet
there exist nontrivial numbers of them in our Internet-wide dataset.

In order to determine whether a middlebox may be responsible for these
behaviors for which we have no ground truth, we tracebox to a subset of 500 ran-
dom IP addresses exhibiting them. For our purposes, we consider an IP address
to be behind a middlebox if the last hop modifies fields beyond the standard
IP TTL and checksum modifications, and DSCP and MPLS field alterations
and extensions. Of 500 reflection IP addresses, only 44 showed evidence of being
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behind a middlebox, suggesting that some operating systems implement the
reflect behavior and that this is a less common middlebox modification. The lazy
with MSB set (but non-ms counting) behavior, on the other hand, was inferred
to be behind a middlebox in 333 out of 500 random IP addresses, suggesting it is
most often middleboxes that are causing the lazy-MSB-set fingerprint. Finally,
about half of the constant 0 IP addresses show middlebox tampering in tracebox
runs, suggesting that this behavior is both an operating system implementation
of timestamp replies as well as a middlebox modification scheme.

5.4 Geolocation

Figure 5 displays the probability distribution of response error, e.g., recv_ts —
orig_ts, after correct replies have been removed from the set of standard request
type responses. While there is a level of uniform randomness, we note the peaks
at hour intervals. We surmise that these represent hosts that have correct time,
but return a timezone-relative response (in violation of the standard [21] where
responses should be relative to UTC). The origin of timezone-relative responses
may be a non-conformant implementation. Alternatively, these responses may
simply be an artifact of non-NTP synchronized machines where the adminis-
trator instead sets the localtime correctly, but incorrectly sets the timezone. In
this case, the machine’s notion of UTC is incorrect, but incorrect relative to the
set timezone. Nevertheless, these timezone-relative responses effectively leak the
host’s timezone. We note the large spike in the +9 timezone, which covers Japan
and South Korea; despite the use of nmap’s OS-detection feature, and examining
web pages and TLS certificates where available, we could not definitively identify
a specific device manufacturer or policy underpinning this effect.

To evaluate our ability to coarsely geolocate IP addresses reporting a
timezone-relative timestamp, we begin with ~34,000 IP addresses in this cate-
gory obtained by sending a single probe to every hitlist IP from our Boston van-
tage. Using the reply timestamps, we compute the remote host’s local timezone
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offset relative to UTC to infer the host’s timezone. We then compare our inferred
timezone with the timezone reported by the MaxMind GeoLite-2 database [17].

For each TP address, we compare the MaxMind timezone’s standard time
UTC-offset and, if applicable, daylight saving time UTC offset, to the timestamp-
inferred offset. Of the 34,357 IP addresses tested, 32,085 (93%) correctly matched
either the standard timezone UTC offset or daylight saving UTC offset, if the
MaxMind-derived timezone observes daylight saving time. More specifically,
18,343 IP addresses had timestamp-inferred timezone offsets that matched their
MaxMind-derived timezone, which did not observe daylight saving time. 11,188
IP addresses resolved to a MaxMind timezone, whose daylight saving time off-
set matched the offset inferred from the timestamp. 2,554 IP addresses had
timestamp-inferred UTC offsets that matched their MaxMind-derived standard
time offset for timezones that do observe daylight saving time. Of the inferred
UTC-offsets that were not correct, 1,641 did not match either the standard time
offset derived from MaxMind, or the daylight saving time offset, if it existed,
and 631 IP addresses did not resolve to a timezone in MaxMind’s free database.

6 Conclusions and Future Work

We observe a wide variety of implementation behavior of the ICMP timestamp
reply type, caused by timestamps’ lack of a modern use but continued require-
ment to be supported. In particular, we are able to uniquely fingerprint the
behavior of several major operating systems and kernel versions, and geolocate
Internet hosts to timezone accuracy with >90% success.

As future work, we intend to exhaustively scan and classify the IPv4 Internet,
scan a subset with increased frequency over a sustained time period, and to do so
many vantage points. We further plan to integrate the OS-detection capabilities
we uncover in this work into nmap, and add tracebox functionality to sundial
in order to better detect middlebox tampering with ICMP timestamp messages.

Acknowledgments. We thank Garrett Wollman, Ram Durairajan, and Dan Ander-
sen for measurement infrastructure, our shepherd Rama Padmanabhan, and the anony-
mous reviewers for insightful feedback. Views and conclusions are those of the authors
and not necessarily those of the U.S. government.

Appendix A: Linux htons() Bug

While investigating the source code of open-source operating systems’ imple-
mentation of ICMP timestamps, we observed a flaw that allows fine-grained
fingerprinting of the Linux kernel version 3.18. The specific bug that allows
this fingerprinting was introduced in March 2016. An update to the Internet
timestamp generating method in af_inet.c errantly truncated the 32-bit times-
tamp to a 16-bit short via a call to the C library function htons() rather than
htonl (). When this incorrect 16-bit value is placed into the 32-bit receive and
transmit timestamp fields of a timestamp reply, it causes the lower two bytes
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to be zero and disables the responding machine’s ability to generate a correct
reply timestamp at any time other than midnight UTC. This presents a unique
signature of devices running the Linux kernel built during this time period. In
order to identify these devices on the Internet, we filter for ICMP timestamp
replies containing receive and transmit timestamp values with zeros in the lower
two bytes when viewed as a 32-bit big-endian integer. While devices that are
correctly implementing ICMP timestamp replies will naturally reply with times-
tamps containing zeros in the lower two bytes every 65,536 milliseconds, the
probability of multiple responses containing this signature drops rapidly as the
number of probes sent increases.

Being derived directly from the Linux kernel, the 3.18 version of the Android
kernel also includes the flawed af_inet.c implementation containing the same
htons () truncation, allowing for ICMP timestamp fingerprinting of mobile
devices as well.

While Linux 3.18 reached its end of life [14] in 2017, we observe hosts on the
Internet whose signatures suggest this is the precise version of software they are
currently running. Unfortunately, this presents an adversary with the opportu-
nity to perform targeted attacks.

Appendix B: scans.io Ground Truth

We use Telnet and CWMP banners in public scans.io as a source of ground
truth. It is possible to override the default text of these protocol banners, and rec-
ognize that this is a potential source of error. However, we examine the manufac-
turer counts in aggregate under the assumption that most manufacturer strings
are legitimate. We believe it unlikely that users have modified their CWMP
configuration on their customer premises equipment to return an incorrect man-
ufacturer.

Parsing the Telnet and CWMP scans for strings containing the names
of major network device manufacturers provided over two million unique IP
addresses. Table5 summarizes the results; note that for some manufacturers
(e.g., Arris) approximately the same number of IPs were discovered through the
Telnet scan as the CWMP scan, for others (e.g., Cisco and Huawei) CWMP
provided an order of magnitude greater number of IPs, and still others (e.g.,
Mikrotik and Netgear) appeared in only one of the two protocol scans. Note
that these numbers are not the number of timestamp-responsive IP addresses
denoted by n in Figs. 2 and 3.

With the IP addresses we obtained for each manufacturer, we then run
sundial to each set in order to elicit timestamp reply fingerprints and deter-
mine whether different manufacturers tend to exhibit unique reply behaviors.
Figures 2 and 3 display the incidence of timestamp reply fingerprints for a sub-
set of the manufacturers we probed, and provide some interesting results that
we examine here in greater detail.

No manufacturer exhibits only a singular behavior. We attribute this variety
within manufacturers to changes in their implementation of timestamp replies
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Table 5. Unique IP addresses per manufacturer for each scan

Manufacturer | Telnet count | CWMP count
Arris 8,638 5,281
Cisco 29,135 1,298,761
H3C 80,445 -

HP 24,027 -

Huawei 170,710 2,377,079
Mikrotik 190,484 -

Netgear - 17,723
Sercomm - 899,492
Ubiquiti 598 -

Zhone 6,999 -

ZTE 17,972 560,177
Zyxel 5,902 -

over time, different implementations among different development or product
groups working with different code bases, and the incorporation of outside imple-
mentations inherited through acquisitions and mergers.

Second, we are able to distinguish broad outlines of different manufacturers
based on the incidence of reply fingerprints. In Fig. 2, we note that among the
top six manufacturers, only Huawei had a significant number of associated IP
addresses (~10%) that responded with the checksum-lazy behavior. More than
half of the Cisco IP addresses from the Telnet scan exhibited the lazy behav-
ior with the most significant bit set while counting milliseconds, a far greater
proportion than any other manufacturer. Also noteworthy is that none of the
manufacturers represented in the Telnet scan exhibits large numbers of correct
replies. In our Telnet data, Mikrotik devices responded with a correct timestamp
reply roughly 25% of the time, a higher incidence than any other manufacturer.
This suggests that perhaps certain Mikrotik products have NTP enabled by
default, allowing these devices to obtain correct time more readily than those
that require administrator interaction. Our CWMP results in Fig. 3 demonstrate
the ability to distinguish manufacturer behavior in certain cases as well, we note
the >70% of Sercomm devices that exhibit only the lazy behavior, as well as
Sercomm exhibiting the only timezone-relative timekeeping behavior among the
CWMP manufacturers.

Finally, we note differences between the protocol scans among IP addresses
that belong to the same manufacturer. Cisco, Huawei, and ZTE appear in both
protocol results in appreciable numbers, and are represented in both figures in
Sect. 4.2. Although Cisco devices obtained from the Telnet scan infrequently
(~10%) respond with correct timestamps, in the CWMP data the proportion
is nearly 40%. Huawei devices from the Telnet data are generally lazy respon-
ders that count in milliseconds, however, this same behavior occurs only half as
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frequently in the CWMP data. Further, the fingerprint consisting solely of the
lazy behavior represents nearly a quarter of the CWMP Huawei devices, while
it is insignificant in the Telnet Huawei data. While the differences between the
Telnet and CWMP data are less pronounced for ZTE, they exist as well in the
lack of appreciable numbers of ZTE devices setting the most significant bit in
replies within the CWMP corpus.

Appendix C: Timezone-Relative Behavior

Figure5 displays the probability mass function of the differences between the
receive and originate timestamps for a sundial scan conducted on 9 September
2018 from the Boston vantage after responses with correct timestamps have been
removed. Discernible peaks occur at many of the hourly intervals representing
timezone-relative responders, rising above a base level of randomness. The hourly
offsets in Fig. 5 may need to be normalized to the range of UTC timezone offsets,
however. For example, depending on the originate timestamp value, a responding
host’s receive timestamp at a UTC offset of +9 may appear either nine hours
ahead of the originate timestamp, or 15 h behind, as —15 = 9(mod 24). In Fig. 5
we see large spikes at both +9 and —15h, but in reality these spikes represent
the same timezone.

Table 6. Inferred UTC-offsets from timestamp replies

UTC offset | —12 | —11 | —-10 | -9 | -8 | =7 | —6 | —5 —4 —-3.5 | =3 -2 | -1 |1 2
Count 73 1 7 3 386 | 476 | 666 | 1,763 | 2,660 | 2 246 228 | 5 7,215 | 1,819
UTC offset | 3 3.5 |4 4.5|5 5.5 |6 6.5 7 8 9 9.5 | 10 11

Count 449 | 8 62 3 87 |17 |14 |13 565 3,496 | 13,861 | 6 215 | 11

We identify timezone-relative responses systematically by computing the
local time in milliseconds for each of the UTC-offsets detailed in Table 6, given
the originate timestamp contained in the timestamp response. We then compare
each candidate local timezone’s originate timestamp to the receive timestamp
in the reply. If the candidate originate timestamp is within the 200 ms correct-
ness bound established in Sect. 5.2, we classify the IP address as belonging to
the timezone that produced the correct originate timestamp. Table 6 details the
number of timezone-relative responders we identified during the 9 September
sundial scan.
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Abstract. We present a list of the Best-50 public IPv4 time servers by
mining a high-resolution dataset of Stratum-1 servers for Availability,
Stratum Constancy, Leap Performance, and Clock Error, broken down
by continent. We find that a server with ideal leap performance, high
availability, and low stratum variation is often clock error-free, but this
is no guarantee. We discuss the relevance and lifetime of our findings,
the scalability of our approach, and implications for load balancing and
server ranking.
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1 Introduction

A high proportion of the global computer population achieves its time synchro-
nization via public time servers accessed by the NTP protocol. Such servers are
hierarchical in that a Stratum-s (or S-s) timeserver itself synchronizes to a Stra-
tum s — 1 server. Anchoring the system are the Stratum-1 time servers, which
have local access to reference hardware.

Clients rely on their server’s notion of time, however, as we describe below,
server quality varies in important ways, often with no warning being delivered to
clients. It would clearly be of interest to map out server quality across the Inter-
net, both for its own sake, and also to inform client server selection. However, it
is not immediately clear how this could be achieved at scale, and reliably, across
the latency noise of the Internet.

Recently the problem of server health monitoring has begun to receive atten-
tion, in particular regarding the small but critical Stratum-1 class. Techniques,
described in [5,18], have been developed for the unambiguous detection of errors
in server clock timestamps, even from vantage points where the path to the server
is both long in terms of Round Trip Time (RTT), and noisy. In [18], studying
around 100 servers, it was found that significant errors are not rare, being found
in a surprisingly high proportion of popular public servers, including many from
National Laboratories. Errors can be both large in magnitude (10’s to 100’s of

© Springer Nature Switzerland AG 2019
D. Choffnes and M. Barcellos (Eds.): PAM 2019, LNCS 11419, pp. 101-115, 2019.
https://doi.org/10.1007/978-3-030-15986-3_7


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-15986-3_7&domain=pdf
https://doi.org/10.1007/978-3-030-15986-3_7

102 Y. Cao and D. Veitch

milliseconds and even beyond) and long lasting (from hours to days and even
continuously over months), or both. In [17] a similar server set was analyzed with
respect to their leap second performance, and recently [5], using a new and much
larger data set, looked at both server clock error and protocol failures during the
end-2016 leap second. In these servers, which include all those Stratum-1 servers
employed in the widely used NTP Pool service [11], only 37.3% were found to
perform adequately.

In this paper we mine the IPv4 data set, available at [4], used in [5]. We
evaluate quality according to four dimensions: server Availability, behaviour sur-
rounding a Leap Second (a stress test for both NTP protocol compliance and
clock behaviour), Stratum Constancy, and finally, severity of server Clock Errors.
We limit our list to 50 members, and within this group servers are not explicitly
ranked. Instead, because of the importance to clients of the RTT to its server,
a key factor in synchronization performance in practice (though not necessarily
in theory, see [16]) due to its correlation with path asymmetry, congestion and
loss, we structure our results in a per-continent then per-country breakdown.

There are a number of arguments for a ‘Best-50’. One is for direct use by
measurement specialists, in particular operators of measurement infrastructures
[1,2,14], who require servers of both high availability and high accuracy. Another
is to highlight the server health issue. Quantifying best practice increases aware-
ness of ongoing problems, and provides the context (and an incentive) for efforts
to improve the system and to track performance over time. A third goal is to
explore concretely a number of quality metrics, and how they relate to actual,
verifiable errors in server timing. Although there have been some papers survey-
ing network timing performance [6-10], we believe this is the first attempt to
accurately identify the best servers, using diverse metrics.

After providing background in Sect.2 and an overview in Sect. 3, the main
results are presented in Sect. 4. Section 5 discusses their significance, limitations,
and implications for the definition and use of a server quality rank, with reference
to load balancing services including NTP Pool. We conclude in Sect. 6.

2 Background

We summarize the experimental setup, data set and server list (see [5] for full
details). We then summarize the operation of the NTP Pool service.

2.1 The Experiment

The experiment covered a 64 day period from Nov. 16 2016 to Feb. 2 2017, includ-
ing the end-2016 leap second. For each server in a target server list in parallel, an
independent instance of a request-response exchange daemon, using a per-server
customized polling period as close to 7 = 1s as possible, was launched.

For an NTP packet ¢ which successfully completes its round-trip from the
client to server and back, a 4-tuple stamp {T;;, Ty, Te,i, I} of timestamps
is recorded. Here Ty, ;, T, ; are the (incoming and outgoing respectively) UTC
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timestamps made by the server. These are extracted from the returning NTP
packet header, along with the Leap Indicator (LI) bits and the server Stratum
field. The timestamps 7 ;, 71} ; are of passively tapped NTP packets, hardware
timestamped using high performance Endace DAG 7.5G4 capture cards, whose
hardware clocks are disciplined to a rubidium atomic clock, itself locked to a roof
mounted GPS receiver. The error in the client side timestamps measurement is
therefore sub-microsecond and is ignored here.

The IPv4 servers studied came from five sources:

Org: the public S-1 URL list maintained at nip.org

Pool: S-1 servers participating in the NTP Pool Project

LBL: S-1 servers caught at the Lawrence Berkeley Laboratory border router
Au: the set of Australian public facing S-1 servers (plus 6 private)

Misc: miscellaneous servers of interest.

The servers which returned useful data, 459 in total, are broken down by source
in Table1 (the sets overlap). Of the AU servers, 6 are in fact private and will
be excluded from the final results. Table 2 provides a geographical breakdown.
The low values for AF, AN and SA reflect the immaturity of Internet timing
infrastructure across these continents.

Table 1. Server source breakdown. Table 2. Continental breakdown of servers.

Population | Org | Pool | LBL | Au | Misc Population| AF|AN|AS|EU |[NA OC|SA
# 197 1258 |257 14 |10 # 1 50 [203 [169 (29 |7
% 43| 56 | 56 | 3| 2 % 0.2/0 ]0.9/44.2/36.8/6.3 |1.5

o

2.2 NTP Pool

The NTP Pool Project [11] provides a load balancing and convenient configu-
ration service for millions of NTP clients, by supplying a set of URLs resolved
via a tailored DNS server, to members of a pool of participating volunteer NTP
servers of various strata.

Users can access at pool.ntp.org the complete worldwide pool, or subsets
thereof at #.pool.ntp.org, where # is one of {0,1,2,3}. These subsets are influ-
enced by client geo-location but otherwise random, and refresh every hour [12].
The full details of how server subsets are selected is not documented.

A degree of client-control is supported via CONT.pool.ntp.org: continental
zone pools where CONT is one of {africa, antarctica, asia, europe, north-america,
oceania, south-america}, and CY-coded country pools at CY.pool.ntp.org, and
#. prefixed subsets of these [13].

For the pool associated to a given client at a particular time, the system uses
DNS round robin to resolve URL queries to the IP address of a server in that
pool. NTP Pool includes a monitoring system which queries the pool servers,
scoring their performance based in NTP packet fields including {offset, stratum,
LI, RTT, noresponse}. Servers are evaluated periodically and only those with a
score above 10 are made available.
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3 Server Characterization

We characterize servers according to the following four criteria or dimensions.

Availability. This simple but critical criterion is measured by the ratio of
response packets received to request packets sent. This will underestimate the
true availability, because of packet loss and reachability failure in the network.

Stratum Constancy. Possible stratum values range from S = 0 (unsynchro-
nized), to S =1, 2...16. A Stratum-1 server may change stratum if its hardware
reference has a problem, if the system has a reboot, or if its synchronization
daemon/algorithm decides it would prefer an remote reference, and stratum
values of 0, 2, 3 or even higher could result. We measure the ‘Stratum-1 down-
time’ (S1Downtime) as the proportion of response packets which report a stra-
tum other than 1. Values of S1Downtime close to zero suggest a well managed
Stratum-1 server in a stable environment. We also record the list of all stratum
values ever seen.

Leap Performance. Leap Second events are a stress test for servers, both in
terms of the detailed clock performance (does it jump cleanly by exactly 1 second
at exactly the right time, and nothing else?) and protocol compliance (does it
set the LI bits in accordance with the standard?). This question was studied in
detail for each server in the list in [5]. Here we classify servers according to a
subset of the characterization defined there, as:

Ideal: no observed clock error linked to the leap second, ideal protocol behaviour;
Adequate: no clock error, compliant protocol behaviour;

Clock Good: no evidence of clock error about the leap,

where Ideal C Adequate C Clock Good C All. For convenience, we add two more
classes by set difference:

Clock Good Only (CGO): Clock-Good\ Adequate;
Clock Not Good (CNG): All\Clock-Good.

Although leap seconds are rare, they occur regularly. If a server handles them
poorly, the impact can be severe, for example taking weeks to jump, or never.

Clock Errors/Anomalies. Our approach is based on the methodology we
pioneered in [18] for the remote detection and measurement of server errors. It
uses baseline analysis of the RTT timeseries to identify changes in the ‘Error’

30.5278 30.569 t [day] 30.6101 30.6513

Fig. 1. Server errors cause E(i) to deviate from its true underlying value (green line).
(Color figure online)
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Fig. 2. CDF of Availability (in %) over all servers (black), and per-continent.

time series E; = (DzT - DZ-l )/2 due to server errors, rather than the alternatives of
path routing changes and/or congestion. Here DiT =Ty;—1,,; and Dil =Tri—Te;
are the empirical outgoing and incoming delays to the server. An example of a
server error zone, beginning at around t = 30.544 days, is given in Fig. 1.

We have improved the methodology of [18] by (i) replacing non-linear filtering
based congestion suppression (which can be fooled in certain circumstances) with
strict RTT bounding, (ii) systematically recording not only error sizes but also
the precise locations of all error zones, (iii) increasing the granularity of error
frequency reporting: we classify servers according to the number of errors as:
Good: no errors; Rare: less than one error per week; Common: more than one
error per week, but not High; and High: continuous stretches of error covering
at least 25% of the trace. In [18] R and C were combined into R.

Since the selection of error zones is performed manually (due to the need to
disambiguate from complex routing, congestion and error scenarios), the detec-
tion process is very labor intensive. It is essential however for our purposes here
where, unlike [18], we evaluate not only error presence and representative size
but also how often the server is in error (see Errtime below).

3.1 Server Overview

We provide some context by examining the first three of the above dimensions
over all servers.

Figure 2 shows the Cumulative Distribution Function (CDF) of availability
for all servers. Availability is good overall, with 80% of servers having values
exceeding 95%, and over half exceeding 99%. The per-continent results show
lower availability for regions further from the testbed in Sydney, Oceania. This
can be explained through a measurement bias due to higher loss rates over longer
paths leading to lower apparent availability.
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All

Constant 459

L8

Fig. 3. Relationship between the Stratum classes. Symbols denote servers in the Best-
50, red symbols denote those with server errors. (Color figure online)

The leap performance results over all servers appear in Table3. Only 37%
exhibit Adequate behavior, necessary to allow their clients to navigate a leap
second without incident.

Table 3. Leap performance summary.

All | CGO | CNG | Clock Good | Adequate | Ideal
# 1459|134 | 154 |305 171 36
% | 100 29 34 66 37 8

Figure 3 provides a pertinent classification of servers according to strata. In
the Constant class only one stratum value is ever seen (not always Stratum-1!),
in Bi only two, and in Unsync at least one response carries Stratum-0. We see
that 154 servers (34%) have constant strata, and the majority of the 305 that
do not, 254 or 83%, announced themselves as unsynchronized at least once.

Overall 137 servers (30%) announce themselves as Stratum-1 in each and
every response. This appears as a discrete mass of weight 0.3 at the origin in the
S1Downtime CDF in Fig.4, which shows that servers which are not Constant
have a wide variety of S1Downtime values.

4 The Best-50 Servers

What we would ideally like is clear: to find servers that are always available, and
that have no detectable clock errors. However, to determine the latter implies a
prior detailed examination, which is too labour intensive using our server error
methodology and tools to deal with 459 servers, each with up to 2 months of
high resolution data, each with potentially a large number of errors.
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Fig. 4. CDF of S1Downtime (in %) over all servers (black), and per-continent.

Accordingly, our approach is to first assemble a list of ostensibly high qual-
ity servers using the dimensions of Availability and Stratum Constancy that
are readily calculated, and Leap Performance, available from prior work, and to
apply the Clock Error analysis on this much smaller number of servers, which
moreover are likely to be simpler to analyse. In this way we approximate the
ideal above in a scalable way (see Sect.5), with a practically appropriate bias
toward servers with stable management (high Stratum Constancy) and compe-
tent configuration and performance during high stress (Leap Performance).

More precisely we proceed as follows. For Availability, we seek servers that are
almost always available, with due allowance for measurement bias due to packet
loss. Based on Fig. 2 we believe a cutoff of 97% is safe. For Leap Performance, we
insist that servers are in the Adequate class. Next, we use S1Downtime to order
the servers that pass the above two criteria. Our Best-50 servers are then defined
as the first 50 servers in this ordering (starting from the zero S1Downtime end)
whose Clock Error class is either G or R.

Server errors in a given server are further quantified through the metrics of
Size (the median over all error zones of the error range over that zone), and
Errtime (the proportion of the trace taken up by error zones).

The resulting Best-50 servers are given in Table4. Within each continent
group, servers are ordered according to country code first, and then lexicograph-
ically according to their URL. The mapping from URL to IP address is provided
in the Appendix.

Beyond the identities of the servers themselves and their geographical break-
down, the most important observation from the table is the fact that even excel-
lent performance under each of Availability, Stratum Constancy and Leap Per-
formance does not mean that the server is error free. Indeed, out of 15 servers
with detected server errors, 9 give no warning of this with a S1Downtime of
zero, yet have Sizes ranging from 2.1 to 1000 ms, albeit with Errtime being gen-
erally low (0.9s in the hour on average in the worst case of 0.025%). The worst
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Table 4. Best-50 public timeservers organised by continent, country, and URL. Cyan
URLs marks National Laboratory servers.

Strata Server Error Avail.|| Leap
CONT URL|CY List S1Down Class Size |Errtime (%) ’ Perf
time (%) ms]| (%)

AF stratuml.neology.co.za| ZA {1} 0 R | 2.1 | 7.0e-5 [[99.87||Adeq.
AN —| - — — — — — — —

oC ntpl.net.monash.edu.au|AU {1} 0 R | 180 | 1.4e-4 ||99.86||Adeq.

ntpl.oma.be| BE {0,1}| 2.9e-4 R 28 | 0.032 [|99.04 ||Adeq.

ntp.freestone.net| CH {1} 0 G - - 99.80 || Ideal

netopyr.hanacke.net| CZ {1} 0 G - - 99.25 || Ideal

ntp.nic.cz| CZ {1} 0 G - - 99.86 ||Adeq.

ptbtimel.ptb.de|DE {0,1}| 2.9¢-4 R 1.1 | 2.9e-4 ||99.78 ||Adeq.

ptbtime3.ptb.de|DE {1} 0 R |5.46| 0.014 [|99.78 || Ideal

hora.roa.es| ES[1{0,1,2}| 2.9e-4 R | 120 5.8e-3 |[99.40 ||Adeq.

ntp.i2t.chu.es| ES {1} 0 G - - 98.94 || Ideal

unknownl|GB {1} 0 G - - 99.71 || Ideal

unknown2|GB {1} 0 G - - 99.71 || Ideal

ntp2.litnet.1t| LT {1} 0 G - - 99.87 || Ideal

metronoom.dmz.cs.uu.nl| NL {1} 0 G - - 99.66 || Ideal

unknown3|NO {1} 0 G - - 98.88 || Ideal

goblin.nask.net.pl| PL {1} 0 G - - 99.79 || Ideal

EU ntp.certum.pl| PL {1} 0 R | 7.0 | 0.025 |[97.55||Adeq.

ntp.fizyka.umk.pl| PL {1} 0 G 99.45 || Ideal

time.assecobs.pl| PL {1} 0 G - - 99.10 || Ideal

ntpl.niiftri.irkutsk.ru|RU {1} 0 G - - 98.83 || Ideal

ntp2.niiftri.irkutsk.ru|RU {1} 0 G - - 98.94 || Ideal

ntpl.gbg.netnod.se| SE {1} 0 R |1000| 1.8e-5 [|99.89 ||Adeq.

ntp2.gbg.netnod.se| SE {1} 0 R [1000| 1.8e-5 [[99.89||Adeq.

ntpl.mmo.netnod.se| SE {1} 0 R [1000| 3.6e-5 [|99.87||Adeq.

ntp2.mmo.netnod.se| SE {1} 0 G - - 99.88 || Adeq.

ntpl.sth.netnod.se| SE {1} 0 G - - 99.82 ||Adeq.

ntp2.sth.netnod.se| SE {1} 0 R [1000| 8.8e-4 ||99.81||Adeq.

istntpprd—02.corenet.ualberta.ca|CA {1} 0 G - - 99.89 || Ideal

tick.usask.ca|CA {1} 0 G - - 99.86 ||Adeq.

tock.usask.ca|CA {1} 0 R | 17 | 2.5e-4 [|99.58 ||Adeq.

clepsydra.dec.com|US {1} 0 G - - 97.82 || Ideal

m4c2236d0.tmodns.net| US {1} 0 G - - 99.87 || Ideal

m4d2236d0.tmodns.net| US {1} 0 G - - 99.88 || Ideal

montpelier.ilan.caltech.edu| US {1} 0 G - - 99.76 || Ideal

navobsl.gatech.edu| US {1} 0 G - - 99.70 ||Adeq.

NA ntp.colby.edu| US {1} 0 G - - 99.71|| Ideal

ntpl.digitalwest.net| US {1} 0 G | - - 99.82 || Ideal

tick.ucla.edu|US|| {1,2}| 2.6e-4 G - - 99.50 ||Adeq.

time-a.netgear.com|US {1} 0 G - - 99.78 || Ideal

time—a.stanford.edu| US {1} 0 G - - 99.92 ||Adeq.

tock.phyber.com|US {1} 0 G - - 99.87 ||Adeq.

usatl4-ntp-002.aaplimg.com|US [[{0,1,2}| 5.7e-5 R | 1.5 | 0.063 [|99.83||Adeq.

usno.hpl.hp.com|US {1} 0 G — - 97.82|| Ideal

usnyc3-ntp-003.aaplimg.com|US|| {0,1}| 1.8e-3 R | 6.4| 0.052 [[99.85||Adeq.

f2.knsl.eonet.ne.jp| JP {0,1}| 2.8e-4 G - - 99.83 ||Adeq.

jptyo5-ntp-001.aaplimg.com| JP {1,2}| 2.3e-4 R | 39 | 0.029 [|99.11 ||Adeq.

AS ntpl.noc.titech.ac.jp| JP {1} 0 G - - 99.82 ||Adeq.

ntp-b2.nict.go.jp| JP {1} 0 G — — 99.90 || Ideal

unknown4|SG {1} 0 G — - 99.91 || Ideal

SA ntp.shoa.cl| CL {1} 0 G | - - 99.70 || Ideal
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Table 5. Five categories of examples of servers outside the Best-50 in one or more
criteria. Bold column entries mark failed criteria.

Strata Server Error Avail. || Les
CONT URL|CY List S1Down Class Size |Errtime (\;; ’ PEdIf)

time(%) [ms] (%) ’ o
ocC ntpl0.net.monash.edu.au|AU {1} 0 C |[18.46 | 0.002 || 99.86 ||Adeq.
NA time-a.timefreq.bldrdoc.gov|US {1} 0 H |23.16 100 99.47 || Adeq.
NA time-c.timefreq.bldrdoc.gov| US {1} 0 H 8.98 100 99.69 ||Adeq.
ocC ntp.waia.asn.au|AU|[| {0,1,3}| 0.040 R 700 0.128 || 99.44 || Adeq.
EU ntpl.fau.de|DE {1,2}| 0.381 R 1.76 | 0.628 || 99.70 ||Adeq.
NA srcf-ntp.stanford.edu| US {1} 0 G - - 99.93 ||CGO
SA a.stl.ntp.br|BR {0,1}| 1.1e-4 G - - 99.72 ||CGO
EU ntpl.vniiftri.ru|RU|[{0-3,12}] 0.029 R 2.30 | 1.852 || 98.05||CNG
EU ntp3.fau.de|DE {1,2}| 0.401 H 6.3 100 99.69 || Adeq.
NA ntp.myfloridacity.us| US {0,1}| 3.9¢-4 H |14.61| 100 98.73 ||CNG
NA time-b.nist.gov|US {1} 0 C 2.10 0.254 ||63.73||Adeq.
NA t2.timegps.net| US || {0,1,2}| 0.011 R |333.50| 0.043 || 99.59 ||CGO
EU |rustimeOl.rus.uni-stuttgart.de| DE {1,2}| 0.380 R | 4.50 | 3.485 ||95.05||CGO
EU ntp2.usv.ro|RO {0,1}| 0.003 G - - 96.70||CNG

S1Downtime in the table, NA server usnyc3-ntp-003.aaplimg.com, which is also
an R server, only drops from Stratum-1 (to Stratum-0 in this case) 0.0018% of
the time. This is 29 times less often than its Errtime at 0.052%. Thus for this
server, error is a more serious concern than stratum stability.

The Best-50 are marked via symbols within Fig. 3, where certain observations
are more immediate. For example we clearly see that 9 of the Constant S1 servers
in the Best-50 have clock errors, and that only 2 in the Best-50 take 3 or more
stratum values.

Another observation of note is that, with the exception of ptbtime3.ptb.de,
servers with Ideal Leap Performance and zero S1Downtime enjoy Server Error
ratings of G, suggesting that this pair could serve as a useful indicator of an
exceptionally well managed server, and hence be predictive of exemplary Error
behaviour. Useful does not mean foolproof however: in addition to the exception
above the two NIST servers in Table 5 provide sobering counter-examples.

The server list contains 35 servers from Apple’s 17.253 domain. Three of
these make it into the Best-50, though all exhibit server errors with relatively
large Errtime values. Finally, it is worth noting that despite having 66 servers
from National Laboratories in the list, only 12, those colored cyan, make it into
the Best-50 (an additional 5 from the NMI in Australia are excluded as they are
not publicly accessible).

Because the criteria of entry into the Best-50 are so strict, there is a limit to
what one can say about these servers: they are indeed very well behaved. How-
ever, if one relaxes the criteria in different dimensions, a much wider variety of
behaviour is quickly revealed. To make this concrete, and to indicate what could
have been included in the Best-50 had things been a little different, a number
of contrasting examples are provided in Table 5, separated into five categories.
For each server bolded column entries mark the criteria which did not meet the
Best-50 standard.
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In the first category we give 3 of the 5 servers (of which {2,3} were rated
{C,H} respectively) that failed to make the Best-50 because of excessive server
errors. By definition, and as noted earlier, such servers illustrate the fact that the
(Availability, Stratum, Leap) three-tuple is not sufficient to predict the absence
or otherwise of clock errors, nor their severity in terms of Size or Errtime. Partic-
ularly noteworthy is the fact that H servers, which by definition have an Errtime
over 25%, and typically have Errtime of a dramatic 100%! can and do appear.
The second category exhibits two examples of servers that failed only due to
being too low in the S1Downtime ranking, one of which has Size of 700 ms and
Errtime three times higher than its S1Downtime. The third category gives exam-
ples failing only the Leap criterion, that are exemplary in other respects. There
were no examples of servers which failed in Availability only. The fourth cate-
gory includes five diverse examples where two criteria were not met. Finally, the
fifth category includes servers that are still generally respectable despite failing
in three criteria.

5 Discussion

We discuss the limitations, implications and future of our work.

Source Coverage. Because of the widespread usage of the Pool service, and
the high profile of the Org list, we expect the server list to contain most of the
widely used public S-1 servers, but how representative are they of the (unknown)
complete set? There is in fact a high degree of overlap, 50% or more, between
each of the three main sources: Org, Pool and LBL, leading to speculation in [5]
that the server list contains a significant percentage of the global public facing
Stratum-1 server population. We now consider how to evaluate this claim.

Population estimation based on re-sampling a marked sub-population is known
as the capture-recapture problem in statistics. To fit within this framework, it is
natural to group the Org and Pool sources together as they are both community
based, and have a strong, non-random relationship. Thus we have n = |Org U
Pool| = 356 servers which represent a ‘marked’ sample of the total unknown pop-
ulation V. The LBL source now represents a random sample of K = 257 servers,
of which k = 175 lie in OrgUPool, that is they are marked servers that are ‘recap-
tured’. The population can now be estimated from n, K and k. For example the
Chapman estimator [3,15], yields N = | (K +1)(n+1)/(k+1)] —1 = 522. A corre-
sponding (non-symmetric) 95% coverage interval for N is [497, 562]. This suggests
that our Best-50 is well founded as it is based on a number, 453, being between
80% and 91% of all public servers.

The random sampling assumptions underlying the Chapman estimator do not
hold strictly here, so the above estimate can only be viewed as a rough indication.
To determine the true value of N a better approach, for IPv4 servers, is simply
to exhaustively probe the IPv4 address space. We did not do so here, as that
would not have given us the leap second performance information we require.

List Shelf Life. As it derives from a static data set, the utility of our Best-50
will decrease over time. Some indication of its expected lifetime can be gained
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from the longitudinal results in [18], which report on a subset of Org servers
using data collected over 151 days in 2011-12 (Expl), and 124 days in 201415
(Exp2). Although Availability, Leap performance, and Errtime are not given, we
can compare with respect to Stratum Constancy, and Error Classification.

Of the Best-50 servers, there are 13 which also appear in that study. All 13
(100%) were found to be error-free in each of Expl and Exp2, as well as having
zero S1Downtime for Exp2 (stratum data was unavailable for Expl). For the
metrics available, this represents perfect agreement.

Of the 14 servers which feature in Table5, 13 also appear in the study,
of which 3 are suitable for direct comparison as they pass our criteria for
S1Downtime and have Error class in {G,R,C}. Of these, all 3 exhibit close
agreement, with no detected errors in each of Expl and Exp2, and again with
zero S1Downtime. Finally, at the other end of the spectrum, of the 4 servers in
the continuously errored H class in Table5, 3 were also classed as H in [18].

Based on the above, we expect that the level of churn in the Best-50 list
provided here will be low on useful timescales, for example 5 years. Knowledge
of server configuration would be of interest here also to attempt root cause
analysis, as would correlating against network failures. We have attempted to
contact administrators, however the response rate was minimal.

Measurement Cost. The analysis used here requires specialist hardware, tech-
niques, unusual data (leap events), and significant effort. A priori, this does not
scale. A goal of future work must be to develop lighter weight approximate tech-
niques and more automated server error detection using standard hardware. The
work here can serve to evaluate the effectiveness of such techniques.

Scalability cost divides substantially along criteria lines. Stratum Constancy
measurement scales trivially, as it depends neither on special hardware nor the
network path. Availability also scales readily, though to remove packet loss bias
requires measurement close to the server and/or path diversity, and hence client
placement diversity ideally. Leap Performance is inherently difficult as oppor-
tunities to measure it occur only every =2.5years. On the other hand this also
limits the workload, and the protocol aspects are as scalable as Stratum Con-
stancy. Rankings could be defined which exclude leap second criteria for appli-
cations where this is not needed, for example Internet measurement campaigns
not covering leap events, which are announced months in advance.

The Clock Error criteria is the expensive one, and the most critical. The
hardware cost could be avoided by using a robust clock synchronization and
timestamping approach such as RADclock [16] as a Stratum-2, with its Stratum-
1 server selected from the Best-50 provided here. Although timestamping errors
would of course be higher, they would still be well below server error sizes in
most cases. In terms of the error analysis itself, it is feasible, albeit non-trivial,
to automate this to a good level of accuracy, and this is a direction for our future
work. Such a capability would enable, for example, ongoing monitoring and error
querying for important servers. However, this is not essential for the purpose of
maintaining the Best-50 as we have defined it here, as the construction of the
list, combined with its expected low churn, implies that only a small number
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of high quality servers (which are faster to process) would have to be evaluated
from scratch each year to keep it current. Those remaining would also have to
be re-evaluated, but this is less onerous when they have been seen before.

Server Ranking. From the quality dimensions we have considered various rank-
ings could be defined. An obvious way to rank the Best-50 is the S1Downtime
ordering employed in the list construction, however this cannot be extended over
all servers, as many will not satisfy the minimum requirements in other crite-
ria. A candidate which avoids this problem is Badtime, defined to be the sum
of Errtime and 1—Availability, being the proportion of time a server should be
avoided. This should suit contexts where leap second performance is not critical.

Great care must be taken in how any ranking is used, to prevent high ranking
servers from receiving high loads. It would be a mistake (and is not the intent
of this paper!) to recommend that clients make use of the Best-50 en masse.
Instead, server rank should be used within broader systems designed to tradeoff
load balancing and server quality appropriately. Indeed, NTP Pool’s score is an
attempt to do this (Sect.2), however it is not grounded in knowledge of actual
server error. The larger problem is that NTP Pool breaks NTP’s inherent load
balancing mechanism, namely the server hierarchy, while simultaneously prefer-
encing its own load balancing over server quality. Thus pools contain servers of
mixed strata, and clients are given different servers over time with quality which
may vary enormously. Instead, we argue that the hierarchy needs to be enforced,
and within that, well defined notions of rank given higher prominence.

Client Impacts. Finally, a separate, but natural question to ask is, how impor-
tant is it for a client to select a server of Best-50 calibre? The client impact will
depend strongly on many factors including the robustness of the clock synchro-
nization algorithm in use, the policy regarding back-up servers and if they are
available, the size of server errors, their duration, the length of non-availability
periods, the stratum of the client, the characteristics of the path to the server,
and whether a leap second is involved. Potential errors can range from negligi-
ble (< 10ps) and short-term (few seconds) at one extreme, to permanent (until
server change) and extreme (10’s of ms to seconds or well beyond plus high
variability) at the other. The onus on the Stratum-1 server is to show near per-
fect behaviour to anchor and lift performance across the timing system. This is
possible, as many in the Best-50 demonstrate.

6 Conclusion

Our Best-50 list is not definitive. It is however the first serious attempt to quan-
tify timeserver best practice that we are aware of. We believe that it will be
of use for a number of years at least, by which time the methodology could be
improved to make such a list more comprehensive, dynamic and less expensive to
generate. It is in any event, feasible to maintain it even with current technology.

Acknowledgment. Partially supported by Australian Research Council’s Discovery
Projects funding scheme #DP170100451.



Appendix

(see Tables 6 and 7).

Where on Earth Are the Best-50 Time Servers?

Table 6. URL to IP mapping of the servers in Table 4.

[CONT] URL [ IP [cY]
AF stratuml.neology.co.za | 41.73.40.11 ZA
AN — |- —
oC ntpl.net.monash.edu.au | 130.194.1.96 AU

ntpl.oma.be | 193.190.230.65 | BE

ntp.freestone.net | 193.5.68.2 CH
netopyr.hanacke.net | 94.124.107.190 | CZ

ntp.nic.cz | 217.31.202.100 | CZ

ptbtimel.ptb.de | 192.53.103.108 | DE
ptbtime3.pth.de | 192.53.103.103 | DE

hora.roa.es | 150.214.94.5 ES

ntp.i2t.ehu.es | 158.227.98.15 ES

unknownl | 188.39.213.7 GB

unknown? | 81.187.202.142 | GB

ntp2.litnet.1t | 193.219.61.120 LT
metronoom.dmz.cs.uu.nl | 131.211.8.244 NL
unknown3 | 148.252.105.132 | NO

goblin.nask.net.pl | 195.187.245.55 | PL

EU ntp.certum.pl | 213.222.200.99 | PL
ntp.fizyka.umk.pl | 158.75.5.245 PL
time.assecobs.pl | 195.189.85.132 | PL
ntpl.niiftriirkutsk.ru | 46.254.241.74 RU
ntp2.niiftri.irkutsk.ru | 46.254.241.75 RU
ntpl.gbg.netnod.se | 192.36.133.17 SE
ntp2.gbg.netnod.se | 192.36.133.25 SE
ntpl.mmo.netnod.se | 192.36.134.17 SE
ntp2.mmo.netnod.se | 192.36.134.25 SE
ntpl.sth.netnod.se | 192.36.144.22 SE
ntp2.sth.netnod.se | 192.36.144.23 SE
istntpprd—02.corenet.ualberta.ca | 129.128.5.211 CA
tick.usask.ca | 128.233.154.245 | CA

tock.usask.ca | 128.233.150.93 | CA

clepsydra.dec.com | 204.123.2.5 Us
m4c2236d0.tmodns.net | 208.54.34.76 UsS
m4d2236d0.tmodns.net | 208.54.34.77 Us
montpelier.ilan.caltech.edu | 192.12.19.20 US
navobsl.gatech.edu | 130.207.244.240 | US

NA ntp.colby.edu | 137.146.28.85 Us
ntpl.digitalwest.net | 72.29.161.5 UsS
tick.ucla.edu | 164.67.62.194 UsS
time—a.netgear.com | 209.249.181.52 | US
time—a.stanford.edu | 171.64.7.105 Us
tock.phyber.com | 207.171.30.106 | US
usatl4-ntp-002.aaplimg.com | 17.253.6.253 UsS
usno.hpl.hp.com | 204.123.2.72 UsS
usnyc3-ntp-003.aaplimg.com | 17.253.14.123 UsS
f2.knsl.eonet.ne.jp | 60.56.214.78 JP
jptyo5-ntp-001.aaplimg.com | 17.253.68.125 JP

AS ntpl.noc.titech.ac.jp | 131.112.125.48 | JP
ntp-b2.mict.go.jp | 133.243.238.163 | JP

unknown4 | 210.23.25.77 SG

SA ntp.shoa.cl | 200.54.149.24 CL
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Table 7. URL to IP mapping of the servers in Table 5.
[ CONT | URL [ IP [cY]
ocC ntpl0.net.monash.edu.au | 130.194.10.150 | AU
NA time-a.timefreq.bldrdoc.gov | 132.163.4.101 | US
NA time-c.timefreq.bldrdoc.gov | 132.163.4.103 | US
oC ntp.waia.asn.au | 218.100.43.70 | AU
EU ntpl.fau.de | 131.188.3.221 | DE
NA srcf-ntp.stanford.edu | 171.66.97.126 | US
SA a.stl.ntp.br | 200.160.7.186 | BR
EU ntpl.ovniiftriru | 89.109.251.21 | RU
EU ntp3.fau.de | 131.188.3.223 | DE
NA ntp.myfloridacity.us | 71.40.128.146 | US
NA time-b.nist.gov | 129.6.15.29 US
NA t2.timegps.net | 69.75.229.43 US
EU rustimeOl.rus.uni-stuttgart.de | 129.69.1.153 DE
EU ntp2.usv.ro | 80.96.120.252 | RO
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Internet services and applications rely on highly distributed infrastructures to
deliver content. When applications stop working or when their performance
degrades, service providers and more sophisticated users often resort to tracer-
oute to narrow down the likely location of the problem. Traceroute issues probes
with increasing TTL to force routers along the path towards a destination to
issue an ICMP TTL exceeded message back to the source, which iteratively
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Abstract. Traceroute is often used to help diagnose when users experi-
ence issues with Internet applications or services. Unfortunately, probes
issued by classic traceroute tools differ from application traffic and hence
can be treated differently by routers that perform load balancing and
middleboxes within the network. This paper proposes a new traceroute
tool, called Service traceroute. Service traceroute leverages the idea from
paratrace, which passively listens to application traffic to then issue
traceroute probes that pretend to be part of the application flow. We
extend this idea to work for modern Internet services with support for
identifying the flows to probe automatically, for tracing of multiple con-
current flows, and for UDP flows. We implement command-line and
library versions of Service traceroute, which we release as open source.
This paper also presents an evaluation of Service traceroute when tracing
paths traversed by Web downloads from the top-1000 Alexa websites and
by video sessions from Twitch and Youtube. Our evaluation shows that
Service traceroute has no negative effect on application flows. Our com-
parison with Paris traceroute shows that a typical traceroute tool that
launches a new flow to the same destination discovers different paths than
when embedding probes in the application flow in a significant fraction of
experiments (from 40% to 50% of our experiments in PlanetLab Europe).

Introduction

reveals the IP addresses of routers in the path [4].

Traceroute, however, may fail to reveal the exact path that a given appli-
cation flow traverses. For example, Luckie et al. [8] have shown that depending
on the traceroute probing method (ICMP, UDP, and TCP) the set of reached
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destinations and discovered links differ. The authors explain these differences by
the presence of middleboxes in the path such as load balancers and firewalls that
make forwarding decisions based on flow characteristics. These results imply that
diagnosing issues on application flows must ensure that traceroute probes have
the same characteristics as the application’s packets.

This paper develops a traceroute tool, called Service traceroute, to allow dis-
covering the paths of individual application flows. Service traceroute passively
listens to application traffic to then issue probes that pretend to be part of the
application flow. Some traceroute tools (for instance, paratrace [6], TCP side-
car [13], and Otrace [5]) already enable probes to piggyback on TCP connections.
These tools observe an active TCP connection to then insert traceroute probes
that resemble retransmitted packets. TCP sidecar was developed for topology
mapping, whereas paratrace and Otrace for tracing past a firewall. As such, they
lack the support for tracing paths of modern application sessions, which fetch
content over multiple flows that change dynamically over time. First, these tools
provide no means to identify the set of application flows to trace. They require
as input the destination IP address and the destination port to detect the target
application flow. Second, they trace one target application flow at a time. Finally,
these tools lack the support for tracing application flows using UDP as transport
protocol, which are increasing thanks to the adoption of QUIC protocol [7].

Our work makes the following contributions. First, we develop and implement
Service traceroute (Sect.2), which we release as open source software. Service
traceroute is capable of identifying application flows to probe and of tracing the
paths of multiple concurrent flows of both TCP and UDP flows. For example,
a user may simply specify trace ‘Youtube’ and Service traceroute will identify
Youtube flows and then trace all of their paths. Service traceroute is configurable
to cover a large variety of Internet services.

Our second contribution is to conduct the first thorough evaluation of the
effect of embedding tracetoute probes within application flows. One issue with
this approach is that we may hurt application performance. Our evaluation shows
that in the vast majority of cases, Service traceroute has no side-effect on the
target application (Sect.4). Finally, we compare Service traceroute with 0Trace,
which also embeds probes within a target application flow, and with Paris Tracer-
oute, which launches a new flow for probing (Sect. 5). Our comparison with Paris
traceroute shows that when we launch a new flow with traceroute probes we
observe a different path in around 40% to 50% of paths depending on the appli-
cation. This difference reduces considerably for the majority of applications when
we run Paris traceroute with the same flow ID as the target application flow,
which shows that differences are mostly due to middleboxes that make forward-
ing decisions per flow. These results highlight the need for Service traceroute,
which automatically identifies the flow IDs of the target application to create
probes.
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2 Tool Design and Implementation

Service traceroute follows the same high-level logic as paratrace or Otrace. Given
a target application flow, which we define as the application flow whose path
we aim to trace, Service traceroute proceeds with two main phases. The first
phase is the passive observation of a target application flow to define the content
of the probes. Then, the second phase involves active injection of TTL-limited
probes within the application flow. The main difference is that Service traceroute
identifies the flows to trace automatically and supports tracing paths traversed
by multiple application flows concurrently. The user can either directly specify
the set of target application flows or simply describe a high-level service (e.g.,
Youtube). Service traceroute will then trace paths traversed by all the flows
related to the target service. This section first describes the two phases focus-
ing on the new aspects of Service traceroute to allow per service tracing and
then presents our implementation. Library and command-line versions of Ser-
vice traceroute, together with the scripts to perform data analysis are available
as open source projects [1].

2.1 Observation of Target Application Flow

Service traceroute passively observes traffic traversing a network interface to
search for packets with the flow-id of the target application flows.! Service tracer-
oute takes a set of target application flows as input, in contrast with previous
tools which can only trace the path traversed by one single application flow.
Users can either explicitly specify one or more target application flows or they
can simply specify a service. Service traceroute uses a database of signatures of
known services to inspect DNS packets in real-time and identify flows that match
the target service. We release the DB as open source, so users can contribute to
add or update the signatures in the database [1]. We define as signature the set
of domains and IP addresses corresponding to a specific service. For instance,
‘google.com’ or the corresponding IP addresses can be used in the signature to
detect Google services. Our current database has signatures for popular video
streaming services such as Netflix, Youtube, and Twitch. We identify web flows
simply from the domain or the host name given as input. For additional flexibil-
ity, it is possible to add domains and IP addresses via command line parameters
or through the library API.

2.2 Path Tracing

Only once it identifies a packet belonging to the target application flow, Service
traceroute will start the tracing phase. This phase works as classic traceroute
implementations sending probes with increasing TTL, but Service traceroute
creates a probe that takes the form of an empty TCP acknowledgement that

1 'We use the traditional 5-tuple definition of a flow (protocol, source and destination
IP, as well as source and destination port).
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copies the 5-tuple of the flow as well as its sequence number and acknowledge-
ment number (similar to paratrace and Otrace). We rely on the flow-id plus the
IPID field to match issued probes with the corresponding ICMP responses. We
note that this is sufficient to correctly identify probes even when tracing mul-
tiple concurrent target application flows. The maximum number of concurrent
target application flows varies based on the used configuration as the IPID field
is dynamically sliced based on the number of probes that have to be generated.
For example, with traceroute standard parameters, i.e. maximum distance of
32 and 3 packets per hop, Service traceroute can trace paths of more than 600
target application flows in parallel.

Service traceroute stops tracing when the target application flow closes to
avoid any issues with middleboxes (which may interpret probes after the end of
the connection as an attack) and also to reduce any network and server overhead.
In contrast to prior tools that only support TCP, we add support for UDP. In
this case, we create probes with empty UDP payload, but with the same 5-tuple
flow-id as the target application flow. Given UDP has no explicit signal of the
end of the flow (like the FIN in TCP), we stop tracing if the flow produces no
further packets (either received or sent) after a configurable time interval.

2.3 Implementation

We implement Service traceroute in Go and release command-line and library
versions. The command-line version is useful for ad-hoc diagnosis, whereas the
library allows easy integration within monitoring systems. The library version
of Service traceroute outputs a json data structure that contains the discovered
interfaces with the observed round-trip-time values. For the command line ver-
sion, Service traceroute shows the results of each trace in the traceroute format,
i.e., the list of hops with the corresponding round-trip times.

Service traceroute is configurable to adapt to different applications. It
includes three types of probing algorithms that capture the tradeoff between
tracing speed and network overhead. PacketByPacket sends only one probe at
a time. HopByHop sends a configurable number of probes with the same TTL
at a time (3 by default). Concurrent sends all probes to all hops at once. Given
that Service traceroute requires the target application flow to be active dur-
ing tracing, some applications with short flows (e.g., Web) require the higher
overhead of Concurrent to complete all the probes within the flow duration. Ser-
vice traceroute also allows configuring the number of probes for each TTL, the
inter-probe time, and inter-iteration time (i.e., the time between packets with
different TTL) to further control the tradeoff between tracing speed and over-
head. Finally, Service traceroute allows to specify three types of stop conditions:
the maximum distance from the source, the maximum number of non-replying
hops, like Paris Traceroute, or explicit stop points in the form of IP addresses.
The stop condition is particularly important for Service traceroute because the
destination host will never respond with an ICMP error message as probes are
part of the target application flow.
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Following extensive calibration tests (reported in Sect.3), we set Service
traceroute to use as default the Concurrent mode, together with a maximum
distance of 32 and 3 probes per hop.

3 Evaluation Method

We design our evaluation around two questions. First, does Service traceroute
affect the target application flows? Service traceroute injects new packets within
the application flow. Although the majority of these packets will be discarded
before they reach the servers, a few probe packets will reach the end-host and
can potentially affect the target application flows. Second, do paths discovered
with Service traceroute differ from those discovered by other traceroute methods?
One assumption of our work is that paths taken by classic traceroute probes
may not follow the same paths as the packets of the target application flows.
We present a preliminary evaluation to help answer these questions, where we
use Service traceroute to trace paths of target application flows corresponding to
the two most popular Internet services: Web and video. We compare our results
with that of Paris traceroute [2] and 0Trace [5].

‘Web. We select the top-1000 Alexa webpages on April 14 2018 as target web
flows.

Video. We focus on two popular video streaming services: Twitch and YouTube.
We select Twitch videos on their homepage where Twitch shows dynamically a
popular live streaming video. While for YouTube, we select 20 random videos
from the catalogue obtained after arbitrarily searching with the keyword “4K
UHD”. With YouTube, we evaluate both TCP and QUIC.

Calibration. We run extensive experiments to calibrate Service traceroute for
these two applications varying the probing algorithm and the number of probes
per hops [9]. Our results (not shown for conciseness) indicate that the best
settings to maximize the fraction of completed traceroutes while minimizing the
probing overhead is different for video and Web. For video, we use the HopByHop
probing algorithm with a timeout of 2 seconds to wait for ICMP replies, whereas
for web we use the Concurrent probing algorithm. For both, we set the maximum
distance to 32 and the number of probes per hop to 3.

Comparison with Paris Traceroute. We select Paris traceroute because its
Multipath Detection Algorithm (MDA) [16] can discover with high probability
all paths between the source and the destination in case there is a load balancer
in the path. This allows us to disambiguate whether the differences we may
encounter between Paris traceroute and Service traceroute are because of load
balancing or some other type of differential treatment. We evaluate four versions
of Paris traceroute with MDA enabled using the three protocols ICMP, UDP,
and TCP as well as Paris traceroute to trace a single path with the same 5-tuple
as the target application flow.
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Comparison with 0Trace. We select 0Trace as it implements the idea of
embedding probes in a target application flow and it has a working implementa-
tion.? 0Trace, however, requires as input the flow to probe, which is hard to know
in advance. We used Service traceroute’s DNS resolution to detect the flow to
probe and then launch 0Trace. Unfortunately, the download time for web pages
is extremely short and our script was too slow to detect the target application
flows and then run OTrace. Hence, for this comparison we focus only on Twitch
and Youtube. This experience illustrates the challenge of running OTrace in prac-
tice and highlights the importance of integrating flow identification in Service
traceroute.

Experiment Setup. We run our tests during 30 days in July 2018 from 27
PlanetLab nodes in Europe.? Experiments for video and Web are similar. We
first launch Service traceroute, then we start streaming a video or downloading
a webpage, once that is done we run the four versions of Paris traceroute and
O0Trace back-to-back. Then, we stream again the same video or download the
same webpage without Service traceroute. We have run a total of 459 videos,
153 for Twitch and 306 equally split between YouTube with TCP and with
QUIC, and 1000 Web experiments. All datasets collected in our experiments are
available [1].

Data Representativeness. Webpages in the Alexa top-1000 list are often
hosted on CDNs [12]. This choice guarantees that we cover the large major-
ity of locations hosting web content (i.e., all major CDN providers), but we may
fail to capture the behavior of smaller webpages. Another bias comes from our
choice of PlanetLab nodes as it is well known that they are mostly connected via
academic networks [3,14] and hence may fail to capture the behavior of commer-
cial ISPs. Even with these limitations, our European-scale evaluation is useful
to determine whether or not Service traceroute affects the application flows of
popular services (top-1000 Alexa as well as Twitch/Youtube). It is also useful to
shed some light on whether there are differences between paths discovered with
Service traceroute and more traditional traceroute paths. The generalization of
these results to vantage points located in other areas of the Internet and to other
services would require larger scale experiments.

4 Side Effects of Service Traceroute

This section evaluates whether Service traceroute affects target application flows.
Firewalls or servers may mistakenly interpret too many duplicated packets within
a flow as an attack or losses, which in turn may cause application flows to be

2 To make 0Trace work on PlanetLab nodes, we had to replace the library to issue
probes from dnet to scapy.

3 Service traceroute failed to run on PlanetLab US nodes due to compatibility issues.
PlanetLab US nodes use an old Linux distribution (Fedora 2), which lacks many
required tools and libraries necessary to run our program.
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blocked or achieve lower throughput. Although the idea of piggybacking tracer-
oute probes within application flows has been around for approximately a decade,
there has been no prior evaluation of whether it can hurt target application flows.
TCP sidecar evaluates the intrusiveness of their method, but only by measuring
the number of abuse reports [13].

4.1 Metrics

We select different metrics to measure properties of target application flows.
Flow duration refers to the time between the first and the last packet of a flow.
For TCP, we measure the time from the server SYN to the first FIN or RST.
For UDP, we measure the time from the first and the last packet coming from
the server. We compute the average throughput of a target application flow as
the total application bytes divided by the flow duration. In addition to these
metrics, which we can compute for both TCP and UDP flows, we have three
other TCP specific metrics: the number of resets, which capture the number of
target application flows closed by resets; window size is the difference between
the minimum and the maximum TCP window size of the server for an application
flow; and the number of retransmissions is the number of retransmission from
the server per application flow.

4.2 Aborted Flows

We first study whether Service traceroute causes flows to be aborted. We have
seen no video sessions that ended with resets in our experiments. Even though
our analysis is only from PlanetLab vantage points in Europe, we believe that
this result will hold more generally for both Twitch and Youtube as these type
of large video providers deploy multiple versions of the same software across
servers/caches [10,17]. Any differences will depend on middleboxes placed either
close to the clients or in the path towards the service. Our results for webpage
downloads are also encouraging, we see no aborted flows. In some preliminary
experiments we observe resets for three of the top-1000 websites only with Service
traceroute. Our manual analysis suggests that either some firewall close to the
website or the web server itself is resetting the flows due to the duplicate packets.

4.3 Flow Performance

We next evaluate whether Service traceroute affects flow performance. Figure 1
presents the cumulative distribution function of the flow duration in seconds with
and without Service traceroute. We present eight curves: two for video sessions
over TCP both for Twitch and Youtube, two for Youtube sessions over UDP,
and two for all web page downloads. We see that the distributions with and
without Service traceroute are mostly the same. Similarly, our analysis (omitted
due to space constraints) shows that the distributions of average throughput,
TCP window size, and retransmissions are similar with and without Service
traceroute. We conclude that Service traceroute has no effect on the performance
of target application flows.
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Fig. 1. Flow duration of target application flows with and without Service traceroute

5 Comparison with Traceroute Tools

The key motivation for building Service traceroute is that we must send probes
within the target application flow to discover its path. Although Luckie et al. [§]
have observed different paths depending on the traceroute method (UDP, ICMP,
or TCP), no prior work has studied how often piggybacking traceroute probes
within application flows will discover different paths. This section compares Ser-
vice traceroute with different traceroute probing methods using Paris traceroute,
which discover all paths between a source and destination in the presence of load
balancing, and 0Trace, which also piggybacks probes inside an application flow.

5.1 Metrics

We select two metrics to compare the discovered paths. The path length captures
the distance from the source to the last hop that replies to probes. For Paris
traceroute, we take the length of the longest path in case of multiple paths. The
path edit distance captures the edit distance between the path discovered with
Service traceroute and that discovered with another traceroute (0Trace or Paris
traceroute). The edit distance is the minimum number of operations (insertion,
deletion, and substitution) needed to transform one string (in our case, one path)
into the other. In case Paris traceroute returns multiple paths, we select the one
with the smallest edit distance. This allows us to focus on the best case. We
treat empty hops (marked with a *) as any other character. When we observe
differences between paths, we analyze where the differences are in the path:
origin AS, middle of the path, or destination AS. We map IPs to ASes using
the RIPEstat Data API [11]. The location where the two paths diverge help us
understand the placement of middleboxes.

5.2 Path Lengths

We study the length of paths discovered with Service traceroute, Paris traceroute
MDA (TCP, ICMP, and UDP), and OTrace. The comparison of path lengths
helps capture which versions of traceroute discover more hops. For application
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diagnosis it is important that the tool reveals most (hopefully all) of the path,
so that we can identify issues in any parts of the path. Figure2 presents the
cumulative distribution functions of path length for each service: Web, Twitch,
and Youtube (UDP and TCP). We see that for all three services, probing with
TCP and UDP discovers less hops. The Web results confirm Luckie et al. [8]’s
analysis from ten years ago, which showed that UDP probes cannot reach the
top Alexa web sites as probes correspond to no active flow. Service traceroute
discovers longer paths for all three services. ICMP and OTrace discover paths
that are almost as long as those discovered by Service traceroute. The next
sections characterize the path edit distance and the location of path differences
to shed light on the causes of the differences we observe in path length.
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Fig. 2. Length of paths discovered with different versions of traceroute.

5.3 Path Differences When Tracing with Different Flow IDs

This section studies the differences in paths discovered by Service traceroute
versus by other traceroutes in the most typical case, i.e., when traceroute starts a
new flow and picks the port numbers with no knowledge of the target application
flow ID. We compare with Paris traceroute MDA using TCP, UDP, and ICMP.

Figure 3 presents the cumulative distribution functions of path edit distance
between Service traceroute and Paris traceroute for Web, Twitch, and Youtube
(UDP and TCP). A path edit distance of zero corresponds to the case when
the Paris traceroute output contains the path discovered by Service traceroute.
We see that even though we select the closest path in Paris traceroute’s output
to compute the edit distance, the path discovered with Service traceroute only
matches that discovered by Paris traceroute MDA in about 55% of the web-
page downloads, 50% of the Twitch sessions, and almost 75% of the Youtube
streaming sessions. When paths discovered by Service traceroute differ from
paths discovered by Paris traceroute, the edit distance is relatively high as the
vast majority of paths towards these services is less than 15 hops long. In gen-
eral, Twitch has longer paths (up to 30 hops) and Youtube shorter (up to 20
hops), which explains the differences in the values of edit distance we observe.
For Twitch, UDP discovers paths that are the most similar to Service tracer-
oute’s paths, whereas for both Web and Youtube, ICMP leads to the most similar
paths.
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Fig. 3. Path edit distance between Service traceroute and Paris traceroute.

5.4 Path Differences When Tracing with Same Flow ID
as Application

One possible explanation for the differences we observe in the previous section
is the fact that the flow ID of Paris traceroute probes is different than the ID
of the target application flow, which can trigger different forwarding decisions
in middleboxes that act per flow. In this section, we compare Service tracer-
oute’s output with Paris traceroute when it uses the same flow ID as the target
application flow. Note that in this case Paris traceroute still runs after the tar-
get application flow finishes, we get the correct flow ID based on the Service
traceroute’s run just before in order to guarantee a complete match.

Figure4 compares the path discovered by Service traceroute with that dis-
covered by Paris traceroute when using the exact same flow ID as the target
application flow. In this case, Paris traceroute discovers the same path as Ser-
vice traceroute more often than when probing with MDA: about 65% of Twitch
sessions, 91% of Youtube sessions, and 93% of web downloads. This result shows
that issuing probes with a different flow ID than that of the target applica-
tion flow causes most of the differences we observe in the previous section. The
remaining differences are due to three possible causes: (i) path changes that
might occur between the runs of Service traceroute and Paris traceroute; (ii)
per-packet load balancing; or (iii) middleboxes (such as application-layer prox-
ies or firewalls) that track the state of TCP connections and may hence drop
packets after connections are terminated. In fact, in our initial testing we noticed
cases of probes not generating any ICMP response if issued after the target appli-
cation flow finishes. We further examine the paths for Twitch to shed light on the
reasons for the large fraction of paths that are different between Paris traceroute
and Service traceroute. It is unlikely to have routing changes for about 45% of
paths and we verified that there are no middleboxes dropping our probes (which
would appear as stars). Thus, we conjecture that the differences are likely due
to per-packet load balancing, but we must run further experiments to verify this
conjecture.

We also compare Service traceroute with 0Trace. Unfortunately, due to how
web browsers loop across a large number of different ports, both Twitch and
Youtube often change port numbers between consecutive runs. Given that we
launch a new video session to probe with 0Trace, the result is that Service
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Fig. 4. Path edit distance between Service traceroute and Paris traceroute using the
same flow ID.

traceroute and OTrace often issue probes with different flow IDs. This issue
biases our experiments, and hence we omit these results (available at [9]).

5.5 Location of Path Divergence Points

To help explain our results we study the location of the points where Service
traceroute’s and Paris traceroute’s paths diverge, which we call the divergence
point. Table 1 shows the fraction of experiments with divergence points at the
origin AS, the middle of the path, and the destination AS. We conduct this
analysis to help explain the results in the previous sections, but we note that
the findings are heavily biased by our vantage points and destinations.

Table 1. Location of divergence points [% of all flows]

Web pages (TCP) | Twitch (TCP) Youtube (TCP and UDP)
Configuration Origin | Middle | Dest. | Origin | Middle | Dest. | Origin | Middle | Dest.
MDA UDP 7.33 [39.82 4.92/0.41 |50.56 |0.64 [12.49 |19.52 |3.15
MDA TCP 15.13 |34.37 2.86(4.28 |49.17 |0.51 |15.67 |19.13 |3.92
MDA ICMP 9.11 |19.04 |17.44/7.35 |44.50 |1.99 | 6.81 |[19.95 |1.55
PT same flow ID| 4.06 1.81 1.03|8.43 24.72 |2.18 4.08 0.87 |4.61

For the three applications, when comparing with MDA most of the divergence
points are in the middle (from 19% for Youtube to above 40% for Twitch). Given
the middle contains more hops it is not too surprising that it also contains more
divergence points. When using Paris traceroute with the same flow ID, however,
the percentage of divergence points in the middle decreases substantially to less
than 2% for Web and Youtube and to 24% for Twitch. This result indicates that
divergence points in the middle mostly correspond to middleboxes that perform
per-flow forwarding. Paris traceroute’s MDA discovers all possible interfaces for
every hop of the path and we compare the closest path MDA finds to Service



Service Traceroute: Tracing Paths of Application Flows 127

traceroute’s output, but MDA often uses different flow IDs than the target appli-
cation flow and hence it may not get the exact same sequence of hops end-to-end.
For Paris traceroute with the same flow ID, we observe more divergence points
at the origin, which may indicate path changes. The only exception is Twitch,
which still has around 24% of divergence points in the middle. Our analysis of
these divergence points shows that half of them are within a single ISP: GTT
Communications (AS 3257).

6 Related Work

Since Jacobson’s original traceroute tool [4], a number of new versions have
emerged with different features and with new methods for constructing probes
(e.g., Paris traceroute [2,16] and tcptraceroute [15]). All these traceroute versions
have a drawback for the goal of diagnosing a target application flow because
they start a new flow to send probes. As such, middleboxes may treat them
differently than the target application flow. Service traceroute avoids this issue
by piggybacking traceroute probes within active application flows. This idea
was first introduced in paratrace [6], which is no longer available, and then
re-implemented in Otrace [5] with the goal of tracing through firewalls and in
TCP sidecar [13] for reducing complaints of large-scale traceroute probing for
topology mapping. Unfortunately, none of these tools is actively maintained.
Service traceroute adds the capability of automatically identifying application
flows to trace by a domain name, of tracing UDP flows as well as of tracing
multiple concurrent flows that compose a service. We release both a command-
line and a library version as open source. Furthermore, we present an evaluation
of the side-effects of piggybacking traceroute probes within application traffic
as well as of its benefit by comparing the differences with Paris traceroute and
with 0Trace. Our characterization reappraises some of the findings from Luckie
et al. [8], which show that the discovered paths depend on the protocol used in
the probes. Their study, however, includes no traceroute tools that piggyback
on application flows.

7 Conclusion

In this paper we present Service traceroute, a tool to trace paths of flows of mod-
ern Internet services by piggybacking TTL-limited probes within target applica-
tion flows. Our evaluation of paths to popular websites and video services from
PlanetLab Europe shows that Service traceroute’s probing has no effect on target
application flows. Moreover, a typical traceroute tool that launches a new flow
to the same destination discovers different paths than when embedding probes
in the application flow in a significant fraction of experiments (from 40% to 50%
of our experiments) as our comparison with Paris traceroute shows. When we
set Paris traceroute’s flow ID to that of the target application flow, the resulting
paths are more similar to Service traceroute’s. Identifying the flow ID to probe,
however, is not trivial. Modern applications rely on a large pool of servers/ports.
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Even to run 0Trace, which implements the same idea of piggybacking probes in
the application flow, we had to rely on Service traceroute’s functionality to iden-
tify target application flow IDs to probe. In future work, we plan to add the
support of IPv6 to Service traceroute. We further plan to perform a larger scale
characterization of results of Service traceroute across a wide variety of services
and a larger set of globally distributed vantage points.
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Abstract. Enterprise networks are becoming more complex and dyn-
amic, making it a challenge for network administrators to fully track
what is potentially exposed to cyber attack. We develop an automated
method to identify and classify organizational assets via analysis of just
0.1% of the enterprise traffic volume, specifically corresponding to DNS
packets. We analyze live, real-time streams of DNS traffic from two
organizations (a large University and a mid-sized Government Research
Institute) to: (a) highlight how DNS query and response patterns dif-
fer between recursive resolvers, authoritative name servers, web-servers,
and regular clients; (b) identify key attributes that can be extracted effi-
ciently in real-time; and (c) develop an unsupervised machine learning
model that can classify enterprise assets. Application of our method to
the 10 Gbps live traffic streams from the two organizations yielded results
that were verified by the respective I'T departments, while also revealing
new knowledge, attesting to the value provided by our automated system
for mapping and tracking enterprise assets.

Keywords: Enterprise network + DNS analysis - Machine learning

1 Introduction

Enterprise networks are not only large in size with many thousands of con-
nected devices, but also dynamic in nature as hosts come and go, web-servers
get commissioned and decommissioned, and DNS resolvers and name servers get
added and removed, to adapt to the organization’s changing needs. Enterprise
IT departments track such assets manually today, with records maintained in
spreadsheets and configuration files (DHCP, DNS, Firewalls, etc.) — this is not
only cumbersome, but also error prone and almost impossible to keep up-to-date.
It is therefore not surprising that many enterprise network administrators are
not fully aware of their internal assets [12], and consequently do not know the
attack surface they expose to the outside world.

The problem is even more acute in university and research institute campus
networks for several reasons [6]: (a) they host a wide variety of sensitive and lucra-
tive data including intellectual property, cutting-edge research datasets, social
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Fig. 1. University campus: outgoing queries and incoming responses, measured on 3
May 2018. (Color figure online)

security numbers, and financial information; (b) their open-access culture, decen-
tralized departmental-level control, as well as federated access to data makes them
particularly vulnerable targets for unauthorized access, unsafe Internet usage,
and malware; and (c) they typically have high-speed network infrastructure that
makes them an attractive target for volumetric reflection attacks.

Our aim in this paper is to develop an automated method to map internal
hosts of an enterprise network by focusing only on DNS traffic which: (a) is
a key signaling protocol that carries a wealth of information yet bypasses fire-
walls easily; (b) constitutes a tiny faction of total network traffic by volume
(less than 0.1% from our measurements in two networks); and (c) is easy to
capture with only a couple of flow entries (i.e mirroring UDP packets to/from
port 53) in an Openflow-based SDN switch. By capturing and analyzing DNS
traffic in/out of the organization, we dynamically and continually identify the
DNS resolvers, DNS name-servers, (non-DNS) public-facing servers, and regular
client hosts behind or not behind the NAT in the enterprise. This can let net-
work administrators corroborate changes in host roles in their network, and also
equip them with information to configure appropriate security postures for their
assets, such as to protect DNS resolvers from unsolicited responses, authoritative
name servers from amplification requests, and web-servers from volumetric DNS
reflection attacks.

Our specific contributions are as follows. We analyze real-time live streams of
DNS traffic from two organizations (a large University and a mid-sized Govern-
ment Research Institute) to: (a) highlight how DNS query and response patterns
differ amongst recursive resolvers, authoritative name servers, and regular hosts;
(b) identify key DNS traffic attributes that can be extracted efficiently in real-
time; and (c¢) develop an unsupervised machine learning model that can classify
enterprise assets. Application of our method to the traffic streams from the two
organizations yielded results that were verified by the respective I'T departments
while revealing new information, such as unsecured name servers that were being
used by external entities to amplify DoS attacks.



Mapping an Enterprise Network by Analyzing DNS Traffic 131

2 Profiling Enterprise Hosts

In this section, we analyze the characteristics of DNS traffic collected from the
border of two enterprise networks, a large University campus (i.e., UNSW) and
a medium-size research institute (i.e., CSIRO). In both instances, the IT depart-
ment of the enterprise provisioned a full mirror (both inbound and outbound) of
their Internet traffic (each on a 10 Gbps interface) to our data collection system
from their border routers (outside of the firewall), and we obtained appropri-
ate ethics clearances for this study'. We extracted DNS packets from each of
enterprise Internet traffic streams in real-time by configuring rules for incom-
ing/outgoing IPv4 UDP packets for port 53 on an SDN switch (extension to
IPv6 DNS packets is left for future work). The study in this paper considers the
data collected over a one week period of 3-9 May 2018.

2.1 DNS Behavior of Enterprise Hosts

Enterprises typically operate two types of DNS servers: (a) recursive resolvers
are those that act on behalf of end-hosts to resolve the network address of a URL
and return the answer to the requesting end-host (recursive resolvers commonly
keep a copy of positive responses in a local cache for time-to-live of the record
to reduce frequent recursion), and (b) authoritative servers of a domain/zone
are those that receive queries from anywhere on the Internet for the network
address of a sub-domain within the zone for which they are authoritative (e.g.,
organizationXYZ.net).

In order to better understand the DNS behavior of various hosts (and their
role) inside an enterprise network, we divide the DNS dataset into two categories:
(a) DNS queries from enterprise hosts that leave the network towards a server on
the Internet along with DNS responses that enter the network, (b) DNS queries
from external hosts that enter the network towards an enterprise host along with
DNS responses that leave the network.

This analysis helps us identify important attributes related to host DNS
behavior, characterizing its type/function including authoritative name server,
recursive resolver, generic public-facing server (e.g web/VPN servers), or end-
host inside the enterprise that may not always be fully visible to the network
operators. This also enables us to capture the normal pattern of DNS activity
for various hosts.

Outgoing Queries and Incoming Responses. Figure 1 shows a time trace of
DNS outgoing queries and incoming responses for the university campus?, with
a moving average over l-minute intervals on a typical weekday. The university
network handles on average 353 outgoing queries and 308 incoming responses per

! UNSW Human Research Ethics Advisory Panel approval number HC17499, and
CSIRO Data61 Ethics approval number 115/17.

2 We omit plots for the research institute in this section due to space constraint,
they are shown in Appendix 1.
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Fig. 2. University campus: incoming queries and outgoing responses, measured on 3
May 2018. (Color figure online)

second. By checking the transaction ID of queries and responses, we found that
17.28% of outgoing queries are “unanswered” (i.e., 5.26M out of 30.46M) on 3
May 2018. It is also important to note that 5.24% of incoming responses to the
university campus network (i.e., 1.39M out of 26.59M) are “unsolicited” on the
same day®. A similar pattern with lower number of outgoing queries and incom-
ing responses (i.e., average of 107 and 80 per second respectively) is observed in
the research institute network. This network experiences approximately double
the amount of unanswered queries (i.e., 34.14%) and unsolicited responses (i.e.,
12.15%) compared to the university network.

Query per Host: We now consider individual hosts in each enterprise. Unsur-
prisingly, the majority of outgoing DNS queries are generated by only two hosts
A and B in both networks, i.e., 68% of the total in the university campus (shown
by blue and yellow shades in Fig. 1(a)) and 82% of the total in the research insti-
tute — these hosts are also the major recipients of incoming DNS responses from
the Internet. We have verified with the respective IT departments of the two
enterprises that both hosts are the primary recursive resolvers of their organiza-
tions.

In addition to these recursive resolvers, we observe a number of hosts in both
organizations, shown by red shades in Fig.1(a), that generate DNS queries to
outside of the enterprise network. The 2,642 other Univ hosts in Fig.1(a) are
either: end-hosts configured to use public DNS resolvers that make direct queries
out of the enterprise network, or secondary recursive servers operating in smaller
sub-networks at department-level. We found that 286 of these 2,642 University
hosts actively send queries (at least once every hour) over the day and contact
more than 10 Internet-based DNS servers (resolvers or name-servers). These 286
hosts display the behavior of recursive resolvers but with fairly low throughput,
thus we deem them secondary resolvers. The remaining 2,356 hosts are only
active for a limited interval (i.e., between 5min to 10h) and contact a small

3 We acknowledge that some DNS packets could have been dropped by the switches
on which the span-port was configured, especially during periods of overload.
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Fig. 3. University campus: CCDF of (a) unsolicited incoming responses and (b) unan-
swered incoming queries per host, measured on 3 May 2018.

number of public resolvers (e.g., 8.8.8.8 or 8.8.4.4 of Google) over the day. We
found that 15 of 340 hosts in the research institute display behavior of secondary
resolvers.

Response per Host: Considering incoming responses (Fig. 1(b) for the uni-
versity network), a larger number of “other” hosts in both organizations are
observed — approximately 8 K hosts in the University and 5.8 K hosts in the
research institute. Most of these “other” hosts (i.e., 67%) are the destinations
of unsolicited responses. To better understand the focus target of these poten-
tially malicious responses, we analyze unsolicited incoming responses for the two
enterprises. Figure 3(a) shows the CCDF of total unsolicited incoming responses
per each host over a day for the university campus. Interestingly, the primary
recursive resolvers in both organizations are top targets: (a) in the University
campus, hosts A and B respectively are the destinations of 522 K and 201 K unso-
licited incoming responses (i.e., together receive 52% of total unsolicited DNS
responses), and (b) in the research institute, hosts A and B respectively are the
destination of 435K and 135K unsolicited incoming responses (i.e., together
receive 69% of total unsolicited DNS responses).

Incoming DNS Queries. Enterprises commonly receive DNS queries from the
Internet that are addressed to their authoritative name servers.

It can be seen that two hosts of the University campus (i.e., hosts C and
D in Fig.2) and one host (we name it Host C) of the research institute are the
dominant contributors to outgoing DNS responses — we have verified (by reverse
lookup) that these hosts are indeed the name servers of their respective organi-
zations. Interestingly, for both organizations we observe that a large number of
hosts (i.e., 197K hosts of the University campus and 244K hosts of the research
institute (shown by red shades in Fig.2(a) for the university network) receive
queries from the Internet, but a significant majority of them are unanswered (i.e.,
82.18% and 62.09% respectively) — these hosts are supposed to neither receive
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Table 1. Host attributes.

QryFracOut | numExtSrv | numExtClient | actvTimeFrac

Univ name server (host C) 0 0 0.29 0

Rsch name server (host C) 0 0 0.61 0

Univ recursive resolver (host A) |1 0.26 0 1

Rsch recursive resolver (host A) |1 0.49 0 1

Univ mixed DNS Server 0.55 0.03 0.06 1

Rsch mixed DNS Server 0.29 0.0008 0.0018 1

Univ end-host 1 0.00002 0 0.375

Rsch end-host 1 0.00003 0 0.25

nor respond to incoming DNS queries, highlighting the amount of unwanted DNS
traffic that targets enterprise hosts for scanning or DoS purposes.

To better understand the target of these potentially malicious queries,
we analyze unanswered incoming queries over a day for the two enterprises.
Figure 3(b) is the CCDF of total incoming unanswered queries per each host
for the university campus. It is seen that two hosts of the university campus
receive more than a million DNS queries over a day from the Internet with no
response sent back, whereas one host in the research institute has the similar
behaviour. By reverse lookup, we found that the University hosts are a DHCP
server and a web server that respectively received 9.4M and 4.4M unanswered
queries (together contributing to 72% of red shaded area in Fig.2(a)).

Furthermore, we analyzed the question section of unanswered incoming
queries that originated from a distributed set of IP addresses. Surprisingly, in
the University dataset we found that 72% of domains queried were irrelevant
to its zone (e.g., 47% for “nist.gov”, 5% for“svist21.cz”, and even 2% for
“google.com”), and in the research institute dataset we found 84% of domains
queried were irrelevant to its zone (e.g., 8% for “qq.com”, 7% for“google.com”,
and 5% for “com”).

Considering outgoing responses (shown in Fig.2(b) for the university net-
work), there are 68 hosts in the campus network (shown by the red shade) and 21
hosts in the research network that respond to incoming DNS queries in addition
to name servers (i.e., hosts C and D). We have verified (by reverse lookup) that
all hosts that generate “no Error” responses are authoritative for sub-domains of
their organization zone. We also note that some hosts that reply with “Refused”,
“Name Error” and “Server Failure” flags to some irrelevant queries (e.g., com)
— these are secondary name servers.

2.2 Attributes

Following the insights obtained from DNS behavior of various hosts, we now
identify attributes that help to automatically (a) map a given host to its function,
including authoritative name server, recursive resolver, mixed DNS server (i.e.,
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both name server and recursive resolver), a (non-DNS) public-facing server, or
a regular client; and (b) rank the importance of servers.

Dataset Cleansing. We first clean our dataset by removing unwanted (or mali-
cious) records including unsolicited responses and unanswered queries. This is
done by correlating the transaction ID of responses with the ID of their corre-
sponding queries. In the cleaned dataset, incoming responses are equal in number
to outgoing queries, and similarly for the number of incoming queries and out-
going responses.

Functionality Mapping. As discussed in Sect.2.1, recursive resolvers are
very active in terms of queries-out and responses-in, whereas name servers
behave the opposite with high volume of queries-in and responses-out. Hence,
a host attribute defined by the query fraction of all outgoing DNS packets
( QryFraqOut) should distinguish recursive resolvers from name servers. As
shown in Table 1, this attribute has a value close to 1 for recursive resolvers and
a value close to 0 for name servers.

In addition to recursive resolvers, there are some end-hosts configured to use
public resolvers (e.g., 8.8.8.8 of Google) that have a non-zero fraction of DNS
queries out of the enterprise network. We note that these end-hosts ask a limited
number of Internet servers during their activity period whereas the recursive
resolvers typically communicate with a larger number of external servers. Thus,
we define a second attribute as the fraction of total number of external servers
queried (numErtSrv) per individual enterprise host. As shown in Table 1, the
value of this attribute for end-hosts is much smaller than for recursive resolvers.
Similarly for incoming queries, we consider a third attribute as the fraction
of total number of external hosts that initiate query in (numExtClient) per
individual enterprise host. Indeed, this attribute has a larger value for name
servers compared with other hosts, as shown in Table 1.

Lastly, to better distinguish between end-hosts and recursive resolvers (high
and low profile servers), we define a fourth attribute as the fraction of active
hours for outgoing queries (actvTimeFrac). Regular clients have a smaller
value of this attribute compared with recursive resolvers and mixed DNS servers,
as shown in Table 1.
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We note that public-facing (non-DNS) servers typically do not have DNS
traffic in/out of the enterprise networks. To identify these hosts, we analyzed
the answer section of A-type outgoing responses.

Importance Ranking. Three different attributes are used to rank the impor-
tance of name servers, recursive resolvers, and (non-DNS) public-facing servers
respectively. Note that we rank mixed DNS servers within both name servers
and recursive resolvers for their mixed DNS behaviour.

For recursive resolvers, we use QryFracHost defined as the fraction of out-
going queries sent by each host over the cleaned dataset. And for name servers,
we use RespFracHost as the fraction of outgoing responses sent by each host.
For other public-facing servers, we use RespCount as the total number of out-
going responses that contain the IP address of a host — external clients that
access public-facing servers obtain the IP address of these hosts by querying the
enterprise name servers.

3 Classifying Enterprise Hosts

In this section, we firstly develop a machine learning technique to determine if an
enterprise host with a given DNS activity is a “name server”, “recursive resolver”,
“mixed DNS server”, or a “regular end-host”. We then detect other public-facing
(non-DNS) servers by analyzing the answer section of A-type outgoing responses.
Finally, we rank the enterprise server assets by their importance.

Our proposed system (shown in Fig. 4) automatically generates lists of active
servers into three categories located inside enterprise networks, with the real-
time DNS data mirrored from the border switch of enterprise networks. The
system first performs “Data cleansing” that aggregates DNS data into one-
day granularity and removes unsolicited responses and unanswered queries (i.e.,
step 1); then “Attribute extraction” in step 2 computes attributes required
by the following algorithms; “Server mapping” in step 3 detects DNS servers
and other public-facing servers; and finally “server ranking” in step 4 ranks
their criticality. The output is a classification and a ranked order of criticality,
which an I'T manager can then use to accordingly adjust security policies.

3.1 Host Clustering Using DNS Attributes

We choose unsupervised clustering algorithms to perform the grouping and clas-
sification process because they are a better fit for datasets without ground truth
labels but nevertheless exhibit a clear pattern for different groups/clusters.

Selecting Algorithm. We considered 3 common clustering algorithms, namely
Hierarchical Clustering (HC), K-means and Expectation-maximization (EM).
HC is more suitable for datasets with a large set of attributes and instances that
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Table 2. University campus: host clusters (3 May 2018).

Count | QryFracOut | numExtSrv | numExtClient | actvTimeFrac
Name server 42 10.0057 le-5 0.02 0.03
Recursive resolver 14 10.99 0.06 0 0.94
Mixed DNS server| 14 |0.57 0.01 0.02 0.66
End-host 2195 |1 2e-5 0 0.31

Table 3. Research institute: host clusters (3 May 2018).

Count | QryFracOut | numExtSrv | numExtClient | actvTimeFrac
Name server 12 Te-7 5e-6 0.07 0.01
Recursive resolver | 4 0.99 0.20 9e-5 1
Mixed DNS server| 6 [0.21 0.001 0.019 0.625
End-host 249 1 Te-4 0 0.25

have logical hierarchy (e.g., genomic data). In our case however, hosts of enter-
prise networks do not have a logical hierarchy and the number of attributes are
relatively small, therefore HC is not appropriate. K-means clustering algorithms
are distance-based unsupervised machine learning techniques. By measuring the
distance of attributes from each instance and their centroids, it groups data-
points into a given number of clusters by iterations of moving centroids. In our
case there is a significant distance variation of attributes for hosts within each
cluster (e.g., highly active name servers or recursive resolvers versus low active
ones) which may lead to mis-clustering.

The EM algorithm is a suitable fit in our case since it uses the probabil-
ity of an instance belonging to a cluster regardless of its absolute distance. It
establishes initial centroids using a K-means algorithm, starts with an initial
probability distribution following a Gaussian model and iterates to achieve con-
vergence. This mechanism, without using absolute distance during iteration,
decreases the chance of biased results due to extreme outliers. Hence, we choose
an EM clustering algorithm for “DNS Host Clustering Machine”.

Number of Clusters. Choosing the appropriate number of clusters is the key
step in clustering algorithms. As discussed earlier, we have chosen four clusters
based on our observation of various types of servers. One way to validate the
number of clusters is with the “elbow” method. The idea of the elbow method is
to run k-means clustering on the dataset for a range of k values (say, k from 1 to
9) that calculates the sum of squared errors (SSE) for each value of k. The error
decreases as k increases; this is because as the number of clusters increases, the
SSE becomes smaller so the distortion also gets smaller. The goal of the elbow
method is to choose an optimal k around which the SSE decreases abruptly (i.e.,
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Fig. 5. Hosts clustering results across one week.

ranging from 3 to 5 in our results, hence, k = 4 clusters seems a reasonable value
for both the university and the research institute).

Clustering Results. We tuned the number of iterations and type of covari-
ance for our clustering machine to maximize the performance in both enterprises.
Tables 2 and 3 show the number of hosts identified in each cluster based on data
from 3 May 2018. We also see the average value of various attributes within each
cluster. For the cluster of name servers, QryFracOut approaches 0 in both orga-
nizations, highlighting the fact that almost all outgoing DNS packets from these
hosts are responses rather than queries, which matches with the expected behav-
ior. Having a high number of external clients served also indicates the activity of
these hosts — in the University campus and research institute respectively 42 and
12 name servers collectively serve 84% (i.e., 42 x 2% and 12 x 7%) of external
hosts.

Considering recursive resolvers in Tables 2 and 3, the average QryFracOut is
close to 1 for both organizations as expected. It is seen that some of these hosts
also answer incoming queries (from external hosts) possibly due to their mis-
configuration. However, the number of external clients served by these hosts is
very small (i.e., less than 10 per recursive resolver) leading to an average fraction
near 0. Also, looking at the number of external servers queried (i.e., numExztSrv),
the average value of this attribute for recursive resolvers is reasonably high, i.e.,
14 and 4 hosts in the University and the research network respectively contribute
to 84% and 80% of total numFEztSrv — this is also expected since they commonly
communicate with public resolvers or authoritative name servers on the Internet.

Hosts clustered as mixed DNS servers in both organizations have a mod-
erate value of the QryFracOut attribute (i.e., 0.57 and 0.21 for the Univer-
sity and the research network respectively) depending on their varying level of
inbound/outbound DNS activity. Also, in terms of external clients and servers
communicated with, the mixed servers lie between name servers and recursive
resolvers. Lastly, regular end-hosts generate only outbound DNS queries (i.e.,
QryFracOut equals to 1), contact a small number of external resolvers, and are
active for shorter duration of time over a day (i.e., actvTimeFrac less than 0.5).

Interpreting the Output of Clustering. Our clustering algorithm also gen-
erates a confidence level as an output. This can be used as a measure of reliabil-
ity for our classifier. If adequate information is not provided by attributes of an
instance then the algorithm will decide its cluster with a low confidence level.
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The average confidence level of the result clustering is 97.61% for both organiza-
tions, with more than 99% of instances classified with a confidence-level of more
than 85%. This indicates the strength of our host-level attributes, enabling the
algorithm to cluster them with a very high confidence-level.

Server Clusters Across a Week. We now check the performance of our clus-
tering algorithm over a week. Figure 5 shows a heat map for clusters of servers.
Columns list server hosts that were identified in Tables2 and 3 (i.e., 70 hosts
in the University network and 22 hosts in the research network). Rows display
the cluster into which each server is classified. The color of each cell depicts the
number of days (over a week) that each host is identified as the corresponding
cluster — dark cells depict a high number of occurrences (approaching 7), while
bright cells represent a low occurrence closer to 0.

In the University network we identified 42 name servers, shown by H1 to H42
in Fig. 5(a); the majority of which are repeatedly classified as a name server over
a week, thus represented by dark cells at their intersections with the bottom
row, highlighting the strong signature of their profile as a name server.

Among 14 recursive resolvers of the university campus, shown by H43 to H56
in Fig. 5(a); two of them (i.e., hosts A and B in Fig. 1) are consistently classified
as recursive resolver, and the rest are classified as either mixed DNS server or
even end hosts (due to their varying activity). Lastly, 14 mixed servers, shown
by H57 to H70 in Fig.5(a), are classified consistently though their behavior
sometimes is closer to a resolver or a name server.

Our results from the Research Institute network are fairly similar — Fig. 5(b)
shows that hosts H1-H12 are consistently classified as name servers, while hosts
H13-H16 are recursive resolvers and H17-H22 are mixes servers.

3.2 Server Ranking

Our system discovered 5097 public-facing (non-DNS) servers in the University,
and 6102 at the Research Institute. However, only top 368 and 271 of these
servers respectively appeared in the answer section of more than 100 outgoing
DNS responses over a day. Additionally, 6 top ranked DNS servers, in each
organization, contribute to more than 90% of outgoing queries and responses.
Servers ranking provides network operators with the visibility into the criticality
of their internal assets.

3.3 IT Verification

IT departments of both organizations were able to verify the top ranked
DNS resolvers, name-servers, and non-DNS public-facing servers found, as they
are directly configured and controlled by IT departments of the two organi-
zations,(e.g., major name-servers and web-servers). Additionally, we revealed
unknown servers configured by departments of the two enterprises (we verified
their functionality by reverse DNS lookup and their IP range allocated by IT
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departments). Interestingly, 3 of the name-servers our method identified were
implicated in a DNS amplification attack soon after, and IT was able to confirm
that these were managed by affiliated entities (such as retail stores that lease
space and Internet connectivity from the University) - this clearly points to the
use of our system in identifying and classifying assets whose security posture the
network operators themselves may not have direct control over.

3.4 Clustering of End-Hosts: NATed or Not?

Lastly, to draw more insights we further applied our clustering algorithm (using
the same attributes introduced in Sect.2.2) to IP address of end-hosts, deter-
mining whether they are behind a NAT gateway or not (i.e., two clusters:
NATed and not-NATed). In both networks, all WiFi clients are behind NAT
gateways. Additionally, some specific departments of the two enterprises use
NAT for their wired clients too. We verified our end-host clustering by reverse
lookup for each enterprise network. Each NATed IP address has a corresponding
domain name in specific forms configured by IT departments. For example the
University campus wireless NAT gateways are associated with domain-names as
“SSID-pat-pool-a-b-c-d.gw.univ-primay-domain”, where “a.b.c.d” is the
public IP address of the NAT gateway, and SSID is the WiFi SSID for the Uni-
versity campus network (we will disclose SSID and univ-primay-domain when
this paper is de-anonymized). Similarly, in the Research institute NAT gateways
use names in form of “c-d.pool.rsch-primary-domain” where “c.d” is the
last two octets of the public IP address of the NAT gateway in the Research
institute. On 3rd May, our end-host clustering shows that 292 and 19 of end-
hosts IP addresses are indeed NATed in the University campus and the Research
institute respectively — we verified their corresponding domain names configured
by their IT departments.

We note that the two clusters of end-hosts are distinguished primarily by
one attribute actvTimeFrac — a NATed IP address (representing a group of end-
hosts) is expected to have a longer duration of DNS activity compared to a
not-NATed IP address (representing a single end-host)*. We observe that some
IPs with domain-names of NAT gateways are incorrectly classified as not-NATed
end-hosts. This is because their daily DNS activity was fairly low, i.e., less
than an hour. On the other hand, not-NATed end-hosts with long duration
of DNS activity (i.e., almost the whole day) were misclassified. Verifying end-
hosts classified as NATed, 84.3% of them in the University campus and 86% in
the Research institute have corresponding domain-names as for NAT gateways
allocated by IT departments. For end-hosts classified as not-NATed, 80.7% and
90.0% in the respective two organizations do not map to any organizational
domain-names.

4 We omit CCDF plots due to space constraint, they are shown in Appendix 2.



Mapping an Enterprise Network by Analyzing DNS Traffic 141

Looking into the performance of end-hosts clustering across a week, we note
that 78.3% end-hosts in the University campus are consistently labeled as NATed
over 7days®. However, for the research institute, only 32.0% of NATed IPs are
consistent across the entire week — 34.5% of IPs were absent on some days and
the remaining 33.4% were misclassified as not-NATed for their low activity (e.g.,
only active 2h during a day).

4 Related Work

DNS traffic has been analyzed for various purposes, ranging from measuring per-
formance (effect of Time-to-Live of DNS records) [3,7,13] to identifying malicious
domains [2,8,9] and the security of DNS [5,10,11,14]. In this paper we have pro-
filed the pattern of DNS traffic for individual hosts of two enterprise networks to
map network assets to their function and thereby identify their relative impor-
tance for efficient monitoring and security.

Considering studies related to malicious domains, [8] inspects DNS traffic
close to top-level domain servers to detect abnormal activity and PREDATOR
[9] derives domain reputation using registration features to enable early detection
of potentially malicious DNS domains without capturing traffic. From a security
viewpoint, the authors of [5] study the adoption of DNSSEC [1], highlighting that
only 1% of domains have implemented this secure protocol due to difficulties in
the registration process and operational challenges; [10,11] focus on authoritative
name servers used as reflectors in DNS amplification attacks; some researchers
[14] have reported that the amplification factor of DNSSEC is quite high (i.e.,
up to 44 to 55) whereas this measure is 6 to 12 for regular DNS servers.

DNS data can be collected from different locations (such as from log files of
recursive resolvers [4,7] or authoritative name servers) or with different gran-
ularity (such as query/response logs or aggregated records). Datasets used in
[5,10,11] contain DNS traffic for top level domains such as .com, and .net. We
collect our data at the edge of an enterprise network, specifically outside the
firewall at the point of interconnect with the external Internet. We note that
while using data from resolver logs can provide detailed information about end
hosts and their query types/patterns, this approach limits visibility and may not
be comprehensive enough to accurately establish patterns related to the assets
of the entire network.

5 Conclusion

Enterprise network administrators find it challenging to track their assets and
their network behavior. We have developed an automated method to map inter-
nal hosts of an enterprise network by focusing only on DNS traffic which carries
a wealth of information, constitutes a tiny faction of total network traffic and is

5 We omit consistency plots due to space constraint, they are shown in Appendix 2.
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easy to capture. By analyzing real-time live streams of DNS traffic from two orga-
nizations we highlighted how DNS query and response patterns differ amongst
recursive resolvers, authoritative name servers, and regular hosts. We then iden-
tified key DNS traffic attributes that can be extracted efficiently in real-time.
Lastly, we developed an unsupervised machine learning model that can classify
enterprise assets, and we further applied our technique to infer the type of an
enterprise end-host (NATed or not-NATed). Our results have been verified with
IT departments of the two organizations while revealing unknown knowledges.
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Defence Science and Technology Group.

Appendix 1. DNS Behavior of Hosts (Research Institute)

(see Figs.6 and 7).

500 500

: : : : : : : : : : : T
Il Rsch host A EEE 340 other Rsch hosts Il Rsch host A EEE 5806 other Rsch hosts
3 Rsch host B 3 Rsch host B
400 : : 400
@ 300 14 & 300
(] ()
& &
- -
= =
c =4
=1 =3 1
3 200 g 200
ool A L4 1 H' TRl T 100 o
i W)
WY
13AM 3AM  GAM 9AM 12PM 3PM 6PM OPM 12AM 19AM 3AM  6AM 9AM 12PM 3PM 6PM OPM 12AM
Time Time
(a) Outgoing DNS queries. (b) Incoming DNS responses.
200 T T T T T T T 200 T T T T T T
[mmm Rsch host ¢ mmm 244148 other Rsch hosts | [EEm Rsch host C  EEE 21 other Rsch hosts |
150 J ; ; by 150

count / sec
=
o
3
count / sec
o
o
=]

10 .

1gAM 3AM  6AM 9AM 12PM 3PM 6PM 9PM 12AM lgAM 3AM  6AM 9AM 12PM 3PM 6PM 9PM 12AM
Time Time

(¢) Incoming DNS queries. (d) Outgoing DNS responses.

Fig. 6. Research institute: outgoing queries, incoming responses, incoming queries and
outgoing responses, measured on 3 May 2018.
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Appendix 2. NATed vs. not-NATed End-Hosts
(see Figs.8 and 9).
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Fig. 8. CCDF: fraction of active hour per day for end-host IP addresses with/without
domain names.
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Abstract. The Domain Name System (DNS) is a critical part of net-
work and Internet infrastructure; DNS lookups precede almost any user
request. DNS lookups may contain private information about the sites
and services a user contacts, which has spawned efforts to protect pri-
vacy of users, such as transport encryption through DNS-over-TLS or
DNS-over-HTTPS.

In this work, we provide a first look on the resolver-side technique of
query name minimization (gmin), which was standardized in March 2016
as RFC 7816. gmin aims to only send minimal information to authorita-
tive name servers, reducing the number of servers that full DNS query
names are exposed to. Using passive and active measurements, we show
a slow but steady adoption of gmin on the Internet, with a surprising
variety in implementations of the standard. Using controlled experiments
in a test-bed, we validate lookup behavior of various resolvers, and quan-
tify that gmin both increases the number of DNS lookups by up to 26%,
and also leads to up to 5% more failed lookups. We conclude our work
with a discussion of gmin’s risks and benefits, and give advice for future
use.

Keywords: DNS - Privacy - QNAME minimization + Measurements

1 Introduction

The Domain Name System (DNS) plays a crucial role on the Internet. It is
responsible for resolving domain names to IP addresses. The DNS is a hierar-
chical system where each so-called authoritative name server in the hierarchy
is responsible for a part of a domain name. Recursive caching name servers —
or ‘resolvers’ for short — query each level of authoritative name servers in turn
to obtain the final answer. Resolvers usually cache responses to improve lookup
speed.

On the Internet every domain resolution, given an empty cache, starts at the
root of the DNS, which has knowledge of the name servers that are responsible
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for all the Top-Level Domains (TLDs). Those name servers typically then refer
the recursive resolver on towards yet another name server. This can keep going
indefinitely, only limited by the maximum query name (gname) length, until
finally the authoritative name server for the requested gname is reached (in
practice the recursive resolver can give up earlier).

In the standard DNS resolution process, outlined in RFC 1034 [24], the recur-
sive resolver, unaware of zone cuts in which different parts of the domain are
under control of different authorities, sends the full gname to each of the authori-
tative name servers in this chain. Since the first two (root and TLD) name servers
in the recursion are very unlikely to be authoritative for the requested gname,
this particular aspect causes unnecessary exposure of potentially private infor-
mation [6]. E.g., exposing the gname of a website that is illegal in some countries
to more parties than necessary might put the querying end-user at serious risk.
A solution for this issue is proposed in RFC 7816 [7], which introduces query
name minimization (gmin), preventing recursive resolvers from sending the full
gname until the authoritative name server for that gname is reached [7].

End-users typically do not run a recursive resolver, but instead depend on
others, such as their ISP, to enable this privacy-preserving feature. From a user’s
perspective, gmin is difficult to detect, making it hard to judge adoption.

In this paper we study the adoption, performance, and security implications
of RFC 7816. Specifically, we: (1) develop novel methodology to detect whether
a resolver has gmin enabled, and quantify the adoption of gmin over time, both
with active measurements from the end-user perspective, and passive measure-
ments from the authoritative name server perspective, at a root and TLD server,
(2) develop an algorithm to fingerprint gmin implementations, and classify the
use of gmin algorithms in the Internet and, (3) provide insight into the impact
of gmin on performance and result quality for three resolver implementations.

In order to facilitate reproducibility we make our scripts and datasets avail-
able publicly [33].

2 Background and Related Work

When DNS was first introduced in the 1980s, there was no consideration for
security and privacy. These topics have now gained considerable importance,
leading to a plethora of RFCs that add security and privacy to the DNS. For
example, DNSSEC [28-30] introduces end-to-end authenticity and integrity, but
no privacy. More recently, DNS-over-TLS [21] and DNS-over-HTTPS [20] added
transport security. “Aggressive Use of DNSSEC-Validated Cache” [18], reduces
unnecessary leaks of non-existing domain names. Furthermore, running a local
copy of the root zone at a resolver avoids sending queries to root servers com-
pletely [19].

Typically, resolvers send the full gname to each authoritative name server
involved in a lookup. Consequently, root servers receive the same query as the
final authoritative name server. Since the IETF states that Internet protocols
should minimize the data used to what is necessary to perform a task [12],
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gmin was introduced to bring an end to this. Resolvers that implement gmin
only query name servers with a name stripped to one label more than what
that name server is known to be authoritative for. E.g., when querying for
a.b.domain.example, the resolver will first query the root for .example, instead
of a.b.domain.example. The reference algorithm for gmin also hides the original
query type by using the NS type instead of the original until the last query. In
Table1 we show what queries are performed for both standard DNS and the
gmin reference implementation.

This reference algorithm, however, faces two challenges on the real Internet:
First, it does not handle configuration errors in the DNS well [26]. E.g., in case
b.domain.example does not have any RRs but a.b.domain.example does, a name
server should respond with NOERROR for a query to b.domain.ezample [8], but
in fact often responds with NXDOMAIN, or another invalid RCODE. This would
force resolvers that conform to the standard to stop querying and thereby not
successfully resolve the query. Also, operators report other issues, such as name
servers that do not respond to NS queries, which would break gmin as well [25].

Table 1. DNS queries and responses without (left) and with (right) gmin.

Standard DNS resolution gmin Reference (RFC 7816)
a.b.example.com. A — . com. NS — .
com. NS — . com. NS — .
a.b.example.com A — com. example.com NS — com.
example.com NS < com. example.com NS «— com.
a.b.example.com A — example.com. b.example.com NS — example.com.
a.b.example.com A <« example.com. b.example.com NS « example.com
a.b.example.com NS — example.com.
a.b.example.com NS «— example.com
a.b.example.com A  — example.com.

a.b.example.com A <« example.com

Second, gmin can lead to a large number of queries. For example, a name with
20 labels would make the resolver issue 21 queries to authoritative name servers,
causing excessive load at the resolver and authoritative. Attackers can abuse this
for DoS attacks by querying excessively long names for victim domains. Both of
these issues led resolver implementors to modify their ¢gmin implementations, as
well as adding so called “strict” and “relaxed” modes, which we investigate in
Subsect. 3.2 and Sect. 5.

As of October 2018, three major DNS resolvers support gmin. Unbound
supports gmin since late 2015 and turned relaxed gmin on by default in May
2018 [25]. Knot resolver uses relaxed gmin since its initial release in May 2016
[13], and the recursive resolver of BIND supports gmin and turned the relaxed
mode on by default in July 2018 [23]. Another frequently used resolver, Pow-
erDNS Recursor, does not support gmin yet [9].
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Related Work: Hardaker et al. [19] showed that root servers receive a
considerable amount of privacy-sensitive query names, and propose using local
instances of root servers to alleviate this issue. Imana et al. [22] study this
aspect from a broader perspective, covering all name servers above the recursive
resolver, and report similar privacy issues.

Schmitt et al. [32] propose Oblivious DNS, an obfuscation method introduc-
ing an additional intermediate resolver between recursive resolver and authorita-
tive name servers. Oblivious DNS prevents the additional resolver from learning
the user’s IP address and the recursive resolver from learning the query name.

Recent work [34] has also shown that gmin increases the number of queries
per lookup, increasing the load on authoritative name servers. They provide a
technique called NXDOMAIN optimization that reduces the number of queries in
case the resolver encounters an NXDOMAIN. We extend this by providing longitu-
dinal measurements, showing various implementations of gmin algorithms and
quantifying the increase in queries per resolver implementation.

3 Active Internet-Wide Measurements

We conduct active Internet-wide measurements using two methods. First, we use
RIPE Atlas probes to query a domain under our control. Second, we query open
resolvers for the same domain. RIPE Atlas is a global measurement network with
over 10,000 small devices called probes, and 370 larger probes, called anchors.
In this section, we measure gmin adoption over time, classify the various gmin
implementations in use, and shed light on gmin use by open resolvers.

3.1 Resolver Adoption over Time

We detect gmin support by relying on the fact that a non-gmin resolver will miss
any delegation that happens in one of the labels before the terminal label. So, if
we delegate to a different name server, with a different record for the terminal
label in one of the labels before the terminal label, gmin resolvers will find a
different answer than non-gmin resolvers.

We scheduled a RIPE Atlas measurement for all probes to perform a lookup
with all the probe’s resolvers for “a.b.gqnamemin-test.domain.example” with type
TXT [1], repeating every hour. Each probe uses its own list of resolvers, typically
obtained via DHCP, and assumed typical for the network that hosts the probe.

A non-gmin resolver will send a query for the full qgname to the authoritative
name server for “gnamemin-test.domain.example”, and will end up with a TXT
reply containing the text: “gmin NOT enabled.” A gmin resolver will send a
query for just the second-to-last label, “b.qnamemin-test.domain.example”, to
the authoritative name server for “gqnamemin-test.domain.example”. For this
minimized query, it will receive a delegation to a different name server, which
will return a TXT record containing the text: “gmin enabled.”

This measurement runs since April 2017, and allows us to see the long term
adoption of gmin. Figure 1b shows the overall adoption of gmin as seen from all
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RIPE Atlas probes. We count both probes and probe/resolver combinations, as
a significant number of probes uses multiple resolvers. Adoption grew from 0.7%
(116 of 17,663) of probe/resolver pairs in April 2017 to 8.8% (1,662 of 18,885) in
October 2018. Also in April 2017, 0.9% (82 of 9,611) of RIPE Atlas probes had
at least one gmin resolver, growing to 11.7% (1,175 of 10,020) in October 2018.
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Fig. 1. Adoption over time

In Fig.la only probe/resolver pairs supporting gmin are shown. We see a
steep rise of gmin resolvers in April 2018. Figure 1a also shows probes that have
at least one gmin resolver as well as at least one resolver that does not do ¢gmin.
It is noteworthy that at the last measurement (October 15, 2018) at least 31%
of probes that have a ¢gmin resolver, also have at least one non-gmin resolver.

Alongside the gmin measurement, we run measurements that return the IP
address of the resolver as seen from an authoritative name server [2,3,5]. By
identifying the Autonomous System Numbers (ASNs) associated with the IP
addresses seen at the authoritative name server we gain insight in the orga-
nizations providing the gmin resolvers. From this we learn that the adoption
of Cloudflare (1.1.1.1) is responsible for the fast rise of gmin resolvers in
April 2018.

We also found some public resolvers, such as Google Public DNS, that in
some cases appear to support gmin according to our test, but in fact do not.
This is likely caused by a gmin-enabled forwarding resolver, which forwards to, in
Google’s case, 8.8.8.8. Additionally, the non-gmin resolver successively caches
the authoritative for the second-last label and will appear to support gmin for
the TTL of the delegation (10s in our test). We have developed an improved test
without these issues in the course of this research, but this corrected test did
not yet exist during scheduling of the RIPE Atlas measurement in April 2017.

The improved test, “a.b.random-element.domain.example. TXT”, uses a ran-
dom pattern as the third-last label which is uniquely chosen for each query, pre-
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venting other measurement queries to find a cached delegation for the second-last
label. This improved test is used in measuring the adoption by open resolvers in
Subsect. 3.3, removing false positives from that measurement.

We argue that this flaw had little impact on our results, as (i), RIPE Atlas
measurements are spread out over an hour, whereas our test record has a small
TTL, reducing this risk and (#i) the overall trend over time is still indicative.

The ASNs seen at the authoritative were further used to classify resolvers
in three categories: (1) Internal resolvers have the same ASN for the probe
and the observed resolver IP, (2) Ezternal resolvers for which the ASN of the
resolver IP configured on the probe matches the ASN for the IP observed on
the authoritative, but differs from the ASN in which the probe resides, (3)
Forwarding resolvers, for which the ASN seen on the authoritative differs from
both the ASN associated with the resolver IP configured on the probe and the
ASN the probe resides in.

1,500 Probes with at least one external
Probes with at least one forwarding

1,000 Probes with at least one internal

External
Forwarding
Internal

500

Probe/resolver pairs

N N O P
3
,1/0

Fig. 2. Internal, Forwarding and External resolvers supporting gmin

Figure 2 shows that both Ezternal and Forwarding probe/resolver pairs sup-
porting gmin are on the rise, which is mainly due to adoption of the Cloudflare
resolver in April 2018. We can also see that gmin support is steadily growing
with Internal resolvers, which do not include the larger public resolvers.

Looking more closely at the Internal resolvers we have identified, we see
that several ISPs started supporting gmin over the past 1.5 years. Most notably
“Versatel Deutschland GmbH” started supporting gmin on November 9th, 2017;
“Init Seven AG” on August 2nd, 2017; “OVH Systems” on February 1st, 2018;
and “M-Net Telekommunikations GmbH, Germany” on May 1st, 2018. Note that
these do not necessarily cause a visible change in Fig. 2.

3.2 Fingerprinting Resolver Algorithms

As described in Sect. 2, the RFC [7] provides a reference algorithm for gmin.
This is an aggressive algorithm in the sense that it maximizes potential privacy
gains at the cost of performance. It iteratively increases the name length by one
label, querying for the NS type, until it reaches the full name. Then, it switches
to the original query type, thus also this type from all but the final name server.
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While this algorithm is good for privacy, it can significantly impact perfor-
mance, security, and result quality (see Sect.5). Since the reference algorithm is
merely a suggestion, resolver implementors are free to write their own algorithm.

Using RIPE Atlas measurements, we explore gmin algorithms implemented
in practice. To measure this, we performed a one-off DNS measurement [4] from
all RIPE Atlas probes able to resolve A records correctly (9,410 probes). We con-
trol the authoritative name server for the queried name, permitting us to identify
query behavior. The queried name consists of 24 labels, including random val-
ues and the probe ID to permit mapping inbound DNS queries to originating
probes. We see inbound queries from 8,894 unique probes (out of 9,410) from
8,179 unique resolvers. Most probes have at least two resolvers configured, many
overlapping with those of other probes, resulting in 20,716 total inbound queries.

Assigning Signatures: To group resolver behavior, we map the incoming
query behavior observed at our authoritative name server to signatures, con-
taining length, order, and type of inbound queries. Our test domain is at the
second label depth, so we observe queries starting from the third label depth.
For example, an algorithm asking for NS at the 3rd label, then for NS at the 4th
label, and then for A at the final, 24th, label, will be mapped to the signature
3NS-4NS-24A.

Signatures of BIND, Knot and Unbound: To have a basis for compar-
ison, we run our domain through each of these three resolvers, which are known
to implement gmin, and determine each of their gmin signatures. BIND and
Unbound also support an additional strict mode, however, this has no effect on
the signature and is related to how NXDOMAIN responses are handled. The result-
ing signatures, and the reference algorithm signature, are shown in Table 2.

Table 2. Top 6 signatures seen at Authoritative Resolvers, mapped to resolver imple-
mentations. Reference implementation not observed.

Type | Signature Implementation | Count
1 24A 13,892
2 3NS-24A Knot 3.0.0 784
3 3A-4A-5A-8A-11A-14A-17A-21A-24A 239
3 3A-4A-5A-6A-9A-12A-15A-18A-22A-24A 193
3 3A-4A-7TA-10A-13A-16A-20A-24A Unbound 1.8.0 16
4 3NS-4NS-5NS-24A BIND 9.13.3 11
3NS-4NS-5NS-6NS-7NS-...-24NS-24A Reference 0

Signatures in the Wild: We identify four types of signatures, with some
types having multiple variations, see Table 2. The first, most common type (#1)
applies no gmin. These resolvers directly query the full length DNS name. The
second type (#2) is a minimalistic gmin approach. After a no-delegation check
below the base domain, the full query name is sent. This is used by the Knot
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resolver, and, for example, by Cloudflare’s public DNS resolver. The third type,
with variations (#3), is closer to the reference algorithm, but displays various
ways of skipping labels, as well as always using the A query type instead of the NS
type as suggested by the reference algorithm. Unbound is known to have a similar
implementation [16], confirmed in our experiments. The final signature, (#4)
uses the NS query type, and jumps to querying for the full name after not finding
a zone cut for three labels. This is consistent with the BIND implementation.

Besides the specific signatures seen in Table 2, there are many variations of
type #3. This indicates that not only do different resolvers implement different
algorithms, but they also appear to be configurable or change over time (e.g. a
new version changes the behavior). In total we see 20 different signatures, many
of which only from one specific resolver. Interestingly, we did not observe the
reference algorithm from any resolver.

3.3 Adoption by Open Resolvers

Aside from resolvers that can be reached from inside networks, such as those
offered by ISPs, there are also a large number of open resolvers on the Internet.
These can range from unsecured corporate DNS resolvers, to large scale public
DNS services, such as those run by Google, OpenDNS, Quad9 and Cloudflare.

Rapid7 provides a list of servers that are responsive on UDP port 53, which
are typically DNS servers. We query each such server using the method out-
lined in Subsect. 3.1. The list contains a total of 8M IPv4 addresses, we receive
a response from 64% of these. Of those responding, 32% respond with a NOER-
ROR reply, of which only 72% (a1.2M) provide a correct reply.

Of those 1.2M, only 19,717 (1.6%) resolvers support gmin. On the authori-
tative side, we only observe 110k unique source IPs, which suggests that many
of the queried resolvers are in fact forwarders. Of the resolvers that implement
gmin, 10,338 send queries from a Cloudflare IP, 2,147 from an OVH IP, and 1,616
from a TV Cabo Angola IP address. This shows that most gmin-supporting open
resolvers simply forward to larger public DNS resolvers that implement gmin.

For gmin-enabled resolvers, we compare the ASN of the IP we send our query
to with the ASN of the IP seen at the authoritative for that same query. We find
11.5k resolvers to resolve externally, and 8.2k resolvers to resolve internally.

The takeaway is that many open resolvers on the Internet use centralized
public DNS services. Thus, efforts to drive adoption of gmin should focus on
large public DNS providers (e.g. Google, which does not support gmin yet).

4 Passive Measurements at Authoritative Name Servers

As gmin limits the visible information of a query at authoritative name servers,
adoption of gmin likely changes the query profile of resolvers as observed on
the authoritative side. We measure the impact and adoption of gmin with query
data collected at the authoritative name servers of the ccTLD .nl and of K-Root.
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Name servers of .nl are authoritative for the delegation of 5.8 million domain
names. If they receive queries for a .nl domain name with 2 or more labels then
they almost always (except for DS records) respond with a set of name servers
that are actually responsible for the queried domain name. Thus, a query for the
NS record of a second level domain name is sufficient for the .nl name servers to
answer the query. Similarly, the root servers are authoritative for the 1.5k TLDs
as of October 9, 2018, and a query for just the TLD is sufficient in most cases.

We cannot be certain whether resolvers send minimized queries to the author-
itative name servers, but we can count the queries that follow the expected pat-
terns if resolvers were to send minimized queries. For the rest of this section,
and following the observations made in Sect. 3, we count queries as minimized if
the query contains only 2 labels (at .nl) or 1 label (at K-Root). With increasing
gmin adoption, we expect to see an increase in queries that follow these criteria.

Identifying gmin. First, we measure how query patterns seen at the authorita-
tive name servers differ when resolvers implement gmin. We use the list of open
resolvers from Subsect. 3.3 of which we know whether they have gmin enabled.
Then, we count how many queries these resolvers send to the authoritative name
servers of .nl for names with just two labels on 2018-10-11. In total, we observe
1,918 resolvers that do and 27,251 resolvers that do not support gmin.

In Fig. 3 we see that gmin-enabled resolvers send a median of 97% of queries
classified as minimized, whereas resolvers that have not enabled this feature send
only 12% of their queries classified as minimized. This confirms that ¢min has
an observable impact at authoritative name servers.
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Fig. 3. Minimized queries to Fig. 4. Share of minimized queries sent to
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Resolver Adoption Over Time. Based on the results of the previous section
we expect a visible impact from increasing adoption of ¢gmin at authoritative
name servers. To verify this expectation we count how many queries overall
are sent for 2nd level domain names and TLDs respectively. We analyze .nl
data collected from 2017-06-01 to 2018-09-30 at 2 of the 4 authoritative name
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servers [35] and rely on the “Day In The Life of the Internet” (DITL) data sets of
K-Root on 2017-04-11 and 2018-04-10 collected by DNS-OARC [15]. We observe
more than 400B queries from 2017-06-01 to 2018-09-30 at .nl and 12B queries
on the two days of the DITL data sets. Figure 4 shows the fraction of minimized
queries.

In the beginning of our measurement, roughly 33% of the queries to .nl where
minimized. A year later, at least 40% of queries were minimized. A peak around
May 2018 correlates with the date on which Unbound enabled gmin by default.
This peak, however, is followed by a steep decline shortly after, which means we
cannot confirm if Unbound enabling gmin by default caused this peak.

At K-Root we also observe an increase from 44% to 48% in queries for domain
names with only one label. Note that query patterns at the root may strongly
vary from one day to another and that many queries are sent to non existing
domain names which can influence our results [10].

5 Controlled Experiments: Impact on Resolver
Performance and Result Quality

As gmin is deployed at the recursive resolver, we explore how gmin impacts
the performance and the result quality of such a recursive resolver. We compare
three popular gmin-enabled resolvers in their most recent version: Unbound
1.8.0, Knot 3.0.0, and BIND 9.13.3. We use all three resolvers with their default
options, only adjusting to an equal cache size of 4GB and turning DNSSEC
validation off'. We cycle through all configurable gmin behaviors for Unbound
and BIND; Knot has relazed gmin hardcoded. As target domains, we use the
Cisco Umbrella Top 1M [11] list as a sample of popular domain names, and
aggregate all domains names for a 2-week period to avoid daily fluctuations
and weekly patterns [31], resulting in 1.56M domain names. To even out caching
effects, we sort our target domain names in 4 different orders. We conduct several
iterations of these measurements from October 1 through October 15, 2018,
starting each measurement with an empty cache. We report means from all
measurement runs, and find little variation in all numbers, typically one standard
deviation o is smaller than 2% of the mean p. Table 3 gives an overview of our
results.

Performance: ¢gmin shows a clear impact on the number of packets sent to
resolve our 1.56 M domains. For Unbound, the 5.7M packets without gmin require
6.82M (relaxed) and 6.71M (strict) packets with gmin, a 17-19% increase. For
BIND, the increase is 15-26%. It is to be expected that the strict mode requires
fewer packets, as it will give up on receiving an error, whereas relaxed modes
continue through SERVFAIL or NXDOMAIN error codes. This increase in packet
count is not offset by smaller packets, across resolvers we see average packet
sizes only decrease by 5% or less with gmin enabled.

! We turn DNSSEC validation off to achieve comparable behavior (validating DNSSEC
requires more queries to be sent); we also note that the combination of gmin and
DNSSEC may induce further complexities beyond the scope of this work.
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Table 3. Performance and result quality across gmin modes and resolvers. Results are
mean (p) across all runs, with all standard deviations o < 2%pu. We also show the gmin
algorithm signature per resolver for the gmin-enabled case (signature without gmin is
always 244).

Unbound 1.8.0 Knot 3.0.0 | Bind 13.3.2
gmin Signature | 3A-4A-TA-...-24A 3NS-24A 3NS-4NS-5NS-24A
gmin mode Off Relaxed | Strict | Relaxed Off Relaxed | Strict
# packets 5.70M | 6.82M | 6.71M | 5.94M 5.07TM | 6.39M | 5.84M
Errors 12.6% | 12.6% 15.9% | 13.5% 16.6% | 17.1% 21.6%

This confirms that g¢min in its current form does come with a perfor-
mance penalty of up to 26%. We argue that the full cache in a produc-
tion resolver will soften that overhead. Please note that a comparison of
packet counts between different resolvers implicitly compares many other details
such as caching strategies, which is why comparison between resolvers should
be conducted very carefully. While it may seem intuitive that Unbound’s
3A-4A-7A-10A-13A-16A-20A-24A gmin approach requires more packets than
Knot’s 3NS-24A and BIND’s 3NS-4NS-5NS-24A approaches (cf. Subsect.3.2),
a comparison of the number of packets between resolvers would require a much
deeper exploration of root causes of packets sent, such as caching and time-out
strategies.

Result Quality: Another critical aspect of resolver performance is the result
quality: Will a resolver be able to work through numerous edge cases and miscon-
figurations to deliver a response, or will it hang up on certain errors? To answer
this question, we compare the amount of errors (NXDOMAIN or SERVFAIL)
in our resolution results between different resolver and gmin approaches. Across
resolvers, we see a significantly higher share of errors with strict gmin enabled.
For example, the 3.3% increase for Unbound translates to ~50k domains, a sig-
nificant share of these popular DNS domain names. The difference in resolvers
corresponds to our observations on resolver behavior: As reported in Sect.2, a
portion of authoritative name servers fails to respond to NS queries. As Unbound
uses type A queries to discover zone boundaries, and Knot and BIND use NS
queries (as suggested by RFC7816), higher error rates are expected for Knot
and BIND. The surprisingly high baseline of non-resolving domains of 12-16%
is a characteristic of the Umbrella Top 1M list recently discussed in [31].

These findings show that gmin comes with two drawbacks: Packets and bytes
transferred increase, and, depending on the detailed algorithm, also a significant
share of popular DNS names fails to resolve.

6 Discussion and Conclusions

Our study covered gmin from various angles: we performed (1) controlled exper-
iments that confirm that ¢gmin can have negative performance and result quality
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implications, and (2) active and passive measurements in the Internet that con-
firm from both the client and authoritative server side that gmin adoption is
rising. We also explored the various problems and workarounds that have been
deployed, and want to conclude and discuss further aspects:

gmin Is Complex: Like many DNS mechanisms, gmin sounds simple, but
broken deployments make it difficult to implement without collateral damage.
Resolvers’ iterations towards a relaxed gmin algorithm reflect this, and impor-
tant take-aways are: (i) Using NS queries to detect zone cuts results in a consider-
able number of failures; using A queries instead seems reasonable. (i) responding
to SERVFAIL/NXDOMAIN by sending the full name (i.e., disabling gmin for
this query) is currently a necessity to avoid significant error rates.

gmin Can Be a Security Risk: Having a resolver step through many
iterations for a name with an excessive number of labels is a DoS attack vector.
All implementations we encountered mitigate this. Unbound jumps over labels
to decrease the number of queries to some maximum, considerably saving on
query count. Knot’s (3NS-24A) and BIND’s (3NS-4NS-5NS-244A) approaches go
further: Knot stops gmin if it encounters a label that has not been delegated
(except for some exceptions, such as .co.uk). BIND has both a limit on the
maximum number of labels (default 9), in addition to having a maximum number
of undelegated labels (default 3). We consider these approaches good, as they
mitigate security risks while still providing gmin privacy against the top levels
in the DNS hierarchy.

gmin Can Impact Resolver Performance and Result Quality: Cur-
rently, gmin comes with a 15%+ performance penalty, and unless implemented
very carefully, will also impair result quality. Please note that, as gmin queries
are sent sequentially, the measured increase in query volume will correlate to
latency.

Recommendations: Based on the insights collected in this paper, we con-
clude with the following recommendations: (%), despite its performance and
quality caveats, gmin improves privacy and should be universally deployed. (%)
gmin deployment must be conducted carefully: We recommend an algorithm that
combines Unbound’s and BIND’s algorithms, i.e., conducts fallback upon error,
replaces NS (and other) query types by A queries, and stops gmin after a con-
figurable number of labels. (%i3) over time, heuristics may be added to alleviate
certain cases where gmin will unlikely add privacy. For example, DANE-TLSA
labels such as _443. _tcp could be exempt from gmin.

Conclusion: The currently still rather low gmin adoption already causes a
significant positive effect for query privacy at both Root and TLD authorita-
tive name servers. While there are legitimate performance, result quality, and
security concerns, we already see resolver implementers tackle these, and are
confident that these negative implications will be further reduced, assisted by
the quantitative evidence and tangible recommendations in this study. We fully
expect more and more DNS operators to enable gmin to further improve privacy
of end-users on the Internet.
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Ethical Considerations and Reproducibility: We carefully considered
ethical implications of our work. We followed scanning best practices [17], and
received no complaints. Our passive data collection has been cleared by the
respective IRBs, and we follow the recommendations by Dittrich et al. [14] and
Partridge et al. [27]. To encourage other researchers to validate and/or build
upon our results we publish our scripts, code and data publicly [33].
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Abstract. Top domain rankings (e.g., Alexa) are commonly used in
security research, such as to survey security features or vulnerabilities
of “relevant” websites. Due to their central role in selecting a sample of
sites to study, an inappropriate choice or use of such domain rankings can
introduce unwanted biases into research results. We quantify various char-
acteristics of three top domain lists that have not been reported before.
For example, the weekend effect in Alexa and Umbrella causes these
rankings to change their geographical diversity between the workweek
and the weekend. Furthermore, up to 91% of ranked domains appear
in alphabetically sorted clusters containing up to 87k domains of pre-
sumably equivalent popularity. We discuss the practical implications of
these findings, and propose novel best practices regarding the use of top
domain lists in the security community.

1 Introduction

In recent years, security research has seen the emergence of Internet measure-
ments as a subdiscipline aiming to quantify the prevalence of security risks or
vulnerabilities in practice. Since many types of security assessments do not easily
scale to the entire Internet, researchers typically consider only a subset of regis-
tered domains. Often, they decide to cover the most popular domains, that is,
those receiving the most visitors [14,18,27,32]. In doing so, they rely on “top site”
rankings such as the lists compiled by Alexa [2], Majestic [6], Quantcast [7] and
Umbrella [4]. Consequently, these top site lists play a central role in many studies;
they decide which domain will or will not be included in the measured sample.
Alexa’s list in particular has become nearly ubiquitous, with multiple papers
using it at any major security and Internet measurement conference [20,30].
Many authors have commented individually on shortcomings of Alexa’s rank-
ing (e.g., lack of reliability in the bottom ranks [29], presence of malicious
domains [23,24,28]) and devised their own ad-hoc mitigations to make their
research results more robust against these issues (e.g., using only a list pre-
fix [9,22], using multiple domain lists [13,19], and using only domains that have
been present on the list for a longer time period [9,22]). Yet, researchers are
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just beginning to investigate these issues in a more systematic way. In 2018,
Scheitle et al. [30] and Le Pochat et al. [20] performed rigourous analyses on
the nature of top lists. These works aim to understand the construction of these
lists, including: how they model popularity, what their data sources are, how
fast they change, and how resilient they are to manipulation attempts. While
these papers have shed light on many important characteristics of top domain
lists, several aspects have gone unnoticed, or have received less attention than
they deserve.

Specifically, Scheitle et al. mention a periodic weekend effect in Alexa’s and
Umbrella’s lists [30], becoming manifest in a higher degree of change each week-
end. We conduct a more in-depth analysis of the weekend effect by studying the
content categories of the respective websites, confirming the authors’ cursory
finding that the weekend effect is likely due to a dominance of leisure traffic dur-
ing the weekend, and office traffic during the workweek. In addition, we show that
the weekend effect causes changes even among the highest ranked domains in
Umbrella, whereas these domains tend to be more stable in Alexa. The weekend
effect also affects country representation in the lists. These phenomena highlight
the need for a more robust and stable domain selection process.

Beyond the brief reference by Le Pochat et al. [20], we are the first to quantify
in detail how Alexa and Umbrella cluster domain names of equivalent popularity,
while assigning them individual ranks. In fact, more than 54% of domains in
Alexa, and 91% in Umbrella, appear in such alphabetically ordered clusters that
can reach a size of up to 87k domains. If not accounted for, the alphabetic
ordering caused by clustering can cause anomalies when correlating a domain’s
rank with a measured property.

By characterising clustering and the weekend effect, we contribute to a better
understanding of the limitations of top domain lists. We distill our findings
into concrete recommendations by proposing novel best practices for the use of
domain lists.

Overall, this paper makes the following contributions:

— We provide a detailed look at weekend changes in Alexa and Umbrella, the
extent of these changes in different parts of the list, and the implications on
the content categories and geographical diversity of listed domains.

— We are the first to quantify and explain the presence of alphabetically sorted
clusters of domains in Alexa’s and Umbrella’s rankings.

— We discuss the implications of these phenomena for researchers using the
lists in their measurements, and propose novel best practices to minimise
unwanted biases.

2 Background and Related Work

In this paper, we often refer to entries of rankings or lists, but language can be
confusingly ambiguous as to a “high” rank being good or bad. As a convention,
when we write that a rank is higher, we mean that it is a better rank, numerically
lower, towards the top of the list with the most popular entries.
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Table 1. Data sources of common top site lists. Table 2. Hidden entries in
quantcast (2018-06-17).

Ranking Data source List contents List prefix |Hidden # | %

Alexa Browser toolbar Typed-in website domains 1—10 0 0.0
Majestic | Web crawl Linked website domains 1— 100 15 15.0
Quantcast | Website instrumentation | Measured website domains 1 — 1,000 136 13.6
Umbrella | DNS resolver Resolved (sub)domains 1 — 10,000 |594 5.9
Alexa and Umbrella data from 2018-02-01 to 2018-05-31 1 —100,000|1,892 1.9
Majestic data from 2018-02-28 to 2018-05-31 1 —511,804|5,045 1.0

2.1 Use of Top Lists in Security Research

Top domain lists such as the Alexa Top Sites are frequently used in security
research. Le Pochat et al. [20] found 102 papers using the Alexa ranking at the
four main security conferences from 2015 to 2017/2018, and Scheitle et al. [30]
found 68 studies using Alexa published at the top measurement, security, and
systems conferences in 2017.

Researchers can use top domain lists in different ways. In this paper, we
focus on measurement studies that use these lists to select a “representative’
sample of domains to analyse, in the sense that these lists designate the “largest”
or “most popular” domains (e.g., [14,18,27,32]). When measurement studies
compute aggregates over the domains on these lists, their results depend on how
the lists select and rank domains [20,30].

A less frequent, but common use of domain lists in security research is to
obtain samples of “benign” domains. In this context, domain lists are sometimes
used to train models or evaluate proposed security systems (e.g., [9,10,15,22]).
In a few cases, any ranked domain is whitelisted to improve classifier perfor-
mance [21,26]. This use is most sensitive to malicious domains not appearing in
the ranking, and other list properties such as stability or ordering are less crit-
ical. Maliciousness of ranked domains has been studied before [23,24,28], and
this scenario is beyond the scope of this paper.

)

2.2 List Compilation Methodology

We are aware of four major measurement-based top site lists: Amazon Alexa
Top Sites [2], The Majestic Million [6], Quantcast Top Websites [7], and Cisco
Umbrella Top 1 Million [4]. Table 1 summarises the data source and popularity
model of each ranking.

Alexa. The data for the ranking originates primarily from “millions of users” [3]
who have installed the Alexa toolbar and share their browsing history with
Alexa. Its website documents Alexa’s methodology as follows: The toolbar only
collects URLs that appear in the address bar of the browser window or tab.
Sudomains are not ranked separately from the main domain, unless they can be
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determined to be blogs or personal homepages. Domains are ranked according to
a combination of the number of users visiting the site, and the unique URLs on
that site visited by each user. Ranks below 100k are not statistically meaningful
because the data collected about those domains is too scarce [3,5]. The ranking is
updated daily. Our work uses the ranking from the file download [1]. In contrast
to the API and website, ranks in the file do not appear to be smoothed.

Majestic. Majestic’s ranking is based on the link graph built from a continu-
ously updated, proprietary web crawl comprising over 528 B URLs as of June
2018 [6]. Domains are ranked by the number of unique /24 IP networks hosting
inbound links [17].

Quantcast. Ranks are based on direct traffic measurements through client-
side tracking code embedded by Quantcast’s customers into their websites and
mobile applications, as well as estimated traffic (from unspecified sources) for
non-customer websites [7]. Quantcast customers can choose to hide their identity
in the ranking. Table 2 shows that around 1% of all list entries are hidden, but
for some list prefixes the percentage can be much higher, such as 15% in the
top 100. These censored entries make it challenging to compare this ranking to
others. Therefore, we do not consider it further in this paper.

Umbrella. The ranking is computed from incoming DNS lookups observed in
Cisco’s Umbrella Global Network and the OpenDNS service, which amount to
over 100 B daily requests from 65 M users in 165 countries [4]. Consequently, the
list reflects the popularity of domains used in any Internet protocol, not only
web traffic. According to Umbrella, ranks are based on the unique client IPs
looking up a domain [16].

2.3 Related Work

In 2006, Lo and Sharma Sedhain compared the lists available at that time to
determine how similar and reliable they were [25]. Out of the lists we initially
considered relevant for this study, they included only Alexa. Given the long
time that has passed since then, it is likely that the ranking methodology and
list composition have changed.

Scheitle et al. [30,31] study the domains on the lists compiled by Alexa,
Umbrella and Majestic, how these lists differ, how they evolve over time, how
they are being used in research studies, how list parameters influence the out-
come of research studies, and how the rankings could be manipulated. The
authors describe a weekend effect in Alexa and Umbrella, a periodic change in
list composition between weekday and weekend rankings. While the authors con-
vey an intuition as to why this effect exists, we provide a more detailed analysis
of the reasons and implications of this phenomenon. We describe an additional
phenomenon, clustering of equivalent domains in Alexa and Umbrella, which is
not mentioned by Scheitle et al. and discuss potential implications.
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Le Pochat et al. [20] also quantify several properties of domain lists and
reproduce prior studies using different lists, but the focus of their work is on
attacks to influence the rankings. While the weekend effect is visible in one
of the figures, it is not further mentioned or analysed. The authors do mention
clustering, but only in an attack context, and without discussing the implications
for research studies relying on these lists.

When discussing their results, both papers make high-level recommendations
how other researchers should use domain lists in their studies. We believe that
this topic warrants more discussion and conclude our paper with several addi-
tional recommendations.

3 List Analysis

In the following, we study weekend effects and clustering in the top 1 M rankings
of Alexa, Majestic, and Umbrella. We downloaded the respective ranking file
every day. We label the data with the date one day prior to downloading, as a
list updated and downloaded on Monday, for instance, appears to contain the
ranks computed from Sunday data.

3.1 List Stability

We begin our analysis with a look at how much and how fast the rankings change.
In contrast to prior work [20,30], we divide each ranking into non-overlapping
intervals of exponentially increasing length 1-10, 11-100, 101-1,000, etc. This
provides a better view on which parts of the ranking change. The exact order of
domains within each interval does not matter for many uses in security research,
thus we allow for reordering or minor rank changes by calculating set inter-
sections. We pick a single reference day, 2018-02-07 for Alexa and Umbrella,
2018-03-28 for Majestic, and compare all subsequent days upto 2018-05-31 to
this day. This allows us to visually distinguish long-term drift from transient
changes. Figure 1 uses a Wednesday as a representative of the workweek; similar
heatmaps using a Sunday for the weekend can be seen in Fig. 6 in the appendix.

At a high level, the heatmaps show that the top ranked domains exhibit
less change than the lower intervals of the ranking. This is in line with Scheitle
et al. [30], who showed that longer list prefixes tend to exhibit lower stability.
In contrast to prior work, our representation reveals that the higher ranks in
Alexa are more stable than in Umbrella, where changes occur within the top 10
domains on a regular basis. The bottom 900k domains, however, are considerably
less stable in Alexa than they are in Umbrella. In the bottom of the plot, most
intervals get lighter in color, corresponding to long-term drift.

Scheitle et al. [30] describe a weekend effect in Alexa and Umbrella, a weekly
pattern where change is highest on the weekend. This pattern appears in the
heatmaps as regular horizontal bands. While only implied by Scheitle et al. the
heatmaps in Fig. 1 confirm that the change is indeed transient, that is, the rank-
ing tends to revert back to the original domains after the weekend. Furthermore,
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Fig. 1. Heatmaps showing the set intersection of ranked domains with the reference
day, Wed. 7 February, in exponentially increasing list intervals 1-10, 11-100, 101-1,000,
etc. Horizontal lines correspond to the weekend effect, which is stronger in Umbrella,
whereas Alexa has stronger long-term drift. For Majestic, see Fig. 7 in the appendix.
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Fig. 2. Heatmaps showing domain extensions’ mean Wednesday market share & the
difference to the mean Sunday market share (also used to colour each cell) in expo-
nentially increasing list intervals 1-10, 11-100, 101-1,000, etc., from February to May
2018. Extensions ordered by Wednesday top 1 M mean market share. Weekends cause
a change in geographic representation. For Majestic, see Fig. 9 in the appendix. (Color
figure online)

close inspection of the heatmaps shows that the weekend differences are strongest
on Sundays. Figure 6 in the appendix contains similar heatmaps using a Sunday
as the reference day, and shows the expected inverted pattern of a greater differ-
ence during the workweek, and less during the weekend, relative to the Sunday
list. Umbrella has the strongest weekend effect, with changes occurring even in
the top 10. For example, Table4 in the appendix shows that Netflix moves from
ranks two and three to one and two, and Hola appears with two new entries.
Majestic, shown in Fig. 7 in the appendix, has no discernible weekend effect, as
its ranks appear stable.
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Table 3. Top 5 unresolvable public suffixes in Umbrella, Feb. to May 2018.

Suffix Wednesday Sunday

(mean freq./best rank) |(mean freq./best rank)
localhost |18/18,583 7,852/11,829
local 835/2,211 1,080/1,530
home 705/2,629 1,266/1,331
lan 566/6,246 948/3,687
localdomain|208/13,852 315/8,723

3.2 The Weekend Effect

Alexa and Umbrella exhibit strong, temporary changes each weekend. Using
domain extensions and website categories, we quantify how this affects the type
of listed domains.

Domain Extensions. To judge how the lists represent different geographical
regions, we look at country-code domain extensions, or more precisely, public
suffixes. The public suffix of a domain is the domain extension under which
domains can be registered, such as .cl or .co.uk. Country-code domain exten-
sions are only a coarse-grained approximation of country-level popularity, as
many regions use generic top-level domains such as .com in addition to their
country-code domain, and the U.S. in particular makes comparatively little use
of their .us extension. However, the way how each region splits its traffic across
generic and country-code domains should be stable, which means that we can
use domain extensions to uncover weekday to weekend changes.

Figure 2 shows the most common public suffixes used in Alexa and Umbrella
on Wednesdays from February to May 2018, ordered by their mean market share.
Different list intervals often exhibit variation in the relative popularity of domain
extensions. For example, .jp is the sixth most frequent extension in Alexa’s
top 100k, whereas it is ranked twenty-fourth in the full list. Extension diversity
differs between the lists, with Alexa containing 33 extensions in the top 100,
Majestic 13, and Umbrella only 4.

The weekend effect affects the geographical diversity of Alexa and Umbrella.
On weekends, Alexa loses domains from European countries and gains in Russia,
India, and for .com (from mean of 47.0 to 48.1%); Umbrella also includes more
Russian domains, and more domains with invalid extensions, but has fewer . com
domains (from 57.1 to 53.4% in the full list). Only Majestic remains relatively
stable, most likely due to its ranking reflecting structural properties of a website
link graph and not visitor popularity.

Invalid Domains. All of the domains in Alexa use a well-known public suf-
fix, but a mean of 0.5% (Wednesday) and 1.6% (Sunday) of Umbrella domains
and 0.004% of Majestic domains have a non-delegated domain extension. Such



168 W. Rweyemamu et al.

domains cannot currently be registered or resolved on the public Internet. In
fact, Umbrella appears to contain domains used internally in corporate networks.
These domains can appear quite high in the ranking, such as the domain tcs at
rank 820. Table 3 shows the five most frequently used invalid domain extensions
in Umbrella. Each Wednesday, Umbrella contains a mean of 18 domains with the
localhost extension, the highest of which was observed at rank 18,583, while
each Sunday, localhost contains a mean of 7,852 domain with a best rank of
11,829. This trend is consistent with other invalid domains, showing that invalid
domains peak on the weekend. The list also contains a mean of 198 corp domains,
and entries corresponding to the names of networking equipment manufacturers
such as belkin and dlink. Chen et al. [11,12] describe how internal domain
name lookups can leak into the public Internet, where they are susceptible to
attacks.

Website Categories. Similar to country-level representations, the lists may
exhibit differences in the content-level types of domains they contain. We utilise
Symantec/BlueCoat WebPulse [8] to categorise the top 10k domains of each list,
assuming that they are websites. For subdomains, the category usually refers to
the registered parent domain.

We successfully retrieve categories for 97.8-98.3% of domains in the top 10k
from March and April 2018. Domains listed in Alexa and Majestic are classified
into 63 and 62 categories, respectively, whereas Umbrella covers only 53 distinct
categories. This effect is even more pronounced in the top 1k, where Alexa con-
tains 48 categories, Majestic 39, and Umbrella only 23. Umbrella contains many
subdomains [20,30], which results in a significantly less diverse set of websites.
Figure 3 shows the most frequent categories ordered by their Wednesday market
share. The category market share distribution in Alexa is much more balanced
than in Umbrella, resulting in a better representation of websites of different
categories.

The types of categories also differ between the lists. The Wednesday Alexa
in the interval 100-1k contains 7.5% websites that could be considered “unsafe
for work” environments, whereas in Umbrella, the percentage is only 0.2%. This
suggests that the Umbrella ranking may be based on a larger share of corporate
traffic. Similarly, while the News/Media category is ranked first in Sunday Alexa,
it appears at rank 12 in Umbrella. In contrast, Umbrella highly ranks several
categories that appear to apply to internal subdomains and subresources such
as Web Ads/Analytics, the highest ranked category at (38