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Abstract Childbirth-related trauma is a recurrent and widespread topic due to the
disorders it can trigger, such as urinary and/or anal incontinence, and pelvic organ
prolapse, affecting women at various levels. Pelvic floor dysfunction often results
from weakening or direct damage to the pelvic floor muscles (PFM) or connective
tissue, and vaginal delivery is considered the primary risk factor. Elucidating the
normal labor mechanisms and the impact of vaginal delivery in PFM can lead to the
development of preventive and therapeutic strategies to minimize the most common
injuries. By providing some understanding of the function of the pelvic floor during
childbirth, the existing biomechanical models attempt to respond to this problem.
These models have been used to estimate the mechanical changes on PFM during
delivery, to analyze fetal descent, the effect of the fetal head molding, and delivery
techniques that potentially contribute to facilitating labor and reducing the risk of
muscle injury.

Biomechanical models of childbirth should be sufficiently well-informed and
functional for personalized planning of birth and obstetric interventions. Some
challenges to be addressed with a focus on customization will be discussed including
the in vivo acquisition of individual-specific pelvic floor mechanical properties.
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1 Introduction

Pregnancy and childbirth are very complex processes, and sometimes with harmful
consequences for the woman and/or the newborn. During pregnancy, the pelvic
floor function (sphincteric—regulating storage and evacuation of urine and stool;
support and stability of the pelvic organs, and sexual) may be compromised due to
the effect of hormonal changes and increased intra-abdominal pressure. In vaginal
delivery, the deformations to which the pelvic floor muscles (PFM) are subjected,
which may even exceed the physiological limits, can lead to muscle ruptures
which in turn lead to pelvic floor disorders [1]. In fact, vaginal delivery is the
most implicated epidemiological risk factor for the development of pelvic floor
dysfunction (PFD). Dysfunction of the pelvic floor complex can result in a wide
range of symptoms including urinary incontinence (UI), fecal incontinence (FI),
and pelvic organ prolapse (POP). According to the International Urogynecological
Association (IUGA)/International Continence Society (ICS) terminology, UI is the
complaint of any involuntary leakage of urine, FI is the complaint of involuntary
loss of feces, and POP is the descent of one or more of the anterior vaginal wall,
posterior vaginal wall, the uterus (cervix) or the apex of the vagina [2].

Due to its high prevalence, PFD represents a major public health problem,
considerably decreasing women’s quality of life [3, 4]. The number of women
affected with PFD is forecast to widen to 43.8 million in 2050, representing
an increase of more than 50% compared to 2010 (Fig. 1) [3]. Consequently, it
is expected that the number of women undergoing surgery for PFD correction
continues to increase, with a reoperation rate of 30%, and with an increasingly
shorter time interval between repeated procedures [5].

According to De Souza et al. [6], about 54% of women have physiological or
normal vaginal delivery, 21% undergo an instrumental delivery, and the remaining
25% give birth by cesarean section. Vaginal delivery is a perfect time to apply
preventive strategies. Avoiding damage during vaginal delivery may prevent PFD
from developing. Therefore, elucidating the pregnancy mechanisms and the impact
of vaginal delivery on the PFM using pelvic floor biomechanics can lead to the
development of preventive and therapeutic strategies to minimize the most common
injuries.

2 Mechanism of Normal Labor

Labor is defined as regular uterine contractions that lead to progressive effacement
and dilation of the cervix, resulting in delivery of the fetus, amniotic fluid, placenta,
and membranes via expulsion through the vagina. The evolution of the vaginal
delivery is dictated by the complex interaction between three essential factors,
the uterine activity (the power—triple descending gradient), the maternal pelvis
(the passage), and the fetus (the passenger). Computational models have become
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Fig. 1 Projected number of women for symptomatic PFD, 2010–2050

Fig. 2 Sagittal view of a
computational model of a
pregnant female

an interesting alternative to elucidate the labor mechanisms, allowing to evaluate
the influence of individual features (Fig. 2). Uterine activity is characterized by
the frequency, duration, and intensity of the contractions, and resting tone. The
contractions start with an intensity of 1–2 kPa, increasing to 7 kPa as the cervix
approaches full dilation, reaching 10–20 kPa with maternal pushing effort [7].
A successful vaginal delivery is dependent on an adequate pattern of uterine
contractions.

Regarding the passage, the pelvis has three important diameters: the pelvic inlet,
diagonal conjugate, and pelvic outlet (Fig. 3). The pelvic inlet has a wide transverse
diameter of approximately 13 cm. It is the distance from the sacral promontory to the
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Fig. 3 Pelvic diameters:
pelvic inlet—solid line,
diagonal conjugate—dashed
line, and pelvic
outlet—dotted line

upper border of the pubic symphysis. The diagonal conjugate is the most easily and
commonly assessed. It is measured from the lower border of the pubic symphysis to
sacral promontory (around 11.5 cm). The pelvic outlet has a wide anterior–posterior
diameter and is defined by the distance between the inferior aspect of the pubic
symphysis to the coccyx. Laterally, the pelvic outlet is defined by the interspinous
diameter which is the most limiting transverse diameter.

The pelvic inlet and outlet define the distance and the series of important
maneuvers through which the fetus must pass while descending through the pelvis.
Different pelvic shapes can restrain the position and the cardinal movements of
the fetus [8]. Cardinal movements are described sequentially, although labor and
delivery occur continuously. Moreover, not all fetuses follow the same pattern, as
it is dependent on the presenting part. At the onset of labor, the position of the
fetus in relation to the birth canal is critical to the route of delivery. The most
common situation is with the fetus in a longitudinal lie with a cephalic presentation
and a well-flexed attitude, described as a vertex presentation (smallest diameter
presented—the suboccipitobregmatic diameter). A computational finite element
model used to analyze the influence of fetal head flexion during vaginal delivery
(represented by θ in the Fig. 4) suggested that a well-flexed attitude may facilitate
birth, make uterine contractions more effective, and protect the pelvic floor [9]. The
seven cardinal movements are then engagement, descent, flexion, internal rotation,
extension, restitution and external rotation, and expulsion, and can be reproduced
using computational simulation.

The fetal head is the hardest part to deliver. However, since the fetal skull is
composed of sutures and fontanelles (Fig. 5), which has material properties softer
than the surrounding skull bones, changes in shape are possible as the head passes
through the pelvis and is subjected to constriction by external compressive forces
(molding). The skull sutures and fontanelles allow the parietal and occipital bones
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Fig. 4 Fetal head flexion
determined by angle θ

Fig. 5 Fetal skull with the sutures and fontanelles in red. Fetal head contour with two diameters
represented: suboccipitobregmatic and mentovertical

to be pressed and displaced, resulting in a shortened suboccipitobregmatic diameter
and an elongated mentovertical diameter, already reproduced by computational
simulations [10]. The degree to which the head is capable of molding may make the
difference between spontaneous delivery versus operative delivery. A malposition
of the head can also lead to labor and delivery complications by obstructing fetal
passage through the birth canal. A presentation with a mentovertical diameter (brow
presentation) can be difficult or impossible to be delivered vaginally, because the
diameter of the presenting part may be too large to safely fit through the pelvis [11].
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3 Biomechanical Childbirth Simulation

Computational simulations of childbirth aim to illustrate the whole progression of
labor, and to act as an adjuvant tool in the clinical setting for specific cases that
may result in complicated labor, predicted by the computational model. Modeling
takes into account the geometry of the structures and their mechanical properties.
In biomechanics, engineering simulation tools based on the finite element method
(FEM) are regularly used. However, the results of the simulations are strongly
dependent on the material model chosen and the material parameters defined.
Inaccurate choices lead to imprecise simulation results.

3.1 Constitutive Models

Constitutive laws are applied to reproduce the biomechanical behavior of the pelvic
structures, taking into account the fundamentals of their inner structure. Most of the
pelvic soft structures are assumed to be hyperelastic (describing nonlinear material
behavior and large shape changes) and often incompressible materials (maintaining
volume constant under pressure). Also, as some structures, for example, the pelvic
striated skeletal muscles, are embedded in a connective tissue matrix, their features
have to be set, as, for instance, their anisotropic and isotropic behavior, respectively.
Isotropy is the property of being directionally independent, as opposed to anisotropy,
which means heterogeneity in all directions.

3.1.1 Isotropic Constitutive Models: Simulating the Passive Behavior

The hyperelastic models (Neo-Hookean, Mooney–Rivlin, and Yeoh) are mainly
used to simulate the passive mechanical behavior for two main reasons. Firstly,
because they are simple models (with few parameters to optimize) that employ
a nonlinear relationship between stress and strain to describe incompressible
hyperelastic materials, and also because they seem to be able to describe the
biomechanical behavior of the PFM during simulation of Valsalva maneuver and
defecation and vaginal delivery [12–14].

The Neo-Hookean (Eq. 1), Mooney–Rivlin (Eq. 2), and Yeoh (Eq. 3) constitutive
models are characterized by:

W = c1 (I1 − 3) (1)

W = c1 (I1 − 3) + c2 (I2 − 3) (2)

W = c1 (I1 − 3) + c2(I2 − 3)2 + c3(I3 − 3)3 (3)
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where W is the strain energy function and c1, c2, and c3 are the material parameters
to be determined and have dimensions of stress; and I1, I2, and I3 are the principal
strain invariants (Eq. 4) of the right Cauchy-Green tensor [12]. For the case uniaxial
stretching, the principal strain invariants are represented as follows:

I1 = λ2 + 2
λ

I2 = 2λ + 1
λ2

I3 = 1

(4)

where λ is the maximum principal stretch.
In the case of uniaxial stretching, the Cauchy stress σ , a function of the invariants

(Eq. 5), can be described by the following equation [12]:

σ = 2

(
λ2 − 1

λ

)(
∂W

∂I1
+ 1

λ

∂W

∂I2

)
(5)

3.1.2 Anisotropic Constitutive Models: Simulating the Passive and Active
Behavior of the Muscle

Additionally, a quasi-incompressible transversely isotropic hyperelastic model is
used to characterize more realistically the PFM behavior—composed by a solid
extracellular matrix, collagen, and muscle fibers with a preferred orientation,
proposed by Martins et al. [15]. This hyperelastic model was used by other authors
to simulate the PFM contraction, comparing the numerical displacements with data
from dynamic sagittal MR images [16, 17], and to study the biomechanical behavior
of the PFM during vaginal delivery [18, 19].

For the constitutive model used, the strain energy per unit volume of the reference
configuration can be written using the following equation:

U = UI

(
I

C

1

)
+ Uf

(
λf,α

) + UJ (J ) (6)

where UI is the strain energy related with deformation of the isotropic matrix
embedding the muscle fibers, defined as:

UI = c
{

exp
[
b

(
I

C

1 − 3
)]

− 1
}

(7)

and Uf is the strain energy related with each muscle fiber, considering a passive
elastic part, UPE, and an active part, USE, due to contraction. The function fSE(λM , α)
ensures that the muscle produces no energy for values of 0.5 ≥ λM ≥ 1.5, and allows
to control the level of activation by the internal variable α ∈ [0, 1].
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Uf =
UPE︷ ︸︸ ︷

A
{

exp
[
a
(
λf − 1

)2
]

− 1
}

+

USE︷ ︸︸ ︷
T M

0

∫ λf

1
fSE

(
λM, α

)
dλM

fSE = α

{
1 − 4

(
λM − 1

)2
, for 0.5 < λM < 1.5

0, otherwise

(8)

UJ is the term of the strain energy associated with the volume change,

UJ = 1

D
(J − 1)2. (9)

In these definitions, c, b, A, a, D, and T M
0 are constants, I

C

1 is the first invariant
of the right Cauchy-Green strain tensor, C, with the volume change eliminated, i.e.,

I
C

1 = tr C = tr
(

F
T

F
)

= J− 2
3 tr C (10)

λf =
√

NT CN =
√

C : (N ⊗ N) (11)

It represents the fiber stretch ratio in the direction N of the undeformed fiber and
⊗ denotes the tensor product. In Eq. (10), F is the deformation gradient with the
volume change eliminated and J the volume change.

Based on the constitutive equations governing the material response at a contin-
uum level the stress tensor and the associated material tangent, H, must be provided
for numerical calculations. However, to implement the constitutive model in the
software Abaqus it is mandatory to define the spatial tangent tensor, h. In particular,
the Cauchy stress tensor and the tangent stiffness matrix using the Jaumann rate of
Cauchy stress are given by [20]

σ = 1

J
FSFT (12)

hijkl = J
(
HIJKL + σ ij δkl

)
(13)

In Eq. (12), S is the second Piola-Kirchhoff stress tensor given by

S = ∂U

∂E
(14)

where E is the Green-Lagrange strain tensor.
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3.2 In Vivo Characterization

The female pelvic floor is a soft tissue support structure associated with different
disorders. These affect the quality of life of many women and can be related with
changes in the biomechanical properties of muscles, ligaments, and fascia [21].
In this sense, the biomechanical analysis of the pelvic floor tissues is important
to understand different PFD. Decreased tissue elasticity often causes inability to
maintain the normal position of the pelvic organs and levator hiatus closure, so
such analysis will also improve clinical outcomes by better understanding the effect
of changes in tissue elasticity. PFD may result from changes in the biomechanical
properties of the supportive structures that occur from weakness or impairment of
muscles or ligaments, or alterations in the stiffness of the pelvic fascia associated
with the risk factors—age, hormonal changes, childbirth, among others [21].

Previous experimental in vitro studies have been addressed to evaluate biome-
chanical properties of the pelvic ligaments, vaginal tissue, and levator ani (LA)
muscle [22–26]. To obtain these biomechanical properties, the tissue collected
during surgeries or from female cadavers has been tested using different techniques:
uniaxial [24] and biaxial tensile tests [27]. However, these collected tissues are
frequently afflicted in clinical environment, and consequently, the comparison to
in vivo healthy tissues is difficult [28], mainly due to their location. Hence, the
computational models are a powerful tool to understand the behavior of the PFM,
being used by several authors [1, 16, 18, 29].

Numerical simulations of the mechanical behavior of the PFM based on the
FEM use in vitro biomechanical properties obtained from experimental studies
with both normal and pathological specimens [30, 31]. Nonetheless, to achieve
realistic simulation of the PFM, Silva et al. implemented an inverse finite element
analysis (FEA) to obtain in vivo biomechanical properties of the PFM for a specific
subject [32]. The methodology consisted in comparing dynamic MR images during
Valsalva maneuver and contraction with the PFM behavior described by different
constitutive models in order to define the material parameters that best mimicked
the in vivo muscle behavior shown in those dynamic images [13, 32]. Silva et
al. found lower elasticity for the PFM of incontinent women when compared to
asymptomatic women [14]. Demographic or morphological characteristics did not
explain the difference obtained, and may be associated with histological changes,
due to the fact that women with incontinence usually present a significant reduction
of type III collagen [33]. Lower elasticity in the PFM of incontinent women means
greater displacements during Valsalva maneuver. Additionally, the mean values of
the material properties related with stiffness were higher for the muscles of women
with prolapse. This increase in stiffness is in line with other experimental works
involving vaginal tissue, which showed that the elasticity module is significantly
higher in the prolapsed tissue when compared with the normal tissue [24, 34].
The higher values of the material parameters for women with prolapse can be
associated with differences in muscle morphology, regarding to the fact that women
with POP presented thinner muscles. The thinner muscles in women with POP can
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have a histological response, decreasing the total collagen content and increasing
the concentration of collagen type III [35].

However, it is important to consider some limitations and simplifications
involved: (1) this sample is small; (2) the numerical models did not include the
connective tissues (fascia and ligaments) and pelvic organs, which would be more
realistic.

In this context, the determination of the in vivo biomechanical properties
is essential to obtain customized computational models to simulate the vaginal
delivery.

3.3 Vaginal Delivery Simulation

The biomechanical principles of childbirth are still unknown but it is recognized
that the physiological changes that occur during pregnancy and childbirth have
a detrimental effect on the structure and function of the muscles, nerves, and
connective tissue that make up the pelvic floor complex. As such, the computa-
tional models arise with the intention of improving current knowledge, studying
mechanical aspects during vaginal delivery (stress, tension, forces, and contact
pressures), having the capability to isolate and evaluate the mechanical significance
of a single feature. Hence, biomechanical studies are mainly focused on pelvic floor
muscles, in order to predict obstetric trauma that will result in an increased risk of
developing pelvic floor muscle dysfunction [36–38]. The computational models are
meant to represent, from a mechanical point of view, the effects that the passage
of a fetal head can induce on the muscles of the pelvic floor. Parente et al. found
that during a vaginal delivery with the fetus in vertex position and occipito-anterior
presentation, the maximal rate of stretching of the pelvic floor muscles exceeded
by approximately 10% the largest noninjurious stretch ratio (Fig. 6) [37, 39]. They
concluded that if the injury is caused by stretching of fibers that exceeds a maximum
permissible value, during vaginal delivery there is a high risk for injury to the pelvic
floor muscles [37]. It was also verified that if there is a malposition of the fetus
during childbirth, namely an occipito-posterior presentation, the maximum rate of
stretching of the pelvic floor muscles exceeds the limit of muscle resistance in more
than 15% (Fig. 6) [40]. Yan et al. noticed that the region of the pelvic floor muscles
most subjected to stresses are independent of the fetal head geometry, suggesting
that the locations of potential avulsion injuries could be entirely dependent on the
morphology of the maternal pelvis [8].

Oliveira et al. quantified the muscle damage during vaginal delivery with the fetus
in vertex position and occipito-anterior presentation and concluded that, particularly
during fetus head extension, the pelvic floor muscles are injured and that the
puborectalis component of the levator ani muscle is the most prone to damage
(Fig. 7) [41]. Immediately after delivery, the tissues are swollen and deformed,
making it difficult to diagnose the degree of tear, leading to errors in determining the
prevalence of obstetric lesions. These models thus become valuable tools in assisting
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[mm]

Fig. 6 Stretch values obtained during the vaginal delivery simulation with the fetus in occipito-
anterior (gray line) and occipito-posterior (black line) positions. Highlighting of the stretch limit
value to avoid muscle injury (dashed line)
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Fig. 7 Muscle damage (%) during a vaginal delivery simulation with the fetus in occipito-anterior
position. Illustration of the damaged zones in the PFM, in black color, at a vertical displacement
of the fetus head of 50 mm
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the diagnosis of injuries. However, since the problem studied is quite complex, it
is necessary to consider the limitations involved in order to properly interpret the
research findings. Moreover, the impact of the computational model simplifications
in the expected results should be taken into account. Yan et al. verified that the
inclusion of a full pelvis provides a more complete anterior constraint to the
childbirth model, resulting in noticeably variations in the fetal head motion and
in higher forces required for delivery compared to a simplified model [42].

In most computational models, the viscous effects present in all biological soft
tissues were disregarded, which may hinder the evaluation of the tissue behavior
during labor. Vila Pouca et al. used a visco-hyperelastic constitutive model to
characterize the mechanical behavior of the pelvic floor muscles to assess how the
childbirth duration affects the efforts sustained by the pelvic floor [43]. They con-
cluded that viscoelasticity increases the stiffness of the tissue, increasing strength
compared to the elastic response, which justifies the higher efforts associated with
precipitous labors. By including a continuum mechanics damage model, Vila Pouca
et al. also found that tissue relaxation properties contribute to decrease damage
levels, supporting the theory of delayed pushing applied in the second stage of
labor [44].

There is a growing interest in improving computational models, taking into
account, for example, the influence of the birthing positions on physiological
outcomes [45]. Such computational models take pelvic joint motion into account
and are able to determine pelvic kinematics under loading conditions, allowing to
determine the loads applied to the female pelvis during dynamic movements that
may occur during labor [46].

Such biomechanical models also allow to address the influence of common
obstetric procedures, such as episiotomy. The latest Cochrane reviews do not
recommend the routine use of episiotomy for vaginal delivery, irrespective of the
fetal position, ensuring that the reduction in perineal/vaginal trauma is not justified
by current evidence [47]. However, there is a particular group, when instrumental
delivery is intended, where further research is needed. Oliveira et al. simulated
vaginal deliveries with the fetus in vertex presentation and occipito-anterior position
with different mediolateral episiotomies approaches, varying the length and angle
of the incision [48]. According to the obtained results, they concluded that a
mediolateral episiotomy has a protective effect, reducing stress on the muscles and
the force necessary to delivery successfully up to 52.2% (Fig. 8). The influence
of performing mediolateral episiotomies during a malposition childbirth was also
addressed by Oliveira et al. [49]. They concluded that episiotomy can reduce muscle
damage to values obtained during labor in normal position, making the fetal position
almost irrelevant [49]. Although the results look promising for protection of PFM
trauma, the model does not include the perineal body, which is the primary structure
that is implicated. Therefore, further work which includes the perineal body is
needed.
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Fig. 8 Numerical simulation
of the fetal descent, showing
the distribution of the
maximum principal stress for
the PFM considering a
vaginal delivery without
(upper figure) and with a
mediolateral episiotomy
(lower figure)

4 Personalized Childbirth Models

Most of the current biomechanical models of the maternal pelvic floor and fetus
system remain generic and do not provide individualized information. However, an
accurate estimation of the effects of childbirth on the pelvic soft tissues implies
using subject-specific biomechanical models, which will certainly improve delivery
approaches. Particularly if one considers that there are significant individual differ-
ences in the anatomy of the maternal bony pelvis (size and shape), fetal head size,
the mechanical properties of the pelvic floor structures, and boundary conditions.
The inverse FEA will be adjusted to the ultrasound technique, replacing the
magnetic resonance imaging (MRI), to obtain the in vivo biomechanical properties
during vaginal delivery. Additionally, the boundary conditions will be included,
according to subject-specific ultrasound technique. Patient-specific modeling has
caught the attention of many relevant research groups around the world because
of its potential to improve diagnosis, and optimize clinical treatment by predicting
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outcomes of therapies and surgical interventions. Most current medical diagnostic
practices lead to rough estimates of outcomes for a particular treatment plan, and
treatments and their outcomes usually find their basis in the results of clinical trials.
Nonetheless, these results might not apply directly to individual patients because
they are based on averages. As an alternative, patient-specific modeling can be used
as a diagnostic tool to adapt treatment and optimize an individual’s therapy. The
patient-specific modeling workflow should involve the collection and processing
of data from an individual patient and their integration into a mathematical
model. The model should incorporate the mathematical representations of the
patient’s geometry, boundary and initial conditions, and the governing equations
and parameters, with leeway for the optimization of the mechanical properties of
the tissues. Regarding boundary conditions, a formulation requiring observation of
tissue displacements, compliance boundary conditions, will ensure that these are
individual-specific [50]. Data collected from the patient can be used for model
validation; however, it should be distinct to data used for model development.

Biomechanical models in general, and of childbirth in particular, will become
sufficiently well-informed and functional to enable personalized planning of surgi-
cal interventions, mainly due to the advent of clinical imaging modalities, coupled
with the biostatistics, data analytics, and physics-based computational models.

5 Conclusions

As has been brought to mind throughout this chapter, the simulation of vaginal
deliveries is a huge challenge. Mainly because it focuses on a region whose
biomechanical research is in its infancy. There are still many issues to investigate,
and many unanswered questions. Due to the advances in the field of medical
imaging and in the physics-based computational models, it is expected that great
advances will be made in the field of pelvic floor biomechanics. In the future,
therefore, biomechanical models of childbirth will be sufficiently well-informed and
functional for the personalized planning of childbirth, still serving as educational
tools for physicians. The evaluation of the risk for childbirth-related pelvic floor
trauma is one of the main objectives of simulating vaginal childbirth, by identifying
the relevant processes that are involved in structural failure, such as the stress–
strain values in the insertion points of the rectal area of the levator ani, and in
the pubic symphysis. Obstetric techniques could be improved if they are informed
by biomechanical models and simulations demonstrating the effect of certain
approaches on pelvic floor biomechanics. Computational models have already
shown that rupture of muscle fibers leading to macroscopic trauma of the levator
ani can be overcome by mediolateral episiotomy, which seems to reduce the amount
of stress in the PFM.
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