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Abstract. The bi-objective obnoxious p-median problem has not been
extensively studied in the literature yet, even having an enormous real
interest. The problem seeks to locate p facilities but maximizing two dif-
ferent objectives that are usually in conflict: the sum of the minimum
distance between each customer and their nearest facility center, and the
dispersion among facilities, i.e., the sum of the minimum distance from
each facility to the rest of the selected facilities. This problem arises when
the interest is focused on locating obnoxious facilities such as waste or
hazardous material, nuclear power or chemical plants, noisy or polluting
services like airports. To address the bi-objective obnoxious p-median
problem we propose a variable neighborhood search approach. Compu-
tational experiments show promising results. Specifically, the proposed
algorithm obtains high-quality efficient solutions compared to the state-
of-art efficient solutions.

Keywords: Location problem · Obnoxious p-median problem ·
Multi-objective optimization · Variable neighborhood search

1 Introduction

The importance of locating centers no matter the nature of them is crucial to
manage any company either private or public. In our field, a location problem can
be defined as an optimization problem that seeks to place one or more centers
or facilities having into account a given set of customers or demand points [9].

According to [5], location problems can be classified into four categories
regarding the objective function criteria: facility location problems, which seek
to find a place to locate a facility in order to minimize the total cost between
demand points and facilities; p-median problems, which determine the locations
of p facilities in order to minimize the total cost between demand points and
facilities; p-center problems, which minimize the maximum distance between
each demand point and its assigned facility; and covering problems whose objec-
tive is to find the minimum number of facilities to cover all the demand points
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or to maximize the number of demand points covered by a given number of facil-
ities. All those problems can be considered with or without a demand value in
facilities and/or in demand points. In those cases they are known as capacitated
or uncapacitated problems, respectively [4,15]. Furthermore, location problems
can be considered on the discrete space, when facilities can be only placed at
specific locations [12], or continuous space, in which facilities can be placed at
any location of a given region [1]. This work deals with an uncapacitated discrete
facility location problem.

The problem that is considered in this paper is known as the bi-objective
obnoxious p-median problem, Bi-OpM, firstly introduced in [3]. It mainly con-
sists on locating a set of obnoxious facilities on a landscape shared with customers
(also known as demand points). The term obnoxious referring to a facility is used
when it is desired to locate it as far as possible from the demand points. This
situation appears when the interest is to locate facilities such as waste or haz-
ardous material, nuclear power or chemical plants, noisy or polluting services
like airports. Besides, the facilities should be properly distributed to avoid the
situation where several obnoxious facilities are close to each other.

The Bi-OpM can be formally stated as follows. Let I be a set of customers,
and J a set of candidate facility centers, where |I| = n and |J | = m, and
let d store the distances among all the considered nodes. The aim of the Bi-
OpM is to locate a set P candidate facilities, having |P | = p and p < m,
while maximizing two objective functions: (f1), the distance from each demand
point to the facilities, computed as the sum of the minimum distances between
each demand point and the nearest facility; and (f2), the dispersion among the
facilities, computed as the sum of the minimum distances from each facility to
the rest of the selected facilities. More precisely, these objective functions can
be described in the following way:

max f1 =
∑

i∈I

min dij : j ∈ P

max f2 =
∑

j∈P

min djk : k ∈ P, j �= k

s.t. P ⊆ J

|P | = p

Some authors name facilities in P as open facilities and facilities in J\P as
closed or unopened facilities.

On the other hand, it is important to emphasize that we are dealing with a
multi-objective optimization problem. Hence, the definition of an efficient solu-
tion is the one for which no single-objective function value can be improved
without deteriorating another objective function value. It is said that a solution
P ∗ dominates another solution P if P ∗ is not worse than P in all the objectives,
and P ∗ is better than P in at least one objective. Similarly, we say that P ∗

weakly dominates P if P ∗ is not worse than P in all the objectives [2]. Formally,
as we are maximizing the objectives, a solution P ∗ dominates another solution P ,
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if fi(P ∗) ≥ fi(P ) for all i = 1, 2 and fi(P ∗) > fi(P ) for at least one i = 1, 2.
According to this, we will say that a solution is efficient if there is no other
solution that dominates it. The Pareto front, also known as the efficient frontier,
is the set of efficient solutions. Our purpose then is to find a good approximation
to the Pareto front, denoted as PF from now on.

As stated before, the Bi-OpM was first introduced in [3]. The authors pro-
posed a Multi-Objective Memetic Algorithm (MOMA) defining two new variants
of the crossover and mutation operators and studying three local search strate-
gies applied in the MOMA. Furthermore, they performed a comparison using two
multi-objective state-of-the-art methods, specifically the Non-dominated Sort-
ing Genetic Algorithm II, (NSGA-II, [6]), and the Strength-Pareto Evolutionary
Algorithm 2 (SPEA2, [16]), and also adding single-objective Genetic Algorithm
(GA) which combines the objectives under study through a weighted sum of
their values.

In this paper, a Variable Neighborhood Search algorithm (VNS) is adapted to
solve the considered multi-objective optimization problem. Another contribution
of this paper is to compare our algorithm against the best algorithm proposed
in the literature so far, [3].

The rest of the paper is organized as follows. Section 2 describes our VNS
proposal and details how the algorithm has being adapted and implemented
to solve this bi-objective optimization problem. Section 3 presents the compu-
tational results where a experimentation and analysis of the results is shown.
Finally, Sect. 4 summarizes the paper and discusses future work.

2 VNS Algorithm

To solve the Bi-OpM problem we propose a VNS approach that considers all
the features of this bi-objective optimization problem. VNS is a metaheuristic
framework originally introduced by [13] that relies on the idea of systematic
changes in the neighborhood structures. The adaptability of the methodology
has resulted in several variants in recent years (see [11] for a recent survey on
the methodology), which has led to several successful applications for a variety
of difficult optimization problems, such as those in [7] and [14]. In this work,
VNS is adapted to solve a bi-objective optimization problem.

We propose a Basic VNS (BVNS) algorithm which combines deterministic
and stochastic changes of neighborhood in order to obtain high quality solutions.
Multi-objective VNS was originally proposed recently, see [8]. However, we follow
a different approach in this paper, which is briefly described in Algorithm1.

BVNS requires from two input parameters: a set of non-dominated solutions
PF and the largest neighborhood to be explored, kmax . Starting from the first
neighborhood (step 1), the method iterates until reaching the maximum prede-
fined neighborhood kmax (steps 2–16). At each iteration two different phases are
applied to every solution from the incumbent set of non-dominated solutions.
In particular, the solution is randomly perturbed in the current neighborhood k
using the Shake procedure (step 5). The proposed Shake algorithm consists in
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Algorithm 1. BVNS(PF , kmax )
1: k ← 1
2: while k �= kmax do
3: PF ′ ← PF
4: for all P ∈ PF ′ do
5: P ′ ← Shake(P, k)
6: PF ′ ← Insert&Update(P ′)
7: P ′′ ← LocalSearch(P ′)
8: PF ′ ← Insert&Update(P ′′)
9: if PF ′ �= PF then � Improve in the Pareto front

10: k ← 1
11: PF ← PF ′

12: else
13: k ← k + 1
14: end if
15: end for
16: end while
17: return PF

randomly interchanging k assigned facilities with k candidate locations that do
not belong to the current solution yet, generating solution P ′, which is added to
the updated Pareto front, PF ′ (step 6). It is worth mentioning that the shake
method performs random movements (whose sizes depend on the current neigh-
borhood) which are not considered in the local search (i.e., interchange k ≤ p
facilities simultaneously, while the local search only interchanges a single facil-
ity). Furthermore, the shake method accepts solutions of lower quality that will
eventually let us explore further regions of the search space, while the local
search only considers improved solutions.

A local search method is responsible of locally improving the perturbed solu-
tion P ′, obtaining solution P ′′ (step 7). Notice that every feasible solution gen-
erated during the search is a candidate solution for entering in the set of non-
dominated solutions. The method Insert & Update (steps 6 and 8) performs this
verification, inserting the solution if it is non-dominated by others already in the
set, removing those solutions dominated by the new one. Regarding this behav-
ior, any modification in the Pareto front is considered as an improvement since
a new non-dominated solution has been included in it. Therefore, if the Pareto
front has been modified, the search starts again from the first neighborhood
(step 9), updating the incumbent Pareto front. Otherwise, the method explores
the next neighborhood (step 13) until reaching the largest considered neighbor-
hood. BVNS ends returning the set of non-dominated solutions generated in the
search.

2.1 Constructive Method

The initial solution for the VNS algorithm is the set of non-dominated solutions
PF conformed with the solutions generated by a constructive procedure inspired
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by the Greedy Randomized Adaptive Search Procedure (GRASP) methodology
[10]. For this work, we have decided to use a semi-greedy procedure that com-
bines greediness (intensification) and randomness (diversification) by means of
a parameter α. The procedure generates a predefined number of initial solutions
for both objective functions f1 and f2 that are evaluated for entering in the set
of non-dominated solutions. Therefore, the output of the constructive phase is a
set of non-dominated solutions PF , which acts as the input Pareto front for the
VNS algorithm.

Algorithm 2 details the constructive method proposed for the Bi-OpM, which
is generalized for any objective function, fi. The input for the method is com-
prised of the set of candidate locations to host a facility J , the parameter α which
controls the greediness/randomness of the method, and the objective function
under consideration fi. The method starts by randomly selecting a candidate
location from the available ones, including it in the solution under construction
(steps 1–2). Then, a Candidate List (CL) is created with the remaining candi-
date locations (step 3). The method iteratively selects new candidates until p
locations has been selected (step 4). In each iteration, the minimum and max-
imum values of the objective function among all the candidates are evaluated
(steps 5–6). After that, the Restricted Candidate List (RCL) is created (step 8)
with the most promising candidates, i.e., those whose objective function value
is larger or equal than a threshold th (step 7). On the one hand, if α = 0, the
construction is totally greedy (it only considers the facilities that produce the
greatest increase in the objective function value). On the other hand, if α = 1,
then all facilities are included in the RCL so the construction is totally random.
The next vertex to be added to the solution is selected at random from the RCL
(step 9), updating the solution under construction and the CL (steps 10–11).
The method ends when the solution has exactly p locations selected.

Algorithm 2. Construct(J , α, fi)
1: v ← Random(J)
2: P ← {v}
3: CL ← J \ {v}
4: while |P | < p do
5: gmin ← minv∈CL fi(P ∪ {v})
6: gmax ← maxv∈CL fi(P ∪ {v})
7: th ← gmax − α · (gmax − gmin)
8: RCL ← {v ∈ CL : fi(P ∪ {v}) ≥ th}
9: v′ ← Random(RCL)

10: P ← P ∪ {v′}
11: CL ← CL \ {v′}
12: end while
13: return P
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2.2 Local Search

The problem under consideration tries to optimize two different objective func-
tion, so a traditional approach would propose a different local search method for
each objective function. Instead, we propose a single local search method that
aggregates both objective functions in a unique search. Parameter β controls the
influence of each objective function in the aggregated function fa. More formally,

fa ← β · f1 + (1 − β) · f2

Varying the value of β parameter will result in exploring different regions of
the search space, potentially increasing the number of solutions included in the
set of non-dominated solutions.

The local search method traverses all the selected facilities and tries to
exchange it with every candidate location. The search follows a first improve-
ment approach in order to reduce the computational effort of the method. In
particular, every time an improvement move is found, it is performed and the
search starts again.

The value of β must vary in order to obtain a more dense set of non-dominated
solutions. In the context of the BVNS algorithm, we consider a random value of
β in the range 0–1 in each local search phase, in order to explore a wider portion
of the search space.

3 Computational Results

This section presents and discusses the results of the experimental experience
conducted in this paper. In order to perform a fair comparison against the most
competitive algorithm proposed in the literature, we have solved the same set
of instances considered in [3]. Specifically, the previous paper presents eight
instances where the number of nodes (indicated as |V | = |I ∪ J |) ranges from
400 to 900, the number of demand points and facilities (|I| and |J |) varies from
200 to 450 and the number of open facilities (p) is between 25 and 225. We show
in Table 1 these features for all the instances, which are available at http://www.
optsicom.es/biopm/. Our experiments were run on a computer provided with an
Intel i7 2600 processor running at 3.4 GHz, 4 GB RAM and Ubuntu 16.04. The
algorithms were implemented using Java 8.

After some preliminary computational experiments where several values of α
and kmax were tested, we decided to use a random value for the α parameter and
kmax = 0.3 · p, since they obtained the best performance in our tests. Besides, a
number of 100 iterations of the constructive method generated the initial Pareto
front that our BVNS requires as input parameter.

Firstly, we show the results of our VNS proposal in terms of the hypervolume
[17], which is the metric that was presented in [3]. In the previous paper, a
total of seven different algorithms where compared. For the sake of the space,
we will compare the results of our VNS proposal against three of the seven
approaches from the state of the art. These algorithms are the NSGA-II [6],

http://www.optsicom.es/biopm/
http://www.optsicom.es/biopm/
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Table 1. Description of the instances.

Instance |V | |I| |J | p

pmed17-p25 400 200 200 25

pmed20-p50 400 200 200 50

pmed22-p62 500 250 250 62

pmed28-p75 600 300 300 75

pmed33-p87 700 350 350 87

pmed36-p100 800 400 400 100

pmed39-p112 900 450 450 112

pmed40-p225 900 450 450 225

which is a classical multi-objective evolutionary algorithm, and the two variants
of the memetic algorithm that obtained the best results in [3]: dominance-based
local search, DBLS, and alternate objective local search, AOLS. Table 2 compares
the performance of our VNS proposal showing the hypervolume values for all
these algorithms and instances, the average hypervolume value normalized to the
best hypervolume obtained for each instance (Avg. Norm. Hyp.), and the average
normalized deviation between the hypervolume and the best hypervolume value
(Avg. Dev.).

As it can be seen in the table, DBLS and AOLS obtain the best hypervolume
values for two of the instances respectively, which are the four smaller ones. How-
ever, VNS reaches the best hypervolume in the four larges instances, obtaining
also the best average normalized hypervolume and the best average deviation.

Notice that the results for NSGA-II, DBLS and AOLS, extracted from [3],
correspond to the set of non-dominated solutions obtained after 30 runs of each
algorithm. In the case of VNS, the results correspond to one single run. There-
fore, it is clear that the efficiency of our VNS proposal is higher in relation to
the other algorithms.

We have accounted for the number of efficient points obtained by each algo-
rithm, which are shown in Table 3. In this case, our VNS proposal obtains the
higher number of efficient points in all but the smallest instance. Therefore, VNS
shows again a more efficient behavior in the optimization process, considering
again that the results of VNS come from one single run.

In addition to the hypervolume and the number of efficient points, we depict
in Fig. 1 the efficient points obtained in the experiments described before. From
Fig. 1(a) to (h), the instances are sorted by size, from the smallest to the largest.
As shown in the picture, the four fronts in the smallest instance, pmed17.p25,
are almost completely overlapped. However, as the size of the instance grows,
the front obtained with the NSGA-II algorithm is shifted downwards, while the
other three algorithms maintain a good performance with similar shapes. This
trend is more clear in the case of the efficient points of the largest instances,
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Table 2. Hypervolume of final non-dominated fronts. Best values are depicted in bold
font.

Instance NSGA-II DBLS AOLS VNS

pmed17.p25 8692436 8706765 8710887 8597575

pmed20.p50 9455493 10042017 10020130 9930426

pmed22.p62 10782181 12565434 12503057 12482833

pmed28.p75 8552938 10360761 10383320 10330591

pmed33.p87 8246628 10464880 10496109 11011544

pmed36.p100 9050694 11962494 11925733 12413823

pmed39.p112 7925756 11301612 11275309 11707564

pmed40.p225 7779073 10830924 10750521 11978974

Avg. Norm. Hyp. 0.8032 0.9726 0.9709 0.9955

Avg. Dev. 0.1968 0.0274 0.0291 0.0045

Table 3. Number of efficient points of final non-dominated fronts. Best values are
depicted in bold font.

Instance NSGA-II DBLS AOLS VNS

pmed17.p25 84 85 88 68

pmed20.p50 41 136 121 146

pmed22.p62 17 140 127 193

pmed28.p75 15 115 102 218

pmed33.p87 24 103 108 284

pmed36.p100 12 89 82 278

pmed39.p112 8 104 76 294

pmed40.p225 22 133 123 313

Avg. 27.88 113.13 103.38 224.25

displayed in Fig. 1(e) to (h). In those instances, the front generated by our VNS
proposal outperforms both the memetic and the NSGA-II approaches.

We have also obtained, for each instance, the complete set of non-dominated
solutions after executing all the algorithms, that is, the final PF for each
instance. This way, we have also measured the contribution of each algorithm to
the final PF . Table 4 shows the ratio for each algorithm. We can see that VNS is
the best contributor to the final PF but in the two smallest instances. However,
it contributes in more that a 94% in the four largest instances, reaching the
100% in pmed36.p100. Again, it is worth mentioning that NSGA-II, DBLS and
AOLS were executed 30 times, whereas VNS was run just once, and reached an
average contribution of 71.27%.

Finally, we compare the execution time of the analyzed algorithms. Table 5
presents the time spent by VNS on the single run that produced the results
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(a) pmed17.p25 (b) pmed20.p50

(c) pmed22.p62 (d) pmed28.p75

(e) pmed33.p87 (f) pmed36.p100

(g) pmed39.p112 (h) pmed40.p225

Fig. 1. Trade-off between f1 and f2.
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Table 4. Contribution of each algorithm to the final PF . Best values are depicted in
bold font.

Instance NSGA-II DBLS AOLS VNS

pmed17.p25 0.9545 0.9659 0.9773 0.0114

pmed20.p50 0 0.3963 0.25 0.3537

pmed22.p62 0 0.3108 0.0676 0.6532

pmed28.p75 0 0.1458 0.0833 0.7708

pmed33.p87 0 0.0036 0.0143 0.9821

pmed36.p100 0 0 0 1

pmed39.p112 0 0.0169 0 0.9831

pmed40.p225 0 0.0494 0.0031 0.9475

Avg. 0.1193 0.2361 0.1744 0.7127

previously analyzed, and the average execution time of NSGA-II, DBLS and
AOLS. This average time was obtained after the 30 runs that produced
the results shown before. Hence, despite that VNS is slower in one case
(pmed28-p75), it is important to report that it obtains better results in one
single run than the other algorithms after 30 runs.

Table 5. CPU time (secs). One single run of VNS versus average execution time of
NSGA-II, DBLS and AOLS. Best values are depicted in bold font.

Instance NSGA-II DBLS AOLS VNS

pmed17-p25 1759.2 540.0 658.5 21.8

pmed20-p50 4995.3 933.9 1214.7 410.1

pmed22-p62 7990.8 1414.2 1768.2 970.1

pmed28-p75 13491.6 1839.9 2365.8 1856.1

pmed33-p87 19639.2 2706.9 3361.5 1825.9

pmed36-p100 27532.5 4367.7 3691.5 1809.8

pmed39-p112 29739.9 6099.6 3855.0 2162.0

pmed40-p225 114285.9 11440.8 8475.9 3608.7

4 Conclusions and Future Research

This paper generalizes the Variable Neighborhood Search algorithm (VNS) to
solve a bi-objective optimization problem known as the bi-objective obnoxious
p-median problem, Bi-OpM. To that end, the VNS approach is designed to take
into account two conflicting objectives: to maximize the sum of the distances
to the nearest demand point to each obnoxious facility and, to maximize the
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dispersion of obnoxious facilities. The interest of this problem appears because
the Bi-OpM fits in many realistic situations where it is desired to locate facilities
as far as possible from the demand points and among them.

Computational results show the superiority of the proposed algorithm over
the state-of-art algorithms to solve the Bi-OpM so far on the same set of
instances. Results obtained by the VNS algorithm outperform, in most of the
instances, the three considered algorithms: NSGA-II, DBLS, and AOLS, spend-
ing less computational time.

As future work, it would be interesting to solve an extension of the Bi-OpM
which will include an additional objective function. The new multi-objective
obnoxious facility location problem that we will address, seeks to maximize the
sum of the minimum distances between each demand point and its nearest facility
and maximize the sum of the minimum distances between two facilities but also
to minimize the number of demand points affected (or covered) by the facilities.
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