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Preface

This volume edited by Angelo Sifaleras, Said Salhi, and Jack Brimberg contains
peer-reviewed papers from the 6th International Conference on Variable Neighborhood
Search (ICVNS 2018) held in Sithonia, Halkidiki, Greece, during October 4–7, 2018.

The conference follows previous successful meetings that were held in Puerto de La
Cruz, Tenerife, Spain (2005); Herceg Novi, Montenegro (2012); Djerba, Tunisia
(2014); Malaga, Spain (2016); Ouro Preto, Brazil, (2017). This edition was organized
by Angelo Sifaleras, from the University of Macedonia (Greece), who was the con-
ference chair, Nenad Mladenović, from the Mathematical Institute, of the Serbian
Academy of Sciences and Arts (Serbia), who was the general chair, and Pierre Hansen,
from GERAD and HEC Montreal (Canada), who was the honorary chair.

Like its predecessors, the main goal of ICVNS 2018 was to provide a stimulating
environment in which researchers coming from various scientific fields can share and
discuss their knowledge, expertise, and ideas related to the VNS metaheuristic and its
applications. The location of ICVNS 2018 in Porto Carras Meliton Hotel, Sithonia,
Greece, allowed us to combine academic presentations and social networking.

The following three plenary lecturers shared their current research directions with
the ICVNS 2018 participants:

• Panos M. Pardalos, from the Center for Applied Optimization, Department of
Industrial and Systems Engineering, of the University of Florida, USA, “On VNS
for Hard Optimization Problems and the Power of Heuristics”

• Abraham Duarte, from the Department of Computer Sciences, of the Universidad
Rey Juan Carlos, Spain, “Multi-objective VNS”

• Daniel Aloise, from the GERAD and Department of Computer Engineering, of
Polytechnique Montréal, Canada, “Clustering and Variable Neighborhood Search:
A Love Story”

Around 50 participants took part in the ICVNS 2018 conference and a total of 37
papers were accepted for oral presentation. A total of 23 long papers were accepted for
publication in this LNCS volume after thorough peer reviewing by the members of the
ICVNS 2018 Program Committee. These papers describe recent advances in methods
and applications of variable neighborhood search.

The editors thank all the participants in the conference for their contributions and for
their continuous effort to disseminate VNS and are grateful to the reviewers for
preparing excellent reports. The editors wish to acknowledge the Springer LNCS
editorial staff for their support during the entire process of making this volume. Finally,
we express our gratitude to the organizers and sponsors of the ICVNS 2018 meeting:

• The Research Committee of the University of Macedonia
• The Computational Methodologies and Operations Research (CMOR Lab)
• The EURO Working Group on Metaheuristics (EWG EU/ME)
• The GERAD Group for Research in Decision Analysis



• The DIMOULAS Special Cables S.A.
• The Marathon Data Systems
• The TZIOLA Publications
• The Museum for the Macedonian Struggle, in Greece

Their support is greatly appreciated for making ICVNS 2018 a great scientific event.

February 2019 Angelo Sifaleras
Said Salhi

Jack Brimberg

vi Preface
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Improved Variable Neighbourhood Search
Heuristic for Quartet Clustering

Sergio Consoli1,2(B), Jan Korst2, Steffen Pauws2,3, and Gijs Geleijnse2,4

1 European Commission, Joint Research Centre, Directorate A-Strategy,
Work Programme and Resources, Scientific Development Unit,

Via E. Fermi 2749, 21027 Ispra, VA, Italy
sergio.consoli@ec.europa.eu

2 Philips Research,

High Tech Campus 34, 5656 AE Eindhoven, The Netherlands
3 TiCC, Tilburg University,

Warandelaan 2, 5037 AB Tilburg, The Netherlands
4 Netherlands Comprehensive Cancer Organisation (IKNL),

Zernikestraat 29, 5612 HZ Eindhoven, The Netherlands

Abstract. Given a set of n data objects and their pairwise dissimilari-
ties, the goal of quartet clustering is to construct an optimal tree from the
total number of possible combinations of quartet topologies on n, where
optimality means that the sum of the dissimilarities of the embedded (or
consistent) quartet topologies is minimal. This corresponds to an NP-
hard combinatorial optimization problem, also referred to as minimum
quartet tree cost (MQTC) problem. We provide details and formulation
of this challenging problem, and propose a basic greedy heuristic that is
characterized by a very high speed and some interesting implementation
details. The solution approach, though simple, substantially improves the
performance of a Reduced Variable Neighborhood Search for the MQTC
problem. The latter is one of the most popular heuristic algorithms for
tackling the MQTC problem.

Keywords: Combinatorial optimization · Quartet trees ·
Hierarchical clustering · Metaheuristics ·
Variable Neighbourhood Search · Graph theory

1 Introduction

Quartet clustering methods are popular in computational biology, where den-
drograms (or phylogenies) are ubiquitous. These methods aim at reconstructing
a rooted dendrogram from a set of pairwise distant objects (or taxa). Given a
set of objects, define Q to be the set of all the possible quartets, and Qt to be
the set of consistent quartets being embedded in a dendrogram t. The problem
of recombining the quartet topologies of Q to form an estimate of the correct
tree diagram can be naturally formulated as an optimization problem. Steel [19]
c© The Author(s) 2019
A. Sifaleras et al. (Eds.): ICVNS 2018, LNCS 11328, pp. 1–12, 2019.
https://doi.org/10.1007/978-3-030-15843-9_1
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formulated the maximum quartet consistency (MQC) problem, which looks for a
dendrogram tree t maximizing the number of consistent quartets Qt belonging
to a subset P ⊆ Q of quartet topologies. This problem has been shown to be
NP-hard [19], and Jiang et al. [15] proved that the problem admits a polynomial
time approximation scheme by using the technique of smooth integer polynomial
programming and by exploiting the natural denseness of the set Q. However, this
scheme only guarantees a dendrogram that may deviate from Q by εn4 quartet
topologies for any small constant ε > 0, where n is the number of taxa.

Due to these results, most quartet methods are heuristics which attempt to
solve the MQC problem, or some variants of the MQC problem with weaker opti-
mization requirements. Strimmer and von Haeseler [20] formulated the quartet
tree-puzzling problem, which is a variant of the MQC problem where each quartet
is provided with a probability value to be embedded, and for each set of four
objects the quartet with the highest probability is selected (at random in case
of ties) to form a “maximum-likelihood dendrogram”. Felsenstein [11] presented
a heuristic which solves the MQC by incrementally growing the tree diagram
in random order by stepwise addition of objects in the local optimal way. This
procedure is repeated iteratively for different object orders, adding agreement
values on the branches of the tree. Both agglomerative approaches are quite
fast, but suffer from the usual bottom-up problem: a wrong decision early on
cannot be corrected later. Berry et al. [1] reported an interesting result. They
presented two “quartet cleaning” algorithms for correcting bounded numbers of
quartet errors (i.e. incorrect inferences of simple quartet topologies) for many
popular quartet problems.

Cilibrasi and Vitányi [2] proposed for the first time the minimum quartet
tree cost (MQTC) problem. Given a set N of n ≥ 4 objects, the MQTC deals
with a full unrooted binary tree with n leaves, a special topology dendrogram
having all internal nodes connected exactly with three other nodes, the n objects
assigned as leaf nodes, and without any distinction between parent and child
nodes [12]. A full unrooted binary tree with n ≥ 4 leaves has exactly n − 2
internal nodes, and consequently has a total of 2n − 2 nodes. Full unrooted
binary trees are of primary interest in clustering contexts because, of all tree
diagrams with a fixed number of nodes, they have the richest internal structure
(most differentiated paths between nodes). They are therefore very suitable for
representing the structure of a set of objects [12]. A full unrooted binary tree
with exactly n = 4 leaves is also referred to as simple quartet topology, or just
as quartet [10,12]. Given a set N of n ≥ 4 objects, the number of sets of four
objects from the set N is given by:(

n

4

)
=

n!
4!(n − 4)!

=
n(n − 1)(n − 2)(n − 3)

24
.

Given four generic objects {a, b, c, d} ∈ N , there exist exactly three different
quartets: ab|cd, ac|bd, ad|bc, where the vertical bar divides the two pairs of leaves,
with each pair labelled by the corresponding objects and attached to the same
internal node. Therefore the total number of possible simple quartet topologies
of N is: 3 · (n4).
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A full unrooted binary tree is said to be “consistent” with respect to a simple
quartet topology, say ab|cd, if and only if the path from a to b does not cross
the path from c to d. This quartet ab|cd is also said to be “embedded” in the
given full unrooted binary tree.

Considering the set N , the MQTC problem accepts as input a distance
matrix, D, which is a matrix containing the dissimilarities, taken pairwise,
among the n objects1. To extract a hierarchy of clusters from the distance
matrix, the MQTC problem determines a full unrooted binary tree with n leaves
that visually represents the symmetric n × n distance matrix as well as pos-
sible according to a cost measure. Consider the set Q of all possible 3 · (

n
4

)
quartets, and let C : Q → �+ be a cost function assigning a real valued cost
C(ab|cd) to each quartet topology ab|cd ∈ Q. The cost assigned to each simple
quartet topology is the sum of the dissimilarities (taken from D) between each
pair of neighbouring leaves [4]. For example, the cost of the quartet ab|cd is
C(ab|cd) = D(a, b) + D(c, d), where D(a, b) and D(c, d) indicate, respectively, the
dissimilarities among (a and b) and (c and d), obtained from the D.

Consider now the set Γ of all full unrooted binary trees with 2n−2 nodes (i.e.
n leaves and n − 2 internal nodes), obtained by placing the n objects to cluster
as leaf nodes of the trees. For each t ∈ Γ , precisely one of the three possible
simple quartet topologies for any set of four leaves is consistent [4]. Thus, there
exist precisely

(
n
4

)
consistent quartet topologies (one for each set of four objects)

for each t ∈ Γ .
The cost associated with a full unrooted binary tree t ∈ Γ is the sum of the

costs of its
(
n
4

)
consistent quartet topologies, that is: C(t) =

∑
∀ab|cd∈Qt

C(ab|cd),
where Qt is the set of such

(
n
4

)
quartet topologies embedded in t.

In a hierarchical clustering context, we do not even have a priori knowledge
that certain simple quartet topologies are objectively true and must be embed-
ded. Thus, the MQTC problem assigns a cost value to each simple quartet topol-
ogy, in order to express the relative importance of the simple quartet topologies
to be embedded in the full unrooted binary tree having the n objects as leaves.
The full unrooted binary tree with the minimum cost balances the importance
of embedding different quartet topologies against others, leading to a binary tree
that visually represents the symmetric distance matrix n×n as well as possible.
The solution of this problem allows the hierarchical representation of a set of n
objects within a full unrooted binary tree [12]. That is, the resulting binary tree
will have the n objects assigned as leaves such that objects with short relative
dissimilarities will be placed close to each other in the tree. This hierarchical
clustering approach coming from the MQTC problem is also referred in the lit-
erature to as quartet method [4]. Such method is more sensitive and objective
than other quartet clustering methods, which are usually too slow when they
are exact or global, and too inaccurate or uncertain when they are statistical
incremental, like the case of quartet tree-puzzling. In [4] the MQTC problem
was shown to be NP-hard, and a Randomized Hill Climbing heuristic was also

1 It is therefore a symmetric n× n matrix, with n ≥ 4, containing non-negative reals,
normalized between 0 and 1, as entries.
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proposed to obtain approximate problem solutions. Other MQTC metaheuristics
based on Greedy Randomized Adaptive Search Procedure, Simulated Annealing,
and Variable Neighbourhood Search were proposed in [6]. These metaheuristics
performed well for the problem, although the best performance was obtained by
a Reduced Variable Neighbourhood Search (RVNS) implementation [6].

In this paper we propose some improved metaheuristics for the MQTC prob-
lem, to be used to get solutions of higher quality, in terms of reduced costs and
computational running times. In particular we first propose a basic greedy heuris-
tic which is characterized by a very high speed and some interesting implementa-
tion improvements, which can be used to enhance the MQTC metaheuristics to
date in the literature. This greedy algorithm is characterized by its ease of imple-
mentation and simplicity, and it takes inspiration from the recently proposed
“less is more approach” [9,18], which supports the adoption of non-sophisticated
and effective metaheuristics instead of hard-to-reproduce and complex solution
approaches. In particular we will show how the performance of the RVNS quartet
heuristic is improved, with particular emphasis to computational running time,
by adopting our proposed basic greedy heuristic to construct initial solutions for
the algorithm.

The rest of the paper is organized as follows. Section 2 presents the related
work. Section 3 describes the details of the proposed heuristics, along with their
main implementation concepts and pseudo-code formulations. Our computa-
tional experience is reported in Sect. 4, and finally the paper ends with con-
clusions in Sect. 5.

2 Related Work

The MQTC problem was originally proposed in [2]. There the main focus was on
compression-based distances, but the authors visually presented the tree recon-
struction results by full unrooted binary trees deriving by their MQTC problem
formulation. Hence, they developed the quartet method for hierarchical clus-
tering, a new approach aimed at general hierarchical clustering of data from
different domains, not necessarily biological phylogenies. Several practical appli-
cations of the quartet method have been explored in the literature. In partic-
ular, Cilibrasi et al. [5] proposed a robust automatic music classification pro-
cedure consisting of two steps. The first step consisted of extracting the “Nor-
malized Compression Distances” [16] among some considered pieces of music.
The Normalized Compression Distance is a similarity metric based on string
compression which mimics the ideal performance of Kolmogorov complexity [16].
The second step consisted of creating an efficient visualization of the extracted
pairwise distances by means of the quartet method of hierarchical clustering.
To substantiate the claims of universality and robustness of this automatic clas-
sification method, evidence of other successful applications in areas as diverse
as genomics, virology, languages, literature, handwriting, astronomy and com-
binations of objects from completely different domains, were reported in [2]. In
addition, Cilibrasi and Vitányi [3] reported an interesting application of this
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theory, consisting of the automatic extraction of similarities among words and
phrases from the WWW using Google page counts. Granados et al. [13] studied
the impact of several kinds of information distortion on compression-based text
clustering, showing their results as ternary trees by means of the quartet method
of hierarchical clustering. In a recent application, a variant of the quartet method
based on the Variable Neighborhood Search metaheuristic was used for biomed-
ical literature extraction and clustering [7,8]. The proposed application was able
to retrieve relevant references for systematic reviews and meta-analysis from
the Medline/PubMed database, and for visualizing the retrieved bibliography
through an intuitive graph layout.

In [4], the authors presented the minimum quartet tree cost problem in a more
formal way. They showed the main concepts, components, advantages and disad-
vantages of the quartet method of hierarchical clustering, particularly underlin-
ing the similarities and differences with respect to other methods from biological
phylogeny. Cilibrasi and Vitányi [4] also showed that the MQTC problem is
NP-hard by reduction from the MQC problem, and provided a Randomized Hill
Climbing heuristic to obtain approximate problem solutions. Several other effi-
cient metaheuristics based on Greedy Randomized Adaptive Search Procedure,
Simulated Annealing, and Variable Neighbourhood Search were proposed and
compared for the MQTC problem in [6]. The best reported performance was
obtained by an implementation of a Reduced Variable Neighbourhood Search
metaheuristic, which we will use as a reference benchmark in our paper and try
to overcome its performance.

3 Description of the Solution Algorithms

3.1 Greedy Constructive Heuristic

We first propose a new greedy heuristic for the MQTC problem, used to construct
initial solutions of good quality requiring short computational running time [9,
18]. In the metaheuristics to date used for solving the MQTC problem [4,6],
the initial solution was usually set either completely at random, or by selecting
the corresponding flat structure, and then this solution was iteratively improved
towards local optimality using the different heuristic guidelines of the specific
metaheuristic implementation. The aim of the greedy constructive heuristic that
we propose here consists of providing starting solutions having already a good
quality, and obtained with an high speed too, which can bring to an improvement
of the overall performance of the MQTC heuristic deployed afterwards.

We are given as input n ≥ 4 different objects and the corresponding sym-
metric distance matrix D containing the n × n pairwise distances among those
objects. The algorithm makes use also of another distance matrix D′ among a
set N ′ of n′ ≥ 4 objects, with n′ ≤ n, which will be used iteratively from our
optimization routine to reduce the dimensionality n of the original set of objects
in N . Initially, matrix D′ is set equal to D, i.e. the sets of objects N and N ′ are
equivalent. At this stage, another graph t′, which will be used during the algo-
rithm iterations as a support solution, is initialized to null, i.e. t′ ← ∅. Then the
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core of our greedy heuristic begins by selecting objects from N ′ to be included
in the support solution t′. At this purpose we greedily select from N ′ the objects
that have the shortest minimum pairwise distance from D′. Say the two objects
a and b in N ′ have this shortest distance, that is D′

(a, b) ≤ D′
(c, d), ∀(c, d) ∈ N ′.

Note that in case of ties for the object pairs having the shortest distance in D′,
the routine simply selects an object pair at random within this set. Afterwards,
these nodes a and b are connected to the support solution graph t′. The following
three cases are possible:

– None of the two objects a and b are already connected in the partial solution
t′, and therefore they are joined together by means of a terminal node;

– One of the two objects is already included as a leaf node in t′, and therefore
the other object b is linked to the subgraph in t′ containing a by means of
a transition node (i.e. the dotted internal node in the figure). Please note
that node b requires to be included in the partial solution t′ by a link with
a new transition node since, being it a leaf, if it would be included by a link
with a terminal node instead, we would not be able to add any further nodes
afterwards;

– Both objects a and b are already included in the partial solution t′ but they
belong to two different subgraphs, and therefore these two subgraphs contain-
ing respectively the two objects are connected together by means of a cross
node.

Afterwards, we apply a routine, referred to as distance matrix reduction,
to merge the added nodes a and b together to form another object, say x, by
reducing in this way the dimension of N ′ of one unit, i.e. n′ = n′ − 1. The
distance matrix D′ is recomputed accordingly by removing the distances of the
two objects a and b with all the other objects in N ′, and adding the distances
of the new node x with the other objects, which are calculated as the averages
distances, respectively of a and b, with the other nodes in N ′. That is D′(x, y) =
D′(a, y)+D′(b, y)

2 , for all objects y ∈ N ′, y �= a, b. The rationale behind this
procedure is to greedily merge together highly connected objects which may
bring higher values of the quartet cost function of the subgraphs inferred in the
partial solution t′.

This greedy procedure is repeated iteratively until a fully connected unrooted
binary tree t′ is obtained, i.e. t′ ∈ Γ , which is equivalent also in getting a reduced
distance matrix D′ with a size n′ = 4 (i.e. it would not be possible to reduce
further the corresponding set N ′ since it only contain four objects). Then the
support solution t′ is assigned to the output full unrooted binary tree t, which
is produced as final outcome of the algorithm.

3.2 Reduced Variable Neighbourhood Search

Variable Neighbourhood Search (VNS) is a popular metaheuristic for solving
hard combinatorial optimization problems based on dynamically changing neigh-
bourhood structures during the search process [14]. VNS does not follow a trajec-
tory, but it searches for new solutions in increasingly distant neighbourhoods of
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the current solution, jumping only if a better solution is found. Reduced Variable
Neighbourhood Search (RVNS) is a variant of the classic VNS algorithm, that
has been shown to be successful for many combinatorial problems where local
optima with respect to one or several neighbourhoods are relatively close to each
other [14]. RVNS is a typical example of a pure stochastic heuristic, akin to a
classic Monte-Carlo method, but more systematic [17]. It is useful especially for
very large problem instances for which the inner local search within the classic
VNS approach is costly, as in the case with quartet clustering.

The Reduced Variable Neighbourhood Search for the MQTC problem starts
by selecting an initial full unrooted binary tree t ∈ Γ with 2n−2 nodes, obtained
by placing the n ≥ 4 objects to cluster as leaves, with total cost C(t). In the
original RVNS implementation in [6], the initial full unrooted binary tree t was
selected at random.

Then, the shaking phase, which represents the core idea of RVNS, is applied
to t. The shaking phase aims to change the neighbourhood structure, Nk(·),
when the algorithm is trapped at a local optimum. The new incumbent solution,
say t′, is generated at random in order to avoid cycling, which might occur if a
deterministic rule is used. The simplest and most common choice for the neigh-
bourhood structure consists of setting neighbourhoods with increasing cardinal-
ity: |N1(·)| < |N2(·)| < ... < |Nkmax

(·)|, where kmax represents the maximum
size of the shaking phase. Let k be the current size of the shaking phase. The
algorithm starts by selecting the first neighbourhood (k ← 1) and, at each itera-
tion, it increases the parameter k if a better solution is not obtained (k ← k+1),
until the largest neighbourhood is reached (k ← kmax). The process of changing
neighbourhoods when no improvement occurs diversifies the search. In particu-
lar, the choice of neighbourhoods of increasing cardinality yields a progressive
diversification of the search process.

For the MQTC problem, a shaking phase of size k consists of the random
selection of another full unrooted binary tree t′ within the neighbourhood Nk(t)
of the current solution t. To obtain t′ from Nk(t), the algorithm performs k
consecutive base moves, where a base move is a single basic modification that
each internal node of t can perform with its neighbouring internal nodes. The
possible base moves that can be performed depend on the types of internal node
pairs [6]. In the case of:

– two transition nodes: either the attached leaves are exchanged, or they are
transformed into one cross node and one terminal node connected to the
corresponding leaves;

– one terminal node and one transition node: the leaf of the transition node is
exchanged with one of the two leaves of the terminal node;

– one terminal node and one cross node: they are transformed into two transi-
tion nodes with the two leaves of the terminal node attached;

– one transition node and one cross node: the transition node is moved in one
of the other two branches of the cross node;

– two cross nodes: one branch of one cross node is swapped with a branch of
the other cross node.
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Note that each base move corresponds just to a limited local modification
of the structure of the incumbent solution t, which results in most of the coef-
ficients of the corresponding Complete Pseudo-Adjacency matrix C to remain
unchanged. In this was there will be no need to recalculate all the coefficients of
C, but only recomputing a small subset of it, speeding up consistently this step.

At the beginning of RVNS, the first neighbourhood (k ← 1) is selected and,
at each iteration, the parameter k is increased (k ← k+1) whenever the solution
obtained is not an improvement of the current best solution (i.e. C(t′) > C(t)).
When k > 1, the first base move is performed to a randomly selected internal
node and one of its neighbouring internal nodes with respect to the considered
distance of rank one. Then, to perform the successive base move, the algorithm
selects one of the two internal nodes considered, and another neighbouring inter-
nal node that must be different from the two internal nodes already considered,
and so on. The procedure is repeated until k consecutive base moves are per-
formed.

If an improved binary tree t′ is produced by the shaking phase (C(t′) < C(t)),
this becomes the best solution to date (t ← t′) and the algorithm restarts from
the first neighbourhood (k ← 1) of t. The process of increasing progressively
parameter k whenever no improvements are obtained, occurs until the maximum
size of the shaking phase, kmax, is reached. When this happens, k is re-initialized
to the first neighbourhood (k ← 1). The correct setting of kmax is an important
user task. For the MQTC problem, a simple reactive schema for the efficient
tuning of kmax has been implemented [6]. At the starting point, kmax is set to a
small value (kmax = 2) and is increased (kmax = kmax+1) every iupdate iterations
between two consecutive improvements. For the value of this parameter we use
the setting of [6], where iupdate = (1.25 ·105)/n2 +50. Throughout the execution
of the algorithm, the best solution to date is stored as the binary tree t, which
will be produced as output of the algorithm when the user termination condition
(e.g. a maximum allowed CPU time) is reached.

4 Computational Results

In order to evaluate the algorithms, we performed experiments to compare them
in terms of quality of produced solutions and computational running time. For
evaluating solution quality, we used both the cost function C(·), already defined
previously, and of another metric, referred to as normalized tree benefit score,
S(·) ∈ [0, 1] [2,6], which is a more intuitive performance measure of the goodness
of quartet clustering. Given the set N of n ≥ 4 documents to cluster, let m be the
best (minimal) cost, calculated as the sum of the

(
n
4

)
minimum costs of each set of

four objects in N , and let M be the worst (maximal) cost, calculated as the sum
of the

(
n
4

)
maximum costs of each set of four objects in N . The normalized tree

benefit score S(t) of a full unrooted binary tree t ∈ Γ is obtained by rescaling and
normalizing in [0, 1] the cost function C(t), i.e. S(t) = M−C(t)

M−m ∈ [0, 1]. While
a lower cost function C(t) results in a better solution t, conversely a higher
normalized tree benefit score means a better clustering quality.
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Our experimental algorithms comparison was made upon classic MQTC
problem datasets, already used in previous studies in the literature (see e.g.
[2,4,6]). They are briefly described in the following, but for more details the
reader is referred to [2,4,6].

– Data constructed artificially to have none inconsistency, that is data for which
the exact solutions are known in advance and have been built to have normal-
ized tree benefit score equal to one. The construction mechanism is described
in detail in [2,6]. These data aim at testing whether the quartet-based tree
reconstruction is reliable and accurate on clean consistent data with known
solutions. They consist of ten different problem instances ranging from a
number of objects n = 10 to 100. They are referred to as: artificial.

– Example of natural data concerning a study in genomics with DNA sequences
of different placental mammalian species. The distance matrices from the
genomic data were computed by using an automated software method
described by Cilibrasi and Vitányi [2,4], who downloaded the whole mito-
chondrial genomes of the placental mammalian species from the GenBank
Database on the World Wide Web. They consists of three sets of data with
n = 10, n = 24, and n = 34, and are referred to as: nature.

Table 1 show the results of our experimental comparison of the algorithms on
the considered datasets. The heuristics are identified with the following abbre-
viations: Greedy, for the greedy constructive heuristic described in Sect. 3.1;
RVNSrand , for the original implementation of the Reduced Variable Neighbour-
hood Search (Sect. 3.2) with initial solution selected at random; RVNSgreedy , for
the new Reduced Variable Neighbourhood Search implementation where the ini-
tial solution is selected by using the greedy constructive heuristic, Greedy. All the
algorithms were implemented in C++ under the Microsoft Visual Studio 2015
framework, and were deployed on an Intel Quad-Core i5 64-bit microprocessor
at 2.30 GHz with 16 GB RAM.

As stopping condition for the RVNS-based metaheuristics it was considered
a maximum allowed CPU time (max-CPU-time). In particular, as also used in
[2,6], we set max-CPU-time to one hour. Selection of the maximum allowed CPU
time as the stopping criterion was made in order to have a direct comparison
among the RVNS metaheuristics with respect to the quality of their solutions.
Instead, for the Greedy algorithm it was not necessary to set any stopping crite-
rion since, being a constructive heuristic, it automatically ends when a feasible
solution, i.e. a fully connected unrooted binary tree, is obtained.

Looking at Table 1, the first column shows the number of objects, n, charac-
terizing the different datasets (artificial, nature, geographical) while the remain-
ing columns give the computational results in terms of clustering quality (i.e.
cost function values C(·), cost, and normalized tree benefit scores S(·), score),
and computational running time in seconds (time) for the different algorithms.
The performance of an heuristic can be considered better than another if it
obtains a lower cost function value, or more intuitively a larger normalized tree
benefit score. In case of ties, an algorithm is consider better than another if it
was faster.
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Table 1. Computational results of the compared algorithms (Greedy, RVNSrand , and
RVNSgreedy) in terms of cost function values (cost, normalized tree benefit scores (score,
and computational running times in seconds (time) for the considered datasets.

Greedy RVNSrand RVNSgreedy

size n cost score time cost score time cost score time

artificial

10 210.8000 0.89500 0.004 202.4000 1.00000 0.040 202.4000 1.00000 0.005

20 3301.2500 0.95270 0.003 3231.8500 1.00000 0.421 3231.8500 1.00000 0.006

30 15013.8656 0.92419 0.002 14559.4658 1.00000 0.861 14559.4658 1.00000 0.023

40 45245.7000 0.92400 0.006 43449.7500 1.00000 8.413 43449.7500 1.00000 0.554

50 104709.0800 0.85641 0.008 97207.8400 1.00000 10.606 97207.8400 1.00000 0.055

60 196608.3789 0.89166 0.012 186787.0474 1.00000 38.724 186787.0474 1.00000 0.176

70 360831.5064 0.88295 0.022 338182.8198 1.00000 38.858 338182.8198 1.00000 0.243

80 561067.4125 0.79739 0.028 509526.6875 1.00000 66.880 509526.6875 1.00000 0.193

90 806291.9392 0.89048 0.037 769344.2770 1.00000 101.512 769344.2770 1.00000 0.287

100 1232141.4400 0.92249 0.059 1178538.2000 1.00000 115.013 1178538.2000 1.00000 10.292

nature

10 349.0720 0.99979 0.002 349.0720 0.99979 0.006 349.0720 0.99979 0.039

24 18649.3360 0.98524 0.002 18637.3390 0.99588 2.083 18637.3390 0.99588 0.232

34 82934.2444 0.98323 0.005 82922.0360 0.98792 10.610 82922.0360 0.98792 0.542

geographical

13 476.4124 0.74265 0.002 439.7529 0.96843 0.270 439.7529 0.96843 0.016

22 4644.7111 0.82426 0.004 4377.1741 0.93507 3.140 4377.1741 0.93507 0.029

24 6839.0909 0.79911 0.004 6422.0182 0.92459 3.290 6422.0182 0.92459 0.044

25 8876.1814 0.79267 0.004 7827.1264 0.98760 2.840 7827.1264 0.98760 0.046

35 29209.7541 0.81774 0.004 26332.7485 0.98367 10.750 26332.7485 0.98367 0.205

37 28298.8724 0.79559 0.006 26846.2316 0.91973 32.940 26846.2316 0.91973 0.318

From the results showed in the table, we can immediately denote that Greedy
was much faster of several orders of magnitude than the original RVNS imple-
mentation, RVNSrand , although in most of the cases it obtained solutions with
worst quality. This is an understandable result since RVNSrand is an explorative
metaheuristic that runs for a longer time, max-CPU-time, while Greedy instead
stops immediately when a feasible solution is reached. But when Greedy was
then embedded inside the RVNS metaheuristic in order to produce initial good-
quality solutions in RVNSgreedy , a very powerful metaheuristic was obtained.
Indeed, as it can be seen in the table, RVNSgreedy retained the high-speed fea-
ture from Greedy, but also the characteristics of good-quality solutions that is
proper of the RVNS approach for the given problem. Indeed, looking at the per-
formance of both the RVNS algorithms, the obtained solutions were comparable
with respect to clustering quality, but RVNSgreedy was much faster. Note that
for the artificial datasets without inconsistencies, both RVNS implementations
were able to reach optimality, RVNSgreedy being much faster, while this was not
achieved by Greedy.

Summarizing, the novel RVNS implementation with the greedy constructive
heuristic used for selecting the initial starting solutions resulted to be the best
performing method in our computational experiments in terms of both quartet
clustering quality and, especially, computational running time.



Improved Variable Neighbourhood Search Heuristic for Quartet Clustering 11

5 Conclusions

In this paper we proposed some improved heuristics for quartet clustering, a
novel hierarchical clustering approach based on the minimum quartet tree cost
(MQTC) problem, which is NP-hard and whose goal is to derive an optimal tree
from the total number of possible combinations of quartet topologies on some
input objects n, where optimality means that the sum of the dissimilarities of
the embedded (or consistent) quartet topologies is minimal.

In particular we provided the details of a new basic greedy heuristic that
is characterized by a very high speed. Although the performance of this simple
method in terms of quartet clustering quality, evaluated by means of a defined
cost function and of a normalized tree benefit score, was not as good as that
of the best solution method reported in the literature, i.e. a Reduced Variable
Neighbourhood Search (RVNS) metaheuristic, this greedy method was used to
considerably improve the performance of the RVNS by using it to construct
initial good-quality solutions instead of randomly selected solutions.

This produces a very efficient solution approach to the problem, as demon-
strated by our experiments on the comparison of the considered algorithms on
a set of well-known MQTC datasets and by the reported computational results,
which represents an advancement of the state-of-the-art on the solution methods
used for quartet clustering.
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Abstract. Clustering is an automated and powerful technique for data
analysis. It aims to divide a given set of data points into clusters which
are homogeneous and/or well separated. A major challenge with clus-
tering is to define an appropriate clustering criterion that can express a
good separation of data into homogeneous groups such that the obtained
clustering solution is meaningful and useful to the user. To circumvent
this issue, it is suggested that the domain expert could provide back-
ground information about the dataset, which can be incorporated by a
clustering algorithm in order to improve the solution. Performing cluster-
ing under this assumption is known as semi-supervised clustering. This
work explores semi-supervised clustering through the k -medoids model.
Results obtained by a Variable Neighborhood Search (VNS) heuristic
show that the k -medoids model presents classification accuracy compared
to the traditional k -means approach. Furthermore, the model demon-
strates high flexibility and performance by combining kernel projections
with pairwise constraints.

Keywords: k-medoids · Semi-supervised clustering ·
Variable Neighborhood Search

1 Introduction

In unsupervised machine learning, no information is known in advance about
the input data. In this learning category, the objective is usually to provide the
best description of the input data by looking at the similarities/dissimilarities
between its elements. Clustering is one of the main unsupervised machine learn-
ing techniques. It addresses the following general problem: given a set of data
objects O = {o1, . . . , on}, find subsets, namely clusters, which are homogeneous
and/or well separated [1]. Homogeneity means that objects in the same cluster
must be similar and separation means that objects in different clusters must
differ one from another. The dissimilarity (or similarity) dij between a pair of
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objects (oi, oj) is usually computed as a function of the objects’ attributes, such
that d values (usually) satisfy: (i) dij = dji ≥ 0, and (ii) dii = 0. Note that
dissimilarities do not need to satisfy triangle inequalities, i.e., to be distances.

Despite its concise definition, the clustering problem can have significant
variations, depending on the specific model used and the type of data to be
clustered. The clustering criterion used plays a crucial role in the clustering
obtained. For example, the homogeneity of a particular cluster can be expressed
by its diameter defined as the maximum dissimilarity between two objects within
the same cluster, while the separation of a cluster can be expressed by the split
or the minimum dissimilarity between an object inside the cluster and another
outside.

When considering dissimilarity measures, the definitions above yield two fam-
ilies of clustering criteria: those to be maximized for separation and those to be
minimized for homogeneity. In general, these criteria are expressed in the form
of thresholds, min-sum or max-sum for a set of clusters. Thus, for instance, the
diameter minimization problem corresponds to minimizing for a set of clusters
the maximum diameter found among them, while in the split maximization, one
seeks to maximize the minimum split found in the clustering partition. The clus-
tering criterion used is also determinant to the computational complexity of the
associated clustering problem. For example, split maximization is polynomially
solvable in time O(n2), while diameter minimization is NP-hard already in the
plane for more than two clusters [2].

In order to overcome this difficulty and improve the result of the data clus-
tering, it has been suggested that the domain expert could provide, whenever
possible, auxiliary information regarding the data distribution, thus leading to
better clustering solutions more in accordance to his knowledge, beliefs, and
expectations. The clustering process driven by this side-information is called
Semi-Supervised Clustering (SSC). SSC has become an essential tool in data
mining due to the continuous increase in the volume of generated data [3].

The most common types of side-information are pairwise constraints such
as must-link and cannot-link [4]. A must-link constraint between two objects
implies that they must be assigned to the same cluster, whereas a cannot-link
constraint that they must be allocated in different clusters. In this paper, we
make an in-depth analysis of the use of the k-medoids model for the SSC prob-
lem. We also propose a new Variable Neighborhood Search (VNS) [5] algorithm
that uses a location-allocation heuristic and takes into consideration pairwise
constraints.

The paper is organized as follows. The next section presents the related works
to this research. Section 3 describes the k-medoids model for the SSC problem.
Section 4 describes the two-stage local descent algorithm proposed, and in Sect. 5
a VNS algorithm is presented for optimizing the described model. Computa-
tional experiments that demonstrate the effectiveness of our methodology in a
set of benchmark data sets are reported in Sect. 6. Finally, the conclusions are
presented in Sect. 7.
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2 Related Works

Algorithms that make use of constraints as must-link and cannot-link in cluster-
ing became widely studied and developed after the COP-Kmeans algorithm of
Wagstaff and Cardie’s work [6]. The algorithm is based on modifying the unsu-
pervised original k-means algorithm by adding a routine to prevent an object
from changing cluster if any of the must-link or cannot-link constraints are vio-
lated.

The model optimized by COP-Kmeans consider that objects oi ∈ O corre-
spond to points pi of a s-dimensional Euclidean space, for i = 1, . . . , n. The
objective is to find k clusters such that the sum of squared Euclidean distances
from each point to the centroid of the cluster to which it belongs is minimized
while respecting a set of pairwise constraints. The set ML is formed by the pairs
of points (pi, pj) such that pi and pj must be clustered together, whereas the set
CL contains the pair of points (pi, pj) such that pi and pj must be assigned to
different clusters.

The semi-supervised minimum sum-of-squared clustering (SSMSSC) model
is mathematically expressed by:

min
x,y

n∑

i=1

k∑

j=1

xij‖pi − yj‖2 (1)

subject to
k∑

j=1

xij = 1, ∀i = 1, ..., n (2)

xij − xwj = 0, ∀(pi, pw) ∈ ML, ∀j = 1, ..., k (3)
xij + xwj ≤ 1, ∀(pi, pw) ∈ CL, ∀j = 1, ..., k (4)
xij ∈ {0, 1}, ∀i = 1, ..., n; ∀j = 1, ..., k. (5)

The binary decision variables xij express the assignment of point pi to the
cluster j whose centroid is located at yj ∈ R

s. Constraints (2) guarantee that
each data point is assigned to exactly one cluster. Constraints (3) refer to the
must-link constraints, and constraints (4) to the cannot-link ones.

The simplicity and pioneering of COP-Kmeans have made it a basic algo-
rithm for many later works. Some examples are: semi-supervised clustering using
combinatorial Markov random fields [7]; adaptive kernel method [8]; clustering
by probabilistic constraints [9]; and density-based clustering [10].

A relevant work involving clustering under pairwise constraints was con-
ducted by Xia [11]. The global optimization method proposed in that work
is an adaptation of the Tuy’s cutting planes method [12]. The algorithm is
proved to obtain optimal solutions in exponential time in the worst case, and
hence, it cannot be used for practical purpose for larger data mining tasks.
Xia [11] reported a series of experiments where the algorithm is halted before
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convergence. The obtained clustering results were superior other algorithms
based on COP-Kmeans.

Restricting the solution space through the explicit use of pairwise con-
straints is not the only possible approach for SSC. Many works have been pub-
lished to propose mechanisms using distance metric learning to explore these
side-information. Among them, a well-known algorithm is the Semi-Supervised-
Kernel-kmeans [13] that enhances the similarity matrix obtained from the appli-
cation of a kernel function by adding a term that brings closer together must-link
objects while driving away cannot-link objects. The algorithm defines a similarity
matrix S = K+W +σI, where K is a kernel matrix, W is the matrix responsible
to include the pairwise constraints into the distance metric, and σ is the term
that multiplies an identity matrix I to ensure that S is semi-definite positive.
The kernel-k-means algorithm [14] is then executed over S in an unsupervised
manner (see [13] for details).

3 Proposed Model

Another classical representative-based clustering model is the k-medoids whose
objective is to partition the points into exactly k clusters so that the sum of
distances between each point and the central object (i.e., the medoid) of their
respective cluster is minimized.

The input of the k-medoids model is a distance matrix, D, with each entry dij

providing the dissimilarity between points pi and pj . It can be mathematically
formulated in its semi-supervised version as:

min
n∑

i=1

n∑

j=1

xijdij (6)

subject to
n∑

j=1

xij = 1, ∀i = 1, ..., n (7)

xij − xwj = 0 ∀(pi, pw) ∈ ML, ∀j = 1, ..., n (8)
xij + xwj ≤ 1 ∀(pi, pw) ∈ CL, ∀j = 1, ..., n (9)
xij ≤ yj ∀i = 1, . . . , n,∀j = 1, ..., n (10)

n∑

j=1

yj = k (11)

xij ∈ {0, 1} ∀i = 1, . . . , n,∀j = 1, . . . , n, (12)
yj ∈ {0, 1} ∀j = 1, . . . , n, (13)

where yj is equal to 1 if pj is selected as the medoid of cluster j, and 0 otherwise.
Constraints (10) assure that points can only be assigned to selected medoids,
and constraint (11) defines that k medoids must be selected. The resulting model



On the k-Medoids Model for Semi-supervised Clustering 17

(6)–(13) is named thereafter the Semi-Supervised K-Medoids Problem
(SSKMP).

The possibility of defining the matrix D allows the objective function of
the model to be flexible to use different measures to express the dissimilarities
between points and medoids. The k-medoids model can be used to cluster metric
data, as well as more generic data with notions of similarity/dissimilarity. For this
reason, one of the main features of k-medoids is its vast list of applications [15].

When comparing the k -means model with the k -medoids model, Steinley [16]
listed three important advantages in using the later for clustering:

1. Although both models work with a center-based approach, the k -means
model defines the central element as the centroid of the cluster, while in the
k-medoids this element is taken directly from the data set. This feature allows,
for example, to identify which is the most representative element of each
cluster.

2. The k -medoids, in its formal definition, usually consider the Euclidean dis-
tance to measure the dissimilarity between points and medoids, instead of
the quadratic one considered in k -means. As a consequence, the k -medoids is
generally more robust to outliers and noise present in the data [17].

3. While k -means only uses quadratic distance and may need to constantly
recompute the distances between points and centroids every time centroids
are updated, the k-medoids run over any distance matrix, even those for which
there exist triangle inequality violations and which are not symmetric.

4 Local Descent Algorithm for SSKMP

Several heuristics methods have already been proposed to solve the original
k-medoids problem. A very popular one is the interchange heuristic introduced
in [18]. This local descent method searches, in each iteration, for the best pair of
medoids (one to be inserted in the current solution, and another to be removed)
that leads to the best-improving solution if swapped. If such pair exists, the swap
is performed, and the procedure is repeated. Otherwise, the algorithm stops and
the best solution found during this descent path is returned. An efficient imple-
mentation of this procedure, called fast-interchange, was proposed by Whitaker
[19]. However, this method was not widely used (possibly due to an error in the
article) until Hansen and Mladenović [20] corrected it and successfully applied
it as a subroutine of a VNS heuristic. After, Resende and Werneck [21] proposed
an even more efficient implementation by replacing one of the data structures
present in the implementation of Whitaker [19] with two new data structures.
Although the implementation suggested in [21] has the same worst-case complex-
ity, O(n2), it is significantly faster and, to the best of the authors’ knowledge, is
the best implementation for the heuristic interchange already published.

In this paper, the method proposed in [21] is used as local descent procedure
for our algorithm in order to refine a given SSKMP solution, but with a slight
modification to ensure that pairwise constraints are respected.
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4.1 Handling Must-Link Constraints

The following strategy is proposed to respect must-link constraints:
If must-link constraints connect a set of points, they can all be merged into a

single point, which is enough to represent them all.
This assumption relies on the fact that all these points need to be together in

the final partition, and aggregating them is just an efficient shortcut for assigning
them to the same cluster repeatedly times.

Figure 1 illustrates this process on a set of must-link constraints given by
ML = {(p1, p2), (p4, p6), (p2, p6)}. It is possible to replace the set ML by an
equivalent set ML′ = {(p1, p2), (p1, p4), (p1, p6)}, with p1 as the root point for
all other linked points p2, p4 and p6 (Fig. 1b). This aggregation creates a so-called
super-point and is showed in Fig. 1c where all points involved in that must-link
constraint are all represented by the super-point p1. Note that the super-point
could have been aggregated over p2, p4 or p6 instead of p1 without prejudice.

Fig. 1. Illustration of a super-point aggregation.

However, since the points involved in must-link constraints can be aggregated
and viewed as a single point, then it is also necessary to update the dissimilarity
dij of a super-point pi, and all medoids j = 1, . . . , n, as the sum of dissimilarities
of all points that compose it. Let H(pi) = {ph ∈ P | (pi, ph) ∈ ML} be the set
of points that are part of the super-point pi. The cost dij = dji, for each j =
1, . . . , n is then calculated as the sum of dissimilarities considering all aggregated
points, i.e.,

dij =
∑

h:ph∈H(pi)

dhj j = 1, . . . , n (14)

For the example in Fig. 1, d13 is updated as: d13 = d13 + d23 + d43 + d63.
The super-point aggregation is a quick step that can be entirely performed

during the preprocessing stage of the algorithm. It also helps to reduce the dimen-
sion of the original data set once the points are merged. Consequently, the more
must-link constraints are provided by the expert, the best is the performance of
our algorithmic approach.
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4.2 Handling Cannot-Link Constraints

Once all must-link constraints are respected, the local descent algorithm only
concerns violated cannot-link constraints. A solution is said to be infeasible if
there exists any pair (pi, pw) ∈ CL such that pi and pw are assigned to the same
cluster. In order to avoid that, the algorithm is divided into two stages:

1. Stage 1. In this first stage, the cannot-link constraints are temporarily
neglected, and the local descent algorithm proceeds to improve the current
best solution.

2. Stage 2. For each new improved solution found in stage 1, there is a chance
of this solution be infeasible, so the algorithm invokes a routine able to restore
its feasibility (concerning the cannot-link constraints).

In summary, the approach of our local descent algorithm is to allow an effi-
cient search to be executed in the direction of the best possible solution (regard-
less of the cannot-link constraints), whereas the solutions obtained during the
descent search path are turned into feasible solutions. Thus, the algorithm relies
upon the possibility of restoring the feasibility of solutions generated in the
first stage of the algorithm. The key point of our strategy is to guide the search
exclusively by the gradient of the objective function, disregarding the cannot-link
constraints.

Let s be a solution for the problem with its k selected medoids, i.e.,
s = {j|yj = 1}. Let us denote X(i) = {j|xij = 1} the cluster of point pi.
We also define the set E(i) = {h|(pi, ph) ∈ CL} as the set of points that cannot
be clustered together with pi, and B(i) = {j ∈ s|∃h ∈ E(i),X(h) = j} as the
set of clusters in s that are blocked to pi since it contains at least one point
from E(i).

The feasibility routine is presented in Algorithm 1. It is called whenever a
new infeasible solution s is obtained by the algorithm. Let φ1(i) ∈ s be the
closest medoid in s from point pi. Remark that after stage 1, since cannot-link
constraints are not considered, every point pi, for i = 1, . . . , n, is assigned to its
closest medoid, i.e., X(i) = φ1(i).

The restore function works as follows: first, between lines 1–6, a new set
R is built to contain all points pi that are involved in cannot-link constraints
(i.e., E(i) �= ∅). The loop of lines 7–14 proceeds by removing the cannot-link
violations. The order in which the points are examined determines the solution
obtained or even if the method is able to restore feasibility. Therefore, set R is
shuffled at the beginning of that loop at line 8. Then, the algorithm iterates in the
loop of lines 9–13 searching for assignments that can make the solution feasible
(condition X(i) ∈ B(i)) or that can improve its cost (condition X(i) �= φ1(i)).
The rationale behind the second condition is that pi might have been allocated
to a farther cluster in a previous iteration of the restoration routine because its
closest medoid was not available for assignment due to a cannot-link constraint.
Note that Algorithm 1 needs to keep that B updated. This is performed every
time after a point pi is assigned from a medoid p� to medoid pj , blocking this
medoid for each point in h ∈ E(i), and maybe removing � from their sets B(h),
depending on the presence of any other point in E(h) assigned to medoid p�.
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Algorithm 1. Restore feasibility function
1: R ← ∅
2: for i = 1, ..., n do
3: if E(i) �= ∅ then
4: R ← R ∪ {i}
5: end if
6: end for
7: repeat
8: shuffle(R)
9: for all i ∈ R do

10: if X(i) ∈ B(i) or X(i) �= φ1(i) then
11: Assign pi to the closest medoid j ∈ s such that j �∈ B(i)
12: end if
13: end for
14: until no assignment is made

Algorithm 1 is assured of finishing although a feasible solution is not guar-
anteed. Indeed, the decision problem of whether a clustering problem is feasible
given a set CL of cannot-link constraints is NP-complete [22]. In that case, the
obtained solution is simply discarded.

5 Variable Neighborhood Search for SSKMP

Variable Neighborhood Search (VNS) metaheuristic [23] has been successfully
applied to many clustering problems (e.g. [24–27]). The neighborhood struc-
ture adopted in our VNS algorithm is based on swapping selected medoids of a
solution s by others non-selected medoids outside s. In this sense, vmax neigh-
borhoods are defined, where the v-th neighborhood of s, Nv(s), contains all
solutions obtained after replacing v medoids j ∈ s with others v not-selected
medoids l �∈ s.

The Algorithm 2 presents the complete framework of our VNS algorithm. It
starts by preprocessing the must-link constraints via the super-point concept
(lines 1). Following that, the algorithm constructs an initial feasible solution
(line 2) obtained in a series of three steps: (i) an initial solution sb is built
by randomly selecting k initial medoids and assigning each point to its closest
medoid; (ii) the restore feasibility function is applied for sb; (iii) if sb is still
infeasible, the algorithm proceeds and replace sb by the first feasible solution
found during the VNS. We assume that the problem is always feasible, i.e.,
the sets ML and CL allows to obtain a feasible solution for the SSC under
consideration. The algorithm considers that infeasible solutions have infinity
cost.

Next, the algorithm starts the VNS block (loop 3–15) that chooses a ran-
dom neighbor solution (line 6) and applies the two-stage local descent method
described in Sect. 4 to possibly improve it (line 10). However, notice that after a
random solution sr is chosen in the neighborhood Nv(s) of our VNS algorithm,
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an allocation step must follow to re-assign the points that were allocated to the
replaced medoids (removed medoids of s) to their new closest medoid. How-
ever, this process does not take into consideration the cannot-link constraints,
and then, sr might be infeasible. To overcome this situation, we also invoke the
restore function for sr before proceeding to the local search procedure (line 8).
If the best feasible solution found in the descent path has a better cost than
sb, then it is stored in sb (line 12). The algorithm repeats this process until a
defined stopping criterion is met.

Algorithm 2. VNS for SSC k-medoids
1: Apply the super-point concept, merging points interconnected by must-link con-

straints into super-points;
2: Find an initial feasible solution Sb;
3: repeat
4: v ← 1;
5: repeat
6: Choose a random neighbor solution Sr ∈ Nv(s);
7: if Sr is infeasible then
8: Call the restore feasibility function for Sr.
9: end if

10: Apply the local descent method from Sr, obtaining a local minimum Sf

11: if cost of Sb > cost of Sf then
12: Sb ← Sf ; v ← 1;
13: end if
14: v ← v + 1;
15: until v = vmax

16: until a stopping criterion is met

6 Experiments

This work explores the results from three different perspectives. First, model
SSKMP is analyzed concerning its accuracy performance when compared with
the traditional SSC model, SSMSSC. Next, the VNS performance is tested using
a set of benchmark datasets for SSC problem. Third, the flexibility of SSKMP
is explored in combination with distance metric learning.

Computational experiments were performed on an Intel i7-6700 CPU with a
3.4 GHz clock and 16 Gigabytes of RAM. The algorithms were implemented in
C++ and compiled by gcc 6.3.

6.1 Model Accuracy

First of all, it is essential to keep in mind that it is impossible to determine
whether a model is better than another with respect to all possible data sets
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(see Kleinberg’s impossibility theorem [28]). The SSMSSC and SSKMP are com-
parable models given that (i) both are representative-based; and (ii) the data
sets used in the experiments are considered as points in the Euclidean space. It
was decided to compare the models regarding accuracy using the Adjusted Rand
Index (ARI) [29], which can measure how close the clustering result is to the
ground-truth classification obtained in the UCI repository [30].

We first compare the models using the ARI results reported by Xia [11]. As
done in her work, we ran the VNS algorithm 100 times and reported the average
ARI value. We also defined the stop criterion as the average CPU time used
by Xia’s algorithm. In all experiments we used the vmax parameter equal to 10.
Table 1 presents this the of these two models for 12 benchmark data sets. For
each of them, column n indicates the number of points and k the number of
clusters. In the following, we present results for two configurations of ML and
CL used in [11]. The first two columns refer to the number of must-link and
cannot-link constraints, and the last two refer to the ARI index values obtained
by each model concerning the ground-truth partition.

Table 1. Datasets configurations and ARI results for SSMSSC and SSKMP

Instance n k Configuration 1 Configuration 2

|ML| |CL| ssmssc sskmp |ML| |CL| ssmssc sskmp

Soybean 47 4 4 24 0.55 0.60 8 4 0.62 0.62

Protein 116 6 18 12 0.31 0.25 26 18 0.32 0.25

Iris 150 3 12 12 0.74 0.75 16 8 0.75 0.76

Wine 178 3 44 26 0.44 0.45 72 44 0.45 0.45

Ionosphere 351 2 52 36 0.16 0.16 122 64 0.14 0.15

Control 600 6 60 30 0.54 0.50 90 60 0.53 0.51

Balance 625 3 156 94 0.32 0.24 218 126 0.43 0.25

Yeast 1484 10 296 178 0.16 0.16 520 296 0.17 0.17

Optical 3823 10 496 306 0.70 0.68 689 420 0.71 0.69

Statlog 4435 6 444 222 0.53 0.53 666 444 0.54 0.53

Page 5473 5 548 274 0.01 0.03 1024 820 0.01 0.03

Magic 19020 2 1902 952 0.05 0.18 2854 1902 0.04 0.16

We note from Table 1 that both models present quite similar results and
comparable clustering performances. For the 24 tests cases, each model had nine
times each the best ARI, and for six data sets, they had the same ARI value.
Moreover, even when the ARI indices were not equal, the difference in values
was marginal.

6.2 VNS Performance

This section is dedicated to evaluating the VNS performance for optimizing the
SSKMP model. To obtain the optimal solution for the tested datasets, we used
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Table 2. Performance results for VNS and CPLEX.

Instance Configuration fopt topt vns vns tvns restore

Soybean 1 1.138047e+02 0.12 0% 0% 0.00 11%

2 1.156629e+02 0.16 0% 0% 0.00 10%

Protein 1 1.269331e+03 2.46 0% 0% 0.01 10%

2 1.262633e+03 0.93 0% 0% 0.00 15%

Iris 1 9.835843e+01 8.85 0% 0% 0.01 7%

2 9.962796e+01 7.94 0% 0% 0.00 6%

Wine 1 1.749303e+04 10.07 0% 0% 0.01 7%

2 1.907746e+04 17.16 0% 0% 7.08 7%

Ionosphere 1 8.172423e+02 61.44 0% 0% 5.13 9%

2 8.384550e+02 53.58 0% 0.02% 65.04 9%

Control 1 2.693438e+04 135.20 0% 0% 0.13 5%

2 2.693937e+04 124.34 0% 0% 0.12 5%

Balance 1 1.466425e+03 881.94 0% 0.002% 110.42 4%

2 1.471803e+03 816.61 0% 0% 91.51 4%

Yeast 1 2.523202e+02 166622.71 0% 0% 97.78 3%

2 2.605097e+02 42557.74 0% 0.004% 124.44 3%

the solver CPLEX 12.6. This restricted our sample in this experiment because
CPLEX was not able to solve data sets Optical, Statlog, Page and Magic in a
reasonable amount of time (less than 50 h).

Table 2 shows the results of our computational experiments. For each config-
uration, we executed the algorithm 10 times using 300 s as time limit. Columns
fopt and topt provide optimal solution values and the time needed by CPLEX
to obtain it, respectively. The column vns reports the gap between the optimal
solution and the best solution found by the VNS from the 10 distinct executions.
In the sequel, columns vns and tvns report the average values for the same 10
execution of the algorithm. The column restore presents the average percentage
of time required by the restore feasibility function during the execution.

Firstly, we justify the importance of having a heuristic approach to the prob-
lem since the time to optimally solve it increases exponentially as the number of
points scales (topt). On the other hand, for all the 16 test cases, the VNS was able
to find the optimal solutions using much less time. For the test where CPLEX
took the longest time to solve, 46 h for Yeast configuration 1, the VNS only
needed, on average, 98 s to obtain a solution with the same cost. Furthermore,
only in three scenarios, the VNS was not able to obtain the best solution in all
ten executions, but still, the gaps are tiny.

From the results reported in column restore, we verify that the restore
feasibility function does not require much computational time (7% on average)
for the instances used in [11]. Besides, the amount of time is reduced for larger
datasets, which is expected as the local descent procedure starts to demand more
computational resources to perform the search.
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6.3 Model Flexibility

One of the main advantages of using SSKMP is the ability to work with a general
dissimilarity matrix D as input. This feature not only allows the model to work
with many different metric systems but also provides great flexibility to define a
clustering criterion. For example, it is possible to use the distance metric learning
technique without a single modification with our algorithm. Take for instance
the Semi-Supervised-Kernel-Kmeans (SS-Kernel-k-means) algorithm [13], which
defines the similarity matrix S = K + W + σI, aggregating the kernel matrix
K and constraints matrix W (metric learning). Then, we can easily transform s
into a dissimilarity matrix D (e.g. subtract each entry by the maximum element
in s) and use it as input for SSKMP. Furthermore, having the distance metric
modification in the input does not preclude the use of pairwise constraints in
combination, which has already been proven to be a good approach [31].

Consider the synthetic data set Two Circles showed in Fig. 2, which presents
200 points in the Euclidean plane, with 100 points in each class. This dataset
has an inner circle and a surrounding outer circle. The Fig. 3 presents the ARI
results for our proposed VNS and the SS-Kernel-k-means algorithm using the
two circles instance. Both algorithms were executed 100 times starting from a
random initial solution, and the average ARI was reported. As suggested in
[13], we used an exponential kernel (exp(−‖x − y‖2/2σ) for SS-Kernel-k-means
to separate the two classes in the mapped space linearly. We also included the
algorithm vns+ which combines the distance metric learning and solution space
restriction due to pairwise constraints into the model optimized by our proposed
VNS. The time limit used for both VNS algorithms was the average time needed
by SS-Kernel-k-means to finish one execution.

Fig. 2. Two circles synthetic data set.

We note from Fig. 3 that the VNS algorithms based on model SSKMP out-
performed the typical kernel approach, both reaching the maximum ARI value.
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Fig. 3. ARI performance for two circles data set.

We highlight that the VNS algorithm improved its accuracy performance by
adding the distance metric learning mechanism, reaching the maximum ARI
value with 20% fewer constraints than the VNS algorithm that uses only the
pairwise constraints. We also observed that the SS-Kernel-k-means algorithm
was not able to improve ARI as the number of pairwise constraints increased.
We believe that the kernel-based algorithm is more sensitive to initialization
besides not being able to escape from local optima. In contrast, the VNS was
proved robust, making powerful use of a priori information.

7 Conclusion

This paper proposed a VNS heuristic for assessing the performance of the
k-medoids model for semi-supervised clustering. Experiments showed that the
new model had similar classification performance when compared with the tra-
ditional k-means model. The VNS algorithm was validated in a series of compar-
ative experiments against CPLEX, presenting solutions very close to the opti-
mal ones (never exceeding 0.02% in average) using much less CPU time. More-
over, the flexibility of the k-medoids model was tested regarding the addition
of a dissimilarity matrix generated by a kernel function with distance metric
learning. The VNS that combined the kernel trick with the explicit use of pair-
wise constraints presented the best accuracy performance among the algorithms
compared.
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Abstract. In this paper we address a metaheuristic for an combinato-
rial optimization problem. For any given graph G = (V, E) (where the
nodes represent items and edges correlations), we want to find the clique
C ⊆ V such that the number of links shared between C and V −C is max-
imized. This problem is known in the literature as the Max Cut-Clique
(MCC).

The contributions of this paper are three-fold. First, the complexity
of the MCC is established, and we offer bounds for the MCC using
elementary graph theory. Second, an exact Integer Linear Programming
(ILP) formulation for the MCC is offered. Third, a full GRASP/VND
methodology enriched with a Tabu Search is here developed, where the
main ingredients are novel local searches and a Restricted Candidate
List that trades greediness for randomization in a multi-start fashion. A
dynamic Tabu list considers a bounding technique based on the previous
analysis.

Finally, a fair comparison between our hybrid algorithm and the glob-
ally optimum solution using the ILP formulation confirms that the glob-
ally optimum solution is found by our heuristic for graphs with hundreds
of nodes, but more efficiently in terms of time and memory requirements.

Keywords: Combinatorial optimization problem · Max Cut-Clique ·
ILP · GRASP · VND · Tabu Search

1 Motivation

The MCC has an evident application to product-placement in Market Basket
Analysis (MBA), sometimes known as affinity analysis [1]. For instance, the
manager of a supermarket must decide how to locate the different items in the
different compartments. In a first stage, it is essential to determine the correlation
between the different pairs of items, for psychological/attractive reasons. Then,
the priceless/basic products (bread, rice, milk and others) could be hidden on the
back, in order to give the opportunity for other products in a large corridor (and
candies should be at hand by kids as well). Observe that the MCC appears in
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the first stage, while marketing/psychological aspects play a key role in a second
stage for product-placement in a supermarket.

This work is focused on a specific combinatorial optimization methodology
to assist product placement; however, related applications could be found. The
problem under study is called Max Cut-Clique (MCC), and it was introduced
by Martins [5]. For any given graph G = (V,E) (where the nodes are items and
links represent correlation), we want to find the clique C ⊆ V such that the
number of links shared between C and V − C is maximized.

In [5], the author states that the MCC is presumably hard, since related
problems such as MAX-CUT and MAX-CLIQUE are both NP-Complete. To
the best of our knowledge, there is no formal proof available for the hardness
of the MCC in the published scientific literature. Nevertheless, the MCC is
systematically addressed by the scientific community with metaheuristics and
exact solvers that run in exponential time.

A recent work in the field develops an Iterated Local Search for the MCC [6].
As far as we know, this work belongs to the state-of-the-art techniques for the
MCC. The authors find optimal solutions for most instances under study, and
suggest a rich number of applications.

The contributions of this paper can be summarized in the following items:

1. The NP-Completeness of MCC is established (Subsect. 2.1).
2. Bounds for both the globally optimum solution and the clique size are pro-

duced (Subsect. 2.2).
3. A hybrid GRASP/VND heuristic enriched with Tabu Search is developed to

address the MCC (Sect. 3).
4. An exact Integer Linear Programming (ILP) formulation for the MCC is

proposed (Sect. 4).
5. The performance of our approach is studied (Sect. 5).
6. A discussion of applications for product-placement is included (Sect. 6).

2 Analysis and Complexity

In this section, the computational complexity for the MCC is established. We
formally prove that the corresponding decision version for the MCC belongs
to the class of NP-Complete decision problems (Subsect. 2.1). Then, we find
bounds for the MCC using elementary graph theory (Subsect. 2.2).

It is worth to remark that the hardness promotes the development of heuris-
tics, and these bounds will enrich our GRASP/VND heuristic with a dynamic
Tabu List.

2.1 Complexity

We formally prove that the MCC is at least as hard as MAX-CLIQUE. First,
we describe both decision problems and the decision versions for the MCC:
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Definition 1 (MAX-CLIQUE).

GIVEN: a graph G = (V,E) and a real number K.
QUESTION: is there a clique C ⊆ V such that |C| ≥ K?

For convenience, we describe the MCC as a decision problem. Let us denote
δ(C) to the cut produced by a node-set C, or the objective value for the MCC
whenever C is a clique.

Definition 2 (MCC).

GIVEN: a graph G = (V,E) and a real number K.
QUESTION: is there a clique C ⊆ G such that |δ(C)| ≥ K?

Theorem 1. The MCC belongs to the class of NP-Complete problems.

Proof. We prove that the MCC is at least as hard as MAX-CLIQUE. Consider a
simple graph G = (V,E) with order n = |V | and size m = |E|. Let us connect m
leaf-nodes hanging to every single node v ∈ V (observe that there are m×n such
nodes). The resulting graph is called H. If we find a polynomial-time algorithm
for MCC, then we can produce the max cut-clique in H. But observe that the
max cut-clique C in H must belong to G. If C has cardinality c, then the cut-
clique has precisely c × m hanging nodes. By construction, the cut-clique must
maximize the number of hanging nodes, since the whole size |E| = m is added
to the cut by a single addition of a node in the clique. As a consequence, c must
be the MAX-CLIQUE. We proved that the MCC is at least as hard as MAX-
CLIQUE, as desired. Since MCC belongs to the set of NP decision problems,
it belongs to the NP-Complete class. �

2.2 Bounds for MCC

Observe that the globally optimum for the MCC could be attained by more
than one clique. Let us denote by Cmin the minimum cardinality clique such
that |δ(Cmin)| = OPT , the optimal value for the MCC, and cmin = |Cmin|.

Definition 3. A finite sequence {ai}ni=0 is strictly unimodal if there exists some
index k0 ∈ {0, . . . , n} such that a0 < a1 < · · · < ak0 and ak0 ≥ ak0+1 > ak0+2 >
· · · > an.

Lemma 1. Consider a connected graph G with degree-sequence (δ1, . . . , δn),
where for convenience we consider δ1 ≤ δ2 ≤ · · · ≤ δn. Then, the following
finite sequence {f(k)}nk=0 is strictly unimodal, where

f(k) = −k(k − 1) +
k∑

i=1

δn−i+1, ∀k ∈ {0, 1, . . . , n}. (1)
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Proof. The difference between consecutive terms, Δk = f(k) − f(k − 1), is:

Δk = −k(k −1)+
k∑

i=1

δn−i+1 +(k−1)(k −2)−
k−1∑

i=1

δn−i+1 = −2(k −1)+ δn−k+1.

Since −2(k − 1) and δn−k+1 are monotonically decreasing sequences, being the
former strictly decreasing, {Δk}k≥0 must be strictly decreasing as well. Fur-
thermore, since Δ1 = f(1) − f(0) = δn > 0 and Δn = −2(n − 1) + δ1 < 0,
there exists some index k0 such that: f(0) < f(1) < · · · < f(k0) and
f(k0) ≥ f(k0 + 1) > f(k0 + 2) > · · · > f(n), as desired. �

Lemma 2. The following inequalities hold for any clique C:

− |C|(|C| − 1) +
|C|∑

i=1

δi ≤ |δ(C)| ≤ f(|C|) (2)

Proof. The sum |δ(C)|+ |C|(|C|−1) =
∑

vi∈C δi is greater (smaller) than the sum
of the |C| smallest (greatest) degrees. �

In the following, we will provide an upper-bound for OPT , the globally opti-
mum value for the MCC, and bounds for the size cmin of the minimum cardi-
nality clique Cmin, in terms of the auxiliary sequence {f(k)}nk=0.

Theorem 2 (Upper-Bound for MCC). If OPT denotes the optimal value for
the MCC and f is maximized at k0, then OPT ≤ f(k0).

Proof. If we are given an arbitrary clique C, the incident edges to some v ∈ C
either belong to the clique or to the cut. Then:

|δ(C)| =
∑

vi∈C
δi − |C|(|C| − 1) ≤ f(|C|) ≤ f(k0), (3)

where Lemmas 2 and 1 were considered in the last two inequalities. Since the
inequalities hold for every clique, in particular we get that OPT ≤ f(k0). �

Theorem 3 (Bounds for cmin). If {k0, k1} = argmaxf(k) with k0 ≤ k1, then
the following inequalities hold for any clique C:

max {k ≤ k0 : f(k) ≤ |δ(C)|} ≤ cmin ≤ min {k ≥ k1 : f(k) ≤ |δ(C)|} . (4)

Proof. Let C′ be a clique such that f(|C′|) ≤ |δ(C)| and |C′| ≤ k0. Since |δ(C)| ≤
OPT ≤ f(cmin) and f is strictly increasing in [1, k0], then |C′| ≤ cmin. Taking
maximum on |C′| ≤ k0, we obtain the first inequality.

The reasoning for the second inequality is analogous. �

Corollary 1. If k0 and k1 are as in previous Theorem, then the the following
inequalities hold:

max{k ≤ k0 : f(k) ≤ δn} ≤ cmin ≤ min{k ≥ k1 : f(k) ≤ δn} (5)

Proof. Apply Theorem 3 with the clique C = {vn}. �
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3 Methodology

GRASP, VND and Tabu Search are well known metaheuristics that have been
successfully used to solve many hard combinatorial optimization problems.
GRASP is an iterative multi-start process which operates in two phases [7]. In
the Construction Phase a feasible solution is built whose neighborhood is then
explored in the Local Search Phase [7]. The second phase is usually enriched by
means of different variable neighborhood structures. For instance, VND (Variable
Neighborhood Descent) explores several neighborhood structures in a determin-
istic order. Its success is based on the simple fact that different neighborhood
structures do not usually have the same local minimum. Thus local optima can be
escaped by applying some deterministic rule for altering the neighborhoods [3].
Tabu Search is a strategy to prevent local search algorithms getting trapped in
previously visited solutions. It accepts non-improving moves and uses a penal-
ization mechanism called Tabu List [2,4]. The reader is invited to consult the
comprehensive Handbook of Metaheuristic for further information [8].

Here, we develop a GRASP/VND methodology enriched with Tabu Search
in order to avoid getting trapped in previous visited solutions. In the following,
the Pseudo-code of our Hybrid Metaheuristic (HM) for the max cut-clique is pre-
sented (see Algorithm 1). It follows the traditional two-phase GRASP template
enriched with a VND (Lines 4–5).

A Tabu Search strategy is included in order to enhance feasible solutions.
The tabu list T stores tabu nodes (Line 6), discarding previous solutions. Essen-
tially, the most frequent nodes involved in all solutions after the second phase
(VND) are not considered for further solutions during θ iterations, whenever we
reach θmax consecutive iterations without improvement. Most frequent nodes are
selected if they appear more than φ times since the last tabu list refresh. The
real numbers φ and θ are uniformly chosen at random in the interval [1, θmax],
being θmax a parameter of the algorithm. The specific GRASP phases for the
MCC are described in detail in the following subsections.

Algorithm 1. HM Pseudo-code

Input: α, θmax, maxIter, G
Output: C∗

1: C∗ ← ∅
2: T ← ∅
3: for iter = 1 to maxIter do
4: C ← Clique(α, T , G)
5: C ← VND(C, T , G)
6: T ← Update(T , θmax, C) � Tabu List
7: if |E′(C)| > |E′(C∗)| then
8: C∗ ← C
9: return C∗
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3.1 Construction Phase - Clique

The construction phase of the proposed algorithm is depicted in Algorithm2. Let
us denote by C the clique under construction, δ(U) and Δ(U) the minimum and
maximum degree of the node-set U . The clique C is initially empty (Line 1), and
a multi-start process is considered (Line 2). A Restricted Candidate List (RCL)
is defined in Line 3. Observe that the RCL includes nodes with the highest
degree, and α trades greediness for randomization. During the While loop of
Lines 4–11, a singleton {i} is uniformly picked from the RCL (Line 5), and the
maximum clique C′ is built using the nodes from the set C ∪ {i}, specifically,
[C ∩ N(i)] ∪ {i}, being N(i) the neighbor-set of node i (see Line 6). The best
solution is updated if necessary (Lines 7–8). Observe that the process is finished
only if we meet MAX ATTEMPTS without improvement (Lines 9–11). The
reader can appreciate that the output C is the best feasible clique during the
whole process (Line 12).

Algorithm 2 . Clique

Input: α, T , G
Output: C

1: C ← ∅
2: improving = MAX ATTEMPTS
3: RCL ← {v ∈ V − C : |E′(v)| ≥ Δ(V − C) − α(Δ(V − C) − δ(V − C))}
4: while improving > 0 do
5: i ← selectRandom(RCL)
6: C′ ← [C ∩ N(i)] ∪ {i}
7: if |E′(C′)| > |E′(C)| then
8: C ← C′

9: improving ← MAX ATTEMPTS
10: else
11: improving ← improving − 1

12: return C

3.2 Local Search Phase - V ND

The goal is to combine a rich diversity of neighborhoods in order to obtain an
output that is locally optimum solution for every feasible neighborhood. Five
neighborhood structures are considered to build a VND [3]. Add, Swap, and
Aspiration are taken from a previous ILS [6]. However, our VND is enriched
with 2 additional neighborhood structures, named Remove and Cone. The
following neighborhood take effect whenever the resulting cut-clique is increased:

– Remove: a singleton {i} is removed from a clique C.
– Add: a singleton {i} is added from a clique C.
– Swap: if we find j /∈ C such that C − {i} ⊆ N(j), we can include j in the

clique and delete i (swap i and j).
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– Cone: generalization of Swap for multiple nodes. The clique C is replaced by
C ∪ {i} − A, being A the nodes from C that are non-adjacent to i.

– Aspiration: this movement offers the opportunity of nodes belonging to the
Tabu List to be added.

Observe that the dynamic Tabu list works during the potential additions
during Add, Swap and Cone. On the other hand, Aspiration provides diver-
sification with an opportunistic unchoking process: it picks nodes from the Tabu
List instead. For the remaining four local searches, there is an efficient way to
determine whether there is an improvement with respect to some neighbor-set.
Specifically, the Test Lemmas 3 to 6 are useful to determine the improvements for
Remove, Add, Swap and Cone movements, respectively. We call Aspiration
Test to Lemma 4 but applied in a different domain (specifically, the candidate
nodes must belong to the Tabu List).

Lemma 3 (Remove). |δ(C − {i})| > |δ(C)| iff |δ(i)| < 2(|C| − 1).

Proof.

|δ(C − {i})| = |δ(C)| + |C| − 1 − (|δ(i)| − (|C| − 1))
= |δ(C)| + |C| − 1 − |δ(i)| + |C| − 1
= |δ(C)| + 2(|C| − 1) − |δ(i)|
> |δ(C)|,

where the last inequality holds iff 2(|C| − 1) − |δ(i)| > 0. �

Lemma 4 (Add). |δ(C ∪ {i})| > |δ(C)| iff |δ(i)| > 2|C|.

Proof.

|δ(C ∪ {i})| = |δ(C)| − |C| + |δ(i)| − |C|
= |δ(C)| + |δ(i)| − 2|C|
> |δ(C)|,

where the last inequality holds iff |δ(i)| > 2|C|. �

Lemma 5 (Swap). |δ(C − {j} ∪ {i})| > |δ(C)| iff |δ(i)| > |δ(j)|.

Proof.

|δ(C − {j} ∪ {i})| = |δ(C)| − |δ(j)| + 2(|C| − 1) + |δ(i)| − 2(|C| − 1)
= |δ(C)| − |δ(j) + |δ(i)|
> |δ(C)|,

where the last inequality holds iff |δ(i)| > |δ(j)|. �

Lemma 6 (Cone). |δ(C−A∪{i})| > |δ(C)| iff |δ(i)| > |δ(A)|−2|C−A|(|A|−1).
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Fig. 1. Flow diagram for the local search phase - VND.
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Proof.

|δ(C − A ∪ {i})| = |δ(C)| + |A||C − A| − (|δ(A)| − |A||C − A|) − 2|C − A| + |δ(i)|
= |δ(C)| + 2|A||C − A| − |δ(A)| − 2|C − A| + |δ(i)|
= |δ(C)| + 2|C − A|(|A| − 1) − |δ(A)| + |δ(i)||δ(C − A ∪ {i})|
> |δ(C)|

where the last inequality holds iff |δ(i)| > |δ(A)| − 2|C − A|(|A| − 1). �
The Flow Diagram of our VND is presented in Fig. 1. The ordered sequence

of local searches are Remove, Add, Swap, Cone and Aspiration moves. Once
an improvement is obtained, the process restarts from the beginning. Observe
that, in the output, a locally optimum solution under all neighborhood structures
is met.

4 Exact Method for the MCC

In this section, we present an exact method based on a mathematical formu-
lation. Due to combinatorial nature, we addressed it by integer programming,
using the following decision variables:

wi =

{
1 if node i ∈ C
0 otherwise

, ∀i ∈ V

w(i,j) =

{
1 if edge (i, j) ∈ E(C)
0 otherwise

, ∀(i, j) ∈ E

An integer programming model is presented below. Constraint (1) and (2)
state that both nodes i, j belong to the clique C if and only if (i, j) ∈ E(C).
Recall that Theorem 3 provides a feasible interval for the size of the clique,
cmin. Constraints (3) and (4) determine lower and upper bounds Lb and Ub for
the size of the clique, found combining Theorem 3 and the best output of our
GRASP/VND heuristic. Constraints (5) and (6) just state that wi and w(i,j)

are binary variables. The goal is maximize the cut-clique, which is precisely the
difference between the sum-degree minus twice the number of internal links.

max
∑

i∈V di × wi − 2 ×
∑

(i,j)∈E w(i,j)

s.a. 2w(i,j) ≤ wi + wj ∀(i, j) ∈ E (1)
wi + wj − 1 ≤ w(i,j) ∀i, j ∈ V (2)

∑
i∈V wi ≥ Lb (3)∑
i∈V wi ≤ Ub (4)

w(i,j) ∈ {0, 1} ∀(i, j) ∈ E (5)
wi ∈ {0, 1} ∀i ∈ V (6)
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5 Computational Results

In order to test the performance of the algorithm we carried out a fair compari-
son with respect to the ILP model implemented using IBM CPLEX 12.8. Both
algorithms are executed on a Home-PC (Intel Core i7, 2.4 GHz, 8 GB RAM).
The graphs under study were obtained from the SteinLib1 and DIMACS.

Table 1 reports the performance of both algorithms for each instance. All HM
algorithm instances were tested using a single run with one-hundred iterations

Table 1. HM versus ILP for the MCC.

Instances GRASP/VND ILP

Name n Density |E′(C)| |C| Time (s) Lb Ub |E′(C)| |C| Time (s)

i080-001 80 0.039 13 2 0.7120 2 8 13 2 0.66

i080-002 80 0.039 13 2 1.4779 2 9 13 2 0.62

i080-011 80 0.11 38 4 3.0396 3 16 38 4 0.94

i080-044 80 0.2 80 5 1.1495 4 26 80 5 0.71

i080-045 80 0.2 74 4 0.5748 4 25 74 4 0.90

i080-111 80 0.11 35 4 0.4141 3 15 35 4 0.88

i080-112 80 0.11 39 3 0.3191 3 19 39 3 0.64

i080-131 80 0.05 16 2 1.1908 2 10 16 2 0.73

i080-132 80 0.05 15 3 0.5146 2 9 15 3 0.69

i080-142 80 0.2 74 4 1.0306 4 25 74 4 0.70

i080-143 80 0.2 80 4 0.8546 4 26 80 4 0.85

i160-001 160 0.019 15 2 0.6351 2 10 15 2 2.84

i160-002 160 0.019 14 2 2.8054 2 9 14 2 2.44

i160-011 160 0.064 44 3 4.6177 3 20 44 3 24.53

i160-044 160 0.2 180 5 5.7298 5 47 180 5 11.23

i160-045 160 0.2 173 5 3.8451 5 42 173 5 14.92

i160-111 160 0.064 50 4 5.9956 4 18 50 4 5.59

i160-112 160 0.064 46 4 0.47 3 18 46 4 5.71

i160-131 160 0.025 19 3 2.5908 3 10 19 3 2.80

i160-132 160 0.025 22 3 2.3052 3 12 22 3 2.95

i160-142 160 0.2 183 5 3.7192 5 45 183 5 10.63

i160-143 160 0.2 170 5 05.097 5 44 170 5 10.57

mc11 400 0.0095 6 2 0.7292 2 2 6 2 6.43

c-fat200-1 200 0.077 81 9 0.1860 9 17 81 9 29.57

c-fat200-2 200 0.163 306 17 0.8388 17 34 306 17 88.79

c-fat200-5 200 0.426 1892 43 13.0593 43 86 1892 43 1717.39

c-fat500-1 500 0.036 110 10 4.77459 10 20 110 10 1198.31

c-fat500-2 500 0.073 380 19 14.1875 19 38 380 19 1822.08

c-fat500-5 500 0.186 2304 48 121.32 48 95 2304 48 10800

c-fat500-10 500 0.374 8930 94 33.298 94 188 8930 94 10800

1 The dataset can be found in the URL http://steinlib.zib.de/steinlib.php.

http://steinlib.zib.de/steinlib.php
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and α = 1
2 , MAX ATTEMPTS = 	 |V |

10 
, θmax = 4. Lower and upper bounds
Lb and Ub were obtained for each topology under study using Corollary 1.

The values remarked using bold letters from column |δ(C)| indicate that the
best solution was reached according to the output from the ILP solver.

Following the terminology, |δ(C)|, |C| and Time represent maximum cut-
clique size found, best solution, and the CPU time for the best solution found.
Lb, Ub columns are reported for the ILP solver which represents the lower an
upper bound for the ILP model. Under ILP, Time give the time to reach the
optimum value or the best lower bound to the optimum when the optimum is
not attained within the given time limit (10800 s).

Table 2. Performance of the local search phase.

Instances GRASP/VND

Name n Density Remove

(%)

Add

(%)

Swap

(%)

Cone

(%)

Aspiration

(%)

#moves mp (%)

i080-001 80 0.039 0 38 57 5 0 154 30.949

i080-002 80 0.039 3 32 59 7 0 147 27.571

i080-011 80 0.11 1 48 48 3 0 158 18.647

i080-044 80 0.2 0 54 46 0 0 239 17.390

i080-045 80 0.2 0 56 44 0 0 217 20.585

i080-111 80 0.11 0 59 39 3 0 176 22.572

i080-112 80 0.11 0 48 37 5 0 244 16.261

i080-131 80 0.05 1 30 60 9 0 151 25.983

i080-132 80 0.05 0 32 68 0 0 136 23.402

i080-142 80 0.2 0 50 50 0 0 202 19.762

i080-143 80 0.2 0 52 48 0 0 253 18.467

i160-001 160 0.019 0 22 73 5 0 143 29.452

i160-002 160 0.019 0 20 80 0 0 135 26.427

i160-011 160 0.064 0 57 40 3 0 186 21.803

i160-044 160 0.2 0 60 40 0 0 251 18.079

i160-045 160 0.2 0 53 47 0 0 211 16.358

i160-111 160 0.064 0 61 38 1 0 181 23.816

i160-112 160 0.064 0 55 45 0 0 154 23.940

i160-131 160 0.025 0 39 58 2 0 168 23.710

i160-132 160 0.025 0 42 54 3 0 179 26.588

i160-142 160 0.2 0 57 42 0 0 250 18.146

i160-143 160 0.2 0 59 41 0 0 196 17.664

mc11 400 0.0095 0 100 0 0 0 46 50.000

c-fat200-1 200 0.077 0 100 0 0 0 376 13.159

c-fat200-2 200 0.163 0 100 0 0 0 475 6.338

c-fat200-5 200 0.426 0 99 1 0 0 138 0.505

c-fat500-1 500 0.036 0 100 0 0 0 391 12.965

c-fat500-2 500 0.073 0 100 0 0 0 278 3.736

c-fat500-5 500 0.186 2 98 0 0 0 132 3.252

c-fat500-10 500 0.374 0 100 0 0 0 11 0.132
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The reader can appreciate from Table 1 that our GRASP/VND algorithm
meets the best solution in all cases. The globally optimum for all the instances
under study is formally proved using the ILP formulation. Furthermore, our
GRASP/VND approach presents consistently smaller CPU times for graphs with
large size.

Table 2 shows the performance of the VND algorithm. The activity of every
single local search is studied. Swap and Add movements show to be more effec-
tive, while Remove and Cone take effect few times. Aspiration has no effect, but
it works for dense graphs.

In order to understand the global effectiveness of our VND scheme, a mid-
point test is performed. The columns Remove, Add, Swap, Cone and Aspiration
show the percentage of each kind of movement applied over one-hundred execu-
tions of the VND local search phase. The column #moves states the amount of
movement applied during these iterations. The column entitled mp displays the
average gap in percentage between the best solution found in each local search
phase with respect to the feasible solution obtained from the construction phase
over one-hundred iterations. The reader can appreciate that the VND effect is
notorious, since the cut-clique is roughly half the optimum in most cases using
only the Construction Phase.

It is worth to remark that we further studied the performance of our
GRASP/VND methodology versus a state-of-the-art ILS heuristic for the MCC,
detailed in [6]. We could find optimality in all the reported instances which
achieved optimality, and we found the best feasible solutions so far in the remain-
ing cases, with identical results offered in [6].

6 Conclusions and Trends for Future Work

Several business models can be represented by Market Basket Analysis (MBA).
A relevant marketing approach is to find a subset of items that are strongly cor-
related with the others. This intuition is formalized by means of a combinatorial
optimization problem, called Max Cut-Clique (MCC).

In this paper, the NP-Completeness of MCC is established. This fact pro-
motes the development of heuristics and bounds. As a consequence, we offered
bounds for both the globally optimum solution and the size of the minimum car-
dinality clique with maximum cut. Then, a GRASP/VND methodology enriched
with Tabu Search is developed to address the MCC. A fair comparison with an
exact ILP formulation confirms the optimality of our approach for hundreds of
nodes. Furthermore, the computational effort is reduced for the heuristic under
large-sized graphs. The movements Swap and Add have the largest activity for
the instances under study. The experiments shows that our GRASP/VND heuris-
tic is competitive with state-of-the-art solutions for the MCC. Further analysis
should be done to determine the best order for the VND in terms of computa-
tional efficiency.

As future work we would like to implement our solution into a real-life
product-placement scenario. In a first stage, we need historical information
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to determine the links between pairs of items. The physical location of the
items must be determined using a complementary geometrical problem with
constraints. The solution could consider multi-constrained clustering in order to
include categories for the items, or other Machine Learning techniques to deter-
mine profiles for the customers, according to the product under study. After the
real implementation, the feedback of sales in a period is a valuable metric of
success.

Acknowledgements. This work is partially supported by Project 395 CSIC I+D Sis-
temas Binarios Estocásticos Dinámicos.

References

1. Aguinis, H., Forcum, L.E., Joo, H.: Using market basket analysis in management
research. J. Manag. 39(7), 1799–1824 (2013)

2. Amuthan, A., Thilak, K.D.: Survey on tabu search meta-heuristic optimization. In:
2016 International Conference on Signal Processing, Communication, Power and
Embedded System (SCOPES), pp. 1539–1543, October 2016
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Abstract. In this paper a multi-level capacitated lotsizing problem with
machine-capacity-constraint and backlogging is studied. The main objec-
tive is to minimize the total cost which includes the inventory and delay-
ing costs of produced items. Since the problem under study is NP-hard,
a variable neighborhood search (VNS) combined with CPLEX solver is
proposed as a solution approach. Neighborhood is changed according to
VNS scheme employing four different functions and is locally optimized
for a set of partial MIP problems that can be easily solved.

Finally, extensive computational tests demonstrate that the proposed
search algorithm can find good quality solutions for all examined prob-
lems. The objective values obtained by the proposed algorithm are com-
parable to the results of state-of-the art, much more complicated algo-
rithms.

Keywords: Multi-level capacitated lotsizing ·
Variable neighborhood search · Hybrid approach

1 Introduction

The multi-level capacitated lotsizing problem (MLCLSP) is a generalization of
the classical capacitated lotsizing problem (CLSP). CLSP is a large-bucket model
which determines the lotsizes of produced items but not the sequence of the lots.
The setup times may be needed to produce some lots and all machines have
limited capacities. MLCLSP extends CLSP by assuming that the manufacturing
process is performed at multi stages machines, according to the BOM list of MRP
system. The goal is to determine production plan for final products and their
components to prevent delays in the delivery to the customers and to minimize
the inventory costs. The multi-level capacitated lotsizing problem was originally
introduced by Billington et al. [2]. In such problem the planning horizon is finite
and it is divided into T discrete time periods (e.g. day or weeks). The plan has
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to be prepared for I items (finished products) with external demand d known for
each period or internal demand resulting from the preceding production (for sub-
products). Original formulation of MLCLSP required demand to be met without
any delay, however, later an extended formulation allowed for backlogging of the
finished products, which greatly complicates solution of the problem.

In this paper we study MLCLSP with backlogging and setup times for prod-
uct families. The aim of the paper is to develop the model and appropriate
algorithm of its solution able to achieve optimized production plans for multi-
level system within few minutes, which is enough for the planners in industrial
practice (plans are prepared usually at the beginning of each working week but
sometimes need to be rearranged, if some unexpected event occurs like order
cancellation or machine breakdown). We propose a hybrid approach combing
variable neighborhood search with CPLEX solver. The paper has the following
structure. Section 2 presents the literature review. Definition of the problem and
notation are described in Sect. 3. Section 4 gives the details on proposed heuristic
approach. The computational experiments are summarized in Sect. 5, and the
conclusions are drawn in Sect. 6.

2 State of the Art

There are many studies reported in the literature for capacitated lotsizing prob-
lems. A comprehensive review on CLSP and MLCLSP formulations as well as
solution approaches are presented in [3] and [7]. For practical reasons, this section
gives a limited review of the methods used to solve considered problem: we focus
only on approaches that are close related to our work.

Wu et al. [14] developed the LugNP (Lower and upper bound guided Nested
Partitions) framework using two new MIP reformulations for capacitated multi-
level lotsizing problems with backlogging. LugNP effectively combines lower and
upper bounding techniques with NP method, incorporating an efficient parti-
tioning and sampling strategy, guiding the search to the most promising region
of the solution space. Extensive computational tests demonstrated the quality
of proposed framework.

Zhao et al. [15] used a variable neighborhood decomposition search (VNDS)
integrated with a general-purpose CPLEX MIP solver - a method suggested by
Lazic et al. [8]. The VNDS algorithm consequently fixes values for hard variables
on the basis of solution achieved with MIP relaxation and then VNS algorithm
is used. The heuristic is able to solve problem with 40 items, 16 periods, and 6
resources.

Seeanner et al. [9] proposed the similar approach which combines the princi-
ples of variable neighborhood decomposition search and fix-and-optimize (FO)
heuristic. They provided results for real world problems with hundreds of items
and 12 time periods. However, the computation time was an one hour for a single
instance of the problem, and the gap between the obtained results and reference
values was also significant.

Toledo et al. [13] presented a hybrid multi-population genetic algorithm
(HMPGA) which combines a multi-population genetic algorithm using FO
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heuristic and MIP submodels solved by a CPLEX solver. HMPGA evolves three
populations of individuals hierarchically structured in a tree. Each individual
is represented as a 0–1 matrix F*T , where F is the number of families and
T is the number of periods (1 - if a setup of family f in period t happens, 0
- otherwise). The fix-and-optimize heuristic tries to improve the current best
individual, sequentially fixing and optimizing binary variables, using period and
family rolling horizon windows. A total of four test sets from the MULTILSB
(Multi-Item Lot-Sizing with Backlogging - the same we use in this research)
library were solved and the results have shown that HMPGA had a better per-
formance for most of the test sets than two competitive approaches (Akartunali
and Miller’s Heuristic [1] and Lower and upper bound guided Nested Partitions
heuristic [14]).

More recently, Chen [4] developed a VNS and FO approach that iteratively
solves a series of sub-problems of the model until no better solution can be found.
Each sub-problem re-optimizes a determined subset of binary decision variables
based on the interrelatedness of binary variables in the constraints, while the
values of the other binary variables are fixed. Then CPLEX branch and bound
algorithm is used to solve the relaxed problem. The largest instances considered
by the author had a size of 100 items and 16 periods, and it took more than
10 min to solve them.

Similar approach for multi-item capacitated lotsizing with time windows and
setup times was applied by Erromdhani et al. [6]. However, due to the prob-
lem nature, in the FO stage they optimized matrix of product setups, not the
family setups as it was in [4]. The maximum number of items in computational
experiments was 30.

Other types of lot-sizing problems were studied by Sifaleras and Konstanta-
ras. In [10] the authors used Variable Neighborhood Descent (VND) algorithm
with eight different neighborhood structure types to solve multi-item dynamic
lotsizing problem in a closed-loop supply chain. In [11] they used General VNS
with four different neighborhoods to solve reverse logistics multi-item dynamic
lotsizing problem. In both cases they considered instances up to 300 items and
52 periods.

3 Problem Formulation

Many formulations of MLCLSP with backlogging have been presented; a basic
formulation of the problem can be expressed as follows:

Indices

i = 1, . . . ,n, . . . , I produced items, first n items are the finished products
t = 1, . . . ,T production periods
m = 1, . . . ,M machines
f = 1, . . . ,F families of products
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Data

dit demand for item i in period t
ami capacity used to produce item i on machine m
Cmt total capacity of machine m in period t
hi holding cost of item i
bci backlog cost of item i, i = 1, . . . ,n
cif 1, if product i belongs to family f
rij quantity of product i required to produce product j
stmf setup time for family f on machine m

Variables

xit production of item i in period t
yit 1, if there is setup resulting from production of item i

in period t
wft 1, if there is setup resulting from production of family f

in period t
sit stock holding of item i in period t
bit backlog of item i in period t

Minimize
n∑

i=1

T∑

t=1

bci · bit +
I∑

i=1

T∑

t=1

hi · sit (1)

Subject to:

xit + bit − bit−1 + sit−1 − sit = dit, i = 1, ..., n, t = 1, ..., T (2)

xit + sit−1 − sit =
i−1∑

j=1

rij · xjt, i = n + 1, ..., I, t = 1, ..., T (3)

xit ≤ yit · ditT , i = 1, ..., I, t = 1, ..., T (4)

yit · cif ≤ wft, i = 1, ..., I, t = 1, ..., T (5)

I∑

i=1

ami · xit +
F∑

f=1

stmf · wft ≤ Cmt, m = 1, ...,M, t = 1, ..., T (6)

xit, sit, bit ≥ 0, yit, wft ∈ {0, 1} (7)

The objective function (1) minimizes the sum of backlogging and holding
costs of all items (backlog is valid only for the finished products). Equation
(2) balances stock levels, backlogs and current production with the demand
for the finished products, while Eq. (3) balances stock and current production
with the demand resulting from production of preceding items. Constraint (4)
ensures that there is a setup (yit = 1), if item i is produced in period t and
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simultaneously limits the number of produced items to the cumulated demand
in interval [k, t] dikt =

∑t
l=k dil. Lot size upper bound for the product i in the

period t can be further limited as shown in [1]. Constraint (5) ensures that there
is a setup (wft = 1), if family f is produced in period t. Constraint (6) limits
the production of items and setup of the machines to the capacity of machine
m available in period t. Decision variables x, s, b are continuous nonnegative
numbers, while setup decision variables are binary (7).

4 VNS Algorithm

4.1 Idea of the Algorithm

At first we planned to extend our VNS algorithm for CLSP [5] so that it would
take into account many levels of products. The matrix x representing the lotsizes
for the products in every period will be disturbed in accordance with the VNS
rules and locally optimized by linear programming model simplifying original
model of the problem. The problem however turned out to have so much different
characteristics from the previously analyzed variant of CLSP that the obtained
results were highly unsatisfying.

We had to focus not on the x matrix, but on either the matrix of product
setups y, as it was in [6] or the matrix of family setups w, as it was proposed in
[13]. After series of experiments we decided to employ the latter matrix as the
representation of the solution.

An exemplary representation used later for computational experiments is
presented in Fig. 1. Columns contain 17 families, rows represent 16 subsequent
periods of time.

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17
t1 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 1 0
t2 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 1 0
t3 0 0 1 1 1 1 0 0 0 0 1 1 0 1 1 0 0
t4 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 1 0
t5 0 0 1 1 1 1 0 0 0 0 1 1 0 1 1 0 0
t6 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 1 0
t7 0 0 1 1 1 1 0 0 0 0 1 1 0 1 1 0 0
t8 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 1 0
t9 0 0 1 1 1 1 0 0 0 0 1 1 0 1 1 0 0
t10 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 1 0
t11 0 0 1 1 1 1 0 0 0 0 1 1 0 1 1 0 0
t12 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 1 0
t13 0 0 1 1 1 1 0 0 0 0 1 1 0 1 1 0 0
t14 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 1 0
t15 0 0 1 1 1 1 0 0 0 0 1 1 0 1 1 0 0
t16 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 1 0

Fig. 1. Representation of the solution
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The main procedure of the VNS algorithm is shown in Fig. 2. At the beginning
each cell in the solution matrix w is initialized with the value 1 with the probabil-
ity of 90%. Next, for a given number of iterations (maxiter) current neighborhood
is changed using only two functions: AddW () and SubW (). After that the local
search procedure based on MIP CPLEX Solver is used to find the best solu-
tion in the neighborhood. This neighborhood is next slightly changed with the
functions FlipW () and UnifyW () to further exploit it unless no improvement
is achieved in 10 consequent attempts.

Initialize(w)
wbest:=w
for iter:=1 to maxiter

w:=wbest

if rnd() < 0.5 then // Shaking stage
w := AddW (w)

else
w := SubW (w)

do
k:=0
w := LocalMIPSearch(w) //Descent local search
if f(w ) < f(wbest) then

wbest := w
else

k := k+1
w := FlipW (w) // Additional neighborhood perturbation

if rnd() < 0.3 then
w := UnifyW (w)

while k < 10
next iter

Fig. 2. Main VNS procedure

4.2 Neighborhood Perturbations

We use four functions to alter the w matrix. Function AddW () changes the value
from 0 to 1 for a randomly chosen family and a randomly chosen period. If setups
for the selected family has been already planned for all periods, another family
is drawn. In other words it forces one family to have one more setup planned.
Similarly, SubW () removes one setup from a randomly selected family. If there
are no setups planned for the selected family, family number is redrawn, so that
one family has one less planned setup.

Function FlipW () simply changes value 0 in a randomly chosen cell to value
1 or vice versa, depending on its original content. Such a function was used as a
mutation operator by Toledo et al. [13] in their genetic algorithm.
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The most complex function is UnifyW (), which purpose is to even the num-
ber of setups in the families containing one or two setups fewer than the randomly
chosen family. The application of this function results from the observation that
in many cases the setup structure have to be propelled for the families of prod-
ucts and their sub-products.

4.3 Local Search Algorithm

The local search algorithm use a CPLEX solver to solve a greatly simplified
version of the original problem. All families - except one - in setup matrix w are
fixed and such problem is solved within maximum 3 s. (usually immediately). The
procedure is repeated for all the families in the random order or (with probability
of 10%) in the reverse order of the families. The local search algorithm is shown
in Fig. 3. If the solution found by solving MIP for one of the families is better
than the current best, the best solution is updated.

function LocalMIPSearch(w)
fam := 1...F
if rnd() < 0.9 then

fam := MixOrder(fam)
else

fam := ReverseOrder(fam)
foreach f in fam

w = solveMIP (f)
if f(w) < f(wbest) then

wbest := w
return w

end function

Fig. 3. Local MIP search procedure

5 Computational Experiment and Results Analysis

In order to evaluate our VNS approach we used two out of four tests originally
proposed by Simpson and Erengue [12] for MLCLSP without backlogging and
next extended by Akartunali and Miller that introduced penalty for backlogging
of finished products [1]. Currently it is the only one benchmark available but
at the same time containing the most difficult cases to solve. We choose SET01
containing instances for which upper bounds are well defined and confirmed
by the best algorithms currently available (i.e. the easiest to solve) and SET03
containing the instances for which those algorithms provide significantly different
results (i.e. the hardest to solve). Each set contains 30 instances with 78 items,
6 machines and 17 families.
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Table 1. Comparison of the results for SET01 instances.

SET01 LugNP AMH HMPGA VNS Deviation

Best LAH Worst LAH Best VNS Avg VNS Sd VNS bL-bV bL-aV wL-bV wL-aV

1 22382.45 22460.73 22382.45 22822.30 291.31 0.000 0.019 −0.003 0.016

2 27584.79 27584.79 27926.91 28200.56 139.81 0.012 0.022 0.012 0.022

3 25187.25 25239.43 25300.22 25627.15 203.49 0.004 0.017 0.002 0.015

4 26334.72 26436.92 26789.12 26974.66 129.71 0.017 0.024 0.013 0.020

5 25145.49 25254.62 25319.36 25882.55 283.31 0.007 0.028 0.003 0.024

6 26667.42 26770.84 27040.81 27248.87 124.99 0.014 0.021 0.010 0.018

7 24123.78 24218.39 24313.06 24723.61 337.70 0.008 0.024 0.004 0.020

8 29640.42 29645.94 29969.76 30262.30 253.09 0.011 0.021 0.011 0.020

9 20971.19 21362.68 21345.80 21515.59 125.88 0.018 0.025 −0.001 0.007

10 22580.00 22647.53 22563.12 23178.29 406.28 −0.001 0.026 −0.004 0.023

11 12955.57 12955.58 12955.57 13124.47 176.65 0.000 0.013 0.000 0.013

12 26831.25 26831.26 26831.25 26971.12 172.32 0.000 0.005 0.000 0.005

13 23127.84 23127.84 23127.84 23170.99 19.83 0.000 0.002 0.000 0.002

14 25035.84 25035.84 25161.34 25380.37 180.16 0.005 0.014 0.005 0.014

15 14118.11 14118.11 14118.11 14719.36 441.12 0.000 0.041 0.000 0.041

16 17400.12 17540.20 17515.66 17981.46 294.89 0.007 0.032 −0.001 0.025

17 22996.13 23007.51 22996.13 23307.41 206.87 0.000 0.013 0.000 0.013

18 12973.77 12973.77 12973.77 12999.90 43.58 0.000 0.002 0.000 0.002

19 16349.58 16502.94 16562.39 16864.13 157.11 0.013 0.031 0.004 0.021

20 17158.59 17158.59 17158.59 17482.52 236.19 0.000 0.019 0.000 0.019

21 12421.19 12421.19 12421.19 12687.50 265.69 0.000 0.021 0.000 0.021

22 40158.34 40188.74 40216.82 40392.27 165.98 0.001 0.006 0.001 0.005

23 30605.70 30605.70 30605.70 31076.74 289.95 0.000 0.015 0.000 0.015

24 32035.02 32190.36 32024.81 32305.71 111.63 −0.000 0.008 −0.005 0.004

25 52959.94 52989.21 52959.94 53361.99 280.73 0.000 0.008 −0.001 0.007

26 41221.51 41221.51 41553.05 41977.92 268.81 0.008 0.018 0.008 0.018

27 43289.36 43319.73 43289.36 43563.94 268.32 0.000 0.006 −0.001 0.006

28 40993.46 41019.84 40993.46 41084.61 71.05 0.000 0.002 −0.001 0.002

29 25322.35 25492.58 25322.35 25432.04 101.91 0.000 0.004 −0.007 −0.002

30 70863.66 70863.66 70984.24 71150.79 136.03 0.002 0.004 0.002 0.004

Average deviation 0.004 0.016 0.002 0.014

We then compared the results of VNS approach with the best known algo-
rithms proposed in the literature to solve MLCLSP with backlogging. In the
order of their publication time they are: Akartunali and Miller Heuristic (AMH)
proposed in [1], Lower and upper bound guided Nested Partitions (LugNP)
proposed by Wu et al. [14] and a hybrid multi-population genetic algorithm
(HMPGA) proposed by Toledo et al. [13]. All algorithms have been run for 100
sec. for the instances in SET01 and for 300 s. for those in set SET03.

Tables 1 and 2 show the comparison for SET01 and SET03, respectively.
Best LAH column contains the best result achieved by the best algorithm out
of LugNp, AHM and HMPGA, while Worst LAH column contains the result
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Table 2. Comparison of the results for SET03 instances.

SET01 LugNP AMH HMPGA VNS Deviation

Best LAH Worst LAH Best VNS Avg VNS Sd VNS bL-bV bL-aV wL-bV wL-aV

1 186680.49 195149.43 191387.30 209939.89 8808.20 0.025 0.111 −0.020 0.070

2 212852.65 236041.47 225310.26 229930.70 3254.25 0.055 0.074 −0.048 −0.027

3 199569.69 235541.55 216103.06 222468.79 4031.02 0.077 0.103 −0.090 −0.059

4 205775.33 225455.50 226820.97 231067.34 3130.64 0.093 0.109 0.006 0.024

5 205079.78 215570.37 214297.28 225388.88 6249.56 0.043 0.090 −0.006 0.044

6 205737.56 221315.06 219692.19 228520.77 5077.96 0.064 0.100 −0.007 0.032

7 196613.20 205742.46 205016.64 215799.17 6519.64 0.041 0.089 −0.004 0.047

8 221449.75 246816.32 240602.09 244125.31 2603.04 0.080 0.093 −0.026 −0.011

9 182662.20 189237.06 195412.15 203968.33 3983.39 0.065 0.104 0.032 0.072

10 188378.86 206095.40 203747.33 212488.50 6202.33 0.075 0.113 −0.012 0.030

11 128756.14 135132.01 143547.75 150481.94 3545.43 0.103 0.144 0.059 0.102

12 200361.47 217015.46 215685.05 222474.07 4388.37 0.071 0.099 −0.006 0.025

13 197661.06 217793.79 212410.95 219793.41 4327.45 0.069 0.101 −0.025 0.009

14 198324.37 206490.19 215134.21 218734.72 2158.66 0.078 0.093 0.040 0.056

15 128153.34 150579.48 147818.73 154606.02 5410.67 0.133 0.171 −0.019 0.026

16 140947.21 146981.65 148427.99 154414.70 4605.40 0.050 0.087 0.010 0.048

17 186345.86 208868.28 204722.77 215460.26 5622.27 0.090 0.135 −0.020 0.031

18 98976.15 114150.49 116622.27 125073.74 3583.24 0.151 0.209 0.021 0.087

19 143961.87 161507.94 156964.17 164340.70 4011.59 0.083 0.124 −0.029 0.017

20 162960.82 164285.30 184593.85 187562.63 2374.04 0.117 0.131 0.110 0.124

21 121932.44 154392.30 138171.62 147151.40 6163.14 0.118 0.171 −0.117 −0.049

22 244366.01 274202.11 274066.46 278636.34 3541.05 0.108 0.123 0.000 0.016

23 211899.91 229468.79 228175.50 243597.15 7501.89 0.071 0.130 −0.006 0.058

24 245491.89 253504.00 262608.85 273941.80 6099.97 0.065 0.104 0.035 0.075

25 326629.29 331890.64 339733.28 346333.16 4715.18 0.039 0.057 0.023 0.042

26 278748.97 290192.54 290044.75 295980.47 3690.88 0.039 0.058 −0.001 0.020

27 291300.89 306675.79 311446.25 319883.48 5029.53 0.065 0.089 0.015 0.041

28 224659.18 225729.92 240805.18 250221.02 5440.39 0.067 0.102 0.063 0.098

29 188074.48 197801.38 202261.93 208023.84 3672.16 0.070 0.096 0.022 0.049

30 394691.55 415301.14 405878.57 415275.59 6397.24 0.028 0.050 −0.023 0.000

Average deviation 0.074 0.109 −0.001 0.037

achieved by the algorithm that occurred to be the worst for the particular
instance. Columns Best VNS and Avg VNS present the best and the average
result (out of 10 runs) for the VNS approach and a standard deviation for those
10 runs. Last four columns compare the results achieved by the best and the
worst out of LugNp, AHM and HMPGA algorithms (denoted as bL and wL,
respectively) to the best and average results obtained by the VNS approach
(denoted as bV and aV, respectively).

We can observe that for more than a half of SET01 instances the best results
achieved by the VNS approach do not differ from the ones achieved by the best
algorithms known in the literature (the average deviation is 0.4% when compared
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to the best algorithm and 0.2% when compared to the worst LAH algorithm).
When the average VNS results are compared, the deviation raises to 1.6% and
1.4% respectively, which can be acceptable, taking into account the simplicity
of the proposed approach.

Moreover, for two instances (10 and 24) the VNS approach was able to find
better results than provided by LugNp, AHM and HMPGA algorithms. The
results achieved by the VNS approach for the instances in SET03 are not so
outstanding, if we compare them to the best results provided by the three com-
petitive algorithms (in this case the best algorithm was always HMPGA). The
best results achieved by VNS approach are worse on average by 7.4%, while the
average VNS results are 10.9% behind HPMGA. However, if we compare the
VNS results with LugNp and AHM algorithms, the best of VNS results is on
average slightly better (by 0.1%) and the average VNS result is 3.7% worse,
however, still being better in 4 cases.

The observations presented above show the potential of the proposed VNS
approach and, at the same time, the need for further progress, especially for
difficult to solve instances (e.g. instances 11 and 20 in SET03). However, this
will most likely complicate the algorithm and then it will limit its applicability
to other types of MLCLSP.

6 Conclusions and the Future Work

Multilevel capacitated lot sizing problem is one of the hardest and most prac-
tical problems that is faced in a wide variety of production systems. The paper
proposes an efficient VNS approach integrated with fix and optimize heuristic
for MLCLSP to minimize the delaying and inventory costs.

The computational experiments presented in the paper prove that the pro-
posed VNS based approach can be well applied to the multi-level capacitated
lotsizing problem and gives only slightly less satisfactory results than much more
complicated algorithms. However, for some particularly difficult cases (like two
instances in the SET03 described in the computational experiments) further
improvement of the VNS algorithm is desirable.

It is worth to notice that the proposed approach due to its simplicity can be
easily applied for solving any lotsizing and scheduling optimization problem with
setups dependent on the families of products. In the future research, we plan to
extend our approach first of all to include a smarter neighborhood generator. It
might be also interesting to check whether the approach proposed by Erromd-
hani et al. [6] for the multi-item lotsizing problem with product-dependent setups
would be beneficial also for the MLCLSP with family-dependent setups. Even-
tually, we plan to study a multilevel capacitated lotsizing problem in which lot
sizes for products are expressed as integer values what has practical applications
in many industrial cases and is much harder to solve than the problem with
continuous values.
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Abstract. The bi-objective obnoxious p-median problem has not been
extensively studied in the literature yet, even having an enormous real
interest. The problem seeks to locate p facilities but maximizing two dif-
ferent objectives that are usually in conflict: the sum of the minimum
distance between each customer and their nearest facility center, and the
dispersion among facilities, i.e., the sum of the minimum distance from
each facility to the rest of the selected facilities. This problem arises when
the interest is focused on locating obnoxious facilities such as waste or
hazardous material, nuclear power or chemical plants, noisy or polluting
services like airports. To address the bi-objective obnoxious p-median
problem we propose a variable neighborhood search approach. Compu-
tational experiments show promising results. Specifically, the proposed
algorithm obtains high-quality efficient solutions compared to the state-
of-art efficient solutions.

Keywords: Location problem · Obnoxious p-median problem ·
Multi-objective optimization · Variable neighborhood search

1 Introduction

The importance of locating centers no matter the nature of them is crucial to
manage any company either private or public. In our field, a location problem can
be defined as an optimization problem that seeks to place one or more centers
or facilities having into account a given set of customers or demand points [9].

According to [5], location problems can be classified into four categories
regarding the objective function criteria: facility location problems, which seek
to find a place to locate a facility in order to minimize the total cost between
demand points and facilities; p-median problems, which determine the locations
of p facilities in order to minimize the total cost between demand points and
facilities; p-center problems, which minimize the maximum distance between
each demand point and its assigned facility; and covering problems whose objec-
tive is to find the minimum number of facilities to cover all the demand points
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or to maximize the number of demand points covered by a given number of facil-
ities. All those problems can be considered with or without a demand value in
facilities and/or in demand points. In those cases they are known as capacitated
or uncapacitated problems, respectively [4,15]. Furthermore, location problems
can be considered on the discrete space, when facilities can be only placed at
specific locations [12], or continuous space, in which facilities can be placed at
any location of a given region [1]. This work deals with an uncapacitated discrete
facility location problem.

The problem that is considered in this paper is known as the bi-objective
obnoxious p-median problem, Bi-OpM, firstly introduced in [3]. It mainly con-
sists on locating a set of obnoxious facilities on a landscape shared with customers
(also known as demand points). The term obnoxious referring to a facility is used
when it is desired to locate it as far as possible from the demand points. This
situation appears when the interest is to locate facilities such as waste or haz-
ardous material, nuclear power or chemical plants, noisy or polluting services
like airports. Besides, the facilities should be properly distributed to avoid the
situation where several obnoxious facilities are close to each other.

The Bi-OpM can be formally stated as follows. Let I be a set of customers,
and J a set of candidate facility centers, where |I| = n and |J | = m, and
let d store the distances among all the considered nodes. The aim of the Bi-
OpM is to locate a set P candidate facilities, having |P | = p and p < m,
while maximizing two objective functions: (f1), the distance from each demand
point to the facilities, computed as the sum of the minimum distances between
each demand point and the nearest facility; and (f2), the dispersion among the
facilities, computed as the sum of the minimum distances from each facility to
the rest of the selected facilities. More precisely, these objective functions can
be described in the following way:

max f1 =
∑

i∈I

min dij : j ∈ P

max f2 =
∑

j∈P

min djk : k ∈ P, j �= k

s.t. P ⊆ J

|P | = p

Some authors name facilities in P as open facilities and facilities in J\P as
closed or unopened facilities.

On the other hand, it is important to emphasize that we are dealing with a
multi-objective optimization problem. Hence, the definition of an efficient solu-
tion is the one for which no single-objective function value can be improved
without deteriorating another objective function value. It is said that a solution
P ∗ dominates another solution P if P ∗ is not worse than P in all the objectives,
and P ∗ is better than P in at least one objective. Similarly, we say that P ∗

weakly dominates P if P ∗ is not worse than P in all the objectives [2]. Formally,
as we are maximizing the objectives, a solution P ∗ dominates another solution P ,
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if fi(P ∗) ≥ fi(P ) for all i = 1, 2 and fi(P ∗) > fi(P ) for at least one i = 1, 2.
According to this, we will say that a solution is efficient if there is no other
solution that dominates it. The Pareto front, also known as the efficient frontier,
is the set of efficient solutions. Our purpose then is to find a good approximation
to the Pareto front, denoted as PF from now on.

As stated before, the Bi-OpM was first introduced in [3]. The authors pro-
posed a Multi-Objective Memetic Algorithm (MOMA) defining two new variants
of the crossover and mutation operators and studying three local search strate-
gies applied in the MOMA. Furthermore, they performed a comparison using two
multi-objective state-of-the-art methods, specifically the Non-dominated Sort-
ing Genetic Algorithm II, (NSGA-II, [6]), and the Strength-Pareto Evolutionary
Algorithm 2 (SPEA2, [16]), and also adding single-objective Genetic Algorithm
(GA) which combines the objectives under study through a weighted sum of
their values.

In this paper, a Variable Neighborhood Search algorithm (VNS) is adapted to
solve the considered multi-objective optimization problem. Another contribution
of this paper is to compare our algorithm against the best algorithm proposed
in the literature so far, [3].

The rest of the paper is organized as follows. Section 2 describes our VNS
proposal and details how the algorithm has being adapted and implemented
to solve this bi-objective optimization problem. Section 3 presents the compu-
tational results where a experimentation and analysis of the results is shown.
Finally, Sect. 4 summarizes the paper and discusses future work.

2 VNS Algorithm

To solve the Bi-OpM problem we propose a VNS approach that considers all
the features of this bi-objective optimization problem. VNS is a metaheuristic
framework originally introduced by [13] that relies on the idea of systematic
changes in the neighborhood structures. The adaptability of the methodology
has resulted in several variants in recent years (see [11] for a recent survey on
the methodology), which has led to several successful applications for a variety
of difficult optimization problems, such as those in [7] and [14]. In this work,
VNS is adapted to solve a bi-objective optimization problem.

We propose a Basic VNS (BVNS) algorithm which combines deterministic
and stochastic changes of neighborhood in order to obtain high quality solutions.
Multi-objective VNS was originally proposed recently, see [8]. However, we follow
a different approach in this paper, which is briefly described in Algorithm1.

BVNS requires from two input parameters: a set of non-dominated solutions
PF and the largest neighborhood to be explored, kmax . Starting from the first
neighborhood (step 1), the method iterates until reaching the maximum prede-
fined neighborhood kmax (steps 2–16). At each iteration two different phases are
applied to every solution from the incumbent set of non-dominated solutions.
In particular, the solution is randomly perturbed in the current neighborhood k
using the Shake procedure (step 5). The proposed Shake algorithm consists in
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Algorithm 1. BVNS(PF , kmax )
1: k ← 1
2: while k �= kmax do
3: PF ′ ← PF
4: for all P ∈ PF ′ do
5: P ′ ← Shake(P, k)
6: PF ′ ← Insert&Update(P ′)
7: P ′′ ← LocalSearch(P ′)
8: PF ′ ← Insert&Update(P ′′)
9: if PF ′ �= PF then � Improve in the Pareto front

10: k ← 1
11: PF ← PF ′

12: else
13: k ← k + 1
14: end if
15: end for
16: end while
17: return PF

randomly interchanging k assigned facilities with k candidate locations that do
not belong to the current solution yet, generating solution P ′, which is added to
the updated Pareto front, PF ′ (step 6). It is worth mentioning that the shake
method performs random movements (whose sizes depend on the current neigh-
borhood) which are not considered in the local search (i.e., interchange k ≤ p
facilities simultaneously, while the local search only interchanges a single facil-
ity). Furthermore, the shake method accepts solutions of lower quality that will
eventually let us explore further regions of the search space, while the local
search only considers improved solutions.

A local search method is responsible of locally improving the perturbed solu-
tion P ′, obtaining solution P ′′ (step 7). Notice that every feasible solution gen-
erated during the search is a candidate solution for entering in the set of non-
dominated solutions. The method Insert & Update (steps 6 and 8) performs this
verification, inserting the solution if it is non-dominated by others already in the
set, removing those solutions dominated by the new one. Regarding this behav-
ior, any modification in the Pareto front is considered as an improvement since
a new non-dominated solution has been included in it. Therefore, if the Pareto
front has been modified, the search starts again from the first neighborhood
(step 9), updating the incumbent Pareto front. Otherwise, the method explores
the next neighborhood (step 13) until reaching the largest considered neighbor-
hood. BVNS ends returning the set of non-dominated solutions generated in the
search.

2.1 Constructive Method

The initial solution for the VNS algorithm is the set of non-dominated solutions
PF conformed with the solutions generated by a constructive procedure inspired
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by the Greedy Randomized Adaptive Search Procedure (GRASP) methodology
[10]. For this work, we have decided to use a semi-greedy procedure that com-
bines greediness (intensification) and randomness (diversification) by means of
a parameter α. The procedure generates a predefined number of initial solutions
for both objective functions f1 and f2 that are evaluated for entering in the set
of non-dominated solutions. Therefore, the output of the constructive phase is a
set of non-dominated solutions PF , which acts as the input Pareto front for the
VNS algorithm.

Algorithm 2 details the constructive method proposed for the Bi-OpM, which
is generalized for any objective function, fi. The input for the method is com-
prised of the set of candidate locations to host a facility J , the parameter α which
controls the greediness/randomness of the method, and the objective function
under consideration fi. The method starts by randomly selecting a candidate
location from the available ones, including it in the solution under construction
(steps 1–2). Then, a Candidate List (CL) is created with the remaining candi-
date locations (step 3). The method iteratively selects new candidates until p
locations has been selected (step 4). In each iteration, the minimum and max-
imum values of the objective function among all the candidates are evaluated
(steps 5–6). After that, the Restricted Candidate List (RCL) is created (step 8)
with the most promising candidates, i.e., those whose objective function value
is larger or equal than a threshold th (step 7). On the one hand, if α = 0, the
construction is totally greedy (it only considers the facilities that produce the
greatest increase in the objective function value). On the other hand, if α = 1,
then all facilities are included in the RCL so the construction is totally random.
The next vertex to be added to the solution is selected at random from the RCL
(step 9), updating the solution under construction and the CL (steps 10–11).
The method ends when the solution has exactly p locations selected.

Algorithm 2. Construct(J , α, fi)
1: v ← Random(J)
2: P ← {v}
3: CL ← J \ {v}
4: while |P | < p do
5: gmin ← minv∈CL fi(P ∪ {v})
6: gmax ← maxv∈CL fi(P ∪ {v})
7: th ← gmax − α · (gmax − gmin)
8: RCL ← {v ∈ CL : fi(P ∪ {v}) ≥ th}
9: v′ ← Random(RCL)

10: P ← P ∪ {v′}
11: CL ← CL \ {v′}
12: end while
13: return P
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2.2 Local Search

The problem under consideration tries to optimize two different objective func-
tion, so a traditional approach would propose a different local search method for
each objective function. Instead, we propose a single local search method that
aggregates both objective functions in a unique search. Parameter β controls the
influence of each objective function in the aggregated function fa. More formally,

fa ← β · f1 + (1 − β) · f2

Varying the value of β parameter will result in exploring different regions of
the search space, potentially increasing the number of solutions included in the
set of non-dominated solutions.

The local search method traverses all the selected facilities and tries to
exchange it with every candidate location. The search follows a first improve-
ment approach in order to reduce the computational effort of the method. In
particular, every time an improvement move is found, it is performed and the
search starts again.

The value of β must vary in order to obtain a more dense set of non-dominated
solutions. In the context of the BVNS algorithm, we consider a random value of
β in the range 0–1 in each local search phase, in order to explore a wider portion
of the search space.

3 Computational Results

This section presents and discusses the results of the experimental experience
conducted in this paper. In order to perform a fair comparison against the most
competitive algorithm proposed in the literature, we have solved the same set
of instances considered in [3]. Specifically, the previous paper presents eight
instances where the number of nodes (indicated as |V | = |I ∪ J |) ranges from
400 to 900, the number of demand points and facilities (|I| and |J |) varies from
200 to 450 and the number of open facilities (p) is between 25 and 225. We show
in Table 1 these features for all the instances, which are available at http://www.
optsicom.es/biopm/. Our experiments were run on a computer provided with an
Intel i7 2600 processor running at 3.4 GHz, 4 GB RAM and Ubuntu 16.04. The
algorithms were implemented using Java 8.

After some preliminary computational experiments where several values of α
and kmax were tested, we decided to use a random value for the α parameter and
kmax = 0.3 · p, since they obtained the best performance in our tests. Besides, a
number of 100 iterations of the constructive method generated the initial Pareto
front that our BVNS requires as input parameter.

Firstly, we show the results of our VNS proposal in terms of the hypervolume
[17], which is the metric that was presented in [3]. In the previous paper, a
total of seven different algorithms where compared. For the sake of the space,
we will compare the results of our VNS proposal against three of the seven
approaches from the state of the art. These algorithms are the NSGA-II [6],

http://www.optsicom.es/biopm/
http://www.optsicom.es/biopm/
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Table 1. Description of the instances.

Instance |V | |I| |J | p

pmed17-p25 400 200 200 25

pmed20-p50 400 200 200 50

pmed22-p62 500 250 250 62

pmed28-p75 600 300 300 75

pmed33-p87 700 350 350 87

pmed36-p100 800 400 400 100

pmed39-p112 900 450 450 112

pmed40-p225 900 450 450 225

which is a classical multi-objective evolutionary algorithm, and the two variants
of the memetic algorithm that obtained the best results in [3]: dominance-based
local search, DBLS, and alternate objective local search, AOLS. Table 2 compares
the performance of our VNS proposal showing the hypervolume values for all
these algorithms and instances, the average hypervolume value normalized to the
best hypervolume obtained for each instance (Avg. Norm. Hyp.), and the average
normalized deviation between the hypervolume and the best hypervolume value
(Avg. Dev.).

As it can be seen in the table, DBLS and AOLS obtain the best hypervolume
values for two of the instances respectively, which are the four smaller ones. How-
ever, VNS reaches the best hypervolume in the four larges instances, obtaining
also the best average normalized hypervolume and the best average deviation.

Notice that the results for NSGA-II, DBLS and AOLS, extracted from [3],
correspond to the set of non-dominated solutions obtained after 30 runs of each
algorithm. In the case of VNS, the results correspond to one single run. There-
fore, it is clear that the efficiency of our VNS proposal is higher in relation to
the other algorithms.

We have accounted for the number of efficient points obtained by each algo-
rithm, which are shown in Table 3. In this case, our VNS proposal obtains the
higher number of efficient points in all but the smallest instance. Therefore, VNS
shows again a more efficient behavior in the optimization process, considering
again that the results of VNS come from one single run.

In addition to the hypervolume and the number of efficient points, we depict
in Fig. 1 the efficient points obtained in the experiments described before. From
Fig. 1(a) to (h), the instances are sorted by size, from the smallest to the largest.
As shown in the picture, the four fronts in the smallest instance, pmed17.p25,
are almost completely overlapped. However, as the size of the instance grows,
the front obtained with the NSGA-II algorithm is shifted downwards, while the
other three algorithms maintain a good performance with similar shapes. This
trend is more clear in the case of the efficient points of the largest instances,
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Table 2. Hypervolume of final non-dominated fronts. Best values are depicted in bold
font.

Instance NSGA-II DBLS AOLS VNS

pmed17.p25 8692436 8706765 8710887 8597575

pmed20.p50 9455493 10042017 10020130 9930426

pmed22.p62 10782181 12565434 12503057 12482833

pmed28.p75 8552938 10360761 10383320 10330591

pmed33.p87 8246628 10464880 10496109 11011544

pmed36.p100 9050694 11962494 11925733 12413823

pmed39.p112 7925756 11301612 11275309 11707564

pmed40.p225 7779073 10830924 10750521 11978974

Avg. Norm. Hyp. 0.8032 0.9726 0.9709 0.9955

Avg. Dev. 0.1968 0.0274 0.0291 0.0045

Table 3. Number of efficient points of final non-dominated fronts. Best values are
depicted in bold font.

Instance NSGA-II DBLS AOLS VNS

pmed17.p25 84 85 88 68

pmed20.p50 41 136 121 146

pmed22.p62 17 140 127 193

pmed28.p75 15 115 102 218

pmed33.p87 24 103 108 284

pmed36.p100 12 89 82 278

pmed39.p112 8 104 76 294

pmed40.p225 22 133 123 313

Avg. 27.88 113.13 103.38 224.25

displayed in Fig. 1(e) to (h). In those instances, the front generated by our VNS
proposal outperforms both the memetic and the NSGA-II approaches.

We have also obtained, for each instance, the complete set of non-dominated
solutions after executing all the algorithms, that is, the final PF for each
instance. This way, we have also measured the contribution of each algorithm to
the final PF . Table 4 shows the ratio for each algorithm. We can see that VNS is
the best contributor to the final PF but in the two smallest instances. However,
it contributes in more that a 94% in the four largest instances, reaching the
100% in pmed36.p100. Again, it is worth mentioning that NSGA-II, DBLS and
AOLS were executed 30 times, whereas VNS was run just once, and reached an
average contribution of 71.27%.

Finally, we compare the execution time of the analyzed algorithms. Table 5
presents the time spent by VNS on the single run that produced the results
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(a) pmed17.p25 (b) pmed20.p50

(c) pmed22.p62 (d) pmed28.p75

(e) pmed33.p87 (f) pmed36.p100

(g) pmed39.p112 (h) pmed40.p225

Fig. 1. Trade-off between f1 and f2.
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Table 4. Contribution of each algorithm to the final PF . Best values are depicted in
bold font.

Instance NSGA-II DBLS AOLS VNS

pmed17.p25 0.9545 0.9659 0.9773 0.0114

pmed20.p50 0 0.3963 0.25 0.3537

pmed22.p62 0 0.3108 0.0676 0.6532

pmed28.p75 0 0.1458 0.0833 0.7708

pmed33.p87 0 0.0036 0.0143 0.9821

pmed36.p100 0 0 0 1

pmed39.p112 0 0.0169 0 0.9831

pmed40.p225 0 0.0494 0.0031 0.9475

Avg. 0.1193 0.2361 0.1744 0.7127

previously analyzed, and the average execution time of NSGA-II, DBLS and
AOLS. This average time was obtained after the 30 runs that produced
the results shown before. Hence, despite that VNS is slower in one case
(pmed28-p75), it is important to report that it obtains better results in one
single run than the other algorithms after 30 runs.

Table 5. CPU time (secs). One single run of VNS versus average execution time of
NSGA-II, DBLS and AOLS. Best values are depicted in bold font.

Instance NSGA-II DBLS AOLS VNS

pmed17-p25 1759.2 540.0 658.5 21.8

pmed20-p50 4995.3 933.9 1214.7 410.1

pmed22-p62 7990.8 1414.2 1768.2 970.1

pmed28-p75 13491.6 1839.9 2365.8 1856.1

pmed33-p87 19639.2 2706.9 3361.5 1825.9

pmed36-p100 27532.5 4367.7 3691.5 1809.8

pmed39-p112 29739.9 6099.6 3855.0 2162.0

pmed40-p225 114285.9 11440.8 8475.9 3608.7

4 Conclusions and Future Research

This paper generalizes the Variable Neighborhood Search algorithm (VNS) to
solve a bi-objective optimization problem known as the bi-objective obnoxious
p-median problem, Bi-OpM. To that end, the VNS approach is designed to take
into account two conflicting objectives: to maximize the sum of the distances
to the nearest demand point to each obnoxious facility and, to maximize the
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dispersion of obnoxious facilities. The interest of this problem appears because
the Bi-OpM fits in many realistic situations where it is desired to locate facilities
as far as possible from the demand points and among them.

Computational results show the superiority of the proposed algorithm over
the state-of-art algorithms to solve the Bi-OpM so far on the same set of
instances. Results obtained by the VNS algorithm outperform, in most of the
instances, the three considered algorithms: NSGA-II, DBLS, and AOLS, spend-
ing less computational time.

As future work, it would be interesting to solve an extension of the Bi-OpM
which will include an additional objective function. The new multi-objective
obnoxious facility location problem that we will address, seeks to maximize the
sum of the minimum distances between each demand point and its nearest facility
and maximize the sum of the minimum distances between two facilities but also
to minimize the number of demand points affected (or covered) by the facilities.
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Abstract. This work presents a new variant of the Location Inven-
tory Routing Problem (LIRP), called Pollution LIRP (PLIRP). The
PLIRP considers both economic and environmental impacts. A Mixed
Integer Programming (MIP) formulation is employed and experimental
results on ten randomly generated small-sized instances using CPLEX
are reported. Furthermore, it is shown that, CPLEX could not compute
any feasible solution on another set of ten randomly generated medium-
sized instances, with a time limit of five hours. Therefore, for solving more
computationally challenging instances, two Basic Variable Neighborhood
Search (BVNS) metaheuristic approaches are proposed. A comparative
analysis between CPLEX and BVNS on these 20 problem instances is
reported.

Keywords: Variable Neighborhood Search ·
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1 Introduction

In recent years, the efforts to manage the environmental impacts of the logistic
activities have been increased. One of the major environment challenges is the
global warming. The carbon dioxide (CO2) emissions are highlighted as its main
cause [2,5]. Transportation has been mentioned as the logistic activity with the
highest contribution to (CO2) emissions [2,11]. Also, the combined environmen-
tal impact of location-routing activities [10] and inventory-routing activities [2]
has already been studied.

More specifically, the amount of the emitted (CO2) gasses is proportionate
to the amount of the consumed fuel [6]. Based on that fact, companies can either
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adopt energy efficient vehicles or re-optimize their logistic decisions by taking
into account factors affecting the fuel consumption [2], or even adopt a hybrid
strategy.

From an economic perspective, the simultaneous tackling of strategic, tactical
and operational decisions ensured the efficient performance of the supply chain.
The Location Inventory Routing Problem (LIRP) integrates these three decisions
[8,13]. However, there is a lack of research about the environmental-related vari-
ants of the LIRP. A sustainable closed-loop LIRP proposed by Zhalechian et al.
[12] where economic, environmental and social impacts were considered. They
formulated a multi-objective stochastic programming model for describing the
problem.

In this work, a new green variant of the LIRP, the Pollution Location Inven-
tory Routing Problem (PLIRP) is proposed. A Mixed Integer Programming
(MIP) model is presented. In order to solve medium- and large-scaled instances,
Basic Variable Neighborhood Search metaheuristic algorithms are developed.
The remainder of this work is organized as follows. Section 2 describes the prob-
lem and provides its mathematical formulation. In Sect. 3, the proposed solution
approach is presented, followed by experimental results in Sect. 4. Finally, Sect. 5
concludes this work and outlines future directions.

2 Problem Statement

This work extends the LIRP presented in [13] by considering fuel consumption
and (CO2) emissions costs, that are influenced by distance, load, speed and
vehicles characteristics. The mathematical formulation of the PLIRP integrates
the MIP models presented in [13] and [2]. The notations of the proposed model
are given in Tables 1 and 2.

Table 1. Sets of the mathematical model

Indices Explanation

V Set of nodes

J Set of candidate depots

I Set of customers

K Set of vehicles

H Set of discrete and finite planning horizon
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Table 2. PLIRP model variables and parameters.

Notation Explanation

fj Fixed opening cost of depot j

yj 1 if j is opened; 0 otherwise

Cj Storage capacity of depot j

zij 1 if customer i is assigned to depot j; 0 otherwise

hi Unit inventory holding cost of customer i

Qk Loading capacity of vehicle k

dit Period variable demand of customer i

xijkt 1 if node j is visited after i in period t by vehicle k

qikt Product quantity delivered to customer i in period t by vehicle k

witp Quantity delivered to customer i in period p to satisfy its demand in period t

cij Travelling cost of locations pair (i, j)

avikt Load weight by travelling from node v to the customer i with vehicle k in period t

zzv1v2ktr 1 if vehicle k travels from node v1 to v2 in period t with speed level r

sr The value of the speed level r

Table 3 describes the vehicles’ parameters and gives their fixed values.

Table 3. Vehicles’ parameters.

Parameter Explanation Value

ε Fuel-to-air mass ratio 1

g Gravitational constant (m/s2) 9.81

ρ Air density (kg/m3) 1.2041

CR Coefficient of rolling resistance 0.01

η Efficiency parameter for diesel engines 0.45

fc Unit fuel cost (e/L) 0.7382

fe Unit CO2 emission cost (e/kg) 0.2793

σ CO2 emitted by unit fuel consumption (kg/L) 2.669

HV DF Heating value of a typical diesel fuel (kj/g) 44

ψ Conversion factor (g/s to L/s) 737

θ Road angle 0

τ Acceleration (m/s2) 0

CWk Curb weight (kg) 3500

EFFk Engine friction factor (kj/rev/L) 0.25

ESk Engine speed (rev/s) 39

EDk Engine displacement (L) 2.77

CADk Coefficient of aerodynamics drag 0.6

FSAk Frontal surface area (m2) 9

V DTEk Vehicle drive train efficiency 0.4
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It should be highlighted that, the values of parameters fc and fe are the
average price of the petrol prices in 40 European countries, taken from the site
www.globalpetrolprices.com in 26th of February in 2018. The value of parameter
CWk can refer to [9]. The rest of the parameters’ values are taken by [2].

In order to simplify some parts of the objective function, due to the fuel
consumption, the following formulas are utilized.

– λ = HV DF
ψ

– γk = 1
1000V DTEη

– α = τ + gCR sin θ + gCR cos θ
– βk = 0.5CADρFSAk

Thus, the mathematical model of the PLIRP is as follows:

min
∑

j∈J

fjyj +
∑

i∈I

hi

∑

t∈H

(

1
2dit+

∑

p∈H,p<t

witp (t − p) +
∑

p∈H,p>t

witp (t − p + |H|)
)

+
∑

i∈V

∑

j∈V

∑

t∈H

∑

k∈K

cijxijkt +
∑

i∈V

∑

j∈V

∑

k∈K

∑

t∈H

{

λ (fc + (feσ))
(

∑

r∈R

(zzijktrEFFkESkEDkcij)
sr

+
(

αγk (CWkxijkt + aijkt) cij

)

+
(

βk γk

∑

r∈R

(sr zzijktr)
2

))}

(1)
Subject to ∑

r∈R

zzijktr = 0 ∀i, j ∈ V,∀k ∈ K,∀t ∈ H (2)

∑

i∈V

aijkt −
∑

i∈V

ajikt = qjktPW ∀j ∈ I,∀k ∈ K,∀t ∈ H (3)

∑

j∈V

xijkt −
∑

j∈V

xjikt = 0 ∀i ∈ V,∀k ∈ K, ∀t ∈ H (4)

∑

j∈V

∑

k∈K

xijkt ≤ 1 ∀t ∈ H, ∀i ∈ I (5)

∑

j∈V

∑

k∈K

xjikt ≤ 1 ∀t ∈ H, ∀i ∈ I (6)

∑

i∈I

∑

j∈J

xijkt ≤ 1 ∀k ∈ K, ∀t ∈ H (7)

xijkt = 0 ∀i, j ∈ J, ∀k ∈ K, ∀t ∈ H, i �= j (8)
∑

i∈I

qikt ≤ Qk ∀k ∈ K, ∀t ∈ H (9)

www.globalpetrolprices.com
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∑

j∈J

zij = 1 ∀i ∈ I (10)

zij ≤ yj ∀i ∈ I, ∀j ∈ J (11)

∑

i∈I

(

zij

∑

t∈H

dit

)

≤ Cj ∀j ∈ J (12)

∑

u∈I

xujkt +
∑

u∈V \{i}
xiukt ≤ 1 + zij ∀i ∈ I, ∀j ∈ J, ∀k ∈ K, ∀t ∈ H (13)

∑

i∈I

∑

k∈K

∑

t∈H

xjikt ≥ yj ∀j ∈ J (14)

∑

i∈I

xjikt ≤ yj ∀j ∈ J, ∀k ∈ K, ∀t ∈ H (15)

∑

p∈H

witp = dit ∀i ∈ I, ∀t ∈ H (16)

∑

t∈H

witp =
∑

k∈K

qikp ∀i ∈ I, ∀p ∈ H (17)

qikt ≤ M
∑

j∈V

xijkt ∀i ∈ I, ∀t ∈ H, ∀k ∈ K (18)

∑

j∈V

xijkt ≤ Mqikt ∀i ∈ I, ∀t ∈ H, ∀k ∈ K (19)

xijkt ∈ {0, 1} ∀i ∈ I, ∀j ∈ J, ∀t ∈ H, ∀k ∈ K (20)

yj ∈ {0, 1} ∀j ∈ J (21)

zij ∈ {0, 1} ∀i ∈ I, ∀j ∈ J (22)

qikt ≤ min

⎧
⎨

⎩
Qk,

∑

p∈H

dip

⎫
⎬

⎭
∀i ∈ I, ∀j ∈ J ,∀k ∈ K (23)

witp ≤ dip ∀i ∈ I, ∀t, p ∈ H (24)

The objective function minimizes the sum of facilities opening costs, inven-
tory holding costs, general routing costs and fuel consumption and CO2 emis-
sions costs. Constraints 2 impose that, only one speed level will be assigned to
a vehicle traveling between two nodes in the selected time period. Constraints
3 declare that, the total weight of the incoming flow of product to a selected
customer minus the total weight of the outcoming product flow of that customer
equals the product weight delivered to that customer in the selected time period
with the selected vehicle. Also, they operate as subtour elimination constraints.
Constraints 2–9 are related to the routing decisions. As an example Constraints
8 ensure that, a selected vehicle in a selected time period will not travel between
two depots. Constraints 10–15 guarantee the feasibility of the location decisions.
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For example, Constraints 10 and 11 force a customer to be allocated to a depot,
only if that depot is marked as opened. Finally, Constraints 11–19 force the
feasibility of the inventory decisions. For instance, Constraints 16 guarantee the
satisfaction of a selected customer’s demand over the time horizon.

3 Solution Method

Due to the high computational complexity of the PLIRP, two Basic Variable
Neighborhood Search metaheuristic algorithms are proposed for solving medium
and large scale problem instances.

3.1 Construction Heuristic

Initially, a feasible solution is built by applying a three phase constructive heuris-
tic. In the first phase, a minimum cost criterion procedure is applied for selecting
the depots to be opened. Then, the allocation of customers is sequentially sched-
uled. More specifically, if the total demand of a selected customer does not violate
the remaining capacity of the selected opened depot, the customer is allocated to
that depot. Otherwise, the customer is allocated to the next opened and capable
to service him depot. Finally, the routes are built by applying a random insertion
method. It should be clarified that, in this initial solution the scheduled product
quantity to be delivered to each customer at each period satisfy its demand for
the considered period.

3.2 Basic VNS

The Variable Neighborhood Search is a trajectory-based metaheuristic frame-
work which interchanges two main phases [7]. The first one is the intensification
phase, where a local optimum solution is obtained and the second one is the
diversification phase. In the last phase the current solution is perturbed for
escaping local optimum points. VNS has gained popularity in recent years due
to its simplicity and performance [3]. In this work two local search operators are
used both in improvement and shaking phase. These neighborhood structures
are the following.

– Inter-route Exchange. Solutions in this neighborhood are obtained by
exchanging two customers located in different routes. These routes could be
allocated either on the same or different depots. In the second case, inventory
replenishment rescheduling may need to be applied. Figures 1 and 2, illus-
trate the inter-route exchange move in routes allocated to the same depot. In
the first time period an exchange between the third and fourth customers is
applied, while in the second and third periods the exchanged customers are
the pairs (1, 4) and (3, 5), respectively.
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Fig. 1. Routes from the same depot for each time period before the application of the
inter-route exchange move.

Fig. 2. Routes from the same depot for each time period after the application of the
inter-route exchange move.

When the routes are allocated to different depots, the exchange move is applica-
ble only if the two customers are serviced in the same time periods. Figures 3, 4
and 5 illustrate the inter-route exchange between the customers two and three.
It is also assumed that, the product quantity delivered to customer three in the
third time period exceeds the capacity of the vehicle currently servicing the cus-
tomer two. Consequently, a replenishment rescheduling is applied as depicted in
Fig. 5.

Fig. 3. Routes from different depots for each time period before the application of the
inter-route exchange move.
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Fig. 4. Routes from different depots for each time period after the application of the
inter-route exchange move.

Fig. 5. Shifting the surplus quantity of product of the customer 3 from the third period
to other(s).

– Opened-Closed Depots Exchange. This neighborhood exchanges a closed
depot with an opened one. In each route, allocated to the currently opened
depot, a routing reordering procedure is applied.

Figure 6 illustrates an instance of the opened-closed depots’ exchange move.
More specifically, the first (opened) depot swaps with the second (closed) depot
and reordering occurred in the two routes.

Fig. 6. An illustrated example of the opened-closed depots’ exchange move.
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It should be mentioned that, the first improvement search strategy is selected
for the inter-route exchange local search operator because it is divided into two
sub-moves and consequently it has a significant computational cost. However,
the opened-closed depots exchange local search operator is applied with the best
improvement strategy, due to the high impact of the location decision on the
total cost and the low complexity of the move. The pseudocode of the proposed
solution approach is provided in Algorithm 1.

Algorithm 1.Basic VNS
procedure BVNS(kmax,max time)

S ← Construction Heuristic

while time ≤ max time do
for each neighborhood structure l do

for k ← 1, kmax do

S ← Shake(S, k)
S ← Local Search(S , l)

if f(S ) < f(S) then
S ← S

end if

end for
end for

end while

Return S

Speed Selection Procedure (SSP) examines which speed level has the
highest fuel cost decrease for each depot-customer and customer-customer pair
in the current solution. It can be used within BVNS and employed after the exe-
cution of each local search operator. This version of BVNS is called BVNS SSP
and its pseudocode is summarized at Algorithm 2.
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Algorithm 2. Basic VNS with SPP
procedure BVNS SSP(kmax,max time)

S ← Construction Heuristic

while time ≤ max time do
for each neighborhood structure l do

for k ← 1, kmax do

S ← Shake(S, k)
S ← Local Search(S , l)
S ← Speed Selection(S )

if f(S ) < f(S) then
S ← S

end if

end for
end for

end while

return S

In the Shake procedure a randomly selected neighborhood structure is applied
k times in a current solution, while the Local Search procedure applies the oper-
ator specified by l in an incumbent solution both in BVNS and BVNS SSP.

4 Numerical Results

4.1 Computing Environment and Parameter Settings

The proposed algorithms were implemented in Fortran. The computational
experiments ran on a desktop PC running Windows 7 Professional 64-bit with
an Intel Core i7-4771 CPU at 3.5 GHz and 16 GB RAM, using Intel Fortran
compiler 18.0 with optimization option /O3. The time limit of 60 s was set as
the maximum execution time and experimentally kmax is set to 18. The math-
ematical formulation was modeled in GAMS (GAMS 24.9.1) and the problem
instances were solved with CPLEX 12.7.1.0 solver with specified time limits (2 h
for the small-sized instances and 5 h for the medium-sized instances). CPLEX
ran in the same computing environment with Intel Fortran compiler.

4.2 Computational Results

This subsection summarizes the results of the computational tests performed on
20 randomly generated instances, in order to examine the performance of the pro-
posed algorithms. The problem instances are divided into two classes, small-sized
instances (up to 20 customers) and medium-sized instances (customers between
20 and 60). Their format follows the format of the instances presented in [13].

Table 4 summarizes the results obtained by the CPLEX solver, BVNS and
BVNS with SSP procedure. More specifically, the first column provides the
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names of the instances. In the second column the results obtained by CPLEX
are given, while columns three and five show the average results achieved by
BVNS and BVNS SSP respectively. Columns four and six provide the solution
gap between BVNS and CPLEX results and between BVNS and BVNS SSP
results respectively. Finally, the solution quality gap between the two proposed
methods are given in column seven.

Table 4. Average computational results on 10 small-sized PLIRP instances

Instance CPLEX (a) BVNS (b) Gap (a-b) % BVNS SSP (c) Gap (a-c) % Gap (b-c)

4-8-3 22647.63 26895.24 −18.76 26892.47 −18.74 0.01

4-8-5 18282.71 19531.79 −6.83 19617.87 −7.30 −0.44

4-10-3 16929.96 17851.3 −5.44 17887.96 −5.66 −0.21

4-10-5 - 23902.89 - 23895.99 - 0.08

4-15-5 22013.99 23158.8 −5.2 23169.92 −5.25 −0.05

5-9-3 16700.09 17594.66 −5.36 17603.51 −5.41 −0.05

5-12-3 24152.36 30193.34 −25.01 30179.07 −24.95 0.05

5-15-3 16939.71 17719.81 −4.61 15842.7 6.48 10.59

5-18-5 - 19902.78 - 19891.27 - 0.06

5-20-3 24605.637 25132.29 −2.14 25123.32 −2.1 0.04

Average −9.17 Average −7.87 0.093

As it can be seen in Table 4, the CPLEX solver (GAMS) provides 9.17%
better solutions than BVNS and 7.87% better solutions than BVNS SSP. How-
ever, the time limit for the CPLEX was set at two hours, while both BVNS and
BVNS SSP execute for 60 s. CPLEX is not able to provide any feasible solution
for the medium-sized instances, even with a time limit of five hours. Conse-
quently, Table 5 reports the results achieved by BVNS and BVNS SSP on the
set of the ten medium-sized instances.

Table 5. Average computational results on ten medium-sized PLIRP instances

Instance BVNS (a) BVNS SSP (b) Gap (a-b) %

6-22-7 28090.1 28074.69 0.06

6-25-5 22794.17 22747.42 0.21

7-25-5 39927.7 39914.72 0.03

7-25-7 23736.44 23675.7 0.26

8-25-5 26777.71 26773.1 0.02

8-30-7 36648.27 36582.34 0.18

8-50-5 33564.62 33536.73 0.08

8-65-7 27986.69 27988.59 −0.01

9-40-7 23176.14 23190.46 −0.06

9-55-5 23688.55 23697.58 −0.04

Average 0.07
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As it is shown in Table 5, the solutions obtained by BVNS SSP are 0.07%
better than those achieved by BVNS. Table 6 reports the best values achieved
by both BVNS and BVNS SSP in all 20 randomly generated PLIRP instances.

Table 6. Best values on 20 PLIRP instances achieved by BVNS and BVNS SSP

Instance BVNS BVNS SSP

4-8-3 26894.85 26892.3

4-8-5 19470.34 19617.77

4-10-3 17817.74 17812.94

4-10-5 23901.97 23895.99

4-15-5 23113.12 23134.67

5-9-3 17594.12 17598.73

5-12-3 30193.23 30179.4

5-15-3 17683.65 15816.7

5-18-5 19900.91 19885.77

5-20-3 25102.89 25031.15

6-22-7 28088.87 28074.47

6-25-5 22530.3 22536.06

7-25-5 39926.08 39914.5

7-25-7 23519.59 23214.87

8-25-5 26774.73 26769.87

8-30-7 36584.71 36546.54

8-50-5 33562.31 33491.02

8-65-7 27876.23 27883.81

9-40-7 23146.37 23165.18

9-55-5 23532.72 23596.95

5 Conclusions

This work introduces a new NP-hard combinatorial optimization problem, known
as the Pollution Location Inventory Routing Problem which integrates economic
and environmental decisions. An MIP formulation of the PLIRP is presented
and the optimization solver CPLEX was used for solving small-sized instances.
Because of the high complexity of the PLIRP, CPLEX cannot find any feasible
solution for medium-sized instances even with a time limit of 5h. For solving
more challenging instances, two Basic VNS heuristic algorithms were developed.
A future research direction can explore parallel computing techniques [1] for
speeding up the solution process. This way, more real-world extensions of this
type of problems (e.g., including the utilization of remanufacturing options [4])
can be efficiently addressed.
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10. Koç, Ç., Bektaş, T., Jabali, O., Laporte, G.: The impact of depot location, fleet
composition and routing on emissions in city logistics. Transp. Res. Part B 84,
81–102 (2016)

11. Leenders, B., Velazquez-Martinez, J., Fransoo, J.: Emissions allocation in trans-
portation routes. Transp. Res. Part D 57, 39–51 (2017)

12. Zhalechian, M., Tavakkoli-Moghaddam, R., Zahiri, B., Mohammadi, M.: Sustain-
able design of a closed-loop location-routing-inventory supply chain network under
mixed uncertainty. Transp. Res. Part E 89, 182–214 (2016)

13. Zhang, Y., Qi, M., Miao, L., Liu, E.: Hybrid metaheuristics solutions to inventory
location routing problem. Transp. Res. Part E 70, 305–323 (2014)



Less Is More: The Neighborhood Guided
Evolution Strategies Convergence on
Some Classic Neighborhood Operators

Vitor Nazário Coelho1(B), Igor Machado Coelho2, Nenad Mladenović3,
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Abstract. This paper extends some explanations about the convergence
of a type of Evolution Strategies guided by Neighborhood Structures, the
Neighborhood Guided Evolution Strategies. Different well-known Neigh-
borhood Structures commonly applied to Vehicle Routing Problems are
used to highlight the evolution of the move operators during the evolu-
tionary process of a self-adaptive Reduced Variable Neighborhood Search
procedure. Since the proposal uses only few components for its search,
we believe it can be seen inside the scope of the recently proposed “Less
Is More Approach”.
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1 Introduction

This paper extends the explanations regarding the Evolution Strategies applied
for Combinatorial Optimization Problems, recently introduced by Coelho
et al. [2]. When introduced, the method was suggested as a framework that
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combines a search of Evolution Strategies [1] in a kind of Reduced Variable
Neighborhood Search (RVNS) [6] procedure. In this current version, we high-
light that it is a simple metaheuristic closely related to the pioneer metaheuris-
tic Simulated Annealing [7]. The similarity borders the use of random moves,
however, guided by an evolutionary process instead of a cooling schedule. The
use of this basic strategies makes it to be a kind of “Less Is More Approach”
[4], a simple metaheuristic framework with few parameters and mechanisms.
Simple, but, however, with potential of tackling several complex and large-scale
combinatorial problems.

This novel study provides better explanations, acronyms, figures and more
details about the proposed metaheuristic. A classic NP-Hard problem, a real-case
large-scale Vehicle Routing Problem (VRP), is used as a didactic example. The
focus given here is to emphasize the use of important and well known neigh-
borhood structures: swaps, shift, 2-opt and exchange moves. These structures
are often used in the resolution of the travelling salesman and vehicle routing
problems.

The evolution of the evolutionary operators is discussed with details, high-
lighting the potential of the proposal in optimizing and adjusting its searching
mechanism according to the difficulty in improving the best known solution.
Given its main search strategy, based on Neighborhood Structures, we define
the procedure as the Neighborhood Guided Evolution Strategies (NGES).

The remainder of this paper is organized as follows: Sect. 2 summarizes the
main features used by the method. Section 3 describes the case of study and, in
Sect. 4, the results for that specific VRP problem. Finally, Sect. 5 draws some
final considerations about the possible insights presented in this study.

2 The Neighborhood Guided Evolution Strategies

The diagram presented in Fig. 1 exemplifies the evolutionary process of the
NGES. In summary, a fixed population of size μ guides the evolutionary pro-
cess, in which, random individuals from it are selected in each generation.
Each individual of the population ind is composed of two additional mutation
vectors, defined as P and A, defined at Sect. 2.2, associated with a solution
representation s.

The mutation phase only modifies the operators Pi and Ai of an individual i.
That phase does not modify the previously known solution si. After perturbing
these values, i.e. self-adapting them, a systematic operation of random moves,
following the rules and limits expressed in these frequently modified operators,
happens. offspring, namely λ, usually, with a population of higher size than
parents, are generated and a selection process happens in order to define the
next population with size μ.

In order to exemplify and guarantee replicability of the code,
Sect. 2.1 exemplifies some C++ code example that could be found at
the github repository https://github.com/optframe/optframe/blob/master/
OptFrame/Heuristics/EvolutionaryAlgorithms/NGES.hpp.

https://github.com/optframe/optframe/blob/master/OptFrame/Heuristics/EvolutionaryAlgorithms/NGES.hpp
https://github.com/optframe/optframe/blob/master/OptFrame/Heuristics/EvolutionaryAlgorithms/NGES.hpp
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Fig. 1. NGES basic diagram

2.1 Tips for C++ Implementation of the NGES

Generic templates of the pseducodes in C++ are describe below. The first code
block explains how the offspring population is obtained from the current popu-
lation, basically, random individuals are copied and mutated.

// =======================================================
// Main code o f the NGES with o f f s p r i n g genera t ion
// =======================================================
for ( int l = 0 ; l < ngesParams . lambda ; l++)
{

// S e l e c t a random index from the curren t popu la t i on
int x = rg . rand ( ngesParams . mi ) ;
// Create an o f f s p r i n g
Solut ion<R, ADS> f i l h o = pop [ x]−>sInd ;
// Create the mutation vec t o r
vector<NGESIndStructure<R, ADS> > vt =
pop [ x]−>vEsStructureInd ;
// Add i t i ona l v e c t o r t ha t c on t r o l s the b e s t order
// in which neighborhoods are app l i e d .
// This v e c t o r i s s e l f ad ju s t ed during the search .
vector<int> vNSOffspring = pop [ x]−>vNSInd ;

// c a l l method f o r mutating parameter
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mutateESParams ( vt , vNSOffspring , nNS ) ;

// app l y ing mutation opera to r s f o r mutating the son
applyMutationOperators ( f i l h o , vt , vNSOffspring , nNS ) ;

// Eva luat ion o f each i n d i v i d u a l
Evaluat ion e = eva l . e va lua t eSo lu t i on ( f i l h o ) ;
f o f i l h o s += e . eva lua t i on ( ) ;

NGESInd<R, ADS>∗ ind =
new NGESInd<R, ADS>( f i l h o , e , vt , vNSOffspring ) ;

// f i n a l assignment o f genera ted son in to the current
// o f f s p r i n g popu la t i on
PopOffspr ing [ l ] = ind ;

}
// =======================================================
// Main code o f the NGES with genera t ion s e l e c t i o n f i n i s h e s
// =======================================================

The mutation of each individual tuple of parameters happens as specific in
the next block.

// =======================================================
// Automatic Mutation o f NGES parameters
// =======================================================
/∗ Parameters :
1 − vec tor<NGESIndStructure<R, ADS> >& p
2 − vec tor<in t>& vNSInd
3 − cons t i n t nNS
∗/
void mutateESParams (1 , 2 , 3)
{

double z = rg . rand01 ( ) ;
i f ( z <= ngesParams . mutationRate )
{

int posX = rg . rand (nNS ) ;
int posY = rg . rand (nNS ) ;
i f (nNS > 1)
{

while ( posY == posX)
{

posY = rg . rand (nNS ) ;
}

}

// Swaps only NS order , s ince preserved f o r
// the func t i on applyMutat ionOperators
i t e r swap (vNSInd . begin ( ) +
posX , vNSInd . begin ( ) + posY ) ;

}
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for ( int p = 0 ; p < nNS ; p++)
{

// sigmaN and sigmaB are s p e c i a l parameters t ha t s e l f −adapt
// the normal and binomia l d i s t r i b u t i o n themse l ve s

p [ p ] . sigmaN += rg . randG (0 , 0 . 1 ) / 1 0 0 . 0 ;
i f (p [ p ] . sigmaN < 0)

p [ p ] . sigmaN = 0 ;
i f (p [ p ] . sigmaN > 3)

p [ p ] . sigmaN = 3 ;
p [ p ] . pr += rg . randG (0 , p [ p ] . sigmaN ) ;

i f (p [ p ] . pr < 0)
p [ p ] . pr = 0 ;

i f (p [ p ] . pr > 1)
p [ p ] . pr = 1 ;

p [ p ] . sigmaB += rg . randG (0 , 0 . 1 ) / 1 0 0 . 0 ;

i f (p [ p ] . sigmaB < 0)
p [ p ] . sigmaB = 0 ;

i f (p [ p ] . sigmaB > 1)
p [ p ] . sigmaB = 1 ;

// Negat ive Binomial i s a s tandard Binomial d i s t r i b u t i o n ,
// but wi th an add i t i o n a l f e a t u r e
// o f genera t ing nega t i v e va l u e s

p [ p ] . nap +=
rg . randNegativeBinomial (p [ p ] . sigmaB , 10 ) ;

i f (p [ p ] . nap < 1)
p [ p ] . nap = 1 ;

//As descr i bed , each move has an upper l im i t o f moves
i f (p [ p ] . nap > ngesParams .maxNS [ p ] )

p [ p ] . nap = ngesParams .maxNS [ p ] ;
}

}
// =======================================================
// Automatic Mutation o f NGES parameters Ends
// =======================================================

Finally, an adaptive Random Variable Neighborhood Descent happens, using
as direction the vectors that were modified in the last step.

// =======================================================
// Apply moves − ARVND
// =======================================================

/∗ Parameters :
1 − So lu t ion<R, ADS>& s
2 − cons t vec tor<NGESIndStructure<R, ADS> >& p
3 − cons t vec tor<in t> vNSInd
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4 − cons t i n t nNS
∗/
void applyMutationOperators ( 1 , 2 , 3 , 4 )
{

for ( int i = 0 ; i < nNS ; i++)
{

int param = vNSInd [ i ] ; // Extrac t index
double rx = rg . rand01 ( ) ;
i f ( rx < p [ param ] . pr )
for ( int a = 0 ; a < p [ param ] . nap ; a++)
{

Move<R, ADS>∗ mov tmp =
vNS [ param]−>randomMoveSolution ( s ) ;

i f (mov tmp−>canBeAppliedToSolution ( s ) )
{

Move<R, ADS>∗ mov rev =
mov tmp−>app lySo lut ion ( s ) ;
delete mov rev ;

}

delete mov tmp ;
}

}

}
// =======================================================
// Apply moves − ARVND Ends
// =======================================================

2.2 Basic Principles

Each individual of the population is defined as Eq. 1.

ind = {s, P,A} (1)

Parameters P and A are defined at Eqs. 2 and 3, respectively, and s is the
representation of a solution for the problem.

P = [p1, p2, ..., pi, ..., pneigh] (2)

A = [a1, a2, ..., aj , ..., aneigh] (3)

The first mutation vector Pi, for an individual i, defines the probability of
using moves from a given NS. In this sense, it is the likelihood associated with
the application of each NS. A given value pneighi ∀ neigh ∈ |NS| is the current
probability of applying aneigh

i moves m ∈ NSneigh, in which neigh is the number
of available NS, and pneighi ∈ [0, 1], pneighi ∈ R.
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As described above, the number of moves that will be applied, if a random
number fits the limits pi, is the corresponding value ai found inside the operator
A. This operator stores integer values that control the intensity of the step that
will be done, once the NS is selected to be applied for modifying the solution si.
Each position aneigh

i ∈ [0, napneigh], aneigh ∈ N of this vector limits the number
of applications of a given move, with napneigh representing the maximum number
of applications for a given move of type neigh ∈ |NS|.

During the mutation phase, in which each position of the vectors P and A are
modified, classical probability distribution functions are used, such as Normal
and Binomial distributions. In addition, as described and can be seen in the
pseudo-codes presented at Sect. 2.1, two self-adjusted parameters automatically
optimize both distributions.

3 Heterogeneous Fleet Vehicle Routing Problem with
Multiple Trips

Distribution planning is crucial for most companies that deliver goods. Solving
a VRP enable managers to find good routes to deliver their products to a set of
dispersed customers. A classical routing problem was first proposed by [5].

Here, VRP with a heterogeneous fleet of vehicles, inspired on a real case of
a large distribution company, introduced by [3], is considered. In addition, the
problem considers docking constraints, in which some vehicles are unable to serve
some particular customers. Objective functions are based on real values provided
by a distribution company, which delivers its products to 382 customers and has
169 vehicles of 8 different types.

3.1 Representation and Evaluation of a Solution

A feasible solution s to the HFVRPMT is represented by a set of vectors of
routes, respecting each vehicle capacity and attending all costumers that need
goods. This solution is evaluated by the sum of the total fixed cost of the vehicles
used plus the total cost of the customers visited and the total cost of the distances
travelled by the trucks.

3.2 Neighborhood Structures

Six different neighborhood structures are applied to explore the solution space
of the VRP dealt in this case study. The first three are intra-route movements
while the last two cover inter-route. It is important to note that movements that
lead to infeasible solutions are not allowed. The NS are extracted from [3,10],
denoted by: NS2−opt, NSOr−opt1, NSOr−opt2, NSExchange, NSShift(1,0) and
NSSwap(1,1), briefly described bellow:

2-opt Move. A 2-opt move is an intra-route movement that consists in removing
two non-adjacent arcs and inserting two new arcs, so that a new route is formed.
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Or-optk Move. An Or-optk move is an intra-route movement that consists in
removing k consecutive customers from a given route and reinserting them into
another position of the same route. This move is a generalization of the Or-opt
proposed by [9], in which the removal involves up to three consecutive customers
only.

Exchange Move. An Exchange move is an intra-route movement that consists
in exchanging two customers in the same route.

Shift(1, 0) Move. A Shift(1, 0) move is an inter-route movement that relo-
cates a customer from one route to another. Figure 2 illustrates a Shift(1, 0) of
customer 6 originally in Route 2 to be the first one in Route 3.
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Fig. 2. Example of Shift(1, 0) move

Swap(1, 1) Move. A Swap(1, 1) move is an inter-route movement that
exchanges two customers from different routes.

4 Computational Experiments and Analysis

Computational experiments were carried on a Intel Core i7-3537U CPU,
2.00 GHz, with 4 GB of RAM, operating system Ubuntu 14.04.

4.1 Basic Calibration of Population Size

A set of five different instances was used to verify the size of the population that
the NGES could perform better. For this purpose, a batch of 30 executions was
done and an ANOVA test was conducted in order to analyze the different impact
of the population size (μ and λ = 6μ). In this ANOVA analyses, all executions
were considered as blocking factors of the model, and the different objective
function values between the instances were normalized and also considered in
the analyses. The null hypotheses was rejected (with α = 0.05 and β = 0.8)
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Fig. 3. 95% of confidence effects plot for the NGES population size on five large-scale
instances of the HFVRPMT

and a significant difference between the population size was detected. Figure 3
shows an effect plot with 95% of confidence level. No significant difference was
detected between the population size 50 and 100 parents. In this sense, the
same configuration used for the Open-Pit-Mining Operational Planning Problem
(OPMOP), in [2], was kept: μ = 100 and λ = 600.

4.2 Logic for Setting the Upper Limits for Each Neighborhood
Structure

The napk limits here were relaxed and left with larger limits compared to the
OPMOP. As can be noticed, the classical NS used here can be applied up to 500
times in each application phase. These are, basically, the only limits to be set
in this metaheuristic. However, these limits do not strictly represent a critical
parameter, as can verify in the evolution of the parameters detailed in the next
section.

4.3 NGES Self-adaptive Mechanisms - P and A

The behavior of the mutation operators for two different large scale instances is
depicted in Figs. 4, 5 and 6. It is interesting to check the ability of the NGES
in increasing the number of applications of the intra-moves of neighborhoods
NSShift(1,0) and NSSwap(1,1) in order to search for new solutions, clearly seen
after the first 100 generations. In order to highlight this aspect, Fig. 5 filters
these neighborhood for a more clear graph.
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Fig. 4. Evolution of all the average values of all mutation operators

Fig. 5. Evolution of operator highlighting a specific set of NS

Another points that can be seen at Fig. 6 are the high peaks on the probability
parameter P for the neighborhood structure NSOr−opt2. As should be noticed,
these peaks where further investigated and we noticed that they also coincide
with the finding of new better solutions, improving the current best solution of
the ongoing optimization execution.

5 Final Considerations and Extensions

Analyzing the evolution of the range of probabilities for applying the different NS
can help the comprehension of the landscape of an optimization problem. Fur-
thermore, the convergence showed in this study reinforces that the NGES algo-
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Fig. 6. Self-adaptive operators evolution – Instance HFMVRPMT II

rithm can self-regulate moves application. As could be noticed, when stuck, the
operators evolve towards larger probabilities in order to perform larger changes
in the solution representation. This represents an effort for escaping from local
optima.

In particular, the proposed non sophisticated strategy, basically relying on
mutation operations, is an easy to implement metaheuristic but posses sufficient
tools for producing successful results in real-world applications.

The method will be extended for handling Multi-objective Optimization
Problems. In this sense, it could be an extension of the classic Pareto Archived
Evolution Strategy [8]. Basically, the only thing that should be modified is the
acceptance criteria which would filter a set of non-dominated solutions. In this
sense, the simplicity of the proposal makes its attractive for future improvements
and test bed for future adjustments.
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sergio.gil.borras@alumnos.upm.es, eduardo.pardo@upm.es

2 Department of Computer Science, Universidad Rey Juan Carlos, Móstoles, Spain
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Abstract. The Order Batching Problem (OBP) can be considered a
family of optimization problems related to the retrieval of goods in a
warehouse. The original and most extended version of the problem con-
sists in minimizing the total time needed to collect a group of orders.
However, this version has been evolved with many other variants, where
the restrictions and/or the objective function might change. In this
paper, we deal with the Online Order Batching Problem (OOBP) version,
which introduces the novelty to the OBP of considering orders that have
arrived to the warehouse once the retrieval of previous orders has started.
This family of problems has been deeply studied by the heuristic com-
munity in the past. Notice, that solving any variant of the OBP include
two important activities: grouping the orders into batches (batching) and
determining the route to follow by a picker to retrieve the items within
the same batch (routing). We review the most outstanding proposals in
the literature for the OOBP variant and we propose a new version of
a competitive Variable Neighborhood Search (VNS) algorithm to tackle
the problem.

Keywords: Online Order Batching Problem · Batching ·
Variable Neighborhood Search

1 Introduction

The storage of goods in warehouses has associated many tasks such as receiving
the goods, storing them or retrieving the products from the shelves of the ware-
house, when a new order arrives. Many of those tasks can be enunciated as opti-
mization problems with the aim of saving time, space or work load, among others.
The Order Batching Problem (OBP) can be considered a family of optimization
problems, more than a single problem, related to the operation of retrieval of
goods in a warehouse, when the policy of retrieval is based on order batching.
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The order batching, then, consist in grouping a set of orders together (conform-
ing a batch) and assigning the batch to a person (the picker) who retrieves all
the orders within the same batch on a single tour through the warehouse. This
policy has been proved to be very effective in contrast with the traditional strict-
order picking policy, where each order that arrives to the warehouse is assigned
to a picker, who collects exclusively the items from that order on each tour.
Some authors point out that it is possible to reduce the travel time up to 35%
if the routes followed by the pickers are designed adequately [4]. Additionally, if
the batching and routing are considered simultaneously, the save of time can be
even larger.

The original and most extended version of the problem, usually known as
Order Batching Problem (OBP) consists in minimizing the total time needed
to collect a group of orders. However, this version has been evolved with many
other variants, where the restrictions and/or the objective function might change.
Notice, that solving any variant of the OBP might include two important activi-
ties: grouping the orders into batches (batching), and finding the route to follow
by the picker to collect the items within the same batch (routing). Addition-
ally, some variants of the OBP also consider a third activity: determining the
next batch to be processed (sequencing) once the batches have already been
conformed.

In this paper, we deal with the Online Order Batching Problem (OOBP),
which is a version of the OBP that introduces the novelty of considering orders
that have arrived to the warehouse once the process of retrieval of previous
orders has already started. The objective function of the problem is to minimize
the maximum time that an order remains in the system. This is usually known
in the related literature as the turnover time. To tackle this problem we propose
the use of the methodology Variable Neighborhood Search (VNS), particularly,
the Basic Variable Neighborhood Search (BVNS) variant and we compare our
approach with the classical approaches in the literature for other variants of the
OBP.

The rest of the paper is organized as follows: in Sect. 2 we review the most
outstanding proposals for the problem in the literature, and we describe in detail
the methods that will be used in our experiments as a comparative framework. In
Sect. 3 we propose a new version of a competitive Variable Neighborhood Search
algorithm to tackle the problem. In Sect. 4 we perform the experiments in order
to compare our proposal with the traditional methods for the OBP family of
problems. Finally, in Sect. 5 we present our conclusions future research lines.

2 State of the Art

The Order Batching family of problems has been deeply studied by the heuris-
tic community in the past. There are remarkable references based on different
metaheuristics for most of the best-known variants of problems within the OBP
literature: the classical OBP [1,11,15,16]; the Min-max OBP [7,13]; the OBSP
[2,14]; and also to the OOBP tackled in this paper [10,20,22].
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However, the first remarkable methods for most of the previous problems
are not the metaheuristic approaches but the simpler heuristic procedures based
on greedy functions [12]. Those methods were constructive procedures based on
simple ideas and have been used as a baseline in many comparisons.

As far as we know, those methods have not been either used or compared
in the context of the OOBP. Next, we present a brief description of the most
remarkable ones that will be used later in the Sect. 4. Particularly, we consider:
the First Come First Served algorithm (Sect. 2.1); the Seed algorithm (Sect. 2.2);
and, the Clarke & Wright Savings algorithm (Sect. 2.3).

2.1 First Come First Served Algorithm

The First Come First Served (FCFS) algorithm is probably the simplest heuristic
algorithm designed for the OBP. The algorithm receives a list of orders and
returns a list of batches. First, the received list of orders is sorted according
to the arrival time of each order, in such a way that the oldest order comes
first. Then the list of orders is traversed one by one, assigning the next order
to be processed to the next available batch. If the order fits in the current
batch it is inserted in that batch. Otherwise, a new batch is created with that
order, becoming this new batch the current one which will be target of the next
considered order. This process is repeated with all the orders until the end of
the list. Once all the orders have a batch assigned, the set of batches generated
in the algorithm is returned.

2.2 Seed Algorithm

The algorithms known as “seed algorithms” are a group of methods based on a
common strategy: a “seed” (in this case an order) is first chosen and assigned to
a batch. Then, other available orders might be added to the same batch, as far as
the capacity constraint is not violated. Therefore, for each “seed method” it will
be necessary to determine how to choose the seed order, and how to choose the
additional orders suitable to be assigned to a particular batch with an assigned
seed. In this case, the strategy used to select a “seed order” considers the idea
introduced in [18] consisting in selecting the available order with the largest
number of products. Then, once the seed has been chosen, the strategy used
to aggregate orders to the same batch is the one introduced in [21] consisting
in selecting the order with lowest absolute difference of its Center Of Gravity
(COG) to the seed. Where the COG of an order is defined as the average of
the aisle numbers where the items of that order are located. The considered
procedure applies a “cumulative mode” (i.e., the seed is renewed each time a
new batch is created). The method, then, consist in selecting one seed order,
assign it to a batch and trying to complete the batch following the criteria of the
difference of COG. Once the batch is full, the method selects a new seed and so
on until all the orders have been assigned to a batch.
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2.3 Clark & Wright Savings Algorithm

The “Clark & Wright savings” algorithm is inspired in the idea presented in [3]
in the context of vehicles routing. It is based on computing the save of time
derived from collecting two orders separately versus collecting them together
in the same route. The algorithm creates a square matrix with a size equals
to the number of orders. Then, each row/column corresponds with one order.
The crossing position of a column and a row will store the save/loss of time
of collecting the two orders related, separately or together. Additionally, the
diagonal of the matrix would store the time of collecting each order in isolation.
Notice that this is a symmetric matrix, therefore only one half of the matrix
(above or under the diagonal) is needed. For instance, the saving of collecting
orders 1 and 2 would be computed as follows: saving = t1 + t2 − t1,2 where
t1 and t2 represent the time needed to collect orders 1 and 2 separately, and
t1,2 the time needed to collect them together. Then all the pairs of orders are
stored in a list sorted depending on their savings, in a decreasing way. Next, the
list is scanned trying first to allocate together the pairs which produce a largest
saving. Notice that several situations might happen: if both orders have not been
previously allocated in a batch and they fit together, they are assigned to the
same batch; if one of the batches have already been allocated, then the other
one will be assigned to the same batch if it fits. Otherwise the procedure will
continue with the next pair; finally, if both orders involved have previously been
placed in other batches the procedure will jump again to the following pair. We
refer the reader to [4] for further details.

3 Algorithmic Proposal

In this section we present our algorithmic proposal to tackle the OOBP. In
particular, we propose the use of the methodology Variable Neighborhood Search
(VNS) [17]. VNS was originally proposed by Mladenović and Hansen in 1997 as
a revolutionary idea to escape from a local optimum, based on the concept of
change of the neighborhood structure. Then, the general idea behind the method
is to reach local optimum by using a local search procedure and then, change
the neighborhood structure (once the current solution found can not be further
improved) in order to give the local search the opportunity of looking for a new
local optimum in the new neighborhood.

There original idea has been notably evolved with many variants. Probably,
the most remarkable ones are: Reduced VNS (RVNS) which perform a stochas-
tic search within a neighborhood; Variable Neighborhood Descent (VND) which
perform a deterministic search within the considered neighborhoods; Basic VNS
(BVNS) which combines stochastic and deterministic exploration in one neigh-
borhood; and General VNS (GVNS) which combines stochastic and determin-
istic exploration within a set of neighborhoods. Other well-known approaches
are: Skewed VNS (SVNS); and Variable Neighborhood Decomposition Search
(VNDS). For a detailed description and tutorials of all those methods we refer
the reader to [8,9,17]. Other recent variants include: Variable Formulation Search
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(VFS) [19], Parallel Variable Neighborhood Search [6,13] and Multi-Objective
Variable Neighborhood Search [5].

In this paper we make use of the BVNS algorithm. In Algorithm1 we present
a pseudocode of this method. It receives three parameters to start the search:
(i) an initial solution S generated with an external method; (ii) a value kmax

which determines the maximum number of neighborhoods to explore; and (iii)
the maximum allowed running time (tmax). The method explores the neighbor-
hood of the current solution trying to obtain a better one. In order to do that,
BVNS has three stages that run consecutively. The first stage is the perturbation
of the current solution, performed in order to escape from the current local opti-
mum, reaching a solution in a new neighborhood. As a second stage the method
make use of a local search procedure, which is able to find a local optimum
within the current neighborhood. The third stage, represented by the procedure
Neighborhoodchange, determines if it is necessary to change the neighborhood
to be explored, depending on whether the solution provided to the local search
has been improved or not. This method updates the value of the variable k, which
indicates the number of perturbations to be performed to the current solution
in the Shake procedure. The value k = 1 indicates that an improvement has
been performed, otherwise the value of k is incremented in a predefined amount
(typically 1 unit).

Algorithm 1. BVNS(S, kmax, tmax)
1: repeat
2: k ← 1
3: while k ≤ kmax do
4: S′ ← Shake(S, k)
5: S′′ ← LocalSearch(S′)
6: k ← NeighborhoodChange(S, S′′, k)
7: end while
8: until t < tmax

9: return S

A more detailed description of the method used to generate the initial solu-
tion can be found in the Sect. 3.1. Similarly, the description of the Shake and
LocalSearch procedures are presented, respectively, in Sect. 3.2 and Sect. 3.3.
Notice that we do not provide a detailed description of the NeighborhoodChange
procedure since it follows an standard implementation.

The algorithm is executed repeatedly until the maximum allowed time is
reached. In each iteration, the number of perturbations performed to the solu-
tion, before the local search, is indicated by the value of the variable k. The
variable k starts at 1, indicating that the first neighborhood to be explored is
the closer one. This value is increased every time that the local search does not
improve the current solution, until it reaches the value of kmax. Then, the vari-
able k is reset to its initial value 1 and the procedure is repeated again until the
maximum allowed time is reached.
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3.1 Constructive Procedure

We have used a random algorithm as a constructive method in order to provide
an initial solution to the BVNS algorithm. The algorithm receives a list of orders
as an input parameter. The list of orders is randomly scanned. In each iteration,
an order is randomly selected and it is placed in the next available batch. When
the selected order no longer fits in the current batch, a new batch is created with
this order. Then, the next order will be placed in this new batch and the process
is repeated until the order list is fully scanned and all the orders have a batch
assigned. Once the process is finished, the procedure returns a list of batches as
a solution. In Algorithm 2 we present a pseudocode of this procedure.

Algorithm 2. Constructive(Lorders)
1: S ← NewBatchList()
2: B ← NewBatch()
3: repeat
4: o ← ChooseRandomOrder(Lorders)
5: Lorders ← Lorders \ o
6: if Fits(B, o) then
7: Add(B, o)
8: else
9: Add(S,B)

10: B ← NewBatch()
11: Add(B, o)
12: end if
13: until Lorders = ∅
14: return S

3.2 Shake Procedure

The perturbation procedure chosen for this problem consist in exchanging two
orders from different batches. The procedure receives as input parameters an ini-
tial solution S and the parameter k that indicates the number of times the pertur-
bation will occur. In each perturbation two random batches are selected. Then,
two orders also selected at random within the selected batches are exchanged.
Notice that the exchange must produce a feasible solution (i.e., it does not exceed
the maximum capacity of each batch), otherwise it should be repeated. This pro-
cess will be repeated as many times as the parameter k indicates. At the end
of this procedure, a solution in a different neighborhood will be returned. In
Algorithm 3 we present a pseudocode of this procedure.

3.3 Local Search Procedure

The local search procedure proposed to be used within the BVNS, as well as
the shake procedure, is based in the one-to-one exchange move. This proce-
dure receives an initial solution S, as an input parameter, and it returns the
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Algorithm 3. Shake(S, k)
1: repeat
2: repeat
3: Bi ← ChooseRandomBatch(S)
4: Bj ← ChooseRandomBatch(S)
5: until Bi �= Bj

6: oi ← ChooseRandomOrder(Bi)
7: oj ← ChooseRandomOrder(Bj)
8: if Fits(Bi \ oi, oj) and Fits(Bj \ oj , oi) then
9: Bi ← Bi \ oi

10: Add(Bi, oj)
11: Bj ← Bj \ oj
12: Add(Bj , oi)
13: k ← k − 1
14: end if
15: until k = 0
16: return S

local optimum within the neighborhood of the solution. The procedure explores
every order o in all the batches trying to find a feasible interchange with other
order that improves the current solution. If an improve move is performed, then
the procedure starts again from the new solution found, performing another
whole iteration, otherwise it carries on until all candidate interchanges have
been explored without improvement and returns the best solution found. In
Algorithm 4 we present the pseudocode of this procedure.

Algorithm 4. LocalSearch(S)
1: repeat
2: improved ← false
3: for all oi ∈ S do
4: for all oj ∈ S do
5: S′ ← Exchange(S, oi, oj)
6: if f(S′) < f(S) then
7: S ← S′

8: improved ← true
9: break

10: end if
11: end for
12: end for
13: until improved = false
14: return S
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4 Results

We compare our proposal with the classical greedy constructive procedures pre-
sented in Sect. 2. The experiments were run an Intel (R) Core (TM) 2 Quad
CPU Q6600 2.4 Ghz machine, with 4 GB DDR2 RAM memory. The operating
system used was Ubuntu 18.04.1 64 bit LTS, and all the codes were developed
in Java 8.

4.1 Instances

An instance to test any algorithm for the OOBP needs to consider the following
aspects: the warehouse layout; the orders; and the distribution followed by the
arrival of the orders.

We have selected and adapted a set of instances previously referred in the
literature for the OBP to test our proposal. In particular, we have selected
a subgroup of instances from those reported in [1] which have been reference
instances in the OBP literature in the last few years. This data set contains
instances related to four real warehouses of rectangular shape. Each warehouse
has two transversal aisles, one at the front and one at the back of the warehouse
and a variable number of parallel aisles. In each side of the parallel aisles there
are products stored. Every warehouse has only one depot located at the front-
cross aisle either at the left corner or at the center of the aisle. In the Fig. 1
we present an example of the layout of the considered warehouse. Particularly,
this example warehouse has 2 crossing aisles and 5 parallel aisles, with 9 picking
positions in each side of the parallel aisles, totalizing 90 picking positions. In this
case, the depot is placed in the center of the front cross aisle.

The number of orders per instance varies among the following values [50, 100,
150, 200, 250]. The distribution of the products in the warehouse follows either an
ABC distribution or a random one. We have selected 16 representative instances
from the Warehouse 1 for our comparison. In this subset, we have selected 4
different instances for each number of orders [100, 150, 200, 250]. Notice that we
have avoided the use of the smallest type of instances (i.e., the ones composed
by 50 orders) since a small number of orders do not create enough congestion in
the delivery of orders and, therefore, the instances become trivial for the OOBP.

Finally, we have adapted the instances by determining distribution of the
delivery instant of the orders to the warehouse. We have divided each set of
orders into two groups: offline/online. The first group is formed by 15 orders
which will be already available at the beginning of execution. The rest of the
orders will arrive to the warehouse following an uniform distribution along the
time horizon of 4 h.

4.2 Comparison with the State of the Art

The BVNS algorithm has been successfully compared with three different algo-
rithms in the state of the art. Particularly, we have selected three classical and
well-known greedy constructive procedures, widely used in the OBP literature:
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Fig. 1. Warehouse layout.

the First Come First Served (FCFS) algorithm, a variant of the Seed algorithm,
and finally the Savings C&W algorithm. These three algorithms were described
in the Sect. 2.

Before to perform the comparison of the BVNS with the algorithms in the
state of the art, we have carried on some preliminary experiments, to empirically
adjust the value of the parameter kmax of the BVNS. In this case, we have
selected kmax = 15 for the final configuration of the BVNS. Also, the value of
tmax was set to 10 s. Therefore, every 10 s, the algorithm starts again from a
new solution constructed with the procedure described in Sect. 3.1. Notice, that
every construction considers all the orders already arrived to the warehouse and
not collected yet.

In Table 1 we present the average value of the objective function (O.F.), which
in this case is, for each instance, the maximum time that an order remains
in the system before being served; the average deviation with respect to the
best solution found in the experiment (Dev.(%)); the number of best solutions
found in the experiment (#Best); and the running time of the CPU in seconds
(CPUt(s)). Notice, that for each instance, the minimum running time is four
hours. These four hours is the time that the order dispenser will use to deliver
all the orders in the instance to the system. The final execution time will depend
on the time that each algorithm takes to distribute those orders into batches and
on the quality of the solution.

As it is shown in Table 1 BVNS is the best algorithm of the comparison
since it was able to find the largest number of best solutions found (15 out of
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Table 1. Average results of the comparison with the state-of-the-art algorithms.

O.F. Dev.(%) #Best CPUt(s)

BVNS 3682 0.37% 15 17508

FCFS 5897 55.36% 0 19717

Savings C&W 10621 187.70% 0 24353

Seed 5081 38.45% 1 18232

16 instances) and the smallest deviation of the compared algorithms, in shorter
running times. In Table 2 we present the detailed results per instance.

Table 2. Results per instance of the compared algorithms.

BVNS FCFS Savings C&W Seed

O.F. Dev CPU O.F. Dev CPU O.F. Dev CPU O.F. Dev CPU

(s) (%) t(s) (s) (%) t(s) (s) (%) t(s) (s) (%) t(s)

100 000 1491 0.00% 16196 1856 24.50% 16149 2399 60.94% 16522 1974 32.44% 15989

100 030 1522 0.00% 15430 1924 26.46% 15416 2276 49.54% 15416 1847 21.39% 15416

100 060 1771 0.00% 16103 1927 8.78% 15857 2841 60.39% 16055 2218 25.23% 15996

100 090 1371 0.00% 15498 1492 8.84% 15478 1945 41.87% 15597 2008 46.41% 15484

150 000 2602 0.00% 15551 4461 71.41% 17565 10843 316.67% 24491 3802 46.11% 16163

150 030 1181 0.00% 14619 1492 26.36% 14512 2263 91.60% 14916 1311 11.01% 14584

150 060 3078 0.00% 16209 5413 75.89% 18829 11488 273.28% 24984 4074 32.38% 16524

150 090 1068 0.00% 14366 1522 42.47% 14323 1432 34.10% 14285 1150 7.67% 14416

200 000 7135 0.00% 21409 10871 52.36% 25490 20998 194.30% 35617 9679 35.65% 23344

200 030 1255 5.90% 15480 1497 26.33% 15981 4624 290.19% 19136 1185 0.00% 15334

200 060 5400 0.00% 19888 8926 65.29% 23584 19491 260.92% 34003 7975 47.68% 21259

200 090 1498 0.00% 15445 2709 80.85% 17148 6829 355.82% 21218 2350 56.85% 15305

250 000 12202 0.00% 25727 19750 61.86% 33437 28913 136.96% 42601 15657 28.32% 28479

250 030 2446 0.00% 15821 5629 130.14% 19315 11356 364.31% 25067 4710 92.57% 17018

250 060 12028 0.00% 25840 18201 51.33% 32017 30147 150.64% 43962 15551 29.29% 28299

250 090 2869 0.00% 16542 6683 132.97% 20375 12096 321.65% 25784 5801 102.22% 18107

5 Conclusions

In this paper we deal with the Online Order Batching Problem, as a variant of
the well-known family of problems related to the Order Batching. This variant
considers that there are orders which arrive to the warehouse once the retrieving
process has already started. Those orders are immediately processed and intro-
duced in a batch in order to be collected. The problem looks for minimizing the
maximum time that an order remains in the system before being served.

To tackle this problem we have proposed several heuristics within the Basic
Variable Neighborhood Search framework. Particularly, we propose to start the



New VNS Variants for the Online Order Batching Problem 99

search with a random solution and then we define a neighborhood, based on
interchange moves, explored by a local search procedure which follows a first
improvement strategy. The proposed method has been compared successfully
with classical greedy methods in the state of the art, previously used for other
variants of the OBP.

In a future research we propose the extension of our algorithm by defining
new neighborhoods to be combined in a Variable Neighborhood Descent or in a
General Variable Neighborhood Search procedure. Additionally, we also propose
to extend the comparison performed, by considering not only the classical greedy
constructive methods in the literature, but also the latest metaheuristic-based
methods.
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Niterói, RJ 24220-900, Brazil
vncoelho@gmail.com

Abstract. The School Timetabling Problem is widely known and it
appears at the beginning of the school term of the institutions. Due to
its complexity, it is usually solved by heuristic methods. In this work, we
developed two algorithms based on the Variable Neighborhood Search
(VNS) metaheuristic. The first one, named Skewed General Variable
Neighborhood Search (SGVNS), uses Variable Neighborhood Descent
(VND) as local search method. The second one, so-called Adaptive VNS,
is based on VNS and probabilistically chooses the neighborhoods to do
local searches, with the probability being higher for the more successful
neighborhoods. The computational experiments show a good adherence
of these algorithms for solving the problem, especially comparing them
with previous works using the same metaheuristic, as well as with pre-
vious published results of the winning algorithm of the International
Timetabling Competition of 2011.

Keywords: School Timetabling · Variable Neighborhood Search ·
SGVNS · International Timetabling Competition

1 Introduction

The task of creating a school timetabling consists, in a very simplified way, in
determining for each class and time slot the school subject and its respective
teacher. This is a very hard activity and it may take a lot of hours or even
days depending on the amount of classes, time slots, and teachers [2]. This
combination of class, teacher, and subject follows some rules or constraints. The
compliance according to these constraints determines if a solution is feasible or
not and how good it is.
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The constraints are usually divided into two groups [20]:

(i) Hard constraints: they are mandatory constraints. If they are not met, the
solution is infeasible. For example, if one teacher is allocated to more than
one class at the same time-slot, the solution is invalid;

(ii) Soft constraints: these are non-mandatory restrictions. They should be met
only when possible but when this is not the case, the solution still remains
feasible. For example, no occurrence of idle time in a timetabling of a specific
teacher is expected, but the existence of it does not infeasible the solution.

Since the pioneer work of Gotlieb [8], many techniques have been used to
solve timetabling problems. According to [21] and [19], this interest is due to
three main points:

(i) Difficulty to find a solution: in view of the big amount of constraints, the
goal of finding a feasible solution is a hard task and it may takes many days
of manual work due to the amount of involved resources (classes, teachers,
time slots);

(ii) Practical importance: to build a timetabling is a basic necessity of all edu-
cational institutions. A good school timetabling can impact the life of a
big quantity of people, especially students and teachers. It can impact the
efficiency of the classes and student’s performance too;

(iii) Theoretical importance: school timetabling is a NP-hard problem [7]. Thus,
it is challenging to develop efficient algorithms to solve it.

The interest of the academic community in seeking more efficient solution
methods for solving the problem grew especially in the late 1990s and early
2000s. As a result, an international conference, called PATAT (Practice and
Theory on Automated Timetabling), was created. This conference originated
specific competitions called ITC (International Timetabling Competition), the
most recent of them was organized in 2011.

Besides that, specialists in the School Timetabling’s class of problem created
a standard to represent it, called XHSTT, as well as a library specialized to
manipulate their instances, called KHE.

In this paper, the school timetabling problem is approached using the
VNS metaheuristic in two variances: skewed VNS and adaptive VNS. In both
approaches, it is used the KHE library and the instances from ITC 2011. The
results were compared with the algorithm Goal Solver, winner of ITC 2011, the
last competition specialized in problems from this kind.

The paper is organized as follows: Sect. 2 presents the KHE library, the
XHSTT format and the ITC 2011; Sect. 3 presents the proposed algorithms and
Sect. 4 shows their results. Finally, on Sect. 5 the conclusions and some future
works are presented.

2 Context

The researches in school timetabling had an impulse with the organization of
specialized competitions of algorithms to solve this type of problem (such as the
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ITC, described at Sect. 2.3), as well as the creation of a standard to represent
and treat instances (the XHSTT, described at Sect. 2.1) and the creation of a
library to handle this format (the KHE, described at Sect. 2.2).

2.1 XHSTT Standard

The XHSTT format [17], an acronym to XML for High School TimeTabling, is
a format based on XML’s markup language that establishes specific structures
to treat resources, time-slots and their respective constraints.

This format is divided in three basic entities:

(i) Time and resource: the time entity consists of a time-slot or a set of time-
slots and the resources are subdivided into three subcategories: students,
teachers, and rooms;

(ii) Events: an event is the basic unit of assignment, representing a simple lesson;
(iii) Constraints: it is responsible to determine the distribution of resources in

the events. It can be defined by hard or soft constraints, according to the
criteria expected for a specific solution to be feasible or infeasible. Besides,
it is subdivided into three subcategories: (i) basic constraints of schedule;
(ii) constraints of events; and (iii) constraints of resources.

From the creation of this standard, emerged a lot of research from many
countries around the world that created instances of all kind of types, some
representing real cases from several countries, for example, England [26], Finland
[16], Greek [25], Netherlands [6] and Brazil [22,23]. All these instances were
published in a global and free public repository, to be used as benchmarking for
other studies, such as the one conducted in this paper.

2.2 KHE Library

In 2006, [11] presented a library, called KHE (Kingston High School Timetabling
Engine). This library was created exclusively for school timetabling problems,
with the objective of facilitating and optimizing the management of the instances
and their solutions. Completely integrated with the XHSTT standard, the main
points of the use of this library are the data structures available and the possibil-
ity of using the function of generating initial solutions, called KheGeneralSolve.
This routine generates an initial solution in a fast and easy fashion, even in large
and complex instances. This library is available on the Internet and can be used
freely for studies and researches in this area. Its creator also provides a service to
evaluate solutions, called HsEval, available at http://www.it.usyd.edu.au/∼jeff/
cgi-bin/hseval.cgi.

2.3 ITC 2011

With this standards and variety of libraries for handling them, the PATAT mem-
bers launched the third edition of an International Timetabling Competition -

http://www.it.usyd.edu.au/~jeff/cgi-bin/hseval.cgi
http://www.it.usyd.edu.au/~jeff/cgi-bin/hseval.cgi
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ITC, dedicated to High School timetabling problems, in 2011. This was the last
and most recent competition in this area. The two previous ones were organized
in 2002 and 2007, with others specific themes of timetabling.

The ITC 2011 was composed by three phases:

– Phase 1: the instances were published and the competitors were responsible
to generate the best solutions without restrictions of time and computational
resources;

– Phase 2: the organizers were responsible for executing each algorithm under
the same conditions, using instances not previously known and having a time
limit of 1000 s of processing;

– Phase 3: the competitors generated the solutions in a set of hidden instances
and, as in the phase one, it was not defined time and technology restrictions.
Only the top five competitors of Phase 2 participated of this phase.

3 Proposed Approaches

In order to solve the School Timetabling Problem, in the current article we pro-
pose two algorithms for solving it, both of them based on the Variable Neigh-
borhood Search (VNS) metaheuristic [13].

The first one, called Adaptive VNS, is described in Subsect. 3.1, and the
second one, named SGVNS, is presented in Subsect. 3.2. Finally, in Subsect. 3.3,
the types of moves used to explore the solution space of the problem are detailed.

3.1 Adaptive VNS

The proposed Adaptive VNS algorithm is a variant of the classic VNS meta-
heuristic, in which the used neighborhoods for local searches are chosen accord-
ing to evolving probabilities.

This approach is similar to that presented in [1]. The basic principle is that
the neighborhoods that generate better solutions should have probabilities higher
than the other ones that are not generating good solutions at that moment. In
order to avoid premature convergence of the algorithm, and avoiding getting
biased to some neighborhoods, whenever a better solution is found, the proba-
bilities are periodically reset.

The implementation follows the pseudo-code presented at Algorithm 1. Ini-
tially, in line 10, all |N | neighborhoods used for local searches have the same
probability of being chosen, that is, the parameter probneighborhood(N l) is set
to 1/|N | (0.2 in our case). On the loop started at line 14 a shaking move using
Kempe’s chain neighborhood is applied during kcurrent times. The neighborhood
used to perform local search according to the current probabilities is chosen at
line 18. As in timetabling problems there are many plateaus, solutions with an
evaluation less than or equal to that of the current solution are accepted (line 20
of Algorithm 1). The probabilities of all neighborhoods are recalculated every
itercalc iterations (line 40 of Algorithm1).
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Algorithm 1. Adaptive VNS
1 Input: Initial solution s0; Maximum runtime (MaxTime); Maximum

number of moves of the Kempe’s Chain; Iterations for recalculating the
probabilities (itercalc); set of |N | neighborhoods N ; Number of
recalculating probabilities without improvement to restart probabilities
(IterRestart).

2 Output: Best solution s.
3 begin
4 s ← s0;
5 s′ ← s0;
6 improvement ← 0;
7 kcurrent ← 1;
8 numberitercalc ← 1;
9 for each neighborhood N l of N do

10 probneighborhood(N l) ← 1/|N |;
11 end
12 iter ← 1;
13 while time ≤ MaxTime do
14 for k = 0; k < kcurrent do
15 s′ ← neighbor of s′ built by applying the Kempe’s Chain

move;
16 end
17 prob ← random number between 0 and 1;
18 l ← chosen neighborhood N l according to the probability

probneighborhood(N l) and random number prob;
19 s′ ← Local Search using neighborhood N l(s′) ;
20 if f(s′) ≤ f(s) then
21 s ← s′;
22 kcurrent ← 1; improvement ← 1;

23 end
24 else
25 s′ ← s;
26 if kcurrent ≤ Kempemax then
27 kcurrent ← kcurrent + 1;
28 end

29 end
30 if rest of division of iter by itercalc is 0 then
31 numberitercalc ← numberitercalc + 1;
32 if numberitercalc ≥ IterRestart and improvement = 0 then
33 for each neighborhood N l of N do
34 probneighborhood(N l) ← 1/|N |;
35 end
36 numberitercalc ← 1;

37 end
38 else
39 for each neighborhood N l of N do
40 update probneighborhood(N l)
41 end

42 end
43 improvement ← 0;
44 iter ← iter +1;

45 end

46 end

47 end
48 return s
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3.2 Skewed GVNS (SGVNS)

This algorithm was built by merging two variations of VNS metaheuristics:
Skewed VNS (SVNS) and General VNS (GVNS).

The SVNS is a variation of VNS proposed by [13]. It uses a parameter α to
accept solutions that are worse than the current solution. The concept involved is
that better solutions can be far away from the current solution, so it is necessary
to go through intermediate (and worse) steps to reach them.

On the other hand, the GVNS algorithm, proposed in [14], uses Variable
Neighborhood Descent (VND) algorithm to perform local searches. VND [9] is
a descent method that uses systematic changes of neighborhoods to explore the
space solution. It returns a local optimum among all the used neighborhoods.

The proposed SGVNS uses also VND as a local search method. In addition,
as in the SVNS algorithm, a parameter α is used to accept intermediate solutions
that are worse than the current solution.

Algorithms that accept worse solutions can bring a problem of execution,
called cycling. It occurs when the algorithm remains stuck in the same sequence
of solutions. To avoid this behavior, a Tabu List was implemented in a way that
a short time list stores the values of solutions already visited. In consequence,
the algorithm prevents the same sequence of solutions from being generated
again. This Tabu List has a length defined by a parameter and works with FIFO
protocol (First In First Out) that means that when the length is achieved the
first value is overwritten by the next and so on.

The pseudo-code of SGVNS is described in Algorithm2. At line 14 it is
verified if the new solution will be considered or not according to the parameter
α and the list of solution values already generated. As in the Adaptive VNS
algorithm, solutions with evaluation less than or equal to the current solution
are accepted (line 18 of the SGVNS Algorithm).

3.3 Moves

Both algorithms use the Kempe’s Chain move for shaking the current solution.
This move was proposed in [10] to the graph coloring problem. It is based on the
concept that some changes in the solution can generate infeasible solutions, cre-
ating conflicts and in order to remove them it is necessary to perform a sequence
of other moves. These modifications in sequence applied to a determined solution
are called Kempe’s Chain.

When the solution does not improve, both algorithms increase the number
of times that the Kempe’s Chain move is executed until a limit value defined
by the parameter Kempemax. When an improved solution is found, each algo-
rithm returns to its initial configuration and only one Kempe’s Chain move is
performed. This strategy has the objective to search better solutions and not
get stuck in local optimums.

The SGVNS algorithm uses the classic VND algorithm to perform local
searches and it returns the optimum in relation to all neighborhoods. The VND
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Algorithm 2. SGVNS
1 Input: Initial solution (s0); Maximum runtime (MaxTime); Maximum

number of Kempe’s Chain move (Kempemax); percentage to accept worse
solutions (α); Length of the Tabu List.

2 Output: Improved solution s found.
3 begin
4 s ← s0;
5 s′ ← s0;
6 stemp ← s;
7 kcurrent ← 1;
8 Insert f(s) in Tabu List ;
9 while time ≤ MaxTime do

10 for k = 0; k < kcurrent do
11 s′ ← neighbor of s′ using Kempe’s Chain move;
12 end
13 s′ ← Local search using VND algorithm(s′);
14 if ((f(s′) ≤ ((1 + α) × f(s))) and (f(s′) �∈ Tabu List)) then
15 stemp ← s′;
16 kcurrent ← 1;
17 Insert f(s′) in Tabu List ;
18 if (f(s′) ≤ f(s)) then
19 s ← s′;
20 end

21 end
22 else
23 s′ ← stemp;
24 if kcurrent ≤ Kempemax then
25 kcurrent ← kcurrent + 1;
26 end

27 end

28 end

29 end
30 return s

algorithm is described in the literature, so it is not presented in this article. The
neighborhoods are generated with one of the moves described below:

Event Swap: this move consists in selecting two lessons and changing the time
slots between them;

Event Move: this move consists in choosing one lesson and moving it to another
time slot that is empty;

Event Block Swap: like to the Event Swap, it consists in swapping the time
slot of two lessons. However, if the lessons have different durations, one lesson
is moved to the last time slot occupied by the other lesson. That is, if one
of the selected lessons has another lesson in a time slot adjacent to it, the
change involves both lessons, not only the selected one. This move allows
contiguous time slots to be exchanged;
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Move Time: in this move, two classes are chosen and exchanged;
Change Time: this move consists in choosing one class and changing its

resource with another resource that is current available.

On the other hand, the Adaptive VNS algorithm chooses, in a probabilistic
fashion, only one of these moves described above to perform only one local
search.

4 Computational Experiments

Both algorithms were implemented in C++ using the IDE Code::Blocks. All
tests were done in a notebook with Intel Core i5 processor, 4 GB RAM memory
running Windows 10.

In order to test the algorithms, instances from ITC 2011 were used. Among
the twenty-one instances presented in that event, five of them already were
in local optimum since the initial solution, so it was not necessary to work
with them. In the first phase of ITC 2011, although there were no processing
time restrictions, the computational time limit for each instance used by Goal
Solver algorithm [5] (the winner of the competition) was 1000 s. In the cur-
rent experiments, the same value of computational time limit to each instance
was considered. The initial solutions were provided by the organizers and they
were made available together with the instances, in the same XHSTT file. The
three instances from Australia (AustraliaBGHS98, AustraliaSAHS96 and Aus-
traliaTES99) presented worse initial solutions compared with that generated by
KHE library. Thus, in these instances, we used the solutions generated by KHE.

4.1 Parameter Tuning

Several distinct experiments were conducted to find the best set of parameter
configurations for each algorithm. The iRace package (http://iridia.ulb.ac.be/
irace/) was used for the accomplishment of this task. This tool implements the
iterated racing procedure [12] and it is an extension of the iterated F-race (I/F-
Race) proposed by [4]. The main function of iRace is the automatic configuration
of optimization algorithms in order to determine the most appropriate parameter
settings for an optimization method. The iRace framework is implemented as an
R package [18] and builds upon the race package.

The iRace analysis was done on a budget of 3,000 runs for each algorithm
(Adaptive VNS and SGVNS). Due to the high duration of the tests, we do not
use 1,000 s as a stopping criterion in this phase. Three different times were used
as stopping criterion for each algorithm applied in each instance: 10 s, 30 s and
60 s. Tables 1 and 2 show the parameters tested by iRace for both the SGVNS
and the Adaptive VNS algorithms, respectively.

As a result, the iRace indicated the best parameters for each method, as
shown in the values depicted at Table 3. In addition to the parameter calibration,
the iRace gave us the feedback that the performance of both algorithms improved

http://iridia.ulb.ac.be/irace/
http://iridia.ulb.ac.be/irace/
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Table 1. The parameters tested by iRace in SGVNS algorithm.

Parameter Values

α 0.001 0.01 0.025 0.05 0.075

Kempemax 1 5 10 - -

Length of the Tabu List 5 7 10 15 -

Table 2. The parameters tested by iRace in Adaptive VNS algorithm.

Parameter Values

Iterations to restart probabilities 5 10 15 20

Kempemax 1 5 10 -

itercalc 100 250 500 750

from 10 s to 60 s. In this sense, the best parameters were picked from executions
with 60 s, which are the ones that provide more liberty to the methods to play
with exploration-exploitation concepts.

4.2 Results

The same set of neighborhoods N = {Event Swap, Event Move, Event Block
Swap, Move Time and Change Time} was used for both algorithms.

Table 4 shows the best results obtained by the algorithms Goal Solver of [5],
GVNS of [24] and the proposed SGVNS and Adaptive VNS algorithms. In addi-
tion, Table 5 shows the average results also obtained by these same algorithms.
In both tables, the first column shows the tested instances and the second one,
the value of the initial solutions provided by the organizers of ITC 2011, except
for instances AustraliaBGHS98, AustraliaSAHS96 and AustraliaTES99, whose
initial solutions were generated by the KHE algorithm of [11]. The following
columns present the values of Goal Solver, GVNS, SGVNS e Adaptive VNS
algorithms, respectively.

Each instance was executed 30 times for each algorithm. It is noteworthy
that all algorithms were executed on the same machine, and the Goal Solver
code was provided by its developers.

The values presented in each cell of Tables 4 and 5 are pairs x/y, where
x means the sum of penalties for hard constraints not met and y the sum of
penalties for soft constraints not met. In case of a tie in the penalties for hard
constraints not met, the solutions that have smallest soft constraints not met are
considered the best ones. A value highlighted in bold means that is considered
to be the best result produced among all the algorithms.

Analyzing the best results as presented in Table 4, it is verified that SGVNS
outperforms the other algorithms in most instances. On the other hand, the
Adaptive VNS algorithm did not outperform the other algorithms in any
instance, although it has produced good results as well. Considering the sixteen
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Table 3. Best parameters indicated by iRace.

SGVNS α Kempemax Length of the Tabu
List

Execution time

0.025 5 10 60

Adaptive VNS itercalc Kempemax Iterations to restart
probabilities

Execution time

500 1 5 60

Table 4. Best results of the algorithms.

Instance KHE
(Initial
Solution)

Goal Solver
(SA + ILS)

GVNS SGVNS Adaptive
VNS

AustraliaBGHS98 6/450 6/450 4/370 1/401 7/431

AustraliaSAHS96 17/55 14/50 12/51 13/46 17/52

AustraliaTES99 7/163 7/161 7/151 7/163 7/163

BrazilInstance1 0/24 0/12 0/11 0/11 0/12

BrazilInstance4 0/112 0/91 0/94 0/90 0/94

BrazilInstance5 0/225 0/164 0/158 0/149 0/165

BrazilInstance6 0/209 0/149 0/148 0/131 0/163

BrazilInstance7 0/330 0/264 0/249 0/248 0/282

EnglandStPaul 0/18,444 0/18,092 0/12,542 0/12,466 0/18,418

FinlandHighSchool 0/1 0/1 0/1 0/1 0/1

FinlandSecondarySchool 0/106 0/86 0/87 0/88 0/87

ItalyInstance1 0/28 0/19 0/18 0/18 0/18

NetherlandsGEPRO 1/566 1/566 1/434 1/441 1/532

NetherlandsKottenpark2003 0/1,410 0/1,409 0/1,216 0/1,281 0/1,372

NetherlandsKottenpark2005 0/1,078 0/1,078 0/881 0/877 0/1,078

SouthAfricaLewitt2009 0/58 0/22 0/24 0/24 0/42

instances, SGVNS algorithm reached the best results in ten ones and GVNS
in seven ones. Goal algorithm, in turn, reached the best results only in three
instances.

In another analysis, focusing in the average of the results, as presented
in Table 5, SGVNS algorithm reached the best results in six instances and GVNS
in eight ones. Goal algorithm reached the best results in five instances and the
adaptive VNS in only one instance.

In order to evaluate if there were significant differences among the algorithms,
the R Studio tool was used to perform the statistical analyzes of the results. For
this analysis all samples were used and it was concluded that the samples did not
present normal distribution applying the Shapiro-Wilk test [15]. Then, a non-
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Table 5. Average results of the algorithms.

Instance KHE
(Initial
Solution)

Goal Solver
(SA + ILS)

GVNS SGVNS Adaptive
VNS

AustraliaBGHS98 6/450 6/450 5/450 3/514 7/431

AustraliaSAHS96 17/55 16/20 16/30 16/91 17/53

AustraliaTES99 7/163 7/162 7/162 7/163 7/163

BrazilInstance1 0/24 0/14 0/11 0/11 0/13

BrazilInstance4 0/112 0/98 0/100 0/100 0/099

BrazilInstance5 0/225 0/181 0/178 0/177 0/188

BrazilInstance6 0/209 0/168 0/160 0/170 0/175

BrazilInstance7 0/330 0/280 0/276 0/289 0/300

EnglandStPaul 0/18,444 0/18,444 0/14,217 0/14,442 0/18,418

FinlandHighSchool 0/1 0/1 0/1 0/1 0/1

FinlandSecondarySchool 0/106 0/89 0/92 0/93 0/90

ItalyInstance1 0/28 0/21 0/21 0/19 0/24

NetherlandsGEPRO 1/566 1/566 1/446 1/484 1/551

NetherlandsKottenpark2003 0/1,410 0/1,409 0/1,290 0/1,387 0/1,377

NetherlandsKottenpark2005 0/1,078 0/1,078 0/956 0/1,056 1/1,078

SouthAfricaLewitt2009 0/58 0/30 0/30 0/28 0/48

parametric test was used, the Friedman test [15], with the goal of verifying if the
algorithms had significant differences among them. The test returned a p-value
of 0.0003287. Thus, considering a significance level of 95%, the algorithms had
statistically significant differences among them.

From this result, we proceed the pairwise Wilcoxon test [15] to evaluate if
there is statistical difference between each pair of algorithms. The results indi-
cated that the SGVNS is statistically different from all others algorithms. The
GVNS is also statistically different from Adaptive VNS. The other comparisons
are statistically equivalent. It was used the BH p-value adjustment method [3].

5 Conclusions

This paper proposed two metaheuristic approaches for solving the School Time-
tabling problem, both based on the VNS metaheuristic. The first algorithm
represents a combination between GVNS and SVNS metaheuristics and it was
called SGVNS or Skewed GVNS. The second one, named Adaptive VNS, is an
adaptive approach based on VNS that defines the neighborhood to perform local
searches by means of probabilities, and prioritizes the neighborhoods that have
obtained the best results in past iterations.
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Both algorithms produced good solutions to this problem with an advantage
of the SGVNS algorithm that is statistically different from all other algorithms.
In turn, the Adaptive VNS is equivalent to the Goal Solver of [5]. Considering
the best results, SGVNS performed equal or better than the Goal Solver and
the GVNS algorithm of [24] in ten from sixteen instances.

As future work, we suggest:

– optimize the calculation of the probabilities of the Adaptive VNS algorithm;
– Evaluate both algorithms in other instances, such as those used in the second

phase of ITC 2011.
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GOAL solver: a hybrid local search based solver for high school timetabling. Ann.
Oper. Res. 239(1), 77–97 (2016)

6. de Haan, P., Landman, R., Post, G., Ruizenaar, H.: A case study for timetabling in
a dutch secondary school. In: Burke, E.K., Rudová, H. (eds.) PATAT 2006. LNCS,
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(eds.) PATAT 2006. LNCS, vol. 3867, pp. 294–307. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-77345-0 19

12. Lopez-Ibanez, M., Dubois-Lacoste, J., Stutzle, T., Birattari, M.: The irace package:
iterated racing for automatic algorithm configuration. IRIDIA, Universite Libre de
Bruxelles, Belgium, Technical report, TR/IRIDIA/2011-004 (2011)
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Abstract. The Maximum Balanced Biclique Problem (MBBP) con-
sists of identifying a complete bipartite graph, or biclique, of maximum
size within an input bipartite graph. This combinatorial optimization
problem is solvable in polynomial time when the balance constraint is
removed. However, it becomes NP–hard when the induced subgraph
is required to have the same number of vertices in each layer. Biclique
graphs have been proven to be useful in several real-life applications,
most of them in the field of biology, and the MBBP in particular can
be applied in the design of programmable logic arrays or nanoelectronic
systems. Most of the approaches found in literature for this problem
are heuristic algorithms based on the idea of removing vertices from the
input graph until a feasible solution is obtained; and more recently in
the state of the art an evolutionary algorithm (MA/SM) has been pro-
posed. As stated in previous works it is difficult to propose an effective
local search method for this problem. Therefore, we propose the use of
Reduced Variable Neighborhood Search (RVNS). This methodology is
based on a random exploration of the considered neighborhoods and it
does not require a local search.

Keywords: Biclique · Reduced VNS · Bipartite

1 Introduction

Let G(L,R,E) be a balanced bipartite graph where L and R are the two sets
(or layers) of vertices of the same cardinality (i.e., |L| = |R| = n) and E is the
set of edges. As a bipartite graph, L ∩ R = ∅, and an edge can only connect a
vertex v ∈ L with a vertex u ∈ R, i.e., ∀(v, u) ∈ E, v ∈ L ∧ u ∈ R. Additionally,
let us define a biclique B(L′R′, E′) as an induced subgraph of G, where L′ ⊆ L,
R′ ⊆ R, such as every vertex v ∈ L′ is connected to all the vertices u ∈ R′. In
other words, B is a complete bipartite graph.

Given a balanced bipartite graph G(L,R,E), this work is focused on solving
the Maximum Balanced Biclique Problem (MBBP), which consists of identifying
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a balanced biclique B�(L′, R′, E′) with the largest number of vertices per layer.
In other words, the objective of MBBP is maximizing the cardinality of sets L′

and R′.
Figure 1 presents an example bipartite graph with 8 vertices and 13 edges

and two possible solutions for the MBBP. Figure 1(b) depicts a solution
B1(L1, R1, E1) with two vertices in each layer. Specifically, L1 = {A, B}, and
R1 = {F, G}. The edges involved in the induced biclique are depicted with con-
tinuous line, while those with an endpoint out of the solution are depicted with
dashed line. Notice that it is not possible to insert new vertices in the solution,
since the resulting induced bipartite graph will not be a balanced biclique. For
instance, adding vertices E or H is not possible because they are not adjacent to
vertices B and A, respectively. Furthermore, it is not possible to add new vertices
just in layer L1 since the induced biclique is not balanced (i.e., |L1| �= |R1|).

A E
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D

(a)

A E
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Fig. 1. (a) Bipartite graph with 8 vertices and 13 edges, (b) a feasible solution with 2
vertices in each layer (A and B in L1, F and G in R1), and (c) a different solution with
3 vertices in each layer (B, C and D in L2, F, G, and H in R2)

Figure 1(c) presents a solution B2(L2, R2, E2) of better quality, since it has 3
vertices in each layer. In particular, L2 = {B, C, D}, and R2 = {F, G, H}. Again, no
more vertices can be added without violating the balanced biclique constraint.

This problem has been proven to be NP-hard in various works [2,9,11].
Some theoretical results proposed bounds for the maximum size that the optimal
solution for the MBBP can have [6], and it has been proven to be hard to
approximate within a certain factor [7].

Biclique graphs have been proven to be useful in several real-life applications,
most of them in the field of biology: biclustering microarray data [4,17,18], opti-
mization of the phylogenetic tree reconstruction [14], or identifying common
gen-set associations [5], among others [3,12]. In particular, the MBBP has addi-
tional applications in a diverse set of fields: folding of programmable logic arrays
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in Very Large Scale Integration (VLSI) design [13], or new nanoelectronic sys-
tems design [1,15,16], among others.

Despite of the practical applications of the MBBP, not many efficient algo-
rithms for it has been proposed, mainly due to the difficulty of the problem.
However, if the MBBP does not consider that the solution must be balanced,
the resulting problem is solvable in polynomial time [19], although most of the
solutions obtained are totally unbalanced, making the results not adaptable for
the problem under consideration.

Most of the previous approaches follow a destructive approach where the
initial solution contains all the nodes and the heuristic iteratively removes nodes
from L′ and R′ until the incumbent solution becomes feasible. The algorithms
mainly differ in the order in which the vertices to be removed are selected. In
particular, [15] selects the vertices with the largest degree, while [1] removes the
vertex with the largest number of minimum degree nodes in the other layer.
Additionally, some algorithms have tried to combine both criteria [20,21]. The
best algorithm found in the literature consists of a evolutionary algorithm [22]
that proposes a new mutation operator as well as a new local search method to
improve the quality of the solutions generated.

The remaining of the paper is organized as follows: Sect. 2 describes the
algorithmic proposal for the MBBP; Sect. 3 presents the experiments performed
to evaluate the quality of the proposal; and Sect. 4 draws some conclusions on
the research.

2 Reduced Variable Neighborhood Search

Variable Neighborhood Search (VNS) [10] is a metaheuristic framework based on
systematic changes of neighborhoods. As a metaheuristic algorithm, it does not
guarantee the optimality of the solutions obtained, but it is focused on obtaining
high quality solutions in reasonable computing times. The constant evolution of
VNS has resulted in several variants, among which we can highlight Basic VNS,
Reduced VNS, Variable Neighborhood Descent, General VNS, Skewed VNS,
Variable Neighborhood Decomposition Search, among others.

Most of the variants differ in the way of exploring the considered neighbor-
hoods. Specifically, Variable Neighborhood Descent (VND) considers a totally
deterministic exploration of the solution space, while the exploration performed
by Reduced VNS (RVNS) is totally stochastic. Some other variants combine
both deterministic and stochastic changes of neighborhoods (e.g., Basic VNS,
General VNS).

As stated in previous works [21,22], designing a local search method for the
MBBP is a very difficult task mainly due to the complexity of maintaining a
feasible solution (i.e. a balanced biclique) after removing or adding vertices to a
previous solution. In other words, the MBBP is not suitable for designing local
search methods in order to find a local optimum with respect to a given solution.
Therefore, this work proposes a Reduced VNS algorithm, which is based on a
random exploration of the considered neighborhoods.
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RVNS is a VNS variant useful for large instances in which local search is very
time consuming, or for those problems in which it is not easy to design a local
search method. Algorithm 1 presents the pseudocode of RVNS.

Algorithm 1. RVNS (B, kmax, tmax)
1: repeat
2: k ← 1
3: while k ≤ kmax do
4: B′ ← Shake(B, k)
5: k ← NeighborhoodChange(B, B′, k)
6: end while
7: until CPUTime() ≤ tmax

8: return B

The algorithm requires three input parameters: B, the initial feasible solu-
tion, that can be randomly generated or using a more elaborated constructive
procedure; kmax, the maximum neighborhood to be explored; and tmax, the maxi-
mum computing time in which RVNS is allowed to explore the search space. Each
RVNS iteration starts from the initial neighborhood (step 2). Then, the method
explores each one of the considered neighborhoods (steps 3–6) as follows. Firstly,
the method generates a random solution B′ in the current neighborhood k of
the incumbent solution B using the Shake method (step 4). Then, the Neighbor-
hoodChange method (step 5) is responsible for selecting the next neighborhood
to be explored. Specifically, if the new solution B′ is better than the incumbent
one B, then it is updated (B ← B′), restarting the search from the initial neigh-
borhood (k ← 1). Otherwise, the search continues with the next neighborhood
(k ← k + 1). A RVNS iteration ends when reaching the maximum predefined
neighborhood kmax. It is worth mentioning that the maximum neighborhood
considered in RVNS is usually small due to the random nature of the Shake
method, since a large value for kmax would produce the same result as restart-
ing the search from a new initial solution. The RVNS method is executed until
reaching a maximum computing time tmax.

2.1 Constructive Method

The initial solution for VNS can be generated at random or with a more elab-
orated constructive procedure. This work proposes a constructive procedure
based on the Greedy Randomized Adaptive Search Procedure (GRASP) [8].
This methodology considers a greedy function that evaluates the importance of
inserting a vertex in the solution under construction. Algorithm2 presents the
pseudocode of the constructive method proposed.

The method starts by randomly selecting a vertex from layer L (step 11),
inserting it in the corresponding layer L′ of the solution (step 12). Then, two
candidate lists (CL) are created, one for each layer of the graph (steps 13–14).
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Algorithm 2. Construct(G = (L,R,E), α)
1: function UpdateLayer(CL1,CL2, α)
2: gmin ← minv∈CL1 g(v)
3: gmax ← maxv∈CL1 g(v)
4: μ ← gmin + α · (gmax − gmin)
5: RCL ← {v ∈ CL1 ; g(v) ≤ μ}
6: v ← Random(RCL)
7: CL1 ← CL1 \ {v}
8: CL2 ← CL2 \ {u ∈ CL2 : (v, u) /∈ E}
9: return v

10: end function
11: v ← Random(L)
12: L′ ← {v}
13: CLL ← L \ {v}
14: CLR ← {u ∈ R : (v, u) ∈ E}
15: while CLL �= ∅ and CLR �= ∅ do
16: vr ← UpdateLayer(CLR,CLL, α)
17: R′ ← R ∪ {vr}
18: vl ← UpdateLayer(CLL,CLR, α)
19: L′ ← L ∪ {vl}
20: end while
21: return B = (L′, R′, {(v, u) v ∈ L′ ∧ u ∈ R′})

Notice that each candidate lists only contains those vertices from each layer
that can be selected maintaining the solution feasible (i.e., the solution is a
compete bipartite graph). On the one hand, in this first step, CLL contains all
the vertices from L excepting the selected vertex v. On the other hand, CLR

contains all adjacent vertices to v in R, since otherwise the solution would not
be a bipartite complete graph. Then, the method iterates adding a vertex in
layer R′ and then in layer L′, while there are still candidate vertices in both
layers (steps 16–19).

The selection of the next vertex is described in function UpdateLayer that
requires from three parameters: the candidate list from which the vertex must
be selected, CL1, the candidate list of the other layer, CL2, and the α parameter
that determines the greediness/randomness of the selection. A greedy function
g that evaluates the quality of a candidate vertex v must be defined. In this
work, we propose the number of adjacent vertices in the oppositive candidate
list. More formally,

g(v,CL) = |{u ∈ CL : (v, u) ∈ E}|
The first step to select the next vertex consists of evaluating the minimum

(gmin) and maximum (gmax) values for the greedy function value (steps 2–3).
Then, a Restricted Candidate List (RCL) is constructed (step 5) with those
vertices whose objective function value is larger or equal than a previously eval-
uated threshold μ (step 4). The values for the α parameter are in the range
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0–1, where α = 0 implies that the method is totally random, and α = 1 trans-
forms the algorithm in a completely greedy method. The next vertex is selected
at random from the RCL (step 6), updating the corresponding candidate lists.
In particular, CL1 is updated by removing the selected vertex v from it, while
CL2 is updated by removing those vertices that are not adjacent to v, since
they cannot be selected in further iterations maintaining the feasibility of the
solution.

2.2 Shake

The Shake method is a stage inside VNS methodology designed to escape from
local optima found during the search. It consists of randomly perturbing a solu-
tion with the aim of exploring a wider region of the solution space. This phase
of the VNS methodology is focused on diversifying the search.

Given a neighborhood k, the Shake method proposed in this work removes
k elements at random from each layer. The resulting solution is feasible but the
value of the objective function is always smaller, since it reduces the number of
vertices selected.

Considering the constraints of the problem, if a vertex v is included in the
solution, then all the vertices of the opposite layer that are not adjacent to v
cannot be included in future iterations, since the resulting solution would not
be a biclique. However, the removal of some vertices in the Shake method can
eventually allow new vertices to be included in the solution (i.e., those that were
not adjacent to any of the vertices removed).

Therefore, we propose a reconstruction stage that is executed after each Shake
method. In particular, the reconstruction phase tries to add new vertices to the
solution, from those that were not feasible to add before executing the Shake
method.

The reconstruction stage always improves the quality of the solution or, at
least, maintains the quality of the solution produced by the Shake method.
Notice that the reconstructed solution outperforms the initial one if and only if
reconstruction stage is able to insert more than k vertices in each layer.

The random nature of this procedure makes it difficult to improve the quality
of the solution. In order to mitigate this effect we consider four variants for the
Shake method. These differ in how the destruction and reconstruction phases are
performed. Each stage can be either random (R) or greedy (G), which leaves us
with four variants shown in Table 1. For instance, the Shake variant GR firstly
destroys the solution with a greedy selection of vertices and then reconstructs it
randomly.

The reconstruction stage follows the same idea that the constructive method
described in Sect. 2.1, with the parameters α = 0 for the random construction (R)
and α = 1 for the greedy one (G). For the destruction stage we use a template
similar to the constructive method, where we evaluate all candidates with a
heuristic function, in this case those vertices already included in the solution,
and then choose one of the more promising vertices. We need to define a new
heuristic function g′ that allows us to score the candidates for removal. Without
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Table 1. Summary of the four variants considered for the Shake procedure.

Variant Destruction Reconstruction

RR Random Random

RG Random Greedy

GR Greedy Random

GG Greedy Greedy

loss of generality, for a given vertex v ∈ S located in layer L, we calculate g′(v) as
the number of vertices in the opposite layer R not connected to v. More formally,

g′(v, S) = |{u ∈ R : (u, v) /∈ E}|

3 Computational Results

In this section we present two sets of experiments: the preliminary experiments,
performed to tune the parameters of the proposed algorithm; and the final exper-
iment designed to test the quality of our proposal and compare it with the current
state of the art. All the algorithms have been coded in Java 8 and were executed
on a computer with an Intel i7 (7660U) CPU with 2.5 GHz and 8 GB RAM.

We use the same data set presented in [22], which consist of 30 instances with
sizes n = {250, 500} and different densities. This data set is used to compare the
performance of our algorithm with the current state of the art.

In these experiments we report: the average size of the largest balanced
biclique obtained, Avg. Size; the average execution time per instance, Avg. Time
(s); the average percentage deviation to the best solution found in the experi-
ment, %Dev.; and the number of times an algorithm reaches the best solution
found for a given instance in the current experiment, # Best.

3.1 Preliminary Experiments

The following experiments are designed to select the best variant for the proposed
algorithm. A small group of 6 representative instances, selected from the original
30, was used in these experiments to avoid overfitting the parameters to the data
set in the final experiment.

The first experiment is designed for testing the effect of the α parameter in
the constructive procedure, considering α = {0.25, 0.50, 0.75,RND}. The RND
value means that we will use a different α-value, selected randomly, in each
iteration. The results in Table 2 show us that the best performance is achieved
when alpha is selected randomly in each iteration. The procedure obtains on
average a balanced biclique of 52.67 vertices and finds the best solutions among
this experiment for all 6 instances. The results obtained shows that considering
small values of α (i.e., increasing the randomness of the method) always results
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Table 2. Comparison of the constructive method when considering different values
for α.

α Avg. size Avg. time (s) %Dev. #Best

0.25 46.17 375.00 11.67 0

0.50 48.33 375.00 8.16 0

0.75 51.83 375.00 1.40 2

RND 52.67 375.00 0.00 6

in worse quality solutions. However, the RND value allows us to diversify the
search by considering both small and large values of α, thus obtaining the best
results in terms of average objective function value, average deviation, and total
number of best solutions found. Therefore, in the following experiments we will
use this configuration for the α parameter in our proposal.

Table 3. Comparison of the RVNS algorithm for a fixed neighborhood Kmax = 50 and
different variations of the shake procedure.

Shake Avg. size Avg. time (s) %Dev. #Best

RR 48.83 375.00 9.59 0

RG 54.17 375.00 0.00 6

GR 49.50 375.00 8.48 0

GG 53.17 375.00 2.07 0

The next experiment is designed to select the best variant for the shake
procedure. We assume a kmax = 0.5 · n and consider the four variants of the shake
procedure according the type of destruction, random (R) or greedy (G), and the
type of reconstruction, random (R) or greedy (G), as presented in Sect. 2.2. We
can see in Table 3 the results for this experiment and how the variant RG, random
removal with greedy reconstruction, has the best performance. It achieves an
average size of 54.14 and find better solutions than all other variants in all 6
instances. Notice that the best results are obtained when considering a greedy
reconstruction, but the inclusion of the random destruction is able to reach better
quality solutions than the greedy destruction.

In the last preliminary experiment we want to measure the impact of the
maximum neighborhood explored in our algorithm. We use the best configu-
ration of the previous experiments and test different neighborhoods kmax =
{0.10, 0.20, 0.30, 0.40, 0.50} for our RVNS framework. It is important to remark
that a neighborhood k removes k · n vertices of the solution. In this experi-
ment we can see that expanding the size of the neighborhood generally allows to
reach better solutions as the %Dev. decreases. However, this improvement stag-
nates after kmax = 0.40 where the algorithm reaches its maximum performance
(Table 4).
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Table 4. Comparison of the RVNS algorithm when considering different values for
Kmax .

Kmax Avg. cost Avg. time (s) %Dev. #Best

0.10 53.50 375.00 1.45 2

0.20 53.50 375.00 1.17 2

0.30 53.83 375.00 0.62 4

0.40 54.17 375.00 0.00 6

0.50 54.17 375.00 0.00 6

Analyzing the preliminary experimentation, the best algorithm is configure
with α = RND for the constructive procedure, the shake variant RG which con-
siders random destruction and greedy reconstruction, and a maximum neighbor-
hood of kmax = 0.40.

3.2 Final Experiment

In the last experiment we compare our proposal with the best algorithm found in
the state of the art [22] using the same set of 30 instances. In particular, it consists
of a memetic algorithm that considers a local search based on structure mutation.
RVNS is executed iteratively until reaching a time limit in seconds equal to three
times the size of the current instance. Table 5 shows the results obtained when
comparing the best variant of RVNS with the memetic algorithm (EA/SM). As it
can be derived from the table, RVNS is able to find (on average) bicliques of just
one node less than the bicliques obtained by the memetic algorithm. However,
it has an execution time that is roughly half of the memetic algorithm.

Table 5. Comparison of the RVNS algorithm with the best in the state of art.

Avg. size Avg. time (s) %Dev. #Best

EA/SM 55.10 2075.11 0.04 29

RVNS 54.33 1125.00 1.71 10

4 Conclusions

This work analyzes the performance of Reduced VNS for generating high quality
solutions for the Maximum Balanced Biclique Problem efficiently. Specifically,
we propose an intensified shaking stage which is conformed by a destruction
and reconstruction phase. The experiments performed show the relevance of
performing these phases in a random or greedy manner. The results obtained
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show the possibilities of the RVNS proposal, obtaining, on average, solutions
that are really close to the best ones found in the state of the art. Furthermore,
the absence of a local search in the proposed algorithm allows it to require half
of the computing time of the best algorithm found in the literature.
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2. Alon, N., Duke, R.A., Lefmann, H., Rödl, V., Yuster, R.: The algorithmic aspects
of the regularity lemma. J. Algorithms 16(1), 80–109 (1994)

3. Baker, E.J., et al.: Ontological discovery environment: a system for integrating
gene-phenotype associations. Genomics 94(6), 377–387 (2009)

4. Cheng, Y., Church, G.M.: Biclustering of expression data. In: Proceedings of the
8th ISMB, pp. 93–103. AAAI Press (2000)

5. Chesler, E.J., Langston, M.A.: Combinatorial genetic regulatory network analysis
tools for high throughput transcriptomic data. In: Eskin, E., Ideker, T., Raphael,
B., Workman, C. (eds.) RRG/RSB -2005. LNCS, vol. 4023, pp. 150–165. Springer,
Heidelberg (2007)

6. Dawande, M., Keskinocak, P., Swaminathan, J.M., Tayur, S.: On bipartite and
multipartite clique problems. J. Algorithms 41(2), 388–403 (2001)

7. Feige, U., Kogan, S.: Hardness of approximation of the balanced complete bipartite
subgraph problem. Technical report (2004)

8. Feo, T.A., Resende, M.G.: Greedy randomized adaptive search procedures. J.
Global Optim. 6(2), 109–133 (1995)

9. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. Freeman, New York (1979)

10. Hansen, P., Mladenović, N.: Variable Neighborhood Search, pp. 313–337. Springer,
Boston (2014)

11. Johnson, D.S.: The NP-completeness column: an ongoing guide. J. Algorithms
13(3), 502–524 (1992)

12. Mushlin, R.A., Kershenbaum, A., Gallagher, S.T., Rebbeck, T.R.: A graph-
theoretical approach for pattern discovery in epidemiological research. IBM Syst.
J. 46(1), 135–150 (2007)

13. Ravi, S.S., Lloyd, E.L.: The complexity of near-optimal programmable logic array
folding. SIAM J. Comput. 17(4), 696–710 (1988)

14. Sanderson, M.J., Driskell, A.C., Ree, R.H., Eulenstein, O., Langley, S.: Obtaining
maximal concatenated phylogenetic data sets from large sequence databases. Mol.
Biol. Evol. 20(7), 1036–1042 (2003)

15. Tahoori, M.B.: Application-independent defect tolerance of reconfigurable nanoar-
chitectures. JETC 2(3), 197–218 (2006)

16. Tahoori, M.B.: Low-overhead defect tolerance in crossbar nanoarchitectures. JETC
5(2), 11 (2009)

17. Tanay, A., Sharan, R., Shamir, R.: Discovering statistically significant biclusters
in gene expression data. In: ISMB, pp. 136–144 (2002)

18. Wang, H., Wang, W., Yang, J., Yu, P.S.: Clustering by pattern similarity in large
data sets. In: Franklin, M.J., Moon, B., Ailamaki, A. (eds.) SIGMOD Conference,
pp. 394–405. ACM (2002)



124 J. D. Quintana et al.

19. Yannakakis, M.: Node-deletion problems on bipartite graphs. SIAM J. Comput.
10(2), 310–327 (1981)

20. Yuan, B., Li, B.: A low time complexity defect-tolerance algorithm for nanoelec-
tronic crossbar. In: International Conference on Information Science and Technol-
ogy, pp. 143–148 (2011)

21. Yuan, B., Li, B.: A fast extraction algorithm for defect-free subcrossbar in nano-
electronic crossbar. ACM J. Emerg. Technol. Comput. Syst. (JETC) 10(3), 25
(2014)

22. Yuan, B., Li, B., Chen, H., Yao, X.: A new evolutionary algorithm with structure
mutation for the maximum balanced biclique problem. IEEE Trans. Cybern. 45(5),
1040–1053 (2015)



General Variable Neighborhood Search
for Scheduling Heterogeneous Vehicles

in Agriculture
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1 Introduction

Vehicle Scheduling Problem (VSP) is a classical problem in operations research,
appearing in applications such as public transport systems and transportation of
different types of goods. It also arises as a subproblem of more complex schedul-
ing and management problems when optimizing the performance of large sys-
tems. The goal of VSP is to find the set of trips that each vehicle will make during
the considered time period in order to optimize a given objective function [9].
In the literature, there are many variants of VSP proposed up to now, which
differ by the objective function used, constraints involved, and specific restric-
tions that arise from the observed situation in practice (for example, differences
across transport agencies, type of goods to be transported, policies of different
agencies, time or financial limits imposed, etc). In general, vehicle scheduling
problems are very hard to solve and most of them belong to the class of NP-
hard problems. A survey on vehicle scheduling problems, their classification and
solution methods can be found in [4,7,18].

This study is motivated by previous research on optimization of sugar beet
transportation in sugar industry in Serbia [1,2]. Having in mind that sugar beet
has very low price on the market, major costs in sugar production refer to the
costs of transport. In order to keep the farmers interested in producing sugar
beet, large sugar companies usually take over all transportation costs. More
precisely, they rent vehicles and hire workers to perform loading of goods at
agreed locations, transportation to the factory, and unloading at the factory
area. Decreasing the costs of transporting of sugar beet to the factory may sig-
nificantly increase the profit of a sugar company. Therefore, an efficient schedul-
ing of vehicles that includes all problem specific constraints with the minimum
expenditure of time and money is required.

Instead of assuming that vehicles used for transportation are homogenous
[1,2], we consider that a factory rents vehicles of different types, which implies
different capacities of vehicles. Therefore, the variant of VSP considered in this
study represents a generalization of the problem from [1,2] and is denoted as
Vehicle Scheduling Problem with Heterogenous Vehicles - VSP-HV.

Majority of VSP applications are related to public transportation, trans-
portation of fuel, valuable items, etc. Only few papers in the literature focus
on the transport of agricultural goods in sugar industry. Studies [13,16,19] deal
with optimizing of sugar cane transportation and propose different variants of
vehicle scheduling and vehicle routing problems, as well as adequate solution
approaches. However, these problems are different from the variant of VSP con-
sidered in this study, due to the differences between sugar cane and sugar beet,
the type of vehicles used for transport, and the available resources of the sugar
company.

We formulated VSP-HV for sugar beet transportation as a Mixed Integer
Quadratically Constrained Program (MIQCP) and used it within the frame-
work of the commercial Lingo 17 solver in order to solve real-life and generated
problem instances. As Lingo 17 returned optimal or feasible solutions only for
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small-size instances, we developed a variant of Variable Neighborhood Search
(VNS) metaheuristic as solution approach to the considered VSP-HV.

VNS is a metaheuristic method proposed by Mladenović and Hansen [17]
based on the use of different neighborhood structures while exploring the solution
space. VNS and its variants have been successfully applied to a wide variety of
NP-hard problems of combinatorial and continuous optimization, see [10,11]. In
the literature, VNS-based methods have been proposed as solution approaches to
vehicle scheduling and vehicle routing problems, such as: inventory routing and
scheduling problems in supply chains [14], location routing scheduling problem
[15], dynamic rich vehicle routing problem with time windows [3], vehicle routing
problem with multiple trips [8], heterogeneous fleet vehicle routing problem for
transportation of hazardous materials [6], periodic vehicle routing problem [12],
vehicle routing problem with clustered backhauls and 3D loading constraints [5],
etc.

Studies [1,2] that deal with VSP for sugar beet transportation with homoge-
nous vehicles and limited resources at collection centers and at the factory area
also propose the application of VNS-based methods. In [2], basic variant of VNS
(BVNS) is proposed, while the study [1] presents an improved variant of BVNS
from [2] and introduces Skewed VNS (SVNS) as another solution approach for
the same problem. Computational results presented in [1,2] show that VNS-
based methods represent promising solution approaches to VSP for sugar beet
transportation. Therefore, in this study, we also propose VNS-based method, a
General Variable Neighborhood Search (GVNS) for VSP-HV. The assumption
that vehicles have different capacities leads to differences in the proposed GVNS
implementation when compared to VNS approaches from [1,2] for VSP with
homogenous vehicles. For example, we have to take into account the differences
in loading and unloading times among nonhomogenous vehicles, moves within
the neighborhoods that will preserve the feasibility of solutions; the changes in
the amount of goods arrived to the factory when two vehicles of different types
exchange their tours, etc.

The rest of the paper is organized as follows. Problem description is pre-
sented in Sect. 2. The proposed GVNS heuristic is explained in details in Sect. 3.
Computational results are presented and analyzed in Sect. 4. Finally, in Sect. 5,
some conclusions and directions for future work are given.

2 Problem Description

Within the sugar beet harvesting season, the transportation plan is made on
a daily basis. The ultimate request is to satisfy the daily factory needs, con-
cerning the amount of sugar beet transported to the factory. As the starting
process of factory machines is very expensive, we need to assure that they work
continuously during the whole season.

In the considered problem, it is assumed that rented vehicles are not homo-
geneous regarding their capacities. On the other hand, as the maximal speed
of heavy vehicles is limited, we suppose that all vehicles have the same average
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speed. The factory area is starting and finishing point for each vehicle. After
departing from the factory, a vehicle drives to a location with collected sugar
beet, where it is being loaded, and then drives back to the factory area (Fig. 1).
Note that a vehicle visits only one location per tour, because the company wants
to prevent the possibility of obtaining a low quality mixture of sugar beet from
different locations. On the other hand, the quantities of sugar beet collected at
each location exceed vehicle’s capacity, and therefore, each location has to be
visited several times in order to be emptied. A vehicle departs from a location
fully loaded, except maybe in the last visit to a location. After arrival at the
factory area, a vehicle needs some time for unloading and analyzing the samples
before it starts the next tour. However, the sugar beet is time sensitive agricul-
ture material, and therefore, the collected goods should not stand in the open
for too long, otherwise, the quality will be lost. In the case that at some location,
the collected sugar beet is kept longer than a predetermined number of days, this
location is considered as urgent and must be emptied during the day. Therefore,
the objective is to empty all urgent locations and to satisfy the daily factory
needs while minimizing the transportation time. In addition, it is assumed that
two vehicles cannot be loaded at the same location in the same time, as there
is usually only one loading machine available. For this reason, the difference in
arrival times of two different vehicles at a location must not be smaller than the
duration of loading of the vehicle that arrived first to this location. It is also
assumed that the factory has enough labor, machines, and space for handling a
limited number of vehicles. Therefore, the queues of vehicles are not allowed at
the factory area and at each location.

,

Fig. 1. Sugar factory (left) and loading of vehicle (right) (Photos by courtesy of
company Sunoko www.sunoko.rs)

A vehicle’s schedule is defined by the array of locations to be visited during
the working day and the corresponding departure times from the factory. The
goal of the problem is to find a feasible schedule (the one in which all urgent
locations are emptied and daily factory needs are satisfied) for a given set of
vehicles such that the required working time, i.e., the moment of time when all
vehicles finish their tours is minimized.

www.sunoko.rs
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The considered VSP-HV represents a generalization of the VSP proposed
in [1], which is proved to be NP hard in the same study. Having in mind that
VSP-HV includes all problem specific constraints of VSP from [1], except the
assumption of heterogeneous instead of homogeneous vehicles, it can be con-
cluded that the considered VSP-HV is also NP-hard optimization problem.

We have developed a Mixed Integer Quadratically Constraint Programming
(MIQCP) model for the considered VSP-HV. As the presentation of the proposed
MIQCP model is too large for this paper, the complete formulation can be found
at http://www.mi.sanu.ac.rs/∼tanjad/MIQCP VSP-HV.pdf.

In our MIQCP formulation, we have used the concept of virtual tours in order
to equalize the number of tours for all vehicles [1,2]. It is assumed that during a
virtual tour a vehicle stays at the factory area, meaning that the duration of a
virtual tour is equal to zero. Therefore, virtual tours do not affect the objective
function value and the problem constraints, as they are simply discarded from
a solution during the objective function calculation.

Example 1. Let us consider a problem instance, denoted as E4,4,4, which includes
4 locations, 4 vehicles and maximally 4 tours during the working day with the
following data:

– the quantities at locations: 50, 150, 70, 150 tons;
– daily factory needs: 310 tons;
– the number of days that the goods are kept in the open: 4, 8, 5, 9 days;
– the maximal number of days that the goods can stay in the open without

losing quality: 7 days;
– the distances of locations from the factory: 60, 30, 40, 50 km;
– capacity of vehicles: 26, 20, 13, 25 tons;
– vehicle’s loading times: 0.11, 0.09, 0.06, 0.11 h;
– the times that vehicles spend in factory area between two tours: 0.17, 0.16,

0.14, 0.17 h;
– the average speed of a vehicle: 35 km/h;
– the maximal number of vehicles that can be unloaded in the same time at

the factory area: 3;
– starting time: 6 h;
– the end of working day: 24 h.

For this instance, the optimal solution can be represented by the following two
matrices:

Sopt =

⎡
⎢⎣

2 4 4 2
4 4 4 0
3 2 2 4
4 2 2 2

⎤
⎥⎦ , Topt =

⎡
⎢⎣

6.000 7.994 11.131 14.269
6.110 9.217 12.324 15.431
6.000 8.486 10.400 12.314
6.000 9.137 11.131 13.126

⎤
⎥⎦.

Each row of the matrix Sopt corresponds to one vehicle and contains indices
of locations visited by this vehicle. The last tour of the second vehicle, denoted
by 0, is virtual. According to the presented data, it can be concluded that the
urgent locations 2 and 4 are emptied, as the sum of capacity of vehicles that visit

http://www.mi.sanu.ac.rs/~tanjad/MIQCP_VSP-HV.pdf
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each of these locations multiplied by the number of visits exceeds the quantities
at these locations. The transported amounts from locations 1, 2, 3, and 4 are:
0, 150, 13, and 150 tons, respectively. Therefore, the total amount of 313 tons
is delivered to the factory, meaning that the daily factory needs of 310 tons are
satisfied. Matrix Topt contains the departure times for all vehicles in their tours,
i.e., each row corresponds to a vehicle and column corresponds to a tour. The
finishing times for vehicles are calculated based on the values in the last column
of matrix Topt and the location’s serving times. In this example, the matrix of
serving times P is:

P =

⎡
⎢⎣

3.7086 1.9943 2.5657 3.1371
3.6786 1.9643 2.5357 3.1071
3.6286 1.9143 2.857 3.0571
3.7086 1.9943 2.5657 3.1371

⎤
⎥⎦,

where rows correspond to vehicles, while columns are related to locations.
The finishing time of a vehicle is calculated as the departure time in its last

tour increased by the time needed for serving visited location. As the second
vehicle has a virtual tour as the last one, its finishing time is equal to the
departure time in its last tour. Therefore, the finishing times for vehicles in
this example are: 16.263, 15.431, 15.371, and 15.120 respectively. The maximum
among these values is the objective function value of 16.263 (approximately 16 h
15 min 47 s).

3 General Variable Neighborhood Search for Vehicle
Scheduling Problem with Heterogeneous Vehicles

VNS is a metaheuristic method based on systematic change of neighborhoods
during the search [10,11]. It consists of three main VNS steps: Shaking, Local
Search and Move or Not, that are repeated within VNS loop until a termina-
tion criterion is satisfied. In order to apply VNS metaheuristic to the specific
optimization problem, main elements of VNS implementation (solution repre-
sentation, objective function calculation, neighborhood structures, the strategy
for generating initial solution, and termination criterion) must be adapted to the
considered problem.

In this section, we present GVNS for VSP-HV. GVNS is a variant of VNS
method that uses Variable Neighborhood Descent (VND), a deterministic variant
of VNS, instead of classical Local Search step [11]. In the next subsections, the
elements of the proposed GVNS are explained in details.

3.1 Solution Representation

In our GVNS implementation, solution is represented by two matrices S =
[v1, v2, . . . , vm]T and T = [t1, t2, . . . , tm]T . S is an integer matrix of dimension
m×rmax, where m denotes the number of available vehicles and rmax represents
the maximal number of tours. Each row vi = [vi,1, vi,2, . . . , vi,rmax

] corresponds
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to one vehicle and contains a list of locations that the observed vehicle visits
during the working day. More precisely, vi,r = j means that vehicle i visits loca-
tion j in its tour r. A row ti = [ti,1, ti,2, . . . , ti,rmax

] of the real valued matrix T ,
that has the same dimension as the matrix S, contains the departure times of
vehicle i in its tours r = 1, 2, . . . , rmax.

Although the maximal number of tours of a vehicle during the working day
is set to rmax, it may happen that some vehicles make less than rmax tours,
having in mind that the daily transport finishes when the required amount of
goods is transported to the factory and all urgent locations are emptied. In the
case when a tour r of a vehicle i is virtual, si,r = 0 holds. For simplicity, virtual
tours, if they exist, are located at the end of each row of matrix S. The departure
times that correspond to virtual tours of the same vehicle are mutually equal
and represent the finishing time for the observed vehicle.

3.2 Objective Function Calculation

In order to calculate the objective function value more efficiently, we perform a
preprocessing phase to compute serving time for each location by each vehicle.
The serving time for location j by vehicle i is a real value that depends on
the distance of the considered location from the factory and the type of vehicle
and presents the duration of driving from the factory to location and back with
the corresponding loading and unloading times. All calculated serving times are
stored in matrix P .

Based on the values in matrices S and P , the procedure for objective function
calculation computes departure time for each vehicle in each tour as follows. The
departure time in the first tour of each vehicle is set to the value that corresponds
to the beginning of a working day. The departure time in each of the remaining
tours of a vehicle is computed as the departure time in its previous tour increased
by the serving time of the location visited in the previous tour by the considered
vehicle.

The obtained matrix T is further transformed in order to satisfy two prob-
lem specific constraints: two vehicles cannot be loaded in the same time at any
location and only p vehicles, loaded with sugar beet, can be served at the fac-
tory area in the same time. For this reason, the procedure for objective function
calculation iteratively corrects the elements ti,r as follows. In the first step, the
procedure checks if there is a conflict at some location, i.e., if one or more vehi-
cles arrive to a location during the loading of some other vehicle. For all those
vehicles, (if there is any) the departure times in their current tours and all sub-
sequent ones are increased by the minimal value that resolves the conflict. This
step is performed for all vehicles and all tours. The second step refers to resolv-
ing conflicts at the factory area. If there is more than p vehicles at the factory
area loaded with sugar beet in the same time, the departure times for the p
vehicles that have the lowest values of their arrival times to the factory area
stay unchanged, while departure times for the remaining vehicles in their cur-
rent tours are increased by the smallest possible value that resolves this conflict.
Once the departure time for a vehicle in a tour is increased, the departure times
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for all subsequent tours of the same vehicle are increased by the same value and
the second step is completed. The second step is performed for all vehicles and
all tours. As a result of the second step, new conflicts at locations may occur.
Therefore, the described steps alternate until all conflicts are resolved and the
matrix of departure times that corresponds to a feasible solution is determined.
For each vehicle, the finishing time is calculated as the departure time in its
last non-virtual tour increased by the time needed to serve location visited in
this tour. Finally, the maximum of finishing times among all vehicles has to be
determined as it represents the objective function value.

3.3 Generating Initial Solution

In order to generate feasible initial solution of the considered problem, the fol-
lowing strategy is used. First, the locations are sorted according to two criteria:
urgency and their distances from the factory. Priority is given to urgent loca-
tions, which are sorted in nondecreasing order according to their distances from
the factory, followed by non-urgent locations sorted in the same way. The matrix
of initial solution Sinit is generated by taking one by one location from the sorted
list and filing the columns of matrix Sinit starting from the first one, then the
second, third etc. The index of each location appears several times as the ele-
ment of matrix Sinit, depending on the number of visits required to empty the
observed location. When choosing a vehicle that will serve a location in the con-
sidered tour, the priority is given to the vehicles of higher capacities. As the
matrix Sinit is filled column by column, at the beginning we define first tours of
all vehicles, then the second ones, and the rest of them.

A vehicle can start its tour to a location if this tour can be served within
a working time, otherwise a tour to that location will be assigned to the next
vehicle. When all urgent locations are served and the factory needs regarding
the amount of delivered goods are satisfied, all remaining tours become virtual.
The matrix of departure times and objective value for initial solution generated
in this way are obtained using the procedure described in Subsect. 3.2.

Example 2. For instance E4,4,4 from Example 1, the list of locations sorted by
priority is (2, 4, 3, 1). Locations 2 and 4 are urgent, as the goods at these two
locations are kept in the open for more than 7 days. Note that location 2 has
higher priority than location 4, as it is closer to the factory. Urgent locations
2 and 4 are followed by non-urgent locations 3 and 1, which are also sorted in
non-decreasing order according to their distances from the factory. Matrix Sinit

and the corresponding matrix Tinit are:

Sinit =

⎡
⎢⎣

2 2 4 4
2 2 4 4
2 4 4 3
2 2 4 4

⎤
⎥⎦ , Tinit =

⎡
⎢⎣

6.260 8.254 10.249 13.386
6.170 8.134 10.099 13.206
6.000 7.914 10.971 14.029
6.060 8.054 10.049 13.186

⎤
⎥⎦.

As location 2 with 150 tons has the highest priority, it must be visited in
the first tours of all vehicles, as well as in three additional tours in the second
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column of matrix Sinit. The next location 4 with the same amount of goods is
visited one more time compared to location 2, due to the smaller capacity of
remaining available vehicles. Finally, one more tour to the location 3 is needed
to complete the daily factory needs.

Starting from the generated matrix Sinit, the elements of the corresponding
matrix T are calculated using the procedure described in Subsect. 3.2. From the
first column of matrix T , it can be seen that the departure times of the first tours
of vehicles 1, 2, and 4 are increased compared to the starting time of 6.000 h.
This is the result of the transformation applied to matrix T in order to provide
feasibility of the solution. Namely, the departure times for vehicles 2 and 4 are
increased in order to avoid conflicts of vehicles at a location, while the departure
time of vehicle 1 is further increased to resolve the conflict at the factory area.
Finally, the finishing times of vehicles are: 16.523, 16.313, 16.514, and 16.323,
respectively. Therefore, the objective function value of the generated solution is
16.523 h (approximately 16 h 31 min 23 s).

3.4 Neighborhood Structures

Four neighborhood structures are used in our GVNS implementation. Neighbor-
hood N1 of solution S consist of all neighbors obtained when a pair of vehicle
exchanges a pair of their non-virtual tours. Figure 2 illustrates a move within
neighborhood N1, using data from the Example 1. The pair of tours exchanged
between the first and the second vehicle are bolded in Fig. 2. A N2-neighbor of
solution S is obtained when a location in a non-virtual or the first virtual tour
is replaced with another location that is not emptied. An example for each one
of these two moves is presented on the left and the right side of Fig. 3, respec-
tively. Neighborhood N3 consists of all solutions obtained from S by exchanging
locations in a pair of non-virtual tours of the same vehicle (see Fig. 4). Finally, a
N4-neighbor of solution S is defined by the following move: the last non-virtual
tour of a vehicle is replaced with a virtual tour (see Fig. 5).

S =

2 2 4 4
2 2 4 4
2 4 4 3
2 2 4 4

S =

2 2 4 2
2 4 4 4
2 4 4 3
2 2 4 4

Fig. 2. A move in neighborhood N1

S =

2 2 4 2
4 4 4 0
3 2 2 4
4 2 2 2

S =

2 2 4 2
4 4 4 0
1 2 2 4
4 2 2 2

or S =

2 2 4 2
4 4 4 0
3 2 2 4
4 2 2 2

S =

2 2 4 2
4 4 4 1
3 2 2 4
4 2 2 2

Fig. 3. A move in neighborhood N2
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S =

2 2 4 4
2 2 4 4
2 4 4 3
2 2 4 4

S =

2 2 4 4
2 2 4 4
2 4 4 3
4 2 2 4

Fig. 4. A move in neighborhood N3

S =

2 2 4 4
2 2 4 4
2 4 4 3
2 2 4 4

S =

2 2 4 4
2 2 4 4
2 4 4 0
2 2 4 4

Fig. 5. The neighborhood N4

During the search within neighborhoods N2 and N4, we allow the algorithm
to remove urgent locations from a solution by replacing them with other loca-
tions or a virtual tour, respectively. This was not a case in the VNS based
implementations from [1,2] that deal with scheduling of homogeneous vehicles,
where the number of visits to urgent locations in the solution remains constant
during the search. If vehicles have different capacities, the number of visits to
an urgent location depends on the capacity of available vehicles. Note that the
moves within neighborhoods N2 and N4 may violate feasibility of a solution but
in the case of neighborhood N2, another move within the same neighborhood can
produce feasible solution again. The infeasible moves within N4 are descarded.

3.5 GVNS Implementation

The main steps of the proposed GVNS method are presented in Algorithm1.
After generating an initial solution, GVNS continues by repeating the three
main steps (Shaking, VND, and Move or Not together with the neighborhood
change step) until a stopping criterion is met. In our implementation, algorithm
stops when maximum CPU running time (tmax) is reached. Shaking uses two
neighborhood structures N1 and N2. First, neighborhood N1 is explored in dif-
ferent sizes from k = 1 to k = kmax. A N1-neighbor of solution S of size k is
obtained by performing k times a random move that defines this neighborhood.
When k reaches the maximum value kmax, Shaking switches from neighborhood
N1 to N2. This neighborhood change is controlled by indicator ind. If Shaking
in neighborhood N2 produced an infeasible solution, a move is repeated in the
same neighborhood until a feasible solution is found.

Feasible solution obtained by Shaking is passed to the local search phase -
VND for a potential improvement. The local minimum S′′ returned by VND is
compared with the incumbent S. If S′′ is better than S regarding the objective
function value, S is replaced with S′′ and the algorithm starts from the first
neighborhood N1 (k = 1). Otherwise, k is increased by 1 or the neighborhood is
changed to N2 in the case when k = kmax. Note that Shaking in N2 consists of a
single move defining that neighborhood, i.e., k is not used while Shaking in N2.
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Algorithm 1. The proposed GVNS for VSP-HV
procedure GVNS(Problem Data, kmax, tmax)

Generate initial solution S;
repeat

ind ← 1;
k ← 1;
while (ind ≤ 2) do

if k ≤ kmax then
S′ ← ShakeN1(S, k): //Shaking

else
S′ ← ShakeN2(S):

if S′ is feasible then
S′′ ← V ND(S′): //VND
if S′′ is better than S then //Move or Not

S ← S′′;
k ← 1;
ind ← 1;

else k ← k + 1;

if k > kmax then ind ← ind + 1;

until SessionT ime ≥ tmax

The structure of the proposed VND is presented in Algorithm 2. This step
includes deterministic search of two neighborhoods N3 and N4 using Best
improvement strategy. The search alternates between neighborhoods as long as
an improvement is obtained.

Algorithm 2. VND
procedure VND(Problem Data, S′)

S′′ ← S′;
while (Improvement) do

ind ← 1;
while (ind ≤ 2) do //Local Search

if ind = 1 then
Find the best neighbor S′′ ∈ N3(S

′);
else

Find the best neighbor S′′ ∈ N4(S
′);

if f(S′′) < f(S′) then //Move or Not
S′ ← S′′;
ind ← 1;

else ind ← ind + 1;
return (S′);

4 Computational Study

Experimental results obtained by Lingo 17 commercial solver were carried
out on Intel Core i7-4578U processor on 3.00 GHz with 16 GB RAM memory
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under Mac operating system. The designed GVNS was run using Intel Core i7-
2600 processor on 3.40 GHz with 12 GB RAM memory under Linux operating
system. According to the PassMark single thread CPU Benchmark (https://
www.cpubenchmark.net/singleThread.html) and single core Mac Benchmarks
(https://browser.geekbench.com/mac-benchmarks), ratings of the Intel Core i7-
4578U and the Intel Core i7-2600 processors are 3757 and 1942, respectively. In
order to ensure fair comparison of the results obtained on these two platforms,
Lingo running times should be multiplied by 1.9346.

Two sets of instances were used: the set of real-life problem instances that
includes 30 instances up to 15 locations, 20 vehicles, and maximum 15 tours, and
the set of 10 generated problem instances with up to 50 locations, 50 vehicles,
and 20 tours. All instances used in our computational study are available at
http://www.mi.sanu.ac.rs/∼tanjad/VSP-HV-Instances.zip.

In our computational study, we imposed the time limit of 10 h on Lingo 17
solver. Within this time limit, Lingo 17 produced optimal or feasible solutions
only for small-size problem instances. Due to the stochastic nature, the designed
GVNS algorithm was run 30 times on each problem instance. The value of param-
eter tmax used in stopping criterion was set to tmax = 1 s for small-size instances
solved to optimality, tmax = 10 s for small-size instances for which Lingo pro-
duced only feasible solutions, tmax = 20 s for medium-size real-life instances, and
tmax = 200 s for large-size generated problem instances. Parameter tuning tests
were carried out on the subset of real-life and generated instances in order to
chose adequate value for parameter kmax. Eight different expressions for kmax

as a linear function of maximal number of tours (rmax) were examined. Based
on the obtained results, we have chosen kmax = (rmax +1)/2+1, as it produced
solutions of highest quality on the considered subset of instances.

Experimental results on small-size real-life instances, previously solved to
optimality by Lingo solver are presented in Table 1. Instance’s name (En,m,rmax

)
is indicated in the first column. We used n to denote the number of locations,
m stands for the number of vehicles, and rmax indicates the maximal number of
tours during the working day. The next two columns show the results provided by
Lingo solver and contain optimal solution (opt. sol.), with the corresponding Intel
Core i7-4578U running times t(s) in seconds. GVNS results are presented in the
last three columns of Table 1: the best objective function value (best), the average
Intel Core i7-2600 running time t(s) that GVNS needed to reach best/optimal
solution, and the average percentage gap (gap(%)) of GVNS solution from the
best/optimal one, calculated over 30 consecutive runs. We used the mark opt to
denote the case when GVNS reached optimal solution in at least one of 30 runs.
The last row (Average) contains the average values of data presented in each
column.

Based on the results presented in Table 1, it can be seen that GVNS reached
all optimal solutions almost immediately (i.e., for 0.007 s on average), while Lingo
average running time is 3694.912 s. The exceptions are instances E4,2,3, E5,2,4,
and E6,2,4 on which GVNS provided lower quality solutions in some executions.
For this reason, the average percentage gap is 0.345%. The results on all instances

https://www.cpubenchmark.net/singleThread.html
https://www.cpubenchmark.net/singleThread.html
https://browser.geekbench.com/mac-benchmarks
http://www.mi.sanu.ac.rs/~tanjad/VSP-HV-Instances.zip
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Table 1. Computational results on small-size real-life instances solved to optimality
by Lingo 17 solver

Instance Lingo 17 GVNS

En,m,rmax opt. sol. t(s) best t(s) gap(%)

E3,2,4 15.491 325.87 opt 0.000 0.000

E3,3,2 10.380 19.96 opt 0.000 0.000

E3,3,3 13.607 2330.48 opt 0.000 0.000

E3,4,2 10.610 30009.75 opt 0.000 0.000

E4,2,3 10.976 23.23 opt 0.000 3.573

E4,2,4 11.89 39.37 opt 0.000 0.000

E4,3,2 10.686 84.37 opt 0.000 0.000

E4,3,3 11.713 8119.9 opt 0.121 0.000

E5,2,3 9.807 37.670 opt 0.000 0.000

E5,2,4 12.299 359.94 opt 0.000 0.014

E5,3,2 10.806 76.870 opt 0.000 0.000

E5,3,3 13.637 4338.98 opt 0.000 0.000

E5,3,4 16.263 15397.58 opt 0.000 0.000

E6,2,3 11.411 56.800 opt 0.000 0.000

E6,2,4 12.469 722.190 opt 0.000 2.278

E6,3,2 9.713 232.43 opt 0.000 0.000

E6,4,2 9.417 638.11 opt 0.000 0.000

Average 11.834 3694.912 opt 0.007 0.345

unsolved to optimality by Lingo 17 within 10 h are presented in Table 2. The
first column and the last three columns are organized in the same way as in
Table 1. In cases when Lingo produced only feasible solutions, we presented the
upper (UB) and lower bound (LB) in the second and third column, respectively.
Average values are calculated and presented in the last row (Average), but only
for columns that contain data for each instance.

As it can be seen from Table 2, Lingo succeeded in obtaining feasible solutions
only for seven real-life problem instances, but no optimal solution is provided
within time limit of 10 h. GVNS improved upper bounds for six of these seven
instances (E3,3,5, E4,4,3, E4,4,4, E5,3,4, E5,5,2, and E7,3,3) and in the case of
instance E3,3,4 GVNS returned solution that coincides with the feasible one pro-
vided by Lingo. For the remaining medium-size real-life and generated problem
instances, Lingo failed to provide even a feasible solution within 10 h. On the
other hand, the proposed GVNS produced its best solutions on all instances
presented in Table 2 within 70.345 s on average. The average percentage gap of
GVNS solutions from the best ones is 1.301%.
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Table 2. Computational results on medium-size real-life and generated problem
instances unsolved to optimality by Lingo 17 solver

Instance Lingo 17 GVNS

En,m,rmax UB LB best t(s) gap(%)

E3,3,4 15.160 13.778 15.160 0.000 0.000

E3,3,5 17.750 15.586 15.586 0.000 0.000

E4,4,3 14.358 13.126 14.179 0.001 0.000

E4,4,4 18.498 15.519 16.263 0.250 0.535

E5,4,3 12.966 12.946 12.946 0.012 0.000

E5,5,2 11.783 10.155 10.846 0.000 0.000

E7,3,3 13.216 10.854 11.727 0.000 0.000

E4,5,7 / / 14.297 3.864 0.297

E5,5,5 / / 18.679 2.675 0.737

E5,5,10 / / 17.329 4.839 0.425

E8,6,5 / / 13.930 3.210 1.227

E10,10,10 / / 15.369 16.447 1.105

E15,20,15 / / 30.090 17.259 2.259

Er
10,20,10 / / 24.707 147.870 1.618

Er
10,50,10 / / 40.966 151.276 3.031

Er
20,25,15 / / 33.234 181.332 4.750

Er
20,30,8 / / 23.716 157.454 2.312

Er
30,10,8 / / 18.130 96.695 0.796

Er
30,15,10 / / 23.914 169.929 1.542

Er
40,20,12 / / 27.451 153.546 2.695

Er
40,25,20 / / 52.391 173.001 1.684

Er
50,15,10 / / 24.971 166.299 3.422

Er
50,25,15 / / 36.403 171.974 1.498

Average / / 22.268 70.345 1.301

5 Conclusion

This study considers a generalization of vehicle scheduling problem for sugar beet
transportation analyzed in our previous work. Instead of homogeneous vehicles,
we assume that vehicles of different capacities are used, which implies different
loading and unloading times. For the obtained problem extension, we devel-
oped a MIQCP model by introducing necessary changes in several constraints.
The MIQCP model was used within the framework of Lingo 17 commercial
solver, which provided optimal or feasible solutions only for small-size problem
instances. Therefore, we designed GVNS metaheuristic approach that confirmed
or improved solutions obtained by Lingo and provided solutions for medium-size
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real-life and generated problem instances in short running times. Low values of
average gaps of GVNS solutions from the optimal or the best known ones indi-
cate the stability of the proposed GVNS approach. As a future work, it would
be challenging to combine our GVNS with exact or metaheuristic approach in
order to improve the results. In addition, the problem can be further extended by
involving multidepots, time windows or some additional constraints from prac-
tice. Finally, our GVNS can be adapted for solving similar vehicle scheduling or
routing problems.
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Abstract. Recent advances in networks technology require from
advanced technologies for monitoring and controlling weaknesses in net-
works. Networks are naturally dynamic systems to which a wide variety
of devices are continuously connecting and disconnecting. This dynamic
nature force us to maintain a constant analysis looking for weak points
that can eventually disconnect the network. The detection of weak points
is devoted to find which nodes must be reinforced in order to increase
the safety of the network. This work tackles the α separator problem,
which aims to find a minimum set of nodes that disconnect the net-
work in subnetworks of size smaller than a given threshold. A Variable
Neighborhood Search algorithm is proposed for finding the minimum α
separator in different network topologies, comparing the obtained results
with the best algorithm found in the state of the art.

Keywords: Alpha-separator · Reduced VNS · Betweenness

1 Introduction

Nowadays cybersecurity is becoming one of the most relevant fields for any kind
of users: from companies and institutions to individual users. The increase in the
number of attacks to different networks in the last years, as well as the relevance
of the privacy in the Internet, have created the necessity of having more secure,
reliable and robust networks. A cyberattack to a company that causes loss of
personal information of their clients can result in important economic and social
damage [1]. Furthermore, Denial of Service (DoS) and Distributed Denial of
Service (DDoS) attacks are becoming more common since a successful attack
can result in disabling a service of an Internet provider, for instance. Even more,
if several services are dependent on the service under attack, a cascade failure
can occur, affecting to a large number of clients [3].

It is important to identify which are the most relevant nodes in a network.
This is a matter of interest for both actors in a cyberattack: the attacker and
the defender. The former is interested in disabling these nodes in order to make
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the network more vulnerable while the latter is focused on reinforcing these
important nodes with more robust security measures. On the one hand, the
attacker is interested in causing the maximum damage to the network while
consuming the minimum amount of resources. On the other hand, the defender
wants to reinforce the network minimizing the increase in the maintenance and
security costs. Therefore, it is interesting for both parts to identify which are
the weak points in a network.

We define a network as a graph G = (V,E), where V is the set of vertices,
|V | = n, and E is the set of edges, |E| = m. A vertex v ∈ V represents a node
of the network while an edge (v, u) ∈ E, with v, u ∈ V indicates that there is a
connection in the network between vertices v and u. Let us also define a separator
of a network as a set of vertices S ⊆ V whose removal cause the partition of the
network into two or more connected components. More formally,

V \ S = C1 ∪ C2 . . . ∪ Cp

∀ (u, v) ∈ E� ∃ Ci : u, v ∈ Ci

where E� = {(u, v) ∈ E : u, v /∈ S}.
This work is focused on finding a minimum α-separator S� which is able

to split a network G into connected components of sizes smaller than α · n. In
mathematical terms,

S� ← arg min
S∈S

|S| : max
Ci∈V \S

|Ci| ≤ α · n

It is worth mentioning that the number of resulting connected components
is not relevant in this problem neither as a constraint nor for evaluating the
objective function value. The actual constraint of the α-separator problem (α-
SP) is that the number of vertices in each connected component must be lower
or equal than α · n, where α is an input value. This problem is NP-hard for
general networks topologies when considering α ≤ 2

3 [6]. Some polynomial-time
algorithms have been proposed when the topology of the network is a tree or a
cycle [15]. However, these algorithms require to have previous knowledge on the
topology of the network, which is not usual in real-life problems.

Figure 1 shows an example of a network and two feasible solutions for the
α-SP. The network depicted in Fig. 1(a) is conformed with 9 vertices and 10
edges connecting those vertices. We consider α = 2

3 for this example, so the
connected components of the network must contain 	 2

3 · 9
 = 6 vertices at most.
Figure 1(b) shows a feasible solution S1 = {B, C, E, I} which divides the network
into two connected components C1 = {A, D}, and C2 = {F, G, H}, whose number
of vertices (2 and 3, respectively), are smaller than 6. The second solution, S2 =
{A, B}, depicted in Fig. 1(c), divides the network in three connected components:
C1 = {E}, C2 = {D}, and C3 = {C, G, H, I} (all of them with sizes smaller than 6).
Notice that S2 is better than S1 in terms of objective function value since it is
able to disconnect the network by removing just 2 vertices, while S1 requires to
remove 4 vertices in order to disconnect the network. Notice that neither the size
nor the number of connected components affect to the quality of the solution.
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Fig. 1. (a) Example of a graph derived from a network, (b) a feasible solution with 4
nodes in the separator (B,C,E, and I), and (c) a better solution with 2 nodes in the
separator (A and B)

This problem has been tackled for both exact and heuristic perspectives.
Specifically, polynomial-time algorithms have been presented for special topolo-
gies as trees or cycles, as well as a greedy algorithm with approximation ratio of
α · n + 1 [15]. Additionally, a heuristic algorithm for studying the node separa-
tors in the Internet Autonomous Systems was proposed [17]. Depending on the α
value, the α-separator problem can be related to different well-known problems.
In particular, when α = 1

n , it is equivalent to the minimum vertex cover prob-
lem, and when α = 2

n it is analogous to the minimum dissociation set problem.
Therefore, the α-separator problem is a generalization of these problems, which
are also NP-hard [9]. As far as we know, the best previous heuristic consists
of a random walk algorithm which is based on a Markov Chain Monte Carlo
method [13].

2 Algorithmic Proposal

Variable Neighborhood Search (VNS) [11] is a metaheuristic framework based
on systematic changes of neighborhoods. As a metaheuristic algorithm, it does
not guarantee the optimality of the solutions obtained, but it is focused on
obtaining high quality solutions in reasonable computing times. There are sev-
eral variants of VNS, which are classified taking into account fundamentally
the exploration of the considered neighborhoods. Typically, the neighborhood
structures are analyzed using three different criterion: stochastic (Reduced VNS,
RVNS), deterministic (Variable Neighborhood Descent, VND), or a combination
of both deterministic and stochastic (Basic VNS, BVNS). Furthermore, several
additional variants have been proposed in the last years: General VNS (GVNS),
Variable Neighborhood Decomposition Search (VNDS), Skewed VNS (SVNS),
Variable Formulation Search (VFS), among others.
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The stochastic exploration of the search space is usually recommended for
those problems where the local search method is very computationally demand-
ing. Additionally, it is useful for problems in which the design of a local search is
not clear since the definition of the neighborhoods to be explored is very complex
to be considered in a fast heuristic. In the context of α-SP, any neighborhood
that performs small moves over a feasible solution will probably result in a non-
feasible solution and, therefore, a repair method must be applied after perform-
ing each move. The repair method should consider the feasibility of the solution,
which is very time consuming in the problem under consideration, increasing the
time required to perform a local search.

As stated in Sect. 1, solutions for the α-SP should be generated as fast as
possible, since the integrity of the network highly depends on the performance of
the algorithm, not only in terms of solution quality but also with respect to the
computing time required to produce a solution. RVNS is usually compared with
a Monte-Carlo method, but being RVNS more systematic [14]. Indeed, RVNS has
been able to obtain results competitive with the Fast Interchange [18] method
when applied to the p-Median problem [10]. This work presents a Reduced VNS
algorithm in order to generate high quality solutions in short computing time.
Algorithm 1 presents the general framework of RVNS.

Algorithm 1. RVNS (S, kmax)
1: repeat
2: k ← 1
3: while k ≤ kmax do
4: S′ ← Shake(S, k)
5: k ← NeighborhoodChange(S, S′, k)
6: end while
7: until StoppingCriterion
8: return S

RVNS starts from an initial solution S, which can be generated using a
random procedure or any other complex heuristic or metaheuristic. Addition-
ally, the maximum neighborhood kmax to be explored must be indicated. As
stated in previous works [12], the maximum neighborhood to be considered in
the RVNS algorithm is usually small, to avoid exploring completely different
solutions in each iteration. Finally, the third parameter of the algorithm indi-
cates the stopping criterion. For this work, we consider a maximum number λ
of RVNS iterations.

In each iteration, the algorithm starts from the first considered neighbor-
hood k = 1 (step 2). Then, the algorithm iterates until reaching the maximum
neighborhood kmax (steps 3–6). In each iteration, a random solution S′ in the
current neighborhood k is generated (step 4). Then, the algorithm selects the
next neighborhood to be explored (step 5). In particular, if the objective func-
tion value of S′ is better than the one of S, an improvement is found, updating
the best solution found (S ← S′) and restarting the search from the first neigh-
borhood (k = 1). Otherwise, the search continues with the next neighborhood
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(k ← k + 1). The method ends when performing λ iterations of RVNS (steps
1–7), returning the best solution found during the search (step 8).

2.1 Constructive Method

The main objective of the α-SP is to identify the most important nodes in a
network trying to minimize the size of the separator. To achieve this goal, we can
leverage several characteristics of a node of a graph, such as its degree (number
of edges of a node), its position in the network, or any centrality measure, among
others, as a selection criterion to find the most important vertices in a graph.

This work proposes a greedy constructive procedure for generating the initial
solution. In particular, we propose a greedy function that evaluates the relevance
of a vertex in a graph using a centrality metric known as betweenness centrality
[2], an extended metric in the context of finding relevant users in social networks.

Betweenness centrality considers that a node is important within a network
if it acts as a flow of information in the graph. In order to look for relevant nodes
with respect to this metric, it is necessary to evaluate all the paths between any
pair of nodes of the graph, being the relevance of a vertex directly related to the
number of paths in which it appears. The rationale behind this it that if a vertex
v participates in several paths of the network, then any information transmitted
through it will eventually traverse v.

The betweenness centrality of a node v ∈ V , named as b(v), is evaluated as
the number of paths between any pair of nodes s and t in which v is included,
σ(s, t|v), divided by all the paths that connect s and t, σ(s, t). More formally,

b(v) ←
∑

s,t∈V \{v}

σ (s, t|v)
σ (s, t)

It is worth mentioning that the evaluation of the betweenness is a compu-
tationally demanding process. Specifically, the betweenness of a node v requires
from the evaluation of all shortest paths between every pair of vertices s, t ∈ V .

In order to reduce the complexity of this evaluation, we consider an approx-
imation of this metric by evaluating a number of shortest paths between every
pair of nodes using a fast algorithm for finding shortest paths without loops in
networks based on Yen’s algorithm [19].

We have selected this criterion because it seems logical to think that, the
more information circulates through a node in a graph, the more important
this node will be within the network. Therefore, it will be easier to disconnect
the network if priority is given to eliminate the nodes with a higher value of
betweenness centrality.

A totally greedy algorithm will always produce the same initial solution, since
it is focused on intensifying the search. However, several works [4,16] have shown
that introducing some randomness in the search, thus increasing the diversifica-
tion, results in better initial solutions. We propose the use of Greedy Random-
ized Adaptive Search Procedure (GRASP) methodology in order generate more
diverse initial solutions that will eventually lead the algorithm to obtain better
results.
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GRASP methodology was originally proposed in 1989 [7] but it was not for-
mally defined until 1994 [8]. Traditional GRASP algorithms consists of two well-
differenced phases: construction and local search. In this work we just consider
the construction stage, since a local search for the α-SP is rather computationally
demanding, resulting in large computing times.

The constructive procedure proposed starts by randomly selecting the first
node v to be removed from the graph. Then, a candidate list is constructed
with all the vertices u ∈ V \ {v}. In each iteration, a vertex is selected from
the candidate list and removed from the graph. The selection of the next vertex
is performed as follows. Firstly, a restricted candidate list is created with the
most promising nodes of the candidate list. For this problem, we evaluate the
betweenness of all the candidate vertices. Let us consider that gmax and gmin

are the maximum and minimum values for this metric, respectively. Then, a
threshold μ is evaluated as:

μ = gmax − β ∗ (gmax − gmin)

The restricted candidate list contains all the candidate vertices whose
betweenness value is larger or equal than the threshold μ. Notice that β ∈ [0, 1]
is a parameter of the constructive method that controls its degree of random-
ness. On the one hand, β = 0 results in μ = gmax, which considers a totally
greedy algorithm. On the other hand, β = 1 results in μ = gmin, which considers
a completely random procedure. Section 3 will evaluates different values for this
parameter, discussing how it affects to the initial solution quality.

We have made a series of preliminary experiments in order to test what is
the α parameter that works better with our greedy criterion. Concretely, we
have tested our algorithm using 0.25, 0.5, 0.75 and RND values. We present the
results of these experiments in Sect. 3.

2.2 Perturbing Solutions for the α-SP

Shake method is responsible for finding new solutions in the neighborhood under
exploration in the RVNS framework. First of all, it is important to define the
neighborhoods considered in this work. We define the neighborhood N1(S) of a
solution S as the insertion of a new node in the solution. In mathematical terms,

N1(S) = {S′ ← S ∪ {v} : v ∈ V \ S}
Analogously, we define the neighborhood Nk(S) as the insertion of k new

nodes in the solution S. More formally,

Nk(S) = {S′ ← S ∪ T : ∀v ∈ T, (v ∈ V \ S) ∧ (|T | = k)}
Notice that any solution S′ obtained in the neighborhood Nk of solution

S presents more vertices included in it. If the quality of a solution is given
by the number of vertices included in it and α-SP is a minimization problem,
then any solution S′ ∈ Nk(S) is worse than S in terms of objective function
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value. However, the main advantage of exploring this neighborhood is that every
solution is always feasible, being unnecessary to check the constraint of the
problem, which is one of the most time consuming parts of the algorithm.

Since the Shake procedure always deteriorates the quality of the solution per-
turbed, it is necessary to define a post-processing method that tries to improve
its quality. For this purpose, we define a refining process that consists of remov-
ing all the vertices that are unnecessarily included in the perturbed solution
S′. Specifically, the method randomly traverses the set of vertices that were
originally in the solution (i.e., S′ \ T ). If the solution becomes unfeasible after
removing a vertex, it is included again in S′. After trying to remove all vertices
in S′ \ T , the method repeats this instructions for all the vertices included in
T . Following this procedure, if the number of removed nodes from the solution
during the refining process is larger or equal than k, an improvement has been
found, restarting the search from the first neighborhood. Otherwise, the search
continues in the next neighborhood. The method stops when reaching the max-
imum predefined one, k, returning the best solution found during the search.

3 Computational Results

This Section is devoted to analyze the performance of the proposed algorithms
and compare the obtained results with the best previous method found in the
state of the art. The algorithms have been developed in Java 9 and all the
experiments have been conducted on an Intel Core 2 Duo 2.66 GHz with 4 GB
RAM.

The set of instances used in this experimentation has been generated using
the same graph generator proposed in the best previous work [13]. Specifically,
graphs are generated by using the Erdös-Réyi model [5], in which a new node
is linked to the nodes already in the graph with the same probability. We have
generated a set of 50 instances whose number of vertices ranges from 100 to 200
and the number of edges ranges from 200 to 2000.

We have divided the experiments into two different parts: preliminary and
final experimentation. The former is designed for finding the best parameters
of the GRASP constructive procedure and RVNS algorithm, while the latter is
devoted to analyze the performance of the best variant when compared with the
best previous method found in the state of the art.

All the experiments report the following metrics: Avg., the average objective
function value; Time (s), the average computing time in seconds; Dev (%), the
average deviation with respect to the best solution found in the experiment; and
# Best, the number of times that an algorithm reaches the best solution of the
experiment.

The preliminary experiments consider a subset of 20 representative instances
out of 50 in order to avoid overfitting, while the final experimentation considers
the total set of 50 instances.

The first experiment is designed for evaluating the effect of the β parameter in
the quality of the initial solutions generated. We have considered the following
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values for β = {0.25, 0.50, 0.75,RND}, where RND indicates that a random
value is selected in each iteration of the construction phase. Table 1 shows the
results obtained in this experiment. It is worth mentioning that 100 solutions
have been generated for each instance, returning the best solution found and
computing the accumulated time required for constructing all of them.

Table 1. Performance of GRASP constructive procedure with different values for the
β parameter.

β Avg. Time (s) Dev (%) #Best

0.25 59.80 592.43 0.59 16

0.5 60.45 590.30 2.08 12

0.75 62.25 590.79 4.26 9

−1.00 59.85 612.49 0.94 13

Analyzing Table 1 we can clearly see that the best results are obtained when
considering β = 0.25, closely followed by β = RND . Specifically, β = 0.25 is able
to find 16 out of 20 best solutions, and the average deviation of 0.59% indicates
that in those instances in which it is not able to reach the best value, the con-
structive method obtains a high quality solution really close to the best one. The
value of β = 0.25 indicates that the best results are obtained when introducing a
small random part in the constructive procedure, and increasing the randomness
of the method results in worse solutions. The worst results are obtained with the
largest β value, 0.75, obtaining just 9 out of 20 best solutions with an average
deviation of 4.26%. This behavior also confirms that the betweenness metric is
a good selection as a greedy function value for the constructive procedure.

One of the main advantages of VNS is the reduced number of parameters
that must be tuned in order to obtain high quality solutions. In particular, the
RVNS algorithm proposed requires from just one parameter, kmax, that corre-
sponds to the largest neighborhood to be explored. The preliminary experiment
then considers the following values for kmax = {0.05, 0.10, 0.25, 0.50}. We do not
consider larger values of kmax since a solution in such a large neighborhood will
be completely different from the original one. It is worth mentioning that the
number of vertices that will be included in the neighbor solution is evaluated as
k · |S|, being |S| the number of vertices of the initial solution. Table 2 shows the
performance of the different values for kmax.

The experiment clearly shows that the best value for kmax is 0.25, finding all
the best solutions, while the remaining values are able to obtain just one best
solution out of 20. This results are in line with those presented by Mladenovic
et al. [14], which recommends considering small values of kmax in the context of
RVNS. This is mainly because large values for kmax explores solutions that are
not close in the search space, resulting in a completely random search, which is
against the VNS methodology.
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Table 2. Performance of the RVNS when considering different values for the kmax

parameter

kmax Avg. Time (s) Dev (%) #Best

0.05 49.00 303.09 15.40 1

0.10 48.40 314.81 14.16 1

0.25 43.45 310.06 0.00 20

0.50 47.65 316.44 12.76 1

Analyzing the results obtained in the preliminary experiments, the RVNS
algorithm for the final experiment is configured with β = 0.25 and kmax = 0.25.

The final experiment is intended to compare the best variant of RVNS with
the best previous method found in the state of the art [13]. Specifically, it consists
of a random walk (RW) algorithm with Markov Chain Monte Carlo method. It
is worth mentioning that we have not been able to contact to the authors of the
previous work neither to obtain the set of instances nor an executable file of the
algorithm. Therefore, we have reimplemented the previous algorithm following,
in detail, all the steps described in the manuscript. Table 3 shows the results
obtained by the proposed algorithm (RVNS) and the best previous method found
(RW).

Table 3. Comparison of the best variant of RVNS with the best previous method
found in the state of the art.

Avg. Time (s) Dev (%) #Best

RW 71.78 1070.35 25.98 5

RVNS 55.58 473.72 0.10 46

The results obtained clearly confirm the superiority of our proposal. In par-
ticular, RVNS is able to obtain 46 out of 50 best solutions, while RW only reaches
the best solution in 5 out of 50 instances. Furthermore, the computing time for
RVNS is half of the time required by RW. Finally, the average deviation of RVNS
is close to zero, which indicates that, in those instances in which RVNS is not
able to match the best solution, it stays close to it. However, the deviation of RW
is higher, indicating that its results are not close to the best solution obtained
by the RVNS.

We have finally conducted the nonparametric Wilcoxon Signed Test in order
to confirm that there exists statistically significant differences between both algo-
rithms. The p-value obtained is lower than 0.0001, which confirms the superiority
of our proposal.
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4 Conclusions

This work has proposed a Reduced VNS algorithm for detecting critical nodes in
networks. The initial solution is generated by using a Greedy Randomized Adap-
tive Search Procedure whose greedy criterion is adapted from the social network
field of research, which is named betweenness. The RVNS proposal is able to
obtain better results than the best previous method found in the literature,
which consists of a random walk algorithm in both quality and computing time.
This results, supported by non-parametric statistical tests, confirms the superi-
ority of the proposal. The adaptation of a social network metric to the problem
under consideration in this work has led us to obtain high quality solutions,
which reveals the relevance of the synergy among different fields of research.
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Abstract. This study proposes a new cooperative approach to the Multiple-
Choice Knapsack problem with Setup (MCKS) that effectively combines vari-
able neighborhood search (VNS) with an integer programing (IP). Our
approach, based on a local search technique with an adaptive perturbation
mechanism to assign the classes to knapsack, and then if the assignment is
identified to be promising by comparing its result to the upper bound, we
applied the IP to select the items in knapsack. For the numerical experiment, we
generated different instances for MCKS. In the experimental setting, we com-
pared our cooperative approach to the Mixed Integer Programming provided in
literature. Experimental results clearly showed the efficiency and effectiveness of
our cooperative approach with −0.11% as gap of the objective function and 13 s
vs. 2868 s as computation time.

Keywords: Knapsack problem � Setup � Cooperative approach

1 Introduction

The 0-1 Multiple-choice Knapsack Problem with Setup (MCKS) is described as a
knapsack problem with additional setup variables discounted both in the objective
function and the constraint. Practical applications of the MCKS may be seen in pro-
duction scheduling problems involving setups and machine preferences. A case study
of knapsack problem with setup (KPS) is provided in Della et al. [12]. To extend the
KPS to MCKS, we consider that items from the same family (or class) could be
processed in multiple periods.

The MCKS is NP-hard problem, since it is a generalization of the standard
knapsack problem (KP) [23]. MCKS reduces to a KP when considering one class, and
no setup variables. The KPS is a particular case of MCKS, when the number of period
is equal to one (T = 1) [3, 7, 19], etc. To the best of our knowledge, Yang [34] is the
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unique author who dealt with MCKS. He provided an exact method based on a branch
and bound for the MCKS, but it has no availability of benchmark instances in the
literature.

To deal with the different variants of KP, exact techniques are introduced in the
literature such as branch and bound algorithm [10, 20], lagrangian decomposition [5],
and dynamic programming [26]. Chebil and Khemakhem [7] provided an improved
dynamic programming algorithm for KPS. Akinc [2] studied approximated and exact
algorithms to solve fixed charge knapsack problem. Michel et al. [24] developed an
exact method based on a branch and bound algorithm to solve KPS. Della et al. [12]
provided an exact approach for the 0-1 knapsack problem with setups. Al-Maliky et al.
[3] studied a sensitivity analysis of the setup knapsack problem to perturbation of
arbitrary profits or weights. Dudzinski and Walukiewicz [10] studied exact methods
such as branch-and-bound and dynamic programming for KP and its generalizations.
Martello and Toth [22] discussed an upper bound using Lagrangian relaxation for
multiple knapsack problem (MKP). Pisinger [27] presented an exact algorithm using a
surrogate relaxation to get an upper bound, and dynamic programming to get the optimal
solution. Sinha and Zoltners [31] used two dominance rules for the linear multiple-
choice KP to provide an upper bound for the multiple-choice knapsack problem.

Approximated algorithms have been also developed such as reactive local search
techniques [17], tabu search [16], particle swarm optimization [4], genetic algorithm
[8], iterated local search [25], etc. Khemakhem and Chebil [19] provided a tree search
based combination heuristic for KPS. Freville and Plateau [14] provided a greedy
algorithm and reduction methods for multiple constraints 0-l linear programming
problem. Tlili et al. [32] proposed an iterated variable neighborhood descent hyper
heuristic for the quadratic multiple knapsack problems.

The hybridization technique between exact and metaheuristics approaches have
been performed by many researchers during the last few decades. This technique
provides interesting results as it takes advantages of both types of approaches [18].
A classifications of algorithms combining local search techniques and exact methods
are provided in [11, 29]. The focus in these papers is particularly on the so called
cooperative algorithms using exact methods to strengthen local search techniques.
Fernandes and Lourenco [13] applied cooperative approach to solve different combi-
natorial optimization problems. Vasquez and Hao [33] proposed a new cooperative
approach combining linear programming and tabu search to solve the MKP problem.
They considered a two-phased algorithm that first uses Simplex to solve exactly a
relaxation of the problem and then explore efficiently the solution neighborhood by
applying a tabu search approach. Several works of literature have considered a com-
bination of cooperative approach combining variable neighborhood search with exact
technique. Prandtstetter and Raidl [28] applied a cooperative approach that combines
an integer linear programming with variable neighborhood search for the car
sequencing problem. Burke et al. [6] studied a cooperative approach of Integer Pro-
gramming and Variable Neighborhood Search for Highly-Constrained Nurse Rostering
Problems. Lamghari et al. [21] proposed a cooperative method based on linear pro-
gramming and variable neighborhood descent for scheduling production in open-pit
mines. To the best of the our knowledge, the combination of VNS with exact technique
has never been considered for KPS problem.
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The remainder of this paper is organized as following: Sect. 2 contains the math-
ematical formulations of MCKS. In Sect. 3, we propose a cooperative approach
combining Variable Neighborhood Search and integer programming for MCKS. The
experimental results and their interpretations are reported in Sect. 4. In Sect. 5, we
conclude the paper and give possible and future research ideas.

2 Problem Description

The Multiple Choice Knapsack Problem is defined by knapsack capacity b 2 N with a
set of T divisions (periods), where each division t 2 1; . . .;Tf g, and a set of N classes
of items. Each class i 2 1; . . .;Nf g consists of ni items. Let fit, negative number, de
note the setup cost of class i in division t, and let di, a positive number, denote the setup
capacity consumption of class i: Each item j 2 1; . . .; nif g of a class i has a profit
cijt 2 N and a capacity consumption aij 2 N. For classes and items assignment to
divisions of knapsack, we consider two sets of binary decision variables yit and xijt,
respectively. The variable yit is equal to 1 if division t includes items belonging to class
i and 0 otherwise. The variable xijt is equal to 1 if item j of class i is included in division
t and 0 otherwise. We propose the following mathematical formulation for the MCKS:

Max z ¼
XT
t¼1

XN
i¼1

ðfityit þ
Xni
j¼1

cijtxijtÞ ð1Þ

XT
t¼1

XN
i¼1

ðdiyit þ
Xni
j¼1

aijxijtÞ� b ð2Þ

xijt � yit; 8i 2 1; . . .;Nf g; 8j 2 1; . . .; nif g; 8t 2 1; . . .; Tf g ð3Þ

XT
t¼1

xijt � 1; 8i 2 1; . . .;Nf g; 8j 2 1; . . .; nif g ð4Þ

xijt; yit 2 0; 1f g; 8i 2 1; . . .;Nf g; 8j 2 1; . . .; nif g; 8t 2 1; . . .;Tf g ð5Þ

Equation (1) represents the objective function that is to maximize the profit of
selected items minus the fixed setup costs of selected classes. Constraint (2) guarantees
that the sum of the total weight of selected items and the class setup capacity con-
sumption does not exceed the knapsack capacity b. Constraint (3) requires that each
item is selected only if it belongs to a class that has been setup. Constraint (4) guar-
antees that each item is selected and assigned to one division at most. Constraint (5)
ensures that the decision variables are binary.

Using CPLEX 12.7 to solve MCKS shows its limitation due to the complexity of
the problems. We show later in the experimental results (Sect. 4) that by using CPLEX,
only 27 instances of MCKS among 120 are solved to the optimality in less than 1 h
CPU time. For the rest, the computation terminates with an out of memory or is stopped
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at 1 h. Thus we decided to invest in the development of a cooperative approach
combining variable neighborhood search and integer programming. We explain our
new approach in the next section.

3 Cooperative Approach for MCKS

Local search techniques have proven their efficiency in several combinatorial problems
and have been used within cooperative approaches for several problems [11, 13, 28].
Particularly, the Variable Neighborhood Search (VNS) is a method based on a sys-
tematic change of the neighborhood structures. It is introduced by Maldenovic and
Hansen [36] and has proven its efficiency on different scheduling problems: location
routing [37], car sequencing problem [28], etc.

This paper contains a new cooperative approach combining VNS with IP. The main
idea of our cooperative approach is to decompose the original problem in to two sub-
problems. The first problem is to assign classes to the divisions of knapsack (determine
the setup variables yit) using a VNS approach allowing the transformation of MCKS
into classical KP. Two movements have been considered within the VNS approach:
local search procedure (LS) and a perturbation mechanism. The second problem is to
solve the classical KP by considering the IP that determines the values of xijt with a
very short computation time. For efficiency issue, we apply the IP only if the search
space is identified to be promising by comparing its result to an upper bound that we
provided later. Note the found values of yit and xijt yield a feasible solution to MCKS.

The approach starts with a construction heuristic called reduction-based heuristic
(RBH). Then, the obtain solution is improved by using a Local search technique with
integer programming (LS&IP) procedure. At each iteration, Perturb&IP and LS&IP are
successively applied to the current solution. The current solution is update if the
resulting solution is better than the current one. The algorithm works until a termination
condition is satisfied. Algorithm 1 shows the whole framework of our approach.
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In the sequel, we detail the construction heuristic RBH, the calculation of the upper
bound for IP that condition the application of IP after each local search move.

3.1 Initial Feasible Solution

To generate the initial solution, we proposed a construction heuristic that we call RBH.
For illustration, we considered the MCKS problem and explain below the three suc-
cessive phases of our RBH:

– First phase: We reduced the MCKS so that every class contains a single object
ni ¼ 1; i 2 1; . . .;Nf gð Þ. This object is characterized by a weight a0i and a profit c0it

with a0i ¼
Pni
j¼1

aij and c0it ¼
Pni
j¼1

cijti 2 1; . . .;Nf g; t 2 1; . . .; Tf g. Consequently, the
reduced MCKS (MCKSred) can be expressed mathematically as follows:

Max z0 ¼
XT
t¼1

XN
i¼1

c0itxit þ fityit
� � ð6Þ

s.c.

XT
t¼1

XN
i¼1

ða0ixit þ diyitÞ� b; i 2 1; . . .;Nf g; t 2 1; . . .; Tf g ð7Þ

0� xit � yit; 8i 2 1; . . .;Nf g; 8j 2 1; . . .; nif g; 8t 2 1; . . .;Tf g ð8Þ

XT
t¼1

xit � 1; i 2 1; . . .;Nf g; t 2 1; . . .; Tf g ð9Þ

yit 2 0; 1f g; i 2 1; . . .;Nf g; t 2 1; . . .; Tf g ð10Þ

– Second phase: we relaxed constraint (8) so that 0� xit � 1and yit 2 0; 1f g. The
relaxed model of MCKSred is solved using IP, which gives the values of yit. We
constructed the set of classes Yt ¼ Y1

t [ Y0
t , with Y

1
t ¼ i 2 1; . . .;Nf g=yit ¼ 1f g and

Y0
t ¼ i 2 1; . . .;Nf g=yit ¼ 0f g.

– Third phase: We considered the following IP for the MCKS Y½ � as a KP problem:
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IP : Max Zt ¼
XT
t¼1

X
i2Y1

t

Xni
j¼1

cijtxijt þ ht ð11Þ

s.c.

XT
t¼1

X
i2Y1

t

Xni
j¼1

aijxijt � b� c ð12Þ

xijt 2 0; 1f g; 8i 2 Y1
t ; j 2 1; . . .; nif g ð13Þ

Where ht ¼
P
i2Y1

t

fit, and c ¼ P
i2Y1

t

di 8t 2 1; . . .; Tf g.

We solved the MCKS Y½ � problems and noted also IP using CPLEX solver.
The MCKS solution is represented by set of variables Y ¼ fyit; i ¼ 1; . . .;N;
t ¼ 1; . . .; Tg, and a set of variables X ¼ fxijt; i ¼ 1; . . .;N; j ¼ 1; . . .; ni; t ¼ 1; . . .; Tg.

In addition to RBH, we considered two other heuristics: Linear Programming based
Heuristic (LPH) [15, 35] and Greedy Heuristic (GH) [1, 30]. In our problem the LPH
heuristic is composed of two main phases: In the first phase, the relaxation of the
MCKS (binary yit and continues variables xijt) is solved to determine the variables yit.
In the second phase, the reduced MCKS is solved by using CPLEX solver to determine
the variables xijt. The GH heuristic is to build iteratively a feasible solution. In our
problem this heuristic is composed of two main phases. In the first phase, the variables
yit are fixed randomly. In the second phase, the partial feasible solution obtained in the
previous phase is completed by inserting the items one by one until saturation of the
knapsack from the set of items that are listed in the decreasing order of their ratio
rijt ¼ cijt=aij.

3.2 Upper Bound for IP

Dantzig [9] provided an upper bound for KP. We adapted this upper bound to our
problem and provided a new upper bound for each division t of MCKS. This upper
bound was used to decide whether to apply IP or not after the local search in order to
explore only fruit full search spaces. We applied the following successive steps to
obtain this upper bound:

– Step1: Let I denote the set of items of classes i 2 Y1
t sorted in descending order of

their efficiency ratio rijt ¼ cijt
aij
8i 2 Y1

t ; 8j 2 1; . . .; nif g.
– Step2: Assign items from I one by one until saturation of the knapsack, i.e., Stop at

item i’j’ that cannot be inserted due to capacity saturation of MCKS Y½ �.
– Step3: The upper bound of division t is:
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UBt ¼
P
i2Y1

t

fit þ
P
i;j2I 0

cijt þ b�C
ai0 j0

c i0j0t , where C ¼ PT
t¼1

ðP
i2Y1

t

di þ
P
i;j2I 0

aijÞ with I’ the set

of assigned items, and (b – C) the residual capacity for division t.

3.3 Local Search with IP

In the local search phase, two neighborhood structures, SWAP&IP and INSERT&IP
operators are employed with in the LS&IP framework.

SWAP&IP. A Swap-based local search requires the definition of a neighborhood
structure using simple moves so as to produce a set of neighbor solutions which permits
to explore more search spaces and thus provide high quality solutions. The considered
swap process consists of permuting two variables yit 2 Y1

t and
yjk 2 Y1

k ði; j 2 1; . . .;Nf g; t 2 1; . . .; Tf g; k 2 tþ 1; . . .; T þ 1f g. Where T + 1 is a
fictive knapsack that contains all the nonselected classes. We changed the value of
setup variables from 1 to 0 and vice versa. A new MCKS Y½ � was obtained. In order to
save computational effort, before applying IP, we calculated the sum of upper bounds
of the new divisions t and k ðUBt;k ¼ UBt þUBkÞ and compared it with the total profit
of the two divisions before Swap move ðZt;k ¼ Zt þ ZkÞ. In case UBt;k [ Zt;k . We
applied IP to optimally solve the new classical knapsack MCKS Y½ � and the best
solution was taken as a new initial solution for a next swap process. In case UBt;k � Zt;k,
the search space was not promising as no better solution could be obtained, thus IP(t, k)
was not applied and we proceeded to the next step. The procedure is terminated once
no improvement is obtained. Algorithm 3 details the SWAP&IP procedure.
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INSERT&IP. The Insert-based local search is based on a neighborhood search which
generates a new solution by removing the class i from knapsack t (change the value of
the setup variable yit 2 Y1

t from 1 to 0) and then inserting it into another knapsack k,
k 2 1; . . .; T þ 1f g, The IP(t, k) is applied if ðUBt;k [ Zt;kÞ by the same way than in the
SWAP&IP procedure. The best solution is taken as a new initial solution for the next
insert-based local search. The procedure is terminated once no improvement is
obtained. Algorithm 4 details the INSERT&IP procedure.
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PERTURB&IP. The design of the perturbation mechanism is crucial for the perfor-
mance of the algorithm. If the mechanism provides too small perturbation, local search
may return to the previously visited local optimum points and no further improvement
can be obtained. The mechanism consists of strongly perturbing a part of the current
solution to jump the local optima and obtain a new starting solution. Two phases were
applied iteratively in order to simulate this jumping principle: The first is a select of k
randomly chosen items (setup variables yit) and the second is the IP which is applied to
solve the classical knapsacks MCKS Y½ �. The resulting solution is accepted according to
the following condition if f s0ð Þ[ yf sð Þð Þ, where that is constant value between 0 and
1. The perturbation method was terminated when the total number of applied moves
(perturbation length) equals to the p_max. Algorithm 5 provides a description of the
new local search method.
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4 Computational Results

For computation, our approach was implemented and run using C language and
CPLEX 12.7 solver on a 2.4 GHZ intel B960 computer with 4 GB of memory. Due to
the unavailability of benchmark instances in the literature, we tested our cooperative
approach VNS&IP on a set of randomly generated instances of MCKS with a total
number of periods T in 5; 10; 15; 20f g, total number of classes N in f10; 20; 30g, and
total number of items ni for each class i in 90; 110½ � (Available at https://goo.gl/4fz6fg).
We generated 120 instances in total: 10 instances for each combination T ;Nð Þ. We
designed a random generation scheme, as presented in [2], where:

• aij is selected with a uniform distribution in 10; 10000½ �.
• cijt ¼ aij þ e1, e1 is selected with a uniform distribution in 0; 10½ �.
• b ¼ 0; 5 �PN

i¼1

Pni
j¼1

aij.

• di ¼
Pni
j¼1

aij � e:

• fit ¼ �Pni
j¼1

cijt � e , e is selected with a uniform distribution in 0:15; 0:25½ �.

The Gap report the standard deviation between IP and VNS&IP that is calculated as

follows: Gap %ð Þ ¼ 100 � IPsol�VNS & IPsol

IPsol

� �
.
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4.1 Parameter Setting

Generally, when using approximate algorithms to solve optimization problems, it is
well known that different parameter settings for the approach lead to different quality
results. The parameters for VNS&IP are as follows: time_max, the maximal time
measured in seconds and its fixed to T, where T is the number of periods (divisions).
kmax, the maximum number of consecutive failed iterations is fixed to N, where N is
the number of classes. The perturbation length p_max is fixed to T. that is constant
value between 0 and 1 to relax the acceptance condition is fixed to 0.8. It is worth
pointing out that a different adjustment of method’s parameters would give important
findings. But this better adjustment would sometimes lead to heavier execution time
requirements. The set of values chosen in our experiment represents a satisfactory
trade-off between quality solution and running time.

4.2 Computational Results

Before the experimentation, the effect on performance of the main components of our
algorithm is assessed, mainly the construction Heuristic RBH and the combination of
the two local search techniques LS&IP and PERTURB&IP.

In order to evaluate the performance of RBH, we compared it to HG and LPH
heuristics explained in Sect. 3.1. The RBH, HG and LPH heuristics are tested on all the
instances of MCKS. Table 1 shows the numerical results on average. The first column
contains the name of the heuristic. The second column contains the average of com-
putational time. We noted that LPH is stopped at a limit of computation time equal to
500 s. The third column contains the gap between the heuristic solution and the IP

solution: Gap %ð Þ ¼ 100 � CPLEXsol�Heuristicsol

CPLEXsol

� �
.

Table 1 shows that RBH outperforms the other construction heuristics in terms of
computation time and quality solution.

It is important to give information about the impact of the LS&IP and PERTUR-
B&IP on the performance of VNS&IP. We consider the application of our cooperative
approach with RBH, RBH + LS&IP and RBH + LS&IP + PERTURB&IP (VNS&IP).
Table 2 shows a comparison between these three combinations in terms of average Gap
(%) with the IP for the four set instances regarding the number of periods (divisions).
Each line presents the average of 10 instances. The first two columns present the
number of divisions (or periods) T and the number of classes N. The next three
columns show the corresponding average gap between RBH and IP, the average gap

Table 1. Comparison between RBH, HG and LPH: average of MCKS instances.

Heuristic CPU (s) Gap (%)

RBH 0.63 1.46%
LPH 304 5.34%
GH 0.51 8.13%
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between RBH + LS&IP and IP, and the average gap between RBH + LS&IP +
PERTURB&IP (VNS&IP) and IP.

Gapð%Þ ¼ 100 � IPsol � Heuristicsol
IPsol

� �
:

Table 2 shows that by adding LS&IP, we observe an important advantage, for all
the set of instances, compared to using only RBH. However, by adding PERTURB&IP,
we observe a higher improvement with a gap that increases when the number of
knapsacks increases. For the experimentations below, we considered the best combi-
nation with RBH as construction heuristic, LS&IP as local search techniques and
PERTURB&IP as perturbation mechanism.

Table 3 summarizes the results obtained by VNS&IP and IP when solving the
MCKS. Each line presents the average of 10 instances. The first two columns present
the number of divisions (or periods) T and the number of classes N. The next three
columns show the corresponding average of results provided by CPLEX, the average
of results provided by the cooperative approach VNS&IP and the average of the best
upper bounds, of all the remaining open nodes in the branch-and-cut tree, provided by
CPLEX 12.7 ðCPLEXUBÞ. The notations sol and CPU report the solution found and the
computational time, respectively. We note that CPLEX is stopped at a limit of com-
putation time equal to 1 h. Finally, the columns GapIP and GapUB report the gap
between CPLEX and VNS&IP, calculated as follows: GapIP %ð Þ ¼ 100 �
CPLEXsol�VNS&IPsol

CPLEXsol

� �
, and the gap between CPLEXUB and VNS&IP, calculated as

follows: GapUBð%Þ ¼ 100 � CPLEXUB�VNS&IPsol

CPLEXUB

� �
, respectively.

Table 3 shows that VNS&IP outperforms IP with a gap on average equal to
�0:11%. In detail, the gap on average is about �0:06% for T ¼ 5, �0:005% for
T ¼ 10, �0:18% for T ¼ 15, and �0:18% for T ¼ 20. The CPU on average for
VNS&IP is about 13 s, which is very low in comparison to the average of CPU for
CPLEX that is equal to 2868 s. For more detailed results, we note that VNS&IP
provides a solution equal to the one provided by CPLEX for 51 instances and provides
better solutions than CPLEX for 65 instances (available at https://goo.gl/w44aUs).
Table 2 shows that the gap between VNS&IP and CPLEXUB is 0.001% on average.

Table 2. Effect of VNS&IP components

Instances RBH RBH + LS&IP RBH + LS&IP + PERTURB&IP
T N

5 30 0.95 0.23 −0.054
10 1.23 0.39 −0.012
15 1.82 0.45 −0.125
20 1.99 0.42 −0.155
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Among the 120 instances of MCKS, CPLEX finds the optimal solutions for 27
instances, slightly outperforms the VNS&IP for 4 instances, and for the remaining it
terminates with error: exceeds the capacity of RAM memory or exceeds the CPU time
limit. the majority of instances solved at optimality are with T ¼ 5 (12 with T ¼ 5, 8
with T ¼ 10, 2 with T ¼ 15 and 5 with T ¼ 20). In addition, we can see that MCKS
becomes more difficult when increasing the number of divisions T. In fact, the number
of times that CPLEX terminates with exceeding the capacity of RAM or exceeding the
time limit increases from 18 with T ¼ 5 to 25 with T ¼ 20.

5 Conclusion

In this paper, we consider the multiple choice knapsack problem with setup (MCKS).
This problem can be used to model a wide range of concrete industrial problems,
including order acceptance and production scheduling. We proposed a new cooperative
approach that combines VNS and IP for the MCKS. Our cooperative approach denoted
VNS&IP is tested on a wide set of instances that are generated for MCKS. The results
showed that CPLEX was able to optimally solve only 22.5% of these problems; the rest
had unknown optimal values. The experimental results showed that VNS&IP produced
good quality (optimal and near-optimal solutions) solutions in a short amount of time
and allowed for the enhancement of the solution provided by CPLEX in 65 instances.
Considering the promising performance of the VNS&IP method presented in this work,
further studies, some of which are currently underway in our laboratory, are needed to
further extend the use of the space reduction technique to other general and critical
problems.

Table 3. Numerical results for MCKS instances.

T N CPLEX VNS&IP UB

CPLEXobj CPU VNS&IPsol CPU GapIP ð%Þ CPLEXUB GapUB ð%Þ
5 10 1772249 1735 1773409 6 −0.066 1773431 0.001

20 3571514 2863 3573719 6 −0.063 3573771 0.001
30 5398429 2267 5401333 6 −0.054 5401369 0.001

10 10 1795187 2587 1795188 11 0.000 1795221 0.002
20 3602956 3439 3603067 10 −0.003 3603090 0.001
30 5445060 2937 5445715 11 −0.012 5445752 0.001

15 10 1793209 2819 1795262 15 −0.118 1795311 0.003
20 3605797 3333 3617045 15 −0.315 3617079 0.001
30 5471310 3255 5478013 15 −0.125 5478052 0.001

20 10 1793091 2745 1796768 20 −0.208 1796796 0.002
20 3609105 3481 3615497 20 −0.180 3615547 0.001
30 5454676 2961 5463066 20 −0.155 5463115 0.001
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Abstract. The Multi-Depot Vehicle Routing Problem (MDVRP) is a
variant of the Vehicle Routing Problem (VRP) that consists in designing
a set of vehicle routes to serve all customers, such that the maximum
number of vehicle per depot, the vehicle capacity and the maximum time
for each route are respected. The objective is to minimize the total cost
of transportation. This paper presents an algorithm, named VNSALS,
based on the Variable Neighborhood Search (VNS) with Adaptive Local
Search (ALS) for solving it. The main procedures of VNSALS are pertur-
bation, ALS and cluster refinement. The perturbation procedure of VNS
is important to diversify the solutions and avoid getting stuck in local
optima. The ALS procedure consists in memorizing the results found
after applying a local search and in using this memory to select the
most promising neighborhood for the next local search application. The
choice of the neighborhood is very important to improve the solution in
heuristic methods because the complexity of the local search is high and
expensive. On the other hand, customer’s reallocation keeps the clusters
more balanced. VNSALS is tested in classical instances of MDVRP for
evaluating its efficiency and the results are presented and discussed.

Keywords: Multi-Depot Vehicle Routing Problem ·
Adaptive Local Search · Variable Neighborhood Search

1 Introduction

Vehicle routing problem (VRP) is a classical optimization problem with several
variants. Researchers are dedicated to studying it all over the world, applying
the most diverse techniques for its solution, as the literature points out. In a
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solution of VRP, each vehicle leaves the depot and executes a route over a certain
number of customers and returns to the depot, insuring that the total demand
on the route does not exceed the vehicle capacity. In some cases, a maximum
route duration or distance constraint is enforced and the problem may involve a
homogeneous or heterogeneous fleet [6,11,16,17].

This work has its focus on the Multi-Depot Vehicle Routing Problem
(MDVRP) with homogeneous fleet. MDVRP is a variant of the classical VRP in
which there is more than one depot. MDVRP is solved in [6] with Tabu Search. In
[12], the authors apply an algorithm based on the Adaptive Large Neighborhood
Search (ALNS). Genetic Algorithm (GA) is used in [17] and a hybrid algorithm
based on Iterated Local Search (ILS) is applied in [16]. An exact method is
proposed in [5]. Other hybrid metaheuristic algorithms combining Greedy Ran-
domized Adaptive Search Procedure (GRASP), ILS and Simulated Annealing
(SA) are proposed in [1]. In [11], the authors present a parallel coevolutionary
algorithm based in evolution strategy and in [4] an algorithm based on the Gen-
eral VNS [8] is proposed. A recent survey of exact and heuristic methods for
solving MDVRP can be found in [10].

In this current paper, we proposes a new algorithm, inspired on the Adap-
tive Guided Variable Neighborhood Search algorithm from [2] and similar to
the General VNS algorithm of [4], for solving MDVRP. The new algorithm uses
an adaptive local search method rather than a local search based on the Ran-
domized Variable Neighborhood Descent (RVND) method, as used in [4]. The
idea behind VNS is that switching the neighborhood structure after the current
neighborhood structure trapped in local optima may help VNS to escape from
the local optima. Thus, applying different neighborhood structures can generate
different search trajectories, which help in escaping from the current point as well
as dealing with problems related to landscape changes that usually occur dur-
ing the solving process. However, the sequence of the neighborhood structures
in VNS has a critical impact on the algorithm performance, which is usually
dependent on the problem and/or its instances. This implies that not only dif-
ferent instances require different sequences of the neighborhood structures but
also different stages of the solving process [2]. In this scenario, we create a simply
ranking to classify the neighborhoods that will be chosen for refining the current
solution.

The remaining of this paper is organized as follows. Section 2 describes
MDVRP. Section 3 presents the neighborhoods used for exploring the solution
space of MDVRP. Section 4 introduces the proposed algorithm, named Variable
Neighborhood Search with Adaptive Local Search (VNSALS). The calibration of
the VNSALS parameters are described in Sect. 5, followed by the experimental
results that are shown and discussed in Sect. 6. Finally, Sect. 7 concludes this
work.

2 Multi-Depot Vehicle Routing Problem

The Multi-Depot Vehicle Routing Problem (MDVRP) consists in determining a
set of vehicle routes such that [10]:
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(i) each vehicle route starts and ends at the same depot;
(ii) each customer is serviced exactly once by a vehicle;
(iii) the total demand of each route does not exceed the vehicle capacity; and
(iv) the total cost of the distribution is minimized.

Figure 1 represents a MDVRP problem with thirteen customers, in the form
VCST = {1, 2, . . . , 13} and two depots, named VDEP = {14, 15}. In this repre-
sentation, depot 14 has two routes that serves customers 2, 3, 4, 5, 9 and 12;
depot 15 has three routes, serving customers 1, 6, 7, 8, 10, 11 and 13.

Fig. 1. Example of MDVRP with thirteen customers and two depots.

MDVRP is defined as follows [10]. Let G = (V,A) be a complete graph, where
V is a set of nodes and A is a set of arcs. The set of nodes are partitioned into two
subsets: the set of customers to be served, given by VCST = {1, 2, . . . , N}, and
the set of depots VDEP = {N + 1, N + 2, . . . , N + M}, with V = VDEP ∪ VCST

and VDEP ∩ V CST = �. There is a non-negative cost cij associated with each
arc (i, j) ∈ A. For each customer, there is a non-negative demand di and there
is no demand at the depot nodes. In each depot, there are a fleet of K identical
vehicles, each with capacity Q. The service time at each customer i is ti, while
the maximum route duration time is set to T . A conversion factor wij might be
needed to transform the cost cij into time units. In this work, however, the cost
is the same as the time and distance units, so wij = 1.

MDVRP consists in designing a set of vehicle routes serving all customers,
such that the maximum number of vehicle per depot, vehicle-capacity and max-
imum duration time in the route are respected, and the total cost of transporta-
tion is minimized. The MDVRP mathematical formulation requires the defini-
tion of the binary decision variable xijk, which is equal to 1 when vehicle k visits
node j immediately after node i, and 0 otherwise. Auxiliary binary variables yi

are also used in the subtour elimination constraints [10,11]. The mathematical
model is given by:
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min
N+M∑

i=1

N+M∑

j=1

K∑

k=1

cijxijk (1)

Subject to

N+M∑

i=1

K∑

k=1

xijk = 1 (j = 1, . . . , N) (2)

N+M∑

j=1

K∑

k=1

xijk = 1 (i = 1, . . . , N) (3)

N+M∑

i=1

xihk −
N+M∑

j=1

xhjk = 0 (k = 1, . . . , K; h = 1, . . . , N + M) (4)

N+M∑

i=1

N+M∑

j=1

dixijk ≤ Q (k = 1, . . . , K) (5)

N+M∑

i=1

N+M∑

j=1

(cijwij + ti)xijk ≤ T (k = 1, . . . ,K) (6)

N+M∑

i=N+1

N∑

j=1

xijk ≤ 1 (k = 1, . . . , K) (7)

N+M∑

j=N+1

N∑

i=1

xijk ≤ 1 (k = 1, . . . , K) (8)

yi − yj + (N + M)xijk ≤ N + M − 1
for 1 ≤ i �= j ≤ N and 1 ≤ k ≤ K

(9)

xijk ∈ {0, 1} ∀ i, j, k (10)
yi ∈ {0, 1} ∀ i (11)

In this formulation, the objective, shown in Expression 1, is to minimize the
total cost. Constraints (2) and (3) guarantee that each customer is served by
exactly one vehicle. Flow conservation is guaranteed through constraints (4).
Constraints (5) and (6) refer to the vehicle capacity and the total route cost,
respectively. Vehicle availability is verified by constraints (7) and (8). Subtour
elimination is provided by constraints (9). Finally, constraints (10) and (11)
define x and y as binary variables.
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3 Neighborhoods for MDVRP

We used seven neighborhoods widely applied in the literature to explore the
solution space of this problem: Swap(1, 1), Swap(2, 1), Shift(1, 0), Shift(2, 0),
2-Opt, 2-Opt* and Reverse [15,17,19]. These neighborhoods are described in the
sequel.

Swap(1, 1) - permutation between a customer vj from a route rk and a
customer vt from a route rl. In Fig. 2(a), the clients 1 and 13 were swapped in
the same depot. In Fig. 2(b), the client 13 from depot 14 and client 13 from
depot 15 are swapped.

(a) Swap(1,1) in one depot. (b) Swap(1,1) in two different depots.

Fig. 2. Examples of neighborhood Swap(1, 1).

Swap(2, 1) - permutation of two adjacent customers vj and vj+1 from a route
rk by a customer vt from a route rl. In Fig. 3(a), the adjacent clients 4 and 2
were exchanged with client 12. In Fig. 3(b), clients 12 and 3 from depot 15 were
exchanged with client 13 belongs to the depot 14.

(a) Swap(2,1) in one depot. (b) Swap(2,1) in two different depots.

Fig. 3. Examples of Swap(2, 1) neighborhood.

Swap(2, 2) - permutation between two adjacent customers vj and vj+1 from
a route rk by another two adjacent customers vt and vt+1, ∀vt, vt+1 ∈ VCST ,
belonging to a route rl. In Fig. 4(a), the adjacent clients 5 and 9 were exchanged
with client 12 and 3. In Fig. 4(b), clients 5 and 9 from depot 14 were exchanged
with client 8 and 10 belonging to the depot 15.

Shift(1, 0) - transference of a customer vj from a route rk to a route rl. In
Fig. 5(a), the client 4 was moved from one route to the other one. The same
situation occurs in Fig. 5(b) where client 9 was moved to the depot 15.
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(a) Swap(2,2) in one depot. (b) Swap(2,2) in two different depots.

Fig. 4. Examples of Swap(2, 2) neighborhood.

(a) Shift(1,0) in one depot. (b) Shift(1,0) in two different depots.

Fig. 5. Examples of Shift(1, 0) neighborhood.

Shift(2, 0) - transference of two adjacent customers vj and vj+1 from a route
rk to a route rl. In Fig. 6(a), the adjacent clients 5 and 9 were moved from one
route to the other one. The same occurs in Fig. 6(b), where clients 5 and 9 from
depot 14 were moved to the depot 15.

(a) Shift(2,0) in one depot. (b) Shift(2,0) in two different depots.

Fig. 6. Examples of Shift(2, 0) neighborhood.

2-Opt - Two non-adjacent arcs are deleted and another two ones are added
so that a new route is generated. In Fig. 7, the arcs (4, 2) and (9, 12) are
deleted, while the arcs (4, 9) and (2, 12) are inserted, changing the sub-route
to (14, 4, 9, 5, 2, 12, 3, 14).

The 2-Opt* neighborhood is based on the deletion and reinsertion of two arc
pairs from two different routes. This neighborhood is sometimes called crossover
neighborhood [18]. For 2-Opt* in two distinct routes r1 and r2, let u and v be
arcs from r1 and v and y be arcs from r2. There are two alternatives, as follows:

– Alternative 1 : replace (u, x) and (v, y) by (u, v) and (x, y);
– Alternative 2 : replace (u, x) and (v, y) by (u, y) and (x, v).
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Fig. 7. Example of neighborhood 2-Opt.

(a) 2-Opt* (Alternative 1). (b) 2-Opt* (Alternative 2).

Fig. 8. Examples of 2-Opt* neighborhoods.

Figure 8 represents 2-Opt* cases.
Reverse - This move reverses the route direction. It is represented in Fig. 9.

Fig. 9. Example of Reverse neighborhood.

The Swap(1, 1), Swap(2, 1), Shift(1, 0) and Shift(2, 0) neighborhoods may
be in route (intra-route), between different routes (inter-route) and occur in the
same depot (intra-depot) or between different depots (inter-depots); 2-Opt and
Reverse may occur in intra-depot/intra-route; and 2-Opt* may occur in intra-
depot/inter-route.

4 Description of the Proposed Algorithm

In this work we proposed an algorithm, named Variable Neighborhood Search
with Adaptive Local Search (VNSALS), for solving MDVRP. VNSALS is
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inspired in the Adaptive Guided Variable Neighborhood Search algorithm
from [2] and in the GVNS algorithm from [4].

VNSALS is a VNS-based algorithm [8] that utilizes some problem-specific
knowledge and uses an adaptive learning mechanism to find the most suit-
able neighborhood structure during the searching process. In the adaptive
learning part, the algorithm memorizes the neighborhood structure that made
an improvement in the solution quality [3]. The pseudo-code of VNSALS is
described in Algorithm 1.

Algorithm 1. VNSALS (iterMax, maxTime, maxLevel, alsTraining, alsReset,
Nshake)

1: Let s be an initial solution;
2: p ← 1; // Initial value of perturbation level
3: k ← 1; // Initial neighborhood
4: iter ← 0; itAdaptative ← 0; s′ ← s
5: // Stopping criterion
6: while iter < IterMax or t < maxTime do
7: if itAdaptive < (alsTraining ∗ IterMax) then
8: s′′ ← RandomNeighborhood(s′, success,N );
9: else
10: s′′ ← ALS(s′, success,N );
11: end if
12: if f(s′′) < f(s) then
13: s ← s′′;
14: k ← 1; // Return to the first neighborhood
15: p ← 1; // Return to the first level
16: iter ← 0;
17: else
18: p ← p+ 1; // Change perturbation level
19: iter ← iter + 1;
20: end if
21: if p > maxLevel then
22: k ← k + 1; // Change neighborhood
23: p ← 1; // Return to the first level
24: end if
25: if k > Nshake then
26: k ← 1; p ← 1; // Reset neighborhood and level
27: end if
28: itAdaptive ← itAdaptive+ 1
29: if itAdaptive >= (alsReset ∗ IterMax) then
30: resetRankNeighborhood();
31: itAdaptive ← 0;
32: end if
33: s′ ← Perturbation(s, k, p,N );
34: s′ ← Split(s′);
35: s′ ← ClusterRefinement(s′);
36: s′ ← Split(s′);
37: end while
38: return s;
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A solution s of MDRVP is represented by a list vector, inspired and adapted
from [14]. Each position of this vector indicates a depot and each list indicates
the visit routes to be performed by vehicles from that depot.

As an example, let VDEP = {14, 15} and VCST = {1, 2, . . . , 13} be a set
of two depots and thirteen customers, respectively, and RDEP be the set of
routes per depot. The solution represented in Fig. 1 is R14 = {r1, r2}, where
r1 = [14 4 2 5 9 14 12 3 14] and r2 = [15 2 6 15 11 13 15 7 8 10 15].

In this solution, there are two routes in the depot 14. At the first one, the
vehicle leaves the depot and visits the customers 4, 2, 5 and 9, in this order, and
then returns to the depot. In the second route, a vehicle leaves the depot, visits
the customers 12 and 3 and returns to the depot. In the depot 15 there are 3
routes, which are represented in the vector r2.

The strategy used for generating an initial solution (line 1 of Algorithm 1)
is “cluster first and then route”. In this way, the customers are assigned to the
depots in a balanced way using the Gillet and Johnson algorithm [7]. Initially,
the heuristic determines the distance between each consumer j ∈ VCST not yet
assigned to the two nearest depots a1 and a2 ∈ VDEP , with rate vrj = a1/a2,
∀ j = N + 1, N + 2, · · · , N + M . Then, this rate is sorted ascending according
to the values vrj , assigning the consumer to the nearest feasible depot. This
process repeats until all customers are allocated in only one depot. In order to
generate a feasible solution, the number of vehicles can be greater than K in
this phase. After this construction phase, the VNSALS algorithm tries to refine
this constructed solution.

The main procedures of the VNSALS algorithm are Perturbation, Cluster-
Refinement and the Adaptive Local Search (ALS), introduced at lines 33, 35,
8 and 10 of Algorithm 1, respectively. These procedures are necessary because
only search in neighborhoods are insufficient to lead to an optimal solution [19].

Perturbation: In the perturbation phase (showed in Algorithm 2), the solution s
undergoes a shake move in a given neighborhood Nk(s), generating a new solu-
tion s′. The neighborhood moves are applied in different depots (inter-depot),
where the routes, for example, r1 belong to d1 and r2 to d2 and the number of
moves is represented by Nshake. The moves are applied in this order: Shift(1,
0), Swap(2, 1), Shift(2, 0), Swap(2, 2), Swap(1, 1).

In order to generate a shake move in a solution s belonging to the neigh-
borhood Nk, each move in the Perturbation phase is applied p times, at most,
where the value of p is a random integer between 1 and maxLevel (see line 33 of
Algorithm 1).

Algorithm 2. Perturbation (s, k, p, N )
1: for (i = 1; i ≤ p; i++) do
2: Generate the neighbor s′ ∈ Nk(s);
3: end for
4: return s′;
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ClusterRefinement: The aim is to reduce the total distance between customers
and depot assigned. After criteria are established, the idea is select the more
expensive customer in depot A and move it to another generic depot F . We
create three criteria to select the customer, where distA,i is the distance from
depot A to customer i; di and ti are the demand and service time of the customer
i, respectively; S1 the set of customers assigned to depot A; and SF the set of
customers assigned to depot F :

(i) Let θ1 the cost of customer i given by θ1 = max{α×distA,i +β×di | i ∈ S1}
and π1 given by π1 = min{α × distF,i + β × di | i ∈ SF ,F ∈ VDEP }. Then
select the depot F given by π1 and move the customer i to depot F .

(ii) Let θ2 be the cost given by θ2 = (
∑|S1|

i=1(α×distA,i +β×di))/|S1|. Select all
customers ∈ S1 with cost θ1 > θ2 and save them in S3. For any customer in
S3, find a depot F ∈ VDEP , with cost π1 and move the selected customer
to depot F ;

(iii) Find the most expensive customer i ∈ S1 given by θ3 = max{α × distA,i +
β × di}/cA, where cA is the cost of depot A, according to Eq. (1). Let cF
be the cost of depot F and π2 = (π1/cF ). Then select the depot F given
by π2 and move the customer i to depot F .

For any execution (line 35 in Algorithm 1) only one of these criteria is randomly
selected and applied in solution. In this work, we considered α = 1 and β = 1.

Local Search: The local search is used to refine the solution by neighborhoods
described in Sect. 3. Only one neighborhood is applied in s′. During the training,
each neighborhood is selected randomly (Algorithm 3) and always that its local
search improves, the value associated with the i-th neighborhood is updated
(accumulated). In vector success is accumulated the improvement of any neigh-
borhood. For example, let N1, N2 and N3 be neighborhood structures. Consider
that during the training N1 improved the solution three times, N2 five times
and N3 two times. After the training (Algorithm 1, line 10), the probabilities
of neighborhoods are {3/10, 5/10, 2/10} = {0.3, 0.5, 0.2}, respectively. In this
phase, roulette wheel selection is used to select the neighborhood which will be
applied in the current solution (Algorithm 4). After any times (alsReset), the
vector success is reset at line 30 of Algorithm 1 (resetRankNeighborhood()) and
the training process is restarted.

Algorithm 3. RandomNeighborhood(s, success, N )
1: i ← rand(|N |); {Select a neighborhood Ni ∈ N}
2: s′ ← LocalSearch(Ni, s); {Apply local search to neighborhood Ni}
3: if f(s′) < f(s) then
4: s ← s′;
5: success(i) ← success(i) + 1; {Increment success vector associated with Ni}
6: end if
7: return s, success;
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Algorithm 4. ALS(s, success, N )
1: i ← rouletteWheel(success); {Select a index of neighborhood}
2: s′ ← LocalSearch(Ni, s); {Apply local search to the neighborhood selected}
3: if f(s′) < f(s) then
4: s ← s′;
5: end if
6: return s;

Split Algorithm: After perturbation, the solution is represented by a giant tour
from each depot, without route delimiters. It is basically a single sequence made
of all customers assigned to a depot. For example, the sequence for depot 14
in Fig. 1 is {4, 2, 5, 9, 12, 3}. Individual routes are created from this giant tour
with the Split algorithm [13], which can optimally extract feasible routes from a
single sequence. After Split algorithm, we apply Reverse neighborhood, because
it can improve the solution [19].

If the solution s′′ returned by the local search is better than the current
solution s, then s is updated (line 13 of Algorithm 1) and the perturbation level
returns to its minimum value (line15 of Algorithm 1). Otherwise, the perturba-
tion level is increased (line 18 of Algorithm 1). If the perturbation level exceeds
the level value (maxLevel), then the search moves to the next neighborhood (line
22 of Algorithm 1) and the perturbation level returns to the minimum level (line
23 of Algorithm 1).

5 Parameter Tuning

The VNSALS algorithm has six parameters to be tuned: (i) maximum number
of iterations (iterMax ); (ii) maximum time of processing (maxTime); (iii) num-
ber of neighborhoods for shaking (Nshake); (iv) maximum level of perturbations
(maxLevel); (v) number for training (alsTraining) and (vi) reset adaptive (alsRe-
set). To make a fare calibration of the parameters we used an automated algo-
rithm, called IRACE (Iterated Racing for Automatic Algorithm Configuration)
[9]. This algorithm was designed to provide the most appropriate parameters for
an optimization algorithm and a set of instances. IRACE runs as a package of
the R software, that is a free environment for statistical computing and graphics.

Table 1. Grouping of instances.

Group 1 2
Instance p01 p02 p03 p04 p05 p06 p07 p12 p13 p14 p15 p16 p17 p08 p09 p10 p11 p18 p19 p20 p21 p22 p23

n 50 50 75 100 100 100 100 80 80 80 160 160 160 249 249 249 249 240 240 240 360 360 360
m 4 2 3 8 5 6 4 5 5 5 5 5 5 14 12 8 6 5 5 5 5 5 5
d 4 4 5 2 2 3 4 2 2 2 4 4 4 2 3 4 5 6 6 6 9 9 9
β 800 400 1125 1600 1000 1800 1600 800 800 800 3200 3200 3200 6972 8964 7968 7470 7200 7200 7200 16200 16200 16200

In order to calibrate the parameters of the proposed algorithm, the instances
were grouped in sets according to theirs sizes, determined by the value
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γ = n × m × d. Table 1 shows two groups of instances with γ ≤ 3200 and
γ > 3200. A set of instances of each group was chosen for testing by IRACE soft-
ware. The following instances were chosen: Group 1 (p02, p04, p06, p14, p17);
Group 2 (p09, p19 and p21). We set the following values for the parameters:
iterMax = {400, 450, 500}; Nshake = {3, 4, 5}; maxLevel = {3, 4, 5}; alsTraining
= {0.1, 0.15}; alsReset = {0.2, 0.3, 0.4} and maxTime = {30, 60}. The best val-
ues returned by IRACE were: iterMax = 500, Nshake = 5, maxLevel = 3,
alsTraining = 0.15, alsReset = 0.3 and maxTime = 60 min.

6 Computational Experiments

The VNSALS algorithm was coded in C++ and tested in a computer with Intel
Core i5-2310M, 2.90 GHz, 4 GB RAM, under operational system Ubuntu 16.04
64 bits and compiler G++ version 5.4.

The Courdeau’s instances of MDVRP from [6] were used to verify the per-
formance of the VNSALS algorithm. These instances have n = 50 to n = 360
customers; d = 2 to d = 9 depots; m = 2 to m = 14 vehicles; and load q = 60 to
q = 500.

Six algorithms from literature were used for comparing the results of the
VNSALS algorithm. These algorithms are: ALNS [12], HGSADC [17], ILS-
RVND-SA [16], HGSADC+ [19], CoES [11], and GVNS [4]. The computer con-
figurations used to test these algorithms, as well as the number of runs of each
algorithm in each instance, are shown in Table 2.

Table 2. Computer configurations used to test the algorithms.

Algorithm Runs Computer
ALNS 10 Pentium IV 3.0 GHz
HGSADC 10 Opteron 2.4 GHz scaled for a Pentium IV 3.0 GHz
ILS+RVND+SA 10 Intel CoreTM i7 with 2.93 GHZ and 8 GB of RAM
GRASPxILS 5 Intel CoreTM 2 Quad CPU Q8400 @ 2.66 GHz
HGSADC+ 10 Opteron 2.4 GHz scaled for a Pentium IV 3.0 GHz
GVNS 30 Intel Core i3-2370M, 2.40 GHz, 4GB RAM
VNSALS (our algorithm) 30 Intel Core i5-2310M, 2.90 GHz, 4GB RAM

Table 3 presents the best results found by the algorithms ALNS, HGSADC,
ILS-RVND-SA, HGSADC+, CoES, GVNS, shown in their respective original
articles, and the results concerning the application of the proposed VNSALS
algorithm. For VNSALS, the average values, the best solutions, as well as the
execution times, are presented. Each instance was run 30 times, using the param-
eter values chosen by IRACE (which are described in Sect. 5) and the parameter
maxTime = 60 min. The average results and the best results of VNSALS are
1.88% and 0.99%, respectively, higher in relation to the values of the Best Known
Solutions (BKS). Compared to the HGSADC+ algorithm, which has the best



A VNS-Based Algorithm with Adaptive Local Search for Solving MDVRP 179

results for MDVRP, VNSALS presents a total cost 1.85% and 0.96% higher
in relation to the average and best values, respectively. These results show that
VNSALS is a competitive algorithm against the best algorithms for the MDVRP
solution in the literature.

Table 3. Results of the algorithms.

Inst n m d q T BKS ALNS HGSADC ILS-RVND-SA HGSADC+ CoES GVNS VNSALS T(min)
Average Best Average

p01 50 4 4 80 ∞ 576.87 576.87 576.87 576.87 576.87 576.87 591.09 579.12 576.87 0.37
p02 50 2 4 160 ∞ 473.53 473.53 473.53 473.53 473.53 475.06 476.66 476.72 473.53 0.40
p03 75 3 5 140 ∞ 640.65 641.19 641.19 641.19 640.65 643.57 641.19 642.81 641.19 1.01
p04 100 8 2 100 ∞ 999.21 1006.09 1001.04 1001.04 1000.66 1011.42 1025.44 1017.53 1003.72 10.69
p05 100 5 2 200 ∞ 750.03 752.34 750.03 750.21 750.03 752.39 757.46 756.55 751.15 6.85
p06 100 6 3 100 ∞ 876.50 883.01 876.5 876.5 876.5 877.86 889.79 888.23 880.42 5.17
p07 100 4 4 100 ∞ 881.97 889.36 884.43 881.97 881.97 893.36 898.31 895.08 884.04 4.88
p08 249 14 2 500 310 4372.78 4421.03 4397.42 4393.7 4383.63 4474.23 4577.46 4503.76 60.29
p09 249 12 3 500 310 3858.66 3892.5 3868.59 3864.22 3860.77 3904.92 3987.11 3928.40 60.13
p10 249 8 4 500 310 3631.11 3666.85 3636.09 3634.72 3631.71 3680.02 3774.47 3702.20 59.17
p11 249 6 5 500 310 3546.06 3573.23 3548.25 3546.15 3547.37 3593.37 3627.77 3567.71 55.67
p12 80 5 2 60 ∞ 1318.95 1319.13 1318.95 1318.95 1318.95 1318.95 1326.85 1321.46 1318.95 1.96
p13 80 5 2 60 200 1318.95 1318.95 1318.95 1318.95 1318.95 1318.95 1323.61 1318.95 0.75
p14 80 5 2 60 180 1360.12 1360.12 1360.12 1360.12 1360.12 1360.12 1363.09 1360.12 0.58
p15 160 5 4 60 ∞ 2505.42 2519.64 2505.42 2505.42 2505.42 2549.65 2567.62 2551.49 2505.42 29.31
p16 160 5 4 60 200 2572.23 2573.95 2572.23 2572.23 2572.23 2572.23 2590.57 2572.23 4.12
p17 160 5 4 60 180 2709.09 2709.09 2709.09 2710.21 2709.09 2733.8 2720.61 2709.09 2.28
p18 240 5 6 60 ∞ 3702.85 3736.53 3702.85 3702.85 3702.85 3781.66 3796.04 3797.59 3762.64 60.16
p19 240 5 6 60 200 3827.06 3838.76 3827.06 3827.55 3827.06 3827.06 3851.20 3839.36 14.62
p20 240 5 6 60 180 4058.07 4064.76 4058.07 4058.07 4058.07 4094.86 4080.18 4069.21 6.81
p21 360 5 9 60 ∞ 5474.84 5501.58 5476.41 5474.84 5474.84 5668.97 5711.17 5669.61 60.61
p22 360 5 9 60 200 5702.16 5722.19 5702.16 5705.84 5702.16 5708.78 5736.91 5714.45 46.53
p23 360 5 9 60 180 6078.75 6092.66 6078.75 6078.75 6080.43 6159.9 6116.5 6089.9 20.6

Total cost 61235.86 61533.36 61284.00 61273.88 61253.86 61978.00 62387.20 61842.91

Table 4 compares the average gaps of the ALNS, HGSADC, ILS-RVND-SA,
HGSADC+, CoES, GVNS and VNSALS algorithms. A blank line means that
the respective algorithm was not tested in the respective instance. In this table,
the average gap is calculated by Eq. (12):

gapavgi =
f
VNSALS

i − f�
i

f�
i

(12)

where f�
i represents the value of the best known solution (BKS) from literature

relative to instance i and f
VNSALS

i represents the average value produced by the
VNSALS algorithm in this instance. From Table 4, we may observed that the best
results achieved by the VNSALS algorithm are close to the best known values.
In terms of variability of the final solutions, the gap varies from 0.19% to 4.68%,
with average gap of 1.49%. The VNSALS results are better than those of the
GVNS algorithm, which is a VNS-based algorithm without the ALS procedure
and the cluster refinement.
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Table 4. Comparison of the algorithms with respect to the average gaps

Inst ALNS HGSADC ILS-RVND-SA HGSADC+ CoES GVNS VNSALS
p01 0.00 0.00 0.00 0.00 0.00 2.47 0.39
p02 0.00 0.00 0.00 0.00 0.32 0.66 0.67
p03 0.08 0.08 0.08 0.00 0.46 0.08 0.34
p04 0.69 0.18 0.18 0.15 1.22 2.63 1.83
p05 0.31 0.00 0.02 0.00 0.31 0.99 0.87
p06 0.74 0.00 0.00 0.00 0.16 1.52 1.34
p07 0.84 0.28 0.00 0.00 1.29 1.85 1.49
p08 1.10 0.56 0.48 0.25 2.32 4.68
p09 0.88 0.26 0.14 0.05 1.20 3.33
p10 0.98 0.14 0.10 0.02 1.35 3.95
p11 0.77 0.06 0.00 0.04 1.33 2.30
p12 0.01 0.00 0.00 0.00 0.00 0.60 0.19
p13 0.00 0.00 0.00 0.00 0.00 0.35
p14 0.00 0.00 0.00 0.00 0.00 0.22
p15 0.57 0.00 0.00 0.00 1.77 2.48 1.84
p16 0.07 0.00 0.00 0.00 0.00 0.71
p17 0.00 0.00 0.04 0.00 0.91 0.43
p18 0.91 0.00 0.00 0.00 2.13 2.52 2.56
p19 0.31 0.00 0.01 0.00 0.00 0.63
p20 0.16 0.00 0.00 0.00 0.91 0.54
p21 0.49 0.03 0.00 0.00 3.55 4.32
p22 0.35 0.00 0.06 0.00 0.12 0.61
p23 0.23 0.00 0.00 0.03 1.33 0.62

Average 0.41 0.07 0.05 0.02 0.90 1.49

7 Conclusions

In this paper, we presented a VNS-based algorithm, named VNSALS (Variable
Neighborhood Search with Adaptive Local Search), for solving the Multi-Depot
Vehicle Routing Problem (MDVRP). The main characteristic of VNSALS is
the existence of an Adaptive Local Search (ALS) algorithm that classifies the
neighborhoods and performs cluster refinement, in order to minimize the cost
associated with depots. In the ALS procedure, the neighborhood order is not a
parameter, because it is chosen adaptively by roulette wheel.

VNSALS was tested in classical instances of MDVRP and its results were
compared with those of the best known values and other six algorithms of the
literature.

The computational experiments showed that the VNSALS algorithm is better
than the other VNS-based algorithm of [4]. However, the proposed algorithm
was not better than the other algorithms with which it was compared. New
improvements need to be made to improve its performance.
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Abstract. This paper deals with the Weighted Generalized Regener-
ator Location Problem (WGRLP) that arises in the design of optical
telecommunication networks. During the transmission of optical signal,
its quality deteriorates with the distance from the source, and there-
fore, it has to be regenerated by installing regenerators at some of the
nodes in the network. The WGRLP involves weights assigned to poten-
tial regenerator locations, reflecting the costs of regenerator deployment.
The objective of WGRLP is to minimize the sum of weights assigned
to locations with installed regenerators, while ensuring a good quality
communication among terminal nodes. As telecommunication networks
usually involve large number of nodes, an efficient optimization method
is required to deal with real-life problem dimensions. In this paper, a
Skewed Variable Neighborhood Search method (SVNS) is proposed as
solution approach for the WGRLP. The designed SVNS uses adequate
data structures for solution representation and efficient procedures for
objective function update, feasibility check, and solution repair. Compu-
tational results on the WGRLP data set from the literature show that
the proposed SVNS reaches all known optimal solutions on small and
medium size instances in short running times and outperforms existing
heuristic approaches for the WGRLP. In addition, SVNS is tested on
large scale WGRLP instances not considered in the literature so far.
The presented computational results indicate the potential of SVNS as
solution method for WGRLP and related network design problems.
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1 Introduction

When designing an optical telecommunication network, the most important
requirement is the reliability of signal transmission from an origin to destina-
tion node. The optical signal is transmitted through the set of links connecting
two terminal nodes in the network and its quality deteriorates as the distance
from the origin increases. In optical networks, the signal can only travel a maxi-
mum distance before it starts loosing its quality, mostly due to attenuation and
transmission impairments. In order to regenerate the signal, special devices -
regenerators must be installed at some of the nodes in the network. Regener-
ators transform the deteriorated optical signal to electronic one, which is then
regenerated, and finally, the recovered electronic signal is converted back to opti-
cal form. As regenerator deployment is highly expensive, it is necessary to install
the lowest number of regenerators in order to reduce the total costs in optical
network.

The described optimization problem has been identified in the literature as
the Regenerator Location Problem (RLP). More precisely, the objective of RLP
is to minimize the number of regenerators to be deployed at some of the nodes
in the given network, such that communication between all terminal nodes is
ensured with good signal quality. Regenerator Location Problem was introduced
by Chen et al. [2], who proposed three heuristics and exact Branch-and-Cut app-
roach as solution methods for the RLP. In addition, a correspondence between
the RLP and the Maximum Leaf Spanning Tree Problem (MLSTP) was estab-
lished in [2]. Due to this correspondence, a strategic oscillation procedure for the
MLSTP proposed in [17] can also be used as solution approach to RLP. Duarte
et al. [4] designed a Greedy Randomized Adaptive Search Procedure (GRASP)
and a Biased Random Key Genetic Algorithm for the RLP.

However, the RLP may not address accurately all constraints required by
a service provider. In practice, it is rarely required that all nodes in the net-
work must communicate with each other and the set of potential locations for
installing regenerators is usually restricted. In order to overcome this situation, a
Generalized Regenerator Location Problem (GRLP) is introduced [1]. In GRLP,
candidate locations for installing regenerators belong to the subset of nodes in
the observed telecommunication network, and it is not necessary that all nodes
in the network must communicate with each other. Chen et al. [1] proposed a
Branch-and-Cut algorithm (BnC), as well as two constructive heuristics (GH1
and GH2) and a local search procedure for solving the GRLP. Quintana et al.
[15] designed an efficient GRASP metaheuristic for the same problem.

The weighted variant of the GRLP problem (WGRLP) was proposed by Chen
et al. [1]. WGRLP takes into account the fact that the costs of locating regener-
ators at different nodes of a network may vary, which is mostly due to real estate
costs. For example, the deployment of regenerators in urban areas may be much
more expensive than in rural areas. Chen et al. [1] assigned weights to each can-
didate regenerator location, reflecting the costs of regenerator deployment, while
other assumptions of WGRLP are the same as in GRLP. Differently from GRLP
that minimizes the number of deployed regenerators, the objective of WGRLP
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is to minimize the sum of weights (costs) of installing regenerators at chosen
locations. In order to solve WGRLP, Chen et al. [1] adapted Branch-and-Cut
algorithm and two constructive heuristics previously designed for GRLP to the
weighted variant of the problem. The adapted BnC, GH1, and GH2 approaches
were tested on instances from Set 2 with up to 150 nodes, obtained by modifying
instances from Set1 for GRLP.

As optical networks usually include large number of nodes, it is necessary
to design a metaheuristic method that will efficiently provide solutions for large
scale problem WGRLP instances. In this paper, we propose a variant of Variable
Neighborhood Search metaheurstic for the WGRLP, known as Skewed Variable
Neighborhood Search (SVNS), which allows the exploration of the valleys far
from the incumbent solution [6,7]. The proposed SVNS is tested on WGRLP
instances from the Set 2 introduced in [1], and the results are compared with the
results of BnC, GH1, and GH2 presented in [1]. Following the strategy described
in [1], we modify large scale GRLP instances from the Set 3 used in [1]. The
newly generated sets of large scale WGRLP instances are denoted as Set 4 and
Set 5, and the proposed SVNS is also benchmarked on these challenging WGRLP
test examples. The obtained computational results clearly indicate the potential
of SVNS method when solving the WGRLP.

The rest of the paper is organized as follows. Section 2 contains the descrip-
tion of the considered WGRLP. The proposed SVNS heuristic is explained in
details in Sect. 3. Computational results are presented and analyzed in Sect. 4.
Finally, in Sect. 5, some conclusions and directions for future work are given.

2 Problem Description

Let G = (V,E) be a given network, where V represents the set of nodes and E
denotes the set of edges. The set V consists of two subsets: the set of potential
locations for installing regenerators S ⊆ V and the set of terminal nodes T ⊆
V that must communicate with each other. Note that T and S are disjoint
sets, i.e., T ∩ S = ∅ and T ∪ S = V . For each edge (i, j) ∈ E, its length
l(i, j) ≥ 0 is known. A weight wr > 0 is assigned to each candidate location
r ∈ S, corresponding to the costs of regenerator deployment at this location.
Parameter dmax > 0 represents maximal distance that a signal can traverse
before its quality deteriorates.

A path P from origin node i ∈ V to destination node j ∈ V is defined
as the array of nodes i, v1, . . . , vm, j, where vi ∈ V , i = 1, ...,m are the nodes
traversed from origin i to reach destination j, assuming that there is an edge
connecting each pair of subsequent nodes in P . The length of path P is calculated
as l(P ) = l(i, v1) + l(v1, v2) + ... + l(vm, j). If l(P ) ≤ dmax holds, a signal can
traverse directly from i to j without being regenerated. Otherwise, regenerator
devices must be installed at one or more internal nodes of the path P to ensure
the quality of signal transmission.

Let L ⊆ S denote the set of nodes with installed regenerators in the network.
Let us consider a path P that contains regenerators {r1, ..., rk} ⊆ L installed at
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some of the internal nodes of P . The distance between two terminal nodes i and
j along the path P is calculated as d(P ) = max{l(Pi,r1), l(Pr1,r2), ..., l(Prk,j)},
where Pk,l denotes a subpath of P connecting k and l, k, l ∈ {i, r1, ..., rk, j}. The
objective of WGRLP is to minimize the sum of weights of chosen regenerator
locations

∑
r∈L wr, such that for each pair of terminal nodes i, j ∈ T , there

exists a path P for which d(P ) ≤ dmax holds.
If the weights of candidate nodes are neglected, i.e., if wr = 1 for all r ∈ S, the

objective function is equal to the number of installed regenerators, and therefore,
the WGRLP reduces to the Generalized Regenerator Location Problem (GRLP).
In addition, if S = T = V holds, we obtain Regenerator Location Problem (RLP)
as a special case of the GRLP. As RLP is proved to be NP-hard in [2,5], it is
obvious that both GRLP and WGRLP are also NP-hard optimization problems.
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Fig. 1. The construction of communication graph B

In order to construct an efficient algorithm for the WGRLP, the considered
graph G = (V,E) is transformed into a simpler graph B, denoted as communi-
cation graph [1]. Initially, graph B has the same set of nodes V and the same
set of edges E as the graph G. Then, all edges of length greater than dmax

are removed, as it is not possible to transmit good quality signal along them.
The next step consists of adding an artificial edge for each non-adjacent pairs
of nodes. The length of an artificial edge connecting nodes i, j ∈ V is equal to
the length of the corresponding shortest path between them. Then, the artificial
edges of length greater than dmax are also removed. Finally, a communication
graph B = (V,E′) is obtained, in which information on length of the edges are
discarded. If there is an edge in the graph B connecting two nodes from the set
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T , this pair of nodes is considered connected, meaning that the direct communi-
cation between them is possible. Otherwise, this pair of nodes is marked as not
directly connected (NDC).

Figure 1 illustrates the described steps in constructing communication graph
B on a small example. Terminal nodes are represented as black filled squares,
while empty circles denote potential locations for installing regenerators. Con-
tinuous lines in Fig. 1 correspond to the edges of the initial graph G, while
dashed lines represent artificial edges added when constructing the communi-
cation graph B. From Fig. 1(d) it can be seen that the solution represented by
communication graph B is not feasible. In order to construct a feasible solution,
all NDC pairs must be connected with new artificial edges in the communication
graph.
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Fig. 2. Communication graph after adding a regenerator at location A

Figure 2 shows changes in communication graph from Fig. 1(d) after adding
a regenerator at location A. The deployment of the regenerator in the network
may result in adding new artificial edges to the communication graph. Dashed
lines in Fig. 2 represent newly added artificial edges between the pair of nodes
that were not directly connected before regenerator deployment.

3 Skewed Variable Neighborhood Search for the WGRLP

Variable Neighborhood Search (VNS) is a simple and effective metaheuristics
proposed by Mladenović and Hansen [14]. Basic variant of VNS method consists
of two phases, which alternate together with neighborhood change step, until a
stopping criterion is satisfied. The first phase, denoted as Shaking, is used to drive
away the search from the incumbent solution in a stochastic manner. The solu-
tion obtained in Shaking phase is subject to Local search, which tries to find an
improvement in a deterministic manner. Starting from the basic VNS algorithm,
many variants of VNS have proposed: Reduced VNS (RVNS), Variable Neighbor-
hood Descent (VND), Variable Neighborhood Decomposition Search (VNDS),
General VNS (GVNS), Skewed VNS (SVNS), Primal-dual VNS, Parallel VNS,
etc. [6,7]. In the literature, VNS has been proposed as solution approach to
many combinatorial and global optimization problems, including the problems
related to the design of telecommunication networks, such as: topological design
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of a yotta-bit-per-second multidimensional optical network [3], optical routing
in networks using latin routers [13], real-life network problem of France Telecom
R&D [9], the design of SDH/WDM networks [8,11,12], single path multicom-
modity flow problem in telecommunication networks [10], etc.

Having in mind numerous examples of successful VNS applications to the
network design problems, we have developed Skewed VNS, as a variant of VNS
metaheuristic to solve the considered WGRLP. The most important characteris-
tic of Skewed VNS is that the local optimum obtained in the Local Search phase
is accepted even if it is worse than the current solution. The level of acceptable
degradation is regulated by a parameter. In the following subsections, all aspects
of the proposed SVNS approach are explained in detail.

3.1 Solution Representation

The solution of WGRLP is represented as array of integers. Each element of
the array corresponds to a location with installed regenerator. Objective func-
tion is simply calculated by summing up weights of all locations with deployed
regenerators. The solution is feasible if all NDC pairs in the corresponding com-
munication graph are connected.

In our SVNS implementation, communication graph is represented by the
adjacency list. Vertices of the graph are stored in a list, while adjacent nodes of
each vertex are stored in a Java HashSet. The use of hashing helps us to examine
if the considered edge exists in the graph and to search trough adjacent vertices
of the given vertex in an efficient manner. Similarly, NDC pairs are stored in a
Java HashMap that enables us to efficiently check if the considered pair of nodes
is a NDC pair and if it is connected. Each NDC pair is stored with the assigned
boolean value: true if NDC pair is connected, and false otherwise. Therefore, a
solution to WGRLP is feasible if all values in the hash map are set to true.

The array of indices of installed regenerators is stored in a stack data struc-
ture. The index of a regenerator is pushed on the stack after it is being added
to the solution [15]. The use of stack data structure increases the efficiency of
procedures for adding and removing regenerator.

3.2 Generating Initial Solution

An initial solution for SVNS is constructed by a greedy procedure presented in
Algorithm 1. The procedure starts from an empty solution and adds one by one
regenerator until a feasible solution is constructed. For each candidate regenera-
tor location i, the procedure calculates the total number of NDC pairs that would
be connected if a regenerator is deployed at i. The calculated value is denoted as
the gain of the candidate regenerator location i. A regenerator is then installed
at the location which has maximal gain to cost ratio, and the index of the loca-
tion with installed regenerator is deleted from the list of candidate locations.
The described steps are repeated until a solution becomes feasible.
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Algorithm 1. Greedy solution construction
x ← empty solution;
candidates ← the list of all potential regenerator locations;
while solution x is infeasible do

for i in candidates do
gaini ← the count of NDC pairs that would be connected

if a regenerator is installed at location i;

max ← location with maximal gain to cost ratio;
add regenerator at location max;
remove location max from candidates;

3.3 The Structure of the Proposed SVNS for WGRLP

The structure of the proposed SVNS is outlined in Algorithm2. Input param-
eters for SVNS are: maximal number of iterations without improvement Imax,
parameter kmax used to control neighborhood change, and αmax that defines the
acceptable degradation level of the objective function value.

The proposed SVNS uses neighborhood structures N1 and N2. Neighborhood
N1 is obtained by removing one randomly chosen regenerator from the solution.
Neighborhood N2 is based on a swap operation that removes regenerator from
one location and adds regenerator to another location with smaller installation
costs. Neighborhood N1 is used in Shaking phase, while neighborhood N2 is
explored in Local search part.

The SVNS algorithm starts with the greedy procedure that generates initial
solution x. Initially, the current best solution xbest is set to x, while the counter
of non-improving iterations Icount is set to 0. The main SVNS loop consists of
three steps: Shaking, Local search, and Move or not. These steps are repeated
within the neighborhood change loop while k ≤ kmax. Initially, k is set to 1.

In Shaking step, one randomly chosen regenerator is removed from x, result-
ing in a neighbor solution x′. If k > kmax/2 holds, solution x′ is created by
deleting two randomly chosen regenerators from x. In this way, we aim to pro-
vide stronger diversification of solutions for larger values of k and to help the
algorithm in escaping from a local optimum trap. The obtained neighbor solu-
tion x′ is corrected to be feasible, if necessary. Procedure Repair is performed
by adding regenerators to a solution until it becomes feasible. In order to choose
regenerators to be added, we have used the idea from the construction phase of
the well-known GRASP heuristic [16]. First, the list of regenerator locations
that can be added to a solution is created and the corresponding values of
gain to cost ratio are calculated. Then, a restricted list of candidate locations
is obtained as follows. Location i is included in the restricted candidate list if
ri ≥ rmin + γ(rmax − rmin) holds. Here, ri denotes gain to cost ratio of location
i, while rmax and rmin are the maximum and minimum values of the gain to
cost ratio among all locations in the candidate list, respectively. In addition, the
procedure uses parameter γ that depends on k and takes real values between 0
and 1. A regenerator to be added is chosen randomly from the created restricted
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candidate list. Once a regenerator has been added to a solution, it is deleted from
the candidate list. The described steps are repeated until a feasible solution is
obtained. Algorithm3 shows the steps of our Repair procedure.

Algorithm 2. The proposed Skewed VNS for the WGRLP
Input: Imax, kmax, αmax

x ← solution constructed by the greedy procedure;
xbest ← x;
Icount ← 0;
while Icount ≤ Imax do

k ← 1;
improvement ← false;
Icount ← Icount + 1;
α = Icount ∗ αmax/Imax;
while k ≤ kmax do

x′ ← randomly choose solution from N1(x); //Shaking step
if k > kmax/2 then

x′ ← randomly choose solution from N1(x
′);

if x′ is not feasible then
x′ ← Repair (x′, k, kmax);

x′ ← Clean (x′); //Local search step
x′ ← LocalSearch in N2(x

′);
if f(x′) − αd(x′, x) < f(x) then //Move or not step

x ← x′;
k ← 1;

else
k ← k + 1;

if f(x′) < f(xbest) then
xbest ← x′;
improvement ← true;
Icount ← 0;

Local search phase consists of procedures Clean and LocalSearch. The
procedure Clean goes trough the list of all regenerators in the solution and tries
to remove useless ones. A regenerator is considered useless if it can be removed
without affecting solution’s feasibility. The resulting solution x′ is further subject
to a simple LocalSearch procedure that tries to find an improvement in the
neighborhood N2 of x′. The procedure LocalSearch tries to remove an installed
regenerator in x′ and to deploy new regenerator at some other, cheaper location.
The swap move is performed only if it preserves solution’s feasibility. The first
improvement strategy is used, meaning that LocalSearch finishes after an
improvement of solution x′ is found, and x′ is replaced with the new, improved
solution.
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Algorithm 3. Repair procedure

procedure Repair(x, k, kmax)
if k > kmax/2 then k ← k − kmax/2

γ ← 1/k;
while x is not feasible do

candidate list ← the list of regenerator locations that can be added;
calculate gain to cost ratio for each location from candidate list;
sort candidate list in decreasing order according to gain to cost ratio;
rmax ← the maximum gain to cost ratio among candidate list;
rmin ← the minimum gain to cost ratio among candidate list;
restricted list ← empty list;
for each i in candidate list do

if ri ≥ rmin + γ(rmax − rmin) then
add location i to restricted list;

randomly choose regenerator j from restricted list;
add regenerator j to the solution;
remove j from candidate list;

In Move or not step, the algorithm will move to the solution x′ produced by
the Local search phase if inequality f(x′) − αd(x′, x) < f(x) is satisfied. Here,
f(x) stands for the objective function value of solution x, while d(x′, x) denotes
the distance between solutions x′ and x, defined as the number of regenerators
included ether in x′ or in x, but not in both of them. More precisely, the dis-
tance d(x′, x) represents the cardinality of the symmetric difference of the sets
of installed regenerators in solutions x′ and x, respectively. An adequate value of
parameter α must be chosen in order to accept the exploration of search space
regions distant from x in cases when x′ is worse than x, but not too far away. Oth-
erwise, the search will always leave x and the SVNS would turn to a multi-start
heuristic. In our SVNS implementation, the value of parameter α depends on the
number of iterations without improvement as follows: α = Icount · αmax/Imax,
meaning that α takes positive values up to αmax. If f(x′) − αd(x′, x) < f(x)
holds, x is replaced with x′, k is set to 1, and the algorithm continues the search
in the neighborhood N1; otherwise k is set to k + 1. In addition, in case of
f(x′) < f(xbest), the current best solution xbest is updated with x′ and the
counter of non-improving iterations Icount is reset to 0.

The described steps are repeated until the maximal number of iterations
without improvement Imax is reached. The value of termination criteria param-
eter Imax usually depends on the problem size and it is determined through the
set of parameter tuning experiments.

3.4 Efficient Objective Function Update

Local search phase in the proposed SVNS is based on two main operations:
adding regenerator to a solution and removing regenerator from a solution.
The most time consuming part in this phase is checking the feasibility of the
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newly obtained solution after each of the two operations. Therefore, an efficient
implementation of feasibility check may reduce the overall computational time
significantly.

Algorithm 4. Adding a regenerator

Input: location i where a new regenerator is deployed
for each pair (u, v) of nodes adjacent to i do

if u and v are both end nodes then
if pair (u, v) is not connected then

add pair (u, v) to the list of pairs of location i;
mark pair (u, v) as connected in the NDC pairs map;
increase count of connected NDC pairs by one;

else if edge (u, v) does not exists in the graph then
add edge (u, v) to the graph;
add edge (u, v) to the list of artificial edges of location i;

increase objective function by the cost of location i;
push the i to the solution stack;

Adding a new regenerator in a solution may result in inserting additional
artificial edges in the communication graph. If a newly added artificial edge forms
a NDC pair, the total number of connected NDC pairs is increased by one, and
the considered NDC pair is marked as connected. At the same time, objective
function value is increased by the cost of the newly added regenerator. Removing
a regenerator from a solution may cause the deletion of some artificial edges from
the communication graph. If the removed artificial edge had formed a NDC pair,
the total number of connected NDC pairs is decreased by one and the observed
NDC pair is marked as not connected. At the same time, objective function value
is decreased by the installation cost (weight) of the removed regenerator. The
main problem when implementing an efficient feasibility check is to decide which
artificial edges should be inserted after adding a new regenerator and which ones
should be deleted when a regenerator is removed.

When adding a regenerator to the solution, all pairs of vertices adjacent to the
newly added regenerator are examined. If there is no edge between some pair of
adjacent vertices, an artificial edge connecting them is added to the graph. Note
that the feasibility of the resulting solution depends on the order of regenerator
deployment. The procedure of adding a regenerator is given by Algorithm4.

The procedure of removing a regenerator from the top of the stack (the last
added regenerator) is outlined in Algorithm5. The procedure creates the list of
pairs of nodes connected by the considered regenerator and the list of artificial
edges that were added when the considered regenerator was deployed. Each
pair of nodes from the first list is marked as not connected and the number of
connected NDC pairs is decreased by one. Each artificial edge from the second
list is being removed from the graph. Finally, the objective function value is
decreased by the installation costs of regenerator that has been removed.
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Algorithm 5. Removing the last added regenerator
i ← pop location from the solution stack;
pairs ← list of pairs connected by location i;
edges ← list of artificial edges added by location i;
for each pair (u, v) in pairs do

mark pair (u, v) as not connected in the NDC pairs map;
decrease the number of connected NDC pairs by one;

clear list pairs;
for each edge (u, v) in edges do

remove edge (u, v) from the graph;

clear list edges;
decrease objective function by the cost of regenerator at location i;

Algorithm 6. Remove arbitrary regenerator from the stack

Input: location i from which regenerator is being removed
removed ← empty stack;
while true do

tmp ← location from the top of the solution stack;
remove regenerator from the location tmp;
if tmp = i then

break;

push tmp to the removed stack;

while removed is not empty do
tmp ← location from the top of the removed stack;
add regenerator to location tmp;

Algorithm 6 shows the procedure of removing arbitrary regenerator from a
solution. This procedure consists of three steps. First, all regenerators added after
the considered one are removed from the solution and saved in a list, preserving
the order of their deployment. Next, the considered regenerator is removed in
the same way as described in Algorithm 5. Finally, regenerators saved in the list
are added back to the solution. Preliminary computational experiments showed
that the described strategy is more efficient than destroying whole solution and
then adding all regenerators back.

4 Experimental Analysis

In our computational study, we use three data sets:

Set 2 - the set of small and medium size WGRLP instances proposed in [1],
obtained from the Set 1 of unicost GRLP instances from the same paper.
These instances are characterized by two parameters: the number of nodes
n = |V | in the network and the percentage p(%) of terminal nodes among
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them. For each combination of n ∈ {50, 75, 100, 125, 150} and p ∈ {25, 50, 75},
a group of ten instances is generated with different weights assigned to poten-
tial regenerator nodes. Weights are randomly chosen from the set {2, 3, 4}.
Set 4 - the newly generated set of large scale WGRLP instances, obtained by
modifying large unicost GRLP instances from the Set 3 used in [1]. We have
followed the same strategy as the one used by the authors of [1] to generate
the Set 2 from the Set 1. The newly obtained Set 4 contains 10 instances for
each n ∈ {175, 200, 300, 400, 500} and p ∈ {25, 50, 75}, while the weights of
potential regenerator are also randomly chosen from the set {2, 3, 4}.
Set 5 - the new set of large scale WGRLP instances obtained in the same
way as instances from the Set 4, but with the wider range of weights of
potential regenerators. In this data set, weights are random values from
{1, 2, 3, 4, 5, 6, 7, 8}.

All computational experiments were performed on a machine with Intel Core
i3-4170 CPU on 3.7 GHz with 8 GB of RAM. The proposed SVNS method is
implemented in Java programming language. As in the case of other metaheuris-
tic methods, the performance of the proposed SVNS is sensitive to the parameter
values. Therefore, before evaluating its performance, a set of parameter tuning
experiments was performed in order to find adequate values of kmax, αmax, and
Imax. The results of parameter tuning tests on the chosen subset of instances
are given in Subsect. 4.1, while Subsect. 4.2 contains the results of SVNS with
the obtained parameter values on all three data sets.

4.1 Parameter Tuning

The set of preliminary tests were performed to tune parameters kmax, αmax, and
Imax in SVNS. Parameter tuning tests were performed on the subset of instances
from each data set. For each problem dimension n, one randomly chosen instance
with medium value of p = 50 % is included in this subset.

First, we have considered five different values of parameter kmax: 2, 4, 6,
8, and 10. In these experiments, αmax, and Imax were fixed to 0.3 and 10,
respectively. For each considered value of kmax and each instance, SVNS was run
five times. The results are presented in Table 1 as follows. Each part of Table 1,
related to one tested formula for kmax, consists of three columns containing:
the best SVNS solution obtained in five runs - best, the average percentage gap
from the best solution - gap(%), and the average CPU time that SVNS needed
to reach its best solution - t(s). Three horizontal sections of Table 1 contain
the results obtained on the subset of instances from the Set 2, Set 4, and Set
5, respectively. The last row in each horizontal section, denoted by Average,
shows average values calculated over the data presented in each column of the
section, and the best average solution values are bolded.

The results presented in Table 1 indicate that the overall differences in aver-
age best solution value, average time and average gap are rather small when
using different formulae for kmax. As it was expected, the value k = 10 leaded to
the best average solution values for all three sets, but the corresponding running
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Table 1. Parameter tuning experiments for kmax

Instance kmax = 2 kmax = 4 kmax = 6 kmax = 8 kmax = 10
n best gap(%) t(s) best gap(%) t(s) best gap(%) t(s) best gap(%) t(s) best gap(%) t(s)

Set 2
50 28.00 0.00 2.77 28.00 0.00 2.63 28.00 0.00 2.04 28.00 0.00 2.26 28.00 0.00 1.19
75 24.00 0.00 7.07 24.00 0.00 2.48 24.00 0.00 2.08 24.00 0.00 1.68 24.00 0.00 2.64
100 26.00 6.92 3.45 26.00 3.85 14.47 26.00 2.31 18.24 26.00 3.85 30.72 26.00 2.31 24.33
125 45.00 2.67 4.02 45.00 3.56 4.80 45.00 1.33 8.96 45.00 0.89 9.51 45.00 0.89 10.22
150 14.00 7.14 3.52 14.00 7.14 13.10 14.00 1.43 10.65 14.00 2.86 10.53 14.00 2.86 25.45

Average 27.40 3.35 4.17 27.40 2.91 7.50 27.40 1.01 8.39 27.40 1.52 10.94 27.40 1.21 12.77
Set 4

175 29.00 7.59 14.76 31.00 3.23 23.04 29.00 5.52 27.99 29.00 4.14 45.73 29.00 4.14 44.21
200 28.00 3.57 3.04 29.00 0.69 0.81 29.00 0.00 5.37 29.00 0.69 1.06 28.00 2.86 5.83
300 58.00 4.14 94.42 57.00 1.40 163.69 55.00 2.91 324.89 56.00 3.21 333.24 56.00 0.71 273.78
400 58.00 3.10 52.20 58.00 2.07 110.45 57.00 3.51 228.83 56.00 1.07 295.37 54.00 3.70 457.07
500 18.00 7.78 17.26 20.00 0.00 1.88 18.00 6.67 42.45 18.00 0.00 60.74 20.00 0.00 2.12

Average 38.20 5.24 36.34 39.00 1.48 59.98 37.60 3.72 125.91 37.60 1.82 147.23 37.40 2.28 156.60
Set 5

175 65.00 4.31 29.92 66.00 1.82 43.63 65.00 2.15 45.16 65.00 1.54 78.64 65.00 3.08 77.24
200 10.00 8.00 0.77 10.00 6.00 2.41 10.00 0.00 15.71 10.00 0.00 21.16 10.00 0.00 25.81
300 46.00 2.61 27.73 46.00 2.17 68.07 46.00 1.30 37.12 47.00 0.85 66.89 46.00 1.30 285.24
400 60.00 4.33 82.71 59.00 2.71 453.83 59.00 2.71 330.51 58.00 4.14 504.75 59.00 3.39 637.26
500 23.00 0.87 53.34 22.00 5.45 55.74 22.00 5.45 149.17 22.00 1.82 85.43 22.00 2.73 123.17

Average 40.80 4.02 38.89 40.60 3.63 124.74 40.40 2.32 115.53 40.40 1.67 151.37 40.40 2.10 229.75

Table 2. Parameter tuning experiments for αmax

Instance αmax = 0.2 αmax = 0.4 αmax = 0.5 αmax = 0.6 αmax = 0.7
n best gap(%) t(s) best gap(%) t(s) best gap(%) t(s) best gap(%) t(s) best gap(%) t(s)

Set 2
50 28.00 0.00 0.86 28.00 0.00 1.04 28.00 0.00 0.45 28.00 0.00 1.07 28.00 0.00 0.93
75 24.00 0.00 1.19 24.00 0.00 0.62 24.00 0.00 1.44 24.00 0.00 0.61 24.00 0.00 1.41
100 26.00 3.85 9.02 26.00 4.62 9.42 26.00 6.92 4.46 26.00 4.62 12.60 26.00 3.85 10.94
125 45.00 0.89 18.53 45.00 0.89 6.67 45.00 0.44 8.26 45.00 0.89 11.16 45.00 1.33 9.89
150 14.00 2.86 7.73 14.00 1.43 8.31 14.00 5.71 4.56 14.00 4.29 7.41 14.00 2.86 8.40

Average 27.40 1.52 7.47 27.40 1.39 5.21 27.40 2.62 3.83 27.40 1.96 6.57 27.40 1.61 6.31
Set 4

175 29.00 4.83 51.28 30.00 1.33 36.61 30.00 2.67 35.18 29.00 6.21 65.82 29.00 7.59 39.41
200 29.00 0.69 6.34 29.00 0.69 1.44 28.00 2.14 28.32 29.00 0.00 5.16 29.00 0.00 3.85
300 55.00 2.91 342.03 57.00 0.70 504.14 56.00 4.64 186.73 55.00 5.82 240.49 57.00 2.11 201.46
400 54.00 2.96 395.66 56.00 5.36 133.58 56.00 1.79 275.71 54.00 8.15 313.02 57.00 2.46 259.35
500 18.00 3.33 138.75 18.00 5.56 50.55 18.00 6.67 65.20 18.00 4.44 98.22 19.00 4.21 21.47

Average 37.00 2.94 186.81 38.00 2.73 145.26 37.60 3.58 118.23 37.00 4.92 144.54 38.20 3.27 105.11
Set 5

175 65.00 1.23 137.36 65.00 3.38 78.33 65.00 2.46 56.61 65.00 2.46 194.27 67.00 0.30 82.20
200 10.00 2.00 9.76 10.00 0.00 23.52 10.00 0.00 14.35 10.00 4.00 11.92 10.00 0.00 33.95
300 46.00 0.87 168.58 46.00 1.30 161.41 46.00 0.87 47.60 46.00 1.74 97.93 47.00 1.28 24.74
400 57.00 3.86 510.83 60.00 1.67 248.48 60.00 1.33 129.63 60.00 2.67 518.45 60.00 2.00 641.77
500 22.00 1.82 104.32 22.00 1.82 178.18 22.00 0.00 136.14 22.00 4.55 29.90 22.00 3.64 67.82

Average 40.00 1.96 186.17 40.60 1.63 137.98 40.60 0.93 76.87 40.60 3.08 170.49 41.20 1.44 170.10

times were significantly longer, especially in the case of Set 5. For this reason,
we have further considered k = 6 and k = 8 that leaded to best average solution
values on all instances from the Set 2 and Set 5, while average solution values for
instances from the Set 4 were slightly worse than in the case of k = 10. Finally,
we have chosen k = 8, as it provided two times smaller average gap for instances
from the Set 4 and not significantly longer running times when compared to
k = 6.
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Table 3. Parameter tuning experiments for Imax

Instance Imax = 5 + n/20 Imax = 10 + n/20 Imax = 15 + n/30 Imax = 20 + n/30 Imax = 25 + n/30
n best gap(%) t(s) best gap(%) t(s) best gap(%) t(s) best gap(%) t(s) best gap(%) t(s)

Set 2
50 28.00 0.00 1.21 28.00 0.00 2.67 28.00 0.00 1.42 28.00 0.00 0.78 28.00 0.00 0.80
75 24.00 0.00 1.08 24.00 0.00 1.61 24.00 0.00 1.74 24.00 0.00 3.39 24.00 0.00 1.09
100 26.00 2.31 14.30 26.00 2.31 21.70 26.00 4.62 15.22 26.00 2.31 10.30 26.00 0.00 33.29
125 45.00 0.89 22.79 45.00 0.44 28.80 45.00 0.00 18.70 45.00 0.44 8.09 45.00 0.44 19.07
150 14.00 5.71 14.94 14.00 2.86 13.15 14.00 0.00 17.01 14.00 0.00 13.46 14.00 0.00 13.04

Average 27.40 1.78 10.87 27.40 1.12 13.59 27.40 0.92 10.82 27.40 0.55 7.20 27.40 0.09 13.46
Set 4

175 29.00 4.14 50.15 29.00 1.38 88.99 29.00 3.45 60.59 29.00 2.07 119.54 29.00 1.38 70.81
200 28.00 2.86 5.28 29.00 0.00 2.52 29.00 0.00 3.40 28.00 2.86 31.61 28.00 2.86 10.50
300 55.00 2.18 549.99 55.00 2.18 594.47 55.00 1.82 429.08 55.00 2.55 474.03 55.00 2.55 839.47
400 56.00 0.71 569.14 54.00 2.22 1059.06 55.00 2.91 787.10 54.00 5.19 1087.68 55.00 2.91 607.48
500 18.00 5.56 85.27 18.00 0.00 649.10 18.00 0.00 303.75 18.00 1.11 139.99 18.00 1.11 406.73

Average 37.20 3.09 251.97 37.00 1.16 478.83 37.20 1.64 316.78 36.80 2.75 370.57 37.00 2.16 387.00
Set 5

175 65.00 1.85 60.04 65.00 2.15 105.69 65.00 0.92 117.92 65.00 0.62 141.52 65.00 0.31 147.53
200 10.00 2.00 18.82 10.00 0.00 33.13 10.00 2.00 14.48 10.00 0.00 18.70 10.00 0.00 23.53
300 46.00 0.00 273.21 46.00 0.43 316.29 46.00 0.87 57.57 46.00 0.87 173.41 46.00 0.43 190.11
400 57.00 3.51 821.24 59.00 1.02 736.27 59.00 2.71 880.77 56.00 5.00 723.59 58.00 2.76 1500.11
500 22.00 0.00 348.58 22.00 0.00 268.97 22.00 2.73 425.49 22.00 0.00 183.02 22.00 0.00 274.78

Average 40.00 1.47 304.38 40.40 0.72 292.07 40.40 1.85 299.25 39.80 1.30 248.05 40.20 0.70 427.21

In Table 2, the results of computational experiments with parameter α are
given. We have considered 5 different values of α, ranging from α = 0.2 to
α = 0.7. In these tests, parameter values kmax = 8 and Imax = 10 were used.
For each considered value of α and each instance, SVNS was run five times.
The results in Table 2 are presented in the same way as in Table 1. The value
α = 0.2 showed the best performance in the sense of solution quality, as it
produced the best solution function values for all three subsets of instances.
Among other tested values for α, only α = 0.6 provided best solutions on two
out of three considered subsets. Although running times for α = 0.6 were shorter
compared to the ones required for α = 0.2, the average gaps for α = 0.6 were
quite high, indicating possible problems with algorithm’s stability for this value
of α. Therefore, α was set to 0.2 in further experiments with SVNS.

Finally, we have considered five different formulae for Imax depending on
the problem size n. In our tests with Imax, we set kmax = 8 and αmax = 0.2,
and executed SVNS five times on each considered instance. Table 3 contains
the results of experiments with Imax has the same structure as Tables 1 and 2.
Based on the results from Table 3, we have chosen formula Imax = 20 + n/30,
as it leaded to the best average solution values for all three subsets. Other
four considered formulae for Imax provided the best average solutions only for
instances from the Set 2. In addition, in the case of Imax = 20+n/30, our SVNS
had the smallest average running time for the Set 2 and Set 5, and reasonably
short average running time for the Set 4. The average gap values obtained with
Imax = 20+n/30 were also low for all three considered subsets of instances. For
these reasons, Imax = 20 + n/30 is chosen for stopping criterion in our SVNS
implementation.
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4.2 Computational Results

The proposed SVNS was evaluated on all instances from the three data sets
described above. Based on the results of parameter tuning tests, presented in
Sect. 4.1, parameter kmax is set to 8, αmax takes the value of 0.2, while Imax =
20 + n/30. On each considered instance, SVNS was run five times.

In order to investigate the effects of accepting slightly worse solution in SVNS,
we have also considered the variant of VNS obtained from the proposed SVNS
by setting the value of parameter α to 0 in Move or Not step. The resulting VNS
implementation is actually basic variant of VNS method, denoted as BVNS. It
was also executed five times on each instance with the same values of parameters
kmax and Imax = 20 + n/30 as in SVNS, while αmax is set to 0.

In Table 4, we report the results of our SVNS method on 15 groups of
WGRLP instances from the Set 2, as well as the results obtained by BVNS,
exact Branch-and-Cut algorithm (BnC), and two heuristics (GH1 and GH2)
from [1] on the same data set. The first two columns contain parameters n and
p(%) for each group of instances. As in paper [1], remaining columns in Table 4
contain average results obtained by corresponding method on all instances from
the same group. Optimal solution opt.sol obtained by exact BnC method and
its execution time t(s) on an Intel Core 2 Duo with 3 GHz and 3.25 GB RAM
are given in the third and fourth column, respectively. The next four columns
contain the best results provided by GH1 and GH2 heuristics and the corre-
sponding running times, obtained on the same platform as BnC. In the next
three columns, we report the results related to the performance of our SVNS:
the best SVNS solution obtained in five runs - best, the average percentage gap
from the optimal solution - gap(%), the average CPU time that SVNS needed
to reach its best solution - t(s). The last three columns contain the results of
BVNS implementation, presented in the same way as the results of SVNS. The
average optimal values on each group of instances are bolded.

As it can be seen from Table 4, the proposed SVNS method reaches all opti-
mal solutions obtained by exact BnC method on instances from the Set 2. It can
be noticed that the objective function values of optimal solutions decrease as the
percentage of terminal nodes p increases, due to the fact that smaller number
of regenerators is required to ensure good quality signal transmission between
terminal nodes. On all groups of instances from the Set 2, the average gap values
of SVNS solutions from the optimal ones are very small (from 0% up to 0.64%),
which indicates the stability of the proposed SVNS approach. The average times
in which SVNS reaches its best solutions range from 1.97 up to 80.92 s. Greedy
heuristics GH1 and GH2 from [1] are much faster compared SVNS, but they both
showed poor performance regarding solution’s quality. GH1 reached all optimal
solutions for 3 out of 15 groups of instances from the Set 2, while GH2 pro-
vided optimal solutions for only one group. When comparing the performance
of BVNS and SVNS, it can be noticed that the BVNS failed to provide optimal
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Table 4. Computational results of the proposed SVNS and comparisons with the
results of BnC, GH1, GH2 and BVNS for instances from Set 2

Size BnC GH1 GH2 SVNS BVNS

n p(%) opt.sol t(s) best t(s) best t(s) best gap(%) t(s) best gap(%) t(s)

50 25 21.3 0.33 21.4 0.00 21.4 0.00 21.3 0.00 2.29 21.3 0.00 2.52

50 50 21.3 0.52 21.3 0.00 21.4 0.00 21.3 0.00 3.81 21.3 0.00 2.93

50 75 11.3 0.21 11.5 0.00 11.5 0.00 11.3 0.00 1.97 11.3 0.00 1.61

75 25 28.2 2.00 28.4 0.00 28.4 0.00 28.2 0.00 2.57 28.2 0.00 3.99

75 50 25.7 4.52 25.8 0.00 26.1 0.00 25.7 0.07 8.82 25.7 0.00 9.92

75 75 13.9 2.28 14.2 0.00 14.5 0.00 13.9 0.00 4.71 13.9 0.00 5.73

100 25 35.0 9.73 35.0 0.00 35.1 0.00 35.0 0.04 15.42 35.0 0.28 15.04

100 50 28.6 26.81 28.9 0.20 28.8 0.10 28.6 0.05 29.03 28.6 0.69 19.06

100 75 18.7 12.54 18.9 0.30 19.1 0.10 18.7 0.19 16.27 18.7 0.11 12.52

125 25 42.6 41.11 42.6 0.10 42.6 0.40 42.6 0.00 27.03 42.7 0.12 19.91

125 50 31.6 181.41 32.3 0.60 32.5 0.90 31.6 0.44 80.92 31.6 0.52 61.33

125 75 20.1 58.80 20.9 0.20 20.8 0.10 20.1 0.47 42.64 20.1 0.75 33.86

150 25 41.9 159.69 42.1 0.30 42.0 0.30 41.9 0.00 16.73 42.2 0.04 15.88

150 50 32.3 728.19 32.8 1.80 33.3 1.40 32.3 0.59 21.25 32.3 0.75 23.28

150 75 21.4 199.15 21.9 0.50 22.1 0.80 21.4 0.64 37.67 21.4 0.87 50.10

solutions for two groups of instances (n = 125, p = 25 and n = 150, p = 25). The
values in columns gap(%) show that, on average, SVNS showed better stability
than BVNS in providing the best solutions. The average gap calculated over all
instances from the Set 2 was 0.16% for SVNS, compared to 0.3% for BVNS.
On average, the running times of BVNS and SVNS were similar for instances in
the Set 2: BVNS was faster for instances with n = 50, 100, 125 and SVNS for
n = 75, 150.

Computational results on the Sets 4 and 5, each containing 15 groups of large
size WGRLP instances, are presented in Tables 5 and 6, respectively. These newly
generated WGRLP instances are considered for the first time in the literature
and no optimal solutions for these instances are known. Therefore, Tables 5 and
6 contain only results of the SVNS and BVNS methods, presented in the same
way as in Table 4.

The results given in Table 5 show that BVNS method had better performance
compared to SVNS regarding solution quality on the data Set 4. On average,
BVNS obtained the best known solutions for 13 out of 15 groups of instances,
while SVNS reached the best known solutions for 7 groups of instances only. On
the other hand, SVNS showed the advantages over BVNS in the sense of running
times. For all groups of instances from the Set 4, SVNS was up to 1.45 times
faster than BVNS. The difference in running times is more obvious for larger
problem dimensions. In addition, the average gap from the best known solution,
calculated over all instances in this data set, was slightly lower for SVNS (1.66%)
than for BVNS (1.71%).
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Table 5. Computational results of the proposed SVNS and BVNS on large scale
instances from Set 4

Size SVNS BVNS

n p(%) best gap(%) t(s) best gap(%) t(s)

175 25 43.60 0.55 28.44 43.60 0.37 33.55

175 50 34.40 0.92 67.02 34.30 0.64 77.74

175 75 21.60 0.68 25.50 21.40 1.13 22.65

200 25 48.00 0.49 58.62 48.00 0.40 64.49

200 50 32.80 0.88 52.09 32.70 1.06 58.89

200 75 25.00 1.81 53.50 25.00 0.96 54.07

300 25 50.90 0.61 223.31 50.80 0.78 346.04

300 50 39.90 1.70 314.77 39.90 1.58 448.48

300 75 28.90 1.85 202.92 28.90 1.95 282.75

400 25 50.90 1.82 614.73 50.60 1.26 674.45

400 50 40.60 1.98 606.37 40.30 2.65 626.66

400 75 29.50 4.20 390.84 29.60 3.26 479.98

500 25 54.30 1.57 757.32 54.50 2.20 786.44

500 50 44.80 2.89 690.11 44.70 4.01 927.09

500 75 27.30 3.83 424.06 26.80 4.95 699.36

Table 6. Computational results of the proposed SVNS and BVNS on large scale
instances from Set 5

Size SVNS BVNS

n p(%) best gap(%) t(s) best gap(%) t(s)

175 25 56.10 0.00 17.06 56.10 0.00 14.30

175 50 37.30 0.44 40.62 37.30 0.34 43.34

175 75 19.70 0.07 17.19 19.70 0.07 27.31

200 25 64.10 0.00 42.48 64.10 0.10 27.35

200 50 31.30 0.19 40.17 31.30 0.00 35.42

200 75 22.90 0.05 29.99 22.90 0.05 20.83

300 25 55.10 0.33 240.05 55.10 0.05 231.45

300 50 37.80 0.50 170.46 37.80 0.29 244.32

300 75 22.80 1.15 173.30 22.90 1.01 148.42

400 25 52.60 0.59 384.67 52.60 0.26 290.12

400 50 34.90 0.78 433.95 34.70 0.25 458.64

400 75 21.80 0.62 227.74 21.80 0.47 263.24

500 25 58.50 0.92 630.76 58.70 0.66 555.41

500 50 34.10 1.15 542.47 34.30 0.91 563.93

500 75 18.40 0.34 408.37 18.40 0.26 345.23
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According to results presented in Table 6, the proposed SVNS was superior
over BVNS in the sense of solution quality on the data Set 5. On average, SVNS
provided the best-known solutions for 14 out of 15 groups of instances, while
BVNS reached the best-known solutions for 12 groups of instances from the
Set 5. Average running times of BVNS and SVNS were similar on this data set.
BVNS showed slightly better stability than SVNS, as the average gap values from
the best known solution for all instances from the Set 5, were 0.30% and 0.46% in
the case of BVNS and SVNS, respectively. From the data presented in Tables 4,
5 and 6, it can be also noticed that for instances with larger percentage of
terminal nodes p, both SVNS and BVNS produce solutions with lower objective
function values in shorter CPU times, as the obtained best solutions include
smaller number of installed regenerators.

5 Conclusion

In this article, we considered a variant of Generalized Regenerator Location
Problem (GRLP) dealing with optimization of optical telecommunication net-
works. As the quality of optical signal decreases with the distance from the
origin node, it has to be regenerated by installing regenerator devices at some
of the given locations. Having in mind high costs of regenerator deployment,
the goal of GRLP is to install minimal number of regenerators, while ensur-
ing a good quality signal transmission between terminal nodes. In practice, the
costs of establishing regenerators at different locations vary, mostly due to real
estate costs. This study deals with more realistic variant of GRLP, denoted as
the Weighted Generalized Regenerator Location Problem (WGRLP). The con-
sidered WGRLP includes weights for each potential regenerator location, which
correspond to the regenerator deployment costs. The objective of WGRLP is
to minimize the sum of weights of chosen regenerator locations, while problem
constraints are the same as in GRLP.

In order to solve WGRLP instances of real-life dimensions, we designed a
variant of Variable Neighborhood Search (VNS) method, known as Skewed VNS
(SVNS). The elements of the proposed SVNS were adapted to the character-
istics of the considered WGRLP. Adequate data structures and efficient proce-
dures for objective function update, feasibility check, and solution repair were
implemented. A set of preliminary experiments was performed in order to tune
SVNS parameters. The values obtained from parameter tuning tests were used
in computational experiments with SVNS on the three data sets: the Set 2 from
the literature containing small and medium size WGRLP instances and two
newly generated data sets of large scale WGRLP instances, denoted as the Set 4
and Set 5. The proposed SVNS quickly reached all known optimal solutions on
instances from the Set 2 and outperformed two existing constructive heuristics
for WGRLP regarding solution’s quality. On large scale WGRLP instances from
the Sets 4 and 5, which were not preciously considered, SVNS was successful in
providing its best solutions in short running times. In addition, basic variant of
VNS is considered, obtained from SVNS implementation by using standard Move
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or Not step. By analyzing and comparing the results of SVNS and BVNS on all
three data sets, it can be concluded that both VNS approaches showed good
performance regarding solution quality, stability, and running times. In general,
SVNS provided solutions of better quality compared to BVNS on instances from
the Set 2 and Set 5, while BVNS was better than SVNS on instances from the
Set 4. On instances from the Set 2 and Set 5, both VNS and SVNS had similar
average running times, while SVNS was faster than BVNS in the case of Set 4.
For all considered data sets, it was noticed that the objective function values of
optimal/best known solutions decreased with the increase in the percentage of
terminal nodes p, as smaller number of regenerators was required to ensure good
quality signal transmission in the network.

Future work may be directed to combining SVNS or BVNS with an exact
method in order to provide optimal solutions or to improve upper bounds for
large scale WGRLP instances. We also plan to extend the considered WGRLP
by involving capacities of edges and demands of terminal nodes and to develop
adequate solution methods starting from SVNS implementation proposed in this
study.
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Abstract. We study the single-processor scheduling problem with time
restrictions in order to minimize the makespan. In this problem, n inde-
pendent jobs have to be processed on a single processor, subject only
to the following constraint: During any time period of length α > 0 the
number of jobs being executed is less than or equal to a given integer
value B. It has been shown that the problem is NP-hard even for B = 2.
We propose the two metaheuristics variable neighborhood search and a
fixed neighborhood search to solve the problem. We conduct computa-
tional experiments on randomly generated instances. The results indicate
that our algorithms are effective and efficient regarding the quality of the
solutions and the computational times required for finding them.

Keywords: Scheduling · Time restrictions · Single processor ·
NP-hard · Variable neighborhood search · Fixed neighborhood search

1 Introduction

Scheduling problems are studied for two main reasons. On the one hand, they
are very common problems in practice and can model industrial problems such
as planning, assignment, transportation, and so on. On the other hand, many
scheduling problems are NP-hard and therefore interest researchers to find effec-
tive and efficient solutions. In this paper, we study the single-processor schedul-
ing problem with time restrictions (STR) in order to minimize the makespan.
In this problem, n independent jobs have to be processed on a single processor,
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such that during any time period of length α > 0 the number of jobs being
executed is less than or equal to a given integer value B. We assume that the
jobs are simultaneously available for processing at the beginning of the planning
horizon, and their processing times are fixed and known in advance.

Formally, the problem can be stated as follows. Given is a set N =
{1, 2, . . . , n} of n independent jobs with their processing times pi, i ∈ N . Only
one job can be executed at any point in time and the jobs cannot be preempted.
A feasible schedule is a permutation π of the set N , say π = (π1, π2, . . . , πn),
such that the jobs are placed sequentially on the real line: The initial job π1

begins at time 0 and finishes at time pπ1 . For i ≥ 2, the job πi begins as soon as
the job πi−1 is completed, such that the following constraint is always satisfied:

∀x ∈ R≥0, the interval [x, x + α) can intersect at most B jobs.

This constraint reflects the condition that each job needs one of B additional
resources for being processed and that a resource has to be renewed (e.g. pre-
ventive maintenance) in α time-units after the processing of a job has been
finished. The objective function is to minimize Cmax, where the makespan Cmax

corresponds to the time at which the last job πn is finished. In this paper we
assume also that all the data (B, α, pi for i ∈ N) are integers. The scheduling
problem discussed in this paper has practical applications in manufacturing sys-
tems. As an illustration of the STR problem, let imagine that each job being
processed requires the use of one of B identical external resources. Furthermore,
each external resource that has been used needs a certain amount of time α to
be reset before it can be used again. Hence, it is never possible to process more
than B jobs during any interval [x, x + α), ∀x ∈ R≥0.

The STR problem was studied at first by Braun et al. [6] where the authors
provide a detailed worst-case analysis. They show that for B = 2, any feasible
solution can be processed within a factor of 4

3 of the optimum (plus the additional
constant 1), and that for B ≥ 3, this factor is equal to 2 − 1

B−1 of the optimum
(plus the additional constant 3). Both proposed factors are best possible. Later,
they improve the additional constant to B

B−1 and provide an analysis of the LPT-
algorithm, where the jobs are ordered non-increasingly according to the Longest-
Processing-Time-first (LPT) algorithm and show that LPT-ordered jobs can be
processed within a factor of 2 − 2

B of the optimum (plus 1) and that this factor
is best possible [7]. The authors also state that an easy improvement of the LPT
algorithm where the schedule is started with the smallest job and then LPT is
performed, leads to an additional constant of only 1

2 . Zhang et al. [20] show that
for B ≥ 5 there exists a permutation of the jobs which can be processed within
a factor of 5/4 of the optimum (plus an additional small constant). When B = 3
or B = 4 the corresponding factor equals B

B−1 .
Benmansour et al. [2] proposed a Mixed Integer Linear Programming formu-

lation (MIP) based on time index variables and later another MIP model based
on assignment and positional date variables (see also [2–4]).

The STR problem can be seen as a special case of the parallel machine
scheduling problem with a single server (PSS) (see [5]). The PSS problem can
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be stated as follows. There are m identical parallel machines which must process
n jobs. Each job has a known integer processing time p′

i and before its pro-
cessing, it must be loaded on a machine which will take si units of time (the
setup operation). There is only one server for all machines. During the loading
operation, both the machine and the server are occupied.

In the literature this problem is denoted as Pm,S1 | si, p
′
i | Cmax, where Pm

and S1 mean that there exist respectively m machines and one server ([1,8,10,
14,16]). The PSS problem was proven to be NP-hard [8]. As far as we know, no
attempt has been made to solve large instances of neither the STR nor the PSS
problem. Therefore, our approach is to propose a variable neighborhood search
metaheuristic to solve these problems.

The remainder of this paper is as follows: The next two sections are ded-
icated to present variable neighborhood search and fixed neighborhood search
respectively. In Sect. 4 we first present the comparison between the performances
of the two algorithms. Then we present the performance of the VNS algorithm
with respect to an exact method previously published in the literature. Finally,
we present in the conclusion the avenues of research that can be considered to
complete this work afterwards.

2 Variable Neighborhood Search

Variable neighborhood search (VNS) is a metaheuristic proposed by Mladenović
and Hansen in 1997 [18]. VNS systematically changes neighborhood structures
during the search for an optimal (or near-optimal) solution based on the following
observations: (i) A local optimum relative to one neighborhood structure is not
necessarily a local optimum for another neighborhood structure; (ii) A global
optimum is a local optimum with respect to all neighborhood structures; (iii)
Empirical evidence shows that for many problems all or a large majority of
the local optima are relatively close to each other. Several implementations of
VNS have been proposed and applied successfully to solve NP-hard problems in
different domains such as: scheduling, routing, maintenance problems, etc. [17,
19,21]. For an overview on VNS applications and VNS variants see [11], and
[13]. Among the variants most used, one finds the General variable neighborhood
search (GVNS) [12] which uses variable neighborhood descent (VND) as a local
search to explore several neighborhood structures at once.

VNS uses a finite set of neighborhood structures denoted as Nk, where
k ∈ {1, 2, . . . , kmax}. The kth neighborhood of solution π, Nk(π), is a sub-
set of the search space, which is obtained from the solution π by small changes.
The VNS (Algorithm 1) includes an improvement phase in which a local search
is applied and one so-called shaking phase used to hopefully resolve local minima
traps. The local search and the shaking procedure, together with the neighbor-
hood change step, are executed alternately until fulfilling a predefined stopping
criterion. As the stopping criterion, most often, is used maximum CPU time
allowed to be consumed by VNS.
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Algorithm 1. VNS
Data: An instance of STR, neighborhood structures Nk for k = 1, 2, . . . , kmax,
h diversification parameter, CPU time: CPUMAX

Result: Solution π
Generate an initial solution π;
repeat

k ← 1 ;
while k ≤ kmax do

π′ ← Shaking(π, k, h);
π′′ ← Local Search(π′,k);
if f(π′′) < f(π) then

π ← π′′;
k ← 1;

else
k ← k + 1;

end

end

until CPU ≥ CPUMAX ;

The Algorithm 1 integrates two important procedures; it includes a Shak-
ing phase to escape from the local minima traps and a Local search procedure
(intensification phase) to exploit the accumulated search experience.

In order compute the cost of a given sequence of the jobs π, denoted as f(π),
the following proposition (see [4,20]) is used.

Proposition 1. Let Cj be the completion time of the job placed at position j,
and p[j] its corresponding processing time. Then the completion time is computed
for all jobs as follows ([6]):

Cj =

⎧
⎪⎨

⎪⎩

0 if j = 0,

p[j] + Cj−1 if 1 ≤ j ≤ B,

p[j] + max
(
Cj−1, Cj−B + α

)
if B + 1 ≤ j ≤ n.

Note that f(π) corresponds to the makespan of the sequence π (i.e. f(π) = Cπn
).

2.1 Initial Solution and Neighborhood Structures

It is clear that any permutation of the jobs π is a feasible solution for the STR
problem. The jobs should be scheduled according to the procedure in Proposi-
tion 1 that provides also the value of objective function f(π) = Cπn

. The initial
solution π is generated by using the LPT rule.

In order to obtain an efficient VNS algorithm we have to decide about three
things [12,15]: which neighborhoods to use, how to use them in the search pro-
cess, and finally which search strategy to use. It is worth mentioning that the
best number of neighborhoods is often 2 [9]. Suppose π is a permutation of jobs
in N . It is clear that π is a feasible solution to the STR problem. We proposed
these neighborhood structures and chose the most effective among them after
some preliminary tests.
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– Neighborhood N1(π) = Transpose(π): It consists of all permutations that can
be obtained by swapping two adjacent jobs in π. Let π′ be a neighborhood
solution of π obtained by swapping πk and πk+1. Note that according to
Proposition 1 f(π′) = f(π) for k < B.

– Neighborhood N2(π) = Swap(π): The neighborhood set consists of all solu-
tions obtained from the solution π swapping two random jobs of π.

– Neighborhood N5(π) = Left P ivot(π): Given a job πj we reverse the order
of jobs before πj .

– Neighborhood N6(π) = Right P ivot(π): Given a job πj we reverse the order
of jobs after πj .

– Neighborhood N7(π) = Reverse(π): Given two jobs πj and πk we reverse the
order of jobs being between those two jobs.

After performing several computational tests, the following neighborhood
structures were chosen in the proposed VNS algorithm: Transpose(π), Swap(π)
and Reverse (kmax = 3).

2.2 Local Search and Shaking

The Local Search (Algorithm 2) starts with an initial solution π0 and tries
continually to construct a new improved solution from the current solution π by
exploring its neighborhood Nk(π). The process continues to generate neighboring
solutions until no further improvement can be made. A basic version of a local
search is the descent method, also called iterative improvement, in which the
current solution is replaced by its neighboring solution with lower cost. In our
implementation, we use the first improvement search strategy (i.e. as soon as an
improving solution π′ in a neighborhood structure Nk(π) is detected it is set to
be the new incumbent solution (π ← π′)).

Algorithm 2. Local Search
Data: Solution π0 and neighborhood structure Nk

Result: Solution π
π ← π0;
Stop ← False;
while Stop = False do

Select π′ ∈ Nk(π) such that f(π′) < f(π);
if π′ exists then

π ← π′;
else

Stop = True;
end

end
return π

The aim of a shaking procedure used within a VNS algorithm is to hope-
fully escape from local minima traps. The simple shaking procedure consists
of selecting a random solution from the current neighborhood of the current
solution Nk(π).
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Algorithm 3. Shaking
Data: Solution π and neighborhood structure Nk,
h diversification parameter
Result: Solution π
for j = 1 to h do

Select randomly π′ ∈ Nk(π);
π ← π′;

end
return π

To test the performances of the proposed algorithms, in this case VNS and
FNS algorithms, we tested them on the same instances. The results demonstrate
the effectiveness of both algorithms with a slight advantage for VNS algorithm,
which is capable of producing high-quality solutions. On the other hand we
compared the VNS algorithm with an exact model for the small instances of the
problem. This model is not reported in this article but the interested reader can
find it in [2]. The results show that VNS is able to produce very good results in
a reasonable time. In the next section we present the Fixed neighborhood search
algorithm (FNS).

3 Fixed Neighborhood Search

Fixed neighborhood search (FNS) is a step in between classical local search and
variable metric on the one hand and VNS on the other [13]. Instead of generating
initial solutions completely at random, the next starting point for local search
in FNS is a randomly generated solution taken from the vicinity of the best one
found so far (incumbent solution). Fixed neighborhood search is described in
Algorithm 4.

Algorithm 4. Fixed neighborhood search algorithm
Data: Neighborhood structures N and N ′, π, CPUMAX

Result: Solution π
fbest ← ∞
t ← 0
repeat

Generate point π′ ∈ N (π) at random;
x ← Local Search(π′, N ′);
if f(π′) < fbest then

π ← π′;
fbest = f(π);

end
t ← CPU.T ime;

until t ≥ CPUMAX ;
return π
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In Algorithm 4, Neighborhood structures N and N ′ represent respectively
Reverse(π) and Swap(π) structures. The effectiveness of this algorithm com-
pared to the VNS algorithm did not push us to try to test other neighborhood
structures.

4 Computational Results

All experiments were conducted on an Intel i7 2.8 GHz computer with 16GB of
RAM memory under Windows 7 operating system and we used CPLEX 12.6 as
the integer programming solver. The problem instances are generated as follows.
The processing times pi were generated from integer uniform distributions in
[1, 10] and [1, 100], and the number of jobs n ∈ {10, 100, 500}. The number of
resources B is chosen as B ∈ {2, 5, 10}. The length of the unit interval, i.e. the
time that a resource needs to recover until it is available again, was chosen as
10, 100, 1000, depending on the maximum possible processing time (e.g. when
the processing times are out of the interval [1, 10] we chose the length of the
unit interval as 10). Furthermore, in order to make the problem instances even
harder to solve, we chose the length α of the unit-interval 10 times larger than the
maximum possible processing time. As an example, when the processing times
are out of [1, 10], we chose the length of the unit interval as α = 100. The notation
NxUy means that the number of jobs is equal to x and that the processing times
of the instance were generated from the integer uniform distribution [1, y].

The algorithms solved to optimality all small and medium size instance in
less than 10 s. For each value of B ∈ {2, 5, 10} and of α ∈ {10, 100} (or α ∈
{100, 1000}) we generate randomly 10 instances.

4.1 Comparison Between VNS and FNS Algorithms

Both algorithms were tested on the instances described above. The time limit
was set to 10 s for each algorithm. The computational results are presented in
the appendix. For each table the we report the values returned by the VNS algo-
rithm and the FNS algorithm; respectively (fV NS) and (fFNS). The parameter
l represents the instances.

Table 1. Comparison of the efficiency of VNS and FNS.

N10U10 N10U100 N50U10 N50U100 N100U10 N100U100 N500U10 N500U100

= 97 93 75 65 75 17 47 33

+ 100 50 27 71 33 100 100 90

In Table 1 the first row represents, in %, the number of times algorithms VNS
and FNS find the same value (= symbol). For the remaining instances, in the
second row we report, in %, the number of times VNS algorithm was better than
FNS algorithm (+ symbol). For example, in column one, in 97% of all instances
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of type N10U10 VNS and FNS found the same value; for the remaining cases,
VNS found a better solution than FNS.

In sum, for n = 10 both algorithms have the same performance with a min-
imal advantage for VNS algorithm. For n = 50, on average the two algorithms
find the same result in 70% of cases. For the case N50U10 FNS algorithm finds
better results than VNS in 63% of the time. In contrast, for the case N50U100
VNS algorithm finds better results than FNS in 71% of the time. For n ≥ 100
VNS algorithm gives better results except for N100U10 instances type where
FNS algorithms find in five instances only a better results.

In view of these results we decided to compare the results of the VNS algo-
rithm with exact results obtained by the mathematical model.

4.2 Comparison Between VNS and the MIP Model

In the following tables, we present the results obtained by the MIP model and the
VNS algorithm. The MIP model used for computational results was published
in [3]. The columns of each table correspond respectively to the number of jobs
n, the number of resources B, the length of the unit interval α, the minimum
(min), the average (avg) and the standard-deviation (std) of the CPU time (in
seconds) that was needed to compute optimal values using the MIP formulation
and CPLEX 12.6: (CPU MIP), the minimum (min), the average (avg) and the
standard-deviation (std) of the GAP: (MIP GAP), the relative deviation of the
VNS algorithm (RD), and in the last column, the relative deviation of the VNS
algorithm from the linear relaxation value of MIP (RDL). The last two metrics
are calculated as follows:

RD =
fV NS − fMIP

fMIP
× 100

RDL =
fV NS − fLP

fLP
× 100

fV NS , fMIP and fLR are the solution values obtained by VNS algorithm,
the MIP model and the linear relaxation of the MIP model. The time limit for
CPLEX was set to 3600 s for all instances. The time limit for VNS = 1 s. The
results are given for each 10 instances: i.e. Each cell, in a table, represents the
synthesis of the results of 10 instances. Note that ∗∗ means that CPLEX was
not able to solve the problem.

In sum, the VNS algorithm found optimal solutions for all instances with
n = 10. The algorithm can also be used to solve any type of instance because
the MIP model is only suitable for small instances. The reason is that the quality
of the solutions found by the VNS algorithm is very good and the time required
to find these solutions is negligible. This brings us back to the question of choice
of instances. In the future we will generate other instances according to other
probability density function (normal, Beta, etc.) to see if our algorithm always
remains efficient or not (Tables 2, 3, 4, 5, 6 and 7).
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Table 2. n = 10 and pi ∈ [1, 10]

n B α CPU MIP MIP GAP RD RDL

min avg std min avg std min avg std min avg std

10 10 100 0.17 0.21 0.02 0 0 0 0 0 0 0 0 0

10 10 10 0.08 0.13 0.02 0 0 0 0 0 0 0 0 0

10 5 100 0.08 0.23 0.24 0 0 0 0 0 0 0 0.116 0.187

10 5 10 0.05 0.05 0.01 0 0 0 0 0 0 0 0 0

10 2 100 0.07 0.19 0.11 0 0 0 0 0 0 0 0.035 0.056

10 2 10 0.07 0.14 0.11 0 0 0 0 0 0 0 0.216 0.350

Table 3. n = 10 and pi ∈ [1, 100]

n B α CPU MIP MIP GAP RD RDL

min avg std min avg std min avg std min avg std

10 10 1000 0.13 0.21 0.05 0 0 0 0 0 0 0 0 0

10 10 100 0.11 0.13 0.01 0 0 0 0 0 0 0 0 0

10 5 1000 0.12 0.60 0.32 0 0 0 0 0 0 0 0.074 0.084

10 5 100 0.07 0.09 0.01 0 0 0 0 0 0 0 0 0

10 2 1000 0.08 0.55 0.40 0 0 0 0 0 0 0 0.022 0.025

10 2 100 0.07 0.44 0.31 0 0 0 0 0 0 0 0.156 0.162

Table 4. n = 100 and pi ∈ [1, 10]

n B α CPU MIP MIP GAP RD RDL

min avg std min avg std min avg std min avg std

100 10 100 1.80 911.38 1437.61 0 0.0203 0.042 1.440 1.810 0.211 1.491 1.866 0.229

100 10 10 0.32 0.56 0.30 0 0 0 0 0 0 0 0 0

100 5 100 1.34 2.80 1.38 0 0 0 0.199 0.401 0.124 0.244 0.433 0.116

100 5 10 0.45 1.28 0.68 0 0 0 0 0 0 0 0 0

100 2 100 0.65 0.95 0.19 0 0 0 0 0 0 0 0.007 0.005

100 2 10 0.93 1.12 0.11 0 0 0 0 0.0127 0.040 0 0.059 0.036

Table 5. n = 100 and pi ∈ [1, 100]

n B α CPU MIP MIP GAP RD RDL

min avg std min avg std min avg std min avg std

100 10 1000 9.14 49.24 48.96 0.098 0.102 0.001 ** ** ** 1.189 1.466 0.286

100 10 100 0.45 0.51 0.05 0 0 0 0 0 0 0 0 0

100 5 1000 5.15 7.59 1.71 0.019 0.055 0.028 0.069 0.185 0.076 0.156 0.245 0.060

100 5 100 1.68 2.70 1.12 0 0.009 0.029 −0.093 −0.009 0.029 0 0 0

100 2 1000 1.12 1.43 0.22 0 0.003 0.002 −0.007 −0.001 0.002 0 0.001 0.001

100 2 100 1.27 2.11 0.99 0 0.011 0.010 −0.027 0.013 0.034 0 0.027 0.030
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Table 6. n = 500 and pi ∈ [1, 10]

n B α CPU MIP MIP GAP RD RDL

min avg std min avg std min avg std min avg std

500 10 100 148.43 347.49 154.33 0 0.036 0.044 ** ** ** 1.485 1.772 0.202

500 10 10 16.90 18.77 01.98 0 0 0 0 0 0 0 0 0

500 5 100 65.79 95.65 29.71 0 0.049 0.040 0.353 0.496 0.103 0.398 0.543 0.105

500 5 10 17.48 107.69 65.97 0 0.036 0.067 −0.180 −0.025 0.076 0 0.011 0.017

500 2 100 19.65 38.40 21.15 0 0.082 0.078 −0.186 −0.059 0.095 0.006 0.023 0.033

500 2 10 50.04 75.62 37.27 0 0.009 0.019 2.944 3.628 0.610 2.873 3.518 0.561

Table 7. n = 500 and pi ∈ [1, 100]

n B α CPU MIP MIP GAP RD RDL

min avg std min avg std min avg std min avg std

500 10 1000 275.70 275.70 ** 0.016 0.016 ** ** ** ** 1.578 1.779 0.150

500 10 100 27.83 27.83 ** 0 0 ** ** ** ** 0 0 0

500 5 1000 705.49 705.49 ** 0.004 0.004 ** ** ** ** 0.313 0.474 0.126

500 5 100 127.01 127.01 ** 0.042 0.042 ** ** ** ** 0 0.088 0.123

500 2 1000 29.25 29.25 ** 0.213 0.213 ** ** ** ** 0.004 0.016 0.015

500 2 100 214.92 214.91 ** 0 0 ** ** ** ** 2.733 3.416 0.600

5 Conclusion

This paper proposes a variable neighborhood search algorithm and a fixed neigh-
borhood search algorithm to solve the single processor scheduling problem with
time restrictions. Based on the generated instances, it turns out that the pro-
posed VNS algorithm is very efficient both in terms of solution time and quality
of the solutions. For example, large instances are solved in seconds while the
exact model fails to solve instances of average size. Prospects are multiple for
this new type of problem. A first track is to generalize the problem to non-
homogeneous resources, i.e. α will depend on the (usage of the) resources and
to consider other objective functions. Furthermore, we will propose a new set of
benchmark instances to test the efficiency of the algorithm.

Appendix

See Tables 8, 9, 10, 11, 12, 13, 14 and 15.



212 R. Benmansour et al.

Table 8. Instances of type N10U10

B = 10 B = 5 B = 2

l α fV NS fFNS fV NS fFNS fV NS fFNS

1 100 61 61 135 135 435 435

2 46 46 124 124 424 424

3 50 50 126 126 426 426

4 50 50 126 126 426 426

5 56 56 131 131 431 431

6 47 47 125 126 425 426

7 53 53 128 128 428 428

8 43 43 123 123 423 423

9 56 56 131 131 431 431

10 44 44 124 124 424 424

1 10 61 61 61 61 75 75

2 46 46 46 46 64 64

3 50 50 50 50 66 66

4 50 50 50 50 66 66

5 56 56 56 56 71 71

6 47 47 47 47 65 65

7 53 53 53 53 68 68

8 43 43 43 43 63 63

9 56 56 56 56 71 71

10 44 44 44 44 64 64

Table 9. Instances of type N10U100

B = 10 B = 5 B = 2

l α fV NS fFNS fV NS fFNS fV NS fFNS

1 1000 564 564 1321 1321 4322 4321

2 414 414 1220 1220 4220 4220

3 457 457 1234 1234 4234 4234

4 394 394 1206 1206 4206 4206

5 650 650 1339 1339 4339 4339

6 457 457 1241 1241 4241 4241

7 519 519 1261 1261 4261 4261

8 571 571 1306 1308 4308 4306

9 319 319 1171 1171 4171 4171

10 439 439 1225 1225 4225 4225

1 100 564 564 564 564 721 721

2 414 414 414 414 620 620

3 457 457 457 457 639 639

4 394 394 394 394 606 606

5 650 650 650 650 740 740

6 457 457 457 457 641 641

7 519 519 519 519 661 661

8 571 571 571 571 706 708

9 319 319 319 319 571 571

10 439 439 439 439 625 625

Table 10. Instances of type N50U10

B = 10 B = 5 B = 2

l α fV NS fFNS fV NS fFNS fV NS fFNS

1 100 469 468 972 972 2545 2545

2 463 461 963 960 2529 2529

3 466 467 964 964 2539 2539

4 463 463 963 962 2532 2532

5 467 465 967 966 2540 2540

6 463 463 963 967 2535 2535

7 464 463 965 964 2534 2534

8 464 463 965 964 2536 2536

9 468 468 966 968 2539 2539

10 456 457 957 955 2519 2519

1 10 287 287 287 287 385 385

2 256 256 256 256 369 369

3 276 276 276 276 379 379

4 262 262 262 262 372 372

5 277 277 277 277 380 380

6 267 267 267 267 375 375

7 266 266 266 266 374 374

8 269 269 269 269 376 376

9 276 276 276 276 379 379

10 235 235 235 235 359 359

Table 11. Instances of type N50U100

B = 10 B = 5 B = 2

l α fV NS fFNS fV NS fFNS fV NS fFNS

1 1000 4589 4603 9599 9606 25327 25327

2 4596 4588 9604 9616 25300 25300

3 4567 4571 9552 9569 25235 25235

4 4670 4671 9671 9678 25426 25426

5 4601 4587 9585 9599 25311 25311

6 4536 4541 9534 9531 25195 25195

7 4595 4599 9596 9598 25280 25280

8 4543 4546 9522 9531 25205 25205

9 4527 4525 9513 9514 25161 25161

10 4591 4584 9591 9586 25288 25288

1 100 2646 2646 2646 2646 3727 3727

2 2590 2590 2590 2590 3700 3700

3 2460 2460 2460 2460 3635 3635

4 2833 2833 2833 2833 3826 3827

5 2612 2612 2612 2612 3711 3711

6 2387 2387 2387 2387 3595 3595

7 2553 2553 2553 2553 3680 3680

8 2408 2408 2408 2408 3606 3606

9 2316 2316 2316 2316 3561 3561

10 2569 2569 2569 2569 3688 3688
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Table 12. Instances of type N100U10

B = 10 B = 5 B = 2

l α fV NS fFNS fV NS fFNS fV NS fFNS

1 100 996 996 2031 2028 5193 5193

2 981 981 2007 2007 5146 5146

3 997 1001 2027 2028 5186 5186

4 995 995 2025 2022 5184 5184

5 984 989 2015 2012 5156 5156

6 991 990 2018 2019 5172 5172

7 999 997 2026 2025 5181 5181

8 991 986 2019 2018 5165 5165

9 995 995 2029 2026 5185 5185

10 996 991 2020 2021 5174 5174

1 10 584 584 584 584 783 783

2 489 489 489 489 736 736

3 569 569 569 569 776 776

4 565 565 565 565 774 774

5 510 510 510 510 746 746

6 541 541 541 541 762 762

7 560 560 560 560 771 771

8 527 527 527 527 755 755

9 567 567 567 567 775 775

10 545 545 545 545 764 764

Table 13. Instances of type N100U100

B = 10 B = 5 B = 2

l α fV NS fFNS fV NS fFNS fV NS fFNS

1 1000 9816 9827 20126 20113 51661 51661

2 9780 9788 20061 20055 51514 51514

3 9780 9809 20064 20060 51526 51526

4 9734 9733 20034 20038 51444 51444

5 9838 9841 20125 20140 51685 51685

6 9793 9817 20082 20068 51563 51563

7 9805 9786 20128 20106 51628 51628

8 9791 9819 20123 20128 51630 51630

9 9797 9786 20081 20083 51573 51573

10 9752 9796 20043 20062 51455 51455

1 100 5317 5317 5317 5317 7562 7562

2 5025 5025 5025 5025 7416 7414

3 5047 5047 5047 5047 7426 7426

4 4886 4886 4886 4886 7344 7344

5 5365 5365 5365 5365 7585 7585

6 5120 5120 5120 5120 7463 7463

7 5250 5250 5250 5250 7529 7528

8 5255 5255 5255 5255 7530 7530

9 5138 5138 5138 5138 7473 7473

10 4906 4906 4906 4906 7355 7355

Table 14. Instances of type N500U10

B = 10 B = 5 B = 2

l α fV NS fFNS fV NS fFNS fV NS fFNS

1 100 5248 5263 10475 10496 26281 26281

2 5239 5261 10472 10480 26267 26267

3 5251 5260 10484 10499 26291 26291

4 5249 5272 10475 10499 26271 26272

5 5255 5266 10487 10505 26299 26299

6 5245 5265 10458 10482 26232 26232

7 5258 5263 10477 10503 26282 26283

8 5252 5265 10476 10486 26282 26282

9 5246 5272 10467 10505 26270 26270

10 5249 5271 10478 10512 26296 26296

1 10 2759 2759 2759 2759 3909 3947

2 2731 2731 2731 2731 3901 3952

3 2779 2779 2779 2779 3915 3978

4 2740 2740 2740 2740 3897 3936

5 2795 2795 2795 2795 3925 3977

6 2661 2661 2661 2661 3852 3932

7 2761 2761 2761 2761 3903 3950

8 2761 2761 2761 2761 3906 3950

9 2737 2737 2738 2738 3909 3974

10 2789 2789 2789 2789 3915 3956

Table 15. Instances of type N500U100

B = 10 B = 5 B = 2

l α fV NS fFNS fV NS fFNS fV NS fFNS

1 1000 52254 52469 104420 104634 262002 261997

2 52116 52342 104191 104566 261657 261657

3 52160 52396 104193 104415 261662 261643

4 51850 52145 103880 104115 260889 260891

5 51898 52246 103920 104155 261052 261052

6 52110 52467 104184 104578 261625 261632

7 52243 52457 104307 104482 261830 261826

8 52096 52247 104088 104400 261266 261265

9 52080 52271 104299 104591 261655 261658

10 51956 52211 103902 104091 260834 260845

1 100 25985 25985 25985 25985 38150 38606

2 25312 25312 25312 25312 37827 38427

3 25283 25283 25283 25283 37812 38250

4 23772 23772 23772 23772 37016 37493

5 24101 24101 24101 24101 37262 37642

6 25243 25243 25243 25243 37921 38339

7 25649 25649 25649 25649 37962 38540

8 24527 24527 24527 24527 37481 38025

9 25304 25304 25304 25307 37854 38289

10 23665 23665 23665 23672 36912 37555
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Abstract. Variable neighborhood searches and evolutionary techniques
have shown their effectiveness when dealing with many combinatorial
optimisation problems. This study proposes to combine these two tech-
niques for addressing the routing problem using electric and modular
vehicles. This is a recent problem that aims to overcome recharging bat-
tery constraints while maintaining a certain performance regarding to the
fleet cost and the traveled distance. An experimental study on benchmark
instances is provided to show the relevance of the proposed algorithm.

Keywords: Evolutionary algorithm · BCRC crossover ·
Variable neighborhood descent · Modular electric vehicles

1 Introduction

During the last decade, a strong strand of research has been devoted to design
green supply chains [3,25] and optimize their related distribution networks in
order to limit greenhouse gas emissions [4,18]. In this paper, we address a new
type of green vehicle routing problems using innovative electric vehicles. Indeed,
we consider a special variant of the electric Vehicle Routing Problem (e-VRP)
in which the studied vehicles are modular. That is to stay that each vehicle
is composed of a cabin module where the driver sits and one or more payload
modules for the freight. The main advantage of this configuration is that the
payload modules can be detached when necessary. For instance in certain urban
areas where the streets are too narrow, the vehicle can keep on running with
a limited number of modules which reduces its total length. The modules can
be also released for energy purpose. If a recharging terminal is available at a
customer location, one of the modules can recharge its battery whereas the
c© Springer Nature Switzerland AG 2019
A. Sifaleras et al. (Eds.): ICVNS 2018, LNCS 11328, pp. 216–231, 2019.
https://doi.org/10.1007/978-3-030-15843-9_17
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rest of the vehicle continues its tour. The vehicle which will later pick up this
module will benefit from the additional electric charge. The payload modules can
be dropped off also to enable the rest of the vehicle saving time and respecting
the delays to deliver the customers. These types of vehicles exist currently as
prototypes and should be commercialized in the near future.

To deal with our problem, we propose a method that exploits the best
optimization strategies currently dedicated to the VRP with time windows
(VRPTW) and its variants. Indeed, our assumption is that the VRP variants
need efficient combinations between evolutionary methods and local search pro-
cedures, since many studies on fitness landscapes of VRPs show that they have
the shape of big valleys with basin of attraction as stated in the work of [16]
or that of [15]. Therefore, we look for a combination of the evolutionary schema
which has the major advantage to be population based with an efficient and rapid
variable neighborhood descent. An experimental study is conducted to test the
solution approach and prove its effectiveness for modular electric vehicles.

The paper is organized as follows: In Sect. 2, we define in detail our problem
and we present in Sect. 3 an overview of the relevant literature on metaheuristics
for routing problems similar to our variant. In Sect. 4, we describe in detail the
evolutionary based variable neighborhood descent algorithm and we show how
genetic operators are adapted to our case. The computational study is presented
and discussed in Sect. 5 and we conclude the paper in Sect. 6 by giving some
perspectives for future works.

2 Problem Description

A fleet of modular electric vehicles is composed of vehicles which are a combi-
nation of modules autonomous in terms of consumption and electric charging.
The vehicles may have a varying number of attached payload modules during
their tours. It is different from other fleets in the sense that the payload modules
which have started at the depot behind a cabin module can arrive back to the
depot at the end of the distribution period with another vehicle.

Figure 1 describes a solution of a freight distribution problem using electric
modular vehicles in a urban environment. This solution is detailed as follows.
First, the white vehicle leaves the depot with three modules, serves the first
customer at 11 a.m. and releases the last module at this location. Thereafter,
it visits the next customer who has to be served at 12 a.m, and releases there
another payload module. In this case, the vehicle with only one module moves
to the next customer. There, the vehicle has to serve this customer before 2
p.m. When it reaches its destination, it retrieves a module left by the blue
vehicle earlier in the day. Indeed, the blue vehicle began its tour with three
modules and served customer 6 at 8.00 a.m and released there a module. Then
it served customers 7, 8, 9 and 3 with the remaining two modules. The vehicles
left then one module at customer 3 and went back to the depot. The white
vehicle picked up the module at customer 3 which remained in charge. This
leads to an additional battery charge for the white vehicle which had not to
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Fig. 1. Example of a vehicle routing problem using three electric modular vehicles.
(Color figure online)

wait during the charging of the blue module. Then, the white vehicle pursues its
tour with two payload modules. It goes and deliver goods to another customer
before 1 p.m. Finally, it returns to the depot with the remaining modules after
delivering the last customer at 3 p.m. At the end of the studied period, all the
modules (cabin modules and payload modules) are back to the depot. The last
route corresponds to the green vehicle which released also some modules along
its tour and retrieved a module left by the blue vehicle at customer 6 before
serving its last customer and returning to the depot.

The problem of routing a fleet of electric modular vehicles is a relatively
new problem [20,21]. It extends the well-known Vehicle Routing Problem with
Time Windows (VRPTW) in the sense that its objective is to minimize the total
routing costs while taking into consideration the time windows for serving the
customers, the capacity limit of the vehicles but also the modular property of
the vehicles and the electric recharging. This problem was formulated as a Mixed
Integer Linear Program (MILP) [22]. Several assumptions are associated with
the recharging:

(i) All the vehicles are fully charged when they leave the depot.
(ii) Vehicles may recharge their battery only at customer locations in order to

continue a tour.
(iii) The vehicle recharges at a customer location if the battery charge level

drops below a given threshold.
(iv) The recharging time depends on the state of charge when arriving at the

recharging station.
(v) If the vehicle has to recharge after the service time is finished, a penalty is

added to the objective function.

The objective function is composed of three different components: the acquisition
cost of the Electric Modular Vehicles (EMVs) used, the total travel cost and the
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recharging cost. Let V be the set of vehicles and C the set of customers. This
objective function is defined as follows:

∑

k∈V

∑

j∈C

cfkxk
0j +

∑

k∈V

∑

i,j∈C,i �=j

ckijx
k
ij +

∑

k∈V

∑

i∈C

crr
k
i (1)

where cfk is the fixed acquisition cost of a vehicle of type k, xk
0j indicates whether

the vehicle k is used or not, rki is a binary decision variable indicating the recharg-
ing of vehicle k at customer i, xk

ij is a binary decision variable indicating that a
vehicle of type k travels from customer i to customer j, ckij corresponds to the
travel cost of a vehicle of type k traversing the pair of customers (i, j) and cr is
the recharging cost. For the detailed mathematical formulation reflecting all the
constraints, please refer to [22].

3 Related Works

Our problem is a variant of the VRP which was introduced by Dantzig and
Ramser [10]. It is concerned with distributing goods to a given set of customers
with known demands by a homogeneous fleet of vehicles beginning from a local-
ized depot in order to fulfill all the requests at a minimum cost. Among several
variants of the VRP, researchers tend to pay close attention to the concept of
VRP with Time Windows, in which, a customer has to be served in a certain
time slot. As the VRPTW is a NP-hard combinatorial optimization problem, dif-
ferent heuristic solution techniques have been explored in order to provide near-
optimal or optimal solutions for many real-life instances. However, Braÿsy and
Gendreau [5] showed that despite a huge diversity of metaheuristic approaches,
the genetic algorithm is still one of the most competitive heuristic providing
promising results. More recently, a great attention has been devoted to the use
of the Variable Neighborhood Search to deal with VRPTW variants, [13].

Pratically, we can note the work of Chen et al. [8] which proposes an adap-
tation of the VNS, called VNS-C that produces promising results in minimizing
the total traveled distance. Another interesting work is due to [9] which proposes
an iterated variable neighborhood descent that avoids the search to be trapped
in local optima. A perturbation strategy is proposed to restart the search in
other areas in the search space. Ferreira et al. [12] considered recently, the Vehi-
cle Routing Problem (VRP) with Multiple Time Windows, where the customers
have one or more time windows during which they can be visited. The authors
propose a Variable Neighborhood Search heuristic where all the computational
effort is spent on searching for feasible solutions.

Another work which extends the VRPTW appears in [23]. It considers elec-
tric constraints and introduces the Electric Vehicle Routing Problem with Time
Windows and Recharging Stations (E-VRPTW). The authors propose a hybrid
heuristic, including a variable neighborhood search (VNS) algorithm combined
with a tabu search (TS) heuristic. Their results prove that the hybrid heuristic
is able to determine efficient vehicle routes making use of the available recharg-
ing stations. Recently, Bruglieri et al. [6], addressed also a problem of serving a
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set of customers, within fixed time windows, by using Electric Vehicles (EVs).
The authors proposed a new Variable Neighborhood Search Branching (VNSB),
an approach that combines the VNS algorithm with the Local Branching one.
Numerical results on benchmark instances clearly show that the VNSB is suit-
able to detect good quality solutions in a satisfactory computational time. More
recently, Bruglieri et al. [7] developed a Three-Phase Matheuristic (TPM) for
the E-VRPTW which in average outperforms the Variable Neighborhood Search
Branching (VNSB), previously proposed.

Beside these works, Hiermann et al. [14] proposed a hybrid heuristic which
combines an embedded local search with an Adaptive Large Neighborhood
Search (ALNS). This approach has been used to analyze environmental issues
in the context of routing problems using heterogeneous fleets. As a result, their
experiments showed the competitiveness of the proposed approach as compared
with the state of the art methods for solving the two E-VRPTW and Fleet Size
and Mix VRPTW problems. Van Duin et al. [28] also studied an Electric Fleet
Size and Mix Vehicle Routing Problem with Time Windows (E-FSMVRPTW).
They used as a solution method a sequential insertion heuristic to solve a real
instance with two different types of electric trucks.

The main contribution of this paper is that it hybridizes the genetic algo-
rithm with a variable neighborhood descent to solve a variant of a VRPTW
using heterogeneous fleets of electric modular vehicles. This idea of hybridizing
the Genetic algorithm (GA) with a variant of the VNS was also followed by
Baniamerian et al., [2] who used efficiently a Modified Variable Neighborhood
Search (MVNS) involving four shaking procedures and two neighborhood struc-
tures for the VRP with cross-docking. The present paper deals with a VRPTW
involving electric constraints as well as a modular structure of the vehicles as
in [1]. In their work the resolution approach operated in two stages, one for the
allocation of the modules to the customers and a second for the fusion of the
routes. Our work differs from that preceding one in the sense that the prob-
lem is modeled differently and the solution method operates in a single stage
by hybridizing the genetic algorithm using a problem-specific crossover with the
Variable Neighborhood Descent.

4 The Proposed Evolutionary Variable Neighborhood
Method

As it was stated before, we aim to use a method which tries to exploit the benefits
of the best optimization strategies dedicated to the e-VRP and its variants.
To achieve this, we choose to combine the evolutionary schema that have the
major advantage to be population based with an efficient and rapid variable
neighborhood descent.

Our evolutionary variable neighborhood algorithm is presented in Algo-
rithm1. It starts by constructing the graph that corresponds to the trips T
to serve C customers. The initial population is then constructed and a set of
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Algorithm 1. EVND Algorithm.
1: Input: T : List of Trips; C: Customers; MaxIter; Pc: Probability of the crossover
2: Output: Feasible solution
3: Generate an initial population (Pop) ;
4: while Termination criterion (MaxIter) not reached do
5: Parent1 ← Select(Pop);
6: Parent2 ← Select(Pop);
7: Child ← Crossover (Parent1, Parent2, P c);
8: M ← Variable Neighborhood Descent(Child);
9: Population Updating (Pop,M);

10: end while
11: Return Best individual in Pop;

generations are performed using genetic operators, namely: the selection and
the crossover. The mutation operator is then replaced by the VND procedure.

The selection operator ranks individuals of the current population according
to their fitness value calculated as the sum of the total travel cost, acquisition
cost and recharging cost, see Eq. (1). Then, a tournament selection is used to
select parents for the crossover operator. After that, the variable neighborhood
method is applied on the child provided by the crossover operator. The resulting
feasible solution M will replace the worst individual in the population by the
Population Updating routine. When the termination criterion is verified, namely
the maximum number of iterations MaxIter is reached, the algorithm returns
the best individual in the current population. In the following, we explain the
algorithm components.

4.1 Representation of a Solution

In this work, we choose to represent vehicles tours as sequences of customers
separated by zeros. This is presented in Fig. 2, where three vehicles serve thirteen
customers.

Fig. 2. Solution representation.

In this figure, the integers 1 to 13 correspond to the customers while the index
0 is dedicated to the depot. Route 1 starts at the depot, visits customers 1, 2,



222 D. Rezgui et al.

3, 4, 5 and goes back to the depot. Route 2 starts from the depot to customers
6, 7, 8 and 9. Finally, route 3 begins from the depot and visits the last four
customers 10, 11, 12 and 13. In our example, three types of vehicles (V1, V2, V3)
for the fleet are considered with different costs (c1, c2, c3). Furthermore, to each
customer located at a node i ∈ N correspond a positive demand qi, a service
time si, and a time window [ai, bi].

4.2 Initial Population

To generate an initial population, we propose a greedy algorithm that constructs
at each step the nearest customer that verifies all the constraints related to the
recharging and the time windows. Then the solution is perturbed by the 2-opt
procedure to generate popSize solutions. If a resulting solution is unfeasible, an
additional vehicle is added to respect time windows and recharging constraints.

4.3 Best Cost Route Crossover Operator

One of the particular and important features of the techniques involving the
genetic algorithm is the choice of the crossover operator. In fact, the crossover is
the process that allows in nature the production of chromosomes which partially
inherit the characteristics of the parents in order to produce an offspring from
two chosen individuals. Indeed, the crossover has to handle the problem features
“to transmit” good properties of the parents to their children. In the literature
of the VRP with time windows we can note the work of Moura [17] which has
focused on the performance of an operator called the Best Cost Route Crossover
(BCRC). This operator was originally introduced for the VRPTW by Ombuki
et al. [19]. The performance of the BCRC can be explained by two factors.
First, this crossover tests at each step the feasibility of the obtained solution
and produces always solutions that handle time windows constraints. Secondly,
this operator looks for best combinations to produce an offspring.

In our context and since our problem is highly constrained as compared with
the VRPTW, we choose to apply the BCRC operator with a probability of
occurrence Pc. We also check the feasibility of each move and we look for the
best one as the standard BCRC does.

4.4 The Variable Neighborhood Descent Procedure

The Variable Neighborhood Search (VNS) is a popular metaheuristic that has
proven its performance when dealing with many optimisation problems includ-
ing the Vehicle Routing Problem and its variants [11]. It is based on varying
the neighborhood structure during the search process. One simple and fast vari-
ant of the VNS is the Variable Neighborhood Descent (VND) [13]. It combines
the rapidity of steepest descent procedures and the agility of the VNS, since it
enables the search being efficient by using several performing move operators
simultaneously. Indeed, in the literature, we can observe the use of search oper-
ators that can be more performing on some instances of the problem, and less
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relevant on other instances. The major idea of the VNS paradigm is to vary the
move operator at each step to explore better the search space.

More formally, let N = N1, ..., Nmax be a set of neighborhood structures
where each Ni is a move operator that can be applied on each solution S to
obtain a neighboring solution S′ by S′ = Ni(S); i = 1, ..max.

The VND heuristic applies alternatively the neighborhood operators until
no improvement is possible. In our adaptation of the VND procedure, we apply
four neighborhood operators sequentially whether an improvement is reported
or not. This is motivated by the fact that we have to apply a rapid routine that
will replace the mutation operator that has as the objective to perform a fast
switch rather than a long walk. At the end, we retain the resulting solution only
if it is better than the child provided by the crossover operator. The different
steps of the VND method are given in Algorithm 2.

Algorithm 2. Variable Neighborhood Descent.
1: Input an initial solution SI, N = N1, ..., Nmax

2: Output Best neighboring solution
3: j ← 1;
4: S ← SI;
5: while j ≤ max
6: S ← Ni(S)
7: j ← j + 1
8: end while
9: repair(S);
10: if f(S) ∧ f(SI) then SI ← S;
11: Return SI.

The VND procedure is mainly depending on the set of neighborhood struc-
tures N and on their order. The sequence of movements in N considered in this
work is the following: it involves the swap, insert, exchange and finally the 2-opt
procedure. Approximately, the same order is used for other VRP problems [9].
Let Sol be the set of feasible solutions. In our adaptation of the VND, a neigh-
borhood solution is accepted only if it verifies all the constraints, which means
that it belongs to Sol.

5 Experimental Setup

We performed all the tests on a laptop PC equipped with an Intel Core i3-
3217U Processor clocked at 1.8 GHz with 4 GB RAM, running Windows 8.2
Professional. The EVND algorithm was implemented as a single thread code
in Java. Likewise, the tests of our work were executed over the 56 Solomon
instances with 100 customers [26]. The instances are divided into six different
categories denoted C1, C2, R1, R2, RCl and RC2, each with 8 to 12 problems.
The sets of problems differ in the geographical distribution of the customers, the
width of the time windows, the service time of each customer and the vehicle
capacity. The data description is available at http://w.cba.neu.edu/∼msolomon/
problems.htm. The results of our EVND are based on 10 independent runs for

http://w.cba.neu.edu/~msolomon/problems.htm
http://w.cba.neu.edu/~msolomon/problems.htm
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each single Solomon test instance. We suppose that each EMV must check at each
customer location the State Of Charge (SOC) of the battery of the overall vehicle
including the attached modules. When the SOC is below a given threshold,
the vehicle remains in charge until reaching this threshold, calculated as the
maximum distance between two nodes of the distribution network. The battery
capacity is set to the maximum 80 kWh. Furthermore, we set the consumption
rate ek to 1.0. The recharging time h is set to the time needed for the EMV for
reaching the threshold. This time depends on the current SOC of the battery
when arriving at the current customer location. In the present work, the stopping
criterion of the general algorithm is a fixed number of iterations MaxIter which
has been set to 3000.
In our experimental study, we try to show these main issues:

– the relevance of the main components of our algorithm, which is the use of
the variable neighboring descent as a mean to explore locally the search space
of the solution generated by the crossover operator.

– the performance of our method to treat the electric vehicles routing problem
regarding best state of the art methods basically hybrid metaheuristics.

5.1 Relevance of the VND Procedure

Here, we try to assess our theoretical assumptions that the VND could give effi-
cient results by exploring the local neighborhood using the four operators defined
before. For this reason, we experiment an Evolutionary Local Search (ELS) pro-
cedure that works similarly to the EVND, but replaces the VND procedure by a
local descent procedure that iteratively applies the 2-opt move on the child until
an improvement is recorded. Tables 1 and 2 compare the EVND to the ELS in
terms of solutions quality to obtain the best solution. The experiments carried
out for evaluating the relevance of the VND were conducted with the R1 and
R2 instances of the Solomon benchmark. The best results for our evolutionary
algorithm against the ELS are presented, where NV is the Number of Vehicles
needed and TD is the Total Distance. The column Gap% is the percentage differ-
ence of the total traveled distance between the solutions provided by the EVND
and ELS algorithms. The runtime in minutes is also provided in the columns
denoted CPU.

Based on the empirical results of Tables 1 and 2, we can note that the EVND
is more competitive than the ELS. For instance, considering the group of instance
R1 in Table 1, the results show that the EVND reduces the gap of the traveled
distance with an average of 0.08%, while the number of vehicles used is always the
same as for the ELS. Moreover, the average percentage improvement of EVND,
considering the instance R2 in Table 2, is less than the one of ELS with an
average of 0.67%. Moreover, for the group of instances R1 and R2, concerning
the number of vehicles used, the two approaches require the same number of
vehicles (11 in average for the group R1 and 2.63, in average for R2).

A more detailed analysis shows that the VND hybridized with the Evolution-
ary Algorithm works very well as compared with the ELS for the set of instances
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Table 1. Best results found for the R1 problem class.

Problem ELS EVND

NV TD CPU NV TD CPU Gap%

R101 14 1657.16 14.67 13 1653.80 14.82 −0.20

R102 14 1484.14 15.60 14 1479.22 14.68 −0.33

R103 12 1300.77 13.30 13 1248.64 16.26 −4.00

R104 10 1006.14 16.42 10 986.42 14.54 −1.95

R105 12 1355.41 16.81 12 1354.98 15.88 −0.03

R106 11 1253.97 15.65 11 1250.08 14.21 −0.31

R107 10 1110.04 19.62 10 1102.42 16.74 −0.68

R108 10 951.84 16.31 9 945.75 17.26 −0.63

R109 11 1104.22 13.80 11 1102.68 15.64 −0.13

R110 10 1015.72 18.21 10 1118 18.89 10.66

R111 10 1093.08 16.01 10 1064.95 17.30 −2.57

R112 8 902.28 15.87 9 900.05 17.52 −2.46

Average 11 1186.23 16.02 11 1183.92 16.14 −0.08

Table 2. Best results found for the R2 problem class.

Problem ELS EVND

NV TD CPU NV TD CPU Gap%

R201 3 1252.41 15.85 3 1249.77 14.57 −0.21

R202 3 1170.69 15.50 3 1164.58 14.36 −0.52

R203 3 943.93 14.20 3 940.95 13.21 −0.31

R204 2 838.66 13.06 2 827.27 15.02 −1.35

R205 3 971.24 12.36 3 969.13 14.74 −0.21

R206 3 889.19 14.66 3 889.17 16.11 −0.00

R207 2 894.92 11.80 2 894.35 12.89 −0.06

R208 2 726.84 13.31 2 725.05 12.77 −0.24

R209 3 909.68 11.58 3 908.48 13.14 −0.13

R210 3 869.62 13.76 3 848.81 14.57 −2.39

R211 2 879.25 11.83 2 862.17 12.94 −1.94

Average 2.63 940.58 13.44 2.63 934.52 14.02 −0.67

of R1 where, on average, less or the same number of electric modular vehicles
(EMVs) are needed to perform the tours. In addition to that, there is only one
more vehicle which is needed even if the total distance is minimized (for R103,
R112). Moreover, in terms of distance EVND optimizes the TD for all problem
sets except R110, as compared to ELS.
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It is also worth mentioning that, for the group of instances R2, the EVND
has equaled the solutions when compared to ELS according to the number of
vehicles. Concerning the total distance, for all the tested problem sets the EVND
has improved significantly the solutions of 10 out of 11 instances. Regarding the
computational times, in average, the EVND requires 16.14 min against 16.02 min
for the ELS, for the group of instances R1 and 14.02 min against 13.44 min, for
the group of instances R2. This is not a big difference since the EVND involves
more neighborhood operators than the ELS. It is finally worth remarking that
the EVND is a powerful metaheuristic that systematically exploits the idea of
neighborhood search. This leads to improve significantly the solutions of 21 out
of the 23 instances for the group of instances R when comparing it to the ELS.

5.2 Comparison with Some State-of-the-Art Methods

To prove the effectiveness of our method, we choose to compare our results with
three related methods; the Tabu Search (TS) [24] as an efficient competitive
metaheuristic, the Localized Genetic Algorithm (LGA) [27] because of its evo-
lutionary framework and the VNS-C [8], an effective VNS procedure. All these
methods are tested on the Solomon benchmarks framework. An average runtime
of 16 min are required to obtain the result of a 100-customers Solomon instance
with the EVND. This is the same runtime as with the TS [24]. Since the other
authors did not provide the CPU time and since our problem is more constrained
than the classical VRPTW, we compare only the total distance and the number
of used vehicles to report the effectiveness of our EVND. The idea behind this
is to assess the ability of our EVND to overcome electric battery recharging
constraints by minimizing the total distance (to serve customers rapidly) and
the number of EVs (since their acquisition costs are reported to be high). A
thorough analysis of the results presented in Table 3, showed that the EVND
approach competes significantly well against the solutions of the 56 instances,
when compared to the other state of the art methods, according to the total
distance. Concerning the NV criterion, the obtained results require in almost
all cases, the same number of vehicles as the best one of the other methods.
It is worth noting, that for the group of instances C1 and C2, our approach is
able to successfully minimize the TD for all the instances with the same number
of vehicles for the distribution operations. However, for the R1 and R2 classes,
EVND is less performant but it is still very competitive on the two criteria NV
and TD. Indeed, it provides excellent performance essentially for the R101 and
the R102 instances, where the number of vehicles used dropped to 13 and 14
respectively, against 18 and 17 for the best of the other methods. Also, we note
the performance of the EVND for the R109 instance for which the TD is equal to
1109.68 with 11 vehicles, against the TS which needs a total distance of 1205.27
with the same number of vehicles. Also, we can report the R112 instance for
which the EVND gains 10,33% of the TD when compared to the TS method, by
using the same number of vehicles. Concerning the classes RC1 and RC2, the
EVND results are very competitive especially on the number of vehicles and out-
performs the other methods in some cases, namely; RC101, RC203 and RC08,
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Table 3. Comparison between our best results and related methods on the Solomon
instances.

Problem TS LGA VNS-C EVND

NV TD NV TD NV TD NV TD

C101 10 828.94 10 827.3 10 828.94 10 820.66

C102 10 828.94 10 827.3 10 828.94 10 823.05

C103 10 828.07 10 827.3 10 828.94 10 827.54

C104 10 824.78 10 827.3 10 825.65 10 824.12

C105 10 828.94 10 827.3 10 898.94 10 828.48

C106 10 828.94 10 827.3 10 898.94 10 826.35

C107 10 828.94 10 827.3 10 898.94 10 827.47

C108 10 828.94 10 827.3 10 898.94 10 827.31

C109 10 828.94 10 827.3 10 898.94 10 827.99

Average 10 828.38 10 827.3 10 828.65 10 825.89

C201 3 591.56 3 589.1 3 591.56 3 583.50

C202 3 591.56 3 589.1 3 591.56 3 591.56

C203 3 588.49 3 588.7 3 591.17 3 586.45

C204 3 587.71 3 588.1 3 590.6 3 581.83

C205 3 588.49 3 586.4 3 588.88 3 581.44

C206 3 588.49 3 586.0 3 588.49 3 585.43

C207 3 588.29 3 585.8 3 588.29 3 583.89

C208 3 588.32 3 585.8 3 588.32 3 588.05

Average 3 589.11 3 587.37 3 589.86 3 585.27

R101 18 1606.07 20 1640.1 19 1652.47 13 1653.80

R102 17 1447.36 18 1467.5 18 1476.06 14 1479.22

R103 13 1257.49 14 1214.0 14 1219.89 13 1248.64

R104 9 1007.39 11 992.6 11 994.85 10 986.42

R105 13 1462.39 16 1362.3 14 1381.88 12 1354.98

R106 12 1263.29 13 1243.3 13 1243.72 11 1250.08

R107 10 1080.89 11 1069.5 11 1077.24 10 1102.42

R108 9 957.04 10 943.5 10 956.22 9 945.75

R109 11 1205.27 13 1152.4 13 1157.61 11 1102.68

R110 10 1128.61 12 1070.6 12 1081.88 10 1118

R111 10 1102.07 12 1057.3 11 1087.5 10 1064.95

R112 9 1003.76 10 960.8 10 958.7 9 900.05

Average 11.75 1134.52 13.33 1181.15 13 1079.92 11 1183.92

(continued)
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Table 3. (continued)

Problem TS LGA VNS-C EVND

NV TD NV TD NV TD NV TD

R201 4 1248.49 10 1152.7 5 1190.52 3 1249.77

R202 3 1177.11 7 1045.4 4 1098.06 3 1164.58

R203 3 939.54 6 871.2 4 905 3 940.95

R204 2 822.66 5 731.3 3 766.91 2 827.27

R205 3 1005.05 7 965.1 4 964.02 3 969.13

R206 2 1076.74 5 887.6 3 931.01 3 889.17

R207 2 883.502 5 807.0 3 855.37 2 894.35

R208 2 730.62 4 703.4 3 708.9 2 725.054

R209 3 915.07 6 867.0 3 983.75 3 908.48

R210 3 949.52 6 944.7 4 935.01 3 848.81

R211 2 864.83 5 754.6 3 794.04 2 862.17

Average 2.63 909.73 6 848.54 3.54 921.15 2.63 934.52

RC101 14 1685.39 18 1662.5 15 1624.97 14 1607.48

RC102 12 1503.25 15 1480.6 13 1497.43 12 1502.27

RC103 10 1305.20 12 1286.7 11 1265.86 11 1255.57

RC104 10 1118.42 10 1136.1 10 1136.49 10 1135.52

RC105 13 1626.49 16 1549.8 14 1642.81 13 1555.63

RC106 11 1366.86 13 1382.7 12 1396.59 10 1427.95

RC107 10 1312.23 12 1215.8 11 1254.68 10 1238.22

RC108 10 1132.60 11 1115.5 11 1131.23 10 1134.41

Average 11.25 1381.31 13.37 1353.71 12.12 1368.75 11.25 1357.13

RC201 4 1394.81 10 828.93 5 1310.44 3 1417.36

RC202 3 1326.40 8 828.93 4 1219.49 3 1367.42

RC203 3 1066.66 6 828.93 4 957.1 3 1051.20

RC204 2 945.44 4 828.93 3 829.13 3 792.11

RC205 3 1566.16 8 828.93 5 1233.46 4 1243.81

RC206 3 1140.98 7 828.93 4 1107.4 3 1144.37

RC207 3 1055.42 6 828.93 4 1032.78 3 1020.11

RC208 3 827.58 5 827.52 3 830.06 3 822

Average 3 1165.43 6.75 828.93 4 1064.98 3.12 1107.30

where the TD and the NV are the best. All the most interesting performances
of the EVND are in bold in Table 3.

Table 4 summarizes the results of the comparison between the algorithms
considered in Table 3 namely the TS, the LGA, the VNS-C and EVND. The
columns represent the results obtained for each algorithm whereas the lines show
the average of the total traveled distance and the average number of vehicles
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for each class. Additionally, the cumulative traveled distance (CTD) and the
cumulative number of vehicles (CNV) are provided in the last two lines, for each
problem group.

Table 4. Average number of vehicles used and total traveled distance for our method
against some state of the art methods.

Benchmark TS LGA VNS-C EVND

C1 828.38 827.3 828.65 825.89

10 10 10 10

C2 589.11 587.37 589.86 585.27

3 3 3 3

R1 1134.52 1181.15 1079.92 1183.92

11.75 13.33 13 11

R2 909.73 848.54 921.15 934.52

2.63 6 3.54 2.63

RC1 1381.31 1353.71 1368.75 1357.13

11.25 13.75 12.12 11.25

RC2 1165.43 828.93 1064.98 1107.30

3 6.75 4 3.12

CND 56163.49 53113.56 54738.26 56317.5

CNV 398 501 438 390

As shown in Table 4, the obtained results indicate in almost all cases that
the proposed EVND gives promising results as compared with Schneider’s TS
[24], Ursani’s LGA [27] and Chen’s VNS-C [8], regarding the decreased numbers
of vehicles, without a significant increase in the total distance. Indeed, in all
the classes of problems, we observe that the results obtained by the EVND
algorithm are very competitive, in terms of distance despite the lower number
of vehicles used to serve the customers. This is particularly convenient for the
electric vehicles context.

6 Conclusion

In this paper, we have proposed an evolutionary variable neighborhood descent
algorithm applied to a vehicle routing problem with time window constraints
using heterogeneous fleets of electric modular vehicles. Experimental results show
the benefits of combining the evolutionary schema with the variable neighbor-
hood descent procedure. This performance is also confirmed on classical VRPTW
instances. The effectiveness of the proposed method in reducing both the trav-
eled distance and the number of vehicles is due to the use of appropriate genetic
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operators, the ability of modules to be recharged at customers and the intensi-
fication procedure performed by the variable neighborhood descent.

This work can be extended to other VRP variants especially those handling
electric constraints in emerging freight delivery distribution problems. Moreover,
we intend to enhance the variable neighborhood descent procedure by exploring
other move operators.

References

1. Aggoune-Mtalaa, W., Habbas, Z., Ait Ouahmed, A., Khadraoui, D.: Solving new
urban freight distribution problems involving modular electric vehicles. IET Intell.
Transp. Syst. 9(6), 654–661 (2015)

2. Baniamerian, A., Bashiri, M., Zabihi, F.: A modified variable neighborhood search
hybridized with genetic algorithm for vehicle routing problems with cross-docking.
Electron. Notes Discret. Math. 66, 143–150 (2018). 4th International Conference
on Variable Neighborhood Search

3. Bennekrouf, M., Aggoune-Mtalaa, W., Sari, Z.: A generic model for network design
including remanufacturing activities. Supply Chain Forum 14(2), 4–17 (2013)

4. Boudahri, F., Aggoune-Mtalaa, W., Bennekrouf, M., Sari, Z.: Application of a
clustering based location-routing model to a real agri-food supply chain redesign.
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Abstract. In this paper, we consider the integrated Berth Allocation
and Crane Assignment problem, with availability constraints and high
tides restrictions, in bulk port context. We were inspired by a real case
study of a port owned by our industrial partner. The objective is to
minimize the total penalty of tardiness. First, we implemented a greedy
heuristic to compute an initial solution. Then, we proposed a sequential
Variable Neighborhood Descent (seq-VND) for the problem. In addition,
we compared the efficiency of different scenarios for the seq-VND against
results given by a mathematical model for the problem.

Keywords: Berth Allocation · Crane assignment ·
Variable Neighborhood Descent · Bulk port

1 Introduction

In the last few years, the maritime industry has undergone an immense metamor-
phism affecting the global economy [22]. Therefore, an efficient management of
this industry becomes a necessity to enhance its performance. From this perspec-
tive, several researchers have studied the operational aspect of port management
by investigating two different decision problems: yard side and seaside opera-
tions. One of the major seaside problems, we cite the Berth Allocation Problem
(BAP). However, this problem depends, significantly, on the resource utiliza-
tion and especially the loading/unloading cranes. Hence, dealing with BAP and
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Crane Assignment Problem (CAP) in one integrated decision problem is more
realistic. Indeed, a significant emphasis has been given to the integrated Berth
Allocation and Crane Assignment Problem [1,24] but only for the container
terminal context. In this paper, we investigate the multi-quay Berth Allocation
and Crane Assignment Problem under the availability constraint for a bulk port.
We proposed a sequential Variable Neighborhood Descent (seq-VND) to solve a
real-case study given by our industrial partner.

Formally, the bulk terminal under study contains a set Q of quays with differ-
ent lengths Lq for each quay q ∈ Q and each one is equipped with a set of mobile
gantries, c ∈ Cr, with a fixed loading/unloading rate dq. Vessels arrive within
the planning horizon H and each vessel j ∈ V has an arrival date rj and an
estimated departure time Depj . A vessel j may request different quantities Cjf

of more than one quality f ∈ Fj , where Fj denotes the set of qualities requested
by this vessel. During the loading process, the handling time depends on several
factors. First, all vessels require a pre-loading Pre and post-loading time Post.
In addition to a draft survey tds in the case of multiple qualities. Then, the
variable handling time is calculated for, each vessel, considering loaded quanti-
ties, transfer rate between storage areas and quays, and the number of gantries
used for cargo loading. To simplify the problem, we consider that the trans-
fer rate depends only on dq. In the actual planning tool used by the industrial
partner, availability constraints are not considered. However, due to preventive
maintenance of gantries or to bad weather conditions, the installation may be
unavailable during periods [starti, finishi], i ∈ NV A. We denote by NV A the
set of unavailability periods within the planning horizon. In addition, the ves-
sels should leave the docks within a high tide interval [sptide, f

p
tide], p ∈ HT . We

define HT as the set of high tides periods over the horizon H. The objective is
to minimize the total cost of vessels tardiness.

The rest of the paper is organized as follows. In Sect. 2 we describe the
problem and give the related work. In Sect. 3, we propose the seq-VND algorithm
to solve the problem. Finally, the computational experiments, based on a real
case, as well as the corresponding conclusions are summarized in the Sects. 4 and
5 respectively.

2 Literature Review

In the container terminal environment, Park and Kim [19] presented the first
work that dealt, simultaneously, with the Berth Allocation and Crane Assign-
ment. They proposed a two-phase approach based on the Lagrangian relaxation.
In the first stage, they determined the berthing positions, the handling times
and the number of assigned cranes in each period. Then, in the second stage,
the cranes scheduling were investigated. In the same year, Imai et al. [13] studied
the notion of Multi-User terminal, in which the quays are a set of berths called
the discrete layout. The authors proposed a heuristic procedure to solve the
problem. Meisel and Bierwirth [18] proposed a mathematical formulation inte-
grating the berth allocation and the crane assignment under several real-word
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considerations. To solve the problem, they developed a constructive heuristic
for generating a feasible solution, a set of local search procedures and meta-
heuristics. These methods were shown efficient on a set of real-world instances.
Based on this work, Iris et al. [15] studied two variants of the crane assignment:
time-variant or time-invariant and proposed new mathematical formulations. Iris
et al. [14] improved the mathematical formulation provided by Meisel and Bier-
wirth [18], introducing valid inequalities and variable fixing methods. The same
problem but with more realistic objective was investigated by Liang et al. [17].
The aim was to minimize the handling time of vessels, the waiting time and the
delay. They formulated the problem with a dynamic aspect for vessel’s arrival
and proposed a genetic algorithm to guarantee a good solution with a reasonable
time for real word instances. Giallombardo et al. [11] formulated the integrated
berth allocation and crane assignment as a quadratic model and a linearized
formulation. Their models minimized the total quay crane profiles in addition to
the housekeeping costs generated by transshipment flows between vessels. These
models had found difficulties to solve real-case instances. Hence, the authors pro-
posed a Tabu Search method based on mathematical techniques. Chang et al.
[5] supposed that the crane assignment is variant within the planning horizon.
They used a mathematical formulation embedded in a rolling horizon algorithm
to solve medium size instances. In addition, the authors hybridized a parallel
genetic algorithm using several priority rule heuristics. The handling time may
depend, mainly, on the crane assignment. In order to study the importance of
this assumption, Blazewicz et al. [4] considered the problem as task scheduling
using a set of processors. They proposed a suboptimal algorithm that obtains a
feasible solution for the discrete version of the problem using the continuous one.
Raa et al. [20] studied the same model but under real-world considerations as the
preferred berthing position, priority of the vessel and the handling time. They
proposed a MIP model and tested it on a set of real instances. However, this
model is time consuming for the daily managerial decisions. Hence, the authors
proposed a rolling horizon framework based on the proposed MIP. Based on con-
gested artificial data, the method shows its efficiency. In addition, Vacca et al.
[24] developed a new model for the tactical berth allocation where the decisions
of berthing and crane assignment were studied simultaneously. They proposed a
Branch and Price algorithm to solve it. In their work, several accelerating tech-
niques for the master and the pricing problem were presented. The results showed
that the integration approach might be efficient in different cases. Recently, Agra
and Oliveira [1] studied the integrated berth allocation, quay crane assignment
and scheduling problem motivated by a real case where a heterogeneous set of
cranes is considered. They proposed a MIP model based on the relative position
formulation (RPF). In addition, in order to enhance the bounds of the mathe-
matical formulation, they suggested a new model based on the discretization of
the time and space variables. These enhancements are used in the Branch and
Cut method as a relaxed method in addition to the Rolling horizon heuristic.
The integrating BAP and CAP was widely investigated using different heuris-
tics. Yang et al. [25] proposed evolutionary algorithm with multiple stages. First,
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each stage solves a specific sub-problem and then, the algorithm computes an
approximation solution for the problem. In addition, Cheng et al. [6] dealt with
a dynamic allocation model using objective programming. The idea was to pro-
pose a rolling-horizon technique for the BAP and CAP under the objective
of minimizing the total berthing location deviation, the total penalty and the
energy consumption of quay cranes. To solve large instances, the authors sug-
gested a hybrid parallel genetic algorithm (HPGA), which combines the parallel
genetic algorithm (PGA) and a heuristic algorithm. Diabat and Theodorou [7]
considered the scheduling aspect in the integrated problem (BACASP). They
proposed a MIP formulation in addition to a genetic algorithm for which the
authors defined problem-specific chromosome and a set of insertions and selec-
tion strategies. Then, Fu and Diabat [10] implemented a Lagrangian relaxation
based for the decomposition of the problem. The authors tested their approach
using several problem instances. The results were compared to those obtained
by a commercial software and to another heuristic, namely a Genetic Algorithm
(GA) presented in Diabat and Theodorou [7].

In the bulk port context, Barros et al. [2] were interested in the Berth Allo-
cation Problem in bulk port under tidal and stock level restrictions. The main
decision for this problem is to define when vessels should be allocated to berths
and that during tidal time windows with the aim of minimizing the overall cost.
In this work, berths are homogeneous and stocks must be kept in safety levels. To
deal with the complexity of the problem, they proposed a Simulated Annealing-
based algorithm. Umang et al. [23] presented three formulations to solve the
dynamic hybrid Berth Allocation Problem. The main differences between con-
tainer and bulk port operations are the account for a cargo type and the fixed
equipment facilities as conveyors that may be installed in certain berths only. The
authors investigated the coordination between seaside and yard side operations.
The objective is to minimize the total service time of vessels. The authors devel-
oped a Generalized Set Partitioning GSPP model for the problem and showed
its efficiently. An alternative can be used in case of GSPP fails to generate the
optimal solution in reasonable time, which is adding bulk-specific components
to the metaheuristic, based on squeaky wheel optimization. Rodrigues et al.
[21] proposed a MIP model for the continuous Berth Allocation Problem under
cargo operation restrictions to minimize the time that vessels stayed in the port.
They supposed that some cargo could not be handled in certain berths along the
pier. This assumption is observed in the oil and gas logistics context. Real data
showed that the model can solve instances up to 147 vessels with 440 m of pier
and results confirm the possibility of significant gains. In addition, Ernst et al.
[9] proposed two MIP formulations for the continuous berth allocation problem
in dry bulk port context. The main restriction considered is the tidal time win-
dow for the vessel departure. The authors presented several proprieties for the
optimal solution and some cuts to tighten the models. The time-indexed model
was shown more suitable for large instances.
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3 Variable Neighborhood Descent

Variable Neighborhood Search [12] was presented as a single solution metaheuris-
tic based on the idea of changing systematically the neighborhood structures
to escape from local optima. The use of different neighborhood structures is
explained by the following observations: it is not necessary to find the same
local optimum for all the neighborhood structures. (i) a global optimum is a
local optimum for all the neighborhood structures. (ii) despite the diversity of
the neighborhood structures, for many problems the local optimums are rela-
tively close. Basic VNS and its variants have been applied to many optimization
problems [3], as scheduling, routing, etc. In this work, we investigated the Vari-
able Neighborhood Descent to tackle the Problem.

The seq-VND implementation requires the definition of the following param-
eters: an initial solution, a set of neighborhood structures, a local search and an
evaluation scheme.

3.1 Initial Solution

To construct an initial solution we consider the set of quays S =
⋃

q∈Q

πq, where

each permutation πq contains a list of vessels that will be loaded in the quay
q. We denote this solution by a quay permutation-based representation. Based
on this representation, we proposed a greedy algorithm that generates a feasible
starting point for the seq-VND metaheuristic. The main idea is inspired by the
workstation-balancing assignment [3], in which each equipment has the same
amount of work to execute. In our problem, we considered the port as a work
cell and each quay represents equipment or a workstation. We define a sequence
of vessels (tasks) to be loaded (executed) respecting a priority rule. We choose the
First Come First Served (FCFS) rule to select the vessels. The greedy procedure
is used to assign vessels to quays based on the predefined order and respecting
quays length. As in production line balancing, we define a capacity N =

⌈
|V |
|Q|

⌉
,

as the number of vessel assigned to each quay.
After matching vessels to quays, we proposed G − FCFS, a constructive

heuristic, to generate a feasible scheduling for the solution. In our approach, we
discretized both planning horizon and quays in order to respect the time-space
constraints of the problem. The G−FCFS generates a feasible berthing planning
for the initial solution S, in which we calculate for each vessel v ∈ πq its starting
time Sv, its berthing position bv, its handling time hv and the resulting tardiness
Tv. For the evaluation scheme, the total cost of tardiness is calculated using the
greedy procedure described above and the solution generated after each move.

3.2 Neighborhood Structures

The choice of the neighborhood structures used in local search methods affects,
significantly, the performance of the algorithm. We proposed a set of neighbor-
hoods based on the permutation representation. We distinguish two types of
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neighborhood structures: inter-quays for the moves between two distinct docks
and intra-quay used inside a specific dock. On one hand, we used insert (or-
opt) and swap neighborhood structures for inter-quays case. On the other hand,
we used insert (or-opt), swap and reverse neighborhood structures for intra-quay
case. For the sake of simplicity, a neighborhood structure is referred by the name
of its corresponding operator.

– Inter-quays swap operator N1: this operator selects a pair of vessels in two
different quays and exchanges their positions. The operator repeats this pro-
cess for all the quays until all the neighborhoods have been investigated. We
assume a solution of the problem Sa = (πa

1 , πa
2 , ..., πa

n) and one of its neigh-
bors Sb = (πb

1, π
b
2, ..., π

b
n). We fix two different indices s �= t. Then, we fix

another two different indices x �= y from πa
s and πa

t . We exchange the posi-
tions: πbx

s = πay
t , πby

t = πax
s and ∀d, d �= (x, y) πbd

s = πad
t , ∀c, c �= (t, s)

πb
c = πa

c .
– Inter-quays insert operator N2: this operator chooses two distinct quays and

removes a vessels from one and inserts it in the another, respecting the space
restriction. The operator repeats this process for all the quays until all the
neighborhoods have been searched. We assume a solution of the problem Sa =
(πa

1 , πa
2 , ..., πa

n) and one of its neighbors Sb = (πb
1, π

b
2, ..., π

b
n). For two different

indices s �= t, we define πa
s = (πa1

s , πa2
s , ..., πam

s ) and πb
t = (πb1

t , πb2
t , ..., πbk

t ).
We fix a vessel y from πa

s and we illustrate the move as the following: ∀y ≤
i ≤ m − 1, πai

s = πai+1
s and πbk+1

t = πby
s . Finally, ∀c, c �= (t, s) πb

c = πa
c .

– Intra-quay swap operator N3: this operator selects a pair of vessels in one
fixed quay and exchanges their positions. The operator repeats this process
for all the quays until all the neighborhoods have been searched. We assume
a solution of the problem Sa = (πa

1 , πa
2 , ..., πa

n) and one of its neighbors Sb =
(πb

1, π
b
2, ..., π

b
n). We fix a quay s. Then, we fix another two different indices

x �= y from πa
s . We exchange the positions: πbx

s = πay
s , πby

s = πax
s and ∀d, d �=

(x, y) πbd
s = πad

s , ∀c, c �= s πb
c = πa

c .
– Intra-quay insert operator N4: this operator removes a vessel and inserts it

in another position in the same quay s. The operator repeats this process for
all the quays until all the neighborhoods have been searched. We assume a
solution of the problem Sa = (πa

1 , πa
2 , ..., πa

n) and one of its neighbors Sb =
(πb

1, π
b
2, ..., π

b
n). For x < y in πa

s , πbx
s = πay

s , πbx+1
s = πax

s , ..., πby
s = πay−1

s . In
the case of x > y, πby

s = πay+1
s , ..., πbx−1

s = πax
s , πbx

s = πay
s .

3.3 Sequential Variable Neighborhood Descent

In this section, we present the Variable Neighborhood Descent algorithm [8].
The main idea is to use multi-neighborhood version of a local search. More
precisely, we start the seq-VND algorithm by generating an initial solution S with
G − FCFS, this solution will be improved sequentially by applying predefined
sequence of neighborhoods (see Algorithm 2). Each neighborhood is explored
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using the so-called first improvement search strategy, i.e., as soon as an improving
solution is detected it is set as the new incumbent solution and search is resumed
from it. The seq-VND algorithm stops when no more improvement is possible.

Algorithm 1. seq-VND
1 kmax: the number of the neighborhood structures

2 Set of neighborhoods Nk, k ∈ {1, .., kmax}
3 k = 1
4 S ← G − FCFS()

while k ≤ kmax do
5 S’ ← First improvement Local Search (Nk, S)
6 if f(S′) < f(S) then
7 S ← S′

8 k ← 1

end
9 else

k ← k + 1
end

end
10 Return S

Algorithm 2. First improvement Local Search
1 Input: S, Nk

2 Improve ← 0
while S′ ∈ Nk(S) et Improve ← 0 do

if f(S′) < f(S) then
3 S ← S′

4 Improve ← 1

end

end
5 Return S

4 Computational Results

In the following, we report the computational experiments that were performed
for testing the seq-VND. The algorithm were implemented in C++ and executed
on an Intel Core i7 2600 CPU (2.8 GHz) and 16 GB RAM. For testing purposes
test instances were generated using the data obtained from our industrial part-
ner. We differentiate small size instances (N = 7) and large scale instances
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(N = 14). For each type of instances we differentiate three scenarios regarding
the congestion: High Congestion, Medium Congestion and Low Congestion. The
overcrowding of vessels were determined by the frequency in which boats arrive.
In addition, we distinguish two types of instances based on the number of cargo:
one product and two-products.

In the following, we present the port terminal characteristics considered in
all instances:

– The security distance between berthed vessels Sc is equal to 5 m.
– For the high tide time-windows, we consider a daily period of 6 h (given by

weather agency).
– The terminal contains four quays with the respective lengths: 400, 200,

200, 180 and their respective rates.
– We fix two unavailability periods over the planning horizon, which are due to

the planned maintenance and weather conditions.

Table 1. The results of seq-VNDs using different number of neighborhoods

N Demand Congestion The number of neighborhood structures

1 2 3 4

Avg sol Avg time Avg sol Avg time Avg sol Avg time Avg sol Avg time

14 One

product

High 9480.67 0.01 60.00 0.45 60.00 0.69 60.00 1.6

Medium 8040.00 0.02 1557.33 0.69 1557.33 0.93 1527.33 2.03

Low 2110.00 0.03 720.00 0.34 720.00 0.67 720.00 2.07

Multi

product

High 99091.33 0.01 29940.67 1.7 29940.67 2.02 24507.33 4.09

Medium 86586.00 0.02 23959.33 1.8 23959.33 2.05 13422.67 4.6

Low 17355.33 0.04 2670.00 1.3 2670.00 1.6 2100.00 3.17

For each choice of size, congestion and number of products 3 random
instances are generated constituting the class of instances. Therefore, in compu-
tational results we report the average results obtained over 3 instances belong-
ing to the same class. The results on small size instances are compared against
CPLEX 12.8 MIP solver used to solve MIP formulation provided in [16]. On the
other hand large size instance cannot be handled by CPLEX (CPLEX does not
find even a feasible solution after two hours of running time) and therefore these
instances are used as a benchmark to identify the number of neighborhoods and
the best order to be used within seq-VND.

Table 1 summarizes the results for different numbers of neighborhood struc-
tures used within the seq-VND. In each of these variant, the neighborhoods are
examined in order N1, N2...Nk where k is the number of used neighborhoods. We
denote, as metrics, the number of vessels (N), the congestion level (congestion),
the average objective function value (Avg sol) and its corresponding average
execution time in minutes (Avg time).

According to the results, all instances were solved by seq-VNDs. The most
effective version turns to be seq-VND using 4 neighborhoods (i.e., kmax = 4).
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However, as expected since it uses the largest number of neighborhoods it is the
slowest in comparison to the other variants. However, it still consumes reasonable
amount time to provide final solution. It consumes no more than 5 min to solve
an instance.

Table 2. The impact of neighborhoods order on the seq-VND

N Demand Congestion Order

1 2 3 4

Avg sol Avg time Avg sol Avg time Avg sol Avg time Avg sol Avg time

14 One

product

High 60.00 1.6 30.00 1.9 60.00 1.7 180.00 1.2

Medium 1527.33 2.03 1527.33 2.7 1527.33 2.5 1546.67 2.00

Low 720.00 2.07 720.00 2.1 720.00 2.06 720.00 1.9

Multi

product

High 24507.33 4.09 29624.67 6.00 26752.67 5.02 26341.33 3.2

Medium 13422.67 4.6 14916.00 5.9 14352.67 5.2 13932.67 3.9

Low 2100.00 3.17 2100.00 4.1 2100.00 3.8 2100.00 2.7

Now, we are interested to identify the impact of the neighborhood order on
Seq-VND performance. For this purpose, we implement four seq-VNDs. Each of
them uses four neighborhoods implemented in different orders. Table 2 summa-
rizes the results obtained by the sequential VND considering different neighbor-
hood orders. We used the same metrics except “order” that means the sequence
of neighborhoods used in the proposed method. In our experiments, we suggested
the following orders: order1 = {N3,N1,N4,N2}, order2 = {N4,N2,N3,N1},
order3 = {N3,N4,N1,N2}, order4 = {N1,N2,N3,N4}.

Table 3. Performances of seq-VND compared to CPLEX

N Demand Congestion Avg CPLEX Avg time CPLEX (min) Avg seq-VND Avg time seq-VND (min)

7 One

product

High 510 1.81 510 0.004

Medium 6772.66 1.64 6772.66 0.013

Low 0 1.23 0 0.001

Multi

product

High 50 25.71 80 0.021

Medium 1736.66 43.34 1870 0.023

Low 0 1.23 0 0.001

We remark that the order may have a significant impact on the solution
quality. Order1 provides the best solutions for all cases except one, where order2
exhibits the best performance. In addition, it may be observed that order2 is
the best choice if one product is demanded, while order1 is the best choice in
the multi-product case.

After identifying, the optimal number of neighborhoods and order within seq-
VND to be used, we are interested to assess the performance of such seq-VND on
small size instances. The version of seq-VND that were executed uses 4 neighbor-
hoods and follows order1. The obtained results are compared against CPLEX
12.8 MIP solver which succeeded to solve all instances to the optimality within
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one hour of execution time. The average solution values for CPLEX and seq-VND
are given in columns Avg CPLEX and Avg Seq-VND, respectively. Analogously,
corresponding average execution times are given in columns Avg time CPLEX
and Avg time seq-VND (Table 3).

From the reported results it follows that on all instances with one product,
seq-VND finds optimal solutions in very short time. In the two-product case
seq-VND exhibits different performances regarding solution quality depending
to the level of congestion. In the case of low congestion seq-VND finds optimal
solution on all instances, on medium and high congestion instances it finds 2 out
of 3 optimal solutions. Regarding CPU time consumption seq-VND consumes
negligible amount of time in comparison to CPLEX. So, we may conclude that
the proposed seq-VND is very competitive comparing to the CPLEX.

5 Conclusion and Perspectives

In this paper, we present a sequential Variable Neighborhood Descent based
heuristics for an important seaside decision problem, which is the integrated
berth allocation and crane assignment problem. The variant studied in our work
is realistic. Indeed, we consider a multi-quay bulk port layout and the planning
is done under several availability restrictions. In order to evaluate the proposed
method, we were relying on a real case study. The preliminary experiments
showed satisfactory results. Proposed seq-VND turns out to be very competitive
in comparison to CPLEX 12.8 MIP solver and succeeds to solve instances that
cannot be handled by it. Future work may investigate proposing some variants
of V NS to tackle the problem.
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14. Iris, Ç., Pacino, D., Ropke, S.: Improved formulations and an adaptive large neigh-
borhood search heuristic for the integrated berth allocation and quay crane assign-
ment problem. Transp. Res. Part E: Logist. Transp. Rev. 105, 123–147 (2017)
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Abstract. This paper presents an implementation of the Variable
Neighborhood Search (VNS) metaheuristic for solving the optimization
version of the Multidimensional Multi-Way Number Partitioning Prob-
lem (MDMWNPP). This problem consists in distributing the vectors of
a given sequence into k disjoint subsets such that the sums of each sub-
set form a set of vectors with minimum diameter. The proposed VNS
for solving MDMWNPP has a good performance over instances with
three and four subsets. A comparative study of results found from this
proposed VNS and an implementation of Memetic Algorithm (MA) is
carried out, running in the same proportional time interval. Although
the average results are different, the statistical tests show that results
of the proposed VNS are not significantly better than MA in a set of
instances analyzed.

Keywords: Multidimensional Multi-Way Number Partitioning
Problem · Variable Neighborhood Search ·
Number Partitioning Problem · Combinatorial optimization

1 Introduction

This paper addresses the Multidimensional Multi-Way Number Partitioning
Problem (MDMWNPP), a more general version of the classical Number Par-
titioning Problem (NPP). This problem is related to any problems involving
partitions set like Bin Packing, Machine Scheduling and Clustering, for example.
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As it is a generalization, it is necessary to review the problems that originated
it to contextualize its study. Throughout this text, a partition of a X set is
a collection of mutually disjoint subsets whose union forms X. A k-partition
of a set X is a partition of this set, with exactly k non-empty subsets. In
this text, the subsets belonging to the partition are called parts. The notation
Ip = {y ∈ ZZ : 1 ≤ y ≤ p} denotes the closed set of all integers between 1 and p.

The Two-Way Number Partitioning Problem (TWNPP) is a well known
problem in the literature. Its purpose is to find a 2-partition of the indexes of
a V sequence so that the difference between the sums of the elements of each
part is minimal. This problem was listed in [7] as one of the basic NP-complete
problems, and a series of equivalences between TWNPP and other NP-complete
problems are also demonstrated. The first exact algorithms trivially adaptable
to TWNPP were presented in [5] and [24], both proposed to solve the Knapsack
Problem. In [9], two proposals are presented to transform the heuristics into exact
methods of the Branch & Bound type, which are: (i) Complete Greedy Algo-
rithm (CGA), using the Longest Processing Time heuristic (LPT) [4]; and (ii)
Complete Karmarkar-Karp Algorithm (CKK), using the Differencing Method,
well-known as Karmarkar-Karp Heuristic (KKH) [6]. An exact method based
on CKK appears in [14]. In this case, the proposal is to increase the number
of prunings in the CKK search tree using a new heuristic called the Balanced
Largest Differencing Method (BLDM). Already [19] presents an improvement in
the CKK search tree search using a new data structure.

The first generalization of TWNPP is the Multi-Way Number Partitioning
Problem (MWNPP), which expands the number of parts in which the sequence
indices V must be distributed. Given a numeric sequence V , the goal is to find
a k-partition for its indexes, such that the sums of the elements of each part fits
into the shortest possible interval. MWNPP is explicitly stated in [6], in which
an analysis of Karmarkar-Karp Heuristics (KKH) is presented. This heuristic is
focused on the idea of dividing the largest numbers into distinct parts, inserting
the differences between the removed elements in the set of unallocated elements
as long as this set is not empty. In [2], it is shown that MWNPP is a very
difficult problem to be solved by general-purpose metaheuristics, such as Genetic
Algorithms, Simulated Annealing, and others. In many cases, these methods have
a worse computational cost (in terms of time and performance) when compared
to HKK and even to LPT. The exact algorithms presented in [9] were already
adapted for the MWNPP.

The first improvement of these works happens with the algorithm Recursive
Number Partitioning (RNP), proposed by [10] working with the resolution of
minor subproblems derived from MWNPP. Through successive MWNPP con-
versions of a (k − 1)-partition to a k-partition, [16] propose an algorithm based
on solving smaller subproblems. Currently, the state of the art for the resolution
of MWNPP is the Sequential Number Partitioning (SNP) algorithm, presented
in [11], and the Cached Iterative Weakening (CIW) algorithm, presented in [23],
both fully analyzed in [22]. An application of VNS algorithm for solving MWNPP
is described in [1].
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The second generalization of TWNPP is the Multidimensional Two-Way
Number Partitioning Problem (MDTWNPP). This variant considers a V
sequence of vectors of dimension m instead of real numbers, as TWNPP is origi-
nally defined. Its purpose is to find a 2-partition of the set of vectors so that the
vectors resulting from the sum of each part have minimized the distance induced
by the infinite norm. This generalization is initially proposed in [8]. In this same
article, a mathematical model in integer linear optimization for MDTWNPP is
proposed and solved using CPLEX. This is the only known exact method for
solving this problem up to the present moment, according to the knowledge of
the authors of this current article. MDTWNPP is also addressed in [20], but
in this case using population metaheuristics, such as Memetic Algorithm (MA)
and Genetic Algorithm (GA), for its solution. Already [12] presents implementa-
tions of Variable Neighborhood Search (VNS) and Electromagnetism-like (EM)
metaheuristics to the solution of MDTWNPP and compares the results with
those presented in [8] and [20]. The results show that the EM metaheuristic per-
forms slightly superior to the others and strongly superior to the direct solution
of the exact model. Another important article addressing MDTWNPP is [21],
in which this problem is solved using GRASP+Exterior Path-relinking hybrid
metaheuristics. The results obtained, from the same set of instances used in
[8,12,20], show the superiority of the proposed procedure.

The third generalization of TWNPP is the Multidimensional Multi-Way
Number Partitioning Problem (MDMWNPP). Given a V sequence of vectors
of dimension m, the goal of MDMWNPP is to determine a k-partition of vectors
such that, added the elements of each part, the diameter of the resulting vectors
is minimized. MDMWNPP is originally proposed in [20] with the resolution of
three-way (k = 3) and four-way (k = 4) cases using Memetic Algorithm (MA).
It should be stressed that this problem is still little studied in the literature and,
on the other hand, is the central object of study of the current article.

This article presents an adaptation of the VNS metaheuristic proposed in [15]
for the MDMWNPP solution. The results are compared with those presented in
[20] using the same instances of this last article. The justification for applying
VNS to MDMWNPP is the set of good results found in [12] for this metaheuristic
when solving MDTWNPP.

The article is organized as follows. Section 2 presents the synthetic statement
of MDMWNPP and a equivalence proof between the diameter induced by the
infinite norm and the objective function introduced in [20]. Section 3 shows the
operation of the proposed VNS and the particularity of its neighborhood in
rings. Section 4 presents a delineation of the tests performed for the comparison
between the results, while Sect. 5 criticizes the results obtained regarding the
number of executions required and the form of the instances used for a really
valid statistical test. Finally, Sect. 5 concludes the article and presents proposals
for future work.
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2 Problem Statement

2.1 Fundamental Notions

This section introduces fundamental notions concerning MDMWNPP. Let V =
{vi}i∈In be a set of vectors. The function gv : P (In) → IRm receives a discrete
subset of vectors in IRm and returns the sum of its elements. Calculate the
function gv(·) as:

X ∈ P (In) : gv(X) =
∑

i∈X

vi (1)

Referring to the l-th coordinate of gv(X), the notation gvl(X) is used.

Definition 1. Let V = {vi}i∈In be a sequence of vectors such that vi ∈ IRm and
k an integer positive number. Find a k-partition of the V indexes, in the form
{Aj}j∈Ik , that minimizes the diameter of the multiset {gv(Aj)}j∈Ik given by:

diam∞ ({Aj}j∈Ik) = max
j′,j

{‖gv(Aj′) − gv(Aj)‖∞} (2)

(a) Set of vectors V . (b) 3-partition of V .

(c) {gv(A), gv(B), gv(C)}. (d) gv(A) − gv(C), gv(A) −
gv(B), gv(C)− gv(B).

Fig. 1. Representation of V = {(1, 3), (4, 4), (3, −2), (2, 5), (2, −1)} from Example 1.
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Example 1. Let V = {(1, 3), (4, 4), (3,−2), (2, 5), (2,−1)} be a set of vectors, as
shown in Fig. 1(a). This example comes from [20]. Figure 1(b) shows an opti-
mal 3-partition for V . The value of the objective function, from Eq. (2), is
maxl{|gvl(A) − gvl(C)|, |gvl(A) − gvl(B)|, |gvl(C) − gvl(B)|} = 2.

2.2 Analysis of the Objective Function

The objective function for MDMWNPP proposed in this article, presented in
Eq. (2), appears to be different from that originally introduced in [20], given by:

f({Aj}j∈Ik) = max
l

{∣∣∣∣max
j′

gvl(Aj′) − min
j

gvl(Aj)
∣∣∣∣

}
(3)

In fact, these two functions represent different ways for calculating the diameter
of a set of vectors. In the following, an analysis of these two objective functions
is presented.

First, it is possible to remove the module from the Expression (3) without any
loss, since maxj′ gvl(Aj′)−minj gvl(Aj) ≥ 0 in any case. The idea is to denote the
objective function only as the set diameter, allowing a clear interpretation that
applies to all variants of the NPP problem (TWNPP, MWNPP, MDTWNPP
and MDMWNPP) listed in the current article.

Proposition 1 and Corollary 1 are applied in the demonstration of equivalence
of the two expressions in Proposition 2.

Proposition 1. Let I be a limited real interval. Then:

max
x,y∈I

|x − y| = max
z∈I

z − min
z∈I

z (4)

Proof. Since x, y ∈ I, then:

min
z∈I

z ≤ x ≤ max
z∈I

z (5)

min
z∈I

z ≤ y ≤ max
z∈I

z (6)

Manipulating these two expressions, the result is:

min
z∈I

z − max
z∈I

z ≤ x − y ≤ max
z∈I

z − min
z∈I

z (7)

That is:
|x − y| ≤ max

z∈I
z − min

z∈I
z (8)

Therefore:
max
x,y∈I

|x − y| ≤ max
z∈I

(z) − min
z∈I

(z) (9)

Equality occurs for the maximum value. This is verified by fixing x = maxz∈I z
and y = minz∈I z.
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Corollary 1. Let I be a limited real interval and consider a discrete sequence
{ai}i∈In ⊂ I. Then:

max
i,j∈In

|ai − aj | = max
i∈In

ai − min
j∈In

aj (10)

Proposition 2. The distance induced by the infinite norm is given by:

diam∞({gv(Aj)}j∈Ik) = max
l∈Im

{
max
j∈Ik

gvl(Aj) − min
j′∈Ik

gvl(Aj′)
}

(11)

Proof. From Definition 1:

diam∞({gv(Aj)}j∈Ik) = max
j,j′∈Ik

‖gv(Aj) − gv(Aj′)‖∞

= max
j,j′∈Ik

max
l∈Im

|gvl(Aj) − gvl(Aj′)|
= max

l∈Im
max
j,j′∈Ik

|gvl(Aj) − gvl(Aj′)| (12)

Then, by Corollary 1:

max
l∈Im

max
j,j′∈Ik

|gvl(Aj) − gvl(Aj′)| = max
l∈Im

{
max
j∈Ik

gvl(Aj) − min
j′∈Ik

gvl(Aj′)
}

(13)

and the proof is finished.

Example 2. Consider the sequence:

V = {(14, 48, 23), (87, 61, 48), (76, 14, 23), (24, 25, 33), (84, 13, 49), (25, 48, 78),
(56, 14, 73), (55, 21, 20), (16, 13, 86), (74, 55, 31)}

with n = 10 and m = 3. For k ∈ {3, 4, 5}, Table 1 shows a feasible (non-optimal)
partition and the optimal partition of this sequence V when solving MDTWNPP,
with the associated values of objective function. It is worth mentioning that V
has a larger dimension than that associated to sequence shown in Example 1. To
represent the partitions, the classic coding in [18] is used: a sequence (si)i∈In ,
where si ∈ Ik, indicating the part to which the vector vi belongs. This notation
has some extra details that will be explained in Sect. 3.

Table 1. Example 2: feasible solutions vs optimal solutions

k Feasible Obj. val. Optimal Obj. val.

3 [1, 1, 1, 2, 3, 3, 2, 3, 1, 2] 54 [1, 2, 1, 2, 3, 3, 2, 1, 1, 3] 22

4 [1, 2, 3, 3, 3, 2, 4, 4, 1, 1] 81 [1, 2, 3, 1, 1, 3, 2, 4, 4, 4] 44

5 [1, 2, 3, 1, 1, 3, 4, 5, 5, 4] 59 [1, 2, 3, 2, 1, 3, 4, 4, 5, 5] 51
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In this problem, it should be emphasized not only that the calculation of the
objective function is particularly complicated, but also how difficult it is to
perform the complete search in the whole space of feasible solutions. According
to [25], the number of possibilities for each value of k in Example 2 is given by the
Stirling Numbers: S(10, 3)k=3 = 9330, S(10, 4)k=4 = 34105 and S(10, 5)k=5 =
42525, respectively.

3 Proposed Algorithm

The proposed Variable Neighborhood Search (VNS) algorithm works with real-
location moves of an element between parts of the partition {Aj}j∈Ik . The move
mi,j means that an index element i �∈ Aj leaves the part where it is and goes to
the index part j. This move derives from the enumeration algorithm presented
in [18]. It is able to generate all k-partitions of a set.

Consider s′ = {A′
j}j∈Ik e s = {Aj}j∈Ik . The neighborhoods N1(s), N2(s) e

N3(s) are given by:

N1(s) = {s′ : s′ ← s ⊕ mi,j , ∀(i, j) ∈ In × Ik} (14)
N2(s) = {s′ : s′ ← s ⊕ mi,j ⊕ mi′,j′ , ∀(i, j) ∈ In × Ik} (15)
N3(s) = {s′ : s′ ← s ⊕ mi,j ⊕ mi′,j′ ⊕ mi′′,j′′ , ∀(i, j) ∈ In × Ik} (16)

Therefore, these neighborhoods are formed, respectively, by compositions of
one, two and three distinct moves mi,j . Thus, if i ∈ Al, a reallocation
move {A1, . . . , Al, . . . , Aj , . . . , Ak} ⊕ mi,j leads to {A1, . . . , Al − {i}, . . . , Aj ∪
{i}, . . . , Ak}. The neighborhoods are such that Nl(s) ∩ Nj(s) = ∅, ∀i �= j.

The encoding used is a vector of size n whose entries are numbers from 1 to
k. There are restrictions to these moves, in the form of the following rules:

(i) The index 1 of v1 must always be in the part 1;
(ii) If vi is in a part with a single element, the motion mi,j can not be applied;
(iii) A part j will always have at least a i′ index less than any index contained

in the part j + 1. This holds for all j ∈ Ik−1.

Example 3. Consider the two encodings below:

[1, 1, 1, 3, 2], [1, 1, 1, 2, 3]

Note that the first vector does not satisfy the rule (iii) while the second vector
satisfies. It is possible to make a move by following rules (i) and (ii) as:

[1, 1, 1, 2, 3] ⊕ m2,2 = [1, 2, 1, 2, 3]

but not:
[1, 1, 1, 2, 3] ⊕ m2,3 = [1, 3, 1, 2, 3]

since [1, 3, 1, 2, 3] = [1, 2, 1, 3, 2], representing the 3-partition {v1, v3}, {v2, v5},
{v4}.
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Algorithm 1. Codification of solutions s
1: V, k, n, m

2: s : si � vector (si)i∈In where si ∈ Ik

3: b : bi � vector (bi)i∈In where b1 = 1 and bi = min{max2≤h≤i{sh + 1}, k}
4: card : cardj � cardinality of the parts

5: sum : sumj : sumjl � sumj = gv(Aj) and sumjl = gvl(Aj)

Algorithm 2. Objective function
1: function f(s)

2: r1 ← maxj sumj1 − minj sumj1

3: obj ← r1
4: for l ∈ Im \ {1} do

5: rl ← maxj sumjl − minj sumjl

6: if rl > obj then

7: obj ← rl
8: end if

9: end for

10: return obj

11: end function

By rule (iii), the leader element of j can not be passed to a part j′ > j,
because in this case the same solution would have many encodings. The leader
element in j can only be moved to j′ < j if the second lowest index in j is smaller
than all indices of j + 1.

These conditions are described in [17], which presents the most efficient
known codings to make enumerations of combinatorial structures. There is also
a demonstration of the bijection between the set of k-partitions and the coding
presented in [18].

With this encoding, the neighborhood size Nr(s) depends on the solu-
tion s. In Example 3, there is N1([1, 1, 1, 2, 3]) = {[1, 2, 1, 2, 3], [1, 1, 2, 2, 3]}
but, also, N1([1, 2, 1, 2, 3]) = {[1, 1, 1, 2, 3], [1, 2, 2, 2, 3], [1, 2, 3, 2, 3], [1, 2, 1, 3, 3],
[1, 2, 1, 1, 3]}.

These cardinality differences accumulate as r increases its value to 2 or 3.
It is only possible to limit the cardinality of neighborhoods by upper bounds to
show that they are polynomials. Thus, consider s being a vector (si)i∈In and
si ∈ Ik representing a partition:

|Nr(s)| <
⎛

⎝
∑

i∈In\{1}
max
2≤h≤i

{sh}
⎞

⎠
r

≤
(
k(2n − k − 1)

2

)r

(17)

The upper bound shown in Expression (17) is not tight, that is, there is no case
where equality occurs, but its expression is compact and already shows that the
search space of the neighborhoods used is limited polynomially since r ≤ 3.

The proposed VNS, described in the Algorithm 8, follows the guidelines of
[15]. The coding of the solution s is given by Algorithm 1, which holds informa-
tion essential for the manipulation of the search space and to save computational
operations. Instance data can be accessed directly from solution s.

The objective function calculation is done by Algorithm2. This method is
equivalent to the implementation of function (3). The computational cost is
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Algorithm 3. Initial solution algorithm
1: function LPT(V , k)

2: for j ∈ Ik do

3: Lj = 0

4: end for

5: l ← rand(Im) � Select one coordinate in Im for all vectors of V

6: for i ∈ In do

7: si = argminj Lj � build the k-partition

8: Lsi
= Lsi

+ vil � Update sums of the parts

9: end for

10: return s

11: end function

O(max{n, km}), being n − k operations necessary to obtain the vector sum in
Algorithm 1 and (32k − 2)(m − 1) the number of operations of Algorithm2.

The initial solution, found by Algorithm3, is given by an adaptation of the
algorithm proposed in [3]. This is a greedy method that fixes a coordinate l
and applies a greedy allocation of vectors vi in the part Lj less loaded at each
iteration. A k-partition resulting from this method will be the initial solution of
the proposed VNS.

Algorithm 4. Movement of one element
1: function move(i, s)

2: s′ ← s

3: if cardsi
= 1 then � rule 1

4: return s′
5: end if

6: h ← si � part of element i

7: for j ∈ Ibi
\ {h} do

8: si ← j

9: sumj ← sumj + vi � vi move out from h to j

10: sumh ← sumh − vi

11: if f(s) < obj then

12: obj ← f(s)

13: s′ ← s � The new best solution

14: end if

15: end for

16: return s′
17: end function

Algorithm 4 returns the best of all possible valid moves of a vector vi between
the possible parts. This procedure is used to enumerate all neighbors in the
structures N1(s), N2(s) and N3(s).

Algorithms 5, 6 and 7 show the implementations of the local search method
Best Improvement for neighborhoods N1(s), N2(s) and N3(s), respectively.
These algorithms explore all the neighbors of a solution s and return the one
with the lowest objective function value. The computational complexity of each
of them is upperly limited by Expression (17).
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Algorithm 5. Best improvement for N1(s)
1: function best1(s)

2: obj ← f(s) � Save objective value of the current solution

3: for i ∈ In do � For each vi the move() is applied

4: s′ ← move(i, s)

5: if f(s′) < obj then

6: obj ← f(s′)
7: s′′ ← s′ � The new best solution

8: end if

9: end for

10: return s′′
11: end function

Algorithm 6. Best improvement for N2(s)
1: function best2(s)

2: obj ← f(s)

3: for i1 ∈ In−1 do

4: s′ ← move(i1, s)

5: for i2 ∈ In \ {Ii1+1} do � For each tuple (vi1 , vi2 ) the move() is applied

6: s′′ ← move(i2, s′)
7: if f(s′′) < obj then

8: obj ← f(s′′)
9: s′′′ ← s′′
10: end if

11: end for

12: end for

13: return s′′′
14: end function

Algorithm 7. Best improvement for N3(s)
1: function best3(s)

2: obj ← f(s)

3: for i1 ∈ In−2 do

4: s′ ← move(i1, s)

5: for i2 ∈ In−1 \ {Ii1+1} do

6: s′′ ← move(i2, s′)
7: for i3 ∈ In \ {Ii2+1} do � For each tuple (vi1 , vi2 , vi3 ) move() is applied

8: s′′′ ← move(i3, s′′)
9: if f(s′′′) < obj then

10: obj ← f(s′′′)
11: s(4) ← s′′′
12: end if

13: end for

14: end for

15: end for

16: return s(4)

17: end function

Algorithm 8 shows the proposed VNS metaheuristic for solving MDTWNPP.
The input data are the initial solution, determined by Algorithm3, and the limit
value for runtime. The perturbation in the current solution is a valid random
move mi,j . The local search uses Best Improvement method to select the neighbor
that causes the greatest decrease of objective function and updates it as a current
solution, if it is worse than the global solution so far. This local search enumerates
the neighbors of a solution using the classical enumeration methods presented
in [17] and [18].
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Algorithm 8. Adapted VNS algorithm
1: function VNS(s, Time) � Initial solution and time limit

2: r ← 1 � Initial Nr(s).

3: s′ ← s

4: while t < Time do � Stopping criterion by the time limit

5: choose s′ ∈ Nr(s) at valid random � Shake

6: if r = 1 then

7: s′ ← best1(s′)
8: else if r = 2 then

9: s′ ← best2(s′)
10: else

11: s′ ← best3(s′)
12: end if

13: if f(s′) < f(s) then � Neighborhood exchange

14: s ← s′
15: r = 1

16: else

17: r ← 1 + (r mod 3)

18: end if

19: count time t

20: end while

21: return s, f(s)

22: end function

4 Experimental Results

The proposed VNS algorithm was implemented in C++ language. The computa-
tional tests were performed on a computer with Intel Core i7-3770 CPU, 3.4 GHz
with 8 cores, 32 GB RAM and Ubuntu 16.04 64-bit operating system using ver-
sion 3.8 of the clang compiler.

Algorithm 8 uses only a single core for its execution. Of the 8 processor cores,
only 4 are used simultaneously in sets of distinct instances. The instances used
for the experiments are the same used in the articles [8,12,20,21]. The main
comparison is with the latest experiments in [20], where MDMWNPP is solved
with a Memetic Algorithm.

The goal of the computational experiments of this paper is to compare the
result, i.e., the objective function values found by the algorithm, in a same time
interval in seconds. However, there is a difference in computational processing
capacity between the processor used in the current article and the processor used
in [20]. The difference between the single-core performance of the processors
used is approximately 3765

1109 , as shown in [13]1,2, which provides benchmarks for
processors. In consequence, it is fairer that the experiments in this paper use
1
3 of the average computational time used in [20] as the time limit. Thus, the
values of computacional time shown in Tables 2 and 3 reflect this adjustment
factor and are therefore equivalent.

The measures for the comparison of results are based on the average of ten
executions. With this average, the relative error measure is given by:

Gap(B,A) =
z(A) − z(B)

z(A)
.100% (18)

1 https://browser.geekbench.com/processors/748.
2 https://browser.geekbench.com/processors/309.

https://browser.geekbench.com/processors/748
https://browser.geekbench.com/processors/309
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This measure shows that the response of the algorithm B is less than that of
the algorithm A, when Gap(B,A) > 0, where z(A) and z(B) are their respective
objective function values on average.

Tables 2 and 3 show the results used in comparing the two methods for k = 3
and k = 4, respectively. The instances have the form n ma, following the pattern
of Definition 1. Table 4 shows the mean value, standard deviation and p-value of
a 95% confidence paired t-test, calculated from the results of the column “Avg.
Sol”. The hypothesis formulation of the test performed is:

{
H1 : fV NS < fMA

H0 : fV NS ≥ fMA

(19)

For a descriptive analysis of the results, we can observe, in these two tables,
the column Gap(V NS,MA). In Table 2 there are eight instances with mark
“no”, i.e., the MA algorithm was better than Algorithm8. On the other hand, in
Table 3, the number of times the MA beats the Algorithm8 is six. The difference
between the MA and VNS results are, on average, 3359.92 for k = 3 and 3509.21
for k = 4.

Table 2. Results of [20] vs results from Algorithm 8 for k = 3

Instance MA VNS Comparison

k = 3 Avg. sol Avg. time Avg. sol Avg. time Gap (VNS, MA) Better

50 2a 86.2 182.45 130.98 60.94 51.95% No

50 3a 334.4 202.34 1045.94 67 −212.78% No

50 4a 3382.5 673.83 2044.01 223.98 39.57% Yes

50 5a 4125.8 781.82 14266.4 259.97 −245.79% No

50 10a 37521.6 1189.38 38136.1 395.96 −1.64% No

50 15a 56015.2 1212.27 68396.1 403.91 −22.10% No

50 20a 102652 1235.22 92299.1 410.92 10.09% Yes

100 2a 178.1 342.39 50.7 113.98 71.53% Yes

100 3a 531.3 428.38 2886.44 141.96 −443.28% No

100 4a 867.5 673.22 8374.57 223.96 −865.37% No

100 5a 6224.5 834.62 11527.3 277.97 −85.19% No

100 10a 47004.8 1436.08 37146.2 477.94 20.97% Yes

100 15a 96827.3 2073.76 61427.6 690.94 36.56% Yes

100 20a 113112.5 2564.38 84093.4 853.91 25.66% Yes

Table 4 reports that there is no significant statistical difference between the
averages of the results of the algorithms in the set of tested instances when
k = 3 and k = 4. Even if the average difference between the algorithms is
positive, the large standard deviation in the results does not allow to reject the
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Table 3. Results of [20] vs results from Algorithm 8 for k = 4

Instance MA VNS Comparison

k = 4 Avg. sol Avg. time Avg. sol Avg. time Gap (VNS, MA) Better

50 2a 391.4 342.37 321.69 113.66 17.81% Yes

50 3a 678.3 536.24 687.75 177.95 −1.39% Yes

50 4a 836.7 1023.39 3185.66 340.95 −280.74% No

50 5a 1094.4 1243.28 19979.4 413.87 −1725.60% No

50 10a 42005.6 1647.76 57025.2 548.83 −35.76% No

50 15a 56034.7 1843.92 91035.6 613.82 −62.46% No

50 20a 123627.8 2135.48 108404 710.83 12.31% Yes

100 2a 687.2 564.02 99.28 187.94 85.55% Yes

100 3a 1213.7 847.37 5765.02 281.9 −375.00% No

100 4a 1924.6 922.14 12219.9 306.9 −534.93% Yes

100 5a 8356.8 1972.39 19056.7 656.78 −128.04% No

100 10a 75034.8 2819.32 58992.6 938.71 21.38% Yes

100 15a 122892.7 3193.84 76239.6 1063.82 37.96% Yes

100 20a 174981.6 4392.01 107619 1463.61 38.50% Yes

Table 4. Statistical analysis with paired sample for k ∈ {3, 4}.

Measures k = 3 k = 4

Normality 1.63% 6.34%

p − valuet−test 19.01% 31.39%

p − valuewilcox−test 47.58% 54.84%

μMA − μV NS 3359.92 3509.21

σMA,V NS 13840.88 26436.14

null hypothesis. The t-test assumes that the data are normally distributed. The
Shapiro-Wilk test verifies this condition. The results of the column “Avg. Sol.”
with k = 3 do not satisfy the normality assumption; therefore, the Wilcoxon test
was used. For k = 4, the t-test can be used.

Table 5 shows the obtained results using the proposed VNS algorithm for
solving MDMWNPP to k ∈ {5, 6}, i.e., the Multidimensional Five-way and
Six-way Multidimensional Number Partitioning Problems, considering the same
instances used to solve the cases in which k ∈ {3, 4}. The results were obtained
considering ten executions for each instance with maximum computational time
equal to 1800 s. It is important to highlight that the cases for k ∈ {5, 6} have not
been solved previously in any other article, at least according to the knowledge
of the authors of the current article.
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Table 5. Results for k ∈ {5, 6} with Algorithm 8

VNS k = 5 k = 6

Instance Avg. sol Avg. time Avg. sol Avg. time

50 2a 194.77 1799.31 374.48 1799.7

50 3a 1498.14 1799.96 3073.79 1799.93

50 4a 6678.27 1799.95 9607.94 1799.93

50 5a 11388.1 1799.92 17682.3 1799.93

50 10a 66263.7 1799.49 76327.7 1799.56

50 15a 93023.4 1799.62 93350.7 1799.71

50 20a 113159 1799.58 131340 1799.83

100 2a 618.52 1799.49 393.75 1799.78

100 3a 1229.68 1799.77 2988.6 1799.87

100 4a 11480.8 1799.86 18304.9 1799.77

100 5a 23440.7 1799.45 27570.8 1799.74

100 10a 63401.4 1799.94 76073.5 1799.82

100 15a 98647.3 1799.89 106270 1799.85

100 20a 127963 1799.99 125540 1799.9

5 Conclusion

This article presents a proposal to adapt the VNS metaheuristic to the solution of
the Multidimensional Multi-Way Number Partitioning Problem (MDMWNPP).
This problem is a generalization of the classical Number Partition Problem
(NPP), in which it is assumed that each element of the sequence is a vector
and, in addition, k-partitions of the sequence are performed, for k ≥ 2. Despite
this attractive and challenging formulation, this problem remains little studied
in the literature. For the purposes of validation of the obtained results, a compar-
ison is made with the only algorithm found in the literature proposed directly
to solve the addressed problem, according to the knowledge of the authors of
the current article. The proposed VNS algorithm, shown in Algorithm8, was
tested using the same instances used in [20], in which MDMWNPP is solved
using Memetic Algorithm. The results are satisfactory as to the quality of the
proposed VNS by comparing only the averages and the gap() between the results
of the two algorithms, according to Tables 2 and 3. In the statistical analysis, it
is not possible to conclude that there is a significant difference between the VNS
and the MA in the instances with k ∈ {3, 4}.

Specific difficulties were found to support better statistical analysis, such as
the low number of executions, and the fact that instances used in this work
are dependent on one another. As future work, we intend to apply the VNS
metaheuristic combined with mathematical programming formulations for the
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solution of MDMWNPP, using, as a test basis, a new group of uniformly dis-
tributed generated instances.
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Abstract. The well-known Vehicle Routing-Allocation Problem
(VRAP) receives recently more attention than the classical routing prob-
lems. This article deals with a special case of the VRAP named the multi-
vehicle multi-Covering Tour Problem (mm-CTP-p). More precisely, the
mm-CTP-p is a generalized variant of the multi-vehicle Covering Tour
Problem (m-CTP-p). In both problems, the objective is to find a mini-
mum length set of vehicle routes while satisfying the total demands by
visiting vertices by the route or covering vertices which does not included
in any route. But, in the m-CTP-p, the demand of a vertex can be sat-
isfied with only one coverage whereas in the mm-CTP-p, a vertex must
be covered several times to be completely served. Indeed, a vertex is
covered if it lies within a specified distance of at least one vertex of a
route. We develop a General Variable Neighborhood Search algorithm
(GVNS) with a mixed Variable Neighborhood Descent (mixed-VND)
method to solve the problem. Experiments were conducted using bench-
mark instances from the literature. Extensive computational results on
mm-CTP-p problems show the performance of our method.

Keywords: Vehicle Routing-Allocation Problems · multi-Covering ·
Local search · Variable Neighborhood Descent

1 Introduction

Since 1980, several researchers investigate in the area of transportation due to its
economics and social importance in our life. The vehicle routing problem (VRP)
is a central problem in the family of routing problems. It is a NP-hard problem
since it is not easy to find the optimal solution especially for large size prob-
lems [7]. The main objective is to find the optimal set of routes that satisfies the
demand of all customers such that each route begins and ends at the same depot
and the routing cost is minimized. However, in many real world routing problems,
we do not need to visit all the customers or more precisely we cannot reach all the
c© Springer Nature Switzerland AG 2019
A. Sifaleras et al. (Eds.): ICVNS 2018, LNCS 11328, pp. 259–273, 2019.
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customers because of some constraints which can prevent the vehicles from serv-
ing them. This particularity in routing problems represents an interesting area of
study. The assumption of letting unvisited or isolated customers was considered
by [1] while they introduce the Vehicle Routing-Allocation Problems (VRAP).
Two concepts are provided: the covered vertices and the covering distance. The
first represents unvisited customers which their demands should be allocated to
a visited one on the vehicle route and the second measures the travel distance
between a covered vertex and a visited one. The covering tour problem (CTP) is
a special case of the VRAP where a subset of vertices must be visited and cover-
ing constraints must be respected. In other word, the objective of the CTP is to
determine the shortest Hamiltonian cycle using a set of optional locations such
that every vertex in the unreachable locations is within a predefined distance
from the cycle. In this work we consider a particular case of the m-CTP called
the m-CTP-p in which the number of vertices on a route (excluding the depot) is
less than a given value p. More precisely we deal with a generalized variant of the
m-CTP-p named the multi-vehicle multi-Covering Tour Problem (mm-CTP-p)
where multiple covering is necessary. In the following we present a description
of the problem and we propose a VNS approach to solve the generalized variant
of the m-CTP-p.

2 Problem Description

The m-CTP-p is defined by [3] as an undirected graph G = (V ∪ W,E), where
V ∪ W is the vertex set and E is the edge set. We consider different kinds
of locations: V, T and W . Let V the set of vertices that can be visited and
W the set of vertices that must be covered with up to m vehicles. T ⊆ V
is the set of vertices that must be visited including the depot where identical
vehicles are located. We consider that each vertex of V has a unit demand
and each vehicle has a capacity p. We note that we do not need to visit all
vertices of V with the exception of the vertices of T to satisfy the demand of
each customer. The demand of each customer could be satisfied in two different
ways: either by visiting the customer along the tour or by covering it. Covered
vertices must be within a predefined distance d from the tour. So, we focus
to find a minimum length set of vehicle routes with respecting the number of
vertices in each route and satisfying the following constraints: (i) each vehicle
route starts and ends at the depot, (ii) each vertex of T belongs to exactly
one route while each vertex of V \T belongs to at most one route, (iii) each
vertex of W must be covered by a route, (iv) the number of vertices on a route
(excluding the depot) is less than a given value p while the constraint on the
length of each route is relaxed. In the VRP families, a routing decision must
be made. As for the VRAP families an additional decision was introduced: “the
allocation decision”. In addition, in some cases, the allocation decision involves
the location decision such in the postal example where the design of good postal
collection routes is related to the allocation and the location decision. In fact,
we need to fix the location of collection points so that each customer should



A General Variable Neighborhood Search with Mixed VND 261

be served by their nearest collection points. Consequently, the VRAP combines
routing, location and allocation decisions. In this paper, we considered only the
routing and allocation decisions. The m-CTP-p was generalized in [9]. They
proposed an extended graph Ḡ based on the original graph as follows: Let Svi

the vertex i from the route Sv belonging to the solution S. In the new graph Ḡ
a copy Svn

of the depot Sv0 was considered. Let Ḡ = (V̄ ∪ W, Ē1 ∪ E2) where
V̄ = V ∪ {Svn

} and V ′ = V̄ \ {Sv0 , Svn
}, Ē1 = E1 ∪ {(Svi

, Svn
), Svi

∈ V ′} and
E2 = {(Svi

, Svj
), Svi

∈ V \ T, Svj
∈ W}. Each customer Wj ∈ W should be

covered at least uj times by visited Svj
vertices of V . The mm-CTP-p is an NP-

hard problem as it is reduced to a m-CTP-p when uj = 1 (see Fig. 1). For each
covered vertex wj ∈ W , uj ∈ [1,min(3, nbj)] where nbj represents the maximal
number of vertices in V which can cover wj .

Fig. 1. An illustrative example of the mm-CTP-p.

Three variants of the mm-CTP-p are introduced in the literature [2]. In the
first one each customer can be visited by the routes at most once. Whereas in the
two other variants, there is the possibility of visiting each customer more than
once. But for the second variant, it is not allowed to revisit the same customer
immediately only if the tour visits another node. In other words, to revisit a
customer Svi

, the tour Sv has to visit another node before it can return to Svi
.

As for the third variant, each customer can be visited several times subsequently
by the route. Similar definitions of the three variants above can be found in [9]
where they reduce the last two variants to the first one by proposing some
appropriate graph transformations. In the new graphs, they add copies coi for
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each node Svi
∈ V \ T where coi = maxwj∈Wi

uj − 1. For the two variants two
graphs are built in a similar way except the length of the new edges that was
defined in a different way. In the second variant, they affect a very large number
to the length of edges whose two endpoints in Ci(Ci = {Svi

, coi}) to prevent from
revisiting the node Svi

. Whereas, in the third variant they allow revisit this node
and the length of edges linking a copy of node Svi

to a node Svk
is set zero. The

VRAP is applied in many real world routing situations. Particularly, when only
the more urgent or profitable requests are served at a given time because of the
unavailability of some resources. For example, such problem emerges in rural
health care when a route is designed for serving the urgent requests and giving
the essential medical care services. In fact, if the demands of some customers
are too large, customers must be served several times not only once in order
to respect the capacity constraint of each vehicle. The VRAP is also applied in
urban areas such as the bus lines where it may be sufficient to some customers
not on the route to be near a visited customer (the nearest stop) on the route.

3 Solution Approach

[3] solved the m-CTP-p with a hybrid method based on the Greedy Randomized
Adaptive Search Procedure (GRASP) and Evolutionary Local Search (ELS). [6]
proposed a VNS meta-heuristic based on Variable Neighborhood Descent (VND)
method that outperforms the GRASP/ELS meta-heuristic. Based on this work,
we propose a promoting solution for a generalized variant of the m-CTP-p.

The Variable Neighborhood Search (VNS) was introduced for the first time
by [8]. During the last twenty years, this method proves its effectiveness and
robustness to solve numerous classes of NP-hard problems. It explores efficiently
different neighborhood structures within a local search routine to prevent the
solution to be trapped in a local minimum. Several routing problems were solved
using the VNS algorithm, interested authors are recommended to see [4,5].

In this section, we present our VNS for solving the mm-CTP-p. A solution S
of our problem is represented by a set of routes, each route is composed by a set
of nodes (customers). We use the following notations to describe our solution:

M : The set of vehicles, M = {v1, ..., vm} where m is the number of the used
vehicles.

S: The set of m routes, S = {S1, ..., Sm}
Sv: The set of N(v) nodes visited by the vehicle v, Sv = {Sv1 , ..., SvN (v)}

where each element Svk
of Sv represent the kth node visited by vehicle v and

N(v) ∈ V̄ .
As already mentioned, the VNS method uses different neighborhood struc-

tures in the local search.
Let Nk, k = 1, ..., kmax be the set of neighborhoods used in our GVNS algo-

rithm and Nk(S) be the neighbors of a solution S via a neighborhood structure
Nk. In the following, we present four neighborhood structures N1, N2, N3, N4

used in our algorithm to obtain S′, a neighbor of a solution S.
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• N1(S) = {S′ : S′ = {S′
1, .., S

′
v, .., S

′
m} and S′

v = Insert(Sv, k, i)∀v ∈ M,k ∈
N(v)}. This neighborhood consists on removing a customer i from a route Sv

and inserting it in a new position k in the same route or into another route
Sv′ This move can change the number and the order of customers in those
routes.

• N2(S) = {S′ : S′ = {S′
1, .., S

′
v, .., S

′
m} and S′

v = Swap(Sv, k, Sv′k′) and S′
v′ =

Swap(Sv′ , k′, Svk)∀v, v′ ∈ M,k ∈ N(v), k′ ∈ N(v′)}. This move consists on
exchanging two customers, from the same route or from different routes. In
this move we change a node at position k by a new node i in the route Sv.

• N3(S) = {S′ : S′ = {S′
1, .., S

′
v, .., S

′
m} and S′

v = Drop(Sv, k)∀v ∈ M,k ∈
N(v)}. In this neighborhood structures we select a route Sv from the solution
S and select a customer at position k from this route. Then, a new route S′

v

is obtained by removing the selected node from Sv.
• N4(S) = {S′ : S′ = {S′

1, .., S
′
v, .., S

′
m} and S′

v = Insert(Drop(Sv, k), k, i)∀v ∈
M,k ∈ N(v), i ∈ V \N(v)}. This move consists on replacing a customer in a
route Sv by another node which does not belong to the solution.

The main steps of our VNS algorithm for solving the mm-CTP-p are given in
Algorithm 1. First, we determine the stopping criteria and the maximum number
of neighborhood structures. Second, we generate initial feasible solution. Then,
we aim to improve this solution based on three phases: Shaking, Local search
and Move or Not. In the shaking phase, we perturb the solution by using the
neighborhood structure N4. In Local search phase, we propose a mixed-VND for
each visited vertex. We note that before applying some swap move in order to
improve the solution we must check if the selected vertex i from the set of visited
vertices I represents a redundant visited node or not. If that is the case, we use
the neighborhood structure N3 to drop it from the solution and we continue
with the next node from the set I. Finally, in the last phase we decide to move
or not.

4 Computational Results

The work of [3] is based on benchmark instances KroA100,KroB100,KroC100
and KroD100 from TSPLIB to build instances for m-CTP-p. Let nbtotal =
| V | + | W |= 100 vertices and the tests are run for | V |= �0.25nbtotal�,
�0.5nbtotal�, | T |= 1 and �0.20n� where W is composed of remaining vertices
(| W |= 100− | V |) Large instances were generated in the same way using
KroA200 and KroB200 of TSPLIB with | nbtotal |= 200. This set of instances
was used later by [9] to generate instances for the mm-CTP-p. As a result, we have
92 instances, where each one is labeled as follows:X− | T | − | V | − | W | − | p |,
X represents the name of TSPLIB instance and the values taken by V,W and T
are explained above while the value of p is set to {4, 5, 6, 8}.



264 M. Kammoun et al.

Algorithm 1. GVNS for the mm-CTP-p
1: Initialize : max number of iteration itermax = 1000 and the number of neighbor-

hood structures kmax = 1 ;
2: Let I be the set of vertices in an initial solution S ;

3: Insert randomly the vertices from T in I ;

4: repeat
5: select randomly a vertex i from V to cover a maximum number of vertices in

V ∪ W ;

6: Insert i in I ;

7: until all vertices of W will be covered ;
8: iter=1 ;

9: Begin
10: while (iter ≤ itermax) do

11: k=1 ;

12: repeat
13: Remove randomly f vertices from I \ T ; /* Shaking phase*/

14: repeat
15: Insert randomly a vertex from V \ I that maximizes the number of covered

vertices in V ∪ W ;

16: until a feasible solution S′ ∈ N4(S) is reached ;

17: repeat

18: Let R = V \ I the remaining set of vertices ; /* Local search phase*/
19: Select i ∈ I ;
20: Let Ji ⊂ R ;

21: for j ∈ Ji do

22: Swap move between i and j to get S”;

23: Let Nl, l = 1, . . . , lmax;
24: l=1;
25: repeat

26: Find the best neighbor S1 ∈ Nl(S”) ;
27: if f(S1) < f(S”) then

28: S” ← S1 ;

29: l=1;

30: else
31: l= l + 1;
32: end if

33: until l = lmax ;
34: if f(S1) < f(S′) then
35: S′ ← S1 ;
36: Update I ;

37: Go to line 18 ;
38: end if

39: end for
40: until No possible improvement ;

41: if f(S1) < f(S) then

42: S ← S1 ; /* Move or Not phase*/
43: k= 1 ;

44: else

45: k= k + 1;

46: end if

47: until k = kmax ;

48: iter = iter + 1 ;

49: end while;

50: End ;
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The algorithm described in the previous section was coded in C++ pro-
gramming language and is run on a computer with an Intel Core i 5-4200U and
2.3 Ghz processor and 6 GB memory.

In this section, a computational study is performed to evaluate the perfor-
mance of our algorithm compared with the best and the average known solutions.
Tables 1 and 2 summarize the results of two meta-heuristics from the literature,
namely GA-VLG and GRASP-ELS, developed by [9] and our proposed method
for the mm-CTP-p. The column headings are as follows: Data is the name of
instance, Best and Avg. columns presents the best and the average cost of the
solution over 10 runs respectively. The column Time is the total running time
in seconds and the column GapUB shows the deviation between the value of the
solution given by the meta-heuristics developed in the literature and the value
obtained by our proposed approach.

To evaluate the performance of our methods we calculate the GapUB between
each meta-heuristic from the literature and our proposed algorithm.

Let Meta be the solution value given by a meta-heuristic and UB be the
solution value of our algorithm, the percentage deviation (GapUB) is computed
as follows:

GapUB = 100.
Meta − UB

UB
(1)

It is worthy to mention that the GVNS is run 10 times for each instance
to better observe their variance. In Tables 1 and 2, three criteria are used to
evaluate the quality of the solution provided by our GVNS algorithm: the best
cost solution (column Best) over 10 runs, the average solution (Column Avg.)
over 10 runs and the total running time in seconds of 10 runs (column Time).

Table 2 detailed the variance of solution costs of each instance over 10 runs.
Based on this results we investigate the stability of our GVNS algorithm and
compared with GRASP-ELS and GA-VLG meta-heuristics. Table 3 summa-
rizes this result where the column headings are as follows: SameCost col-
umn presents the number of problem instances that an algorithm (GVNS or
GRASP-ELS or GA-VLG) has better variance than the others while they pro-
vide the same best cost. A comparison between our GVNS and GRASP-ELS is
presented where GVNSBetter and GRASP − ELSBetter columns are the
same as SameCost column, GVNS provides better solutions than GRASP-
ELS does or vice versa, respectively. Also in the same way, we compare the
variance of our GVNS algorithm with the GA-VLG algorithm where each of
them has better best cost than the other does( Columns GVNSBetter and
GA − VLGBetter).

Table 3 show that our GVNS method has 16 times better (smaller) variance
than GRASP-ELS and 6 times better variance than GA-VLG and 5 times better
variance than both of them where this three methods (GVNS, GRASP-ELS, GA-
VLG) provide the same best cost. It is clear from this table that, when this three
methods achieve the same best cost, our GVNS algorithm is much more stable
especially more than GRASP-ELS. Our GVNS algorithm find better solution
cost and variance than GRASP-ELS in six instances. The GVNS achieve smaller
variance than the GA-VLG in only one instance where the GA-VLG has better
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Table 1. Comparaison of best cost solution on mm-CTP-p

Data GVNS GRASP-ELS GA-VLG

Best Best GapUB Best GapUB

A1-1-25-75-4-250 17774 17774 0 17774 0

A1-1-25-75-5-250 15793 15793 0 15793 0

A1-1-25-75-6-250 14628 14628 0 14628 0

A1-1-25-75-8-250 12590 12590 0 12590 0

A1-1-50-50-4-250 21473 21473 0 21473 0

A1-1-50-50-5-250 18680 18680 0 18680 0

A1-1-50-50-6-250 17481 17481 0 17481 0

A1-1-50-50-8-250 14380 14380 0 14380 0

A1-10-50-50-4-250 25340 25340 0 25340 0

A1-10-50-50-5-250 21712 21712 0 21712 0

A1-10-50-50-6-250 20125 20125 0 20125 0

A1-10-50-50-8-250 17603 17603 0 17603 0

A1-5-25-75-4-250 13082 13082 0 13082 0

A1-5-25-75-5-250 11969 11969 0 11969 0

A1-5-25-75-6-250 11746 11746 0 11746 0

A1-5-25-75-8-250 9081 9081 0 9081 0

A2-1-100-100-4-250 25026 25051 0.099 25026 0

A2-1-100-100-5-250 21626 21626 0 21626 0

A2-1-100-100-6-250 19108 19119 0.057 19108 0

A2-1-100-100-8-250 16209 16226 0.104 16209 0

A2-1-50-150-4-250 23601 23601 0 23601 0

A2-1-50-150-5-250 20439 20439 0 20439 0

A2-1-50-150-6-250 18410 18410 0 18410 0

A2-1-50-150-8-250 15502 15565 0.406 15502 0

A2-10-50-150-4-250 25702 25702 0 25702 0

A2-10-50-150-5-250 21503 21503 0 21503 0

A2-10-50-150-6-250 20250 20250 0 20250 0

A2-10-50-150-8-250 16676 16676 0 16676 0

A2-20-100-100-4-250 38074 38074 0 38074 0

A2-20-100-100-5-250 32583 32646 0.193 32583 0

A2-20-100-100-6-250 28490 28490 0 28490 0

A2-20-100-100-8-250 24593 24615 0.089 24593 0

B1-1-25-75-4-250 17417 17417 0 17417 0

B1-1-25-75-5-250 15891 15891 0 15891 0

B1-1-25-75-6-250 14260 14260 0 14260 0

(continued)
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Table 1. (continued)

Data GVNS GRASP-ELS GA-VLG

Best Best GapUB Best GapUB

B1-1-25-75-8-250 11538 11538 0 11538 0

B1-1-50-50-4-250 19966 19966 0 19966 0

B1-1-50-50-5-250 17113 17113 0 17113 0

B1-1-50-50-6-250 15989 15989 0 15989 0

B1-1-50-50-8-250 14027 14027 0 14027 0

B1-10-50-50-4-250 20075 20075 0 20075 0

B1-10-50-50-5-250 17986 17986 0 17986 0

B1-10-50-50-6-250 15924 15924 0 15924 0

B1-10-50-50-8-250 13672 13672 0 13672 0

B1-5-25-75-4-250 17079 17079 0 17079 0

B1-5-25-75-5-250 15110 15110 0 15110 0

B1-5-25-75-6-250 14707 14707 0 14707 0

B1-5-25-75-8-250 11319 11319 0 11319 0

B2-1-100-100-4-250 40974 40974 0 40974 0

B2-1-100-100-5-250 34848 34848 0 34848 0

B2-1-100-100-6-250 30849 30829 −0.064 30849 0

B2-1-100-100-8-250 25804 25804 0 25804 0

B2-1-50-150-4-250 23288 23288 0 23288 0

B2-1-50-150-5-250 20039 20039 0 20039 0

B2-1-50-150-6-250 18046 18046 0 18046 0

B2-1-50-150-8-250 15668 15668 0 15668 0

B2-10-50-150-4-250 25967 25967 0 25967 0

B2-10-50-150-5-250 22359 22359 0 22359 0

B2-10-50-150-6-250 19792 19792 0 19792 0

B2-10-50-150-8-250 17106 17106 0 17106 0

B2-20-100-100-4-250 53590 53590 0 53590 0

B2-20-100-100-5-250 45209 45209 0 45209 0

B2-20-100-100-6-250 39184 39184 0 39184 0

B2-20-100-100-8-250 32513 32513 0 32512 −0.003

C1-1-25-75-4-250 13012 13012 0 13012 0

C1-1-25-75-5-250 11666 11666 0 11666 0

C1-1-25-75-6-250 9820 9820 0 9820 0

C1-1-25-75-8-250 9818 9818 0 9818 0

C1-1-50-50-4-250 20294 20294 0 20294 0

C1-1-50-50-5-250 17378 17378 0 17378 0

(continued)
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Table 1. (continued)

Data GVNS GRASP-ELS GA-VLG

Best Best GapUB Best GapUB

C1-1-50-50-6-250 16365 16365 0 16365 0

C1-1-50-50-8-250 13900 13900 0 13900 0

C1-10-50-50-4-250 26931 26931 0 26931 0

C1-10-50-50-5-250 23544 23544 0 23544 0

C1-10-50-50-6-250 20818 20818 0 20818 0

C1-10-50-50-8-250 18154 18154 0 18154 0

C1-5-25-75-4-250 13738 13738 0 13738 0

C1-5-25-75-5-250 13575 13575 0 13575 0

C1-5-25-75-6-250 10826 10826 0 10826 0

C1-5-25-75-8-250 10556 10556 0 10556 0

D1-1-25-75-4-250 18127 18127 0 18127 0

D1-1-25-75-5-250 15972 15972 0 15972 0

D1-1-25-75-6-250 14532 14532 0 14532 0

D1-1-25-75-8-250 12700 12700 0 12700 0

D1-1-50-50-4-250 23275 23275 0 23275 0

D1-1-50-50-5-250 20402 20402 0 20402 0

D1-1-50-50-6-250 18072 18072 0 18072 0

D1-1-50-50-8-250 14930 14930 0 14930 0

D1-10-50-50-4-250 30390 30390 0 30390 0

D1-10-50-50-5-250 26284 26284 0 26284 0

D1-10-50-50-6-250 23646 23646 0 23646 0

D1-10-50-50-8-250 19986 19986 0 19986 0

D1-5-25-75-4-250 18464 18464 0 18464 0

D1-5-25-75-5-250 15767 15767 0 15767 0

D1-5-25-75-6-250 14851 14851 0 14851 0

D1-5-25-75-8-250 12705 12705 0 12705 0

solution cost. We note that our method is faster than the other for almost all
instances but it need a more time when | V |= 100. Finally, the obtained results
show that the GVNS performs better than the other meta-heuristics according
to the different criteria on the mm-CTP-p. We observe also that our GVNS gives
better solutions with smaller running time for almost all instances.
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Table 3. Stability of our GVNS algorithm

Methods Criteria

Same cost GVNS/GRASP-ELS GVNS/GA-VLG

GVNS GRASP-ELS GVNS GA-VLG

Better Better Better Better

GVNS GRASP-ELS 16 6 1 0 1

GA-VLG 6

GRASP-ELS and GA-VLG 5

GRASP-ELS GVNS 0 0 0 - -

GA-VLG 4

GVNS and GA-VLG 0

GA-VLG GVNS 1 - - 0 0

GRASP-ELS 13

GVNS and GRASP-ELS 1

5 Conclusions

In this paper, we solve a generalized variant of the well-know multi-Vehicle Cov-
ering Tour Problem (m-CTP-p) called the multi-vehicle multi-Covering Tour
Problem (mm-CTP-p) where some customers must be covered multiple times.
We develop a GVNS algorithm to solve this variant. Our proposed approach
solved small and large size instances and improved best known solutions. In
addition, our results show that our algorithm provides better solutions than
that of [9] in all solved instances in term of time.
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Abstract. In this paper a Permutation Flowshop Scheduling Problem
is solved using a hybridization of the Firefly algorithm with Variable
Neighborhood Search algorithm. The Permutation Flowshop Scheduling
Problem (PFSP) is one of the most computationally complex problems.
It belongs to the class of combinatorial optimization problems charac-
terized as NP-hard. In order to find high quality solutions in reason-
able computational time, heuristic and metaheuristic algorithms have
been used for solving the problem. The proposed method, Hybrid Firefly
Variable Neighborhood Search algorithm, uses in the local search phase
of the algorithm a number of local search algorithms, 1-0 relocate, 1-1
exchange and 2-opt. In order to test the effectiveness and efficiency of
the proposed method we used a set of benchmark instances of different
sizes from the literature.

Keywords: Permutation Flowshop Scheduling Problem ·
Firefly algorithm · Variable Neighborhood Search

1 Introduction

The flowshop scheduling problem was proposed by Johnson [6] and it is a widely
studied scheduling problem. In this problem, there is a set of jobs (task or items)
that must be processed from a set of machines in the same order. All jobs are
independent and must start their process from the same starting machine. The
machines are constantly available. The purpose of the process is to find the
sequence for the processing of the jobs in the machines in order to optimize
a given criterion. In the literature, the most frequently used criterion is the
minimization of the maximum completion time (makespan) [6].

The Firefly Algorithm (FA), proposed by Yang [24], is a nature inspired
algorithm and it depends on the glowing behavior of fireflies. Each firefly has
c© Springer Nature Switzerland AG 2019
A. Sifaleras et al. (Eds.): ICVNS 2018, LNCS 11328, pp. 274–286, 2019.
https://doi.org/10.1007/978-3-030-15843-9_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-15843-9_21&domain=pdf
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brightness and attracts other fireflies in a predefined way. Each firefly is attracted
by the one firefly which is the brightest of all in a specific neighborhood. It is
obvious from the available literature that FA can be well applied to various
different optimization fields and problems. Moreover, FA is an algorithm that
has been used by many scientists so far [10].

The goal of the research presented in this paper is to solve the Permutation
Flowshop Scheduling Problem using a hybrid Firefly - Variable Neighborhood
Search algorithm (HFVNS). Three local search algorithms are incorporated in
the VNS algorithm, the 1-0 relocate, 2-opt, 1-1 exchange. In order to test the effi-
ciency of the algorithm we test the algorithm in 120 classic benchmark instances
from the literature. Also, for comparison reasons and in order to see how each of
the local search contributes in the effectiveness of the algorithm we use two differ-
ent versions of VNS as it will be described later and we test the firefly algorithm
using each one of the local search algorithms used in the VNS scheme indepen-
dently. Thus, we compared, using the same number of function evaluations and
the same parameters, five different versions of the hybrid firefly algorithm, three
of them using in the local search phase only one local search algorithm and the
other two using two different versions of VNS.

The structure of the paper is as follows. In Sect. 2 the Permutation Flowshop
Scheduling Problem is presented and the formulation of the problem is given.
In Sect. 3 a sort description of the classic firefly algorithm is given while in
Sect. 4 the proposed algorithm is presented and analyzed in detail. In Sect. 5 the
computational results of the algorithm are presented and analyzed, finally, in
the last section some conclusions are presented and future directions based on
this research are given.

2 Permutation Flowshop Scheduling Problem

The Permutation Flowshop Scheduling Problem (PFSP) consists of n jobs and
m machines. Each job is processing in all machines with the same order. The jobs
and the machines match one by one. Moreover, each job cannot be terminated
or interrupted before the predefined termination time. No jobs depend on other
jobs and are ready to start the process at the predefined time zero. The set up
times can be omitted. The machines are all the time available. The aim is to find
a sequence for the processing of the jobs in the machines in order to optimize
one given criterion, usually the minimization of the maximum completion time
(makespan).

In the permutation flowshop scheduling problem (PFSP) [14,17], solutions
are represented by the permutation of n jobs, i.e., π = {π1, π2, ..., πn}. Each job
is composed of m operations, and every operation is performed by a different
machine. Thus, given the processing time pjk for the job j on the machine k
(these times are fixed, known in advance and non-negative), the PFSP is to find
the best permutation of jobs π∗ = π∗

1 , π
∗
2 , ..., π

∗
n to be processed on each machine

subject to the makespan criterion. Let C(πj ,m) denote the completion time of
the job πj on the machine m. Then, given the job permutation π, the completion
time for the n-job, m-machine problem is calculated as follows:
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C(π1, 1) = pπ1,1 (1)
C(πj , 1) = C(πj−1, 1) + pπj ,1, j = 2, ..., n (2)
C(π1, k) = C(π1, k − 1) + pπ1,k, k = 2, ...,m (3)
C(πj , k) = max{C(πj−1, k), C(πj , k − 1) + pπj ,k},

j = 2, ..., n, k = 2, ...,m (4)

So, the makespan of a permutation π can be formally defined as the comple-
tion time of the last job πn on the last machine m, i.e.:

Cmax(π) = C(πn,m). (5)

Therefore, the PFSP with the makespan criterion is to find the optimal per-
mutation π∗ in the set of all permutations Π such that:

Cmax(π∗) ≤ C(πn,m) for each permutation π belonging to Π. (6)

The computational complexity of the PFSP has been proved to be NP-hard
by [3]. Due to this fact, the solution procedure for the PFSP is often either
heuristic or metaheuristic. A number of heuristic and metaheuristic algorithms
have been developed in the past for this problem:

– Iterated Greedy Algorithm [19]
– Hybrid Genetic Algorithms [1,18,22,23,27]
– Tabu Search [4,12]
– Differential Evolution [14]
– Hybrid Particle Swarm Optimization [7,8,11,25,26]
– Ant Colony Optimization Algorithms [2,15,16]
– Hybrid Artificial Bee Colony Algorithm [9].

3 Classic Firefly Algorithm

The basic form of the Firefly Algorithm was proposed by Yang [24]. It simulates
the mating process based on the glow of each firefly. It is a metaheuristic nature
inspired algorithm. It follows the same principle as algorithms like the Particle
Swarm Optimization Algorithm. In nature there are about 2000 species of fireflies
and most of them produce a short and rhythmic glow. This glow is produced
after a bioluminescence process and serves as a mean of communicating between
fireflies for mating and warning in case of an imminent danger. Bioluminescence
is characterized by a specific generation of light at various wavelengths emitted
by various living organisms, often called incorrectly phosphorescence [24]. There
are three basic features in order to develop and describe the algorithm:

1. Fireflies are attracted to each other regardless of the gender which means
that no mutant operator is required.
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2. The sharing of information between fireflies is proportional to their attrac-
tiveness, more specifically, is proportional to their distance, so the closer the
two fireflies are, the more likely it is to mate with each other. If there is no
firefly that is brighter than the firefly we are testing, then, the firefly moves
randomly in the space.

3. The value of the objective function depends on the glow of each firefly (firefly
is the solution of the problem). In case of maximization (minimization) prob-
lems, the brighter the firefly is, the higher (lower) is the value of the objective
function [13].

There are two important parameters in the firefly algorithm: Changing the
glow of the firefly and formulating the attractiveness. However, for convenience
we can assume that the attractiveness of a firefly is proportional to the intensity
of the light that is emitted to the other fireflies, so it depends on the value of
the objective function. Glow I is proportional to the objective function f at point
x with I(x) ∝ f(x). The brightness varies and is inversely proportional to the
distance between the two fireflies and is equal to:

I =
Is

d2
(7)

where Is is the glow at the source and d is the distance between the two fireflies
and is symbolized as rij = d(xi, xj). The glow is given by the equation:

I = I0e
−γrij (8)

where I0 is the initial glow and γ is the stable parameter indicating the
absorbance of the glow. The rij is the Euclidean distance between the two fireflies
and is given by the equation:

rij =
√

(xi − xj)2 + (yi − yj)2 (9)

The attractiveness β of the firefly is proportional to the light intensity and
is equal to:

β = β0e
−γr2

ij (10)

where β0 is the attractiveness when d = 0. One of the basic factors of the
algorithm is the movement of each firefly. The movement of a firefly i located at
position xi and attracted by another firefly j which shines more than i and is at
position xj is determined by the equation:

xi(t + 1) = xi(t) + β0e
−γr2

ij (xj(t) − xi(t)) + αεi (11)

The first term is the current position of the firefly while the second term
shows the intensity with which a firefly will see a glower firefly located in the
near area and the third term is the random movement that a firefly makes when
there are no brighter fireflies than it in the near area. The variable α is a random
number. As γ approaches zero, the glow β = β0 is stable and does not depend
from the distance. As γ increases the attractiveness of each firefly decreases
which means that no firefly can see the others and all of them move randomly
in the area [13,20].
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4 Hybrid Firefly Variable Neighborhood Search
Algorithm

4.1 General Structure of the Algorithm

In the proposed algorithm we use a hybridization of the firefly algorithm with
a Variable Neighborhood Search algorithm. Initially we used the classic firefly
algorithm in the way that it was proposed by Yang [24] and it is described in
the previous section of this research. However, as the problem is a combinatorial
optimization problem and we have to transform each of the solutions from the
continuous space in order to apply the main equation of the firefly algorithm to
discrete space and vice versa it was observed that the differences in the solutions
from the one iteration to the other were very small due to the movement equation
of the fireflies which lead to a fast convergence to a not a very good solution.
Thus, we have tried a number of different equations for the movement equation
of the fireflies and we concluded that the most effective equation for the current
problem is the one given in the following:

xi(t + 1) = rand xi(t) + β0e
−γr2

ij (xj(t) − xi(t)) + αεi (12)

A pseudocode of the whole procedure is presented in the following:

Initialization
Select the number of fireflies
Generate the initial solution in discrete space
Evaluate the fitness function of each firefly
Apply Variable Neighborhood Search in each firefly
Keep Best solution
Main Phase
Do until the maximum number of iterations has not been reached:

Calculate the distance between two fireflies
Calculate each firefly’s glow
Decide whether the firefly is going to make the move
Evaluate the new makespan for each solution
Apply variable neighborhood search in each new solution
Update the best solution for each firefly
if a new best solution is found then

Update the best firefly
endif

Enddo
Return the best firefly (the best solution).

4.2 Variable Neighborhood Search

A Variable Neighborhood Search (VNS) [5] algorithm is applied in order to
optimize the particles. The basic idea of the method is the successive search in
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a number of neighborhoods of a solution. In VNS, with the term neighborhood
it is meant different number of local search algorithms. The search is applied
either with random or with a more systematical manner in order the solution
to escape from a local minimum. This method takes advantage of the fact that
different local search algorithms will lead to different local minimums [11].

The local search algorithms that are incorporated into the VNS scheme are
the 1-0 relocate, 1-1 exchange and 2-opt. In all algorithms the choice of the job
that it will be relocated (1-0 relocate) or the two jobs that they will be exchanged
(1-1 exchange) or the two jobs that all the jobs between them will be reversed
(2-opt) are selected randomly.

In this paper two different versions of local search were applied. The first one
is a sequential VNS where each local search algorithm is run for a number of
predefined numbers and, then, another local search is selected until all (three)
local search algorithms are selected and run for the predefined number of itera-
tions. The other one is a parallel VNS where in each iteration a step from each
one of the local search algorithms is realized and the one, that better improves
the solution is selected. If none of the local search algorithms find a better solu-
tion we proceed with the current solution and the selection of the moves for any
local search algorithm is performed randomly in the iteration different moves
are selected.

5 Computational Results

The algorithm was tested on the 120 benchmark instances of Taillard [21]. In
these instances, there are different sets having 20, 50, 100, 200 and 500 jobs and
5, 10 or 20 machines. There are 10 problems inside every size set. In total there
are 12 sets and these are: 20 × 5 (i.e. 20 jobs and 5 machines), 20 × 10, 20 ×
20, 50 × 5, 50 × 10, 50 × 20, 100 × 5, 100 × 10, 100 × 20, 200 × 10, 200 × 20
and 500 × 20.

The parameters of the proposed algorithm are selected after thorough testing.
A number of different alternative values were tested and the ones selected are
those that gave the best computational results concerning both the quality of
the solution and the computational time needed to achieve this solution. The
efficiency of the HFVNS algorithm is measured by the quality of the produced
solutions. The quality is given in terms of the relative deviation from the best
known solution, that is ω = (cHFV NS−cBKS)

cBKS
%, where cHFV NS denotes the cost

of the solution found by HFVNS and cBKS is the cost of the best known solution.
In Table 1, the results for the 120 Taillard benchmark instances are presented.

More specifically, in this table the best known results from the literature (BKS),
the best results produced from HFVNS (BS) (the parallel version of VNS) and
the quality (ω) for each of the 120 instances are presented. As it can be seen,
the algorithm finds very satisfactory results as it finds solutions with quality
less than 1% from the BKS in 19 instances and solutions with quality between
1% and 5% from the BKS in 50 instances. The instances can be divided in 5
different categories based on the number of jobs. The first category contains the
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Table 1. Results of HFVNS in Taillard benchmark instances for the PFSP

Problem BKS BS ω Problem BKS BS ω Problem BKS BS ω

20 × 5 1278 1284 0.47 50 × 10 2991 3182 6.39 100 × 20 6202 6799 9.63

20 × 5 1359 1360 0.07 50 × 10 2867 3059 6.70 100 × 20 6183 6774 9.56

20 × 5 1081 1098 1.57 50 × 10 2839 3040 7.08 100 × 20 6271 6850 9.23

20 × 5 1293 1309 1.24 50 × 10 3063 3222 5.19 100 × 20 6269 6792 8.34

20 × 5 1235 1243 0.65 50 × 10 2976 3165 6.35 100 × 20 6314 6881 8.98

20 × 5 1195 1200 0.42 50 × 10 3006 3162 5.19 100 × 20 6364 6949 9.19

20 × 5 1239 1249 0.81 50 × 10 3093 3257 5.30 100 × 20 6268 6909 10.23

20 × 5 1206 1213 0.58 50 × 10 3037 3179 4.68 100 × 20 6401 7037 9.94

20 × 5 1230 1255 2.03 50 × 10 2897 3069 5.94 100 × 20 6275 6851 9.18

20 × 5 1108 1121 1.17 50 × 10 3065 3244 5.84 100 × 20 6434 6905 7.32

20 × 10 1582 1586 0.25 50 × 20 3850 4091 6.26 200 × 10 10862 11162 2.76

20 × 10 1659 1694 2.11 50 × 20 3704 3997 7.91 200 × 10 10480 10992 4.89

20 × 10 1496 1525 1.67 50 × 20 3640 3905 7.28 200 × 10 10922 11287 3.34

20 × 10 1377 1401 1.74 50 × 20 3720 4005 7.66 200 × 10 10889 11143 2.33

20 × 10 1419 1455 2.54 50 × 20 3610 3904 8.14 200 × 10 10524 10957 4.11

20 × 10 1397 1424 1.93 50 × 20 3681 3953 7.39 200 × 10 10329 10802 4.58

20 × 10 1484 1508 1.62 50 × 20 3704 4003 8.07 200 × 10 10854 11249 3.64

20 × 10 1538 1569 1.62 50 × 20 3691 3996 8.26 200 × 10 10730 11176 4.16

20 × 10 1593 1624 1.95 50 × 20 3743 4030 7.67 200 × 10 10438 10906 4.48

20 × 10 1591 1615 1.51 50 × 20 3756 4035 7.43 200 × 10 10675 11125 4.22

20 × 20 2297 2326 1.22 100 × 5 5493 5521 0.51 200 × 20 11195 12243 9.36

20 × 20 2099 2119 0.86 100 × 5 5268 5284 0.30 200 × 20 11203 12387 10.57

20 × 20 2326 2360 1.37 100 × 5 5175 5236 1.18 200 × 20 11281 12389 9.82

20 × 20 2223 2258 1.48 100 × 5 5014 5044 0.60 200 × 20 11275 12365 9.67

20 × 20 2291 2323 1.26 100 × 5 5250 5307 1.09 200 × 20 11259 12279 9.06

20 × 20 2226 2265 1.62 100 × 5 5135 5161 0.51 200 × 20 11176 12280 9.88

20 × 20 2273 2326 2.33 100 × 5 5246 5291 0.86 200 × 20 11360 12469 9.76

20 × 20 2200 2230 1.27 100 × 5 5094 5145 1.00 200 × 20 11334 12399 9.40

20 × 20 2237 2266 1.16 100 × 5 5448 5510 1.14 200 × 20 11192 12333 10.19

20 × 20 2178 2209 1.42 100 × 5 5322 5372 0.94 200 × 20 11288 12363 9.52

50 × 5 2724 2729 0.18 100 × 10 5770 6025 4.42 500 × 20 26059 28174 8.12

50 × 5 2834 2871 1.16 100 × 10 5349 5600 4.69 500 × 20 26520 28648 8.02

50 × 5 2621 2648 1.03 100 × 10 5676 5907 4.07 500 × 20 26371 28446 7.87

50 × 5 2751 2782 1.13 100 × 10 5781 6099 5.50 500 × 20 26456 29126 10.09

50 × 5 2863 2888 0.87 100 × 10 5467 5774 5.62 500 × 20 26334 28415 7.90

50 × 5 2829 2847 0.64 100 × 10 5303 5500 3.71 500 × 20 26477 28522 7.72

50 × 5 2725 2758 1.21 100 × 10 5595 5784 3.38 500 × 20 26389 28210 6.90

50 × 5 2683 2715 1.19 100 × 10 5617 5847 4.09 500 × 20 26560 28615 7.74

50 × 5 2552 2577 0.98 100 × 10 5871 6076 3.49 500 × 20 26005 28242 8.60

50 × 5 2782 2784 0.07 100 × 10 5845 6059 3.66 500 × 20 26457 28384 7.28
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Table 2. Comparisons of the results (average qualities) of HFVNS with the other four
algorithms in Taillard benchmark instances for the PFSP

Problem Firefly +
1-0 relocate

Firefly + 1-1
exchange

Firefly +
2opt

Firefly +
SVNS

Firefly + PVNS
(HFVNS)

20 × 5 1.90 2.66 3.36 2.12 0.90

20 × 10 4.40 5.00 6.03 4.81 1.69

20 × 20 4.06 4.47 5.58 3.86 1.40

50 × 5 2.58 2.58 3.02 2.04 0.85

50 × 10 9.67 10.23 11.28 9.38 5.86

50 × 20 12.22 12.77 13.72 12.24 7.61

100 × 5 2.20 2.22 2.43 1.95 0.81

100 × 10 7.69 7.66 8.42 7.49 4.26

100 × 20 13.48 13.62 14.60 13.35 9.16

200 × 10 6.86 6.73 6.64 6.58 3.85

200 × 20 13.61 13.84 14.28 13.42 9.72

500 × 20 10.56 10.42 10.55 10.22 8.03

instances in which the number of jobs is equal to 20 and the number of machines
varies between 5 to 20. In these instances, the quality of the solution is between
0.07 and 2.53. In the second category, the number of jobs is equal to 50 and
the number of machines varies between 5 to 20. In these instances, the quality
of the solution is between 0.07 and 8.26. In the third category, the number of
jobs is equal to 100 and the number of machines varies between 5 to 20. In these
instances, the quality of the solution is between 0.30 and 10.22. In the fourth
category, the number of jobs is equal to 200 and the number of machines varies
between 10 to 20. In these instances, the quality of the solution is between 2.33
and 10.56. And, finally, in the last category, the number of jobs is equal to 500
and the number of machines is equal to 20. In these instances, the quality of the
solution is between 6.90 and 10.09.

As it has, already, been mentioned the instances can be divided in 12 sets
based on the number of jobs and the number of machines. Thus, in Table 2 for
each of the 12 sets we have averaged the quality of the 10 corresponding instances
that belong to each one of the 12 sets. This is the way that most researchers
that study the Permutation Flowshop Scheduling Problem present their results.
In this Table, except of the results of the proposed algorithm, the results of
the other four algorithms described previously are presented. In this Table in
columns 2 to 4 the results of the firefly algorithm using a single local search (1-0
relocate, 1-1 exchange and 2opt, respectively) are presented, in column 5 the
results of the firefly hybridized with a sequential VNS are given, while in the
last column the results of the proposed algorithm (hybrid firefly with a parallel
VNS - HFVNS) are given.
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Fig. 1. Quality of solutions of the five algorithms for the 1–20 benchmark instances of
Taillard

Fig. 2. Quality of solutions of the five algorithms for the 21–40 benchmark instances
of Taillard

From the results that they are presented in this Table we can see that the
proposed algorithm performs better than the algorithms that use only one local
search algorithm which is expected as the VNS algorithm is a more sophisticated
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Fig. 3. Quality of solutions of the five algorithms for the 41–60 benchmark instances
of Taillard

Fig. 4. Quality of solutions of the five algorithms for the 61–80 benchmark instances
of Taillard

and powerful algorithm. The interesting part of this Table is the large differences
between the qualities produced by the proposed algorithm and the qualities
produced by the hybridization of the firefly algorithm with the sequential VNS
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Fig. 5. Quality of solutions of the five algorithms for the 81–100 benchmark instances
of Taillard

Fig. 6. Quality of solutions of the five algorithms for the 101–120 benchmark instances
of Taillard

algorithm. This is happening because we kept the same number of iterations
and function evaluations for all algorithms and the parallel version of the VNS
produce in this implementation more effective moves from the one local optimum
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to the other than the moves produced by the sequential version of the VNS when
both are hybridized with the firefly algorithm.

In Figs. 1, 2, 3, 4, 5 and 6, the quality for all algorithms in the 120 instances
is presented. We preferred to present the results in 6 different figures and not
in a single one as there are 120 instances and 5 algorithms and thus, the figures
were not very clear. In each figure the results of 20 instances are presented. More
precisely in Fig. 1 the results of the 20 first instances are given, while in Fig. 2
the results of the next 20 instances are given and so on. As it can be seen from
these figures the results of the proposed algorithm are better from all the other
algorithms used in the comparisons.

6 Conclusions

In this paper, a new algorithm based on the Firefly algorithm for the solution of
the Permutation Flowshop Scheduling Problem is presented. This algorithm is
a hybridization of the Firefly algorithm with the Variable Neighborhood Search
algorithm. We compared the algorithm with different local search algorithms
and with another VNS version. The algorithm was tested in 120 benchmark
instances that are usually used in the literature and gave very good results. The
computational results were satisfactory. In the future, this algorithm will be used
for the solution of other NP-hard combinatorial optimization problems.
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Abstract. In this work we examine the impact of three shaking proce-
dures on the performance of a GVNS metaheuristic algorithm for solving
the Asymmetric Travelling Salesman Problem (ATSP). The first shak-
ing procedure is a perturbation method that is commonly used in the
literature as intensified shaking method. The second one is a quantum-
inspired shaking method, while the third one is a shuffle method. The
shaped GVNS schemes are tested with both first and best improvement
and with a time limit of one and two minutes. Experimental analysis
shows that the first two methods perform equivalently and much better
than the shuffle approach, when using the best improvement strategy.
The first method also outperforms the other two when using the first
improvement strategy, while the second method produces results that
are closer to the results of the third in this case.

Keywords: Metaheuristics · VNS · GVNS · Optimization · TSP ·
aTSP · Perturbation comparisons · Performance study

1 Introduction

A whole class of problems of practical importance can be reduced to Combi-
natorial Optimization (CO) problems. In such problems one typically searches
for a solution from a discrete finite set of feasible solutions that achieves the
minimization (or maximization) of a cost function and at the same time satisfies
certain given constraints. One of the most famous CO problems is the Travelling
Salesman Problem (TSP). Solving the TSP amounts to finding the minimum
cost route so that the salesman starts from a specific node and returns to this
node after passing from all other nodes once. The TSP was first expressed math-
ematically by Hamilton and Kirkman [29]. A cycle in a graph is a closed path
beginning and ending at the same node and visiting all other nodes exactly once.
A cycle containing all vertices of a graph is called Hamiltonian. Hence, TSP is
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the problem of finding the shortest Hamiltonian cycle. TSP, which is NP-hard,
features prominently in many fields such as operational research and theoretical
computer science. Practically, TSP seeks the optimal way one can visit all the
cities, return to the starting point, and minimize the cost of the tour.

TSP is usually formulated in terms of a complete graph G = (V,A), where
V = {v1, v2, . . . , vn} is the set of nodes and A = {(vi, vj) : vi, vj ∈ V and vi �=
vj} is the set of the directed edges or arcs. Each arc is associated with a weight
cij representing the cost (or the distance) of moving from node i to node j. If
cij is equal to cji, the TSP is symmetric (sTSP), otherwise it is called asym-
metric (aTSP). The fact that TSP is NP-hard means that there is no known
polynomial-time algorithm for finding an optimal solution regardless of the size
of the problem instance [22]. Therefore, in an effort to improve the computa-
tional time, it is a commonly accepted practice the sacrifice of the optimality of
the solution by adopting heuristic and metaheuristic approaches [15,17,25].

The main contribution of this paper is the thorough investigation of different
perturbation strategies for the GVNS schema and their impact on the quality
of the solutions. We have made a performance analysis and we have concluded
that in fact different shaking methods provide different sets of solutions. Our
performance analysis has specifically focused on the asymmetric TSP. The main
rationale behind our decision is that known solvers such as Concorde are not
designed to solve asymmetric TSP benchmarks. For that reason we have chosen
to make a comprehensive analysis based on aTSP benchmarks.

This paper is organized as follows. Related work is presented in Sect. 2; in
Sect. 3 we introduce the Variable Neighborhood Search procedure, we describe
the shaking strategies we investigate and present the three different GVNS vari-
ations we use for this performance analysis. Section 4 contains the experimental
results of our performance analysis, which are presented in a series of Tables
that demonstrate the performance of each specific implementation. Finally, con-
clusions and ideas for future work are given in Sect. 5.

2 Related Work

Researchers have always tried to solve real world problems using methods and
techniques from CO problems. Recently, a new trend has gained momentum:
researchers have been striving to enhance conventional optimization methods
by introducing principles from unconventional methods of computation in the
hope that they would prove superior to traditional approaches. For example, Dey
et al. [5] proposed several novel techniques which they called quantum inspired
Ant Colony Optimization, quantum inspired Differential Evolution and quantum
inspired Particle Swarm Optimization, respectively, for Multi-level Colour Image
Thresholding. These techniques find optimal threshold values at different levels
of thresholding for colour images.

Variable Neighborhood Search (VNS) based solutions have been applied to
route planning problems. Sze et al. proposed a hybrid adaptive variable neigh-
borhood search algorithm for solving the capacitated vehicle routing problem
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(capacitated VRP) [26]. A two level VNS heuristic has been developed in order
to tackle the clustered VRP by Defryn and Sorensen [4]. In [10] a VNS app-
roach for the solution of the recently introduced Swap-Body VRP is proposed.
Curtin et al. made an extensive comparative study of well known methods and
ready-to-use software and they concluded that no software or classic method
can guarantee an optimal solution to the TSP problems that model GIS prob-
lem with more than 25 nodes [3]. Papalitsas et al. proposed a GVNS approach for
the TSP with Time windows [17] and a quantum inspired GVNS (qGVNS) for
solving the TSP with Time Windows [19]. Furthermore, qGVNS was successfully
applied to the real world routing problem of garbage collectors at [18].

A new quantum inspired Social Evolution algorithm was proposed by
hybridizing a well-known Social Evolution algorithm with an emerging quantum-
inspired evolutionary one. The proposed QSE algorithm was applied to the 0-1
knapsack problem and the performance of the algorithm was compared to var-
ious evolutionary, swarm and quantum inspired evolutionary algorithmic vari-
ants. Pavithr and Gursaran claim that the performance of the QSE algorithm
is better than or at least comparable to the different evolutionary algorithmic
variants it was tested against [21].

Fang et al. proposed a decentralized form of quantum-inspired particle swarm
optimization with a cellular structured population for maintaining population
diversity and balancing global and local search [6]. Zheng et al. conducted an
interesting study by applying a novel Hybrid Quantum Inspired Evolutionary
Algorithm to a permutation flow-shop scheduling problem. They proposed a
simple representation method for the determination of job sequence in the per-
mutation flow-shop scheduling problem based on the probability amplitude of
qubits [32].

Lu et al. designed a quantum inspired space search algorithm in order to
solve numerical optimization problems. In their algorithm, the feasible solution
is decomposed into regions in terms of quantum representation. The search pro-
gresses from one generation to the next, while the quantum bits evolve gradually
to increase the probability of region selection [13]. Wu et al. in [31] proposed a
novel approach using a quantum inspired algorithm based on game-theoretic
principles. In particular, they reduced the problem they studied to choosing
strategies in evolutionary games. Quantum games and their strategies seem very
promising, offering enhanced capabilities over classic ones [7]. Moreover, the pro-
posed method can also be applied to other classes of real world problems, such as
optimization on localization in hospitals, smart cities, as well as smart parking
systems etc.

Tsiropoulou et al. applied RFID technologies to tag-to-tag communication
paradigms in order to achieve improved energy-efficiency and operational effec-
tiveness [27]. Liebig et al. presented a system for trip planning that consolidates
future traffic threats [12]. Specifically, this system measures traffic flow in areas
with low sensor coverage by using a Gaussian Process Regression. Many studies
also deal with the optimization of localization and positioning of doctors and
nurses in hospitals and health care organizations [28,30].
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3 Solution Method

3.1 Variable Neighborhood Search

Variable Neighborhood Search (VNS) is a metaheuristic for solving combina-
torial and global optimization problems, proposed by Mladenovic and Hansen
[8,9,14]. The main idea of this framework is the systematic neighborhood change
in order to achieve an optimal (or a close-to-optimal) solution [16]. VNS and its
extensions have proven their efficiency in solving many combinatorial and global
optimization problems [11].

Each VNS heuristic consists of three parts. The first one is a shaking proce-
dure (diversification phase) used to escape local optimal solutions. The next
one is the neighborhood change move, in which the following neighborhood
structure that will be searched is determined; during this part, an approval
or rejection criterion is also applied on the last solution found. The third part
is the improvement phase (intensification) achieved through the exploration of
neighborhood structures through the application of different local search moves.
Variable Neighborhood Descent (VND) is a method in which the neighborhood
change procedure is performed deterministically. General Variable Neighborhood
Search (GVNS) is a VNS variant where the VND method is used as the improve-
ment procedure. GVNS has been successfully tested in many applications, as
several recent works have demonstrated [23,24].

In this work a GVNS method is applied for solving the ATSP, using the
pipe-VND scheme (keep searching in the same neighborhood as improvements
occur) as its improvement phase.

3.2 Neighborhood Structures

Three local search operators are considered for exploring different solutions:

– 1-0 Relocate. This move removes node i from its current position in the
route and re-inserts it after a selected node b.

– 2-Opt. The 2-Opt move breaks two arcs in the current solution and recon-
nects them in a different way.

– 1-1 Exchange. This move swaps two nodes in the current route.

All three neighborhood structures (lmax = 3) are incorporated in a pipe-VND
scheme, as illustrated in Sect. 3.2.

3.3 Shaking Methods

In order to avoid local optimum traps, three different shaking procedures are
examined. These perturbation methods are the following:
Shake 1. This diversification method randomly selects one of the predefined
neighborhood structures and applies it k times (1 < k < kmax) in the current
solution. The method is summarized in Algorithm 2.
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Algorithm 1. pipe-VND
1: procedure pVND(N, lmax)
2: l = 1
3: while l <= lmax do
4: select case(l)
5: case(1) : S′ ← 1-0 Relocate(S)
6: case(2) : S′ ← 2-Opt(S)
7: case(3) : S′ ← 1-1 Exchange(S)
8: end select
9: if f(S′) < f(S) then
10: S ← S′

11: else
12: l = l + 1
13: end if
14: end while
15: return S
16: end procedure

Algorithm 2. Shake 1
procedure Shake 1(S, kmax)

l = random integer(1, lmax)

for k ← 1, kmax do
select case(l)
case(1)
S′ ← 1-0 Relocate(S)
case(2)
S′ ← 2-Opt(S)
case(3)
S′ ← 1-1 Exchange(S)
end select

end for
return S′

Shake 2 [20]. In each call of this shaking method, a number of required qubits
are generated by a quantum register (e.g., N ≤ 2n, where n is the number of
nodes in problem) and they produce the corresponding components, according
to the problem’s dimension. These components must be equal or greater than the
number of the nodes in the tour. Then, all the required components are placed
in a 1 × n vector. In addition, each one of the selected components corresponds
to a node of the current solution. The components are to used as a flag for
each node of the incumbent solution (note: components can be 0 ≤ C ≤ 1).
Because of the matching between components and nodes in a tour, sorting the
first vector affects the order in the solution vector and, consequently, drives the
exploration effort to another point in the search space. The pseudocode of this
shaking procedure is given in Algorithm 3.
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Algorithm 3. Shake 2
procedure Shake 2(S, n)

NQubits ← QuantumRegister(n)

Compute the components based to the qubits.

Save the n components in the vector QCompV ector.

Matching each element in the QCompV ector with a node in S.

Descending sorting on QCompV ector produces S′.

Recalculate the cost of the new S′.
return S′

Shake 3. This shaking method acts like a shuffle method. In each call the posi-
tion of each node in the new route is selected randomly. The method is given in
Algorithm 4.

Algorithm 4. Shake 3
procedure Shake 3(S)
S′ ← Shuffle(S)
return S′

3.4 GVNS Schemes

For each shaking method a GVNS scheme is formed. More specifically, the
GVNS 1 contains Shake 1 as its shaking method, GVNS 2 uses Shake 2 in order
to diversify solutions, and GVNS 3 adopts the perturbation method Shake 3.
The initial solution is produced by the Nearest Neighbor heuristic in all GVNS
schemes. The pseudocode for all three GVNS approaches is given in Algorithms
5, 6 and 7, respectively.

Algorithm 5. GVNS 1
procedure GVNS 1(S, kmax,max time)

while time ≤ max time do

S∗ = Shake 1(S, kmax)

S′ = pV ND(S∗)

if f(S′) < f(S) then
S ← S′

end if

end while

return S
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Algorithm 6.GVNS 2
procedure GVNS 2(S, n,max time)

while time ≤ max time do

S∗ = Shake 2(S, n)

S′ = pV ND(S∗)

if f(S′) < f(S) then
S ← S′

end if

end while

return S

Algorithm 7. GVNS 3
procedure GVNS 3(S,max time)

while time ≤ max time do

S∗ = Shake 3(S)

S′ = pV ND(S∗)

if f(S′) < f(S) then
S ← S′

end if

end while

return S

It should be mentioned that the neighborhoods in all three GVNS methods
are computed using both the first and best improvement strategy.

4 Computational Analysis

4.1 Computing Environment and Parameter Settings

The aforementioned methods were implemented in Fortran and were executed
on a laptop PC running Windows 10 Home 64-bit with an Intel Core i7-6700
CPU at 2.6 GHz and 16 GB RAM. The compilation of codes was done using Intel
Fortran 64 compiler XE with optimization option/O3. The maximum execution
time limit was set to max time = 60 s or max time = 120 s and the maximum
number of the random jumps in the Shake 1 was experimentally set to kmax = 3.
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4.2 Computational Results

This section presents the computational results for the different perturbation
strategies for each class of experiments. All experiments ran 5 times and the
average value of all runs was computed.

Tables 1 and 2 contain the aggregated experimental results. Specifically, they
contain the benchmark name, the optimal value (zOpt), the cost of the three
GVNS variations (GVNS 1, GVNS 2 and GVNS 3) and the GAPs from the
optimal value. Table 1 depicts GVNS using first improvement and execution
time of 1 min. Table 2 shows GVNS using best improvement and execution time
of 1 min. The cost of each GVNS variation is the average of the 5 runs for each
problem. The GAP is computed as follows: given the outcome x, its gap from
the optimal value OV is given by the formula x−OV

OV . The gap is widely used
in the field of Optimization to measure how close a particular solution is to the
optimal. The data from the experiments demonstrate that both GVNS 1 and
GVNS 2 outperform GVNS 3 in most cases. Recall that GVNS 3 is based on a
suffle-wise perturbation strategy. For example, for benchmark ftv47 we can see
that GVNS 1’s cost is 1821, GVNS 2’s is 1992 and GVNS 3’s is 2101. GVNS 1
and GVNS 2 both outperform GVNS 3 and are also near the optimal (1778).

Table 1. Perturbation impact on FI for 1 min runs

Instance zOpt GVNS 1 GVNS 2 GVNS 3 GAP 1 GAP 2 GAP 3

br17.atsp 39 39 39 39 0.00 0.00 0.00

ft53.atsp 6905 7189 7328 7737 4.11 6.13 12.05

ft70.atsp 38673 39782 40691 40537 2.87 5.22 4.82

ftv33.atsp 1286 1318 1339 1450 2.49 4.12 12.75

ftv35.atsp 1473 1484 1499 1596 0.75 1.77 8.35

ftv38.atsp 1530 1546 1585 1579 1.05 3.59 3.20

ftv44.atsp 1613 1651 1760 1797 2.36 9.11 11.41

ftv47.atsp 1778 1821 1992 2101 2.42 12.04 18.17

ftv55.atsp 1608 1666 1985 1912 3.61 23.45 18.91

ftv64.atsp 1839 1961 2382 2395 6.63 29.53 30.23

ftv70.atsp 1950 2136 2557 2484 9.54 31.13 27.38

ftv170.atsp 2755 3487 3923 3923 26.57 42.40 42.40

kro124p.atsp 36230 39024 43187 40259 7.71 19.20 11.12

p43.atsp 5620 5620 5623 5658 0.00 0.05 0.68

rbg323.atsp 1326 1516 1563 1626 69.61 17.27 102.11

rbg358.atsp 1163 1347 1437 1404 80.40 22.27 136.89

rbg403.atsp 2465 2535 2587 2565 9.78 4.42 11.76

rbg443.atsp 2720 2814 2859 2814 3.46 5.11 3.46

ry48p.atsp 14422 14549 14901 14738 0.88 3.32 2.19

Average 6599.74 6920.26 7328.37 7190.21 12.33 12.64 24.10
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Table 2. Perturbation impact on BI for 1 min runs

Instance zOpt GVNS 1 GVNS 2 GVNS 3 GAP 1 GAP 2 GAP 3

br17.atsp 39 39 39 39 0.00 0.00 0.00

ft53.atsp 6905 7043 7135 7674 2.00 3.33 11.14

ft70.atsp 38673 39507 40206 40539 2.16 3.96 4.83

ftv33.atsp 1286 1289 1286 1379 0.23 0.00 7.23

ftv35.atsp 1473 1476 1473 1533 0.20 0.00 4.07

ftv38.atsp 1530 1538 1541 1599 0.52 0.72 4.51

ftv44.atsp 1613 1632 1644 1728 1.18 1.92 7.13

ftv47.atsp 1778 1792 1816 1940 0.79 2.14 9.11

ftv55.atsp 1608 1642 1665 2012 2.11 3.54 25.12

ftv64.atsp 1839 1908 1986 2193 3.75 7.99 19.25

ftv70.atsp 1950 2110 2157 2346 8.21 10.62 20.31

ftv170.atsp 2755 3341 3852 3923 21.27 39.82 42.40

kro124p.atsp 36230 36501 37076 38195 0.75 2.34 5.42

p43.atsp 5620 5620 5620 5627 0.00 0.00 0.12

rbg323.atsp 1326 1486 1539 1633 107.77 107.77 107.77

rbg358.atsp 1163 1307 1409 1437 136.89 136.89 136.89

rbg403.atsp 2465 2510 2547 2554 11.76 11.76 11.76

rbg443.atsp 2720 2765 2824 2844 1.65 3.16 4.56

ry48p.atsp 14422 14480 14498 14659 0.40 0.12 1.64

Average 6599.74 6736.11 6858.58 7044.95 15.88 17.69 22.28

Table 3. Perturbation impact on FI for 2 min runs

Instance zOpt GVNS 1 GVNS 2 GVNS 3 GAP 1 GAP 2 GAP 3

br17.atsp 39 39 39 39 0.00 0.00 0.00

ft53.atsp 6905 7024 7498 7752 1.72 8.59 12.27

ft70.atsp 38673 39615 40827 40505 2.44 5.57 4.74

ftv33.atsp 1286 1330 1370 1454 3.42 6.53 13.06

ftv35.atsp 1473 1482 1519 1604 0.61 3.12 8.89

ftv38.atsp 1530 1547 1618 1576 1.11 5.75 3.01

ftv44.atsp 1613 1628 1839 1812 0.93 14.01 12.34

ftv47.atsp 1778 1787 2020 2097 0.51 13.61 17.94

ftv55.atsp 1608 1668 2012 1912 3.73 25.12 18.91

ftv64.atsp 1839 1951 2484 2476 6.09 35.07 34.64

ftv70.atsp 1950 2165 2571 2484 11.03 31.85 27.38

ftv170.atsp 2755 3412 3923 3923 23.85 42.40 42.40

kro124p.atsp 36230 39344 44243 40849 8.60 22.12 12.75

p43.atsp 5620 5620 5628 5657 0.00 0.14 0.66

rbg323.atsp 1326 1499 1576 1586 14.33 17.12 107.77

rbg358.atsp 1163 1329 1410 1406 16.34 21.93 136.89

rbg403.atsp 2465 2509 2586 2547 2.27 4.10 11.76

rbg443.atsp 2720 2808 2849 2811 3.24 4.74 3.35

ry48p.atsp 14422 14475 14936 14708 0.37 3.56 1.98

Average 6599.74 6906.95 7418.32 7220.95 5.29 13.96 24.78
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Table 1 presents the data for the different GVNS variations for 1 min run
on First Improvement. Table 2 shows the results of the GVNS variations for
1 min run on Best Improvement. The results of Table 2 lead to the same conclu-
sion, i.e., that both GVNS 1 and GVNS 2 outperform GVNS 3 in most cases.
Table 3 shows the results of the GVNS variations for 2 min run on First Improve-
ment. The results of Table 3 demonstrate that GVNS 1 outperform GVNS 2 and
GVNS 3 in most cases. However, the main difference from the results of Table 1
and Table 2 is that now the behavior of GVNS 2 is closer to GVNS 3’s. Table 4
shows the results of the GVNS variations for 2 min run on First Improvement.
The results of Table 4 corroborate the conclusion of Tables 1 and 2, i.e., that
both GVNS 1 and GVNS 2 outperform GVNS 3 in most cases.

Table 4. Perturbation impact on BI for 2 min runs

Instance zOpt GVNS 1 GVNS 2 GVNS 3 GAP 1 GAP 2 GAP 3

br17.atsp 39 39 39 39 0.00 0.00 0.00

ft53.atsp 6905 7043 7207 7773 2.00 4.37 12.57

ft70.atsp 38673 39358 40230 40588 1.77 4.03 4.95

ftv33.atsp 1286 1286 1290 1370 0.00 0.31 6.53

ftv35.atsp 1473 1474 1475 1509 0.07 0.14 2.44

ftv38.atsp 1530 1538 1555 1599 0.52 1.63 4.51

ftv44.atsp 1613 1636 1664 1731 1.43 3.16 7.32

ftv47.atsp 1778 1787 1837 1903 0.51 3.32 7.03

ftv55.atsp 1608 1640 1686 2012 1.99 4.85 25.12

ftv64.atsp 1839 1914 2032 2217 4.08 10.49 20.55

ftv70.atsp 1950 2038 2189 2342 4.51 12.26 20.10

ftv170.atsp 2755 3351 3918 3923 21.63 42.21 42.40

kro124p.atsp 36230 36379 37378 37915 0.41 3.17 4.65

p43.atsp 5620 5620 5620 5625 0.00 0.00 0.09

rbg323.atsp 1326 1473 1531 1610 10.71 16.14 107.77

rbg358.atsp 1163 1292 1405 1435 9.29 20.55 136.89

rbg403.atsp 2465 2498 2547 2553 1.30 3.25 11.76

rbg443.atsp 2720 2771 2822 2842 1.88 3.75 4.49

ry48p.atsp 14422 14468 14464 14678 0.32 0.29 1.78

Average 6599.74 6716.05 6888.89 7034.95 3.28 7.05 22.16

4.3 Statistical Analysis on Computational Results

This section presents the statistical tests which were performed on the com-
putational results in order to evaluate the performance of the three different
GVNS methods. Different statistical tests are applied to different data struc-
tures. Particularly, statistical analysis methods can be divided on parametric
and non parametric tests. The first category examines normal variables whereas
the other methods concern non-normal variables [2].
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Initially, the application of a normality test showed that the numerical data
did not follow the normal distribution. As a consequence, we applied the Kruskal-
Wallis test for checking the existence of a statistically significant difference
between the methods. In this test receiving a p-value less than 0.05 means that
there is statistically significant difference between the three methods.

Table 5. Kruskal-Wallis rank sum test

X2 df p-value

FI 1min 6.8689 2 0.0322

FI 2mins 9.0314 2 0.0109

BI 1min 9.2739 2 0.0097

BI 2mins 9.6658 2 0.008

In Table 5 we can see that for all cases p-value is less than 0.5. So we can
conclude that for all cases there is a significant statistical difference.

Table 6. KPairwise comparisons using Wilcoxon signed rank test.

FI 1min

GVNS1 GVNS2

GVNS2 0.00064

GVNS3 0.00064 0.6701

FI 2mins

GVNS1 GVNS2

GVNS2 0.00064

GVNS3 0.00064 0.4488

BI 1min

GVNS1 GVNS2

GVNS2 0.00109

GVNS3 0.00064 0.00064

BI 2mins

GVNS2 0.00109

GVNS3 0.00064 0.00064

In Table 6, we examine the experiment results in pairs for each case of run.
Once again if any of values in Table 6 are less 0.05 then there is significant
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difference between the two methods. For example, for the Best Improvement
1 min run the GVNS 1 has significant difference on performance from GVNS 2
since the value is 0.00064. However, at the First improvement 1 min run the
GVNS 2 and GVNS 3 schemes have no significant differences on their perfor-
mance.

As a result of this Kruskal-Wallis statistical analysis, we have the following
four box plots. Each one depicts either First Improvement or Best Improvement
for one minute, as well as for two minutes runs. In particular, one can observe in
the figures below the median value of each method. This enables us to conclude
which method gives the best results (Fig. 1).
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Fig. 1. Box plot for FI 1 min

In all cases GVNS 1 outperforms the other two GVNS schemes. However, by
checking the medians at the box plots we can also conclude that the GVNS 2
method performs significantly better on Best improvement, producing results
that are “close” to the results of GVNS 1, while on the First improvement is
only slightly better than GVNS 3. GVNS 3 exhibits the worst performance in
all cases according to median analysis of the box plots (Figs. 2, 3 and 4).
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Fig. 2. Box plot for BI 1 min
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Fig. 4. Box plot for BI 2 min

5 Conclusions - Future Work

In this paper we have carried out an extensive performance analysis based on
three GVNS implementations that are differentiated by the perturbation strat-
egy used. Our comparative performance analysis ivolved problems modelled as
asymmetric TSP instances, which were solved using GVNS. To assess the effi-
ciency of our approach, we performed extensive experimental tests using well-
known aTSP benchmarks from TSPLIB. The results were quite conclusive, as
they confirmed that for asymmetric TSP instances GVNS 1 and GVNS 2 con-
sistently provide better solutions in all cases compared to GVNS 3, which is a
random-like strategy.

A direction for future work could be the investigation of alternative neighbor-
hood structures and neighborhood change moves in VND (Variable Neighbor-
hood Descent) under the GVNS framework. In the same vein, one could study
modifications or specific combinations with more than one perturbation strat-
egy during the perturbation phase in order to achieve even closer to optimal
solutions, particularly on bigger asymmetric benchmarks.

Moreover, an idea for future work is to apply some parallelization techniques
to accelerate the calculations of the algorithm in [1]. Finally, another possibility
for future work could be a thorough study of the impact of perturbations on
symmetric TSP and national TSP benchmarks and a computational analysis of
the quality of the provided solutions driven from perturbation to perturbation.
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Abstract. In this paper we deal with a generalization of the multi-
depot capacitated vehicle routing problem namely the multi-depot cov-
ering tour vehicle routing problem (MDCTVRP). This problem is con-
sidered more challenging since it deals with some situations where it
is not possible to visit all the customers with the vehicles routes. In
this problem, a customer can receive its demand directly by visiting it
along the tour using a set of vehicles located at different depots or by
covering it. A customer is considered as covered if it is located within
an acceptable distance from at least one visited customer in the tour.
The latter can satisfy its demand. We propose a general variable neigh-
borhood search algorithm to solve the MDCTVRP. In this paper we
use a variable neighborhood search (VNS) with a variable neighborhood
descent (VND) method as a local search. Experiments were conducted
on benchmark instances from the literature.

Keywords: Vehicle routing problem · Covering ·
Variable neighborhood search

1 Introduction

This paper investigates the solution of a multi-depot covering tour vehicle rout-
ing problem (MDCTVRP) by means of a general variable neighborhood search
(GVNS). The Vehicle Routing Problem (VRP) has extensive variants studied in
the literature. We focus on an extension of the classical multi-depot capacitated
vehicle routing problem (MDVRP) in which covering option was added and each
customer can be served by visiting or covering it. Obviously, our problem is more
challenging than the MDVRP where all customers must be visited by the tours.
The problem aims at minimizing the total cost which is composed by the follow-
ing costs: The routing cost and the covering one. When the demand of customer
was satisfied directly, the routing cost will be occurred by visiting the customer
on the vehicles routes. Whereas, when the demand of customer was satisfied
indirectly by ‘covering’ it, a covering cost will be associated. A customer is con-
sidered as covered if it is located within a given covering distance of at least one
visited customer. Therefore, the distance travelled by the covered customers to
reach their nearest destination on the route is proportional to the covering cost.
c© Springer Nature Switzerland AG 2019
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To the best of our knowledge, the MDCTVRP has been introduced for the
first time by [1] where they developed two mixed integer programming formula-
tions (flow-based and node-based formulation). They developed a hybrid meta-
heuristic combining a greedy randomized adaptive search procedure (GRASP),
iterated local search (ILS) and simulated annealing (SA). Since then, this prob-
lem has not been addressed in the literature. The MDCTVRP is a combination
between two problems namely the MDVRP and the covering salesman problem
(CSP). The covering problems receive recently more attention as for example
covering tour problem (CTP) which attract so much attention than the classical
routing problem. Recently, [2] solve the mutli-vehicle version of the CTP (m-
CTP) exactly by a branch ant cut algorithm where they propose a new integer
programming formulation based on a two-commodity flow model. They propose
also a meta-heuristic based on evolutionary local search method (ELS) which
provide good results and the solution is within 1.45% of optimality for the test
instances. Few years later, GVNS algorithm was proposed by [6] to solve the
same problem. The computational results show the effectiveness of the proposed
method to solve small and large sets of instances in a reasonable time. The
provided results is outperform those in [2]. More recently, [7] propose two meta-
heuristics to solve a generalized variant of the m-CTP called the multi-vehicle
multi-Covering Tour Problem (mm-CTP-p) where a customer must be covered
several times to be completely served. In the MDCTVRP, each vertex must be
along the tour or covered by already visited customers. Whereas, in the m-CTP,
the set of customer vertices is divided into two groups where we need to visit a
subset of vertices from the first group in order to cover all the set of customers
from the second group.

This paper is organized as follows: Sect. 2 describes the MDCTVRP problem.
Section 3 presents the proposed algorithm. Section 4 compares the performance
of the proposed algorithm with an existing hybrid approach in the literature that
combine GRASP, iterated local search and simulated annealing. Finally, Sect. 5
concludes the paper and presents some perspectives.

2 Problem Description

The MDCTVRP is defined by [1] as a direct graph G = (N,A) where N repre-
sents the set of vertices, N = Nc∪ND. More precisely, Nc is the set of customers
NC = 1, 2, ..., nc and ND is the set of depots, ND = 1, 2, ..., nd. Let A be the
set of arcs A = (i, j)/i, j ∈ N , a routing cost cij was associated with traversing
the arc(i, j) ∈ A using the vehicle v and c

′
ij is the allocation cost of customer i

to the visited customer j for each i, j ∈ NC . The main goal of the MDCTVRP
is to minimize the total cost in such a way the entire demands of the customers
were satisfied. In this problem it is not necessary that each customer is visited by
a vehicle due to the introduction of the covering option. A customer is instead
covered when it is located within an acceptable distance from at least one visited
customer from which it can receive its demand. A fleet of homogenous vehicles is
located at each depot. All the depots have a capacity H and each vehicle is also
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characterized by his own capacity Q. A solution representation of the studied
problem is given in the figure below:

Fig. 1. A solution representation of the MDCTVRP.

An example of a feasible solution for the MDCTVRP is presented in Fig. 1.
We have 2 depots, where two vehicles are located to the first depot and three
vehicles are located to the second one. We have 47 customers; overall 25 of them
are visited by the tours and used to cover the demand of the remaining unvisited
customers.

3 General Variable Neighborhood Search Approach for
the MDCTVRP

The variable neighborhood search (VNS) proves its effectiveness to solve various
combinatorial optimization problems. The VNS is a meta-heuristic approach
based on a systematic change of neighborhood structures within the local search
algorithm ([3–5]). The basic VNS combines both deterministic and stochastic
ingredients. Unlike many other meta-heuristics, the VNS is simple to understand
and easy to implement since it requires few parameters.

The VNS is divided into two phases: The descent phase is used to find a local
optimum by exploring different neighborhoods of the solution. The second phase
avoids the search to be trapped in a local optimum. A perturbation is then used
to escape from the corresponding valley. Despite its simplicity, VNS is able to
produce a solution of high quality in a reasonable time.

The basic VNS method started by a perturbation phase where a neighbor
of the current solution was selected, followed by running a local search to reach
a local optimum, and then moved to the new solution if there has been an
improvement. In the following, we give a formal description of the different steps
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of the basic VNS method. Let Nk, k = 1...kmax be the set of neighborhoods and
Nk(S) be the neighbors of a solution S via a neighborhood structure Nk. We
evaluate our solution using the evaluation function f . The different steps of the
basic VNS are as follow:

Basic VNS Method
Step 1: Find an initial solution S and choose a stopping condition.
Step 2: Repeat the following sequence Until the termination condition is

met:
(i) set k ←− 1
(ii) Repeat the following sequence Until k = kmax:

(a) Shaking : Generate a random neighbor S
′
in Nk(S).

(b) Local Search: Apply some local search method within S
′
to obtain

local optimum S
′′
.

(c) Move or not : if the local optimum S
′′

is better than the incumbent
solution S (f(S

′′
) ≤ f(S)) then S ← S

′′
and continue the search with N1(k ← 1)

otherwise change the neighborhood and set k ← k + 1.
Most local search heuristics use only one neighborhood structure. In this work

we use a variable neighborhood descent (VND) method instead of a simple local
search to obtain a GVNS algorithm. The different steps of our GVNS algorithm
are described as follows: First, we generate randomly an initial feasible solution.
We start by inserting randomly the customer that cannot be covered within a
predefined distance β. Then, we select the vertex that cover a maximum number
of vertices and we insert it in a set, denoted by I, randomly. We repeat this
process until a feasible solution is reached. Finally, we obtain the set of visited
vertices I and I1, the set of covered vertices in the solution where all customers
were served. Inserting the customer that cannot be covered in the beginning aims
to minimize the size of problem and in consequence to minimize computational
time.

Let Nk, k = 1...kmax be the set of neighborhoods used in the GVNS algorithm
and Nk(S) be the neighbors of a solution S via a neighborhood structure Nk. In
our GVNS algorithm five neighborhood structures have been considered.

• Insertion: This operator is performed in the same route or between two dif-
ferent routes denoted respectively by the neighborhoods N1 and N2. For the
first one, a neighbor of a solution is obtained by removing a customer and
inserting it into a new position. However, the second neighborhood was per-
formed between two different routes in which one customer is removed from
its position and inserted into another route. The neighborhood N2 changes
not only the order of customers in the route but also the number of customers
in the two routes. If the inserted customer has some vertices that are allocated
to it, such allocation will be kept.

• Swap: The swap move attempts to swap the positions of each pair of vertices
in the solution. It is performed by randomly selecting two customers, from
the same route or from two different routes and exchanging them. This move
represented respectively by the neighborhoods N3 and N4. In addition, if one
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or both of the swapped vertices have some customers allocated to them, such
allocation will be kept.

• Remove: It consists on removing a set of vertices from the set I and denoted
by N5. this move is more detailed in the sequel.

The GVNS is composed by three main phases:

Shaking Phase: In this step, a restricted solution S
′
is obtained from the initial

solution S0 by removing randomly a given set of customers. In this procedure we
use the neighborhood structure N5 to allow diversification of the search. More
precisely, we remove l vertices from I\Nmc randomly where Nmc ⊂ Nc represents
the set of customers that cannot be covered and so they always must be part of
the solution. If the removed customer has some covered customers that could be
covered by another visited ones, we assigned them to the best feasible covered
position in S

′
else we removed each customer which cannot be covered from the

solution.
Denote by R the set of customers that do not belong to the solution, R =

Nc \ I, I1, Nmc. We explore new solutions by inserting randomly each time the
vertex from R that maximizes the number of covered vertices. Then, we insert
each customer that can be covered by the inserted vertices in the best feasible
position in S

′
. Note that the search continues until the solution is feasible.

Algorithm 1. Shake (S,l)
1: Let I be the set of visited vertices in an initial solution S;
2: Remove l vertices randomly from I \ Nmc;
3: repeat
4: Select i ∈ R where R = Nc \ {I, I1, Nmc} that maximizes the number of covered

vertices in the solution;
5: Insert i in I randomly;
6: until a feasible solution;

The Local Search Phase: In this phase different neighborhood structures were
used and a mixed variable neighborhood descent (Mixed-VND) was considered.
The mixed-VND algorithm is based on two components: a swap move and a
variable neighborhood descent (VND) method.

As already mentioned I is the set of visited vertices and I1 represents the
set of covered vertices in S

′
. We attempt to determine a better feasible solution

by applying a mixed-VND for each vertex in I. More precisely, we apply a swap
move in S0 to get S1 as follow: We select a vertex i from I and a vertex j from
Ji where Ji is the subset of covered vertices in which we can apply a swap move
between i and j without a loss of feasibility of the solution Ji ⊂ I1. Then we
apply a variable neighborhood descent (VND) method to improve the solution
S1.

The VND methods consists on finding the best neighbor S” of the solution
S1, S” ∈ Nk(S1). If the obtained solution S” is better than S1 then S1 ← S”
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and k = 1 otherwise the VND continues the search with the next neighborhood
N(k+1). In the following we present our VND algorithm (see Algorithm 2).

Algorithm 2. VND (S)
1: Input : An initial solution S, Neighborhood structures Nk, k = 1...kmax;
2: k = 1;
3: repeat
4: S

′ ← the best neighbor of S;
5: if f(S

′
) < f(S) then

6: S ← S
′
;

7: k ← 1;
8: else
9: k ← k + 1;

10: end if
11: until k > kmax;

Move or Not: Let f be the evaluation function used in our algorithm. In this
step, we evaluate the solution and we decide to make a move and continue the
search with the first neighborhood structure if the solution was improved (S0 ←
S

′
, k = 1) else we continue with the next neighborhood structure (k = k + 1).
The entire proposed GVNS algorithm is summarized in Algorithm3.

4 Computational Experiments

The experiments are performed on laptop ASUS Intel Core i5-4200U and 2.3 Ghz
processor and 6 GB memory and the proposed algorithm has been coded in C++
programming language. We performed extensive computational tests to evaluate
the performance of our algorithm. Our algorithm is then tested on the benchmark
small-size and Large-size instances where the three sizes of instances are 20, 25
and 30 vertices. Each instance is characterized by the number of customers (|Nc|)
and the number of depots (|ND|). For each depot a capacity (H) was assigned
and a maximum number of vehicles (|Pk|) to each depot k ∈ ND was defined.
Each vehicle has a capacity (Q).

Tables 1 and 2 reports our results and compare them with the hybrid meta-
heuristic proposed by [1]. [1] test the effectiveness of their proposed meta-
heuristic on a PC running at 2.93 GHz with 3.21 GB of RAM. They designed a
set of instances where the small-size instances are composed by three categories
and the Large-size instances are composed by fours categories. Each category
contains eight different groups of instances. For each group of data, five random
instances are generated. The instances are labeled XY ZT , where “X” represents
the category of the problem, and “Y ”, “Z” and “T” represent the scenarios
corresponding to the number of depots, capacity of the vehicles and the cov-
erage coefficient respectively (for further information see [1]). Column “Best”,
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Algorithm 3. GVNS for MDCTVRP
1: Input: initial solution S0;
2: Initialize: max number of iteration itermax = 1000 and the number of neighborhood

structures kmax = 5, iter = 1;
3: Begin
4: while (iter < itermax) do
5: k= 1;
6: repeat
7: S

′
= Shake(S0, k1);

8: Let I ∈ NcinS
′

and I1 = Nc I,Nmc;
9: repeat

10: Select i ∈ I;
11: Let Ji ⊂ I1;
12: for j ∈ Ji do
13: Swap move between i and j to get S1;
14: S” = V ND(S1);

15: if f(S”) < f(S
′
) then

16: S
′ ← S”;

17: Update I;
18: Go to Line 10;
19: end if
20: end for
21: until No possible improvement;
22: if f(S

′
) < f(S0) then

23: S0 ← S
′
;

24: k= 1;
25: else
26: k= k + 1;
27: end if
28: until k = kmax;
29: iter = iter + 1;
30: end while;
31: End;

“Worst” and “Avg.” show respectively, the best, the worst and the average
solution obtained over the five run. Column “Best.Time” and “Worst.time”
represent, respectively, the running time of the best and worst solution whereas,
the column “Time” shows the total running time. Columns “Bestgap” and
“Avg.gap” report, respectively, the best and the average gap solution with
respect to the best solution found by the hybrid meta-heuristic (GRASP× ILS)
proposed in the literature [1]).

Let BKS be the value of the best known solution and UB is the value
obtained by our GVNS algorithm. The percentage deviation of our method,
(GapUB) is computed as follows:

GapUB = 100 .
BKS − UB

UB
(1)
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Our results show that our method performs much better than the
GRASP×ILS with respect to the best feasible solution. Particularly, the overall
gap over 120 instances is 7.75%. But the GRASP × ILS performs well for the
average solution for which the overall gap over 120 instances is 3.17%. However,
our algorithm cannot provide good results for Large-size instances. More pre-
cisely, the overall gap over 160 instances with respect to the best feasible solution
is 8.39% and 18.60% when the comparison is made in relation to the average
results.

We observe in Fig. 2 that the GVNS algorithm presents the best feasible solu-
tion for almost all small-size instances but cannot provide good quality of solu-
tion for Large-size instances. Bisides, Fig. 3 shows the performance of the hybrid
meta-heuristic algorithm comparing with our GVNS algorithm with respect to
the average solution.

Fig. 2. The best feasible solution for the GVNS and GRASP×ILS.

Fig. 3. The average solution for the GVNS and GRASP×ILS.
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5 Conclusions

In this work we have considered a MDCVRP which is a combination of multi-
depot vehicle routing problem (MDVRP) and the covering salesman problem
(CSP). This variant have attracted recently so much attention than the classical
MDVRP problem and it is considered more challenging since it deal with some
situations where it is not possible to visit all the customers with the vehicles
routes. We have proposed a general variable neighborhood search approach to
solve the problem. Experimental results show the efficiency of our approach to
solve small-size instances but it is steel unable to solve efficiently Large-size
instances.
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